M

Programmer to Programmer'

Beginning

ASP.NET 2.
with C#

Chris Hart, John Kauffman, David Sussman, Chris Ullman

Updates, source code, and Wiox technical support at WWw.Wrox.com

Beginning
ASP.NET 2.0 with C#

Chris Hart, John Kauffman, David Sussman, and Chris Ullman

WILEY

Wiley Publishing, Inc.

Beginning
ASP.NET 2.0 with C#

Beginning
ASP.NET 2.0 with C#

Chris Hart, John Kauffman, David Sussman, and Chris Ullman

WILEY

Wiley Publishing, Inc.

Beginning ASP.NET 2.0 with C#

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2006 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN-13: 978-0-470-04258-8
ISBN-10: 0-470-04258-3

Manufactured in the United States of America
10987654321

1B/SQ/QU/QW/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate
per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd.,
Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at http:/ /www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESENTATIONS
OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND
SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PAR-
TICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE
ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD
WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PRO-
FESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAM-
AGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A
CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE
PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS
IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Department within the United States
at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Library of Congress Cataloging-in-Publication Data:

Beginning ASPnet 2.0 with C# / Chris Hart ... [et al.].
p. cm.
Includes index.
ISBN-13: 978-0-470-04258-8 (paper/website)
ISBN-10: 0-470-04258-3 (paper/website)
1. Active server pages. 2. Web sites—Design. 3. Microsoft .NET. 4. C# (Computer program language) 1. Hart, Chris, 1976-
TK5105.8885.A26B4535 2006
005.2'76—dc22
2006007661

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trademarks or
registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be
used without written permission. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not
associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

www.wiley.com

About the Authors

Chris Hart

Chris normally works at Trinity Expert Systems Plc, based in Coventry (UK), but is currently on mater-
nity leave. She’s worked on several major .NET, SharePoint, and CMS applications. She enjoys having a
job where she gets to learn and play with new technologies on a regular basis, often working on-site
with customers. She’s been using .NET since the pre-Alpha days, and yet still enjoys the fun of working
with beta software.

Chris lives in Birmingham (UK, not Alabama) with her extremely understanding husband James and
baby Nathan, and is discovering that motherhood is more challenging than developing a CMS system
for a major client. She’s currently trying to work out how to make the home network toddlerproof.

I'd like to thank James for being so understanding — this was the hardest one yet, and you were great.
Thanks also to my brother Rob for your inspiring creativity — best of luck in your final year at Uni.
Thanks to Lou for designing the Wrox United site, and for being such a fantastic friend. Finally, thanks
to Nathan for waiting eight more days after I finished my final drafts before arriving into the world.

Chris Hart contributed Chapters 3-5 and 11 and Appendix C to this book.

John Kauffman

John Kauffman was born in Philadelphia, the son of a chemist and a nurse. He received his degrees from
The Pennsylvania State University, the colleges of Science and Agriculture. His early research was for
Hershey foods in the genetics of the chocolate tree and the molecular biology of chocolate production.
Since 1993 John has focused on explaining technology in the classroom and in books.

In his spare time, John is an avid sailor and youth sailing coach. He also enjoys jazz music and drum-
ming. In addition to technical material, he manages to read the New Yorker magazine from cover-to-
cover each week.

John Kauffman contributed Chapters 1, 2, 7, and 8 and Appendix D to this book.

Dave Sussman

Dave Sussman is an independent trainer, consultant, and writer, who inhabits that strange place called beta
land. It’s full of various computers, multiple boot partitions, VPC images, and very occasionally, stable soft-
ware. When not writing books or testing alpha and beta software, Dave can be found working with a vari-
ety of clients helping to bring ASPNET projects into fruition. He is a Microsoft MVP, and a member of the
ASP Insiders and INETA Speakers Bureau. You can find more details about Dave and his books at his offi-
cial website (www . ipona.com) or the site he shares with Alex Homer (http://daveandal.net).

Dave Sussman contributed Chapters 6, 9, 14, and 15 and Appendix E to this book.

Chris Ullman

Chris Ullman is a freelance web developer and technical author who has spent many years stewing in
ASP/ASPNET, like a teabag left too long in the pot. Coming from a Computer Science background, he
started initially as a UNIX/Linux guru, who gravitated towards MS technologies during the summer of
ASP (1997). He cut his teeth on Wrox Press ASP guides, and since then, he has written on over 20 books,
most notably as lead author for Wrox’s bestselling Beginning ASP/ASP.NET 1.x series, and has con-
tributed chapters to books on PHP, ColdFusion, JavaScript, Web Services, C#, XML, and other Internet-
related technologies too esoteric to mention, now swallowed up in the quicksands of the dot.com boom.

Quitting Wrox as a full-time employee in August 2001, he branched out into VB.NET/C# programming
and ASP.NET development and started his own business, CUASP Consulting Ltd, in April 2003. He
maintains a variety of sites from www. cuasp. co.uk, his “work” site, to www.atomicwise. com, a selec-
tion of his writings on music and art. The birth of his twins Jay and Luca in February 2005 took chaos to
a new level. He now divides his time between protecting the twins from their over-affectionate three-
year-old brother Nye, composing electronic sounds on bits of dilapidated old keyboards for his music
project Open E, and tutoring his cats in the art of peaceful co-existence and not violently mugging each
other on the stairs.

Chris Ullman contributed Chapters 10, 12, 13, and 16 and Appendix B to this book.

Senior Acquisitions Editor
Jim Minatel

Development Editor
Brian Herrmann

Technical Editor
Dan Maharry

Production Editor
Felicia Robinson

Copy Editor
Kim Cofer

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher

Richard Swadley

Vice President and Executive Publisher

Joseph B. Wikert

Credits

Graphics and Production Specialists
Jennifer Click

Alicia B. South

Julie Trippetti

Quality Control Technicians
John Greenough
Brian Walls

Project Coordinator
Bill Ramsey

Proofreading and Indexing
Techbooks

Chris Ullman: All my love to my wife Kate and the boys.

Acknowledgments

Chris Hart

I'd like to thank James for sharing me with a laptop while I wrote this book—this was the hardest one
yet, and you were great. Thanks also to my brother Rob for your inspiring creativity—Dbest of luck in
your final year at Uni. Finally, big thanks to Lou for designing the Wrox United site, and for being such a
fantastic friend.

John Kauffman

I gratefully acknowledge the help of the Microsoft ASP.NET 2.0 development team, particularly Bradley
Millington. It was Brad who first demonstrated the enormous capability of the ASP.NET 2.0 data con-
trols to me and has continued to tutor me in the best use of the code his team developed. I also deeply
appreciate the ongoing advice and friendship of my co-author Dave Sussman.

Dave Sussman

I'would like to thank everyone on the ASP.NET team for supplying interim builds and answering many
questions; Dan Maharry for his invaluable reviewing; and Brian Herrmann for coping admirably with
not only my writing, but also my occasional stroppy fits.

Chris Ullman

Thanks to everyone on the author team (Dave, Chris, and John) for being available for my Messenger
and email queries, thanks to Dan for being an honest reviewer and always ready with good advice, and
thanks to Jim and Brian for being patient on the chapters—I got there eventually!

Acknowledgments
Introduction

The Site You Will Build
ASP.NET 2.0 — A Powerful Tool to Build Dynamic Web Sites
Simple Solutions for Common Web Site Tasks
Consistency and Personalization
Navigation
Login, Security, and Roles
Connection to Data
Code
Componentization
Web Services
Performance and Caching
Errors and Exception Handling
Deployment
Development Tools
Where Does ASP.NET 2.0 Fit with Other Technology?
Exploring the Wrox United Application
Getting Started with Your Wrox United Site
VWD Express — A Development Environment
Introducing the ASP.NET Development Server
VWD'’s Solution Explorer
Creating, Opening, and Using Web Sites and Pages with VWD
The Sample Code (Download) Directories
Running a Page
Design Surface
Toolbox
Properties Window
Error List Window
VWD'’s Database Explorer
Summary
Exercises

Contents

Contents

Chapter 2: Site Design 27
General Design Objectives 28
Master and Content Pages 29

Creating a Master Page 29
Creating Content Pages 31
A Sample of Master and Content Pages 33
Using Cascading Style Sheets in a Master Page 34
Additional Capabilities of Master Pages 39
Multiple Levels of Master Pages 39
Master Pages Support Multiple Content Placeholders 41
Creating a Site Map 42
General Guidelines for Site Design 45
Standard Files for ASP.NET 2.0 Applications 45
Web.config Holds Settings for the Entire Site 45
Global.asax Holds Code for the Entire Site 50
Editing Site Configuration Through a Web Browser 50
Troubleshooting Site Design Errors 53
Summary 53
Exercises 54

Chapter 3: Page Design 55
Static Page Design 55
The World of HTML 62

From HTML to XHTML Code 66
Dynamic Content 68
Dynamic Client Code and Dynamic Server Code 69
Introduction to Server Controls 69
The Server Control Toolbox 70
What Are Server Controls? 71
Source View in VWD 75
Types of Server Controls 80
Standard Controls 80
HTML Controls 82
Navigation Controls 83
Summary 97
Exercises 98

Xii

Contents

Chapter 4: Membership and Identity 101
Security Basics 102
Identity —Who Am 1? 102
Authentication—This Is Who | Am 102
Authorization—This Is What | Can Do 102
Logging In to a Site 103
ASP.NET Security 103
Login Controls 103
Personalization 117
Membership 120
Authentication 125
Wrox United Security 128
Summary 131
Exercises 132
Chapter 5: Styling with Themes 133
Styling a Site 133
Style Attributes 134
CSS —Cascading Style Sheets 138
Themes 147
Applying Styling to a Site 165
Themes in Wrox United 167
Styling and Layout Best Practices 172
Usability 172
Accessibility 172
Summary 173
Exercises 174
Chapter 6: Events and Code 175
Web Server Architecture 175
HTTP Is Stateless 176
Server-Side Events 177
Adding Events to the Page 178
The Postback Architecture 184
What Events Are Available? 186
Which Events Should | Use? 186
Events Aren’t Triggered by Users Only 189

Xiii

Contents

Indirect Events 193
Canceling Events 196
Global Events 200
Summary 201
Exercises 202
Chapter 7: Reading Data 203
Introducing Databases 203
Using ASP.NET 2.0’s Data Controls 205
Introducing Data Source Controls 205
Introducing Data-Bound Controls 206
Data Source Controls and Data-Bound Controls Work Together 211
Configuring Data Controls with VWD 211
Data Source Controls 212
The Basic Properties of Data Source Controls 212
Hiding the Connection String 215
Details of the Connection String and Provider 217
Data-Bound Controls 218
Data-Bound Selection Lists 218
The GridView Control 225
The Datalist and Repeater Controls 231
The DetailsView and FormView Controls 239
Data Source Controls with Parameters 242
Multiple Data Controls Working Together 247
Working with XML Data 253
Reading XML Data 255
Binding Syntax 258
Summary 259
Exercises 260
Chapter 8: Writing Data 261
Introduction to Writing Data 261
Options for Writing Data 262
DataKeyNames 262
Changing Existing Records 263
Adding New Records 269
Deleting Records 271
Uploading Pictures 274
Improving the Upload of Pictures 278
Summary 283
Exercises 284

Xiv

Contents

Chapter 9: Code 285
Variables and Data Types 285
Common Language Runtime Types 287
What Are All Those Curly Brackets and Semicolons For? 288
Declaring Variables 288
Assigning Values 289
Data Conversion 289
Null Values 291
Working with Strings 291
Working with Dates 294
Working with Arrays and Collections 297
Deciding Whether to Use Arrays or Collections 303
Enumerations 304
Constants 305
Statements 306
Operators 306
Decisions 312
Loops 316
Namespaces 326
Working with Classes 327
Creating Classes 328
Inheritance 338
Variable Scope and Lifetime 343
Generics 345
Summary 346
Exercises 346
Chapter 10: Componentization 347
The Separation of Code from Content 348
The Separation of Code from Design 349
Code-Behind 350
The Page Directive 350
Partial Classes 351
Event Handlers/Functions 351
Creating a Code-Behind File 352
Compilation in ASP.NET 2.0 356
The App_Code Folder 357
Data Layers 357
Two-Tier Applications 357
Three-Tier Applications 358
What's New in ASP.NET 2.0 359
The Wrox United ObjectDataSource 364

XV

Contents

User Controls 367
User Control Structure 369

A Simple User Control 370
The Wrox United News User Control 375
Composite Controls 379
Assemblies and Custom Server Controls 379
Summary 380
Exercises 381
Chapter 11: Roles and Profiles 383
The Importance of Roles 384
Introducing Roles in Wrox United 385
Configuring Page-Level Authorization 396
Controlling Page Visibility 397
Working with Roles in Code 404
Enabling User Profiles 405
Building a Profile 406
Profiles in Wrox United 408
Storing Preferences 416
Managing Anonymous Shopping Carts 422
Summary 423
Exercises 423
Chapter 12: Web Services 425
Looking at Web Services 426
Consuming a Third-Party Web Service 427
The Life Cycle of a Web Service 430
Calling the Web Service 431
Transmitting the Web Service 431
Returning the Response 433
Using the Response 435
The Structure of Your Web Service 435
Processing Directive 435
Namespaces 436
Public Class 436
Web Methods 436
Creating a Web Service 438
Testing Your Web Service 441
The WSDL Contract 443

Xvi

Contents

Web Service Discovery 444
DISCO 445
uDDI 445
Discovering Your Web Service 445

Adding the Fixture Service to Your Application 447

Putting It All Together 450

Remote Web Services — PocketPC Application 455

Web Service Security 459
Encryption and Message-Based Security 459
Authentication and Access Controls for Services 459

Summary 460

Exercises 460

Chapter 13: E-Commerce 461

The E-Commerce Pipeline 462

The Product Catalog 463
The Structure of the Catalog 463
The Design of the Catalog 463
Implementation of the Catalog 464
The Product Item Page 471

The Shopping Cart 477
The Shopping Object 477
The Profile 487
The Shopping Cart Control 489

Checkout 502
Order Processing 503
Login 503
Address/Delivery Details 503
Credit Card Handling 504
How You Intend to Checkout 505

Secure Transactions 520

What Else Can You Do? 520

Summary 521

Exercises 521

Chapter 14: Performance 523

Simple Techniques 523
Object Disposal 524
Database Connections 527
Stored Procedures 527

Xvii

Contents

Strongly Typed Collections 536
Session State 537
View State 538
Pages and Code 539
Data Binding and Postback 539
Object References 540
StringBuilder Versus String Concatenation 540
Picking the Right Collection 542
Caching 543
Page Caching 543
Designing for Performance 548
Web Server Hardware and Software 549
Testing Performance 549
Tracing 549
Stress Testing Tools 552
Performance Monitor 552
Summary 553
Exercises 553
Chapter 15: Dealing with Errors 555
Defensive Coding 555
Parameter Checking 556
Avoiding Assumptions 557
Query Parameters 558
Validation 559
Exception Handling 564
What Are Exceptions? 565
The Exception Object 565
How to Trap Exceptions 566
Logging Exceptions 573
Mailing Exceptions 576
Raising Exceptions 578
Exceptions Best Practices 579
Global Exception Handling 579
Custom Error Pages 581
Configuring Custom Error Pages 582
Debugging and Tracing 583
Using ASP.NET Tracing 584
Using the Debugger 588
Summary 595
Exercises 596

xviii

Contents

Chapter 16: Deployment, Builds, and Finishing Up 597
Site Deployment 598
Checklist 598
Compiling and Running Your Application 599
Publishing the Site 600
XCOPY Deployment 603
Common Problems Encountered When Deploying a Site 605
Testing and Maintenance 609
Testing Before and After 609
Maintenance 610
Where to Now? 617
References 618
Summary 618
Exercise 619
Appendix A: Exercise Answers 621
Appendix B: Setup 647
System Requirements 647
Processor 647
Operating System 648
RAM 648
Hard Disk 648
CD or DVD Drive 648
Display 648
Mouse 648
Visual Web Developer Express Installation 648
Web Site Folder Setup 654
IIS Setup (Optional) 654
Wrox United Installation 658
Network Service Enabling 659
Windows XP Home Edition Users Only 661
Checking the Installation with VWD and the ASP.NET Development Server 661
Checking the Installation with IIS 662
Troubleshooting 663

Xix

Contents

Appendix C: Wrox United Database Design 665
Players and Matches 666
The Players Table 666
The Goals Table 667
The Fixtures Table 668
The MatchReports Table 669
The Gallery Table 669
Standalone Tables 669
The Opponents Table 669
The News Table 670
Wrox United Store Tables 670
The Orders Table 670
The OrderLines Table 671
The Products Table 672
Appendix D: VWD Database Explorer 673
Opening the Database Explorer 673
Adding an Existing Database to the Database Explorer 673
Accessing Files 674
SQL Databases on a SQL Server (Including SQL Server Express) 675
Saving SQL Databases as an MDF File 676
Viewing Database Diagrams 677
Exploring a Table’s Structure 681
Observing and Editing Data of Existing Tables 682
Creating a New Database 683
Creating a New Table and Adding Data 683
Examining and Creating Views 684
Examining a Stored Procedure (SPROC) 689
Summary 690
Appendix E: CSS and HTML Quick Reference 691
Styling Pages and Controls 691
Creating Inline Styles 692
Linking Style Sheets to a Page 693
CSS Inheritance 693
CSS Styles 693
CSS Sizes 695
Fonts 695
Colors 696

XX

Contents

CSS Selectors 696
Floating Elements 698
Pseudo Classes 699
CSS Reference 699
Common HTML Tags by Category 704
Document Structure 704
Titles and Headings 705
Paragraphs and Lines 705
Text Styles 706
Lists 707
Tables 707
Links 707
Graphics, Objects, Multimedia, and Scripts 708
Forms 708
Frames 709
HTML Common Attributes to the CSS Property 709
Recommended Reading 711
Index 713

XXi

Introduction

There are many different technologies available today for developing complex web sites and web appli-
cations, and with so many to choose from, it’s great that there’s one technology in particular that stands
out from the crowd and is such a joy to use. ASPNET 2.0 is a fantastic technology that enables you to
develop web sites and applications with very little hassle. Developing web applications was never this
easy, yet even though it may appear simple, there is real power and depth to this technology that enables
it to host even the most complex applications available today.

With every new release from Microsoft comes a new way of thinking, new technologies designed to
make your life easier, and the best-ever programming experience; ASP.NET 2.0 is no exception to this
rule. Whether you have developed web applications before, or if you are completely new to the world of
web development, there’s a lot to learn about this particular version of the technology.

Built on top of version 2.0 of the NET Framework, ASP.NET 2.0 extends the functionality first seen in
ASP.NET 1.0 and 1.1. At its core, you have a control-based, event driven architecture, which means that you
have the ability to add small blocks of code to a page, see dynamic results with minimal effort, and react
to user input to provide a smooth and intuitive user experience.

The biggest change since the previous edition of ASP.NET is in the amount of code you have to write—
the ASPNET team aimed for a 70% reduction in the amount of code you write, and having spent time
myself working with ASPNET 2.0 in the field, even if this claim does sound somewhat large, the reduc-
tion in time spent with fingers on keys is very noticeable. The mundane and repetitive tasks that you
would have previously had to complete have been simplified. For example, providing user login func-
tionality to a site is now a very swift process—adding a few controls to a page and setting up some user
accounts is pretty much all you need to do to get basic user login functionality implemented on a site,
and personalizing the user experience is just a step away from there.

Now add the new development environment designed for building ASPNET 2.0 applications, Visual
Web Developer (available on its own, or as part of Visual Studio 2005), and you will find building
dynamic, feature-rich applications to be a fast, smooth process.

Visual Web Developer is a new innovation from Microsoft, and was developed mostly in response to
developer demand. Previous editions of Visual Studio .NET were not great when it came to web pro-
gramming, and you’'d often find your code had been “fixed” for you behind the scenes, as your HTML
came out looking very different from the way it went in originally. Visual Web Developer has a fantastic
HTML editing environment, and a really smooth and intuitive interface for developing complex
ASPNET applications. Best of all, it’s a low-cost product, which makes it accessible to a wide audience
who may not be able to afford the complete Visual Studio package.

Introduction

Who This Book Is For

This book will teach you how to program web applications in ASPNET 2.0 that can display data stored
in a database, provide a personalized user experience to your users, and even offer shopping functional-
ity. All of these sorts of web applications can be developed using ASP.NET 2.0, so if these are the sorts of
applications that you are interested in developing, then this is a great place to start.

This book is for anyone new to web programming, or who has a small amount of knowledge of web pro-
gramming concepts. Maybe you want to start a career as a web developer? Or perhaps you just want to
learn how to use some cool server-side technology to put together some sites in your spare time? In
either case, this book will teach you what you need to know, and give you a good feel for how the tech-
nology works, how to use the Visual Web Developer environment to speed up your development, and to
give you total control over the development process.

The earlier chapters in this book will ease you in to the world of ASPNET development, and if you
already have some knowledge of programming, then you will find these early chapters a swift and
pleasant read. Note, though, that ASPNET 2.0 has a lot of neat tricks and tools at its disposal, and we’ll
be introducing these throughout the book. As with other Wrox Beginning books, you’ll find that the con-
cepts discussed in one chapter are then used and extended in other chapters.

What This Book Covers

This book teaches you ASP.NET 2.0, with the help of the Visual Web Developer IDE (Integrated
Development Environment). Working through this book, you will learn how to develop powerful data-
driven web applications, and even to expose functionality using web services. Here’s how the book
shapes up over the next 16 chapters.

Chapter 1: An Introduction to ASP.NET 2.0 and the Wrox
United Application

This chapter provides an overview of ASP.NET 2.0 and the Visual Web Developer environment, and will
give you a chance to create and run a simple page. You'll also learn about the Wrox United sample web-
site, which we’ll use in examples throughout the book to demonstrate different aspects of ASP.NET 2.0.

Chapter 2: Site Design

Now that you've gained some familiarity with creating simple pages, this chapter will discuss the con-
cept of site design, and introduce the concept of a master page, which can be used to provide a consis-
tent look for all pages on a site. We'll also introduce Web.config and global.asax—two important
ASP.NET files that control the behavior of a site, and the concept of a site map, for defining a site page
hierarchy.

Chapter 3: Page Design

This chapter starts by providing a quick crash-course (or a refresher course as the case may be) in HTML
and XHTML development, and introduces the crucial concept of server controls. The chapter continues by
demonstrating several of the built-in server controls in action to provide navigation functionality on a site.

XXiv

Introduction

Chapter 4: Membership and Identity

One of the big new features of ASPNET 2.0 is the addition of the Login server controls, so this chapter
introduces these controls, alongside discussions of how to create user accounts, how to configure roles,
and how to enable login functionality on a site.

Chapter 5: Styling with Themes

After the functionality of a site has been developed, it’s important to make a site look and feel the right
way. This chapter introduces CSS style sheets, and integrates them into the discussion of ASP.NET’s
Theme functionality, making it simple to keep your functionality and your site styling cleanly
separated—great for future maintainability!

Chapter 6: Events and Code

Reacting to events involves writing code, so this chapter talks about server-side coding concepts and
how web servers work. We walk you through the basics of HTTP so that you will gain an understanding
of the postback, and how you can write code to handle postback events.

Chapter 7: Reading Data

Developing a site will almost always involve reading data stored in a database, and displaying that data
on the screen, so this chapter talks about how you can use ASPNET controls (such as the Gridview,
DataLists, and DetailsView controls) to connect to a database and display data. This chapter also dis-
cusses reading data stored in an XML file.

Chapter 8: Writing Data

The storing and updating of data is the next topic to be covered in this book, and in this chapter, you
learn some useful techniques for safely updating the data stored in the database using parameters and
referring to data using keys that uniquely identify items in a database.

Chapter 9: Code

This chapter teaches you the fundamental programming concepts that you need to understand if you are
to become a fully-fledged .NET developer. We start by taking you thorough basic variables and data
types, before looking at collections, statements, operators, branches, and loops. Then we introduce some
object orientation and talk about classes, properties, methods, and simple class design principles.

Chapter 10: Componentization

Having learned all about the principles of code in the previous chapter, this chapter takes those building
blocks and talks about creating pages with separate code files, and about how to design applications
with logic stored in different classes or files. This chapter also introduces the concept of user controls,
which are great for storing pieces of code that can be reused across pages on a site.

XXV

Introduction

Chapter 11: Roles and Profiles

Following on from simple user accounts and roles as introduced in Chapter 4, this chapter builds on the
concept of site design, and changing the appearance of a site depending on which user is accessing the
site. This chapter also looks at storing user profiles and populating profiles in code, as well as switching
the theme used on a site according to user preferences.

Chapter 12: Web Services

At this stage in the book, you'll have gained sufficient experience with ASPNET 2.0 and coding that you
should now be ready to enter the world of Web Services. First, we show you how to consume a third
party Web Service, and use that functionality on a page. Next, you get the chance to build your own Web
Services, and learn about proxies and WSDL.

Chapter 13: E-=Commerce

Adding e-commerce functionality to a site can be a bit tricky, so this chapter walks you through the e-
commerce facilities built in to the Wrox United sample application, looking at how to implement a prod-
uct catalog, and build a shopping cart system that links in to user’s profiles.

Chapter 14: Performance

You may find your rather lovely web applications may crawl to a halt if you haven’t quite tweaked them
the right way to make them perform well under heavy loading, so this chapter talks about many of the
different ways you can enhance the performance of an application. This includes concepts such as dis-
posing of objects, using stored procedures, and making efficient use of caching.

Chapter 15: Dealing with Errors

Errors happen whenever you develop any application, so in this chapter, we talk you through some of
the most common ways to handle errors, how to trap exceptions, and how to present custom error pages
to users of your site. After all, users don’t need to know that your database server collapsed, but they
would like to know that if the site is down, the faults will be rectified shortly. You can then use some of
the excellent debugging and tracing functionality available in ASPNET.

Chapter 16: Deployment, Builds, and Finishing Up

In the final chapter of the book, we talk you through the ideal way to deploy a finished web application
to a live server. The application used as an example is the Wrox United application, which you can pub-
lish using both the Visual Web Developer tools, and what’s known as XCOPY deployment. We also look
at testing the deployment and looking out for common deployment problems. The final part of the chap-
ter reviews the different parts of the Wrox United application, and recaps where each part of the applica-
tion was discussed in the book. Finally, we give you some pointers as to where you can head next to
further your ASPNET development career.

XXVi

Introduction

How This Book Is Structured

This book explains concepts step-by-step, using worked examples and detailed explanations, to tell the
story of how to develop ASP.NET applications. Each chapter assumes knowledge developed in previous
chapters, so you will likely find a front-to-back study approach works best to understand the concepts
explained. There are four authors who worked on this book as a team, and we all worked quite closely
together (with some great editorial support), to give you a steady and complete tutorial of the basics of
developing ASP.NET applications.

What You Need to Use This Book

To gain the most from this book, you should have the following software installed on your system:

Q A minimum of Windows XP Home Edition as your operating system
Q Microsoft Visual Web Developer
Q Microsoft SQL Server 2005 Express Edition

Because Visual Web Developer includes the .NET Framework and ASP.NET 2.0, these three pieces of
software are all you will need to develop ASP.NET applications.

Conventions

To help you get the most from the text and keep track of what’s happening, we’ve used a number of con-
ventions throughout the book.

Try It Out

The Try It Out is an exercise you should work through, following the text in the book:

1. They usually consist of a set of steps.
2. Each step has a number.
3. Follow the steps through with your copy of the code.

How It Works
After each Try It Out, the code you've typed will be explained in detail.

Boxes like this one hold important, not-to-be forgotten, information that is directly
relevant to the surrounding text.

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

Xxvii

Introduction

As for styles in the text:

Q We italicize new terms and important words when we introduce them.

QO We show keyboard strokes like this: Ctrl+A.

0O We show file names, URLSs, and code within the text like so: persistence.properties.
Q

We present code in two different ways:
In code examples, we highlight new and important code with a gray background.

The gray highlighting is not used for code that's less important in the present
context, or has been shown before.

Source Code

As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is avail-
able for download at www . wrox . com. When you are at the site, simply locate the book’s title (either by
using the Search box or by using one of the title lists) and click the Download Code link on the book’s
detail page to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN. For this book, the
ISBN is 0-470-04258-3 (changing to 978-0-470-04258-8 as the new industry-wide 13-digit ISBN num-
bering system is phased in by January 2007).

After you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at www . wrox.com/dynamic/books/download. aspx to
see the code available for this book and all other Wrox books.

Errata

We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata, you may save another
reader hours of frustration, and at the same time, you will be helping us provide even higher quality
information.

To find the errata page for this book, go to www.wrox. com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you
can view all errata that has been submitted for this book and posted by Wrox editors. A complete
book list, including links to each’s book’s errata, is also available at www . wrox.com/misc-pages/
booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We'll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

XXViii

Introduction

p2p.wrox.com

For author and peer discussion, join the P2P forums at p2p . wrox. com. The forums are a web-based sys-
tem for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

Athttp://p2p.wrox. com, you will find a number of different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these steps:
1. Go to p2p.wrox.com and click the Register link.
2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to pro-
vide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P, but in order to post your own messages, you
must join.

After you join, you can post new messages and respond to messages other users post. You can read mes-
sages at any time on the web. If you would like to have new messages from a particular forum e-mailed
to you, click the Subscribe to This Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-

tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

XXiX

An Introduction to
ASP.NET 2.0 and the Wrox
United Application

At the end of the twentieth century something unprecedented happened to personal computers.
Previously relegated to the realm of the business office and teenagers who never saw the light of
day, the explosion of the Internet lead to computers acquiring a glamour, an aura of excitement
that had never been associated with them before. Prior to the 1990s, it was almost embarrassing to
admit you worked with computers, and then suddenly everyone wanted one. Every business had
to be attached to the Internet, and many families wanted their own web site. If you had to name
one piece of technology that became synonymous with the explosion, it was undoubtedly the web
browser. However, without anything to view on a web browser, it becomes virtually useless. You
need information, and like mushrooms sprouting up in a forest, hundreds of web sites on every
imaginable subject were born.

The late "90s were a time of vast upheaval. Business empires were founded on the simplest ideas —
a search engine (Google) or an online store for buying books (Amazon). Everyone wanted to

know how to build a web site for themselves. HTML (HyperText Markup Language) enabled them
to do that, but it was soon obvious that it only went so far. You could display pictures and text, but
what happened if you wanted more than that? What happened if you wanted a site that was reac-
tive, that received information from your users and was automatically updated without someone
having to beaver away writing new web pages every time? What if you wanted to attach a
database to the Internet, or you wanted to display a stock catalogue, or you wanted to personalize
your site to everyone who visited it, or you just wanted it to look good for your family and friends
who visited it?

The race was on and several competing technologies were created for doing this from CGI and
PHP to Java. Microsoft’s own entry into the race was ASP and what made it particularly attractive
was that it was simpler to pick up and learn than most of its rivals, but it also had some exciting
features — the ability to store details of users as they moved through pages on a web site, and con-
trols such as calendars and ad rotators that you could just stick into your pages like HTML tags.
ASP was a huge success. Microsoft went one step further —it created the .NET Framework, and
ASPNET became a “grown up” version of its ASP technology, using its mature programming

Chapter 1

languages VB.NET and C#. The leap forward in power was amazing, but Microsoft lost partial site of one
critical aim —simplicity. Web sites suddenly became things you needed expensive consultants to build
and cutting-edge designers to visualize. It was out of the hands of those who so empowered the boom.

