

Beginning
ASP.NET 2.0 with C#

Chris Hart, John Kauffman, David Sussman, and Chris Ullman

01_042583 ffirs.qxd 4/4/06 2:38 PM Page iii

01_042583 ffirs.qxd 4/4/06 2:38 PM Page ii

Beginning
ASP.NET 2.0 with C#

01_042583 ffirs.qxd 4/4/06 2:38 PM Page i

01_042583 ffirs.qxd 4/4/06 2:38 PM Page ii

Beginning
ASP.NET 2.0 with C#

Chris Hart, John Kauffman, David Sussman, and Chris Ullman

01_042583 ffirs.qxd 4/4/06 2:38 PM Page iii

Beginning ASP.NET 2.0 with C#
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2006 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN-13: 978-0-470-04258-8
ISBN-10: 0-470-04258-3

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/SQ/QU/QW/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate
per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd.,
Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESENTATIONS
OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND
SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PAR-
TICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE
ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD
WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PRO-
FESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAM-
AGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A
CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE
PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS
IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Department within the United States
at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Library of Congress Cataloging-in-Publication Data:

Beginning ASP.net 2.0 with C# / Chris Hart ... [et al.].
p. cm.

Includes index.
ISBN-13: 978-0-470-04258-8 (paper/website)
ISBN-10: 0-470-04258-3 (paper/website)
1. Active server pages. 2. Web sites—Design. 3. Microsoft .NET. 4. C# (Computer program language) I. Hart, Chris, 1976-
TK5105.8885.A26B4535 2006
005.2'76—dc22

2006007661

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trademarks or
registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be
used without written permission. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not
associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

01_042583 ffirs.qxd 4/4/06 2:38 PM Page iv

www.wiley.com

About the Authors

Chris Hart
Chris normally works at Trinity Expert Systems Plc, based in Coventry (UK), but is currently on mater-
nity leave. She’s worked on several major .NET, SharePoint, and CMS applications. She enjoys having a
job where she gets to learn and play with new technologies on a regular basis, often working on-site
with customers. She’s been using .NET since the pre-Alpha days, and yet still enjoys the fun of working
with beta software.

Chris lives in Birmingham (UK, not Alabama) with her extremely understanding husband James and
baby Nathan, and is discovering that motherhood is more challenging than developing a CMS system
for a major client. She’s currently trying to work out how to make the home network toddlerproof.

I’d like to thank James for being so understanding — this was the hardest one yet, and you were great.
Thanks also to my brother Rob for your inspiring creativity — best of luck in your final year at Uni.
Thanks to Lou for designing the Wrox United site, and for being such a fantastic friend. Finally, thanks
to Nathan for waiting eight more days after I finished my final drafts before arriving into the world.

Chris Hart contributed Chapters 3–5 and 11 and Appendix C to this book.

John Kauffman
John Kauffman was born in Philadelphia, the son of a chemist and a nurse. He received his degrees from
The Pennsylvania State University, the colleges of Science and Agriculture. His early research was for
Hershey foods in the genetics of the chocolate tree and the molecular biology of chocolate production.
Since 1993 John has focused on explaining technology in the classroom and in books.

In his spare time, John is an avid sailor and youth sailing coach. He also enjoys jazz music and drum-
ming. In addition to technical material, he manages to read the New Yorker magazine from cover-to-
cover each week.

John Kauffman contributed Chapters 1, 2, 7, and 8 and Appendix D to this book.

Dave Sussman
Dave Sussman is an independent trainer, consultant, and writer, who inhabits that strange place called beta
land. It’s full of various computers, multiple boot partitions, VPC images, and very occasionally, stable soft-
ware. When not writing books or testing alpha and beta software, Dave can be found working with a vari-
ety of clients helping to bring ASP.NET projects into fruition. He is a Microsoft MVP, and a member of the
ASP Insiders and INETA Speakers Bureau. You can find more details about Dave and his books at his offi-
cial website (www.ipona.com) or the site he shares with Alex Homer (http://daveandal.net).

Dave Sussman contributed Chapters 6, 9, 14, and 15 and Appendix E to this book.

01_042583 ffirs.qxd 4/4/06 2:38 PM Page v

Chris Ullman
Chris Ullman is a freelance web developer and technical author who has spent many years stewing in
ASP/ASP.NET, like a teabag left too long in the pot. Coming from a Computer Science background, he
started initially as a UNIX/Linux guru, who gravitated towards MS technologies during the summer of
ASP (1997). He cut his teeth on Wrox Press ASP guides, and since then, he has written on over 20 books,
most notably as lead author for Wrox’s bestselling Beginning ASP/ASP.NET 1.x series, and has con-
tributed chapters to books on PHP, ColdFusion, JavaScript, Web Services, C#, XML, and other Internet-
related technologies too esoteric to mention, now swallowed up in the quicksands of the dot.com boom.

Quitting Wrox as a full-time employee in August 2001, he branched out into VB.NET/C# programming
and ASP.NET development and started his own business, CUASP Consulting Ltd, in April 2003. He
maintains a variety of sites from www.cuasp.co.uk, his “work” site, to www.atomicwise.com, a selec-
tion of his writings on music and art. The birth of his twins Jay and Luca in February 2005 took chaos to
a new level. He now divides his time between protecting the twins from their over-affectionate three-
year-old brother Nye, composing electronic sounds on bits of dilapidated old keyboards for his music
project Open E, and tutoring his cats in the art of peaceful co-existence and not violently mugging each
other on the stairs.

Chris Ullman contributed Chapters 10, 12, 13, and 16 and Appendix B to this book.

01_042583 ffirs.qxd 4/4/06 2:38 PM Page vi

Credits
Senior Acquisitions Editor
Jim Minatel

Development Editor
Brian Herrmann

Technical Editor
Dan Maharry

Production Editor
Felicia Robinson

Copy Editor
Kim Cofer

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Graphics and Production Specialists
Jennifer Click
Alicia B. South
Julie Trippetti

Quality Control Technicians
John Greenough
Brian Walls

Project Coordinator
Bill Ramsey

Proofreading and Indexing
Techbooks

01_042583 ffirs.qxd 4/4/06 2:38 PM Page vii

Chris Ullman: All my love to my wife Kate and the boys.

01_042583 ffirs.qxd 4/4/06 2:38 PM Page viii

Acknowledgments

Chris Hart
I’d like to thank James for sharing me with a laptop while I wrote this book—this was the hardest one
yet, and you were great. Thanks also to my brother Rob for your inspiring creativity—best of luck in
your final year at Uni. Finally, big thanks to Lou for designing the Wrox United site, and for being such a
fantastic friend.

John Kauffman
I gratefully acknowledge the help of the Microsoft ASP.NET 2.0 development team, particularly Bradley
Millington. It was Brad who first demonstrated the enormous capability of the ASP.NET 2.0 data con-
trols to me and has continued to tutor me in the best use of the code his team developed. I also deeply
appreciate the ongoing advice and friendship of my co-author Dave Sussman.

Dave Sussman
I would like to thank everyone on the ASP.NET team for supplying interim builds and answering many
questions; Dan Maharry for his invaluable reviewing; and Brian Herrmann for coping admirably with
not only my writing, but also my occasional stroppy fits.

Chris Ullman
Thanks to everyone on the author team (Dave, Chris, and John) for being available for my Messenger
and email queries, thanks to Dan for being an honest reviewer and always ready with good advice, and
thanks to Jim and Brian for being patient on the chapters—I got there eventually!

01_042583 ffirs.qxd 4/4/06 2:38 PM Page ix

01_042583 ffirs.qxd 4/4/06 2:38 PM Page x

Contents

Acknowledgments ix
Introduction xxiii

Chapter 1: An Introduction to ASP.NET 2.0 and the Wrox United Application 1

The Site You Will Build 3
ASP.NET 2.0 — A Powerful Tool to Build Dynamic Web Sites 4
Simple Solutions for Common Web Site Tasks 5

Consistency and Personalization 5
Navigation 5
Login, Security, and Roles 5
Connection to Data 6
Code 6
Componentization 6
Web Services 6
Performance and Caching 6
Errors and Exception Handling 7
Deployment 7
Development Tools 7

Where Does ASP.NET 2.0 Fit with Other Technology? 7
Exploring the Wrox United Application 8
Getting Started with Your Wrox United Site 10
VWD Express — A Development Environment 10

Introducing the ASP.NET Development Server 11
VWD’s Solution Explorer 11
Creating, Opening, and Using Web Sites and Pages with VWD 13
The Sample Code (Download) Directories 14
Running a Page 15
Design Surface 16
Toolbox 18
Properties Window 20
Error List Window 22
VWD’s Database Explorer 24

Summary 25
Exercises 25

02_042583 ftoc.qxd 4/4/06 2:39 PM Page xi

xii

Contents

Chapter 2: Site Design 27

General Design Objectives 28
Master and Content Pages 29

Creating a Master Page 29
Creating Content Pages 31
A Sample of Master and Content Pages 33
Using Cascading Style Sheets in a Master Page 34

Additional Capabilities of Master Pages 39
Multiple Levels of Master Pages 39
Master Pages Support Multiple Content Placeholders 41

Creating a Site Map 42
General Guidelines for Site Design 45
Standard Files for ASP.NET 2.0 Applications 45

Web.config Holds Settings for the Entire Site 45
Global.asax Holds Code for the Entire Site 50
Editing Site Configuration Through a Web Browser 50

Troubleshooting Site Design Errors 53
Summary 53
Exercises 54

Chapter 3: Page Design 55

Static Page Design 55
The World of HTML 62

From HTML to XHTML Code 66
Dynamic Content 68

Dynamic Client Code and Dynamic Server Code 69
Introduction to Server Controls 69

The Server Control Toolbox 70
What Are Server Controls? 71
Source View in VWD 75

Types of Server Controls 80
Standard Controls 80
HTML Controls 82
Navigation Controls 83

Summary 97
Exercises 98

02_042583 ftoc.qxd 4/4/06 2:39 PM Page xii

xiii

Contents

Chapter 4: Membership and Identity 101

Security Basics 102
Identity — Who Am I? 102
Authentication — This Is Who I Am 102
Authorization — This Is What I Can Do 102
Logging In to a Site 103

ASP.NET Security 103
Login Controls 103
Personalization 117
Membership 120
Authentication 125

Wrox United Security 128
Summary 131
Exercises 132

Chapter 5: Styling with Themes 133

Styling a Site 133
Style Attributes 134
CSS — Cascading Style Sheets 138
Themes 147
Applying Styling to a Site 165

Themes in Wrox United 167
Styling and Layout Best Practices 172

Usability 172
Accessibility 172

Summary 173
Exercises 174

Chapter 6: Events and Code 175

Web Server Architecture 175
HTTP Is Stateless 176

Server-Side Events 177
Adding Events to the Page 178

The Postback Architecture 184
What Events Are Available? 186
Which Events Should I Use? 186

Events Aren’t Triggered by Users Only 189

02_042583 ftoc.qxd 4/4/06 2:39 PM Page xiii

xiv

Contents

Indirect Events 193
Canceling Events 196
Global Events 200
Summary 201
Exercises 202

Chapter 7: Reading Data 203

Introducing Databases 203
Using ASP.NET 2.0’s Data Controls 205

Introducing Data Source Controls 205
Introducing Data-Bound Controls 206
Data Source Controls and Data-Bound Controls Work Together 211
Configuring Data Controls with VWD 211

Data Source Controls 212
The Basic Properties of Data Source Controls 212
Hiding the Connection String 215
Details of the Connection String and Provider 217

Data-Bound Controls 218
Data-Bound Selection Lists 218
The GridView Control 225
The DataList and Repeater Controls 231
The DetailsView and FormView Controls 239

Data Source Controls with Parameters 242
Multiple Data Controls Working Together 247
Working with XML Data 253

Reading XML Data 255
Binding Syntax 258
Summary 259
Exercises 260

Chapter 8: Writing Data 261

Introduction to Writing Data 261
Options for Writing Data 262
DataKeyNames 262

Changing Existing Records 263
Adding New Records 269
Deleting Records 271
Uploading Pictures 274
Improving the Upload of Pictures 278
Summary 283
Exercises 284

02_042583 ftoc.qxd 4/4/06 2:39 PM Page xiv

xv

Contents

Chapter 9: Code 285

Variables and Data Types 285
Common Language Runtime Types 287
What Are All Those Curly Brackets and Semicolons For? 288
Declaring Variables 288
Assigning Values 289
Data Conversion 289
Null Values 291
Working with Strings 291
Working with Dates 294
Working with Arrays and Collections 297
Deciding Whether to Use Arrays or Collections 303
Enumerations 304
Constants 305

Statements 306
Operators 306
Decisions 312
Loops 316

Namespaces 326
Working with Classes 327

Creating Classes 328
Inheritance 338

Variable Scope and Lifetime 343
Generics 345
Summary 346
Exercises 346

Chapter 10: Componentization 347

The Separation of Code from Content 348
The Separation of Code from Design 349
Code-Behind 350

The Page Directive 350
Partial Classes 351
Event Handlers/Functions 351

Creating a Code-Behind File 352
Compilation in ASP.NET 2.0 356
The App_Code Folder 357

Data Layers 357
Two-Tier Applications 357
Three-Tier Applications 358
What’s New in ASP.NET 2.0 359
The Wrox United ObjectDataSource 364

02_042583 ftoc.qxd 4/4/06 2:39 PM Page xv

xvi

Contents

User Controls 367
User Control Structure 369
A Simple User Control 370
The Wrox United News User Control 375

Composite Controls 379
Assemblies and Custom Server Controls 379
Summary 380
Exercises 381

Chapter 11: Roles and Profiles 383

The Importance of Roles 384
Introducing Roles in Wrox United 385
Configuring Page-Level Authorization 396

Controlling Page Visibility 397
Working with Roles in Code 404
Enabling User Profiles 405
Building a Profile 406

Profiles in Wrox United 408
Storing Preferences 416

Managing Anonymous Shopping Carts 422
Summary 423
Exercises 423

Chapter 12: Web Services 425

Looking at Web Services 426
Consuming a Third-Party Web Service 427

The Life Cycle of a Web Service 430
Calling the Web Service 431
Transmitting the Web Service 431
Returning the Response 433
Using the Response 435

The Structure of Your Web Service 435
Processing Directive 435
Namespaces 436
Public Class 436
Web Methods 436

Creating a Web Service 438
Testing Your Web Service 441

The WSDL Contract 443

02_042583 ftoc.qxd 4/4/06 2:39 PM Page xvi

xvii

Contents

Web Service Discovery 444
DISCO 445
UDDI 445
Discovering Your Web Service 445

Adding the Fixture Service to Your Application 447
Putting It All Together 450
Remote Web Services — PocketPC Application 455
Web Service Security 459

Encryption and Message-Based Security 459
Authentication and Access Controls for Services 459

Summary 460
Exercises 460

Chapter 13: E-Commerce 461

The E-Commerce Pipeline 462
The Product Catalog 463

The Structure of the Catalog 463
The Design of the Catalog 463
Implementation of the Catalog 464
The Product Item Page 471

The Shopping Cart 477
The Shopping Object 477
The Profile 487
The Shopping Cart Control 489

Checkout 502
Order Processing 503
Login 503
Address/Delivery Details 503
Credit Card Handling 504
How You Intend to Checkout 505

Secure Transactions 520
What Else Can You Do? 520
Summary 521
Exercises 521

Chapter 14: Performance 523

Simple Techniques 523
Object Disposal 524
Database Connections 527
Stored Procedures 527

02_042583 ftoc.qxd 4/4/06 2:39 PM Page xvii

xviii

Contents

Strongly Typed Collections 536
Session State 537
View State 538

Pages and Code 539
Data Binding and Postback 539
Object References 540
StringBuilder Versus String Concatenation 540
Picking the Right Collection 542

Caching 543
Page Caching 543

Designing for Performance 548
Web Server Hardware and Software 549

Testing Performance 549
Tracing 549
Stress Testing Tools 552
Performance Monitor 552

Summary 553
Exercises 553

Chapter 15: Dealing with Errors 555

Defensive Coding 555
Parameter Checking 556
Avoiding Assumptions 557
Query Parameters 558
Validation 559

Exception Handling 564
What Are Exceptions? 565
The Exception Object 565
How to Trap Exceptions 566
Logging Exceptions 573
Mailing Exceptions 576
Raising Exceptions 578

Exceptions Best Practices 579
Global Exception Handling 579
Custom Error Pages 581

Configuring Custom Error Pages 582
Debugging and Tracing 583

Using ASP.NET Tracing 584
Using the Debugger 588

Summary 595
Exercises 596

02_042583 ftoc.qxd 4/4/06 2:39 PM Page xviii

xix

Contents

Chapter 16: Deployment, Builds, and Finishing Up 597

Site Deployment 598
Checklist 598
Compiling and Running Your Application 599
Publishing the Site 600
XCOPY Deployment 603
Common Problems Encountered When Deploying a Site 605

Testing and Maintenance 609
Testing Before and After 609
Maintenance 610

Where to Now? 617
References 618
Summary 618
Exercise 619

Appendix A: Exercise Answers 621

Appendix B: Setup 647

System Requirements 647
Processor 647
Operating System 648
RAM 648
Hard Disk 648
CD or DVD Drive 648
Display 648
Mouse 648

Visual Web Developer Express Installation 648
Web Site Folder Setup 654

IIS Setup (Optional) 654
Wrox United Installation 658

Network Service Enabling 659
Windows XP Home Edition Users Only 661
Checking the Installation with VWD and the ASP.NET Development Server 661
Checking the Installation with IIS 662

Troubleshooting 663

02_042583 ftoc.qxd 4/4/06 2:39 PM Page xix

xx

Contents

Appendix C: Wrox United Database Design 665

Players and Matches 666
The Players Table 666
The Goals Table 667
The Fixtures Table 668
The MatchReports Table 669
The Gallery Table 669

Standalone Tables 669
The Opponents Table 669
The News Table 670

Wrox United Store Tables 670
The Orders Table 670
The OrderLines Table 671
The Products Table 672

Appendix D: VWD Database Explorer 673

Opening the Database Explorer 673
Adding an Existing Database to the Database Explorer 673

Accessing Files 674
SQL Databases on a SQL Server (Including SQL Server Express) 675
Saving SQL Databases as an MDF File 676

Viewing Database Diagrams 677
Exploring a Table’s Structure 681
Observing and Editing Data of Existing Tables 682
Creating a New Database 683
Creating a New Table and Adding Data 683
Examining and Creating Views 684
Examining a Stored Procedure (SPROC) 689
Summary 690

Appendix E: CSS and HTML Quick Reference 691

Styling Pages and Controls 691
Creating Inline Styles 692
Linking Style Sheets to a Page 693
CSS Inheritance 693
CSS Styles 693
CSS Sizes 695
Fonts 695
Colors 696

02_042583 ftoc.qxd 4/4/06 2:39 PM Page xx

xxi

Contents

CSS Selectors 696
Floating Elements 698
Pseudo Classes 699

CSS Reference 699
Common HTML Tags by Category 704

Document Structure 704
Titles and Headings 705
Paragraphs and Lines 705
Text Styles 706
Lists 707
Tables 707
Links 707
Graphics, Objects, Multimedia, and Scripts 708
Forms 708
Frames 709

HTML Common Attributes to the CSS Property 709
Recommended Reading 711

Index 713

02_042583 ftoc.qxd 4/4/06 2:39 PM Page xxi

02_042583 ftoc.qxd 4/4/06 2:39 PM Page xxii

Introduction

There are many different technologies available today for developing complex web sites and web appli-
cations, and with so many to choose from, it’s great that there’s one technology in particular that stands
out from the crowd and is such a joy to use. ASP.NET 2.0 is a fantastic technology that enables you to
develop web sites and applications with very little hassle. Developing web applications was never this
easy, yet even though it may appear simple, there is real power and depth to this technology that enables
it to host even the most complex applications available today.

With every new release from Microsoft comes a new way of thinking, new technologies designed to
make your life easier, and the best-ever programming experience; ASP.NET 2.0 is no exception to this
rule. Whether you have developed web applications before, or if you are completely new to the world of
web development, there’s a lot to learn about this particular version of the technology.

Built on top of version 2.0 of the .NET Framework, ASP.NET 2.0 extends the functionality first seen in
ASP.NET 1.0 and 1.1. At its core, you have a control-based, event driven architecture, which means that you
have the ability to add small blocks of code to a page, see dynamic results with minimal effort, and react
to user input to provide a smooth and intuitive user experience.

The biggest change since the previous edition of ASP.NET is in the amount of code you have to write—
the ASP.NET team aimed for a 70% reduction in the amount of code you write, and having spent time
myself working with ASP.NET 2.0 in the field, even if this claim does sound somewhat large, the reduc-
tion in time spent with fingers on keys is very noticeable. The mundane and repetitive tasks that you
would have previously had to complete have been simplified. For example, providing user login func-
tionality to a site is now a very swift process—adding a few controls to a page and setting up some user
accounts is pretty much all you need to do to get basic user login functionality implemented on a site,
and personalizing the user experience is just a step away from there.

Now add the new development environment designed for building ASP.NET 2.0 applications, Visual
Web Developer (available on its own, or as part of Visual Studio 2005), and you will find building
dynamic, feature-rich applications to be a fast, smooth process.

Visual Web Developer is a new innovation from Microsoft, and was developed mostly in response to
developer demand. Previous editions of Visual Studio .NET were not great when it came to web pro-
gramming, and you’d often find your code had been “fixed” for you behind the scenes, as your HTML
came out looking very different from the way it went in originally. Visual Web Developer has a fantastic
HTML editing environment, and a really smooth and intuitive interface for developing complex
ASP.NET applications. Best of all, it’s a low-cost product, which makes it accessible to a wide audience
who may not be able to afford the complete Visual Studio package.

03_042583 flast.qxd 4/4/06 2:39 PM Page xxiii

xxiv

Current Head

Who This Book Is For
This book will teach you how to program web applications in ASP.NET 2.0 that can display data stored
in a database, provide a personalized user experience to your users, and even offer shopping functional-
ity. All of these sorts of web applications can be developed using ASP.NET 2.0, so if these are the sorts of
applications that you are interested in developing, then this is a great place to start.

This book is for anyone new to web programming, or who has a small amount of knowledge of web pro-
gramming concepts. Maybe you want to start a career as a web developer? Or perhaps you just want to
learn how to use some cool server-side technology to put together some sites in your spare time? In
either case, this book will teach you what you need to know, and give you a good feel for how the tech-
nology works, how to use the Visual Web Developer environment to speed up your development, and to
give you total control over the development process.

The earlier chapters in this book will ease you in to the world of ASP.NET development, and if you
already have some knowledge of programming, then you will find these early chapters a swift and
pleasant read. Note, though, that ASP.NET 2.0 has a lot of neat tricks and tools at its disposal, and we’ll
be introducing these throughout the book. As with other Wrox Beginning books, you’ll find that the con-
cepts discussed in one chapter are then used and extended in other chapters.

What This Book Covers
This book teaches you ASP.NET 2.0, with the help of the Visual Web Developer IDE (Integrated
Development Environment). Working through this book, you will learn how to develop powerful data-
driven web applications, and even to expose functionality using web services. Here’s how the book
shapes up over the next 16 chapters.

Chapter 1: An Introduction to ASP.NET 2.0 and the Wrox
United Application

This chapter provides an overview of ASP.NET 2.0 and the Visual Web Developer environment, and will
give you a chance to create and run a simple page. You’ll also learn about the Wrox United sample web-
site, which we’ll use in examples throughout the book to demonstrate different aspects of ASP.NET 2.0.

Chapter 2: Site Design
Now that you’ve gained some familiarity with creating simple pages, this chapter will discuss the con-
cept of site design, and introduce the concept of a master page, which can be used to provide a consis-
tent look for all pages on a site. We’ll also introduce Web.config and global.asax—two important
ASP.NET files that control the behavior of a site, and the concept of a site map, for defining a site page
hierarchy.

Chapter 3: Page Design
This chapter starts by providing a quick crash-course (or a refresher course as the case may be) in HTML
and XHTML development, and introduces the crucial concept of server controls. The chapter continues by
demonstrating several of the built-in server controls in action to provide navigation functionality on a site.

Introduction

03_042583 flast.qxd 4/4/06 2:39 PM Page xxiv

xxv

Current Head

Chapter 4: Membership and Identity
One of the big new features of ASP.NET 2.0 is the addition of the Login server controls, so this chapter
introduces these controls, alongside discussions of how to create user accounts, how to configure roles,
and how to enable login functionality on a site.

Chapter 5: Styling with Themes
After the functionality of a site has been developed, it’s important to make a site look and feel the right
way. This chapter introduces CSS style sheets, and integrates them into the discussion of ASP.NET’s
Theme functionality, making it simple to keep your functionality and your site styling cleanly
separated—great for future maintainability!

Chapter 6: Events and Code
Reacting to events involves writing code, so this chapter talks about server-side coding concepts and
how web servers work. We walk you through the basics of HTTP so that you will gain an understanding
of the postback, and how you can write code to handle postback events.

Chapter 7: Reading Data
Developing a site will almost always involve reading data stored in a database, and displaying that data
on the screen, so this chapter talks about how you can use ASP.NET controls (such as the GridView,
DataLists, and DetailsView controls) to connect to a database and display data. This chapter also dis-
cusses reading data stored in an XML file.

Chapter 8: Writing Data
The storing and updating of data is the next topic to be covered in this book, and in this chapter, you
learn some useful techniques for safely updating the data stored in the database using parameters and
referring to data using keys that uniquely identify items in a database.

Chapter 9: Code
This chapter teaches you the fundamental programming concepts that you need to understand if you are
to become a fully-fledged .NET developer. We start by taking you thorough basic variables and data
types, before looking at collections, statements, operators, branches, and loops. Then we introduce some
object orientation and talk about classes, properties, methods, and simple class design principles.

Chapter 10: Componentization
Having learned all about the principles of code in the previous chapter, this chapter takes those building
blocks and talks about creating pages with separate code files, and about how to design applications
with logic stored in different classes or files. This chapter also introduces the concept of user controls,
which are great for storing pieces of code that can be reused across pages on a site.

Introduction

03_042583 flast.qxd 4/4/06 2:39 PM Page xxv

xxvi

Current Head

Chapter 11: Roles and Profiles
Following on from simple user accounts and roles as introduced in Chapter 4, this chapter builds on the
concept of site design, and changing the appearance of a site depending on which user is accessing the
site. This chapter also looks at storing user profiles and populating profiles in code, as well as switching
the theme used on a site according to user preferences.

Chapter 12: Web Services
At this stage in the book, you’ll have gained sufficient experience with ASP.NET 2.0 and coding that you
should now be ready to enter the world of Web Services. First, we show you how to consume a third
party Web Service, and use that functionality on a page. Next, you get the chance to build your own Web
Services, and learn about proxies and WSDL.

Chapter 13: E-Commerce
Adding e-commerce functionality to a site can be a bit tricky, so this chapter walks you through the e-
commerce facilities built in to the Wrox United sample application, looking at how to implement a prod-
uct catalog, and build a shopping cart system that links in to user’s profiles.

Chapter 14: Performance
You may find your rather lovely web applications may crawl to a halt if you haven’t quite tweaked them
the right way to make them perform well under heavy loading, so this chapter talks about many of the
different ways you can enhance the performance of an application. This includes concepts such as dis-
posing of objects, using stored procedures, and making efficient use of caching.

Chapter 15: Dealing with Errors
Errors happen whenever you develop any application, so in this chapter, we talk you through some of
the most common ways to handle errors, how to trap exceptions, and how to present custom error pages
to users of your site. After all, users don’t need to know that your database server collapsed, but they
would like to know that if the site is down, the faults will be rectified shortly. You can then use some of
the excellent debugging and tracing functionality available in ASP.NET.

Chapter 16: Deployment, Builds, and Finishing Up
In the final chapter of the book, we talk you through the ideal way to deploy a finished web application
to a live server. The application used as an example is the Wrox United application, which you can pub-
lish using both the Visual Web Developer tools, and what’s known as XCOPY deployment. We also look
at testing the deployment and looking out for common deployment problems. The final part of the chap-
ter reviews the different parts of the Wrox United application, and recaps where each part of the applica-
tion was discussed in the book. Finally, we give you some pointers as to where you can head next to
further your ASP.NET development career.

Introduction

03_042583 flast.qxd 4/4/06 2:39 PM Page xxvi

xxvii

Current Head

How This Book Is Structured
This book explains concepts step-by-step, using worked examples and detailed explanations, to tell the
story of how to develop ASP.NET applications. Each chapter assumes knowledge developed in previous
chapters, so you will likely find a front-to-back study approach works best to understand the concepts
explained. There are four authors who worked on this book as a team, and we all worked quite closely
together (with some great editorial support), to give you a steady and complete tutorial of the basics of
developing ASP.NET applications.

What You Need to Use This Book
To gain the most from this book, you should have the following software installed on your system:

❑ A minimum of Windows XP Home Edition as your operating system

❑ Microsoft Visual Web Developer

❑ Microsoft SQL Server 2005 Express Edition

Because Visual Web Developer includes the .NET Framework and ASP.NET 2.0, these three pieces of
software are all you will need to develop ASP.NET applications.

Conventions
To help you get the most from the text and keep track of what’s happening, we’ve used a number of con-
ventions throughout the book.

Try It Out
The Try It Out is an exercise you should work through, following the text in the book:

1. They usually consist of a set of steps.

2. Each step has a number.

3. Follow the steps through with your copy of the code.

How It Works
After each Try It Out, the code you’ve typed will be explained in detail.

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

Boxes like this one hold important, not-to-be forgotten, information that is directly
relevant to the surrounding text.

Introduction

03_042583 flast.qxd 4/4/06 2:39 PM Page xxvii

xxviii

Current Head

As for styles in the text:

❑ We italicize new terms and important words when we introduce them.

❑ We show keyboard strokes like this: Ctrl+A.

❑ We show file names, URLs, and code within the text like so: persistence.properties.

❑ We present code in two different ways:

In code examples, we highlight new and important code with a gray background.

The gray highlighting is not used for code that’s less important in the present
context, or has been shown before.

Source Code
As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is avail-
able for download at www.wrox.com. When you are at the site, simply locate the book’s title (either by
using the Search box or by using one of the title lists) and click the Download Code link on the book’s
detail page to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN. For this book, the
ISBN is 0-470-04258-3 (changing to 978-0-470-04258-8 as the new industry-wide 13-digit ISBN num-
bering system is phased in by January 2007).

After you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata, you may save another
reader hours of frustration, and at the same time, you will be helping us provide even higher quality
information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you
can view all errata that has been submitted for this book and posted by Wrox editors. A complete
book list, including links to each’s book’s errata, is also available at www.wrox.com/misc-pages/
booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

Introduction

03_042583 flast.qxd 4/4/06 2:39 PM Page xxviii

xxix

Current Head

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based sys-
tem for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At http://p2p.wrox.com, you will find a number of different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to pro-
vide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P, but in order to post your own messages, you
must join.

After you join, you can post new messages and respond to messages other users post. You can read mes-
sages at any time on the web. If you would like to have new messages from a particular forum e-mailed
to you, click the Subscribe to This Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-
tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

Introduction

03_042583 flast.qxd 4/4/06 2:39 PM Page xxix

03_042583 flast.qxd 4/4/06 2:39 PM Page xxx

1
An Introduction to

ASP.NET 2.0 and the Wrox
United Application

At the end of the twentieth century something unprecedented happened to personal computers.
Previously relegated to the realm of the business office and teenagers who never saw the light of
day, the explosion of the Internet lead to computers acquiring a glamour, an aura of excitement
that had never been associated with them before. Prior to the 1990s, it was almost embarrassing to
admit you worked with computers, and then suddenly everyone wanted one. Every business had
to be attached to the Internet, and many families wanted their own web site. If you had to name
one piece of technology that became synonymous with the explosion, it was undoubtedly the web
browser. However, without anything to view on a web browser, it becomes virtually useless. You
need information, and like mushrooms sprouting up in a forest, hundreds of web sites on every
imaginable subject were born.

The late ’90s were a time of vast upheaval. Business empires were founded on the simplest ideas —
a search engine (Google) or an online store for buying books (Amazon). Everyone wanted to
know how to build a web site for themselves. HTML (HyperText Markup Language) enabled them
to do that, but it was soon obvious that it only went so far. You could display pictures and text, but
what happened if you wanted more than that? What happened if you wanted a site that was reac-
tive, that received information from your users and was automatically updated without someone
having to beaver away writing new web pages every time? What if you wanted to attach a
database to the Internet, or you wanted to display a stock catalogue, or you wanted to personalize
your site to everyone who visited it, or you just wanted it to look good for your family and friends
who visited it?

The race was on and several competing technologies were created for doing this from CGI and
PHP to Java. Microsoft’s own entry into the race was ASP and what made it particularly attractive
was that it was simpler to pick up and learn than most of its rivals, but it also had some exciting
features — the ability to store details of users as they moved through pages on a web site, and con-
trols such as calendars and ad rotators that you could just stick into your pages like HTML tags.
ASP was a huge success. Microsoft went one step further — it created the .NET Framework, and
ASP.NET became a “grown up” version of its ASP technology, using its mature programming

04_042583 ch01.qxd 4/4/06 2:40 PM Page 1

languages VB.NET and C#. The leap forward in power was amazing, but Microsoft lost partial site of one
critical aim — simplicity. Web sites suddenly became things you needed expensive consultants to build
and cutting-edge designers to visualize. It was out of the hands of those who so empowered the boom.

ASP.NET 2.0 is the big step back in the right direction. Microsoft recognized that one thing people who
build web sites don’t want to do is have to code. Code is dull; code is geeky. However, Microsoft also
recognized that some people still have to code for a living. And more than that, these coders have to
build the same things, over and over again: a login mechanism, a menu system, a shopping cart, a funky
theme for your site’s backdrop applied to every page — something every web site requires. Two guiding
principles seem to be at work here: make it easier for the novice to use and reduce the amount of repeti-
tive work the developer has to do. Claims for ASP.NET 2.0 boast “70 percent less code” is needed;
ASP.NET 2.0 also comes with a multitude of controls to enable the developer to create login systems and
menus in minutes.

Late in 2003 we saw the previews of the new version of Active Server Pages named ASP.NET 2.0.
Everyone knew that these claims weren’t just hyperbole and that the way developers create web applica-
tions was going to change fundamentally. Microsoft expanded the powerful features of earlier ASP ver-
sions while greatly reducing the effort to implement those features. The ease of implementation meant a
reduction in the cost of developing complex sites. Or, put another way, there would now be a large
expansion of the number of people that have the capability to build a complex site.

In addition to ASP.NET 2.0 comes a new, affordable tool for creating these web sites: Visual Web
Developer Express. Microsoft’s previous attempts at providing tools for helping create dynamic web
sites have been clunky (Front Page) or have never really taken off (Visual Interdev), but this time they’ve
got it right. Visual Web Developer is part of the Visual Studio.NET suite, but a scaled-down version of
Visual Web Developer Express will be free in the foreseeable future. It allows you to drag and drop a site
together within minutes, is instantly recognizable to developers, and allows easy creation and manage-
ment of your web pages.

This book leads you step-by-step through creating dynamic, data-driven, complex web sites using
ASP.NET 2.0. To those ends, this chapter explains the basic ideas and examines the completed sample
site. You then learn how to use Visual Web Developer Express (VWD) to build ASP.NET 2.0 sites.

Specifically, this chapter covers five topics:

❑ An introduction to ASP.NET 2.0

❑ A review of the Internet programming problems that ASP.NET 2.0 solves

❑ An explanation of how ASP.NET 2.0 fits in with other technologies

❑ A tour of the dynamic features of a site built with ASP.NET 2.0

❑ Understanding the tool you will use to build ASP.NET 2.0 (ASPX) pages — Visual Web
Developer Express (VWD)

In previous books, we’ve been pleased if our readers can create a single page by the end of the chapter,
but ASP.NET 2.0 inspires much greater ambitions, and you will have the structure and outline of a work-
ing web site up by the end of the second chapter. Your web site will be focused around a hapless soccer
(football) team named Wrox United and will be able to display their news and results, sell their mer-
chandise, screen their footage, and offer different views of the site depending on whether you are a cus-
tomer or an administrator. And, as always, a list of gotchas and some exercises are included to help you
review the concepts covered in this chapter.

2

Chapter 1

04_042583 ch01.qxd 4/4/06 2:40 PM Page 2

The Site You Will Build
Go to www.wroxunited.net and have a good look at the site (the main page is shown in Figure 1-1).
This site is built entirely in ASP.NET 2.0 and is the site you will build in the book. Likewise, it is the site
that you will learn how to create a working miniature of in just two chapters.

Figure 1-1

On the home page alone you can see a menu system, a login control, and some news items — these are
all things that would have taken considerable time and code to create in any previous version of ASP or
ASP.NET. If you take the example of a login mechanism, you’d have to think of accepting a user ID and
password, checking that against an existing set of users and passwords, making sure the password
wasn’t corrupted in any way, and making sure that password was transmitted securely. So just to do
something relatively trivial, you’d be talking at least an hour or two of your time, with not much to
show for it. Now this could take seconds.

Click the View Page Source link — it doesn’t matter if you don’t understand what you see yet — there are
fewer than 10 lines of ASP.NET 2.0 code. All the coding in this book is done in C#. You can download the
complete site in C# from www.wrox.com. A working copy of the site is also hosted at www.WroxUnited
.net, although under the covers that public site is written in VB.

<%@ Page Language=”VB” Trace=”false” MasterPageFile=”~/site.master”
AutoEventWireup=”false” codefile=”Default.aspx.cs” Inherits=”_Default” %>
<%@ Register TagPrefix=”wu” TagName=”News” Src=”News.ascx” %>

<asp:Content ID=”Content1” ContentPlaceHolderID=”mainContent” Runat=”server”>

<h2>Welcome to the Wrox United Web site.</h2>

3

An Introduction to ASP.NET 2.0 and the Wrox United Application

04_042583 ch01.qxd 4/4/06 2:40 PM Page 3

<p>We’re a great football team. No really, we are. Don’t take any notice
of our past performance. We’re just unlucky.</p>

<wu:news id=”News1” runat=”server” ItemsToShow=”5”></wu:news>

</asp:Content>

Step through the different links in the menu and see how league tables and fixture lists work, and see
how few lines of code there are. Notice how the theme and style of the site remains consistent through-
out, yet there is no evidence of how this is done. Welcome to ASP.NET 2.0. This is about to revolutionize
how you build web sites from now on. You’re going to look at some of the features behind the Wrox
United site in more detail shortly, but first let’s talk about what ASP.NET 2.0 offers.

ASP.NET 2.0 — A Powerful Tool to Build
Dynamic Web Sites

The World Wide Web (WWW) on the Internet provides a wide expanse of connectivity. Virtually every-
one that uses computers has access to the Internet. But this pervasive reach was achieved by establishing
very minimal standards. Information is transmitted in ASCII characters, without a built-in capability for
machine-level code. The client requirements are very minimal — in fact the Internet itself does not have
any standards for how a browser works, and thus multiple browsers for multiple operating systems
(OS) and platforms exist. It is easy for us, in 2005, to forget that the Internet was designed to send simple
static pages of text with images and links.

The story of the past 15 years of Internet programming is an effort to provide sophistication and com-
plexity to the user experience without violating the WWW rules that demand extreme simplicity in page
design. Users expect an experience that comes close to desktop applications such as word processing
and database access. But such a level of complexity has not been easy to implement in the web given its
minimal configuration.

ASP.NET 2.0 fundamentally reduces the barriers for development of complex web sites. The ASP.NET
development team at Microsoft looked at thousands of pages, sites, and scenarios to create a list of com-
mon objectives of site owners. The list included about 20 goals, including reading data, a unified login
and authentication procedure, consistency in site appearance, and customization of pages for different
browser platforms. The team then set to work to create bundles of code that would achieve each objec-
tive in the right way, with a minimum of developer effort and with Microsoft performing extensive tests
of that code. This set of capabilities is available as classes (encapsulated and ready-to-use batches of code)
in ASP.NET 2.0. The end result is simple — developers can very quickly put together (and easily main-
tain) a complex site by merely assembling the building blocks Microsoft has developed in ASP.NET 2.0.
Instead of writing 50 or so lines of code (as in earlier versions of ASP), the designer can now simply drag
and drop a control to the page and answer some questions in a wizard. This control generates a small
amount of code for your page and the server uses that code to build pages in HTML that are then sent to
the browser. Because HTML is sent to the browser, there is no requirement for special capabilities on the
browser beyond the display of HTML and the execution of a single simple JavaScript script. Any
browser that can display HTML can display ASP.NET 2.0 pages. This includes not only desktop
browsers, but also PDAs, cell phones, and other devices.

4

Chapter 1

04_042583 ch01.qxd 4/4/06 2:40 PM Page 4

Because all the code for these controls is run on the server before a web browser ever gets a hold of a
page, these controls are known as server-side controls. The next section looks at what some of these server-
side controls can do.

Simple Solutions for Common Web Site
Tasks

Microsoft’s survey of sites in earlier versions of ASP created a list of common objectives that site pro-
grammers were implementing. Some objectives were easy to achieve but time-consuming, whereas oth-
ers were too complex for all but the most sophisticated developers. Overall, the programmers’ solutions
varied from brilliant to dysfunctional. Not only were the observed solutions sometimes poor, but they
also represented a tremendous waste of time, because thousands of programmers spent time planning,
writing, and testing code that had the same purpose. This section goes through 11 of the objectives for
which ASP.NET 2.0 offers built-in solutions. As you will see in Chapter 3 and beyond, these solutions are
in the form of ASP.NET 2.0 server-side controls that contain code to execute settings and behaviors. By
simply placing one of these controls on a page, the designer gets all of the behavior that would have
been hand-coded in the past.

Consistency and Personalization
Web designers tend to desire two conflicting design features. On the one hand, they want a consistent
look to the entire site. But conversely, they want users to be able to customize the site to the user’s taste
in colors, font size, and other features. ASP.NET 2.0 offers a MasterPage control that allows a site to be
consistent in the layout of its headers, menus, and links. Within that consistent layout, a designer can
add a control that allows users to pick one of several themes to apply to all pages.

Navigation
Every site requires tools for navigation, generally in three forms. Users need a menu. They also need to
be able to see where they are currently located in a site. And last, they want to be able to easily navigate
up or down a level. ASP.NET 2.0 supports an XML file called a SiteMap. ASP.NET 2.0 controls can then
render menus and other navigation aids based on the site map and the name of the current page.

Login, Security, and Roles
Many sites need a login system that can check a potential user’s ID and password against a list and then
authorize or deny entry. Although basic implementations are not difficult, only a small percentage of
programmers are successful in creating a system that conforms to best security practices. ASP.NET 2.0
offers a few controls that create and implement a logon better than most of us can program by hand.
Beyond simple site entry, the system offers password reminders and a system to create new users. A user
can also be assigned a role that determines what pages and features will be available for that user to
view. For example, all users can view the employee phonebook, but only users with the role of Manager
can view pages to change information about employees.

5

An Introduction to ASP.NET 2.0 and the Wrox United Application

04_042583 ch01.qxd 4/4/06 2:40 PM Page 5

Connection to Data
Although most dynamic web sites are connected to data, few designers are successful in implementing
the full suite of features that users desire. In sites built with older ASP versions, Microsoft observed many
problems in efficiency and security. Furthermore, even modest objectives required scores of lines of code.
ASP.NET 2.0 provides a rich suite of data features through two groups of controls for working with data.
Data source controls offer the behavior of connecting to sources of data. Data-bound controls take that infor-
mation and render it into HTML. The several data source controls can connect to almost any source of
data, and the data-bound controls offer the user tables, lists, trees, and other presentations. Working
together, these controls offer the user the capability to page through data, as well as to sort and edit data.

Code
Almost every web site requires customized code because it is impossible for ASP or any other web site
technology to anticipate the needs of all businesses. ASP.NET 2.0 supports more than 20 different lan-
guages. Regardless of the language the programmer uses, the code is translated into a single intermedi-
ate language prior to execution. ASP.NET 2.0 controls are executed on the server, but the programmer
also has the option of writing code (for example Java or other client-side script) in a block to go out for
execution on the client.

Componentization
Web sites are easier to develop and maintain if various parts can be created independently of each other.
Traditional ASP relied on large pages containing content, HTML, ASP controls, and scripts of code.
ASP.NET 2.0 provides more efficient models and structures to divide the site into logical parts. For
example, code is normally kept in separate files from the presentation layer (the text and HTML tags).
Furthermore, Visual Web Developer offers wizards to easily create objects to provide data resources.

Web Services
Enterprises offer information and services on their own sites. For example, from its worldwide head-
quarters, www.Ford.com can give you a list of colors and price quotes. But the past few years have seen
a demand for those services to be available to other sites. For example, a local Ford dealer may want to
offer the list of colors and prices at www.YourLocalFordDealer.com. Web Services allow a consumer
site (the local dealer) to obtain information from a provider site (Ford headquarters). The local Ford
dealer can display real-time data using web services provided by the Ford corporate site, but keep the
user on the page of the local site. ASP.NET 2.0 offers a complete web-services solution that conforms to
the specifications of SOAP (Simple Object Access Protocol, a way to ask for data from a web service) and
XML (Extensible Markup Language, a format for data).

Performance and Caching
After the designer writes a page on the development machine, it is compiled into the single uniform lan-
guage of .NET 2.0 called the Microsoft Intermediate Language (MSIL). Then it is copied to the deploy-
ment machine. The first time it is requested, the page undergoes a further compilation into the Common
Language Runtime (CLR), which optimizes the page for the hardware that will serve it. This two-step
process achieves the dual aims of consistency for software and optimization for hardware. Both steps
have undergone intensive performance analysis from the .NET 2.0 team. The great aspect for beginners
is that all of this compilation occurs automatically.

6

Chapter 1

04_042583 ch01.qxd 4/4/06 2:40 PM Page 6

ASP.NET 2.0 easily enables caching of pages so that subsequent requests are served faster. When cached,
the final version of a page is stored in the server’s RAM so that it can be immediately sent on the next
request rather than having the server rebuild the page. Furthermore, the designer can specify that only
parts of pages can be cached, a process known as fragment caching. Fragment caching accelerates the ser-
vice of non-changing portions of a page while still allowing the dynamic fragments to be custom gener-
ated. If you are using Microsoft SQL Server 7 or higher, you also have the option of data invalidation
caching for portions of the page that are data-dependent but less variable (perhaps a list of employees or
your retail outlets). Data invalidation caching keeps a page in cache until it gets a message from SQL
Server that the underlying data has changed. You cache a set of data with a designation to receive a SQL
data changed notice. SQL Server notifies .NET when the data has changed, which triggers ASP.NET 2.0
to perform a reread.

Errors and Exception Handling
Any web site, indeed any system, needs to respond to errors. ASP.NET 2.0 provides a system to respond
to errors. The response can be in code or it can be a redirect to an error page. The error page can be
unique to the error or it can be a single error page for the entire site. The .NET 2.0 Framework also
allows for multiple levels of error handling. If an error occurs in a data read, it can be handled at the
level of the data source. If it is not handled, the error bubbles up to the next level and can be handled
there. Unhandled errors continue to bubble up through layers with the designer having the option to
resolve the problem at the most effective level.

Deployment
In the past, sites deployed to Windows or Linux required a series of setup steps that registered and con-
figured the site on the host machine. The ASP.NET 2.0 team set a goal of XCOPY deployment, naming it
after an old DOS command that performed a simple copy of a folder and all of its subfolders. A simple
XCOPY deploys your site from the development machine to the deployment host. All registrations and
machine-level customizations occur automatically when the first request hits the site.

Development Tools
Microsoft has spent considerable effort improving tools for building ASP pages, namely the Visual
Studio, Visual Web Developer, and Visual Web Developer Express products. Although they are not part
of ASP.NET 2.0, these IDEs (Integrated Development Environments) allow drag-and-drop building of
pages. Most common actions are either automatic or guided with wizards. In cases where typing is
required, the IDE provides intelligent completion of most phrases. This book uses the freely download-
able VWD Express.

Where Does ASP.NET 2.0 Fit with Other
Technology?

Many people have questions about how ASP.NET 2.0 fits in with all of the other web-related terms (most
of them acronyms). We will clarify this now — where does ASP.NET 2.0 fit with other software that is
running on the server? What is its role, and what are the roles of the other pieces of technology?

7

An Introduction to ASP.NET 2.0 and the Wrox United Application

04_042583 ch01.qxd 4/4/06 2:40 PM Page 7

ASP.NET 2.0 is part of the .NET 2.0 Framework. The .NET Framework is a brand of Microsoft that sets
software standards for Internet connectivity using web services and XML. Many Microsoft products con-
form to the .NET standard, including various server software, data-management systems, and desktop
applications. ASP.NET 2.0 is the subset of .NET 2.0 that offers software for generating dynamic web sites.
The software is published in a set of classes holding various controls that execute their behavior on the
web server. In our day-to-day designing of pages, we work with these server-side controls. Because
ASP.NET 2.0 is a subset of the .NET 2.0 Framework, this book sometimes uses features of ASP.NET 2.0
and sometimes uses features of the .NET 2.0 Framework. Use of these various features will be essentially
seamless.

As a Microsoft product, ASP.NET 2.0 runs on Windows. For development, it works on the desktop with
Windows 2000 or later (including both XP Home and XP Pro). At deployment, the normal OS is Windows
Server 2003 or another Windows OS version designed for higher loads. Within Windows, ASP.NET 2.0
works with the Internet Information Server to read pages from disk and send them to requestors.
Alternatively, on the development desktop, ASP.NET 2.0 can be tested with a lightweight web server
named the ASP.NET Development Server that is distributed with development tools such as VWD.

When a designer uses the ASP.NET 2.0 controls to connect with data, two more levels of interaction are
introduced. The data controls use a technology named ActiveX Data Objects (ADO.NET), but fortu-
nately the use of ADO.NET is behind the scenes for us. Those ADO.NET objects, in turn, interact with
the source of data. The source of data can be Microsoft SQL Server (as used in this book) or almost any
other source of data including relational databases such as Oracle or MySQL, and non-relational sources
such as XML or text files.

Microsoft offers tools for several levels of developers to build ASP.NET 2.0 web sites. The most compre-
hensive product is Visual Studio, which contains tools for building applications for Windows and appli-
cations for the web. The web construction part is named Visual Web Developer. A free (but less capable)
alternative is the Visual Web Developer Express. Front Page can work, but it focuses more on static
HTML pages and thus lacks the set of tools that makes designing the dynamic, data-intensive ASP.NET
2.0 pages such a pleasure. Creating pages in Notepad was long the preferred method of ASP developers
and is still theoretically possible; however, the necessary management of web sites and web pages make
this impractical, laborious, and far more prone to errors.

Enough of the theory — let’s see ASP.NET 2.0 in action. During the course of this book you will build a
complete web site for a hapless football (soccer) team named Wrox United. A completed example is
hosted at www.wroxunited.net, which you explore in the next section to observe the range of features
ASP.NET 2.0 supports. Then in the remainder of the book, you will build the same site on your desktop.
For this exercise, you do not have to install software on your machine. The remainder of the book, how-
ever, relies on your completion of the setup outlined in Appendix B.

Exploring the Wrox United Application
This section explores the site as built by the authors, which you will build as well. It is hosted at www
.wroxunited.net. Open your browser and direct it to that address.

❑ Master pages and site map (discussed in Chapter 2): Click through several pages to observe the
uniform layout across the top and left side of the page. This design consistency derives from an
easy-to-implement feature called Master Pages. Second, note the maroon box in the lower-right of
each page that indicates your current page and its relationship to parent pages back to the home
page. This feature was created with the ASP.NET 2.0 Site Map and Navigation controls.

8

Chapter 1

04_042583 ch01.qxd 4/4/06 2:40 PM Page 8

❑ Server-side controls (discussed in Chapter 3): Go to the Players page. All of the data comes
from two server-side controls — a data source control to connect to the database and a data-
bound control to display the information. Most of the behavior of ASP.NET 2.0 pages is encap-
sulated in server-side controls. These include links like the shopping cart at the bottom-left,
images such as the logo at the top-left, and text boxes such as the logon section at the lower-left.

❑ Login and security system (discussed in Chapter 4): On the home page, log in as User Name
Lou and Password lou@123. Then log out. Authentication systems can require a tremendous
amount of work to create and even then frequently contain security holes. ASP.NET 2.0 offers a
very simple system based on several server-side controls including the login and password veri-
fication schemes, and a system to e-mail a clue for forgotten passwords.

❑ Events (discussed in Chapter 6): Browse to the Shop page, click an item, and add the item to
your cart (of course, this is not a real shopping site, just a demo). An event occurred as you
clicked the Add to Cart button and that event was handled by custom code that created an
order and added the item to the order.

❑ Data reads (discussed in Chapter 7): Browse to the Players page where the names and joining
dates are read from a SQL Server Express database. Many kinds of information on the site are
held in data stores that are read by ASP.NET 2.0 server-side controls on the page. Browse back to
the home page and observe the menu. Even these menu choices are read from an XML file that
holds a map of the site.

❑ Data writes (discussed in Chapter 8): Browse to Shop, click the car sticker, and click Add to
Cart. You have just written a value to a database. The behavior of writing your order to the
database was implemented by two ASP.NET 2.0 server-side controls. The designer of the site
did not have to do any custom code.

❑ Code behind the controls (discussed in Chapter 9): From the home page, click Shopping Cart
at the lower-left of the page. We have written custom code that executes when the page is
loaded, checks if there are currently any items in the shopping cart, and renders a page appro-
priate for the cart contents: either empty or a list of contents. Although the capabilities of the
ASP.NET 2.0 server-side controls are impressive, they cannot cover every possible case. An
ASP.NET 2.0 site offers numerous places that a designer can add custom code.

❑ Components (discussed in Chapter 10): Browse to the Fixtures page. Although the data is
stored in a SQL Server database, the ASP.NET 2.0 page does not read it directly. There is a com-
ponent that reads that data and then sends it on to the ASP.NET 2.0 page. That component can
be reused by other web sites or by Windows applications that run on a local network without
the Internet.

❑ Roles (discussed in Chapter 11): If you had administrative rights, you could log in and see dif-
ferent screens. After you have installed the site on your local machine, you will experiment with
this feature in Chapter 4. ASP.NET 2.0 goes beyond just logging in visitors. They can be autho-
rized to have sets of privileges called roles. The public site does not allow non-authors to log in
as administrators, so there is no need to take action at this point.

❑ E-commerce (discussed in Chapter 13): From the menu, go to Shop, and click a few items to
add to your cart. Now on the bottom of the menu, click Shopping Cart and view its contents.
The most complex part of the site is the shopping cart. ASP.NET 2.0 does not have a pre-built e-
commerce solution, but because so much behavior is built into the ASP.NET 2.0 controls, design-
ers can develop features such as e-commerce much more quickly than in the past.

❑ Performance (discussed in Chapter 14): Under the covers, the data is being cached where
appropriate and objects are being disposed as early as feasible. The site also uses Generics to
improve the performance of lists.

9

An Introduction to ASP.NET 2.0 and the Wrox United Application

04_042583 ch01.qxd 4/4/06 2:40 PM Page 9

❑ Errors and exception handling (discussed in Chapter 15): As you navigate the site, you can try
entering data of the wrong type or clicking to save data without entering any information. In
these cases, the mistake is handled gracefully.

❑ Deployment (discussed in Chapter 16): At this point, you will not walk through a deployment.
However, keep in mind that for ASP.NET 2.0, the transfer for a site from a development
machine to a deployment machine generally entails only a few steps that copy the databases to
the data server and then perform a simple file copy of the site folder and its subfolders to the
new server.

This walkthrough gave you a taste of what you will learn to create in this book. Most of the features
explored were implemented with very little code that we wrote. The behavior was performed by code
that Microsoft baked into a set of server-side controls that are the components of ASP.NET 2.0. We
merely placed these controls on pages and set various properties.

Getting Star ted with Your Wrox United Site
Now that you have observed the finished site as publicly hosted, you can begin creating the same site on
your desktop. If you have not installed Visual Web Developer Express, SQL Express, the sample
database, and the sample site (outlined in Appendix B) then do so now. Start by reading the overview at
the beginning of the appendix and then work your way through each step. You can be sure of your
installation by performing the check at the end of each section.

This chapter and the next chapter set up the basic framework of the site as you learn how to use VWD
and establish some design parameters for the site. Because VWD offers drag-and-drop solutions to most
tasks, you will be able to create the entire site with a minimum of typing. In the cases where some typing
is necessary, you can cut and paste from text files in this book’s download at www.wrox.com. All pages
are in the download in their final form, but creating ASPX pages yourself is a better way to learn ASP
than merely copying completed pages from our reference set.

VWD Express — A Development Environment
A fundamental difference between most animals and humans is the ability to use tools. In the early days
of programming, the tools to write programs were very primitive. Today we enjoy the benefits of very
sophisticated tools for software development. Engineers have taken almost every area of human weak-
ness (primarily related to the capacity of memory and the brain’s interface to the world) and created
compensating tools. These tools are pulled together into a type of software called an Integrated
Development Environment (IDE). The IDE used in this text is Visual Web Developer Express (VWD).

VWD contains a number of development tools. First is an editor in which you can build a web page.
This editor is enhanced with IntelliSense, a tool that finishes typing commands and offers appropriate
choices for the developer. In addition, a toolbar contains icons that can be dragged to the editor and
automatically type a block of code into the editor. Another way to automatically get code into a page is
with the many wizards that pop up when you attempt a more complex task. VWD also contains a mini
File Manager to organize ASPX and associated files and folders. Similarly, there is a Data Explorer that
offers navigation through the data sources of the web site. A suite of troubleshooting tools is also
included. Finally, VWD ships from Microsoft with a web server for testing named ASP.NET

10

Chapter 1

04_042583 ch01.qxd 4/4/06 2:40 PM Page 10

Development Server, which is covered in the next section. If you go beyond the scope of this book, you
can discover tools for more complex scenarios, including the management of code versions among a
team of developers.

Introducing the ASP.NET Development Server
ASP.NET Development Server was mentioned earlier as the lightweight web server that comes with
VWD. This is the lightweight server that was known as Cassini during the Beta releases of VWD. Both
ASP.NET Development Server and IIS (included with the .NET Framework) can serve all ASPX and
associated pages, so at deployment there is no need to make changes to your site. But a number of differ-
ences exist between the servers.

The two servers use different security models. IIS is a service, and every service in Windows requires a
user. The special user for IIS is named ASPNET. ASP.NET Development Server runs as an application
that uses the currently logged-in Windows user. That makes ASP.NET Development Server easier to
install because there is no need to create a specific ASPNET account in Windows. In fact, the installation
of ASP.NET Development Server is transparent when VWD is installed.

ASP.NET Development Server has three downsides. First, it is a tool for designers to test pages on their
development machine and thus it does not scale to more than one user. Second, because of the simplifi-
cations to the user model, ASP.NET Development Server cannot support a robust security scheme.
ASP.NET Development Server should run only in a closed environment or behind a robust firewall.
Third, when you run a page in ASP.NET Development Server, it locks the page back in VWD. In order to
unlock the page, you must close the browser, which can be inconvenient when you’re making and test-
ing many changes to a site. Therefore, many developers use IIS even on their development machines so
they do not have to close a page in the browser before working on it in VWD. The downside is that you
have to configure your development machine to provide IIS, set up the appropriate authorizations,
establish security controls, and create a virtual root. You learn how to set this up in Appendix B. If you
don’t want to go through the IIS setup, you can still use ASP.NET Development Server and just close the
browser between modifications.

VWD’s Solution Explorer
An ASP.NET 2.0 web site is stored as a family of files. You need to be able to organize these files, includ-
ing the tasks of viewing their names and relationships, copying, creating, and deleting. You can view
and manipulate them in Windows Explorer, but it is inconvenient to switch between VWD and
Windows Explorer. VWD includes an explorer-like tool called the Solution Explorer, shown in Figure
1-2. The Solution Explorer is displayed by default on the right of the screen, or you can redisplay it by
pressing Ctrl+Alt+L. Think of it as a Windows Explorer that considers your web root to be the highest
level and does not require you to switch out of VWD. Note that the Toolbox may be placed behind the
Solution Explorer, as illustrated in Figure 1-2.

The layout of Solution Explorer is instantly familiar to anyone who uses Windows Explorer. Click the
plus and minus icons to expand or contract folders. The icons in the toolbar start from the left with a tool
that switches from the Solution Explorer to a view of properties (more on that later in this chapter). The
double horizontal arrows perform a refresh. The double file icon automatically hides or expands nested
subfiles. The next two icons open the selected files to display either their user interface (design) or their
code. The double browser icon is used to copy the entire site to the deployment machine. The right-most
icon, with the hammer, opens a Web Administrator tool to manage features of the site.

11

An Introduction to ASP.NET 2.0 and the Wrox United Application

04_042583 ch01.qxd 4/4/06 2:40 PM Page 11

Figure 1-2

At the bottom of the Solution Explorer may be a small task bar that shows tabs for the Solution Explorer,
Toolbox, Data Explorer, and/or Properties windows. To conserve monitor real estate these four tools are
frequently stacked and the tabs offer quick switching. For example, in Figure 1-2, the Toolbox is also
open (albeit hidden behind the Solution Explorer) and clicking the Toolbox tab would hide the Solution
Explorer behind it. They are not strictly part of the Solution Explorer, but rather the pane that holds the
four stacked tools.

In the main pane of the Solution Explorer is the list of files that make up your site. At the top is the
root, generally in C:\websites\MyWebSiteName. In the case of WroxUnitedCS, C:\BegASPNET2\
WroxUnitedCS is used. The files are displayed in their subfolders. Using the same techniques as
Windows Explorer, you can expand, collapse, cut, copy, and paste files among folders. Solution Explorer
recognizes the implied link between an .aspx file and its .aspx.cs file (more on these in Chapters 6 and 9).
If you copy the .aspx file, the code file moves with it.

You can also right-click a folder and select Add Existing Item. The resulting dialog box enables you to
navigate anywhere on your computer and network (including FTP sites) to bring in files. For example,
when you begin to build your project, there are times you are asked to use an image or text file from this
book’s download at www.wrox.com. You can use Solution Explorer to add the item to your web site from
your download folder.

During development, ASP.NET 2.0 sites do not contain a special system of file registration. The files,
including ASPX pages, code files, data files, and images are all contained in a normal Windows folder
and subfolder structure. If you do not have VWD open, you can cut, copy, and paste your site files
directly from Windows Explorer.

The Solution Explorer, like the Toolbar, Data Explorer, and Properties window discussed in the next sec-
tion, can be placed on the page in one of two modes: floating or dockable. Floating allows the window to be
placed anywhere on the screen, similar to a normal window of a base size (not maximized). The dockable
mode automatically places the window in one of five locations: top, bottom, left, right, or stacked on
another window. Change the mode by selecting one of the windows, and click through Window➪Floating
or dockable in the menu. In dockable mode you will see some translucent positioners when you drag the
window’s title bar, (see Figure 1-3). Drag the title bar onto one of these positioners, and the window auto-
matically sizes and places itself in the correct dock.

12

Chapter 1

04_042583 ch01.qxd 4/4/06 2:40 PM Page 12

Figure 1-3

Now that you have learned to modify the VWD Express IDE, you can move on to the techniques of cre-
ating web sites and pages within those sites.

Creating, Opening, and Using Web Sites and Pages with
VWD

To create a new site, you only have to open VWD and click Menu➪File➪New Site. From the wizard,
select an ASP.NET web site. Assuming you will create a local copy for development, set the location to
File System and browse to the path. Normally this would be C:\BegASPNET2\MyWebsiteName (our
practice site allows backward compatibility with earlier books by using C:\BegASPNET2\WroxUnited).
This book uses the C# choice in the Language list. VWD automatically creates a folder, a default page,
and a subfolder for data.

ASP.NET 2.0 introduces a very simple model for file organization and code registration for a web site. All
files for the site are stored in a folder and its subfolder. At the time of deployment, that entire group is
copied from the development machine to the host. Therefore, you are not required to create a virtual root as
in former versions of ASP. Deployment is further simplified by VWD: if you select Menu➪Website➪Copy
Website, VWD opens an FTP screen that you can use to send new or updated files to your host.

13

An Introduction to ASP.NET 2.0 and the Wrox United Application

04_042583 ch01.qxd 4/4/06 2:40 PM Page 13

To edit an existing site, choose Menu➪File➪Open Web Site. If you are working locally, you can browse
to the folder. On the left side of the screen, VWD presents a menu with options to work directly on pages
via FTP or through a local IIS installation.

After you create the web site, you can add pages. We usually start by adding some folders to organize
the pages. Right-click an existing folder and click the option to add a folder. The options are a regular
folder or one of the folder names that are reserved in ASP.NET, including ones for Code, Themes, and
Web References.

To add a page, right-click a folder and click Add New Item. A wizard presents many choices. For now,
you simply need to create a Web Form, but take a look at the other options to get a feel for the capability
of VWD and ASP.NET 2.0. Give your new page a name and set its language. Later chapters discuss the
two checkboxes. Having introduced you to creating web sites and pages, the following Try It Out puts
that knowledge to use, asking you to create the Wrox United site and a couple of practice pages.

The Sample Code (Download) Directories
To make things easy, each chapter has its own code, and there are two directories for each chapter, held
under one of two higher-level directories. There is a Begin directory, which contains the samples ready
for you to work through — it’s the samples without any changes. The End directory contains the samples
with the Try It Outs completed, so you can use these as a reference as you are working through the
examples, or to cut and paste code if the example directs you to do this.

The Begin and End directories appear under a Chapters directory, with each chapter having its own
directory. So the starting set of samples for this chapter is under Chapters\Begin\Chapter01, and the
finished code for this chapter is under Chapters\End\Chapter01. Some chapters work on the main
WroxUnitedCS application, and will therefore contain a copy of the WroxUnitedCS directory, whereas
others have non-WroxUnitedCS samples. The reason for this is that some techniques are easier to digest
in smaller samples, rather than in a fully working application. All of the techniques, however, are used
in the main application.

Because each chapter has a separate directory, some with complete copies of WroxUnitedCS, the samples
are quite large. However, the advantage is that each chapter is kept separate from the others, which
allows you to work through chapters without mixing up which code came from which chapter.

In addition to the code for the chapters, there is a WroxUnitedCS application that contains the final
application. This may differ slightly from the samples, but only in that the data may be more complete,
and some of the pages look a little nicer.

Try It Out Creating the Wrox United Site and Two Practice Pages
1. Open VWD. Choose Menu➪File➪New Web Site. Select the template for an ASP.NET web site

and locate it in the File System at C:\Websites\WroxUnitedCS (you can use the Browse button
to navigate to this directory). Make sure the Language choice is set to Visual C#. Click OK. You
should see your folder on the right side of the screen in the Solution Explorer. If not, choose
View➪Solution Explorer. Note that VWD automatically builds three items: a folder named
App_Data, a page named Default.aspx, and (if you expand Default.aspx) a file named
Default.aspx.cs, which will hold code for the default page.

14

Chapter 1

04_042583 ch01.qxd 4/4/06 2:40 PM Page 14

2. In the center of VWD, you will see a space for editing pages with the Default.aspx page
opened. Note in the bottom-left a choice of Design and Source. Click each in turn to observe the
code and the results of the code. In Design View, click the page and type the simple text Home
Page. Press Ctrl+S to save.

3. Create a folder for images by going to your Solution Explorer and right-clicking the root of your
site (this will probably show as C:\...\Chapter01, as the Solution Explorer hides part of the
path) and then clicking Add Folder of the regular type. Name the nascent folder Images.

4. You can manipulate your site’s files and folders outside of VWD. Open Windows Explorer and
navigate to C:\BegASPNET2\Chapters\Begin\Chapter01 to see the same set of folders and
files as you see in VWD’s Solution Explorer.

5. Returning to VWD, right-click the nascent Images folder and click Add an Existing Item.
Browse to the folder where you stored the download for this book, probably named
C:\BegASPNET2\WroxUnitedCS. Open the Images folder and select all the images. Click Add
to actually copy those images from the download folder to your site’s image folder.

6. Staying in VWD, now create your next page, the history of Wrox United. Right-click the site’s
root (C...\Chapter01 at the top of the Solution Explorer) and select Add New Item from the
menu. Select the Web Form template and give it the name History. Accept the other default set-
tings. Click Add and switch to Design View. Rather than typing text on the page, you can copy a
short history of the team from a file included in the download. Switch to Windows Explorer and
navigate to your downloaded Chapter01\Begin\Chapter01 folder. Look for the file named
History.txt, open it, and select the paragraphs. Switch back to VWD and paste the text into
the page. Click the diskette icon on the toolbar to save.

7. Repeat step 6 for a Mishaps page, whose contents come from Mishaps.txt.

How It Works
In this exercise, you created your site and the first few pages. By using the menu choices in VWD to cre-
ate a site, you automatically get some standard folders and files. You followed the Microsoft recommen-
dation of storing the site in the C:\Websites directory. As you saw with the Images folder, it is easy to
add subfolders to the root to organize your files.

When you created a page in VWD, you were offered a few dozen templates. You selected Web Form as
the standard plain ASP.NET 2.0 web page. By using cut and paste, you have no problems bringing in
text from other files.

You also learned that there is no requirement for a special file indexing or storage mechanism in VWD.
The files sit in the folders organized by Windows on the hard drive. However, it is better to create and
add files in VWD when possible to keep the Solution Explorer view and other VWD features immedi-
ately up-to-date with your changes.

Running a Page
After a page is created, it can be served to a user. Because the server actually executes code in the server-
side controls to create the final HTML page, this serving of the page is also called running the page, as if
you were running a program. VWD has a green triangle tool icon to initiate a run or you can press F5 or
choose Menu➪Debug➪Run. VWD then performs several steps:

15

An Introduction to ASP.NET 2.0 and the Wrox United Application

04_042583 ch01.qxd 4/4/06 2:40 PM Page 15

1. All pages in the site are compiled to the Microsoft Intermediate Language (MSIL) that is then
stored with supporting files in an assembly. At this point, development language differences
(for example VB and C#) disappear because the result is in MSIL. However, there is no opti-
mization for the hardware that will serve the page.

2. The assembly is Just In Time (JIT) — compiled from MSIL to Native Code that is optimized for
the serving machine.

3. A lock is placed on the page that prevents changes in VWD Design View while the page is
opened by ASP.NET Development Server.

4. VWD starts ASP.NET Development Server and your browser is opened with a request to
ASP.NET Development Server for the page.

As your site gets larger, you’ll find that the compilations take longer. You can press Ctrl+F5 to run a page
with a compilation of only that page. In the following Try It Out, you practice running the History and
Mishaps pages created in the previous Try It Out.

Try It Out Running a Page
1. In VWD’s Solution Explorer, double-click the History.aspx file to open it (if it is not already

open).

2. Click the Run icon (green arrow) on the toolbar. If there is a message to add a Web.config with a
Debug, accept the suggestion. Note that your browser opens and displays the History page.

3. In the Windows tray, the icon of a yellow page with a gear indicates that ASP.NET Development
Server is running. Double-click it and you will see that it is pointing to your web site. Close
your browser so ASP.NET Development Server unlocks the page.

4. Return to VWD and open the Mishaps page. This time, watch the lower-left corner of VWD as
you start to run the page. You will see a message that the build has started and a brief display of
an error list box. After seeing the Mishaps page in your browser, switch back to VWD. Note that
the page (in Design View) is locked while it is served.

How It Works
This Try It Out focused on running pages from VWD. You can start the run by clicking the green arrow.
This action starts ASP.NET Development Server. It also opens your browser and sends a request to
ASP.NET Development Server for the page. When ASP.NET Development Server is running, you can see
the icon for the server in the Windows system tray.

Design Surface
The center of the VWD interface is occupied by the large Design Surface. This is the area where you will
do most of your work of adding content to ASP.NET 2.0 pages. You can switch between Design View,
which displays a simile of the final page in a browser-like display, or you can switch to Source View,

A common mistake for beginners is to attempt to change a page in VWD’s Design
View while it is still open in a browser served by ASP.NET Development Server.

16

Chapter 1

04_042583 ch01.qxd 4/4/06 2:40 PM Page 16

which displays code in a text screen (see Figure 1-4). In general, the Design View is easier and faster for
most work because it supports more drag-and-drop features. You can switch to Source View when you
need to make those minor changes that are beyond the capability of the VWD drag-and-drop interface.

Figure 1-4

When you add a control to a page in Design View, a Common Tasks Menu may pop up. This mini menu
contains the most frequently used setup features for the control. Not all controls have smart task panels,
but if it is available, it can be opened and closed using the small black triangle at the top corner (shown
in Figure 1-5) of a control that is selected.

Figure 1-5

You can change several default settings in the Design Surface by opening the Tools menu and selecting
Options. These options change the way the pages appear to you, as the programmer, when they are
opened for editing in VWD. These are not the settings for the appearance of the page to the web site visi-
tor. You can select to start pages in Design View or Source View, as well as the automatic opening of the
smart task panel. Being able to revise the number of spaces for tabs and indents helps your projects con-
form to your company’s specifications for web page code.

At the bottom edge of the Design Surface is a navigation tool that is useful in large and complex docu-
ments. You can read the navigation tags to find out where the insertion bar (cursor) is currently setting.
The current setting is highlighted, as depicted in Figure 1-6. You can also click a tag and the entire tag
will be selected in the Design Surface.

Figure 1-6

The designer is, in many ways, like a word processor. But VWD also offers the two alternatives to view-
ing a page (Design and Source) as well as enhancements for navigating through the page. The next sec-
tion discusses how VWD helps you to add features to the page.

17

An Introduction to ASP.NET 2.0 and the Wrox United Application

04_042583 ch01.qxd 4/4/06 2:40 PM Page 17

Toolbox
VWD offers the set of ASP.NET server-side controls in a Toolbox for easy drag-and-drop onto the page.
Chapter 3 discusses in detail the various server-side controls and how they are used; here you will just
get a feel for how to use the Toolbox in general. The Toolbox can be displayed by choosing
Menu➪View➪Toolbox or by pressing Ctrl+Alt+X. When the Toolbox is displayed, you can move it to a
new location on the screen by dragging its title bar. As you drag the Toolbox to different areas, it will
render a compass icon that enables you to drop the toolbar toward the top, bottom, left, or right, as well
as on top of other windows. If you are trying to maximize the size of your design surface, you can stack
your Solution Explorer and Toolbox on top of each other at one location on the screen.

The Toolbox is organized into several panels that group similar controls. The panels can be expanded to
show their tools or collapsed to save space. There is some variation among installations, but a typical set
of panels includes the following:

❑ Standard for the majority of ASP.NET 2.0 server-side controls

❑ Data for data source and data-bound controls

❑ Validation for controls that reject user input that does not meet your range of acceptable values

❑ Navigation for menus and breadcrumbs

❑ Login for the authentication controls

❑ WebParts for larger components in sites that the user can rearrange or hide

❑ HTML for generic (non-ASP) tags

❑ General for customization

Figure 1-7 depicts the Toolbox as it appears on your screen.

Figure 1-7

Clicking the plus icon expands a panel to show its list of available controls. Figure 1-8 shows the Data
and Login panels expanded.

The General panel starts out empty. After you have created part of a page, you can select that page and
drag it into the General panel to create your own reusable tool. This is useful if you want to duplicate a
set of a couple controls with formatting onto several pages.

18

Chapter 1

04_042583 ch01.qxd 4/4/06 2:40 PM Page 18

Figure 1-8

On the right side of the Toolbox title bar there is a pushpin icon, shown in Figure 1-9. When clicked, the
pushpin turns horizontal, meaning that the Toolbox will automatically hide when not in use, leaving
only its title bar exposed.

Figure 1-9

When your mouse moves over the Toolbox title bar, the Toolbox expands for your employment, as
shown in Figure 1-10.

Figure 1-10

The appearance of the Toolbox changes as it is used. For example, the titles of each
panel will change as they are selected.

19

An Introduction to ASP.NET 2.0 and the Wrox United Application

04_042583 ch01.qxd 4/4/06 2:40 PM Page 19

In this Try It Out, you practice using the Design and Source Views and Toolbox features of VWD.

Try It Out Using the Views and Toolbox
1. Continue working in VWD with your Mishaps page.

2. Switch to Design View. In the Toolbox, expand the HTML panel and scroll down to the bottom
of the panel. Drag a Horizontal Rule from the Toolbox onto the page (anywhere between para-
graphs).

3. Your next objective is to add a calendar to the bottom of the History page. Open the Standard
panel of the Toolbox and find the ASP.NET calendar control. Drag it to the page. (Double-
clicking performs the same operation.) Select the calendar with a single click and notice the
small right-facing arrow in the top-right corner. Click it to expose the smart task panel. Click
Autoformat, select a format, and click Apply. Observe how easy it is to modify many rendering
criteria simultaneously using VWD’s dialog interface.

4. Open your History page in VWD. View it in Design View. Move your insertion bar up to the
first line to the tag that begins with <%@ Page...>. Note that the navigation guide (at the bot-
tom of the design panel) shows that you are in the <Page> tag. Click the <Page> tag. You will
see that the entire tag is selected in the design panel.

How It Works
As you saw, by adding a simple HTML Horizontal Rule, the Toolbox offers the ability to drag and drop
elements to the page rather than typing out their tags. Even complex constructs like a calendar are
added with just a drag-and-drop. When you are on the page, you can modify an element by using the
smart task panel.

Properties Window
An object, such as a web page, a ListBox server-side control, or a connection to a data source, has proper-
ties. Properties are settings that determine how the object appears and behaves. In earlier versions of
ASP, many goals were achieved by writing lengthy and complex code. In ASP.NET 2.0, however, most of
that code has been pre-written by Microsoft and encapsulated within the server-side controls. Properties
determine how that behavior will be exercised. Properties can be very simple, such as BackgroundColor,
or very complex, such as EnablePaging. Likewise, the values assigned to a property can be as simple as
BLUE or as complex as a multiple-line SQL statement. Property values can be set by typing them directly
into the Code View or by using the Properties window, which is shown in Figure 1-11.

Display the Properties window by pressing F4 or by choosing Menu➪View➪Properties. The properties
are organized into panels that can be collapsed or expanded (similar to the Toolbox). For example, in
Figure 1-11 the top three panels are collapsed. At the top of the Properties window is a drop-down list
containing the names of all controls on the page currently open. Below that are icons to arrange the list
of properties categorically or alphabetically. The lightning icon changes the Properties window so that it
displays events (a topic covered in Chapter 6) rather than properties. The body of the window displays
property names on the left and their current values on the right. At the bottom sits a box that gives some
help on the currently selected property.

20

Chapter 1

04_042583 ch01.qxd 4/4/06 2:40 PM Page 20

Figure 1-11

The fundamental technique used to change properties is to select an object, usually a control, and then
find the property of interest and set it. You can select the object with a single click on the object in Design
View or by locating the insertion bar in the object in Source View. Alternatively, you can select an object
from a drop-down list at the top of the Properties window. One common mistake arises when you
attempt to change the properties but have not first actually selected the object you want to change. You
end up changing an object that was still selected from earlier work.

You have several options for setting the value of a property. If the property has a limited number of
allowed values (such as true and false), you can double-click the property name to toggle through the
values. If there are more than a few options, but still a finite amount, the values will be in a drop-down
list. Some properties have many options, and their value box offers an ellipses button that takes you to a
dialog box. Some properties can accept strings, so their values are set in text boxes. It is always better to
select or to toggle a value rather than type it. After a value has been changed, you must press Enter or
Tab or click another property in order to set the value. At that time, the Design View will render the
change.

You can also set property values by typing into the Source View. Locate the insertion bar within a tag
and press the space bar to display an IntelliSense list of all the properties that can be inserted at the loca-
tion of the insertion bar. Type the first letter or two and then type an equals sign. IntelliSense displays all
of the legal values (if the list is finite), and again type the first letter or two of the value you desire. Finish
by typing a space. Note that there will be no value list if the range of possible property values is not
finite. For example, if the value is a SQL statement, you will have to type the statement without
IntelliSense.

21

An Introduction to ASP.NET 2.0 and the Wrox United Application

04_042583 ch01.qxd 4/4/06 2:40 PM Page 21

Error List Window
When problems arise you have two major paths for obtaining clues about the problem. First is an error
report on the page delivered to the browser, and second is the Error List window within VWD.

ASP.NET 2.0 displays an error report (shown in Figure 1-12) on the page sent to the browser if the fol-
lowing shaded line is in your Web.config file:

<system.web>
<compilation debug=”true”>
</compilation>

Figure 1-12

Note that the first time you run (F5) a page, you get a default of <compilation debug=”true”
strict=”false” explicit=”true”/>.

Because the default is true, you will have debug turned on if there is no specific attribute. So
debug=true for the following case as well where there are no changes to the default. Of course, having
the default literally set to true helps other programmers on your team that may be looking through
your settings:

<system.web>
<compilation></compilation>

22

Chapter 1

04_042583 ch01.qxd 4/4/06 2:40 PM Page 22

A fatal error on the page produces a characteristic white-and-yellow page on your browser with an error
message. Just below the yellow block is the name of the offending file and the line containing the failure.
As with all errors, the error may actually be related to the line number displayed, but this should give
you a good clue. Note that when you deploy a site, the debug command in Web.config should be set to
false to improve performance and to reduce information given to hackers. Error handling is covered in
greater depth in Chapter 15.

The second way to identify errors comes from within VWD itself via the Error List window, depicted in
Figure 1-13. By default, the window is hidden until you run a page. You can force it to be displayed by
choosing Menu➪View➪Error List. The window displays all of the errors encountered during the conver-
sion of the page into the MSIL.

Figure 1-13

Note that the top of the Error List window has three clickable icons: Errors, Warnings, and Messages,
which display different lists of items created when the page was built. Hiding a type of item does not
remove it from the list; rather, doing so only hides the item so the list is shorter. The second column from
the left identifies the order in which the errors occurred.

Errors cause the page as a whole, or some portion of it, to fail. This includes, for example, references to
objects that do not exist.

Warnings are problems that could be solved by VWD while building the page (for example, the lack of a
closing tag).

Messages are sets of texts that the programmer can include in the code to appear when IIS is building the
page.

When viewing the list of items, you can sort by clicking a column heading. If you hold Shift you can
click a second column for tiebreakers (to determine the order for records with the same value in the pri-
mary column). You can also resize the columns by dragging their dividers, or re-order them by dragging
the column name left or right. Double-clicking an item allows you to open the offending file and jump
the cursor to the offending line.

In this Try It Out, you practice changing properties of an image control on the History page. Then you
create some errors and observe the results.

Try It Out Using the Properties and Error Lists Windows
1. Open the History page in Design View. In the Solutions window, open the Images folder and

drag the JPEG named “logo-yellow” to the top of the History page. VWD automatically creates
an image with its source set to the JPEG.

2. Click the image once to select it, and then switch to the Properties window (or open it with F4).
Change the height from 447 to 100 and press Enter to set the value. As you can see, changes are
immediately visible in the design panel.

23

An Introduction to ASP.NET 2.0 and the Wrox United Application

04_042583 ch01.qxd 4/4/06 2:40 PM Page 23

3. Now modify properties from Source View. Find the control and within it the property
(attribute) for height. Change it from 100 to 300. Click the green arrow (or press F5) to run the
page and see the result.

4. Close your browser and return to Source View. Locate your insertion bar in the tag
immediately after the closing quote of height=”300” and press the space bar. This opens the
IntelliSense list with all of the properties that are suitable at this point in your page. Press the t
key and then the i key to move down the list to the Title property. Press the equal (=) key to
close the IntelliSense and type in “Wrox Logo In Yellow” including the start and end quotes.
Run the page, and in your browser note that when you mouse over the image you see the title
you created. Close the browser.

5. Next, introduce a non-fatal error. Open the History page in Source View and find the <h1> tag
near the top of the page. Change the <h1> tag to <H1xx> and run the page. The browser opens
and you can see that the text “Wrox United — a potted history” fails to render in the heading-
one style. Close the browser and switch back to VWD to observe the Errors List window. If not
the Errors List window is not already visible, choose Menu➪View➪Error List to view it. Note
that two errors were entered in the list. First was a note that “h1xx” on line 3 is not supported.
Second, the closing tag of </h1> on line 4 no longer matches an opening tag.

6. Your last experiment is to introduce a fatal error. In Source View, go to the top of the page and
change the first line from Language=”C#” to Language=”Esperanto” and run the page.

7. You will deal with solving many kinds of errors in each chapter of this book. For now, return
your page to its original form by deleting the tag, restoring the goofy <h1xx> to the
proper <h1>, and changing the language back to C#.

8. Save the page.

How It Works
You experimented with three ways to change a property. First you worked in Design View and changed
a property by typing its new value into the Properties window. Next you made a change by typing a
new value into the source code. Last, you used IntelliSense to guide you through adding a property to
an existing control.

You observed the results of two types of errors: fatal and non-fatal. In the first case, ASP.NET 2.0 could
still render the page even though the faulty tag of <h1xx> left your text as default, not heading one.
Although the page rendered, back in VWD an error message was logged on to the Error List window.
You introduced a more serious error when you changed the language value to a non-supported lan-
guage. ASP.NET 2.0 could not overcome this error and so you see two results. In the browser you got the
error page with troubleshooting information, and back in VWD you got entries to the error list.

VWD’s Database Explorer
When you begin to work with data (in Chapter 7) you can use tools in VWD to gain knowledge about
your data sources. This information includes the exact names of tables and columns. In fact, as you will
see later in this book, you can drag columns to the designer and VWD does all the work of setting up the
proper controls to display data from those columns. For now, understand that in the Solution Explorer
you can double-click the name of an Access MDB to open that file in Access (assuming Access is
installed). For SQL Server databases (as used in this book), you can use a tool named the Database
Explorer to do even more exploration of a database and change its data and properties. These features
are discussed in detail in Appendix D.

24

Chapter 1

04_042583 ch01.qxd 4/4/06 2:40 PM Page 24

Summary
Microsoft has revised large parts of ASP.NET in version 2.0. The overall biggest benefit is that tasks,
which formerly required custom coding, can now be implemented by dragging pre-built controls to the
page. These pre-built controls include tools for logging on users, navigation, connecting to stores of data,
displaying data, creating a consistent look to the site, and offering customization options to the user. The
result is both faster and more robust development of dynamic web pages. On top of this, Microsoft has
made version 2.0 easier to deploy and faster in performance. As with earlier versions of ASP, the execu-
tion of code (that is, the building of dynamic pages) occurs on the server and only standard HTML is
sent to the browser. Thus, ASP.NET 2.0 is compatible with all browsers.

Three tools are available from Microsoft for creating ASP.NET 2.0 pages. The one used in this book,
Visual Web Developer Express (VWD), is a free download as of 2005. VWD displays the organization of
pages on your site, and helps you build new pages or modify existing pages. VWD also comes with a
lightweight web server named ASP.NET Development Server for testing your pages. After building a
page, you can click Run to have VWD start ASP.NET Development Server, start your browser, build the
page, and serve it to the browser. This chapter also covered the following topics:

❑ VWD offers many options for the way that you view and work with pages during their devel-
opment. Tabs enable switching between Design View (which displays a good facsimile of how
the browser will render the page) and Source View (which shows the tags and code that gener-
ate the page).

❑ When you create a new site or add pages, VWD offers wizards and templates that walk you
through the most common setups. In this chapter, you looked at how to create a new page based
on one of several dozen templates, followed by working with the Toolbox. This source of pre-
built objects is a focus of building pages in all the exercises of this book. To organize the large
Toolbox, the tools are divided into groups.

❑ Another window displays properties of whichever object is currently selected. You can, for
example, select a text box and see its size, background color, and dozens of other properties. The
remainder of this book goes into the details of many properties of objects that ASP.NET 2.0 sup-
ports on a page.

❑ When a page is built as a result of the VWD Run command, you get some feedback on how the
process fared. Fatal errors are listed, as well as warnings about potential problems with the
page. Double-clicking any of those errors leads you to the offending line in the site.

This first chapter focused on an introduction to ASP.NET 2.0 and how to build your first pages using
VWD. Chapter 2 moves on to some of the ASP.NET 2.0 features that govern the look and feel of all the
pages on a site.