ASP.NET 2.0 is the big step back in the right direction. Microsoft recognized that one thing people who
build web sites don’t want to do is have to code. Code is dull; code is geeky. However, Microsoft also
recognized that some people still have to code for a living. And more than that, these coders have to
build the same things, over and over again: a login mechanism, a menu system, a shopping cart, a funky
theme for your site’s backdrop applied to every page —something every web site requires. Two guiding
principles seem to be at work here: make it easier for the novice to use and reduce the amount of repeti-
tive work the developer has to do. Claims for ASP.NET 2.0 boast “70 percent less code” is needed;
ASP.NET 2.0 also comes with a multitude of controls to enable the developer to create login systems and
menus in minutes.

Late in 2003 we saw the previews of the new version of Active Server Pages named ASP.NET 2.0.
Everyone knew that these claims weren’t just hyperbole and that the way developers create web applica-
tions was going to change fundamentally. Microsoft expanded the powerful features of earlier ASP ver-
sions while greatly reducing the effort to implement those features. The ease of implementation meant a
reduction in the cost of developing complex sites. Or, put another way, there would now be a large
expansion of the number of people that have the capability to build a complex site.

In addition to ASPNET 2.0 comes a new, affordable tool for creating these web sites: Visual Web
Developer Express. Microsoft’s previous attempts at providing tools for helping create dynamic web
sites have been clunky (Front Page) or have never really taken off (Visual Interdev), but this time they’ve
got it right. Visual Web Developer is part of the Visual Studio.NET suite, but a scaled-down version of
Visual Web Developer Express will be free in the foreseeable future. It allows you to drag and drop a site
together within minutes, is instantly recognizable to developers, and allows easy creation and manage-
ment of your web pages.

This book leads you step-by-step through creating dynamic, data-driven, complex web sites using
ASP.NET 2.0. To those ends, this chapter explains the basic ideas and examines the completed sample
site. You then learn how to use Visual Web Developer Express (VWD) to build ASP.NET 2.0 sites.

Specifically, this chapter covers five topics:

Q Anintroduction to ASPNET 2.0
A review of the Internet programming problems that ASP.NET 2.0 solves
An explanation of how ASP.NET 2.0 fits in with other technologies

Q
Q
0 A tour of the dynamic features of a site built with ASPNET 2.0

Q Understanding the tool you will use to build ASPNET 2.0 (ASPX) pages — Visual Web
Developer Express (VWD)

In previous books, we’ve been pleased if our readers can create a single page by the end of the chapter,
but ASP.NET 2.0 inspires much greater ambitions, and you will have the structure and outline of a work-
ing web site up by the end of the second chapter. Your web site will be focused around a hapless soccer
(football) team named Wrox United and will be able to display their news and results, sell their mer-
chandise, screen their footage, and offer different views of the site depending on whether you are a cus-
tomer or an administrator. And, as always, a list of gotchas and some exercises are included to help you
review the concepts covered in this chapter.

An Introduction to ASPENET 2.0 and the Wrox United Application

The Site You Will Build

Go to www . wroxunited.net and have a good look at the site (the main page is shown in Figure 1-1).
This site is built entirely in ASP.NET 2.0 and is the site you will build in the book. Likewise, it is the site
that you will learn how to create a working miniature of in just two chapters.

Wrox United

Download Code
View Page Source

Navigation Home

Welcome to the Wrox United Web site.

Home =

Fintures We're a great football team. Mo really, we are. Don't take any notice of our past
Players performance. We're Just unlucky.

Match Reports

iani 1 Dec 2004
League Table Mew Signing 31 Dec 200

Scorers We are happy to announce the signing of Zlllzchny Vlosjchizchic, an exciting new striker from
. Azchanokistan. An underrated player at hame, Zlllzchny provides pace aplenty and graat ball
Shop control skills. He'll be playing his first match once he's accilmatised to the warm weather, His

Gallery normal playing conditions involve mountain heights of 7,000 feet and snow and ice. The balmy

Fan Club weather in England is a bit of 2 shock,

About Wwedding Bells 01 Dec 2004

We are happy to announce the engagement of Larry Leon to Countess annastoli Martique
Bisham-Stagforth, heiress to the Duke of Snohopeshire, Anna is a well known figure in country
circles, often competing in 3 day eventing for her local horse club. She does tend to take four

days to complete the event, but that's largely due to Stafford, her aging horse, who can't

seam to run a5 fast as he used to. The wedding will take place in early July, after the football

D Remember ne nest tine,

Log In |

season has ended.

Figure 1-1

On the home page alone you can see a menu system, a login control, and some news items — these are
all things that would have taken considerable time and code to create in any previous version of ASP or
ASP.NET. If you take the example of a login mechanism, you’d have to think of accepting a user ID and
password, checking that against an existing set of users and passwords, making sure the password
wasn’t corrupted in any way, and making sure that password was transmitted securely. So just to do
something relatively trivial, you'd be talking at least an hour or two of your time, with not much to
show for it. Now this could take seconds.

Click the View Page Source link —it doesn’t matter if you don’t understand what you see yet — there are
fewer than 10 lines of ASP.NET 2.0 code. All the coding in this book is done in C#. You can download the
complete site in C# from www . wrox . com. A working copy of the site is also hosted at www . WroxUnited
.net, although under the covers that public site is written in VB.

<%@ Page Language="VB" Trace="false" MasterPageFile="~/site.master"
AutoEventWireup="false" codefile="Default.aspx.cs" Inherits="_Default" %>
<%@ Register TagPrefix="wu" TagName="News" Src="News.ascx" %>

<asp:Content ID="Contentl" ContentPlaceHolderID="mainContent" Runat="server">

<h2>Welcome to the Wrox United Web site.</h2>

Chapter 1

<p>We're a great football team. No really, we are. Don't take any notice
of our past performance. We're just unlucky.</p>

<wu:news id="Newsl" runat="server" ItemsToShow="5"></wu:news>
</asp:Content>

Step through the different links in the menu and see how league tables and fixture lists work, and see
how few lines of code there are. Notice how the theme and style of the site remains consistent through-
out, yet there is no evidence of how this is done. Welcome to ASP.NET 2.0. This is about to revolutionize
how you build web sites from now on. You're going to look at some of the features behind the Wrox
United site in more detail shortly, but first let’s talk about what ASP.NET 2.0 offers.

ASP.NET 2.0 — A Powerful Tool to Build
Dynamic Web Sites

The World Wide Web (WWW) on the Internet provides a wide expanse of connectivity. Virtually every-
one that uses computers has access to the Internet. But this pervasive reach was achieved by establishing
very minimal standards. Information is transmitted in ASCII characters, without a built-in capability for
machine-level code. The client requirements are very minimal —in fact the Internet itself does not have
any standards for how a browser works, and thus multiple browsers for multiple operating systems
(OS) and platforms exist. It is easy for us, in 2005, to forget that the Internet was designed to send simple
static pages of text with images and links.

The story of the past 15 years of Internet programming is an effort to provide sophistication and com-
plexity to the user experience without violating the WWW rules that demand extreme simplicity in page
design. Users expect an experience that comes close to desktop applications such as word processing
and database access. But such a level of complexity has not been easy to implement in the web given its
minimal configuration.

ASP.NET 2.0 fundamentally reduces the barriers for development of complex web sites. The ASP.NET
development team at Microsoft looked at thousands of pages, sites, and scenarios to create a list of com-
mon objectives of site owners. The list included about 20 goals, including reading data, a unified login
and authentication procedure, consistency in site appearance, and customization of pages for different
browser platforms. The team then set to work to create bundles of code that would achieve each objec-
tive in the right way, with a minimum of developer effort and with Microsoft performing extensive tests
of that code. This set of capabilities is available as classes (encapsulated and ready-to-use batches of code)
in ASPNET 2.0. The end result is simple — developers can very quickly put together (and easily main-
tain) a complex site by merely assembling the building blocks Microsoft has developed in ASP.NET 2.0.
Instead of writing 50 or so lines of code (as in earlier versions of ASP), the designer can now simply drag
and drop a control to the page and answer some questions in a wizard. This control generates a small
amount of code for your page and the server uses that code to build pages in HTML that are then sent to
the browser. Because HTML is sent to the browser, there is no requirement for special capabilities on the
browser beyond the display of HTML and the execution of a single simple JavaScript script. Any
browser that can display HTML can display ASP.NET 2.0 pages. This includes not only desktop
browsers, but also PDAs, cell phones, and other devices.

An Introduction to ASPENET 2.0 and the Wrox United Application

Because all the code for these controls is run on the server before a web browser ever gets a hold of a
page, these controls are known as server-side controls. The next section looks at what some of these server-
side controls can do.

Simple Solutions for Common Web Site
Tasks

Microsoft’s survey of sites in earlier versions of ASP created a list of common objectives that site pro-
grammers were implementing. Some objectives were easy to achieve but time-consuming, whereas oth-
ers were too complex for all but the most sophisticated developers. Overall, the programmers’ solutions
varied from brilliant to dysfunctional. Not only were the observed solutions sometimes poor, but they
also represented a tremendous waste of time, because thousands of programmers spent time planning,
writing, and testing code that had the same purpose. This section goes through 11 of the objectives for
which ASP.NET 2.0 offers built-in solutions. As you will see in Chapter 3 and beyond, these solutions are
in the form of ASP.NET 2.0 server-side controls that contain code to execute settings and behaviors. By
simply placing one of these controls on a page, the designer gets all of the behavior that would have
been hand-coded in the past.

Consistency and Personalization

Web designers tend to desire two conflicting design features. On the one hand, they want a consistent
look to the entire site. But conversely, they want users to be able to customize the site to the user’s taste
in colors, font size, and other features. ASP.NET 2.0 offers a MasterPage control that allows a site to be
consistent in the layout of its headers, menus, and links. Within that consistent layout, a designer can
add a control that allows users to pick one of several themes to apply to all pages.

Navigation

Every site requires tools for navigation, generally in three forms. Users need a menu. They also need to

be able to see where they are currently located in a site. And last, they want to be able to easily navigate
up or down a level. ASP.NET 2.0 supports an XML file called a SiteMap. ASP.NET 2.0 controls can then

render menus and other navigation aids based on the site map and the name of the current page.

Login, Security, and Roles

Many sites need a login system that can check a potential user’s ID and password against a list and then
authorize or deny entry. Although basic implementations are not difficult, only a small percentage of
programmers are successful in creating a system that conforms to best security practices. ASP.NET 2.0
offers a few controls that create and implement a logon better than most of us can program by hand.
Beyond simple site entry, the system offers password reminders and a system to create new users. A user
can also be assigned a role that determines what pages and features will be available for that user to
view. For example, all users can view the employee phonebook, but only users with the role of Manager
can view pages to change information about employees.

Chapter 1

Connection to Data

Although most dynamic web sites are connected to data, few designers are successful in implementing
the full suite of features that users desire. In sites built with older ASP versions, Microsoft observed many
problems in efficiency and security. Furthermore, even modest objectives required scores of lines of code.
ASPNET 2.0 provides a rich suite of data features through two groups of controls for working with data.
Data source controls offer the behavior of connecting to sources of data. Data-bound controls take that infor-
mation and render it into HTML. The several data source controls can connect to almost any source of
data, and the data-bound controls offer the user tables, lists, trees, and other presentations. Working
together, these controls offer the user the capability to page through data, as well as to sort and edit data.

Code

Almost every web site requires customized code because it is impossible for ASP or any other web site
technology to anticipate the needs of all businesses. ASP.NET 2.0 supports more than 20 different lan-
guages. Regardless of the language the programmer uses, the code is translated into a single intermedi-
ate language prior to execution. ASPNET 2.0 controls are executed on the server, but the programmer
also has the option of writing code (for example Java or other client-side script) in a block to go out for
execution on the client.

Componentization

Web sites are easier to develop and maintain if various parts can be created independently of each other.
Traditional ASP relied on large pages containing content, HTML, ASP controls, and scripts of code.
ASP.NET 2.0 provides more efficient models and structures to divide the site into logical parts. For
example, code is normally kept in separate files from the presentation layer (the text and HTML tags).
Furthermore, Visual Web Developer offers wizards to easily create objects to provide data resources.

Web Services

Enterprises offer information and services on their own sites. For example, from its worldwide head-
quarters, www . Ford. com can give you a list of colors and price quotes. But the past few years have seen
a demand for those services to be available to other sites. For example, a local Ford dealer may want to
offer the list of colors and prices at www . YourLocalFordDealer . com. Web Services allow a consumer
site (the local dealer) to obtain information from a provider site (Ford headquarters). The local Ford
dealer can display real-time data using web services provided by the Ford corporate site, but keep the
user on the page of the local site. ASP.NET 2.0 offers a complete web-services solution that conforms to
the specifications of SOAP (Simple Object Access Protocol, a way to ask for data from a web service) and
XML (Extensible Markup Language, a format for data).

Performance and Caching

After the designer writes a page on the development machine, it is compiled into the single uniform lan-
guage of .NET 2.0 called the Microsoft Intermediate Language (MSIL). Then it is copied to the deploy-
ment machine. The first time it is requested, the page undergoes a further compilation into the Common
Language Runtime (CLR), which optimizes the page for the hardware that will serve it. This two-step
process achieves the dual aims of consistency for software and optimization for hardware. Both steps
have undergone intensive performance analysis from the .NET 2.0 team. The great aspect for beginners
is that all of this compilation occurs automatically.

An Introduction to ASPENET 2.0 and the Wrox United Application

ASP.NET 2.0 easily enables caching of pages so that subsequent requests are served faster. When cached,
the final version of a page is stored in the server’s RAM so that it can be immediately sent on the next
request rather than having the server rebuild the page. Furthermore, the designer can specify that only
parts of pages can be cached, a process known as fragment caching. Fragment caching accelerates the ser-
vice of non-changing portions of a page while still allowing the dynamic fragments to be custom gener-
ated. If you are using Microsoft SQL Server 7 or higher, you also have the option of data invalidation
caching for portions of the page that are data-dependent but less variable (perhaps a list of employees or
your retail outlets). Data invalidation caching keeps a page in cache until it gets a message from SQL
Server that the underlying data has changed. You cache a set of data with a designation to receive a SQL
data changed notice. SQL Server notifies .NET when the data has changed, which triggers ASPNET 2.0
to perform a reread.

Errors and Exception Handling

Any web site, indeed any system, needs to respond to errors. ASP.NET 2.0 provides a system to respond
to errors. The response can be in code or it can be a redirect to an error page. The error page can be
unique to the error or it can be a single error page for the entire site. The .NET 2.0 Framework also
allows for multiple levels of error handling. If an error occurs in a data read, it can be handled at the
level of the data source. If it is not handled, the error bubbles up to the next level and can be handled
there. Unhandled errors continue to bubble up through layers with the designer having the option to
resolve the problem at the most effective level.

Deployment

In the past, sites deployed to Windows or Linux required a series of setup steps that registered and con-
figured the site on the host machine. The ASP.NET 2.0 team set a goal of XCOPY deployment, naming it
after an old DOS command that performed a simple copy of a folder and all of its subfolders. A simple
XCOPY deploys your site from the development machine to the deployment host. All registrations and
machine-level customizations occur automatically when the first request hits the site.

Development Tools

Microsoft has spent considerable effort improving tools for building ASP pages, namely the Visual
Studio, Visual Web Developer, and Visual Web Developer Express products. Although they are not part
of ASPNET 2.0, these IDEs (Integrated Development Environments) allow drag-and-drop building of
pages. Most common actions are either automatic or guided with wizards. In cases where typing is
required, the IDE provides intelligent completion of most phrases. This book uses the freely download-
able VWD Express.

Where Does ASP.NET 2.0 Fit with Other
Technology?

Many people have questions about how ASP.NET 2.0 fits in with all of the other web-related terms (most
of them acronyms). We will clarify this now —where does ASP.NET 2.0 fit with other software that is
running on the server? What is its role, and what are the roles of the other pieces of technology?

Chapter 1

ASP.NET 2.0 is part of the NET 2.0 Framework. The NET Framework is a brand of Microsoft that sets
software standards for Internet connectivity using web services and XML. Many Microsoft products con-
form to the .NET standard, including various server software, data-management systems, and desktop
applications. ASPNET 2.0 is the subset of NET 2.0 that offers software for generating dynamic web sites.
The software is published in a set of classes holding various controls that execute their behavior on the
web server. In our day-to-day designing of pages, we work with these server-side controls. Because
ASPNET 2.0 is a subset of the .NET 2.0 Framework, this book sometimes uses features of ASP.NET 2.0
and sometimes uses features of the .NET 2.0 Framework. Use of these various features will be essentially
seamless.

As a Microsoft product, ASP.NET 2.0 runs on Windows. For development, it works on the desktop with
Windows 2000 or later (including both XP Home and XP Pro). At deployment, the normal OS is Windows
Server 2003 or another Windows OS version designed for higher loads. Within Windows, ASPNET 2.0
works with the Internet Information Server to read pages from disk and send them to requestors.
Alternatively, on the development desktop, ASP.NET 2.0 can be tested with a lightweight web server
named the ASPNET Development Server that is distributed with development tools such as VWD.

When a designer uses the ASP.NET 2.0 controls to connect with data, two more levels of interaction are
introduced. The data controls use a technology named ActiveX Data Objects (ADO.NET), but fortu-
nately the use of ADO.NET is behind the scenes for us. Those ADO.NET objects, in turn, interact with
the source of data. The source of data can be Microsoft SQL Server (as used in this book) or almost any
other source of data including relational databases such as Oracle or MySQL, and non-relational sources
such as XML or text files.

Microsoft offers tools for several levels of developers to build ASP.NET 2.0 web sites. The most compre-
hensive product is Visual Studio, which contains tools for building applications for Windows and appli-
cations for the web. The web construction part is named Visual Web Developer. A free (but less capable)
alternative is the Visual Web Developer Express. Front Page can work, but it focuses more on static
HTML pages and thus lacks the set of tools that makes designing the dynamic, data-intensive ASPNET
2.0 pages such a pleasure. Creating pages in Notepad was long the preferred method of ASP developers
and is still theoretically possible; however, the necessary management of web sites and web pages make
this impractical, laborious, and far more prone to errors.

Enough of the theory —let’s see ASP.NET 2.0 in action. During the course of this book you will build a
complete web site for a hapless football (soccer) team named Wrox United. A completed example is
hosted at www.wroxunited.net, which you explore in the next section to observe the range of features
ASP.NET 2.0 supports. Then in the remainder of the book, you will build the same site on your desktop.
For this exercise, you do not have to install software on your machine. The remainder of the book, how-
ever, relies on your completion of the setup outlined in Appendix B.

Exploring the Wrox United Application

This section explores the site as built by the authors, which you will build as well. It is hosted at www
.wroxunited.net. Open your browser and direct it to that address.

QO Master pages and site map (discussed in Chapter 2): Click through several pages to observe the
uniform layout across the top and left side of the page. This design consistency derives from an
easy-to-implement feature called Master Pages. Second, note the maroon box in the lower-right of
each page that indicates your current page and its relationship to parent pages back to the home
page. This feature was created with the ASP.NET 2.0 Site Map and Navigation controls.

An Introduction to ASPENET 2.0 and the Wrox United Application

Server-side controls (discussed in Chapter 3): Go to the Players page. All of the data comes
from two server-side controls —a data source control to connect to the database and a data-
bound control to display the information. Most of the behavior of ASPNET 2.0 pages is encap-
sulated in server-side controls. These include links like the shopping cart at the bottom-left,
images such as the logo at the top-left, and text boxes such as the logon section at the lower-left.

Login and security system (discussed in Chapter 4): On the home page, log in as User Name
Lou and Password 1ou@123. Then log out. Authentication systems can require a tremendous
amount of work to create and even then frequently contain security holes. ASPNET 2.0 offers a
very simple system based on several server-side controls including the login and password veri-
fication schemes, and a system to e-mail a clue for forgotten passwords.

Events (discussed in Chapter 6): Browse to the Shop page, click an item, and add the item to
your cart (of course, this is not a real shopping site, just a demo). An event occurred as you
clicked the Add to Cart button and that event was handled by custom code that created an
order and added the item to the order.

Data reads (discussed in Chapter 7): Browse to the Players page where the names and joining
dates are read from a SQL Server Express database. Many kinds of information on the site are
held in data stores that are read by ASP.NET 2.0 server-side controls on the page. Browse back to
the home page and observe the menu. Even these menu choices are read from an XML file that
holds a map of the site.

Data writes (discussed in Chapter 8): Browse to Shop, click the car sticker, and click Add to
Cart. You have just written a value to a database. The behavior of writing your order to the
database was implemented by two ASP.NET 2.0 server-side controls. The designer of the site
did not have to do any custom code.

Code behind the controls (discussed in Chapter 9): From the home page, click Shopping Cart
at the lower-left of the page. We have written custom code that executes when the page is
loaded, checks if there are currently any items in the shopping cart, and renders a page appro-
priate for the cart contents: either empty or a list of contents. Although the capabilities of the
ASPNET 2.0 server-side controls are impressive, they cannot cover every possible case. An
ASP.NET 2.0 site offers numerous places that a designer can add custom code.

Components (discussed in Chapter 10): Browse to the Fixtures page. Although the data is
stored in a SQL Server database, the ASP.NET 2.0 page does not read it directly. There is a com-
ponent that reads that data and then sends it on to the ASPNET 2.0 page. That component can
be reused by other web sites or by Windows applications that run on a local network without
the Internet.

Roles (discussed in Chapter 11): If you had administrative rights, you could log in and see dif-
ferent screens. After you have installed the site on your local machine, you will experiment with
this feature in Chapter 4. ASP.NET 2.0 goes beyond just logging in visitors. They can be autho-
rized to have sets of privileges called roles. The public site does not allow non-authors to log in
as administrators, so there is no need to take action at this point.

E-commerce (discussed in Chapter 13): From the menu, go to Shop, and click a few items to
add to your cart. Now on the bottom of the menu, click Shopping Cart and view its contents.
The most complex part of the site is the shopping cart. ASPNET 2.0 does not have a pre-built e-
commerce solution, but because so much behavior is built into the ASP.NET 2.0 controls, design-
ers can develop features such as e-commerce much more quickly than in the past.

Performance (discussed in Chapter 14): Under the covers, the data is being cached where
appropriate and objects are being disposed as early as feasible. The site also uses Generics to
improve the performance of lists.

Chapter 1

G

Q Errors and exception handling (discussed in Chapter 15): As you navigate the site, you can try
entering data of the wrong type or clicking to save data without entering any information. In
these cases, the mistake is handled gracefully.

QO Deployment (discussed in Chapter 16): At this point, you will not walk through a deployment.
However, keep in mind that for ASPNET 2.0, the transfer for a site from a development
machine to a deployment machine generally entails only a few steps that copy the databases to
the data server and then perform a simple file copy of the site folder and its subfolders to the
new server.

This walkthrough gave you a taste of what you will learn to create in this book. Most of the features
explored were implemented with very little code that we wrote. The behavior was performed by code
that Microsoft baked into a set of server-side controls that are the components of ASPNET 2.0. We
merely placed these controls on pages and set various properties.

etting Started with Your Wrox United Site

Now that you have observed the finished site as publicly hosted, you can begin creating the same site on
your desktop. If you have not installed Visual Web Developer Express, SQL Express, the sample
database, and the sample site (outlined in Appendix B) then do so now. Start by reading the overview at
the beginning of the appendix and then work your way through each step. You can be sure of your
installation by performing the check at the end of each section.

This chapter and the next chapter set up the basic framework of the site as you learn how to use VWD
and establish some design parameters for the site. Because VWD offers drag-and-drop solutions to most
tasks, you will be able to create the entire site with a minimum of typing. In the cases where some typing
is necessary, you can cut and paste from text files in this book’s download at www.wrox . com. All pages
are in the download in their final form, but creating ASPX pages yourself is a better way to learn ASP
than merely copying completed pages from our reference set.

VWD Express — A Development Environment

10

A fundamental difference between most animals and humans is the ability to use tools. In the early days
of programming, the tools to write programs were very primitive. Today we enjoy the benefits of very
sophisticated tools for software development. Engineers have taken almost every area of human weak-
ness (primarily related to the capacity of memory and the brain’s interface to the world) and created
compensating tools. These tools are pulled together into a type of software called an Integrated
Development Environment (IDE). The IDE used in this text is Visual Web Developer Express (VWD).

VWD contains a number of development tools. First is an editor in which you can build a web page.
This editor is enhanced with IntelliSense, a tool that finishes typing commands and offers appropriate
choices for the developer. In addition, a toolbar contains icons that can be dragged to the editor and
automatically type a block of code into the editor. Another way to automatically get code into a page is
with the many wizards that pop up when you attempt a more complex task. VWD also contains a mini
File Manager to organize ASPX and associated files and folders. Similarly, there is a Data Explorer that
offers navigation through the data sources of the web site. A suite of troubleshooting tools is also
included. Finally, VWD ships from Microsoft with a web server for testing named ASP.NET

An Introduction to ASPENET 2.0 and the Wrox United Application

Development Server, which is covered in the next section. If you go beyond the scope of this book, you
can discover tools for more complex scenarios, including the management of code versions among a
team of developers.

Introducing the ASPNET Development Server

ASP.NET Development Server was mentioned earlier as the lightweight web server that comes with
VWD. This is the lightweight server that was known as Cassini during the Beta releases of VWD. Both
ASP.NET Development Server and IIS (included with the .NET Framework) can serve all ASPX and
associated pages, so at deployment there is no need to make changes to your site. But a number of differ-
ences exist between the servers.

The two servers use different security models. IIS is a service, and every service in Windows requires a
user. The special user for IIS is named ASPNET. ASP.NET Development Server runs as an application
that uses the currently logged-in Windows user. That makes ASP.NET Development Server easier to
install because there is no need to create a specific ASPNET account in Windows. In fact, the installation
of ASPNET Development Server is transparent when VWD is installed.

ASPNET Development Server has three downsides. First, it is a tool for designers to test pages on their
development machine and thus it does not scale to more than one user. Second, because of the simplifi-
cations to the user model, ASPNET Development Server cannot support a robust security scheme.
ASP.NET Development Server should run only in a closed environment or behind a robust firewall.
Third, when you run a page in ASP.NET Development Server, it locks the page back in VWD. In order to
unlock the page, you must close the browser, which can be inconvenient when you’re making and test-
ing many changes to a site. Therefore, many developers use IIS even on their development machines so
they do not have to close a page in the browser before working on it in VWD. The downside is that you
have to configure your development machine to provide IIS, set up the appropriate authorizations,
establish security controls, and create a virtual root. You learn how to set this up in Appendix B. If you
don’t want to go through the IIS setup, you can still use ASPNET Development Server and just close the
browser between modifications.

VWD’s Solution Explorer

An ASPNET 2.0 web site is stored as a family of files. You need to be able to organize these files, includ-
ing the tasks of viewing their names and relationships, copying, creating, and deleting. You can view
and manipulate them in Windows Explorer, but it is inconvenient to switch between VWD and
Windows Explorer. VWD includes an explorer-like tool called the Solution Explorer, shown in Figure
1-2. The Solution Explorer is displayed by default on the right of the screen, or you can redisplay it by
pressing Ctrl+Alt+L. Think of it as a Windows Explorer that considers your web root to be the highest
level and does not require you to switch out of VWD. Note that the Toolbox may be placed behind the
Solution Explorer, as illustrated in Figure 1-2.

The layout of Solution Explorer is instantly familiar to anyone who uses Windows Explorer. Click the
plus and minus icons to expand or contract folders. The icons in the toolbar start from the left with a tool
that switches from the Solution Explorer to a view of properties (more on that later in this chapter). The
double horizontal arrows perform a refresh. The double file icon automatically hides or expands nested
subfiles. The next two icons open the selected files to display either their user interface (design) or their
code. The double browser icon is used to copy the entire site to the deployment machine. The right-most
icon, with the hammer, opens a Web Administrator tool to manage features of the site.

11

Chapter 1

12

Solution Explorer - C:\BegASPNET 2\WroxUnitedCS

= | 718 B @
2P C\BegASPNET2\WroxUnitedCS\
+- [Admin
+- L] app_Code
#- 3 app_Data
+- [app_Themes
+- [FanClub
+- [Images
+- [MatchImages
- [NewsImages
+- [PlayerImages
+- [ProductImages
- [SourceViewer
= _j About.aspx
+ _j AboutTheSite, aspx
+ _j Checkout. aspx
[cherkait aeny srr
n_“jSoluh'on Explorer 44+ Toolbox -:-%Databas& Explorer

Figure 1-2

At the bottom of the Solution Explorer may be a small task bar that shows tabs for the Solution Explorer,
Toolbox, Data Explorer, and/or Properties windows. To conserve monitor real estate these four tools are
frequently stacked and the tabs offer quick switching. For example, in Figure 1-2, the Toolbox is also
open (albeit hidden behind the Solution Explorer) and clicking the Toolbox tab would hide the Solution
Explorer behind it. They are not strictly part of the Solution Explorer, but rather the pane that holds the
four stacked tools.

In the main pane of the Solution Explorer is the list of files that make up your site. At the top is the

root, generally in C: \websites\MyWebsiteName. In the case of WroxUnitedCS, C: \BegASPNET2\
WroxUnitedcs is used. The files are displayed in their subfolders. Using the same techniques as
Windows Explorer, you can expand, collapse, cut, copy, and paste files among folders. Solution Explorer
recognizes the implied link between an .aspx file and its .aspx.cs file (more on these in Chapters 6 and 9).
If you copy the .aspx file, the code file moves with it.

You can also right-click a folder and select Add Existing Item. The resulting dialog box enables you to
navigate anywhere on your computer and network (including FTP sites) to bring in files. For example,
when you begin to build your project, there are times you are asked to use an image or text file from this
book’s download at www . wrox . com. You can use Solution Explorer to add the item to your web site from
your download folder.

During development, ASPNET 2.0 sites do not contain a special system of file registration. The files,
including ASPX pages, code files, data files, and images are all contained in a normal Windows folder
and subfolder structure. If you do not have VWD open, you can cut, copy, and paste your site files
directly from Windows Explorer.

The Solution Explorer, like the Toolbar, Data Explorer, and Properties window discussed in the next sec-
tion, can be placed on the page in one of two modes: floating or dockable. Floating allows the window to be
placed anywhere on the screen, similar to a normal window of a base size (not maximized). The dockable
mode automatically places the window in one of five locations: top, bottom, left, right, or stacked on
another window. Change the mode by selecting one of the windows, and click through Window=>Floating
or dockable in the menu. In dockable mode you will see some translucent positioners when you drag the
window’s title bar, (see Figure 1-3). Drag the title bar onto one of these positioners, and the window auto-
matically sizes and places itself in the correct dock.

An Introduction to ASPENET 2.0 and the Wrox United Application

12 WroxUnitedCS (2) - Visual Web Developer 2005 Express Edition [S[EX]

% [FanClub

£ [Images v
<] I (2]

csolution... [34Toolbox | T pataba...

SO0 Yy 1w

Figure 1-3

Now that you have learned to modify the VWD Express IDE, you can move on to the techniques of cre-
ating web sites and pages within those sites.

Creating, Opening, and Using Web Sites and Pages with
VWD

To create a new site, you only have to open VWD and click Menur>Filec>New Site. From the wizard,
select an ASPNET web site. Assuming you will create a local copy for development, set the location to
File System and browse to the path. Normally this would be C: \BegASPNET2 \MyWebsiteName (our
practice site allows backward compatibility with earlier books by using C: \BegASPNET2 \WroxUni ted).
This book uses the C# choice in the Language list. VWD automatically creates a folder, a default page,
and a subfolder for data.

ASPNET 2.0 introduces a very simple model for file organization and code registration for a web site. All
files for the site are stored in a folder and its subfolder. At the time of deployment, that entire group is
copied from the development machine to the host. Therefore, you are not required to create a virtual root as
in former versions of ASP. Deployment is further simplified by VWD: if you select Menu=>Websitec>Copy
Website, VWD opens an FTP screen that you can use to send new or updated files to your host.

13

Chapter 1

To edit an existing site, choose Menur>Filec>Open Web Site. If you are working locally, you can browse
to the folder. On the left side of the screen, VWD presents a menu with options to work directly on pages
via FTP or through a local IIS installation.

After you create the web site, you can add pages. We usually start by adding some folders to organize
the pages. Right-click an existing folder and click the option to add a folder. The options are a regular
folder or one of the folder names that are reserved in ASP.NET, including ones for Code, Themes, and
Web References.

To add a page, right-click a folder and click Add New Item. A wizard presents many choices. For now,
you simply need to create a Web Form, but take a look at the other options to get a feel for the capability
of VWD and ASP.NET 2.0. Give your new page a name and set its language. Later chapters discuss the
two checkboxes. Having introduced you to creating web sites and pages, the following Try It Out puts
that knowledge to use, asking you to create the Wrox United site and a couple of practice pages.

The Sample Code (Download) Directories

To make things easy, each chapter has its own code, and there are two directories for each chapter, held
under one of two higher-level directories. There is a Begin directory, which contains the samples ready
for you to work through —it’s the samples without any changes. The End directory contains the samples
with the Try It Outs completed, so you can use these as a reference as you are working through the
examples, or to cut and paste code if the example directs you to do this.

The Begin and End directories appear under a Chapters directory, with each chapter having its own
directory. So the starting set of samples for this chapter is under Chapters\Begin\Chapter01, and the
finished code for this chapter is under Chapters\End\Chapter01. Some chapters work on the main
WroxUnitedCS application, and will therefore contain a copy of the WroxUnitedCS directory, whereas
others have non-WroxUnitedCS samples. The reason for this is that some techniques are easier to digest
in smaller samples, rather than in a fully working application. All of the techniques, however, are used
in the main application.

Because each chapter has a separate directory, some with complete copies of WroxUnitedCS, the samples
are quite large. However, the advantage is that each chapter is kept separate from the others, which
allows you to work through chapters without mixing up which code came from which chapter.

In addition to the code for the chapters, there is a WroxUnitedCS application that contains the final
application. This may differ slightly from the samples, but only in that the data may be more complete,
and some of the pages look a little nicer.

Try It Out Creating the Wrox United Site and Two Practice Pages

14

1. Open VWD. Choose Menu=>FilecoNew Web Site. Select the template for an ASP.NET web site
and locate it in the File System at C: \Websites\WroxUnitedCs (you can use the Browse button
to navigate to this directory). Make sure the Language choice is set to Visual C#. Click OK. You
should see your folder on the right side of the screen in the Solution Explorer. If not, choose
Viewr>Solution Explorer. Note that VWD automatically builds three items: a folder named
App_Data, a page named Default.aspx, and (if you expand Default.aspx) a file named
Default.aspx.cs, which will hold code for the default page.

An Introduction to ASPENET 2.0 and the Wrox United Application

7.

In the center of VWD, you will see a space for editing pages with the Default.aspx page
opened. Note in the bottom-left a choice of Design and Source. Click each in turn to observe the
code and the results of the code. In Design View, click the page and type the simple text Home
Page. Press Ctrl+S to save.

Create a folder for images by going to your Solution Explorer and right-clicking the root of your
site (this will probably show as C:\. . .\Chapter01, as the Solution Explorer hides part of the
path) and then clicking Add Folder of the regular type. Name the nascent folder Images.

You can manipulate your site’s files and folders outside of VWD. Open Windows Explorer and
navigate to C: \BegASPNET2\Chapters\Begin\Chapter01 to see the same set of folders and
files as you see in VWD’s Solution Explorer.

Returning to VWD, right-click the nascent Images folder and click Add an Existing Item.
Browse to the folder where you stored the download for this book, probably named
C:\BegASPNET2\WroxUnitedCs. Open the Images folder and select all the images. Click Add
to actually copy those images from the download folder to your site’s image folder.

Staying in VWD, now create your next page, the history of Wrox United. Right-click the site’s
root (C. . .\Chapter01 at the top of the Solution Explorer) and select Add New Item from the
menu. Select the Web Form template and give it the name History. Accept the other default set-
tings. Click Add and switch to Design View. Rather than typing text on the page, you can copy a
short history of the team from a file included in the download. Switch to Windows Explorer and
navigate to your downloaded Chapter01\Begin\Chapter01 folder. Look for the file named
History.txt, open it, and select the paragraphs. Switch back to VWD and paste the text into
the page. Click the diskette icon on the toolbar to save.

Repeat step 6 for a Mishaps page, whose contents come from Mishaps . txt.

How It Works

In this exercise, you created your site and the first few pages. By using the menu choices in VWD to cre-
ate a site, you automatically get some standard folders and files. You followed the Microsoft recommen-
dation of storing the site in the C: \Websites directory. As you saw with the Images folder, it is easy to
add subfolders to the root to organize your files.

When you created a page in VWD, you were offered a few dozen templates. You selected Web Form as
the standard plain ASPNET 2.0 web page. By using cut and paste, you have no problems bringing in
text from other files.

You also learned that there is no requirement for a special file indexing or storage mechanism in VWD.
The files sit in the folders organized by Windows on the hard drive. However, it is better to create and

add files in VWD when possible to keep the Solution Explorer view and other VWD features immedi-

ately up-to-date with your changes.

Running a Page

After a page is created, it can be served to a user. Because the server actually executes code in the server-
side controls to create the final HTML page, this serving of the page is also called running the page, as if
you were running a program. VWD has a green triangle tool icon to initiate a run or you can press F5 or
choose Menu=>Debug=>Run. VWD then performs several steps:

15

Chapter 1

1. A1 pages in the site are compiled to the Microsoft Intermediate Language (MSIL) that is then
stored with supporting files in an assembly. At this point, development language differences
(for example VB and C#) disappear because the result is in MSIL. However, there is no opti-
mization for the hardware that will serve the page.

2. The assembly is Just In Time (JIT) — compiled from MSIL to Native Code that is optimized for
the serving machine.

3. Alock is placed on the page that prevents changes in VWD Design View while the page is
opened by ASPNET Development Server.

4. VWD starts ASPNET Development Server and your browser is opened with a request to
ASP.NET Development Server for the page.

A common mistake for beginners is to attempt to change a page in VWD’s Design
View while it is still open in a browser served by ASPNET Development Server.

As your site gets larger, you'll find that the compilations take longer. You can press Ctrl+F5 to run a page
with a compilation of only that page. In the following Try It Out, you practice running the History and
Mishaps pages created in the previous Try It Out.

Try It Out Running a Page

1. In VWD’s Solution Explorer, double-click the History.aspx file to open it (if it is not already
open).

2. Click the Run icon (green arrow) on the toolbar. If there is a message to add a Web.config with a
Debug, accept the suggestion. Note that your browser opens and displays the History page.

3. In the Windows tray, the icon of a yellow page with a gear indicates that ASPNET Development
Server is running. Double-click it and you will see that it is pointing to your web site. Close
your browser so ASPNET Development Server unlocks the page.

4. Returnto VWD and open the Mishaps page. This time, watch the lower-left corner of VWD as
you start to run the page. You will see a message that the build has started and a brief display of
an error list box. After seeing the Mishaps page in your browser, switch back to VWD. Note that
the page (in Design View) is locked while it is served.

How It Works

This Try It Out focused on running pages from VWD. You can start the run by clicking the green arrow.
This action starts ASPNET Development Server. It also opens your browser and sends a request to
ASP.NET Development Server for the page. When ASP.NET Development Server is running, you can see
the icon for the server in the Windows system tray.

Design Surface

The center of the VWD interface is occupied by the large Design Surface. This is the area where you will
do most of your work of adding content to ASPNET 2.0 pages. You can switch between Design View,
which displays a simile of the final page in a browser-like display, or you can switch to Source View,

16

An Introduction to ASPENET 2.0 and the Wrox United Application

which displays code in a text screen (see Figure 1-4). In general, the Design View is easier and faster for
most work because it supports more drag-and-drop features. You can switch to Source View when you
need to make those minor changes that are beyond the capability of the VWD drag-and-drop interface.

L4 Design | [Source

Ready

.'... gw‘

e

Figure 1-4

When you add a control to a page in Design View, a Common Tasks Menu may pop up. This mini menu
contains the most frequently used setup features for the control. Not all controls have smart task panels,
but if it is available, it can be opened and closed using the small black triangle at the top corner (shown
in Figure 1-5) of a control that is selected.

[Gridview Tasks

Slﬁ'ulmml(] Colunnl Colurm?

Auta Farmat, ..

fabe abi abe N None)

Choose Data Source: | (Mone; b
fabc abc abc

Edit Columns.. .

iabc abe abto

Add Mew Column. ..

‘abc abc abc

i Edit Templates
‘abc abc abc

Figure 1-5

You can change several default settings in the Design Surface by opening the Tools menu and selecting
Options. These options change the way the pages appear to you, as the programmer, when they are
opened for editing in VWD. These are not the settings for the appearance of the page to the web site visi-
tor. You can select to start pages in Design View or Source View, as well as the automatic opening of the
smart task panel. Being able to revise the number of spaces for tabs and indents helps your projects con-
form to your company’s specifications for web page code.

At the bottom edge of the Design Surface is a navigation tool that is useful in large and complex docu-
ments. You can read the navigation tags to find out where the insertion bar (cursor) is currently setting.
The current setting is highlighted, as depicted in Figure 1-6. You can also click a tag and the entire tag
will be selected in the Design Surface.

| <body > || <dive |<asp:gridview#gridview1>"

Figure 1-6

The designer is, in many ways, like a word processor. But VWD also offers the two alternatives to view-
ing a page (Design and Source) as well as enhancements for navigating through the page. The next sec-
tion discusses how VWD helps you to add features to the page.

17

Chapter 1

Toolbox

18

VWD offers the set of ASP.NET server-side controls in a Toolbox for easy drag-and-drop onto the page.
Chapter 3 discusses in detail the various server-side controls and how they are used; here you will just
get a feel for how to use the Toolbox in general. The Toolbox can be displayed by choosing

Menu= View=>Toolbox or by pressing Ctrl+Alt+X. When the Toolbox is displayed, you can move it to a
new location on the screen by dragging its title bar. As you drag the Toolbox to different areas, it will
render a compass icon that enables you to drop the toolbar toward the top, bottom, left, or right, as well
as on top of other windows. If you are trying to maximize the size of your design surface, you can stack
your Solution Explorer and Toolbox on top of each other at one location on the screen.

The Toolbox is organized into several panels that group similar controls. The panels can be expanded to
show their tools or collapsed to save space. There is some variation among installations, but a typical set
of panels includes the following:

Q Standard for the majority of ASPNET 2.0 server-side controls
Data for data source and data-bound controls
Validation for controls that reject user input that does not meet your range of acceptable values
Navigation for menus and breadcrumbs
Login for the authentication controls
WebParts for larger components in sites that the user can rearrange or hide

HTML for generic (non-ASP) tags

O 000000

General for customization

Figure 1-7 depicts the Toolbox as it appears on your screen.

Toolbox - 1 x
+ Standard ad
+l Data

Validation

Navigation

Login

WebParts

HTML

General

|+ F = FE

bl

..':@S:- ution Expl... |4 Toolbox |58 Database Ex...

Figure 1-7

Clicking the plus icon expands a panel to show its list of available controls. Figure 1-8 shows the Data
and Login panels expanded.

The General panel starts out empty. After you have created part of a page, you can select that page and
drag it into the General panel to create your own reusable tool. This is useful if you want to duplicate a
set of a couple controls with formatting onto several pages.

An Introduction to ASPENET 2.0 and the Wrox United Application

Toolbox

+ Standard
[= pata

& Pointer

A Gridview

1] Datalist

& Detailsview

'__'-I FormView

=5 Repeater

_L] SgiDataSource
L;;g AccessDataSource
._‘g ObjectDataSource
:* XmiDataSource

*.1'3': SiteMapDataSource
+ Validation

+ MNavigation

= Login

e Pointer

@5 Login

3__, LoginView

% PasswordRecovery
| Loginstatus

a.ﬂl LoginMame

ag CreateUserWizard

n.'j?Sc-Iutic-n Explorer % Toolhox | %38 Database Explorer

Figure 1-8

On the right side of the Toolbox title bar there is a pushpin icon, shown in Figure 1-9. When clicked, the
pushpin turns horizontal, meaning that the Toolbox will automatically hide when not in use, leaving
only its title bar exposed.

|Too|bcx ~ 0 Xl
Figure 1-9

The appearance of the Toolbox changes as it is used. For example, the titles of each
panel will change as they are selected.

When your mouse moves over the Toolbox title bar, the Toolbox expands for your employment, as
shown in Figure 1-10.

Toolbox > R XX

= General A g'

I Pointer g

H

Tewxk! <hlooe=Wrox ... "‘I'J,J

HTML o

WebParts =

=/ Login 5

m

K Poirker il

o

@5 Login @
o

Figure 1-10

19

Chapter 1

In this Try It Out, you practice using the Design and Source Views and Toolbox features of VWD.

Try It Out Using the Views and Toolbox

1. Continue working in VWD with your Mishaps page.

2. Switch to Design View. In the Toolbox, expand the HTML panel and scroll down to the bottom
of the panel. Drag a Horizontal Rule from the Toolbox onto the page (anywhere between para-

graphs).

3. Your next objective is to add a calendar to the bottom of the History page. Open the Standard
panel of the Toolbox and find the ASP.NET calendar control. Drag it to the page. (Double-
clicking performs the same operation.) Select the calendar with a single click and notice the
small right-facing arrow in the top-right corner. Click it to expose the smart task panel. Click
Autoformat, select a format, and click Apply. Observe how easy it is to modify many rendering
criteria simultaneously using VWD'’s dialog interface.

4. Open your History page in VWD. View it in Design View. Move your insertion bar up to the
first line to the tag that begins with <%@ Page. . .>. Note that the navigation guide (at the bot-
tom of the design panel) shows that you are in the <Page> tag. Click the <Page> tag. You will
see that the entire tag is selected in the design panel.

How It Works

As you saw, by adding a simple HTML Horizontal Rule, the Toolbox offers the ability to drag and drop
elements to the page rather than typing out their tags. Even complex constructs like a calendar are
added with just a drag-and-drop. When you are on the page, you can modify an element by using the
smart task panel.

Properties Window

20

An object, such as a web page, a ListBox server-side control, or a connection to a data source, has proper-
ties. Properties are settings that determine how the object appears and behaves. In earlier versions of
ASP, many goals were achieved by writing lengthy and complex code. In ASP.NET 2.0, however, most of
that code has been pre-written by Microsoft and encapsulated within the server-side controls. Properties
determine how that behavior will be exercised. Properties can be very simple, such as BackgroundColor,
or very complex, such as EnablePaging. Likewise, the values assigned to a property can be as simple as
BLUE or as complex as a multiple-line SQL statement. Property values can be set by typing them directly
into the Code View or by using the Properties window, which is shown in Figure 1-11.

Display the Properties window by pressing F4 or by choosing Menuw>Viewt>Properties. The properties
are organized into panels that can be collapsed or expanded (similar to the Toolbox). For example, in
Figure 1-11 the top three panels are collapsed. At the top of the Properties window is a drop-down list
containing the names of all controls on the page currently open. Below that are icons to arrange the list
of properties categorically or alphabetically. The lightning icon changes the Properties window so that it
displays events (a topic covered in Chapter 6) rather than properties. The body of the window displays
property names on the left and their current values on the right. At the bottom sits a box that gives some
help on the currently selected property.

An Introduction to ASPENET 2.0 and the Wrox United Application

Properties

DataListl System.Web.UIWebControls Datalist

EPERA =

Accessibility

Appearance

Behavior

B Dpata
{(Expressions)
DatakeyField
DataMember
DataSourcelD

B Layout
CellPadding
CellSpacing
ExtractTemplateRows
Height
HorizontalAlign
RepeatColumns
RepeatDirection
Repeatlayout

ProductID

sqlDataSourcel

20
o]
False

MotSet
4
Vertical
Table

Width

Height
The height of the contral.

Figure 1-11

The fundamental technique used to change properties is to select an object, usually a control, and then
find the property of interest and set it. You can select the object with a single click on the object in Design
View or by locating the insertion bar in the object in Source View. Alternatively, you can select an object
from a drop-down list at the top of the Properties window. One common mistake arises when you
attempt to change the properties but have not first actually selected the object you want to change. You
end up changing an object that was still selected from earlier work.

You have several options for setting the value of a property. If the property has a limited number of
allowed values (such as true and false), you can double-click the property name to toggle through the
values. If there are more than a few options, but still a finite amount, the values will be in a drop-down
list. Some properties have many options, and their value box offers an ellipses button that takes you to a
dialog box. Some properties can accept strings, so their values are set in text boxes. It is always better to
select or to toggle a value rather than type it. After a value has been changed, you must press Enter or
Tab or click another property in order to set the value. At that time, the Design View will render the
change.

You can also set property values by typing into the Source View. Locate the insertion bar within a tag
and press the space bar to display an IntelliSense list of all the properties that can be inserted at the loca-
tion of the insertion bar. Type the first letter or two and then type an equals sign. IntelliSense displays all
of the legal values (if the list is finite), and again type the first letter or two of the value you desire. Finish
by typing a space. Note that there will be no value list if the range of possible property values is not
finite. For example, if the value is a SQL statement, you will have to type the statement without
IntelliSense.

21

Chapter 1

Error List Window

When problems arise you have two major paths for obtaining clues about the problem. First is an error
report on the page delivered to the browser, and second is the Error List window within VWD.

ASP.NET 2.0 displays an error report (shown in Figure 1-12) on the page sent to the browser if the fol-
lowing shaded line is in your wWeb. config file:

<system.web>
<compilation debug="true">
</compilation>

£71 Parser Error - Microsoft Internet Explorer provided by Compag

File Edit View Favorites Tools Help

D= - Q- K] B G P Yorewies @ -2 FHLISKSEH QR B

<5 | i8] hitp:/ focalhost: 1068 WroxLinitedCS Defaut. aspx ﬂ

Server Error in '/WroxUnitedCS' Application.

Parser Error

Description: An error occurred during the parsing of a resource required to service this request. Please review the following specific parse er
details and modify your source file appropriately.

Parser Error Message: 'PennsylvaniaDutch’ is not a supported language.
Source Error:
Line 1: <%@ Page Language="Pennsylvaniabutch” Trace="false" MasterPageFile="~/site.master" 4

Line 2: <%@ Register TagPrefix="wu" TagName="News" Src="News.ascx" %>
Line 3:

Source File: \WroxUnitedCS/Default aspx Line: 1

Version Information: Microsoft NET Framework Version 2 0.50727 42, ASP NET Version:2.0.50727 42

<] I
€] bone &4 Local intr

Figure 1-12

Note that the first time you run (F5) a page, you get a default of <compilation debug="true"
strict="false" explicit="true"/>.

Because the default is true, you will have debug turned on if there is no specific attribute. So
debug=true for the following case as well where there are no changes to the default. Of course, having
the default literally set to true helps other programmers on your team that may be looking through
your settings:

<system.web>
<compilation></compilation>

22

An Introduction to ASPENET 2.0 and the Wrox United Application

A fatal error on the page produces a characteristic white-and-yellow page on your browser with an error
message. Just below the yellow block is the name of the offending file and the line containing the failure.
As with all errors, the error may actually be related to the line number displayed, but this should give
you a good clue. Note that when you deploy a site, the debug command in Web. config should be set to
false to improve performance and to reduce information given to hackers. Error handling is covered in
greater depth in Chapter 15.

The second way to identify errors comes from within VWD itself via the Error List window, depicted in
Figure 1-13. By default, the window is hidden until you run a page. You can force it to be displayed by
choosing Menur>View>Error List. The window displays all of the errors encountered during the conver-
sion of the page into the MSIL.

Error List
|o 1 Error || _{\ 0 Warnings .|| (i) 0 Messages

Description Fle Line | Column | Project

@ 1 ‘PennsylvaniaDutch' is not a supported language. Default.zspx 1

Figure 1-13

Note that the top of the Error List window has three clickable icons: Errors, Warnings, and Messages,
which display different lists of items created when the page was built. Hiding a type of item does not
remove it from the list; rather, doing so only hides the item so the list is shorter. The second column from
the left identifies the order in which the errors occurred.

Errors cause the page as a whole, or some portion of it, to fail. This includes, for example, references to
objects that do not exist.

Warnings are problems that could be solved by VWD while building the page (for example, the lack of a
closing tag).

Messages are sets of texts that the programmer can include in the code to appear when IIS is building the
page.

When viewing the list of items, you can sort by clicking a column heading. If you hold Shift you can
click a second column for tiebreakers (to determine the order for records with the same value in the pri-
mary column). You can also resize the columns by dragging their dividers, or re-order them by dragging
the column name left or right. Double-clicking an item allows you to open the offending file and jump
the cursor to the offending line.

In this Try It Out, you practice changing properties of an image control on the History page. Then you
create some errors and observe the results.

Try It Out Using the Properties and Error Lists Windows

1. Open the History page in Design View. In the Solutions window, open the Images folder and
drag the JPEG named “logo-yellow” to the top of the History page. VWD automatically creates
an image with its source set to the JPEG.

2. Click the image once to select it, and then switch to the Properties window (or open it with F4).
Change the height from 447 to 100 and press Enter to set the value. As you can see, changes are
immediately visible in the design panel.

23

Chapter 1

3. Now modify properties from Source View. Find the control and within it the propert
Yy prop property
(attribute) for height. Change it from 100 to 300. Click the green arrow (or press F5) to run the
g g g %
page and see the result.

4. Close your browser and return to Source View. Locate your insertion bar in the tag
immediately after the closing quote of height="300" and press the space bar. This opens the
IntelliSense list with all of the properties that are suitable at this point in your page. Press the t
key and then the i key to move down the list to the Title property. Press the equal (=) key to
close the IntelliSense and type in “Wrox Logo In Yellow” including the start and end quotes.
Run the page, and in your browser note that when you mouse over the image you see the title
you created. Close the browser.

5. Next, introduce a non-fatal error. Open the History page in Source View and find the <h1> tag
near the top of the page. Change the <h1> tag to <H1xx> and run the page. The browser opens
and you can see that the text “Wrox United —a potted history” fails to render in the heading-
one style. Close the browser and switch back to VWD to observe the Errors List window. If not
the Errors List window is not already visible, choose Menu=>View>Error List to view it. Note
that two errors were entered in the list. First was a note that “h1xx” on line 3 is not supported.
Second, the closing tag of </h1> on line 4 no longer matches an opening tag.

6. Your last experiment is to introduce a fatal error. In Source View, go to the top of the page and
change the first line from Language="C#" to Language="Esperanto" and run the page.

7. You will deal with solving many kinds of errors in each chapter of this book. For now, return
your page to its original form by deleting the tag, restoring the goofy <hlxx> to the
proper <h1>, and changing the language back to C#.

8. Savethe page.

How It Works

You experimented with three ways to change a property. First you worked in Design View and changed
a property by typing its new value into the Properties window. Next you made a change by typing a
new value into the source code. Last, you used IntelliSense to guide you through adding a property to
an existing control.

You observed the results of two types of errors: fatal and non-fatal. In the first case, ASP.NET 2.0 could
still render the page even though the faulty tag of <hlxx> left your text as default, not heading one.
Although the page rendered, back in VWD an error message was logged on to the Error List window.
You introduced a more serious error when you changed the language value to a non-supported lan-
guage. ASPNET 2.0 could not overcome this error and so you see two results. In the browser you got the
error page with troubleshooting information, and back in VWD you got entries to the error list.

VWD'’s Database Explorer

24

When you begin to work with data (in Chapter 7) you can use tools in VWD to gain knowledge about
your data sources. This information includes the exact names of tables and columns. In fact, as you will
see later in this book, you can drag columns to the designer and VWD does all the work of setting up the
proper controls to display data from those columns. For now, understand that in the Solution Explorer
you can double-click the name of an Access MDB to open that file in Access (assuming Access is
installed). For SQL Server databases (as used in this book), you can use a tool named the Database
Explorer to do even more exploration of a database and change its data and properties. These features
are discussed in detail in Appendix D.

An Introduction to ASPENET 2.0 and the Wrox United Application

Summary

Microsoft has revised large parts of ASPNET in version 2.0. The overall biggest benefit is that tasks,
which formerly required custom coding, can now be implemented by dragging pre-built controls to the
page. These pre-built controls include tools for logging on users, navigation, connecting to stores of data,
displaying data, creating a consistent look to the site, and offering customization options to the user. The
result is both faster and more robust development of dynamic web pages. On top of this, Microsoft has
made version 2.0 easier to deploy and faster in performance. As with earlier versions of ASP, the execu-
tion of code (that is, the building of dynamic pages) occurs on the server and only standard HTML is
sent to the browser. Thus, ASP.NET 2.0 is compatible with all browsers.

Three tools are available from Microsoft for creating ASP.NET 2.0 pages. The one used in this book,
Visual Web Developer Express (VWD), is a free download as of 2005. VWD displays the organization of
pages on your site, and helps you build new pages or modify existing pages. VWD also comes with a
lightweight web server named ASPNET Development Server for testing your pages. After building a
page, you can click Run to have VWD start ASP.NET Development Server, start your browser, build the
page, and serve it to the browser. This chapter also covered the following topics:

Q

VWD offers many options for the way that you view and work with pages during their devel-

opment. Tabs enable switching between Design View (which displays a good facsimile of how

the browser will render the page) and Source View (which shows the tags and code that gener-
ate the page).

When you create a new site or add pages, VWD offers wizards and templates that walk you
through the most common setups. In this chapter, you looked at how to create a new page based
on one of several dozen templates, followed by working with the Toolbox. This source of pre-
built objects is a focus of building pages in all the exercises of this book. To organize the large
Toolbox, the tools are divided into groups.

Another window displays properties of whichever object is currently selected. You can, for
example, select a text box and see its size, background color, and dozens of other properties. The
remainder of this book goes into the details of many properties of objects that ASP.NET 2.0 sup-
ports on a page.

When a page is built as a result of the VWD Run command, you get some feedback on how the
process fared. Fatal errors are listed, as well as warnings about potential problems with the
page. Double-clicking any of those errors leads you to the offending line in the site.

This first chapter focused on an introduction to ASP.NET 2.0 and how to build your first pages using
VWD. Chapter 2 moves on to some of the ASP.NET 2.0 features that govern the look and feel of all the
pages on a site.

Exercises

1.
2.
3.

Explain the differences among the .NET 2.0 Framework, ASPNET 2.0, VWD, and IIS.
List some differences between ASP.NET Development Server and IIS.

When you drag the title bar of the toolbar it will only go to certain locations and certain sizes.
How can you put the title bar where you want it?

25

Chapter 1

4. How can you copy a .jpg file in C: \MyPhotos into your site for display on a page?

5. You want to add a subfolder to your site, but Folder is not one of the items listed in Add Items.
Why?

6. Microsoft has written extensive code to make it easier for programmers to create web pages.
How does a programmer actually use that code?

7. Why are there no tools in the General panel of the Toolbox?

26

Site Design

When you start to develop a web site, you'll often have a good idea of what the site needs to be
able to do. For example, a blog site needs the ability to store blog entries by categories, for adding
comments to blog entries, and an administration section, at the very least. Alternatively, consider a
simple retail store that wants to enter the realm of e-business by having a web site that enables
customers to browse and buy their products. Each and every site needs to be carefully thought
about and designed before you can start work, and only then can you start putting code together
to implement a site.

Before jumping into the discussion and implementation of specific techniques, you should under-
stand the development of good site design with an eye toward the features supported by the
ASP.NET 2.0 server-side controls. After all, a well-designed site is easier to create, easier to use,
and easier (and cheaper) to maintain.

In this chapter, you'll learn about the following concepts:
0 How to start the design process for a site, and consider all the requirements for the site
before you start coding

Q Using Master and Content pages to implement a consistent look and feel to a site using
this great new ASPNET 2.0 feature

Q Constructing a site map that defines which pages exist on a site, and how these pages
relate to each other hierarchically

Q Storing central configuration data and code that is used by all pages on a site using the
Web.configand Global . asax files

At the end of the chapter are some exercises to help you gain a bit more familiarity with the con-
cepts learned.

Chapter 2

General Designh Objectives

Designing a fully functional web application is a big task. If you're developing your own site, you may
have thought long and hard about what you want your site to be about, so you know what it is you're
trying to do before you start. However, if you are developing a site for a customer, you must make sure
you are careful and thorough about how you agree on a design for a site. In a professional development
environment, this process normally includes the following steps:

1. Develop a functional model that describes exactly how the site should function. What happens
when the user clicks the Log In button? What features are available when a user wants to view a
product? These questions, and many others, need to be answered before you start work, so you
don’t end up developing something that the customer doesn’t want.

2. Identify which technologies you have available to use in the implementation of the site. Many
hosting packages have different levels of support for databases, and limitations on the overall
size of a site, so make sure you talk about this early on and make sure you can use all the tech-
nologies you would like to use.

3. Develop a technical specification that describes how you will implement the required function-
ality. For example, on a blog site, how will you make sure that when the user clicks the button to
post a new blog entry, the text that has been entered is saved in the database? Be as thorough as
you can, because you may not be the one who has to maintain the site later.

This may sound like quite a lot of work, but even for smaller businesses or sole trading contractors, fol-
lowing this process will help you to maintain a happy relationship with your customer, and potentially
secure future work with either that customer or any of their friends or business contacts.

When you move from the business side of things into the implementation phase, you start to think about
how to create the application, and how to actually design the site in line with what the customer wants.
Creating a web application requires more than just correct use of the ASPNET 2.0 server-side controls,
because the process of actually designing and laying out the pages of the site is just as important.

Note that the term design can have two meanings. The first is the selection of colors and layout, which
are typically created by a design artist for the site. The second definition includes the intellectual con-
struction and coordination of the parts of the site. This includes the plans for the architecture of the
information. In your case, you want to store as much information as possible in a relational database.
This chapter concentrates on the second definition. The next chapter considers how to design each page
in a site, using a healthy mix of HTML and ASP.NET controls.

The Wrox United sample site has the following site-wide design objectives that are implemented in this
chapter:

Q Facilitate troubleshooting as much as possible during the development, so that it’s a simple pro-
cess to track down errors.

Q Set site-wide standards for coping with errors after deployment.
Q Create a consistent look for all pages.
Additional general design objectives are covered later in the book, including an interface for a login sys-

tem to identify members (Chapter 4), applying consistent styling and themes to a site (Chapter 5), and
sourcing as much information as possible on databases or XML data files (Chapters 7 and 8).

28

Site Design

Master and Content Pages

A site benefits from a consistent look and feel, and you'll rarely find sites on the Internet that deviate
from having a generic site layout, which generally includes the following:

QO A common header and menu system for the entire site
Q Abar on the left side of the page offering some page navigation options

Q Afooter providing copyright information and a secondary menu for contacting the webmaster

These elements will be present on every page and they not only provide essential features, but the con-
sistent layout of these elements signal to users that they are still in the same site. Although this appear-
ance can be built with include files in HTML, ASP.NET 2.0 provides more robust tools with the Master
page and Content page system.