Exercises
1. Explain the differences among the .NET 2.0 Framework, ASP.NET 2.0, VWD, and IIS.

2. List some differences between ASP.NET Development Server and IIS.

3. When you drag the title bar of the toolbar it will only go to certain locations and certain sizes.
How can you put the title bar where you want it?

25

An Introduction to ASP.NET 2.0 and the Wrox United Application

04_042583 ch01.qxd 4/4/06 2:40 PM Page 25

4. How can you copy a .jpg file in C:\MyPhotos into your site for display on a page?

5. You want to add a subfolder to your site, but Folder is not one of the items listed in Add Items.
Why?

6. Microsoft has written extensive code to make it easier for programmers to create web pages.
How does a programmer actually use that code?

7. Why are there no tools in the General panel of the Toolbox?

26

Chapter 1

04_042583 ch01.qxd 4/4/06 2:40 PM Page 26

2
Site Design

When you start to develop a web site, you’ll often have a good idea of what the site needs to be
able to do. For example, a blog site needs the ability to store blog entries by categories, for adding
comments to blog entries, and an administration section, at the very least. Alternatively, consider a
simple retail store that wants to enter the realm of e-business by having a web site that enables
customers to browse and buy their products. Each and every site needs to be carefully thought
about and designed before you can start work, and only then can you start putting code together
to implement a site.

Before jumping into the discussion and implementation of specific techniques, you should under-
stand the development of good site design with an eye toward the features supported by the
ASP.NET 2.0 server-side controls. After all, a well-designed site is easier to create, easier to use,
and easier (and cheaper) to maintain.

In this chapter, you’ll learn about the following concepts:

❑ How to start the design process for a site, and consider all the requirements for the site
before you start coding

❑ Using Master and Content pages to implement a consistent look and feel to a site using
this great new ASP.NET 2.0 feature

❑ Constructing a site map that defines which pages exist on a site, and how these pages
relate to each other hierarchically

❑ Storing central configuration data and code that is used by all pages on a site using the
Web.config and Global.asax files

At the end of the chapter are some exercises to help you gain a bit more familiarity with the con-
cepts learned.

05_042583 ch02.qxd 4/4/06 2:40 PM Page 27

General Design Objectives
Designing a fully functional web application is a big task. If you’re developing your own site, you may
have thought long and hard about what you want your site to be about, so you know what it is you’re
trying to do before you start. However, if you are developing a site for a customer, you must make sure
you are careful and thorough about how you agree on a design for a site. In a professional development
environment, this process normally includes the following steps:

1. Develop a functional model that describes exactly how the site should function. What happens
when the user clicks the Log In button? What features are available when a user wants to view a
product? These questions, and many others, need to be answered before you start work, so you
don’t end up developing something that the customer doesn’t want.

2. Identify which technologies you have available to use in the implementation of the site. Many
hosting packages have different levels of support for databases, and limitations on the overall
size of a site, so make sure you talk about this early on and make sure you can use all the tech-
nologies you would like to use.

3. Develop a technical specification that describes how you will implement the required function-
ality. For example, on a blog site, how will you make sure that when the user clicks the button to
post a new blog entry, the text that has been entered is saved in the database? Be as thorough as
you can, because you may not be the one who has to maintain the site later.

This may sound like quite a lot of work, but even for smaller businesses or sole trading contractors, fol-
lowing this process will help you to maintain a happy relationship with your customer, and potentially
secure future work with either that customer or any of their friends or business contacts.

When you move from the business side of things into the implementation phase, you start to think about
how to create the application, and how to actually design the site in line with what the customer wants.
Creating a web application requires more than just correct use of the ASP.NET 2.0 server-side controls,
because the process of actually designing and laying out the pages of the site is just as important.

Note that the term design can have two meanings. The first is the selection of colors and layout, which
are typically created by a design artist for the site. The second definition includes the intellectual con-
struction and coordination of the parts of the site. This includes the plans for the architecture of the
information. In your case, you want to store as much information as possible in a relational database.
This chapter concentrates on the second definition. The next chapter considers how to design each page
in a site, using a healthy mix of HTML and ASP.NET controls.

The Wrox United sample site has the following site-wide design objectives that are implemented in this
chapter:

❑ Facilitate troubleshooting as much as possible during the development, so that it’s a simple pro-
cess to track down errors.

❑ Set site-wide standards for coping with errors after deployment.

❑ Create a consistent look for all pages.

Additional general design objectives are covered later in the book, including an interface for a login sys-
tem to identify members (Chapter 4), applying consistent styling and themes to a site (Chapter 5), and
sourcing as much information as possible on databases or XML data files (Chapters 7 and 8).

28

Chapter 2

05_042583 ch02.qxd 4/4/06 2:40 PM Page 28

Master and Content Pages
A site benefits from a consistent look and feel, and you’ll rarely find sites on the Internet that deviate
from having a generic site layout, which generally includes the following:

❑ A common header and menu system for the entire site

❑ A bar on the left side of the page offering some page navigation options

❑ A footer providing copyright information and a secondary menu for contacting the webmaster

These elements will be present on every page and they not only provide essential features, but the con-
sistent layout of these elements signal to users that they are still in the same site. Although this appear-
ance can be built with include files in HTML, ASP.NET 2.0 provides more robust tools with the Master
page and Content page system.

A Master page defines the layout to be used by all pages based on the Master. It’s the overall parent that
controls your layout, specifying how big your header will be on every page, where your navigation fea-
tures will be placed, and the text to display in the footer on every page — a bit like a cookie cutter for
each page. The Master page contains some of the content available to each page on the site, so standard
copyright footer text can be defined here, along with positioning the main site logo at the top of the
page. After the standard features of the Master are defined, you then add some placeholders — named
regions on a page that define where content that varies from page to page will be positioned.

A Content page is a page based on a Master, and is where you add the content for each page on a site that
varies from page to page. The Content page contains text, HTML, and controls within <asp:content>
tags. When the Content page is requested, its content is combined with a copy of the Master page, with
the specific content defined in the Content page placed within the specified placeholder on the Master
page. Then the whole package is delivered to the browser, as shown in Figure 2-1.

Fortunately, the heavy lifting for this architecture is performed by ASP.NET 2.0. You only have to create
the Master and Content pages as laid out in the next two sections.

Creating a Master Page
You create a Master page in VWD’s Solution Explorer by right-clicking the root of the site, selecting Add
Item, and designating the type as a Master Page. By default, the name for a new Master page is
MasterPage.master and is located in the root of the site. The Master page has three parts.

First are some basic page tags and designations (such as the designation of a Master, DOCTYPE, xmlns,
html, and head tags) that are required by any rendered page. This content is entered only once in the
Master page, to reduce repetition. DOCTYPE and xmlns refer to the place the server can look up the defi-
nitions of tags used by the page. Note that these tags will not appear in the Content pages:

29

Site Design

05_042583 ch02.qxd 4/4/06 2:40 PM Page 29

Figure 2-1

<%@ master language=”C#” %>

<!DOCTYPE HTML PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head id=”PageHead” runat=”server”>
<meta http-equiv=”Content-Type” content=”text/html; charset=utf-8” />
<meta http-equiv=”Content-Language” content=”en-uk” />
<title>Wrox United</title>
<link rel=”stylesheet” type=”text/css” href=”site.css” runat=”server” />

</head>

The second part of the Master page is a place for scripts that will be run on all pages (such as Page_Load
code, which runs each time a page is loaded). For example:

Master Page

Final page as sent
to browser

Content Page

WROX UNITED

MENU

WROX UNITED

MENU
Player List

Aaron
Bill
Chris

Player List

Aaron
Bill
Chris

30

Chapter 2

05_042583 ch02.qxd 4/4/06 2:40 PM Page 30

<script runat=”server”>
Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

‘ ...
End Sub

</script>

Third, the Master page includes some HTML for layout, and the start/end tags <asp:content ...
ContentPlaceHolderID=”xxx> and </asp:content> tags. The material from the Content page will
be placed between these tags. For example:

<body>
<form id=”mainForm” runat=”server”>

<div id=”header”>...</div>
<div id=”sidebar”>...</div>
<div id=”content”>

<asp:contentplaceholder id=”mainContent” runat=”server” />
</div>
<div id=”footer”>

<p class=”left”>
All content copyright © Wrox Press and its subsidiaries 2006.</p>

</div>
</form>

</body>
</html>

In summary, each Master page must include the following elements:

❑ Basic HTML and XML typing tags

❑ <%@ master ... %> on the first line

❑ An <asp:ContentPlaceHolder> tag with an ID

The Master page is now available as a container to hold other pages. You create those Content pages in
the next section.

Creating Content Pages
As with most of ASP.NET 2.0, VWD saves you typing. Starting in the Solution Explorer, right-click the
root and select Add New Item. Generally, you will pick a Web Form (there is no special template for a
Content page). At the bottom of the dialog box is the option to Select master page (see Figure 2-2). When
this box is checked and you click Add, you will be led to an additional dialog box that asks which
Master page to use for the new Content page.

The second dialog box (shown in Figure 2-3) allows you to pick which Master page to use. Select the
Master page. Change the name from the default of MasterPage.master to site.master and click OK.

31

Site Design

05_042583 ch02.qxd 4/4/06 2:40 PM Page 31

Figure 2-2

Figure 2-3

VWD sets two values in the Content page. They are not shown in Design View, but switching to Source
View reveals them, as displayed in the following code:

<%@ Page Language=”C#” MasterPageFile=”MyMasterPage.master” %>
<asp:Content ID=”Content1”
ContentPlaceHolderID=”Content Place Holder ID in Master Page”
Runat=”Server”>

... content goes here

</asp:Content>

32

Chapter 2

05_042583 ch02.qxd 4/4/06 2:40 PM Page 32

The Master page to use is stated in the first directive. Second, VWD includes an <asp:content> control
with a property that designates the ID of the placeholder in the Master page. A Master page may have
many places where Content pages can be inserted. This designator identifies which placeholder to fill
with this particular page.

To summarize, the Content page exhibits the following three features:

❑ Lack of the HTML <!DOCTYPE HTML ... > and XML <html xmlns=...> typing tags

❑ <%@ page MasterPageFile= ... %> on the first line to instruct ASP.NET 2.0 which Master page
to use

❑ An <asp:content> tag

The theory is not difficult and the typing is done automatically by VWD. In the following sample, you
see Master and Content pages working together.

A Sample of Master and Content Pages
Almost all of the exercises in this book can be carried out in Design View (without working directly in
code). But it is interesting to take a look at how VWD builds pages by switching to Source View. The fol-
lowing code shows an example of a Master page (named “research.master”) for a corporation and a
Content page called “mission statement.” The first shaded line designates the Master page, and the sec-
ond shaded area is a control that defines a content placeholder, where the content developed on a
Content page will be inserted:

<%@ Master Language=”C#” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”> <title>CorporateMaster</title></head>
<body>
Corporation Name

<form id=”form1” runat=”server”>
<div>

<asp:contentplaceholder
id=”ContentPlaceMissionStatement”

runat=”server”>
</asp:contentplaceholder>

</div>
</form>

</body>
</html>

Following is the Content page for this example. The highlighted section designates the Master page and
the control that delineates the material to be put in the Master page. The ID of the
ContentPlaceHolder must match the ID of the ContentPlaceHolder in the Master page. The follow-
ing listing is complete; there are no additional tags or attributes at the top of the page:

<%@ Page Language=”C#” MasterPageFile=”~/research.master” Title=”Untitled Page” %>

<asp:Content ID=”Content1”
ContentPlaceHolderID=”ContentPlaceHolderMissionStatement”

33

Site Design

05_042583 ch02.qxd 4/4/06 2:40 PM Page 33

Runat=”Server”>

Our Mission Statement is to provide value to the customer.

</asp:Content>

Note that a Content page must have a very minimal set of tags. The Content page does not have tags
such as <!DOCTYPE > or <html xmlns=”http://www.w3.org/1999/xhtml” >. Nor does the Content
page contain <head> information. This data will be provided by the Master page.

Using Cascading Style Sheets in a Master Page
A Master page is a good location to declare a link to a Cascading Style Sheet (CSS). CSS is a feature of
HTML, not ASP.NET 2.0, so the topic isn’t covered in depth in this book. However, CSS is discussed as it
relates to themes in Chapter 5. There is also a brief reference for HTML and CSS in Appendix E. In short,
a CSS contains formatting for various styles to be applied to pages and controls, so that when a page is
rendered, the elements on a page, the style of the text, buttons, links, and so on, appear formatted
according to the style definition in the CSS. This saves the designer from having to include (and main-
tain) many individual style format tags for frequently used designs. A CSS also speeds page loading
because the CSS is loaded just once by the browser, and then reused directly from the client-side cache
for each subsequent page that uses that style sheet. On a Master page, you should include the following
kind of link (highlighted with a gray background) in the <head> section to link a page with a CSS:

<head id=”PageHead” runat=”server”>
<title>Wrox United</title>
<link rel=”stylesheet” type=”text/css” href=”MySite.css” runat=”server” />

</head>

In the following Try It Out, you get the chance to create the Master page for the Wrox United site. You
will be adding content and features in the exercises of each chapter of this book. At this point, you will
simply create the shell of the Master page. You will add many parts to the Master page later in the book,
so if it seems a bit incomplete now, hang in there.

Try It Out Creating a Master Page and Importing a CSS
1. Open the sample site for this chapter, located at C:\BegASPNET2\Chapters\Begin\

Chapter02. You will start by importing a CSS file the authors have created for you. Right-click
the root of the site and select Add Existing Item, as shown in Figure 2-4.

2. Navigate to the folder where you downloaded the files for this book (C:\BegASPNET2\
WroxUnitedCS), select site.css, and click Add. CSS is an HTML topic (not ASP.NET), but if
you want to open the file, you can observe styles set for the HTML of the body, such as <h1>,
<h2>, and so forth. There is no need for you to modify this file. Observe that you now have a
site.css file in the list of files displayed in the Solution Explorer. If you opened the CSS file,
close it now.

34

Chapter 2

05_042583 ch02.qxd 4/4/06 2:40 PM Page 34

Figure 2-4

3. Again, right-click the root, but this time select Add New Item and use the Master Page template.
Name the page site.master. Ensure that the check box for Select Master Page is not checked (that
option is only for Content pages). After VWD creates the page, you can observe it in Design
View, although it is empty at this point. Notice in Source View that VWD has added several tags
and controls for you (see the following code). The first tag is a designation that this will be a
Master page and the second tag is the normal document-type designation. Following that is a
place to insert scripts and then an XMLNS value. Observe that in the <body>, VWD created a
contentplaceholder:

<%@ master language=”C#” %>
<!DOCTYPE HTML PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<script runat=”server”>
</script>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head id=”PageHead” runat=”server”> ... </head>

<body>
<form id=”Form1” runat=”server”>

<div>
<asp:contentplaceholder id=”mainContent” runat=”server” />

<div>
</form>

</body>
</html>

35

Site Design

05_042583 ch02.qxd 4/4/06 2:40 PM Page 35

4. You want to change the name of the form from the generic VWD names to something more
applicable to your situation. Switch to Source View and change the <form id=”form1”
runat=”server”> to <form id=”MainForm” runat=”server”>.

5. Switch back to Design View to set the style sheet. At the top of the Properties box, drop down
the list of controls and select Document. Set the Debug property to True. At the bottom of the prop-
erties list, find Style Sheet (see Figure 2-5), click its ellipses, and browse to site.css. Click OK.

Figure 2-5

Adding <div> tags divides the page for easier formatting. Your Master page will use four
<div> sections within the <form>. Some of these will then contain additional <div> tags within
them (lower-level <div>). The first <div> is automatically created by VWD; the others you will
add. A <div> can be dragged onto a page from the HTML section of the toolbar, but it is diffi-
cult to get it located properly in Design View. You will use Source View to get exact placement.

6. Switch to Source View and find the default <div> within the form. Select from the beginning of
the <div> tag to the end of the </div> tag, and note that the Properties window now shows
properties for the <div>, including a style attribute that sets the width and height. Set the id
property to content.

7. Staying in Source View, add another <div> by dragging the control from the HTML section of
the toolbar to a position above the <div id=”content”>, but still within the <form>. Set its id
property to header.

8. Add two more <div> tag sets within the form. Place one just below the header with the ID of
sidebar and one at the bottom of the page, just above the form closing tag with an id of
footer.

9. Staying in Source View, now create lower-level <div> tags, which will reside inside of the
<div> you created earlier. In the header <div>, drag in a <div> and give it an id of logo.
Follow the logo <div> with some simple text for display, shown here:

36

Chapter 2

05_042583 ch02.qxd 4/4/06 2:40 PM Page 36

<form id=”mainForm” runat=”server”>

<div id=”header”>
<div id=”logo”></div>
<h1>Wrox United</h1>

</div>

10. In the sidebar <div> add the text Navigation, as shown in the following code:

<div id=”sidebar”>
<h3>Navigation</h3>

</div>

11. You will add controls to the content <div> in the next few chapters, but for now, add a lower-
level <div id=> with an id of itemcontent:

<div id=”content”>
<div class=”itemContent”>

<asp:contentplaceholder id=”mainContent” runat=”server” />
</div>

</div>

12. In the footer <div> add two notices of copyright:

<div id=”footer”>
<p class=”left”>

All images and content copyright © Wrox Press and its subsidiaries 2006.
</p>
<p class=”right”>

Website designed by
Frog Box Design

</p>
</div>

</form>

How It Works
You started by simply importing to your site a CSS that the authors created for you and included in the
download for this book. (Actually, the authors are lame at design. We originally thought red, pink, and
orange went well together, so we asked a designer at www.frogboxdesign.co.uk to make the design
palatable.) Because CSS is an HTML topic, the structure of the style sheet is not discussed here (see
Appendix E for some details).

The more important objective, however, is to use VWD to help you create a Master page with the three
basic components. By using the Master page template, you got the basic HTML and XML typing tags.
VWD also added for you the <%@ master ... %> on the first line. Finally, VWD provided a single <div>
with an <asp:ContentPlaceHolder> tag. Every placeholder tag must have an ID, so you changed the
ID so that it made sense in your context.

You then did some basic modifying of the Master page to support features you will add later in the
book. All of these are actually HTML features, not ASP.NET 2.0. First, you used VWD IntelliSense to add
a link to the CSS sheet you imported. Then you created several more <div> tags to organize the page
into header, sidebar, content, and footer sections.

37

Site Design

05_042583 ch02.qxd 4/4/06 2:40 PM Page 37

The following Try It Out complements the previous exercise in that you will now create a Content page
to fill the placeholder of the site.master. Because of its simplicity, the “about the site” page is a good
starting point.

Try It Out Create Content Pages
1. In VWD and with Wrox United open, right-click the root of the site. Select Add New Item and

select the template type of Web Form. Name it About.aspx and make sure that both Select
Master Page and Place Code in Separate File are checked as in Figure 2-6, even though there will
be no code. (If you don’t set code in a separate file, the framework tags for code will be in the
.aspx file. It’s better to stay consistent with the rest of the site and keep the container tags and
the code in a separate file.)

Figure 2-6

2. In the second dialog, select site.master for the Master page and click OK, as in Figure 2-7.

3. In Design View, type in a few lines, such as the following:

The site was initially written by Dave, while design & graphics were done by Lou.
Conformance is XHTML 1.0 Transitional and CSS 2.1.

4. As an aside, you can experience that VWD helps you with non-ASP tags, such as a hyperlink.
Staying in Design View, look on the Toolbox’s Standard panel for the Hyperlink control and
drag one to the end of the first sentence in the preceding code. In the properties box set the text
to Frog Box Design and the NavigationURL property to www.frogboxdesign.co.uk. VWD
will automatically take care of all the typing to create the link.

5. Look at the page in Design View and note that the Master page contributes the framework, and
the Content page only has the text you typed. Switch to Source View and note that the About
page designates its Master page and that its content will go into the MainContent placeholder.

38

Chapter 2

05_042583 ch02.qxd 4/4/06 2:40 PM Page 38

Figure 2-7

How It Works
The general steps to create a page start with selecting the parent folder in the Solution Explorer. In many
cases this is the root of the web site C:\BegASPNET2\WroxUnitedCS, but in some cases it can be a lower
folder such as the location of FanClub.aspx in the folder C:\BegASPNET2\WroxUnitedCS\FanClub.

Observe how a Content page has the three features work with the site.master page. The initial tag
<%@ Page... > must contain the MasterPageFile attribute. Because you might move the files into a
different folder structure, you refer to the Master page’s location with an initial tilde (~) that indicates
that it will be in the root of the site. Second, the material of the Content page is held within an ASP.NET
server-side control named asp:Content with a ContentPlaceHolderID attribute that points to one of
the locations for content in the Master page. Third, because the HTML and XMLNS tags will be brought
in with the Master page, you omit them from all the Content pages.

Additional Capabilities of Master Pages
Although not implemented in Wrox United, several additional features are available that you can use
with Master and Content pages. Multiple levels of Master pages can contribute to a final page. One of
several Master pages can be served depending on the requesting browser. And a Master page can sup-
port several content placeholders.

Multiple Levels of Master Pages
Although the technique is not used on Wrox United, your pages can inherit multiple levels of Master
pages. This feature provides a way to display standard content from several levels of hierarchy. For
example, a Content page named Publication.aspx can establish its Master as Research.master,
which can in turn declare its Master as Corporate.master. The final rendering will be of Research
.aspx surrounded by Research.master, and all of that surrounded by Corporate.master. One prob-
lem is that the space remaining for content is reduced at each level. VWD does not contain automatic
tools to create multiple levels of Masters. In fact, if you have multiple levels, you can only open those
pages in Source View.

39

Site Design

05_042583 ch02.qxd 4/4/06 2:40 PM Page 39

To create pages with multiple levels of Masters you must include in the middle-level page tags that both
indicate its Master page (up a level) and its content placeholders (for the lower level). Recall that a
Master page must have <%@ Master ... %> on the first line, and that a lower-level or Content page must
have <%@ Page MasterPageFile= %> on its first line. In the case of a middle page that is both a Content
and Master page, the tag must start with <%@ Master ... and also contain ... MasterPageFile= %>.

Also recall that a Master page contains an <asp:ContentPlaceHolder> tag whereas the Content page
has an <asp:content> tag. In the case of a middle layer, there must be an <asp:content> holding the
ID of the Master’s <ContentPlaceHolder> tag. Then within that tag there is an <asp:
ContentPlaceHolder> tag that will be used by the next level down.

The following example illustrates a Corporate Master page, then a Research department Master page,
and finally a Publication.aspx page that holds the content. The Corporate page is shown in the fol-
lowing code. Note that its content placeholder is defined in the shaded lines:

<%@ Master Language=”C#” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>CorporateMaster</title>
</head>
<body>
Corporation Name

<form id=”form1” runat=”server”>
<div>

<asp:contentplaceholder
id=”ContentPlaceHolderCorporate”
runat=”server”>

</asp:contentplaceholder>
</div>

</form>
</body>
</html>

The Research department Master page is illustrated by the following code. This page is the most com-
plex, because it is a Content page for the Corporate page, and a Master page for the Publication page.
Notice the use of Master and MasterPageFile= on the first line that establishes this as content for the
Corporate Master page. Then observe that the <asp:ContentPlaceHolder> will house other pages as
content (in this case the Publication page). The content placeholder must sit wholly within the
<asp:content> tags:

<%@ Master MasterPageFile=”~/Corporate.master” Language=”C#” %>

<asp:Content runat=”server”
ContentPlaceHolderID=”ContentPlaceHolderCorporate”>

Research Department

<asp:contentplaceholder
id=”ContentPlaceHolderResearch”
runat=”server”>

40

Chapter 2

05_042583 ch02.qxd 4/4/06 2:40 PM Page 40

</asp:contentplaceholder>

</asp:Content>

Code for the Publication.aspx page (designed with content only) is shown in the following code.
Here you only need to designate a Master page. This page, which sits at the lowest level, is not a Master
page:

<%@ Page Language=”C#” MasterPageFile=”~/Research.master” Title=”Untitled Page” %>

<asp:Content ID=”Content1”
ContentPlaceHolderID=”ContentPlaceHolderResearch”
Runat=”Server”>

Publication text

</asp:Content>

Master Pages Support Multiple Content Placeholders
The examples so far have used a single <asp:ContentPlaceHolder> in the Master page and a single
<asp:content> tag in the Content page. ASP.NET 2.0 supports multiple content placeholders. However,
each must have its own ID, as in the following example:

<%@ Master Language=”C#” %>

<form id=”form1” runat=”server”>
<asp:contentplaceholder runat=”server” id=”TopContent” />
<asp:contentplaceholder runat=”server” id=”MiddleContent” />
<asp:contentplaceholder runat=”server” id=”BottomContent” />

</form>
</body>
</html>

The content can then have <asp:content> tags that have ContentPlaceHolderID values equal to the
ID values in the Master page:

<%@ Page Language=”C#” MasterPageFile=”~/research.master” Title=”Untitled Page” %>

<asp:Content ID=”Content1” ContentPlaceHolderID=”TopContent” Runat=”Server”>
Text to go in Top section

</asp:Content>

<asp:Content ID=”Content1” ContentPlaceHolderID=”MiddleContent” Runat=”Server”>
Text to go in Middle section

</asp:Content>

<asp:Content ID=”Content1” ContentPlaceHolderID=”BottomContent” Runat=”Server”>
Text to go in Bottom section

</asp:Content>

Dividing content into several <asp:ContentPlaceHolder> tags helps with the layout of the Master page.

41

Site Design

05_042583 ch02.qxd 4/4/06 2:40 PM Page 41

Creating a Site Map
To enable navigation features of ASP.NET 2.0, you need to have a standard way to describe each of the
pages of the site. This standard should not only include the names of all of the site’s pages, but also a
sense of their hierarchy. For example, the page of a player’s statistics would be a subpage of the general
players list, and that would be a subpage of the home page:

Home
- Players
-- Player Statistics

Defining this sort of hierarchy is an important part of site design, because you want to know (before you
start coding) what pages need to be developed, which links will be relevant to users on different pages,
and where the user is likely to want to go after viewing a specific page. Drawing up a site tree, like the
simple one shown here, is the first step you need to take. Then you can move to the next stage and
define this hierarchy in code.

ASP.NET 2.0 holds this information in an XML file named web.sitemap. You can use this file as the
source of data for menu and navigation controls, which are discussed in Chapter 3.

The site map must be an XML file with the exact name web.sitemap and must be located in the root of
the web application. XML is a standard for holding data, somewhat like a database, but in a human-
readable text form. Each item of data is held in a node, and in this case a node would represent one page
of the site with data for the page URL, title, and description. An XML file holds the nodes in a tree-like
structure so ASP.NET 2.0 will know which pages are to be considered children of a parent page. For
example, a page of Corporate Departments would be a parent to children pages with details on Sales,
Research, and Accounting. The first tags in the file are standard for XML files to identify the version and
the XMLNS, as shown in the following code:

<?xml version=”1.0” encoding=”utf-8” ?>
<siteMap xmlns=”http://schemas.microsoft.com/AspNet/SiteMap-File-1.0” >

These first two lines are automatically typed for you when you use VWD to add an item to the root from
the template site map. The node names are simple: <siteMap> containing <siteMapNode> tags. Each
tag represents a web page and can include the following attributes (all attributes of the <SiteMapNode>
tag are strings):

❑ Title: Describes the page (this is not linked to the <Title> tag in the header of the page,
although it could have the same value).

❑ URL: The location of the page described in this node.

❑ Description: A description of the page.

What Microsoft offers in ASP.NET 2.0 is a way to use site data in menus and naviga-
tion controls if that data is stored according to the web.sitemap standards. VWD
includes a template with the tags for a web.sitemap file. But as of this writing there
is no tool to scan the site and generate the actual data that goes into those tags. Third
parties will surely fill this gap, but for now you must type the information into the
web.sitemap file.

42

Chapter 2

05_042583 ch02.qxd 4/4/06 2:40 PM Page 42

Note that a URL can contain querystring data, which is additional information defined at the end of the
URL string of a page, which is sent as part of a request to display a page. For example, a general refer-
ence to a page would be similar to the first line in the following code, whereas a reference to a page with
some data (for example, the month to display on the calendar) would be similar to the third line:

url=”Calendar.aspx”

url=”Calendar.aspx?Month=May”

The hierarchy (parent/child relationships) of pages listed in the site map is established by including a
child node within its parent’s open and close tags. Notice in the following code how the two subpages
(Members and Calendar) occur within the open and close tags for the Home page (shown with a gray
background). The indentation is only for the human eye; it does not affect the hierarchy. Note that the
tags for the child pages (Members and Calendar) can use the single tag format of <Tag... />. But
because the parent page (Home) has children (it contains other nodes), it must use the two-tag format of
<Tag>...</ Tag>:

<siteMap>
<siteMapNode title=”Home” url=”Default.aspx” description=”Home page for MySite”>

<siteMapNode title=”Members” url=”Members.aspx” description=”All Members” />
<siteMapNode title=”Calendar” url=”Calendar.aspx” description=”Club Events” />

</siteMapNode>
</siteMap>

To create two child pages within Calendar (grandchildren to the Home page) you take two steps. First
convert the Calendar <SiteMapNode> to the two-tag format and then add the two child tags as shown
in the following highlighted code. Remember, as stated in the preceding note box, you must do all of this
by typing in the Source View of the web.sitemap file. VWD offers neither a tool to perform an auto-
matic scan and build, nor a way to drag and drop from the Solution Explorer into the web.sitemap file.

<siteMap>
<siteMapNode title=”Home” url=”Default.aspx” description=”Home page for MySite”>

<siteMapNode title=”Members” url=”Members.aspx” description=”All Members” />
<siteMapNode title=”Calendar” url=”Calendar.aspx” description=”Club Events”>

<siteMapNode title=”Calendar of Racing Events”
url=”Calendar\Racing.aspx” description=”Racing Events” />

<siteMapNode title=”Calendar of Social Events”
url=”Calendar\Social.aspx” description=”Social Events” />

</siteMapNode>
</siteMapNode>

</siteMap>

Note that there is another attribute that you can specify on a <SiteMapNode> element: the roles
attribute. As you learn in Chapter 11, this attribute is used in the Wrox United site map file. There may
be some situations where you will want to allow a user to know of the existence of a page, even if the
user is denied access to the page. In this way, you can offer a link to a user, but when they click that link,
they are prompted to log in as a user with sufficient privileges before they can view the page.

In the next Try It Out you create a web.sitemap for Wrox United. You won’t be able to see the results of
your hard work until you reach the next chapter, where you learn the concept of navigation controls, but
this stage is a way of putting your paper-based design for the structure of a site into code, so it’s impor-
tant to get it right.

43

Site Design

05_042583 ch02.qxd 4/4/06 2:40 PM Page 43

Try It Out Create a Site Map
1. Right-click the root of the site in Solution Explorer and select Add New Item. Choose the tem-

plate named Site Map and name it web.sitemap. Note that VWD added the first two tags auto-
matically and gave you the framework for three nodes. The first is the highest level (Home) and
the next two are children.

2. Modify the first <siteMapNode> to represent your Home page with the following code:

<siteMapNode title=”Home” url=”Default.aspx” description=”Wrox United Home Page”>

3. Modify the next <siteMapNode> (the first child) as follows:

<siteMapNode title=”Fixtures” url=”Fixtures.aspx” description=”Match Fixtures”>

4. Copy an entire blank <siteMapNode> to the clipboard so you can paste it without having to
retype the tag.

5. Create two children to Fixtures, as highlighted here:

<siteMapNode title=”Fixtures” url=”Fixtures.aspx” description=”Match Fixtures”>
<siteMapNode title=”Future Fixtures”

url=”Fixtures.aspx?type=future”
description=”Who we’re going to be playing” />

<siteMapNode title=”Past Fixtures”
url=”Fixtures.aspx?type=past”
description=”Who we’ve already played” />

</siteMapNode>

As you can see, there are two subnodes within the Fixtures section of the site that enable you to
view details of both future and past fixtures.

6. There are quite a few more nodes to specify to complete this example, so to save you some time,
we’ve included the rest of the nodes in a file called web.sitemap.remainder in the chapter
directory (C:\BegASPNet2\Chapters\begin\Chapter02). All you have to do is open this file
in Notepad, copy the entire contents of the file, and paste the contents into your version of the file
right at the bottom. Alternatively, feel free to just import our web.sitemap file into your site.

7. At this point there is no good test for your web.sitemap file because the controls that display
the data aren’t discussed until Chapter 3, but having an understanding of this foundation is
very important because you can use it to add navigation features to a site.

How It Works
In this exercise, you undertook the tasks to create a site map file. Recall that VWD does not include a tool
to automatically create this file, but does include a simple template to pre-type some tags to get started.
ASP.NET 2.0 will only use this file when it is named web.sitemap, so try to avoid any temptation to
change the name.

You added a new item of the site map template and switched to Source View. VWD adds the initial tags
and the tags for the first node. But you then have to manually type all of the data and begin copying and
pasting tags for all of the rest of the pages and their data. (Obviously, the third party that writes a pro-
gram to automate this task will enjoy good sales.)

44

Chapter 2

05_042583 ch02.qxd 4/4/06 2:40 PM Page 44

General Guidelines for Site Design
Prior to designing any web site, you benefit from reviewing the principles of a good site design. In this
book, you should keep in mind three general concepts:

❑ Endeavor to separate the presentation from the information. For example, design the title, lay-
out, and format of a page (the presentation). On that page, put a control that is configured to get
and display information (such as the list of players for the team). By dividing these goals, you
are able to make updates to each without impacting the other. For example, when a new player
is added to the team, you enter the information about the player into the site’s database, and the
page automatically displays the new list of players on the team without you having to modify
the presentation layer.

❑ Strive for a consistent look and feel throughout the site. By keeping the same colors, logo, and
arrangement on the screen, you develop a sense of presence. The loyal followers immediately
feel at home with the team colors. Return visitors will be able to use the same set of learned
behaviors for using the site.

❑ Make the site as easy to navigate as possible. First, a menu bar on all pages provides easy jumps
form one part of the site to another. Use ASP.NET 2.0 tools to indicate where the currently
viewed page is located in the site.

Standard Files for ASP.NET 2.0 Applications
ASP.NET 2.0 uses two files, common to every ASP.NET site, to hold configuration information and code
that applies to the entire site. These are the Web.config and Global.asax files, respectively.

❑ Web.config contains configuration settings for a site; for example, for specifying a standard
customized error page to display to end users if anything on the site breaks.

❑ Global.asax contains code that handles events raised by any page on the entire site; for exam-
ple, code that is run each time a user first accesses the site (the start of a session).

Web.config Holds Settings for the Entire Site
Web.config stores values that apply to the entire site. Structured as an XML file and located in the root,
nodes hold information in three major areas:

❑ Application settings for feature availability used in development versus deployment

❑ Connection strings that hold values used when reading or writing from a data source

❑ System.Web and System.Net settings that hold everything else

System.Web settings are then broken into several subcatagories, including the following (not all are used
in WroxUnitedCS):

❑ HTTP Modules that point the page to other pages for execution of code

❑ Debugging routines that should be turned on at the time of compilation

❑ Authentication Technique

45

Site Design

05_042583 ch02.qxd 4/4/06 2:40 PM Page 45

❑ Role Manager settings (on or off?)

❑ Anonymous Identification settings (permitted or not)

❑ Error handling settings

❑ Web.SiteMap file data used for navigation and menus

❑ Profile data that is used for identifying users

❑ E-mail settings for the Simplified Mail Transfer Protocol (SMTP) (not used in WroxUnitedCS)

❑ Definition of Namespaces that identify the location of objects within larger objects (not used in
WroxUnitedCS)

System.Net holds just one setting for your purposes: a series of values for sending e-mail.

You can amend the contents of this file in two ways; the first is to edit it by hand in VWD, which, thank-
fully, is not too tricky to do. The alternative is to use the ASP.NET Web Site Administration Tool, which
you can launch from within VWD. Go to the main VWD menu and select Website➪ASP.NET
Configuration. A series of dialog boxes enable you to set values that VWD will change in Web.config
without directly opening the file. You can have a look at this tool later on in the last Try It Out in this
chapter.

The following explanation of the structure of a Web.config file takes a look at parts of the Wrox United
Web.config file, looking at sections from the top of the file and working down. If you open the file, you
can see that the structure (with opening and closing tags, each with attributes, and sometimes with child
nodes) is the same as for any other XML file. Application-wide configuration settings are made by adding
appropriate nodes and attributes. Text within the special <!-- -- > characters is treated as a comment,
which you can add to the file to help other users understand what each part of the file is used for.

When VWD creates a Web.config file it includes many comments that provide advice for the
settings of each section. A list of all of the values is contained in a text file located at C:\Windows\
Microsoft.NET\Framework\v2.xxx\CONFIG\Web.config.Comments.

The following is the start of the Wrox United Web.config file that you can view in the download. Feel
free to import it into your site instead of typing a new web.config yourself.

<?xml version=”1.0”?>
<!-- Note: As an alternative to hand editing this file you can use the web admin

tool to configure settings for your application. Use the Website->Asp.Net
Configuration option in Visual Studio.
A full list of settings and comments can be found in machine.config.comments
usually located in \Windows\Microsoft.Net\Frameworks\v2.x\Config -->

<configuration>

Three lines of code here are added by default to all new Web.config files. The first line contains the XML
declaration, specifying that the Web.config file follows the XML standard. The next section is a large
comment that reminds you that you can use the administration tool, instead of editing the code. The last
item to note is the root node for the file; the <configuration> node contains all child nodes with set-
tings relating to the content stored on the site.

46

Chapter 2

05_042583 ch02.qxd 4/4/06 2:40 PM Page 46

The next section contains a custom application setting that can be useful to change the way the sample
application runs for different environments. The large section between <!-- and --> is a note to pro-
grammers from VWD and is not part of the actual settings:

<!--
Mode defines certain feature availability:

Full: No restrictions
Real: Runs as if a real site, without the view code and download links

-->
<appSettings>

<add key=”mode” value=”Full” />
</appSettings>

The next section, the connection string section, holds sets of information about data sources. This string
generally includes authentication information that you can use to connect your code to the data stored in
your database. Connection strings are discussed in detail in Chapter 7. For now, simply notice that
within the connection strings section you have one or more tags that add strings:

<!--
define the connection string to the database

-->
<connectionStrings>

<add name=”WroxUnited”
connectionString=” Data Source=.\SQLEXPRESS;

AttachDbFilename=|DataDirectory|WroxUnited.mdf;
Integrated Security=True;
User Instance=True”

providerName=”System.Data.SqlClient”/>
</connectionStrings>

Note that the connectionString attribute wraps here because of page width limitations. This line of
code should remain on one line in your code.

After the connection strings, the remainder of the settings are within the <system.web> tag. They can be
in any order — here the httpModules setting is covered first. This value allows the site to handle user-
selected themes centrally, without requiring code in pages. Themes are covered in Chapter 5, and
although the httpModule isn’t covered in detail in this text, the code is well commented:

<system.web>
<httpModules>

<add name=”Page” type=”Wrox.Web.GlobalEvents.ThemeModule” />
</httpModules>

Next within System.Web is the compilation value. When set to true (as illustrated in the following
code), ASP.NET 2.0 will provide output to the page describing any problems that were found during the
build of the page. This feature is useful when you’re developing the site, but it should be set to false
prior to deployment:

<system.web>
<compilation debug=”true”>
</compilation>

47

Site Design

05_042583 ch02.qxd 4/4/06 2:40 PM Page 47

Wrox United declares site-wide values for three security settings: authentication, roles, and profiles.
Chapters 4 and 11 discuss these functions in detail. The section of Web.config in the following code
gives you a preview of what you will learn to write. Notice how the settings establish the page to use for
log-on (Default.aspx) and then turn on the Role Manager. You then have a set of tags that create the
Member type of role. Again, these are explained in detail in Chapters 4 and 11. The following code list-
ing saves space by not listing the VWD programmers help comments. Also, there is a break in the
WroxUnited Web.config between the second and third settings. where there are other settings.

<authentication mode=”Forms”>
<forms loginUrl=”Default.aspx”></forms>

</authentication>

<roleManager enabled=”true”/>
<anonymousIdentification enabled=”true”/>

...

<profile enabled=”true”>
<properties>

<add name=”MemberName”/>
<add name=”Name”/>
...

<add name=”Cart” serializeAs=”Binary” type=”Wrox.Commerce.ShoppingCart”
allowAnonymous=”true”/>

</properties>
</profile>

The next section concerns handling errors that can (and will) affect the day-to-day running of your site.
Chapter 15 discusses error handling in detail, but as an introduction, ASP.NET can be set to redirect the
user to a custom error page if there is a problem. The file to display in the case of an error is declared in
the Web.config defaultRedirect setting as follows:

<!-- The <customErrors> section enables configuration of what to do if/when an
unhandled error occurs during the execution of a request. Specifically, it enables
developers to configure html error pages to be displayed in place of a error stack
trace. -->

<customErrors mode=”RemoteOnly”>
<error statusCode=”404” redirect=”missingPage.aspx”/>

</customErrors>

So, for example, if your database server was the victim of a power cut, your users don’t need to know
the details, but they’d like to be reassured, along the lines of “Sorry, there is a fault — we’re working
hard to fix the problem. Normal service will resume shortly.” Local administrators, on the other hand,
would like to know what the problem is so that they can get it back up and running as quickly as possi-
ble. The RemoteOnly attribute in this example means that remote users see the friendly message,
whereas the administrator will see all the details of any error.

The last setting of System.Web identifies the file that will hold the site map, an index to all of the pages,
and their relationships to each other (as covered in Chapter 2). ASP.NET 2.0 also requires the identifica-
tion of what Provider, or reading tool, to use for the site map.

48

Chapter 2

05_042583 ch02.qxd 4/4/06 2:40 PM Page 48

<!-- Redefine the Site Map Provider, to add the security trimming attribute, which
is off by default -->

<siteMap defaultProvider=”AspXmlSiteMapProvider” enabled=”true”>
<providers>

<clear/>
<add name=”AspXmlSiteMapProvider”

type=”System.Web.XmlSiteMapProvider,
System.Web,
Version=2.0.3600.0,
Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a”
siteMapFile=”web.sitemap”
securityTrimmingEnabled=”true”/>

</providers>
</siteMap>

The last group of settings is in System.Net. Although not explicitly used in the WroxUnitedCS applica-
tion, it could be used so that automated e-mails can be sent to a user when they forget their password,
and request that the password be sent in an e-mail. Regardless of how the e-mail is created, you must
declare the SMTP (Simplified Mail Transfer Protocol) in Web.config as follows:

<system.net>
<mailSettings>

<!-- these settings define the mail server settings from: the user name from
which the email is sent - this is the application that is sending the message host:
the name of your mail server userName: the name the application will use to log
into the mail server password: the password for the above user name

-->
<smtp from=”admin@your-domain.com”>

<network host=”your-mail-server-name”
userName=”your-user-name”
password=”your-password” />

</smtp>
</mailSettings>

</system.net>

Finally, as with all XML files, each opening tag must have a closing tag, so you finish up the file with the
following:

</system.web>
</configuration>

Web.config, as you have seen, holds site-wide settings to which all other pages can refer. This saves
you from having to repeatedly specify the same pieces of information in every page that needs it, and
you have one place to go to change settings.

Later in the book, you’ll be adding more capabilities to all your site pages, including adding code to deal
with various events that happen on each page. But, in the same way that you don’t want to specify the
same settings in every page, if you need to have the same behavior repeated on multiple pages, you’ll
need a way to share that code. There was no executable code in Web.config— for that you need
another site-wide file — the Global.asax file.

49

Site Design

05_042583 ch02.qxd 4/4/06 2:40 PM Page 49

Global.asax Holds Code for the Entire Site
Whereas Web.config holds values, Global.asax holds code. Global.asax, like Web.config, resides
in the root of the site. Writing code is discussed in detail in Chapter 9, but for now you can get an
overview of Global.asax.

The code in Global.asax executes in one of three cases. First is the case of the application as a whole
starting or stopping. Second is when each user starts or stops using the site. Third is in response to spe-
cial events taking place that could happen on any page, such as a user logging in or an error occurring.
Each of these is known as an event. When each of these events occurs, ASP.NET lets Global.asax know,
and by editing Global.asax, you can put code into it that will be executed in response to the events.

You’ll be using Global.asax to share code across all the pages of the Wrox United web site later in the book.

Editing Site Configuration Through a Web Browser
Now, it’s perhaps a little daunting looking at the complex XML syntax of Web.config and the code in
Global.asax. Editing these files to make changes to the overall configuration and behavior of your appli-
cation requires a good understanding of the files’ syntax rules, and accurate typing to avoid introducing lit-
tle errors. Conveniently, though, ASP.NET 2.0 provides a graphical tool that lets you modify many of the
settings you could manually enter in Web.config, through the Web Site Properties dialog box.

Bring up the Web Site Administration Tool by clicking the ASP.NET Configuration button at the top of
the Solution Explorer, as shown in Figure 2-8.

Figure 2-8

50

Chapter 2

05_042583 ch02.qxd 4/4/06 2:40 PM Page 50

The Properties window opens, as shown in Figure 2-9.

Figure 2-9

As you can see, VWD has actually opened up a web browser showing a web site that is built into
ASP.NET, called the ASP.NET Administration Tool, through which you can edit the settings of your web
application. You’ll be using this administration tool in depth later in the book, but for now, you can
explore the Application Configuration section of the tool. Figure 2-10 shows what options are presented
to you by this page.

Although you can’t administer everything that you looked at earlier, some of the key sections from
Web.config are represented here. You have the ability to edit application settings (the contents of the
<appSettings> element you looked at earlier), e-mail settings (the <smtpMail> section you saw in the
Web.config file), and debugging and error handling (the <compilation> and <customErrors> sec-
tions you examined before).

51

Site Design

05_042583 ch02.qxd 4/4/06 2:40 PM Page 51

Figure 2-10

In this Try It Out, you see how the ASP.NET Administration Tool edits the Web.config file for you.

Try It Out Changing Settings with the Administration Tool
1. Working in VWD’s Solution Explorer, import into your site missingPage.aspx from the down-

load files (C:\BegASPNET2\WroxUnitedCS).

2. Open the Web Site Administration Tool by clicking the icon on the Solution Explorer.

3. Navigate to the Application Configuration page, and click Define Default Error Page.

If you have imported the WroxUnitedCS web.config from the download at
www.wrox.com, you will find that it uses a namespace called Wrox, which has not
yet been created in this book. Ignore the warning to this effect.

52

Chapter 2

05_042583 ch02.qxd 4/4/06 2:40 PM Page 52

4. Select the Specify a URL to Use as the Default Error Page option, and select MissingPage.aspx
as the page to redirect users to when an error occurs.

5. Click the Save button.

6. Return to VWD, and open the Web.config file.

7. Scroll down until you find the <customErrors> section of the configuration, and notice that
the value of the defaultRedirect attribute has been changed to the path of the page you
chose in the Administration Tool:

<customErrors mode=”RemoteOnly” defaultRedirect=”MissingPage.aspx”>
</customErrors>

How It Works
The Administration Tool is just a friendlier way to edit some of the settings present in Web.config,
including the default error page. When you change the application’s error handling setting through the
Administration Tool, it edits Web.config for you — without your having to get your hands dirty editing
XML data.

Troubleshooting Site Design Errors
Now that you have a good idea of what goes into site design, here are the most common errors you
might run into when using Master pages, and the other facilities you’ve looked at in this chapter:

❑ The reference to the Master page is misspelled in a Content page. This will prevent ASP.NET
from being able to find the Master page template for a page. To avoid this, whenever possible,
use the VWD check box in the template dialog box to create the master reference.

❑ A mismatch between the ID of the content placeholder in the Master page and the
ContentPlaceHolder ID property of the content tag in the Content page will prevent your
page from displaying. Double-check that they match.

❑ The Web.config or Global.asax files are very strict about their syntax, and errors in them
(such as typos) can be hard to track down. You can get around having to edit Web.config by
using the ASP.NET Administration Tool, so you can be sure you haven’t introduced typographi-
cal errors into the file.

Summary
Web sites are easy to create, use, and maintain if they are well designed. ASP.NET 2.0 offers several tools
to organize the design of the site.

In this chapter, you learned that Master and Content pages create a consistent look and feel to the site.
Master pages provide the consistent sections of the pages along with a position for the material con-
tained in the Content page. Whenever possible, create the Master and Content pages using the Add New
Item choice after right-clicking the root of the site in the Solution Explorer. A Master page must have the
normal HTML and XML typing tags, <%@ master ... %> on the first line, and an <asp:Content
PlaceHolder> tag with an ID. Content pages must not have the basic HTML and XML typing tags,

53

Site Design

05_042583 ch02.qxd 4/4/06 2:40 PM Page 53

must have <%@ page masterPageFile= %> on the first line, and must at some point use an <asp:
content> tag to contain the material to be displayed. A Master page <head> can contain the link to a
CSS if you are using one. Additionally, this chapter covered the following topics:

❑ Your site can implement multiple levels of Master pages. You can also create several Master
pages to be served depending on the requesting browser. Furthermore, a Master page can sup-
port several <ContentPlaceHolder> tags provided that each has its own ID.

❑ Site maps contain a description of each file and its relationship to surrounding files. This XML
file can then be read by ASP.NET 2.0 server-side controls to create navigation aids. VWD does
not have a way to automatically create a site map, but the XML structure is not hard to under-
stand because each page is a SiteMapNode.

❑ Two files hold information for an entire application. Web.config holds settings such as connec-
tion strings used with a data source, debugging routines for compilation, security settings, and
values for handling errors, among other settings. Global.asax holds code for the entire site,
including code to run when the application as a whole starts or stops. Additional code blocks
can run when each user starts or stops using the site. Global.asax also houses code that can
run on any page.

In the next chapter, you learn about the various server-side controls and how to use them to build
proper pages. You will construct the Wrox United home page and fill in some of the Master page you
created in this chapter.

Exercises
1. Describe the functional difference between the Web.config file and Global.asax.

2. What files discussed in this chapter are in XML format?

3. Take a look at the code for a Content page. Why does it lack directives and tags?

<!DOCTYPE HTML PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head ></head>

4. What values must match between a set of Master and Content pages?

54

Chapter 2

05_042583 ch02.qxd 4/4/06 2:41 PM Page 54

3
Page Design

Successful web sites are generally easy to use, intuitive, and clearly presented. It’s your job (possi-
bly with the help of a friendly designer) to ensure that the sites you develop are not just functional,
but can be presented in a meaningful manner. After you have a basic site outline structure in place,
you need to make decisions about how to present the information and user interface elements.

ASP.NET, in conjunction with VWD, has some great tools for designing and laying out pages.
Recall that you’ve already created a few pages with simple content simply by dragging and drop-
ping from the Toolbox in VWD. Designing an entire site is obviously going to involve a whole lot
more dragging and dropping, but there are ways of making this process less painful.

This chapter looks at the following topics:

❑ Creating and laying out static pages

❑ HTML and the HTML viewer in VWD

❑ Server controls and dynamic content

❑ Configuring controls in Design View

❑ The controls available in the web control library

❑ Adding dynamic navigation controls to a page, and getting them to work without writing
a single line of code

If you have experience programming in HTML, some of this chapter may cover familiar territory,
but the toolset available for working with HTML in VWD is quite advanced, so it’s worth sticking
around and enjoying a light refresher.

Static Page Design
The term static refers purely to the fact that the page shown in Figure 3-1, like many others on the
Internet, is view-only (imagine an HTML page with nothing but text, or just a series of images) —
you don’t always want to have every page in a site include a form for submitting information, or
react to user input. Static pages contain, by definition, content that doesn’t change (or that rarely

06_042583 ch03.qxd 4/4/06 2:41 PM Page 55

needs to be updated). Imagine you had a personal web site that contained an “About Me” page — you
might want to change the content from time to time (if you move, change jobs, or get married), but on
the whole, you’re not likely to want to change that page more than a couple of times a year.

Figure 3-1

Static pages remind me of the Web circa 1995 — most of the sites I’d view at the time would be simple,
plain sites, and the joy of just playing with HTML tables for layout was enough to keep me occupied for
a few afternoons. Time for a quick Try It Out — you’re going to create a really simple page and see what
this page looks like in HTML view, looking at how HTML elements are structured.

Try It Out Creating a Static Page
Fire up VWD and get started. This is a light run-through — you don’t have to do much at this stage, just
follow the steps and feel comfortable with the techniques.

1. First, it will help if you download the base code for this chapter from www.wrox.com. Make
sure you place the base code folder in the following location: C:\BegASPNET2\Chapters\
Begin\Chapter03.

2. Open VWD and select Open Web Site from the main menu. In the dialog box that appears,
select the Chapter03 folder and click Open (see Figure 3-2).

3. In the Solution Explorer on the right (shown in Figure 3-3), right-click the Chapter03 site and
select Add New Item.

4. The Add New Item dialog box appears, where you need to select a new HTML page called
StaticHTMLPage.htm, and click Add (see Figure 3-4).

56

Chapter 3

06_042583 ch03.qxd 4/4/06 2:41 PM Page 56

Figure 3-2

Figure 3-3

57

Page Design

06_042583 ch03.qxd 4/4/06 2:41 PM Page 57

Figure 3-4

5. Switch to Design View by clicking the Design button at the bottom of the page, and then type in
some text, as depicted in Figure 3-5.

Figure 3-5

Don’t worry about the actual text — this is a simple example, and you don’t have to publish this
on the web.

6. Next, from the toolbar select Layout➪Insert Table to add a table to the page. Give it two rows,
two columns, and borders and padding if you like, all of which appear in Figure 3-6.

58

Chapter 3

06_042583 ch03.qxd 4/4/06 2:41 PM Page 58

Figure 3-6

7. After you have a table, you can add content within each cell. Try adding some text to a cell, and
then drag an image tag from the HTML section of the Toolbox on the left of VWD onto the page,
as shown in Figure 3-7.

Figure 3-7

When you have a table in the designer, you can click the <table> button at the bottom of the
screen to select only that element on the page (see Figure 3-8) — you can then modify the
padding and border attributes on the table by changing the values in the Properties box on the
right.

59

Page Design

06_042583 ch03.qxd 4/4/06 2:41 PM Page 59

Figure 3-8

8. Click the Source button at the bottom of the screen and you can see the HTML that’s generated
for you (see Figure 3-9). With some small tweaks, you can add a small amount of styling and
some links to your images.

Figure 3-9

9. To turn the nascent page into the finished example, I added some more text and images to my
version. Here’s the code for the version of the finished page that you can download from
www.wrox.com— notice the <style> attribute on the <body> tag:

<body style=”color: darkolivegreen; font-family: georgia”>
This is a simple static web page with an image and some interesting information
about some places I have been:

60

Chapter 3

06_042583 ch03.qxd 4/4/06 2:41 PM Page 60

<table cellspacing=”3” cellpadding=”3” border=”1”>
<tr>

<td>

A church near Faja Grande, a small town on the western-most edge
of Flores - one of the 9 islands in the Azores.</td>

<td>

A view of old parts of Budapest (Hungary) across the Danube.</td>

</tr>
<tr>

<td style=”height: 192px”>

A castle on the end of a peninsula on the shores of Lake Garda, Italy.</td>

<td style=”height: 192px”>

Selfridges at the Bullring shopping centre - a truly remarkable piece of
architecture in Birmingham, UK.
</td>

</tr>
</table>

</body>

When you finish adding content to the page, you can view the page by pressing Ctrl+F5. The
result is a page that looks like Figure 3-10 (which is the same as Figure 3-1).

Figure 3-10

61

Page Design

06_042583 ch03.qxd 4/4/06 2:41 PM Page 61

How It Works
As you proceed through this chapter, you’ll become increasingly familiar with the technique of adding
layout elements in the design window, and making some changes either in the Properties pane on the
right, or by modifying the code manually. Static elements such as the ones used in this example (simple
text within a body tag, tables, and images) are used throughout both static and dynamic pages, and
understanding how to add and integrate these elements is all part of building dynamic web applications.

In this example, you gained a bit of practice in working with a simple HTML layout of a page. For exam-
ple, the elements on the page were laid out in a simple HTML table, and within each of the cells in the
table were some text and some images:

<td>

A church near Faja Grande, a small town on the western-most edge of Flores - one
of the 9 islands in the Azores.

</td>

The body tag in the rendered page has some simple styling attached to it that defines the color and font
used for the text on the page:

<body style=”color: darkolivegreen; font-family: georgia”>

This attribute will apply to all of the elements within the opening and closing <body> tags, hence all of
the content of the visible page.

Don’t worry if a lot of this is new to you — the next section is designed as a crash course in HTML to
help you get up to speed.

The World of HTML
If you are unfamiliar with HTML, here are some of the basic concepts you need to understand:

❑ An HTML file is human-readable text with a few extra brackets — when you browse a web
page, your web browser will understand how to convert the bracketed bits into something that
looks interesting.

❑ The bracketed bits are called elements, though strictly speaking, the element normally consists of
two tags that open and close the element, and sometimes have textual or other HTML content
between them. Some elements have only a single tag.

❑ Elements have attributes that give the browser extra information about how the element should
appear on the page.

Here’s a simple HTML element:

<div id=”divUserDetails”
style=”width:300px;height:100px;float:left;background:darkred;color:white”>

These are my details, my favorite color, and my hobbies
</div>

In this example, the <div ...> and </div> parts are tags describing the div element, the id=””
and style=”” bits are attributes, and the text between the two tags is the content of the element.

62

Chapter 3

06_042583 ch03.qxd 4/4/06 2:41 PM Page 62

❑ Rendering is the process of turning HTML code into visual elements, so the preceding code will
render as shown in Figure 3-11.

Figure 3-11

The following table contains some of the HTML elements you’re likely to run into.

Element Description Example Usage

 An image tag. This tag places an image
on a page.

<div> A paragraph-style block of text. Text <div style=”float:left”
contained in a <div> element can be >Left-hand content
positioned on a page using various here</div>
attributes. For example, to place two <div style=”float:right”>
div elements side-by-side, you could Right-hand content
have one with a float:left style, and here</div>
one with a float:right style.

 A tag used to format characters of text, <div>
so you could surround a word in a Some standard text with a
sentence with a tag and make <span style=”font-weight:
the span have bold styling to highlight bold”>
that word. bold word in the middle

</div>

<table> A table element that contains rows <table border=”1”>
<tr> (<tr>) and cells (<td>). Commonly <tr>
<td> used to position elements on a page, <td>The contents of a

should ideally be used only for tabular cell</td>
data. According to accessibility guidelines, </tr>
<div> elements should be used for layout </table>
and positioning, but a lot of sites still use
tables because they are simpler to develop.

Table continued on following page

63

Page Design

06_042583 ch03.qxd 4/4/06 2:41 PM Page 63

Element Description Example Usage

<a> An anchor element. Defines a hyperlink Some text with a
on a page, enabling the developer to
specify both the target content (in the hyperlink
href attribute) and the text to display in it
to the user.

<head> The two main parts of an HTML page <html>
<body> are the <head> and the <body>. The <head>

<head> is where the <title> element <title>Page Title</title>
and <link> elements (along with a </head>
variety of metadata) are placed. The <body>
<body> contains the display elements. Contents of page

</body>
</html>

<form> A form element. When creating a site that <form id=”form1”
<input> has a data entry form, the elements that runat=”server”>

are used to transmit data to the server <input id=”Text1”
must be contained within a <form> type=”text” />
element. The HTML <input> element is <input id=”Submit1”
quite versatile. With a type attribute of type=”submit”
text, it appears as a text box on the screen. value=”submit” />
With a type of submit, it appears as a </form>
button that, when clicked, submits the
form to the server.

<title> Within the <head> of the page, the <title> <head>
<link> element controls the text in the title bar of <title>Page Title</title>

the page. The <link> is most often used to <link rel=”Stylesheet”
link a page with a CSS style sheet. type=”text/css”

href=”MyCss.css” />
</head>

<script> Can contain either client-side script (script <script language=
run on the browser, normally written in ”JavaScript”>
JavaScript, or possibly VBScript), or server- alert(‘Hello World!’);
side .NET code. </script>

<script runat=”server”>
protected void Page_Load(
object sender,
EventArgs e)
{
...
}
</script>

64

Chapter 3

06_042583 ch03.qxd 4/4/06 2:41 PM Page 64

Element Description Example Usage

 Used to help to lay out a page, the
 This is a string of text with a
<hr /> tag adds a line break to a string of text, and line
break and
 the forcibly enters a non-breaking a space.

space character; hence two words (or <hr />
elements) separated only by a Two images separated by a
character cannot be split apart over two space:

lines. The <hr /> element displays a
horizontal line across the page. ;

A sample HTML page called SampleHTMLElements.htm that includes these simple examples is avail-
able in the code download for this chapter, and it appears as shown in Figure 3-12.

Figure 3-12

Gaining familiarity with the common elements in HTML is a necessity for any ASP.NET developer, and
not only do you have to understand how to use these elements, you have to learn how to use them cor-
rectly, in adhering to the standards and making sure that sites you develop are accessible by as many
users as possible.

65

Page Design

06_042583 ch03.qxd 4/4/06 2:41 PM Page 65

It’s very easy to end up with HTML that’s almost impossible to maintain, with tags and styling all over
the place. Many older tools for constructing HTML pages would take pride in destroying your carefully
crafted HTML code, and supposedly correct your code to follow the guidelines within the tool. Anyone
who used older versions of FrontPage would have cursed many a time at the fact that simply opening an
HTML page and closing it in FrontPage would permanently mangle your HTML code. Thankfully, VWD
has one of the best HTML editors I’ve ever used.

Perhaps the best way to make your code clean and easy to maintain is to adhere to a common standard.
The introduction of XHTML brought many more guidelines to web development, and following these
guidelines is a great way to improve your technique.

From HTML to XHTML Code
Although most people speak of HTML code, the fact is that if you write good HTML code, you’re actu-
ally writing XHTML. XHTML is a set of rules that, if you follow them when you write HTML code,
result in code that is more standards-compliant, and hence more likely to render as you want it to on a
variety of different client browsers.

The core rules of XHTML are as follows:

❑ Always close your tags (so you always have both a <p> and a </p> for a paragraph) or use self-
closing tags (such as
 instead of
).

❑ Tag and attribute names must be lowercase (so <div id=”myDiv”> is acceptable, but <Div
ID=”myDiv”> is not) because XHTML is case-sensitive (so <div>, <Div> and <DIV> are all dif-
ferent entities to XHTML).

❑ Attribute values must be enclosed within double quotes.

This is only a brief summary of XHTML. If you want to know more about the rules, refer to the W3 site
www.w3.org/TR/xhtml1/ where you can learn all about the XHTML standard. Section 4 of that page
deals specifically with the way XHTML differs from standard HTML.

In essence, the aim of XHTML is to provide a common set of guidelines for web developers and browser
developers to to follow. With newer web browsers such as Firefox starting to gain ground on the
Microsoft Internet Explorer–dominated landscape, it’s important that all parties agree to support
XHTML in all future iterations of their products to move away from the old problem of developing a site
that worked just fine on Internet Explorer, but looked awful on Netscape.

The move toward XHTML as the standard language of the web is gradual, and will likely never happen
fully (with browsers likely to support older tags and markup for many years yet for backward compati-
bility), but you’ll find that future maintenance of web sites that you write today will be much simpler if
you follow the XHTML guidelines. You should be less likely to see your sites break when the next ver-
sion of Internet Explorer or Firefox arrives.

Visual Web Developer has a great feature for helping you to develop standards-compliant web sites. If
you open up SampleHTMLElements.htm in VWD, you’ll notice that there is a toolbar at the top of the
page (see Figure 3-13) that lists Internet Explorer 6.0 as the target for the web page.

Now if you change the selection so that your page is supposed to target the XHTML 1.1 standard, you’ll
see plenty of red squiggly underlining, as shown in Figure 3-14.

66

Chapter 3

06_042583 ch03.qxd 4/4/06 2:41 PM Page 66

Figure 3-13

Figure 3-14

The highlighted error shown in Figure 3-14 refers to the fact that
 tags are supposed to only
appear within a block element, such as a <div>. If you changed the first part of the page to be enclosed
within a <div> element, this error would be fixed, without any discernable change to the appearance of
the page:

67

Page Design

06_042583 ch03.qxd 4/4/06 2:41 PM Page 67

<div>
<div style=”float:left”>Left-hand content here</div>
<div style=”float:right”>Right-hand content here</div>

</div>

Switch the validation target back to Internet Explorer 6.0 and you will see that the highlighted errors will
all disappear. Building a site for a specific browser, like IE 6.0, gives you more flexibility with the code
you write, but you cannot guarantee that your site will appear as designed on other browsers.

The rules of XHTML are also followed in any code that ASP.NET generates dynamically. You haven’t cre-
ated much in the way of dynamic content so far, so let’s move on to looking at how you can make pages
a bit more exciting.

Dynamic Content
In order to move from the static world of HTML to the dynamic world of ASP.NET, it’s important to
know what is meant by dynamic content.

When you click a button on a form on a web page, you expect something to happen — and most of the
time (if the page has been coded correctly), something does happen. You might submit an order form for
a stack of CDs by clicking a button. You might also select an item on a menu on a page — take, for exam-
ple, a menu from the Wrox United web site. Clicking the menu causes the menu contents to pop out (see
Figure 3-15) and become selectable in a similar way to clicking your Start button.

Figure 3-15

68

Chapter 3

06_042583 ch03.qxd 4/4/06 2:41 PM Page 68

Now notice that there’s no lag between clicking the menu and clicking a different menu — the page
responds just like your own system. Your browser’s actually executing some local code in order to dis-
play these items. Click a button or a hyperlink on a form and the page will likely take longer to respond.
Clicking buttons, hyperlinks, or other similar elements on a page causes your browser to start talking to
the server, asking for something, or sending some data.

Dynamic Client Code and Dynamic Server Code
Hovering over the menu on the Wrox United web site will run some code on the page that is likely writ-
ten in JavaScript, a programming language that most browsers can understand and run, and is used to
provide quick responses to user input. The page won’t flicker and refresh (unlike clicking a hyperlink)
because the browser already knows what to display when you hover over the menu. This is an example
of dynamic client code.

When a more complicated response is required (for example, when you submit an order on a shopping
site or when you want to search for a specific item on a shopping site), the page submits information
back to the web server for processing. The processing on the server is dynamic server code, and this is
the code that you will learn to write over the course of this book.

Server-side code can be written in many different languages, not just ASP.NET with VB.NET, C#, or
other .NET languages. You probably have heard of PHP and perhaps JSP (Java Server Pages) — these are
just two examples of other languages used by developers to write server-side code. Each language has
its strengths and weaknesses, but you’ll be hard-pressed to find a server-side technology that’s as easy to
use and as powerful as ASP.NET.

When it comes to creating dynamic pages in ASP.NET, the fastest way to build a dynamic page is to drag
server controls onto the page, set properties on those controls, and eventually write code to customize
their functionality. This drag-and-drop architecture has improved greatly in the latest edition of ASP.NET,
making it possible to create the structural framework for an entire site without having to write any code.

Introduction to Server Controls
When you look at the Visual Web Developer Toolbox, you’ll notice several different sections, each con-
taining a different set of tools. Many of these tools are server controls, and you’ll be using these controls
regularly when you develop ASP.NET applications.

This section starts by taking a look at some of the categories of controls available to you, and then dis-
cussing how they work.

A server control appears on the source code for an ASP.NET page as a tag; for exam-
ple, <asp:textbox ... />. These tags are not standard HTML elements, so a
browser will not be able to understand them if they appear on a page. However,
when you request an ASP.NET page from a web server, these tags are converted into
HTML elements dynamically, so the browser only receives HTML content that it can
understand.

69

Page Design

06_042583 ch03.qxd 4/4/06 2:41 PM Page 69

The Server Control Toolbox
At first glance, the array of server controls in the Toolbox can be quite overwhelming. Not only do you
have standard web page elements to choose from (such as radio buttons, hyperlinks, and drop-down
lists), but other categories of controls are also available (shown minimized in Figure 3-16) that contain
even more controls. The Toolbox changes appearance depending on which type of page is being edited,
so Figure 3-16 is the standard appearance when you’re working on ASP.NET pages.

Figure 3-16

The categories of controls available are as follows:

❑ Standard: Common controls that make up 90 percent of all pages.

❑ Data: Controls used to connect to data sources (databases or XML files).

70

Chapter 3

06_042583 ch03.qxd 4/4/06 2:41 PM Page 70

❑ Validation: Controls that can be added to a page to validate user input (for example, to ensure
that certain text boxes contain data or that data has been entered in the correct format).

❑ Navigation: Controls used to provide a simple and quick solution to making a site navigable
(for example, dynamic menus and breadcrumbs of hyperlinks).

❑ Login: A set of controls that make it simple to move from a completely open site to one that has
personalized areas.

❑ WebParts: Controls that make it possible to create Sharepoint-style sites with drag-and-droppable
sections, known as Web Parts, which enable the user to rearrange their view of a site.

❑ HTML: Simple HTML elements.

Throughout the rest of this book, you’ll be introduced to many of the controls in each category. Later in
this chapter, you can play with some of the navigation controls when you build some menus for the
Wrox United site.

What Are Server Controls?
Let’s start from first principles. When you create a simple HTML page and save it to your local file sys-
tem, you can view that page in your browser by double-clicking the file. This is fine if you’re putting
together a static HTML site and want to test the output, but there’s no point in developing a web site
that users would have to download to view. That’s why, when a web site is deployed, it is uploaded to a
web server, which everyone can access via its URL (Uniform Resource Locator).

When the site is hosted on a web server, people can access the site from other machines and browse
through the HTML pages. However, if the server has the right software installed, you can then do much
more than offer static HTML pages. When you request an HTML page, the server looks up the file and
sends it to you. When you request an ASP.NET page (a page with the file extension .aspx), the server
looks up the file on its file system and reads the file, and then it performs some processing before send-
ing the resulting page back to you. The “performs some processing” bit is the magic that makes
ASP.NET work.

The extra processing that the server performs includes the capability to read an ASP.NET page and con-
vert the server controls in that page into HTML that the browser can understand. Remember, your
browser doesn’t speak ASP.NET. A web browser is a simple thing that only speaks HTML and possibly
JavaScript — it cannot process ASP.NET code. The server reads the ASP.NET code and processes it, con-
verting anything that is ASP.NET-specific to HTML and (as long as the browser supports it) a bit of
JavaScript, and sends the freshly generated HTML back to the browser.

The process of converting ASP.NET code to HTML is how server controls work — you can happily create
pages that contain server controls when you are developing the source .aspx page, yet the browser that
requests that page from the web server will only receive HTML and JavaScript (see Figure 3-17). This is a
key concept to understand, and the process is discussed in more detail in Chapter 6.

71

Page Design

06_042583 ch03.qxd 4/4/06 2:41 PM Page 71

Figure 3-17

You can see how this works with the aid of a simple example. The following Try It Out is a really simple
example to demonstrate the differences between the ASP.NET code and HTML code.

Try It Out Adding Server Controls in Design View
1. Reopen the Chapter03 web site.

2. Right-click the root of the web site and select Add New Item.

3. In the dialog box that appears (shown in Figure 3-18), select Web Form, call the page
ServerControls.aspx, select your preferred language from the drop-down list, and leave both of
the check boxes unchecked.

Figure 3-18

Browser

http://server/Page.aspx

Server

Page.aspx

Server code

Client code

72

Chapter 3

06_042583 ch03.qxd 4/4/06 2:41 PM Page 72

4. If you are not already in Design View, switch into that mode and double-click a TextBox control
from the Standard section of the control toolbox on the left (see Figure 3-19) to add it to the main
body of the page.

Figure 3-19

5. You’re actually ready to view the page now, so right-click on the page and select View in
Browser. Your browser should start and display the page shown in Figure 3-20.

Figure 3-20

Note that the number displayed in the address bar (after the word “localhost”) is a fairly ran-
dom number that is generated whenever you first request a server-side page from a project.

How It Works
In this example, you only added a single server control to an ASP.NET page and viewed the page in the
browser. It’s not exactly the most exciting example in the world, but the point is to see how server-side
code is changed into client-side code.

73

Page Design

06_042583 ch03.qxd 4/4/06 2:41 PM Page 73

Click the View menu in the browser and select View Source. You should see the code shown in Figure
3-21 appear within Notepad.

Figure 3-21

This code is the client-side code — the rendered output of the page. Compare this with the original code —
return to VWD and click the Source View of the page (see Figure 3-22).

Figure 3-22

74

Chapter 3

06_042583 ch03.qxd 4/4/06 2:41 PM Page 74

Note the lines that describe the control with the ID of TextBox1. Here are those lines, as they appear in
the original source code for the page:

<div>
<asp:TextBox ID=”TextBox1” runat=”server”></asp:TextBox>

</div>

And here is the equivalent line in the rendered source code:

<div>
<input name=”TextBox1” type=”text” id=”TextBox1” />

</div>

Notice that the original TextBox1 control has been converted from an ASP.NET control to an HTML ele-
ment. The server received the request for the page and was able to glean, from the original request, that
the browser could understand HTML, so the server produced an HTML version of the control along
with the rest of the page back to the browser. The browser then does the legwork in converting that
HTML code to a viewable web page.

Source View in VWD
Visual Web Developer has two main modes when it comes to building and editing pages. The Design
View is one that you’ve spent a little while working in now, and it’s the Design View that you’ll concen-
trate on using (where you can) in this book to avoid having to type too much code. However, Source
View is really useful for editing a page and fixing nagging problems, so it’s worthwhile taking a look at
this now and gaining some familiarity. Add another control to the page you were just working on, this
time in Source View.

Try It Out Adding Server Controls in Source View
1. Head back into VWD and ensure that you are in Source View for the ServerControls.aspx

page (click the link at the bottom of the window to switch between Design View and Source
View). In the code that appears, click the line immediately below the code representing the
TextBox control that you added in the previous example.

<div>
<asp:TextBox ID=”TextBox1” runat=”server”></asp:TextBox>

</div>

2. You have two options available to you when you add server controls in Source View: you can
either type the code, or drag and drop the control from the Toolbox, much like the technique
used in Design View. Do it the hard way first — start typing the following code:

<asp:Image

Before you even finish the word “Image,” you’ll notice some handy tooltips popping up, as
shown in Figure 3-23, trying to guess what you’re typing.

75

Page Design

06_042583 ch03.qxd 4/4/06 2:41 PM Page 75

Figure 3-23

3. Continue to enter the code as follows:

<div>
<asp:TextBox ID=”TextBox1” runat=”server”></asp:TextBox>
<asp:Image ID=”MyImage” runat=”server” ImageUrl=”~/azoreschurch.jpg” />

</div>

Notice that VWD presents you with a list of local images when you enter the ImageUrl property
(see Figure 3-24).

4. Add one more control to the page; this time, add it using the double-click technique. Add a
blank line before the </div>, position your cursor in this line, and double-click the Hyperlink
control (see Figure 3-25) in the Toolbox to add it to the page.

This is a feature available to VWD and Visual Studio known as IntelliSense, and it’s
designed to make your life as a developer a little easier. To accept a suggestion, you
can scroll through the list with the arrow keys and then press the Tab or Enter key or
the spacebar, or click the suggestion with your mouse. To forcibly show any relevant
IntelliSense, press Ctrl+Space and the popup will appear.

76

Chapter 3

06_042583 ch03.qxd 4/4/06 2:41 PM Page 76

Figure 3-24

Figure 3-25

77

Page Design

06_042583 ch03.qxd 4/4/06 2:41 PM Page 77

5. You’ll still have to edit this control before you can run the page successfully, so position your
cursor anywhere within the Hyperlink’s definition and then cast your eye over to the
Properties pane on the right. (If it is hidden, as in Figure 3-25, you will need to pop it out from
the side by hovering your mouse over the Properties tab at the right-hand edge of your screen,
or select View➪Properties Window.) Notice a property called NavigateUrl near the bottom of
the list of properties. Enter http://www.wroxunited.net as the value for this property and press
Enter. Take a look at Figure 3-26 and you’ll notice a new attribute of the hyperlink tag called
NavigateUrl appear on the page with the value you entered.

Figure 3-26

6. Switch over to Design View and see how it looks — you’ll notice all three controls on the page in
one line. If you’d prefer them to appear one below the other, simply type
 after each con-
trol to add an HTML line break character in Source View. You might also want to change the dis-
play text of the hyperlink control (the text immediately before the </asp:HyperLink> closing
tag) to some text of your choosing.

<body>
<form id=”form1” runat=”server”>

<div>
<asp:TextBox ID=”TextBox1” runat=”server”></asp:TextBox>

<asp:Image ID=”MyImage” runat=”server” ImageUrl=”~/azoreschurch.jpg” />

<asp:HyperLink ID=”HyperLink1” runat=”server”

NavigateUrl=”http://www.wroxunited.net”>Visit Wrox United Online!
</asp:HyperLink>

</div>
</form>

</body>

78

Chapter 3

06_042583 ch03.qxd 4/4/06 2:41 PM Page 78

Notice the bar at the bottom of the screen next to the Design and Source buttons. There’s an
orange highlight on the element that is underneath the current cursor position (see Figure 3-26).
This element hierarchy changes whenever you select different elements in either Design View or
Source View.

7. Run the page again and view the results, which are depicted in Figure 3-27.

Figure 3-27

How It Works
In this example, you gained a bit more familiarity with the drag-and-drop method of page design, and
with using Source View to manually craft pages. You also saw that VWD has lots of features that spring
into action at different times to help you with this process.

Here’s a walkthrough of the code that was generated in VWD. The main content region of the page was
surrounded by a <div> control, and within this are the three controls added to the page:

<div>
<asp:TextBox ID=”TextBox1” runat=”server”></asp:TextBox>

<asp:Image ID=”MyImage” runat=”server” ImageUrl=”~/azoreschurch.jpg” />

<asp:HyperLink ID=”HyperLink1” runat=”server”

NavigateUrl=”http://www.wroxunited.net”>Visit Wrox United Online!
</asp:HyperLink>

</div>

Now take a look at the rendered source. While the page is running in the browser, select View➪Source
from the main menu in your browser, and see how the contents of the <div> have been changed:

79

Page Design

06_042583 ch03.qxd 4/4/06 2:41 PM Page 79

<div>
<input name=”TextBox1” type=”text” id=”TextBox1” />

Visit Wrox United Online!

</div>

Web browsers don’t know anything about ASP.NET server controls, so when the page is requested, the
ASP.NET processor on the web server kicks in and starts converting the server-side elements into simple
HTML that the browser is more happy to receive. The TextBox control maps straight onto an HTML
<input> element. The Image control is converted into an element, but notice how the ImageUrl
attribute is converted into the src attribute:

ImageUrl=”~/azoreschurch.jpg”

The name of the file (or URL to the image) in the ImageUrl is converted to the src attribute:

src=”azoreschurch.jpg”

If the file is local to the project, the file is prefixed with ~/ on the server side.

The HyperLink control also mapped fairly directly to its rendered equivalent, where the NavigateUrl
is easily converted to the href attribute of the a tag.

In this simple example, you didn’t really gain a lot from using server controls instead of coding the
HTML, but bear in mind that this page is completely static. If you wanted to respond to user input, react
to events, or obtain data from a database, you would need to use server-side code. Server controls make
the process of working with visual elements on the server possible.

Types of Server Controls
Many of the ASP.NET server controls that exist are ASP.NET equivalents of HTML elements, so there is a
text box, a button, a hyperlink, a drop-down list, and so on. These controls look like the elements that
they will eventually be turned into, but there is more to them than that. Each control has a common set
of properties (for example, they all have an ID, and controls such as the text box, label, and so on all
have a Text property), which makes it easier to work with these controls in code. Having learned the dif-
ferent categories of controls earlier in this chapter, you can concentrate on some of the most commonly
used controls as you tour the server controls you can add to a site.

Standard Controls
These controls are the Web equivalents of the tools that you encounter when using Windows applica-
tions. Web pages that include these controls have that standard application feel that we’re all familiar
with, so the process of adding them to pages is quick and simple. Here are some of the most commonly
used controls:

❑ TextBox control: Used for entering text on a page, commonly seen on order forms on shopping
sites, or for logging in to a site.

❑ Button control: From submitting an order to changing preferences on a web site, clicking a but-
ton on a page normally causes information to be sent to the server, which reacts to that informa-
tion and displays a result.

80

Chapter 3

06_042583 ch03.qxd 4/4/06 2:41 PM Page 80

❑ Label control: Used for displaying simple text in a specified position on a page. The Label con-
trol is an easy way to change the text on part of a page in response to user interaction.

❑ Hyperlink control: Used for providing hyperlink functionality on a page that enables naviga-
tion to other parts of a site, or to other resources on the Internet.

❑ Image control: Used for displaying images on a page. The server can change the image that is
displayed in the control programmatically in response to user input.

❑ DropDown List control: Used for offering the user a list of options to choose from; collapses
when not in use to save space.

❑ Listbox control: Used for offering a fixed-size list of items to choose from.

❑ CheckBox and Radio Button controls: Used for selecting optional extras with either a yes/no
or “this one out of many” style, respectively.

Figure 3-28 shows the ASP.NET Web Site Administration Tool screen that you will learn to use in the
next chapter for administering user accounts. On this screen, you’ll see many of these controls in one
place.

Figure 3-28

81

Page Design

06_042583 ch03.qxd 4/4/06 2:41 PM Page 81

The Search by: label on the page is likely to be a Label control, and it’s next to a DropDownList con-
trol. The for: label is next to a TextBox, which is next to a Button control. Next to each user name is a
CheckBox control for selecting the user, and some HyperLink controls for managing the user account. In
the next chapter, you’ll become very familiar with this configuration application, and it’s a great exam-
ple of many types of controls all on one page.

HTML Controls
Often when you’re creating a site, you don’t need to do anything with a control on the server. In these
situations, you might just want to add simple static HTML to part of a page; for example, just to position
elements on a page or to provide a container for groups of elements. The HTML Control Toolbox con-
tains drag-and-drop versions of the most commonly used HTML elements for this purpose. If you
browse through this section of the Toolbox (see Figure 3-29), you’ll notice HTML controls for client-side
elements such as the Input (Text) box, the Table control, and the Div control.

Figure 3-29

The controls on the toolbar are just a handy way to add the most common HTML elements to a page,
and you are not restricted to using only those HTML elements. In Source View, you can add any valid
HTML element you like; for example, an anchor tag <a> for hyperlinks, or a for highlighting
text within a section of a page.

Elements such as the Table control and the Div control are containers and hence can contain other con-
trols within their definitions. For example, in a Table control, you can have different controls nested
within each table cell. Within a Div control, you can also place a wide variety of elements and controls.
You can nest server-side controls within static, non-server HTML elements such as these for laying out a
page.

82

Chapter 3

06_042583 ch03.qxd 4/4/06 2:41 PM Page 82

HTML Controls as Server Controls
You can turn any HTML element into a server control by adding a runat=”server” attribute to the ele-
ment. As you’ll see in Chapter 6, you can work with any server controls (HTML or ASP.NET) on a page
dynamically using code when a page is submitted to the server. For example, after you add an ASP.NET
TextBox control to a page, you can set the value to be displayed in the text area using code running on
the server. However, after you add a runat=”server” attribute (and give the element a unique ID) to,
for example, a div element, you can then specify what the div should display and where it should be
positioned on the page dynamically, using code running on the server.

Additionally, because you can add a runat=”server” to any HTML element, you could use an Input
type=”text” control instead of the ASP.NET TextBox control if you like. The same goes for the other
types of HTML elements that have direct equivalents in the ASP.NET Toolbox.

Should I Use HTML Controls or ASP.NET Server Controls?
This question only really relates to simple elements on a page, such as the text box, the button, tables, and
so on. Complicated server controls such as the Calendar control exist to speed up development time for
sites, so there’s no real question of which to use in cases like these. The approach taken by most develop-
ers, when making the choice about which type of control to add to a page, is to use ASP.NET’s standard-
server controls for the majority of server-side controls on a page and static HTML elements for layout.

Although this works in most situations (and indeed you’ll find that many situations require server con-
trols where HTML controls simply can’t offer the correct functionality), you may find exceptions to the
rule. For example, adding runat=”server” to HTML elements is a technique I often use with HTML
divs or tables. If I know that I want to show or hide parts of a page depending on user input, I can con-
vert those elements I need to work with on the server into server controls, and then dynamically toggle
their visibility. Though it’s also easy to create sites that offer the same functionality using standard server
controls, the design team I work with only produces page layouts using simple HTML, so it’s sometimes
easier to convert some of those HTML elements to run on the server than it is to recode the site to use the
built-in ASP.NET server controls. There is no real right or wrong approach here, so use your own judg-
ment, but be aware that you may encounter code written by others that takes a different, but equally
viable, approach.

Navigation Controls
The three out-of-the-box controls available for navigating a site provide a wealth of functionality for
very little effort. Compare this to the situation that was in place previously for ASP.NET developers and
you’ll see that this is a big improvement — what would have previously been a couple of work items on
a task list that might take a couple of hours each for a developer to code now takes a few seconds. The
Menu, TreeView, and the SiteMapPath controls are new in ASP.NET 2.0, and are quick and simple to
set up. Following is an overview of these controls. You’ll add both of these controls to the Wrox United
site later.

The SiteMapPath Control
This control is used to add breadcrumb functionality to a site, giving you a visual aid to remind you
where you are in the site hierarchy. This is demonstrated in the Wrox United site, as shown in Figure 3-30.

83

Page Design

06_042583 ch03.qxd 4/4/06 2:41 PM Page 83

Figure 3-30

The term breadcrumb most likely comes from the old fairy tale of Hansel and Gretel — two children who
went for an adventure in the woods, leaving a trail of breadcrumbs behind them to help them to find
their way home. As you click through pages on a site, you may pass through to different sections and
subsections of the site, until you are several links deep into an application. A breadcrumb helps you to
go back to a specific point in your navigation path without having to rely on the back button on the
browser. You may have encountered situations where you can’t hit the back button to head back a link —
a bit like a crow eating your breadcrumbs. Some pages submit information to the server in such a way
that you can’t go back without resending the information.

You’ll find breadcrumb functionality available on many different sites across the Internet. One such site
is the Wrox United site, as shown previously in Figure 3-30. However, in order to add one of these con-
trols to the site, you need to have a Web.SiteMap file at hand. (Got one? Excellent! If not, you need to go
back to Chapter 2 and learn how to create one.)

When you have a Web.SiteMap available to your application, adding a SiteMapPath control and see-
ing some results is easy — all you need to do is add it to a page. To add it to Wrox United, the best thing
to do would be to add the control to the Master page so that all of the content pages will suddenly have
breadcrumbs at their feet.

84

Chapter 3

06_042583 ch03.qxd 4/4/06 2:41 PM Page 84

If you open the Chapter 3 version of the WroxUnited application as it stands, you’ll see what’s shown in
Figure 3-31. If it doesn’t look quite like the figure, don’t worry — VWD has some problems displaying
pages that use CSS, so you may see most of the site without having to scroll down.

Figure 3-31

Although the site looks fairly normal, two things are missing: the links on the left of the page and the
breadcrumbs at the bottom of the page. In the following Try It Out example, you’ll add these to the site
and see how simple it is to add navigation. Before running this example, close down the Chapter03 pro-
ject from Visual Web Developer.

Try It Out Adding the SiteMapPath Control
1. Open the Chapter 3 version of the Wrox United application (C:\BegASPNET2\Chapters\

Begin\Chapter03\WroxUnited) and open the site.master file. Make sure you’re in Design
View.

For this next Try It Out, you need to work with the Chapter03 version of the Wrox
United application (stored within the Chapter 03 folder in the code download as
WroxUnited). This version of the site has been modified to enable you to try out
these examples.

85

Page Design

06_042583 ch03.qxd 4/4/06 2:41 PM Page 85

2. Place your cursor inside the Breadcrumbs div at the bottom of the page — it’s the red blob in
the bottom right of the page. You’ll know when you’ve found the right spot when you see
<div#breadcrumbs> highlighted at the bottom of the window, as shown in Figure 3-32.

Figure 3-32

3. Now drag a SiteMapPath control into the Breadcrumbs div from the Navigation section of the
Toolbox (see Figure 3-33).

Figure 3-3386

Chapter 3

06_042583 ch03.qxd 4/4/06 2:41 PM Page 86

4. Ignore the Common Task menu on this one — the only modification to make here is to change
the name of the control. Ensure that the SiteMapPath control is selected and change its ID to
crumbs in the Properties panel. Notice the mouse cursor in Figure 3-34 highlights the ID prop-
erty for the control.

Figure 3-34

5. Run the site again by launching Default.aspx and see the results of your hard work down at the
bottom of the page, as shown in Figure 3-35. Notice that the URL my browser is using is http://
localhost:1100/WroxUnited/. Your port number (the bit after the colon) will be different.

Figure 3-35 87

Page Design

06_042583 ch03.qxd 4/4/06 2:41 PM Page 87

6. Browse to the History page by changing the Default.aspx part of the URL to History.aspx.
Figure 3-36 shows how the rendered SiteMapPath control changes at the bottom of the page.

Figure 3-36

How It Works
In this example, you added a simple SiteMapPath control to a modified version of the Wrox United
web site to give users some visual feedback as to which page is being viewed, and where in the site hier-
archy that page resides. Adding the control to the page is enough to achieve this, because there is a
Web.SiteMap file included in the application files.

The SiteMapPath control hooks in to the Web.SiteMap (if it exists) and renders content dynamically by
figuring out which page the user is currently viewing, and where that page is situated in relation to the
order of nodes in the site map. Here’s the Web.SiteMap code that relates to the nodes you looked at:

<siteMap>
<siteMapNode title=”Home” url=”Default.aspx”

description=”Wrox United Home Page”>
...

<siteMapNode title=”About” description=”About the club” url=”about.aspx”>
<siteMapNode title=”History” url=”History.aspx”

description=”The history of the club” />

88

Chapter 3

06_042583 ch03.qxd 4/4/06 2:41 PM Page 88

Notice that the History node resides within the About node, which in turn resides within the Home
node, so when you look at the History page, you know that the page below must be the About page,
and the root node is the Home node — which is exactly what you saw on the SiteMapPath control:

Home > About > History

If you navigated to a different part of the hierarchy (to the Match Fixtures, Future Fixtures, or Past
Fixtures page), the display would have changed appropriately. So, navigating to
Fixtures.aspx?type=future would present the following:

Home > Fixtures > Future Fixtures

This is how the SiteMapPath control that was added to the page appears in code:

<div id=”breadcrumbs”>
<asp:SiteMapPath ID=”crumbs” runat=”server”>
</asp:SiteMapPath>

</div>

Without customizing the control (no specific attributes have been set), the nodes are rendered. The style
used for the control is controlled in the style sheet for the page. (Chapter 5 looks at styling pages.)

SiteMapPath Control Properties
In the previous Try It Out, you added a SiteMapPath control without modifying it and the list of nodes
was displayed. If you’d modified it to change the number of levels displayed, it could have been used in
quite a different way; perhaps to display the name of the current page in a header. For example:

<asp:SiteMapPath ID=”PageTitle” Runat=”server” ParentLevelsDisplayed=”0”>
</asp:SiteMapPath>

With this modification, the site map node would display only the name of the current page. In the case
of History.aspx, the SiteMapNode would simply say History.

Another modification that could be made would be to change the path separator character. For example:

<asp:SiteMapPath ID=”crumbs” runat=”server” PathSeparator=” : “>
</asp:SiteMapPath>

Again, if you were then to navigate to the History.aspx page, you’d see the following:

Home : About : History

In addition to these two properties, you can set many other attributes to customize this control. The fol-
lowing table describes some of these properties in a bit more detail.

89

Page Design

06_042583 ch03.qxd 4/4/06 2:41 PM Page 89

Attribute Description Options (default in bold)

RenderCurrentNodeAsLink Specifies whether the active True / False
node is clickable, or whether
the current node appears as
plain text.

PathDirection Sets whether the breadcrumbs RootToCurrent / Current
appear in order from the root ToRoot
link to the current link (from
left to right) or vice versa.

PathSeparator Sets the character to use as the >, any ASCII character
separator marker between
nodes.

Having looked at how the SiteMapPath control works, it’s time to move on to look at the remaining
two navigation controls: the Menu control and the TreeView control. To use these controls on a page,
you need to add a different type of control to provide the data to these controls: the
SiteMapDataSource control.

The SiteMapDataSource Control
This control is a non-visual control, and is used to expose the nodes defined in the Web.SiteMap file in a
way that the Menu and TreeView controls can understand, and to make it possible to amend the content
that these controls will display.

To add this control to a site, you only have to drag a copy onto a page. That’s all there is to it. The code
that’s generated for you will appear as follows in Source View:

<asp:SiteMapDataSource ID=”SiteMapDataSource1” runat=”server” />

In the next Try It Out, you will do this for yourself so that you will be able to use the Menu control. The
Menu control is used in the full Wrox United site to provide the means to navigate the Wrox United site,
so you won’t have to keep typing in links. Let’s see how this works in connection with the
SiteMapDataSource control.

The Menu Control
The Menu control provides a mixture of static and dynamic menu functionality. When you add this con-
trol to a page, you have the option of making the menu completely dynamic, so an entire navigational
structure can be displayed in the menu, a bit like a Start menu. Alternatively, you can adopt a more tra-
ditional approach and opt for a fixed menu, or one mixing this functionality. The dynamic bits use client-
side JavaScript that ASP.NET generates for you (again, without you having to lift a finger).

To add a menu control to the site, you first need to add the SiteMapDataSource control, which specifies
what links your menu will have access to and the order in which they appear. You’ll do both of these
now in a Try It Out based on the WroxUnited application.

90

Chapter 3

06_042583 ch03.qxd 4/4/06 2:41 PM Page 90

Try It Out Adding a Menu Control to Wrox United
1. Open site.Master and switch to Design View. Position your cursor in the nav div on the left

of the page, as shown in Figure 3-37.

Figure 3-37

2. Drag a SiteMapDataSource control (highlighted on the left in Figures 3-38 and 3-39) onto the
page inside the nav div (you’ll find it hiding in the Data tool group on the Toolbox), and, in the
Properties pane, rename the control siteData.

Figure 3-38 91

Page Design

06_042583 ch03.qxd 4/4/06 2:41 PM Page 91

That’s all the groundwork you need to do. Next, you’ll add the Menu control itself.

3. Drag a Menu control onto the page next to the right edge of the SiteMapDataSource control.
You will see a fly-out dialog box appear as shown in detail in Figure 3-39 — this is the Smart
Tasks window.

Figure 3-39

In the dialog box, choose the siteData data source that you generated in step 3. After this has
been set, the menu will change as shown in Figure 3-40.

Figure 3-4092

Chapter 3

06_042583 ch03.qxd 4/4/06 2:41 PM Page 92

4. Click the small arrow at the top-right corner of the Menu control to close the pop-out menu.
Now, with the menu selected, change the menu’s StaticDisplayLevels to 2 using the
Properties pane. You’ll immediately notice a difference — have a look at Figure 3-41.

Figure 3-41

Note that if your links appear in red, rather than yellow, then you should switch to Source View
and ensure that your menu control is within a div with an ID of “nav”:

<div id=”sidebar”>
<h3>Navigation</h3>

<div id=”nav”>
<asp:SiteMapDataSource ID=”siteData” runat=”server” />
<asp:Menu ID=”Menu1” runat=”server” DataSourceID=”siteData”

StaticDisplayLevels=”2”>
</asp:Menu>

5. Some properties need to have values set before this control will work and behave as it does on
the full version of Wrox United. Switch to Source View, and add the following properties in the
code:

<asp:Menu ID=”Menu1” runat=”server” DataSourceID=”siteData” StaticDisplayLevels=”2”
orientation=”Vertical”
StaticSubMenuIndent=”0”
disappearafter=”200”

93

Page Design

06_042583 ch03.qxd 4/4/06 2:41 PM Page 93

AccessKey=”m”
EnableViewState=”false”>
<DynamicMenuStyle CssClass=”dynamicMenu” />
<DynamicMenuItemStyle CssClass=”dynamicMenuItem” />

</asp:Menu>

6. Run the site again and you’ll see the screen shown in Figure 3-42.

Figure 3-42

Notice that you can hover over the About link and a flyout appears with submenu items,
including the History page, displayed. This is out-of-the-box dynamic functionality at its finest.

How It Works
The Menu control that was added to the Master page read the contents of the SiteMapDataSource con-
trol (siteData) and rendered a set of links corresponding to the data stored in that data source. The
SiteMapDataSource itself required no customization (other than a quick renaming). By default, the
SiteMapDataSource will read the Web.SiteMap file and act as a middle-man for the menu control so
that it can display links corresponding to the contents of the Web.SiteMap file.

The SiteMapDataSource can be customized if required using the parameters described in the following
table.

94

Chapter 3

06_042583 ch03.qxd 4/4/06 2:41 PM Page 94

Property Values Result

EnableViewState True/False Specifies whether the SiteMapData
Source control retains its data on post-
backs.

ShowStartingNode True/False Specifies whether the root node should
be displayed on any control dependent
on this data source.

SiteMapProvider Any valid provider Can be used to specify a custom provider
(necessary if, for example, site map data
is stored in a completely different struc-
ture such as a .csv file or a database
instead of the Web.SiteMap file).

StartFromCurrentNode True/False If set to true, then only sublinks from
the current node (active page) are
shown, instead of the entire hierarchy.

StartingNodeOffset Integer values Used to shift the starting point of the
hierarchy inward. This could be useful
if you only want a Menu control to
show submenu links, and not the full
site structure. If the menu in Wrox
United had this value set to 1, the
menu would ignore all the first-level
menu items, and only show the next
level in the hierarchy. In the case of the
Wrox United hierarchy, this would
show the Future and Past Fixtures, His-
tory, News, and similar links.

StartingNodeUrl String representing Used to specify a different point at
a URL of a page which to start the hierarchy.
defined within the
Web.SiteMap file

Binding a menu to a SiteMapDataSource control is a simple way to generate a hierarchy of links from
the Web.SiteMap data file, but it is possible to do much more via this data source control, including
binding to a completely different data source, and combining different controls (other than a menu) to
the data. If you’re the sort of person who has to work with site map information stored in a completely
different format (other than Web.SiteMap), then in order to get a working SiteMapDataSource control,
you’ll need to have a custom SiteMapProvider class available. Creating custom providers is an
involved process, which is beyond the scope of this chapter. For more information on this process, refer
to Professional ASP.NET 2.0, by Bill Evjen, Wrox Press.

The Menu control itself was changed slightly in this example to include some additional property values.
Here’s a look at these values:

95

Page Design

06_042583 ch03.qxd 4/4/06 2:41 PM Page 95

<asp:Menu ID=”Menu1” runat=”server” DataSourceID=”siteData” StaticDisplayLevels=”2”
orientation=”Vertical”
StaticSubMenuIndent=”0”
disappearafter=”200”
AccessKey=”m”
EnableViewState=”false”>
<DynamicMenuStyle CssClass=”dynamicMenu” />
<DynamicMenuItemStyle CssClass=”dynamicMenuItem” />

</asp:Menu>

The additional attributes on the Menu control itself are fairly simple. The two on the first line in the list-
ing (DataSourceID and StaticDisplayLevels) were set in the Properties pane in the example. The
remaining attributes control the following:

❑ Orientation: Used to have a horizontal menu bar on a page.

❑ StaticSubMenuIndent: Controls the depth of indentation used to render submenu items, if the
levels are set to appear in static mode.

❑ DisappearAfter: Dictates how long a flyout will remain visible before disappearing.

❑ AccessKey: Enables keyboard shortcuts for enhanced usability.

❑ EnableViewState: An ASP.NET feature that, if set to true, is used to maintain control state
when a page is posted back to the server. This is used, for example, on text boxes, when submit-
ting data to the server, for keeping the values in the text box when the page refreshes. This is
unnecessary in this control, and will slightly improve page performance if disabled.

In addition to these attributes are two properties that help to define the visible style of the rendered con-
trol. DynamicMenuStyle controls the appearance of the flyout itself, and DynamicMenuItemStyle con-
trols the appearance of the links. CSS controls the styling for these items. You’ll learn more about this in
Chapter 5.

There is just one last navigation control to consider in this chapter: the TreeView control. This control is
very similar to the Menu control.

The TreeView Control
The TreeView and the Menu controls are very similar to implement, though the rendered experience is
quite different. With a TreeView control, you end up with a user experience more akin to using
Windows Explorer to work through the files stored on your file system, with expandable nodes that con-
tain sublevels.

Deploying the control is similar to deploying a Menu control — you just drag it onto the page and select
the SiteMapDataSource control to use to provide its data. If this control were used on the Wrox United
site, it would appear as shown in Figure 3-43.

Notice that the Home node and the Fixtures nodes are expanded in the preceding view, though the
About link is collapsed. If you replaced this control yourself, aside from some minor styling quirks, this
could easily be used to navigate the site instead of the Menu control.

96

Chapter 3

06_042583 ch03.qxd 4/4/06 2:41 PM Page 96

Figure 3-43

Summary
This chapter looked at the differences between code that the browser can understand and server con-
trols, which the server can convert into a format that is displayable on the browser. In particular, you
should now feel comfortable with the following facts:

❑ HTML is the language that the browser can understand, and is used throughout web program-
ming to form the web pages we view on any site.

❑ XHTML is a version of HTML that follows a strict set of guidelines, with the aim that both cur-
rent and future browsers will be able to speak the same language, thus removing some of the
uncertainty when you’re developing a web site.

❑ Client-side code and server-side code are two different entities. Server-side code is processed on
the server, and is processed and turned into client-side code that the browser can understand.

❑ ASP.NET’s server controls can be used to construct complex sites in a short time via the VWD
environment, and can be added to a page either in Design View or in Source View.

97

Page Design

06_042583 ch03.qxd 4/4/06 2:41 PM Page 97

❑ Server controls are converted (by the server) into HTML that the browser can understand, and
JavaScript for dynamic client-side elements, provided the browser has JavaScript support.

❑ Complex functionality can be added to a web site for navigating around the pages in a site with
minimal effort on the part of the developer.

The next chapter starts to look at how you can personalize a site by using server controls and some neat
ASP.NET functionality to log in to the web site.

Exercises
These exercises are designed to help you get more comfortable with the VWD interface. The sample code
(available from www.wrox.com) is an end solution, but you’ll obviously gain more knowledge and
understanding by trying out these exercises for yourself. Answers to these exercises are in Appendix A.

1. Practice using the drag-and-drop functionality of VWD to put together a simple web page that
displays the following information:

❑ The WroxUnited Logo (available for free download from www.wrox.com), or just use
any small image of your choice.

❑ The names of the players and some information about each of them, arranged in a table,
as shown in Figure 3-44.

Figure 3-44

2. Return to Wrox United and go to the Master page. Try deleting the Menu control and replacing it
with a TreeView control. Bind that control to the siteData data source, and you should see a
fully populated tree of items, both in Design View (shown in Figure 3-45) and when you run the
page (shown previously in Figure 3-43).

98

Chapter 3

06_042583 ch03.qxd 4/4/06 2:41 PM Page 98

Figure 3-45

99

Page Design

06_042583 ch03.qxd 4/4/06 2:41 PM Page 99

06_042583 ch03.qxd 4/4/06 2:41 PM Page 100

4
Membership and Identity

The concept of membership appeals to human beings on a low level, and stems from the sense of
wanting to belong to a group. We want to feel part of the team, and for others to know who we
are, so it was only a matter of time before the Web jumped on the bandwagon and adopted this
concept as a way of life. If you sit down and consider how many web sites you have logged in to
and stored a simple user profile, you may find that you’re a member of many more groups than
you first imagined. From sites that sell books and gadgets to community sites that discuss the mer-
its of owning a Ford Puma, or that enthuse about a BBC TV comedy show called Look Around You,
I know I’m a member of far too many sites to name. And then there is the familiar dilemma of
“which username and password do I use to log in to this site?”

One of the most successful sites on the Web, Amazon.com, started life as a bookstore, but has
evolved into something much larger. When you log in to Amazon now, you find entire pages on
the site that offer only those items related to your spending habits.

In this chapter, you learn how to personalize sites using some of the membership features avail-
able to ASP.NET 2.0. This chapter discusses the following:

❑ The concepts of identity, authentication, and authorization

❑ The membership server controls, including the Login control

❑ Storing member profiles so that they can be retrieved

❑ Restricting access to certain areas of a site to allow only specified members

❑ Personalizing a site based on the active user profile

You’ll also extend the Wrox United sample application so that you can log in to the site and per-
sonalize the site according to a set of stored preferences based on the membership profile.

07_042583 ch04.qxd 4/4/06 2:42 PM Page 101

Security Basics
You need to feel comfortable with some key important concepts before you start to put together
web applications involving membership, and those are the concepts of identity, authentication, and
authorization.

Identity — Who Am I?
When you think of your identity, you can use several unique features to describe yourself. For example,
you may be a woman with blonde hair who enjoys watching sci-fi shows and building PCs, but that’s
not necessarily of interest to someone who is interested in my skills on the badminton court. Identity
information stored on a web site will likely be tailored to only relevant aspects of a person. For example,
a shopping web site can store your name, telephone number, e-mail address, and home address, which
are all facts that are relevant to the sale of goods. They may not care about your interests (unless they are
as big as Amazon), so they won’t need to store that sort of information about you, but that doesn’t stop
you from having those aspects of your identity.

So your identity, the concept of who you are, is a collection of a wide range of facts. You may even have
a résumé (or CV as we Brits call it) that puts many of these facts down on paper, but these facts again are
only those relevant to potential employers. It’s up to you to decide which facts to store on your résumé,
and which facts to leave off. The same is true when you store membership information about members
on a web site in that you should choose which facts you need to know about the members of a site early
in the development process.

Authentication — This Is Who I Am
When you attempt to log in to a web site, you pass in certain credentials; for example, an e-mail address
and password combination. The web site then has to determine that you are who you claim to be, so the
e-mail address and password combination that you enter must match the combination stored on file on
the server for the specified e-mail address.

The process of authentication is all about proving you are who you say you are. The e-mail and password
combination is a tried and tested method adopted by many of the web sites out there offering retail or
community services, and although it’s not bulletproof, as long as you choose a strong enough password
and don’t tell it to anyone, and as long as the site is coded well, your profile will be kept unique for your
use only.

Authorization — This Is What I Can Do
After you pass in your username and password to a web site, the web server then not only verifies that
the password matches the username, but it also checks to see what permissions you have been granted
by the webmaster of that site. The next step from authentication is authorization, and this is the process of
retrieving more information about the type of user account you have with a site.

Take, for example, a banking web site. After your login credentials are verified, the server looks to see
what level of access you have to the site. Like most users of a bank site, you’ll be authorized to check
your balances and perhaps transfer money between accounts or pay bills. If, however, the bank was the
victim of a security scare (like many phishing e-mails circulating around the Internet), you may find that

102

Chapter 4

07_042583 ch04.qxd 4/4/06 2:42 PM Page 102

you suddenly lack permission to add third-party standing orders to your account via the online applica-
tion until the security issues have been resolved. This switching off of functionality may well be con-
trolled by the administrators of the server by setting a special flag against either a subset of users or all
users, stating that they no longer have authority to amend their account details.

Logging In to a Site
The process of logging in to a site, from a user’s perspective, is a case of entering a set of credentials, and
then being shown a different user interface corresponding to your profile. Commonly, this will happen
by username and password combination; however, more secure sites, such as banking web sites, can use
other methods of logging in, including PINs and security certificates. The general principle of authenti-
cation remains the same, though, regardless of the method used to pass those authentication credentials
to the server. And after you’re authenticated, it’s a simple matter to inquire about whether you have the
required level of access for the resource you’re looking for via the authentication mechanism.

ASP.NET Security
ASP.NET 2.0 has some great tools available to help with implementing a login-authentication-authoriza-
tion framework with minimal effort. In previous editions of ASP.NET, you would have to write code to
implement a login framework, to authenticate against a database, and to react to the currently logged-in
user. Though you will still eventually find yourself having to write code for working with users (as
you’ll discover in later chapters), a lot of the pain of the initial process has been taken away with the
inclusion of some great controls and wizards. In this section, you learn more about the server controls
available for working with logins, and the ASP.NET Web Application Configuration utility.

Login Controls
In this section, you start the process of building up a simple mock web site with just two pages; a
Default.aspx as the front page and a login.aspx page for logging in to the site. You’ll work through
a series of steps using Try It Out examples, and then pause along the way to look at what’s going on
behind the scenes. Later in this chapter, you’ll take some of these principles and apply them to the Wrox
United web site to integrate the login framework into that application.

This section introduces the following controls:

❑ The Login control, which provides text boxes, buttons, and built-in validation to enable you to
add login functionality to a page with a single drag-and-drop operation.

❑ The LoginView control, which provides a way of altering the appearance of the page depen-
dent on whether a user is logged in or not, or showing different content to different groups
of users.

❑ The LoginStatus control, which gives a simple bit of feedback to users so that they know
whether they have remembered to log in to the site.

In the following Try It Out, you put some of these controls to use. This example builds up the skeleton
site by creating the pages and adding the login controls.

103

Membership and Identity

07_042583 ch04.qxd 4/4/06 2:42 PM Page 103

Try It Out Personalized Site: Web Page Design
1. Open VWD and create a new blank web site in your C:\BegASPNET2\Chapters\Begin direc-

tory called Chapter04. By default, you should have a page called Default.aspx already added
to the project, as shown in Figure 4-1.

Figure 4-1

2. Time to add some controls. Switch to Design View, drag on a LoginView control from the Login
controls section of the Toolbox (see Figure 4-2). In the Common Tasks menu that appears, ensure
that Anonymous Template is selected and type You are not logged in in the main box.

Figure 4-2104

Chapter 4

07_042583 ch04.qxd 4/4/06 2:42 PM Page 104

3. Pop out the Common Tasks menu again by clicking the small arrow in the top right and select
LoggedInTemplate from the drop-down list, then type You are logged in in the box. This will
ensure that the page will tell you when you’re logged in or not.

4. Drag a LoginStatus control onto the page underneath the LoginView control, as shown in
Figure 4-3. This control will give you a hyperlink to either log in or log out, depending on
whether or not you’re currently logged in.

Figure 4-3

5. The next step is to create a login page, so right-click the root of the web site in the Solution
Explorer and select Add New Item. In the dialog box that appears, depicted in Figure 4-4, select
Web Form and call it Login.aspx.

Figure 4-4

105

Membership and Identity

07_042583 ch04.qxd 4/4/06 2:42 PM Page 105

6. In the newly created page, switch to Design View and drag a Login control onto the page from
the Login section of the Toolbox, as shown in Figure 4-5.

Figure 4-5

7. In the flyout that appears, you have the option of administering the web site. At this stage, you
have the framework ready to roll, but you’ll need to configure the site by adding some user
accounts before the site will work, so click the Administer Website link in the flyout to launch the
ASP.NET Web Application Configuration Tool, which is covered in the next Try It Out example.

How It Works
These controls are quite powerful, and although you’re not quite at the stage of running the example,
you can feel confident that you’re only a few steps away from having a fully functional (if a little sim-
plistic) application for trying out login functionality. These controls are a new addition to this edition of
ASP.NET. Previously, you would have had to add text boxes and buttons, and write lines of VB.NET or
C# code to handle the login process, to display messages relating to whether or not you are logged on,
and to change the view of the page depending on the current user. At this stage, all you’ve had to do is
drag and drop a couple of controls onto a page, and you’ll be pleased to know that this is all you need to
do to get the framework of an application together.

First take a look at the controls that were added to the pages, starting with the Default.aspx page.

Viewing the source on Default.aspx displays the following code:

<asp:LoginView ID=”LoginView1” Runat=”server”>
<LoggedInTemplate>

You are logged in
</LoggedInTemplate>
<AnonymousTemplate>

106

Chapter 4

07_042583 ch04.qxd 4/4/06 2:42 PM Page 106

You are not logged in.
</AnonymousTemplate>

</asp:LoginView>
<asp:LoginStatus ID=”LoginStatus1” Runat=”server” />

You can see that two controls are defined in the code: a LoginView control for displaying login informa-
tion and a LoginStatus control that can be used to control the login and logout processes. Note that if
you configured your site as in this example, you will not see the anonymous template message because
anonymous users are denied access to the site (and are redirected straight to the login page).

In the Login.aspx page, you will see the following code has been added:

<asp:Login ID=”Login1” Runat=”server”>
</asp:Login>

Everything has been pre-written, so you don’t see any text boxes, and you don’t see any validation code —
you just see a single line of code. ASP.NET 2.0 has tools available so that you can actually create complex
controls like this yourself, but that’s a bit beyond this chapter.

Try It Out Personalized Site: User Account Configuration
When you click the administration link in step 7 of the previous Try It Out, the web page shown in
Figure 4-6 is displayed (note that the port number used will be different whenever you launch this for
the first time).

Figure 4-6

107

Membership and Identity

07_042583 ch04.qxd 4/4/06 2:42 PM Page 107

Now follow these steps:

1. Click the Security link to take you to the Security settings administration tab, shown in
Figure 4-7.

Figure 4-7

2. In this page you will see a hyperlink that enables you to launch the Security Setup Wizard. Click
this link to proceed to the first stage in the wizard, as depicted in Figure 4-8.

108

Chapter 4

07_042583 ch04.qxd 4/4/06 2:42 PM Page 108

Figure 4-8

3. Click Next to skip past the first page, and you’ll arrive at the screen shown in Figure 4-9. Select
the From the Internet radio button to enable both anonymous users and users who have to log
in via the web.

109

Membership and Identity

07_042583 ch04.qxd 4/4/06 2:42 PM Page 109

Figure 4-9

Click Next to continue to the next screen, displayed in Figure 4-10.

110

Chapter 4

07_042583 ch04.qxd 4/4/06 2:42 PM Page 110

Figure 4-10

You can skip straight past this step and click Next to continue — the default provider will enable
all of the required functionality without additional work. In the next screen, you are asked if
you want to define any roles for the web site. In this example, you can skip this step — you will
be defining roles later in this chapter. Keep the check box unchecked and click Next.

4. When you reach the screen shown in Figure 4-11, you will be prompted to enter some details for
a user.

111

Membership and Identity

07_042583 ch04.qxd 4/4/06 2:42 PM Page 111

Figure 4-11

5. As shown in Figure 4-12, enter some details for a user of the site — these could be your name,
my name, anyone’s name. Just make sure you don’t forget the password you enter — you’ll
need this later. Clicking the Create User button shows a confirmation prompt, at which point
you can click Continue to create another user. At this stage, you should create two users — one
standard user and one that you’ll use later as the administrator of the site.

112

Chapter 4

07_042583 ch04.qxd 4/4/06 2:42 PM Page 112

Figure 4-12

Later, you’ll be able to give these users appropriate access permissions for the site. Note that
you don’t get the option to make these users members of any roles at this stage — this is done
later in the setup process. Click Next to continue.

6. The next step is to define the accessibility levels for the site, defining who is able to see the con-
tent of the site, and who is denied access. At this stage, you can add permissions to users
directly. Later, you will add those users to groups and assign rights and permissions to entire
groups of people. As illustrated in Figure 4-13, you need to grant the Allow permission to each
user individually, and deny access to all anonymous users. To set permissions for a user, select
the User radio button, enter the username in the box next to the radio button, select Allow, and
click Add This Rule. To deny access to anonymous users, select the Anonymous Users radio
button, click Deny in the Permission section, and click Add This Rule.

113

Membership and Identity

07_042583 ch04.qxd 4/4/06 2:42 PM Page 113

Figure 4-13

After you click Next, you should see that you have completed the wizard, which means that
you should now have a web site with some user profiles and some access rights restrictions. All
that remains is to try out the pages.

7. Back in VWD, select the Default.aspx page from the solution explorer and press Ctrl+F5 to
run the page — you should see the screen shown in Figure 4-14.

114

Chapter 4

07_042583 ch04.qxd 4/4/06 2:42 PM Page 114

Figure 4-14

Because anonymous access is denied for the site, you are immediately taken to the login page.
Notice that the address of the page indicates that your intention was to view the Default.aspx
page.

8. Before you log in, try entering some invalid credentials (a username and password that don’t
exist, but not a blank password). You should see the message shown in Figure 4-15.

Figure 4-15

9. Try to log in as one of the user accounts available to the site. You are automatically taken back to
the Default.aspx page, as illustrated in Figure 4-16.

115

Membership and Identity

07_042583 ch04.qxd 4/4/06 2:42 PM Page 115

Figure 4-16

Clicking the Logout link takes you back to the Login.aspx page — the site will not let anyone
view pages without being logged in first.

How It Works
The Login controls available to ASP.NET pages are a real gift from the Microsoft teams. I’ve lost count of
the number of sites I’ve worked on that had custom login functionality, all coded by hand, and now all I
have to do is drag a few controls onto a page. On top of that, the wizards available for configuring user
accounts and permissions make it even easier to get results up and running quickly. You may prefer to
use your own user account data store, or even to link in to Active Directory user accounts, but this can
be changed later in your development process.

This Try It Out simply walked you through the process of configuring user accounts. Though that is a
necessary process, the Website Administration Tool is more interesting in what it creates behind the
scenes. First, the user account profiles that were created have to be stored in some central repository, so
the tool creates a new profile database for you for this purpose. Take a look at the Chapter04 folder in
your C:\BegASPNET2\Chapters\Begin\Chapter04 directory and you should see a folder called
App_Data. Right-click and select Refresh Folder, and you should see a file called AspNetDB.mdf. This is
a Microsoft SQL database file, and you can view the structure and contents of the database tables within
the VWD environment, as shown in Figure 4-17. (You’ll learn more about this process when you get to
the database chapters.)

The other part of the configuration was to assign some permissions to user accounts for accessing the
site. By running the wizard, you’re able to run through this process quite easily. After the wizard is fin-
ished, you have a new file in your solution called Web.config (the configuration file that stores prefer-
ences related to the way the application runs on your server — see Chapter 2 for more details). If you
look in the Web.config file stored in your Chapter04 folder, you will see the statements shown in
Figure 4-18.

Notice that the <allow ... /> and <deny ... /> parts of the configuration file reflect the permissions
that were set as part of the example. You can add and modify these statements yourself directly in the
Web.config file by typing them in, or you can use the Administration Tool to streamline the process,
whichever you prefer.

116

Chapter 4

07_042583 ch04.qxd 4/4/06 2:42 PM Page 116

Figure 4-17

Figure 4-18

The LoginView control can do much more than display specific text to users depending on whether or
not they’re logged in. In Chapter 11, you’ll see that this control can be used to change the appearance of
a page entirely based on not just user identity, but also on roles. This control can contain text, HTML, or
even other controls. The next Try It Out shows an example of this.

Personalization
The capability to personalize a site to reflect the preferences of the currently logged-in user is a great
way to give a site a sense of community. Although you won’t be doing too much personalization in this

117

Membership and Identity

07_042583 ch04.qxd 4/4/06 2:42 PM Page 117

site, the next chapter explores some of the features available to ASP.NET developers to give users a more
personalized user interface and browsing experience.

A useful addition to any personalized site is to provide feedback to logged-in users to confirm that they
have been correctly identified. The LoginName control is a simple way to add this functionality. In this
Try It Out, you learn how this control is used. For this example, you will need to enable anonymous
access.

Try It Out Displaying User-Specific Information
1. You can choose which way you want to enable anonymous access — you can either edit the

Web.config file (refer to the previous “How It Works”) or you can launch the Web Site
Administration Tool. To relaunch the tool, right-click the administration site icon in your system
tray and select Open in Web Browser. Alternatively, to modify the Web.config file, simply open
it up in VWD and change the following highlighted line of code:

<authorization>
<allow users=”?” />
<allow users=”administrator” />
<allow users=”chrishart” />

</authorization>

The question mark represents all unknown (anonymous) users, so by changing deny to allow,
you can enable anonymous access.

2. Next you need to make a slight change to the web page code to add the LoginName control.
Open Default.aspx and pop up the Common Task menu next to the LoginView control (click
the small right-hand arrow next to the control and select the LoggedInTemplate, as shown in
Figure 4-19). Change the text to You are logged in as, and then drag a LoginName control to the
end of the text.

Figure 4-19

118

Chapter 4

07_042583 ch04.qxd 4/4/06 2:42 PM Page 118

3. There is no need to make any amendments to the LoginName control after it’s been added to the
page, so all that remains is to save your changes and run the page. The first thing you should
see is the anonymous user’s perspective on the site, shown in Figure 4-20.

Figure 4-20

4. Click the Login link and log in to the site. When you are logged in, you should see something
similar to Figure 4-21, depending on which user account you used.

Figure 4-21

How It Works
The LoginName control is a quick and easy way to display a user’s currently logged-in identity on a site.
If you switch to Source View for the page, you can see the LoginName control, shown here with a gray
background:

<LoggedInTemplate>
You are logged in as
<asp:LoginName ID=”LoginName1” runat=”server” />

</LoggedInTemplate>

119

Membership and Identity

07_042583 ch04.qxd 4/4/06 2:42 PM Page 119

Some HTML code has been added to my code. Because I pressed Return after the LoginName control (so
that the LoginStatus control would appear on the next line), there’s a
 HTML tag in the code.
This is the HTML code for a simple line break. You’ll often find tags like this, added to your code after
you switch from Design View to Source View. The two most common tags are the character,
which is a non-breaking space (a space character that keeps the items immediately before and after it on
the same line), and
, which is a simple line break. The bit of code that is most relevant in this case
is not the HTML, but the LoginName’s source. Again, there’s hardly anything exciting to see in the gen-
erated source, because ASP.NET does all the hard work of finding out what the currently logged-in
user’s name is behind the scenes, and inserts it when the page is rendered.

Note that the LoginName control was not added to the Anonymous template, but then there’s no reason
to do so — if you view the site as an anonymous user, the control will not display anything when it is
rendered.

Earlier in the chapter, the concept of roles was discussed. The following section takes a look at what roles
are and how they are used to refine the membership characteristics of a site.

Membership
Defining which users can access a site is a perfectly viable way to build a small site, but it would have to
be very small and remain small to be a manageable solution. A far better solution would be to define a
set of user roles, and add user accounts to the appropriate roles. When users are members of a role, you
can assign permissions based on a role.

For example, consider a typical site configuration scenario: all the members of an Administrators role
can access the site, and can access all areas of the site. All members of a Users role can access the site, but
cannot access certain restricted areas. All anonymous users will see a cut-down version of the site, but
without any personalization, and certainly without any permissions for visiting restricted areas of a site.

Chapter 11 examines roles in more detail, including refining the Wrox United site to make good use of
roles. In the meantime, you can experience roles for yourself in the next Try It Out, because the
Chapter04 example site is extended to include roles. In this example, you will be defining two roles:
Users and Administrators. These roles have to be created before you can add users to the roles.

Try It Out Adding Users to Roles
1. Start by launching the Web Site Administration Tool. If you’ve been running the tool recently,

you can right-click the icon in your system tray for the administration site and select Open in
Web Browser. Or, as an alternative, you can click Website➪ASP.NET Configuration from the
main VWD menu bar. When the tool is up and running, select the Security tab and click the
Enable Roles link, as shown in Figure 4-22.

2. The Create or Manage Roles link should be enabled, so click it to enter the Create New Role
screen. Create the two roles, Users and Administrators, by entering a role name in the text box
and clicking Add Role (see Figure 4-23).

120

Chapter 4

07_042583 ch04.qxd 4/4/06 2:42 PM Page 120

Figure 4-22

Figure 4-23

121

Membership and Identity

07_042583 ch04.qxd 4/4/06 2:42 PM Page 121

3. Click the Manage link for the Administrators group, and then search for the Administrator user
account, using the search tools shown in Figure 4-24. The easiest way to find the Administrator
account is to search for all accounts beginning with the letter A, so type a* in the text box and
click Find User. Add the Administrator account to the Administrators role by checking the User
Is In Role check box.

Figure 4-24

4. Add the remaining user accounts to the Users role in the same way.

5. Click the Security tab to return to the main Security section of the Administration Tool. Then
click the Manage access rules link to return to managing the access rules for the site. In the
same interface as you used in the earlier example for managing access rules (see Figure 4-13),
remove the access rules for the individual user accounts, and instead grant access to the site to
both the Administrators and Users groups. As you delete rules, you’ll be prompted as shown in
Figure 4-25.

6. Add the new permissions on a role-by-role basis with the interface shown in Figure 4-26.

After you have added the rules, you should see the list of rules shown in Figure 4-27.

122

Chapter 4

07_042583 ch04.qxd 4/4/06 2:42 PM Page 122

Figure 4-25

Figure 4-26

123

Membership and Identity

07_042583 ch04.qxd 4/4/06 2:42 PM Page 123

Figure 4-27

7. If you run the application again now, you should be able to log in as any of the user accounts
and access the site as before. If you change the permissions for one of the roles, all members of
that role will be affected, hence you could block access to all non-administrative users if you
wanted.

How It Works
All of the changes in this example were made via the magic Web Site Administration interface, which
simplifies the process of adding role definitions and access rules. If you were to do this by hand, as
you will see in just a moment, you would have to manipulate the contents of the Roles table in the
AspNetDB.mdf database that was shown earlier to include two role definitions, and then add users to
those roles by changing the UsersInRoles table by hand. Then you would have to manipulate the
Web.config file to change the access permissions to the site.

This configuration process was all handled for you automatically by the tool, so it’s made configuration
and administration quite a lot simpler. However, this is a Visual Web Developer and Visual Studio 2005
feature, not an ASP.NET feature, so you would have to do this by hand if you didn’t have access to the
VWD environment.

If you return to the Source View of your Web.config file, you’ll see the following changes have been
made (shown with a gray background):

<roleManager enabled=”true” />
<authorization>

124

Chapter 4

07_042583 ch04.qxd 4/4/06 2:42 PM Page 124

<allow users=”?” />
<allow roles=”administrators” />
<allow roles=”users” />

</authorization>

In addition, the process of enabling roles has modified the user profile database slightly, by adding
two new tables: one to store roles and one that tells you which users are members of which roles (see
Figure 4-28).

Figure 4-28

Authentication
One area not yet discussed is that of how the authentication works for this application, and what options
are available in ASP.NET for authentication. The examples so far have relied on what’s known as Forms
authentication. So, what is Forms authentication, and what are the other options available?

❑ Forms authentication: Login requests are made by filling in a form on a web page and submit-
ting that form to the server. When the server receives the request, a cookie is written to the
user’s local machine, and this cookie is passed back to the server by the browser along with
each request that is sent so that the user remains authenticated for as long as is required.

❑ Windows authentication: Login pages pass user credentials to a web server (IIS only, not the
web server built into VWD). The web server then handles the authentication using whichever
method is configured on the virtual directory that the application is running within. IIS hooks in
to the Windows operating system and Active Directory domain structures, which means that it
can rely on user profiles that are stored externally, and use standard Windows credentials to log
in to the site. Depending on the configuration of your site, and depending on which user
account you used to log in to your machine, you may not even have to log in to the site directly,
because your current Windows credentials can be passed to the web server automatically for
authentication. This is really handy when it comes to developing intranet applications.

125

Membership and Identity

07_042583 ch04.qxd 4/4/06 2:42 PM Page 125

❑ Passport authentication: Login credentials are passed to a Microsoft Passport server where user
profiles are stored centrally. You may be familiar with this from logging in to a Hotmail account.
And because you can configure Windows to log on to a Passport account on startup, you can
access your Hotmail inbox without even having to type a password.

Forms Authentication Model
This section looks at how Forms authentication works. Consider the following scenario:

❑ The user — let’s call him Bob — wants to view Page A, which can’t be accessed by anonymous
users, so when Bob tries to view Page A, the browser instead displays a login page, as shown in
Figure 4-29.

Figure 4-29

❑ Bob is now looking at a login page. Because Bob registered with this site previously, he logs in
to the site using his username and password combination. Figure 4-30 shows the interaction
between Bob’s browser and the server.

Figure 4-30

❑ Bob can now view Page A and is a happy user. Next, Bob wants to view Page B by following a
link from Page A. Along with the request for the page, Bob’s browser sends a copy of the cookie
to the server to let the server know that it’s Bob who’s trying to view the page. The server knows
who Bob is, and likes Bob, so it sends Bob Page B as requested, as shown in Figure 4-31.

Server authenticates Bob and returns
Page A along with a cookie to the

browser

Browser sends a login
request to the server

Browser Server

Server refuses anonymous access
and sends login page instead

Browser sends request
for Page A to the server

Browser Server

126

Chapter 4

07_042583 ch04.qxd 4/4/06 2:42 PM Page 126

Figure 4-31

❑ If Bob now requests the site’s home page, the browser will tack on the cookie to the request, so
even though the home page is not restricted content, the cookie is still sent to the server. Because
the page isn’t restricted, the server doesn’t worry about the cookie, ignores it, and sends back
the home page.

❑ Bob then heads back to Page A. Because the cookie is fresh on Bob’s machine, the cookie is sent
to the server. The server is still happy with Bob, so it lets Bob view the page.

❑ Bob goes off and makes himself a coffee. He then makes some lunch. By the time he gets back to
his computer, 25 minutes have elapsed. Bob now wants to view Page B again, but the cookie on
his machine has expired. The server doesn’t receive a cookie along with the page request, so Bob
has to log back in again.

Cookies on a user’s machine are normally set to expire after a specific amount of time has elapsed. In
this scenario, the server gives out cookies with a 20-minute expiry, which means that as long as the user
keeps making requests within 20 minutes of each other, the cookie will remain active. However, more
than 20 minutes away from the site and the user will have to log back in to the site to view restricted
content.

The login page built in the earlier examples included a box that offered you the “remember my details
for next time” option. This writes a more permanent cookie to your browser’s cookie collection so that
your account name is pre-populated when you revisit the site. Because you should never store password
information in a cookie, you should always have to enter your password, but at least your username
field is filled in for you on each visit.

Other methods of authentication — Windows and Passport — provide the end user with a similar experi-
ence. For example, the Windows authentication model relies on the web server (which will likely be IIS)
to control access to the site, but it can also incorporate the timeout mechanism to block users that have
been idle for too long. To configure Windows authentication, you need to specify which users or roles
from the corporate Active Directory (AD) domain can access a site. These users can then access the site
whenever they are logged on using their login details to a PC on the corporate network.

It’s also possible to view a Windows authenticated site from outside of the corporate environment,
though you are asked to enter your standard Windows logon credentials when you attempt to access a
page protected by Windows authentication.

Server accepts cookie and
sends back Page B

Browser requests Page B
and passes a copy of the cookie

Browser Server

127

Membership and Identity

07_042583 ch04.qxd 4/4/06 2:42 PM Page 127

Passport authentication isn’t as widely adopted as Microsoft perhaps would have liked, but some
sites on the Internet do link to the Passport network to handle web site authentication (for example,
Expedia.com). Passport authentication relies on the entire repository of user accounts being accessible
from anywhere in the wired world, a bit like a central active directory for web accounts.

This book uses Forms authentication to handle all authentication with the Wrox United application.

Wrox United Security
The Wrox United site that you’ve been working on so far needs to have some security applied to it if you
want to be able to include some personalization in the site. In the finished site (www.wroxunited.net),
you’ll see that there is shopping cart functionality built in to the site. Additionally, the finished site will
also have an administration area, where you can edit fixtures, team members, and much more. This all
means that you’re going to have to add some users and roles at some stage. Because you have gained
plenty of experience of using the configuration tool, you can now perform the first stage in this process.
The next Try It Out walks you through the user accounts and roles configuration for the Wrox United
site. At this stage, you don’t have to worry about locking down parts of the site — that’s a task for later
in the book.

Try It Out Configuring Security in the Wrox United Site
1. Open the final version of the Wrox United site in VWD. Then click the Website menu and select

ASP.NET Configuration. This launches the configuration tool for the site. Figure 4-32 shows the
configuration screen that is displayed for the finished version of the site.

Figure 4-32

128

Chapter 4

07_042583 ch04.qxd 4/4/06 2:42 PM Page 128

2. Click the Security link to go to the section where you can configure users and roles. As you did
previously in this chapter, launch the security setup wizard. As you walk through the wizard,
select the following:

❑ The application will be used over the Internet.

❑ Roles are enabled.

❑ Roles should be defined for Administrator, FanClubMember, Manager, Owner, and
Reporter (see Figure 4-33).

3. Look at the user accounts. The user accounts predefined with the Wrox United application are
shown in Figure 4-34.

4. Take a look at the configuration for the finished application. You’ll see that the preconfigured
user accounts are each members of different roles, so while the ChrisH account is a member of
the Reporter role, Jim is a member of the Owners role, and Lou is a member of the Fan Club.

5. After you finish the wizard, look at a couple of subfolders within the WroxUnited directory that
contain specific areas of the site — the Admin and the FanClub sections. These areas have some
access restrictions on them.

Figure 4-33

129

Membership and Identity

07_042583 ch04.qxd 4/4/06 2:42 PM Page 129

Figure 4-34

6. Go to the section for managing Access Rules and you’ll see the following rules:

❑ For the main WroxUnited folder, anonymous access is allowed.

❑ For the FanClub folder, only members of the FanClub role can access the folder — all
other users are denied access.

❑ For the Admin folder, access is denied to all users.

How It Works
With the Wrox United application, you have access to the configuration of a fully functional web appli-
cation. Feel free to have a look through this configuration using both the Administration Tool and the
Web.config file to see how the basic permissions are enabled. This example is only a taste of what will
come later in the book, because Chapter 11 covers the details of role-based access to a site and shows you
different techniques for enabling and disabling content by role.

The code generated for filtering access to the FanClub folder has been added to the Web.config file that
lives within the FanClub folder. This code is as follows:

130

Chapter 4

07_042583 ch04.qxd 4/4/06 2:42 PM Page 130

<?xml version=”1.0” encoding=”utf-8”?>
<configuration>

<system.web>
<authorization>

<allow roles=”FanClubMember” />
<deny users=”*” />

</authorization>
</system.web>

</configuration>

Notice that the FanClubMember role has been defined as the only role that has permission to access the
content in this folder.

The directory-level permission created in this example has created a restricted zone in the site. Chapter
11 walks through some examples using the Administration section and the Fan Club sections, demon-
strating different parts of ASP.NET 2.0 technology. These examples will rely on an understanding of the
foundations built in this section.

Summary
This chapter discussed the basics of security, the concept of identity, and the process involved in logging
on to a site. These are familiar concepts to anyone who spends time on the Internet, surfing fan sites,
community portals, or online shops. Because these concepts are so universal, you’ve seen how ASP.NET
2.0 is designed to make the process of creating sites that use this functionality.

The core concepts to understand are as follows:

❑ Identity: The concept of an individual as described by a set of attributes that make that individ-
ual unique.

❑ Authentication: The concept of identifying a user to a server by passing a set of credentials to the
server. If the server can identify the user attempting to connect, he or she will be authenticated.

❑ Authorization: The process of taking authenticated user credentials and comparing them
against a set of access control list information, providing the answer to the question “can this
user access the requested resource?”

❑ Personalization: The capability to provide information that is specific to the currently
logged-in user.

❑ Membership: The concept of belonging. This chapter considered the concept of users being
members of specific roles.

The next chapter expands on the concept of personalization and looks at how ASP.NET sites can be
personalized.

131

Membership and Identity

07_042583 ch04.qxd 4/4/06 2:42 PM Page 131

Exercises
1. Change the configuration of your Chapter 4 web site to allow anonymous access, but to deny

access to one specific user account.

2. Add a subfolder to the Chapter 4 web site called Admin. Within this folder, add a page called
MainAdmin.aspx with a LoginName control on it and any other controls you might want.
Change the access permissions for that specific folder so that only members of the
Administrators group can view the page.

132

Chapter 4

07_042583 ch04.qxd 4/4/06 2:42 PM Page 132

5
Styling with Themes

The process of developing any web application usually revolves around two main areas: function-
ality and appearance. The functionality aspect of a web application includes the structure of the
site, the behavior of the controls, the user experience, code for securing the application, what hap-
pens when the user clicks a button, and so on. The appearance of a site is somewhat more aes-
thetic, and involves the use of color, images, the layout of pages, and to some extent, the style of
code that is rendered to the browser. A successful application will strike a good balance between
the two sides, providing a visually pleasant site that is easy to use and to work with for all users,
and it’s the balancing act between the two sides where many sites fail.

This chapter starts by introducing the fundamental tools available for styling web applications,
before introducing the styling capabilities of Visual Web Developer. It goes through the basics of
styling individual controls before moving style information into a separate CSS file, and then
introduces themes — a new technique for styling pages and sites.

In this chapter, the following topics are discussed:

❑ Styling a web site, from styling individual elements to the use of CSS style sheets

❑ Developing style sheets for an application in VWD

❑ Using ASP.NET 2.0’s themes and skins to rapidly develop styled web content that con-
forms to a standard look and feel

❑ Adding style to the Wrox United site using themes and skins

Additionally, this chapter also discusses the concepts of usability and accessibility, which are two
important areas of web design that should be considered when developing any web site.

Styling a Site
It may sound obvious, but the front page appearance of a site is the first thing your visitors will
see, and although we are told never to judge a book by its cover (particularly in the case of Wrox

08_042583 ch05.qxd 4/4/06 2:43 PM Page 133

author mug shots!), most of us will still have an initial impression of a site based on its appearance,
whether it’s a fairly neutral response (it’s okay, it does the job, where’s the search box?), a positive
response (neat, slick, pretty, show me more!), or a negative response (yuk, messy, I’m going somewhere
else!). Initial impressions count, so it’s important that you get them right.

In any site design there are common elements; for example, some kind of header that gives you a com-
pany name, an idea of what the site is about, or a reflection of why you are looking at the site. You will
also find areas such as menus, search boxes, groups of links, footers, and so on. A page without these
sorts of elements will only be relevant to a specific audience; for example, a developer proving a con-
cept, or the reader of a book who’s trying out some new technology. Positioning these elements precisely
is important, as is structuring the content to fit the style of site you’re trying to develop.

Styling and laying out a site is an integral part of web development. Although laying out a site is one
aspect, the styling of a site can be a bit trickier. This chapter focuses on styling pages and the rules and
hierarchy involved in this process — laying out elements and positioning items on a page is part of web
design that is discussed throughout this book.

Style Attributes
The easiest and quickest way to change the way an element appears on a page is to add a style
attribute. The style attribute can be applied to any visible element on a page. For example:

<div style=”font-weight:bold;color:red;border-bottom:solid 2pt navy”>This is a
styled “div” tag</div>

Figure 5-1 shows how this style attribute will look in Internet Explorer.

Figure 5-1

In the following Try It Out, you start by creating a web site that you can use to host all of the examples in
this chapter.

Try It Out Styling a Simple Page, Part 1 — Element by Element
1. In VWD, open the starter web site called Chapter05 (C:\BegASPNET2\Chapters\Begin\

Chapter05). This starter site contains just a few files to give you a head start on the examples
within this chapter.

134

Chapter 5

08_042583 ch05.qxd 4/4/06 2:43 PM Page 134

2. Add a new blank .aspx page and call it Default.aspx. Switch straight to Source View and type
the following highlighted lines of code between the Form tags:

<form id=”form1” runat=”server”>
<div style=”font-weight:bold; color:red; border-bottom:solid 2pt navy;”>
This is a styled “div” tag
</div>

</form>

Notice how Visual Web Developer helps you as you type in the style information (see Figure 5-2).

Figure 5-2

3. Switch over to Design View and see how your formatting has been applied to the page, as
shown in Figure 5-3.

4. Notice how the style tag has the style attribute information visible in the properties pane. If
you click somewhere within the value for the Style attribute, you’ll notice the ellipsis button
(. . .) next to the style information. Click this button and you will see the Style Builder dialog
box, shown in Figure 5-4.

This dialog box comes in very handy when you are styling elements, because you won’t have to
remember the individual syntax for each style. All you need to do is select the attributes you
want to apply to the element and click OK to apply the style. Go ahead and do that with
another page.

5. Create another .aspx page and call it StyledPage1.aspx. In this page, add a simple <div> element
with the text This is highlighted text and a Heading 1 (h1) element with the text This is also
highlighted text.

135

Styling with Themes

08_042583 ch05.qxd 4/4/06 2:43 PM Page 135

Figure 5-3

Figure 5-4

6. Using the Style Builder dialog box (see Figure 5-5), set the style for both elements to use the
Trebuchet MS font family, and set them to appear in Navy. This will add the following code to
Source View for you automatically:

136

Chapter 5

08_042583 ch05.qxd 4/4/06 2:43 PM Page 136

<div style=”font-family: ‘Trebuchet MS’;Color: Navy;”>
This is highlighted text.</div>

<h1 style=”font-family: ‘Trebuchet MS’;Color: Navy;”>
This is also highlighted text.</h1>

Figure 5-5

7. View the page in your browser to see the finished article. It should look similar to Figure 5-6.

Figure 5-6

137

Styling with Themes

08_042583 ch05.qxd 4/4/06 2:43 PM Page 137

How It Works
Now it might not look fantastic, but it didn’t take long to change how this element appeared on the
page. This technique can then be applied to each element on the site. You can apply many different style
attributes to a site, and so Appendix E includes some of the most common elements to help you to pick
out your favorite styles for a site.

The good news is that having learned to style elements on a page, it’s just a short step to reorganizing
your code into using a style sheet. The style attributes on HTML elements use exactly the same syntax as
the style syntax used in style sheets, so move on to the next section and tidy up all this style code.

CSS — Cascading Style Sheets
The concept of style sheets has been around for several years now (it was first made a recommendation
by the W3C in December 1996), and every well-designed web application will be backed by a well-
defined CSS style sheet that defines a specific look and feel for the site. Using a style sheet, you are able
to define how every type of element on a page will appear, and you can also create definitions for spe-
cific styles that you can pick and choose from to apply to specific elements on a page. For example, you
can specify that every instance of a <div> tag should contain navy text, or you can define a style class
called HighlightedText that you can apply to any <div>, or other similar element, on a page. Here’s
a section from a style sheet that defines these styles:

div
{

font-family: ‘Trebuchet MS’;
Color: Navy;

}

.HighlightedText
{

font-family: ‘Trebuchet MS’;
Color: Navy;

}

Notice that the only difference between these two is that the HighlightedText class has a period before
the name of the custom class. This identifies the section as a class that can be applied to any element you
want, instead of defining default styling for a particular type of element.

To apply a style to an element, you don’t need to do anything to the element itself. As long as your page
knows where the style information for the page can be found, the style will be applied automatically
(locating style information is discussed in just a moment). However, to specify a custom class to be used
to style an element, you use the Class attribute. For example:

<div class=”HighlightedText”>This is highlighted text.</div>
<h1 class=”HighlightedText”>This is also highlighted text.</h1>

Although you can’t see the color of the text in this printed book, you can see that the font style that was
defined in the preceding style class has been applied to these two elements in Figure 5-7.

138

Chapter 5

08_042583 ch05.qxd 4/4/06 2:43 PM Page 138

Figure 5-7

Of course, if you try this out for yourself, you’ll see that the font has also been rendered in navy blue.

Style Syntax
Style definitions are surrounded by curly brackets (braces). The position of the opening brace is usually
either next to the name of the element or class, or on the following line. For example, the div style can be
rewritten as follows:

div{
font-family: ‘Trebuchet MS’;
Color: Navy;

}

You can choose whichever presentation style you prefer — personally, I like my braces to all line up in a
vertical line.

Style information can also be applied to elements like anchor tags (<a>) with some specific modifiers to
provide some dynamic hover-style appearance as follows:

a:link, a:visited
{

color: #cc3300;
text-decoration: underline;

}
a:hover
{

text-decoration: none;
}
a:active
{

color: #ff9900;
text-decoration: underline;

}

This code will render red links with underline on a page that, when you hover your mouse over them,
lose their underline, and when you click them, they momentarily appear slightly orange. This is to pro-
vide you with some feedback that you are hovering over a link, and that you have just clicked a link.

139

Styling with Themes

08_042583 ch05.qxd 4/4/06 2:43 PM Page 139

The comma-separated items mean that the following style information will be applied to both style defi-
nition items (in this case, the a:link and a:visited items).

The first step in moving to a fully CSS-based layout is to decide what styles you want to use for each ele-
ment and construct a set of style definitions.

In the next sections, you look first at placing style definitions within the <style> tags on a page, and
then see how to attach an external CSS style sheet.

Moving from Style Attributes to a Style Section
If you are only interested in styling a single page, you can embed style information in the <head> sec-
tion of the HTML for the page as follows:

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Styled Page 1</title>
<style>

.HighlightedText
{

font-family: ‘Trebuchet MS’;
Color: Navy;

}
</style>

</head>
<body>

<form id=”form1” runat=”server”>
<div class=”HighlightedText”>This is highlighted text.</div>
<h1 class=”HighlightedText”>This is also highlighted text.</h1>

</form>
</body>
</html>

This code is the same code used to display the previous example. Notice how you can embed the style
information quite easily within the <head> of the page using the <style> tag. This technique is fine for
single pages — in fact, if you ever save a Word document as HTML, you’ll see that this technique is used
to define the document styles in use so that the document can be rendered as HTML. I just saved this
document from within Word 2003 as a Web Page (Filtered), which produces HTML code that’s a lot
cleaner than the standard auto-generated code when you just save as a Web Page from Word. After I
saved it, I viewed the source code that was generated, and found the following style definition that
describes how some of the highlighted sections of code used in this chapter are defined:

You can put style definitions in two places so that they can be used in a web page.
The first option is to embed style information at the top of the web page within a
<style> tag, placed within the <head> element. The other option is to create a sepa-
rate external style sheet to store the style definitions, and to link that external style
sheet to each web page that it should be applied to.

140

Chapter 5

08_042583 ch05.qxd 4/4/06 2:43 PM Page 140

p.code, li.code, div.code
{margin-top:0cm;
margin-right:0cm;
margin-bottom:0cm;
margin-left:30.0pt;
margin-bottom:.0001pt;
line-height:112%;
font-size:8.5pt;
font-family:Courier;}:

This technique isn’t really ideal for constructing a web site with style information applied to many dif-
ferent pages, because you would have to copy the <style> tags and style definitions across to all of the
pages in the site individually. The solution for that scenario is to move to a separate CSS.

Moving to a Separate CSS
This step is perhaps the simplest to achieve. When you have style definitions encapsulated within
<style> tags, it’s a really simple matter to extract that information into a separate style sheet. All you
need to do is create a file with the file extension of .css, copy across all the style information from your
web page, and then add a link to that style sheet as follows:

<head runat=”server”>
<title>Styled Page 2</title>
<link href=”StyleSheet.css” rel=”stylesheet” type=”text/css” />

</head>

The style sheet file contains only style information, so say you had a style sheet with all of your style
code in it:

.HighlightedText
{

font-family: ‘Trebuchet MS’;
color: Navy;

}
a:link, a:visited
{

color: #cc3300;
text-decoration: underline;

}
a:hover
{

text-decoration: none;
}
a:active
{

color: #ff9900;
text-decoration: underline;

}

141

Styling with Themes

08_042583 ch05.qxd 4/4/06 2:43 PM Page 141

You can then link that style sheet to your web page, and make a minor addition to the page code:

<form id=”form1” runat=”server”>
<div class=”HighlightedText”>This is highlighted text.</div>
<h1 class=”HighlightedText”>This is also highlighted text.</h1>
<div>This is a sample link</div>

</form>

When you view this page you’ll see the result shown in Figure 5-8.

Figure 5-8

Go ahead and try these concepts. In the next Try It Out, you create a simple styled page that is based on
the StyledPage1.aspx that you created earlier.

Try It Out Styling a Simple Page, Part 2 — Using CSS
1. Create another new page in your Chapter05 web site and call it StyledPage2.aspx.

2. Copy the <div> and heading from StyledPage1.aspx and remove the style attributes from
each element. In their place, add a class attribute, and give it a value of “HighlightedText”:

<form id=”form1” runat=”server”>
<div class=”HighlightedText”>

This is highlighted text.</div>
<h1 class=”HighlightedText”>

This is also highlighted text.</h1>
</form>

3. Add a hyperlink to the page below the heading with the text This is a sample link. Enter
“default.aspx” as the value for the href:

<form id=”form1” runat=”server”>
<div class=”HighlightedText”>

This is highlighted text.</div>
<h1 class=”HighlightedText”>

This is also highlighted text.</h1>
<div>This is a sample link</div>

</form>

142

Chapter 5

08_042583 ch05.qxd 4/4/06 2:43 PM Page 142

4. After the hyperlink, add a line break, followed by an ASP.NET Label control. Remember that
server controls have a different set of properties than standard controls, so set the label’s
CssClass property to “HighlightedText”, and the Font-Italic property to “true”:

This is also highlighted text.</h1>
<div>This is a sample link</div>

<asp:Label CssClass=”HighlightedText” Font-Italic=”true” ID=”Label1”

runat=”server” Text=”This is an ASP.NET label”></asp:Label>
</form>

5. Right-click the Chapter05 site in the Solution Explorer and select Add New Item. Select
StyleSheet from the list of icons and accept the default name: StyleSheet.css. In this file,
add the following code:

.HighlightedText
{

font-family: ‘Trebuchet MS’;
color: Navy;

}
a:link, a:visited
{

color: #cc3300;
text-decoration: underline;

}
a:hover
{

text-decoration: none;
}
a:active
{

color: #ff9900;
text-decoration: underline;

}

Notice how you get the same syntax help when you work with a CSS style sheet as when you
work with <style> attributes on a HTML control in Source View, as displayed in Figure 5-9.

Also notice the Build Style icon on the toolbar. If you click this button, it launches the Style
Builder dialog box. You can try this out for yourself — add another element definition (a <div>,
perhaps), and add the opening and closing curly braces. Place your cursor between those braces
and click the button to launch the style builder. After you have selected the styles you want, just
click OK and your styles appear as CSS items in the StyleSheet.css file.

6. There is just one final thing to do, which is to tell your page to refer to the styles defined in the
.css file. Switch back to StyledPage2.aspx and flip to Design View. You should see the screen
shown in Figure 5-10.

7. Now drag and drop the StyleSheet.css file icon from the Solution Explorer onto the design
surface. As soon as you do that, your page will change appearance (see Figure 5-11).

If you run the page now, you’ll see pretty much the same thing in your browser window.

143

Styling with Themes

08_042583 ch05.qxd 4/4/06 2:43 PM Page 143

Figure 5-9

Figure 5-10

144

Chapter 5

08_042583 ch05.qxd 4/4/06 2:43 PM Page 144

Figure 5-11

How It Works
Only two things are required to style an HTML element on a page using a separate CSS file. One is the
class to be used by the element, and the other is a link that the page will use to locate the CSS file. When
you dragged the CSS file onto the design surface of the page, the following code was added for you at
the top of the page:

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>

<title>Styled Page 2</title>
<link href=”StyleSheet.css” rel=”stylesheet” type=”text/css” />

</head>

That link at the top of your page tells your page where to find its style information. From that moment
on, any class attributes in the page will attempt to refer to the CSS style sheet for the styling informa-
tion for those elements. If the class cannot be found, no styles are applied, unless they are specified man-
ually in the Style attribute of the element.

HTML elements with class attributes specified can also have additional style information specified in
the Style attribute. Any styles defined in the Style attribute will override those specified in the CSS
file, giving you the chance to fine-tune the appearance of selected elements on your page.

Server controls are somewhat different. Because a server control will be converted to appropriate HTML
when it is rendered, the available properties will be different. In this example, you used a Label control.
The Label control is a relatively simple control, so there’s not a huge amount of styling you can add to
it. In this case, you added a link to the CSS style, and defined one additional style. The CssClass
attribute used by server controls relates directly to the class attribute found on HTML elements. The
individual style attributes are similar to the individual parts found in the HTML style attributes:

<asp:Label CssClass=”HighlightedText” Font-Italic=”true” ID=”Label1”

runat=”server” Text=”This is an ASP.NET label”></asp:Label>

145

Styling with Themes

08_042583 ch05.qxd 4/4/06 2:43 PM Page 145

When the label is rendered, the following code is generated:

This is an
ASP.NET label

Notice that the custom style attributes are converted to a standard style tag on the browser. Because
CSS styling is applied on the client side, once the page is rendered the class and style attributes on
the HTML elements will have styles and CSS styling applied just like static HTML elements.

Limitations of CSS and Server-Side Code Styles
When you style a site using CSS, you can specify how specific elements will appear on a page. This
works just fine in a static HTML web site, but when it comes to server-side elements, you will start to
run into problems. Take, for example, a simple ASP.NET Panel control. If you drag a Panel control onto
a page, add some text, and view the page in two different browsers (for example, Internet Explorer and
an older or more limited browser like Links), you will see different results when you view the source of
the page. Here’s some example source code:

<form id=”form1” runat=”server”>
<asp:Panel ID=”Panel1” runat=”server” Height=”50px” Width=”125px”>This text

is contained within an ASP.NET Panel control
</asp:Panel>

</form>

Now, viewed in Internet Explorer 6 and Firefox 1.5, the following source code has been generated:

<form method=”post” action=”StyledPanels.aspx” id=”form1”>
<div>

<input type=”hidden” name=”__VIEWSTATE” id=”__VIEWSTATE”
value=”/wEPDwULLTEwODU4OTkxMzRkZHehxD/SHmjEeZzCKx7+bB752B3R” />

</div>

<div id=”Panel1” style=”height:50px;width:125px;”>
This text is contained within an ASP.NET Panel control

</div>
</form>

Now if you view that same page in an older browser (for example, Mozilla 5.0), you’ll see the following:

<form name=”form1” method=”post” action=”StyledPanels.aspx” id=”form1”>
<input type=”hidden” name=”__VIEWSTATE” id=”__VIEWSTATE”

value=”/wEPDwULLTEwODU4OTkxMzRkZHBovyeleyCJNtOpi+uco+l/zE5a” />

<div id=”Panel1”>
This text is contained within an ASP.NET Panel control

</div>
</form>

Notice how the Panel has been rendered to a <div> control in both cases, but in the second case, it has
lost its height and width information. It’s a small change in this case, but it’s a great improvement over
ASP.NET 1.1, which renders ASP.NET Panel controls as HTML tables on Mozilla, Firefox, and other
non-Internet Explorer browsers. For example:

146

Chapter 5

08_042583 ch05.qxd 4/4/06 2:43 PM Page 146

<table id=”Panel1” cellpadding=”0” cellspacing=”0” border=”0” height=”50”
width=”125”>

<tr><td>
This text is contained within an ASP.NET Panel control

</td></tr>
</table>

Although ASP.NET 2.0 has removed a lot of issues like this from our day-to-day programming lives, the
problem still remains that what you see on the server side isn’t the same as you will see on the client
side, and you can’t guarantee that an element will always be rendered in the same way on every browser.
What ASP.NET 2.0 attempts to do is to provide a mechanism for specifying the appearance of an element
based on its server-side control type, not on its client-side control type, so that when a control is rendered
on different browsers, consistency is maintained where possible. This is achieved using themes and skins.

Themes
Themes are used to define the look and feel of a web site, similarly to how pages are styled using CSS.
However, unlike CSS, themes can specify how server-side elements, such as a TreeView control, will
appear when they are rendered on the browser. Remember that server controls have to be converted to
standard HTML and possibly JavaScript if a browser is to understand how to render them on a page. A
themed server control will have style attributes applied to each of the relevant client-side elements that
are generated when the page is requested.

A theme can be used in one of two ways. It can be used as a Stylesheet theme, which acts in a similar
way to a regular CSS style sheet. The alternative is to use your theme as a Customization theme, which
changes the order of preference for style rules that you may be used to, so that the Customization theme
will specify the style to use for each element, overriding any style preferences specified in a separate
style sheet, or even in the style attributes of an element.

The basic method for creating a theme is the same, whichever way you use it. Additionally, you can
choose to use one theme throughout an entire site, or a different theme on each page.

Creating a Theme
The process of creating a theme involves creating a .skin file, which defines the appearance of each ele-
ment on the page, and placing this skin file within a folder, the name of which specifies the name of the
theme. All themes are stored within a folder in an application directory called App_Themes. Here’s a
look at a sample skin file:

<asp:Calendar runat=”server” Font-Names=”Century Gothic” Font-Size=”Small”>
<OtherMonthDayStyle BackColor=”Lavender” />
<DayStyle ForeColor=”MidnightBlue” />
<TitleStyle BackColor=”LightSteelBlue” />

</asp:Calendar>

<asp:TreeView runat=”server” ExpandDepth=”1” Font-Names=”Century Gothic”
BorderColor=”LightSteelBlue” BorderStyle=”Solid” >

<SelectedNodeStyle Font-Bold=”True” ForeColor=”SteelBlue” />
<RootNodeStyle Font-Bold=”True” />
<NodeStyle ForeColor=”MidnightBlue” />
<LeafNodeStyle Font-Size=”Smaller” />

147

Styling with Themes

08_042583 ch05.qxd 4/4/06 2:43 PM Page 147

<HoverNodeStyle ForeColor=”SteelBlue” />
</asp:TreeView>

<asp:Label SkinId=”textLabel” runat=”server” Font-Names=”Century Gothic” Font-
Size=”10pt” ForeColor=”MidnightBlue”></asp:Label>

<asp:ImageButton SkinId=”homeImage” runat=”server” ImageUrl=”~/platypus.gif” />

This file contains definitions for four types of elements. The ASP.NET TreeView control and the
ASP.NET Calendar control in this file define how each of the calendars and tree view controls on a site
will appear. Notice that these controls have no ID tag — this is a feature of all skin files. Each element
within a skin file appears without an ID. At run time, if you have a page that has this theme specified as
the default theme, and contains a Calendar control, the calendar on the page will automatically inherit
the styles defined in this file.

The other two controls in this skin file, the Label and the Image Button controls, have associated
SkinIds. These attributes enable you to create sites with many different types of Label controls or
Image Button controls on them, and style selected instances of those controls using the skin data pro-
vided — the link to the skin file is controlled by the SkinId property. If you want to include two Label
controls on a web page and style one of them using a theme, you can use the following syntax:

<asp:Label ID=”Label1” SkinID=”textLabel” runat=”server” Text=”Label”>
Styled label</asp:Label>

<asp:Label ID=”Label2” runat=”server” Text=”Label”>Unstyled label</asp:Label>

The SkinID property in this example specifies the style to apply to this control, as long as it has been
defined in the theme used on that page.

In the following Try It Out, you create a simple theme in VWD and see how to define style formatting.
You’ll use this theme, and one other, in the examples later in this chapter.

Try It Out Creating Themes
1. In VWD, open up the Chapter05 web site. Right-click the C:\...\Chapter05\ folder at the top of

the Solution Explorer and select Add ASP.NET Folder➪Theme. You will see the screen shown in
Figure 5-12.

2. This creates a new folder within the application called App_Themes, and a new empty folder
within App_Themes that you will have to name. Name the new folder Blue.

3. Right-click the App_Themes folder and add a new Theme folder named Red. You now have two
themes available to your site, although you don’t yet have any skin files containing style defini-
tions. This is the next part.

4. Right-click the Blue folder and select Add New Item. Select Skin File and call it BlueBits.skin,
as shown in Figure 5-13.

5. Click Add. Take a look at the resulting file (see Figure 5-14) and you’ll see some default com-
ments that overview some of the basics of skin files.

148

Chapter 5

08_042583 ch05.qxd 4/4/06 2:43 PM Page 148

Figure 5-12

Figure 5-13

6. Repeat this step to add a skin file for the Red theme, called RedBits.skin.

7. For these examples, you’ll find it really handy to create a simple ASP.NET page for trying out
new styles before you add controls to a skin file. Create a new web page by right-clicking the
C:\...\Chapter05 root in the Solution Explorer and selecting Add New Item, selecting a Web
Form, calling it SkinSource.aspx, and clicking OK.

149

Styling with Themes

08_042583 ch05.qxd 4/4/06 2:43 PM Page 149

Figure 5-14

8. Drag two Calendar controls onto the page. These controls need some styling, and the first step
is to manually add some styles to each of these controls so that the first one can be used in a
blue theme, and the second can be used in a red theme. In just a moment, you’ll see the styles
to use for these controls — first, Figure 5-15 shows how they will look when they are styled.

Figure 5-15

Notice that the Properties pane contains many different style options for the Calendar control.
Set the properties as shown in the following tables.

150

Chapter 5

08_042583 ch05.qxd 4/4/06 2:43 PM Page 150

Blue Skin

Attribute Style Code

Font-Names Century Gothic

Font-Size Small

OtherMonthDayStyle - Lavender

BackColor

DayStyle - ForeColor MidnightBlue

TitleStyle - BackColor LightSteelBlue

Red Skin

Attribute Style Code

Font-Names Garamond

Font-Size Medium

BorderColor Chocolate

BorderStyle Ridge

BorderWidth 8px

DayNameFormat FirstLetter

OtherMonthDayStyle - BlanchedAlmond
BackColor

DayStyle - ForeColor Maroon

TitleStyle - BackColor Maroon

TitleStyle - Font-Bold True

TitleStyle - ForeColor # FFFFC0

151

Styling with Themes

<asp:Calendar ID=”Calendar1”
runat=”server”
Font-Names=”Century Gothic”
Font-Size=”Small”>

<OtherMonthDayStyle
BackColor=”Lavender” />

<DayStyle
ForeColor=”MidnightBlue” />

<TitleStyle
BackColor=”LightSteelBlue” />

</asp:Calendar>

<asp:Calendar ID=”Calendar2”
runat=”server”
Font-Names=”Garamond”
Font-Size=”Medium”
BorderColor=”Chocolate”
BorderStyle=”Ridge”
BorderWidth=”8px”
DayNameFormat=”FirstLetter”>
<OtherMonthDayStyle
BackColor=”BlanchedAlmond” />

<DayStyle ForeColor=”Maroon” />
<TitleStyle BackColor=”Maroon”
Font-Bold=”True”
ForeColor=”#FFFFC0” />

</asp:Calendar>

08_042583 ch05.qxd 4/4/06 2:43 PM Page 151

9. Now drag a Label control onto the page and style it with a bit of color and font styling. The fol-
lowing code creates two labels and defines styles that should match with your blue and red
themes:

<asp:Label ID=”Label1” runat=”server” Text=”Blue Styled Label” Font-Names=”century
gothic” Font-Size=”10pt” ForeColor=”MidnightBlue”></asp:Label>

<asp:Label ID=”Label2” runat=”server” Font-Names=”garamond” Font-Size=”11pt”
ForeColor=”DarkRed” Text=”Red Styled Label”></asp:Label>

After you finish defining styles, you are ready for the next phase.

10. Open the BlueBits.skin file in VWD and copy and paste the HTML for your blue Calendar
and Label controls in the SkinSource.aspx page into the skin file. Remove the ID tags for
each of them.

11. Remove the Text attribute and add a SkinID attribute to the Label control to give it a unique
style reference that you can use later (see the bold text in the following listing):

<asp:Calendar runat=”server” Font-Names=”Century Gothic” Font-Size=”Small”>
<OtherMonthDayStyle BackColor=”Lavender” />
<DayStyle ForeColor=”MidnightBlue” />

<TitleStyle BackColor=”LightSteelBlue” />
</asp:Calendar>

<asp:Label SkinId=”textLabel” runat=”server” Font-Names=”Century Gothic”

Font-Size=”10pt” ForeColor=”MidnightBlue”></asp:Label>

12. Repeat steps 8 and 9 for the red controls, placing them in the RedBits.skin definition file:

<asp:Calendar runat=”server” Font-Names=”Garamond” Font-Size=”Medium”
BorderColor=”Chocolate” BorderStyle=”Ridge” BorderWidth=”8px”
DayNameFormat=”FirstLetter”>

<OtherMonthDayStyle BackColor=”BlanchedAlmond” />
<DayStyle ForeColor=”Maroon” />
<TitleStyle BackColor=”Maroon” Font-Bold=”True” ForeColor=”#FFFFC0” />

</asp:Calendar>

<asp:Label SkinId=”textLabel” runat=”server” Font-Names=”Garamond” Font-Size=”11pt”
ForeColor=”DarkRed” />

152

Chapter 5

08_042583 ch05.qxd 4/4/06 2:43 PM Page 152

It’s simply a case of repeating the process for any other controls you might want to add to your
skin file. In the next Try It Out, you’ll be adding a Calendar control and a Label control to
pages and seeing how these themes change their appearance. You’ll also add a TreeView con-
trol and an ImageButton control, so you will need to have some more information in your skin
file to render these.

13. Add the following code to the blue skin (BlueBits.skin) file to specify styling for the
TreeView and ImageButton controls:

<asp:TreeView runat=”server” ExpandDepth=”1” Font-Names=”Century Gothic”
BorderColor=”LightSteelBlue” BorderStyle=”Solid” >

<SelectedNodeStyle Font-Bold=”True” ForeColor=”SteelBlue” />
<RootNodeStyle Font-Bold=”True” />
<NodeStyle ForeColor=”MidnightBlue” />
<LeafNodeStyle Font-Size=”Smaller” />
<HoverNodeStyle ForeColor=”SteelBlue” />

</asp:TreeView>

<asp:ImageButton SkinId=”homeImage” runat=”server” ImageUrl=”~/platypus.gif” />

14. Add similar code to the red skin (RedBits.skin) file to specify how to style a TreeView
control:

<asp:TreeView runat=”server” ExpandDepth=”1” Font-Names=”Garamond”
BorderColor=”Chocolate” BorderStyle=”Ridge”>

<SelectedNodeStyle Font-Bold=”True” ForeColor=”Chocolate” />
<RootNodeStyle Font-Bold=”True” />
<NodeStyle ForeColor=”DarkRed” />
<LeafNodeStyle Font-Size=”Smaller” />
<HoverNodeStyle ForeColor=”Chocolate” />

</asp:TreeView>

<asp:ImageButton SkinId=”homeImage” runat=”server” ImageUrl=”~/platypus.gif” />

That’s all there is to it as far as creating a theme is concerned. You should now have two themes
available to your Chapter05 pages: blue and red.

153

Styling with Themes

08_042583 ch05.qxd 4/4/06 2:43 PM Page 153

How It Works
The presence of a .skin file within an App_Themes in your web application is all that’s needed to
make the themes within the folder available to your application. If you are hosting your web sites on
a web server running IIS, you can alternatively place your themes within your <drive>:\Inetpub\
wwwroot\aspnet_client\<version> folder, which makes them available to all of the applications
hosted on your server.

You can create more than one .skin file for each theme you work on. All you need to do is create another
.skin file within the theme’s directory and create more control definitions within this file. This may help
you to split up your .skin file definitions into smaller pieces. For example, if you created a site that had
two different fonts in use on it (for example, one for text and one for code snippets), you could have
styles defined in two .skin files: one containing the body text styles and one containing code snippet
styles.

You can also include CSS style sheets in themes and use styles generated by your friendly designer on
your web site. You’ll see how this works later on. First, you need to have a go at putting these red and
blue themes into action!

The .skin files that formed the themes in the previous example define some standard control styles that
can be applied to any instance of a Calendar control on a page, or any instance of a Label control with
the appropriate SkinID on a page. In this Try It Out, you apply these themes to some simple pages in a
site. Note that the entire code for this chapter is available to download from www.wrox.com.

Try It Out Applying Themes to Pages
1. Start by creating a Master page for the site. This is going to be a very small and simple site, but

having a Master page will help you to navigate consistently around the site. Call the Master
page ThemedMaster.master. Into the Master page, add a TreeView control on the left-hand
side of the page, and place the ContentPlaceholder to the right by using the following
HTML. Notice the style attributes on the two bold <div> elements that will help to lay out the
contents of the page in two columns:

<body>
<form id=”form1” runat=”server”>

<div style=”float:left;padding-right:15px”>
<asp:TreeView ID=”TreeView1” runat=”server”>
</asp:TreeView>

</div>
<div style=”float:left”>

<asp:contentplaceholder id=”ContentPlaceHolder1” runat=”server”>
</asp:contentplaceholder>

</div>
</form>

</body>

154

Chapter 5

08_042583 ch05.qxd 4/4/06 2:43 PM Page 154

2. You’ll need to create a simple web.sitemap for this example to act as the data source for the
TreeView control. Right-click the Chapter05 folder and select Add New Item. Add a
web.sitemap with the following code:

<?xml version=”1.0” encoding=”utf-8” ?>
<siteMap xmlns=”http://schemas.microsoft.com/AspNet/SiteMap-File-1.0” >

<siteMapNode url=”ThemeDefault.aspx” title=”Default” description=”Default Page”>
<siteMapNode url=”ThemePage1.aspx” title=”Page1” description=”Themed Page 1” />
<siteMapNode url=”ThemePage2.aspx” title=”Page2” description=”Themed Page 2” />
<siteMapNode url=”Default.aspx” title=”SubPage” description=”Sub Page”>

<siteMapNode url=”StyledPage1.aspx” title=”Page1” description=”Page 1” />
<siteMapNode url=”StyledPage2.aspx” title=”Page2” description=”Page 2” />

</siteMapNode>
</siteMapNode>

</siteMap>

3. Add a SitemapDataSource to the Master page and set the DataSource for the TreeView
control — just like you did in Chapter 3. You should now have the following code:

<body>
<form id=”form1” runat=”server”>

<div style=”float:left;padding-right:15px”>
<asp:TreeView ID=”TreeView1” runat=”server” DataSourceID=”SiteMapDataSource1”>
</asp:TreeView>
<asp:SiteMapDataSource ID=”SiteMapDataSource1” runat=”server” />

</div>
<div style=”float:left”>

<asp:contentplaceholder id=”ContentPlaceHolder1” runat=”server”>
</asp:contentplaceholder>

</div>
</form>

</body>

Figure 5-16 shows what you should see in Design View.

Figure 5-16

155

Styling with Themes

08_042583 ch05.qxd 4/4/06 2:43 PM Page 155

4. Time to build some content pages. In this example, you create three very simple pages. The first
one is called ThemeDefault.aspx. Start by right-clicking the Chapter05 folder and select Add
New Item. Make sure you check the box to specify a Master page for the new page and select
the Master page you just created when prompted (see Figure 5-17).

Figure 5-17

5. In the Content placeholder on this new page, type in some plain text: “Default page!”, and
then drag two Label controls onto the page. Set the first Label control’s text property to
“Styled label”and the second Label control’s text property to “Unstyled label”. Finally,
set the first Label control’s SkinID property to textLabel. This will link up the Label control
to use the skinned label’s styling. Your page should look like Figure 5-18.

Figure 5-18

156

Chapter 5

08_042583 ch05.qxd 4/4/06 2:43 PM Page 156

6. Specify which theme to use for this page. Let’s use the blue theme. If you are in Design View,
click the gray area and view the properties for the Document. In this properties list, you should
set the Theme property to Blue. Save the page and that’s the first one out of the way.

If you prefer to use Source View and work with HTML directly, your code should be similar to
the following — notice the MasterPageFile and Theme attributes (in bold) on the @Page direc-
tive at the top of the page that control the layout and style for this page:

<%@ Page Language=”C#” MasterPageFile=”~/ThemedMaster.master” Title=”Untitled Page”
Theme=”Blue” %>
<asp:Content ID=”Content1” ContentPlaceHolderID=”ContentPlaceHolder1”

Runat=”Server”>
Default page!

<asp:Label ID=”Label1” SkinID=”textLabel” runat=”server” Text=”Label”>

Styled label</asp:Label>
<asp:Label ID=”Label2” runat=”server” Text=”Label”>

Unstyled label</asp:Label>
</asp:Content>

7. Add two more pages in the same way. Call them ThemePage1.aspx and ThemePage2.aspx.
Make sure that you specify the same Master page for these content pages.

8. In ThemePage1.aspx, enter the text Page 1 and add a Calendar control onto the Content area
of the page. Set the page’s Theme property to Blue. The source code for this page should look
like this:

<%@ Page Language=”C#” MasterPageFile=”~/ThemedMaster.master” Title=”Untitled Page”
Theme=”Blue” %>
<asp:Content ID=”Content1” ContentPlaceHolderID=”ContentPlaceHolder1”

Runat=”Server”>
Page 1

<asp:Calendar ID=”Calendar1” runat=”server”></asp:Calendar>

</asp:Content>

9. In ThemePage2.aspx, enter the text Page 2 and add an ImageButton control to the page. Set its
SkinID property to homeImage and the PostBackUrl property to ThemeDefault.aspx. This
means that if a user clicks the image, they will be taken back to the ThemeDefault.aspx page.
Finally, set the page’s Theme property to Red. The source code for this page should look like this:

<%@ Page Language=”C#” MasterPageFile=”~/ThemedMaster.master” Title=”Untitled Page”
Theme=”Red” %>
<asp:Content ID=”Content1” ContentPlaceHolderID=”ContentPlaceHolder1”

Runat=”Server”>
Page 2

<asp:ImageButton ID=”ImageButton1” SkinID=”homeImage” runat=”server”

PostBackUrl=”ThemeDefault.aspx” />
</asp:Content>

10. You’ve finished the groundwork, so it’s time to see the results of your hard work. Click the
ThemeDefault.aspx in the Solution Explorer and press Ctrl+F5 to run the page (see Figure 5-19).

157

Styling with Themes

08_042583 ch05.qxd 4/4/06 2:43 PM Page 157

Figure 5-19

11. Click through to Page 1 to see the Calendar control, shown in Figure 5-20.

Figure 5-20

Page 2 (see Figure 5-21) includes the ImageButton control, and will use the red theme.

158

Chapter 5

08_042583 ch05.qxd 4/4/06 2:43 PM Page 158

Figure 5-21

12. Change the Theme attribute on Page 1 to use the red theme. Save the page and view it again. It
should look like Figure 5-22.

Figure 5-22

How It Works
In this example, the themes built in the previous Try It Out example have been applied to a simple col-
lection of pages. Master pages were first discussed in Chapter 2, and in this chapter you’ve seen that
when you have a page that uses a Master page, the entire rendered page is treated as a single entity.

159

Styling with Themes

08_042583 ch05.qxd 4/4/06 2:43 PM Page 159

Remember how you set the ThemeDefault.aspx page to use the blue theme, but you didn’t specify any
Theme property on the Master page? The truth is that you can’t actually specify a theme directly on a
Master page in any case. Your pages in this example showed how changing the Theme property on each
page styled the entire page (including the TreeView control added to the Master page) with the same
consistent look and feel. That style can easily be switched on different pages, as you saw with Page 1 in
this Try It Out.

The main pieces of code that you need to be aware of are the Theme property in the Page directive and
the SkinID attribute on server controls. Adding just these two pieces of information to a page resulted in
the finished pages. Take ThemePage2.aspx as an example:

<%@ Page Language=”C#” MasterPageFile=”~/ThemedMaster.master” Title=”Untitled Page”
Theme=”Red” %>
<asp:Content ID=”Content1” ContentPlaceHolderID=”ContentPlaceHolder1”

Runat=”Server”>
Page 2

<asp:ImageButton ID=”ImageButton1” SkinID=”homeImage” runat=”server”

PostBackUrl=”ThemeDefault.aspx” />
</asp:Content>

The Theme attribute at the top of the page specifies which theme should be applied to the entire page,
including the contents of the Master page that it’s connected to. The SkinID property specifies which
skin of an ImageButton control to apply to the ImageButton on the page, so if you had many different
ImageButton control styles defined in your skin file, this attribute would specify which one to use on
your page.

In the preceding example, you used the Theme attribute specified at the top of each page to indicate
which theme to use to style a page. There is another attribute that you can use to style the elements on
a page: the StyleSheetTheme attribute. Both the Theme attribute and the StyleSheetTheme attribute
take the name of the theme to apply as the value, and both are used to style pages using themes, but the
attribute you choose to use can result in slightly differently rendered pages. Here’s why.

Customization Themes — You Have Control!
The pages in the previous example used the Theme attribute, which means that you have just used
Customization themes to style each of the pages in the example. A Customization theme has total control
over the styling of elements on a page. If you manually style elements on a page controlled by a
Customization theme, those styles will only be applied if the elements to which they are added are not
already styled by the theme.