A Master page defines the layout to be used by all pages based on the Master. It’s the overall parent that
controls your layout, specifying how big your header will be on every page, where your navigation fea-
tures will be placed, and the text to display in the footer on every page —a bit like a cookie cutter for
each page. The Master page contains some of the content available to each page on the site, so standard
copyright footer text can be defined here, along with positioning the main site logo at the top of the
page. After the standard features of the Master are defined, you then add some placeholders —named
regions on a page that define where content that varies from page to page will be positioned.

A Content page is a page based on a Master, and is where you add the content for each page on a site that
varies from page to page. The Content page contains text, HTML, and controls within <asp:content>
tags. When the Content page is requested, its content is combined with a copy of the Master page, with
the specific content defined in the Content page placed within the specified placeholder on the Master
page. Then the whole package is delivered to the browser, as shown in Figure 2-1.

Fortunately, the heavy lifting for this architecture is performed by ASP.NET 2.0. You only have to create
the Master and Content pages as laid out in the next two sections.

Creating a Master Page

You create a Master page in VWD’s Solution Explorer by right-clicking the root of the site, selecting Add
Item, and designating the type as a Master Page. By default, the name for a new Master page is
MasterPage.master and is located in the root of the site. The Master page has three parts.

First are some basic page tags and designations (such as the designation of a Master, DOCTYPE, xmlns,
html, and head tags) that are required by any rendered page. This content is entered only once in the
Master page, to reduce repetition. DOCTYPE and xmlns refer to the place the server can look up the defi-
nitions of tags used by the page. Note that these tags will not appear in the Content pages:

29

Chapter 2

WROX UNITED Master Page
MENU
Content Page
& Player List
Aaron
Bill
Chris
A,
Final page as sent
WROXUNITED to browser
'ﬂj Player List
JEE—— Aaron
R Bill
Chris
Figure 2-1

<%@ master language="C#" %>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head id="PageHead" runat="server">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta http-equiv="Content-Language" content="en-uk" />
<title>Wrox United</title>
<link rel="stylesheet" type="text/css" href="site.css" runat="server" />
</head>

The second part of the Master page is a place for scripts that will be run on all pages (such as Page_Load
code, which runs each time a page is loaded). For example:

30

Site Design

<script runat="server">
Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

End Sub
</script>
Third, the Master page includes some HTML for layout, and the start/end tags <asp:content . ..

ContentPlaceHolderID="xxx>and </asp:content> tags. The material from the Content page will
be placed between these tags. For example:

<body>
<form id="mainForm" runat="server">
<div id="header">...</div>
<div id="sidebar">...</div>
<div id="content">
<asp:contentplaceholder id="mainContent" runat="server" />
</div>
<div id="footer">
<p class="left">

All content copyright © Wrox Press and its subsidiaries 2006.</p>
</div>
</form>
</body>
</html>

In summary, each Master page must include the following elements:

Q Basic HTML and XML typing tags
d <%@master ... %> on the first line

0 An<asp:ContentPlaceHolder> tag with an ID

The Master page is now available as a container to hold other pages. You create those Content pages in
the next section.

Creating Content Pages

As with most of ASP.NET 2.0, VWD saves you typing. Starting in the Solution Explorer, right-click the
root and select Add New Item. Generally, you will pick a Web Form (there is no special template for a
Content page). At the bottom of the dialog box is the option to Select master page (see Figure 2-2). When
this box is checked and you click Add, you will be led to an additional dialog box that asks which
Master page to use for the new Content page.

The second dialog box (shown in Figure 2-3) allows you to pick which Master page to use. Select the
Master page. Change the name from the default of MasterPage.master to site.master and click OK.

31

Chapter 2

Add New Item - C:\BegASPNET2WroxUnitedCS\ 8]]
Templates: (E
Visual Studio installed templates
[12] web Foem [CMaster Page [B:] web User Control
|#] HTML Page #i] Web Service] Class
AjjStyle Sheet |3y Web Configuration File 2] XML File
=] Text File (LaResource Fle | 5QL Databass
|&] Dataset %] Generic Handler | &4 site Map
2] Mobile Wek Form Z)VEScipt Fle $75cript Fie
i Mabile Web User Control 3 Mobile Wb Configuration File (' XELT File
|12 Skin Fie @ Browser File
My Templates
|} 5=arch Online Templates. ..
A form for Web Applications
Mame: Default.aspx
Language: Visual C& w| [eisce code in separate fle
. [¥] Sefect master page
Figure 2-2
Add New Item - C:\BegASPNET2WroxUnitedCS\ 8]%]
Templates: (E
Visual Studio installed templates
2] wieb Form ["]Master Page 5] web User Control
| 9] HTML Page #i] Web Service] Class
AjjStyle Sheet |3y Web Configuration File 2] XML File
=] Text File (LaResource Fle | 5QL Databass
|&] Dataset %] Generic Handler | &4 site Map
] Mobile Web Form 3)VEScript Fie) 5cript Fie
i Mabile Web User Control 3 Mobile Wb Configuration File (' XELT File
|12 Skin Fie @ Browser File
My Templates
|j|Search Ornline Templates...
A Master Page for Web Applications
Mame: site. master|
Language: Visual C= .vI [[]Fiace code in separate file
Figure 2-3

VWD sets two values in the Content page. They are not shown in Design View, but switching to Source
View reveals them, as displayed in the following code:

<%@ Page Language="C#" MasterPageFile="MyMasterPage.master" %>
<asp:Content ID="Contentl"

ContentPlaceHolderID="Content Place Holder ID in Master Page"
Runat="Server">

content goes here

</asp:Content>

32

Site Design

The Master page to use is stated in the first directive. Second, VWD includes an <asp: content> control
with a property that designates the ID of the placeholder in the Master page. A Master page may have
many places where Content pages can be inserted. This designator identifies which placeholder to fill
with this particular page.

To summarize, the Content page exhibits the following three features:

Q Lack of the HTML <! DOCTYPE HTML . . . > and XML <html xmlns=. . .> typing tags

0 <%@page MasterPageFile= ... %> on the first line to instruct ASPNET 2.0 which Master page
to use

O An<asp:content> tag

The theory is not difficult and the typing is done automatically by VWD. In the following sample, you
see Master and Content pages working together.

Sample of Master and Content Pages

Almost all of the exercises in this book can be carried out in Design View (without working directly in
code). But it is interesting to take a look at how VWD builds pages by switching to Source View. The fol-
lowing code shows an example of a Master page (named “research.master”) for a corporation and a
Content page called “mission statement.” The first shaded line designates the Master page, and the sec-
ond shaded area is a control that defines a content placeholder, where the content developed on a
Content page will be inserted:

<%@ Master Language="C#" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.0org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server"> <title>CorporateMaster</title></head>
<body>
Corporation Name
<form id="forml" runat="server">
<div>
<asp:contentplaceholder
id="ContentPlaceMissionStatement"
runat="server">
</asp:contentplaceholder>
</div>
</form>
</body>
</html>

Following is the Content page for this example. The highlighted section designates the Master page and
the control that delineates the material to be put in the Master page. The ID of the
ContentPlaceHolder must match the ID of the ContentPlaceHolder in the Master page. The follow-
ing listing is complete; there are no additional tags or attributes at the top of the page:

<%@ Page Language="C#" MasterPageFile="~/research.master" Title="Untitled Page" %>

<asp:Content ID="Contentl"
ContentPlaceHolderID="ContentPlaceHolderMissionStatement"

33

Chapter 2

Runat="Server">
Our Mission Statement is to provide value to the customer.

</asp:Content>

Note that a Content page must have a very minimal set of tags. The Content page does not have tags
such as <! DOCTYPE > or <html xmlns="http://www.w3.0rg/1999/xhtml" >. Nor does the Content
page contain <head> information. This data will be provided by the Master page.

Using Cascading Style Sheets in a Master Page

A Master page is a good location to declare a link to a Cascading Style Sheet (CSS). CSS is a feature of
HTML, not ASP.NET 2.0, so the topic isn’t covered in depth in this book. However, CSS is discussed as it
relates to themes in Chapter 5. There is also a brief reference for HTML and CSS in Appendix E. In short,
a CSS contains formatting for various styles to be applied to pages and controls, so that when a page is
rendered, the elements on a page, the style of the text, buttons, links, and so on, appear formatted
according to the style definition in the CSS. This saves the designer from having to include (and main-
tain) many individual style format tags for frequently used designs. A CSS also speeds page loading
because the CSS is loaded just once by the browser, and then reused directly from the client-side cache
for each subsequent page that uses that style sheet. On a Master page, you should include the following
kind of link (highlighted with a gray background) in the <head> section to link a page with a CSS:

<head id="PageHead" runat="server">

<title>Wrox United</title>

<link rel="stylesheet" type="text/css" href="MySite.css" runat="server" />
</head>

In the following Try It Out, you get the chance to create the Master page for the Wrox United site. You
will be adding content and features in the exercises of each chapter of this book. At this point, you will
simply create the shell of the Master page. You will add many parts to the Master page later in the book,
so if it seems a bit incomplete now, hang in there.

Try It Out Creating a Master Page and Importing a CSS

34

1. Open the sample site for this chapter, located at C: \BegASPNET2\Chapters\Begin\
Chapter02. You will start by importing a CSS file the authors have created for you. Right-click
the root of the site and select Add Existing Item, as shown in Figure 2-4.

2. Navigate to the folder where you downloaded the files for this book (C: \BegASPNET2\
WroxUnitedcCs), select site.css, and click Add. CSS is an HTML topic (not ASP.NET), but if
you want to open the file, you can observe styles set for the HTML of the body, such as <h1>,
<h2>, and so forth. There is no need for you to modify this file. Observe that you now have a
site.css file in the list of files displayed in the Solution Explorer. If you opened the CSS file,
close it now.

Site Design

Solution Explorer - C:\BegASPMET 2\WroxUnitedCS\ - 3 X

= | 2] B @

_‘P C:\B : FhadC) A

- O3 Admir Build Web Site

= Lz @ 95 add New Ttem. ..

+ __\J app_0

5 A app{) Add Existing Item...

- [FanCl | Mew Folder

+- [Imagg

¥ [MatcH Add ASP.MET Folder »

- [News Add Reference...

+- [Playe:

¥ [Prody Add Web Reference...

#- [Sourg Copy Web Site...

e lj Abou @)

5 .j Abou Start Options. ..

%) [F] Check &) View in Browser Mol

[Cherd 9 L (B

L‘_QSUIuh'on Exgl Browse With... splorer
Properties g Refresh Folder I - 1 x

C:\BegASPNE| -+ Ut roperties -

2 El

B Developer

8

Property Pages
| Use dynamicpores—Troe

Figure 2-4

Again, right-click the root, but this time select Add New Item and use the Master Page template.
Name the page site.master. Ensure that the check box for Select Master Page is not checked (that
option is only for Content pages). After VWD creates the page, you can observe it in Design
View, although it is empty at this point. Notice in Source View that VWD has added several tags
and controls for you (see the following code). The first tag is a designation that this will be a
Master page and the second tag is the normal document-type designation. Following that is a
place to insert scripts and then an XMLNS value. Observe that in the <body>, VWD created a
contentplaceholder:

<%@ master language="C#" %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<script runat="server">
</script>

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head id="PageHead" runat="server"> ... </head>

<body>
<form id="Forml" runat="server">
<div>
<asp:contentplaceholder id="mainContent" runat="server" />
<div>
</form>
</body>
</html>

35

Chapter 2

36

4,

You want to change the name of the form from the generic VWD names to something more
applicable to your situation. Switch to Source View and change the <form id="forml"
runat="server">to <form id="MainForm" runat="server">.

Switch back to Design View to set the style sheet. At the top of the Properties box, drop down
the list of controls and select Document. Set the Debug property to True. At the bottom of the prop-
erties list, find Style Sheet (see Figure 2-5), click its ellipses, and browse to site.css. Click OK.

Propetties - 4 X
DOCUMENT -

=l
LeftMargin i0
Link.
MoW'rap
RightMargin 10
Scroll
Style
Text
TopMargin 15
WLink

E Document

DefaultClientScript J5cript

Diie

Stylesheet site.css

Title VWrox United -
StyleSheet

Linked stylesheet.

Figure 2-5

Adding <div> tags divides the page for easier formatting. Your Master page will use four
<div> sections within the <form>. Some of these will then contain additional <div> tags within
them (lower-level <div>). The first <div> is automatically created by VWD; the others you will
add. A <div> can be dragged onto a page from the HTML section of the toolbar, but it is diffi-
cult to get it located properly in Design View. You will use Source View to get exact placement.

Switch to Source View and find the default <div> within the form. Select from the beginning of
the <div> tag to the end of the </div> tag, and note that the Properties window now shows
properties for the <div>, including a style attribute that sets the width and height. Set the id
property to content.

Staying in Source View, add another <div> by dragging the control from the HTML section of
the toolbar to a position above the <div id="content">, but still within the <form>. Setits id
property to header.

Add two more <div> tag sets within the form. Place one just below the header with the ID of
sidebar and one at the bottom of the page, just above the form closing tag with an id of
footer.

Staying in Source View, now create lower-level <div> tags, which will reside inside of the
<div> you created earlier. In the header <div>, dragin a <div> and give it an id of logo.
Follow the 1ogo <div> with some simple text for display, shown here:

Site Design

<form id="mainForm" runat="server">

<div id="header">
<div id="logo"></div>
<hl>Wrox United</hl>
</div>

10. Inthe sidebar <div> add the text Navigation, as shown in the following code:

<div id="sidebar">
<h3>Navigation</h3>
</div>

11. You will add controls to the content <div> in the next few chapters, but for now, add a lower-
level <div id=> with an id of itemcontent:

<div id="content">
<div class="itemContent">
<asp:contentplaceholder id="mainContent" runat="server" />
</div>
</div>

12. Inthe footer <div> add two notices of copyright:

<div id="footer">
<p class="left">
All images and content copyright © Wrox Press and its subsidiaries 2006.
</p>
<p class="right">
Website designed by
Frog Box Design
</p>
</div>
</form>

How It Works

You started by simply importing to your site a CSS that the authors created for you and included in the
download for this book. (Actually, the authors are lame at design. We originally thought red, pink, and
orange went well together, so we asked a designer at www. frogboxdesign.co.uk to make the design
palatable.) Because CSS is an HTML topic, the structure of the style sheet is not discussed here (see
Appendix E for some details).

The more important objective, however, is to use VWD to help you create a Master page with the three
basic components. By using the Master page template, you got the basic HTML and XML typing tags.
VWD also added for you the <@ master ... %> on the first line. Finally, VWD provided a single <div>
with an <asp:ContentPlaceHolder> tag. Every placeholder tag must have an ID, so you changed the
ID so that it made sense in your context.

You then did some basic modifying of the Master page to support features you will add later in the
book. All of these are actually HTML features, not ASP.NET 2.0. First, you used VWD IntelliSense to add
a link to the CSS sheet you imported. Then you created several more <div> tags to organize the page
into header, sidebar, content, and footer sections.

37

Chapter 2

The following Try It Out complements the previous exercise in that you will now create a Content page

to fill the placeholder of the site.master. Because of its simplicity, the “about the site” page is a good
starting point.

Try It Out Create Content Pages

38

1.

2.
3.

The site was initially written by Dave, while design & graphics were done by Lou.
Conformance is XHTML 1.0 Transitional and CSS 2.1.

4,

In VWD and with Wrox United open, right-click the root of the site. Select Add New Item and
select the template type of Web Form. Name it About.aspx and make sure that both Select
Master Page and Place Code in Separate File are checked as in Figure 2-6, even though there will
be no code. (If you don’t set code in a separate file, the framework tags for code will be in the
.aspx file. It’s better to stay consistent with the rest of the site and keep the container tags and
the code in a separate file.)

Add New Item - C:\BegASPNET2\WroxUnitedC S\ |B%]
(]

Templates: BE

Visual Studio installed templates

2] wieb Form [CMaster Page 3| wieb Ussr Contral

|#] HTML Page #i] Web Service] Class

AjjStyle Sheet |1z Web Configuration File 2] XML Fie

=] Text File (Resource Fle | Jl 5QL Database

|&] Dataset %] Generic Handler | &4 site Map

J'"Mobile \Web Form 3]VEScipt Fle 3)75cipt Fie

7" Mobile Web User Control 3 Mobile Wb Configuration File {1 ¥ELT File

|5} Skin Fie b Browser File

My Templates

Li.j| Search Online Templates...

A form for Web Applications

Mame: #bout] aspx
Language: Visual C# v| [¥]Place code in separate fle
[¥#] Select master page
Figure 2-6

In the second dialog, select site.master for the Master page and click OK, as in Figure 2-7.

In Design View, type in a few lines, such as the following:

As an aside, you can experience that VWD helps you with non-ASP tags, such as a hyperlink.
Staying in Design View, look on the Toolbox’s Standard panel for the Hyper1link control and
drag one to the end of the first sentence in the preceding code. In the properties box set the text
to Frog Box Design and the NavigationURL property to www. frogboxdesign.co.uk. VWD
will automatically take care of all the typing to create the link.

Look at the page in Design View and note that the Master page contributes the framework, and
the Content page only has the text you typed. Switch to Source View and note that the About
page designates its Master page and that its content will go into the MainContent placeholder.

Site Design

Select a Master Page B %]

Project folders: Contents of folder:

= (P C:\BegASPNET 2\WroxUnitedCSY | | site master
=3 Admin

_=| app_Code

3 app_Data

= app_Themes

{3 FanClub

L Images

1 MatchImages

L MewsImages

1 Playerimages

3 Productimages

=
&
s
+
&
&
&
=
=
+-_ SourceViewer

l OK] [Cancel

Figure 2-7

How It Works

The general steps to create a page start with selecting the parent folder in the Solution Explorer. In many
cases this is the root of the web site C: \BegASPNET2 \WroxUnitedCs, but in some cases it can be a lower
folder such as the location of FanClub. aspx in the folder C: \BegASPNET2 \WroxUnitedCS\FanClub.

Observe how a Content page has the three features work with the site.master page. The initial tag
<%@ Page. .. > must contain the MasterpPageFile attribute. Because you might move the files into a
different folder structure, you refer to the Master page’s location with an initial tilde (~) that indicates
that it will be in the root of the site. Second, the material of the Content page is held within an ASPNET
server-side control named asp:Content with a ContentPlaceHolderID attribute that points to one of
the locations for content in the Master page. Third, because the HTML and XMLNS tags will be brought
in with the Master page, you omit them from all the Content pages.

Additional Capabilities of Master Pages

Although not implemented in Wrox United, several additional features are available that you can use
with Master and Content pages. Multiple levels of Master pages can contribute to a final page. One of
several Master pages can be served depending on the requesting browser. And a Master page can sup-
port several content placeholders.

Multiple Levels of Master Pages

Although the technique is not used on Wrox United, your pages can inherit multiple levels of Master
pages. This feature provides a way to display standard content from several levels of hierarchy. For
example, a Content page named Publication.aspx can establish its Master as Research.master,
which can in turn declare its Master as Corporate.master. The final rendering will be of Research
.aspx surrounded by Research.master, and all of that surrounded by Corporate.master. One prob-
lem is that the space remaining for content is reduced at each level. VWD does not contain automatic
tools to create multiple levels of Masters. In fact, if you have multiple levels, you can only open those
pages in Source View.

39

Chapter 2

40

To create pages with multiple levels of Masters you must include in the middle-level page tags that both
indicate its Master page (up a level) and its content placeholders (for the lower level). Recall that a
Master page must have <%@ Master ... %> on the first line, and that a lower-level or Content page must
have <%@ Page MasterPageFile= %> on its first line. In the case of a middle page that is both a Content
and Master page, the tag must start with <%@ Master ... and also contain . . . MasterPageFile= %>.

Also recall that a Master page contains an <asp:ContentPlaceHolder> tag whereas the Content page
has an <asp:content> tag. In the case of a middle layer, there must be an <asp: content> holding the
ID of the Master’s <ContentPlaceHolder> tag. Then within that tag there is an <asp:
ContentPlaceHolder> tag that will be used by the next level down.

The following example illustrates a Corporate Master page, then a Research department Master page,
and finally a Publication.aspx page that holds the content. The Corporate page is shown in the fol-
lowing code. Note that its content placeholder is defined in the shaded lines:

<%@ Master Language="C#" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.0org/TR/xhtml11/DTD/xhtml1l.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>CorporateMaster</title>
</head>
<body>
Corporation Name
<form id="forml" runat="server">
<div>
<asp:contentplaceholder
id="ContentPlaceHolderCorporate"
runat="server">
</asp:contentplaceholder>
</div>
</form>
</body>
</html>

The Research department Master page is illustrated by the following code. This page is the most com-
plex, because it is a Content page for the Corporate page, and a Master page for the Publication page.
Notice the use of Master and MasterPageFile= on the first line that establishes this as content for the
Corporate Master page. Then observe that the <asp: ContentPlaceHolder> will house other pages as
content (in this case the Publication page). The content placeholder must sit wholly within the
<asp:content> tags:

<%@ Master MasterPageFile="~/Corporate.master" Language="C#" %>

<asp:Content runat="server"
ContentPlaceHolderID="ContentPlaceHolderCorporate">

Research Department
<asp:contentplaceholder

id="ContentPlaceHolderResearch"
runat="server">

Site Design

</asp:contentplaceholder>

</asp:Content>

Code for the Publication.aspx page (designed with content only) is shown in the following code.
Here you only need to designate a Master page. This page, which sits at the lowest level, is not a Master

page:
<%@ Page Language="C#" MasterPageFile="~/Research.master" Title="Untitled Page" %>
<asp:Content ID="Contentl"
ContentPlaceHolderID="ContentPlaceHolderResearch"
Runat="Server">

Publication text

</asp:Content>

Master Pages Support Multiple Content Placeholders

The examples so far have used a single <asp:ContentPlaceHolder> in the Master page and a single
<asp:content> tag in the Content page. ASP.NET 2.0 supports multiple content placeholders. However,
each must have its own ID, as in the following example:

<%@ Master Language="C#" %>

<form id="forml" runat="server">
<asp:contentplaceholder runat="server" id="TopContent" />
<asp:contentplaceholder runat="server" id="MiddleContent" />
<asp:contentplaceholder runat="server" id="BottomContent" />

</form>

</body>

</html>

The content can then have <asp:content> tags that have ContentPlaceHolderID values equal to the
ID values in the Master page:

<%@ Page Language="C#" MasterPageFile="~/research.master" Title="Untitled Page" %>

<asp:Content ID="Contentl" ContentPlaceHolderID="TopContent" Runat="Server">
Text to go in Top section

</asp:Content>

<asp:Content ID="Contentl" ContentPlaceHolderID="MiddleContent" Runat="Server">
Text to go in Middle section

</asp:Content>

<asp:Content ID="Contentl" ContentPlaceHolderID="BottomContent" Runat="Server">

Text to go in Bottom section
</asp:Content>

Dividing content into several <asp:ContentPlaceHolder> tags helps with the layout of the Master page.

41

Chapter 2

C

42

reating a Site Map

To enable navigation features of ASP.NET 2.0, you need to have a standard way to describe each of the
pages of the site. This standard should not only include the names of all of the site’s pages, but also a
sense of their hierarchy. For example, the page of a player’s statistics would be a subpage of the general
players list, and that would be a subpage of the home page:

Home
- Players
-- Player Statistics

Defining this sort of hierarchy is an important part of site design, because you want to know (before you
start coding) what pages need to be developed, which links will be relevant to users on different pages,
and where the user is likely to want to go after viewing a specific page. Drawing up a site tree, like the
simple one shown here, is the first step you need to take. Then you can move to the next stage and
define this hierarchy in code.

ASPNET 2.0 holds this information in an XML file named web. sitemap. You can use this file as the
source of data for menu and navigation controls, which are discussed in Chapter 3.

What Microsoft offers in ASP.NET 2.0 is a way to use site data in menus and naviga-
tion controls if that data is stored according to the web. sitemap standards. VWD
includes a template with the tags for a web. sitemap file. But as of this writing there
is no tool to scan the site and generate the actual data that goes into those tags. Third
parties will surely fill this gap, but for now you must type the information into the
web. sitemap file.

The site map must be an XML file with the exact name web. sitemap and must be located in the root of
the web application. XML is a standard for holding data, somewhat like a database, but in a human-
readable text form. Each item of data is held in a node, and in this case a node would represent one page
of the site with data for the page URL, title, and description. An XML file holds the nodes in a tree-like
structure so ASP.NET 2.0 will know which pages are to be considered children of a parent page. For
example, a page of Corporate Departments would be a parent to children pages with details on Sales,
Research, and Accounting. The first tags in the file are standard for XML files to identify the version and
the XMLNS, as shown in the following code:

<?xml version="1.0" encoding="utf-8" ?>
<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >

These first two lines are automatically typed for you when you use VWD to add an item to the root from
the template site map. The node names are simple: <siteMap> containing <siteMapNode> tags. Each
tag represents a web page and can include the following attributes (all attributes of the <siteMapNode>
tag are strings):

Q Title: Describes the page (this is not linked to the <Title> tag in the header of the page,
although it could have the same value).

QO URL: The location of the page described in this node.

Q Description: A description of the page.

Site Design

Note that a URL can contain querystring data, which is additional information defined at the end of the
URL string of a page, which is sent as part of a request to display a page. For example, a general refer-
ence to a page would be similar to the first line in the following code, whereas a reference to a page with
some data (for example, the month to display on the calendar) would be similar to the third line:

url="Calendar.aspx"

url="Calendar.aspx?Month=May"

The hierarchy (parent/child relationships) of pages listed in the site map is established by including a
child node within its parent’s open and close tags. Notice in the following code how the two subpages
(Members and Calendar) occur within the open and close tags for the Home page (shown with a gray
background). The indentation is only for the human eye; it does not affect the hierarchy. Note that the
tags for the child pages (Members and Calendar) can use the single tag format of <Tag. .. />. But
because the parent page (Home) has children (it contains other nodes), it must use the two-tag format of
<Tag>...</ Tag>:

<siteMap>
<siteMapNode title="Home" url="Default.aspx" description="Home page for MySite">
<siteMapNode title="Members" url="Members.aspx" description="All Members" />
<siteMapNode title="Calendar" url="Calendar.aspx" description="Club Events" />
</siteMapNode>
</siteMap>

To create two child pages within Calendar (grandchildren to the Home page) you take two steps. First
convert the Calendar <siteMapNode> to the two-tag format and then add the two child tags as shown
in the following highlighted code. Remember, as stated in the preceding note box, you must do all of this
by typing in the Source View of the web. sitemap file. VWD offers neither a tool to perform an auto-
matic scan and build, nor a way to drag and drop from the Solution Explorer into the web. sitemap file.

<siteMap>
<siteMapNode title="Home" url="Default.aspx" description="Home page for MySite">
<siteMapNode title="Members" url="Members.aspx" description="All Members" />
<siteMapNode title="Calendar" url="Calendar.aspx" description="Club Events">
<siteMapNode title="Calendar of Racing Events"
url="Calendar\Racing.aspx" description="Racing Events" />
<siteMapNode title="Calendar of Social Events"
url="Calendar\Social.aspx" description="Social Events" />
</siteMapNode>
</siteMapNode>
</siteMap>

Note that there is another attribute that you can specify on a <SiteMapNode> element: the roles
attribute. As you learn in Chapter 11, this attribute is used in the Wrox United site map file. There may
be some situations where you will want to allow a user to know of the existence of a page, even if the
user is denied access to the page. In this way, you can offer a link to a user, but when they click that link,
they are prompted to log in as a user with sufficient privileges before they can view the page.

In the next Try It Out you create a web. sitemap for Wrox United. You won't be able to see the results of
your hard work until you reach the next chapter, where you learn the concept of navigation controls, but
this stage is a way of putting your paper-based design for the structure of a site into code, so it’s impor-
tant to get it right.

43

Chapter 2

Try It Out Create a Site Map

1. Right-lick the root of the site in Solution Explorer and select Add New Item. Choose the tem-
plate named Site Map and name it web.sitemap. Note that VWD added the first two tags auto-
matically and gave you the framework for three nodes. The first is the highest level (Home) and
the next two are children.

2. Modify the first <siteMapNode> to represent your Home page with the following code:

<siteMapNode title="Home" url="Default.aspx" description="Wrox United Home Page">

3. Modify the next <siteMapNode> (the first child) as follows:

<siteMapNode title="Fixtures" url="Fixtures.aspx" description="Match Fixtures">

4. Copy an entire blank <siteMapNode> to the clipboard so you can paste it without having to
retype the tag.

5. Create two children to Fixtures, as highlighted here:

<siteMapNode title="Fixtures" url="Fixtures.aspx" description="Match Fixtures">
<siteMapNode title="Future Fixtures"
url="Fixtures.aspx?type=future"
description="Who we're going to be playing" />
<siteMapNode title="Past Fixtures"
url="Fixtures.aspx?type=past"
description="Who we've already played" />
</siteMapNode>

As you can see, there are two subnodes within the Fixtures section of the site that enable you to
view details of both future and past fixtures.

6. There are quite a few more nodes to specify to complete this example, so to save you some time,
we’ve included the rest of the nodes in a file called web . sitemap . remainder in the chapter
directory (C: \BegASPNet2\Chapters\begin\Chapter02). All you have to do is open this file
in Notepad, copy the entire contents of the file, and paste the contents into your version of the file
right at the bottom. Alternatively, feel free to just import our web. sitemap file into your site.

7. Atthis point there is no good test for your web. sitemap file because the controls that display
the data aren’t discussed until Chapter 3, but having an understanding of this foundation is
very important because you can use it to add navigation features to a site.

How It Works

44

In this exercise, you undertook the tasks to create a site map file. Recall that VWD does not include a tool
to automatically create this file, but does include a simple template to pre-type some tags to get started.
ASP.NET 2.0 will only use this file when it is named web. sitemap, so try to avoid any temptation to
change the name.

You added a new item of the site map template and switched to Source View. VWD adds the initial tags
and the tags for the first node. But you then have to manually type all of the data and begin copying and
pasting tags for all of the rest of the pages and their data. (Obviously, the third party that writes a pro-
gram to automate this task will enjoy good sales.)

Site Design

General Guidelines for Site Design

Prior to designing any web site, you benefit from reviewing the principles of a good site design. In this
book, you should keep in mind three general concepts:

0 Endeavor to separate the presentation from the information. For example, design the title, lay-
out, and format of a page (the presentation). On that page, put a control that is configured to get
and display information (such as the list of players for the team). By dividing these goals, you
are able to make updates to each without impacting the other. For example, when a new player
is added to the team, you enter the information about the player into the site’s database, and the
page automatically displays the new list of players on the team without you having to modify
the presentation layer.

Q Strive for a consistent look and feel throughout the site. By keeping the same colors, logo, and
arrangement on the screen, you develop a sense of presence. The loyal followers immediately
feel at home with the team colors. Return visitors will be able to use the same set of learned
behaviors for using the site.

Q Make the site as easy to navigate as possible. First, a menu bar on all pages provides easy jumps
form one part of the site to another. Use ASP.NET 2.0 tools to indicate where the currently
viewed page is located in the site.

Standard Files for ASP.NET 2.0 Applications

ASP.NET 2.0 uses two files, common to every ASP.NET site, to hold configuration information and code
that applies to the entire site. These are the Web.config and Global . asax files, respectively.

0 web.config contains configuration settings for a site; for example, for specifying a standard
customized error page to display to end users if anything on the site breaks.

0 Global.asax contains code that handles events raised by any page on the entire site; for exam-
ple, code that is run each time a user first accesses the site (the start of a session).