Stylesheet Themes — CSS for Server Controls
If you’d prefer to use your themes like a style sheet, you can easily choose to do so by using the
StyleSheetTheme attribute at the top of a page. This change in attribute means that you can still give
developers the freedom to add some small amounts of styling to controls using style attributes on each
tag, while providing a common look and feel for a site in the theme itself.

The best way to see the differences between Stylesheet themes and Customization themes is to have a
play, so in this Try It Out you modify the previous example to see the differences.

160

Chapter 5

08_042583 ch05.qxd 4/4/06 2:43 PM Page 160

Try It Out Customization and Stylesheet Themes
1. Open ThemeDefault.aspx and add Font-Bold=”true” to the code for the Styled label.

Alternatively, switch to Design View, select the Styled label, select the Font node from the
Properties tab, and specify that the font should be bold:

<asp:Label ID=”Label1” SkinID=”textLabel” runat=”server”
Text=”Styled label” Font-Bold=”True”></asp:Label>

2. Run the page and you’ll see a bold label, as depicted in Figure 5-23.

Figure 5-23

3. Edit the label declared with the SkinId=”textLabel” in the BlueBits.skin file and add the
following bolded declaration:

<asp:Label SkinId=”textLabel” runat=”server” Font-Names=”Century Gothic”
Font-Size=”10pt” ForeColor=”MidnightBlue” Font-Bold=”False”></asp:Label>

4. Run the page again and the label will no longer be bold, as shown in Figure 5-24.

Figure 5-24

161

Styling with Themes

08_042583 ch05.qxd 4/4/06 2:43 PM Page 161

5. Change the Theme attribute at the top of the ThemeDefault.aspx page to read StyleSheetTheme
instead of Theme. Alternatively, in Design View, edit the properties for the page and specify that
the page’s StyleSheetTheme should be Blue, and delete the Theme property. Run the page again
and you’ll see that the label is now bold once more.

How It Works
The first step in this exercise was to add a Font-Bold=”True” attribute to the label. Because the bold
attribute hadn’t been specified in the Customization theme, the style in the page was applied success-
fully and the control was rendered with bold blue text.

However, adding a Font-Bold=”False” to the skin’s textLabel control overrides the style in the page
because the page is still using the Customization theme (the Theme attribute at the top of the page). As a
result, the second time you ran the page, you saw that the page now has a non-bold blue label.

The last step was to change to using a StyleSheetTheme instead of a Theme attribute at the top of the
page. This enabled the page’s styles to once more take priority, and so the bold blue label returned the
third time the page was run.

Using a Stylesheet theme or a Customization theme is completely up to you. Choosing a Customization
theme gives your designer a bit more control over the look and feel of a site, whereas the Stylesheet
theme lets you play with control rendering yourself. Bear in mind, though, that if you start adding your
own style attributes to controls, you may find that your site appears somewhat strange if you ever
decide to change the contents of the theme, or switch to a completely different theme.

Using Both Stylesheet Themes and Customization Themes
No rules in ASP.NET specify that you can only use a Stylesheet theme or a Customization theme in your
pages. If you want to have two levels of styling available to your pages, some mandatory and some
optional, you can use both types of theme on your site.

For example, you may specify that major page elements must stay consistent from page to page. The
<body> tag of a page must always be in a certain font, and the Menu control must always contain a cer-
tain style of node, but you may want to only use styling on Label controls as a guideline or default
style. You can therefore create one theme that defines rules for main page elements and Menu controls
and specify that theme to be used as the Customization theme. You can then create a different theme
with some other style information in it that you can apply to a site as you create it and override certain
element styles, and then apply the second theme as a Stylesheet theme. The following is the order of
application when it comes to styling:

1. Stylesheet theme

2. CSS styles

3. Element styles

4. Customization theme

Styles specified in a Customization theme will always override all other settings.

162

Chapter 5

08_042583 ch05.qxd 4/4/06 2:43 PM Page 162

Themes and CSS Together
CSS is a great way to style a site, so it’s great that there’s a really simple way to integrate style sheets in
your themes. All you need to do is add a style sheet file to the theme’s directory and slot it in right next
to your skin files. Your non-ASP.NET designer will certainly be pleased that you can easily integrate his
designs in your server-side pages.

Because this isn’t a tough concept, you can jump straight in with a quick example that shows how
this works.

Try It Out Integrating CSS and Themes
1. Return to VWD, right-click the Blue theme folder, and select Add New Item. In the dialog box

that pops up, add a new style sheet and call it BlueStyleSheet.css.

2. In the newly created style sheet, add the following code:

body
{

font-family:Arial;
}
.bigtext
{

font-size:xx-large;
}

3. Return to ThemeDefault.aspx and add a CssClass attribute to the unstyled label, with a
value of “bigtext”:

<asp:Label ID=”Label2” CssClass=”bigtext” runat=”server” Text=”Unstyled label”>
</asp:Label>

4. Run the page and you’ll see that the label has xx-large text style applied (see the CSS style sheet
definition), and the default font for the page (everything within the <body> tag) is formatted
using Arial as the font face, as shown in Figure 5-25.

Figure 5-25

163

Styling with Themes

08_042583 ch05.qxd 4/4/06 2:43 PM Page 163

5. Go to the BlueBits.skin file and add another Label control definition. Set its SkinID to
“bigLabel”, give it a CssClass attribute of “bigtext”, and save the file:

<asp:Label SkinId=”bigLabel” runat=”server” CssClass=”bigtext”></asp:Label>

6. In ThemeDefault.aspx, remove the CssClass attribute from the label and set its SkinID
attribute to “bigLabel”:

<asp:Label ID=”Label2” SkinID=”bigLabel” runat=”server” Text=”Unstyled label”>
</asp:Label>

Notice that the IntelliSense in VWD kicks in here and helps out by giving you the option of
specifying which label style to use (see Figure 5-26), because you now have more than one avail-
able in your selected theme.

Figure 5-26

Note that you will get the IntelliSense support here only if you have saved the skin file before
going back into the ThemeDefault.aspx page.

Running the page again will render the same result. The only differences are whether the skin
file or the page contains the styling information.

How It Works
By adding a CSS style sheet to a theme folder, that style sheet is now available to all pages that use that
theme. After the theme has been applied, whether it’s a Customization theme or a Stylesheet theme, the
styles in the style sheet are available both to the skin files within the theme’s folder, and within the page
itself.

The same rules apply to CSS-styled server controls from a Customization versus Stylesheet theme per-
spective — if you apply a CSS style to an element in a theme and apply a different style to an element
on a page, the result will vary according to which type of theme you have applied. If you apply a
Customization theme, the theme defined in the skin file will overrule any styles or CSS classes specified
in the .aspx page, whereas the opposite is true if you specify that your theme be used as a Stylesheet
theme.

164

Chapter 5

08_042583 ch05.qxd 4/4/06 2:43 PM Page 164

Applying Styling to a Site
In most situations, you will likely want to apply a consistent look and feel to all pages within a site.
Although you could just specify that all of your pages in the site use the same theme, it’s quicker and
easier to specify the default theme for the site in a central location. In ASP.NET 2.0, you can add a
value to the Web.config file for your site to specify the default theme for your pages. You used the
Web.config file in Chapter 4 when you specified site access permissions for different user accounts.
Because a Web.config file is the central location for all site-wide settings, this is where you can store
default theme settings for your site. The basic syntax for this is as follows:

<?xml version=”1.0”?>
<configuration>

<appSettings/>
<connectionStrings/>
<system.web>

<pages theme=”myTheme” styleSheetTheme=”myOtherTheme” />

You can specify both a Stylesheet theme and a Customization theme in the Web.config file. If a theme is
specified in the Web.config file and no theme is specified in a page, the theme in the Web.config will
be applied. Additionally, if your Web.config specifies a Customization theme for a site and you specify
a Stylesheet theme for your page, the Customization theme from the Web.config will be applied.
Here’s a slightly amended order of application for themes, including the Web.config themes:

1. Web.config Stylesheet theme

2. Page Stylesheet theme

3. CSS styles

4. Element styles

5. Web.config Customization theme

6. Page Customization theme

In the next Try It Out, you quickly specify a site-wide theme for the pages in the small application
you’ve been building in this chapter so far.

Try It Out Applying Themes to a Site
1. If you don’t have a Web.config file in your project, right-click the Chapter05 folder and

select Add New Item. In the dialog box, create a new Web configuration file (Web.config) and
click OK.

2. Add the following line of code (highlighted in bold) to the Web.config file and save the file:

<?xml version=”1.0”?>
<!--

Note: As an alternative to hand editing this file you can use the

If you want to completely control the appearance of an entire site, use a
Customization theme in the Web.config file.

165

Styling with Themes

08_042583 ch05.qxd 4/4/06 2:43 PM Page 165

web admin tool to configure settings for your application. Use
the Website->Asp.Net Configuration option in Visual Studio.
A full list of settings and comments can be found in
machine.config.comments usually located in
\Windows\Microsoft.Net\Framework\v2.x\Config

-->
<configuration>

<appSettings/>
<connectionStrings/>
<system.web>

<pages theme=”red” styleSheetTheme=”blue” />

3. Remove all Theme and StyleSheetTheme attributes from all of the pages used in this chapter
and run the application. All of the pages in the site will now be rendered in the red theme, but
note in Figure 5-27 the result in the ThemeDefault page.

Figure 5-27

How It Works
The resulting output in the ThemeDefault.aspx page seems to be a bit of a mixture of two different
themes, yet you specified that all pages in a site should use the red Customization theme. However, in
the previous example, you added a CSS file and some additional style information to the blue theme.
Because the blue theme is set as a Stylesheet theme for the site, and because there are no equivalents for
these styles in the red theme, these styles are picked up from the blue theme and applied to the body text
and the “Unstyled label” label control.

The first line of HTML code is part of the body of the page:

Default page!

This is styled using the blue theme’s body style from the BlueStyleSheet.css file:

body
{

font-family:Arial;
}

166

Chapter 5

08_042583 ch05.qxd 4/4/06 2:43 PM Page 166

The next item in the code for this page is the “Styled label” control, which has a SkinID of
textLabel:

<asp:Label ID=”Label1” SkinID=”textLabel” runat=”server” Text=”Styled label”
Font-Bold=”True”></asp:Label>

Because this SkinID exists in both themes, the red theme is applied, because this theme is set to be the
Customization theme in the Web.config file:

<asp:Label SkinId=”textLabel” runat=”server” Font-Names=”Garamond” Font-Size=”11pt”
ForeColor=”DarkRed” />

Here’s the line of code in the Web.config again:

<pages theme=”red” styleSheetTheme=”blue” />

Remember that the theme attribute represents the Customization theme. However, the specified
Customization theme in this case, the red theme, has no SkinID for a “bigLabel”, so the blue theme is
used instead:

<asp:Label ID=”Label2” SkinID=”bigLabel” runat=”server” Text=”Unstyled
label”></asp:Label>

The last item on the page is styled according to the blue theme:

<asp:Label SkinId=”bigLabel” runat=”server” CssClass=”bigtext”></asp:Label>

The Label control is still part of the body of the page, and because no additional font information has
been specified for the control, it also inherits the CSS style for the body of the page from the blue theme.

The final example in this chapter concerns themes used in the Wrox United application. The following
section takes a quick look at the themes and styling in the application.

Themes in Wrox United
The themes defined for the Wrox United site control the appearance of the team’s site. Two themes are
available for the site: a red theme and a blue theme. The normal, everyday theme is the red theme, and
it reflects the team’s home outfit in blocks of bold red and yellow. The other theme available to contrast
with the red theme is the blue theme, which is designed mainly to show up the differences between two
different themes being applied to a site. Figure 5-28 shows the site in its traditional Wrox Red colors.

The way that themes are applied in Wrox United is slightly different from the techniques that you’ve
looked at in this chapter, because it relates to user preferences. As you saw in Chapter 4, you can add
user accounts to a web site to enable users to log in to a site. When a user is logged on to the Wrox
United site, there is some code that enables that user to store personal information (the user’s name,
address, and so on), and to store personal preferences, such as the theme to apply to the site when the
user logs on.

167

Styling with Themes

08_042583 ch05.qxd 4/4/06 2:43 PM Page 167

Figure 5-28

The code that handles the theme switching is explained in detail in Chapter 11, because it involves an
understanding of several techniques that have not yet been covered in the book. However, in the follow-
ing Try It Out, you can see how the themes are applied to the Wrox United site, and it steps through the
most interesting bits in the theme definitions for the Wrox United site.

Try It Out Using Themes in Wrox United
1. Open your local copy of the Wrox United application — this should be stored within your

C:\BegASPNET2\WroxUnited folder.

2. Press Ctrl+F5 to run the site and you’ll be taken to the main front page in its default color
scheme. In the login box near the bottom of the left-hand column, log in as the user Lou, pass-
word lou@123. In the box that appears below the login box, click the Modify Account link, as
highlighted by the hand-style cursor in Figure 5-29.

3. In the screen that appears (see Figure 5-30), select the Wrox Blue theme from the Theme drop-
down list and click Save Changes.

4. Click the Home link at the top of the menu at the side of the page to go back to the front page of
the site and you’ll now see the site rendered with the blue theme, as shown in Figure 5-31.

You might not be able to see the difference that clearly in a printed book, but because it’s quite
easy to try out for yourself, give it a go and see the changes for yourself.

168

Chapter 5

08_042583 ch05.qxd 4/4/06 2:43 PM Page 168

Figure 5-29

Figure 5-30 169

Styling with Themes

08_042583 ch05.qxd 4/4/06 2:43 PM Page 169

Figure 5-31

How It Works
This example demonstrated the theme-switching capability of the Wrox United site, which is something
you look at in a lot more detail in Chapter 11, but the important part of the exercise to concentrate on
here is the styling of the site itself.

Many styles are in use on this site, so look at the Wrox Red theme first and see how the styling is applied
to the elements on the page using this theme.

The Wrox United red skin (the WroxRed.skin file within the WroxRed Theme folder) is included with
the rest of the code for the site (available at www.wrox.com). The following listing shows some of the
styles defined in this skin file:

<asp:Label runat=”server” ForeColor=”#000000” BackColor=”transparent”></asp:Label>

<asp:TextBox runat=”server” ForeColor=”#000000” BorderWidth=”1px”
BorderStyle=”Solid” BorderColor=”#ff0000” BackColor=”Transparent”></asp:TextBox>

<asp:Button runat=”server” BorderStyle=”Solid” BorderColor=”#ff0000”
BorderWidth=”1pt” ForeColor=”#000000” BackColor=”#ffe5e5”></asp:Button>

<asp:HyperLink runat=”server” Font-Underline=”True” BorderStyle=”None”>

</asp:HyperLink>

170

Chapter 5

08_042583 ch05.qxd 4/4/06 2:43 PM Page 170

Notice that there are specific style definitions for Label, TextBox, Button, HyperLink, and Calendar
controls, which means that every instance of a control of each of those types will be styled as defined in
this skin file.

Here’s the TextBox definition:

<asp:TextBox runat=”server” ForeColor=”#000000” BorderWidth=”1px”

BorderStyle=”Solid” BorderColor=”#ff0000” BackColor=”Transparent”></asp:TextBox>

The TextBox has been styled so that it has a thin solid red border around it. Note that the value speci-
fied for the BorderColor attribute doesn’t actually say “red,” but instead it uses the hexadecimal repre-
sentation of a pure, bright red color.

The hash symbol (#) indicates that the color to be applied is provided as a hexadecimal value. The next
two characters control how much red to add to the control, from 00 to FF. The next two characters control
the level of green to apply, and the last two control the level of blue. The hexadecimal value 000000 repre-
sents a pure black (none of each color), whereas the value FFFFFF renders as white (all of every color).

The hexadecimal counting system (sometimes known as Base 16) means that the hex value FF corre-
sponds to the decimal value of 256. With 256 different values for each component, that enables you to
choose from one of 16 million possible color values!

The Wrox Red theme also has an associated CSS style sheet, WroxRed.css, which is also available in the
code for download. The following is an extract from this file:

html, body {
margin: 0;
padding:0 5px 0 5px;
background-color: #f00;
color: #000;

}

title {
color: #f66;

}

#nav {
background-color: #f00;
width: 20px;
float: left;
margin-left: -1px;
padding: 10px;

}

#content {
padding: 10px;
margin-left: 230px;
width: 100%;

}

171

Styling with Themes

08_042583 ch05.qxd 4/4/06 2:43 PM Page 171

The styles in use in this theme define some simple color and positioning for some of the elements used
on the site. The #nav definition and the #content definition are used to match all elements on a page
with an ID set to nav or content, respectively, rather than specifying the class attribute, or specifying
a specific element type to style.

Styling and Layout Best Practices
The concepts discussed in this chapter can be used for both good and evil. You can have as many style
definitions in your site as you like, but if you have little or no sense of style, you could make a big mess
of things. And style is nothing without layout — the two go hand in hand. Pages need to be structured
sensibly so that any user can view and understand what you’re trying to tell them. Now that you’ve
grasped the basics of styling and presenting a site, the two concepts you need to learn about now are
usability and accessibility.

Usability
Usability is all about keeping users on your site, and giving them the best possible user experience while
they browse. Users want to see prompt responses to their requests, they want to be able to find what
they want, and they want to be able to understand what the site is all about. A site that has fifteen fonts
on it will appear cluttered, hard to read, and most likely look like it was put together by someone who’d
never spent time reading content on a web site.

The goal of every web development team is to make a site as usable as possible, which requires develop-
ers working together with designers to provide an attractive and intuitive user interface. This is where
you can start to employ the techniques discussed in this chapter. The core principles of usability are as
follows:

❑ Learnability: Design the user interface so that it takes a minimum of time for a first-time visitor
to understand the design and use the site.

❑ Efficiency: Make the site efficient so that experienced users can accomplish tasks swiftly.

❑ Memorability: A user should be able to remember how to use the system next time they come
to visit.

❑ Bugability: Squash those errors where possible, and if errors occur, make them user-friendly
and recoverable.

❑ Satisfaction: Users should like and enjoy using your site.

Usability is an art that has been written about by many people, but the main site you should refer to
when it comes to usability guidelines is www.useit.com/, which is the web site owned by Jakob
Nielsen. All developers should spend some time looking in to this area and gain some key insights into
making your sites really effective.

Accessibility
Accessibility is all about making sites accessible by all users. For example, web users who are partially
sighted access the web with the assistance of a screen reader, which reads the contents of a web site
aloud. Alternatively, these users could have their screens set to a much lower resolution, where most

172

Chapter 5

08_042583 ch05.qxd 4/4/06 2:43 PM Page 172

sites would be unable to fit on the screen. At another end of the spectrum, you could also find mobile
users connecting to the web using a Pocket PC device that’s only capable of displaying 320 × 240 pixels
of information at one time. The browsers used on different devices like Pocket PCs employ some great
techniques for scaling images to make a site fit on a screen. You could also find yourself having to cater
to users who have very limited-functionality browsers — perhaps browsers that don’t allow the use of
JavaScript for client-side code, or that don’t display images on a page to save on bandwidth. If an image
were missing from a page, it would be nice to know what the image was supposed to represent to give it
some context in the absence of the image itself.

At the core of accessibility are some facts that will help you to make your sites as accessible as possible.
For example, if you have a screen reader reading out your source code, you should always include an
HTML alt attribute on your images, so that the screen reader can describe what the image represents.
You should always provide code that can render your site on browsers that don’t support HTML frames
using the <noframes> element, and you should avoid, where possible, using many levels of nested
HTML tables to lay out a site, because a screen reader will read out the contents of every cell and row.

Many different guidelines are available for making a site accessible, and the best place to start reading is
the www.w3.org/WAI/ site. This site is the home page for the Web Accessibility Initiative and is packed
full of useful and important advice.

Despite the existence of myriad resources, the vast majority of developers in the world have never given
a second thought to making a site truly accessible. Many more have thought about it and made some
changes to their site in an attempt to make it more accessible, but building truly accessible sites is actu-
ally quite difficult.

Take for example the Wrox United web site. This book concentrates on teaching you how to build
ASP.NET web sites. The main focus is teaching what is possible, the techniques you can use, and how
you can get results quickly. To make this site truly accessible would take a fair bit more time, and per-
haps that would be the topic for another book.

Learn as much as possible about building accessible web sites for any public site you develop, because
it’s actually illegal (though not often enforced) to only provide an inaccessible web site, as described in
Section 508 (see www.section508.gov) in the U.S., and the Disability Rights Commission’s (DRC)
Disability Discrimination Act (DDA) Code of Practice (www.opsi.gov.uk/acts/acts1995/95050--
c.htm) in the UK. Prosecution for inaccessibility is quite rare, but because it’s entirely possible to design
accessible web sites, it’s worth adding accessible web design to your skill set for both those with disabili-
ties, and for your own professional reputation.

Summary
This chapter discussed all of the different ways of styling a page and its elements, and demonstrated
numerous methods for controlling look and feel. The new skinning and themeing capabilities of
ASP.NET 2.0 provide you with a great way to combine all available techniques into one easily applied
package.

This chapter discussed the following:

❑ How to apply style attributes to elements

173

Styling with Themes

08_042583 ch05.qxd 4/4/06 2:43 PM Page 173

❑ How to move style attribute information into <style> sections in a page, then into a separate
CSS file

❑ Creating ASP.NET themes and applying them to pages

❑ The differences between Customization themes and Stylesheet themes

❑ Integrating themes and CSS

❑ Applying a consistent style to all pages in a site

❑ The issues of usability and accessibility and why they are so important in today’s Internet world

The next chapter moves on to discuss the issues of raising and handling events in code, as you are intro-
duced to the concept of a postback-driven architecture.

Exercises
1. You have an ASP.NET Label control on a page. The label has a font-italic=”true” attribute,

and a CssClass=”maintext” attribute:

<asp:label id=”myLabel” CssClass=”maintext” font-italic=”true”

text=”This is a label”></asp:label>

The page has an associated CSS style sheet (not associated with a theme) that defines a
.maintext style class. This style class has the following attributes:

.maintext
{

color: Navy;
font-family: Verdana;
font-weight: Bold;
font-style: normal;

}

How will the label appear when it is rendered?

2. You add a Theme=”ExerciseTheme” to the preceding page. You place the CSS style sheet
from the previous exercise within the ExerciseTheme theme folder. How will the label control
appear now?

3. You define a skin for all labels within the ExerciseTheme theme folder and specify the following
attributes:

<asp:Label CssClass=”maintext” runat=”server” font-italic=”false”></asp:Label>

How will the label appear now?

174

Chapter 5

08_042583 ch05.qxd 4/4/06 2:43 PM Page 174

6
Events and Code

We’ve managed to avoid lots of code so far, but you can’t get away from it completely, so now it’s
time to get your hands dirty. You’re not only going to look at code, but also the event architecture
of ASP.NET and how web servers work. The reason for this is simply because knowing how web
servers process pages enables you to understand how the architecture of ASP.NET works. In turn
this leads to understanding how and why the ASP.NET events work.

In particular, this chapter looks at the following:

❑ A high-level overview of the Internet HTTP protocol

❑ The problems brought by web servers and how the ASP.NET event architecture solves
those problems

❑ How server-side code works, and how it is created and used

❑ How events relate to the controls placed on a page, and the various types of events that
you can use

The chapter starts by looking at web servers and the HTTP protocol.

Web Server Architecture
HTTP stands for HyperText Transfer Protocol, and it’s the method of communicating with web
servers. The protocol defines the commands that web servers can accept, and how browsers inter-
act with them. The key point is that a web browser requests a page from the server. The server pro-
cesses that page and sends the results back to the browser. The browser only understands HTML
or JavaScript. HTML is the language that describes the layout of text and images on the page, and
JavaScript enables programming on the client, within the browser. It’s the web server’s job to
ensure that only the required content is sent back to the client browser.

Chapter 3 briefly discussed the difference between static and active content, and went on to look
at the HTML and server controls, so you’ve seen that server controls need to be processed on the
server, and that they emit HTML for the browser. What you need to do now is look at how this

09_042583 ch06.qxd 4/4/06 2:44 PM Page 175

process actually works: what happens when you fire up your browser and type a URL into the address
box, what happens when you press a button on a page, how the web server keeps track of the pages, and
so on.

HTTP works by having a set of commands that browsers send to a web server. The two most common of
these commands are GET and POST. The GET command is what a browser sends when a web page is to
be fetched — it’s what happens when you type a URL into the browser’s address bar and press Return; it
simply means “get me this web page.” The POST command is for when something is to be sent back to
the web server — for example, when you fill in a form and press a button. In reality the POST command
actually fetches a page, but it also sends the form data back to the web server.

You don’t need to know the rest of the HTTP commands or how any of them work in detail, but it’s use-
ful to know the terms and to understand that HTTP is very simple.

HTTP Is Stateless
One of the things you have to understand about HTTP is that it is stateless, meaning that it retains no
knowledge from one request to the next. So when you request a page from a web server, the page is sent
to you, and the server immediately forgets everything about you; each request stands alone. HTML
doesn’t help much either, because it’s simple a language for the representation of the contents of the
page; like HTTP, HTML doesn’t retain content. For example, consider a simple web page that has a text
box and a button. In your browser you enter some text and press the button. The data you entered is
sent back to the web server, the web server process the page (making changes as necessary), and the
page is sent back to the browser to be redisplayed. However, because there is no retention of data, the
text box comes back empty — it’s as though the web server has forgotten your text.

Why is this a problem? Well, it poses some real issues when writing applications, because very often you
want some form of data retention. For example, consider the checkout page at an online store, such as
the one at the Wrox United online shop, as shown in Figure 6-1.

Figure 6-1

The checkout involves several steps, each of which requires users to supply some form of information:
making sure they are logged in, checking their address, and authorizing payment. As far as HTTP is con-
cerned, each step is a separate request from the user; the page loading is one request, pressing the Next
button is another request, and so on.

176

Chapter 6

09_042583 ch06.qxd 4/4/06 2:44 PM Page 176

When you fill in some details on a page and press a button, that information is posted back to the web
server (the term posted derives from the actual HTTP POST command used). When you reach the last of
the checkout steps, you need all of the information entered by the user, not just the data supplied with
the last step. Because HTTP and HTML don’t retain this information for you, you have to store it your-
self. In non-ASP.NET environments this can be quite complex and time consuming, but luckily for us the
server controls are clever; they retain their state across postbacks. This means you don’t have to do any-
thing special; if you press a button to post the information back to the server, when the page is refreshed
the text boxes still have their data. This is one of the big differences between standard HTML and server
controls, and is one of the reasons why we use server controls.

The server controls remove even more of a burden from us. Consider the checkout page shown earlier,
which has several text boxes, and that’s only one step; there’s also the login details, plus the credit card
details, plus the management of the steps themselves. Server controls are used for all of the text entry,
but there is also a Wizard control, designed specially for use in situations like this. It manages the steps,
creates the menu of steps on the left, and provides the Previous and Next buttons. All you have to do is
define what you want within those steps. When you get to the last step everything the user has typed in
is available, and the order can be processed.

Server-Side Events
So far you’ve seen a very simple view of what happens when you interact with a web server — you press
a button and something happens. So what is it that actually happens on the server, in your ASP.NET
page? Well, simply put, there are a number of events that run; some that always run, some that only run
depending on what the user has done (which button they’ve pressed), and some that run due to other
actions, such as data being changed. These events are ASP.NET’s way of letting you know something has
happened, and they allow you to take some action. For example, all ASP.NET pages have an event that
runs when the page loads, and you can place code within this event to perform some action. Buttons have
an event that runs when you click them, lists have an event that runs when you select a list item, and so
on, and these events are what give you the power to control how the web page reacts to the user.

Before digging into the code, some terms need explaining. When an event happens it is called firing or
raising. That is, the event is raised or the event is fired. Both terms are valid, and which you use is a mat-
ter of preference (I prefer raised, because fired always makes me think of a poor little event being stuffed
into a cannon at a circus before being launched into a tiny net to amuse the crowd). Both terms are used
regularly in the .NET documentation and on various online sites and articles.

The code that is run when the event is raised is called the event procedure or event handler. Any code you
put in here becomes part of the event procedure and runs when the event is raised. For example, con-
sider a page with two buttons. Each of these buttons could have its own event procedure, while there is
a separate event procedure for when the page loads, as illustrated by Figure 6-2.

Figure 6-2 shows three event procedures. This first is the Page_Load event, which is raised by ASP.NET
when the page loads, and allows you to prepare the page for the user, perhaps fetching data from a
database.

The other two events are generated by the user when a button is clicked; each button has its own event
handler. For example, the first button might save some user-entered details, whereas the second button
cancels user-entered details.

177

Events and Code

09_042583 ch06.qxd 4/4/06 2:44 PM Page 177

Figure 6-2

Adding Events to the Page
Adding events to ASP.NET pages is simple because Visual Web Developer (VWD) provides a way to do
this for you. It allows you to select the page or a control and for the allowable events to be listed. You can
then instruct VWD to create the event procedure for you. The first thing that needs to be discussed is
where the events are created, because there are two places where events can be created. The first is in the
same file as the ASP.NET controls, and this is called code inline. The second place to create events and
code is in a separate file and this is called code-behind. Where the code is created depends upon a simple
checkbox on the Add New Item dialog, as shown in Figure 6-3.

Figure 6-3

You can use either code inline or code-behind, because it doesn’t make any difference to ASP.NET, but
code-behind is the accepted standard, and all of the pages in the Wrox United application use code-
behind, as do all of the examples in this chapter.

178

Chapter 6

09_042583 ch06.qxd 4/4/06 2:44 PM Page 178

In the following Try It Out, you give events a go and add some events to a page.

Try It Out Adding Page and Control Events
1. Start Visual Web Developer, and open the web site at C:\BegASPNET2\Begin\Chapter06. You

should see a screen similar to Figure 6-4.

Figure 6-4

2. Open the Default.aspx file and switch from Source View to Design View.

3. Drag a Label, a TextBox, and two Button controls onto the page, so that it looks like
Figure 6-5.

Figure 6-5

4. In an empty area of the page, double-click the left mouse button to load the code file associated
with the page and create an empty event procedure for you, called Page_Load, as shown in
Figure 6-6.

179

Events and Code

09_042583 ch06.qxd 4/4/06 2:44 PM Page 179

Figure 6-6

5. Switch back to the page design and double-click the first button, Button1. The event procedure
Button1_Click for this button is created (see Figure 6-7), underneath the event procedure for
the page.

Figure 6-7

6. Repeat step 5, but for the second button, Button2, which will create the event procedure
Button2_Click, as shown in Figure 6-8.

Figure 6-8

180

Chapter 6

09_042583 ch06.qxd 4/4/06 2:44 PM Page 180

7. In the Page_Load event procedure, add the following line of code:

Label1.Text = “You entered “ + TextBox1.Text;

❑ The event procedure will now look like this:

protected void Page_Load(object sender, System.EventArgs e)
{

Label1.Text = “You entered “ + TextBox1.Text;
}

8. In the Button1_Click event, add the following line of code:

TextBox1.Text = “You clicked button 1”;

9. In the Button2_Click event, add the following line of code:

TextBox1.Text = “You clicked button 2”;

10. Press F5 to run the example. Click OK if the Debugging Not Enabled dialog appears, accepting
the default selection for adding a new Web.config file with debugging enabled. This is shown
in Figure 6-9 and will only appear if debugging is not enabled, so clicking the OK button
enables debugging and stops the dialog from appearing again. You may also receive another
dialog or pop-up from a firewall if you have one running; this might be to warn you that a pro-
gram is trying to access the Internet and if you have an option you should allow the access.

Figure 6-9

11. When the browser window appears you’ll see a screen similar to Figure 6-10. Don’t worry if the
numbers after localhost are different, because VWD picks this number.

Figure 6-10

❑ Notice that the label has the text you set in the Page_Load event, but nothing else.

181

Events and Code

09_042583 ch06.qxd 4/4/06 2:44 PM Page 181

12. Enter your name into the text box and click the first button. For example, I entered Dave
because that’s my name, so the figures show Dave. Now the label has the text you entered (as
shown in Figure 6-11), but the text box has the text set from the Button1_Click event.

Figure 6-11

13. Now click the second button. Figure 6-12 shows that the label text has changed to what the text
box contained in the previous step, and the text box contains the text from the Button2_Click
event.

Figure 6-12

14. Now click the first button again, and you’ll see something similar to Figure 6-13.

Figure 6-13

How It Works
Take a look at how this works, starting with the Page_Load event.

protected void Page_Load(object sender, System.EventArgs e)

This is known as the declaration, and tells you lots about the procedure. It has two main areas: the bits
before the parentheses, and the bits within the parentheses. So at the beginning of the line you have the
following:

protected void Page_Load

182

Chapter 6

09_042583 ch06.qxd 4/4/06 2:44 PM Page 182

❑ protected tells you about who can use the procedure. In this case it means that only other pro-
grams within the same class can use this procedure. You don’t need to worry about this for now;
Chapter 9 looks at this in more detail.

❑ void tells you that this is an event procedure, and that it doesn’t return a value. That means
ASP.NET can simply call this and not expect anything back.

❑ Page_Load is the name of the event procedure. The name of event procedures can be anything,
but you’ll find certain standard usages appearing that are descriptive of the actual event. The
Page_Load event is very descriptive because this event procedure will be used whenever the
page is loaded into ASP.NET for processing.

Next you have the middle section; these are the parameters. There are two parameters, separated from
each other by a comma:

object sender, System.EventArgs e

The parameters are simply variables that get passed into the event procedure by ASP.NET. Chapter 9
covers variables in more detail, so the actual syntax isn’t explained here, but some details are worth
knowing. By and large all events in ASP.NET have two parameters. The first, typically called sender, is
the object that raised the event. In this case it is the actual page, because the page is saying “Hey, I’ve
loaded and you can do your stuff now.” For other events, such as those that buttons raise, the sender
would be the button. The second parameter, e, is any additional information that the event procedure
might need. For the Page_Load event there is no additional information, but later in the chapter you’ll
look at events where you do need some extra detail. Neither of these arguments is needed for your event
procedure, but they are provided by ASP.NET in case they are required.

The way that these event procedures are run depends upon the event procedure. For the Page_Load
event, this is automatic — ASP.NET automatically looks for a procedure called Page_Load and will run
it when the page loads. For other controls, such as the buttons you placed on the form, the event proce-
dure is linked to the control by way of an attribute — this is explained after you’ve looked at the code for
the button event procedure.

Now that you’ve actually hooked your procedure into the event handling system of ASP.NET, you can
run your own code:

Label1.Text = “You entered “ + TextBox1.Text;

This line of code simply sets the text for the label to some static text plus whatever text was entered into
the text box. Don’t worry too much about what the plus (+) means — Chapter 9 looks at that sort of thing
in more detail.

Here are the event procedures for the buttons:

protected void Button1_Click(object sender, System.EventArgs e)
{

TextBox1.Text = “You clicked button 1”;
}

183

Events and Code

09_042583 ch06.qxd 4/4/06 2:44 PM Page 183

The declaration is very similar to the Page_Load one, apart from the name of the procedure. The big dif-
ference is that this event procedure isn’t automatically linked to the button — this is done in the source of
the page, and was added for you when you doubled-clicked the button. The source of the button is:

<asp:Button ID=”Button1” runat=”server”
OnClick=”Button1_Click” Text=”Button” />

Here the event you are handling is the Click event, which is raised whenever the button is clicked. For
each event there is an associated attribute, with the same name as the event but with On in front of it. So
for the Click event you have an attribute called OnClick, and the contents of that attribute is the name
of the event procedure. In the above code example, the OnClick attribute contains Button1_Click,
which is the name of the event procedure. You could name the procedure anything you like, but having
sensible names means it’s easy to see what the event procedure does. The event procedure for the second
button is similar, but with the obvious changes of the names and text.

Now look at what happens when the examples are run. When the page is first loaded, the Page_Load
event procedure runs and the text for the label is set. However, because there is no text in the text box, the
label only has “You entered” as its text. When you enter some text into the text box and click the first but-
ton, the page is loaded again, so the Page_Load event procedure is run, followed by the Button1_Click
event procedure. So the text you entered into the text box is displayed in the label, and then the text box
has new text set from within the Button1_Click event procedure. The important thing to note is that
both event procedures run; the Page_Load event procedure will always be before event procedures for
controls on the page.

This process is repeated as you continue to click the buttons.

The Postback Architecture
One of the problems you might have spotted is that the Page_Load event always runs, even when a
button is clicked. There may be times when you want code to run when the page is first loaded, but not
when buttons are clicked. For example, consider the previous example, where you displayed the con-
tents of a text box in a label. When the page first loaded there was nothing in the text box so your label
text was incomplete. The next Try It Out corrects this.

Try It Out Checking for Postback
1. If you are still running the browser from the previous example, close it.

2. In Visual Web Developer, change the Page_Load event procedure so that it looks like this:

protected void Page_Load(object sender, System.EventArgs e)
{

if (Page.IsPostBack)
{ Label1.Text = “You entered “ + TextBox1.Text;
}}

3. Save the page and press F5 to run it. Notice that the label text is Label— this is the default text
for a Label control and you didn’t change it when you placed the Label on the page. Enter
some text and click a button, and you’ll see that the label now has text. Close the browser.

4. Now change the Page_Load event to this:

184

Chapter 6

09_042583 ch06.qxd 4/4/06 2:44 PM Page 184

protected void Page_Load(object sender, System.EventArgs e)
{

if (Page.IsPostBack)
{

Label1.Text = “You entered “ + TextBox1.Text;
}
else
{

Label1.Text = “Enter some text and press a button”;
}

}

5. Save the page and press F5 to run it. Now you have this more useful, new text when the page
first loads, and different text when a button is pressed.

How It Works
Having different text at the first page load from subsequent page loads works because the ASP.NET
page has a property called IsPostBack, which identifies whether or not the page has been posted back
to — that is, whether a button has been pressed. If so, IsPostBack will be true. If it’s the first time the
page has loaded — that is, a button has not been pressed —IsPostBack will be false.

In the first code change you only displayed text if IsPostBack was true — if a button had been pressed.
The second code change, in step 4, had different text for the two different situations.

It is important to know that this postback design only works when you are dealing with a single page,
because IsPostBack gets reset when you move to another page. Consider two pages, Page1 and Page2,
each with a Page_Load event procedure and a Button1_Click event procedure for a button. They also
have a hyperlink to each other, allowing you to jump between the pages. You start with Page1, the
Page_Load event procedure runs, and IsPostBack is false. You press the button and the Page_Load
event is run again, followed by the Button1_Click event; in both event procedures IsPostBack would
be true. You click the link to jump to Page2 and the Page_Load event procedure on that page runs, and
IsPostBack in the Page_Load event on Page2 is false. Now you click the link to jump directly back to
Page1, where the Page_Load event runs once more, but this time IsPostBack is false as well. The use
of IsPostBack only works when you remain on the same page, so don’t think that “the first time the
page is loaded” means the very first time. The following table might help to make this clear.

Action Page Control Events IsPostBack

Page loads Page1 Page_Load false

Button clicked Page1 Button1 Page_Load
Button1_Click true

Navigate to Page 2 Page2 Page_Load false

Navigate to Page 1 Page1 Page_Load false

185

Events and Code

09_042583 ch06.qxd 4/4/06 2:44 PM Page 185

What Events Are Available?
In the first example in this chapter you created event procedures by double-clicking the page and con-
trol. The questions that might be poised on your lips are what events are there, how can I find the
events, and which events should I use? Well, the first two questions can be answered in the same way,
and there is one main place to look — the Properties area on the page designer. Above the list of proper-
ties is an icon that looks like a lightning bolt, which only shows when the page is in Design View; click-
ing this icon shows a list of events for the control, as shown in Figure 6-14. If you double-click in the
space to the right of an event, the code window will be displayed and the event procedure created for
you, or like the code window selection, you’ll be shown the event procedure if it already exists. By and
large the events you’ll be interested in will be grouped under Action or Data.

Figure 6-14

The other place to find a list of events is in the Help files, where details of each event and what they are
used for is listed.

Which Events Should I Use?
If you start looking into the events that are available you’ll soon realize that there are quite a few, and it’s
not always obvious which ones should be used. The following table details some of the most common
controls and events; this isn’t all of them, just the ones you’ll find most useful.

Control Event Is raised when...

Button Click The button is clicked.
LinkButton
ImageButton

DropDownList SelectedIndexChanged The selection on the list changes.
ListBox This is useful for performing some

action based on the new selection.

CheckBox CheckChanged The status of the CheckBox or
RadioButton RadioButton changes. That is,

when they either become checked or
unchecked.

186

Chapter 6

09_042583 ch06.qxd 4/4/06 2:44 PM Page 186

Control Event Is raised when...

CheckBoxList SelectedIndexChanged The selection on the list changes.
RadioButtonList

Calendar SelectionChanged The selected date is changed.

VisibleMonthChanged The month is changed.

Login Authenticate The user is authenticated.

LoggedIn The user has logged in.

LoginError There is an error during the login
process.

DataList DataBound An item is taken from a database
and bound to the list.

GridView RowDeleting The current row is being deleted.

RowUpdating The current row is being updated.

SelectedIndexChanged The selected row has changed.

SqlDataSource Deleted A row has been deleted from the set
of data.

Inserted A row has been inserted into the set
of data.

Updated A row has been updated in the set
of data.

Menu MenuItemDataBound An item is being bound to the menu.

Some of these are fairly obvious in their usage. For example, you’ve already seen the Click event of the
button, and you can see that all of the button type controls have that same event. So if you don’t want to
have a standard button, but want to maybe have an image instead, you still use the Click event. Give this
a try in the following Try It Out, but this time you’ll use a different method for hooking into the event.

Try It Out Manually Creating Events
1. If you have a running browser window, close it, and open Default.aspx in Visual Web

Developer.

2. Create a Regular Folder called Images under the web site. You can use the right-click Add
Folder menu on the web site for this, as shown in Figure 6-15.

3. Copy AddToCart.gif from the Images folder of the Wrox United site and place it in the Images
folder you have just created.

4. In Design View place an ImageButton on the form, and set the ImageUrl property to
~/images/AddToCart.gif.

5. Select the TextBox and change the Columns property from 0 to 50.

187

Events and Code

09_042583 ch06.qxd 4/4/06 2:44 PM Page 187

Figure 6-15

6. Switch to Source View and locate the ImageButton control. Change the declaration so that it
looks like this:

<asp:ImageButton ID=”ImageButton1” runat=”server”
OnClick=”ImageButton_Click” ImageUrl=”~/images/AddToCart.gif” />

7. Open the code file, Default.aspx.cs, and add the following code, just before the End Class
statement:

protected void ImageButton_Click(object sender,
System.Web.UI.ImageClickEventArgs e)

{
TextBox1.Text = “You clicked the ImageButton at position “+

e.X.ToString() + “,” + e.Y.ToString();
}

8. Press F5 to run the page. Click several times in the ImageButton, moving the cursor so that
you click in a different position. Notice how the coordinates of where you click are shown in the
text box.

How It Works
The important bit of how this works is in the Source View, where the ImageButton control is defined.
Here you added the following to it:

OnClick=”ImageButton_Click”

This tells the control that for the Click event you want to run the procedure called
ImageButton_Click— this is the same as for the standard button you used earlier. Within the code
file, the event procedure declaration is similar, but the second parameter is different from the type
you’ve seen before:

protected void ImageButton_Click(object sender,
System.Web.UI.ImageClickEventArgs e)

For the Button, the second parameter was System.EventArgs, but for the ImageButton it is
System.Web.UI.ImageClickEventArgs. Remember that the second parameter can be used by
ASP.NET to pass extra information into the event procedure, but for Button controls there was no extra

188

Chapter 6

09_042583 ch06.qxd 4/4/06 2:44 PM Page 188

information. For an ImageButton there is extra information, so the parameter is different — in this case
it contains the X and Y coordinates of where on the image the mouse was clicked. You simply display
these coordinates in the text box. You don’t actually need these coordinates, but this is a great example of
parameters having extra information.

A parameter name other than System.EventArgs is actually a good indication that additional infor-
mation may be available to you in the event procedure. You can find out what that information is by
simply typing e. in the code window and looking at the IntelliSense that pops up.

Events Aren’t Triggered by Users Only
So far in this chapter the events you’ve seen have been explicitly generated by the user, by way of click-
ing a button. Some events, however, are generated in other ways. Some are indirectly generated by the
user, perhaps by way of updating some data, and others are generated directly by ASP.NET. You can use
the events regardless of how they are generated, and in this section you see how you can do this.

You’re going to create some events from data in a database, and although data has not been covered
yet, it’s the events that are important. First, have a look at the news items on the Wrox United site (see
Figure 6-16), found under the About➪News menu item.

Figure 6-16

189

Events and Code

09_042583 ch06.qxd 4/4/06 2:44 PM Page 189

Here you can see that not all of the news items have a picture. In the following Try It Out, you see how
the news items can be customized, by responding to events generated by controls that fetch data. You’ll
make sure that an image is only visible when there is a picture associated with the news item.

Try It Out Data Events
1. Close any open browser windows.

2. In Visual Web Developer open the DataEvents.aspx file from the Chapter06 web site.

3. Right-click the mouse button anywhere on the page, and select View in Browser from the menu
that appears. You’ll see a screen similar to Figure 6-17.

❑ Notice that not all of the news items have images. For those that don’t there is a small
image with a red cross in it, indicating that the image is missing; this is the default. You
need to modify the page to use events, so that if there is no image for the news item,
that red cross isn’t shown.

4. Close the browser and switch to Design View in Visual Web Developer.

5. Select the DataList control. There are only two controls on the page: SqlDataSource and
DataList. The DataList control is bound to a database, so it shows Databound items —
simply click anywhere on this control to select it.

Figure 6-17

190

Chapter 6

09_042583 ch06.qxd 4/4/06 2:44 PM Page 190

6. From the Properties box, select the events and double-click into the ItemDataBound event.
Don’t enter any text, just double-click, and this will open the code editor and create the empty
event procedure for you.

7. Add the following code in the empty event procedure:

DataRowView row;
Image img;

if (e.Item.ItemType == ListItemType.Item ||
e.Item.ItemType == ListItemType.AlternatingItem)

{
row = (DataRowView)e.Item.DataItem;

if (row[“PictureURL”].ToString().Trim() == “”)
{

img = (Image)e.Item.FindControl(“NewsImage”);
img.Visible = false;

}
}

8. Save the pages and switch back to the Design View of the page. Right-click the page and select
the View in Browser menu item to view the page in the browser. Notice how the red cross
images have disappeared.

How It Works
Before looking at the code you need to understand how HTML handles images. The image is created
with an img tag, like so:

When the browser receives this HTML it displays the image, or that red cross if the image isn’t found.
When you use server controls for images, you use an Image control:

<asp:Image ImageUrl=”ImageName.gif” runat=”server” id=”Image1”></Image>

This renders the same HTML as the first example. So if there’s no physical file you get that red cross,
which is exactly what’s happening on this page; you need some way to not show the red cross image if
there’s no picture associated with the news story.

In the DataEvents.aspx page you use an Image server control, but the value for the ImageUrl prop-
erty is fetched from a database. Databases are covered in the next two chapters, so it’s not important to
know how this works just yet. The important point is to realize that as each row of data (a news item) is
fetched from the database it is bound to the DataList, which means that there will be an item in the
DataList for each row in the table fetched from the database. Each row of data contains different bits
of the news: the title, the description, and what you’re really interested in for this example, the picture
name. But not every news item has a picture, so you have to check to see if the database has a picture
and if it doesn’t, you make the Image control invisible. Take a look at the code that makes this possible.

191

Events and Code

09_042583 ch06.qxd 4/4/06 2:44 PM Page 191

First, you have the ItemDataBound event itself:

protected void DataList1_ItemDataBound(object sender,
System.Web.UI.WebControls.DataListItemEventArgs e)

This event is raised when a row from the database is bound to a server control. Like the Click event of
the ImageButton, the ItemDataBound event of the DataList supplies extra information to the event
procedure in the form of the second parameter. This contains information about the row being bound,
and contains a property called DataItem, which itself contains three properties:

❑ DataItem: The actual data item from the database.

❑ ItemIndex: The index number of the item being bound. This starts at 0 and increments by one
for each row.

❑ ItemType: The type of the item in the DataList. This will be one of the following:
AlternatingItem, EditItem, Footer, Header, Item, Pager, SelectedItem, or Separator.

The ItemType is used to determine what type of row item you are on. For example, if data is being
bound into the header row, the ItemType would be Header. For the actual rows in this example, the
ItemType will be Item or AlternatingItem (for each row and every other row). So your code, shown
here, simply checks the ItemType, so you only work with the rows you are interested in:

If (e.Item.ItemType == ListItemType.Item ||
e.Item.ItemType == ListItemType.AlternatingItem)

Next you can use the ItemType to access the actual data being bound to the Image control, so you can
check to see if there is any data for the image. First, you extract the actual row of data — don’t worry
about the exact details of this code; data and data conversion are covered in the next few chapters.
What’s important to remember is that e.Item.DataItem is the actual data from the database for this
row, and you check to see whether the PictureUrl column is empty:

row = (DataRowView)e.Item.DataItem;

if (row[“PictureUrl”].ToString().Trim() == “”)

If the PictureUrl column is empty, you want to access the Image control and make it invisible. Here
you again use e.Item, but this time to find the Image control (NewsImage), and set its Visible prop-
erty to false:

img = (Image)e.Item.FindControl(“NewsImage”);
img.Visible = false;

Several things in this example have not been explained fully because they are covered in more detail later
in the book. Data binding and databases are covered in Chapter 7, and data conversion and casting, and
the use of FindControl are covered in Chapter 9. You don’t need to understand how these work at the
moment, because the important thing is to know what is possible. In this case, you are seeing that an
event is raised when an item from the database is bound to a server control. This event provides informa-
tion about the underlying data and the row on the server control, thus giving you a lot of information.

This technique is also used on the menu. Chapter 3 looked at the navigation controls such as the Menu and
SiteMapPath controls. One of the issues we have with the Wrox United web site is that we wanted the

192

Chapter 6

09_042583 ch06.qxd 4/4/06 2:44 PM Page 192

SiteMapPath on every page, which means that every page has to be in the SiteMap file as XML nodes.
However, we don’t want all of the pages to appear in the Menu. For example, we don’t want users to navi-
gate directly to the Checkout page, because we only want them to access it from the Shopping Cart page.
The problem we have is that we can have an item that appears in the SiteMap and SiteMapPath, but
that doesn’t appear in the Menu— the navigation framework doesn’t cater for that situation. So we have
to cheat.

What you do is use the MenuItemDataBound event in the master page (site.Master), as shown here:

protected void MyMenu_MenuItemDataBound(object sender,
System.Web.UI.WebControls.MenuEventArgs e)

{
string text = e.Item.Text;

if (text == “Checkout” || text == “Shop Item” ||
text == “Shopping Cart”)
e.Item.Parent.ChildItems.Remove(e.Item);

}

As each menu item is taken from the SiteMap file and bound to the menu the MenuItemDataBound
event is raised. Within this event procedure we check to see if the menu text is one of the pages we don’t
want to show, and if it is we remove the item from the menu. This means that the item still retains its
place in the navigation structure, but that it won’t show on the menu.

So you can see that events raised by ASP.NET are extremely useful. Despite the fact ASP.NET takes care
of the data binding and display of data for us, we still have access to what’s happening. The next section
looks at another example, where events are raised indirectly by the user.

Indirect Events
Indirect events are raised by ASP.NET, but because of some action that the user took. For example, have
a look at one of the administration pages, where the team owner can change the players in the squad, as
shown in Figure 6-18.

Here there are two visible controls: the GridView at the top, showing all players, and the DetailsView
at the bottom where the player details are edited. One of the things you have to do is make sure that the
GridView is updated when the player details are changed. The following Try It Out shows how you can
do this.

Try It Out Indirect Events
1. In the Chapter06 web site in Visual Web Developer, open the EditSquad.aspx page.

2. Click the right mouse button and select View in Browser from the menu.

193

Events and Code

09_042583 ch06.qxd 4/4/06 2:44 PM Page 193

Figure 6-18

Figure 6-19

194

Chapter 6

09_042583 ch06.qxd 4/4/06 2:44 PM Page 194

3. View the player details by clicking the More details link — pick Chris Christopher the Left Back.

4. Click the Edit link to allow the player details to be changed. Change his position from Left Back
to Goalkeeper and click Update. Notice how the details show him as Goalkeeper, but the grid
still shows him as Left Back, as in Figure 6-19.

❑ You need to change this to make sure that the grid is updated with the new details.

5. Close the browser window and return to Visual Web Developer.

6. Create an event procedure for the Updated event of the Details data source, by selecting the
DetailsDataSource control and double-clicking into the Updated event when viewing the
events list in the properties window.

7. Add the following line of code into the empty event procedure:

GridView1.DataBind();

8. Save and close the code file.

9. From the web page, view the page in the browser and repeat the update process, changing the
Position of Chris Christopher to Striker. Notice that when you click Update to save the changes
the grid also changes.

How It Works
This code is extremely simple, and even though it relies on data binding, it is easy to understand. The
key is that the page uses a SqlDataSource object, which is responsible for fetching the data from the
database and making it available to the grid to display. The SqlDataSource control is just like other
ASP.NET server controls, except that it doesn’t actually display anything. So although it’s on the page,
nothing is shown to the user.

As well as providing data for the grid to show, the SqlDataSource also deals with data edits — inserting
new rows, and updating and deleting existing rows, and for each of these actions there are events. One of
these events is the Updated event, which is raised when the data is updated. So when you click the Update
link, the SqlDataSource updates the database, and then raises the Updated event. The code in the
Updated event simply tells the grid to rebind its data — to fetch it again and redisplay it. So what you’re
doing is using multiple controls, with a chain of actions that result in an event, as seen in Figure 6-20.

You can see that although you can easily construct pages by just dropping controls onto a page and con-
figuring properties, knowing how these controls work is important. Without knowing that the update of
the DetailsView generated a similar event for the data source, you might spend time trying to work
out which event on the DetailsView could be used to refresh the grid.

195

Events and Code

09_042583 ch06.qxd 4/4/06 2:44 PM Page 195

Figure 6-20

Canceling Events
So far in this chapter you’ve seen controls raise single events. Both the Button control and the
ImageButton control raise a Click event, whereas other controls raise other events. One thing you have
probably noticed is that the controls have quite a lot of events that could be raised, and you may not
have realized that a single action can raise multiple events. For example, when updating data there is
both an Updating and an Updated event. Likewise, there are pairs of events for adding new data

Date Left

Data Saved

Update Cancel

SqlDataSource - DetailsDataSource

Update

GridView1.DataBind()

FirstName LastName Position PictureURL Date
Joined

Date
Left

Date
Left

Aaron Aaronson Goalkeeper aaronson.jpg 02-Jan-00 More details

Bill Barker Goalkeeper aaronson.jpg More details

Chris Christopher Right Back aaronson.jpg More details

Dave Dickenson Right Back aaronson.jpg More details

Gerry Gudminster Midfield aaronson.jpg More details

Harry Hunter Midfield aaronson.jpg More details

Ian Inderson Left Wing aaronson.jpg More details

Jerry

1_2

Johnson Right Wing aaronson.jpg More details

Eric Edmundson Central
Defender

aaronson.jpg More details

Fred Fortinghoe-
Smythe

Midfield aaronson.jpg More details

196

Chapter 6

09_042583 ch06.qxd 4/4/06 2:44 PM Page 196

(Inserting/Inserted) and for data being deleted (Deleting/Deleted). The present tense event
(Inserting, for example) is raised as the action is occurring, whereas the past tense event (such as
Deleted) is raised after the event. For example, when deleting a row, the Deleting event is raised just
before the row is deleted, and the Deleted event is raised after the event is raised.

For some events, the fact that they are raised before the actual action takes place gives you the opportu-
nity to cancel the event. For example, consider the EditSquad.aspx file, where the team owner can
change the squad. One of the things the owner wants is to make sure that any players that left during
the playing season remain in the database — so you can’t delete players between August 20 and May 31.
To enable this, you need to allow deletion of players, but not within those dates. Give this a go in the
next Try It Out.

Try It Out Canceling Events
1. Open the EditSquad.aspx file in the Visual Web Developer designer, and add a Label control

at the very end of the page.

2. Set the ID of the Label control to Message, and clear the Text property.

3. Select the DetailsDataSource control, and on the events list double-click into the box next to
the Deleting event to have the event procedure created for you.

4. In the empty event procedure, add the following code:

DateTime today = DateTime.Now;
int startYear;
int endYear;
DateTime seasonStart;
DateTime seasonEnd;

if (today.Month > 5)
{

startYear = today.Year;
endYear = today.Year + 1;

}
else
{

startYear = today.Year - 1;
endYear = today.Year;

}

seasonStart = new DateTime(startYear, 8, 20); // 20th August
seasonEnd = new DateTime(endYear, 5, 31); // 31st May

if (today >= seasonStart && today <= seasonEnd)
{

e.Cancel = true;
Message.Text = “Cannot delete players during the season”;

}
else
{

GridView1.DataBind();
Message.Text = “”;

}

197

Events and Code

09_042583 ch06.qxd 4/4/06 2:44 PM Page 197

5. Save the file and from the right mouse menu select View in Browser.

6. Make sure your system date is set between August 20 and May 31.

7. Select a player and try to delete him. You’ll see a message telling you that players cannot be
deleted during the season, and the player is not deleted.

8. Change the system clock so that the date is out of season — that is, between June 1 and
August 19.

9. Select a player and try to delete him. You may want to add a new test player just so that you can
delete him, to save you deleting real squad members.

How It Works
This example relies on the fact that the Deleting event is raised before the actual action takes place,
which gives you the opportunity to cancel the event. One of the keys to how this works are the parame-
ters of the event procedure, the declaration of which is shown here:

protected void DetailsDataSource_Deleting(object sender,
System.Web.UI.WebControls.SqlDataSourceCommandEventArgs e)

You can see that the second parameter provides extra information, but not only that it allows you to
send information back to ASP.NET. One of the properties of the parameter e is called Cancel, and if you
set this to true, the event will be cancelled and the action (the deletion) will not take place. Take a look
at the code used to determine whether or not the player should be deleted.

You start with some declarations, which will be used to store date information:

DateTime today = DateTime.Now;
int startYear;
int endYear;
DateTime seasonStart;
DateTime seasonEnd;

The first line sets the variable today to the current date. The variables startYear and endYear indicate
the year in which the season starts and ends, and seasonStart and seasonEnd are the actual dates for
the start and end of the season.

To determine the start and end year you see if the current date is after May. If it is, you know that the
season has ended, or is already under way, so the start year is the current year and the end year is next
year. If the current date is before May, you are in the second half of the season, so the start year was last
year and the end year is the current year:

if (today.Month > 5)
{

startYear = today.Year;
endYear = today.Year + 1;

}

198

Chapter 6

09_042583 ch06.qxd 4/4/06 2:44 PM Page 198

else
{

startYear = today.Year - 1;
endYear = today.Year;

}

Next you create the actual start and end dates of the season, using the start and end year already set:

seasonStart = new DateTime(startYear, 8, 20); // 20th August
seasonEnd = new DateTime(endYear, 5, 31); // 31st May

Now you check to see if the current date falls within the season start and end dates. If it does, you set the
Cancel property of the parameter e to true, so when the event procedure ends the event action (the
delete) will be cancelled. You also display a message to tell the user that players cannot be deleted dur-
ing the season:

if (today >= seasonStart && today <= seasonEnd)
{

e.Cancel = true;
Message.Text = “Cannot delete players during the season”;

}

If you are outside of the season, players can be deleted, so you simply clear any message and rebind the
grid (so that the deleted player doesn’t still show in the grid). Because you haven’t set the Cancel prop-
erty of parameter e to true (it is false by default), the action will take place, and the player will be
deleted:

{
GridView1.DataBind();
Message.Text = “”;

}

So what you’ve seen here is that some events can be cancelled, which allows you to build logic into your
applications, enabling you to control the actions that are run. This also means that events that you think
will run might not. For example, it was mentioned earlier that some of these events are paired. So, as
well as the Deleting event, there is a Deleted event, and if you cancel the Deleting event the
Deleted event isn’t run. The logic of this is shown in Figure 6-21.

This process is also the same for inserted and updated items, where the Inserting and Updating event
procedures are used. In all three cases you can set the Cancel property of the parameter to true to can-
cel the event.

199

Events and Code

09_042583 ch06.qxd 4/4/06 2:44 PM Page 199

Figure 6-21

Global Events
So far in this chapter you’ve seen that events are raised by controls or by pages, but there is a third type
of event — an application event. Application events are raised by ASP.NET in response to certain condi-
tions, and these are stored in the Global Application Class, global.asax, a code-only file.

The global.asax page has several events:

❑ Application_Start, which is raised when the application first starts. This is when the first
user accesses the site and should be used to set any initial start conditions.

FirstName
LastName
Position
PictureURL

Chris
Christopher
Left Back
aaronson.jpg

Date Joined
Date Left
Edit Delete New

SqlDataSource - DetailsDataSource

Deleting

Is deletion
Allowed?

Event
Cancelled

Event raised

Deleted

Yes

No

Event
Runs

200

Chapter 6

09_042583 ch06.qxd 4/4/06 2:44 PM Page 200

❑ Application_End, which is raised when the application stops.

❑ Session_Start, which is raised when a user starts a session. This is when the user starts
accessing the site for the first time, and includes the time when a user closes the browser win-
dow and opens it again.

❑ Session_End, which is raised when a user session ends. This isn’t when the browser window is
closed, because sessions have a timeout — if there is no user activity within that time, the ses-
sion ends.

❑ Application_Error, which is raised when an unhandled error occurs.

❑ Profile_OnMigrateAnonymous, which is raised when an anonymous user logs in, and allows
migration of any Profile properties.

You can create a Global Application Class in the same way as adding normal Web Forms, and when cre-
ated, the first four events in the preceding list will be created for you. They’ll have no code, but will be
ready for you to add code if you need it.

In the Wrox United application, none of the first four events are used, but the latter two are. The
Application_Error event is covered in Chapter 15, which looks at error handling, and the
Profile_OnMigrateAnonymous event is covered in Chapter 11, which looks at the Profile.

Summary
This chapter covered a lot about events, and you’ve seen that they can be raised under a number of dif-
ferent circumstances. First you looked at the ASP.NET page itself, where an event is raised when the
page is loaded, which allows you to take some action before anything is shown to the user. Additionally,
this chapter examined the following topics:

❑ The ASP.NET page has the IsPostback property that allows you to identify whether this is the
first time the page has been displayed, or whether the user has clicked a button.

❑ Button controls, where an event is raised when the user clicks the button. You saw that similar
types of controls (the Button and ImageButton controls) have similar events (the Click
event).

❑ Events that are raised by ASP.NET itself, both directly (such as the binding of data from a
database) and indirectly (such as updating database records). These events give you an oppor-
tunity to interact with the process of displaying or updating data, and allow you to fine tune the
interface and provide user feedback.

❑ How some events can be cancelled, thus canceling any action they trigger, such as another event.
In the example you saw that you can stop the deletion of data by using an event procedure.

Now that you’ve had a look at events, and especially some related to data, it’s time to look at databases
in more depth. The next chapter looks at some of the data controls and shows you how data can be
fetched from the database and displayed for easy use by the user.

201

Events and Code

09_042583 ch06.qxd 4/4/06 2:44 PM Page 201

Exercises
1. In the Chapter06 project create a new Web Form called Lists.aspx and add a ListBox control to

the page, and add three list items with values of One, Two, and Three. Add a Label control and
a Button control to the page. In the Click event of the Button, display the selected value of the
ListBox in the Label.

2. Modify Exercise 1 so that just selecting an item in the list posts back to the server (meaning you
don’t need to click the button). You’ll need to add an event procedure to the ListBox, and in
that event procedure you can use the same code from the Click event of the Button to display
the selected value in the Label. Hint: The terms postback and automatic might be useful in your
hunt for correct properties.

3. Modify the EditSquad.aspx example so that the GridView is refreshed when a new player is
added to the squad. The technique is similar to the code you already have, but you’ll need to
use a different event. Remember that you can use the drop-down lists in the code view to find
the events.

202

Chapter 6

09_042583 ch06.qxd 4/4/06 2:44 PM Page 202

7
Reading Data

The hallmark of dynamic web application pages is the capability to use information from a
database. No other capability so widely expands the horizons of functionality for the visitor. The
majority of information in an enterprise is held in databases, so it is imperative that a web applica-
tion representing a business interact with that data. A tremendous effort by the ASP.NET 2.0 devel-
opment team has reduced the knowledge and lines of code needed to work with data. This
chapter and Chapter 8 explain how to implement the data-based features.

This chapter covers several major ideas:

❑ The theory of using data in ASP.NET 2.0, including a brief overview of the theory and
terminology of databases, an introduction to ASP.NET 2.0 data source controls and data-
bound controls, and the role of VWD in creating data-based pages

❑ Data source controls

❑ Data-bound selection lists

❑ Various data-bound controls, including GridView, DataList, Repeater, DetailsView,
and FormView

❑ Data source controls with parameters

❑ Implementing multiple data controls that work together

❑ Working with XML data

By the end of the chapter, you will have the tools and experience to use ASP.NET 2.0 server-side
controls to present on your pages information that comes from a database.

Introducing Databases
Before starting on the ASP.NET 2.0 data controls, take a moment to consider sources of data. Data
can be broadly divided into one of three categories. Relational data is organized into sets of tables
according to rules of normalization. This category includes the data held in Microsoft Access,

10_042583 ch07.qxd 4/4/06 2:45 PM Page 203

Microsoft SQL Server, Oracle, SAP, DB2, and MySQL. A second category of data resides in tree struc-
tures, such as XML files, the Windows registry, and the Windows file system. Last, data can be held in a
wide range of miscellaneous types, such as Excel files, text files, or proprietary formats. This book (as
per the vast majority of web site data interaction) discusses relational data and XML files.

Relational databases divide information into tables, and the tables contain records (also called rows). A
record represents one instance of the topic of the table. A table contains multiple fields, or columns, that
organize values by their type. For example, a table of employees could contain a record for each employee.
The table’s columns may be NameFirst, NameLast, DateOfHire, and so forth. For each column there would
be a value for each record. A group of tables makes a database in most management systems. In Microsoft
SQL Server, which is used in this book, one or more databases together make an instance of the server.
Typically, tables contain only the data. The description of how the data is organized, the names of fields,
and restrictions all reside in a separate structure of the database called metadata.

XML files are different from relational databases. First, instead of tables, the data is organized into a tree
with branches of the tree holding finer and finer points of data. Each set of data and each individual
datum are contained in a node. For example, an Employees XML file would have an Employees node
that would represent the main trunk. Then there would be a limb for each employee. From that limb
would be branches for FirstName, LastName, and so on. Second, an XML file is self-describing in that
the metadata is included with the data. Each piece of information has an HTML tag that acts like a con-
tainer that states the description of that data. For example, a datum like “John” would actually be stored
as <NameFirst>John</NameFirst>. Although the self-descriptors can make an XML file huge, they
make it easy to understand the data without having the metadata information.

Almost all sources of data have a system that controls who is allowed to use the data. The first step in
security is authentication, wherein the system determines who is asking to use it. The topic of authenti-
cation was covered in detail in Chapter 4, so we won’t spend much time on it here. Basically, there are
two types of authentication: Windows Authentication (also known as Trusted Security) and SQL
Authentication. The decision of which authentication to use is made when the database is installed. With
SQL Server Express, you have the option of Windows Authentication or Mixed. Mixed means you can
use either Windows Authentication or SQL Authentication. SQL Server Express installs, by default, with
Mixed Authentication. This book uses Windows Authentication.

This book mainly uses Microsoft’s SQL Server. The product is sold with different sets of features, but for
our use the simplest version (SQL Server Express) is adequate. Fortunately, Microsoft provides SQL
Server Express free of charge, and automatically installs with the instructions given in this book for the
setup. The beauty of SQL Server Express is that when you deploy your site to the public, all of your
code fits without modification into the full-featured SQL Server.

After you are authenticated (you prove that you actually are who you say you are), there will probably
be a set of rights and limitations for your use of the data. First are restrictions in how you can look at
data. Database administrators (DBAs) generally restrict direct access to tables. Instead, data may only be
available to you through a view or query that contains limited fields or records. Second, you may have
limits on how (or if) you can change data. Last, even if you have the right to change data, there may be
restrictions (called constraints) on how data can be changed. To use Wrox United as an example, you
generally cannot delete a team that is listed in the schedule (thus leaving the schedule with the logical
fault of a game without an existing team).

204

Chapter 7

10_042583 ch07.qxd 4/4/06 2:45 PM Page 204

Using ASP.NET 2.0’s Data Controls
Chapter 3 presented the idea that ASP.NET offers server-side controls. These controls contain code writ-
ten by Microsoft that offers various behaviors, such as a drop-down list or a button. ASP.NET 2.0 has
two sets of controls that are specific to working with data. The first set is data source controls that enable
a page to connect to a source of data and to read from and write to that source. However, a data source
control has no means to display data on an ASP.NET 2.0 page, which is where data-bound controls come
into play. Data-bound controls display data to the user by rendering data onto a page. This chapter dis-
cusses data source controls and the reading behaviors of data-bound controls.

Almost all data source controls can work with almost all data-bound controls. This gives designers a
mix-and-match solution. Pick the data source control that is optimized for the data and then pick a data-
bound control that displays the information as desired.

Introducing Data Source Controls
ASP.NET 2.0 ships with several types of data source controls that are tailored to work with different
types of data sources. These controls are as follows:

❑ The SqlDataSource control allows connections to most relational databases. The Sql in its
name refers to databases that understand the SQL language. That includes almost every kind of
database that holds its data in a relational format. Note that the Sql does not refer only to the
Microsoft SQL Server database management system. SqlDataSource controls utilize one of
several providers that are specific to different kinds of databases. The default provider is for
Microsoft SQL Server. Another provider is for Oracle. Both of these are written in managed
code, the most robust option in the .NET Framework. ASP.NET 2.0 contains an additional
provider that can communicate with any database that is OLEDB-enabled (OLEDB is an
acronym for Object Linking and Embedding for Databases). Because OLEDB is an old standard,
it comprises almost every other database management system including IBM DB2, MySQL,
and SAP. However, the provider for OLEDB connections is not written in managed code. That
means it does not meet all the requirements of being .NET technology, but it still can work with
.NET. We can expect third parties to publish more data source controls and providers and can
hope that they are in proper managed code.

❑ The AccessDataSource control is a special case of the SqlDataSource control that contains a
provider optimized for Microsoft Access.

❑ The XMLDataSource control allows connection to XML sources.

If you begin writing more advanced scenarios, you will discover that OLEDB data
source controls are not part of the System.Data hierarchy. These controls actually
reside in the System.Web.UI.Controls namespace. But this point does not arise for
most scenarios where you can just drag data controls from the toolbar.

205

Reading Data

10_042583 ch07.qxd 4/4/06 2:45 PM Page 205

❑ The SiteMapDataSource control, a specialized form of the XMLDataSource control, is opti-
mized for the specific architecture of the ASP.NET 2.0 web application site map (as you built in
Chapter 2).

❑ The ObjectDataSource control connects to business objects you build yourself (discussed in
Chapter 10).

Regardless of which data source control (and in the case of the SqlDataSource, which provider) you
use, the data source control will enable a set of behaviors for your ASP.NET 2.0 page. These include a
connection to the database and enablement of behaviors such as reading and writing data, which are
available to data-bound controls that display data and receive input from the user.

In summary, the data source controls create the background infrastructure needed to use data. However,
they do not create any rendering on the web page (see the next section for those capabilities). Rather,
they make the data behaviors like reading and writing to data stores available to data-bound controls.

Introducing Data-Bound Controls
Data-bound controls provide the link between the data source controls and the user. They take the data
and behaviors of the data source control and render it to the visitor. This division of labor works very
well. You can select any data source control and link that to any of the data-bound controls. With just a
few exceptions, it is a mix-and-match scenario.

Data-bound controls encapsulate remarkable amounts of behavior. For example, the GridView control
can not only display data in a table, but it offers sorting, selecting, paging through subsets, and one-click
transition to data editing. If your needs extend beyond these capabilities, you can write custom code
hooked into events exposed by the GridView control.

There is one constraint on the compatibility of data source controls and data-bound controls. Each con-
trol is optimized for tabular data, tree data, or custom class data. For example, XML data is organized as
a tree and thus best accessed with the XMLDataSource control and displayed in Menu or SiteMapPath
data-bound controls. SQL Server data is organized into tables and thus accessed with the SqlDataSource
control and displayed in GridView (tables) or DetailsView. List-type data-bound controls can display
either source of data. You can twist the controls to cross-utilize types of data, but in general it is best to
stick to their intended purpose.

Four general groups of data-bound controls ship with ASP.NET 2.0. Because there is overlap in their func-
tionality, this chapter spends some time differentiating them. First you will look at their renderings, then a
comparison chart, and finally a guide to selecting the correct data-bound control for your purposes.

If you are familiar with older versions of ASP, the ASP.NET 2.0 data source controls
instantiate ADO.NET objects. Therefore, ADO.NET provides the underlying tech-
nology for data access. The creation and manipulation of ADO.NET objects for most
scenarios is now handled automatically (and correctly and efficiently) by the higher-
level data source control objects.

206

Chapter 7

10_042583 ch07.qxd 4/4/06 2:45 PM Page 206

The trick with data-bound controls arises in the selection. It can be confusing in the first attempts to get
the correct control for your purpose. To help, the following sections organize the data-bound controls
into four groups. Later in the chapter, you will practice using each of them in a series of exercises.

Tabular Controls
Tabular controls produce the classic HTML table listing the data of records, albeit with opportunity for
significant enhancements. These controls show multiple records in rows and one or more fields from
each record as columns. The GridView control shows one value (datum) in each cell in a table layout.
The DataList and Repeater controls behave in the same way, and render each cell with all of the fields
for one record. Figure 7-1 shows how these controls look in a browser.

Figure 7-1

The GridView control offers the most behaviors, as it can read, edit, and select records. The DataList
control allows reading and editing, whereas the Repeater is a read-only control. The name of DataList
is a bit confusing because you have a separate set of List controls that are optimized for selecting a
record. The DataList is a display control in a tabular format.

Single Record Display Controls
Single record controls (DetailsView and FormView) display one record at a time. You can think of them
as a deck of playing cards in a pile face up. At any moment all of the cards are there, but you can only
see the top one. You have to navigate down through the deck to see other cards (see Figure 7-2 for an
example of the DetailsView control). Single record controls have navigation features to permit the visi-
tor to go to the next record, jump to a specific record, or fly to the first or last record. The DetailsView
control provides some default layout when you create the control, whereas the FormView control creates
a blank slate upon which you create the entire layout. Both of these data-bound controls support the
reading, editing, and creation of new records.

Note that other controls, such as text boxes, can be data-bound. However, these inde-
pendent controls are best connected to data in the context of a template within one
of the controls just mentioned. This topic is discussed in detail in Beginning
ASP.NET 2.0 Databases from Wrox, ISBN 0-4717-8134-7.

207

Reading Data

10_042583 ch07.qxd 4/4/06 2:45 PM Page 207

Selection List Controls
Selection list controls are optimized to accept a user selection. These two controls display just one field
from each record and stand by for a mouse-click. As shown in Figure 7-3, ListBox controls (right side
of figure) are by default expanded, whereas DropDownList controls (left side of figure) display a single
row until the user expands. As you would expect, these controls are display-only with no capability to
change data.

Figure 7-2

Figure 7-3

Tree Controls
Tree controls are optimized to handle data that are stored in nodes rather than tables. The Menu control
provides a slide-out dynamic so that when you pass your mouse over a menu choice the submenu slides
out. The TreeView control gives the user the option to expand or collapse nodes (see Figure 7-4). The
Menu control is on the left of Figure 7-4, and the TreeView control is on the right. The SiteMapPath con-
trol offers a navigation trail that automatically updates based on the current page.

208

Chapter 7

10_042583 ch07.qxd 4/4/06 2:45 PM Page 208

Figure 7-4

The following table summarizes the differences among the data-bound controls.

Control Primary Data Capabilities Description and
Structure Primary Uses

GridView Table Read and edit Separate column for each field.

Each field value in its own cell.

Display multiple records in a
grid.

Edit existing records.

DataList Table or Tree Read and edit All fields in one cell.

One cell equals one record.

Display multiple records in a
grid.

Create new record for GridView.

Table continued on following page

209

Reading Data

10_042583 ch07.qxd 4/4/06 2:45 PM Page 209

Control Primary Data Capabilities Description and
Structure Primary Uses

Repeater Table or Tree Read only All fields in one cell.

One cell equals one record.

Display multiple records in a
grid.Create new record for
GridView.

DetailsView Table or Tree Read, edit, create Display single records.

Default structure provided.

Edit existing records.

Create new records.

FormView Table or Tree Read, edit, create Display single records.

No default structure.

Edit existing records.

Create new records.

DropDownList Table or Tree Read only List of a few fields.
and ListBox

Invites a user selection.

Display data for user selection.

SiteMapPath Tree Read only List page names between home
and current page.

Used to identify current position
in site.

Menu Tree Read only Displays top-level nodes with
the option to expand one sub-
node at a time.

Used to display a menu where
there will be one selection.

TreeView Tree Read only Displays top-level nodes with
option to expand one or many
subnodes.

Used to display multiple
subnodes simultaneously.

210

Chapter 7

10_042583 ch07.qxd 4/4/06 2:45 PM Page 210

Data Source Controls and Data-Bound
Controls Work Together

As discussed in the previous two sections, ASP.NET 2.0 offers two families of controls for working with
data: data source controls and data-bound controls. This section takes a moment to look at how they
work together. The data source control handles the behind-the-scenes connections to the data as well as
a set of behaviors such as editing, sorting, and paging. The data-bound control presents the data and
behavior to the user in actual renderings to the page.

The two controls you use on your page should match in type. Tabular-type data-bound controls
such as GridView and FormView should be sourced by table-type data source controls such as the
SqlDataSource. Tree-type data-bound controls should be sourced by an XML data source. Lists can be
sourced by either type. Having said that, there are some exceptions. Some tree sources can be used with
tabular data-bound controls. This combination generally requires an InfoPath statement that narrows the
scope of information that is harvested from the tree source of data.

A data-bound control must have a property that sets its source to the data source control. In addition, for
many behaviors there must be some coordination of properties between the pair of controls. For exam-
ple, if editing is to be enabled, the data source control must have that option turned on and the data-
bound control must also have its editing features enabled. As the controls are demonstrated later in the
chapter, you will see more details of how data source and data-bound controls work together.

Configuring Data Controls with VWD
When you place a data source control on your page (in Design View) VWD leads you through a wizard
to configure the various properties of the control. This procedure is remarkably cognizant of all the
details required to work with data on a page.

You can add data interactions using VWD at several levels. If you like to create controls one at a time,
you can drag a data source control and walk through its wizard, and then drag a data-bound control and
connect it to the data source control. Alternatively, you can start with a data-bound control, and its wiz-
ard steps you through creating a data source control. You can even work at a higher level by opening the
Database Explorer, selecting several fields, and dragging them to the page. VWD then creates both the
data source controls and data-bound controls for you.

VWD also offers tools for editing data controls that already exist on the page. The Properties window
offers a graphical user interface for changing settings. If you are working with code in Source View, you
can move the insertion bar within a data control tag and press the space bar to get a list of the appropri-
ate attributes in IntelliSense.

Last, VWD offers a very useful tool within wizards for building the SQL statements needed to display or
modify data. Instead of you typing (and commonly mistyping) the names of fields and the SQL key-
words, the wizard offers a drag-and-drop interface with check box options. When you click Finish, VWD
builds the SQL statement for you.

The tools of VWD greatly speed the development of data pages. However, you may find that some of
the default settings and tags created by VWD are not to your liking.The number of tags created by VWD

211

Reading Data

10_042583 ch07.qxd 4/4/06 2:45 PM Page 211

can be overwhelming (like long lists of parameters), particularly for beginners. Advanced designers may
want to substitute validation controls for the basic text boxes created by VWD. So although VWD does a
large amount of the page construction for you, most designers follow on with tweaks or partial rewrites.
You will see an example in a Try It Out later in this chapter.

Data Source Controls
This section moves from the theory to the practice by adding data source controls to a page. As men-
tioned in the previous section on VWD and data controls, a data source control is most easily created
by adding a data-bound control to a page and letting the VWD wizard set up the data source control.
However, at times you will have to create the data source control yourself, so you will walk through that
process here. The first step, of course, is to decide which data source control to use based on your type of
data. Take a look at a SQL Server Express data source (as used in this book).

The Basic Properties of Data Source Controls
Data source controls require several attributes. The obvious are an ID and the runat=”server”. You
must also specify which database on which server to use and your log on name and password for
authentication. These data are held in a connection string. Next you must specify which records and
fields to read from the data source. The data source control also requires a provider that describes how
to interact with the database. (The default provider for the SqlDataSource control is the provider for
Microsoft SQL Server.) In this case, VWD walks you through these specifications in a wizard.

In this chapter, you mostly work on a Fixtures.aspx page that will list Wrox United’s schedule. In this
Try It Out, you add the data source control using the VWD wizard and then examine the source code
that the IDE created for you.

Try It Out Data Source Control
1. If you have not done so already, create a folder in the root of your site named App_Data. Right-

click the new folder and select Add Existing Item. Navigate to your downloads for this book.
Look in the App_Data folder and select the file named WroxUnited.mdf. Click OK to import
the data file to your site.

2. Open the web site for the chapter (C:\BegASPNET2\WroxUnitedCS) and create a Web Form
called Fixtures.aspx in the site’s root using the web form template with the site.master
page and with code in a separate page. Switch to Design View and type Fixtures in the content
panel.

3. From the Data section of the toolbar (see Figure 7-5), drag a SqlDataSource control to the mid-
dle of the content pane. You may have to scroll down to see the new control.

212

Chapter 7

10_042583 ch07.qxd 4/4/06 2:45 PM Page 212

Figure 7-5

3. Click the small arrow at the top right of the control to open the smart task panel (as shown in
Figure 7-6) and click Configure Data Source. A wizard starts. In the first dialog box, drop down
the list of connections and select WroxUnited.mdf. Click Next. Do not save to the application
configuration file.

Figure 7-6

4. Click Next and in the dialog box, accept the choice to specify columns from a table. From the
drop-down list, select the Fixtures table. Then select all of its fields by checking the asterisk (*)
choice in the columns panel. See Figure 7-7 for an example.

5. Click Next. In the last step of the wizard, you have an opportunity to test your query. You
should see several records and fields appear in the panel as in Figure 7-8. Click Finish.

213

Reading Data

10_042583 ch07.qxd 4/4/06 2:45 PM Page 213

Figure 7-7

Figure 7-8

6. Run the page and observe that although you have created a data source control, there is no ren-
dering. That will come when you add a data-bound control.

214

Chapter 7

10_042583 ch07.qxd 4/4/06 2:45 PM Page 214

7. Close the browser and click Source View in VWD. Take a look at what VWD built for you in the
SqlDataSource control. The Fixtures.aspx page appears as follows in Source View. Instead
of (local)\SQLExpress, your server may be identified with a period (full stop) as
.\SQLExpress:

<%@ Page Language=”C#” MasterPageFile=”~/site.master” AutoEventWireup=”false”
CodeFile=”Fixture.aspx.cs” Inherits=”Fixture” title=”Untitled Page” %>

<asp:Content ID=”Content1” ContentPlaceHolderID=”mainContent” Runat=”Server”>

<asp:SqlDataSource ID=”SqlDataSource1” runat=”server”

ConnectionString=”Data Source=.\SQLEXPRESS; AttachDbFilename=C:\BegAspNet2\
WroxUnitedCS\app_Data\WroxUnited.mdf; Integrated Security=True;
User Instance=True”

providerName=”System.Data.SqlClient”

SelectCommand=”SELECT * FROM [Fixtures]”>

</asp:SqlDataSource>

</asp:Content>

How It Works
In this Try It Out, you used VWD to create a SqlDataSource control for you. Note how easy it was to
drag the control and then answer the series of questions in the wizard. VWD typed each of the proper-
ties listed earlier in the section. The basic ID and Runat are there. Then you see a connection string hold-
ing the name of your server and database identified in connection string syntax as the initial catalog.
In the wizard, you requested Windows Authentication and so VWD wrote the connection string with
Integrated Security. That means you will allow Windows to certify who you are by using the name and
password with which you logged in to Windows. Last, when you picked your data source to be a
Microsoft SQL Server data file, VWD added a property to the data source control that sets the provider
to use the System.Data.SqlClient.

Hiding the Connection String
In the preceding Try It Out, you placed the data of your connection string in the page. This leads to two
problems. First, if the name of your server or database changes, you have to change the connection
string in every page. Second, if you are using SQL Authentication, you have to present credentials (name
and password). Although the connection string is never sent to the browser, it should still make any
developer nervous to ever have that confidential authentication information on an ASP page.

Both of these problems can be solved by moving the connection string from the pages into a single entry
of the Web.config file, and then referring to the entry rather than writing out the entire connection
string in the page. This change can be made by simply accepting the offer to “save the connection string
in the application configuration file” in the second page of the Data Source Configuration wizard.

In this Try It Out, you replace the data source control of Fixtures.aspx with a new data source control
configured to use a connection string stored in the Web.config file.

215

Reading Data

10_042583 ch07.qxd 4/4/06 2:45 PM Page 215

Try It Out Hiding Connection Strings
1. Open your Fixtures.aspx page in Design View and delete the SqlDataSource1 control.

2. Drag a new SqlDataSource control to the content panel of the page. Click Configure Data
Source.

3. Make a new connection to the WroxUnited.mdb in the App_Data folder. Click test and OK.
Click Next to move to the Save the Connection String panel.

4. This time leave the check on (as default) to save the connection string to the application configu-
ration file and give it the name WroxUnited (see Figure 7-9). Click Next.

Figure 7-9

5. Continue with the rest of the wizard as before, using the fixtures table and selecting all of the
columns. Click Next, test the query, and click Finish. Save the page.

6. In the end, your data source control will appear as follows in the Fixtures.aspx page:

<asp:sqldatasource id=”SqlDataSource1” runat=”server”
connectionstring=”<%$ ConnectionStrings:WroxUnited %>”>
SelectCommand=”SELECT * FROM [Fixtures]”

</asp:sqldatasource>

7. Meanwhile, an addition has been created in <connectionstrings> section of the Web.config
code. In the actual Web.config file, the connection string runs on across one long line. To make
it easier to consider here, the line is broken into its sections:

216

Chapter 7

10_042583 ch07.qxd 4/4/06 2:45 PM Page 216

<connectionStrings>
<add name=”WroxUnited”

connectionString=”Data Source=.\SQLEXPRESS;
AttachDbFilename=|DataDirectory|WroxUnited.mdf;
Integrated Security=True;
Connect Timeout=30;
User Instance=True”/>
providerName=”System.Data.SqlClient” />

</connectionStrings>

How It Works
Take a look at the Fixtures.aspx page in Source View and focus on the data source control. Notice that
it now lacks the actual values for the connection string. Instead, you get a pointer to connectionString
(which is understood to mean in the Web.config file) and within the connection strings to Wrox United.

Open the Web.config file. Go to the section on connectionStrings. The <add> tag indicates another
connection string within the section. Following the name, you see the same information that you pro-
vided on the page in the previous Try It Out.

Details of the Connection String and Provider
The most complex parts of the data source control are the connectionString and the provider. The
previous examples present the simplest case. The connection string has three parts when connecting to a
SQL Server data source:

❑ First is the data source that means the name of the SQL server. A period (full stop) means the
local server:

<connectionStrings>
<add name=
“WroxUnited” connectionString=”Data Source=.\SQLEXPRESS;

❑ Second is the name of the database file to attach:

AttachDbFilename=|DataDirectory|WroxUnited.mdf;

Or alternatively:

AttachDbFilename= C:\BegAspNet2\ WroxUnitedCS\app_Data\WroxUnited.mdf;

❑ Last is the type of security to use:

Integrated Security=True;User Instance=True”/>
</connectionStrings>

If you use another relational database manager (such as Oracle or MySql), you must specify a provider
as follows. The provider for SQL Server is the default, so you did not have to use a provider in the
Try It Out exercises of this book. But for other sources, you must use the following syntax. The Sql in
SqlDataSource means that the control can be used with any SQL-compliant data source (not only
Microsoft SQL Server). But if you use a data source other than Microsoft SQL Server, you must specify
a provider for that source so that the named provider can override the default provider:

217

Reading Data

10_042583 ch07.qxd 4/4/06 2:45 PM Page 217

<asp:SqlDataSource ID=”SqlDataSource1” Runat=”server”
providerName=”System.Data.OracleClient”

ASP.NET 2.0 can use virtually any source of data, including OLEDB- or ODBC-enabled systems. Access
files can be used for lightly loaded local sites, but complexities emerge when the MDB file has a security
scheme. Extensive discussion of the permutations, advantages, and syntax are presented in several chap-
ters of our sister book, Beginning ASP.NET 2.0 Databases.