Web.config Holds Settings for the Entire Site

Web.config stores values that apply to the entire site. Structured as an XML file and located in the root,
nodes hold information in three major areas:

Q Application settings for feature availability used in development versus deployment
Q Connection strings that hold values used when reading or writing from a data source

Q System.Web and System.Net settings that hold everything else

System.Web settings are then broken into several subcatagories, including the following (not all are used
in WroxUnitedCS):

Q HTTP Modules that point the page to other pages for execution of code

Q Debugging routines that should be turned on at the time of compilation

Q Authentication Technique

45

Chapter 2

46

Role Manager settings (on or off?)

Anonymous Identification settings (permitted or not)
Error handling settings

Web.SiteMap file data used for navigation and menus
Profile data that is used for identifying users

E-mail settings for the Simplified Mail Transfer Protocol (SMTP) (not used in WroxUnitedCS)

O 000 o000

Definition of Namespaces that identify the location of objects within larger objects (not used in
WroxUnitedCS)

System.Net holds just one setting for your purposes: a series of values for sending e-mail.

You can amend the contents of this file in two ways; the first is to edit it by hand in VWD, which, thank-
fully, is not too tricky to do. The alternative is to use the ASPNET Web Site Administration Tool, which
you can launch from within VWD. Go to the main VWD menu and select Websitec> ASP.NET
Configuration. A series of dialog boxes enable you to set values that VWD will change in Web.config
without directly opening the file. You can have a look at this tool later on in the last Try It Out in this
chapter.

The following explanation of the structure of a Wweb. config file takes a look at parts of the Wrox United
Web. config file, looking at sections from the top of the file and working down. If you open the file, you
can see that the structure (with opening and closing tags, each with attributes, and sometimes with child
nodes) is the same as for any other XML file. Application-wide configuration settings are made by adding
appropriate nodes and attributes. Text within the special <! -- -- > characters is treated as a comment,
which you can add to the file to help other users understand what each part of the file is used for.

When VWD creates a Web . config file it includes many comments that provide advice for the
settings of each section. A list of all of the values is contained in a text file located at C : \Windows\
Microsoft.NET\Framework\v2.xxx\CONFIG\Web.config.Comments.

The following is the start of the Wrox United web. config file that you can view in the download. Feel
free to import it into your site instead of typing a new web.config yourself.

<?xml version="1.0"?>

<!-- Note: As an alternative to hand editing this file you can use the web admin
tool to configure settings for your application. Use the Website->Asp.Net
Configuration option in Visual Studio.
A full list of settings and comments can be found in machine.config.comments
usually located in \Windows\Microsoft.Net\Frameworks\v2.x\Config -->

<configuration>

Three lines of code here are added by default to all new Web.config files. The first line contains the XML
declaration, specifying that the Web. config file follows the XML standard. The next section is a large
comment that reminds you that you can use the administration tool, instead of editing the code. The last
item to note is the root node for the file; the <configuration> node contains all child nodes with set-
tings relating to the content stored on the site.

Site Design

The next section contains a custom application setting that can be useful to change the way the sample
application runs for different environments. The large section between <! --and --> is a note to pro-
grammers from VWD and is not part of the actual settings:

<l==
Mode defines certain feature availability:
Full: No restrictions
Real: Runs as i1f a real site, without the view code and download links
-—>
<appSettings>
<add key="mode" value="Full" />
</appSettings>

The next section, the connection string section, holds sets of information about data sources. This string
generally includes authentication information that you can use to connect your code to the data stored in
your database. Connection strings are discussed in detail in Chapter 7. For now, simply notice that
within the connection strings section you have one or more tags that add strings:

<ll==
define the connection string to the database
-—>
<connectionStrings>
<add name="WroxUnited"
connectionString=" Data Source=.\SQLEXPRESS;
AttachDbFilename=|DataDirectory|WroxUnited.mdf;
Integrated Security=True;
User Instance=True"
providerName="System.Data.SglClient" />
</connectionStrings>

Note that the connectionString attribute wraps here because of page width limitations. This line of
code should remain on one line in your code.

After the connection strings, the remainder of the settings are within the <system.web> tag. They can be
in any order —here the ht tpModules setting is covered first. This value allows the site to handle user-
selected themes centrally, without requiring code in pages. Themes are covered in Chapter 5, and
although the ht tpModule isn’t covered in detail in this text, the code is well commented:

<system.web>
<httpModules>
<add name="Page" type="Wrox.Web.GlobalEvents.ThemeModule" />
</httpModules>

Next within System.Web is the compilation value. When set to true (as illustrated in the following
code), ASP.NET 2.0 will provide output to the page describing any problems that were found during the
build of the page. This feature is useful when you’re developing the site, but it should be set to false
prior to deployment:

<system.web>
<compilation debug="true">
</compilation>

47

Chapter 2

48

Wrox United declares site-wide values for three security settings: authentication, roles, and profiles.
Chapters 4 and 11 discuss these functions in detail. The section of Web.config in the following code
gives you a preview of what you will learn to write. Notice how the settings establish the page to use for
log-on (Default.aspx) and then turn on the Role Manager. You then have a set of tags that create the
Member type of role. Again, these are explained in detail in Chapters 4 and 11. The following code list-
ing saves space by not listing the VWD programmers help comments. Also, there is a break in the
WroxUnited Web. config between the second and third settings. where there are other settings.

<authentication mode="Forms">
<forms loginUrl="Default.aspx"></forms>
</authentication>

<roleManager enabled="true"/>
<anonymousIdentification enabled="true"/>

<profile enabled="true">
<properties>
<add name="MemberName" />
<add name="Name" />

<add name="Cart" serializeAs="Binary" type="Wrox.Commerce.ShoppingCart"
allowAnonymous="true" />
</properties>
</profile>

The next section concerns handling errors that can (and will) affect the day-to-day running of your site.
Chapter 15 discusses error handling in detail, but as an introduction, ASP.NET can be set to redirect the
user to a custom error page if there is a problem. The file to display in the case of an error is declared in
the Web.config defaultRedirect setting as follows:

<!-- The <customErrors> section enables configuration of what to do if/when an
unhandled error occurs during the execution of a request. Specifically, it enables
developers to configure html error pages to be displayed in place of a error stack
trace. -->

<customErrors mode="RemoteOnly">
<error statusCode="404" redirect="missingPage.aspx"/>
</customErrors>

So, for example, if your database server was the victim of a power cut, your users don’t need to know
the details, but they’d like to be reassured, along the lines of “Sorry, there is a fault—we’re working
hard to fix the problem. Normal service will resume shortly.” Local administrators, on the other hand,
would like to know what the problem is so that they can get it back up and running as quickly as possi-
ble. The RemoteOnly attribute in this example means that remote users see the friendly message,
whereas the administrator will see all the details of any error.

The last setting of System.Web identifies the file that will hold the site map, an index to all of the pages,
and their relationships to each other (as covered in Chapter 2). ASPNET 2.0 also requires the identifica-
tion of what Provider, or reading tool, to use for the site map.

Site Design

<!-- Redefine the Site Map Provider, to add the security trimming attribute, which
is off by default -->
<siteMap defaultProvider="AspXmlSiteMapProvider" enabled="true">
<providers>
<clear/>
<add name="AspXmlSiteMapProvider"
type="System.Web.XmlSiteMapProvider,
System.Web,
Version=2.0.3600.0,
Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a"
siteMapFile="web.sitemap"
securityTrimmingEnabled="true" />
</providers>
</siteMap>

The last group of settings is in System.Net. Although not explicitly used in the WroxUnitedCS applica-
tion, it could be used so that automated e-mails can be sent to a user when they forget their password,
and request that the password be sent in an e-mail. Regardless of how the e-mail is created, you must
declare the SMTP (Simplified Mail Transfer Protocol) in Web. config as follows:

<system.net>
<mailSettings>
<!-- these settings define the mail server settings from: the user name from
which the email is sent - this is the application that is sending the message host:
the name of your mail server userName: the name the application will use to log
into the mail server password: the password for the above user name
-—>
<smtp from="admin@your-domain.com">
<network host="your-mail-server-name"
userName="your-user-name"
password="your-password" />
</smtp>
</mailSettings>
</system.net>

Finally, as with all XML files, each opening tag must have a closing tag, so you finish up the file with the
following:

</system.web>
</configuration>

Web. config, as you have seen, holds site-wide settings to which all other pages can refer. This saves
you from having to repeatedly specify the same pieces of information in every page that needs it, and
you have one place to go to change settings.

Later in the book, you’'ll be adding more capabilities to all your site pages, including adding code to deal
with various events that happen on each page. But, in the same way that you don’t want to specify the
same settings in every page, if you need to have the same behavior repeated on multiple pages, you'll
need a way to share that code. There was no executable code in Web. config— for that you need
another site-wide file —the Global . asax file.

49

Chapter 2

Global.asax Holds Code for the Entire Site

Whereas Web . config holds values, Global .asax holds code. Global . asax, like Web.config, resides
in the root of the site. Writing code is discussed in detail in Chapter 9, but for now you can get an
overview of Global.asax.

The code in Global . asax executes in one of three cases. First is the case of the application as a whole
starting or stopping. Second is when each user starts or stops using the site. Third is in response to spe-
cial events taking place that could happen on any page, such as a user logging in or an error occurring.
Each of these is known as an event. When each of these events occurs, ASP.NET lets Global .asax know,
and by editing Global . asax, you can put code into it that will be executed in response to the events.

You'll be using Global . asax to share code across all the pages of the Wrox United web site later in the book.

Editing Site Configuration Through a Web Browser

50

Now, it’s perhaps a little daunting looking at the complex XML syntax of Web. config and the code in
Global.asax. Editing these files to make changes to the overall configuration and behavior of your appli-
cation requires a good understanding of the files’ syntax rules, and accurate typing to avoid introducing lit-
tle errors. Conveniently, though, ASPNET 2.0 provides a graphical tool that lets you modify many of the
settings you could manually enter in Web . config, through the Web Site Properties dialog box.

Bring up the Web Site Administration Tool by clicking the ASP.NET Configuration button at the top of
the Solution Explorer, as shown in Figure 2-8.

- (5] shoppingCart,aspx
% ShoppingCart.aspx.src
- Aj site.css

[site.master

- A siteHighContrast.css
F- [] test.master

/ Q updatescore. sam
B

i Iﬂ web, sitemap
- [E] wrexunited.log

|solution ExolnreriQTuul:ax | #8 Database

Properties
web.config Web Fie Properties

Figure 2-8

Site Design

The Properties window opens, as shown in Figure 2-9.

[ET ASP-Net Web Appli Ad - Microsoft | Explorer p led by Compaq

File Edit View Favorites Tools Help

O O REG Puo ko= @ 2- 25 LAH D@ B

Address @ http:lacathost: 1085 asp.netwebadminfies default. aspx?applicationPhysicalPath =C: \BegASPNET 2{WroxUnited U5\ SapplicationUrl = WrowUnited C5

ASP web site Administration Tool

J Home ” Security Applcation ” Provider]

Welcome to the Web Site Administration Tool

Application:/WroxUnitedCS
Current User Name:COMPAQNE JOHMNKALFFMAN

Enables you to set up and edit users, roles, and access permissions for your site.

T Existing users: 7

Application Configuration Enables you to manage your application's configuration settings.

Provider Configuration Enables you to specify where and how to store administration data used by your Web site.
€] Done &J Local intr
Figure 2-9

As you can see, VWD has actually opened up a web browser showing a web site that is built into
ASP.NET, called the ASPNET Administration Tool, through which you can edit the settings of your web
application. You'll be using this administration tool in depth later in the book, but for now, you can
explore the Application Configuration section of the tool. Figure 2-10 shows what options are presented
to you by this page.

Although you can’t administer everything that you looked at earlier, some of the key sections from
Web.config are represented here. You have the ability to edit application settings (the contents of the
<appSettings> element you looked at earlier), e-mail settings (the <smtpMail> section you saw in the
Web.config file), and debugging and error handling (the <compilation> and <customErrors> sec-
tions you examined before).

51

Chapter 2

In this Try It Out, you see how the ASP.NET Administration Tool edits the Web. config file for you.

&1 ASP.Net Web Application Administration - Microsoft Internet Explorer
File Edit

View Favorites Tools Help

W

BE

Howe do I use this ?

Address @ http:flacalhost: 1050/ asp. netwebadminfilesappCanfig/appConfigHome. aspx

ASP

Web Site Administration Tool

I Home] [Security] [Application] [Provider]

eBack < -__) @ @ é pSearch \,:n'\?‘Favorites @ @Y u‘i—!\?g D

SE[x}

w

2

Links

Use this page to configure your application with values that you do not
want to hard-code into your pages, enable your application to send e-mail,
configure debugging, set up a default error page, and stop or start your
application,

Application Settings SMTP Settings

Configure SMTP e-
mail settings

Application Status

Existing application application is: Online
settings: 1

Take application

Create application offline

settings

Manage application lication Debugging and
settings

Tracing

Configure debugging
and fracing

Define default error
page

.9 Local intranet

||@ Done

Figure 2-10

_ Changing Settings with the Administration Tool

1. Working in VWD’s Solution Explorer, import into your site missingPage.aspx from the down-

2.

load files (C: \BegASPNET2\WroxUnitedCs).

Open the Web Site Administration Tool by clicking the icon on the Solution

Explorer.

If you have imported the WroxUnitedCS web.config from the download at

www . wrox . com, you will find that it uses a namespace called Wrox, which has not

yet been created in this book. Ignore the warning to this effect.

3.

52

Navigate to the Application Configuration page, and click Define Default E

rror Page.

Site Design

4. Select the Specify a URL to Use as the Default Error Page option, and select MissingPage.aspx
as the page to redirect users to when an error occurs.

5. Click the Save button.

o

Return to VWD, and open the Web. config file.

7. Scroll down until you find the <customErrors> section of the configuration, and notice that
the value of the defaultRedirect attribute has been changed to the path of the page you
chose in the Administration Tool:

<customErrors mode="RemoteOnly" defaultRedirect="MissingPage.aspx">
</customErrors>

How It Works

The Administration Tool is just a friendlier way to edit some of the settings present in Web. config,
including the default error page. When you change the application’s error handling setting through the
Administration Tool, it edits Web . config for you —without your having to get your hands dirty editing
XML data.

Troubleshooting Site Design Errors

Now that you have a good idea of what goes into site design, here are the most common errors you
might run into when using Master pages, and the other facilities you've looked at in this chapter:

Q The reference to the Master page is misspelled in a Content page. This will prevent ASP.NET
from being able to find the Master page template for a page. To avoid this, whenever possible,
use the VWD check box in the template dialog box to create the master reference.

QO A mismatch between the ID of the content placeholder in the Master page and the
ContentPlaceHolder ID property of the content tag in the Content page will prevent your
page from displaying. Double-check that they match.

QO Theweb.config or Global .asax files are very strict about their syntax, and errors in them
(such as typos) can be hard to track down. You can get around having to edit Wweb.config by
using the ASPNET Administration Tool, so you can be sure you haven’t introduced typographi-
cal errors into the file.

Summary

Web sites are easy to create, use, and maintain if they are well designed. ASP.NET 2.0 offers several tools
to organize the design of the site.

In this chapter, you learned that Master and Content pages create a consistent look and feel to the site.
Master pages provide the consistent sections of the pages along with a position for the material con-
tained in the Content page. Whenever possible, create the Master and Content pages using the Add New
Item choice after right-clicking the root of the site in the Solution Explorer. A Master page must have the
normal HTML and XML typing tags, <%@ master ... %> on the first line, and an <asp:Content
PlaceHolder> tag with an ID. Content pages must not have the basic HTML and XML typing tags,

53

Chapter 2

must have <%@ page masterPageFile= %> on the first line, and must at some point use an <asp:
content> tag to contain the material to be displayed. A Master page <head> can contain the link to a
CSS if you are using one. Additionally, this chapter covered the following topics:

O Your site can implement multiple levels of Master pages. You can also create several Master
pages to be served depending on the requesting browser. Furthermore, a Master page can sup-
port several <ContentPlaceHolder> tags provided that each has its own ID.

Q Site maps contain a description of each file and its relationship to surrounding files. This XML
file can then be read by ASPNET 2.0 server-side controls to create navigation aids. VWD does
not have a way to automatically create a site map, but the XML structure is not hard to under-
stand because each page is a SiteMapNode.

Q Two files hold information for an entire application. Web. config holds settings such as connec-
tion strings used with a data source, debugging routines for compilation, security settings, and
values for handling errors, among other settings. Global . asax holds code for the entire site,
including code to run when the application as a whole starts or stops. Additional code blocks
can run when each user starts or stops using the site. Global.asax also houses code that can
run on any page.

In the next chapter, you learn about the various server-side controls and how to use them to build
proper pages. You will construct the Wrox United home page and fill in some of the Master page you
created in this chapter.

Exercises

1. Describe the functional difference between the Web . config file and Global . asax.
2. What files discussed in this chapter are in XML format?
3. Takealook at the code for a Content page. Why does it lack directives and tags?

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">

<head ></head>

4. What values must match between a set of Master and Content pages?

54

Page Design

Successful web sites are generally easy to use, intuitive, and clearly presented. It’s your job (possi-
bly with the help of a friendly designer) to ensure that the sites you develop are not just functional,
but can be presented in a meaningful manner. After you have a basic site outline structure in place,
you need to make decisions about how to present the information and user interface elements.

ASP.NET, in conjunction with VWD, has some great tools for designing and laying out pages.
Recall that you've already created a few pages with simple content simply by dragging and drop-
ping from the Toolbox in VWD. Designing an entire site is obviously going to involve a whole lot
more dragging and dropping, but there are ways of making this process less painful.

This chapter looks at the following topics:

Q Creating and laying out static pages
HTML and the HTML viewer in VWD
Server controls and dynamic content
Configuring controls in Design View

The controls available in the web control library

U 00 U0 U

Adding dynamic navigation controls to a page, and getting them to work without writing
a single line of code

If you have experience programming in HTML, some of this chapter may cover familiar territory,
but the toolset available for working with HTML in VWD is quite advanced, so it’s worth sticking
around and enjoying a light refresher.

Static Page Design

The term static refers purely to the fact that the page shown in Figure 3-1, like many others on the
Internet, is view-only (imagine an HTML page with nothing but text, or just a series of images) —
you don’t always want to have every page in a site include a form for submitting information, or
react to user input. Static pages contain, by definition, content that doesn’t change (or that rarely

Chapter 3

needs to be updated). Imagine you had a personal web site that contained an “About Me” page — you
might want to change the content from time to time (if you move, change jobs, or get married), but on
the whole, you're not likely to want to change that page more than a couple of times a year.

:,éj Simple Static Page - Microsoft I Explorer == %]
File Edit View Favorites Tools Help '?
N \ A A o DR 1 &
Wy oot </ |“L| |zL| {a) | j)seuch Spravores &) (v o bl - | K3
abess] htep:fflocalhost: L040/Chapker03/StaticHTMLPE0=, htm j Go Lrks ®

This iz a simple static web page with an image and some interesting information about some places I have been:

A church near Faja Grande, a small town on the
western-most edze of Flores - one of the g islands in the
Azores.

A view of old parts of Budapest (Hungary) across the
Danube,

& castle on the end of a peninsula on the shores of Lake the Bullring shopping centre - a truly

Garda, Italy. l'emarkéblé piece of architecture in Birmingham, UK.
—’ﬂ Dane ‘3 Local intranst
Figure 3-1

Static pages remind me of the Web circa 1995 —most of the sites I'd view at the time would be simple,
plain sites, and the joy of just playing with HTML tables for layout was enough to keep me occupied for
a few afternoons. Time for a quick Try It Out — you're going to create a really simple page and see what
this page looks like in HTML view, looking at how HTML elements are structured.

TryltOut | Creating a Static Page

56

Fire up VWD and get started. This is a light run-through —you don’t have to do much at this stage, just
follow the steps and feel comfortable with the techniques.

1. First, it will help if you download the base code for this chapter from www.wrox . com. Make
sure you place the base code folder in the following location: C: \BegASPNET2\Chapters\
Begin\Chapter03.

2. Open VWD and select Open Web Site from the main menu. In the dialog box that appears,
select the Chapter03 folder and click Open (see Figure 3-2).

3. In the Solution Explorer on the right (shown in Figure 3-3), right-click the Chapter03 site and
select Add New Item.

4. The Add New Item dialog box appears, where you need to select a new HTML page called
StaticHTMLPage.htm, and click Add (see Figure 3-4).

Page Design

Open Web Site &
== File System
I&Q
Select the folder wou want to open.
File System ;
(=% Local Disk (1)
=-{(3) BegASPNETZ
=3 Chapters
Local I3 El@ Begin
<
FTF Site |
Remate Site
Folder: | C:\BegASPNET 2\ Chapter s\Begini, Chapterd3 |
[Open] [Cancel]
Figure 3-2

@ Chaptei03 - Visual Web Developer 2005 Express Edition

File Edt View ‘Webskte Buld Debog Tools Window Commumity Help

] - (W .]

Thers are no usable .
controls in this group. @ [Wrosnited
Drag an ikesn onto this il seoreschurch, —
b bo add it ko the i badge.qif
toalbox. L bodapest.jpg Acd Exlsting Ttem.. .
& Buling.2PG
5] samplermag] [Mo Folder
AJ SimpleStyleshe Acd ASPNET Folder — »
- @] srmione.jpg
3 Web.Carfia fiudd Reference...
Add web Reference...
@ copy webSite...
Skark Ophions...
ﬂ i in Browser
Erowse With...
[&] Refresh Folder
S Tt
A — L
) solution Expl... T4 0 Faste
Ready | Bl Froperty Pages
Figure 3-3

57

Chapter 3

5.

Add New ltem - C:'BegASPNET2\Chay Begi

8]]

Templates:
Visual Studio installed templates

[72] wheh Form

9] HTML Page
A Style Sheet:
(4] #ML File

| 1 9L Databass
|zzJsite ap

) YSerlpt Fle

2 ¥5LT File

My Templates

| Search Online Templates. ..

MName:

StabicHTMLPage. him|

IMaster Page

#] Web Service

] Global Application Class
=) Text File

|| Dataset

53] Mabil Wb Farm

7" Mobile et User Contral
i Shin Fie

An HTHL page that can include dient-side code

=

[87] weh User Conkrol

] Class

i3 Web Configuration File
CResource Fle

=] Generic Handler

3]¥ESaript Fie

;_anhlle ‘wieh Configuration File
& Erowser Fle

Figure 3-4

Switch to Design View by clicking the Design button at the bottom of the page, and then type in
some text, as depicted in Figure 3-5.

(2] Chapter03 - Visual Web Developer 2005 Express Edition B[]
File Edt View ‘Webske Build Debug Formak Layouk Tools Window Community Help
i dls s oo oo L R o B
- TmesMewRoman - 12t - | B J O |A & |=-|i= =] &]
% StaticHTMLPage.htm* - 3 || Solution Explorer -~ 0 x|q
] S — _ BIERIEIER
gr This is a simple static web page with an unage and some mteresting information P ©\.\Chaptero3, 2
about sorne places T have visited| [[Whroslnited 8
& szoreschirch.ipg
il badge.gif
2] budspest.jpg
4 Bulring. PG
#] SampleHTMLERmerts. Him
Aj SimpleStyleShest.css
& srmione jpg
\#] StaticHTMLPage.Hem
i3 ‘Web.Config
£ L 2]
@ Design | @ Source 5l solution Expl.., [patabase Ex,..
Ready
Figure 3-5

Don’t worry about the actual text— this is a simple example, and you don’t have to publish this
on the web.

Next, from the toolbar select Layout>Insert Table to add a table to the page. Give it two rows,
two columns, and borders and padding if you like, all of which appear in Figure 3-6.

58

Page Design

Insert Table 2I&3
Select a table template From the drop-down list or build wour own custom table,
() Template: E
@ Zuskorn:
Lawaut
Rows; z {3} [wideh:
Columins: z {3}
align: Mot Set [w| [JHeight:
[aption
Attributes
Eorder: 1 [C} Surmmary description:
Cellpadding: H {C}
Cellspacing: 2 {3}
Cell Properties. .. 74] [Cancel

Figure 3-6

After you have a table, you can add content within each cell. Try adding some text to a cell, and
then drag an image tag from the HTML section of the Toolbox on the left of VWD onto the page,
as shown in Figure 3-7.

(=] Chapter03 - Visual Web Developer 2005 Express Edition (S]]
File Edt View ‘Webste Buld Debug Format Layout Tools Window Community Help

e @k G 0o o b -

: - | -l B LU A SIS i s | M)
Tookox * I X StaticHTMLPage.htm™* - 3 ||Solution Explorer -~ 0 x g
@ ik Resst) (4] D[Ry ieal R le=hl:=R) 3
[#) Input (Submit) Thiz iz a simple static web page with an image and some interesting P . \Chapterg3, E
abl] Input {Tesdt) infermatien about some places I have visted: ® [WraxUnited 7
‘abll Input (File} A church near gél azoreschirch.jpg

(%] Input (Passward) Faja Grande, a ﬁ mgsitf.mu

Input (Chedkboe) stnall town on 4 Bullring. PG

(&) Input (Radio) the westem- %] SampleHTMLERments htm

++1 Input (Hidden) S| |most edge of 3 ’{J SimpletyleSheot.css

il [=ztared F]orr:s_ - one Of ﬁ ;r:‘.\“tli::;m.?’agc.ltm

] Table the & islands 3 wieh.Config

EH select

= Forizontal Rule

| Div
= General Il [|
[w| 3 Desion E Source <hody>| <table> <> <td E5olution Expl,.. |8 Database Ex, .
Ready
Figure 3-7

When you have a table in the designer, you can click the <table> button at the bottom of the

screen to select only that element on the page (see Figure 3-8) — you can then modify the

padding and border attributes on the table by changing the values in the Properties box on the

right.

Chapter 3

(=] Chapter03 - Visual Web Developer 2005 Express Edition B[]
File Edt View ‘Webskte Build Debug Format Layout Tools Window Communty Help
R R A= NS N e R Ce s Ry) -

é] '| '|B va Ql_\,'.li',:: :l_H)

Tookox + B X | StaticHTMLPage.htm® > X | (HGRemes (5]
() Input (Ressz) [~ .||
[#) Input (Submit) Thiz iz a simple static web page with an image and seme interesting &
) Input (et v@ma about some places I have visted: - é
labl] Input (File) A church near i (1d) i
[E5] Tnput (Password) | Faja Grande, a Eorder “E
nput (Checkbene) | small town on CellPadding S
(&) Input (Radio) |the westem- Cellspacing El |
2ol Input (Hidden) = | |most edge of ; = Cass &
= Textarsa -|Flores - one of Cir T
= Table |the & islands in Drawne s

2 a =

: &l Fues

|the Az
E] : ores
I= Horizontal Rule | Style w
i | Misc
=l General . [v
[ﬂ & Design = Source | 1 d:udy:-
Ready

Figure 3-8

Click the Source button at the bottom of the screen and you can see the HTML that’s generated
for you (see Figure 3-9). With some small tweaks, you can add a small amount of styling and
some links to your images.

(=] Chapter03 - Visual Web Developer 2005 Express Edition B[]
File Edt View ‘Webskte Buld Debug Tools ‘Window Comeunity Heb
HEV T = : 3 = g P =] 1
K RN N IR ER N RN = RSN N N -
HE £E | "= | XHTML 1.0 Transiional { = E
3¢ - StaticHTMLPage.htm* | - x |5
< | Chient Objects & Events M (Mo Events) [+ g
g 1. <IDOCTYPE keml PUSLIC *-//W3C//DTD MHTML 1.0 Tramsitional//EN' "betp:)fwnrwd. ore/TH/whenll/DTD/ xhtal]l-tyan— g
[25 <htnl sulns="http:/fwwe.wd. org/1999/ shtnl” » o
35 <head> =
4 <tizlesUntitled Page</sitla> E
5 </heads = (]
58 <hody> '-g
7| This is a simple static web page with an image and some interesting information &
B! about some places I have wvisited:<br /& g
SH <table border="1l" callpadding="2" =ellspacing="2'> ﬁ
L0E <tr> z
LLE <nd styles‘midch: L0Opx"s E
1z & church near Faja Crands, a small town on the western-mest adge of Flores - ona L
L3 of the 3 islands in the Azores. <ing src="|" /=
143l s iy
15 <td style="widch: 100px"s ¥
16 </nds [E
a2
(3 L (2] |2
3 Design [Source 4] <html>| | <body | <teblex |<trs | <td>
Ready Ln 13 Col 51 Chs1 NS
Figure 3-9

9.

To turn the nascent page into the finished example, I added some more text and images to my
version. Here’s the code for the version of the finished page that you can download from
www . wrox . com— notice the <style> attribute on the <body> tag

<body style="color: darkolivegreen; font-family: georgia">
This is a simple static web page with an image and some interesting information
about some places I have been:

60

Page Design

<table cellspacing="3" cellpadding="3" border="1">
<tr>

<td>

<img src="azoreschurch.jpg" height="100"

/>

A church near Faja Grande,

a small town on the western-most edge
of Flores - one of the 9 islands in the Azores.</td>

<td>

A view of old parts of Budapest
</tr>

<tr>
<td style="height: 192px">

A castle on the end of a peninsula on the shores of Lake Garda, Italy.</td>
<td style="height: 192px">

Selfridges at the Bullring shopping centre - a truly remarkable piece of
architecture in Birmingham, UK.
</td>
</tr>

</table>
</body>

(Hungary) across the Danube.</td>

When you finish adding content to the page, you can view the page by pressing Ctrl+F5. The
result is a page that looks like Figure 3-10 (which is the same as Figure 3-1).

‘&7 Simple Static Page - Microsoft | Explorer B[]
File Edit View Favorites Tools Help '1'
E 1 A) o . 3. A 144 =
Ot - @ [H @@ Lo oroons @ (-5 - [JK B
tbdess] htep:/flocalhost: L040/Chapker03/StaticHTMLPag2, htm v Qs ek

This is a simple static web page with an image and some interssting information about some places I have besn:

A church near Faja Grande, a small town on the

.) ; o Aoview of old parts of Budapest (Hungary) across the
western-most edge of Flores - one of the g islands in the 1_ P pest L gary Jac

Danube.
Azores.

A

he end of a peninsula on the shores of Laks

Selfridges at the Bullring shopping centre - a truly
Garda, Italy. remarkable piece of architecture in Birmingham, UK.
—’iﬂ Dane ‘3 Local intranst
Figure 3-10

61

Chapter 3

How It Works

As you proceed through this chapter, you'll become increasingly familiar with the technique of adding
layout elements in the design window, and making some changes either in the Properties pane on the
right, or by modifying the code manually. Static elements such as the ones used in this example (simple
text within a body tag, tables, and images) are used throughout both static and dynamic pages, and
understanding how to add and integrate these elements is all part of building dynamic web applications.

In this example, you gained a bit of practice in working with a simple HTML layout of a page. For exam-
ple, the elements on the page were laid out in a simple HTML table, and within each of the cells in the
table were some text and some images:

<td>

A church near Faja Grande, a small town on the western-most edge of Flores - one
of the 9 islands in the Azores.

</td>

The body tag in the rendered page has some simple styling attached to it that defines the color and font
used for the text on the page:

<body style="color: darkolivegreen; font-family: georgia">

This attribute will apply to all of the elements within the opening and closing <body> tags, hence all of
the content of the visible page.

Don’t worry if a lot of this is new to you — the next section is designed as a crash course in HTML to
help you get up to speed.

The World of HTML

62

If you are unfamiliar with HTML, here are some of the basic concepts you need to understand:

Q An HTML file is human-readable text with a few extra brackets —when you browse a web
page, your web browser will understand how to convert the bracketed bits into something that
looks interesting.

Q The bracketed bits are called elements, though strictly speaking, the element normally consists of
two tags that open and close the element, and sometimes have textual or other HTML content
between them. Some elements have only a single tag.

Q Elements have attributes that give the browser extra information about how the element should
appear on the page.

Here’s a simple HTML element:

<div id="divUserDetails"

style="width:300px;height:100px; float:left;background:darkred;color:white">
These are my details, my favorite color, and my hobbies

</div>

In this example, the <div .. .>and </div> parts are tags describing the div element, the id=""
and style="" bits are attributes, and the text between the two tags is the content of the element.

Page Design

Q Rendering is the process of turning HTML code into visual elements, so the preceding code will
render as shown in Figure 3-11.

&7 Untitled Page - Microsoft Internet Explorer ==
File Edit Miew Favorites Tools Help "
" — n »
>y > ﬂ \ELI 'yl / !Search 7 Favarites @e
address | @] htpelacalhostitest/htrmipagel him |iv| | Links £l
ese are my details, my favorite ¢ and my
&] Done & Local intranet

Figure 3-11

The following table contains some of the HTML elements you're likely to run into.

Element

<div>

<table>
<tr>
<td>

Description

An image tag. This tag places an image
on a page.

A paragraph-style block of text. Text
contained in a <div> element can be
positioned on a page using various
attributes. For example, to place two
div elements side-by-side, you could
have one with a float:1left style, and
one with a float:right style.

A tag used to format characters of text,
so you could surround a word in a
sentence with a tag and make
the span have bold styling to highlight
that word.

A table element that contains rows

(<tr>) and cells (<td>). Commonly

used to position elements on a page,
should ideally be used only for tabular
data. According to accessibility guidelines,
<div> elements should be used for layout
and positioning, but a lot of sites still use

tables because they are simpler to develop.

Example Usage

<div style="float:left"
>Left-hand content
here</div>

<div style="float:right">
Right-hand content
here</div>

<div>

Some standard text with a
<span style="font-weight:
bold">
bold word in themiddle
</div>

<table border="1">
<tr>

<td>The contents of a
cell</td>

</tr>

</table>

Table continued on following page

63

Chapter 3

64

Element

<a>

<head>
<body>

<form>
<input>

<title>
<link>

<script>

Description

An anchor element. Defines a hyperlink
on a page, enabling the developer to
specify both the target content (in the
href attribute) and the text to display
to the user.

The two main parts of an HTML page
are the <head> and the <body>. The
<head> is where the <title> element
and <1link> elements (along with a
variety of metadata) are placed. The
<body> contains the display elements.

A form element. When creating a site that
has a data entry form, the elements that
are used to transmit data to the server
must be contained within a <form>
element. The HTML <input> element is
quite versatile. With a type attribute of
text, it appears as a text box on the screen.
With a type of submit, it appears as a
button that, when clicked, submits the
form to the server.

Within the <head> of the page, the <title>
element controls the text in the title bar of
the page. The <1ink> is most often used to
link a page with a CSS style sheet.

Can contain either client-side script (script
run on the browser, normally written in
JavaScript, or possibly VBScript), or server-
side .NET code.

Example Usage

Some text with a

hyperlink
init

<html>
<head>
<title>Page Title</title>
</head>
<body>
Contents of page
</body>
</html>

<formid="forml"
runat="server">
<input id="Textl"
type="text" />
<input id="Submitl"
type="submit"
value="submit" />
</form>

<head>
<title>Page Title</title>
<link rel="Stylesheet"
type="text/css"
href="MyCss.css" />
</head>

<script language=

"JavaScript">

alert ('Hello World!') ;

</script>

<script runat="server">
protected void Page_Load (
object sender,
EventArgs e)

{

}
</script>

Page Design

Element

<hr />

Description

Used to help to lay out a page, the

tag adds a line break to a string of text, and
the forcibly enters a non-breaking
space character; hence two words (or
elements) separated only by a
character cannot be split apart over two
lines. The <hr /> element displays a
horizontal line across the page.

Example Usage

This is a string of text with a
line
break and

a space.
<hr />

Two images separatedby a

space:

<img src="1.gi

f'>

;

A sample HTML page called SampleHTMLElements.htm that includes these simple examples is avail-
able in the code download for this chapter, and it appears as shown in Figure 3-12.

@ HTML Sample Page - Microsoft Internet Explorer
Eile Edit View Favorites Tools

" - -
_— 1] T
=] > |8L| |z"| g | - search S 7 Favorites

Address iﬁ httpefflocalhost: | 040/Chapter0E) SampieHTMLEIements, htm

&

S}

I

w

"I’iﬂ' ﬁﬁ

B> ERE

%]

»

Left-hand content here

|The contents of a cell

break and a space.

Some standard text with a beld word in the middle

Same text with a hyperdink in it

submit

This is a string of text with a line

Two images separated by a space:

Right-hand content here

] Done

& Local intranet

Figure 3-12

Gaining familiarity with the common elements in HTML is a necessity for any ASPNET developer, and
not only do you have to understand how to use these elements, you have to learn how to use them cor-
rectly, in adhering to the standards and making sure that sites you develop are accessible by as many

users as possible.

65

Chapter 3

It’s very easy to end up with HTML that’s almost impossible to maintain, with tags and styling all over
the place. Many older tools for constructing HTML pages would take pride in destroying your carefully
crafted HTML code, and supposedly correct your code to follow the guidelines within the tool. Anyone
who used older versions of FrontPage would have cursed many a time at the fact that simply opening an
HTML page and closing it in FrontPage would permanently mangle your HTML code. Thankfully, VWD
has one of the best HTML editors I've ever used.

Perhaps the best way to make your code clean and easy to maintain is to adhere to a common standard.
The introduction of XHTML brought many more guidelines to web development, and following these
guidelines is a great way to improve your technique.

From HTML to XHTML Code

Although most people speak of HTML code, the fact is that if you write good HTML code, you're actu-
ally writing XHTML. XHTML is a set of rules that, if you follow them when you write HTML code,
result in code that is more standards-compliant, and hence more likely to render as you want it to on a
variety of different client browsers.

The core rules of XHTML are as follows:

Q Always close your tags (so you always have both a <p> and a </p> for a paragraph) or use self-
closing tags (such as
 instead of
).

Q Tagand attribute names must be lowercase (so <div id="myDiv"> is acceptable, but <Div
ID="myDiv"> is not) because XHTML is case-sensitive (so <div>, <Div> and <DIV> are all dif-
ferent entities to XHTML).

O Attribute values must be enclosed within double quotes.

This is only a brief summary of XHTML. If you want to know more about the rules, refer to the W3 site
www.w3 .org/TR/xhtmll/ where you can learn all about the XHTML standard. Section 4 of that page
deals specifically with the way XHTML differs from standard HTML.

In essence, the aim of XHTML is to provide a common set of guidelines for web developers and browser
developers to to follow. With newer web browsers such as Firefox starting to gain ground on the
Microsoft Internet Explorer-dominated landscape, it’s important that all parties agree to support
XHTML in all future iterations of their products to move away from the old problem of developing a site
that worked just fine on Internet Explorer, but looked awful on Netscape.

The move toward XHTML as the standard language of the web is gradual, and will likely never happen
fully (with browsers likely to support older tags and markup for many years yet for backward compati-
bility), but you'll find that future maintenance of web sites that you write today will be much simpler if
you follow the XHTML guidelines. You should be less likely to see your sites break when the next ver-
sion of Internet Explorer or Firefox arrives.

Visual Web Developer has a great feature for helping you to develop standards-compliant web sites. If
you open up SampleHTMLElements.htmin VWD, you'll notice that there is a toolbar at the top of the
page (see Figure 3-13) that lists Internet Explorer 6.0 as the target for the web page.

Now if you change the selection so that your page is supposed to target the XHTML 1.1 standard, you'll
see plenty of red squiggly underlining, as shown in Figure 3-14.

66

Page Design

- =
|=] Chapter03 - Visual Web Developer 2005 Express Edition D@}
File Edit View \Website Build Debug Took Window Community Help
' RPN -5
Internet Explorer 6.0 l!
Internet Explorer 6.0 _ ~ || Sokition Explorer -1 x
Intermet Bxpiorer 3.02 | Netscape Navigator 3.0 h i
MNetscape Mavigator 4.0 =
HTML 4.01
YHTML 1.0 Transitionsl (Netscape 7, Opers 7, Internet Explorer 6)
O Input (Buttan) XHTML 1.0 Frameset
() Input (Res=t) ¥HTML 1.1 . E szoreschurch,Jpg
(2 Input (Submit) 4 itle>HTML Sample Fage</title> %bbdgt glt
1=NE8=1agh B - ¢ P s=nz e o - budapest.jpg
5 rel=MScylesheet" type="text/cea" href="SimpleStyleShes
[abl] Input (Text) : 3=y 33 / Simp ¥mEs & Buliing. PG
fabi] Tnput (File) %] SampleHTMLElements.
[Input (Passward) - A smpleStyleshest,css
Input {Checkbox) ﬁ ;il"";ﬂf'ﬂ_-me-i‘lﬁ L]
- 9] Sta R
(%) Input (Radia) ?
iabi: Input {Hidden)
if] Textarea
[Tatle] <divy €l o =
- Some standard text with a
] tmage ld word in the middle E'QSduﬁon--- A Databas..
o seec : [Propert 2 x
T = .
[= Harizontal Rule = =
<div> -
= General 35'21 L]
B Misc ﬂ
There are no usable (1)
controls in this group. 22it</table> - X
Drag an item onto this 23| <hr /> Accessiey [
text fo acC R ‘.‘ Rcl:\: text with a hyperlink r.u g = =
toalbox. = == SEAELERTEL. E = vl Misc
[£] [3]
G Desgn | @ source | Mﬂlﬁl bl
Item(s) Saved Ln 10 Col 51 Ch 51 INS
Figure 3-13
= =
(2] Chapter03 - Visual Web Developer 2005 Express Edition S[@(<]
File Edt View ‘Webste Build Debug Tools ‘Window Community Help
AR R AR REEN YRR <P N A1) =B
P ZEEE|S | sHTMLLL -
F), - SampleHTMLElements.htm* StaticHTMLPage hor® | - X || Soktion Exnlorer -3 X @
= || Client Objects & Events [v] | o Everes) v i
g 1 <!DOCTYPE htnl PUELIC *-//W2C//DTD MHTML L.1//EN® “hetp:/f E, 3
- 2 <htnl xmlnss"hueps /o, w3, org /1999 shenl "= @ [Wroxnited & |
3H <head- - 18 azoreschurch.ipg
4 “titlesHINL Zample Page</titles bl badge. qif
5 <link rel="Stylesheet® cype="teXc/css” href="Jimpledtylef - g budapest. jpg
& </haad> 4l Buling. 3PS
T <bodyr #] SampleHTMLElements.Hem
8| <ggraprralert('Hello World!');</scripts &i SimpleStyleSheet. css
9 | <div style="floas:left®sLeft-hand content here</divs @ sirione.jpg
10| <div style="flpae:right”Right-hand content here</divs -
1L] i 3 !
o 5 Web.Config
Lz 1 (#HTML 1.1): Element 'bt’ cannot be nested within element ‘body’ |
L3 <aTvE
14 | Zoma stamdard text with a <span style='font-weight:bold's
15 | bold</spans word in the middle
L& - <fdivs M
a | B[| 3]
@ Design [Source Z| <html=| <body>|[<div= E| &) solution Expl.., |%30atabase E
Ready Ln7 Col 7 ch? NS
Figure 3-14

The highlighted error shown in Figure 3-14 refers to the fact that
 tags are supposed to only
appear within a block element, such as a <div>. If you changed the first part of the page to be enclosed
within a <div> element, this error would be fixed, without any discernable change to the appearance of

the page:

67

Chapter 3

<div>
<div style="float:left">Left-hand content here</div>
<div style="float:right">Right-hand content here</div>

</div>

Switch the validation target back to Internet Explorer 6.0 and you will see that the highlighted errors will
all disappear. Building a site for a specific browser, like IE 6.0, gives you more flexibility with the code
you write, but you cannot guarantee that your site will appear as designed on other browsers.

The rules of XHTML are also followed in any code that ASP.NET generates dynamically. You haven't cre-
ated much in the way of dynamic content so far, so let's move on to looking at how you can make pages
a bit more exciting.

Dynamic Content

68

In order to move from the static world of HTML to the dynamic world of ASP.NET, it’s important to
know what is meant by dynamic content.

When you click a button on a form on a web page, you expect something to happen —and most of the
time (if the page has been coded correctly), something does happen. You might submit an order form for
a stack of CDs by clicking a button. You might also select an item on a menu on a page — take, for exam-
ple, a menu from the Wrox United web site. Clicking the menu causes the menu contents to pop out (see
Figure 3-15) and become selectable in a similar way to clicking your Start button.

& Wrox United - Microsoft Internet Explorer 8=
File Edit View Favorites Tools Help '?

O - Q HMRG Puows forns @ RSB LJE B

55] htepeiflocalhost: 1043 wroxUnited Default, aspie

Wrox United

Download Code
view Page Source

Home

Home Welcome to the Wrox United

=2b site.
Fixtures u | Futur
d

LTSN vzt ch Fictures [[STR Rt gt = 3 great foothall team. Mo really, we are. Don't

Match Reports take any notice of our past performance. YWe're just

League Table unlucky.
Scorers . .
. New Signing 31 Dec 2004
Shop —
We are happy to announce the signing of Zlllzchmy
Wlosjchizchic, an exciting new striker from Azchanokistan. 'v]
(2]
] httpsflocalost: 043w oxUnited fFisbures, aspx % Local intranet

Figure 3-15

Page Design

Now notice that there’s no lag between clicking the menu and clicking a different menu — the page
responds just like your own system. Your browser’s actually executing some local code in order to dis-
play these items. Click a button or a hyperlink on a form and the page will likely take longer to respond.
Clicking buttons, hyperlinks, or other similar elements on a page causes your browser to start talking to
the server, asking for something, or sending some data.

Dynamic Client Code and Dynamic Server Code

Hovering over the menu on the Wrox United web site will run some code on the page that is likely writ-
ten in JavaScript, a programming language that most browsers can understand and run, and is used to
provide quick responses to user input. The page won't flicker and refresh (unlike clicking a hyperlink)
because the browser already knows what to display when you hover over the menu. This is an example
of dynamic client code.

When a more complicated response is required (for example, when you submit an order on a shopping
site or when you want to search for a specific item on a shopping site), the page submits information
back to the web server for processing. The processing on the server is dynamic server code, and this is
the code that you will learn to write over the course of this book.

Server-side code can be written in many different languages, not just ASP.NET with VB.NET, C#, or
other .NET languages. You probably have heard of PHP and perhaps JSP (Java Server Pages) — these are
just two examples of other languages used by developers to write server-side code. Each language has
its strengths and weaknesses, but you'll be hard-pressed to find a server-side technology that’s as easy to
use and as powerful as ASPNET.

When it comes to creating dynamic pages in ASP.NET, the fastest way to build a dynamic page is to drag
server controls onto the page, set properties on those controls, and eventually write code to customize
their functionality. This drag-and-drop architecture has improved greatly in the latest edition of ASP.NET,
making it possible to create the structural framework for an entire site without having to write any code.

Introduction to Server Controls

When you look at the Visual Web Developer Toolbox, you'll notice several different sections, each con-
taining a different set of tools. Many of these tools are server controls, and you'll be using these controls
regularly when you develop ASP.NET applications.

A server control appears on the source code for an ASP.NET page as a tag; for exam-
ple, <asp:textbox ... />. These tags are not standard HTML elements, so a
browser will not be able to understand them if they appear on a page. However,
when you request an ASP.NET page from a web server, these tags are converted into
HTML elements dynamically, so the browser only receives HTML content that it can
understand.

This section starts by taking a look at some of the categories of controls available to you, and then dis-
cussing how they work.

69

Chapter 3

The Server Control Toolbox

At first glance, the array of server controls in the Toolbox can be quite overwhelming. Not only do you
have standard web page elements to choose from (such as radio buttons, hyperlinks, and drop-down
lists), but other categories of controls are also available (shown minimized in Figure 3-16) that contain
even more controls. The Toolbox changes appearance depending on which type of page is being edited,
so Figure 3-16 is the standard appearance when you're working on ASP.NET pages.

Toolbox &
= Standard

\ Painter
A Label
abl] TextBox
Button
LinkButton
ImageButton
A HyperLink
= DropDownlist
=% ListBox
CheckBox

~ CheckBoxList
* RadioButtan
- = RadioButtonLisk
|8 mage
| magemap
] Table
:= Bullskedlist

HiddenField

B Literal
| Calendar
= Adrotator
%) FileUpload
4 Wizard
&
[E) Multiview
71 Panel
[] PlaceHalder
I Yiew
7] Substitution
Data
¥alidation
Mavigation
Login
WebParts

HTML
General

Figure 3-16

FEEEE R E

The categories of controls available are as follows:

Q Standard: Common controls that make up 90 percent of all pages.

Q Data: Controls used to connect to data sources (databases or XML files).

70

Page Design

Q Validation: Controls that can be added to a page to validate user input (for example, to ensure
that certain text boxes contain data or that data has been entered in the correct format).

0 Navigation: Controls used to provide a simple and quick solution to making a site navigable
(for example, dynamic menus and breadcrumbs of hyperlinks).

Q Login: A set of controls that make it simple to move from a completely open site to one that has
personalized areas.

Q WebParts: Controls that make it possible to create Sharepoint-style sites with drag-and-droppable
sections, known as Web Parts, which enable the user to rearrange their view of a site.

QO HTML: Simple HTML elements.
Throughout the rest of this book, you'll be introduced to many of the controls in each category. Later in

this chapter, you can play with some of the navigation controls when you build some menus for the
Wrox United site.

What Are Server Controls?

Let’s start from first principles. When you create a simple HTML page and save it to your local file sys-
tem, you can view that page in your browser by double-clicking the file. This is fine if you're putting
together a static HTML site and want to test the output, but there’s no point in developing a web site
that users would have to download to view. That’s why, when a web site is deployed, it is uploaded to a
web server, which everyone can access via its URL (Uniform Resource Locator).

When the site is hosted on a web server, people can access the site from other machines and browse
through the HTML pages. However, if the server has the right software installed, you can then do much
more than offer static HTML pages. When you request an HTML page, the server looks up the file and
sends it to you. When you request an ASP.NET page (a page with the file extension . aspx), the server
looks up the file on its file system and reads the file, and then it performs some processing before send-
ing the resulting page back to you. The “performs some processing” bit is the magic that makes
ASPNET work.

The extra processing that the server performs includes the capability to read an ASP.NET page and con-
vert the server controls in that page into HTML that the browser can understand. Remember, your
browser doesn’t speak ASP.NET. A web browser is a simple thing that only speaks HTML and possibly
JavaScript —it cannot process ASP.NET code. The server reads the ASPNET code and processes it, con-
verting anything that is ASP.NET-specific to HTML and (as long as the browser supports it) a bit of
JavaScript, and sends the freshly generated HTML back to the browser.

The process of converting ASPNET code to HTML is how server controls work —you can happily create
pages that contain server controls when you are developing the source .aspx page, yet the browser that
requests that page from the web server will only receive HTML and JavaScript (see Figure 3-17). This is a
key concept to understand, and the process is discussed in more detail in Chapter 6.

71

Chapter 3

Browser Server
http://server/Page.aspx Page.aspx

Server code

~ Client code

Figure 3-17

You can see how this works with the aid of a simple example. The following Try It Out is a really simple
example to demonstrate the differences between the ASPNET code and HTML code.

Try It Out Adding Server Controls in Design View
1. Reopen the Chapter03 web site.
2. Right-click the root of the web site and select Add New Item.

3. Inthe dialog box that appears (shown in Figure 3-18), select Web Form, call the page
ServerControls.aspx, select your preferred language from the drop-down list, and leave both of
the check boxes unchecked.

Add New Item - C:\BegASPNET2 Chaptei03! (2]%]
=

Templates:
Visual Studio installed templates

[12] wheb Form JMaster Page [87] weh User Conkrol

9] HTML Page #] Web Service] Class

A Style Sheet:] Global Application Class -y eb Configration Fle

[AL P =] Teut File CResource Fle

| 1 9L Databass | & Dataget % Generic Handler

|| Site: Map _:i"l‘\‘ohils ‘Wieh Farm 3]VESript Fle

&) Teript Fle 7 Mabile Web User Control ;_~,‘\Mnhlle ‘wieh Configuration File
2 ¥5LT File |y Skin Fie 5 Erowser Fle

My Templates

| Search Online Templates. ..

A Form for \Web Applications

Name: ServerControls, aspe|
Language: visual C# w| [IPlace code in separate file
[5elect master page
Figure 3-18

72

Page Design

4. 1t you are not already in Design View, switch into that mode and double-click a TextBox control
from the Standard section of the control toolbox on the left (see Figure 3-19) to add it to the main
body of the page.

(=] Chapter03 - Visual Web Developer 2005 Express Edition =[x
File Edt View ‘Webste Build Debug Format Layout Tools Window Community Help
LS b el [G @9 o o o] b 8] -

: | -] AB Ll dl=Ealis sl
Tooko -3 X ServerControls.aspw® | SampleHTMLElements.htm® - SkaticHTMLPage.hbm* - X

saipedolg gl

1
Eutton

(2] LirkButbon

@ ImageButbon

A Fhpeslink

= OropDownilist

2 ListBox

CheckBox

5~ CheckBoxlist

() RadoButton

' = RadoButtonList

18 Image

[[& ImageMap | 3 Desgn | E Souree | <body» || <div | [<aspitesthox#textbox > |

Ready

Figure 3-19

184013 eseqerRq figg [124mda uonn s fon

5. You're actually ready to view the page now, so right-click on the page and select View in
Browser. Your browser should start and display the page shown in Figure 3-20.

&1 Untitled Page - Microsoft Internet Explorer =y
File Edit View Favorites Tools Help !,'
" — i »
< > \ﬂ \ELI _l\l P) search “‘}'/"\'(Favorites €‘3

Address |ﬁj http:f localhost: 1197/ ChapterD3ServerContrals, aspi [V] Go | Links *

?Ej Done ‘-_J Local intranet

Figure 3-20

Note that the number displayed in the address bar (after the word “localhost”) is a fairly ran-
dom number that is generated whenever you first request a server-side page from a project.

How It Works

In this example, you only added a single server control to an ASP.NET page and viewed the page in the
browser. It’s not exactly the most exciting example in the world, but the point is to see how server-side
code is changed into client-side code.

73

Chapter 3

Click the View menu in the browser and select View Source. You should see the code shown in Figure
3-21 appear within Notepad.

& ServerControls[1] - Notepad B[]
File Edit Format View Help

|
<IDOCTYPE html PUBLIC "-//W3C//DTD HTML 1.1//EN" "hitTp:/ www.w3.org/ TR/ xhtm]1l,/07T0 xhtm]

<htm] wmlns="htto:faww. w3, org/L999/ «html" =
<heads=<title-
untitled Page
</ titler</heads
<body>
g <form method="post" action="servercontrols. aspx" id="Forml">
<dive
<input type="hidden" name="_VvIEWSTATE" Td="_WVIEWSTATE" walue="/WEPDwWUIODCIMOMLNT Qz2550k
< /divs

<dive

<input name="TextBoxl" Type="text" id="TextBowl" /=
</dive
</Form:

</h0d¥>
</html=

2] I (]
Figure 3-21

This code is the client-side code —the rendered output of the page. Compare this with the original code —
return to VWD and click the Source View of the page (see Figure 3-22).

(=] Chapter03 - Visual Web Developer 2005 Express Edition B[]
File Edt View ‘Webste Build Debug Tools ‘Window Community Help
L 5 b % G [0 o e b (8] -}
Po| 2 5| | ¥HTML 1.0 Transitional { = =
Tooka: v B X | - GerverControls.aspw*| StartPage | - x |5
s awiad 1 |Server Dbjects & Events i] |(N0 Events) i] E_"
j Page Language="CH" &> ':' E
[abi] TextBos 3 CTYPE html PUBLIC "-//W3C//DTD ZHTEL 1.0 Transitional//EN" "http://www,wd.o)cgi
Button a el
@ LirkButhan S ipt runat=rserver "> Lnll.‘
(@) ImageButton g E
A Hyperink = t ript> s E’
=¥ DropDownilist Sim 1 wmlns="hrep://www, wi . org/ 1999/ xheml™ > 5
% ListBox 10/H d runat="server > g
CheckBox 11| <ticlesUnticled Page</citle> —
CheckBoList 12 - ad>)
(%) RadoBukton LEI ¥ =
= T T,T:i:i: id="forml" runat="serwver': Er
lﬂ Image 16 1 <asp:TextBox ID="TextBoxl" runac="server"-</asp:TextBox> 3_
| tmagetap 17
(3 Table 18] </ dive
i= Bulabediist 15! </ form>
ki HidderField 20 ey
[Lieral ;; B
[calendsr
= adrokator v
3 FleUpload € | m [|
i Wizard M 3 Design | = Source] |¢ﬂvrl>_'d:ndy> <Form#farml> ‘|
Ready L 16 Col 63 Ch 63 INS

Figure 3-22

74

Page Design

Note the lines that describe the control with the ID of TextBox1. Here are those lines, as they appear in
the original source code for the page:

<div>
<asp:TextBox ID="TextBoxl" runat="server"></asp:TextBox>

</div>
And here is the equivalent line in the rendered source code:

<div>
<input name="TextBoxl" type="text" id="TextBoxl" />

</div>

Notice that the original TextBox1 control has been converted from an ASP.NET control to an HTML ele-
ment. The server received the request for the page and was able to glean, from the original request, that
the browser could understand HTML, so the server produced an HTML version of the control along
with the rest of the page back to the browser. The browser then does the legwork in converting that
HTML code to a viewable web page.

Source View in VWD

Visual Web Developer has two main modes when it comes to building and editing pages. The Design
View is one that you’ve spent a little while working in now, and it’s the Design View that you’ll concen-
trate on using (where you can) in this book to avoid having to type too much code. However, Source
View is really useful for editing a page and fixing nagging problems, so it’s worthwhile taking a look at
this now and gaining some familiarity. Add another control to the page you were just working on, this
time in Source View.

Try It Out Adding Server Controls in Source View

1. Head back into VWD and ensure that you are in Source View for the ServerControls.aspx
page (click the link at the bottom of the window to switch between Design View and Source
View). In the code that appears, click the line immediately below the code representing the
TextBox control that you added in the previous example.

<div>
<asp:TextBox ID="TextBoxl" runat="server"></asp:TextBox>

</div>

2. You have two options available to you when you add server controls in Source View: you can
either type the code, or drag and drop the control from the Toolbox, much like the technique
used in Design View. Do it the hard way first—start typing the following code:

<asp:Image

Before you even finish the word “Image,” you'll notice some handy tooltips popping up, as
shown in Figure 3-23, trying to guess what you're typing.

75

Chapter 3

76

(=] Chapter03 - Visual Web Developer 2005 Express Edition 2=
File Edt View ‘Webste Buld Debug Tools ‘Window Comeunity Help
R RN N N CERey L R AR RN NN YN -8
=)= | Interret Explorer 6.0 =
Tooka:: » ¥ X ServerControls.aspw*| SampleHTMLEkments.hbm | SeaticHTMLPage,hitm - X g
istavad 1) | Server Objects & Events 7| (Mo Events) ﬂ ot
& Fainker = — K
1] =%e Page Language="C#" 3= — %
A Label 2] i ||
abl| TextBox 21 <IDOCTYPE heml PUBLIC “—//W3C//DTD XHTHL 1.0 Transicional//BN* “http:/fwww
[3) Butten 1 Al
53 <script runav="server"s u
(2] LirkButton] -
@ ImageButbon Tt seripes g
A Hyperlink = & m
= ! 55 <htal wmlns="heep: /fowr o org/1995 /shtul " =) g—
=M Droplossptey 1085 <head runave"servert> =z
113 “ritlerlntitled Page=/titlaes -
123~ «/head> =
135 <body= &
1 <form id="forml® runst="server': =
«dive :‘?‘I
<asp:TexcBox ID="TextBoxl" runat="server"></asp:TextBox> -e_
“apiineas i
= 23 aspeFormbiew AJ =
i ImageMap i 23 asprGridiiew
i | :'11: =3 asprHiddenField 1
= Bulatediist e
fabl: HiddenField
E;' L] | 3 aspiImageMap
|5 Calendar H 43 aspeImpartCatalogPart
= AdRokator <3 aspiLabel
“_] FlaUpload 43 aspelayoukEdiorPart v] l"l
W Wizard < | m [2]
i =l [w]| @ Design | E Source <hitmlz | chody> || <F ml || dive
Ready Ln 17 ol 17 Ch 17 NS

Figure 3-23

This is a feature available to VWD and Visual Studio known as IntelliSense, and it’s
designed to make your life as a developer a little easier. To accept a suggestion, you
can scroll through the list with the arrow keys and then press the Tab or Enter key or
the spacebar, or click the suggestion with your mouse. To forcibly show any relevant
IntelliSense, press Ctrl+Space and the popup will appear.

3. Continue to enter the code as follows:

<div>

<asp:TextBox ID="TextBoxl" runat="server"></asp:TextBox>

<asp:Image ID="MyImage" runat="server" ImageUrl="~/azoreschurch.jpg" />
</div>

Notice that VWD presents you with a list of local images when you enter the ImageUrl property
(see Figure 3-24).

4. Add one more control to the page; this time, add it using the double-click technique. Add a
blank line before the </div>, position your cursor in this line, and double-click the Hyperlink
control (see Figure 3-25) in the Toolbox to add it to the page.