Data-Bound Controls
Keep in mind the basic model of ASP.NET 2.0 for using data. Two controls must be on the page: a data
source control and the data-bound control. The remainder of this chapter focuses on the various data-
bound controls. It starts with selection lists; moves on to the GridView, DataList, and Repeater; the
two single-record-display controls (DetailsView and FormView); and finally the tree view for hierar-
chical data. Along the way, we will pause to look at how multiple data-bound controls can be used to set
parameters for each other.

You can add data-bound controls to a page (in Design View) using VWD in three ways:

❑ Add the data-bound control after adding a data source control and point to the existing data
source control.

❑ Add the data-bound control directly without an existing data source control, and let the VWD
wizard guide you through setting up a data source control.

❑ Add the field names directly from the Database Explorer to the page, and let VWD set up both
an appropriate data-bound control and a data source control.

This list increases in terms of ease as you move down the list, but decreases some of your options. For
example, a direct drag-and-drop of field names automatically creates a GridView, whereas in the second
option you could create a DropDownList.

Data-Bound Selection Lists
Data-bound lists present the user with a set of data from the database and imply a request that the user
select from the list. ASP.NET provides four types of lists for user selection: DropDownList, ListBox,
RadioButtonList, and CheckBoxList. You can add the items in the selection list either by hard coding
(static) or from a data source control (dynamic). After the user makes a selection, the value is available to
your code or to other controls on the same page, or even controls on different pages.

It is easy to confuse the topic of this section (lists that request a user selection) with
the control named ASP.NET DataList, which presents data without expectation of
user selection. ASP.NET DataList is covered later in the chapter.

218

Chapter 7

10_042583 ch07.qxd 4/4/06 2:45 PM Page 218

All four of these selection controls support a pair of properties that are easily confused. The first is the
DataTextField property, which determines the text that the user will see. Related, but different, is the
DataValueField property that will hold the value that is used internally in your site to process the
user’s selection. For example, the DataTextField control may show a combination of a customer’s
full name and city. But that long and mixed value is not useful to select the single customer from your
Customers table. So you set the selection list control’s DataValueField property to be the customer ID
number, and that neatly fits into your code to narrow the orders you receive to those for that one cus-
tomer ID. When you use different fields as sources for the list control’s DataText and DataValue, both
fields must be included in the list of fields obtained by the appropriate data source control.

One additional property is of importance for all of the selection lists. AutoPostBack will rebuild and re-
present the page after a selection is made. This is critical if there is code in the Page_Load event that you
want to execute to reflect the user’s selection, such as re-rendering a GridView to show a limited set of
records based on the user’s selection from a list box.

Items can be added to a list in three ways. The first way adds items using individual ASP.NET 2.0 tags.
The second way binds the list to an array of values. Finally, the items can be read from a data source.

Adding List Items with Individual ASP.NET 2.0 Tags
When the items remain relatively static (for example, a list of states or provinces), you use hard coding
to add items. Although the code can be long, it will execute faster than opening up a connection to a data
source. Note that in some cases, although the original list of items may be static (the list of states), the
items to appear in the selection list may be dynamic (only those states with customers). Items can be
added with simple <asp:ListItem> tags as shown in the following code. In this example, you create a
drop-down list for users to pick a player position. You want the user to see the full name of the position
(such as Left Back), so that is the Text property. After the user makes a selection you, as a programmer,
will want to actually work with your code for the position, so that is the Value property. Also note that
you can set a default selection on the Central Defender position. For example, in the following code list-
ing, the first item in the list will be for the Goalkeeper. The word Goalkeeper will appear in the list box
as text and the value of GK will be the value you can work with if the user selects Goalkeeper. (The con-
cepts of DataTextField and DataValueField are covered a bit later.)

<asp:DropDownList id=”DropDownList1” runat=”server”>
<asp:ListItem Value=”GK”>Goalkeeper</asp:ListItem>
<asp:ListItem Value=”LB”>Left Back</asp:ListItem>
<asp:ListItem Value=”RB”>Right Back</asp:ListItem>
<asp:ListItem Value=”CD” Selected=”True”>Central Defender</asp:ListItem>

</asp:DropDownList>

Binding List Items to an Array
A more sophisticated method for adding static items employs an array. You create an array in the
Page_Load event, and then set the array as the data source for the list. Finally, you perform a binding.
Binding, in ASP.NET 2.0, refers to the act of bringing data into a control. For example, when you bind
a ListBox to a data source control the information from the data source is actually brought into the
ListBox control. This is one of the few places in ASP.NET 2.0 where you use the version 1.x technique of
performing binding as a distinct line of code. In most cases in version 2.0, the data controls automatically
perform binding as needed. You carry out the steps in C# as follows:

219

Reading Data

10_042583 ch07.qxd 4/4/06 2:45 PM Page 219

<%@ Page Language=”C#” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<script runat=”server”>

protected String[] MyStates ={ “AK”, “AL”, “AR” };

protected void Page_Load(object sender, EventArgs e)
{

DropDownList1.DataBind();
}

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”> <title>Demo-ListBind</title> </head>
<body>

<form id=”form1” runat=”server”>
<div>
<asp:DropDownList ID=”DropDownList1” runat=”server”
DataSource=”<%# MyStates %>” >

</asp:DropDownList>
</div>
</form>

</body>
</html>

The first shaded line creates a variable named MyStates and fills it with three values. The third shaded
line identifies that array (MyStates) as the one to be bound to DropDownList1. The second shaded line
instructs the ASP.NET 2.0 page to, at the time of page load, actually perform the binding; that is, bring
the values in MyStates into DropDownList1.

When you support variation in the items to be displayed, the population of the selection list should be
based on a data source control. The selection list will have a property of DataSourceID with the value of
the ID of the data source control. Then there are values for the DataTextField and DataValueField,
which are set to fields included in the SelectCommand of the data source control.

Adding List Items from a Data Source
In many cases, the items of a list will be stored in a database, so it makes sense to populate the list from
the database rather than creating an array or individual tags as shown in the previous sections. Because
of ASP.NET 2.0’s mix-and-match design of data source and data-bound controls, you can populate the
list from a data source control. You just have to follow the VWD wizard to identify what data source to
use to supply the information to the ListBox.

On the page, you want visitors to be able to limit the view of games to just one month. In this Try It Out,
you start with a page that hard-codes the months, and then move to a dynamic binding. Note that the
teams play games from October to December. You start with static binding for September to December.
Then you improve the page to dynamically bind to the actual dates in the database of games.

Try It Out Selection List Bound to a Data Source Control
1. Early in this chapter, you created a Fixtures.aspx page. Open it in VWD. Delete the existing

SqlDataSource control and GridView.

220

Chapter 7

10_042583 ch07.qxd 4/4/06 2:45 PM Page 220

2. Add some text similar to Please pick a month, and then drag a ListBox control from the
Toolbox onto the content area. You will probably have to scroll down to see it, as in Figure 7-10.

Figure 7-10

3. Because code-behind is used in this book, you have to write your code in a separate file. At the
top of the Solution Explorer, click the View Code icon (the right-most icon in Figure 7-11) to
open the editor panel.

Figure 7-11

Notice that VWD automatically sets up the opening and closing lines of a Page_Load event for
you (as shown in Figure 7-12). If it was not there (or for other events) you could have created it
as follows: at the top left of the editor panel, expand the drop-down list and click the Fixtures
object, and at the top-right, expand the drop-down list and select Page_Load.

Figure 7-12

221

Reading Data

10_042583 ch07.qxd 4/4/06 2:45 PM Page 221

4. Add the following shaded lines to the Page_Load event. Note that around the list of numbers
are braces ({}), not parentheses. Also note that the declaration of the array occurs before
Page_Load:

public partial class Fixtures : System.Web.UI.Page
{

protected Int32[] ListOfMonths = { 9, 10, 11, 12 };
protected void Page_Load(object sender, EventArgs e)
{

ListBox1.DataBind();
}

}

5. Direct the ListBox control to use your array for its source of data. Switch from the
Fixtures.aspx.cs code page back to the Fixtures.aspx page and switch to Source View.
Select the ListBox and modify its properties so that it will get its list of items from the data
source control, as shown in the following shaded lines:

<%@ Page Language=”C#” MasterPageFile=”~/site.master” AutoEventWireup=”true”
CodeFile=”Fixtures.aspx.cs” Inherits=”Fixtures” Title=”Untitled Page” %>
<asp:Content ID=”Content1” ContentPlaceHolderID=”mainContent” Runat=”Server”>

<h2>Fixtures</h2>
(end of TIO-Selection List Bound to Data Source Control)

Please Pick a Month:

<asp:ListBox ID=”ListBox1” runat=”server”

DataSource=<%# ListOfMonths %> >
</asp:ListBox></p>

</asp:Content>

6. Save and test the page in your browser by pressing F5. At this point, the list does not do any-
thing beyond show the months (see Figure 7-13).

But what if the team plays in January or February or you observe that there are no September
games even though you have the ninth month in your list box? You want the pages to offer new
choices in the list box automatically (dynamically). Now you will improve the ListBox control
by binding it to the list of fixtures.

7. Drag a SqlDataSource control from the toolbar onto the fixtures page (the .aspx page, not the
code page) to a point just after the ListBox, as shown in Figure 7-14 (you will probably have to
scroll down to see it). Then open its smart task panel and configure its data source. Select the
WroxUnited connection (not WroxUnited.mdf) and click Next.

8. Specify a custom SQL statement and click Next. Type the following statement:

SELECT DISTINCT MONTH(FixtureDate) AS FixtureMonth FROM Fixtures

9. Click Next, Test Query, and Finish.

10. Select your ListBox control and make some changes in the Properties window. Eliminate
the DataSource value; add a DataSourceID value of SqlDataSource1; and set both the
DataTextField and DataValueField to FixtureMonth (see Figure 7-15). If the Properties
window is not already visible (usually in the bottom right of your screen) you can bring it back
by pressing F4.

222

Chapter 7

10_042583 ch07.qxd 4/4/06 2:45 PM Page 222

Figure 7-13

Figure 7-14

223

Reading Data

10_042583 ch07.qxd 4/4/06 2:45 PM Page 223

Figure 7-15

11. In Source View, remove the lines in the code page that are no longer needed — the lines shaded
here. You could also remove the Page_Load event entirely; because they are devoid of internal
lines, the beginning and ending lines of the procedure are not needed here. But as you develop
the page in later chapters, you will need them again.

public partial class Fixtures : System.Web.UI.Page
{

protected Int32[] ListOfMonths = { 9, 10, 11, 12 };
protected void Page_Load(object sender, EventArgs e)
{

ListBox1.DataBind();
}

}

12. Run the page. Now the ListBox control only shows the months with games — 9 is left out.
Months will also automatically change if the Wrox United schedule adds games in another
month.

How It Works
Adding a ListBox control is easy with VWD’s drag-and-drop functionality. In the hard-coded tech-
nique, you created an array of integers and filled it with what you expected would be useful values.
Then in the ListBox properties, you specified that the items of the list (its DataSource) should come
from the values returned by a read of the array ListOfMonths. In the following shaded code, focus
on the right side of the equals (=) sign. Everything within the <% %> is code that should be executed. An
additional symbol, the #, indicates that you will be getting back a set of data. Then you state the name of
the array you created. When this page is built by IIS, this line will read the contents of the ListOfMonths
array and establish that set of values (9,10,11, and 12) as the source of data for the ListBox control. The
closing bracket at the end of the line closes the <asp:Listbox> control and is not directly part of the data
binding.

224

Chapter 7

10_042583 ch07.qxd 4/4/06 2:45 PM Page 224

<asp:ListBox ID=”ListBox1” runat=”server”
DataSource=<%# ListOfMonths %> >

</asp:ListBox></p>

Last, back up in the code, you added a line to the Page_Load event that instructs ASP.NET 2.0 to actu-
ally bind the data of the array to the data-bound control.

Two problems exist with this technique. First, it uses the ASP.NET version 1.1 technique of binding by
explicit command. Although that works (and is the only technique for hard-coded arrays) it does not uti-
lize the automatic binding features of version 2.0. Second, if Wrox United changes the months in which it
plays, then your list box choices are out of synch.

In the second technique, you created a new data source control that will read the actual months that are
currently in the games list. However, those months are stored as full dates (such as 12/21/04), so you
use a SQL function called MONTH to extract the number of the month from the date. And because more
than one game is played in a month, you add the DISTINCT term to give you just one of each value.
(These kinds of SQL tricks are discussed in Wrox’s Beginning SQL.) Now you do not need the lines to
create or fill the array and you can also get rid of the binding line (which ASP.NET 2.0 will do for you
when you use an ASP.NET 2.0 data source control).

Notice the subtle but important difference between two properties of the ListBox control. DataSource is
used when you are binding by explicit command to an ASP.NET version 1.1 source of data. DataSourceID
is employed when you use ASP.NET 2.0 automatic binding to a data source control.

The GridView Control
The GridView data-bound control provides the classic display of tabular data. Each row represents
one instance or record, and each column holds one field of data. A cell within the table displays a value
that is appropriate for its intersection of record and column. By default, GridView displays all of the
columns that are provided by the data source control, but you’ll see how to show the user only a subset.
The biggest advance in tabular data display comes when you activate two simple features of the
GridView control: sorting and paging. Sorting allows the user to re-order the records according to taste.
Paging allows you, as the designer, to specify the number of records to show at one time and then pro-
vide the user navigation tools to jump to different sets of records. Both of these features took hundreds
of lines of codes to get right in earlier versions of ASP.NET, so they are huge timesavers that you get for
free with ASP.NET 2.0.

Like all data-bound controls, the GridView control must have a data source control to provide the val-
ues. GridView was optimized to work with the data source controls for tabular data (such as SQL,
Access, and Data controls), as opposed to the tree data of an XML source control.

Adding a GridView Control
VWD reduces control implementation to simple drag-and-drop. You can add a GridView control in
VWD one of three ways. The techniques in the following list increase in the number of steps required as
you go down the list: dragging and dropping a field is quickest, and adding the controls independently
requires the most steps. However, in every case, you can go back and edit a GridView control’s proper-
ties in Design View, or even modify the source code directly:

225

Reading Data

10_042583 ch07.qxd 4/4/06 2:45 PM Page 225

❑ From the Data Explorer window, select and drag field names to create a GridView control and
automatically create a data source control — with no questions asked.

❑ From the toolbar, drag a GridView control to the page and let VWD walk you through the setup
of a new data source control.

❑ From the toolbar, first add a data source control, and then drag on a GridView control and use
the nascent data source control.

Regardless of which technique you use, when the GridView control is on the page, its smart task panel
is open, as shown in Figure 7-16. Click the Auto Format option to quickly apply a set of colors, borders,
and cell sizes. Note the first choice, the ability to remove a prior auto-formatting.

Figure 7-16

You can add or remove columns with three techniques. The easiest way is to use the smart task panel
and click Edit Columns. Expand the entry for BoundField, select a field, and click Add. From the box
below, you can select a field and click the X tool to delete (see Figure 7-17).

Figure 7-17

226

Chapter 7

10_042583 ch07.qxd 4/4/06 2:45 PM Page 226

A second technique, while you have the Fields dialog box open, is to click the option in the bottom-left
corner to Auto-Generate fields. This option displays all fields.

And last, you can switch to Source View and edit the list of fields.

Before moving on, take a look at the code that VWD builds for a GridView control. A data-bound con-
trol such as GridView will always have a DataSourceID property that points to the data source control
providing the data. Note that the DataSourceID property points to a data source control and is used
here. A similarly named property, the DataSource, is used in more advanced scenarios. First, display of
all fields by including setting the autogeneratecolumns property to true, as follows:

<asp:gridview id=”EmployeesTable” runat=”server”
datasourceid=”EmployeesDataSource”
autogeneratecolumns=”True”

</asp:gridview>

The following syntax would only display three of the fields because you set the autogeneratecolumns
to false and instead, will have a set of tags called <Columns>. Within those tags, you add an
<asp:BoundFIeld> tag for each field. Note that ASP.NET 2.0 uses the terms columns and fields inter-
changeably here.

<asp:gridview id=”EmployeesTable” runat=”server”
datasourceid=”EmployeesDataSource”
autogeneratecolumns=”False”

</asp:gridview>
<Columns>

<asp:BoundField HeaderText=”Hired Date” DataField=”DateHire”
</asp:BoundField>

<asp:BoundField HeaderText=”First Name” DataField=”NameFirst”
</asp:BoundField>

<asp:BoundField HeaderText=”Last Name” DataField=”NameLast”
</asp:BoundField>

</Columns>
</asp:gridview>

Adding Paging and Sorting to a GridView Control
Designers faced an onerous task prior to ASP.NET 2.0 when they had to implement paging and sorting.
The ASP.NET 2.0 design team took it upon itself to offer these features fully coded and ready to use.
Select a GridView control and open its smart task panel by clicking the small triangle at the top right
of the control to see check boxes to turn on paging and sorting as shown Figure 7-18.

Turning on paging and sorting requires three prerequisites. First, the GridView control must have its
DataSourceID set to a valid data source control on the page. Second, for sorting only, that data source
control must have its DataMode set to Dataset (which is the default), not DataReader. Third, sorting
requires that fields have a header value so there is a target for users to click. The logic is that when a user
requests a sort by clicking a GridView control, the GridView passes the request down to its data source
control. The data source control revises the data and sends the new information back to the GridView
control, which re-renders.

227

Reading Data

10_042583 ch07.qxd 4/4/06 2:45 PM Page 227

Figure 7-18

Checking sorting enables sorts on all columns. When the page is running, a user can click a second time
on a column’s header to change the direction of the sort. Individual columns can be sortable or not by
going to Source View and removing the SortExpression property. In the following snippet built by
VWD, the Date field is not sortable but the Name field will sort because after the sort option was
checked, VWD added a SortExpression property to the Name field (the shaded line):

<asp:GridView ID=”GridViewSemiSortable” runat=”server”
AllowSorting=”True”
AutoGenerateColumns=”False”
DataSourceID=”SqlDataSource1”>
<Columns>

<asp:BoundField DataField=”Date”
HeaderText=”FixtureDate” />

<asp:BoundField DataField=”Name”
HeaderText=”FixtureType”
SortExpression=”FixtureType” />

</Columns>
</asp:GridView>

Paging requires additional design elements to offer navigation tools to the user. As soon as the paging
option is checked, the GridView control has an additional panel for PagerSettings in the Properties
window, as shown in Figure 7-19.

The last entry is a setting for the number of records to show simultaneously (PageSize). For navigation,
the highest-level property is Mode, where you can select one of four custom sets of tools. Selecting one of
these sets of tools automatically sets the remainder of the properties for PagerSettings:

❑ NextPrevious: Displays only the Next and Previous options.

❑ Numeric: Displays a list of page numbers, with the number of pages to display set by
PageButtonCount.

❑ NextPreviousFirstLast: Displays only the Next, Previous, First, and Last options.

❑ NumericFirstLast: Displays the numbers of pages and also the two terminal buttons.

228

Chapter 7

10_042583 ch07.qxd 4/4/06 2:45 PM Page 228

Figure 7-19

Of course, you can go beyond the option packages and set any property as desired. A common modifica-
tion is to substitute site-specific images for the tools. Look carefully at the text properties. Sometimes the
default words do not clearly relay the intention. For example, the term “last” when working with dates
could mean the last record added in time, the last event to occur, or the last page that you viewed.

In the following Try It Out, you add a GridView of games. Each row will be a record from the Fixtures
table; that is, one game. Columns will hold information such as the date and opponent of the game.

Try It Out Adding a GridView Control to Fixtures.aspx
1. Open your Fixtures.aspx page and use Design View.

2. Switch to (or open with Ctrl+Alt+S) the Database Explorer. Expand WroxUnited.mdf, expand
Tables, and expand Fixtures, as shown in Figure 7-20. Select all of the fields and drag them to
the bottom of the content section of the Fixtures.aspx page. VWD does all of the heavy lift-
ing. Wait for it to finish and then run the page. Admire your work (although at this point there
is no connection between the ListBox and the GridView) and close the browser.

Figure 7-20

229

Reading Data

10_042583 ch07.qxd 4/4/06 2:45 PM Page 229

3. Continue in Design View and modify which fields are displayed. Looking at the scores, it might
be just as good to delete those. Be sure the browser is not displaying the page, because that will
lock it in VWD. Select the GridView and open its smart task panel. Click Edit Columns and in
the bottom left, select the GoalsFor, and click the X icon to delete as shown in Figure 7-21.
Repeat for the GoalsAgainst column. Click OK when you are finished.

Figure 7-21

4. Turn on the check box for Enable Paging and then close the smart tasks panel. Look in the
Properties window to find the PageSize property that you will set to two (Wrox United
doesn’t get invited to many games). Also note the section of PagerSettings. Set the mode to
NumericFirstLast. Again, run in the browser, play with paging, and then close the browser.

5. Open the smart task panel and check Enable Sorting.

❑ Because the Notes field is not logical for sorts, turn off sorting for that one field. Switch
to Source View, and within the GridView control find the BoundField for Notes.
Delete the entire property of SortExpression=”Notes”. Save the file and check it in
your browser.

How It Works
Adding a GridView control is simplicity itself with the help of VWD. This example demonstrated
removing columns with the Edit Columns feature and it is just as easy to add columns. Turning on pag-
ing is as simple is checking the option, followed by setting properties for the control in the Properties
window. The PageSize property is obvious, but other settings are under the PagerSettings group.
Turning on sorting was easy. Removing the sort option from one column was similarly easy. All you had
to do was go to Source View and delete that field’s SortExpression property.

230

Chapter 7

10_042583 ch07.qxd 4/4/06 2:45 PM Page 230

The DataList and Repeater Controls
The GridView control displayed data with each cell holding one piece of information (for example, the
first name of employee 6). ASP.NET 2.0 offers the alternative of a table where all of the fields for one
record are in one cell (one cell holds the first name, last name, ID, and date of hire, all for employee 6).
Two data-bound controls render one record per cell: DataList and Repeater. The only difference is
that the DataList control has default formatting and templates, but the Repeater control requires more
setup by the designer.

Creating a DataList control is similar to creating a GridView control. You can drag and drop the data-
bound control from the toolbar and a let VWD walk you through creation of a new data source control,
or you can add the data source control by hand and then add the data-bound control. The DataList
control’s properties support the capability to set the Layout Repeat Direction so that records are ordered
to increase horizontally across the page or vertically down the page, as well as the number of columns.

Templates offer the capability to lay out the space within a cell. For example, if you want a different set of
fields in each DataList cell, want to change the cell’s background to pink, and want to add a logo to each
cell, you can modify the template. The exercise that follows walks you through changing a template.

Templates are invaluable, but there are several confusing points. First, templates by themselves do not
display data. Rather, templates contain data-bound controls, such as labels, that do the actual display of
data. Second, there are multiple templates for a given space. A DataList cell can have an Item Template
(the normal display for data), an Alternating Item Template (to create every other record with a different
color), a Selected Template (to change the appearance when selected), and an Edit Item template (to
change the appearance during editing). Each of these templates is designed independently, as you will
see. The third point of confusion is that you must enter into a specific template editing mode in order to
make the changes — you cannot change a template by just selecting and modifying fields in Design
View. After editing a template, you must explicitly end the template editing mode. Last, ASP.NET 2.0
uses the term style in context of templates. Styles primarily provide the properties for appearance (color,
borders, and so forth), and the template primarily provides the layout of fields (but can also specify
appearance). If a color or border is set in both the style and the template, the template will take prece-
dence. It may seem that this is a minefield, but after you have worked with templates (as in the next
exercise) you will find the template feature is well-designed.

Templates are also available in the GridView control and work the same way. The difference between a
DataList control and a Repeater control is that the DataList control has a set of default templates,
and the Repeater control is a blank space in which you must build all of the templates.

In this Try It Out, you practice using a DataList to display pictures from Wrox United matches. You
will create a simple page that shows all of the pages and name it Gallery-All. Later in the chapter, you
will create a more complex version as your final Gallery.aspx.

Try It Out DataList
1. Create a simple ASP.NET 2.0 Web Form page named Gallery-all.aspx in your site’s root using

the site.master and with the code placed in a separate page. Also, for this exercise, you will
need some images that are supplied in the download. Check if you have already imported the

231

Reading Data

10_042583 ch07.qxd 4/4/06 2:45 PM Page 231

MatchImages folder from the download (C:\BegASPNET2\WroxUnited). If not, import it by
right-clicking the root of the site in Solution Explorer and using Add Existing Item. In the end,
you should have below the root a folder named MatchImages, and within there a JPEG of a
player in action. Note that in other parts of the book, you will also use an Images folder that
holds files such as AddToCart.gif, ArrowFirst.gif, and logo_white.jpg.

2. Start in Gallery-All by dragging a DataList control from the Data section of the Toolbox to the
content area. Open its smart task panel, as shown in Figure 7-22, and click Choose Data Source.
Click New Data Source for the wizard to create a data source control.

Figure 7-22

3. Select Database as the source and leave the name as SqlDataSource1. Click OK. Use the
WroxUnited connection string (not WroxUnited.mdf because that choice will create a new
connection).

4. From the Gallery table, check the five fields: PictureURL, FixtureID, UploadedByMemberName,
Notes, and PictureURL. Then click Next, test the query, and finish. You can also use the wild-
card (*) to select all fields, but having them listed in the SQL statement on the page makes it a lit-
tle easier for understanding and troubleshooting when you look at the source code. At this point,
VWD automatically creates the data source control and sets it as the source for the DataList
control.

5. Run the page in your browser to test it (see Figure 7-23), noticing that you don’t have the pic-
tures yet. Close the browser.

6. Now you need to actually get the pictures displayed. Be sure your browser is closed and then in
Design View select the DataList control, open its smart task panel, and click Edit Templates to
see a screen similar to Figure 7-24. Select and then delete the line that has the text PictureURL
and a Label control.

7. From the Toolbox, drag an Image control into the template just below the Picture ID field. Feel
free to add a carriage return (by pressing Enter) to get the image control on its own line. On the
Image control’s smart task panel, click Edit Data Bindings, and select the property ImageURL to
bind to the field PictureURL, as shown in Figure 7-25.

The resulting source code follows. If you test the page in your browser, you’ll notice that you
are still not there. The Image control still does not have a URL that actually points to an image:

<asp:image id=”Image1” runat=”server”
ImageUrl=’<%# Eval(“PictureURL”)%>’ />

232

Chapter 7

10_042583 ch07.qxd 4/4/06 2:45 PM Page 232

Figure 7-23

Figure 7-24

233

Reading Data

10_042583 ch07.qxd 4/4/06 2:45 PM Page 233

Figure 7-25

8. To get this to work, you must identify not only the name of the image file but also its path
(folder). Staying in Source view, add the following argument to the imageURL property:

<asp:image id=”Image1” runat=”server”
ImageUrl=’<%# Eval(“PictureURL”, “~/MatchImages/{0}”) %>’ />

9. Check your page in the browser (see Figure 7-26), shout “Eureka!” and then close the browser.

10. Now make some modifications to the DataList. Back in Design View, change the layout of the
DataList control. Select the DataList control (see Figure 7-27), and in the Properties window
change RepeatColumns to 3 and the RepeatDirection to Horizontal.

11. You’ll finish with a little practice on templates. In Design View, select the DataList control and
open its smart task panel. Click Edit Templates and, by default, you will be editing the Item
template, shown in Figure 7-28.

12. Delete the “Notes:” text, but keep the label that shows the notes.

13. In the layout, move the FixtureID up higher in the template and the Member Name lower in
the template. Edit the text UploadedByMemberName by adding some spaces between the words
so it is easier to read. These finished actions are shown in Figure 7-29.

234

Chapter 7

10_042583 ch07.qxd 4/4/06 2:45 PM Page 234

Figure 7-26

Figure 7-27

235

Reading Data

10_042583 ch07.qxd 4/4/06 2:45 PM Page 235

Figure 7-28

Figure 7-29

14. In the DataList control’s smart task panel (which is probably still open), click End Template
Editing. The page should look like the following in Source View:

<%@ Page Language=”C#” MasterPageFile=”~/site.master” AutoEventWireup=”true”
CodeFile=”Gallery-All.aspx.cs” Inherits=”Gallery_All” Title=”Untitled Page” %>
<asp:Content ID=”Content1” ContentPlaceHolderID=”mainContent” Runat=”Server”>

<h2>

236

Chapter 7

10_042583 ch07.qxd 4/4/06 2:45 PM Page 236

Match Images</h2>
TIO - DataList - Gallery-All

<asp:DataList ID=”DataList1” runat=”server”
DataKeyField=”PictureID”
DataSourceID=”SqlDataSource1”>

<ItemTemplate>
PictureID:
<asp:Label ID=”PictureIDLabel” runat=”server”

Text=’<%# Eval(“PictureID”) %>’></asp:Label>

FixtureID:
<asp:Label ID=”FixtureIDLabel” runat=”server”

Text=’<%# Eval(“FixtureID”) %>’></asp:Label>

UploadedByMemberName:
<asp:Label ID=”UploadedByMemberNameLabel” runat=”server”

Text=’<%# Eval(“UploadedByMemberName”) %>’></asp:Label>

Notes:
<asp:Label ID=”NotesLabel” runat=”server”

Text=’<%# Eval(“Notes”) %>’></asp:Label>

<asp:Image ID=”Image1” runat=”server”

ImageUrl=’<%# Eval(“PictureURL”, “~/MatchImages/{0}”) %>’ />

</ItemTemplate>
</asp:DataList><asp:SqlDataSource ID=”SqlDataSource1” runat=”server”

ConnectionString=”<%$ ConnectionStrings:WroxUnited %>”
SelectCommand=”

SELECT [PictureID], [FixtureID], [UploadedByMemberName],
[Notes], [PictureURL]

FROM [Gallery]”>
</asp:SqlDataSource>

</asp:Content>

15. Run the page to see the results of your work in your browser (see Figure 7-30).

How It Works
After the step 5, you had produced a page with names of picture files, not the actual images. This was
because when VWD made the DataList control’s default template, it saw there was text in the
PictureURL field so it created a Label control, as follows:

...
<asp:DataList ID=”DataList1” runat=”server” DataSourceID=”SqlDataSource1”
RepeatColumns=”3” RepeatDirection=”Horizontal”>

<ItemTemplate>
<asp:label ID=”label1” runat=”server”

Text=’<%# Eval(“PictureURL”) %>’>
</asp:Label>

In the next step, you changed the control from a Label to an Image control, as shown in the following
code. This gave you an image but left the image rendered as a red x, meaning that the image could not
be found.

<asp:Image ID=”Image1” runat=”server” ImageUrl=’<%# Eval(“PictureURL”) %>’ />

237

Reading Data

10_042583 ch07.qxd 4/4/06 2:45 PM Page 237

The problem is that an ASP.NET 2.0 page will, by default, look for an image file in the same folder as
itself. The images are kept in a different folder named MatchImages. So, you can use a feature of the
ImageURL property to add the relative path to the name of the picture file. You add a second argument
that embellishes some text onto whatever value is provided by the database. In this case, you added the
path. There are two new tricks in this syntax. First, in the formatting argument, you use a tilde (~) that
means the root of the site. When you deploy the site to another server, you will not have to change all of
the paths. Second, the syntax {0} indicates the place to plug in the value that comes from the database.
So syntax such as the following will be translated into C:\BegAspNet2\WroxUnitedCS\MatchImages\
aaronson.jpg for the first record before it is used as the ImageURL:

<asp:Image ID=”Image1” runat=”server”
ImageUrl=’<%# Eval(“PictureURL”, “~/MatchImages/{0}”) %>’ />

You finished the exercise by getting some practice with editing templates. Remember that you must shift
into Edit Templates mode prior to making changes to the controls in a template that actually present the
data. If you become perplexed by the unresponsiveness of VWD when you attempt to select or modify
the Label and Image controls, you have forgotten to enter Edit Templates mode. You saw how fields
could be selected and then deleted or moved.

Figure 7-30

238

Chapter 7

10_042583 ch07.qxd 4/4/06 2:45 PM Page 238

The DetailsView and FormView Controls
The three data-bound controls you have studied so far (GridView, DataList, and Repeater) display
more than one record at a time. An alternative pair of data-bound controls display just one record at a
time: DetailsView automatically creates a set of templates, and FormView is a blank slate upon which
you build templates as desired. These are useful controls when you want to focus the user’s attention on
one record or need more screen real estate to display many fields for one record. They are also the pre-
ferred controls for adding or editing a record.

Like many other data-bound controls, DetailsView and FormView can be added to the page either
directly, in which case VWD kicks off the wizard to create a data source control, or they can be added
after a data source control is already on the page.

Both the DetailsView and FormView controls rely on templates as described in the previous section.
After creating the control, open the smart task panel and click Edit Templates. The appearance will
change as you enter Template Edit Mode. Figure 7-31 shows the default mode.

Figure 7-31

Figure 7-32 depicts the Template Edit mode where fields can be added, removed, or rearranged.

When you’re displaying only one record, you have to make a decision whether or not to allow naviga-
tion from record to record. If you are showing details of a record selected in a GridView control, you
would not want the user to be able to navigate off to other records because that would cause a loss of
synchronization with the GridView. But if the DetailsView is standing alone, you can turn on paging
with the check box in the smart task panel. The same Navigation Mode options are available as dis-
cussed for the GridView, such as Numeric, FirstLast, and PreviousNext.

As you will study in Chapter 8, only DetailsView and FormView can accept the
addition of new records. GridView, DataList, and Repeater can change, display,
and modify existing records, but not create new records.

239

Reading Data

10_042583 ch07.qxd 4/4/06 2:45 PM Page 239

Figure 7-32

In this Try It Out, you practice looking at the information of one Wrox United match at a time using
DetailsView.

Try It Out Using DetailsView and FormView
1. Create a new page in the root of your site named Fixtures-Stacked using the Master page and

putting the C# code in a separate file.

2. Working in Design View, drag a DetailsView control from the Toolbox onto the page, as
shown in Figure 7-33.

Figure 7-33

3. In the DetailsView control’s smart task panel, choose its data source to be a new data source
from Database with an ID of SqlDataSource2 and using the existing Wrox United connection
string. Be sure to name it SqlDataSource2 because you will add a 1 later, and when the page is
complete it will be logical to have the DetailsView as the second control. Include all of the fields
from the Fixtures table. Test the query and finish the wizard.

4. Before testing the page in your browser, enable paging from the DetailsView control’s smart
task panel. In addition, in the Properties window, configure the Pager Settings / Mode to use
NumericFirstLast.

240

Chapter 7

10_042583 ch07.qxd 4/4/06 2:45 PM Page 240

5. Staying with the DetailsView control selected, in the Properties window change the
LastPageText property to “Last Game of the Season” and FirstPageText property to
“First Game of the Season.” Finally, go to the Layout section, and set the Width to about 500px.
(Alternatively, you can drag the right edge of the control in the Design View.

The results are as follows:

<%@ Page Language=”C#” MasterPageFile=”~/site.master” AutoEventWireup=”false”
CodeFile=”Fixtures-Stacked.aspx.cs” Inherits=”Fixtures_Stacked” title=”Untitled
Page” %>

<asp:Content ID=”Content1” ContentPlaceHolderID=”mainContent” Runat=”Server”>

<asp:DetailsView ID=”DetailsView1” runat=”server”
AllowPaging=”True”
AutoGenerateRows=”False”
DataKeyNames=”FixtureID”
DataSourceID=”SqlDataSource2”
Height=”50px” Width=”450px”>

<PagerSettings
Mode=”NumericFirstLast”
FirstPageText=”First Game of the Season”
LastPageText=”Last Game of the Season”
/>

<Fields>
<asp:BoundField DataField=”FixtureID” HeaderText=”FixtureID”

InsertVisible=”False”
ReadOnly=”True” SortExpression=”FixtureID” />

<asp:BoundField DataField=”FixtureDate” HeaderText=”FixtureDate”
SortExpression=”FixtureDate” />

<asp:BoundField DataField=”FixtureType” HeaderText=”FixtureType”
SortExpression=”FixtureType” />

<asp:BoundField DataField=”GoalsFor” HeaderText=”GoalsFor”
SortExpression=”GoalsFor” />

<asp:BoundField DataField=”GoalsAgainst” HeaderText=”GoalsAgainst”
SortExpression=”GoalsAgainst” />

<asp:BoundField DataField=”Notes” HeaderText=”Notes”
SortExpression=”Notes” />

<asp:BoundField DataField=”Opponents” HeaderText=”Opponents”
SortExpression=”Opponents” />

</Fields>
</asp:DetailsView>

<asp:SqlDataSource ID=”SqlDataSource2” runat=”server”
ConnectionString=”<%$ ConnectionStrings:WroxUnited %>”
SelectCommand=”SELECT * FROM [Fixtures]”>

</asp:SqlDataSource>
</asp:Content>

6. Run the page in your browser to observe that only one match is shown at a time (see
Figure 7-34).

241

Reading Data

10_042583 ch07.qxd 4/4/06 2:45 PM Page 241

Figure 7-34

How It Works
The key point of this exercise is to create and view a presentation where one record is shown at a time,
like the top playing card in a deck. You can use either DetailsView or FormView. In this case, you
chose DetailsView because it does an automatic default layout for you.

The modifications you made to the DetailsView control were almost the same as those for other data-
bound controls in earlier exercises. To move through the records of games, you enabled paging by check-
ing the appropriate box in the control’s smart task panel. To enhance the user experience, you specified a
set of navigation tools in the Properties window of the control and modified their text to present a more
logical user interface.

Data Source Controls with Parameters
So far in this chapter, you have created pages with fixed sets of data. With parameters, you can dynami-
cally determine what data to display in a data-bound control. In ASP.NET 2.0, a parameter is a tag that
holds a piece of data that can be used when a control carries out its task. For example, a parameter could

242

Chapter 7

10_042583 ch07.qxd 4/4/06 2:45 PM Page 242

hold a date, and that date is used to determine which game to show in a data-bound control. This sec-
tion starts with a simpler case where you will look at how you can pass a parameter between pages. In
the next section, you use parameters to enable two controls to work together. As with all of ASP.NET 2.0,
the implementation is made even easier with tools in VWD. You will start with a simple page that picks
up a value from a querystring and uses it to find one record of a table.

When you created data source controls earlier in the chapter, you saw how to add only certain columns
from a table in the “Configure the Select Statement” dialog step, but the wizard button captioned
WHERE was not discussed (see Figure 7-35).

Figure 7-35

If you click the WHERE button of the wizard you get a dialog box that leads you through the options to
limit the data set to only certain records. This step selects which column to use in the process of limiting
records. Then the “source” drop-down list offers the choice of getting the data from a querystring. That
opens a section for parameter properties. In the following code, you would enter PlayerLastName in the
shaded box. These steps add a section to the data source control called SelectParameters, as shown in
the following shaded code. SelectParameters is one type of parameter; you will encounter others
later in the book.

<asp:SqlDataSource ID=”SqlDataSource1” runat=”server”
ConnectionString=”<%$ ConnectionStrings:WroxUnited %>”

A querystring is a field name and value added to a HTTP request, as shown in
the italicized part of the following URL (the text following the question mark):
www.WroxUnited.com\PlayerInformation.aspx?PlayerLastName=Smith.

243

Reading Data

10_042583 ch07.qxd 4/4/06 2:45 PM Page 243

SelectCommand=
“SELECT * FROM [Players] WHERE ([PlayerLastName] = @PlayerLastName)”>

<SelectParameters>
<asp:QueryStringParameter Name=”PlayerLastName”

DefaultValue=”XXX” QueryStringField=”PlayerLastName” Type=”String” />
</SelectParameters>

</asp:SqlDataSource>

In this code, first notice that a <SelectParameters> is added in the shaded section. This is similar to
a variable that will be filled by ASP.NET 2.0 with the value of Smith that comes in when you specify a
querystring, as you did earlier. Then notice in the SELECT command that VWD has made the WHERE
clause equal to a name starting with an at (@) sign. The @ symbol means a parameter — in this case, the
parameter that holds the player’s last name. Each time the page is opened or refreshed, it will search the
querystring for a PlayerLastName value. Typing all of these would be a waste of time, so you will
instruct VWD to do it for you in the next exercise.

In this Try It Out, you modify the previous Try It Out. Instead of presenting a DetailsView control with
all of the games stacked up, you will present just one game. That one game will be determined by a
game identifier (FixtureID) in the querystring.

Try It Out Data Controls with Parameters
1. Make a new page named Fixtures-One.aspx.

2. Drag and drop a DetailsView control, open its smart task panel, and choose a new data
source. Select a source of database and accept the default name. Select the WroxUnited connec-
tion and go to the configuration of the Select Statement. Select all the fields from the Fixtures
table. Click the WHERE button to detour to the Add WHERE Clause box (see Figure 7-36).

Figure 7-36

244

Chapter 7

10_042583 ch07.qxd 4/4/06 2:45 PM Page 244

3. Select FixtureID from the drop-down list of columns.

4. Accept an operator of = and set the source to querystring. In the parameters properties panel,
set the QueryString field to FixID (type in the name) and a default of 1. Click Add and then
click OK. Click Next and test. Notice that before the test runs, VWD gives you a chance to input
the value that will be in the querystring. Try the default of 1, and then also test various numbers
between. (See Figure 7-37.)

Figure 7-37

5. Click Finish. While the DetailsView is selected, change its width to about 450px. Your source
code will end up as follows:

<%@ Page Language=”C#” MasterPageFile=”~/site.master” AutoEventWireup=”true”
CodeFile=”Fixtures-One.aspx.cs” Inherits=”Fixtures_One” Title=”Untitled Page” %>
<asp:Content ID=”Content1” ContentPlaceHolderID=”mainContent” Runat=”Server”>

TIO - DataList - Gallery-All

<asp:DetailsView ID=”DetailsView1” runat=”server”

AutoGenerateRows=”False”
DataKeyNames=”FixtureID”
DataSourceID=”SqlDataSource1”
Height=”50px” Width=”450px”>
<Fields>

<asp:BoundField DataField=”FixtureID”
HeaderText=”FixtureID”
InsertVisible=”False”
ReadOnly=”True”
SortExpression=”FixtureID” />

<asp:BoundField DataField=”FixtureDate”
HeaderText=”FixtureDate”
SortExpression=”FixtureDate” />

245

Reading Data

10_042583 ch07.qxd 4/4/06 2:45 PM Page 245

<asp:BoundField DataField=”FixtureType”
HeaderText=”FixtureType”
SortExpression=”FixtureType” />

<asp:BoundField DataField=”GoalsFor”
HeaderText=”GoalsFor”
SortExpression=”GoalsFor” />

<asp:BoundField DataField=”GoalsAgainst”
HeaderText=”GoalsAgainst”
SortExpression=”GoalsAgainst” />

<asp:BoundField DataField=”Notes”
HeaderText=”Notes”
SortExpression=”Notes” />

<asp:BoundField DataField=”Opponents”
HeaderText=”Opponents”
SortExpression=”Opponents” />

</Fields>
</asp:DetailsView>
<asp:SqlDataSource ID=”SqlDataSource1” runat=”server”

ConnectionString=”<%$ ConnectionStrings:WroxUnited %>”
SelectCommand=”

SELECT *
FROM [Fixtures]
WHERE ([FixtureID] = @FixtureID)”>

<SelectParameters>
<asp:QueryStringParameter

DefaultValue=”1”
Name=”FixtureID”
QueryStringField=”FixID”
Type=”Int32” />

</SelectParameters>
</asp:SqlDataSource>

</asp:Content>

6. Test the page by running it. By default, game number 1 will be displayed. In your browser’s
address bar, try changing the URL from . . . /WroxUnited/Fixtures-One.aspx by adding a
querystring to make . . . /WroxUnited/Fixtures-One.aspx?FixID=3 and click the GO but-
ton of your browser (as shown in Figure 7-38).

Figure 7-38
246

Chapter 7

10_042583 ch07.qxd 4/4/06 2:45 PM Page 246

How It Works
First, you disabled paging because with only one record in the stack, there is no need for navigation.
Then you revised your SelectCommand. Even though you already have your SqlDataSource control
configured, you can restart the wizard and modify the control. This eliminates the possibility of intro-
ducing typos by editing in Source View.

In prior exercises, you did not use the WHERE button and so VWD built for you a SelectCommand that
returned all of the records. In the Add WHERE Clause step, you selected a column (a field) that was going
to be scanned for matches. You wanted your matches to be exact, so you selected the = operator. Then you
selected a source of QueryString. This means that the value of which fixture to display (the parameter)
can be found in the querystring. Under parameters properties, you set the name of the value in the
querystring to be FixID. Don’t forget to click the Add button in the Add WHERE Clause window — it
is easy to overlook.

VWD keeps an eye on the data source control for each data-bound control. When you finish your revi-
sion to the data source control, VWD warns you that you better synch up any data-bound controls using
that source. You can also do that synch explicitly by clicking the Refresh Schema button of the smart task
panel.

All of these changes left the page ready to accept an ID of a game in the querystring. The value must
have the name of FixID. Your data source will take that value (or 1 if there is no FixID) and use that in
the SelectCommand to find the records with a matching FixtureID. Only that game will be shown.
When you test the page, you only have to remember the syntax to attach a value to a URL. After the
page name, type a question mark to begin parameters. Then type the parameter name, an = sign, and
the parameter’s value.

Multiple Data Controls Working Together
The previous section described a crude way to use parameters by typing them into the URL. The enlight-
ened way is to use one data-bound control to create the parameters for another data-bound control.
These are called ControlParameters. This section demonstrates two very common cases. In the first case,
a DropDownList control determines which record or records to display in a GridView control. In the
second case, a selection in a GridView control determines the record for which the page should show
more fields in a DetailsView control. These are called master-child scenarios. A selection in a master data-
bound control establishes the value for a WHERE clause in the data source control of the child data-bound
control. In almost all cases, there must be separate data source controls for the master and child data-
bound controls.

In the master control, you only need one special property. If the master control is a ListBox or
DropDownList control, the AutoPostBack property must be set to True so that when a selection is
made from the master, ASP.NET 2.0 will invoke a refresh of the page and the resulting change in the
record will be shown in the child control. Keep in mind that ListBox and DropDownList controls have
two field parameters. The first is the field to display (the DataTextField property), and the second is
the field that is used in page code (the DataValueField property). This allows a last name, for example,
to be displayed to the user in the list box but the more useful value of, for example, PlayerID to be used
in SQL statements. If the master control is a GridView, you can open its smart task panel and choose

247

Reading Data

10_042583 ch07.qxd 4/4/06 2:45 PM Page 247

Enable Selection to get VWD to build a new column with select buttons for each record. When clicked,
ASP.NET will react to the selection of that record, as you will see.

In the child control, you must set a parameter into the WHERE clause of the child control’s data source
control. In the previous section, you set the parameter to a field of the querystring using the Add
WHERE Clause dialog box of the Configure Data Source Control wizard. You can use the wizard again,
but this time when you get to the Add WHERE Clause panel, you set your column equal to a value from
a control (not a querystring). The wizard presents a list of controls from which you can select. Within the
selecting control, you determine which value to use, normally the SelectionValue.

In the following Try It Out, you practice two combinations of controls. In the first, you use a GridView
selection to show additional fields in a DetailsView control. In the second, you use a DropDownList
control to show only certain records in a GridView.

Try It Out Multiple Controls Working Together
1. Now you will build your final version of Fixtures.aspx. Create a folder named OldPages and

move your existing Fixtures.aspx to this retirement home. Because the steps are so quick and
easy (and it is a good review), you will start your final Fixtures page from scratch. Add a new
item to the site named Fixtures.aspx using the Master page with C# code in a separate file.
Switch to Design View.

2. Open Database Explorer and navigate to WroxUnited.mdf➪Tables➪Fixtures. Select only the
fields for FixtureID, FixtureDate, and Opponents (using Ctrl+Click) and drag them to the
page. VWD will crank for a few seconds and then give you a GridView with its smart task
panel open. Choose Enable Selection as shown in Figure 7-39. Note that VWD has already
added the column of Select buttons.

Figure 7-39

3. Go to the bottom of the content holder and drag a DetailsView control from the Toolbox.
Choose a data source of New, configure the database with an ID of SqlDataSource2, and con-
tinue using the connection string named WroxUnited that you’ve used throughout this chapter.
Specify to get data from the Fixtures table, but this time select only the FixtureID and Notes
fields.

248

Chapter 7

10_042583 ch07.qxd 4/4/06 2:45 PM Page 248

4. Click the WHERE button and select the column of FixtureID. Set the operator to = and select
Control from the Source drop-down list (see Figure 7-40).

Figure 7-40

5. In the parameter properties, set the ControlID to GridView1 and the default value to 1. Don’t
forget to click the Add button (not done yet in Figure 7-41). Click OK, Next, and then the Test
Query button (a value of 1 is fine), and finally, click the Finish button.

6. Make the DetailsView control wider (through the Properties pane or by dragging the right
edge). Save and view it in your browser (see Figure 7-41). Select various matches from the
GridView and see their notes below the GridView in the DetailsView control.

7. Now shift gears to work on the Gallery page. You want to only show pages from one match. In
Solution Explorer, select Gallery-All.aspx in the root, copy it to the clipboard and paste it
back into the root to make a copy. Change the name from Copy of Gallery-All to
Gallery.aspx.

8. Open Gallery.aspx, and add a few line breaks and then a DropDownList box to the top of the
page. Configure its data source to a new source of type Database and name it SqlDataSource2.
Use the WroxUnited connection string and from the Fixtures table, select the FixtureID,
FixtureDate, and Opponents.

9. Click ORDER BY and sort on FixtureDate ascending. Click OK and Next. Then test the query
and click Finish. This brings you back to the Choose a Data Source window.Display (for now)
the Opponents and set the value to FixtureID. Click OK. While the DropDownList control is
still selected, turn on Enable AutoPostBack from the smart task panel.

249

Reading Data

10_042583 ch07.qxd 4/4/06 2:45 PM Page 249

Figure 7-41

10. Open the smart task panel for the DataSourceControl1 (used by the DataList) and start its
Configure Data Source wizard. Step through to the WHERE clause. Set the Column of FixtureID
to equal a control with the ControlID of DropDownList1 and a default value of 1. Don’t forget
to click the Add button and then click OK. Continue by clicking Next, and then test query (a
parameter value of 1 is fine) and click Finish. When you are prompted to reset the templates for
the DetaislView control, answer No. You will see the result shown in Figure 7-42 in your
browser (albeit all the photos to-date have been from game 1).

Your code should look like the following in Source View:

<%@ Page Language=”C#” MasterPageFile=”~/site.master” AutoEventWireup=”true”
CodeFile=”Gallery.aspx.cs” Inherits=”Gallery_All” Title=”Untitled Page” %>
<asp:Content ID=”Content1” ContentPlaceHolderID=”mainContent” Runat=”Server”>

<h2>
Match Images</h2>

TIO - Multiple Controls - Gallery

250

Chapter 7

10_042583 ch07.qxd 4/4/06 2:45 PM Page 250

<asp:DropDownList ID=”DropDownList1” runat=”server”
AutoPostBack=”True”
DataSourceID=”SqlDataSource2”
DataTextField=”Opponents”
DataValueField=”FixtureID”>

</asp:DropDownList>
<asp:SqlDataSource ID=”SqlDataSource2” runat=”server”

ConnectionString=”<%$ ConnectionStrings:WroxUnited %>”
SelectCommand=”SELECT [FixtureID], [FixtureDate], [Opponents]

FROM [Fixtures] ORDER BY [FixtureDate]”>
</asp:SqlDataSource>

<asp:DataList ID=”DataList1” runat=”server”

DataKeyField=”PictureID”
DataSourceID=”SqlDataSource1”
RepeatColumns=”3”
RepeatDirection=”Horizontal”>
<ItemTemplate>

FixtureID:
<asp:Label ID=”FixtureIDLabel” runat=”server”

Text=’<%# Eval(“FixtureID”) %>’>
</asp:Label>
PictureID:
<asp:Label ID=”PictureIDLabel” runat=”server”

Text=’<%# Eval(“PictureID”) %>’></asp:Label>

<asp:Image ID=”Image1” runat=”server”

ImageUrl=’<%# Eval(“PictureURL”, “~/MatchImages/{0}”) %>’ />

<asp:Label ID=”NotesLabel” runat=”server”

Text=’<%# Eval(“Notes”) %>’></asp:Label>

UploadedByMemberName:
<asp:Label ID=”UploadedByMemberNameLabel” runat=”server”

Text=’<%# Eval(“UploadedByMemberName”) %>’>
</asp:Label>

</ItemTemplate>
</asp:DataList><asp:SqlDataSource ID=”SqlDataSource1” runat=”server”

ConnectionString=”<%$ ConnectionStrings:WroxUnited %>”
SelectCommand=”SELECT [PictureID], [FixtureID],

[UploadedByMemberName], [Notes], [PictureURL]
FROM [Gallery] WHERE ([FixtureID] = @FixtureID)”>

<SelectParameters>
<asp:ControlParameter ControlID=”DropDownList1”

DefaultValue=”1”
Name=”FixtureID”
PropertyName=”SelectedValue”
Type=”Int32” />

</SelectParameters>
</asp:SqlDataSource>

</asp:Content>

251

Reading Data

10_042583 ch07.qxd 4/4/06 2:45 PM Page 251

Figure 7-42

11. You’ll finish up with a trick to resolve the problem of the user not knowing which match to
select in the DropDownList when the same opponent is listed several times. Change the
SelectCommand of the DropDownList data source control (SqlDataSource2) and the
DataTextField of the DropDownList as follows:

<asp:DropDownList ID=”DropDownList1” runat=”server”
DataSourceID=”SqlDataSource2”
DataTextField=”FixtureCombo”
DataValueField=”FixtureID”
AutoPostBack=true >

</asp:DropDownList>

<asp:SqlDataSource ID=”SqlDataSource2” runat=”server”
ConnectionString=”<%$ ConnectionStrings:WroxUnited %>”
SelectCommand=”SELECT [FixtureID], (Opponents + ‘ - ‘ + CONVERT(varchar,

FixtureDate, 6)) As FixtureCombo FROM [Fixtures] ORDER BY [FixtureDate]”>

How It Works
Both of these pages are logical extensions of what you did in earlier exercises. As before, you changed
the SelectCommand (using VWD’s Configure Data Source wizard) so that there is a WHERE clause that

252

Chapter 7

10_042583 ch07.qxd 4/4/06 2:45 PM Page 252

gets its value from a parameter. In the previous Try It Out, the parameter came in with the querystring,
but on these two pages, the parameter comes from another control.

In the first case, the GridView filled the parameter with the ID of the record for which the Select button
was clicked. That value was then used by the data source control in its WHERE clause. An important (and
frequently overlooked) step is to set the DropDownList control to AutoPostBack.

In the final step, you wanted to display more than one field in the DropDownList control. You can
achieve that goal by using a SQL statement that creates a new field by concatenating values from exist-
ing fields. The following code brings together the opponent’s name, the literal text of spaces, a hyphen,
and a converted format of the game date to create a field called FixtureCombo:

SelectCommand=”SELECT [FixtureID], (Opponents + ‘ - ‘ + CONVERT(varchar,
FixtureDate, 6)) As FixtureCombo FROM [Fixtures] ORDER BY [FixtureDate]”>

Note how a plus sign (+) is used between each section of the string of text. The opponent value comes
from the database in a form ready to use. The FixtureDate also comes from the database, but it comes
in a date format that is not what you want. So you convert it to a type called varchar, which is a string
of characters. You then put together the two parts with a dividing section of text that consists of a space,
a hyphen, and another space.

Working with XML Data
XML has solidified as the standard format for information on the web. XML files (or streams of data) are
self-describing (each value has a label) and hierarchical in that every item of data has a parent except the
top-most tag. Typically, an XML file will have its highest-level tags that merely state the kind of informa-
tion held, such as Players. Then there would be a set of tags called “player” for each member of the
team. Within there would be further, lower-level tags describing that player. Each item is called a node,
for example, one player. Additionally, XML is case-sensitive. XML files can be created, read, and revised
using ASP.NET 2.0. In the following Try It Out, you create an XML file using VWD.

The league has issued a few changes to Wrox United’s 2007 schedule:

Game Number Date Home Visitor

1 2007, October 21 Wrox United Clatterham

2 2007, October 22 Mellingham WroxUnited

3 2007, October 22 Wrox United Fulchester

Try It Out Creating XML Data
1. Right-click the root of your site, add a new item of the type XML file, and name it Schedule2007.

Normally you would store an XML file in App_Data, but for this exercise that creates some rights
problems when viewing the file in your browser.

253

Reading Data

10_042583 ch07.qxd 4/4/06 2:45 PM Page 253

2. At the beginning of the file, VWD will automatically add the tag for the XML version. Go to
the end of the file and type <Games>. Notice that VWD automatically adds the closing tag for
<Games>. These tags are the highest level and describe the entire contents of the XML file.

3. Now you will create a node for the first game. Inside the <Games> tags, create a <Game> tag
(note that this is singular). Now add Number=”1” inside the opening <Game> tag as per the
code listing after the next step.

4. Inside the <Games> tag, add three pairs of child tags with values for the team names and the
date as follows:

<Games>
<Game Number=”1”>

<Date>2007/10/21</Date>
<Home>WroxUnited</Home>
<Visitor>Clatterham</Visitor>

</Game>
</Games>

5. Add the other two games in the same manner and save the file. The additional games will be as
follows (for the sake of completeness, the first game is included again):

<Games>
<Game Number=”1”>

<Date>2007/10/21</Date>
<Home>WroxUnited</Home>
<Visitor>Clatterham</Visitor>

</Game>

<Game Number=”2”>
<Date>2007/10/22</Date>
<Home>Mellingham </Home>
<Visitor>WroxUnited</Visitor>

</Game>

<Game Number=”3”>
<Date>2007/10/22</Date>
<Home>WroxUnited</Home>
<Visitor>Fulchester</Visitor>

</Game>
</Games>

6. If you run the file the XML, data will be sent to the browser, and most browsers can render a sim-
ple presentation (see Figure 7-43). Try it, noting that there is no ASP.NET 2.0 involvement yet.

How It Works
You saw in this exercise that you start with a top-level node named <Games>. Then, being careful not to
make typos in the case, you added a node for the first game. The data for that game was organized in
two ways. The number of the game was placed in the <Game> tag as an attribute. But you chose to place
the date and competitors in separate tags at a lower level than the <Game> tag. After running the file,
you saw how your browser handles a raw XML file. In the next section, you see what ASP.NET 2.0 can
do with that information.

254

Chapter 7

10_042583 ch07.qxd 4/4/06 2:45 PM Page 254

Figure 7-43

Reading XML Data
Because XML data is organized as a hierarchy, ASP.NET 2.0 provides alternate data source and data-
bound controls from those you used with tabular data earlier in the chapter. The XML data source con-
trol provides the data source control for most cases. The key property that must be set in this control is
the name of the XML database file.

ASP.NET 2.0 supports rendering of tree data with three data-bound controls named TreeView, Menu,
and SiteMapPath. The TreeView is a little tricky to set up, as you will see, but then it does its job just
fine. The TreeView control is fine for any XML data. The Menu control is designed only for its named
purpose. The SiteMapPath control renders differently depending on the page that is currently opened.
Chapter 2 presented more on this navigation control.

VWD offers a handy way to identify which pieces of data should appear in its rendering. The tool is
called the TreeViewDataBindings Editor and it can be opened from the TreeView control’s smart task
panel, as you will practice in the following exercise.

In the following Try It Out, you create a display of the games scheduled for 2007 at the bottom of the
Fixtures.aspx page.

255

Reading Data

10_042583 ch07.qxd 4/4/06 2:45 PM Page 255

Try It Out Reading XML Data
1. Open Fixtures.aspx in Design View and drag a TreeView control (in the navigation section

of the Toolbox, shown in Figure 7-44) to the bottom of the page.

Figure 7-44

2. On the smart task panel, select Choose Data Source and select New. Note that this time you
have different choices for a data source. You want to use an XML file (see Figure 7-45).

Figure 7-45

3. Specify an ID of Schedule2007XML and then in the next dialog box, set the Data File by brows-
ing to the Schedules2007.XML file that you created. For now, leave the Transform and XPath
boxes in the wizard blank, and just click OK. Run the page in your browser (see Figure 7-46)
and look at the tree at the bottom of the page. The page is rendering the names of the nodes but
not the data of the nodes. Close the browser.

256

Chapter 7

10_042583 ch07.qxd 4/4/06 2:46 PM Page 256

Figure 7-46

4. In Design View, select the TreeView control, open its smart task panel, and click Edit Treenode
Data Bindings. Select Game in the top left (the singular Game, not the plural Games) and click
Add (see Figure 7-47).

Figure 7-47

5. In the Properties window, set the TextField to Number. Staying in the DataBindings editor,
select Home, click Add, and set its TextField to #InnerText because you want to display the
text between the <Home> and </Home> tags on the page. Repeat the setting of #InnerText# for
the Date and Visitor data. Save and view in your browser as in Figure 7-48.

257

Reading Data

10_042583 ch07.qxd 4/4/06 2:46 PM Page 257

Figure 7-48

How It Works
In the first step, you found the TreeView control in the Navigation panel of the Toolbox. After dragging
it to the page, you can set its source of data the same way that you do for other data-bound controls, by
using the Choose Data Source in the smart task panel. But in the case of a TreeView, you want to use a
hierarchical source, so you pick the XML file you made in the last exercise.

As you observed in the first run of the page, by default you only get the generic names of the nodes,
not the actual data. The data is specified by using the TreeViewDataBindings Editor. You can add (or
remove) tags to which you want data rendered. After a field is added, you go to the right side and select
its TextField property. If you have data within a tag, such as Number within the <Game> tag, then the
name of that data will show up without a number sign. If the data is between an opening and closing
tag, such as <Home>WroxUnited</Home>, the TextField option will be set to #InnerText.

Binding Syntax
In this book, you have taken advantage of VWD’s features to build code and thus spent little time exam-
ining the code that was built for you. But it is worth understanding code that actually brings together
the data source controls and the data-bound controls. Within a template for a GridView, DataList,
Repeater, DetailsView, or FormView, you see the following code:

<asp:DataList ID=”DataList1” runat=”server”
DataSourceID=”SqlDataSource1”

<ItemTemplate>
<asp:Label ID=”FixtureIDLabel”

runat=”server”
Text=’<%# Eval(“FixtureID”) %>’
BackColor=”Yellow”></asp:Label>

</ItemTemplate>
</asp:DataList>

258

Chapter 7

10_042583 ch07.qxd 4/4/06 2:46 PM Page 258

The shaded line instructs the page to bind the control named FixtureIDLabel to the field named
FixtureID in the data source SqlDataSource1. This method (a request for a specific behavior), named
Eval(), actually performs the connection between one field in the data source control and a rendering
mechanism in the data-bound control. Two similar methods exist: Eval() is for read-only, and Bind()
allows both read and write (and is covered in Chapter 8). Within templates, VWD will write code to
specifically employ these methods. But if there is no templating, the binding is implied and will not
appear in the code.

Summary
ASP.NET 2.0 greatly eases the use of data on a web page by encapsulating most of the code into easy-to-
use controls. In this chapter, you learned that data source controls and data-bound controls work together.
The former provides a connection to an information source, and the latter renders that information onto
a page. ASP.NET 2.0 ships with four data source controls —SqlDataSource, AccessDataSource,
XMLDataSource, and SiteMapDataSource— each optimized to work with a particular type of data. This
chapter focused primarily on the SqlDataSource control, because it can be used with any database that
can understand SQL statements. A fifth data source control, ObjectDataSource, is used for custom-
designed business objects.

After describing the basics of data source and data-bound controls, the chapter drilled down into the
specifics of how to use them on your pages, specifically covering the following topics:

❑ How to use the GridView, DataList, and Repeater controls to display tabular data

❑ How to use the DetailsView and FormView controls to display single records

❑ How to use the ListBox and DropDownList controls to display a selection of records

❑ How to use the TreeView, SiteMapPath, and Menu controls to display tree data

Additionally, this chapter covered the use of templates and wizards when setting up data source and
data-bound controls. Recall that a template is a space into which you can drag various fields or other
controls. When they are in a template, these controls can be bound to the record currently shown by the
template.

Most data-bound controls offer templates. These spaces can hold many kinds of controls that can be
data-bound, including labels, text boxes, and images. All of the bound controls within a template will
have their information revised when the user moves from record to record. To change a template, you
select the control and switch to Template Editing mode. After making your changes, be sure to click the
smart task panel’s End Template Editing to revert to normal mode.

Data-bound controls can be configured to display only a portion of the records. This behavior can be set
statically by a value in a WHERE clause of the SELECT command of the data source control. The restriction
of records can also be set dynamically. The parameter can come from a querystring or another data-bound
control. For example, the selection in a DropDownList (master control) can be used as the parameter of a
WHERE clause that limits the records shown in a GridView (child control).

Reading and displaying data is half of the data story. The other half is getting information to flow in the
opposite direction. Chapter 8 looks at how to get information from users and write it to your data store.

259

Reading Data

10_042583 ch07.qxd 4/4/06 2:46 PM Page 259

Exercises
1. Describe the general capabilities of data source and data-bound controls.

2. Which data-bound controls render data in tables?

3. Compare and contrast the DetailsView and FormView controls.

4. Describe how a GridView control can limit its records to only those that match a player’s name
selected in a DropDownList of last names.

5. Which data source control is best suited for the Menu or SiteMapPath data-bound controls?

260

Chapter 7

10_042583 ch07.qxd 4/4/06 2:46 PM Page 260

8
Writing Data

In Chapter 7, you learned how to read data from a database and present it on a page. In this chap-
ter, you study the reverse: how to gather data from a user and write it to a database. When this
book refers to writing, it means three kinds of operations: the creation of new records, changing
existing records, and deleting records. The pattern is the same for all three, and the setup is made
quite easy with the internal functionality of the data source and data-bound controls, as well as the
auto-typing features of VWD. As a bonus, this chapter discusses transferring files from the
browser to the server and then wraps up with an exercise that integrates several techniques from
Chapter 6 through this one.

Introduction to Writing Data
ASP.NET 2.0 uses two groups of controls to work with data, as previously discussed in Chapter 7.
Data source controls provide a connection to a source of data and enable certain behaviors, such
as reading and writing to the data source. Data-bound controls provide a user interface on the
page that can take advantage of the data source control capabilities. For the most part, the
controls are mix-and-match. A DropDownList can use a SqlDataSource, XMLDataSource, or
AccessDataSource control. Conversely, a SqlDataSource control can have its output rendered
by a GridView, DetailsView, DataList, or DropDownList data-bound control. Having noted
that flexibility, data controls are optimized for either tabular (relational) or hierarchical (tree) data.

Data controls are optimized for one of two ways to organize information, as discussed in
Chapter 7. The first type is relational and the second is hierarchical. Although there can be
some crossover in functionality, the division of the controls is described in the following table.

Relational Hierarchical

Data Source Controls SQLDataSource XmlDataSource

AccessDataSource SiteMapDataSource

ObjectDataSource

Table continued on following page

11_042583 ch08.qxd 4/4/06 2:46 PM Page 261

Relational Hierarchical

Data-bound Controls GridView TreeView

DataList and Repeater Menu

DetailsView and FormView SiteMapPath

Both data source and data-bound controls have functionality (like writing to a database) built into their
code and you can specifically turn on any or all of those behaviors. For example, in Chapter 7 you
enabled paging and sorting. Most of this chapter discusses how to turn on the writing behaviors.

Before diving into details, let us clarify some terminology surrounding writing data. First, writing actu-
ally means changing data, as opposed to just reading it. That means that writing includes changes to
existing records, creating new records, and deleting existing records. ASP.NET 2.0 uses some industry-
standard language for control properties. Changing an existing record is called an UPDATE, and creating
a new record is called an INSERT or INSERT INTO. DELETE means removing an entire record from the
database. Note that if you want to delete one value from an existing record (for example, the date of
birth of one player), you would Update that player’s record with a change of the birth date value from a
date to NULL. The term SELECT, which you used in the last chapter, means reading data (no changes).
ASP.NET 2.0 controls add three terms that are used to accept a user’s actions. NEW means to switch to a
view of a control that allows the user to enter data for a new record. This action would be followed by
create, which actually sends the SQL INSERT INTO instruction to the database. And last, EDIT means
switch to a view wherein the user can change a record’s data. That would be followed by a click on
UPDATE to actually execute the updating instruction.

Options for Writing Data
Not all data controls support writing. Of the data source controls, all support writing data except for the
SiteMapDataSource. But among the data-binding controls, there are more limitations. The selection lists
(DropDownList and ListBox) do not support writing. The new ASP.NET 2.0 data-bound controls sup-
port the best methods of writing data: GridView, DetailsView, and FormView. However, GridView can
only update existing records, not create new records. DataList and Repeater can be used to write data,
but because they are older controls, in many cases they must use the older ASP.NET 1.1 techniques.

DataKeyNames
When you enable some types of data writing, VWD will add a property to the data-bound control
named DataKeyNames. The purpose is to hold both old and new values of a field so that the writing can
be performed correctly. To understand this role, imagine that you have a table of comments about Wrox
United games named MatchReports. In the table you have as the first field (as most tables do) a field
that contains an ID number unique to each row. You call it MatchReportID, and it gets values of 1, 2, 3,
and so forth, as fans send in reports about matches. Now say that there was a mix-up and the adminis-
trator has to change the ID of a report from 20 to 19. When the administrator makes the change, he starts

GridView does not support the creation of new records. But GridView can easily
open a DetailsView control (as you practiced in Chapter 7) and that DetailsView
can create a new record.

262

Chapter 8

11_042583 ch08.qxd 4/4/06 2:46 PM Page 262

by selecting which record to change. ASP.NET 2.0 will store that record’s ID value in a parameter, just
like it did in Chapter 7 when you used a GridView as a master control. Next, the administrator changes
the value of the ID field. When he sends that command to the database, it will look something like the
following:

UPDATE MatchReports SET MatchReport=19 WHERE MatchReport=@MatchReportID

Notice that there is the name of the field to change (MatchReportID) and the new value (19). That com-
mand also holds an identification of which record to change, something like WHERE MatchReportID=
@MatchReportID. But there is a conflict because you have two potential values that could go into
@MatchReportID: the old one as saved by the GridView (the value of 20) and the new one that the
administrator entered (the value of 19).

DataKeyNames solves this problem by creating a dictionary that keeps two values for fields in its list.
One value is old and one is new. When a writing command is issued to a database, ASP.NET uses its
smarts to supply the new value from DataKeyNames for the SET part of the command and to use the old
value from DataKeyNames for the WHERE part of the command. It would be wasteful and slow to load
up the DataKeyNames dictionary with every field, particularly because most fields will not raise con-
flicts. VWD automatically adds to the DataKeyNames those fields that are structured as unique in the
database. You can add others, but VWD usually gets it right. In summary, DataKeyNames holds names
of fields for which ASP.NET 2.0 must remember both old and new values. When using VWD, you rarely
have to change DataKeyNames.

Changing Existing Records
The capability to change an existing record can be turned on with two simple steps using VWD. When
you create a data source control, you go through a panel in the wizard that asks you to select the table
and columns (see Figure 8-1).

Figure 8-1 263

Writing Data

11_042583 ch08.qxd 4/4/06 2:46 PM Page 263

There is also an Advanced button that gives you the option to tell VWD to generate INSERT, UPDATE,
and DELETE statements (see Figure 8-2). This simple step enables the UPDATE behavior of the data source
control. Also, checking Use optimistic concurrency will reduce conflicts of two updates simultaneously
on a busy web site.

Figure 8-2

VWD takes care of all the work for you, fast and without error (we wish we could say the same for the
Wrox United strikers). Two changes are made to the data source control. First, an UPDATE statement is
added, similar to the following (INSERT and DELETE statements are also added, but those are discussed
later):

<asp:SqlDataSource ID=”SqlDataSource1” runat=”server”
...
UpdateCommand= “UPDATE [MyTable]

SET [Field1] = @Field1, [Field2] = @Field2
WHERE [Field1] = @Field1>

...
</asp:SqlDataSource>

The UPDATE statement indicates that you want to change an existing record. You provide the table hold-
ing the record (MyTable):

UpdateCommand= “UPDATE [MyTable]

Then you provide a set of field names and the values you want them to contain. ASP.NET 2.0 generally
does not specify those values directly in the command; rather, it uses a reference to a parameter that
holds the value. References to parameters begin with an at symbol (@) before the parameter’s name, as
shown here:

SET [Field1] = @Field1, [Field2] = @Field2

Note the WHERE clause at the end, which specifies which record to modify. The following syntax says to
change the record in the database for which the Field1 value matches the value held in the Field1
parameter:

WHERE [Field1] = @Field1

264

Chapter 8

11_042583 ch08.qxd 4/4/06 2:46 PM Page 264

You know that the value to match is from the parameter because you use @ before the field name, which
directs ASP.NET 2.0 to get the value from the parameters list. Without the WHERE clause, the update
would change all of the records to have the new values the user entered.

VWD also adds a set of tags to the data source control to create the UPDATE parameters. ASP.NET 2.0
automatically fills these with the values that currently exist in the table. When the user makes a change
to the data-bound control, ASP.NET 2.0 intelligently substitutes in the new value. The exception is for
unique fields such as identifiers, in which case ASP.NET 2.0 keeps both the old and new values in the
DataKeyNames dictionary as discussed in the introduction to this chapter.

<ControlParameters> can hold values in the same way as <UpdateParameters>. Whereas
<UpdateParameters> hold the values that the data source control read from the existing record,
<ControlParameters> hold values that the user enters or selects from controls other than the data-
bound control that is changing the data. For example, you may be changing the date in a GridView,
but you want the date to come from a selection in a Calendar control. You encountered <Control
Parameters> in Chapter 7 when you created pages with a master-child relationship, and you will
see examples in context of writing data later in this chapter.

An optional property can be added to a data source control: ConflictDetection=”Compare
AllValues”. Conflict detection implements the DataKeyNames solution to avoid two users updating
the same record at the same time.

In a data-bound control that implements updates, you see two changes as well that are needed to move
from a read-only control to a control that can update records (highlighted in the following code listing).
First is the addition of a property for DataKeyNames. Second is in the list of fields, where you see the fol-
lowing new “field” added. Called a CommandField because it offers the user a button that will execute a
command, it is only a field in the sense that ASP.NET 2.0 will create a field-like rendering for the button
on the data-bound control:

<asp:DetailsView ID=”DetailsView1” runat=”server”
AutoGenerateRows=”False”
DataKeyNames=”FixtureID”
DataSourceID=”SqlDataSource1” Height=”50px” Width=”125px”>

<Fields>
<asp:BoundField DataField=”FixtureID”

HeaderText=”FixtureID” InsertVisible=”False”
ReadOnly=”True” SortExpression=”FixtureID” />

<asp:BoundField DataField=”FixtureDate”
HeaderText=”FixtureDate” SortExpression=”FixtureDate” />
<asp:CommandField
ShowEditButton=”True”
ShowInsertButton=”True” />
</Fields>

</asp:DetailsView>

Parameters (of any type) are not controls. They are tags within data source controls.

265

Writing Data

11_042583 ch08.qxd 4/4/06 2:46 PM Page 265

For example, the preceding code would contribute toward a DetailsView as follows in Figure 8-3 with
the Edit and New buttons at the bottom of the data-bound DetailsView control.

Figure 8-3

The following small tag enables all of the functionality in the data-bound control to update records. This
tag will render itself as a button labeled EDIT on a DetailsView or a column of EDIT buttons in a
GridView. It will also automatically hide itself and substitute buttons for Update and Cancel when the
control is in edit mode:

<asp:CommandField ShowEditButton=”True”

A common problem is to attempt to update a record with invalid data. For example, in the box for Goals
Against, a user may enter a bit of text or a date. When the data controls send this to the database, an
error will arise because the database is configured to limit values in a GoalsAgainst field to be integers.
The problem can be solved in several ways, two of which are aspects of ASP.NET 2.0. First, you
try to eliminate user-typed input whenever possible. For example, for the user to enter values for
GoalsAgainst a football team, you could offer a list box with options from 1 to 10 (maybe 1 to 20 for
Wrox United). The second technique is to use the ASP.NET 2.0 validation controls, which are covered in
Chapter 15. As a rule of thumb, anything that a user types should be run through a validation control
before it is sent to the database. This policy greatly reduces the susceptibility to a SQL injection attack.

The preceding directions explain the steps to turn on editing at the time you create a control. You can
still turn on this feature using VWD after the control is on a page. Open the Common Tasks panel for the
data source control and click Configure Data Source. You walk through the wizard again, but with
choices filled in as per the existing state. It is easy to click the Advanced button and add the extra com-
mands. Then go back and open the Common Tasks panel for the data-bound control and enable the
Editing feature.

In the following Try It Out, you practice the technique to enable updating data in a GridView and a
DetailsView control by changing data for fixtures (games). You will be building on the Fixtures
.aspx page you created in Chapter 7 that had a GridView with a child control of a DetailsView.

Try It Out Updating Existing Records
1. In VWD, open the chapter web site at C:\BegASPNET2\Chapters\Begin\Chapter08, and

open the Fixtures.aspx page in Design View.

2. Add the remainder of the fields to the GridView and its SqlDataSource. Start with the smart
task panel of DataSource1 and click Configure Data Source. Click Next to go past the connec-
tion and then add all of the fields in the checklist. Click Next and Finish. Select the GridView1

266

Chapter 8

11_042583 ch08.qxd 4/4/06 2:46 PM Page 266

control, open its Common Tasks panel, and click Edit Columns. Select the FixtureType field
and then click the Add button. Repeat for the other fields that are not selected, and click OK to
end editing. Enable Editing and, if not already enabled, enable Selection.

3. Select the SqlDataSource2 control (used by the DetailsView), open its Common Tasks panel,
and click Configure Data Source. Make sure you select WroxUnited for the connection. On the
Configure Select Statement screen, select the option to specify the columns from a table or view,
select the Fixtures table, and select all columns individually (not the *).

4. Click the Advanced button, and on the Advanced window, turn on both options. Click OK to
close the window, then click Next and Finish to close the configuration wizard. As always,
accept the refresh of the data keys if offered.

5. Select the DetailsView data-bound control and open its Common Tasks panel. Enable Editing.
Click Edit Fields and, as in the GridView, select the remaining fields and click Add for each.
Close the panel. With these simple changes, you have enabled editing of fixtures in both the
GridView and DetailsView.

6. You will make one final change. VWD is overzealous in creating the WHERE clause for the
UpdateCommand. By default, VWD added a check of every field prior to updating. You can be
confident that if you match the FixtureID, you have the right record. So in Source View, mod-
ify the UpdateCommand of SqlDataSource2 (be sure you pick number 2) to delete the shaded
section in the following code — you may have to scroll the Source window to see the
UpdateCommand. Your line breaks may be different — we modified the listing for clarity. Be sure
that the command still ends with the “> characters:

UpdateCommand=”UPDATE [Fixtures]
SET
[FixtureDate] = @FixtureDate,
[FixtureType] = @FixtureType,
[GoalsFor] = @GoalsFor,
[GoalsAgainst] = @GoalsAgainst,
[Notes] = @Notes,
[Opponents] = @Opponents
WHERE
[FixtureID] = @original_FixtureID
AND [FixtureDate] = @original_FixtureDate
AND [FixtureType] = @original_FixtureType
AND [GoalsFor] = @original_GoalsFor
AND [GoalsAgainst] = @original_GoalsAgainst
AND [Notes] = @original_Notes
AND [Opponents] = @original_Opponents

“>

7. Run the page in your browser. In the GridView control, try clicking Edit and changing the name
of an opponent as in Figure 8-4. Then do the same in the DetailsView control as shown in
Figure 8-5.

Figure 8-4

267

Writing Data

11_042583 ch08.qxd 4/4/06 2:46 PM Page 267

Figure 8-5

How It Works
ASP.NET 2.0 has again made all of this easy by including the functionality of updating within the data
controls. To enable updates in the data source control, you checked off the option to include INSERT,
UPDATE, and DELETE commands. This is more than you need for now (although you will use the INSERT
and DELETE later in this chapter). VWD built two changes to the data source control that enable it to per-
form updates on data. First is the addition of an UpdateCommand as follows:

<asp:SqlDataSource ID=”SqlDataSource1” ...
UpdateCommand=”UPDATE [Fixtures] SET [FixtureDate] = @FixtureDate, [FixtureType] =
@FixtureType, [GoalsFor] = @GoalsFor, [GoalsAgainst] = @GoalsAgainst, [Notes] =
@Notes, [Opponents] = @Opponents WHERE [FixtureID] = @original_FixtureID”>

VWD then added a set of parameters that will hold the values you will use for updates, as shown in the
following code. Note that the FixtureID is saved in two parameters (the first and last). The first is the
new value, if the user enters one. The second is named original_FixtureID and will hold the original
value so it can be used in the WHERE clause to match which record to change:

<UpdateParameters>
<asp:Parameter Name=”FixtureDate” Type=”DateTime” />
<asp:Parameter Name=”FixtureType” Type=”String” />
<asp:Parameter Name=”GoalsFor” Type=”Int16” />
<asp:Parameter Name=”GoalsAgainst” Type=”Int16” />
<asp:Parameter Name=”Notes” Type=”String” />
<asp:Parameter Name=”Opponents” Type=”String” />
<asp:Parameter Name=”original_FixtureID” Type=”Int32” />

</UpdateParameters>

In the GridView control, you added the single property of displaying the Edit button in a column:

<asp:GridView ID=”GridView1” ...
<Columns>

<asp:CommandField ShowSelectButton=”True” ShowEditButton=”True” />

The procedure was almost the same for the DetailsView. You modified the SqlDataSource2 control to
enable updates by adding an UpdateCommand and a set of update parameters. However, VWD is more

268

Chapter 8

11_042583 ch08.qxd 4/4/06 2:46 PM Page 268

conservative with DetailsView and provides original_ parameters for all fields and compares all
fields in the WHERE clause. You excised those extra comparisons and just relied on matching the
FixtureID.

Adding New Records
Adding new records, known in SQL parlance as INSERT or INSERT INTO, is almost as easy as changing
an existing record. The main difference is that the GridView does not support adding a new record,
which will be considered shortly.

As discussed previously, four changes must be made to the data controls. First, in the data source control
you have the Advanced button in the Create New Data Source wizard. A click there and a check on
Generate INSERT, UPDATE, and DELETE gave you all three of the SQL statements. That created two addi-
tions to the data source control. The first is the InsertCommand itself. The second is the set of INSERT
parameters. (Actually, commands and parameters were also created for UPDATE and DELETE, but it is
INSERT that is of interest to us in this section.)

In the data-bound control, you enable inserting with a check box on the data-bound control’s Common
Tasks panel. Two changes result. The first is in the <asp:commandfield> where you now have the
ShowInsertButton. This will co-exist with the ShowEditButton and ShowDeleteButton if they have
been selected. The ShowInsertButton enables the functionality to add new records. As with the other
CommandField buttons, ShowInsertButton automatically hides itself and displays other buttons
(Insert and Cancel) when the control switches to INSERT mode.

GridView is a special case because it does not directly support the addition of new records. The most
common path is to display existing records in the GridView and create a button on the GridView that
goes to a DetailsView (which can be on the same page or a second page). The DetailsView can then
open in INSERT mode, ready to accept the values for the new record. The option to open in INSERT
mode is set by the DefaultMode property of the data-bound control.

As in editing, constraints on data are acceptable. For example, if you were adding a new match report,
the fixture must match an existing fixture. You can’t comment on a match that did not happen. As with
editing, you can decrease these conflicts by giving users a list of possible options instead of typing. If
they must type, then run the values through a validation control.

In this Try It Out, you add the INSERT capability to the Fixtures.aspx page. You cannot insert new
records in a GridView, so this exercise only affects the DetailsView control.

Try It Out Inserting a New Record
1. Open VWD and your Fixtures.aspx page in Source View and scroll down to the SqlData

Source2 control (the data source for the DetailsView control). Observe that in the last exercise
when VWD added the capability to update a record, it also added similar tags for insert and
delete operations. Therefore, in the data source control the insert behavior is already enabled.

2. Select the DetailsView control, open its Common Tasks panel, and enable inserting, as shown
in Figure 8-6.

269

Writing Data

11_042583 ch08.qxd 4/4/06 2:46 PM Page 269

Figure 8-6

3. In the Properties window, find DefaultMode (see Figure 8-7) and change its value to Insert.

Figure 8-7

4. Save and view in the browser (see Figure 8-8). Try adding a new fixture and refresh the page.

Figure 8-8

5. Try entering some nonsense data, such as a date of 99/99/2006. Note how the error is not, at this
point, handled very gracefully. Chapter 15 looks at handling errors.

270

Chapter 8

11_042583 ch08.qxd 4/4/06 2:46 PM Page 270

How It Works
Many of the tags for this process were created in the previous exercise when you configured the data
sources and VWD offered the Advanced button with options to create INSERT, UPDATE, and DELETE
commands. It may have seemed like an overwhelming number of tags at first, but you can now see how
the pattern of a command plus a set of parameters enables a data-writing function.

Specifically, you are using the InsertCommand of the SqlDataSource2 that supports the DetailsView.
That command relies on the set of InsertParameters, as shown in the following code. Note that there
is no need for a WHERE clause because you do not need to identify an existing record upon which to carry
out the action:

<asp:SqlDataSource ID=”SqlDataSource2” ...
InsertCommand=”INSERT INTO [Fixtures] ([FixtureDate], [FixtureType], [GoalsFor],
[GoalsAgainst], [Notes], [Opponents]) VALUES (@FixtureDate, @FixtureType,
@GoalsFor, @GoalsAgainst, @Notes, @Opponents)”
...

<InsertParameters>
<asp:Parameter Name=”FixtureDate” Type=”DateTime” />
<asp:Parameter Name=”FixtureType” Type=”String” />
<asp:Parameter Name=”GoalsFor” Type=”Int16” />
<asp:Parameter Name=”GoalsAgainst” Type=”Int16” />
<asp:Parameter Name=”Notes” Type=”String” />
<asp:Parameter Name=”Opponents” Type=”String” />

</InsertParameters>
...
</asp:SqlDataSource>

ASP.NET 2.0 handles INSERT operations in a way that is very similar to the UPDATE operations you did
in the previous section. When you select the option in the Advanced dialog box, VWD builds a SQL
INSERT INTO statement with a set of parameters that can hold the data entered by the user. When you
enable INSERT on the data-bound control, VWD adds the CommandField button for adding a new
record. All the rest of the code is taken care of by Microsoft, hidden from your view in the data controls.
The only trap to remember is that inserting new records is available in DetailsView and FormView, but
not GridView.

Deleting Records
By now you have a good feel for how writing data works and can anticipate that the procedure for delet-
ing a record is similar. In the data source control, you must include the DELETE command, which can be
automatically generated in the Advanced button of the control’s Configure New Data Source dialog box.
That button will also create a set of DeleteParameters. But there are differences. For example, the
DeleteParameters will be used to make an exact match for deletion in the WHERE clause, but they will
not be used for changing information in the record.