Page Design

apte

- Visual

eb Developer 2005 Express Edition

SE]

File Edi

View ‘Webske Buld Debug

Internet Explorer 6.0

Tools Window Community Help

2o ool ale

“ServerControls.aspw®| SampleHTMLElements.htm | StaticHTMLPage.htm | - X @
|Semruhlecls&f\fents t] (Mo Events) v é’
1] %@ Page Language="CE* &= — 3
2 =t
2] <IDOCTYPE html PUBLIC “—//W3C//DTD MHTHML 1.0 Transicdonal//EN" "http://uww |
4
Butkon
53 <script runav="server"s> ‘g
LirkButkon & | &
@ ImageButkon T < fseripe g
HyperLink 3 & 5
a 530 <html wmlns="hetp: /jonr vl org/1999/yhenl" > g
=% DropDownilist 108 <head runavs"server®> o
[23] ListBox 11 <ritlerlntitled Page</titler E
CheckBox 1z{ «</heads
,._ i 134 <body= g
7= CheckBoalist 14f cform id="forml runacs'zarvar's fer
(+) RadioButton 158 <diwe i
1= RadoButonList L 18 <asp:TexcBox ID="TextBoxl" rumats="server’></asp:TextBox> &
= 17 <azp:Inage ID="MyTmage® runat="server" Imagelrl='| =2
1] tmage Leif <fdive 1=
ImageMap 123~ </ forms P badoe Il
| Tkl 20§« bodys ‘? .
21§ < /hemls o budspest.jng
= Buletedlist o =P Bullring. PG
= SempleHTMLElmenks.bkm | =
) = ServerCantrols.aspec
B ers <P SimpleTtylesheet.css
= sirmione.jpg
| adRckator 2 StaticHTMLPage Hem N |
) Flelipload = WWeb.Config >
W Wizard (4] n | [2]
(fd #n [w| GDesgn @ Sowce | |(|[<hiniz||<body>| < 2| <dv> | yImage> | d
Ready Ln 17 ol 56 Ch 56 INS
Figure 3-24
apter03 - Visual Web Developer 2005 Express Edition Mﬁ
File Edt View ‘Webske Buld Debueg Tools Window Community Help
g 3 Lo o [T R ..!
ERERe - R a1) -
Internst Explover 6.0 = !
- T 5. . plei X ~ Sratic age.htm - i
Tookaox 2 x ServerControl SampleHTMLEkments . him SkaticHTMLP, it X
= Standard i |Server0b|etts&fve:ts t] (Mo Events) t 3
R Faker Tt s B k
A Label . age ERGUATE= 3 » - E
Texthox 5 CTYPE html PUBLIC "=//W3C//DTD XHTML 1.0 Transitional//EN® “betp:/fwmrws. | | |
Butten q £
= SHipt runsceserve
LirkButbon 7 % Tt o g
&) 2 & L =
(3] ImageButkon 7i-ripes =g
8 m
- &l
985 1 xmlns="http: //uww. o, org/1999/xhenl * * o
=% DropDowniList - " 2
HyperLink = |
=3 ListBiox Version 2,0.0.0 from Microsoft Corporstion | Fages/ricles o
[¥] checkBox JMET Component . E
0= o
(= CheckBoalist <torm id="forml" runAU="Server®: &
(%) RadoBukton <divs ﬁ
S — <asp:TextBox ID="TextBoxl" runacs"server"s</asp:TextBox= 5
i;ﬂ_ q Hylnage" runat azoreschurch. Ip 2
mage 1=]
Imagetan
[Table
i= Buleteduist vl
b
HiddenField =
) Lieral) el = l Bl
== [w| 5 Design | Source | 4]tz | [<body>| | Formeformi> || <dwv> ¥ E|
Ready Ln 18 Cal 7 ch7 NS

Figure 3-25

77

Chapter 3

78

5. You'll still have to edit this control before you can run the page successfully, so position your
cursor anywhere within the Hyperlink’s definition and then cast your eye over to the
Properties pane on the right. (If it is hidden, as in Figure 3-25, you will need to pop it out from
the side by hovering your mouse over the Properties tab at the right-hand edge of your screen,
or select Viewr>Properties Window.) Notice a property called NavigateUrl near the bottom of
the list of properties. Enter http://www.wroxunited.net as the value for this property and press
Enter. Take a look at Figure 3-26 and you’ll notice a new attribute of the hyperlink tag called
NavigateUrl appear on the page with the value you entered.

(2] Chapter03 - Visual Web Developer 2005 Express Edition B[]
File Edt View ‘Webste Build Debug Tools ‘Window Community Help
X RN =N W N REE R R R = RN NN) -8
P 22 2= | ¥HTML 1.0 Transitional { = -]
'\: ServerControls.aspx | Start Page - ¥ ||Properties >0 X M
g .ser\rer Objects & Events v| :(No Events) v| HyperLink1 <aspiHyperlink> = ;'
3 1i Page Language="CH" > 7' "}l | | E
- Font-Strikeout False Y -g
3 CTYPE html PUBLIC "-//W3C//DTD EHTML 1.0 Transitional//EN Font-Underline False g
! ForeColor 1.1{
'_‘U 1pt runac="server> Irnagel il LG
| Test &
ik ripts = | |8 Behavior @
- Enabled trus :31
SiE L smlns="hrrp: S/ uew, wi, org/ 1999/ %heml™ > EnsbleTheming trus &=
10EHd runat="=server'"> EnableViewState trus g
11| <citlexUntitled Page</titles ShnID
: [3\33 ToolTip
gy Visibile true
14 <form id="forml" runst="zerver": B Layout
L5 <dive Height
L& <asp:TextBox ID="TextBoxl™ runat="secver”></asp:TextBox width
17 <asp: Image ID="Nylwage" runat="server" ImagelUrl="~/azor B Misc
15 <asp:HyperLlink ID="HypsrLinkl" runac="server™ a0 Hyperlinkl
19 I'Iaviu:LcULl—"htt::.-'.-"wnt\r.wruxuni‘;:d.m:t,l":-Uiﬁit, Wrax Punat séwe_
"tj fa’cl'_vm B Navigation
21 </ forn> Navigated hibbps//wwewrosunited.net
22 - dyx Target —
23ibml> P
24 | | AccessKey
£ I |
(3 Design B Source 4| <body> | <form#forml>| <div> | <asp:Hyperlink#Hyperlinkl >
Ready Ln 19 Col 50 Ch 50 INS
Figure 3-26

6. Switch over to Design View and see how it looks — you'll notice all three controls on the page in
one line. If you’d prefer them to appear one below the other, simply type
 after each con-
trol to add an HTML line break character in Source View. You might also want to change the dis-
play text of the hyperlink control (the text immediately before the </asp:HyperLink> closing
tag) to some text of your choosing.

<body>
<form id="forml" runat="server">
<div>
<asp:TextBox ID="TextBoxl" runat="server"></asp:TextBox>

<asp:Image ID="MyImage" runat="server" ImageUrl="~/azoreschurch.jpg" />

<asp:HyperLink ID="HyperLinkl" runat="server"
NavigateUrl="http://www.wroxunited.net">Visit Wrox United Online!
</asp:HyperLink>
</div>
</form>
</body>

Page Design

Notice the bar at the bottom of the screen next to the Design and Source buttons. There’s an
orange highlight on the element that is underneath the current cursor position (see Figure 3-26).
This element hierarchy changes whenever you select different elements in either Design View or
Source View.

7. Run the page again and view the results, which are depicted in Figure 3-27.

] Untitled Page - Microsoft Internet Explorer ==&
In
o

File Edit Wiew Favorites Tools Help

5 — n
J 2 \ﬂ \ELI _'\J / ! Search ‘»;_'\':(Favorites 6’2?

Address @j http:/flocalhost: 1197 Chapter03iSer verControls, aspx Il . Go Links >

»

Visit Wrox United Online

&] Done %J Local intranet

Figure 3-27

How It Works

In this example, you gained a bit more familiarity with the drag-and-drop method of page design, and
with using Source View to manually craft pages. You also saw that VWD has lots of features that spring
into action at different times to help you with this process.

Here’s a walkthrough of the code that was generated in VWD. The main content region of the page was
surrounded by a <div> control, and within this are the three controls added to the page:

<div>
<asp:TextBox ID="TextBoxl" runat="server"></asp:TextBox>

<asp:Image ID="MyImage" runat="server" ImageUrl="~/azoreschurch.jpg" />

<asp:HyperLink ID="HyperLinkl" runat="server"
NavigateUrl="http://www.wroxunited.net">Visit Wrox United Online!
</asp:HyperLink>
</div>

Now take a look at the rendered source. While the page is running in the browser, select View=>Source
from the main menu in your browser, and see how the contents of the <div> have been changed:

79

Chapter 3

<div>

<input name="TextBoxl" type="text" id="TextBoxl" />

Visit Wrox United Online!
</div>

Web browsers don’t know anything about ASP.NET server controls, so when the page is requested, the
ASP.NET processor on the web server kicks in and starts converting the server-side elements into simple
HTML that the browser is more happy to receive. The TextBox control maps straight onto an HTML
<input> element. The Image control is converted into an element, but notice how the ImageUrl
attribute is converted into the src attribute:

ImageUrl="~/azoreschurch. jpg"

The name of the file (or URL to the image) in the ImageUr1 is converted to the src attribute:
src="azoreschurch.jpg"

If the file is local to the project, the file is prefixed with ~/ on the server side.

The HyperLink control also mapped fairly directly to its rendered equivalent, where the NavigateUrl
is easily converted to the href attribute of the a tag.

In this simple example, you didn’t really gain a lot from using server controls instead of coding the
HTML, but bear in mind that this page is completely static. If you wanted to respond to user input, react
to events, or obtain data from a database, you would need to use server-side code. Server controls make
the process of working with visual elements on the server possible.

Types of Server Controls

Many of the ASP.NET server controls that exist are ASP.NET equivalents of HTML elements, so there is a
text box, a button, a hyperlink, a drop-down list, and so on. These controls look like the elements that
they will eventually be turned into, but there is more to them than that. Each control has a common set
of properties (for example, they all have an ID, and controls such as the text box, label, and so on all
have a Text property), which makes it easier to work with these controls in code. Having learned the dif-
ferent categories of controls earlier in this chapter, you can concentrate on some of the most commonly
used controls as you tour the server controls you can add to a site.

Standard Controls

80

These controls are the Web equivalents of the tools that you encounter when using Windows applica-
tions. Web pages that include these controls have that standard application feel that we're all familiar
with, so the process of adding them to pages is quick and simple. Here are some of the most commonly
used controls:

Q TextBox control: Used for entering text on a page, commonly seen on order forms on shopping
sites, or for logging in to a site.

Q Button control: From submitting an order to changing preferences on a web site, clicking a but-
ton on a page normally causes information to be sent to the server, which reacts to that informa-
tion and displays a result.

Page Design

Label control: Used for displaying simple text in a specified position on a page. The Label con-
trol is an easy way to change the text on part of a page in response to user interaction.

Hyperlink control: Used for providing hyperlink functionality on a page that enables naviga-
tion to other parts of a site, or to other resources on the Internet.

Image control: Used for displaying images on a page. The server can change the image that is
displayed in the control programmatically in response to user input.

DropDown List control: Used for offering the user a list of options to choose from; collapses
when not in use to save space.

Listbox control: Used for offering a fixed-size list of items to choose from.

CheckBox and Radio Button controls: Used for selecting optional extras with either a yes/no
or “this one out of many” style, respectively.

Figure 3-28 shows the ASP.NET Web Site Administration Tool screen that you will learn to use in the
next chapter for administering user accounts. On this screen, you'll see many of these controls in one

place.

(T ————1
&7 ASP.Net Web Application Administration - Microsoft | Explorer LOE

addess €] hip:flocalhost: 1900/asp.netvet ity | J5ers. & 24 Gu Lirks ™

File Edit View Favorites Tools Help r#

O~ O B @G oo drres @3- E A B

ASP Web Site Administration Tool How do [use this tool? B

Hame Security || Application || Provider |

Click a row to select a user and then click Edit user to view or change the user's password ar other properties. To assign
roles to the selected user, select the appropriate check boxes an the right.

To prevent a user fram logging into your application but retain his or her infarmation in your database, set the status to
inactive by clearing the check box.

Search for Users

Search by: Usernamet] for: | Find User)

Wildcard characters * and 7 are permitted.
A B CDEEGHIIELMBNOGGEGRSIUY W X ¥ 2 Al

Active User name Roles

chrish Edit user Delste user Edt roles
chrisu Edit user Delete user Edit roles.
dan Edit user Delste user Edit roles
dave Edit user Delete user Edit roles.
i Edit user Delete wser Ect roles
iohn Edit user Delete user Edit roles. B
lou Edit user Delste user Edit roles

Create new user [v]

&] & Local intranet
Figure 3-28

81

Chapter 3

The search by: label on the page is likely to be a Label control, and it’s next to a DropDownList con-
trol. The for: label is next to a TextBox, which is next to a But ton control. Next to each user name is a
CheckBox control for selecting the user, and some HyperLink controls for managing the user account. In
the next chapter, you'll become very familiar with this configuration application, and it’s a great exam-
ple of many types of controls all on one page.

HTML Controls

82

Often when you're creating a site, you don’t need to do anything with a control on the server. In these
situations, you might just want to add simple static HTML to part of a page; for example, just to position
elements on a page or to provide a container for groups of elements. The HTML Control Toolbox con-
tains drag-and-drop versions of the most commonly used HTML elements for this purpose. If you
browse through this section of the Toolbox (see Figure 3-29), you'll notice HTML controls for client-side
elements such as the Input (Text) box, the Table control, and the Div control.

Toolbox B
+ Standard
+ Data
Yalidation

3

+ Mavigation

+ Login

+ WebParts

= HTML

k Pointer

[Input (Buttan)

{# Input (Reset)

) Input {Submit)

abl| Input (Text)

abl| Input (File)

#% Input (Password)

Input {Checkbox)

() Input (Radia)
Input {Hidden)

:%E Textarea

] Table

|8 mage

=4 Select

—| Horizontal Rule

+ General

Figure 3-29

The controls on the toolbar are just a handy way to add the most common HTML elements to a page,
and you are not restricted to using only those HTML elements. In Source View, you can add any valid
HTML element you like; for example, an anchor tag <a> for hyperlinks, or a for highlighting
text within a section of a page.

Elements such as the Table control and the Div control are containers and hence can contain other con-
trols within their definitions. For example, in a Table control, you can have different controls nested
within each table cell. Within a Div control, you can also place a wide variety of elements and controls.
You can nest server-side controls within static, non-server HTML elements such as these for laying out a

page.

Page Design

HTML Controls as Server Controls

You can turn any HTML element into a server control by adding a runat="server" attribute to the ele-
ment. As you'll see in Chapter 6, you can work with any server controls (HTML or ASP.NET) on a page
dynamically using code when a page is submitted to the server. For example, after you add an ASPNET
TextBox control to a page, you can set the value to be displayed in the text area using code running on
the server. However, after you add a runat="server" attribute (and give the element a unique ID) to,
for example, a div element, you can then specify what the div should display and where it should be
positioned on the page dynamically, using code running on the server.

Additionally, because you can add a runat="server" to any HTML element, you could use an Input
type="text" control instead of the ASPNET TextBox control if you like. The same goes for the other
types of HTML elements that have direct equivalents in the ASPNET Toolbox.

Should | Use HTML Controls or ASP.NET Server Controls?

This question only really relates to simple elements on a page, such as the text box, the button, tables, and
so on. Complicated server controls such as the Calendar control exist to speed up development time for
sites, so there’s no real question of which to use in cases like these. The approach taken by most develop-
ers, when making the choice about which type of control to add to a page, is to use ASPNET’s standard-
server controls for the majority of server-side controls on a page and static HTML elements for layout.

Although this works in most situations (and indeed you'll find that many situations require server con-
trols where HTML controls simply can’t offer the correct functionality), you may find exceptions to the
rule. For example, adding runat="server" to HTML elements is a technique I often use with HTML
divs or tables. If I know that I want to show or hide parts of a page depending on user input, I can con-
vert those elements I need to work with on the server into server controls, and then dynamically toggle
their visibility. Though it’s also easy to create sites that offer the same functionality using standard server
controls, the design team I work with only produces page layouts using simple HTML, so it's sometimes
easier to convert some of those HTML elements to run on the server than it is to recode the site to use the
built-in ASP.NET server controls. There is no real right or wrong approach here, so use your own judg-
ment, but be aware that you may encounter code written by others that takes a different, but equally
viable, approach.

Navigation Controls

The three out-of-the-box controls available for navigating a site provide a wealth of functionality for
very little effort. Compare this to the situation that was in place previously for ASP.NET developers and
you'll see that this is a big improvement — what would have previously been a couple of work items on
a task list that might take a couple of hours each for a developer to code now takes a few seconds. The
Menu, TreeView, and the SiteMapPath controls are new in ASPNET 2.0, and are quick and simple to
set up. Following is an overview of these controls. You'll add both of these controls to the Wrox United
site later.

The SiteMapPath Control

This control is used to add breadcrumb functionality to a site, giving you a visual aid to remind you
where you are in the site hierarchy. This is demonstrated in the Wrox United site, as shown in Figure 3-30.

83

Chapter 3

&7 Wrox United . Microsoft I Explorer ===
File Edit View Favorites Tools Help '?
Qi - O - H @ & L5 Seravones @3+ % H - D3
Adcress |4E] http:/flocalhost: 1291 /WroxLinited News. aspx :l Go | Liks

Match Reports 7,000 feet and snow and ice. The balmy weather in England is 2 bit of a shock. »
League Table .
Wedding Bells 01 Dec 2004
Scorers -
We are happy to announce the engagement of Larry Leon to Countess Annastoli Martique Bisham-Stagforth,
Shop heiress to the Duke of Snohopeshire. Anna is a well known figure in country circles, often competing in 3 day
Galle eventing for her local horse club. She does tend to take four days to complete the event, but that's largely due
ry g ! p rgely
Fan Club to Stafford, her aging horse, who can't seem to run as fast as he used to. The wedding will take place in aarly
July, after the football season has ended.
About
New Fixture 13 Nov 2004
After announcing the cancellation of the French friendly, they have agreed to the match being rescheduled for
next year. We hope this won't clash with our aims for the FA Cup.
Cancellation 11 Nov 2004
[Remember me next time. Mext weeks friendly against France has been cancelled. This is because Lucky was unfortunately hit by a car
while chasing rabbits, and none of the team seem to be able to concentrate. Lucky is doing well, and hopes to
be back at the pitch soon.
New Staff 18 Oct 2004 |2
Shopping Cart
The groundkeeper Bill is due to retire next year, and although we'd love him to continue his pivotal
role in looking after the pitch, he's decided that at 87 it's time to call it a day. He'll still be welcome to
pop in any time, and has started training his replacement, Roger, a fresh faced youth of 68 from
Haversforth Gardening Club.
Al content cooyriaht © and its subsidiaries 2004 [+
&l
Figure 3-30

The term breadcrumb most likely comes from the old fairy tale of Hansel and Gretel —two children who
went for an adventure in the woods, leaving a trail of breadcrumbs behind them to help them to find
their way home. As you click through pages on a site, you may pass through to different sections and
subsections of the site, until you are several links deep into an application. A breadcrumb helps you to
go back to a specific point in your navigation path without having to rely on the back button on the
browser. You may have encountered situations where you can’t hit the back button to head back a link —
a bit like a crow eating your breadcrumbs. Some pages submit information to the server in such a way
that you can’t go back without resending the information.

You'll find breadcrumb functionality available on many different sites across the Internet. One such site
is the Wrox United site, as shown previously in Figure 3-30. However, in order to add one of these con-
trols to the site, you need to have a Web. SiteMap file at hand. (Got one? Excellent! If not, you need to go
back to Chapter 2 and learn how to create one.)

When you have a Web. SiteMap available to your application, adding a SiteMapPath control and see-
ing some results is easy —all you need to do is add it to a page. To add it to Wrox United, the best thing
to do would be to add the control to the Master page so that all of the content pages will suddenly have
breadcrumbs at their feet.

84

Page Design

For this next Try It Out, you need to work with the Chapter03 version of the Wrox
United application (stored within the chapter 03 folder in the code download as
WroxUnited). This version of the site has been modified to enable you to try out
these examples.

If you open the Chapter 3 version of the WroxUnited application as it stands, you'll see what’s shown in
Figure 3-31. If it doesn’t look quite like the figure, don’t worry — VWD has some problems displaying
pages that use CSS, so you may see most of the site without having to scroll down.

[5] WroxUnited (10) - Visual Web Developer 2005 Express Edition D[]
Fle Edt View \Website Buld Debug Format Layout Tools Window Community Help
T NE AT N TR R RPN WCAT) -5
: Mone - LmdsGrands Ve 0% - |B 7 WA Z|S-]iE2] 0D
Toobox * 1 X | sitemaster - X
1= Standard]
Download Code | FictureUpload.ascx
A Label View Page Source - [Players.asox
[abl] TextBox =) README. txt
Bution O] ﬂ Scorers.aspx
y - - = #- | Z| shop.aspx
() LrkButton Navigation fPageTitle] ®- (5] Shonltem.aspx
(@) imageButton | _ (2 B Shopprglart.asox
A Hyperlink @ || ShoppingCart.aspx
=2 OropDownlist ContentPlaceHolder - mainCentent % S’tm:r\g-’.at.a;px.g'r
m Site.Css
3] Listox e] site.master
CheckBox Uzer Name: Al sterighContrast.css | =
4= CheckBoxdist i web.config L
() RadoButton |l |(Jif Password: = S web.sitemap]
= RadoButtonList * [£] i | [
[l tmage [Remember me next time. dJsolution £... [FDatabase ...
[tmageMap Properties 1 x
[Table content <01V -
i= BuletedList
; —p EElzlE
{abl: HiddenField LoginView1 B Accessibility |
j Literal e
2] e Shopping Cart Aceessie =
[Calendar TabIndex O
= AdRotator B Misc
) FleUpload (1d) content
4 Wizard Align
ﬂ - AtomicSel [v
[\
I mutiview []] | Accessibility
[Panel <] Il E
50 et [v]| | Deson | @ sowee | [<o) <>
Item(s) Saved
Figure 3-31

Although the site looks fairly normal, two things are missing: the links on the left of the page and the
breadcrumbs at the bottom of the page. In the following Try It Out example, you'll add these to the site
and see how simple it is to add navigation. Before running this example, close down the Chapter03 pro-
ject from Visual Web Developer.

Ty ltOut | Adding the SiteMapPath Control

1. Open the Chapter 3 version of the Wrox United application (C: \BegASPNET2\Chapters\
Begin\Chapter03\WroxUnited) and open the site.master file. Make sure you're in Design
View.

85

Chapter 3

2. Place your cursor inside the Breadcrumbs div at the bottom of the page —it’s the red blob in
the bottom right of the page. You'll know when you’ve found the right spot when you see

<div#breadcrumbs> highlighted at the bottom of the window, as shown in Figure 3-32.

-

=] d - Visual Web Developer 2005 Express Edition

BE]

File Edt View

Webste Buld Debug

il B L

Format

Layouk Tools
= Lol __1[|3

Window

BN

Commurity Help

= ‘Lucida Grands’, Ve » 909

-|B 2 U|AZ

Toolkox

-~ 3 x

site.master |

- X

=

-

& Painker

A Label

[abl] TextBox
Button

[E) LirkButton
(3] ImageButkan
A Hyperlink
=% DropDowniList
[£3) vistBox
CheckBox
= CheckBoxlist
(%) RadioButton

uﬂ Image
| ImageMap
[Table
i= Buleteduist
1abl HiddenFiald
B Lieral

[T Calanda:

%~ RadioButtonList

¥l

[J remember me next time.

i gintiewl

Shopping Cart

]

aaun)d<] eseqeieq E:l.lalm:tq U105 E

I
|sa!:uado.dg |

Bl cortenkt copyright & Wrox Prezs and ks subsidiaies 2004, /We
e

G Design = Source |

l|d:ody:-| sdiv || <didcontent> |<div@breadorumbs=

gm
o

G
»

Pl

Ready

Figure 3-32

3.
Toolbox (see Figure 3-33).

Now drag a SiteMapPath control into the Breadcrumbs div from the Navigation section of the

- =
O] d - Visual Web Developer 2005 Express Edition D[]
File Edt View ‘Webskte Buld Debug Format Layout Tools Window Communiky Help
RN NIRRT AR RN A N WA -
; T 1 lszalsdlsdesiel
Toobox v 0 X sitemaster® > X |5
] View g
(B ContentFlaceHolder . Id . 5
5] Substitution ContentPlaceHolder - mainContent g
Localize 1._
= 0
=l Data [=]
% validation o
(= Mavigation ﬁ
Poink: m
L er by
5
El
i Treediew |
® tog 1I#
¥ WebParts 5
=1 HTML %-
1= General —
There are no usabla
conkrals in this group,
Drag an ikem onka this v
text to add it to the <] >
toolbas, — :
lv| @ Design [Source | 4| <dv |:ﬁwcunbmt> Jiv#breaderumis Il > j
Ready
86 Figure 3-33

Page Design

5.

Ignore the Common Task menu on this one — the only modification to make here is to change
the name of the control. Ensure that the SiteMapPath control is selected and change its ID to
crumbs in the Properties panel. Notice the mouse cursor in Figure 3-34 highlights the ID prop-

erty for the control.

(=] d - Visual Web Developer 2005 Express Edition D[]
File Edt View ‘Webske Build Debug Formabk Layouk Tools Window Communiky Help
ER YRR A=A W NP EE M f e I s o W ES W) -

T 1 lezalagl=dl _

Toobiox v 8 X| sitemaster*| Boncities =aed (5|
[>2] PlaceHolder b| MEINCotEE [SiteMapPathl System.tWeb, ULwet = | &'
] View g
:]3_1 ContentFaceHolder showTod s True ~ 1’_‘_"
1] substinskion SiteMapProvider 3
& Localzs SkinlD j
1+ Data ToctTip 5
= Validation visible True ;ﬁr
(= Mavigation B Dpata B
& FPoirker (Expressions) 1“.-9

Height
Widkth
i Treeview B Misc
Login (1D} Crumbs |
¥ WebParts B Styles L
1+ HTML = || |B Currenthodesty 1
=
enenal L Wl corkent copyriaht & Wig B NodeStyle
1 B PathSeparstorst
Thera are no uszble B Roothodestyle el
contrals in this group,
Drag an kem onbo this s || oy
et l'z&d:u':lto e A u [» Frogrammatic name of the contral.
lw| @ Design [Source | 4 | =asp:sitemappeth#stemapp..>
Ready
Figure 3-34

Run the site again by launching Default.aspx and see the results of your hard work down at the
bottom of the page, as shown in Figure 3-35. Notice that the URL my browser is using is http://
localhost:1100/WroxUnited/. Your port number (the bit after the colon) will be different.

:,éj Wrox United - Microsoft Internet Explorer ===

File Edit View Favorites Tools Help a'

Qo - © ¥ [@ B Psowar Foroones @ (35 o - LJE B

acddess @] hitp:fflocalhast: L 100 WraxUnited) B> ERET
A

because Lucky was unfortunately hit by a car while chasing rabbits,
and naone of the team seem to be able to concentrate. Lucky is daing
well, and hopes to be back at the pitch soon.

Mew Staff 12 Oct 2004

The groundkeepar Bill is due to ratire next year, and
although we'd love him to continue his pivotal role in
looking after the pitch, he's decided that at 87 it's time to
call it a day. He'll still be welcome to pop in any time, and

has started training his replacement, Roger, a fresh faced
youth of 68 from Haversforth Gardening Club,

All content copyriaht @ Wrox Press and its subsidiaries 2004, Website designad by
Frog Box Dasign

&] Done

& Local intranet

Figure 3-35

87

Chapter 3

6. Browse to the History page by changing the Default .aspx part of the URL to History .aspx.
Figure 3-36 shows how the rendered SiteMapPath control changes at the bottom of the page.

(=] WroxUnited - Visual Web Developer 2005 Express Edition =/@Ed
File Edit Yiew ‘Website Build Debug Data Format Layout Tools Window Commuonity Help
%"u_J'leg§|; S| ._'1| - -'.:ﬂ'__fflb _’:l@profile.theme =8
1 T WA AT
|T00|box -~ 1 X| web.sitemap/]@ite.master*] - X

ﬂ #ml b] - [
Mulkiview Wrox United B

{71 Panel

[>€] PlaceHolder
I Wiew

=

Download Code
“iew Page Source

auIng Jusnaog]

ContentPlaceHolder
7a) Substitution

= Data

k Painter

A Gridview

(1] Datalist

'',E' DetailsYiew

L:' Formbigw

% Repeater

[j SqlDataSource
L'b AccessDataSource

fPageTitle]

J240)de3 uonnjog f::myjam@q aseqeie

Log In

User Mame:

Password:

*

[JRemember me next time.

[z ObjectDataSource
%

L‘L’ HrniCrataSource

saljadoid g

|i:‘= SiteMapDataSource |
Yalidation 1 | [l]
=l Navigation M (& Design Source | <body> || <div> | <div#sidebar = ’W‘

_:} Errar List ¥ % Find Results 1

Ready

Figure 3-36

How It Works

In this example, you added a simple SiteMapPath control to a modified version of the Wrox United
web site to give users some visual feedback as to which page is being viewed, and where in the site hier-
archy that page resides. Adding the control to the page is enough to achieve this, because there is a

Web. SiteMap file included in the application files.

The siteMapPath control hooks in to the Web. SiteMap (if it exists) and renders content dynamically by
figuring out which page the user is currently viewing, and where that page is situated in relation to the
order of nodes in the site map. Here’s the Web. siteMap code that relates to the nodes you looked at:

<siteMap>
<siteMapNode title="Home" url="Default.aspx"
description="Wrox United Home Page">
<siteMapNode title="About" description="About the club" url="about.aspx">
<siteMapNode title="History" url="History.aspx"
description="The history of the club" />

88

Page Design

Notice that the History node resides within the About node, which in turn resides within the Home
node, so when you look at the History page, you know that the page below must be the About page,
and the root node is the Home node —which is exactly what you saw on the siteMapPath control:

Home > About > History
If you navigated to a different part of the hierarchy (to the Match Fixtures, Future Fixtures, or Past
Fixtures page), the display would have changed appropriately. So, navigating to
Fixtures.aspx?type=future would present the following;:

Home > Fixtures > Future Fixtures
This is how the SiteMapPath control that was added to the page appears in code:

<div id="breadcrumbs">

<asp:SiteMapPath ID="crumbs" runat="server">
</asp:SiteMapPath>

</div>

Without customizing the control (no specific attributes have been set), the nodes are rendered. The style
used for the control is controlled in the style sheet for the page. (Chapter 5 looks at styling pages.)

SiteMapPath Control Properties

In the previous Try It Out, you added a SiteMapPath control without modifying it and the list of nodes
was displayed. If you’d modified it to change the number of levels displayed, it could have been used in
quite a different way; perhaps to display the name of the current page in a header. For example:

<asp:SiteMapPath ID="PageTitle" Runat="server" ParentLevelsDisplayed="0">
</asp:SiteMapPath>

With this modification, the site map node would display only the name of the current page. In the case
of History.aspx, the SiteMapNode would simply say History.

Another modification that could be made would be to change the path separator character. For example:

<asp:SiteMapPath ID="crumbs" runat="server" PathSeparator=" : ">
</asp:SiteMapPath>

Again, if you were then to navigate to the History.aspx page, you'd see the following;:
Home : About : History

In addition to these two properties, you can set many other attributes to customize this control. The fol-
lowing table describes some of these properties in a bit more detail.

89

Chapter 3

Th

Th

20

Attribute

RenderCurrentNodeAsLink

Description

Specifies whether the active

Options (default in bold)

True / False

node is clickable, or whether
the current node appears as

plain text.
PathDirection Sets whether the breadcrumbs RootToCurrent / Current
appear in order from the root ToRoot
link to the current link (from
left to right) or vice versa.
PathSeparator Sets the character to use as the >, any ASCII character

separator marker between
nodes.

Having looked at how the SiteMapPath control works, it’s time to move on to look at the remaining
two navigation controls: the Menu control and the Treeview control. To use these controls on a page,
you need to add a different type of control to provide the data to these controls: the
SiteMapDataSource control.

e SiteMapDataSource Control

This control is a non-visual control, and is used to expose the nodes defined in the Web. SiteMap file in a
way that the Menu and Treeview controls can understand, and to make it possible to amend the content
that these controls will display.

To add this control to a site, you only have to drag a copy onto a page. That’s all there is to it. The code
that’s generated for you will appear as follows in Source View:

<asp:SiteMapDataSource ID="SiteMapDataSourcel" runat="server" />

In the next Try It Out, you will do this for yourself so that you will be able to use the Menu control. The
Menu control is used in the full Wrox United site to provide the means to navigate the Wrox United site,
so you won't have to keep typing in links. Let’s see how this works in connection with the
SiteMapDataSource control.

e Menu Control

The Menu control provides a mixture of static and dynamic menu functionality. When you add this con-
trol to a page, you have the option of making the menu completely dynamic, so an entire navigational
structure can be displayed in the menu, a bit like a Start menu. Alternatively, you can adopt a more tra-
ditional approach and opt for a fixed menu, or one mixing this functionality. The dynamic bits use client-
side JavaScript that ASPNET generates for you (again, without you having to lift a finger).

To add a menu control to the site, you first need to add the SiteMapDataSource control, which specifies
what links your menu will have access to and the order in which they appear. You’'ll do both of these
now in a Try It Out based on the WroxUnited application.