As discussed before, there are some hazards when writing data and these are particularly true for delet-
ing. The first is the human error of deleting the wrong record. More sophisticated systems respond to a
request to delete by actually moving the record to a Deleted table. That gives a chance for recovery, at
least until the Deleted table is purged. Discussions of this strategy are common in database texts and are

271

Writing Data

11_042583 ch08.qxd 4/4/06 2:46 PM Page 271

not difficult to implement in ASP.NET 2.0. A second problem is when the user attempts to delete a record
that the database has blocked from deletion. That block is most often the result of another record being
dependent on the record that was to be deleted. For example, a table of orders would have a field for the
ID of a customer that placed an order. If you delete that customer, you are left with a value in the Orders
table that points to nowhere. In this case, the database will return an error.

In this Try It Out, you enable the capability to remove a match from the list of fixtures.

Try It Out Deleting an Entire Record
1. Continue using VWD with Fixtures.aspx in Design View. Both of the data source controls

already have the DeleteCommand and a set of DELETE parameters.

2. Select the GridView control, open its Common Tasks panel, and select Enable Deleting (see
Figure 8-9), which adds the following shaded line to the GridView control. That code also adds
the Delete command fields in Figure 8-9.

<asp:GridView ID=”GridView1” runat=”server”
...

<Columns>
<asp:CommandField

ShowEditButton=”True”
ShowSelectButton=”True”
ShowDeleteButton=”True” />

...
</Columns>

</asp:GridView>

Figure 8-9

3. Select the DetailsView control, open its Common Tasks panel, and select Enable Deleting. Go
to the DetailsView’s Properties window and change the DefaultMode back to ReadOnly.

4. As before, when VWD creates a DetailsView with deleting, it is overly cautious in checking
fields to match up the correct record to delete. The original DELETE statement is shown in the
following code. (Be sure you are looking at SqlDataSource2, the one for the DetailsView.)
Delete the shaded portion. Double-check that the DeleteCommand still ends with a double
quote:

272

Chapter 8

11_042583 ch08.qxd 4/4/06 2:46 PM Page 272

DeleteCommand=”DELETE FROM [Fixtures] WHERE [FixtureID] = @original_FixtureID
AND [FixtureDate] = @original_FixtureDate
AND [FixtureType] = @original_FixtureType
AND [GoalsFor] = @original_GoalsFor
AND [GoalsAgainst] = @original_GoalsAgainst
AND [Notes] = @original_Notes
AND [Opponents] = @original_Opponents
“

5. Save the page and test it in your browser. It should look like Figure 8-10.

Figure 8-10

Note that if you try to actually delete a fixture you will get an error message. Many other
aspects of the site rely on the list of fixtures, so deleting one will leave those data hanging with-
out a fixture. This situation is called a reference constraint as mentioned in the error.

How It Works
The pattern is the same as for other means of changing data. The data source control must have a
DeleteCommand. When you checked the option in the Advanced step of the Configure Data Source wiz-
ard, VWD created the DeleteCommand for you. VWD also created a set of DeleteParameters that will
be used by the WHERE clause to identify the record to delete. As with UPDATE, VWD tries to match every
field in the DeleteParameters list for DetailsView. This may be necessary in some cases, but for now
a simple match of the FixtureID is sufficient.

You then enabled deleting on the data-bound control, which instructed VWD to add a CommandField of
the type Delete to the data-bound control. The term “field” here is a little odd because there is no con-
nection to a field in the data table, but it is an addition to the data-bound control that is rendered simi-
larly to a field.

One thing you may have noticed while running through the exercises in this chapter is that you have
two ways of showing and editing the fixtures: GridView and DetailsView. When you edited data in
one, the changes weren’t reflected in the other. To get around this, you need to add code to the data

273

Writing Data

11_042583 ch08.qxd 4/4/06 2:46 PM Page 273

source controls, and although you only need a single line of code, it has to be entered in several places.
This is because there are several ways the data can change: you can insert new fixtures, edit existing fix-
tures, or delete fixtures. Each of these causes the SqlDataSource control to raise an event, and it is
within that event that you have to rebind the data for the other control.

The code for this is shown here:

protected void SqlDataSource1_Deleted(object sender,
System.Web.UI.WebControls.SqlDataSourceStatusEventArgs e)

{ DetailsView1.DataBind(); }

protected void SqlDataSource1_Inserted(object sender,
System.Web.UI.WebControls.SqlDataSourceStatusEventArgs e)

{ DetailsView1.DataBind(); }

protected void SqlDataSource1_Updated(object sender,
System.Web.UI.WebControls.SqlDataSourceStatusEventArgs e)

{ DetailsView1.DataBind(); }

protected void SqlDataSource2_Deleted(object sender,
System.Web.UI.WebControls.SqlDataSourceStatusEventArgs e)

{ GridView1.DataBind(); }

protected void SqlDataSource2_Inserted(object sender,
System.Web.UI.WebControls.SqlDataSourceStatusEventArgs e)

{ GridView1.DataBind(); }

protected void SqlDataSource2_Updated(object sender,
System.Web.UI.WebControls.SqlDataSourceStatusEventArgs e)

{ GridView1.DataBind(); }

You can see that there are three events for each control. The Deleted event is raised after a record is
deleted, the Inserted event is raised after a record is added, and the Updated event is raised when a
record is updated. Even through you are using a GridView control to display one set of data, and a
DetailsView control for the other, the events look the same because it is the SqlDataSource control
that raises the event. For the GridView, which is bound to SqlDataSource1, the DetailsView needs to
be refreshed, so the DataBind() method is called on the DetailsView, which instructs it to re-fetch the
data. A similar procedure is done for the events of SqlDataSource2, which is used by the
DetailsView, but this time the DataBind() method is called on the GridView1 control. It’s a simple
procedure — when data in one control changes, you refresh the data in the other control.

Uploading Pictures
ASP.NET 2.0 offers an easy way to upload pictures (or other files) from the browser to the server.
Although not strictly a database issue, the topic is covered here. The toolbar offers the FileUpload tool,
which can be added to the page to produce a text box with a browse button. You, as the designer, must
also add a button to give the user the capability to actually execute the upload.

In the button’s click code, the simplest option is shown in the following code. The file that the user indi-
cated (either by typing or browsing) will be transferred to the server:

FileUpload1.SaveAs(FileUpload1.FileName);

274

Chapter 8

11_042583 ch08.qxd 4/4/06 2:46 PM Page 274

But this code is too simplistic because the file will be plopped into the root of the web site. You can add a
literal string to be appended in front of the file name that will direct the file into an appropriate folder on
the server. Note that when you open the page in your browser you can view the source, but the path on
your server is not revealed. The following code places the file in MyImageFolder:

using System.IO

string ImagesFolder = “MyImageFolder”;
string savePath;
string saveFile;

savePath = Path.Combine(Request.PhysicalApplicationPath, ImagesFolder);
saveFile = Path.Combine(savePath, FileUpload1.FileName);
FileUpload1.SaveAs(saveFile);

When the FileUpload.SaveAs method is invoked, ASP.NET 2.0 creates an object named FileUpload
.PostedFile with several properties about the operation. The most obvious are FileName and
ContentLength. So if you create a label named Label1 you can display in its text the name of the file
that was uploaded as follows:

FileUpload1.SaveAs(saveFile);
Label1.Text = FileUpload1.PostedFile.FileName;

What if the user clicks the button without first selecting a file? You can avoid this problem with an IF
THEN statement as follows (code structures such as IF THEN are explained in Chapter 9):

// If a file was selected, then upload the file
if (FileUpload1.HasFile) // perform the upload
{

FileUpload1.SaveAs(saveFile);
// Displays status of success

Label1.Text =”Your file was uploaded successfully.”;
}
else // probably no file selected
{

// Display status of failure
Status.Text = “You did not specify a file to upload.”;

}

Other errors can occur, so you should encase the FileUpload method in an error-catching routine as follows:

protected void ButtonUsingTryCatch_Click(object sender, EventArgs e)
{

string ImagesFolder = “MatchImages”;
string savePath;
string saveFile;

if (FileUpload1.HasFile)
{

try
{

// perform the upload
savePath = Path.Combine(Request.PhysicalApplicationPath,

ImagesFolder);

275

Writing Data

11_042583 ch08.qxd 4/4/06 2:46 PM Page 275

saveFile = Path.Combine(savePath, FileUpload1.FileName);
FileUpload1.SaveAs(saveFile);
// Displays status of success
StatusLabel.Text = “Your file was uploaded successfully.”;

}
catch(Exception exUpload)
{

// display status of error
StatusLabel.Text = exUpload.Message;

}
}
else // probably file was not selected
{

// Display status of failure
StatusLabel.Text = “You did not specify a file to upload.”;

}

In the following Try It Out, you give users a way to add pictures to the gallery.

Try It Out Uploading Files — Basic
1. Using VWD, create a new page named GalleryUpload.aspx using the Web Form template. As

you have with most pages up to this point, use the site.master as the Master page, use Visual
C#, and enable the option to place the code on a separate page.

2. In Design View, add a FileUpload control from the Toolbox and a Label control that will have
an ID of FileUploadReport with an empty text property. Also add a button control with the
text property set to “Upload”.

3. Double-click the button to go to its code. Add the following shaded code to the Sub:

using System;
using System.IO;
using ...

public partial class GalleryUpload : System.Web.UI.Page
{

protected void Button1_Click(object sender, EventArgs e)
{

string ImagesFolder = “MatchImages”;
string savePath;
string saveFile;

if (FileUpload1.HasFile)
{

try
{

// perform the upload
savePath = Path.Combine(Request.PhysicalApplicationPath,

ImagesFolder);
saveFile = Path.Combine(savePath, FileUpload1.FileName);
FileUpload1.SaveAs(saveFile);
// Displays status of success
FileUploadReport.Text = “Your file was uploaded successfully.”;

}
catch(Exception exUpload)

276

Chapter 8

11_042583 ch08.qxd 4/4/06 2:46 PM Page 276

{
// display status of error
FileUploadReport.Text = exUpload.Message;

}
}
else // probably file was not selected
{

// Display status of failure
FileUploadReport.Text = “You did not specify a file to upload.”;

}
}

}

4. Save the page and view it in your browser (see Figure 8-11). You probably won’t have pictures
of the hapless Wrox United fumblers, but you can try uploading any jpeg or gif you have on
your hard drive.

Figure 8-11

How It Works
The FileUpload control itself is a simple drag-and-drop. The browsing capability is built in. However,
there is no built-in means to execute the upload. So you added a button to fire the SaveAs method of the
FileUpload control. That method needs an argument specifying where to put the file on the server. You
hard-coded a literal for the path and then appended the name of the file the user entered into the
FileUpload control.

You have done some embellishments beyond the basic control. The FileUpload control has a handy
property called HasFile. When there is a valid file name in the text box, the HasFile property will be
TRUE. The IF statement determines whether the user actually typed or browsed to a file to upload. If
not, the code hops down to the ELSE statement to display an error message. Other things could go
wrong, like the Wrox United webmaster (even more hapless than the team) changes the name of the
folder in which to store images. So you encapsulated the execution of the SaveAs within a Try...Catch
block.

277

Writing Data

11_042583 ch08.qxd 4/4/06 2:46 PM Page 277

Improving the Upload of Pictures
You finish this chapter with an improvement to the page that uploads photos and, in the process, review
some ideas from this chapter and Chapters 6 and 7. You will add a feature that creates an entry in the
database table of photos when a photo is uploaded. In other words, you will both upload the file and
create a new record. The following few paragraphs give an overview of your tasks and the Try It Out
gives exact directions.

Start by using the Data Explorer to take a look at the structure of the Gallery table as in Figure 8-12. Each
record represents an image a fan has uploaded, with fields for the fan’s name, URL of the picture file,
date, and opponent.

Figure 8-12

Now you need to add inputs to the page to get the information you need for the fields of the Gallery
table. Whenever possible, avoid letting users type information. In this case, the number of matches is
reasonably small, so you will create a ListBox control for that input. The SelectCommand that provides
data for the ListBox will display the date of the match to the user. The FixtureID will be the
ListBoxValue. You will also want to gather the user’s name and comments with text boxes. The page
will end up looking like Figure 8-13.

Now the trick will be inserting a new record into the table. You do this by setting up a SqlDataSource
control that is enabled for inserting. But you do not need to render any data, so this data source control
will not have a data-bound control. Built into the SqlDataSource is the Insert method, which you can
invoke from your button-click code.

278

Chapter 8

11_042583 ch08.qxd 4/4/06 2:46 PM Page 278

Figure 8-13

In this Try It Out, you enhance the gallery upload so that it performs the upload of the image file and
then creates a record for the image file in the Gallery table.

Try It Out Uploading Files with Record Creation
1. Using VWD, open the Solution Explorer and make a copy of the GalleryUpload.aspx pages

following these instructions. Find in the file list, but do not open, the GalleryUpload.aspx
page. Right-click it and select Copy. Right-click the root of the site and select Paste. Now find
the nascent file that named Copy of GalleryUpload.aspx. Rename it GalleryUpload
Enhanced.aspx. This procedure ensures proper copying and renaming of the associated
code file.

2. Working with GalleryUploadEnhanced.aspx in Design View, move the insertion bar (cursor)
below the FileUpload control, add a ListBox, and from the smart task panel, click Choose
Data Source. Select a new data source, use a database source, and name the control SqlData
SourceFixtures. Use the WroxUnited connection string and set it to display from the Fixtures
table only the FixtureID and FixtureDate fields, ordered by date ascending. After finishing
the Wizard, you can set the ListBox properties to display the date and field for the value to
FixtureID (see Figure 8-14).

279

Writing Data

11_042583 ch08.qxd 4/4/06 2:46 PM Page 279

Figure 8-14

3. Add to the page two TextBox controls for the fan’s name and notes about the picture. In the
Properties window, set the ID of the boxes to TextBoxMemberName and TextBoxNotes. Give
them some labels with text that identifies what the user should type in the box.

4. Add a second SqlDataSource to the page that you will configure to create the record in the
Gallery table for the new uploaded photo. Name it SqlDataSourceCreateGalleryRecord. Using
its smart task panel, configure the data source and choose the WroxUnited connection string.
Use the Gallery table and select all of the fields. In the Advanced panel, check the creation of the
INSERT, DELETE, and UPDATE commands. Click the Next and Finish buttons. If you want,
switch to Source View and delete the commands and parameters for the UPDATE and DELETE
functions. They will not be used, so deleting them cleans up the code to make maintenance eas-
ier, but they don’t interfere if you want to leave them. Be careful not to delete any end-of-prop-
erty double quotes or any end-of-tag > symbols.

5. Switch to Source View and find the set of <InsertParameters>. Modify them so that they
come from the four input controls, as per the shaded lines in the following listing of the entire
.aspx page’s code:

<%@ Page Language=”C#” MasterPageFile=”~/site.master” AutoEventWireup=”false”
CodeFile=”GalleryUpload-Enhanced.aspx.cs” Inherits=”GalleryUpload” title=”Untitled
Page” %>
<asp:Content ID=”Content1” ContentPlaceHolderID=”mainContent” Runat=”Server”>

<h2>Upload your photos from matches</h2>

Please enter the name of the photo file:
<asp:FileUpload ID=”FileUpload1” runat=”server” />

Match Date:
<asp:ListBox ID=”ListBox1” runat=”server”

DataSourceID=”SqlDataSource1”
DataTextField=”FixtureDate”

280

Chapter 8

11_042583 ch08.qxd 4/4/06 2:46 PM Page 280

DataValueField=”FixtureID”>
</asp:ListBox>

<asp:SqlDataSource ID=”SqlDataSource1” runat=”server”
ConnectionString=”<%$ ConnectionStrings:WroxUnited2 %>”
SelectCommand=”SELECT [FixtureID], [FIxtureDate] FROM [Fixtures]”>

</asp:SqlDataSource>

User Name: <asp:TextBox ID=”TextBoxMemberName” runat=”server”></asp:TextBox>

Comments: <asp:TextBox ID=”TextBoxNotes” runat=”server”></asp:TextBox>

<asp:Button ID=”Button1” runat=”server” Text=”Upload” />

<asp:Label ID=”FileUploadReport” runat=”server”></asp:Label>

<asp:SqlDataSource ID=”SqlDataSource2” runat=”server”
ConflictDetection=”CompareAllValues”
ConnectionString=”<%$ ConnectionStrings:WroxUnited2 %>”
InsertCommand=”INSERT INTO [Gallery] ([FixtureID], [UploadedByMemberName],

Notes], [PictureURL]) VALUES (@FixtureID,@UploadedByMemberName,@Notes,@PictureURL)”
OldValuesParameterFormatString=”original_{0}” >
<InsertParameters>

<asp:ControlParameter Name=”FixtureID”
ControlID=”ListBox1”
PropertyName=”SelectedValue”
Type=”Int64” />

<asp:ControlParameter Name=”UploadedByMemberName”
ControlID=”TextBoxMemberName”
PropertyName=”Text”
Type=”String” />

<asp:ControlParameter Name=”Notes”
ControlID=”TextBoxNotes”
PropertyName=”Text”
Type=”String” />

<asp:ControlParameter Name=”PictureURL”
ControlID=”FileUpload1”
PropertyName=”FileName”
Type=”String” />

</InsertParameters>
</asp:SqlDataSource>

</asp:Content>

6. Now you just need to modify the GalleryUpload-Enhanced.aspx.cs code page (shown
here). In Design View, double-click the Upload button and add the following shaded line of
code:

using System;
using System.IO;
...

protected void Button1_Click(object sender, EventArgs e)
...

try
...

catch(Exception exUpload)

281

Writing Data

11_042583 ch08.qxd 4/4/06 2:46 PM Page 281

{
// display status of error
FileUploadReport.Text = exUpload.Message;

}
SqlDataSourceCreateGalleryRecord.Insert();

}
else // probably file was not selected
{

...

7. Save the page and test it in your browser by uploading any picture (you can use My Pictures/
Samples) along with picking a match and your name and a comment. Figure 8-15 shows the
screen prior to clicking the Upload button.

Figure 8-15

8. Confirm your success by closing the browser, returning to VWD, opening the Database
Explorer, and expanding WroxUnited and then Tables. Right-click Gallery and select Show Table
Data. Observe your new record as in the bottom line of Figure 8-16.

Figure 8-16282

Chapter 8

11_042583 ch08.qxd 4/4/06 2:46 PM Page 282

How It Works
The objective here was to create a new record in the Gallery table whenever a user uploaded an image.
You started by setting up inputs so the user could enter data needed for the record. The ListBox offered
a choice of games and two TextBox controls took in the user’s name and notes. In order to populate the
ListBox, you created a SqlDataSource that picked up two fields from the Fixtures table.

In order to create a new record, you need to add a SqlDataSource control that holds the INSERT func-
tionality. When you asked VWD to add commands for insert, you got a lot, and it wasn’t what you
wanted. You deleted the commands and parameters for SELECT, UPDATE, and DELETE because you
won’t use them. Then within <InsertParameters>, you changed to use the input controls as sources.

Last, you wanted to actually tell the SqlDataSource to perform the insert of a new record. You did that
with a single line of code in the Button_Click event that invoked the Insert() method.

This enhanced page brings together several ideas from the last few chapters. You used code in an event
(Chapter 6) to catch problems with the FileUpload and to invoke the data source control’s Insert()
method. You read from a database (Chapter 7) to stock the ListBox. And, last, you wrote to a database
(in this chapter) to create a new record to represent the uploaded picture.

Summary
Writing data includes creating entire new records (called inserting), changing values in existing records
(updating), and removing entire records (deleting). Both data source and data-bound controls contain
code for behavior to write to databases. This chapter explained how to turn on and use these behaviors.

Most, but not all, data controls support writing. Selection lists (DropDownList and ListBox) do not
support writing. GridView can update and delete, but not insert. DetailsView or FormView are ideal
for all forms of writing.

Any database front-end that updates data can run into problems when a value is simultaneously
changed and needed for identifying a unique record. ASP.NET 2.0 manages a dictionary of old and new
values. The fields to be included in the dictionary are listed in the DataKeyNames property of the data-
bound control.

The pattern for inserting, updating, and deleting is to make three changes to the data controls. In the
data source control, you must add the appropriate command with the value of a valid SQL statement.
You must also include a set of parameters that feed values into the SQL statement. In the data-bound
control, you must include a CommandField of the type equal to the writing operation you want to per-
form. All three of these changes are made through VWD with check-offs in wizards or the Common
Tasks panels.

The parameters can be a little tricky until you gain some experience. Simple parameters will hold the
existing values that came from the database. ControlParameters will hold values that were entered by
the user into controls other than the data-bound control that holds the parameter. Reference to a value in a
parameter is made in a command by placing an at symbol (@) before the parameter’s name. Parameters
are organized into sets for each kind of writing command. So when performing an INSERT, ASP.NET 2.0
will look up values in the parameter set within <InsertParameters>.

283

Writing Data

11_042583 ch08.qxd 4/4/06 2:46 PM Page 283

Keep in mind two caveats when writing data:

❑ Writes can lead to logical and organizational errors. For example, your database administrator
will not let you delete a customer if that customer has an order (otherwise the order would be
shipped to a non-existent customer). It behooves you to limit your user requests and then also
be prepared to handle a rejection from your database.

❑ Writing commands opens your data to a number of types of attacks. Whenever possible, present
the user with a list of options rather than allowing typed input. When typing is absolutely nec-
essary, use the ASP.NET 2.0 validation controls.

The capability to transfer files from the user to the server enhances many business objectives. A single,
simple control provides the functionality to identify a file. However, the actual transfer requires the use
of a button to actually execute the uploading behavior. As demonstrated in the final exercise, that button
can also trigger the execution of writing behavior in a data source control that has no data-bound con-
trol. The data source control can use control parameters to gather values and create an insert in a table.

Over the last eight chapters you have seen how powerful ASP.NET 2.0 can be with the use of practically
no code. You have solved many common business scenarios such as logging on, personalization, and
working with data. But in some more advanced cases, you will be forced to write custom code, and for
those techniques, carry on to Chapter 9.

Exercises
1. Enabling the capability to write to a database requires changes to the properties of a data source

control, a data-bound control, or both?

2. Describe the difference between an asp:Parameter and an asp:ControlParameter.

3. What problem does the DataKeyNames property solve?

4. A page needs to delete the date of birth value from one record. Which command should be
used?

5. What tags must be added to a page to allow a GridView to create new records?

284

Chapter 8

11_042583 ch08.qxd 4/4/06 2:46 PM Page 284

9
Code

You’re now getting to the stage where the site is getting more features, and you need to start learn-
ing more about code. Some of the code used in previous chapters might not have been explained
fully — that’s because what the code was doing was more important than the actual code itself. It’s
not that the code wasn’t important, but rather that the technique being taught was the key; under-
standing how the actual code worked could come later. Now it’s time to learn about the basics of
writing code, what makes good code, and how you put all that code together.

In particular, this chapter looks at the following topics:

❑ What data types and variables are and how they are used

❑ How you make decisions in your code

❑ How you repeat lines of code

❑ What object-oriented programming means and why it’s important

❑ How to think about structuring your code so it’s well organized and easy to maintain

❑ How one of the new language features in ASP.NET 2.0 eases working with collections of
objects

There’s a lot to cover, and although some of it might sound difficult, it’s actually quite easy. You
start with finding out about data types.

Variables and Data Types
When you use applications, you don’t really care how the application stores your data, just that it
does. As a programmer, however, you have to think about this. What sort of data is the user enter-
ing? Is it text, numbers, dates, or something else? This matters because how you store data inter-
nally in your application affects not only how you deal with the data, but also what you can do
with that data. To store data internally, variables are used (variables are simply names, used to store
information during code), and variables have types; there is a type for each type of data. For exam-
ple, there is a data type called string, unsurprisingly used for strings, or text data. There is a data

12_042583 ch09.qxd 4/4/06 2:47 PM Page 285

type called DateTime for dates and times, an Integer data type for whole numbers, and a Decimal or
Double data type for floating-point numbers. Each has different characteristics. The int type can only
store integer numbers, and trying to store any other type of data into an int will raise an exception.
Likewise, the DateTime data type can only store dates and times. Following is the full list of data types:

❑ bool is used to store either true or false. The default value is false.

❑ byte is used for a single byte of data. This can be a single character or a number from 0 to 255.
The default value is 0.

❑ char is used for two bytes of data. This can be a character or a number from 0 to 65,535. Because
it is bigger than a byte, char can store double-byte characters like those used by foreign charac-
ter sets such as Chinese. The default value is 0.

❑ DateTime is used to store a date and time. The default value is 0:00:00 (midnight) on January 1,
0001.

❑ decimal is used for decimal values. It supports up to 29 significant digits and is therefore the
most accurate type for financial numbers. The default value is 0.

❑ double is used for floating-point numbers. Unlike the decimal data type, double has a smaller
range and is less accurate. However, it is also faster in use, so it is the preferred data type for
floating-point numbers unless a great depth of precision is required. The default value is 0.

❑ int is used for whole numbers between –2,147,483,648 and 2,147,483,647. The default value is 0.

❑ long is used for whole numbers between –9,223,372,036,854,775,808 and
9,223,372,036,854,775,807. The default value is 0.

❑ Object is used to represent objects. The default value is null.

❑ sbyte is used to hold whole numbers between –128 and 127. The default value is 0.

❑ short is used for whole numbers between –32,768 and 32,767. The default value is 0.

❑ float is used for floating-point numbers that don’t require the full size of a double. The
default value is 0.

❑ string is used for storing text (or string) data. The default value is null in C#.

❑ uint is the unsigned equivalent of an int. Because it is unsigned it can only store positive num-
bers, giving a range of 0 to 4,294,967,295. The default value is 0.

❑ ulong is the unsigned equivalent of a long. Because it is unsigned it can only store positive
numbers, giving a range of 0 to 18,446,774,073,709,551,615. The default value is 0.

❑ ushort is the unsigned equivalent of a short. Because it is unsigned, it can only store positive
numbers, giving a range of 0 to 65,535. The default value is 0.

Having different data types allows the type to provide features that only that type requires. For example,
the DateTime type allows dates to be manipulated, the individual parts of the date or time to be
extracted, and so on. Also, data types allow you to choose the most efficient way of storing data, so if
you need to store a really long number, you would use a long. A long takes up more room in memory
than a short, so if you only ever needed to store numbers between 1 and 100, you wouldn’t use a long.
In essence, the data type you choose depends not only on the type of data, but also its size.

286

Chapter 9

12_042583 ch09.qxd 4/4/06 2:47 PM Page 286

Common Language Runtime Types
This may seem confusing, but there are different names for the same data types. This is because there are
data types that the language uses, and data types that the Common Language Runtime (CLR) uses. Simply
put, the CLR is the system that actually makes .NET run. You don’t need to know much about it now,
although it’s definitely worth learning about as you become more experienced. The reason that the CLR
has data types and the language has data types is that the CLR is common to all languages in .NET.
Whether you use Visual Basic .NET, C#, or even COBOL .NET, underneath you are using the CLR.
However, languages have history (apart from C#, which was new for .NET, but C# has a C and C++ base
in terms of the language syntax), and so have data types of their own. For compatibility reasons, it
makes sense to keep these specific language types. This enables users of the language to work with
familiar data types, and the compiler takes care of using the actual CLR data type.

For much of what you do, you’ll use the language data types, but there are times when you need to
know what CLR data type a language data type maps onto, and the following table shows this.

CLR Type Visual Basic Type C# Type

Boolean Boolean bool

Byte Byte byte

Char Char char

DateTime Date DateTime

Decimal Decimal decimal

Double Double double

Int32 Integer int

Int64 Long long

Object Object Object

SByte SByte sbyte

Int16 Short short

Single Single float

String String string

UInt32 UInteger uint

UInt64 ULong ulong

UInt16 UShort ushort

When you look at converting between data types, you’ll see why it might be important to know the
underlying data type.

287

Code

12_042583 ch09.qxd 4/4/06 2:47 PM Page 287

What Are All Those Curly Brackets and Semicolons For?
These are covered in more detail later in the chapter, but you’ll see a brief explanation now so you
understand what you are seeing. The first thing to note is that in C#, a line of code only ends when the
semicolon character (;) is reached. This means that you can spread the code line across multiple physical
lines to make it easier to read, or so it doesn’t scroll off the end of the window.

The next thing to know is that the code blocks are surrounded by curly brackets ({}), which define the
start and end of the code block. There will be lots more on these later in the chapter, explaining when
these are required, but for now just know that they are part of the language. The term curly brackets is
often used to differentiate them from parentheses of square brackets.

The other really important thing to know about C# is that it is case-sensitive. In Visual Basic .NET it
doesn’t matter what case you use, and IntelliSense will correct the language keywords. In C#, however,
what you type is what you get, so a common cause of errors is simply mistyping — you know, when you
mistakenly hit the Caps Lock key instead of the Shift or Tab key.

Declaring Variables
There is a specific syntax for creating variables, which requires the data type and name. The name is up
to you, but it’s always best to use a sensible name, something that represents what the variable holds. To
define a variable you use the data type followed by the variable name, like so:

DataType VariableName;

Replace the VariableName and DataType with your requirements:

string FirstName;
string LastName;
int Age;
DateTime Birthday;

Here you see sensible names for the variables: there are two string types to hold the first and last
names, an int to hold the age, and a DateTime to hold the birthday. In some documents and books, you
might see a prefix on the variable name, giving an indication of its data type. For example, the names
and ages might be declared like so:

string strFirstName;
string sLastName;
int iAge;
DateTime dBirthday;

Here str or s has been used as a prefix for string types, i for int types, and d for DateTime data
types. You may find this technique useful when learning how to use variables and data types, although
it isn’t generally recommended and has dropped out of favor. A correctly named variable should give a
good indication of its data type. Having said that, there are times when some form of prefix is useful,
and you’ll see this when you look at classes later in the chapter.

288

Chapter 9

12_042583 ch09.qxd 4/4/06 2:47 PM Page 288

Assigning Values
After you declare a variable, you can assign values to it, and this is simply a matter of setting the vari-
able equal to the required value. The syntax for this is as follows:

variable = value;

This says give the variable named on the left of the equals sign the value on the right of the equals sign.
For example:

FirstName = “Arthur”;
LastName = “Arbuthnot”;
Age = 24;

As you can see, string values are enclosed in quotation marks, whereas numeric values aren’t.

Variables can also be initialized when they are declared, like so:

string FirstName = “Arthur”;
string LastName = “Arbuthnot”;
int Age = 24;
DateTime Birthday = new DateTime(1980, 22, 10);

These examples show the assignment using literal values, but you can also assign values to other vari-
ables or objects. For example, in ASP.NET pages, it’s very common to assign values from user-entered
data, perhaps from a text box:

FirstName = FirstNameTextBox.Text;
LastName = LastNameTextBox.Text;

Or vice versa:

FirstNameTextBox.Text = FirstName;
LastNameTextBox.Text = LastName;

The TextBox control has a property called Text that contains the text value, so you are simply copying
that value into the string variable, or copying the string value into the property. This is fine for string
types, but extra work needs to be done if the variable isn’t a string type. For example, allowing a user
to enter his age would require a text box and an int type variable. However, you can’t assign the values
of differing types — you need to convert them.

Data Conversion
Visual Basic .NET provides some automatic conversion of data types, but C# doesn’t provide this facility,
and you have to explicitly convert variables between data types. Explicit conversion makes it clear
exactly what your code does, a useful point when you (or others) look at your code later. There isn’t a
single syntax for converting between types, but there is a lot of commonality in the different methods.

289

Code

12_042583 ch09.qxd 4/4/06 2:47 PM Page 289

Converting to string values is the simplest, because every data type has a ToString method. For exam-
ple, to convert age to a TextBox you could use the following:

AgeTextBox.Text = Age.ToString();

For the bool type the conversion method is the same, but the string value will be either true or false.

Converting from a string value to another type is slightly different, because there aren’t methods on the
string type to do this automatically. Instead you have to use a separate class to perform the conversion.

Converting Data Types Using the Framework Classes
There are two ways to convert from string values to other types using the framework classes, and it’s
worth mentioning both in case you see them in code. The first is to use the Parse method that most data
types supply. For example, to convert a number held in a TextBox control into an int data type, you
could do this:

int Age;
Age = int.Parse(AgeTextBox.Text);

What’s happening here is that the Parse method parses the value passed to it — that is, it reads the
value, checks that it is an integer value, and converts it into an integer. The value to be converted is the
value from the Text property of the AgeTextBox control, which is a string. So the string is passed into
the Parse method, which converts it into an integer and returns the integer, which in turn is assigned to
the Age variable.

All of the data types, apart from Object, support the Parse method, which means that even though you
may be using a different data type, the syntax is the same. For example:

double ANumber;
ANumber = Double.Parse(NumberTextBox.Text);

The second way to perform data conversion is to use the Convert class, which converts between types.
It’s a very flexible class because it can convert between all types, but it requires knowledge of the CLR
type. For example, the preceding example using an integer could be written as follows:

int Age;
Age = Convert.ToInt32(AgeTextBox.Text);

For the double example, this would be:

double ANumber;
ANumber = Convert.ToDouble(NumberTextBox.Text);

In use there is no difference between the Convert class and the data type class when converting types.
The only reason for using the Convert class is that it makes code easier to convert to another language.
This was important when writing the Wrox United web site, but may not be important to you if you
intend to stick with one language.

290

Chapter 9

12_042583 ch09.qxd 4/4/06 2:47 PM Page 290

Converting Data Types with Casting
Another way of converting between types is by casting. Instead of explicitly converting the type, the
value is forced into another type. Casting doesn’t work in the same way as converting, and isn’t always
suitable. For example, you can’t use casting to convert from strings to numbers. You can, however, use
casting to convert between similar types. For example, you could cast between a double and an int by
using the following code:

double MyDouble = 123.456;
int MyInteger;
MyInteger = (int)MyDouble;

The last line in this code example shows the actual cast — the use of the data type surrounded by paren-
theses — the (int) bit. This tells the compiler to take the value of the MyDouble variable and convert it
to an integer type, which has the effect of just removing all of the digits after the decimal point. It doesn’t
change the MyDouble variable at all — that is still a double and still retains the original value.

One thing you should be aware of is that casting may change the value of the variable. In the preceding
example this is obvious, because changing a floating-point number into an integer will lose the values
after the decimal point. Converting between a long and an int isn’t so obvious, but may result in
changes. Because an int has a range half that of a long, if the value in the long exceeds that of the
integer, the value will be shortened when converted.

Explicit Conversion
You may see another form of conversion, but not realize it’s actually a conversion:

float num = 18.3f;

This follows the usual form of declaration but has an f on the end. The reason for this is that 18.3 is
taken as a double, so you would get a compiler error saying that a double cannot be implicitly con-
verted to a float. Adding the f to the end of 18.3 does an explicit conversion.

Null Values
All data types have default values, but there is also the concept of a null value. This doesn’t usually
affect the standard types, and is more common on custom or complex types. It simply means that the
object doesn’t exist. For example, consider a method that returns a DataSet object, filled with data from
a database. What happens if, while fetching the data, there is some sort of error? There will probably be
an exception thrown (these are covered in Chapter 15), but the method still might return, only there’s no
data for you — the value returned might be null.

In C# the null value is represented by the keyword null. You look at how you test for null values later.

Working with Strings
When working with strings, it’s useful to know that the string class has a great number of methods
that allow you to manipulate those strings, and any variable that is a string therefore has the ability to
use those methods. You won’t go into all of them here, instead concentrating on some of the most
common ones.

291

Code

12_042583 ch09.qxd 4/4/06 2:47 PM Page 291

One of the most common requirements is being able to strip blank spaces (or white space as it’s some-
times called) from the beginning or end of strings. This is useful when taking input from a user and is
especially important when trying to compare two string values. For example, consider the following
code fragment:

string Name1 = “Dave”;
string Name2 = “Dave “;

if (Name1 == Name2)

The if test would result in false, because the strings aren’t the same —Name2 has spaces at the end.
Three methods can help here: TrimStart removes spaces from the start of the string, TrimEnd removes
spaces from the end of a string, and Trim removes spaces from both the start and end of a string. If the
preceding code were modified to include Trim, the result would be true:

string Name1 = “Dave”;
string Name2 = “Dave “;

if (Name1.Trim() == Name2.Trim())

Both strings have been trimmed, so the if test would return true. The strings have only been trimmed
as part of the comparison, though; the strings haven’t been modified themselves. Consider this code:

string Name1 = “Dave”;
string Name2 = “Dave “;

if (Name1.Trim() == Name2.Trim())
{

// this would return true
}

if (Name1 == Name2)
{

// this would return False
}

You can see that using Trim only affects that one instance, unless the underlying variable is changed:

string Name1 = “Dave”;
string Name2 = “Dave “;

Name1 = Name1.Trim();
Name2 = Name2.Trim();

if (Name1 == Name2)
{

// this would return True
}

Now that Name1 and Name2 have been reassigned with the trimmed values, subsequent comparisons
work. The key point here is that using string methods only affects that particular use of the string, and
the string variable will only be changed if assignment is done.

292

Chapter 9

12_042583 ch09.qxd 4/4/06 2:47 PM Page 292

Another situation that can occur when comparing strings, especially those supplied by user input, is mis-
matched case. What if the user has the Caps Lock key on? Two methods help with this: ToLower, which
converts the string to lowercase, and ToUpper, which converts the string to uppercase. For example:

string Name1 = “dave”;
string Name2 = “DAVE”;

if (Name1 == Name2)

This code would fail because the strings are different, even though we know them to mean the same
thing. To get around this, you can change the case:

string Name1 = “dave”;
string Name2 = “DAVE”;

if (Name1.ToLower() == Name2.ToLower())

Now the test would succeed because the values being compared are lowercase.

Plenty of other string methods exist, some of which are described here:

❑ EndsWith returns true if the string ends with a given string. For example:

if (MyString.EndsWith(“ate”))

❑ StartsWith returns true if the string starts with a given string. For example:

if (MyString.StartsWith(“wha”))

❑ IndexOf returns the position within the string of a given character or string, or -1 if the item
isn’t found. For example:

if (MyString.IndexOf(“abc”) > 0)

❑ Insert inserts a string at a given position. For example, to insert the string new words at posi-
tion 5 you would use this:

MyString.Insert(5, “new words”);

❑ LastIndexOf returns the last position within the string of a given character or string. This is
similar to IndexOf but is useful for finding the last instance of a character.

❑ PadLeft and PadRight perform the opposite of Trim, allowing you to pad strings to a given
length. The padding defaults to a space but can be any character. For example, to pad a string to
a total of 15 characters, you would use the following:

MyNewString = MyString.PadLeft(15)

❑ Remove removes a section of a string. For example, to remove five characters starting at position
4, you would use this:

MyNewString = MyString.Remove(4, 5);

293

Code

12_042583 ch09.qxd 4/4/06 2:47 PM Page 293

❑ Replace replaces characters within the string. For example, to replace abc with def you would
use this:

MyNewString = MyString.Replace(“abc”, “def”)

❑ SubString returns a portion of a string. For example, to return five characters starting at posi-
tion 4, you would use this:

MyNewString = MyString.SubString(4, 5);

For a full list of string methods, you should consult the documentation. The String type has a couple of
properties, but the only one you will probably use is Length, which returns the number of characters
within the string.

Working with Dates
In C#, you can place dates as literals into your code, but one problem with this is that it has to be in the
MM/DD/YYYY format, which can be confusing if you are in a country that doesn’t use that format. For
example, take the date 03/05/2005 — does this represent March 5 or May 3? You could easily assume the
format, but that leads to potential errors.

Instead of using literals to initialize dates, C# uses the DateTime object to create a new instance on a
date, like so:

DateTime Birthday = new DateTime(2005, 3, 5);

The parameters are in year, month, and day order, and because you have IntelliSense (or at least the doc-
umentation if you aren’t using VWD), you know what the order should be. If required, the individual
parts of the date can be accessed like so:

int day = Birthday.Day;
int month = Birthday.Month;
int year = Birthday.Year;

There are other properties such as DayOfWeek and DayOfYear, as well as ones for dealing with the time and
parts of the time. You can find more information about these additional properties in the documentation.

Dates behave just like numeric variables in that they allow addition, subtraction, and comparison. For
example, you can add a number of days using the AddDays method:

NewDate = Birthday.AddDays(18);

There is also a Subtract method that subtracts one date from another. However, this method doesn’t
return a Date type, but rather a TimeSpan, which is a data type used to define spans of time. For example:

DateTime Date1 = new Date(2005, 3, 10);
DateTime Date2 = new Date(2005, 3, 5);
TimeSpan Difference;

Difference = Date1.Subtract(Date2);
Label1.Text = Difference.ToString();

294

Chapter 9

12_042583 ch09.qxd 4/4/06 2:47 PM Page 294

This code creates two dates, March 10 and March 5, and then declares a variable of type TimeSpan,
which will hold the difference between the dates. The difference is calculated by using the Subtract
method of the date — because the Date1 variable is a Date type the Subtract method can be used, and
Date2 is passed into this method. The result is that Date2 is subtracted from Date1, and in this case the
result would be 5.00:00:00, which represents 5 days, 0 hours, 0 seconds, and 0 milliseconds.

Now that you have a good base of knowledge to work with, the following Try It Out has you work with
simple data types.

Try It Out Working with Simple Types
1. Open the directory for the Chapter 9 samples, called Chapter09 and located under the direc-

tory where you placed the sample code.

2. Create a new Web Form called SimpleTypes.aspx. Remember to make sure it uses a separate
file for the code.

3. Drag three text boxes, three labels, and a button onto the page, so it looks like Figure 9-1. Make
sure the TextBox and Label controls are in order, so TextBox1 is at the top, followed by
TextBox2, and then TextBox3.

Figure 9-1

4. Double-click the button to create the code-behind file and button click event, and add the fol-
lowing code into the event procedure:

Label1.Text = TextBox1.Text + TextBox2.Text;
Label2.Text = DateTime.Parse(TextBox3.Text).ToString(“dd MMM yyyy”);
Label3.Text = DateTime.Parse(TextBox3.Text).ToString();

5. Save both the Web Form and the code-behind file, and set the Web Form to be the start page
(right-click the page in the Solution Explorer).

6. Press F5 to run the page and enter 3 into the first text box, enter 4 into the second text box, and
enter 12/2/05 into the third text box.

7. Press the button and observe the results. On a machine configured with UK regional settings,
you’ll see Figure 9-2.

295

Code

12_042583 ch09.qxd 4/4/06 2:47 PM Page 295

Figure 9-2

With the regional settings set to USA, Figure 9-3 will appear.

Figure 9-3

How It Works
There are two points to note about this page. The first is that the numbers you entered into the text boxes
haven’t been added as you might expect, and the second is that the date format changes depending
upon the regional settings.

Take a look at the numbers first:

Label1.Text = TextBox1.Text + TextBox2.Text;

The code seems obvious, just adding two numbers, but you have to remember that the Text property of
the TextBox control returns a string. For strings, the addition operator (+) means concatenation, so it
simply joins the strings. To add the strings, you would have to convert them to numbers first, like so:

Label1.Text = Convert.ToInt32(TextBox1.Text) + Convert.ToInt32(TextBox.Text);

Here the Convert class is used to convert the text to numbers, so when the addition is done, the values
are numbers.

296

Chapter 9

12_042583 ch09.qxd 4/4/06 2:47 PM Page 296

For the dates, you have to consider the regional settings of the machine that the web server is running
on — this is where the code is executed. As it happens, when running the VWD web server, the machine
processing the pages is the same as your browser, but on a real web site, this isn’t the case. So take a look
at what the code does. The first line converts the value from the text box into a DateTime type by using
the Parse method, and then it converts it back into a string. The ToString method has an explicit for-
mat, where dd is the day number, MMM is the month name, and yyyy is the year:

Label2.Text = DateTime.Parse(TextBox3.Text).ToString(“dd MMM yyyy”);

The reason for converting to a date and back to a string is to show that parsing the date is system-
dependent. So if you are writing a web site for a company that uses a different date format from yours,
the results you see may not always be what you expect.

The final line of code shows what the default ToString method does:

Label3.Text = DateTime.Parse(TextBox3.Text).ToString();

This simply shows the date and time. Notice that this displays the same value for the date regardless of
the regional settings. The time is shown differently but again that’s because of the regional settings on
the machine. You might like to experiment with your regional settings to see how the output differs. If
you do this, you will need to stop the VWD web server before rerunning the application; you can do this
by selecting the icon in the task tray and clicking Stop from the right mouse-button menu.

One thing you might like to experiment with is what happens if you either leave a text box empty or
enter the wrong data type (for example, entering a string into the third text box for conversion to a
string). Depending on what you enter, you might see a different range of exceptions, a topic that is cov-
ered in more detail in Chapter 15.

Working with Arrays and Collections
Arrays and collections are two sides of the same coin, because they both provide ways of storing multi-
ple copies of data types. For example, consider having to store several names, perhaps the authors of this
book. You could store them in individual strings, but then what if you wanted to print them all? You’d
need a statement for each variable. With an array or a collection, you need only one variable for multiple
items. You can think of arrays as cells in a spreadsheet. A single dimensional array is a single row, with
multiple cells, and a multi-dimensional array is multiple rows, each with multiple cells. Instead of cells,
the term elements is generally used, and the index is the number of the element (the row or column num-
ber to continue the spreadsheet analogy).

Single Dimensional Arrays
Arrays are declared in much the same way as variables, but with the addition of square brackets after
the variable type. For example:

string[] Names;

297

Code

12_042583 ch09.qxd 4/4/06 2:47 PM Page 297

This declares a string array called Names, but it’s an empty array — it doesn’t actually create any spaces
for the array elements. To do this, you use the new keyword, so to store five names you would change
the declaration to the following:

string[] Names = new string[5];

One thing to note is that the index for arrays starts at 0. So this array has 0, 1, 2, 3, and 4, which gives five
entries. The bounds of the array are 0 to 4.

Accessing array values, either to read or assign values, follows the same rules, with the addition of the
square brackets. Within the square brackets, you put the index number of the element required. For
example:

Names[0] = “Dave”;
Names[4] = “Dan”;
NameTextBox.Text = Names[4];

In this example, Dave is the first entry and Dan is the fifth entry. The entries between will be empty
because no values have been set for them.

Trying to access an element that doesn’t exist (anything above 4 in this example) will generate an excep-
tion with the message “Index was outside the bounds of the array.”

Arrays can also be dynamically sized when declared:

string[] Names = {“Dave”, “Chris”, “Chris”, “John”, “Dan”};

Here the array has five elements with the first being assigned to Dave, the second to Chris, and so on.
The curly brackets enclose the list of items for the array.

Multi-Dimensional Arrays
Arrays aren’t limited to one dimension, so you can replicate that spreadsheet type of storage. For exam-
ple, to use an array to store first and last names, you could do this:

string[,] Names = new string[5, 2];
Names[0,0] = “Dave”;
Names[0,1] = “Sussman”;
Names[1,0] = “Chris”;
Names[1,1] = “Hart”;
...
Names[4,0] = “Dan”;
Names[4,1] = “Maharry”;

Here the declaration separates the dimensions by a comma. The number of elements in each dimension
is included in the variable declaration, so the first dimension has five elements (0–4), and the second has
two (0–1). This gives you storage like so:

298

Chapter 9

12_042583 ch09.qxd 4/4/06 2:47 PM Page 298

0 1

0 Dave Sussman

1 Chris Hart

...

4 Dan Maharry

A 4-by-4 array (four rows, four columns) would be declared as follows:

string[,] MyArray = new string[3, 3];

Adding another dimension is as simple as adding a comma and another number. So a three-dimensional
array, with four elements in each dimension would be:

string[,,] MyArray = new string[3, 3, 3];

Like single dimensional arrays, multi-dimensional ones can also be initialized at declaration time:

string[,] Names = {{“Dave”, “Sussman”}, {“Chris”, “Hart”}};

Like the single dimension, curly brackets are used to surround the entries, but there are two sets of
brackets, one for each dimension: the outer set for the first dimension, and the inner set for the second.
The first names, Dave and Chris, are placed in the first dimension, and the last names, Sussman and
Hart, are placed in the second dimension. So this is the same as:

string[,] Names = new string[2, 2];
Names[0,0] = “Dave”;
Names[0,1] = “Sussman”;
Names[1,0] = “Chris”;
Names[1,1] = “Hart”;

Which style you use is a matter of personal preference, because there’s no real difference between them.

Collections
Another way of storing multiple items is to use collections. Collections differ from arrays in that
they are always dynamically allocated, which makes them more suitable for situations where the
amount of data changes frequently. There are different collections for different purposes, stored in the
System.Collections namespace (more on namespaces later), including the following:

❑ ArrayList provides a general collection for objects.

❑ Hashtable provides storage for key/value pairs. A key/value pair is simply the storage of val-
ues, which can then later be identified by a key. In array terms, the key is the index of the array
element, but a Hashtable allows the key to be non-numeric.

❑ Queue provides a first-in, first-out collection, which means that items are taken off the queue in
the same order in which they were placed onto it, just like a real queue — the person who
arrives first gets served first.

299

Code

12_042583 ch09.qxd 4/4/06 2:47 PM Page 299

❑ SortedList provides ordered storage for key/value pairs.

❑ Stack provides a last-in, first-out collection, where items are taken off the stack in the reverse
order in which they were placed onto it. Think of a stack of plates — the last one put onto the
stack is the first off.

❑ StringCollection provides a collection of strings.

There are other collections, but these are the ones you’ll probably use most frequently. Data is added to
collections by calling an Add method, the parameters of which depend upon the collection being used.
For the StringCollection, you simply supply the string to be added. For example:

StringCollection Names = new StringCollection();
Names.Add(“Dave”);
Names.Add(“Chris”);

To access the entries, you use the same method as an array:

NameTextBox.Text = Names[0];

This would return Dave, because the names are added in numerical order.

A HashTable is different because the index isn’t numerical, but rather string-based. With a
StringCollection, the index is a number, and it is assigned automatically, in order of the items added.
With a HashTable, you have to specify the key as well as the item you want to add. For example:

HashTable Names = new Hashtable();
Names.Add(“Dave”, “Sussman”);
Names.Add(“Chris”, “Hart”);

In this example, the first parameter is the key, and the second is the value, which leads to them being
called key/value pairs. You can also add entries without using the Add method:

Names[“John”] = “Kauffman”;

There’s no real difference between using and not using the Add method, although it’s best to use Add if
only because it clarifies what is being done. Without the Add method, the code looks more like an assign-
ment, so you aren’t completely sure whether a new item is being added or if an existing one is being
modified.

To access the entries you use the key:

NameTextBox.Text = Names(“Chris”)

One important point about using HashTables is that the keys must be unique. So in the preceding
example, a HashTable wouldn’t really be suitable for storing the author names, because two of the
authors have the same first name. So this code would fail:

HashTable Names = new Hashtable();
Names.Add(“Chris”, “Ullman”);
Names.Add(“Chris”, “Hart”);

300

Chapter 9

12_042583 ch09.qxd 4/4/06 2:47 PM Page 300

An exception would be raised on the second Add line, because the key has already been used.

Collections, and arrays for that matter, aren’t only useful for storing native types such as strings or inte-
gers. They can also be used to store custom classes, which you will look at later in the chapter. The fol-
lowing Try It Out, however, puts your knowledge of arrays and collections to use.

Try It Out Working with Arrays and Collections
1. Create a new Web Form, called ArraysCollections.aspx.

2. Add a TextBox, a Button, a ListBox, and another TextBox to the form.

3. For the text boxes, set the TextMode property to MultiLine, the Columns property to 50, and
the Rows property to 5. When finished, it should look like Figure 9-4.

Figure 9-4

4. Enter the following code into the Click event for the button:

string splitChars = “ “;
string[] words;

words = TextBox1.Text.Split(splitChars.ToCharArray());

ListBox1.Items.Clear();
for (int wordIndex = words.Length - 1; wordIndex >= 0; wordIndex--)
{

ListBox1.Items.Add(words[wordIndex]);
}

string paragraph = string.Empty;
foreach (ListItem word in ListBox1.Items)
{

paragraph += word.Value + “ “;
}

TextBox2.Text = paragraph;

301

Code

12_042583 ch09.qxd 4/4/06 2:47 PM Page 301

5. Save the files, and set ArraysCollections.aspx as the start page.

6. Press F5 to run the page and enter Wrox United are the best into the first text box.

7. Press the button and you will see the screen shown in Figure 9-5.

Figure 9-5

You can see that the sentence in the first text box has been split into its component words, those words
have been entered into the list box in reverse order, and then the words have been combined into the
second text box. The following section explains how this works.

How It Works
The first two lines of the code simply define variables. The first, splitChars, is a string containing the
characters that will be used to split the sentence, and the second, words, is an array of strings:

string splitChars = “ “;
string[] words;

Next, the sentence entered into the text box is split into an array, using the Split method. Although it
looks like Split is a method of the Text property, remember that the Text property returns a String—
so Split is a method of the String class. The parameter passed into the string is not the splitChars
variable itself, but splitChars converted to a character array (using the ToCharArray method). This is
because a character array is the required type for the Split method, which allows a great deal of flexi-
bility in splitting strings:

words = TextBox1.Text.Split(splitChars.ToCharArray());

At this stage, the words array now contains a separate entry for each word in the sentence, ready for
addition into the list box. Before the words are added to the list, the existing Items collection is cleared,
which stops the list from getting ever bigger if the button is clicked multiple times. Then you loop
through the words array, but loop backwards, adding each word into the list:

ListBox1.Items.Clear();
for (int wordIndex = words.Length - 1; wordIndex >= 0; wordIndex--)

302

Chapter 9

12_042583 ch09.qxd 4/4/06 2:47 PM Page 302

{
ListBox1.Items.Add(words[wordIndex]);

}

Don’t worry too much about the exact syntax of the looping — you get to that later in the chapter.

After the words are in the list, they can be removed again, into another string. This has an initial value
that might seem unusual —String.Empty— but this is quite a common thing for initializing strings:

string paragraph = String.Empty;

String.Empty is a special value that indicates that the string is empty. This is different from a string
assigned to “”, which has a value, albeit a string of zero length that doesn’t contain any characters. The
reason for having a distinction between a zero-length string and an empty string is that it allows you to
detect whether the string has been set or changed from its initial value. One of the reasons for declaring
an initial value is that without it you get a warning in VWD, but on a later line, indicating that the
paragraph variable is being used before it has been set. In this case, it doesn’t matter, but reducing
warnings in VWD means it’s easier to spot warnings and errors that do matter.

Now loop through the Items collection of the list box, and the Items collection contains ListItem
objects. The Value of each ListItem is simply appended to the paragraph string, along with a space:

foreach (ListItem word in ListBox1.Items)
{

paragraph += word.Value + “ “;
}

Finally, the paragraph is displayed in the second text box:

TextBox2.Text = paragraph;

This may seem an overly lengthy way to reverse the words in a sentence, but the point of the exercise is
to show that there are different ways of working with arrays and collections.

Deciding Whether to Use Arrays or Collections
There are pros and cons of using both arrays and collections, and the decision of which to use can some-
times be confusing. In general, if the number of elements isn’t going to change, an array is best — it’s
efficient and fast, and it provides easy access to the elements. If you need to change the number of ele-
ments, or insert elements between others, then a collection is best.

Both arrays and collections can, like some of the data objects, be used for data binding. For example, the
Wrox United shop could have a list of delivery methods in a drop-down list:

string[] delivery = {“Post”, “Courier”, “International”}
DeliveryDropDownList.DataSource = delivery;
DeliveryDropDownList.DataBind();

Here the array is simply used as the source to which to bind the list. Collections can also be used in this
manner. Data binding was covered in Chapter 7.

303

Code

12_042583 ch09.qxd 4/4/06 2:47 PM Page 303

Enumerations
Enumerations are a custom data type where the value can be one of a number of values. This is easier to
see with an example, so take a look at the Calendar control. This is a complex control and has many
properties to allow its look to be changed, one of which is the DayNameFormat (see Figure 9-6).

Figure 9-6

The format must be one of five values — Full, Short, FirstLetter, FirstTwoLetters, and Shortest — and no
other, so there needs to be a way of ensuring only these values can be selected. This is where enumera-
tions come in because enumerations restrict the variable to a set of known values. The syntax for creat-
ing an enumeration is as follows:

public enum EnumerationName
{

enumeration values
}

What this does is declare a new type, with the name of the type being whatever name you give it as
EnumerationName. This type is a special type where the values can only be one of those in the supplied
list. For example, the DayNameFormat is an enumeration, which has been created like so:

public enum DayNameFormat
{

Full,
[Short],
FirstLetter,
FirstTwoletters,
Shortest

};

The values used in the enumeration are separated by a comma. Because this is a new type, it can be used
in variable declarations:

304

Chapter 9

12_042583 ch09.qxd 4/4/06 2:47 PM Page 304

DayNameFormat dayFormat;
dayFormat = DayNameFormat.FirstLetter;

This declares a new variable of the enumeration type —DayNameFormat. Then it assigns a value to the
variable, and the value assigned is one of the defined values. This shows as the enumeration name and
value separated by a period. What’s great is that you get IntelliSense, so you can pick from a list of the
known values when assigning the variable.

Enumerations provide a way to have a human-readable value associated with a number. In the preced-
ing example, no numbers are explicitly assigned, so they are created automatically, starting at 0. So here,
Full would be 0, Short would be 1, and so on. The Short value was enclosed within square brackets
when it was declared because Short is also a data type. Using the square brackets tells .NET that this is
the custom name rather than the data type. If you don’t want to use the default numbers for the values,
you can specify them yourself. For example:

public enum DeliveryType
{

Post,
Courier = 4,
International

};

Here, the Post would be 0 and the Courier has an explicit value of 4. Because International doesn’t
have an explicit value, automatic numbering starts again, at the last number used, so it would have a
value of 5.

Enumerations are used when you need to allow one of a limited number of values for a selection. It’s used
extensively in the ASP.NET server controls to allow only selected values, often allowing the behavior to
change. The TextBox, for example, has a TextMode property that can be one of SingleLine, MultiLine,
or Password. How the TextBox is displayed changes depending on which value is selected. When creat-
ing code yourself, for the day-to-day running of an application, there is perhaps less use for enumerations
(the Wrox United site doesn’t use any Enums), but they can be useful, perhaps when you’re building cen-
tral libraries of code.

Constants
Constants are another way to provide a human-readable form for values, but unlike enumerations, con-
stants are a single value only and as their name suggests, they are constant and never change. This is use-
ful for situations where you need to use a fixed value. Using a constant means you can give that value a
name and use the name throughout the code. The value is defined once, meaning it is easy to change, and
because the readable name is used throughout the code, the code becomes more maintainable.

Even if the value is only used once, it’s sensible to use constants because they provide a way to central-
ize this type of fixed value. The syntax for a constant is as follows:

private const Type ConstantName = Value;

const is what defines this as a constant, and private is how visible the constant is — you look at this
later in the chapter. The rest of the declaration is just like any other variable, the difference being that the
value is constant, and therefore cannot be changed.

305

Code

12_042583 ch09.qxd 4/4/06 2:47 PM Page 305

For example, in the Wrox United web site there is a shopping cart to store items bought from the shop.
Members of the fan club receive a 10% discount, so this value is stored as a constant:

private const single MemberDiscountPercentage = 0.1;

When the total price of the order is calculated this constant can be used, just like any other variable:

MemberDiscount = SubTotal * MemberDiscountPercentage;
Total = SubTotal – MemberDiscount;

You look at the implementation of the shopping cart later in the chapter.

Statements
Statements are where the real action of code is, allowing you to control the program. You have seen
many statements in code already in the book, and at the time it wasn’t convenient to explain what they
meant or how they worked. Now is that time, because statements are what drive your code. Statements
are what allow you to structure your code, to make decisions, and to repeat actions a number of times.
For example, to make a decision, you use the if statement, which can be used to allow the code to react
to external criteria. Take the Wrox United checkout page, where members of the fan club receive a dis-
count. This is done with a decision, which goes something like this:

if (person is a member of the fan club)
{

give that person a discount
}

The if is the C# statements that test a condition — or ask a question. Think of the program as a person
deciding what to do. The code within the curly braces is the code that is run if the condition is true.

For repeating tasks, there are statements called loops, and there are different types of loops for different
tasks. Some (for) repeat a fixed number of times, whereas others (while) repeat until a condition is met,
or while a condition is true.

Before conditions and loops can be examined in more detail, some other topics need to be covered.

Operators
The first thing to look at is operators, which are how values are manipulated. If you can remember back
to your math lessons in school, this will be familiar. You’ve already seen the assignment operator, the
equals sign (=), in action earlier in the chapter, and this simply assigns a value to a variable. The next
several sections discuss how the remaining operators allow you to carry out predefined operations.

Concatenation
Concatenation is used to join strings. For example, consider if you had the first and last names in a multi-
dimensional array (as shown when you looked at arrays), and you wanted to have a single variable with
the full name. You would use the concatenation operator, the plus sign (+), to do this:

string FullName;
FullName = Names[0,0] + Names[0,1];

306

Chapter 9

12_042583 ch09.qxd 4/4/06 2:47 PM Page 306

This takes the last name and joins it to the end of the first name. However there is no space separating
them, so the code could be:

FullName = Names[0,0] + “ “ + Names[0,1];

Now you have two concatenations taking place. First a space is added and then the last name. You could
have also used another form of the assignment operator:

FullName = Names[0,0];
FullName += “ “;
FullName += Names[0,1];

The use of += simply says take the variable on the right of the assignment and append to it the contents
on the left. This also works with arithmetic operators, which are the subject of the next section.

Arithmetic Operators
Arithmetic operators allow you to perform arithmetic on variables: addition, subtraction, and so on. The
following table displays the arithmetic operators:

Operator Action

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

The standard mathematical operators are easy to understand — they add, subtract, multiply, and divide
in the way you’d expect:

int n1 = 6;
Single n2 = 14.3;
double n3;

n3 = n1 + n2; // results in: 20.3
n3 = n2 – n1; // results in: 8.3
n3 = n1 / n2; // results in: 0.41958
n2 = n1 * n2; // results in: 85.8

Modulus divides two numbers and returns the remainder. One of the classic uses for this is to test if a
number is odd or even:

int n1;

n1 = 1 % 2; // results in: 1
n1 = 2 % 2; // results in: 0
n1 = 3 % 2; // results in: 1
n1 = 14 % 2; // results in: 0

307

Code

12_042583 ch09.qxd 4/4/06 2:47 PM Page 307

So if a number % 2 is 0, then it’s even.

Like concatenation, operators can be combined with assignment. In order to add 1 to a number, you can
do this:

int n1 = 4;
n1 = n1 + 1;

This says take n1, add 1 to it, and assign that value back to n1. Remember that assignment works by tak-
ing the value on the right of the = and assigning that to the variable of the left of the =. This works even
if the variable being assigned is on the right because the right side is calculated first. An alternative to
this is to combine operators:

int n1 = 4;
n1 += 1;

This has the same result as the first example although it looks very different. In fact it’s just a shortcut
that allows the addition operator to be combined with the assignment. It simply says take the n1 vari-
able and add 1 to it. The other arithmetic operators can be used in the same way.

The subtraction operator is also used for negation, like so:

int n1;
int n2;

n1 = -3;
n2 = -n1; // results in: 3

Negation can be used on any numeric type.

Comparison Operators
Comparison is how decisions are made in code. You’ll find out about the mechanism of that in due
time, but for now, all you need to know is that the operators define what comparison is made. The
comparison operators are shown in the following table:

Operator Action

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Equal to

!= Not equal to

308

Chapter 9

12_042583 ch09.qxd 4/4/06 2:47 PM Page 308

Comparison always involves an expression — the term for all operators and operands involved in the
comparison. The result of a comparison expression is a Boolean value — it is either true or false. You
look at the mechanics of using expressions in decisions in a while, but these operators work just like the
ones you’ve already seen. If you have two variables, n1 with a value of 4 and n2 with a value of 5, the
following could be used as expressions:

n1 > n2 // results in: false
n2 > n1 // results in: true

For numbers, the comparison is obvious, but for other data types it might not be. Dates, for example,
work in a similar way, but the test is whether one date is earlier or later than another. For example:

DateTime d1 = new DateTime(2005, 10, 1); // 1 October 2005
DateTime d2 = new DateTime(2004. 1, 2); // 2 January 2004

d1 > d2 // results in: true

The greater than operator tests to see if the first date is later than the second, so the result is true. For
equality tests, two ==s are used together:

if (d1 == d2)

The same comparison operators are used with objects, but with objects, you check to see if two object
references point at the same object. The != operator does the opposite, checking to see if two object
references point at different objects. This is useful when you’re dealing with objects, and many of the
scenarios where this is used are covered in later chapters. However, it’s worth showing an example here.
Because the concept of databases has already been covered, we can use that in this example. When you
use the data controls on pages, you get a lot of functionality by just dropping a control onto a page and
setting a few properties, but there are occasions where you need to explicitly deal with a database, and
this becomes truer as you gain experience and write more complex applications. The checkout for Wrox
United is one case, where the items from the shopping cart are written to the database. For this a
SqlConnection object is used, which provides a way to connect to a specific database. For example:

SqlConnection conn = new SqlConnection(“ . . .”);
conn.Open();

// insert the checkout items

conn.Close();

This code fragment opens a database connection, inserts the checkout items, and then closes the connec-
tion. However, if there is an error when opening the connection, the conn variable wouldn’t contain an
active connection, so the Close would fail. This is where object tests are used, so the Close could be
modified to the following:

if (conn != null)
conn.Close();

If an error occurs, conn wouldn’t be assigned a value and would be null, so conn is tested before being
closed. If it is not null, the connection can be closed. You’ll learn more about this topic in Chapter 15.

309

Code

12_042583 ch09.qxd 4/4/06 2:47 PM Page 309

Logical Operators
Logical operators allow the combination of expressions. The operators are as follows:

Operator Actiond

&& True if both sides of the expression are true.

|| True if either side of the expression is true, or if both sides of the
expression are true.

^ True if only one side of the expression is true.

! Negates the expression.

All except ! require two expressions, in the following form:

LeftExpression Operator RightExpression

The following table should make the result more obvious.

Operator LeftExpression RightExpression Result

&& true true true

true false false

false true false

false false false

|| true true true

true false true

false true true

false false false

^ true true false

true false true

false true true

false false false

One important thing to know about testing expressions is that when you have multiple expressions, not
all of them might be evaluated because expression testing can stop if one of the expressions can guaran-
tee a result. For example, consider the following code:

310

Chapter 9

12_042583 ch09.qxd 4/4/06 2:47 PM Page 310

string Name = “Dave”;

if (Name == “Dave” || Name == “Dan”)
{

// name is either Dave or Dan
}

Here, Name is first checked to see if it is Dave. It is, so the second expression (the check for Dan) is never
done — it’s not needed because it won’t affect the result. For example, imagine instead of a simple test
for a name, you called a function that updated a database:

if (User.IsInRole(“Admin”) && UserAudit(“Admin”)) Then
‘ user is an admin and their details have been updated

End If

This would only call the UserAudit function if the user is in the Admin role. Using && means that if the
first part of the test fails, there is no point evaluating the second part, so it is never run.

Another time when this is useful is when you need to see if a property of an object has a value — you only
want to check if the object actually exists, not if it is set to null. For example, consider the following code,
where data is fetched from a database and then some action needs to be performed only if some rows
were returned:

SqlDataReader rdr;
rdr = DataLayer.GetProducts();

if (rdr != null && rdr.HasRows)

Assume that the database access fails for some reason, and rdr is set to a null value — that is, null. First
the check for null is done, and this test returns false—rdr is null— and because it is false, the second
test isn’t done. There’s no need because the first is false and the entire expression can never be true.

Operator Precedence
Operators aren’t limited to just one or two expressions, and they can be combined in a multitude of
ways. Before doing this, however, you need to understand that there is an order of precedence, so the
result you get might not be what you expected. This is the same as the order of preference you learned in
math all those years ago. Consider this simple expression:

1 + 2 * 3

This returns 7 because multiplication has a higher precedence than addition. You can use parentheses to
force a change in order:

(1 + 2) * 3

This returns 9 because the expression in parentheses is evaluated first. It’s always a good idea to include
parentheses in your expressions because it makes your intentions clear, and this is certainly a good thing
when you (or someone else) looks at your code later.

311

Code

12_042583 ch09.qxd 4/4/06 2:47 PM Page 311

If you don’t use parentheses, the order of precedence is as follows, in descending order:

❑ Unary negation (-)

❑ Multiplication and division (*, /)

❑ Modulus (%)

❑ Addition and subtraction (+, -) and string concatenation (+)

❑ Arithmetic bitshift (<<, >>)

❑ Comparison (=, <>, <, <=, >, <=)

❑ Negation (!)

❑ Conjunction (&&)

❑ Disjunction (||, ^)

This chapter hasn’t covered all of these operators because some of them you won’t use very often, or
they are used in more advanced techniques. They were included in the preceding list just so that you
know where they fit into the order.

Decisions
Decisions are how you make code react to data, usually from a database or user input. You’ve already
seen plenty of decisions throughout the book, and in this chapter, logical operators covered how expres-
sions play an important part of the decision-making process. Decisions can be made in two ways, and
which way you use depends on the number of values an expression can be. For example, if an expres-
sion can return one of two values (true or false), the if statement is used. If the decision is a selection
among a number of choices (perhaps the delivery method from the Wrox United shop), the switch
statement is used.

Single Selections
Single selections are based on the if statement, which always has two parts. The first is the expression
being tested, which will result in a true or false value, and the expression is always contained with
parenthesis. The second is the block of code to be executed if the expression is true. The syntax is as
follows:

if (condition)
// code to run if condition is true

This syntax is suitable if there is only one line of code to run if the condition is true. If there are multiple
lines of code, you need to enclose the lines of code within curly brackets. For example:

if (condition)
{

// code to run if condition is true
// more code to run
// yet more code

}

312

Chapter 9

12_042583 ch09.qxd 4/4/06 2:47 PM Page 312

The preceding two examples test a single condition and only run code if the condition is true. It is
important to understand that the multiple lines of code to be run must be enclosed within curly
brackets — the indentation doesn’t have anything to do with the actual code run. For example,
consider the following:

if (User.IsAuthenticated)
MemberDiscount = 0.01;
JoinFlag = true;

In the preceding code, if the IsAuthenticated property of the User object is true, then the
MemberDiscount is set to 10%. Even though the JoinFlag line is indented the same as the member dis-
count line, it is not part of the if statement —JoinFlag will always be set to true, whether or not the
user is authenticated. In effect, this code is as follows:

if (User.IsAuthenticated)
MemberDiscount = 0.01;

JoinFlag = true;

To ensure that both lines are part of the if statement, they should be enclosed within curly brackets:

if (User.IsAuthenticated)
{

MemberDiscount = 0.01;
JoinFlag = true;

}

Some people use these curly brackets even if they only have a single line of code to be run for the if state-
ment. It doesn’t slow the code down at all, and it does make your intentions explicitly clear. For example:

if (User.IsAuthenticated)
{

MemberDiscount = 0.01;
}
JoinFlag = true;

Another form of selection is as follows:

if (condition)
// code to run if condition is true

else
// code to run if the condition is false

This tests a single condition but has code for both the true and false situations. This is only suitable if
both the true and false pieces of code have a single line to run, but the use of the curly braces can be
used in either of the code blocks:

if (condition)
{

// code to run if condition is true
// more code to run

}
else

// code to run if the condition is false

313

Code

12_042583 ch09.qxd 4/4/06 2:47 PM Page 313

Alternatively, you could write the following:

if (condition)
// code to run if condition is true

else
{

// code to run if the condition is false
// more code to run

}

Yet another way you could write it is as follows:

if (condition)
{

// code to run if condition is true
// more code to run

}
else
{

// code to run if the condition is false
// more code to run

}

All of these examples show an either/or situation, with just two blocks of code. For multiple tests, you
can use the following:

if (condition)
// code to run if condition is true

else if (condition1)
// code to run if condition1 is true

else
// code to run if no conditions were true

There can be any number of else if conditions.

Consider Wrox United, where the club sends out a newsletter, but only to those fan club members who
have ticked the check box when they entered their details. The user settings are stored in the Profile
object, which was shown in Chapter 5:

if (Profile.Mailings == true)
// send the newsletter to this person

This is a simple case, where there is only one expression being tested, and one set of code to run.

If some code needs to be run when the expression is false, the else statement can be used:

if (Profile.Mailings == true)
// send the newsletter to this person

else
// don’t send the newsletter

314

Chapter 9

12_042583 ch09.qxd 4/4/06 2:47 PM Page 314

The else and if statements can be used together to choose among several different expressions. For
example:

if (Profile.IsNewUser)
// send introductory mail

else if (Profile.Mailings == true)
// send the newsletter to this person

else
// don’t send the newsletter

In this example, the expressions first check to see if the member is a new user — that is, if they have only
just joined and haven’t had any mailings yet. If so, the introductory mail is sent. If the first expression is
false, that is they aren’t a new user, then the next expression is checked — do they require mailings? If
so, then that code block is run, and if none of the expressions are true, the else block is run. If a condi-
tion tests true, the appropriate code block is run and no more conditions are tested — the if statement
ends.

Multiple Selections
For selections where the expression can be one of a number of possible answers, the if statement can
become unwieldy. For example, consider the Wrox United shop where you can buy a range of branded
merchandise. Currently items are sent using the standard postal service, but what if the club wanted to
offer different delivery methods, perhaps by way of a drop-down list:

string[] delivery = {“Next Day Post”, “3 Day Post”, “Courier”, “International”};
DeliveryDropDownList.DataSource = delivery;
DeliveryDropDownList.DataBind();

Maybe the data is from an array, or more likely from a database where the delivery type and associated
cost are both included. When the total price is calculated, though, different action needs to be taken —
perhaps to instruct the packing department which box type to use, or maybe to interface directly with
the delivery company’s tracking system. Using the if statement would result in the following code:

string del = DeliveryDropDownList.SelectedValue;
if (del == “Next Day Post”)

// pack in a normal box and stick lots of stamps on it
else if (del == “3 Day post”)

// pack in a normal box and stick one stamp on it
else if (del == “Courier”)

// pack in a courier specific box and book a pickup
Else

// pack in a large create and take to the freight company

You can see that all those else if statements and the layout make this hard to read. In situations like
this, it’s best to use the switch statement, which would turn the preceding code into the following:

switch (DeliveryDropDownList.SelectedValue)
{
case “Next Day Post”:

// pack in a normal box and stick lots of stamps on it
break;

case “3 Day post”:

315

Code

12_042583 ch09.qxd 4/4/06 2:47 PM Page 315

// pack in a normal box and stick one stamp on it
break;

case “Courier”:
// pack in a courier specific box and book a pickup
break;

default:
// pack in a large create and take to the freight company
break;

}

This code is much neater, easier to read, and less error prone. It works in a similar way to the previous
example, where the expression is on the first line — the selected value from the drop-down list. This is
then compared to each of the values in the case statements, starting at the top and working down. The
first match causes the code block under that case statement to be executed, and all other case state-
ments are ignored. If there is no match, the code block under the default statement is run.

The switch statement allows matching multiple selections or ranges. The syntax for this is as follows:

switch (condition)
{
case test1:
case test2:

// code to run if condition matches test1 or test2
break;

case test3:
case test4:
case test5:

// code to run if condition matches test3, test4, or test5
break;

default:
// code to run if the condition matches no tests
break;

}

In this syntax, the same block of code will be run for tests 1 and 2, as will the same code for tests 3, 4,
and 5. Anything that doesn’t match these tests will run the code under the default section.

Loops
Loops provide a way to repeat actions, either a fixed number of times or until some condition is met.
The decision of which loop to use depends on whether you know in advance how many times you need
to loop, or whether some external factor influences this. For example, when a DataReader object pro-
vides a way to read through some records from a database, this has a Read method that returns false
when there are no more records. This is a case of not knowing in advance the number of times you need
to loop.

316

Chapter 9

12_042583 ch09.qxd 4/4/06 2:47 PM Page 316

The while Loop
To perform looping until some condition is met, you can use the While or Do loops, both of which are
dependent upon an expression. Take the While loop first, using the case of data from a database:

SqlConnection conn = new SqlConnection(“...”);
SqlCommand cmd = new SqlCommand(“SELECT * FROM Products”, conn);
SqlDataReader rdr = cmd.ExecuteReader();

while (rdr.Read())
{

// do something with the data record
}
rdr.Close();

Ignore the SQL statement, because it’s not that important for this example. All that’s important is that a
number of records will be returned when the SQL command is run. This statement is simple — the
while loop continues execution of its code block while the condition is true. The Read method returns
true if it has a record, and false if it doesn’t, so this loop continues until there are no more records. So,
the first time the while statement is encountered, the expression is tested. If it is true, the code in the
while block is executed, and when the closing curly bracket (}) is encountered, the loop starts again,
testing the expression once more. This continues until the expression is false, in which case, processing
continues with the statement after the closing curly bracket. This happens regardless of the initial value
of the condition, so if the condition is initially false, the contents of the loop are never executed.

If you need to stop processing a loop, that is, break out of it in the middle, you can use the break state-
ment. For example:

while (rdr.Read())
{

if (rdr[“ItemCost”] < 0)
break;

}

Like the if statement, while can be used without curly braces if the code to be run consists of only a
single line. For example:

while (rdr.Read())
Console.WriteLine(rdr[“Column1”].ToString());

Because the code block only consists of a single line, no brackets are needed. However, this could be
written as follows:

while (rdr.Read())
{

Console.WriteLine(rdr[“Column1”].ToString());
}

317

Code

12_042583 ch09.qxd 4/4/06 2:47 PM Page 317

Brackets would be needed if multiple lines were to be run within the code:

while (rdr.Read())
{

Console.WriteLine(rdr[“Column1”].ToString());
Console.WriteLine(rdr[“Column2”].ToString());

}

The while loop tests the condition before the loop starts, which means that the code block for the loop
might never get executed. To guarantee at least one execution, you can use the do loop with the condi-
tion at the end:

do
// loop contents

while (condition);

Or if you need multiple lines run, you use the following:

do
{

// loop contents
}
while (condition);

Because the condition is not tested until after the loop contents have been executed the first time, this
type of loop is not suitable for use with a DataReader object. For example, you cannot do this:

do
{

if (rdr[“ItemCost”] < 0)
break;

}
while (rdr.Read());

Although this is perfectly valid, the code will fail unless Read has already been called. The reason for
this is that when a DataReader object is first opened, it doesn’t point at the first record, but rather before
it. So the act of calling Read moves to the first record. In the preceding code, if no Read has been called,
the access to rdr[“ItemCost”] will fail because there will not be a valid record.

The for Loop
The for loop is useful when the number of iterations is known, and is most often used when counting
through numeric values or performing some action a set number of times. For example:

for (int counter=0; counter < 10; counter++)
‘ loop code

The syntax for this is as follows:

for (starting condition; test condition; counter change)

318

Chapter 9

12_042583 ch09.qxd 4/4/06 2:47 PM Page 318

The starting condition sets the starting point of the loop. It can include the variable declaration, but it
doesn’t have to (although this does affect the scope of the variable — a topic you’ll be seeing later in the
“Variable Scope and Lifetime” section). For example, consider the following loop:

for (int counter=0; counter < 10; counter++)

This loop is equivalent to the following loop:

int counter;
for (counter=0; counter < 10; counter++)

The loop will continue while the test condition is true, so the preceding examples will loop while the
counter variable is less than 10. The counter change section changes the counter value. In the exam-
ples, it adds one each time around the loop (remember that ++ is a shortcut for adding 1 to a variable).
Loops can go down as well as up. Here the counter starts at 10 and decreases by 1 every time around
the loop (-- subtracts 1 from a variable) — the loop will stop when counter reaches 0:

for (int counter=10; counter > 0; counter--)

Like the while and do loops, for loops can be exited during processing:

for (int counter=0; counter < 10; counter++)
{

// loop code

if (SomeFunction(counter))
break;

// loop code
}

Here, if SomeFunction returns true, the loop is executed directly. Any code below the break statement
is ignored.

The foreach Loop
The foreach loop is used for looping through collections or arrays and has a variety of uses, and unlike
the for loop, you don’t need to know in advance the number of times the loop will run. Regardless of
what you’re looping through, the syntax is the same:

foreach (Type LoopVariable in Collection)
{

// code to run in loop
}

The parts of this are as follows:

❑ Collection is the object containing the items to be looped through. It doesn’t have to be a
collection (from System.Collections), but it can be an array.

❑ LoopVariable is the name of the variable that will be assigned to each individual entry from
Collection.

❑ Type is the data type of LoopVariable.

319

Code

12_042583 ch09.qxd 4/4/06 2:47 PM Page 319

For example, consider the following code that loops through a string array:

string[] Names = {“Dave”, “Dan”, “Chris”, “Chris”, “John”};
string AllNames;

foreach (string Name in Names)
AllNames += Name + “ “;

This first creates an array of names, plus a variable to hold all of the names concatenated. When the loop
starts, Name is assigned to the first entry in the array, Dave, and this is appended to the AllNames vari-
able. The next time around the loop, Name is assigned to the next entry in the array, Dan, and so on.
When all items in the array have been processed, the loop ends.

Like the for statement, there is a second form of this loop where the loop variable is declared outside of
the loop:

string Name;
foreach (Name in Names)

AllNames += Name + “ “;

For the purposes of the loop, this is exactly the same as declaring the variable in the loop itself, but it
does affect the scope of the variable (more on that in the “Variable Scope and Lifetime” section).

Collections and lists are used a lot in .NET programming, so foreach is very useful. In Wrox United,
foreach is used as part of the shop, when the checkout is reached (this is Checkout.aspx). The shop
allows you to buy multiple items, and these are put into a shopping cart — this is a custom object called
Cart, which contains a collection of CartItem objects. You look at the creation of the shopping cart later,
but when you check out, the items in the cart need to be added to the database, and because it is a collec-
tion, foreach is ideal.

This chapter won’t go into the checkout function in complete detail, but here’s what you have:

❑ A ShoppingCart object that contains the cart. This is stored in the Profile as Cart (the profile
is covered in Chapter 5).

❑ A collection of CartItem objects. This is stored as the Items property of the ShoppingCart.

To iterate through the items in the cart, you could use the following code:

foreach (CartItem item in Profile.Cart.Items)
{
}

Each time through the loop, item would contain the actual item from the cart. When the user proceeds
to the checkout, you need to do the following:

❑ Create an order in the database, adding it into the Orders table.

❑ Loop through the items in the cart and add each item to the OrderLines table.

320

Chapter 9

12_042583 ch09.qxd 4/4/06 2:47 PM Page 320

This sounds like a lot of work, and is actually quite a lot of code (around 80 lines, including comments),
but it is really simple. It builds on some of the data techniques discussed in Chapter 8, and though those
aren’t covered in detail here, the code should be familiar. Here’s where the actual items from the cart are
added to the database:

cmd.CommandText = “INSERT INTO OrderLines(OrderID, ProductID, Quantity, Price) “ +
“VALUES (@OrderID, @ProductID, @Quantity, @Price)”;

cmd.Parameters.Clear();
cmd.Parameters.Add(“@OrderID”, SqlDbType.Int);
cmd.Parameters.Add(“@ProductID”, SqlDbType.Int);
cmd.Parameters.Add(“@Quantity”, SqlDbType.Int);
cmd.Parameters.Add(“@Price”, SqlDbType.Money);

cmd.Parameters[“@OrderID”].Value = OrderID;
foreach (CartItem item in Profile.Cart.Items)
{

cmd.Parameters[“@ProductID”].Value = item.ProductID;
cmd.Parameters[“@Quantity”].Value = item.Quantity;
cmd.Parameters[“@Price”].Value = item.Price;

cmd.ExecuteNonQuery();
}

The first line simply sets the SQL statement used to insert the items, and the following lines create the
parameters and set the OrderID. The object cmd is a SqlCommand object, with an associated connection.
Within the loop, the details of each item are copied to the parameters, and then the query is executed —
this occurs for each order item, so the SQL statement happens each time. After all of the items have been
added to the database, the Items collection of the shopping cart is cleared.

Give all of this looping and testing a try, by working out how well Wrox United is doing. The following
Try It Out has you loop through the fixtures to see how many goals have been scored and how many
games have been won, lost, or drawn.

Try It Out Looping and Making Decisions
1. Create a new Web Form called Decisions.aspx and set this as the start page. Remember to place

the code in a separate file when you create the Web Form.

2. Add six labels and some text, so the page looks like Figure 9-7. You can just type the text directly
onto the page, and make sure you add the labels in top to bottom order, so Label1 is at the top
and Label6 is at the bottom.

Figure 9-7

321

Code

12_042583 ch09.qxd 4/4/06 2:47 PM Page 321

3. View the code file for the page, and at the top of the file add the following two using state-
ments (don’t worry about what these are — they’re covered later in the “Namespaces” section):

using System.Data;
using System.Data.SqlClient;

4. Create the Page_Load event procedure by double-clicking the form in design view. In the
Page_Load event, add the following code (remember you can copy it from the finished samples
if you don’t want to type it all):

SqlConnection conn = new
SqlConnection(ConfigurationManager.ConnectionStrings[
“WroxUnited”].ConnectionString);

SqlCommand cmd = new SqlCommand(“select * from Fixtures”, conn);
SqlDataReader rdr;

int wins = 0;
int losses = 0;
int draws = 0;
int goalsFor = 0;
int goalsAgainst = 0;
int winRatio;

conn.Open();
rdr = cmd.ExecuteReader(CommandBehavior.CloseConnection);

while (rdr.Read())
{

goalsFor += Convert.ToInt32(rdr[“GoalsFor”]);
goalsAgainst += Convert.ToInt32(rdr[“GoalsAgainst”]);

if (goalsFor > goalsAgainst)
wins++;

else if (goalsFor < goalsAgainst)
losses++;

else
draws++;

}

Label1.Text = wins.ToString();
Label2.Text = losses.ToString();
Label3.Text = draws.ToString();
Label4.Text = goalsFor.ToString();
Label5.Text = goalsAgainst.ToString();

if (losses == 0)
{

Label6.Text = “No losses - a perfect season.”;
return;

}

winRatio = Convert.ToInt32((wins / losses) * 10);

switch (winRatio)

322

Chapter 9

12_042583 ch09.qxd 4/4/06 2:47 PM Page 322

{
case 0:

Label6.Text = “No wins. Relegation is a certainty.”;
break;

case 1:
case 2:

Label6.Text = “Less than 20%. Very poor.”;
break;

case 3:
case 4:
case 5:

Label6.Text = “Under half. Could do better.”;
break;

case 6:
case 7:

Label6.Text = “Winning more than losing. Excellent.”;
break;

default:
Label6.Text = “A high ratio - near the top of the table.”;
break;

}

5. Modify the web.config file, changing the <connectionStrings/> section so that it is the
same as the one for the Wrox United site. You can copy this section from web.config in the
Wrox United site to save the typing — it’s the section that looks like this:

<connectionStrings>
<add name=”WroxUnited” connectionString=”Data Source=.\SQLEXPRESS;

AttachDbFilename=|DataDirectory|WroxUnited.mdf;Integrated Security=True;User
Instance=True”/>

</connectionStrings>

6. Save the files and run the page to see Figure 9-8.

Figure 9-8

The output isn’t spectacular, but it’s the code that’s interesting, so take a look at how it works.