Page Design

TdryltOut | Adding a Menu Control to Wrox United

1. Open site.Master and switch to Design View. Position your cursor in the nav div on the left

of the page, as shown in Figure 3-37.

(=] WroxUnited - Visual Web Developer 2005 Express Edition

S]]

Fie Edit YWew ‘Website Build Debug Forma:t Layour Took Window
i -l -5

Commerity Helo

bl G

i More - ‘lucdaGrande’, Ve - 0% - | B F O | A

Toalbox » B X || sitemaster®

A kol »]
1T tultiview

7] panel

5] PlaceHakdsr

01 Wiew

Download Coda
Wiew Page Source

‘E ConkentPlaceHokder
2| substiution

45k Localize Tpag ETitIE]

= Data
I Poinker

ContentPlaceHolder - mairContent

(o Eidview

(4] Datalist

= Detalsview

13- Formiview

! Repeater

[_i SgDataSource
[AccessDatasource
[ChbiectDataSource
| Ly, smiDsrasowce

[st

=

)

£ f

|T <hodys | <dive <div#sidebars

& Desion | B2 Source

3 25eqe990 g | 2401343 Lo AN PS o)

sanpadoug 5] [lalo 3

=

Ready

Figure 3-37

2. Draga SiteMapDataSource control (highlighted on the left in Figures 3-38 and 3-39) onto the
page inside the nav div (you'll find it hiding in the Data tool group on the Toolbox), and, in the

Properties pane, rename the control siteData.

(=] WroxUnited - Visual Web Developer 2005 Express Edition ===
Fie Edit Yiew ‘Website Build Debug Fomat Layour Tooks Window Commuomity Help
- RGN - - N e N RSN SR N) '!
H A 1 ey lddlsalisisl2 R
Toolbox - B3| Properties - 3
sl ~ . siteData System, Web UL WebCantr = |2
= Wrox United |-, — . =
. [EPNEIFAE! 3
'5‘ Ter B EBehavior {Z
=< Placeolder Enableviewstate True 3
0 View ShowEtartingio True]
B ConkentPlaceHolder SiteMzpProvider =)
53| Subst = StartFroméCurrer False &
B susnbeg fPageTitle] Startighlods0ff 0 g
50k Localze . 4
P StartingModelk] m
Daia B Data 9
K Pointer . £
(Expressions) 12 |
[+ ridview B Misc |
(4] Dakalist 3 (i) siteDate| Ly
= Detalsview z
13- Formiview 3
[_i SqDataSource
f§ objwt[;.: S e [JRemember me neit time.
L ASOUrCE
I i Log In {ID}
M Doka-cXuee I _ Programmatic name of the cantrol,
[v|| |3 Desin | @ source 4] <body> [<dve <divesidsbars |<div> E
Ready

Figure 3-38

91

Chapter 3

That'’s all the groundwork you need to do. Next, you'll add the Menu control itself.

3.

Tasks window.

Drag a Menu control onto the page next to the right edge of the siteMapDataSource control.
You will see a fly-out dialog box appear as shown in detail in Figure 3-39 — this is the Smart

[Z] WroxUnited - Visual
Filx Edit

View Websie

I RAERA=A" - NI NN R

Web Developer 2005 Express Edition
Buld Debug Formast Layout Tools Window Community Helo

|—'|

I=P=N WAL)
S| B ZU|AZI=-]

| Teoolbio:

= uml

151 pultivies
] panel

[57] PlaceHokier
O view

B ConbenkFlaceHolder
5] Substiution

¥ Localze

¥ Daka

i+ validation

= Navigation

I Ponter
e ShepapPath
I

- Trechicw

Login
WebParts
HTML
General

D EE 8

There are ro usable

corkrols in this group, v

':l-_w.!

Wrox United

avigation

TPageTitle]

Download Code
Wiew Page Source

DataSource - siteData rucontmu?la\:\el-blde_r - mainContent

Auto Format...

(None)

©
5

Choose Deka Source:

Wigws:

Edik Menu Items. .. < data soerce.

Cormvert bo DynamicTtemTemplate
Corert bo StaticlbemTemplate

< Ediz Terglates

4 penu Tasks
|

3 Design [Source |1|¢Ddy>| <divz || <divitsid i

|

sanadolg ;] | J20|1] S58EIEQ E;] s200|de3 uognog E

Ready

Figure 3-39

In the dialog box, choose the siteData data source that you generated in step 3. After this has
been set, the menu will change as shown in Figure 3-40.

E WroxUnited - Visual Web Developer 2005 Express Edition =| =

%]
Fiz Edk ‘iew ‘Webste Build Debug Format Layout Tools Window Communiy Help
B RAE R = N e L R I RN TSN -8
; : TV E T YAETEETY |
Taolber: v 1 x|| sitemastert (&
“l: HidderFiekd m = 9
& e Wrox United &
= | ES
1] celendsr Download Code 7]
= adRotator view Page Source T
) AleUpload “-_‘
¢ izard E
= &
& =l fPageTitle] E
5 Multiiew g
7] Panel o) g
5] FlaceHoider SiteMapDataSource - siteData g
13 8] Menu Tasks %
I View _
Home ik Formet
T ContentPlaceHalder = Lii
75| Substibution = Choose Data Source: ?
4 Localize | Rfresh schema o ¥ ‘:;
+ Data o <Mew data source,.. 15
Validation |)
= Mavigation | Edt Menulter Databindings. ..
I Fointer Conwert bo DynamiclemTemplate
=rer GbaMapPakh Corwert to StaticltemTemplate M
—
¥ [esey G Desion | @ source | [<body> | <dive| sdvésidebars] | <divanay| =] P
+ _Login v] 1] Il
Ready

92 Figure 3-40

Page Design

4. Click the small arrow at the top-right corner of the Menu control to close the pop-out menu.
Now, with the menu selected, change the menu’s StaticDisplayLevels to 2 using the
Properties pane. You'll immediately notice a difference —have a look at Figure 3-41.

O] d - Visual Web Developer 2005 Express Edition ===
File Edt View ‘Webske Build Debug Format Layouk Tools Window Communiky Help
ER=A" N JRRCER - RS R RN NN WA) =B

-] dp b zl=clizislo N

x || Properties > x
Menul System,Web UL \WebControl: =

&

=

[rogio0s S o

StaticBottomSeparat ~
StaticEnableDefaulF True

Wrox United
[
Download Code
View Page Source
SkaticlkemFormatSkei
StaticPopOutimageT Expand {0}

H = StaticPopOutImagel
.............. TPageTltle] StaticSubMenulnden 16p:x

SkaticTopSeparatorll

|.la|o|:t<3 S5EOE]E(] Eé.l.lajc |3 uoin)o;

B Behavior
b Disappearafter 500
Home Enbied True
EnableTheming True
Fixtures EnsbleviewState True
T MazimurmDrynamicDis 3
ayers e
Match Reports StaticDisplayLevels 2]
TaciTip o
League Tahle isible True
- B pata
Scorers (Expressiors)
shop DiataBindngs {Collection)
Diatasourcell siteData
Gallery B Layout
Height
Fan Club Orientation vertical
o width
About B Misc
Administration o) Menul
a | Tharne cllack,
) [v]|| staticpisplayLevels
<] I [» The number of levels displayed in the
@ Design | B Source [4][<dne= | [<divisidet divitnas :l ||| static part of the menu.
Ready

Figure 3-41

Note that if your links appear in red, rather than yellow, then you should switch to Source View
and ensure that your menu control is within a div with an ID of "nav":

<div id="sidebar">
<h3>Navigation</h3>
<div id="nav">
<asp:SiteMapDataSource ID="siteData" runat="server" />
<asp:Menu ID="Menul" runat="server" DataSourceID="siteData"
StaticDisplayLevels="2">
</asp:Menu>

5. Some properties need to have values set before this control will work and behave as it does on
the full version of Wrox United. Switch to Source View, and add the following properties in the
code:

<asp:Menu ID="Menul" runat="server" DataSourceID="siteData" StaticDisplayLevels="2"
orientation="Vertical"
StaticSubMenuIndent="0"
disappearafter="200"

93

Chapter 3

AccessKey="m"

EnableViewState="false">

<DynamicMenuStyle CssClass="dynamicMenu" />

<DynamicMenuIltemStyle CssClass="dynamicMenulItem" />
</asp:Menu>

6. Run thesite again and you’ll see the screen shown in Figure 3-42.

£ Wrox United - Microsoft Explorer 8=
File Edit View Favorites Tools Help o

O Back D - B @ G| Poearch Srravrites @ | 2% EDEH B

Address 4] http: flocalhost: 1340 WiraxUnited,

Wrox United

Download Code
View Page Source

Home

Welcome to the Wrox United Web site.

Home

Fixtures We're a great football team. No really, we are. Don't take any notice of our past performance. We're just

Players unlucky.
Match Reports

igni 31 Dec 2004
League Table New Signing ¢ 2C

e We are happy to announce the signing of Zllzchny Vlesjchizchic, an exciting new striker from Azchanokistan. An

underrated player at home, Zlllzchny provides pace aplenty and great ball control skills. He'll be playing his first
Sho
P match once he's accimatised to the warm weather. His normal playing conditions involve mountain heights of

Gallery 7,000 feet and snow and ice. The balmy weather in England is 2 bit of a shock.

Fan Club . .
: Wedding Bells 01 Dec 2004

LTl We are happy to announce the engagement of Larry Leon to Countess Annastoli Martique Bisham-Stagforth,

heiress to the Duke of Snohopeshire. Anna is a well known figure in country circles, often competing in 3 day
m eventing for her local horse club. She does tend to take four days to complete the event, but that's largely due
to Stafford, her aging horse, who can't seem to run as fast as he used to. The wedding will take place in aarly

el July, after the football season has ended.

[Daniambhas sa mask bina . Maw Fivtiira 13 Nov 2004 "]
< m | e

[@ http: ffacalost: 1340 Wroklnited Hstory, asox N Local intranst

Figure 3-42

Notice that you can hover over the About link and a flyout appears with submenu items,
including the History page, displayed. This is out-of-the-box dynamic functionality at its finest.

How It Works

94

The Menu control that was added to the Master page read the contents of the SiteMapDataSource con-
trol (siteData) and rendered a set of links corresponding to the data stored in that data source. The
SiteMapDataSource itself required no customization (other than a quick renaming). By default, the
SiteMapDataSource will read the Web. SiteMap file and act as a middle-man for the menu control so
that it can display links corresponding to the contents of the Web. SiteMap file.

The siteMapDataSource can be customized if required using the parameters described in the following
table.

Page Design

Property

EnableViewState

ShowStartingNode

SiteMapProvider

StartFromCurrentNode

StartingNodeOffset

StartingNodeUrl

Values

True/False

True/False

Any valid provider

True/False

Integer values

String representing
a URL of a page
defined within the
Web. SiteMap file

Result

Specifies whether the SiteMapData
Source control retains its data on post-
backs.

Specifies whether the root node should
be displayed on any control dependent
on this data source.

Can be used to specify a custom provider
(necessary if, for example, site map data
is stored in a completely different struc-
ture such as a . csv file or a database
instead of the Web. SiteMap file).

If set to true, then only sublinks from
the current node (active page) are
shown, instead of the entire hierarchy.

Used to shift the starting point of the
hierarchy inward. This could be useful
if you only want a Menu control to
show submenu links, and not the full
site structure. If the menu in Wrox
United had this value set to 1, the
menu would ignore all the first-level
menu items, and only show the next
level in the hierarchy. In the case of the
Wrox United hierarchy, this would
show the Future and Past Fixtures, His-
tory, News, and similar links.

Used to specify a different point at
which to start the hierarchy.

Binding a menu to a SiteMapDataSource control is a simple way to generate a hierarchy of links from
the Web. SiteMap data file, but it is possible to do much more via this data source control, including
binding to a completely different data source, and combining different controls (other than a menu) to
the data. If you're the sort of person who has to work with site map information stored in a completely
different format (other than web. SiteMap), then in order to get a working SiteMapDataSource control,
you’ll need to have a custom SiteMapProvider class available. Creating custom providers is an
involved process, which is beyond the scope of this chapter. For more information on this process, refer
to Professional ASP.NET 2.0, by Bill Evjen, Wrox Press.

The Menu control itself was changed slightly in this example to include some additional property values.

Here’s a look at these values:

95

Chapter 3

<asp:Menu ID="Menul" runat="server" DataSourceID="siteData" StaticDisplayLevels="2"
orientation="Vertical"
StaticSubMenuIndent="0"
disappearafter="200"
AccessKey="m"
EnableViewState="false">
<DynamicMenuStyle CssClass="dynamicMenu" />
<DynamicMenuIltemStyle CssClass="dynamicMenuItem" />
</asp:Menu>

The additional attributes on the Menu control itself are fairly simple. The two on the first line in the list-
ing (DataSourceID and StaticDisplayLevels) were set in the Properties pane in the example. The
remaining attributes control the following:

QO orientation: Used to have a horizontal menu bar on a page.

a StaticSubMenuIndent: Controls the depth of indentation used to render submenu items, if the
levels are set to appear in static mode.

QO DisappearAfter: Dictates how long a flyout will remain visible before disappearing.

(]

AccessKey: Enables keyboard shortcuts for enhanced usability.

O EnableviewState: An ASPNET feature that, if set to true, is used to maintain control state
when a page is posted back to the server. This is used, for example, on text boxes, when submit-
ting data to the server, for keeping the values in the text box when the page refreshes. This is
unnecessary in this control, and will slightly improve page performance if disabled.

In addition to these attributes are two properties that help to define the visible style of the rendered con-
trol. DynamicMenuStyle controls the appearance of the flyout itself, and DynamicMenuItemStyle con-
trols the appearance of the links. CSS controls the styling for these items. You'll learn more about this in

Chapter 5.

There is just one last navigation control to consider in this chapter: the Treeview control. This control is
very similar to the Menu control.

The TreeView Control

The Treeview and the Menu controls are very similar to implement, though the rendered experience is
quite different. With a TreeView control, you end up with a user experience more akin to using
Windows Explorer to work through the files stored on your file system, with expandable nodes that con-
tain sublevels.

Deploying the control is similar to deploying a Menu control —you just drag it onto the page and select
the SiteMapDataSource control to use to provide its data. If this control were used on the Wrox United
site, it would appear as shown in Figure 3-43.

Notice that the Home node and the Fixtures nodes are expanded in the preceding view, though the

About link is collapsed. If you replaced this control yourself, aside from some minor styling quirks, this
could easily be used to navigate the site instead of the Menu control.

96

Page Design

E Home
B Fixtures
Future Fixtures
Past Fixtures
Players
Match Reports
League Table

Scorers

Shop

Gallery
Fan Club

2 About

Wrox United

Download Coda

Home
Welcome to the Wrox United Web site.

We're a great football tearm. Mo really, we are. Don't take any notice of our past

performance. We're just unlucky.

Mew Signing 31 Dec 2004

We are happy to announce the signing of Zllzchny Yiosjchizehic, an exciting new striker from
Azchanokistan. &n underrated player at home, Zlllzchny provides pace aplenty and great ball
control skills. He'll be playing his first match once he's accilmatised to the warm weather, His
normal playing conditions invalve mountain heights of 7,000 feet and snow and ice. The balmy

weather in England is a bit of a shock.

wedding Bells 01 Dec 2004

we are happy to announce the engagement of Larry Leon to Countess Annastoli Martique

Bisham-Stagforth, heiress to the Duke of Snohopeshire, Anna is a well known figure in country

circles, often competing in 3 day eventing for her local horse club. She does tand to take four

&7 Wrox United . Microsoft | Explorer ===

File Edit View Favorites Tools Help a'
B ; ~ s T a

Q- @ HR@AG P Jorons @ - L BLJE B

advess 8] htepsiflocalhost: 1621/Ch3_wroUnibed] B> ERET

[l
I

H Local intranst

Figure 3-43

Summary

This chapter looked at the differences between code that the browser can understand and server con-
trols, which the server can convert into a format that is displayable on the browser. In particular, you

should now feel comfortable with the following facts:

Q

HTML is the language that the browser can understand, and is used throughout web program-
ming to form the web pages we view on any site.

XHTML is a version of HTML that follows a strict set of guidelines, with the aim that both cur-

rent and future browsers will be able to speak the same language, thus removing some of the

uncertainty when you're developing a web site.

Client-side code and server-side code are two different entities. Server-side code is processed on
the server, and is processed and turned into client-side code that the browser can understand.

ASP.NET’s server controls can be used to construct complex sites in a short time via the VWD
environment, and can be added to a page either in Design View or in Source View.

97

Chapter 3

Q Server controls are converted (by the server) into HTML that the browser can understand, and
JavaScript for dynamic client-side elements, provided the browser has JavaScript support.

QO Complex functionality can be added to a web site for navigating around the pages in a site with

minimal effort on the part of the developer.

The next chapter starts to look at how you can personalize a site by using server controls and some neat
ASP.NET functionality to log in to the web site.

Exercises

These exercises are designed to help you get more comfortable with the VWD interface. The sample code
(available from www . wrox . com) is an end solution, but you'll obviously gain more knowledge and
understanding by trying out these exercises for yourself. Answers to these exercises are in Appendix A.

1. Practice using the drag-and-drop functionality of VWD to put together a simple web page that
displays the following information:

Q The WroxUnited Logo (available for free download from www.wrox . com), or just use
any small image of your choice.

Q The names of the players and some information about each of them, arranged in a table,
as shown in Figure 3-44.

(2] Chapter03 - Visual Web Developer 2005 Express Edition D=
File Edt View Webske Buld Debug Formab Layout Tools Window Communiy Help
R R A=N" N A Lo ol |
- Tmes MewRoman - 12pt = | B I 0 |_:.Q_ ol | B - | = i=
» Exercisel.aspx| ServerControls.aspx SampleHTMLElements.bkm StaticHTMLPage. htm - X Foi |
= i
2 E
1V g
o)
WIrox.
uUnTieo,

This 15 1oy fan site for the Wrox United footbell team! ['ve met a few of the team - here's my notes from my meetings:

aseqee] fs [100 d:

Player Motes il
Chris Hart Signed my book! 2
Chris Ullman Sagned my footballl

.:c:ndg

EETT

[Design | B Source

Ready

Figure 3-44

2. Return to Wrox United and go to the Master page. Try deleting the Menu control and replacing it
with a Treeview control. Bind that control to the siteData data source, and you should see a
fully populated tree of items, both in Design View (shown in Figure 3-45) and when you run the
page (shown previously in Figure 3-43).

98

Page Design

Elexl_lniteil Visual Web Developer 2005 Express Edition
File Edt View ‘Webske Euld Debug

_ps g LX a0 o

kel ol

Formak Lawout Tooks Window Community Help

-|B I U|A 2
-

::J - H

Toolkox

B Lieral

[T caends
| hdRckator
.y FleUpload
W Wizard

[=l

51 mudriview
7] panel

[52] PlaceHoider
O View

|E ContentFlaceHclder
|15 Substitution
ﬁ' Localize

7 Data

[# Yalidation
|=/ Navigation
& Foirker

s+ ShaMapPath

[# WebParts
=l HTML
1= General

There are no usable
conkrals in this group,
Drag an kem onka this

text to add it to the

kol

Wrox United

[PageTitle]

SiteMapDataSource - siteData
T L

TreeYiew Tasks

Auso Format.,

Choose Data Source: | stelata g 1
(MNone)

Refrash Schema skaData

Ed Treehode Databin| <New data source. .. >

[show Lines

E Home

3 Match Reports

Table

Shop

Galle

ﬂ .<budr>. ladiv| <divétsidebars || <di

[w| @ Deson | & souwce |[<aspitreevi iewi>

Download Code
View Page Source

=m0 %)

|.1a.c|d>:3 asEqRE] Elae.c|d>:3 uDgnos E:l

sen.scmdg

Ready

Figure 3-45

99

Membership and ldentity

The concept of membership appeals to human beings on a low level, and stems from the sense of
wanting to belong to a group. We want to feel part of the team, and for others to know who we
are, so it was only a matter of time before the Web jumped on the bandwagon and adopted this
concept as a way of life. If you sit down and consider how many web sites you have logged in to
and stored a simple user profile, you may find that you're a member of many more groups than
you first imagined. From sites that sell books and gadgets to community sites that discuss the mer-
its of owning a Ford Puma, or that enthuse about a BBC TV comedy show called Look Around You,
I know I'm a member of far too many sites to name. And then there is the familiar dilemma of
“which username and password do I use to log in to this site?”

One of the most successful sites on the Web, Amazon.com, started life as a bookstore, but has
evolved into something much larger. When you log in to Amazon now, you find entire pages on
the site that offer only those items related to your spending habits.

In this chapter, you learn how to personalize sites using some of the membership features avail-
able to ASP.NET 2.0. This chapter discusses the following:

Q The concepts of identity, authentication, and authorization
The membership server controls, including the Login control
Storing member profiles so that they can be retrieved

Restricting access to certain areas of a site to allow only specified members

U 00 0

Personalizing a site based on the active user profile

You'll also extend the Wrox United sample application so that you can log in to the site and per-
sonalize the site according to a set of stored preferences based on the membership profile.

Chapter 4

Security Basics

You need to feel comfortable with some key important concepts before you start to put together
web applications involving membership, and those are the concepts of identity, authentication, and
authorization.

Identity — Who Am I?

When you think of your identity, you can use several unique features to describe yourself. For example,
you may be a woman with blonde hair who enjoys watching sci-fi shows and building PCs, but that’s
not necessarily of interest to someone who is interested in my skills on the badminton court. Identity
information stored on a web site will likely be tailored to only relevant aspects of a person. For example,
a shopping web site can store your name, telephone number, e-mail address, and home address, which
are all facts that are relevant to the sale of goods. They may not care about your interests (unless they are
as big as Amazon), so they won’t need to store that sort of information about you, but that doesn’t stop
you from having those aspects of your identity.

So your identity, the concept of who you are, is a collection of a wide range of facts. You may even have
a résumé (or CV as we Brits call it) that puts many of these facts down on paper, but these facts again are
only those relevant to potential employers. It's up to you to decide which facts to store on your résumé,
and which facts to leave off. The same is true when you store membership information about members
on a web site in that you should choose which facts you need to know about the members of a site early
in the development process.

Authentication — This Is Who |1 Am

When you attempt to log in to a web site, you pass in certain credentials; for example, an e-mail address
and password combination. The web site then has to determine that you are who you claim to be, so the
e-mail address and password combination that you enter must match the combination stored on file on
the server for the specified e-mail address.

The process of authentication is all about proving you are who you say you are. The e-mail and password
combination is a tried and tested method adopted by many of the web sites out there offering retail or
community services, and although it’s not bulletproof, as long as you choose a strong enough password
and don't tell it to anyone, and as long as the site is coded well, your profile will be kept unique for your
use only.

Authorization — This Is What | Can Do

After you pass in your username and password to a web site, the web server then not only verifies that
the password matches the username, but it also checks to see what permissions you have been granted
by the webmaster of that site. The next step from authentication is authorization, and this is the process of
retrieving more information about the type of user account you have with a site.

Take, for example, a banking web site. After your login credentials are verified, the server looks to see
what level of access you have to the site. Like most users of a bank site, you'll be authorized to check
your balances and perhaps transfer money between accounts or pay bills. If, however, the bank was the
victim of a security scare (like many phishing e-mails circulating around the Internet), you may find that

102

Membership and ldentity

you suddenly lack permission to add third-party standing orders to your account via the online applica-
tion until the security issues have been resolved. This switching off of functionality may well be con-
trolled by the administrators of the server by setting a special flag against either a subset of users or all
users, stating that they no longer have authority to amend their account details.

Logging In to a Site

The process of logging in to a site, from a user’s perspective, is a case of entering a set of credentials, and
then being shown a different user interface corresponding to your profile. Commonly, this will happen
by username and password combination; however, more secure sites, such as banking web sites, can use
other methods of logging in, including PINs and security certificates. The general principle of authenti-
cation remains the same, though, regardless of the method used to pass those authentication credentials
to the server. And after you're authenticated, it’s a simple matter to inquire about whether you have the
required level of access for the resource you're looking for via the authentication mechanism.

ASP.NET Security

ASP.NET 2.0 has some great tools available to help with implementing a login-authentication-authoriza-
tion framework with minimal effort. In previous editions of ASP.NET, you would have to write code to
implement a login framework, to authenticate against a database, and to react to the currently logged-in
user. Though you will still eventually find yourself having to write code for working with users (as
you'll discover in later chapters), a lot of the pain of the initial process has been taken away with the
inclusion of some great controls and wizards. In this section, you learn more about the server controls
available for working with logins, and the ASP.NET Web Application Configuration utility.

Login Controls

In this section, you start the process of building up a simple mock web site with just two pages; a
Default.aspx as the front page and a 1ogin.aspx page for logging in to the site. You'll work through
a series of steps using Try It Out examples, and then pause along the way to look at what’s going on
behind the scenes. Later in this chapter, you'll take some of these principles and apply them to the Wrox
United web site to integrate the login framework into that application.

This section introduces the following controls:
Q The Login control, which provides text boxes, buttons, and built-in validation to enable you to
add login functionality to a page with a single drag-and-drop operation.

Q The LoginView control, which provides a way of altering the appearance of the page depen-
dent on whether a user is logged in or not, or showing different content to different groups
of users.

Q The LoginStatus control, which gives a simple bit of feedback to users so that they know
whether they have remembered to log in to the site.

In the following Try It Out, you put some of these controls to use. This example builds up the skeleton
site by creating the pages and adding the login controls.

103

Chapter 4

_ Personalized Site: Web Page Design

1. Open VWD and create a new blank web site in your C: \BegASPNET2\Chapters\Begin direc-
tory called Chapter04. By default, you should have a page called Default.aspx already added
to the project, as shown in Figure 4-1.

=] Chapter04 - Visual Web Developer 2005 Express Edition B[]
File Edt View ‘Webskte Buld Debug Toals Window Commurity Help
R R a0 m D L o -
Tookbo ~ B X Default.aspst | Start Page ~ 3 | Solution Explorer -~ 8 x
= [T — .
Sk Client Objects & Events |z| (Mo Events) v
1 <@ Page L e EventUircup='true" CodeFil
A Label 2]
[abl] TecetBios 3 <|DOCTYPE html PUBLIC *-//W3C//DTD ¥HTML 1.0 Transitio
Butten o 4
) S <htnl xmlns=*hoops /fw, wd ora/1999/henl® »
LinkButton 50 <head runat="server"s
(@) ImageButton 7 <viclesUnvivled Page</citler =
A T 2 -t fheads
= ; 3 <body> N
E DvopDownlist Lol <form 1d="forml" runat='server’s CSclution Expl.., #0akabase Ex...
23] ListBox tin dive Iz Hes LA
| Checks “i
» L3 < divs 2divz =
2= CheckBoxlist H < forme
(&) RadoButton {H s sbodys
?,E RadoEutt i </htnlx> -~
|8l Image
| ImageMap it e
[Table :
: al . m N
—_— o - — — g— =
) iddenF [v| Boesn @ souce | <htmiz| | <body>| <formaformi > Il
Ready
Figure 4-1

2. Time to add some controls. Switch to Design View, drag on a LoginView control from the Login
controls section of the Toolbox (see Figure 4-2). In the Common Tasks menu that appears, ensure
that Anonymous Template is selected and type You are not logged in in the main box.

El Chapter0d - Visual Web Developer 2005 Express Edition @&
File Edt View ‘Webskte Buld Debug Formab Layout Tooks Window Community Help

R RPN N NI RCE R B R AR R N =

; - -] ez u bl sl B

Tookbo ~ B X Default.aspu®| Start Page - 3 | Solution
L [=
=5 SheMapPath 5”ELongmwl SESEERSs \Chapternd’,

=) Merw Tou are not logged | Aop_Data

i TreeNiew in Viws: | AnomymousTemplate !E 4 | Default,aspx

=/ Login e o e Auciminister Website
'
Q& Login

aﬁ, Logirfiew

83 PasswordRecovery
) Loginstatus

S Properties - X
) Logirizme

& CreatellesrWizard Login¥iewl System.Web. UlLWebCo =
8. ChangePassward 4] | z | =

1# WebParts (Expressions)
12 HTML B Misc
= General = (10

Expilorer

-2 x

()| B

Edit. RoleGroups...

cdsclubion Expl... #MDatabase Ex...

Login¥iewl |
v

There are no usable
conkrals in this group,
Drag an kem onka this

tettoaddibtothe [G Desen | @ Source 14| <body | [<div> | [Faspieanviewslognient] -

Ready

104 Figure 4-2

| Misc

Membership and ldentity

3. Pop out the Common Tasks menu again by clicking the small arrow in the top right and select
LoggedInTemplate from the drop-down list, then type You are logged in in the box. This will
ensure that the page will tell you when you're logged in or not.

4, Drag a LoginStatus control onto the page underneath the Loginview control, as shown in
Figure 4-3. This control will give you a hyperlink to either log in or log out, depending on
whether or not you're currently logged in.

(2] Chapter0d - Visual Web Developer 2005 Express Edition B[]
File Edt View ‘Webske FEuld Debug Formak Layout Tooks Window Community Help
A TIE A R AR AL R A R A=N WA -5
- Times Mew Roman - 1208 = | B 7 U|A 2L |E- | i= i= |)
Toobox = B X Default.asps*| Start Page ~ % | Solution Explorer >0 x
k Fairter =l _ =N el FAiai=llaR)
= ShemapPath LognViewl 12 C\..\ChapterDd’,
=] Tou are logged in 3 App_Data
T Treeliew 4 5| Default.aspx
I=! Login F
& Forker Logm
'35 Login
B Logiriiew
B3 PasswordRecavery CSelution Expl... .'_"g,:::abasc Ex..
=
P t a x
i) Log ropertios -
35- Createlserizard DOCLMENT hd
@, ChangePassward il IFEe=)
WebParts Blirk. .\A
1+ HTML Background
= General = BaCoky I
EgProperties sl
There are no usable ALink
conkrals in this group, e
[e e Color of all active links in the document.
texct to add it o the i 3 bod:
el [w]| [Desion | & Source
Ready
Figure 4-3

5. Thenext step is to create a login page, so right-click the root of the web site in the Solution
Explorer and select Add New Item. In the dialog box that appears, depicted in Figure 4-4, select
Web Form and call it Login.aspx.

Add New Item - C:\BegASPNET2 Chaptei04! (2]%]
=
¥isual Studio installed templates
5] wheb Form [|Master Page 8] web Ussr Conkral
|#] HTML Page] web Service e Class
A Style Sheet a]GlObﬂl Application Class | Web Configuration File
| ML File | 2] #ML Schema =] Tesdt File
i Assembly Resource File | 2] Data Component | Database
i Genenic Handler @k Imags Generstor |4 Site: Map
My Templates
& add Mew Onine Temglate. ..
A Form For Web Applications
Marne: Login} aspi
Language: Visual C# v‘| [[]Place code in separate file
[5elect master page
[Add] | Cancel
Figure 4-4

105

Chapter 4

6. Inthe newly created page, switch to Design View and drag a Login control onto the page from

the Login section of the Toolbox, as shown in Figure 4-5.

Il_;' hapterdd - Visual Web Developer 2005 Express Edition

File Edt View ‘Webskte Buld Debug Formab Layout Tooks Window Community Help

R A RA=N" N N EEN - R b S -

: - - - A 2=
; |Bzulaei= =" >]
Taokbax -1 x Login.aspe® | Defauk.aspec® | Start Page ~ 3 Solution Explorer -0 x

~ ; ERNEN s

5 SkeMapPath I N Sy E,|£|| =] (= | G @

| Merw : Logln T (3 T\ \Chapter0d’,