323

Code

12_042583 ch09.qxd 4/4/06 2:47 PM Page 323

How It Works
First you have the variable declarations, starting with a connection to the database, a command to fetch
the fixtures, and a reader to iterate through the fixtures:

SqlConnection conn = new
SqlConnection(ConfigurationManager.ConnectionStrings[
“WroxUnited”].ConnectionString);

SqlCommand cmd = new SqlCommand(“select * from Fixtures”, conn);
SqlDataReader rdr;

Next you have the variables to hold the counts of the wins, losses, draws, and goals scored, and the win
ratio:

int wins = 0;
int losses = 0;
int draws = 0;
int goalsFor = 0;
int goalsAgainst = 0;
int winRatio;

After the variables are declared, the database is opened and the data fetched:

conn.Open();
rdr = cmd.ExecuteReader(CommandBehavior.CloseConnection);

With the data reader full of data, the loop is started; the Read method returns a Boolean value of false
when it has read the last record. This will continue until there are no more records:

while (rdr.Read())
{

Within the loop, the totals are incremented, the values from the reader being converted into integers
before being used to increment the totals:

goalsFor += Convert.ToInt32(rdr[“GoalsFor”]);
goalsAgainst += Convert.ToInt32(rdr[“GoalsAgainst”]);

Now comes the first decision, incrementing the number of wins, losses, and draws:

if (goalsFor > goalsAgainst)
wins++;

else if (goalsFor < goalsAgainst)
losses++;

else
draws++;

}

After the loop has finished, the totals can be displayed in the labels:

Label1.Text = wins.ToString();
Label2.Text = losses.ToString();

324

Chapter 9

12_042583 ch09.qxd 4/4/06 2:47 PM Page 324

Label3.Text = draws.ToString();
Label4.Text = goalsFor.ToString();
Label5.Text = goalsAgainst.ToString();

The ratio of wins to losses needs to be counted next (despite the fact that given the team’s performance
you can almost assume this will be 0). However, before doing the calculation, you need to ensure that
the number of losses isn’t 0, otherwise a division-by-zero exception would occur. So if the number of
losses is 0, a message is displayed and Return forces the Page_Load event handler to exit:

if (losses == 0)
{

Label6.Text = “No losses - a perfect season.”;
return;

}

If the team has lost at least one match, the ratio is calculated — this will be a number between 0 and 10 to
represent the percentage groups:

winRatio = Convert.ToInt32((wins / losses) * 10);

Now the message can be displayed depending on the win ratio. Remember that the case statements are
tried in the order in which they are declared, so the default will match a win ratio of higher than 80%:

switch (winRatio)
{

case 0:
Label6.Text = “No wins. Relegation is a certainty.”;
break;

case 1:
case 2:

Label6.Text = “Less than 20%. Very poor.”;
break;

case 3:
case 4:
case 5:

Label6.Text = “Under half. Could do better.”;
break;

case 6:
case 7:

Label6.Text = “Winning more than losing. Excellent.”;
break;

default:
Label6.Text = “A high ratio - near the top of the table.”;
break;

}

All of these statements, the loops and decisions, are fairly simple on their own, but together they show
you the power of what code can do. You can build up functionality with more and more statements, as
the complexity of your applications requires.

The next section introduces the topic of namespaces, a fundamental way in which code can be arranged.

325

Code

12_042583 ch09.qxd 4/4/06 2:47 PM Page 325

Namespaces
Namespaces are a way to logically group related code. A namespace is simply a name, and that name can
include periods to provide grouping. For example, the namespace for the data handling code of ADO.NET
is in System.Data, whereas the SQL Server-specific code is in System.Data.SqlClient. All of the .NET
data types you saw earlier are in the System namespace. Namespaces can also be created for your own
code, so for the Wrox United code the namespace is Wrox.Web. This is defined in the classes within the
App_Code directory.

Namespaces are important for several reasons:

❑ Grouping related code means it’s easier to find related items. For example, if you want to find
all of the data handling code, you know it’s located within the System.Data namespaces. This
can be useful when using the documentation.

❑ Namespaces provide more readable code, because if the namespace is known, only the data
type is required to define a variable. For example, consider declaring a SqlConnection object
without having the namespace known to the program:

System.Data.SqlClient.SqlConnection conn;

This requires more typing as well as being hard to read. However with the namespace known,
this can be reduced to:

SqlConnection conn;

❑ Namespaces allow both the compiler and IntelliSense to find the variable types.

To use a namespace, you use the using statement:

using System.Data;
using System.Data.SqlClient;

You can test to see if this is working by taking these lines out of the sample in the previous Try It Out.
See what happens in the code editor — IntelliSense attempts to indicate a problem, and you’ll receive a
compiler error if you try to run the page.

Within your code, you can declare namespaces by use of the Namespace statement — you place this
around your classes. For example:

namespace Wrox.Web
{

// class goes here
}

You can use the same namespace in multiple files, so you can split your code into physical files (a file for
each class is a good idea), and the namespace spans those classes. The namespace is logical and not
physical — it isn’t restricted to a single file.

Now that you know how code works and how it can be organized, you can move onto the subject of
classes, a topic that underlies the whole of .NET.

326

Chapter 9

12_042583 ch09.qxd 4/4/06 2:47 PM Page 326

Working with Classes
Object orientation sounds complex and scary, one of those things people tell you that you have to master
before you become a proper programmer. Ignore them — there’s no such thing as a proper programmer,
it’s a term that doesn’t really mean anything. Object orientation is worth learning though, and it will
make you a better programmer — everyone can be a better programmer, and this is just one step along
the ladder. It’s important not to worry about this topic, because object orientation is actually quite sim-
ple. It can get complex, but at the basic level, it’s easy to get into and doesn’t require a degree in rocket
science (unless you work at NASA, in which case knowledge of astrophysics might be useful).

Throughout the book you’ve already seen plenty of objects. In fact, everything you’ve seen has been an
object: the ASP.NET controls are objects, data access is done via objects, ASP.NET pages are objects, and
even the data types are objects. This is one of the underpinnings of .NET — everything is an object. The
following paragraphs define a few terms so you can see how these fit in with the existing objects and
new objects you create.

First is the difference between objects, classes, and instances. A class is a template for an object; it defines
what the object will be able to do — think of it as a cookie cutter, defining the shape of the cookie. An
object or instance is a class that’s been created — it’s the actual cookie, after it’s freed from the cutter. Look
at these terms with an example using SqlConnection:

SqlConnection conn;

This defines the variable conn as being of type SqlConnection. As it stands, however, this isn’t usable,
because it just defines the type of object — the object doesn’t yet exist. You’ve only defined the shape of
the cookie cutter, and haven’t actually cut the cookie. To create the cookie, create an instance of the
object:

conn = new SqlConnection();

This can also be done at declaration time:

SqlConnection conn = new SqlConnection();

Use of the new keyword creates the instance, and after it is created, the object becomes usable.

The properties of a class define the characteristics of that class. For example, the SqlConnection object
has a property called ConnectionString, which defines the details of the database being connected to.
Another property is State, which indicates what state the connection is in (open, closed, and so on):

if (conn.State == ConnectionState.Open)
{

// The connection is open
}

The methods of a class define the actions that can be performed, so for the SqlConnection, you can Open
or Close it:

conn.Open();

327

Code

12_042583 ch09.qxd 4/4/06 2:47 PM Page 327

The events of a class provide the user of the class with information about the status. For example,
SqlConnection has two useful events: InfoMessage and StateChange. The first is raised (or fired)
when SQL Server returns a warning or some informational message, and the second is raised when the
State is changed, such as when the connection is closed.

Creating Classes
You can create classes in ASP.NET pages, but if you are creating the class for a special purpose, it’s best
to use a separate file and location. The best place for these is in the App_Code directory, a special direc-
tory into which class files can be put. Using this directory enables you to keep your class files together,
as well as having them automatically compiled by ASP.NET. You look at creating this later, but for now
take a look at the structure of a class. The syntax is as follows:

[Accessor] class ClassName
{

// class contents
}

The ClassName can be anything you want, but like variable naming, it’s best to use something sensible.
For example, the shopping cart item is a class called CartItem, and the cart itself is called
ShoppingCart.

The Accessor defines the accessibility of the class; that is where the class can be seen from. This can be
one of the values detailed in the following table:

Accessor Description

public No access restrictions.

private The class is only accessible from within its declaration context.

protected The class is only accessible from within its own class or derived
classes.

internal The class is only accessible from within the assembly that contains it.

protected internal The class is only accessible from within its own class, a derived
class, or its containing assembly.

It’s best not to worry too much about these for the moment. As a general rule, if you create a class that’s
going to be used in ASP.NET pages you should use public. So your shopping cart is as follows:

public class ShoppingCart
{
}

328

Chapter 9

12_042583 ch09.qxd 4/4/06 2:47 PM Page 328

Constructors
The constructor is a special method that runs when the class is instantiated, and it allows you to set the
initial state of the class when it’s created. The constructor is always named the same as the class. For
example, the shopping cart with the constructor is highlighted here:

public class ShoppingCart
{

private DateTime _dateCreated;
private List<CartItem> _items;

public ShoppingCart()
{

_items = new List<CartItem>;
_dateCreated = DateTime.Now;

}
}

What this constructor does is create another object — a new List of CartItem objects. This is what the
cart items are stored in — it’s a collection of CartItem objects (you look at this in more detail in the
“Generics” section). After that’s created, the initial creation date is set. You could use this ShoppingCart
class like so:

ShoppingCart cart = new ShoppingCart();

This would create a new instance, and you’d know that the items collection had also been created, ready
for you to add items.

The CartItem class shows another aspect of constructors — overloading:

public class CartItem
{

private double _lineTotal;
private double _price;
private int _productID;
private string _productImageUrl;
private string _productName;
private int _quantity;

public CartItem
{
}

public CartItem(int ProductID, string ProductName,
string ProductImageUrl, int Quantity, double Price)

{
this._productID = ProductID;
this._productName = ProductName;
this._productImageUrl = ProductImageUrl;
this._quantity = Quantity;
this._price = Price;
this._lineTotal = Quantity * Price;

}
}

329

Code

12_042583 ch09.qxd 4/4/06 2:47 PM Page 329

Here there are two constructors. The first, with no parameters, does nothing, and the second accepts
parameters containing the details for an item being bought. Don’t worry too much about the specific
syntax of the parameters, because they’re examined in detail during the discussion of methods. The
important point to note is that the constructor is overloaded — that is, there are two of them. You can
have overloaded constructors (and methods) as long as the signature differs. A signature is what defines
the uniqueness of a constructor or method — this includes its name, its return type, and the type and
order of the parameters. Because these two constructors have different signatures, they are both allowed.

Having two constructors means the class can be created in two ways. Either with this:

CartItem item = new CartItem();

Or with this:

Cartitem item = new CartItem(1, “Scarf”, “images\scarf.jpg”, 1, 4.95);

The first constructor would create an empty cart item, ready for you to fill in the details, and the second
constructor creates a cart item with the details already filled in. These details are passed in as parameters
within the parentheses, and these get mapped to the parameters declared in the New method.

Properties
Properties are used to control the characteristics of a class, or to expose to users of the class some internal
values. For example, consider the CartItem class — if the first constructor is used, how would the details
of the item being bought be set? The variables can’t be accessed directly because they are private, so
they can’t be seen outside of the class. Properties are the answer, and these would be created in the follow-
ing manner:

public class CartItem
{

private double _lineTotal;
private double _price;
private int _productID;
private string _productImageUrl;
private string _productName;
private int _quantity;

public int ProductID
{

get
{

return _ProductID;
}
set
{

_productID = value;
}

}
}

330

Chapter 9

12_042583 ch09.qxd 4/4/06 2:47 PM Page 330

Break this down and look at the parts. First you have the definition of the property itself, by use of
public followed by the data type and the name of the property. So it’s like a variable declaration, but it
contains some content as well —public means it’s going to be accessible outside of the class, which is
exactly what you want. In fact, it’s the reason for creating the property in the first place, to make the
internal variable accessible.

Next comes the bit that allows read access to the property — the get section (often called the getter),
which simply returns the value of the internal private variable:

get
{

return _ProductID;
}

get is a special keyword that allows the property to be read. When you access a property like this, the
get part of the property is run:

int pid = item.ProductID;

Next is set section. The set (or setter as it’s sometimes called) allows the property to be written to, and
the value being written is held in the value variable, which is a special variable that is automatically
defined:

set
{

_productID = value;
}

}

To set a property value, you do this:

item.ProductID = 123;

When this is executed, the set part of the property is run. In this case, the value of 123 would be auto-
matically assigned to the value variable before the set part of the property is run. Remember that C# is
context-insensitive, meaning that lines can be combined. For example, you might see properties defined
like this:

public int ProductID
{

get {return _productID;}
set {_productID = value;}

}

Here all parts of the get have been combined onto one line, as have all parts of the set. This has no
effect on the code apart from readability.

These forms of defining properties are the same for all properties, with only the name and data type
changing. For example, a property for the product name would be:

331

Code

12_042583 ch09.qxd 4/4/06 2:47 PM Page 331

public string ProductName
{

get
{

return _Productname;
}
set
{

_productName = value;
}

}

With these ProductID and ProductName properties in place, the CartItem could be used like so:

CartItem item = new CartItem();

item.ProductID = 1;
item.ProductName = “The WroxUnited Scarf”

This would create the class and set the properties. When setting these properties the setter part of the
property is called, and the value to be set (1 in this case of the ProductID) is passed into the setter as the
variable value.

To read from the properties, you could do the following:

IDTextBox.Text = item.ProductID.ToString();
NameTextBox.Text = item.ProductName;

The first line reads from the property, converting to a string, because the Text property of the TextBox
is a string type. When the property is accessed, the getter is called, which simply returns the value
from the internal variable. For the ProductID, this is an int, but the ProductName property is a
string, so no conversion is required.

Read-Only Properties
If you want to provide read-only access to a property, and not allow the user of the class to update the
property, you can make it read-only, like so:

public int ProductID
{

get
{

return _ProductID;
}

}

Only the getter section of the property is included, so this automatically becomes a read-only property,
and the value cannot be set. This is exactly what the LineTotal property of the CartItem does:

332

Chapter 9

12_042583 ch09.qxd 4/4/06 2:47 PM Page 332

public double LineTotal()
{

get
{

return _quantity * _price;
}

}

Here you can see that you don’t even have a private variable. The value returned is simply a
calculation.

Because the property is read-only, the value cannot be set, and trying to do so will generate a compile
error.

Write-Only Properties
Making a property write-only follows a similar procedure to read-only, except only the setter part of the
property is used:

public int ProductID()
{

set
{

_productID = value;
}

}

With this definition, trying to read from the property would result in a compile error.

Properties Versus Public Variables
While you’ve been reading the text on properties, you might have been wondering why they are used.
Why not just make the internal variables public? Well, you could easily do this:

public class CartItem
{

public int ProductID;
public string ProductName;
public string roductImageUrl;
public int Quantity;
public double Price;
public double LineTotal;

}

This would work, but is not a good idea because it breaks one of the rules of object orientation — abstraction.
(There are other rules of object orientation, but they aren’t pertinent to this particular topic.) This means
that you should abstract functionality, thus hiding the inner workings of the class. The reason for work-
ing this way is that it allows you to change how the class works internally without changing how it’s
used. For example, consider LineTotal, which is the Quantity multiplied by the Price. You have to
have some way of calculating the total, and if you use a public variable, then where do you put the
calculation? It could be done in the constructor, but what about the blank constructor that just creates an

333

Code

12_042583 ch09.qxd 4/4/06 2:47 PM Page 333

empty item? Would you have the user of the class calculate the total, or provide some other function to
do it? Neither is a good solution.

Abstraction means that you are providing a simple, guaranteed way to access the functionality of the
class, and that the user doesn’t have to know about how the class works. You’re using properties to hide
the internal storage — those private variables are the internal storage, and the properties are just a way
for users of the class to access the internal variables.

Abstracting the internal storage with properties enables you to handle the problem of a line total,
because the property accessor does the calculation for you. In fact, using this type of abstraction means
you could store the internal state of the CartItem in any way you pleased, without having to change the
code that uses CartItem.

There are no strict rules on naming for the private variables that actually store the property values, but
an underscore as a prefix is commonly used, as well as a different case. So your property would be
LineTotal, whereas the internal private variable is _lineTotal.

Methods
Methods are the actions of a class, what you use to get the class to perform a task. The CartItem class is
purely for storage, has no actions, and therefore contains no methods (although technically the construc-
tor is a method). The shopping cart, however, contains methods, because you need to do things like
insert, update, and delete items.

Methods fall into two types: those that return a value and those that don’t. The first form is useful for
performing an action and then returning some result, perhaps whether the action succeeded or not. The
second is useful when you don’t need a value from the action.

The syntax for a method as follows:

[Accessor] DataType FunctionName([parameters])
{

return value
}

The syntax is the same whether or not you are returning a value. If you aren’t returning a value, you use
the data type of void,which is a special data type for methods that simply tells ASP.NET that no value is
being returned from the method.

Like classes, the Accessor defines the visibility of the method. Use public for methods that are visible
from everywhere, and use private for a method that is used only by the class. Methods accept an
optional parameter list, much like constructors.(You’ll look at the ins and outs of parameters in more
detail soon.)

The difference between a method that returns a value and one that doesn’t is minimal. The first differ-
ence, as mentioned, is that you use the void type for a method that doesn’t return a value. Use the shop-
ping cart and examine the methods, starting with deleting items, because that’s the simplest:

public void DeleteItem(int rowID)
{

_items.RemoveAt(rowID);
_lastUpdate = DateTime.Now;

}

334

Chapter 9

12_042583 ch09.qxd 4/4/06 2:47 PM Page 334

Here the method takes a single parameter — the index of the row to be deleted. This index is then passed
into the RemoveAt method of the _items collection, which is the collection that stores the cart items.
When the item has been removed, the last update time is set. The method could be called like so:

Profile.Cart.DeleteItem(2);

This would remove the third row. (Remember that arrays and collections start at 0.)

Inserting items into the cart is done with the Insert method:

public void Insert(int ProductID, double Price, int Quantity,
string ProductName, string ProductImageUrl)

{
CartItem NewItem = new CartItem();
NewItem.ProductID = ProductID;
NewItem.Quantity = Quantity;
NewItem.Price = Price;
NewItem.ProductName = ProductName;
NewItem.ProductImageUrl = ProductImageUrl;
_items.Add((CartItem) NewItem);
_lastUpdate = DateTime.Now;

}

This routine accepts five parameters, one for each part of the item (the ID, the price, and so on). Within
the routine, a new CartItem is created, and the properties are set to the values of the parameters. After
all of the parameters are set, the item is added to the _items collection and the time is updated.

One problem with the Insert method is that it could be called multiple times for the same product,
which would result in multiple items in the cart. It would be more sensible to see if the item is already in
the cart, and if so, simply add one to the quantity. To do this, you need to search through the collection
looking for an item with the same ProductID, so a function has been created to do this:

private int ItemIndexOfID(int ProductID)
{

int index = 0;

foreach (CartItem item in _items)
{

if (item.ProductID == ProductID)
return index;

index++;
}
return -1;

}

Here the function accepts the ProductID as a parameter and returns an int. Within the function, the
_items collection is looped, and if the ProductID of an item matches the supplied ProductID, the
return statement is used to return the index. If the loop ends without having found a match, -1 is
returned. Notice that this function is marked as private.That’s because it’s not going to be used from
outside the class.

335

Code

12_042583 ch09.qxd 4/4/06 2:47 PM Page 335

The Insert method can now be changed to the following:

public void Insert(int ProductID, double Price, int Quantity,
string ProductName, string ProductImageUrl)

{
int ItemIndex = this.ItemIndexOfID(ProductID);
if (ItemIndex == -1)
{

CartItem NewItem = new CartItem();
NewItem.ProductID = ProductID;
NewItem.Quantity = Quantity;
NewItem.Price = Price;
NewItem.ProductName = ProductName;
NewItem.ProductImageUrl = ProductImageUrl;
_items.Add((CartItem) NewItem);

}
else
{

_items[ItemIndex].Quantity++;
}
_lastUpdate = DateTime.Now;

}

The method still accepts the same parameters, but the first thing it does is call the private
ItemIndexOfID to get the index number of the current product. If the index is -1, it didn’t already exist
in the collection and is added. If it does exist, the Quantity is increased.

Referencing Internal Variables
There are two ways to access the private internal variables within properties and methods of a class. You
can use only the variable name, as shown here:

public string ProductName
{

get
{

return _Productname;
}
set
{

_productName = value;
}

}

Alternatively, you can use an object reference, with the keyword this, which means the current instance
of the class. For example:

public string ProductName
{

get
{

return this._Productname;
}

336

Chapter 9

12_042583 ch09.qxd 4/4/06 2:47 PM Page 336

set
{

this._productName = value;
}

}

There’s no real difference between these two uses of internal variables, and you’ll see both forms used in
help files and examples.

Shared Methods and Properties
With the classes you’ve seen so far, you have to create an instance of them before they can be used. For
certain classes, this can be an overhead that’s not really required. For example, consider a class called
Tools that provides a range of utility methods, one of which is Log, to log exceptions:

public class Tools
{

public void Log(string ErrorMessage)
{

// log the error
}

}

You could use this class like so:

Tools u = new Tools();
u.Log(“An exception occurred”);

The object instance only exists for the purpose of calling the Log method. There are no properties to set,
so it seems a bit of a waste to have to create the instance, especially if it’s only going to be used once. To
get around this, you can create shared class members (sometimes called static members). For example:

public class Tools
{

public static void Log(string ErrorMessage)
{

// log the error
}

}

The introduction of the Shared keyword means that a class instance is no longer required, allowing the
method to be called like so:

Utils.Log(“An exception occurred”);

When you’re dealing with utility classes, shared methods are extremely useful. You’ll see how the log-
ging features can be implemented in Chapter 15.

337

Code

12_042583 ch09.qxd 4/4/06 2:47 PM Page 337

Inheritance
Inheritance is another of the key features of objected-oriented software, and works just like real life,
where you inherit properties and behavior from your parents. Inheritance can get quite complex, so
this section covers only the basics to give you an understanding of what inheritance is and how it
works, especially as it’s used in all code-behind files. The essentials of inheritance are that one class (the
base class) can be inherited by another (the subclass), in which case the subclass automatically has the
same methods and properties as the base class. But the subclass can change the behavior if it needs to, or
add to it.

ASP.NET uses inheritance as part of its standard programming model, and you probably already have
seen this in action. For example, consider a Default.aspx Web Form, which would have the following
in it:

<%@ Page Language=”C#” CodeFile=”Default.aspx.cs” Inherits=”_Default” %>

Here you can see the Inherits keyword being used, telling you that when the Web Form is compiled, it
should inherit its features from the class _Default. This class is in the code-behind file:

partial class _Default : System.Web.UI.Page
{

. . .
}

Within the code file, inheritance uses the colon (:) to separate the class from the class it is inheriting
from. So in the preceding example, _Default is the new class and System.Web.UI.Page is the class
being inherited from (which is the base class). This means that the _Default class will contain all of the
properties and methods that the System.Web.UI.Page contains. One thing to notice is the partial
keyword, which tells the compiler that this class is split across multiple files: the Web Form and the
code-behind file.

The following exercise has you use some simple (and rather contrived) examples to show how inheri-
tance works.

Try It Out Classes and Inheritance
1. Create a new class in the App_Code directory called Vehicles.cs. If the App_Code directory

doesn’t exist, you can create this directory by selecting the top item in the Solution Explorer
and using the right mouse button to select Add Folder and then App_Code Folder, as shown in
Figure 9-9.

338

Chapter 9

12_042583 ch09.qxd 4/4/06 2:47 PM Page 338

Figure 9-9

2. Delete the existing template class, and create a new one called Vehicle, which has properties
called Wheels and TopSpeed, and a method called Warning:

public class Vehicle
{

protected int _wheels;
protected int _topSpeed;
protected string _warningSound;

public int Wheels
{

get {return _wheels;}
set {_wheels = value;}

}

public int TopSpeed
{

get {return _topSpeed;}
set {_topSpeed = value;}

}

public virtual string Warning()
{

return _warningSound;
}

}

339

Code

12_042583 ch09.qxd 4/4/06 2:47 PM Page 339

3. Create another class, in the same file, called Car:

public class Car : Vehicle
{

public Car()
{

_wheels = 4;
_topSpeed = 150;
_warningSound = “Honk”;

}
}

4. Create another class, called Bike:

public class Bike : Vehicle
{

public Bike()
{

_wheels = 2;
base.TopSpeed = 30;
_warningSound = “Ring Ring”;

}
}

5. Create another class, called Skateboard:

public class Skateboard : Vehicle
{

public Skateboard()
{

_wheels = 4;
_topSpeed = 15;

}
}

6. Between the closing bracket of the constructor and the closing bracket of the class, type the
following:

Public override

7. Press the space bar to see that a little helper tip pops up (see Figure 9-10).

Figure 9-10

340

Chapter 9

12_042583 ch09.qxd 4/4/06 2:47 PM Page 340

8. Select the string Warning() entry and press Enter See how the function is created for you.
Delete the existing return line and add a new one:

public override string Warning()
{

return “No warning - you’ll have to shout yourself”;
}

9. Save and close the class file.

10. Create a new Web Form called Inheritance.aspx. Add three buttons and three labels, so it looks
like Figure 9-11. Make sure the Label next to Wheels is Label1, the Label next to Speed is
Label2, and the Label next to Warning is Label3. You can use the Text property of the but-
tons to change the text shown on them.

Figure 9-11

11. Create an event handler for the Click event for the Car button:

protected void Button1_Click(object sender, System.EventArgs e)
{

Car myTransport = new Car();
Label1.Text = myTransport.Wheels.ToString();
Label2.Text = myTransport.TopSpeed.ToString();
Label3.Text = myTransport.Warning();

}

12. Create an event handler for the Bike button:

protected void Button2_Click(object sender, System.EventArgs e)
{

Bike myTransport = new Bike();
Label1.Text = myTransport.Wheels.ToString();
Label2.Text = myTransport.TopSpeed.ToString();
Label3.Text = myTransport.Warning();

}

13. Create an event handler for the Skateboard button:

protected void Button3_Click(object sender, System.EventArgs e)
{

Skateboard myTransport = new Skateboard();
Label1.Text = myTransport.Wheels.ToString();
Label2.Text = myTransport.TopSpeed.ToString();
Label3.Text = myTransport.Warning();

}

341

Code

12_042583 ch09.qxd 4/4/06 2:47 PM Page 341

14. In the Solution Explorer, right-click Inheritance.aspx, and from the menu, select Set As Start
Page.

15. Press F5 to run the page. Click the three buttons and notice what is displayed in the labels.

How It Works
To see how this works, start with the Vehicle class. This is similar to what you’ve seen before, but with
a few subtle differences. One of the private variables, _warningSound, is not set anywhere — don’t
worry about that, it’s deliberate, and will be used in other classes. Also the private variables are declared
as protected, meaning that other classes in the same file will be able to access them. This class will be
the base class that other classes inherit from. The other difference is that the Warning method has a new
keyword on it —virtual:

public virtual string Warning()
{

return _warningSound;
}

A virtual method means that inheriting classes can override the method and provide their own imple-
mentation. Take a look at the inheriting classes, starting with the Car:

public class Car : Vehicle
{

public Car()
{

_wheels = 4;
_topSpeed = 150;
_warningSound = “Honk”;

}
}

This defines a new class, but in the line after the class name, it specifies the class to be inherited from.
This means the Car automatically has the properties and methods of the base class. The base class hasn’t
set any values so the car has a constructor to do this, which uses the private variables declared by the
base class. It can access those variables because they’ve been declared as Protected.

The Bike class is slightly different:

public class Bike : Vehicle
{

public Bike()
{

_wheels = 2;
base.TopSpeed = 30;
_warningSound = “Ring Ring”;

}
}

The way it inherits is the same, but setting the properties is different. For the number of wheels, instead
of using the private variable of the base class, the property of the class is used. Even though the current

342

Chapter 9

12_042583 ch09.qxd 4/4/06 2:47 PM Page 342

class doesn’t define the Wheels property itself, it does have a Wheels property because it is inherited
from the base class. For the top speed, the property of the base class is called directly; the keyword base
refers to the base class. There is no property for the warning sound, so the private variable is used
directly.

All of these methods are acceptable, and you’ll see all three used in various pieces of documentation,
books, or online tutorials. In general, it’s best to use the properties, because that fits with the object-
oriented principles discussed earlier.

The Skateboard class is different:

public class Skateboard : Vehicle
{

public Skateboard()
{

_wheels = 4;
_topSpeed = 15;

}

public override string Warning()
{

return “No warning - you’ll have to shout yourself”;
}

}

The constructor sets the values for _wheels and _stopSpeed, but not the warning message. The big differ-
ence is that the Warning property is overridden, meaning that instead of using the Warning method from
the base class, the Skateboard class is defining its own Warning method. This is called polymorphism, and
allows different classes to have the same methods and properties but with different behavior.

Using these classes is simple:

Car myTransport = new Car();
Label1.Text = myTransport.Wheels.ToString();
Label2.Text = myTransport.TopSpeed.ToString();
Label3.Text = myTransport.Warning();

This creates the new class and accesses the properties and the methods. Whatever the class type created,
you can see that the same properties and methods are available. Even though these classes don’t define
the properties themselves, inheritance means they have the properties. The same applies to the methods,
where the Car and Bike don’t define the methods, but the Skateboard does, overriding the existing
implementation and providing its own.

Variable Scope and Lifetime
Although it is related to variables, the discussion of scope and lifetime has been left until now because it
affects all of the other topics discussed in this chapter. The term scope means the degree to which a vari-
able is accessible to other code, and the scope affects the lifetime. You’ve seen how Private and Public

343

Code

12_042583 ch09.qxd 4/4/06 2:47 PM Page 343

affect the visibility of methods and properties, but may not realize that visibility of variables depends on
where they are declared. To make this easier, have a look at some code:

public class Class1
{

private int _variable1;

private void Method1()
{

int variable2;

_variable1 = 1;
variable2 = 3;

}

private void Method2()
{

_variable1 = 2;
}

}

The variable1 variable _ is declared within the class, outside of any methods, so it can be accessed
from any methods and properties. On the other hand, variable2 is declared within the Method1
method, so it can only be accessed within Method1— no other methods or properties would be able to
use it. This is called a local variable.

The same rules apply to variables declared within code blocks. For example:

int number1;
if (number1 == 15)
{

int number2;
number2 += 15;

}

Here number1 is declared outside of the if block, and can therefore be used within it. But number2 is
declared within the code block, so it cannot be used outside of the code block. The same rules apply to
other code blocks such as loops.

The foreach loop also has this:

foreach (CartItem item in Cart.Items)
{
}

The variable item is declared within the statement itself, but follows the same rule: it can only be
accessed from within the loop. Trying to access it outside of the loop would generate a compile error.

344

Chapter 9

12_042583 ch09.qxd 4/4/06 2:47 PM Page 344

Generics
Generics refers to classes and methods that work uniformly on values of different types. Generics are
often discussed as an advanced topic, and though some of it is advanced, some of it is simple and easy
to use. In fact, one feature of generics is used in the shopping cart. Remember how the cart consists of
two classes: the CartItem and the ShoppingCart, which uses the CartItem as a collection.

Many of the collections discussed early in the chapter provide storage for objects — the Object being a
type. Because they are designed to work with a data type of Object, collections can in fact store any
data type. However, when you take items out of a collection, they often need to be converted from the
Object data type to their native data type. This involves extra coding and reduces performance.
Another problem results because collections can store any data type, which means you can store any
data type in them. If you had a collection to store the CartItem objects, you could in fact store strings,
numbers, dates, and so forth in the same collection. For example, you could do this:

List _items = new List();
CartItem item = new CartItem(. . .);

_items.Add(item);
_items.Add(“this isn’t a cart item”);
_items.Add(“65”);

When you take items out of the collection, you have no idea what data type it is unless you track which
objects you put into the list.

To get around this problem, use generics, or more specifically generic collections. These are stored in the
System.Collections.Generic namespace, and the one the shopping cart uses is the List:

private List<CartItem> _items;

This simply states that _items is a List, but a list of only CartItem objects. So now you do this:

List<CartItem> _items = new List<CartItem>;
CartItem item = new CartItem(. . .);

_items.Add(item);

But because the list is of a specific data type, you can’t do this:

_items.Add(“this isn’t a cart item”);
_items.Add(“65”);

Both of these lines would generate compile-time errors. Whenever you need a collection of custom classes,
it’s always a good idea to use generic collections, because they improve the readability of your code, reduce
the potential for errors, and provide performance improvements over the standard collections.

345

Code

12_042583 ch09.qxd 4/4/06 2:47 PM Page 345

Summary
This chapter covered a lot of ground, but it was necessary. Although the rich controls in ASP.NET 2.0
provide a way to create web applications with less code than previous versions, you can’t get away
without coding completely. So you’ve learned the fundamentals of coding and what you need to control
your program. Specifically, this chapter covered the following topics:

❑ You looked at variables and data types, and how to work with the different data types, seeing
that data types have different features. You also looked at arrays and collections, as a way of
storing groups of variables.

❑ The control of programs is by way of decisions and loops, which use expressions and operators
as part of the decision process. You saw how there are different ways to perform both decisions
and loops, depending on the requirements.

❑ You looked at classes, and how they have constructors, properties, and methods. You didn’t
look at events explicitly, but like the controls you use on Web Forms, custom classes can have
them if required.

❑ You took a brief look at generics, and saw how they help produce type-safe code and improve
code readability and performance.

The next chapter examines componentization, and discusses the use of code-behind files and standalone
classes from the design and structure perspective rather than what the code actually means.

Exercises
1. Create a class and shared method (called DeliveryDate) to calculate a delivery date given the

date of an order. All deliveries should be made within three days of the order.

2. Continuing from Exercise 1, modify the DeliveryDate method to take into account that deliv-
eries do not happen on the weekend.

3. Modify the DeliveryDate method to take into account that an order takes three working days
to process. So orders falling on a Wednesday will be delivered on the following Monday, and
orders from Thursday will be delivered on the following Tuesday.

4. For each of the following Boolean expressions, say for what integer values of A each of them will
evaluate to True and when they will evaluate to False:

a. NOT A=0

b. A > 0 OR A < 5

c. NOT A > 0 OR A < 5

d. A > 1 AND A < 5 OR A > 7 AND A < 10

e. A < 10 OR A > 12 AND NOT A > 20

346

Chapter 9

12_042583 ch09.qxd 4/4/06 2:47 PM Page 346

10
Componentization

Programming has been through several distinct phases in its history and has moved a long way
from its humble beginnings where punch-cards dashed with holes were placed into mechanical
readers. Early programs on PCs were often just sequential lines of Do A, Do B, Do C kinds of com-
mands. If you wanted to repeat a section of the code, you were left with the option of going Do A,
Do A, and Do A or encasing it in a loop and telling the PC to Do A 20 times. This quickly made
code repetitive and unwieldy. Worse than that, it made it hard to follow, even for the people who
had written it. To follow the flow from the beginning of a program to the end was as difficult as
following the path of one thread of spaghetti on a plate in a mound of food. In fact, it became com-
monly known as spaghetti-coding.

Over the past 20 years, there has been a move away from this kind of coding to a more object-
based approach. This is where you break down the design of an application into a series of objects,
and then any time you require an object, you just call it whenever you need it. This process is
known as componentization. This is the creation of small objects, or components, that are self-
contained parcels of code that have specific functions and are only called by the main application
when needed. You looked at objects in Chapter 9 and saw how they could be mapped onto real-
life counterparts to make coding less abstract. However, objects didn’t totally solve the problems
with spaghetti-coding.

Classic ASP suffered from this malaise as well, and despite having a whole series of objects such as
Response, Request, and Server, and also allowing users to create their own objects, ASP pages
are still a nightmare to debug and follow if they get too big. In fact, three main problems can be
highlighted, the first being that HTML code and ASP code tended to be dumped in the same page
together, despite having completely different purposes. HTML manages the structure of the page,
whereas ASP is concerned with what the page does. The second problem is that with any kind of
data handling in a page, there are two different purposes being dealt with, the connecting to and
management of data stores, and the reading and writing of the data itself to a data source. The
third problem is that of code-reuse, how users could easily create portable objects that could be
called from within the code over and over, and how they could end up reducing the amount of
code needed.

With ASP.NET 1.x, these problems were partially addressed; however, the solutions weren’t per-
fect. ASP.NET 2.0 delivers the most comprehensive set of solutions to these problems. At the

13_042583 ch10.qxd 4/4/06 2:48 PM Page 347

design previews, the ASP.NET development team openly boasted that ASP.NET 2.0 meant a 70% reduc-
tion of code in your pages. This chapter looks at the following topics:

❑ Separation of code and content

❑ Code-behind

❑ Data layers

❑ User controls

You’ve already looked at a lot of the new controls that are designed for every aspect of a web site, but
now you’re going to dig behind the scenes and see how ASP.NET 2.0 also makes life easier for the devel-
oper with separation of code from content, data layers, and user controls.

The Separation of Code from Content
The funny thing with most text books that you pick up about a new technology is that they’ll quite hap-
pily tell you what was wrong with the old one, but not a lot about shortcomings in the new. Time and
time again you’ll probably come across a variation on the same theme: the code of the page should be
separated from the style and design of the page. It happened in HTML, it happened in classic ASP, and it
still happened to some extent in ASP.NET 1.x, although with a little care and effort it was possible to
eliminate. With each new release you get a bit closer to achieving that lofty ambition. Before describing
what ASP.NET 2.0 can offer to improve upon this, you need to know the answer to the question, “What
is the separation of code from content, and why do you need to do it?”

Let’s start with the first part, but first, we’ll digress a little. In most walks of life, it’s possible for a person
to wear many hats at the same time, thus you’ll find builders who can do carpentry, actors who think
they can write, bus drivers who think they could drive a racing car; the list goes on. The truth is while
most people’s skills are spread across a fairly wide area, they’re only likely to be able to specialize or be
an expert in one or two areas at most. With programming, it’s common to find designers, administrators,
and programmers lumped in together. In fact, in recent years “web site developer” has become a bit of
an insult, meaning someone who can’t really design, can’t really program, and would struggle to
administer a database as well. In fact, I’ve seen several job advertisements where the time-honored
“time wasters need not apply” has been replaced by the 21st-century version “web developers need
not apply!”

You might well be thinking at this point, “Hang on, I want to be a web developer. What’s wrong with
that?” Well behind the seeming insult is a more serious point: A web developer is usually the person
who has to spread him- or herself thinly across three related but really quite different disciplines. The
old cliché “jack of all trades, master of none” springs to mind. One of the reasons why they’ve had to do
this is because the technologies involved (in this case ASP) have forced all three disciplines into one web
page. So within your ASP page, you would have to place the controls, have to implement the design,
and have to stick the code to make it work, and that code would more likely than not reference the
database. Classic ASP was very easy to learn and pick up and hence people could get away with doing
this kind of thing, but the truth is a lot of early ASP sites were very ugly, took ages to access the
database, and were quite often buggy.

348

Chapter 10

13_042583 ch10.qxd 4/4/06 2:48 PM Page 348

Consider this scenario: What happens if your boss tells a designer to change the font on the web site,
while telling the developer to add a search text box to the front page to search on the contents of the site?
In times gone by, both people would be scrambling for the same page to make the alterations. Worse
still, the designer could do his version of index.asp, while the programmer could do his, and therefore
neither version would please the boss. Even if they did it sequentially, quite often the programmer
would mess up the pristine design, or the designer would break a vital piece of code. I’m not intending
to patronize either job; this has honestly happened on projects I’ve worked on. It therefore makes more
sense to have two different versions of the same page. And it makes sense to let the designer with his
graphic design and art qualifications do the interface of the web site, with the programmer at the back
end connecting all the bits of the site and making them work.

This is where separating the code from the content comes in. In this fictitious scenario, you’d probably
use Cascading Style Sheets to get around the problem. However, you’d still have the problem of the sep-
arating the design from the code. In other words, the positioning of the ASP.NET controls would still be
the responsibility of the programmer. ASP.NET 2.0 goes beyond the separation of code from content.

The Separation of Code from Design
So far you’ve read about two distinct areas in ASP.NET 2.0, the first being the HTML code and ASP.NET
controls, which you can see in this sample page:

<html>
<head>
</head>
<body>
<form runat=”server”>
<aspnet:label id=”label1” runat=”server” text=”Enter your name:”><aspnet:label>
<aspnet:textbox id=”textbox1” runat=”server”></aspnet:textbox>
<aspnet:button id=”button1” runat=”server” text=”submit”>
</form>
</body>
</html>

The second is the actual code, which is placed within the <head> tags of the first:

<script language=”C#”>
private void Page_Load(object sender, EventArgs e)
{
if (Page.IsPostback==true)
{

Label1.Text = “Hello” + textbox1.Text;
}

}
</script>

This layout is known as the single-file scenario. This chapter uses the term “single-file” when talking
about putting the code within <script> tags on the page. The first section of code in the single-file sam-
ple page is purely concerned with the design and structure of the page. For example, you could move

349

Componentization

13_042583 ch10.qxd 4/4/06 2:48 PM Page 349

the label and textbox and button around, and the program would still work perfectly. However, if
you altered the order of the second section of code, everything would come to a jarring halt.

Worse still, behind the scenes the single-file scenario actually created far more work than was necessary.
A second scenario is a little sidebar that displays a shopping basket as you browse around the site. How
would you do it? Would you have to add this code to every single page? If you added it to every page,
would you have to update every single page, every time you made a change? A sensible strategy of sep-
arating content from code, data from code, and being able to reuse the code is obviously needed. So let’s
start by looking at the first point in this three-pronged strategy.

Code-Behind
Code-behind is simply a separate code file linked to your Web Form or .aspx page. You place all of your
HTML tags and ASP.NET controls in the .aspx page, and you have a separate page “behind” this page
that contains all of the code that is normally contained within the <script> blocks for the page. So to
answer the designer/developer dilemma, your designer can update the .aspx page, while your devel-
oper can update the code-behind page.

Code-behind pages are very easy to use. Like their .aspx counterparts, they are composed of pure text
and can be viewed in Visual Web Developer, Notepad, or any text editor. The .aspx is the centerpoint,
and the code-behind is like an attachment. In Visual Web Developer, code-behind pages are not created
until they are needed, although when you select a Create Web Site option, a Default.aspx page and
the corresponding code-behind Default.aspx.cs are created automatically. However, for any further
pages that you create, only the .aspx page is added, unless you check the Place Code in Separate File
option, which is unchecked by default.

The code is stored in a separate file, which is identified by a .cs suffix or (if you’re using VB.NET) a .vb
suffix. So if you created a Default.aspx page, the code-behind file for that page would be called
Default.aspx.cs. Not all languages in the .NET Framework support the code-behind model, most
notably J#, but the two main languages that most developers use and the only two considered in this
book both use code-behind.

The Page Directive
You’ve already met the Page directive in Chapter 5 when you learned about the idea of using inheri-
tance with the .NET Framework, to inherit certain features from classes. The Page directive also refers to
where your separate code-behind file is stored. Look at the same directive and the same attributes again,
but this time from a slightly different angle:

<%@Page Language=”C#” CodeFile=”Default.aspx.cs” Inherits=”_default”%>

This runs contrary to what happens in Visual Studio .NET 2005, where when you
create a new Web Form, a new code-behind file is automatically created at the
same time.

350

Chapter 10

13_042583 ch10.qxd 4/4/06 2:48 PM Page 350

You’re interested in two particular attributes of Page:

❑ Inherits: This attribute tells you which class you want to inherit from. It’s vital that the
Inherits attribute matches a class in the code-behind file.

❑ CodeFile: This attribute specifies the name of the code-behind file. Typically you would expect
the code-behind file to be kept in the same folder, but it’s possible to keep it separate and spec-
ify a URL inside this attribute as well.

If you want to use code-behind, you must include these two attributes at all times. If you want to add a
code-behind file manually to an .aspx file, then after you’ve added these two attributes, next you need to
create the code-behind file itself.

Partial Classes
You can check the contents of a typical code-behind file by creating a new ASP.NET web site and then
viewing the contents of Default.aspx.cs, which is created automatically. You will see the following
three lines:

partial class _Default : System.Web.UI.Page
{

...
}

Any code you create should be placed within a partial class. Although this section won’t go into partial
classes too much, it is necessary to talk a little about them. In the last chapter, you saw classes as being
cookie cutters that define the shape of the cookies. So what is a partial class? Half a cookie cutter? Well in
some ways, yes is the answer. If you’ve played around with ASP.NET 1.x at all, you’ll have noticed that
there was a lot more than just three lines of code in the code-behind file, in the section marked Web Form
Designer Generated Code. In the previous version of ASP.NET, if you stuck your control in the page,
under certain conditions your code-behind file didn’t always see it. Partial classes mean that at compila-
tion time, your code-behind file and the Web Form are now merged into one class file, thus making sure
this kind of scenario didn’t happen. It also means you only need these three lines of code to make it
work. So your code-behind file is one half of the cookie cutter and the Web Form is the other half, and
together they make the whole. Let’s leave that analogy before it gets squeezed any more.

Event Handlers/Functions
You place the code in the partial class; however, this is not quite enough to make it work. The code also
should be placed within an event handler or a subroutine or function of some sort. All code in ASP.NET
is run in reaction to an event of some sort. If you don’t actually place your code in an event handler,
you’ll probably need a call to your subroutine or function placed within an event handler. The most
common one is the Page_Load event handler that occurs when the page is first loaded:

private void Page_Load (object sender , EventArgs e) {
...

}

351

Componentization

13_042583 ch10.qxd 4/4/06 2:48 PM Page 351

Of course you don’t have to type this in — if you double-click the page in Design View, the Page_Load
event handler will be added for you. This is just another good reason for using Visual Web Developer. In
previous versions of this book, we’ve used humble Notepad as our editor to make changes to the code.
This isn’t because we endorse a firmly Luddite/anti-progress view of the world, but because Notepad
made no changes to our HTML code (unlike the majority of HTML editors), and because it is something
everybody with a version of Windows automatically had. With code-behind, things become slightly
more complex, in that you have two files that basically refer to the same page (see Figure 10-1). You can
still of course manage them via Notepad, but the features in Visual Web Developer make it much easier
to manage the two separate pages (and see them as connected entities).

Figure 10-1

Of course, you might think, well why not stick with Notepad and also stick with the single-file model?
The following list reiterates some of the advantages of using code-behind files:

❑ Separation of the content (user interface) from the code. It is practical to have a designer work-
ing on the markup while a programmer writes code.

❑ Better security, because code is not exposed to the designers or others who are working only
with the page content.

❑ Code can be easily reused for multiple pages.

However, this doesn’t mean that code-behind is always the perfect solution to all your problems. Using
a single file for your code and content is still the more sensible option within some scenarios:

❑ Single-file is best suited for pages where the code consists primarily of event handlers for the
controls on the page.

❑ Where there is little code, it can be easier to view a single-file page because both the code and
the HTML are in the same place.

There are also some reasons of convenience to consider as well, namely single-file pages are easier to
send to another programmer because there is only one file, they’re easier to rename, and managing files
is slightly easier, because the page is self-contained in a single file, and there are therefore fewer pages to
manage. Generally, though, you really should be placing your code in a separate code-behind file,
because the advantages outweigh the disadvantages for the most part.

Creating a Code-Behind File
That’s enough talk. In the next Try It Out, you get down to the business of creating an incredibly simple
code-behind file that interacts with a sample page containing TextBox, Button, and Label controls.

352

Chapter 10

13_042583 ch10.qxd 4/4/06 2:48 PM Page 352

You’ll see how you can manipulate all of these controls in the same way as you might expect to when
using a single file.

Try It Out Creating a Code-Behind File
1. Open VWD and create a new web site called TestCodeBehind in the Chapter directory

(C:\BegASPNET2\Chapters\Begin\Chapter10).

2. Go to Solution Explorer and click the plus symbol (+) next to Default.aspx to expand the tree
to reveal the file Default.aspx.cs (refer to Figure 10-1).

3. Go back to the Default.aspx file and add two Label controls, a TextBox control, and a
Button control, as shown in Figure 10-2.

Figure 10-2

Again, Default.aspx is the only file that has the code-behind file automatically
created for you. If you create another Web Form, you must make sure to check the
Place Code in a Separate File option, which is unchecked by default.

353

Componentization

13_042583 ch10.qxd 4/4/06 2:48 PM Page 353

Adjust the source HTML to read as follows:

<asp:Label ID=”Label1” runat=”server” Text=”What is the answer to the meaning of
life, the universe and everything?:”></asp:Label>

<asp:TextBox ID=”TextBox1” runat=”server”></asp:TextBox>

<asp:Button ID=”Button1” runat=”server” Text=”Submit” />

<asp:Label ID=”Label2” runat=”server” Text=””></asp:Label>

4. Go back to Design View and double-click anywhere on the background of Default.aspx other
than on the controls. Doing so will open up into the code-behind file, shown in Figure 10-3.

Figure 10-3

5. Add the following code to the Page_Load event handler:

if (Page.IsPostBack)
{

if (TextBox1.Text == “42”)
Label2.Text = “So you read Douglas Adams as well...”;

else
{

354

Chapter 10

13_042583 ch10.qxd 4/4/06 2:48 PM Page 354

Label2.Text = “No, I’m not sure that’s it”;
}

}

6. Click the green arrow to run it. You may get a textbox asking whether or not to add a new
Web.config file or run without debugging. Click the former.

7. Enter a value or lengthier sentence into the text box, as shown in Figure 10-4.

Figure 10-4

How It Works
It all seems very simple — instead of putting your code within <script> tags, you place it within a sep-
arate page, connected by the Page directive tag. Indeed, if you check at the top of the Source View for
Default.aspx, you can see that the following was already created:

<%@Page ... CodeFile=”Default.aspx.cs” Inherits=”_Default” %>

This refers to the code-behind file Default.aspx.cs. There the following code is run when the
Page_Load event is called (when the page is viewed). This is just the normal kind of code talked about
in Chapter 9:

if (Page.IsPostBack)
{

if (TextBox1.Text == “42”)
Label2.Text = “So you read Douglas Adams as well...”;

else
{

Label2.Text = “No, I’m not sure that’s it”;
}

}

It says if the page has been posted back (submitted), check the contents of the TextBox control. If it
equals 42, then you have your correct answer, and you set the Label2 control’s Text property accord-
ingly. If the contents of the TextBox control do not equal 42, you display a different answer (“No, I’m
not sure that’s it”).

However, there is a bit more going on beneath the covers, namely the method by which your code is
compiled.

355

Componentization

13_042583 ch10.qxd 4/4/06 2:48 PM Page 355

Compilation in ASP.NET 2.0
Compilation is another one of those subjects that this book doesn’t go into in depth, because you don’t
need to know too much about it. However, you should be aware of its presence. When you submit your
Web Form to the server, your Web Form and ASP.NET pages first have to be translated into a language
the server can understand. This is known as compilation. You can see how this process works in .NET 2.0
in Figure 10-5.

Figure 10-5

The compiler changes your code into something known as intermediate code, or Microsoft Intermediate
Language (MSIL). This language is something that is independent of any PC it is run on. The .NET CLR
(Common Language Runtime) is able to take this intermediate code and change it into executable code
that it can run and provide output for. The output is then sent back to the user as a response. (There’s
actually a bit more to this process, as you’ll see in Chapter 14.)

During the process of compilation, your pages are approved syntactically, so if you’ve made any typos
such as the following, they will be spotted at compile time:

if (Paige.IsPostBack)

Your code can be compiled in two ways:

❑ Pre-Runtime Compilation: The “normal” way (or the “old way,” — the default way in ASP.NET
1.1). Code-behind files are compiled into an assembly and stored in the \bin directory. Web
Forms and .aspx pages are compiled when needed.

Disk

Request
ASP.NET page Compiler

Intermediate Code
Response

.NET CLR
Runtime

356

Chapter 10

13_042583 ch10.qxd 4/4/06 2:48 PM Page 356

❑ Full Runtime Compilation: Code-behind files and any other associated code can now be placed
in the App_Code folder. ASP.NET 2.0 will then create and maintain references to the assembly
that is generated from these files at runtime.

The App_Code Folder
If you create an App_Code folder in your project, any code you place in that project will automatically be
compiled when you run the project. It’s a far more robust solution than the old \bin folder used by
ASP.NET 1.x, and for that reason you should use it for any code other than code-behind. The reason you
should not use it for code-behind is that it is easier in VWD to keep your code files attached to the page
they are related to; otherwise viewing them could be a pain.

So not only can you organize your code and in which pages it is placed, but ASP.NET 2.0 dictates a
different structure for ordering where those pages are placed.

Data Layers
You’ve looked at how code and content can be successfully separated, but there is a third dimension to
our discussions, namely that of the data. Throughout this book, we’ve paused to reflect briefly on vari-
ous aspects of the history of the Internet and the Web, while trying to keep you away from a huge lec-
ture on the entire subject. However, another quick history lecture is in order here to help you understand
the purpose of the next ASP.NET 2.0 feature.

Two-Tier Applications
Rather than rewinding too far back, let’s jump in halfway. When HTML started getting beyond the uni-
versities, it became necessary to provide something more than just static text and images. One of the first
ways in which web pages were made dynamic was to enable them to access a database. The browser
was one tier, and the database was the second tier. In this scenario, the browser dealt with rules about
the business or application and user interface.

The data retrieval and manipulation was performed by another separate database application, such as
SQL Server or Microsoft Access. It would handle the data storage and retrieval device for the applica-
tion. These two-tier applications were also commonly know as client-server applications. A typical client-
server application is depicted in Figure 10-6.

The term business rules is used to encompass any part of the application logic that
isn’t the user interface or the database. If the application isn’t being used for a busi-
ness, then the term application logic might be more applicable, although they mean
the same thing.

There is actually a third option called deployment pre-compilation, which is for full
compilation of your project prior to deployment. You’ll learn a little more about this
in Chapter 16.

357

Componentization

13_042583 ch10.qxd 4/4/06 2:48 PM Page 357

Figure 10-6

The other popular variation on the two-tier application saw the business rules (application logic) being
executed on the database system. Such applications would commonly use stored procedures to manipulate
the database (or in some cases triggers). A stored procedure is a query that is stored on the database. It
can be called by the client application and then run on the server. It would contain rules about the busi-
ness as well. For example, if you had a league table on Wrox United that awarded three points for a win
and one point for a draw, then in the database query, it would somehow have to record that when one
side scores more goals than another side, it is worth three points. This is a business rule. It doesn’t mat-
ter to the database how many points you add on to the win; however, your league table would fail to
work properly if you added two or five points for a win.

Three-Tier Applications
The big difference with three-tier applications is that business rules are no longer located on either the
client or the database. They are stored and run on a system in between the client and the server. The
advantage of this is that the business rules server can ensure that all of the business processing is done
correctly. There is now a third layer interface, business rules and data. The introduction of the data tier is
illustrated in Figure 10-7.

Figure 10-7

In a three-tier application, the client never accesses the data storage system directly. You can make
changes to the business rules and this would mean you could change any part of the system without
having to alter the other two parts. As the three different sections of the application communicate via
interfaces, and as long as the interface between the code and application front-end remains the same,
the internal workings of each part can be changed without affecting the rest of the application. The

REQUEST

RESPONSE

RECORDS QUERY

Client Server
BUSINESS

RULES

Data
Source

REQUEST

RESPONSE

Client Server

358

Chapter 10

13_042583 ch10.qxd 4/4/06 2:48 PM Page 358

advantages of doing this are similar to those for keeping code and content separate. Typically, a database
is managed by a database administrator (DBA), and it might even be managed by a separate company.
The web developer as jack-of-all-trades would previously have been required to know the intimate
workings of the database, when really they shouldn’t be interfering there at all. So this brings you to the
end of your little excursion, because you can now look at a new feature in ASP.NET 2.0 that allows you
to separate your applications more simply into three tiers.

What’s New in ASP.NET 2.0
In ASP.NET 2.0, you are no longer restricted to binding only to data controls. You can also bind to sepa-
rate business controls via the ObjectDataSource control.

Using the ObjectDataSource Control
The new ASP.NET ObjectDataSource control enables you to declaratively bind data controls such as
the GridView, DataList, and DropDownList controls to a separate business control or a data compo-
nent. Previously, you could only bind the controls directly to a database. This new development enables
the separation of your business rules from your content and your data.

ObjectDataSource is a more difficult control to explain than a GridView or DropDownList control, so
rather than wasting excessive verbiage, it’s quicker to show you exactly what the ObjectDataSource
control does in an example. You’re actually going to do two examples to show it in action. In the first
example, you’ll see how to create a data component to return a list of players from the Players table. This
Try It Out is split into two sections: the first section where you create the ObjectDataSource itself and
the second where you bind the ObjectDataSource control to a GridView control. The resulting output
will be completely non-editable. In the second example, you’ll use the Try It Out to create a data compo-
nent that can not only read from the Wrox United database but also write data to it. You’ll create and
bind the data component in this same example that will make it quite lengthy.

The data component that you create in both examples will consist of an XSD schema file (.xsd). This file
describes the data you require and defines which methods will be used to read and write data. This
doesn’t require any code or knowledge of XML schemas because when you run the application, the .xsd
file is compiled for you and performs all of the tasks needed.

Start by creating the data component for the read-only example.

Try It Out Creating the Data Component
1. Open Visual Web Developer and select Open Web Site. From the C:\BegASPNet2\Chapters\

Begin\Chapter10 folder, select ObjectDataSource and click OK.

2. In Solution Explorer, right-click the name of your web site, select Add ASP.NET Folder, and
select App_Code.

3. Right-click the App_Code folder and select Add New Item from the list.

4. From the Visual Studio installed templates, click DataSet.

5. Rename the DataSet ods.xsd and click Add.

6. VWD starts the TableAdapter Configuration Wizard. (Be patient here, because this one really
does take a while to kick in.) When the wizard finally arrives, select ConnectionString
(Web.config) from the drop-down list (see Figure 10-8) and click Next.

359

Componentization

13_042583 ch10.qxd 4/4/06 2:48 PM Page 359

Figure 10-8

7. Next you get a page where you can choose to use SQL statements or stored procedures. Select
the Use SQL statements radio button (as shown in Figure 10-9) and click Next.

Figure 10-9

360

Chapter 10

13_042583 ch10.qxd 4/4/06 2:48 PM Page 360

8. On the next wizard screen, you can define the SQL statement. Type the following SQL statement
into the “What data should be loaded into the table” area of the dialog box:

SELECT PlayerID, FirstName, LastName, Position, DateJoined, DateLeft FROM Players

9. After entering the SQL statement, click Next. You can now define which methods the compo-
nent will expose. Uncheck the Fill a DataTable check box and make sure that the Return a
DataTable check box is checked (see Figure 10-10). In the Method name box, type GetPlayers.
This method is used later to retrieve the data. Uncheck the final check box.

Figure 10-10

10. Click Finish. In Figure 10-11, you can see the data component in the designer. It shows both the
data you selected and the method you created.

Figure 10-11

11. Save the data component and close the component designer.

12. Select Build➪Build Web Site to compile the component. (Note that this won’t produce anything
viewable.)

361

Componentization

13_042583 ch10.qxd 4/4/06 2:48 PM Page 361

How It Works
The data component is now usable as a data source within a Web Form. You’ve used the wizard to create
the component for you, to select the fields from the database, and also to name the method by which you
want to be able to call this component.

Thenext step is to bind to this component. To do this, you can create and configure an
ObjectDataSource control. You can then add controls, such as the GridView control, to the page and
bind them to the data source control.

Try It Out Binding to the ObjectDataSource Control
1. Open the Default.aspx from Solution Explorer and switch to Design View.

2. Open the Toolbox and from the Data section drag an ObjectDataSource control onto the page.

3. Select the Toolbox again, and from the Data section drag a GridView control onto the page.

4. Click the black arrow in the top-right corner of the ObjectDataSource control. The Common
Tasks box appears with the words “Configure Data Source.” Click this.

5. In the dialog box that appears, there is a single drop-down list asking you to choose your
business object (see Figure 10-12). There should only be one, the odsTableAdapters.
PlayersTableAdapter. Select it and click Next.

Figure 10-12

6. On the next screen (shown in Figure 10-13), under the Select tab in the Choose a method drop-
down box, the GetPlayers(), returns PlayersDataTable method is displayed. Select it
and click Finish (the other methods are automatically picked for you).

362

Chapter 10

13_042583 ch10.qxd 4/4/06 2:48 PM Page 362

Figure 10-13

7. Click the black arrow on the top-right corner of the GridView control and from the Choose Data
Source list that appears, select ObjectDataSource1. The Grid will update in Design View.

8. Open the Properties window and check that the DataKeyNames property is set to PlayerID.

9. Run the application, and you will see Figure 10-14 in your browser.

Figure 10-14 363

Componentization

13_042583 ch10.qxd 4/4/06 2:48 PM Page 363

How It Works
You started by creating an instance of an ObjectDataSource control. To give it its functionality, you
attached it to the GetPlayers() method that was specified in the data component. The GetPlayers()
method was created in the previous Try It Out. This method returns the results of the SQL statement,
available as a DataTable object. The DataTable object is an object that the GridView (and indeed all
data controls) can bind to. If you go back and look at the source that has been created, you can see the
source for the two controls you added to your form.

<div>
<asp:ObjectDataSource ID=”ObjectDataSource1” runat=”server”

OldValuesParameterFormatString=”original_{0}”
SelectMethod=”GetPlayers” TypeName=”odsTableAdapters.PlayersTableAdapter”>

</asp:ObjectDataSource>

</div>
<asp:GridView ID=”GridView1” runat=”server” AutoGenerateColumns=”False”

DataKeyNames=”PlayerID”
DataSourceID=”ObjectDataSource1”>
<Columns>

<asp:BoundField DataField=”PlayerID” HeaderText=”PlayerID”
InsertVisible=”False”

ReadOnly=”True” SortExpression=”PlayerID” />
<asp:BoundField DataField=”FirstName” HeaderText=”FirstName”

SortExpression=”FirstName” />
<asp:BoundField DataField=”LastName” HeaderText=”LastName”

SortExpression=”LastName” />
<asp:BoundField DataField=”Position” HeaderText=”Position”

SortExpression=”Position” />
<asp:BoundField DataField=”DateJoined” HeaderText=”DateJoined”

SortExpression=”DateJoined” />
<asp:BoundField DataField=”DateLeft” HeaderText=”DateLeft”

SortExpression=”DateLeft” />
</Columns>

</asp:GridView>

The GridView control binds each of the fields in the dataset to a column in a table on the display.
The ObjectDataSource takes five attributes. The ID and runat attributes are standard, the
OldValuesParameterFormatString is set to the original setting, the SelectMethod attribute specifies
the name of the actual method, and the TypeName specifies the PlayersTableAdapter. These are all the
instructions needed to be able to bind the return PlayersTable to the GridView control. The final display
looks the same as a normal GridView control — it’s only the plumbing underneath that has routed your
data from the ObjectDataSource control that is different.

The Wrox United ObjectDataSource
This data so far has been static. So as mentioned previously, in this next Try It Out, you go one further
and use the ObjectDataSource control to be able to edit and update your squad’s details. In the Admin
section of the Wrox United site, there is a page called EditSquad.aspx, which is used to change the
players’ details. However, it uses the SqlDataSource control for the details. This can be replaced with
an ObjectDataSource control. It has insert, update, select, and delete methods that map neatly to the
methods in a simple class.

364

Chapter 10

13_042583 ch10.qxd 4/4/06 2:48 PM Page 364

Try It Out The Wrox United ObjectDataSource
1. Open the Wrox United application from the chapter samples (C:\BegASPNET2\Chapters\

Begin\Chapter10\WroxUnited) in Visual Web Developer.

2. Right-click the App_Code folder and select Add New Item from the list.

3. From the Visual Studio installed templates, click DataSet.

4. Rename the DataSet wroxunited.xsd and click Add.

5. VWD starts the TableAdapter Configuration Wizard. (As before, be patient here.) When the
wizard finally arrives, select wroxunited (Web.config) and click Next.

6. When you get the page where you can choose to use SQL statements or stored procedures.
select the Use SQL statements radio button and click Next.

7. On the next wizard screen, you can define the SQL statement. Type the following SQL statement
into the “What data should be loaded into the table” area of the dialog box:

SELECT PlayerID, FirstName, LastName, Position, PictureURL, DateJoined, DateLeft
FROM Players
WHERE PlayerID = @PlayerID

8. After entering the SQL statement, click Next. You can now define which methods the compo-
nent will expose. Uncheck the Fill a DataTable check box and make sure that Return a DataTable
check box is checked. In the Method name box, type GetPlayers. This method is used later to
retrieve the data. Make sure the final check box, “Create methods to send update directly to the
database,” is checked.

9. Click Next and then click Finish. Save the data component, and close the component designer.

10. Select Build➪Build Web Site to compile the component.

11. Open the Admin folder of WroxUnited and open the EditSquad.aspx file.

12. In Design View, scroll down, select the second SqlDataSource control, DetailsDataSource
(shown in Figure 10-15), and delete it.

13. From the Data Section of the Toolbox, drag an ObjectDataSource control where the
SqlDataSource used to be.

14. Click the black arrow at the top right of the ObjectDataSource control, and from the Common
Tasks menu, select Configure Data Source.

15. In the opening dialog box, select wroxunitedTableAdapters.PlayersTableAdapter and
click Next.

16. In the Select tab, select the GetPlayers(Int32 PlayerID), returns PlayersDataTable
method from the drop-down list box and click Next.

17. In the Define Parameters dialog box, select Control from the Parameter Source drop-down list
box. Select GridView1 in Control view. The parameters on the left of the dialog box will now
show GridView.SelectedValue. Click Finish.

365

Componentization

13_042583 ch10.qxd 4/4/06 2:48 PM Page 365

Figure 10-15

18. Right-click the ObjectDataSource control in Design View and select Properties.

19. In the Properties window, change the (ID) property so that it reads “DetailsDataSource”.

20. Open EditSquad.aspx.cs and amend the code in the procedure parameters to read as follows
in the three subs:

protected void DetailsDataSource_Updated(object sender ,
System.Web.UI.WebControls.ObjectDataSourceMethodEventArgs e)
{
...

}
protected void DetailsDataSource_Inserted(object sender ,
System.Web.UI.WebControls.ObjectDataSourceMethodEventArgs e)
...

}
protected void DetailsDataSource_Deleting(object sender , As
System.Web.UI.WebControls.ObjectDataSourceMethodEventArgs e)
{
...

}

366

Chapter 10

13_042583 ch10.qxd 4/4/06 2:48 PM Page 366

21. Save and close the file.

22. Run the application, log in as an administrator (dave\dave@123), and navigate to the
EditSquad.aspx page. It works in the same way as before except that you are now using an
ObjectDataSource control.

How It Works
You haven’t changed much between this and the previous example. You built a data component, and
you then added an ObjectDataSource control into the EditSquad.aspx page. You added methods for
the Update, Insert, and Delete methods via the wizard. The code that provided your functionality in the
classes was already in existence — all you had to do was change the references from the SqlDataSource
control to the ObjectDataSource control. Then you ran it, and the WroxUnited application was able to
use the ObjectDataSource instead.

User Controls
Your final problem is that of making your code easy to reuse, and this is addressed by user controls.
Again, these existed in ASP.NET 1.x, but this is something that also has been improved upon in ASP.NET
2.0. So what are user controls? Well in a nutshell, user controls are reusable Web Forms. They’ve been
through several name changes and evolutions from scriptlets to pagelets, before arriving at user con-
trols. They can be thought of as mini-scripts, mini-pages, or pages within your pages, but however you
choose to think of them, the key is that they can be called up as many times as you need them.

If you browse the Wrox United site, you can see several examples of user controls, and one, the News
control, is visible on the front page. In fact, if you look at the front page (shown in Figure 10-16), it is a
multitude of components garnered from different sources.

The News control is a user control, the Login control is an ASP.NET control, the shopping cart is a link to
a user control, and the menu is derived from the site master, which itself is an ASP.NET control. So the
entire site front page and design is reusable. If you click the Shopping Cart link, you will see the second
user control, shown in Figure 10-17.

And there are a couple more user controls in the administrative section of the site too, but you get the
idea that these controls can be used in multiple pages, or called from different places, and rather than
having to cut and paste the code individually each time, you can just call on this one section of code over
and over again. One question you might have is how do they differ from the normal ASP.NET server
controls, such as the TextBox control or the Login control that you looked at earlier?

Very little is the answer. The main difference is that you have to provide the code behind the control
yourself, whereas ASP.NET server controls come fully functional out of the box. You can add properties
to user controls and set them as attributes, just like you would with a normal ASP.NET server control.

367

Componentization

13_042583 ch10.qxd 4/4/06 2:48 PM Page 367

Figure 10-16

So why isn’t everything an ASP.NET server control? Well, ASP.NET 2.0 ships with a multitude of con-
trols designed for the most common scenarios and situations. ASP.NET 2.0 adds greatly to the number of
server controls. For example, in ASP.NET 1.1 if you wanted a Login control, you had to stitch together a
username text box, a password text box, a button, and a label for messages within a panel, so you had to
create this as a user control. In version 2.0, the Login control comes as a server control. However, it just
isn’t possible to anticipate everything that a user might want or need. Therefore, it makes sense to have
the flexibility to create your own.

If you view the source code in Internet Explorer for the home page (Default.aspx) in WroxUnited.net,
you’ll see no indication that a user control has been used — it’s all HTML elements and some occasional
script, which is just as it should be. If you were using a Flash plug-in or a Java applet, you would see
some indication with an <object> tag or on older browsers, possibly an <embed> tag. So there’s no
worry about extra download time being taken either.

Login Control (ASP.NET)

Link to ShoppingCart Control (User) News Control (User)

368

Chapter 10

13_042583 ch10.qxd 4/4/06 2:48 PM Page 368

Figure 10-17

If you look at the actual page that is sent to the server, you can see the user control is included with two
simple lines of code that highlighted here (this source code page is available for download at
www.wrox.com):

<%@ Page Language=”C#” Trace=”false” MasterPageFile=”~/site.master”
AutoEventWireup=”true” codefile=”Default.aspx.cs” Inherits=”_Default” %>
<%@ Register TagPrefix=”uc1” TagName=”News” Src=”News.ascx” %>
<asp:Content ID=”Content1” ContentPlaceHolderID=”mainContent” Runat=”server”>

<h2>Welcome to the Wrox United Web site.</h2>
<p>We’re a great football team. No really, we are. Don’t take any notice
of our past performance. We’re just unlucky.</p>

<uc1:news id=”News1” runat=”server” ItemsToShow=”3”></uc1:news>

</asp:Content>

This page starts giving you some clues as to how user controls work.

User Control Structure
User controls are stored in separate files with a separate .ascx extension. Any time you see this extension,
you know that you are dealing with a user control. To create a user control, you need to add a @Register
directive to the top of your Web Form identifying where you can find your user control:

<%@Register TagPrefix=”WroxUnited” TagName=”MyControl” %>

369

Componentization

13_042583 ch10.qxd 4/4/06 2:48 PM Page 369

You need to add a new tag specifying where the control will go on your page. It consists of the
TagPrefix, followed by a colon, followed by the TagName, an ID, and the now familiar runat=server
attribute:

<WroxUnited:MyControl id=”mycontrol1” runat=”server”>
</WroxUnited:MyControl>

Lastly, you need to specify the user control itself in a separate .ascx file. Unlike Web Forms, you don’t
need to specify extra <html> and <body> tags, because the contents of this control will be added to the
body of the containing main page. In fact, all you need to have is the controls that you want to include.
For example, you could include the controls from the code-behind example used earlier in the chapter:

<asp:Label ID=”Label1” runat=”server” Text=”What is the answer to the meaning
of life, the universe and everything?:”></asp:Label>

<asp:TextBox ID=”TextBox1” runat=”server”></asp:TextBox>

<asp:Button ID=”Button1” runat=”server” Text=”Submit” />

<asp:Label ID=”Label2” runat=”server” Text=””></asp:Label>

Of course, user controls can have code-behind files as well, just like Web Forms:

public void Page_Load(object sender, System.EventArgs e)
{

if (Page.IsPostBack)
{

if (TextBox1.Text == “42”)
Label2.Text = “So you read Douglas Adams as well...”;

else
{

Label2.Text = “No, I’m not sure that’s it”;
}

}

This control can then be bolted into your web pages wherever you specify the @Register directive and
add a tag for the control.

A Simple User Control
In the next Try It Out, you’re going to start by creating a trivial “Hello World”-style user control to get
you used to the idea of including them in your pages. This code does no more than encapsulate the
code-behind from the first example you created in the chapter as a user control. You’ll see how you can
place the user control in one web page, and then in a second web page.

Try It Out Creating a Simple User Control
1. Open VWD and create a new ASP.NET web site called SimpleUserControl in the chapter direc-

tory (C:\BegASPNET\Chapters\Begin\Chapter10).

2. In Solution Explorer, right-click the web site and select Add New Item. Select Web User Control,
enter the name SimpleUserControl.ascx, and check the Place Code in Separate File option, as
shown in Figure 10-18.

370

Chapter 10

13_042583 ch10.qxd 4/4/06 2:48 PM Page 370

Figure 10-18

3. Now you need to add the controls to the page. Again, drag two Label controls, a TextBox con-
trol, and a Button control, as shown in Figure 10-19.

Figure 10-19

371

Componentization

13_042583 ch10.qxd 4/4/06 2:48 PM Page 371

You can cut and paste the relevant code from the first Try It Out in this chapter into Source View
if you still have it at hand:

<asp:Label ID=”Label1” runat=”server” Text=”What is the answer to the meaning of
life, the universe and everything?:”></asp:Label>

<asp:TextBox ID=”TextBox1” runat=”server”></asp:TextBox>

<asp:Button ID=”Button1” runat=”server” Text=”Submit” />

<asp:Label ID=”Label2” runat=”server” Text=””></asp:Label>

4. Double-click the page again and this time, add the following code-behind to
SimpleUserControl.ascx.cs:

public partial class SimpleUserControl : System.Web.UI.UserControl
{

protected void Page_Load(object sender, EventArgs e)
{

if (Page.IsPostBack)
{

if (TextBox1.Text == “42”)
Label2.Text = “So you read Douglas Adams as well...”;

else
{

Label2.Text = “No, I’m not sure that’s it”;
}

}
}

}

5. Next you need to add this control to a page. From Solution Explorer, drag
SimpleControlUser.ascx into Design View for Default.aspx (see Figure 10-20).

6. Click the green arrow to run Default.aspx. It works in exactly as it did in the first Try It Out of
this chapter, as evidenced in Figure 10-21.

7. Go to Solution Explorer and right-click the project. Select Add New Item and add a new Web
Form to the page called secondpage.aspx.

8. Go to Design View and drag SimpleUserControl.ascx into this page. Next, go to Solution
Explorer and right-click secondpage.aspx and select Set As Start Page.

372

Chapter 10

13_042583 ch10.qxd 4/4/06 2:48 PM Page 372

Figure 10-20

Figure 10-21

9. Run the project again. You should see what appears in Figure 10-22. Your control has been suc-
cessfully duplicated with no extra lines of code being required.

373

Componentization

13_042583 ch10.qxd 4/4/06 2:48 PM Page 373

Figure 10-22

How It Works
This hopefully shows you just how easy it is to reuse code in your pages. If you go to Default.aspx
and view the source, you will see the following:

<%@ Page Language=”C#” AutoEventWireup=”false” CodeFile=”Default.aspx.cs”
Inherits=”_Default” %>
<% Register Src=”SimpleUserControl.ascx” TagPrefix=”uc1”
TagName=”SimpleUserControl” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN” “http://www.w3.org/TR/xhtml11/
DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Untitled Page</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>
<uc1:SimpleUserControl id=”SimpleUserControl1 runat=”server” />
</div>
</form>

</body>
</html>

The highlighted lines of code are the only two lines that have been added to the original source code.
The first registers the user control and specifies a tag prefix of uc1 (short for “user control one”) and a
TagName of SimpleUserControl. The control is then inserted into the page along with an id attribute
and a runat=server attribute.

There’s nothing to stop you from copying this tag and pasting it again and again in the page, although it
might make your page a little illogical, with several versions of the user control. Note that this example
got you to cut and paste the old code from the code-behind page. This was quite deliberate because this
was the old way of transferring replicated code. Each time you wanted to transfer the code, you would
cut and paste it manually. Not only is cutting and pasting more labor-intensive, but it is also far more
prone to mistakes, because if you altered the code in one page, it would need to be altered in all of the
rest. With user controls, any changes you need to make can just be made to the .ascx file and the .ascx.cs
file themselves, and then every time the user control is called, it automatically uses the new code.

374

Chapter 10

13_042583 ch10.qxd 4/4/06 2:48 PM Page 374

The Wrox United News User Control
You’re now going to move onto a more complex user control, and one that is used on the Wrox United
web site. You’re going to re-create the News control that you find on the main Wrox United site. This con-
trol scans the News table, selects the most up-to-date stories, and displays them on the front page, with
the most recent being displayed first.

Before you launch into the coding, it’s worth saying a little bit about why we chose to make this a user
control, while other bits and pieces we chose not to. A News control is something that is going to be com-
mon on many web sites (although technically speaking, user controls shouldn’t be used across several
applications — as you will see at the end of this chapter — because there is something better served for
that purpose). It is also something that will quite likely be called upon at several places throughout the
application (although you only call upon it once within the Wrox United application), and the principle
will remain the same throughout — it will display a list of articles in order, with the most recent first. Of
course, not all things you will design on this site will be suitable for reuse and for creating as user con-
trols, but the News control is a content delivery mechanism and content is the driving force behind most
web sites. In the following Try It Out, you create your own News user control and drop it into your own
blank page.

Try It Out Using the News Control
1. Open Visual Web Developer and select Open Web Site. From the Chapter10 folder (C:\BegASPNET\

Chapters\Begin\Chapter10), select WroxUnitedNewsControl and click OK.

2. Go to Visual Web Developer and right-click the top item in Solution Explorer. Select Add New
Item and select Web User Control. Type NewsUserControl.ascx in the Name text box. Make
sure the Place Code in Separate File check box is selected, as shown in Figure 10-23.

Figure 10-23

3. Go to Design View and drag a SqlDataSource control from the Data section of the Toolbox
menu. Don’t, however, click to configure the Data Source from the Common Tasks box that
appears.

375

Componentization

13_042583 ch10.qxd 4/4/06 2:48 PM Page 375

4. From the Data section of the Toolbox menu, add a Repeater control below the SqlDataSource
and select SqlDataSource1 to be the Repeater’s Data Source (see Figure 10-24).

Figure 10-24

5. Add the template to the HTML. With the Repeater control, you have to switch to Source View
to add the template. Switch to Source View and add the following code:

<asp:Repeater ID=”Repeater1” Runat=”server” DataSourceID=”SqlDataSource1”>
<ItemTemplate>

<div class=”newsItem”>
<%#Eval(“DateToShow”, “{0:dd MMM yyyy}”)%>

<%#Eval(“Title”)%>

</div>

<%#Eval(“Description”) %>

</ItemTemplate>
</asp:Repeater>

6. Still in Source View, add the following to the SqlDataSource:

ConnectionString=”<%$ConnectionStrings:WroxUnited%>”

This contains the connection string information that you will need for this example.

7. Go to the code-behind file and add the following code for an ItemsToShow property, which
governs how many items are shown on the screen at the same time:

376

Chapter 10

13_042583 ch10.qxd 4/4/06 2:48 PM Page 376

public partial class NewsUserControl : System.Web.UI.UserControl
{

private int _itemsToShow = 5;
public int ItemsToShow
{

get
{

return _itemsToShow;
}

set
{

_itemsToShow = value;
}

}

8. Add the following code directly underneath the code you previously added:

private void Page_PreRender(object sender, System.EventArgs e)
{

string sel = string.Format(“SELECT Top {0} * FROM [News] WHERE DateToShow
<= ‘{1}’ ORDER BY DateToShow DESC”, _itemsToShow,
DateTime.Now.ToString(“yyyy/MM/dd”));
//Make sure above is all on one line.

SqlDataSource1.SelectCommand = sel;

}

9. Go to Solution Explorer and create a new Web Form called NewsDisplay.aspx. Go to Design
View and drag your NewsUserControl.ascx into the Web Form.

10. Run it — it’s fairly raw without any styles, but you will see five news items, as shown in
Figure 10-25.

Figure 10-25
377

Componentization

13_042583 ch10.qxd 4/4/06 2:48 PM Page 377

11. Go back to Source View and add an ItemsToShow attribute, and set it to 2:

<div>
<uc1:NewsUserControl id=”NewsUserControl1” runat=”server” ItemsToShow=”2”>
</uc1:NewsUserControl>

</div>

12. Save the page and run it again, and you will see the output shown in Figure 10-26. If you want
to improve the “rough and ready” look of this control, as we have, drag the site.css file from
the templates folder in the directory into the aspx file to apply the style sheet.

Figure 10-26

How It Works
You have a News control that not only can you drop in any page (it is used on the front page of the Wrox
United site), but also enables you to configure the number of items shown via a single attribute. The fol-
lowing code has been created in the user control, a SqlDataSource control that queries the news table
together with a Repeater control that displays each of the news items:

<%@ Control Language=”C#” AutoEventWireup=”false” codefile=”News.ascx.cs”
Inherits=”NewsControl” %>
<asp:SqlDataSource id=”SqlDataSource1” Runat=”server”

ConnectionString=”<%$ ConnectionStrings:WroxUnited %>”>
</asp:SqlDataSource>

<asp:Repeater ID=”Repeater1” Runat=”server” DataSourceID=”SqlDataSource1”
<ItemTemplate>
<div class=”newsItem”>

<%#Eval(“DateToShow”, “{0:dd MMM yyyy}”)%>

<%#Eval(“Title”)%>

</div>

<%#Eval(“Description”) %>

</ItemTemplate>
</asp:Repeater>

378

Chapter 10

13_042583 ch10.qxd 4/4/06 2:48 PM Page 378

It’s the code-behind that provides the main functionality. Once again, the relationship between the code-
behind and the main control is shown. You added an ItemsToShow property to the code-behind and
exposed it as a public property. This has the effect of creating an attribute that you can set via the Web Form:

private int _itemsToShow = 5;
public int ItemsToShow
{

get
{

return _itemsToShow;
}

set
{

_itemsToShow = value;
}

}

You set the default to 5, so if the attribute isn’t set, you automatically display five items instead. The
property enables you to both get and set the separate values.

The code that occurs in the Pre_Render event enables you to display the contents of the control. This is
similar to the Page_Load event, except it occurs just before the controls on a page are rendered. Because
you want to display these at the last possible moment, you place two statements here. The first one pro-
vides a SQL statement that selects the top news items ordered by date, and restricted by the _items
ToShow variable that you created at the top of the class:

string sel = string.Format(“SELECT Top {0} * FROM [News] WHERE DateToShow <=
‘{1}’ ORDER BY DateToShow DESC”, _itemsToShow,
DateTime.Now.ToString(“yyyy/MM/dd”));
//Make sure above is all on one line.

SqlDataSource1.SelectCommand = sel;

The second statement sets this SQL to the SelectCommand property of your data source, and this
restricts the number of items shown by your user control.

Composite Controls
You’ve looked at how user controls are nested inside pages, but it doesn’t stop there. You can nest user
controls inside user controls. These are known as composite controls. If you consider a scenario where
you require a group of user controls, such as a News control, a Login control, and a Fixture viewer
control. Rather than having to place references to these controls separately each time, you could place
them in a single user control and use that control instead. This further enhances the code-reuse within
the application.

Assemblies and Custom Server Controls
.NET also provides the capability to pre-compile code components into a central location that can be
accessed from anywhere within the site. These components, like user controls, can contain one or more
classes. However, the crucial difference is that ASP.NET uses the compiled assemblies rather than the code

379

Componentization

13_042583 ch10.qxd 4/4/06 2:48 PM Page 379

inside the component itself at runtime (in other words, the component isn’t compiled at the same time as
the main application, but rather has to be done beforehand). .NET assemblies can use any of the .NET-
compliant languages, and the assemblies are compiled into .dll files. These .dll files are then placed
within the App_Code folder, and can be used by ASP.NET as part of the program.

Custom server controls are a specific version of assemblies. You have already seen how ASP.NET pro-
vides such controls as TextBox, Label, CheckBox, and radio button controls to aid in the development
of user interfaces. Although the vast majority of server controls should cover you for most situations,
and also the fact that in ASP.NET 2.0, there is an even wider range of server controls, there are still times
when you might need to create controls that extend the user interface still further. Custom controls are
controls that generate a visible user interface. If you consider that when ASP.NET was created, the
ASP.NET server controls are actually just custom controls that someone at Microsoft has already created
for you and distributed with ASP.NET 2.0. A main difference between user controls and custom controls
is that user controls are intended to be confined to the application they were created for, whereas custom
controls can be used with any application. Hence they are pre-compiled into assembly files, making
them more portable. They also inherit from the System.Web.UI.Control namespace rather than the
namespace specific to the application. Typical examples of custom controls include TreeView controls
and custom file open dialog boxes for a particular file type.

The creation of custom controls is something you have to worry about less now, given the vast amount
of controls provided with ASP.NET 2.0, and for that reason they are not covered in this book.

For in-depth discussion of custom controls, consult Professional ASP.NET 2.0 by Bill Evjen, et al, from
Wrox Press.

Summary
This chapter has taken a slightly more theory-heavy slant than previous chapters, because the only way
developers can learn their trade well is by learning the best practices. This chapter has been all about
componentization and code reuse. You have looked at four strategies for these. The first was the use of
code-behind. The main reason for using code-behind is to separate the web page’s design, style, and
user interface from the main structure and the code of the web site. The second was using the
ObjectDataSource control to create a separate business layer and data layer in your application. This
was the next step, separating your application into an interface, a business rules layer, and a data layer.
Third was the idea of centralizing all of our data access code into one component that could be deployed
across different applications. Finally, you looked a user controls and how the use of user controls pro-
motes code-reuse.

Although this chapter delved a lot into theory, it also taught you the way you should code and the tech-
niques you should employ. Good applications are ones that contain as little code as possible, that don’t
repeat the same code and ultimately run quicker, have fewer bugs and are easier to maintain, and are
possibly even easier for the end-user to use. The next chapter examines another new feature in ASP.NET
2.0, that of profiles and roles.

380

Chapter 10

13_042583 ch10.qxd 4/4/06 2:48 PM Page 380

Exercises
1. Create a new web site and a new page called CodeBehind.aspx with a single label, but making

sure that you don’t check the box marked Placed Code in a Separate File. Now create a code-
behind file manually for that page that displays the content of the label.

2. How would you go about adding an image to accompany each news item? Note that it shouldn’t
display if there is no news image present for that article.

381

Componentization

13_042583 ch10.qxd 4/4/06 2:48 PM Page 381

13_042583 ch10.qxd 4/4/06 2:48 PM Page 382

11
Roles and Profiles

In Chapter 4, you learned how ASP.NET handles simple user accounts, how access to a site can be
controlled on a user-by-user basis, and how to group users into roles and control access to a site
through the use of roles. Using the ASP.NET Web Site Administration Tool, you have the ability to
define user accounts, administer roles, and set security permissions all in one central location. This
chapter revisits the concept of roles and looks at how accounts and roles are used in Wrox United.
You also learn how to control program logic and flow based on which roles the current user is a
member of, all using code.

Additionally, because you should now feel comfortable working with .NET code, this chapter
takes you on a tour of user profiles. The user profiles that you can create in ASP.NET can store
additional information on a user-account-by-user-account basis; for example, a user’s favorite
football team or favorite color. You’ll recall that, in Chapter 5, the concepts of styling controls and
pages using central themes were discussed; in this chapter, one of the items you’ll be adding to
user profiles is the preferred theme to use for a specific web site.

In this chapter, you learn how to:

❑ Manage site accessibility on a role-by-role basis in code

❑ Use roles effectively in a site, using the Wrox United site as an example

❑ Employ user profiles to store additional information about a user

❑ Work with profiles in code to store and apply favorite themes to a site

This chapter revisits Wrox United and introduces the Fan Club page to the site. In this page, you’ll
learn how to display different content depending on which role a user is a member of, and how to
update a user’s profile. You’ll also make use of the powerful LoginView control, which simplifies
the process of displaying different content dependent on role membership.

14_042583 ch11.qxd 4/4/06 2:49 PM Page 383

The Importance of Roles
A role is a key concept to understand when you do any work on a system that involves user accounts. In
any organization, user accounts are likely to be assigned to roles that relate to the type of user account.
For example, if you look at the local user accounts set up on your PC, you will find lists of different
types of groups; for example, users, power users, and administrators. In a simple Windows domain-
based network, you may find that all corporate users are members of the Domain Users role. Certain
user accounts in a network may be members of a different group — for example, your system adminis-
trators may be members of the Domain Administrators group, enabling them to administer the users in
the company domain. Figure 11-1 displays the groups available to a fairly basic Windows XP installa-
tion; each user account can be a member of zero or more groups.

Figure 11-1

Because each user account can be a member of more than one group, if required, Figure 11-2 shows an
example of an account on the same machine.

Figure 11-2

384

Chapter 11

14_042583 ch11.qxd 4/4/06 2:49 PM Page 384

Notice that the user displayed here is a member of both the Power Users and Remote Desktop Users
groups. This means that the user (called Chris) can log in via a Remote Desktop session (if remote con-
nections are allowed), and can perform most day-to-day administration tasks, with some restrictions,
required on the computer.

The ability to group users into related roles simplifies the process of administration. If my administrator
wanted to grant a specific permission to all the members of the development team at the office where I
work, he could either assign those permissions to each one of the 12 user accounts individually, or he
could add us all to a “Developers” role, and grant that one permission to the role. It’s a simple and logi-
cal way to work, and you will almost always have to consider which roles a user is a member of when
you develop an application.

One of the most important roles you will come across is that of the Administrator. An Administrator can
pretty much do anything to an application or a system. For this reason, you can rejoice in the ability to
log in as an Administrator to fix a problem that can only be fixed with a specific set of permissions.
However, you need to be very aware of permissions when you develop applications because it’s poten-
tially dangerous from a security perspective. Code running with full privileges can modify a system to
the point where the system is completely destroyed — you don’t want to end up deleting the entire con-
tents of your Windows directory, or formatting your hard drive accidentally.

The best practice to adopt is that of lowest-privilege. Start with a low-privilege user account and add only
those permissions that are required by the application. The default settings in ASP.NET mean that the
code that runs ASP.NET web applications will have a limited set of privileges by default, and IIS6 (the
web server provided with Windows Server 2003) is locked down tight when you first install it, so you
have to actually enable ASP.NET when you install it just to run ASP.NET web applications. That doesn’t
mean that you can sit back and keep running as an administrator the whole time — try logging in as a
user who is only a member of Power Users, or, better still, the Users group, and test your code regularly.
Never assume that an application is working without having tested it as a completely different user.

Introducing Roles in Wrox United
In the full Wrox United application, you’ll recall that roles have been configured to enable different lev-
els of access to the site. Each user account that is defined has a different level of access, whether it’s as a
site administrator or a fan club member. Time to recap a little on what you achieved in Chapter 4. If you
open up the Wrox United application source in VWD and select Website➪ASP.NET Configuration, you’ll
see the list of current users, the list of roles, and you can explore each user account to see their roles.
Figure 11-3 shows the list of roles defined in the preconfigured Wrox United application.

These screenshots were taken from the user configuration stored in the C:\BegASPNET2\Chapters\
Begin\Chapter11 version of the site, though the configuration is the same in the full version of the site.

So, that’s a total of five different roles. If you look at the users defined in the application, you’ll find that
there are seven different users: ChrisH, ChrisU, Dan, Dave, Jim, John, and Lou. Because users can be
members of more than one role, and roles can have more than one member, that’s quite a few possible
combinations. Clicking the Manage link shown next to each role in Figure 11-3 displays all members of a
role. Figure 11-4 displays the list of FanClubMembers.

385

Roles and Profiles

14_042583 ch11.qxd 4/4/06 2:49 PM Page 385

Figure 11-3

Figure 11-4

386

Chapter 11

14_042583 ch11.qxd 4/4/06 2:49 PM Page 386

You can continue to explore each of the user accounts and roles to see who is a member of each group, so
you can discover the following (among other things):

❑ ChrisH, ChrisU, Dave, and John are reporters.

❑ Dave is a member of all groups; hence he’s the “super user” (who can access all areas of the site,
which is great for testing).

❑ Lou is only a member of the Fan Club; hence she is the only true fan of the team.

❑ Dan’s the team’s manager and Jim’s the owner.

After digging through the site configuration, in the Access Rules section, you’ll also recall that the
Admin section of the site was restricted so that only site administrators could enter that part of the site.
Additionally, the Fan Club was restricted so that only members could see the fan club–specific links
available in the fan club section.

In the next example, you get to use this configuration and try it out for yourself. The Fan Club for Wrox
United is a good place to start.

In the following Try It Out, you build the skeleton for the Fan Club page and see how different users will
see a different version of the page, depending on whether they are logged in, and, if the user has logged
in, the current user’s identity.

Try It Out The Wrox United Fan Club
1. Open up the chapter version (in C:\BegASPNET2\Chapters\Begin\Chapter11\WroxUnited)

of the Wrox United application and run the site by pressing Ctrl+F5.

2. Log in to the site as Lou, using the password lou@123. There is a link to the Fan Club (FanClub
.aspx) in the menu on the left (shown in Figure 11-5), and to the two subpages: FanClubMatch
Report.aspx and FanClubPictures.aspx.

At the moment, the pages are looking a bit empty, so it’s time to start adding some code.

3. Open FanClub.aspx in Visual Web Developer and switch to Design View.

4. Drag a LoginView control onto the page, as shown in Figure 11-6.

5. Rename the control FCLoginView.

You’re going to create three different views on this page:

❑ AnonymousTemplate: Anonymous visitors will be asked to purchase a Fan Club mem-
bership before they can access the fan club pages.

❑ Administrator/Manager/Owner/Reporter: All logged-in users who are not members of
the Fan Club will be told to contact the administrator of the site to gain access to the fan
club.

❑ FanClubMembers: Members of the Fan Club will be able to change their passwords
and to update their profiles (you add this part later in the chapter).

387

Roles and Profiles

14_042583 ch11.qxd 4/4/06 2:49 PM Page 387

Figure 11-5

Figure 11-6388

Chapter 11

14_042583 ch11.qxd 4/4/06 2:49 PM Page 388

6. In the Common Tasks box of the LoginView control (the flyout highlighted in Figure 11-6), click
the Edit RoleGroups link. In the dialog box that appears (shown in Figure 11-7), you can enter
the details for the two custom role groups. Click the Add button to add a new group, and then
click the ellipsis next to the Roles property on the right and enter FanClubMember in the dialog
box that appears.

Figure 11-7

7. Repeat the process and enter Administrator, Owner, Manager, and Reporter, each on separate
lines in the pop-up, as depicted in Figure 11-8.

Figure 11-8

8. Click OK to close the dialogs and you’ll be returned to the Design View for the page.

9. Back in the Common Tasks box of the LoginView control (refer to Figure 11-6), select the
AnonymousTemplate from the View drop-down and enter just a few words of text in the body
of the control (see Figure 11-9).

389

Roles and Profiles

14_042583 ch11.qxd 4/4/06 2:49 PM Page 389

Figure 11-9

When you return to Source View, you will now see the following code:

<%@ Page Language=”C#” MasterPageFile=”~/site.master” AutoEventWireup=”false”
CodeFile=”FanClub.aspx.cs” Inherits=”FanClub” Title=”Fan Club” %>
<asp:Content ID=”Content1” ContentPlaceHolderID=”mainContent” Runat=”Server”>

<asp:LoginView ID=”FCLoginView” runat=”server”>
<RoleGroups>

<asp:RoleGroup Roles=”FanClubMember”>
</asp:RoleGroup>
<asp:RoleGroup Roles=”Administrator,Owner,Manager,Reporter”>
</asp:RoleGroup>

</RoleGroups>
<AnonymousTemplate>

This is the anonymous template
</AnonymousTemplate>

</asp:LoginView>
</asp:Content>

10. Stay in Source View and enter the following lines of code — this will make sure you have some
visible content displayed no matter who views the site:

390

Chapter 11

14_042583 ch11.qxd 4/4/06 2:49 PM Page 390

<asp:LoginView ID=”FCLoginView” runat=”server”>
<RoleGroups>

<asp:RoleGroup Roles=”FanClubMember”>
<ContentTemplate>

<p>
Welcome back
<asp:LoginName ID=”FCLoginName” runat=”server” />
.</p>

<p>
There are always lots of exciting things happening with the fan club,
most of which you already know from the email we regularly send out.
One that hasn’t made it to the email yet is the proposed end of season
BBQ – a great excuse for a summer party (not that we really need an
excuse). This will be open to all members of the public and tickets
will be heavily discounted for fan club members as a thank you for all
of the great support you’ve given the club. The date hasn’t yet been
set, but keep your eyes on your inbox for more details.

</p>
</ContentTemplate>

</asp:RoleGroup>
<asp:RoleGroup Roles=”Administrator,Owner,Manager,Reporter”>

<ContentTemplate>
To see the Fan Club features you need to be a member. As special users
you get free entry to the fan club – talk to the admin people to get set
up.

</ContentTemplate>
</asp:RoleGroup>

</RoleGroups>
<AnonymousTemplate>

<p>
The fan club provides a way for you to show your devotion to the club, and
gains you exclusive privileges. You get discounts on match tickets and at
the club store, as well as having the opportunity to meet up with
like-minded fans.

</p>
<p>

Membership to the Fan Club can be bought from
the Club Shop. Once membership has been received
we’ll enable your account as a Fan Club Member.

</p>
</AnonymousTemplate>

</asp:LoginView>

11. Time to run the page and see how this works. Launch the site from VWD and, before you log in,
go to the Fan Club page as an anonymous user. You should see the screen shown in Figure 11-10.

391

Roles and Profiles

14_042583 ch11.qxd 4/4/06 2:49 PM Page 391

Figure 11-10

12. Log in to the site as ChrisH, using the password chrish@123. You will now see the screen in
Figure 11-11.

392

Chapter 11

14_042583 ch11.qxd 4/4/06 2:49 PM Page 392

Figure 11-11

13. Log out, and then log back in as Lou, using password lou@123. You’ll be presented with the
welcome screen shown in Figure 11-12.

393

Roles and Profiles

14_042583 ch11.qxd 4/4/06 2:49 PM Page 393

Figure 11-12

How It Works
The LoginView control, which you first met in Chapter 4, is a great way of displaying content that is
directly related to the user who is currently viewing a page. In this example, you’ve added code so that
three possible views are available of the Fan Club home page.

If the user is anonymous, the anonymous template is used:

<AnonymousTemplate>
<p>

The fan club provides a way for you to show your devotion to the club, and
gains you exclusive privileges. You get discounts on match tickets and at
the club store, as well as having the opportunity to meet up with like
minded fans.

</p>
<p>

Membership to the Fan Club can be bought from
the Club Shop. Once membership has been received
we’ll enable your account as a Fan Club Member.

</p>
</AnonymousTemplate>

394

Chapter 11

14_042583 ch11.qxd 4/4/06 2:49 PM Page 394

If the user has logged in, it’s fairly safe to assume that he is a member of a group, and hence he will see a
different page depending on which roles he belongs to:

<RoleGroups>
<asp:RoleGroup Roles=”FanClubMember”>

<ContentTemplate>
<p>

Welcome back
<asp:LoginName ID=”FCLoginName” runat=”server” />
.</p>

<p>
There are always lots of exciting things happening with the fan club,
most of which you already know from the email we regularly send out.
One that hasn’t made it to the email yet is the proposed end of season
BBQ – a great excuse for a summer party (not that we really need an
excuse). This will be open to all members of the public and tickets
will be heavily discounted for fan club members as a thank you for all
of the great support you’ve given the club. The date hasn’t yet been
set, but keep your eyes on your inbox for more details.

</p>
</ContentTemplate>

</asp:RoleGroup>

Fan Club members will see a custom page with some text. There’s not a lot on here yet, but that will
change later in this chapter when you learn about user profiles. These profiles can be used to store addi-
tional information about a user, so the fan club page will become a central place for site members to
come so that they can modify their profiles.

If the user is a member of one of the other roles (Administrator, Owner, Manager, or Reporter), the user
will see a different display:

<asp:RoleGroup Roles=”Administrator,Owner,Manager,Reporter”>
<ContentTemplate>

To see the Fan Club features you need to be a member. As special users
you get free entry to the fan club – talk to the admin people to get set
up.

</ContentTemplate>
</asp:RoleGroup>

</RoleGroups>

If you wanted to extend this part of the site, perhaps you could include a button or a link that would fire
an e-mail to the site administrator, indicating your interest in joining the fan club.

This example demonstrates how simple and easy it is to change the appearance of a page, depending on
who is logged in to the site. There are some drawbacks to this technique, however, which you’ll see when
you look at extending the display for fan club members to show and edit their profile details.

You now know that you can change the display of a site by user roles. The next step is to lock down
parts of the site by role, and work with role-level access to the site.

395

Roles and Profiles

14_042583 ch11.qxd 4/4/06 2:49 PM Page 395

Configuring Page-Level Authorization
You control access to folders by managing general application access via the Web Site Administration
Tool (see Figure 11-13). Previously (back in Chapter 4), you learned how to restrict access to the pages
contained within the Admin folder to deny all unapproved users access to those pages.

Figure 11-13

This general level of restriction is fine for hiding the contents of a directory, but configuring who can
access each page is controlled in the Web.config file for each folder.

In the Admin folder, in the code for the full Wrox United application, you will find a Web.config file.
The following statements appear in this file:

<system.web>
<authorization>

<deny users=”*” />
</authorization>

</system.web>
<location path=”Admin.aspx”>

<system.web>
<authorization>

<allow roles=”Reporter,Administrator,Owner,Manager” />
</authorization>

</system.web>
</location>

396

Chapter 11

14_042583 ch11.qxd 4/4/06 2:49 PM Page 396

The first part of this extract reflects the setting applied in the site administration tool, denying all users
access:

<deny users=”*” />

The second part of the extract applies access permissions to a specific page — the Admin.aspx page, in
this case. The users who are allowed to view the Admin.aspx page include anyone who is a member of
any of the Reporter, Administrator, Owner, or Manager roles:

<allow roles=”Reporter,Administrator,Owner,Manager” />

And so the pattern continues for the remainder of the configuration file, where access to each page is
controlled by the configuration file, enabling access permissions to be set for each role against each page
in the hierarchy.

Controlling Page Visibility
There may be some situations where you will want to allow a user to know of the existence of a page,
even if the user is denied access to it. In this way, you can offer a link to users, but when they click that
link, they are prompted to log in as a user with sufficient privileges before they can view the page. In
order to achieve this, a roles attribute (see the shaded lines in the following code) can be added to the
web.sitemap file, which ensures that a link will be visible to certain users to specified pages, even if the
user is unable to view the content of the page itself. Here is an example:

<siteMapNode title=”Administration” url=”Admin/Admin.aspx”
roles=”Reporter,Owner,Manager,Administrator”>

<siteMapNode title=”Edit News” url=”Admin/EditNews.aspx”
description=”Edit club news”
roles=”Reporter,Owner,Manager,Administrator” />

<siteMapNode title=”Schedule Match” url=”Admin/ScheduleMatch.aspx”
description=”Schedule a Match”
roles=”Manager,Owner” />

Notice that the roles attribute on the Admin.aspx page states that Reporters, Owners, Managers, and
Administrators should be aware of the existence of the Admin.aspx page. Contrast this with the
ScheduleMatch.aspx page, and you’ll see that only Managers or Owners can see the link to be able to
schedule matches.

If you log in to the site as ChrisH, you’re a member of the Reporter role, so even if all access to all Admin
pages is revoked, you will still see links to the Admin.aspx and EditNews.aspx pages, but you won’t
see a link to the ScheduleMatch.aspx page.

Because the Web.config file and the roles attributes in the web.sitemap work together to control both
visibility and access, the best way to understand how they work together is to see them in an example.

For this Try It Out, make sure you are using the Chapter 11 version of the Wrox United code. The code
supplied has been modified slightly for the purposes of this example. Also, make sure you close any
open browser windows from the previous exercise, or your changes may not appear as expected.

397

Roles and Profiles

14_042583 ch11.qxd 4/4/06 2:49 PM Page 397

Try It Out Configuring Visibility, Access, and Authorization
1. Take a look at the code in the web.sitemap file. This file contains the same code that is used in

the live Wrox United application. The following is an extract from that file, highlighting the use
of the roles attribute:

...
<siteMapNode title=”Fan Club” url=”FanClub.aspx”>

<siteMapNode title=”Add Match Report” url=”FanClub/FanClubMatchReport.aspx”
description=”Add a match report”
roles=”FanClubMember” />

<siteMapNode title=”Upload Pictures” url=”FanClub/FanClubPictures.aspx”
description=”Upload pictures or video of a match”
roles=”FanClubMember” />

</siteMapNode>
...

<siteMapNode title=”Administration” url=”Admin/Admin.aspx”
roles=”Reporter,Owner,Manager,Administrator”>

<siteMapNode title=”Edit News” url=”Admin/EditNews.aspx”
description=”Edit club news”
roles=”Reporter,Owner,Manager,Administrator” />

<siteMapNode title=”Schedule Match” url=”Admin/ScheduleMatch.aspx”
description=”Schedule a Match”
roles=”Manager,Owner” />

<siteMapNode title=”Edit Squad” url=”Admin/EditSquad.aspx”
description=”Edit the players in the squad”
roles=”Owner” />

<siteMapNode title=”Update Score” url=”Admin/MatchScore.aspx”
description=”Edit the score for a match in progress”
roles=”Reporter” />

<siteMapNode title=”Match Report” url=”Admin/MatchReport.aspx”
description=”Upload or edit a match report”
roles=”Reporter” />

<siteMapNode title=”Shop” url=”Admin/UpdateProducts.aspx”
description=”Update products”
roles=”Administrator” />

</siteMapNode>
...

2. Take a look at the Web.config stored in the root of the Admin folder. Notice that no specific
locations are defined in this file, hence the only permission currently active on that folder is to
deny access to all users:

<?xml version=”1.0” encoding=”utf-8”?>
<configuration>

<system.web>
<authorization>

<deny users=”*” />
</authorization>

</system.web>
</configuration>

The result of these two configuration specifications is demonstrated if you run the site and log
in, as Figure 11-14 shows using login ChrisH (password chrish@123).

398

Chapter 11

14_042583 ch11.qxd 4/4/06 2:49 PM Page 398

Figure 11-14

Chris is a reporter, so he can see the Administration link, and he can see the links to Edit News,
Update Score, and Match Report. However, if he clicks any of those links, he goes straight back
to the front page of the site — access has been denied.

3. Close your browser window before continuing — it’s time to make some configuration changes.
The next step is to allow access to certain resources in the Admin section of the site by role.
Open the Web.config for the Admin folder and add just the following highlighted code:

<?xml version=”1.0” encoding=”utf-8”?>
<configuration>

<system.web>
<authorization>

<deny users=”*” />
</authorization>

</system.web>
<location path=”Admin.aspx”>

<system.web>
<authorization>

<allow roles=”Reporter,Administrator,Owner,Manager” />
</authorization>

</system.web>
</location>

</configuration>

399

Roles and Profiles

14_042583 ch11.qxd 4/4/06 2:49 PM Page 399

4. Run the site again and log in as ChrisH.You will now be able to click the Administration link
itself and see the Admin.aspx page, shown in Figure 11-15.

Figure 11-15

5. The only problem is that you still can’t actually update scores or match reports until you add
the remaining permissions. Close your browser window again before continuing because you’ll
be making further configuration changes.

6. Add the following code to complete the Web.config file for the Admin section — and notice
that one of the permissions isn’t quite correct:

...
<location path=”Admin.aspx”>
<system.web>

<authorization>
<allow roles=”Reporter,Administrator,Owner,Manager” />

</authorization>
</system.web>

</location>
<location path=”EditNews.aspx”>

<system.web>
<authorization>

<allow roles=”Reporter,Administrator,Owner,Manager” />

400

Chapter 11

14_042583 ch11.qxd 4/4/06 2:49 PM Page 400

</authorization>
</system.web>

</location>
<location path=”MatchScore.aspx”>

<system.web>
<authorization>

<allow roles=”Reporter” />
</authorization>

</system.web>
</location>
<location path=”MatchReport.aspx”>

<system.web>
<authorization>

<allow roles=”Reporter” />
</authorization>

</system.web>
</location>
<location path=”EditSquad.aspx”>

<system.web>
<authorization>

<allow roles=”Owner,Reporter” />
</authorization>

</system.web>
</location>
<location path=”ScheduleMatch.aspx”>

<system.web>
<authorization>

<allow roles=”Owner,Manager” />
</authorization>

</system.web>
</location>
<location path=”UpdateProducts.aspx”>

<system.web>
<authorization>

<allow roles=”Administrator” />
</authorization>

</system.web>
</location>
<location path=”UserAdmin.aspx”>

<system.web>
<authorization>

<allow roles=”Administrator” />
</authorization>

</system.web>
</location>
<location path=”CreateUser.aspx”>

<system.web>
<authorization>

<allow roles=”Administrator” />
</authorization>

</system.web>
</location>

</configuration>

401

Roles and Profiles

14_042583 ch11.qxd 4/4/06 2:49 PM Page 401

7. In the permissions for the EditSquad.aspx page, notice that the Reporter role has just been
granted access. The web.sitemap page hasn’t been modified, so see if you can guess what will
be displayed when the page is run. Try it again, running the site and logging in as ChrisH once
more and see what happens (see Figure 11-16).

Figure 11-16

8. This is the final result — not only can you see the Edit Squad link, but you can actually go to the
Edit Squad page and modify members of the squad. You need to make just one last change to fix
this problem — after all, reporters aren’t supposed to be able to modify membership of a team.
Again, you also need to close the browser window before continuing so that your changes take
effect as expected.

9. Open the Admin folder’s Web.config file again and edit the following highlighted line:

<location path=”EditSquad.aspx”>
<system.web>

<authorization>
<allow roles=”Owner” />

</authorization>
</system.web>

</location>

402

Chapter 11

14_042583 ch11.qxd 4/4/06 2:49 PM Page 402

10. Run the site again, and you will find that if you log in as any of the users who are only members
of the Reporters role (ChrisH, John, or ChrisU), you will be able to view the Edit News, Update
Score, and Match Report links and page content.

11. One last change to make. This time, modify the web.sitemap file as follows:

<siteMapNode title=”Match Report” url=”Admin/MatchReport.aspx
description=”Upload or edit a match report”
roles=”Reporter” />

<siteMapNode title=”Shop” url=”Admin/UpdateProducts.aspx”
description=”Update products”
roles=”Administrator, Reporter” />

</siteMapNode>

12. Run the page one last time and log in as a Reporter. You will be able to see the link to the Shop
page in the Administration section, but if you click the link, you will be taken straight back to
the default page. Fix this by removing the Reporter role from the SiteMapNode for the
UpdateProducts.aspx page.

How It Works
This example highlighted the somewhat delicate nature of keeping your web.sitemap and Web.config
file data up to date with current business-case requirements. If you want to allow users to browse a site
anonymously, a common configuration decision is to prompt users when it’s time for them to log in, and
then display a link that they will want to click but forcing them to authenticate before enabling them to
view the page.

In this example, you saw that the settings for authorization will control which links are available to each
user role. The web.sitemap file can then be used to display additional links to a user. These are links to
content that the user doesn’t have permission to access, to indicate that a facility exists (in this case, the
Update Products facility in the Admin section) but that the user needs to log in as a sufficiently privi-
leged user before the link will work.

Here’s a look at the most important bits in the code. From the Web.config file for the Admin folder on
the site, the shaded lines of code specify that only administrators can add or update products:

<location path=”UpdateProducts.aspx”>
<system.web>

<authorization>
<allow roles=”Administrator” />

</authorization>
</system.web>

</location>

Compare this with the addition to the siteMapNode that was made in the last part of the example:

<siteMapNode title=”Shop” url=”Admin/UpdateProducts.aspx”
description=”Update products”
roles=”Administrator, Reporter” />

This particular combination results in a Reporter being able to see a link, but being unable to access the
contents of the link.

403

Roles and Profiles

14_042583 ch11.qxd 4/4/06 2:49 PM Page 403

If the opposite is true, and the authorization level specified in the Web.config file contains more roles
than the web.sitemap file, the authorization will take precedence. Hence, when you changed the per-
missions for the EditSquad.aspx page and logged in as a Reporter, the link appeared in the navigation
menu, and the page could be accessed:

<location path=”EditSquad.aspx”>
<system.web>

<authorization>
<allow roles=”Owner,Reporter” />

</authorization>
</system.web>

</location>

Working with Roles in Code
Up to this point in the chapter, all of the customization that you looked at concerned the use of configu-
ration files to lock down access to parts of the site based on user roles. In addition to these techniques,
it’s possible to work with roles programmatically in code. This technique has been employed to some
extent in the process of applying discounts to shop prices for members of the Fan Club. Many other dif-
ferent methods exist that you can use for working with roles, but the most commonly used is the
IsInRole() method.

The following code extract (which you will encounter again in Chapter 13) shows this in action:

public double MemberDiscount
{

get
{

if (HttpContext.Current.User.IsInRole(“FanClubMember”))
{

return (this.SubTotal * MemberDiscountPercentage);
}
return 0;

}
}

This code resides within the Shopping.cs class file used when users purchase items from the shop. The
important piece in this code is the statement that applies the discount to users who are members of the
Fan Club, using the User.IsInRole() method call.

The IsInRole() method takes, as an input, a string that is the name of the role to test. As the name of
the method suggests, the result will indicate whether or not the user belongs to the role, hence the return
value for the method is either true (yes, the user belongs to the requested role) or false (no, the user is
not a member of that role). This technique is used again as part of the shopping process:

if (Context.User.IsInRole(“FanClubMember”))
{

SubTotalLabel.Text = string.Format(“Sub-Total:{0,35:C}”, Profile.Cart.SubTotal);
MemberDiscount.Text = string.Format(“Member Discount:{0:C}”, _

Profile.Cart.MemberDiscount);
DiscountPanel.Visible = true;

}

404

Chapter 11

14_042583 ch11.qxd 4/4/06 2:49 PM Page 404

In this extract (from ShoppingCart.ascx.cs), the same test is made. There are slight differences
between the two calls. The first employs the HttpContext.Current object:

if (HttpContext.Current.User.IsInRole(“FanClubMember”))
{
...

The second call employs the Context object:

if (Context.User.IsInRole(“FanClubMember”))
{
...

You don’t really need to worry about why there is a difference between the two method calls in the con-
text of this chapter, because the actual method that is being called is the same in both cases. However, in
case you have a more inquisitive nature, here’s what’s going on.

In the first case, because the code lives within a separate class file (not a code-beside file for an aspx page
or ascx user control), the code could theoretically be called by a different application entirely, outside of
the web environment. When users request a web page, they do so within a context. This context will
contain a small amount of information along with each request that the user makes, which is understood
by the web server. If the user is anonymous, the server will know that the current context represents an
anonymous user. If the user has logged in, this small bit of information indicates that the request has
come from an authenticated user. The context of a logged-in user states that the request comes from a
specific user ID, which ASP.NET can interrogate to find out which roles the user belongs to.

The current context is freely available to web pages and user controls, but classes need to be told a bit
more information before they will compile. The actual context that’s being used on the web page is the
current context of the HTTP request, hence the class needs to have the HttpContext.Current version
of the context, rather than the context that is available to all requests to a web page.

Enabling User Profiles
Enabling roles on a web site is a good way to open up or hide resources to users, and it also provides
limited metadata about the users themselves. Just by being a member of the Reporters group, you can
assume that John regularly attends matches and submits scores as they happen. However, this is very
limited metadata, and it doesn’t give you much more insight into who John is, or what he is interested
in. This is where you can start to adopt ASP.NET’s user profiles technology to store more information
about a user.

For example, if you are a member of a web site that sells a wide variety of goods, you can buy goods
from that site by creating a very basic user profile that validates your e-mail address, and can be used to
process and track orders. However, on many shopping sites, you can take this “enrollment” process
much further and supply additional information to your user account and say, “I like products like this.”
When you revisit the site, you may then find that the front page changes to show you more items that
you are interested in buying, and less of those you’re not so enamored with.

405

Roles and Profiles

14_042583 ch11.qxd 4/4/06 2:49 PM Page 405

This sort of information can be used to extend a simple user account by creating a user profile for storing
this additional information; hence you can specify that you have no interest in owning a PlayStation or
Xbox, because you only play games on my PC, and the site will be less likely to show you offers related
to PS2 or Xbox editions of games. Furthermore, the sales team behind the web site may send out tar-
geted e-mails to customers who have expressed an interest in a certain type of product, with the aim of
increasing sales.

One of the uses for user profiles is to create areas of a site that are tailored specifically to the currently
logged-in user, giving that user a more personalized view of the site. This technique — called
personalization — can be used to develop a My Site style area of a web site, where you can amend
your own user profile settings, and view information directly relevant to you. In larger corporations,
you’ll find that the idea of a personalized area of a web or intranet application is quite commonly
used — anyone who has ever used SharePoint Portal Server (or similar Portal-style application)
will be familiar with the idea of a My Site area.

As far as SharePoint is concerned, the My Site area of a portal can be highly customized to display your
calendar and inbox (linked to an Exchange server), or to store custom lists of links to areas of the portal
that you may be interested in. Although you’re not going to build anything as involved as this in this
book, SharePoint Portal Server is one of the best examples of personalization, and doubtless the many
other Portal-style applications available for purchase will offer similar levels of personalization.

ASP.NET 2.0 has some great tools available for developing simple profiles with relative ease, so in the
next section of this chapter, you explore how these tools can be used to customize a site, and you look at
how the Wrox United application uses profiles.

Building a Profile
There are two parts to building a profile. The first is to define what items you want to store. The second
is to add functionality to a page to both add and edit information in a user profile.

To define which items you want to store in a profile, you add a list of items, and the type of data each
item will contain, to the root Web.config file for a site. For example:

<profile enabled=”true”>
<properties>

<add name=”MemberName”/>
<add name=”Name”/>
<add name=”Address”/>
<add name=”City”/>
<add name=”County”/>
<add name=”PostCode”/>
<add name=”Country”/>
<add name=”Mailings” type=”System.Boolean”/>
<add name=”Email”/>
<add name=”Theme”/>
<add name=”Cart” serializeAs=”Binary” type=”Wrox.Commerce.ShoppingCart”

allowAnonymous=”true”/>
</properties>

</profile>

406

Chapter 11

14_042583 ch11.qxd 4/4/06 2:49 PM Page 406

The list of profiles specified is actually the set of properties to be stored for all registered users of the
Wrox United application. The default type of data to store is textual data (string data), so for those items
without a specific type attribute, the data type is assumed to be string.

Two items on this list are not strings. The first is the Mailings property. This is a Boolean value (true
or false) that can be used to store a simple choice. For example, does the user want to receive e-mail
concerning the current news about the club or not? You can control the input for this value on a web
page by simply including a check box that the user can click as a simple yes or no response to a question.
This is an example of using a standard .NET type, and you could add profile properties using different
types, such as storing an age in an Integer, or a date of birth in a DateTime.

The other non-string data type being used in this case is a custom type called Wrox.Commerce
.ShoppingCart. This type is explained in more detail in Chapter 13. For now, you should know that
this type will store details of the current user’s shopping cart, so that if they fill the cart with items on
one visit to the site, but choose not to purchase those items at that time, the data about the items stored
in the cart will remain. In this way, when they next log in, the items are still in their cart. It also dictates
whether anonymous users can fill a shopping cart. Because this is set to true, anyone coming to the site
can fill a basket with items, so it’s up to you to make sure that you create a profile for them when they
check out. You’ll come back to this point a bit later in this chapter in the “Managing Anonymous
Shopping Carts” section.

A custom type is an object that has been defined by code to meet the requirements of a specific
scenario. The code is contained in a class that has been developed to describe the properties and
methods available to objects based on that particular type definition. For example, a String object
has a ToString() method, but a DateTime object has ToString(), ToShortDateString,
and ToLongDateString() methods, among others. You can write a custom type, like the
ShoppingCart in this example, that has a specific set of properties and methods available,
so a ShoppingCart object will have an Update() method and a SubTotal() method.

To store some data in a profile, the following syntax can be used in a code file for a web page:

Profile.Name = “Chris Hart”;

Or, similarly, you can use this syntax to use a value entered by a user to populate the Name information
in the Profile:

Profile.Name = txtName.Text;

This will cause the profile to store whatever the user has entered as the value of a text box on a page. So,
to retrieve a value from a profile and display it on a page, you use the opposite syntax:

txtName.Text = Profile.Name;

This is all quite simple. The next section looks at it in context.

407

Roles and Profiles

14_042583 ch11.qxd 4/4/06 2:49 PM Page 407

Profiles in Wrox United
When it comes to employing profiles in a live site, you need first to create a definition for the profile
properties, and then a page where you can add and edit the items in a user profile. On the Wrox United
site, this is controlled on the Fan Club page, so take a look at how this page is constructed.

Earlier in this chapter, you built the skeleton for the FanClub.aspx page and made use of the
<asp:LoginView> control to display different content depending on who is logged in to the page. In
this Try It Out, you build on the code from earlier. You add code to the FanClub.aspx page, and use
some settings from the Web.config file so that you can store details about each user in their profile.

Try It Out Using Profiles in Wrox United
1. Open the Web.config file from the root of the Chapter 11 version of the Wrox United applica-

tion. Look at the bottom of the code and you will see the following:

<!--
Define the user profile properties

-->
<profile enabled=”true”>

<properties>
<add name=”MemberName”/>
<add name=”Name”/>
<add name=”Address”/>
<add name=”City”/>
<add name=”County”/>
<add name=”PostCode”/>
<add name=”Country”/>
<add name=”Mailings” type=”System.Boolean”/>
<add name=”Email”/>
<add name=”Theme”/>
<add name=”Cart” serializeAs=”Binary” type=”Wrox.Commerce.ShoppingCart”

allowAnonymous=”true”/>
</properties>

</profile>
</system.web>

</configuration>

In the profile definition for Wrox United, you have specified that users can store their name,
address details, whether they would like to receive mailings from the site, their e-mail address,
and their favorite theme for the site. There is also a Cart property, which is used each time the
user wants to purchase items from the store.

2. Add some code to the FanClub.aspx page so that users can both store new profile properties
and view or edit existing properties. Open the page and add the following highlighted lines of
code (there’s quite a lot of code to add, but as you’ll see, all you’ll be doing is adding controls to
the page and laying them out in a table):

<asp:LoginView ID=”FCLoginView” Runat=”server”
OnViewChanged=”FCLoginView_ViewChanged”>

<RoleGroups>
<asp:RoleGroup Roles=”FanClubMember”>

<ContentTemplate>
<p>

408

Chapter 11

14_042583 ch11.qxd 4/4/06 2:49 PM Page 408

Welcome back
<asp:LoginName ID=”FCLoginName” runat=”server” />
.</p>

<p>
There are always lots of exciting things happening with the fan club,
...
set, but keep your eyes on your inbox for more details.

</p>
<h3>

User Settings</h3>
<p>

Your user details are shown below.</p>
<asp:ChangePassword ID=”ChangePassword1” runat=”server”>
</asp:ChangePassword>

<table border=”0”>

<tr>
<td>Name:</td>
<td><asp:TextBox ID=”txtName” runat=”server” Columns=”30” />

<asp:RequiredFieldValidator ID=”rfv1” runat=”server”
ControlToValidate=”txtName”
Text=”*” ErrorMessage=”You must enter a value for your name” />

</td>
</tr><tr>

<td>Address:</td>
<td><asp:TextBox ID=”txtAddress” runat=”server” Columns=”25” Rows=”5”

TextMode=”multiLine” />
<asp:RequiredFieldValidator ID=”RequiredFieldValidator1”
runat=”server” ControlToValidate=”txtAddress” Text=”*”
ErrorMessage=”You must enter a value for the address” />

</td>
</tr><tr>

<td>City:</td>
<td><asp:TextBox ID=”txtCity” runat=”server” />

<asp:RequiredFieldValidator ID=”RequiredFieldValidator2”
runat=”server” ControlToValidate=”txtCity”
Text=”*” ErrorMessage=”You must enter a value for the city” />

</td>
</tr><tr>

<td>County:</td>
<td><asp:TextBox ID=”txtCounty” runat=”server” />

<asp:RequiredFieldValidator ID=”RequiredFieldValidator3”
runat=”server” ControlToValidate=”txtCounty”
Text=”*” ErrorMessage=”You must enter a value for the county” />

</td>
</tr><tr>

<td>Postcode:</td>
<td><asp:TextBox ID=”txtPostCode” runat=”server” />

<asp:RequiredFieldValidator ID=”RequiredFieldValidator4”
runat=”server” ControlToValidate=”txtPostCode” Text=”*”
ErrorMessage=”You must enter a value for the post code” />

</td>
</tr><tr>

<td>Country:</td>
<td><asp:TextBox ID=”txtCountry” runat=”server” />

409

Roles and Profiles

14_042583 ch11.qxd 4/4/06 2:49 PM Page 409

<asp:RequiredFieldValidator ID=”RequiredFieldValidator5”
runat=”server” ControlToValidate=”txtCountry” Text=”*”
ErrorMessage=”You must enter a value for the country” />

</td>
</tr><tr>

<td>Subscribe to email updates:</td>
<td><asp:CheckBox ID=”chkMailing” runat=”server” /></td>

</tr><tr>
<td>Email:
</td>
<td><asp:TextBox ID=”txtEmail” runat=”server” />

<asp:RequiredFieldValidator ID=”RequiredFieldValidator6”
runat=”server” ControlToValidate=”txtEmail”
Text=”*” ErrorMessage=”You must enter a value for the email” />

<asp:RegularExpressionValidator ID=”rev1” runat=”server”
ControlToValidate=”txtEmail”

ValidationExpression=”\w+([-+.’]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*”
Text=”*” ErrorMessage=”Please enter a valid email address” />

</td>
</tr><tr>

<td>Membership Alias:</td>
<td><asp:TextBox ID=”txtAlias” runat=”server” />

<asp:RequiredFieldValidator ID=”RequiredFieldValidator7”
runat=”server” ControlToValidate=”txtAlias” Text=”*”

ErrorMessage=”You must enter a value for the membership alias” />
</td>

</tr>
</table>

<asp:ValidationSummary ID=”vs” runat=”server” DisplayMode=”BulletList” />

<asp:Button ID=”btnSaveChanges” runat=”server”

OnClick=”btnSaveChanges_Click” Text=”Save Changes” />
<asp:Button ID=”btnCancelChanges” runat=”server”

OnClick=”btnCancelChanges_Click”
CausesValidation=”false” Text=”Cancel Changes” />

</ContentTemplate>
</asp:RoleGroup>

...
</RoleGroups>

...
</asp:LoginView>

3. You also need to add code to the FanClub.aspx.cs file so that the btnSaveChanges and
btnCancelChanges buttons have event handlers that will run code each time they are clicked.
Right-click FanClub.aspx and select View Code, and then add the following highlighted meth-
ods to the FanClub.aspx.cs file:

using System;
using System.Web;
using System.Web.UI.WebControls;

partial class FanClub : System.Web.UI.Page
{

410

Chapter 11

14_042583 ch11.qxd 4/4/06 2:49 PM Page 410

private void Page_Load(object sender, System.EventArgs e)
{

if (!Page.IsPostBack)
DisplayProfileProperties();

}

protected void btnCancelChanges_Click(object sender, System.EventArgs e)
{

DisplayProfileProperties();
}

protected void btnSaveChanges_Click(object sender, System.EventArgs e)
{

Profile.Name = ((TextBox)FCLoginView.FindControl(“txtName”)).Text;
Profile.Address = ((TextBox)FCLoginView.FindControl(“txtAddress”)).Text;
Profile.City = ((TextBox)FCLoginView.FindControl(“txtCity”)).Text;
Profile.County = ((TextBox)FCLoginView.FindControl(“txtCounty”)).Text;
Profile.PostCode = ((TextBox)FCLoginView.FindControl(“txtPostCode”)).Text;
Profile.Country = ((TextBox)FCLoginView.FindControl(“txtCountry”)).Text;
Profile.Mailings = ((CheckBox)FCLoginView.FindControl(“chkMailing”)).Checked;
Profile.Email = ((TextBox)FCLoginView.FindControl(“txtEmail”)).Text;
Profile.MemberName = ((TextBox)FCLoginView.FindControl(“txtAlias”)).Text;
Server.Transfer(SiteMap.CurrentNode.Url);

}

protected void FCLoginView_ViewChanged(object sender, System.EventArgs e)
{

DisplayProfileProperties();
}

private void DisplayProfileProperties()
{

TextBox NameBox = (TextBox)FCLoginView.FindControl(“txtName”);

if (NameBox != null)
{

((TextBox)FCLoginView.FindControl(“txtName”)).Text = Profile.Name;
((TextBox)FCLoginView.FindControl(“txtAddress”)).Text = Profile.Address;
((TextBox)FCLoginView.FindControl(“txtCity”)).Text = Profile.City;
((TextBox)FCLoginView.FindControl(“txtCounty”)).Text = Profile.County;
((TextBox)FCLoginView.FindControl(“txtPostCode”)).Text = Profile.PostCode;
((TextBox)FCLoginView.FindControl(“txtCountry”)).Text = Profile.Country;
((CheckBox)FCLoginView.FindControl(“chkMailing”)).Checked = Profile.Mailings;
((TextBox)FCLoginView.FindControl(“txtEmail”)).Text = Profile.Email;
((TextBox)FCLoginView.FindControl(“txtAlias”)).Text = Profile.MemberName;

}
}

}

4. Run the site again and log in as Lou, password lou@123. Go to the home page for the Fan Club
and you will see what is shown in Figure 11-17 at the bottom of the page.

411

Roles and Profiles

14_042583 ch11.qxd 4/4/06 2:49 PM Page 411

Figure 11-17

5. Enter some details and click the Save Changes button. If you log out and log back in again,
you’ll see that the information is saved, as shown in Figure 11-18.

412

Chapter 11

14_042583 ch11.qxd 4/4/06 2:49 PM Page 412

Figure 11-18

How It Works
The Web.config file contains the definition for each of the profile properties employed in the Wrox
United application. These include (among others) the name of the user, the address, and the e-mail
address. The capability to store data for each user in a profile is controlled by the code in the
FanClub.aspx page.

When users update their profile by clicking the Save Changes button, the following code is run:

protected void btnSaveChanges_Click(object sender, System.EventArgs e)
{

Profile.Name = ((TextBox)FCLoginView.FindControl(“txtName”)).Text;
Profile.Address = ((TextBox)FCLoginView.FindControl(“txtAddress”)).Text;
Profile.City = ((TextBox)FCLoginView.FindControl(“txtCity”)).Text;
Profile.County = ((TextBox)FCLoginView.FindControl(“txtCounty”)).Text;
Profile.PostCode = ((TextBox)FCLoginView.FindControl(“txtPostCode”)).Text;
Profile.Country = ((TextBox)FCLoginView.FindControl(“txtCountry”)).Text;
Profile.Mailings = ((CheckBox)FCLoginView.FindControl(“chkMailing”)).Checked;
Profile.Email = ((TextBox)FCLoginView.FindControl(“txtEmail”)).Text;
Profile.MemberName = ((TextBox)FCLoginView.FindControl(“txtAlias”)).Text;
Server.Transfer(SiteMap.CurrentNode.Url);

}

413

Roles and Profiles

14_042583 ch11.qxd 4/4/06 2:49 PM Page 413

This code looks quite messy, and this is because of one very good reason. You’ve chosen to display these
controls only on one view of the page using the LoginView control. Here’s the syntax for storing just the
name:

Profile.Name = ((TextBox)FCLoginView.FindControl(“txtName”)).Text;

The syntax used to essentially say “TextBox.Text” means “find me the control called txtName, and
when you find it, treat it like a TextBox control, and then grab the data stored in its Text property and
use that value to store in the profile.” The similar syntax used against the Mailings profile property
demonstrates this slightly differently:

Profile.Mailings = ((CheckBox)FCLoginView.FindControl(“chkMailing”)).Checked;

This time around, it’s a case of “find me a control called chkMailing, treat it as a CheckBox control, and
set the Mailings property of the profile to the value of the Checked property of the CheckBox.”

After the profile has been populated with data, the code will then call a method, the Server.Transfer
method, which will run the code that would run if the specified page were requested:

Server.Transfer(SiteMap.CurrentNode.Url);

The Server.Transfer() method stops the current page from executing, and runs the content on the
specified page, which in this case is like reloading the current page again to refresh the current view of
the page.

At several points in the page life cycle, the display of the profile properties is updated. For example,
each time the view of the Fan Club changes, the following code is run:

protected void FCLoginView_ViewChanged(object sender, System.EventArgs e)
{

DisplayProfileProperties();
}

This calls the following method:

private void DisplayProfileProperties()
{

TextBox NameBox = (TextBox)FCLoginView.FindControl(“txtName”);

if (NameBox != null)
{

((TextBox)FCLoginView.FindControl(“txtName”)).Text = Profile.Name;
((TextBox)FCLoginView.FindControl(“txtAddress”)).Text = Profile.Address;
((TextBox)FCLoginView.FindControl(“txtCity”)).Text = Profile.City;
((TextBox)FCLoginView.FindControl(“txtCounty”)).Text = Profile.County;
((TextBox)FCLoginView.FindControl(“txtPostCode”)).Text = Profile.PostCode;
((TextBox)FCLoginView.FindControl(“txtCountry”)).Text = Profile.Country;
((CheckBox)FCLoginView.FindControl(“chkMailing”)).Checked = Profile.Mailings;
((TextBox)FCLoginView.FindControl(“txtEmail”)).Text = Profile.Email;
((TextBox)FCLoginView.FindControl(“txtAlias”)).Text = Profile.MemberName;

}
}

414

Chapter 11

14_042583 ch11.qxd 4/4/06 2:49 PM Page 414

The convoluted syntax for retrieving the value of each control should be a bit more familiar from the
code used earlier in this How It Works section, but there’s one addition here. Notice that there is a test to
see if the txtName text box exists on the currently visible version of the page:

TextBox NameBox = (TextBox)FCLoginView.FindControl(“txtName”);

if (NameBox != null)
{

So, if the txtName text box is visible (which it will be if the user is logged in as a member of the
FanClubMember role), then the profile data is retrieved. If the user is anonymous, or is a member of
other roles (and not the FanClubMember role), then the profile will not exist. To avoid errors at run-time,
you don’t want to try to retrieve data that does not exist, so this check is essential (just try removing it
and accessing the page as an anonymous user to see the mess if you’re not careful).

One last thing to consider before moving on — in the layout code (on FanClub.aspx), there were some
controls that you may not be familiar with yet:

<table border=”0”>
<tr>

<td>Name:</td>
<td><asp:TextBox ID=”txtName” runat=”server” Columns=”30” />

<asp:RequiredFieldValidator ID=”rfv1” runat=”server”
ControlToValidate=”txtName”
Text=”*” ErrorMessage=”You must enter a value for your name” />

</td>
</tr><tr>

In the layout code, each TextBox control had a validation control next to it. In this example, the
txtName TextBox had a RequiredFieldValidator control next to it, which will ensure that users fill
in data for each of the required fields before saving profile changes. Essentially, the text box is marked as
“Required,” as the validator’s name suggests. If no value is entered, there will be a small red asterisk
displayed next to the text box.

You’ll learn more about validation controls in Chapter 15, where you can see how they are used to mini-
mize data entry errors and protect your code from malicious user input.

So, you’ve stored some simple data in a user profile. If you want to know where exactly this data is
stored, you will find it in the AspNetDB.mdf database. Take a look in the aspnet_Profiles table and you
will see that data, similar to Figure 11-19, is stored in your database.

In Figure 11-19, you can see that the Lou profile currently has some properties set, as you specified in the
example. You will not need (or want) to edit this data, but it’s useful to know where it’s stored.

415

Roles and Profiles

14_042583 ch11.qxd 4/4/06 2:49 PM Page 415

Figure 11-19

Storing Preferences
There’s one last example that you can play with in this chapter, and that goes way back to the discussions
you will recall from Chapter 5. In that chapter, along with page styling and CSS, you learned the concept
of storing layout and style preferences in themes. These themes can be switched on a page-by-page basis
as was discussed in that chapter. However, you can also store data about which theme a user may prefer
to use for a site in a user profile, enabling users to personalize their viewing experience a bit more. In the
following Try It Out, you have a go at including this functionality in the Wrox United application.

Try It Out Storing Theme Preference in Profiles
1. Add the following highlighted lines of code to the FanClub.aspx page:

</tr><tr>
<td>Membership Alias:</td>
<td><asp:TextBox ID=”txtAlias” runat=”server” />

<asp:RequiredFieldValidator ID=”RequiredFieldValidator7”
runat=”server” ControlToValidate=”txtAlias” Text=”*”
ErrorMessage=”You must enter a value for the membership alias” />

</td>
</tr>
<tr>

<td>Theme:</td>
<td><asp:DropDownList ID=”ThemeList” runat=”server”>

<asp:ListItem Text=”Default” Value=”” />
<asp:ListItem Text=”Wrox Red” Value=”WroxRed” />
<asp:ListItem Text=”Wrox Blue” Value=”WroxBlue” />

</asp:DropDownList>
</td>

</tr>

416

Chapter 11

14_042583 ch11.qxd 4/4/06 2:49 PM Page 416

2. The other piece of the puzzle is to add some code to store and retrieve the theme preference
from the user’s profile. Modify FanClub.aspx.cs to add the following highlighted lines of
code to the btnSaveChanges_Click event handler:

protected void btnSaveChanges_Click(object sender, System.EventArgs e)
{

Profile.Theme =
((DropDownList)FCLoginView.FindControl(“ThemeList”)).SelectedValue;

Profile.Name = ((TextBox)FCLoginView.FindControl(“txtName”)).Text;
Profile.Address = ((TextBox)FCLoginView.FindControl(“txtAddress”)).Text;
Profile.City = ((TextBox)FCLoginView.FindControl(“txtCity”)).Text;
Profile.County = ((TextBox)FCLoginView.FindControl(“txtCounty”)).Text;
Profile.PostCode = ((TextBox)FCLoginView.FindControl(“txtPostCode”)).Text;
Profile.Country = ((TextBox)FCLoginView.FindControl(“txtCountry”)).Text;
Profile.Mailings = ((CheckBox)FCLoginView.FindControl(“chkMailing”)).Checked;
Profile.Email = ((TextBox)FCLoginView.FindControl(“txtEmail”)).Text;
Profile.MemberName = ((TextBox)FCLoginView.FindControl(“txtAlias”)).Text;
Server.Transfer(SiteMap.CurrentNode.Url);

}

3. Modify the DisplayProfileProperties method to include the code that will retrieve and dis-
play the currently stored value for the Theme property from the user’s profile:

private void DisplayProfileProperties()
{

TextBox NameBox = (TextBox)FCLoginView.FindControl(“txtName”);

if (NameBox != null)
{

((DropDownList)FCLoginView.FindControl(“ThemeList”)).SelectedValue =
Profile.Theme;

((TextBox)FCLoginView.FindControl(“txtName”)).Text = Profile.Name;
((TextBox)FCLoginView.FindControl(“txtAddress”)).Text = Profile.Address;
((TextBox)FCLoginView.FindControl(“txtCity”)).Text = Profile.City;
((TextBox)FCLoginView.FindControl(“txtCounty”)).Text = Profile.County;
((TextBox)FCLoginView.FindControl(“txtPostCode”)).Text = Profile.PostCode;
((TextBox)FCLoginView.FindControl(“txtCountry”)).Text = Profile.Country;
((CheckBox)FCLoginView.FindControl(“chkMailing”)).Checked = Profile.Mailings;
((TextBox)FCLoginView.FindControl(“txtEmail”)).Text = Profile.Email;
((TextBox)FCLoginView.FindControl(“txtAlias”)).Text = Profile.MemberName;

}

At this stage, you’ve added all the required code to store the preference. The thing that’s miss-
ing is the ability to actually switch the theme on the pages on the site.

4. Right-click the App_Code folder and add a new item. Select Class from the list of available tem-
plates, and call it ThemeModule.cs, as shown in Figure 11-20.

417

Roles and Profiles

14_042583 ch11.qxd 4/4/06 2:49 PM Page 417

Figure 11-20

5. Enter the following code into the new Class file:

using System;
using System.Web;
using System.Web.UI;

namespace Wrox.Web.GlobalEvents
{

public class ThemeModule : IHttpModule
{

public void Init(HttpApplication context)
{

context.PreRequestHandlerExecute +=
new EventHandler(this.app_PreRequestHandlerExecute);

}

private void app_PreRequestHandlerExecute(object Sender, EventArgs E)
{

Page p = HttpContext.Current.Handler as Page;
if (p != null)
{

ProfileCommon pb = (ProfileCommon)HttpContext.Current.Profile;
p.Theme = pb.Theme;

}
}

public void Dispose()
{
}

}
}

6. Save the file. Open Web.config and add the following highlighted code, just below the
System.Web node:

418

Chapter 11

14_042583 ch11.qxd 4/4/06 2:49 PM Page 418

<system.web>
<httpModules>

<add name=”Page” type=”Wrox.Web.GlobalEvents.ThemeModule”/>
</httpModules>

7. Run the page. You will see that there is now a drop-down box (shown at the bottom of Figure
11-21) on the page that enables you to select different themes to store in your user profile.

Figure 11-21

How It Works
In this example, you extended the basic FanClub.aspx page so that users can store their preferred
theme in their profile. This facility is available only to registered members of the Fan Club.

Amending the layout code was a simple process of adding a DropDownList control to the page:

<asp:DropDownList ID=”ThemeList” runat=”server”>
<asp:ListItem Text=”Default” Value=”” />
<asp:ListItem Text=”Wrox Red” Value=”WroxRed” />
<asp:ListItem Text=”Wrox Blue” Value=”WroxBlue” />

</asp:DropDownList>

419

Roles and Profiles

14_042583 ch11.qxd 4/4/06 2:49 PM Page 419

The value for the theme is stored as a simple string of text in the user’s profile, and is set in the same
way as any other profile setting:

Profile.Theme =

((DropDownList)FCLoginView.FindControl(“ThemeList”)).SelectedValue;

This code means “find me the ThemeList control; it’s a DropDownList, so get me its SelectedValue
property.” In this case, the DropDownList control’s SelectedValue property will be whatever the
Value property for the selected item is set to, so, for example, if the user selected the item with the text
“Wrox Red,” the value stored would be WroxRed.

At this stage, the profile has been updated with the user’s preference, but the last bit of this exercise gave
the site the capability to apply the selected theme to each page. You used an HttpModule to do this.

In this case, the event that is intercepted is processed before the code on a page is processed, and the
requested page’s theme can be changed to match the theme specified in the user’s profile.

This section of the code is getting to be quite advanced in terms of programming techniques. Don’t
worry if you don’t fully understand how this works — you will encounter more code like this in
Professional ASP.NET 2.0, so you can treat this as a taste of what you can expect when you start to
unleash the full power of ASP.NET.

Take a look at the code in the HttpModule and see how it works:

using System;
using System.Web;
using System.Web.UI;

namespace Wrox.Web.GlobalEvents
{

public class ThemeModule : IHttpModule
{

The first part of the code in the file imports a few useful namespaces that contain classes you’ll need
later in the code. The ThemeModule class is configured to reside within the Wrox.Web.GlobalEvents
namespace. Additionally, the ThemeModule class implements the IHttpModule interface, which turns
this simple class into a class that can be used as an HttpModule, provided you then implement the
required methods, because there are some specific methods that all HttpModules must implement in
order to work correctly.

In this case, two methods have to be implemented: the Init() method and the Dispose() method.
Here’s the Dispose() method — because there’s nothing that you need to do in this method, the empty
method signature will just sit there in the file not bothering anyone:

An HttpModule contains code that is processed every time any page in an applica-
tion is processed. The module can be enabled and disabled via the Web.config file.
The module code can handle events that are raised each time a page is requested.

420

Chapter 11

14_042583 ch11.qxd 4/4/06 2:49 PM Page 420

public void Dispose()
{
}

Now compare that to the code in the Init() method:

public void Init(HttpApplication context)
{

context.PreRequestHandlerExecute +=
new EventHandler(this.app_PreRequestHandlerExecute);

}

The code within the method itself is a bit tricky to grasp at first. There’s only one line to consider, which
declares a new event handler. The event handler will run each time the current context is at the
PreRequestHandlerExecute stage in the request life cycle — in plain English, that’s pretty early in the
request stage. This line of code means that each time the appropriate event fires, you can add an event
handler that will be processed:

private void app_PreRequestHandlerExecute(object Sender, EventArgs E)
{

Page p = HttpContext.Current.Handler as Page;
if (p != null)
{

ProfileCommon pb = (ProfileCommon)HttpContext.Current.Profile;
p.Theme = pb.Theme;

}
}

This method handles that PreRequestHandlerExecute event. The first line in this method gets the cur-
rently requested page object so that you can interact with it:

Page p = HttpContext.Current.Handler as Page;

Notice the method used here to cast the current Handler object to a Page object type. This means that if
the requested item is a page, the cast will be successful and the p object will contain an object reference
to the requested page. However, if the item requested is not a page, the cast fails, and the p object is set
to NULL.

As long as the Page object exists (and is not set to Nothing), you can then try to apply the theme to the
page by obtaining the current profile properties and using that profile’s Theme property:

if (p != null)
{

ProfileCommon pb = (ProfileCommon)HttpContext.Current.Profile;
p.Theme = pb.Theme;

}

Notice that the way casting is performed in this case (casting the current Profile object to type Profile
Common) will throw an exception if the attempted cast fails. The only case when this would happen would
be if you disabled profiles in the Web.config file, which would surely make this example a bit pointless.
At the end of this method, the Theme property of the page is set to the value stored in the profile property
called Theme.

421

Roles and Profiles

14_042583 ch11.qxd 4/4/06 2:49 PM Page 421

Finally, there was a new section added to the Web.config file that enabled the HttpModule itself:

<system.web>
<httpModules>

<add name=”Page” type=”Wrox.Web.GlobalEvents.ThemeModule”/>
</httpModules>

The <httpModule> section can be filled with many different modules that you may want to run. In this
example, there is just one module — the ThemeModule. The ThemeModule class that was declared is
added in the type attribute, along with the namespace that it resides in, so that .NET knows exactly
which ThemeModule you want to run.

That’s about it for this example. It’s a tricky piece of code, but it’s a neat way to make themes switch
instantly on pages, and to stay switched for all pages on a site, because the module will run for each
requested page on a site.

Managing Anonymous Shopping Carts
Earlier this chapter, the presence of the following profile property was briefly mentioned:

<profile enabled=”true”>
<properties>

<add name=”MemberName”/>
...

<add name=”Cart” serializeAs=”Binary” type=”Wrox.Commerce.ShoppingCart”
allowAnonymous=”true”/>

The allowAnonymous flag that is stored against the Profile.Cart value for each user session indicates
that anonymous users can have a shopping cart. In this case, users may visit the site and neglect to log
on, or they may be completely new to the site. The user will then happily fill up a basket with items, so it
will be up to you to handle either switching the cart to an existing user when they log in, or creating a
new profile when the anonymous user logs in and transferring the cart to the newly created user when
the user attempts to check out.

There is code that handles this transition in the Global.asax file, which handles global events raised by
the code. Here’s the code as it is used in the Wrox United application:

void Profile_OnMigrateAnonymous(object sender, ProfileMigrateEventArgs e)
{

// get the profile for the anonymous user
ProfileCommon anonProfile = Profile.GetProfile(e.AnonymousID);

// if they have a shopping cart, then migrate that to the authenticated user
if (anonProfile.Cart != null)
{

if (Profile.Cart == null)
Profile.Cart = new Wrox.Commerce.ShoppingCart();

Profile.Cart.Items.AddRange(anonProfile.Cart.Items);

anonProfile.Cart = null;

422

Chapter 11

14_042583 ch11.qxd 4/4/06 2:49 PM Page 422

}

ProfileManager.DeleteProfile(e.AnonymousID);
AnonymousIdentificationModule.ClearAnonymousIdentifier();

}

This code is examined in far more detail in Chapter 13, when you see exactly how the whole shopping
experience works, but it’s useful to understand that there are consequences when you log in as a user.
The transferring of a shopping cart from one profile to another is the most important, because none of
the other properties can actually be set for anonymous users.

Summary
This chapter delved deeper into the world of roles, and introduced the concept of user profiles for stor-
ing additional data about a user. The two technologies can sit happily side-by-side, and used together
are a great way to control access to a site and for customizing the user experience.

In this chapter, you had a chance to take more control over the access permitted to users on a fully func-
tional web application, including the following:

❑ Show or hide resources to selected user roles.

❑ Display different page content depending on which role views the page.

❑ Display links to selected pages, but prompt the user for more credentials for authorization.

❑ Store more information about users in their user profile.

❑ Store different types of data in a user profile, including the user’s preference for site theme.

These techniques will be expanded in the upcoming chapters to form part of the shopping cart function-
ality built in to the Wrox United site.

Exercises
1. Create a new user account called Admin, and make this user a member of all groups. Log in to

the Wrox United site as Admin and test to see whether you can access all of the different pages
in both the fan club and the administration section.

2. Remove the Admin user from any role other than the Administrator role and test the site again.
Ensure that you can access the following pages:

❑ Admin.aspx

❑ EditNews.aspx

❑ UpdateProducts.aspx

3. The Admin user has had a request by a reporter out in the field — he’s uploaded a score for a
match, but the score has just changed. Unfortunately, the reporter’s laptop has run out of bat-
tery, so he’s asked the Admin user to update the score for him. Make sure that the Admin user
can update the score of a match.

423

Roles and Profiles

14_042583 ch11.qxd 4/4/06 2:49 PM Page 423

4. Add a field to the user profile for the Wrox United application called DateOfBirth. Give this
property a data type of System.DateTime. Add an input field to the FanClub.aspx page so
that users can update their date of birth. Note that you will need to convert the value entered in
a text box to a DateTime value when you save the data — you might want to try the DateTime
.Parse() function for this purpose. To retrieve the data, use the Profile.DateOfBirth
.ToShortDateString() function.

424

Chapter 11

14_042583 ch11.qxd 4/4/06 2:49 PM Page 424

12
Web Services

Web services have been “the next great thing” for a little too long now. They were originally intro-
duced as part of the .NET Framework in its first incarnation (although they have been present in
Java for a lot longer). Web services are a method of making information available in a standard-
ized way that could be accessed by any developer’s application over the Web. Web services can
form a library or shared repository of information that could be anything from the latest weather
forecast, a map of your local amenities, a mathematical function calculator, to the tracks and album
cover of the CD that you just inserted into your CD-ROM drive. You should be aware, though, that
a web service on its own isn’t an application. Web services aren’t rendered as web pages, or as exe-
cutable files (.exe); they come completely shorn of a user interface. It’s up to you as a developer
to use them and integrate them into your applications. They are there to save you time and effort
by reducing code duplication.

They can be used in one of two ways. You can create a web service that is exposed to the web, to
share with other developers and other applications. Or you can search for a web service that can
be added to your own application. (They are similar to plug-ins in that respect.) For example, if
your application is a company web site and you want to include directions to company headquar-
ters, rather than scan in a map, or attempt to hand-draw one in a graphics tool, why not use one of
the web services that makes sections of maps available online?

The information contained in the web service is wrapped up as an XML document (in other
words, plain text), so that worries about platform-specific concerns, such as whether you’re access-
ing them on an old Windows 98 machine or a turbo-powered Powerbook, simply evaporate. Web
services aren’t really anything new either — components have been performing a similar trick for
many years now. However, there are some crucial differences. Components had to be distributed
by the developer, and they had to be downloaded and installed. These things alone meant that
they tended to be tied to one platform. This isn’t true of web services. A key word that emphasizes
what web services offer is standard. Everything to do with web services is standardized: the
method of transmission, the method used to wrap the web service up, the way the web service is
defined, all have clear W3C standards associated with the technologies involved. And to make life
much easier, all these standards are based on XML. So they’re quick and easy to download, and
even easier to use.

15_042583 ch12.qxd 4/4/06 2:49 PM Page 425

This chapter looks at the following:

❑ Introducing web services

❑ Consuming web services

❑ What happens in the typical life cycle of a web service

❑ Testing a web service

❑ Discovering a web service

❑ Creating and consuming an example web service that uses a parameter

❑ Creating a proxy — the old way of doing things

❑ Web service security

Looking at Web Services
The introduction alluded to the fact that web services haven’t quite taken off in the way that was
expected, and it’s true and there are probably several reasons for that, but none that should stop you
from using them. One is that developers and businesses don’t like giving away their hard work for free.
The truth is when businesses create a web service, it usually isn’t for public consumption. It is for in-
house use only, and even if it is available for the public to use, it is likely to come at a price. On the flip-
side, with free web services, you have no guarantee that they will still be there in a week or a year’s
time, so it’s no good basing a large application around them. So do you fork out for a web service and
increase the cost of your application, or take a gamble that a particular service will still be in existence
over the next few years? This dilemma isn’t easily remedied.

Second is lack of education. People are still largely unaware of what web services can offer. I recently
worked on a customer services application, which had to integrate with an existing contacts manager
application and detect when the contacts manager was running and if it had loaded the latest customer
information correctly. Rather than use a web service to make this information available, the client chose
instead to write to the clipboard (especially awkward considering the users themselves might also be
using the clipboard) and then my application had to periodically check the clipboard for the text to indi-
cate that the contacts manager was running. As a result, the application was 20 times more complicated
than it needed to be.

Third is the lack of a single killer application. Before you started this chapter, could you name five com-
mon examples of web services? The problem is that they’re too good at the job they do, so they become
practically invisible. Where is the Google or Internet Explorer of web services? I don’t know, but you
might just be using it unwittingly. A good web service should dovetail seamlessly into your application,
and your user should never know it’s there.

Last is the apparent learning curve required. With web services, it’s easy to get drawn into listing the
mass of technologies involved, and therefore easy to get confused about what you need to know. SOAP,
WSDL, UDDI, and DISCO all play valid parts in the process of making a web service available.
However, you don’t need to know about any of these acronyms to be able to use a web service.

In fact, before you start creating a web service and learning what goes into them, it’s a good idea to look
at an example first.

426

Chapter 12

15_042583 ch12.qxd 4/4/06 2:49 PM Page 426

Consuming a Third-Party Web Service
Consuming a web service is almost as easy as firing up your browser, typing in a URL of a web service,
and pressing Return. Perhaps we’re oversimplifying a little bit here, but if you browse to the URL of a
web service endpoint, you will find that you can use it functionally, albeit without any graphical frills.
An endpoint is the specific location where the web service can be accessed. So let’s do exactly that.
Because of the nature of the Web, sites are very often up and down. If you wanted to phone up a
plumber on the other side of the city, you’d check your local phone directory for a number — but that
plumber may or may not still be in business, and web services are just the same. Several good starting
points are the following sites: www.webservicex.net, www.webservicelist.com, www.webservice
oftheday.com, and www.wsiam.com. All of these sites provide lists of web services you can browse.
More alternatives are available, and if one of these sites is inoperable, another will be working.

There are plenty of possibilities to integrate web services into your example site. Wrox United chronicles
the football fixtures, results, merchandise, and news of one soccer team. Now Wrox United isn’t always
the most successful soccer team in the league, and they’re usually looking for an excuse on which to
hang a particularly poor performance, such as the weather. It would be nice if you could stick a weather
report on the bottom of your match reports, just so you know that if the goalkeeper claims the fifth and
sixth goals slipped through his hands, maybe the 85-degree temperature would be a bit of a giveaway.

In the following Try It Out, you start by finding an example weather web service that is freely available.

Try It Out Consuming an Example Web Service
1. To be able to access a web service, you need to locate an .asmx file (you’ll learn what one of

those is after you’ve finished this example). Figure 12-1 shows an example of a weather service
at www.webservicex.net/globalweather.asmx.

Figure 12-1

If for any reason this web service is giving an HTTP error 404, go back to any of the
previous web service directories, type Weather into the search link, and use one of
the example sites it returns. Most weather web services work the same way.

427

Web Services

15_042583 ch12.qxd 4/4/06 2:49 PM Page 427

2. There are two possible web services here. The format and style of this screen are the same for
any .asmx web service file you browse. The link to the web service that gives you the weather
forecast is called GetWeather. Click this link, and you’ll arrive at a screen similar to Figure 12-2.

Figure 12-2

3. Supply the name of the city where you live, or closest to where you live, and the name of the
country. Scroll down and look at the code (see Figure 12-3).

Figure 12-3428

Chapter 12

15_042583 ch12.qxd 4/4/06 2:49 PM Page 428

4. Click Invoke to get the result, shown in Figure 12-4. It will be customized to where you live and
is dependent on the weather of the moment.

Figure 12-4

How It Works
You’ve just consumed a web service. The Wrox United application does not have the capability to do
weather forecasting, so you looked elsewhere to get this service. By browsing to an .asmx file, you are
able to use the web service, and supply input and get an answer tailored to your specifics. When you
supplied the city name and country name, you probably noticed that your input was wrapped up in an
XML document. This is the document broadcast to the server. Although the data can be wrapped up by
three different methods, just look at the first on the page for now:

POST /globalweather.asmx HTTP/1.1
Host: www.webservicex.net
Content-Type: text/xml; charset=utf-16
Content-Length: length
SOAPACTION: “http://www.webserviceX.NET/GetWeather”

<?xml version=”1.0” encoding=”utf-16”?>
<soap:Envelope xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”>

<soap:Body>
<GetWeather xmlns=”http://www.webserviceX.NET”>

<CityName>string</CityName>
<CountryName>string</CountryName>

</GetWeather>
</soap:Body>

</soap:Envelope>

Your input is simply substituted for the words string in the highlighted code:

<GetWeather xmlns=”http://www.webserviceX.NET”>
<CityName>Birmingham</CityName>
<CountryName>United Kingdom</CountryName>

</GetWeather>

429

Web Services

15_042583 ch12.qxd 4/4/06 2:49 PM Page 429

Of course one big drawback is that there isn’t a user interface, so you’re using a normal interface, and
also all your code is returned as one large lump of XML. So it’s not exactly something you’d stick into
your application as it is, without your users getting confused. Also you’ll see that the weather report is
much too detailed for your match reports. Ideally you’d just want to be able to pick out, say, sky condi-
tions and temperature and probably leave it at that. To be honest, a few other pitfalls exist that would
make a weather service difficult to integrate into your application. Not least is the fact that the weather
service extracts the current weather, and if you were to display this in your match reports, you’d need to
make sure you saved the weather in the database alongside the match details, otherwise you’d be read-
ing about Wednesday’s match, and seeing Friday’s weather.

Later in the chapter, you’ll look at creating some web services for the Wrox United application, but for
now you only need to understand that web services are freely available for very ordinary chores to all
sorts of weird and wonderful things. If there is a URL with an .asmx file available, you can access and
use the web service in a standard way. And if you can access and use the web service in this standard
way, you can stick it in your application just as easily.

The Life Cycle of a Web Service
It’s time to look at some theory behind what is happening here. This section strips down a web service to
its basic essentials, which is a four-stage process. Following that, this section expands upon each stage,
and talks a little bit about the technologies and standards used at each step.

The four-stage process of a web service is as follows (as detailed in Figure 12-5):

1. The client calls web service over a protocol.

2. The client sends the method to the server, which contains instructions on what is needed from
the web service.

3. The server returns values and/or an acknowledgment that it has received the method.

4. The client gets the results and acts on the received information. This may involve calling the
web service again, or a different web service, with the results received.

Figure 12-5

Client calls
web service

Server returns
values or an

acknowledgement

Client sends
method

Client acts on
information

430

Chapter 12

15_042583 ch12.qxd 4/4/06 2:49 PM Page 430

This can happen as a cyclical process, where information is sent and received, acted upon, and sent out
again. In the next several sections, each step of the process is put under the magnifying class because
with web services, there are usually quite a few interesting things going on.

Calling the Web Service
When you ran the first example and consumed the simple web service, you did so by typing a URL into
a browser. However when you type the URL, you also specify the protocol that you are using (for exam-
ple, http://). This is important, because web services are able to work over a multitude of protocols
from SMTP (Simple Mail Transport Protocol) to HTTP (secure HTTP). However, using anything other
than HTTP is beyond the scope of this book, and you can achieve plenty just using the HTTP protocol,
but you shouldn’t think that you are restricted in this way.

ASP.NET passes information backward and forward using the HTTP-Request/Response system. Any
information is sent to the web service as part of the request, and the server will return anything from the
web service as part of the response. Most commonly, you can transmit values to a web service via an
HTML form and the standard HTML controls.

The request that is sent to the web service contains the following information:

❑ The web service’s URL

❑ The fact that it is an HTTP request

❑ The amount of information being sent

❑ The type of document you want back from the web service

❑ Information about the client

❑ The date of the request

❑ The parameters you want to send to the web service

The browser collects the information from the form and wraps it up in a document ready for transmis-
sion. This process is called serialization.

Transmitting the Web Service
When you transmit the information required by the web service, as you’ve seen already, it is serialized in
an XML document. This can be done in three different ways:

❑ HTTP-GET via the querystring

❑ HTTP-POST via the body of the form

❑ SOAP via the body of the form

You already know about the first two methods, so this section focuses on the last one. The phrase “serial-
ized in an XML document” doesn’t tell the whole story with SOAP. SOAP isn’t just any type of XML, but a
specific dialect specially created for the exchange of messages. SOAP used to stand for Simple Object
Access Protocol, but these days it is commonly regarded as not standing for anything in particular. A
message contained in SOAP is nothing more than a well-formed XML document or plain, vanilla text. So
what exactly is SOAP’s purpose?

431

Web Services

15_042583 ch12.qxd 4/4/06 2:49 PM Page 431

SOAP is a message template for sending requests and receiving responses to web services between the
browser and the web service. Because the web relies on the HTTP protocol, it commonly excludes any-
thing other than HTTP; so SOAP (XML) documents have to be sent as part of the HTTP data. SOAP will
send a particular instruction such as “Get me a certain bit of information” wrapped in the HTTP, and
then this information can be retrieved by the web service at the other end.

In the previous Try It Out, underneath the text boxes into which you entered the name of a city and
country, you saw some example code. The example code took the three formats: HTTP-GET, HTTP-POST,
and SOAP. The SOAP document looked like this:

POST /globalweather.asmx HTTP/1.1
Host: www.webservicex.net
Content-Type: text/xml; charset=utf-16
Content-Length: length
SOAPACTION: “http://www.webserviceX.NET/GetWeather”

<?xml version=”1.0” encoding=”utf-16”?>
<soap:Envelope xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”>

<soap:Body>
<GetWeather xmlns=”http://www.webserviceX.NET”>

<CityName>string</CityName>
<CountryName>string</CountryName>

</GetWeather>
</soap:Body>

</soap:Envelope>

The first thing to note is that the document was split into two sections. The first section is a set of HTTP
headers that are used to communicate various aspects about your document. HTTP headers are also sent
as a matter of course with HTML page requests so there’s nothing new here. Take a brief look at the
HTTP headers to see what they indicate.

The first line indicates that you are sending information via the HTTP-POST method. This might seem to
immediately contradict the fact that you are using SOAP, but your SOAP message has to be sent as or in
an HTTP request to allow it to get through to most web servers. It also specifies the endpoint of your ser-
vice, globalweather.asmx. The next three lines of HTTP headers are pretty standard, but the final
header, the SOAPACTION header, must be present; otherwise the message will be invalid. It’s there to
help the server decide whether it can let through a message’s content.

The XML document is of greater interest. The opening line is the XML document header, standard to all
XML documents. Then you have the structure of the document, which in SOAP will always have this
structure. You have a SOAP Envelope tag that contains a SOAP Header and a SOAP Body.

The SOAP Header is optional and is missing from the code, but the SOAP Envelope contains some vital
information in the attributes to help it make up the document. It contains three attributes that all provide
namespace information: xsi, xsd, and soap. xmlns is short for XML namespace. At this level of pro-
gramming, you really only want to know about the latter attribute, and this is because you use it to spec-
ify a prefix to your SOAP tags:

xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”

The prefix specified after the xmlns: attribute is soap, and this prefix is used in front of all the SOAP tags:

432

Chapter 12

15_042583 ch12.qxd 4/4/06 2:49 PM Page 432

<soap:Envelope>
<soap:Body>
... Web Service content here...
<soap:Body>

<soap:Envelope>

All documents sent by SOAP will need to adhere to this structure. Inside the SOAP:Envelope attribute is
the SOAP:Body tag. The SOAP:Body tag is always contained within the envelope and it contains the
information that has been gleaned from the parameters and needs to be sent to the web service. Inside
the SOAP:Body tags, you find at last the data you want to send:

<GetWeather xmlns=”http://www.webserviceX.NET”>
<CityName>Birmingham</CityName>
<CountryName>United Kingdom</CountryName>

</GetWeather>

The GetWeather tag is the web service, and the xmlns attribute outlines the location of the web service,
which in this case is www.webservicex.net. Inside the GetWeather tag are two tags: CityName and
CountryName. These are the two parameters that you originally supplied to the web service when you
invoked it. These parameters have been serialized into a SOAP document, which itself is parceled up in
the HTTP data and is now transmitted to the web service.

You’re probably wondering why we’re going into some quite esoteric detail about SOAP document structure.
The answer is that if you want to supply data to the web service manually, it is going to have to have this
structure involved. Also there is another important reason, which you will discover in the next sections.

Returning the Response
A web service doesn’t have to return a response. It will most commonly return a response, but this isn’t
essential — it might be just enough to send some information to a database or to change an attribute on
the server. Before a response of any sort can be returned, though, a few tasks must be accomplished by
the web service.

Because the data has been serialized so that it can be transmitted across the web, it has to be deserialized
first. This is just the process of obtaining the data (which in the previous example were the words
“Birmingham” and “United Kingdom”) from the XML and then executing the web service with this
data. Of course the data isn’t the only thing sent back as part of the response. You also get the following:

❑ A return address for the consumer

❑ The fact that this is an HTTP response and that there is no further action required

❑ A success or failure code

❑ Configuration information

Rather than use the more common terminology call, the term invoke is used with
relation to web services. If you check Dictionary.com, you will find the definition of
invoke is to call upon a “higher system or power for assistance, support or inspira-
tion.” The higher power in this instance is of course the web service. I suppose it is
used because the word call, of course, just doesn’t paint the same picture.

433

Web Services

15_042583 ch12.qxd 4/4/06 2:49 PM Page 433

One of two scenarios is possible: either a value needs to be returned, in which case the result has to be
serialized once more in an XML document and sent back to the client, or there are no values that need
transmitting back, in which case there will only be a success or failure code to indicate what has hap-
pened to your web service.

In the example, you might notice that the response isn’t actually returned as a SOAP document, but one
large XML string using the HTTP-POST protocol. This is because you sent your original call to the service
as a HTTP-POST document, so the web service is just returning in like format. It is also possible to call
your web service using HTTP-GET. As you might remember from Chapter 2, a call to the server using
HTTP-GET involves adding a querystring to the URL and adding the parameters as querystrings. You
can send the same request to the example web service as follows:

http://www.webservicex.net/globalweather.asmx/GetWeather?CityName=Birmingham&Coun
tryName=United%20Kingdom

Doing this will return exactly the same response as you saw in Figure 12-4.

This leaves the SOAP message template. To send and retrieve a document using SOAP requires a little
more effort, and isn’t possible via the endpoint without extra code. However, the information contained
with a SOAP document retains structure, rather than being sent back as a convoluted jumble bundled in a
<string> element:

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-16
Content-Length: length

<?xml version=”1.0” encoding=”utf-16”?>
<soap:Envelope xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”>

<soap:Body>
<GetWeatherResponse xmlns=”http://www.webserviceX.NET”>

<GetWeatherResult>
<Location>Birmingham / Airport, United Kingdom (EGBB)
52-27N 001-44W 0M</Location>

<Time>Jul 12, 2005 - 05:20 AM EDT / 2005.07.12 0920 UTC</Time>
<Wind> from the E (090 degrees) at 5 MPH (4 KT) (direction
variable):0</Wind>

<Visibility> greater than 7 mile(s):0</Visibility>
<SkyConditions> mostly cloudy</SkyConditions>
<Temperature> 64 F (18 C)</Temperature>
<DewPoint> 59 F (15 C)</DewPoint>
<RelativeHumidity> 82%</RelativeHumidity>
<Pressure> 30.47 in. Hg (1032 hPa)</Pressure>
<Status>Success</Status>

</GetWeatherResult>
</GetWeatherResponse>
</soap:Body>

</soap:Envelope>

The first three lines are the HTTP header. However, this time the weather report results (which are dif-
ferent than what was shown in Figure 12-4 because it was done on a different day) are placed within the

434

Chapter 12

15_042583 ch12.qxd 4/4/06 2:49 PM Page 434

<soap:Envelope> and <soap:body> elements. There is no <soap:header> element here — it’s
optional and you don’t need one. If you examine the results, you will also see that the <string> ele-
ment is missing, which leaves your document with its intended structure.

This doesn’t answer one question, though: What happens if you didn’t want to include all of the infor-
mation that the web service had returned, and just wanted some particular bits and pieces? The weather
web service returns all kinds of extraneous information, when all you were interested in were the sky
conditions and temperature. It’s certainly possible to extract items from a string, but you are better
served by restricting what information the web service returns at source. To do this, you need to invest
in the flexibility that a command-line prompt tool like wsdl.exe (a tool that comes as part of the .NET
Framework) offers. And that requires a little extra work and is beyond the scope of this book.

Using the Response
After the client has received a response from the web service saying that either the response has suc-
ceeded or failed along with any data that was required, the cycle of your web service ends. The client in
the test example received pure XML, and therefore displayed it as a normal XML document. Both HTTP-
POST and HTTP-GET wrapped the response in a single string, which to be fair isn’t a lot of use to you.
This is why it is preferable to use SOAP, because the response would be returned in the same format as
the request, and it would enable you to access individual items within the XML document more easily.
However, because browsers use HTTP to transfer information, it would require a separate application to
create a web service that uses the SOAP message template, and to be able to decipher the response sent
via the SOAP message template.

When you consume a web service in the Wrox United application, it will be problematic when you get
the whole document returned as one string, rather than individual elements, from which you can pick
and choose. However, it is beyond the scope of this chapter to write a separate application to be able to
send a web service request in the SOAP message template. We will instead settle for this imperfect state
of affairs and try and use the information contained within the string as best we can. In the real world,
we suggest that you use SOAP. For more details, look at http://msdn.microsoft.com/webservices/.

The Structure of Your Web Service
A web service has a particular structure that needs to be maintained whenever you create a new web
service. This structure is pretty much unchanged between ASP.NET 1.x and ASP.NET 2.0, so if you have
experience in the area, it should look familiar. Every web service you create must have basically four
items (detailed in the following sections).

Processing Directive
At the head of any web service file, you need a directive, which essentially just lets ASP.NET know that
this is a web service. The processing directive must always be the first line and it takes the following
syntax:

<%@ WebService Language=”language” Class=”classname” %>

435

Web Services

15_042583 ch12.qxd 4/4/06 2:49 PM Page 435

The directive is used to specify particular settings such as which language the web service is written in
and where to find the class that defines the particulars of your web service. The class should be a sepa-
rate file.

Namespaces
As with the rest of ASP.NET, occasionally you will need to specify other namespaces so that you can
appropriate other classes and functions within your own web service. These namespaces are defined after
the @WebService attribute in the file. In C#, four references are added as default, which are as follows:

using System;
using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;

These references are required as an absolute minimum, because they contain classes needed for web ser-
vices to handle network connection issues and other related tasks.

Public Class
The class is simply a container for the web service, and the name of the class signifies the name of the
web service:

public class Service : System.Web.Services.WebService
{ ...
}

The class name needs to correspond with the class attribute that is specified within the processing
directive. Then for all other intents and purposes, it is just a normal object, albeit one that is exposed to
the web. The trick with this web server, though, is that any calls to the object will look like they came
from the same machine, and not via a foreign source.

Web Methods
To signify that a particular method (or property) is callable via the web, you need to add a [WebMethod]
declaration. In ASP.NET 1.x, you could only expose methods to the web, but in ASP.NET 2.0, you can
also expose properties.

The [WebMethod] declaration is the part that does all of the legwork. You can define one or more web
methods, and not only that, you can make sure some web methods are publicly accessible, whereas oth-
ers can have access to them restricted via the protected keyword. Though the syntax varies slightly
between VB.NET and C# (VB.NET uses greater-than and less-than symbols, whereas C# uses square
brackets to define the method call), they are both recognizably similar.

The syntax in VB.NET is as follows:

<WebMethod()> _
Public Function Hello (ByVal strName As String) As String
....
End Function

436

Chapter 12

15_042583 ch12.qxd 4/4/06 2:49 PM Page 436

This defines a web method that accepts a string as a parameter and returns a string as a result, just like a
normal function.

The syntax in C# is as follows:

[WebMethod]
public string Hello (string strName)
{
....
}

This also defines a web method that accepts a string as a parameter and returns a string as a result. If
you don’t want to expose a particular web method to the public, you simply remove the declaration.

Web methods also take parameters of their own. You can set the different attributes to modify the behav-
ior of the web service. This allows you to customize the web service in several ways. For example, you
can use the CacheDuration attribute to specify the number of seconds for which you want the
WebMethod declaration to cache its results. When a consumer browses to the web service inside this
allotted period, instead of the web service going back to retrieve the result, it gets a cached copy of the
results instead.

In VB.NET, you can specify an attribute as follows:

<WebMethod(CacheDuration:=60)> _
Public Function Hello (ByVal strName As String) As String
....
End Function

In C#, you can specify an attribute as follows:

[WebMethod(CacheDuration=60)]
public string Hello (string strName)
{
....
}

You can specify multiple attributes by separating them with commas. The Description attribute allows
you to specify a little detail about your web method, which can help potential consumers identify
whether or not they want to use it.

In VB.NET, you can specify multiple attributes as follows:

<WebMethod(Description:=”A web service that says hello to you”, _
CacheDuration:=60)> _
Public Function Hello (ByVal strName As String) As String
....
End Function

In C#, you can specify multiple attributes as follows:

[WebMethod(Description=”A web service that says hello to you”,CacheDuration=60)]
public string Hello (string strName)

437

Web Services

15_042583 ch12.qxd 4/4/06 2:49 PM Page 437

{
....
}

You can see the effect of adding a description to a web method in Figure 12-6. The text is displayed next
to the web service so that in a list of web services, you would be able to differentiate between each one.

Figure 12-6

For more information on WebMethod attributes, go to http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/cpref/html/frlrfsystemwebserviceswebmethodattribute
memberstopic.asp.

Creating a Web Service
So far you’ve consumed a third-party web service and seen how you can send and receive responses via
a standard interface provided from the .asmx endpoint. However, it isn’t the .asmx file that is the web
service — it just points you in the direction of the web service. As stated earlier, the Wrox United applica-
tion doesn’t provide weather forecasting, so you borrowed someone else’s service. What happens,
though, if you want to create your own web service?

In the past, creating a web service wasn’t always as easy as it should have been. If you created ASP.NET
1.x pages with Notepad, you would find yourself delving around the murky world of the command
prompt to compile the service, and having to create an application by hand with which to consume the
service. Here you’re only going to worry about creating a web service with which you can call and trans-
mit the data.

In this Try It Out, you create an example web service that is able to return the list of results and fixtures
from the Wrox United web site.

Try It Out The Fixtures Web Service
1. With the Chapter12 solution (C:\BegASPNET2\Chapters\Begin\Chapter12) open, go to

Solution Explorer and select the top line, which reads C:\... \Chapter12. Right-click it and
select Add New Item.

2. A new dialog box appears. Make sure that the Language is set to Visual C#. Type the name
FixtureService.asmx, select the Web Service option, and click Add, as shown in Figure 12-7.

438

Chapter 12

15_042583 ch12.qxd 4/4/06 2:49 PM Page 438

Figure 12-7

3. This creates a template web service from which to work. If it doesn’t appear automatically, go to
the App_Code folder in Solution Explorer and click FixtureService.cs, as shown in Figure 12-8.

Figure 12-8

439

Web Services

15_042583 ch12.qxd 4/4/06 2:49 PM Page 439

4. Add the following lines to the list of namespaces at the top of the page:

using System;
using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;
using System.Data;
using System.Data.SqlClient;
using System.Configuration;

5. Remove the lines from [WebMethod] to } (because this is just a default test web service), and
replace it with the following code:

[WebMethod]
public DataSet Fixtures()
{

SqlConnection conn = new
SqlConnection(ConfigurationManager.ConnectionStrings[“WroxUnited”].ConnectionString
);

SqlDataAdapter adapter = new SqlDataAdapter(“SELECT FixtureDate, Opponents,
FixtureType, GoalsFor, GoalsAgainst FROM Fixtures ORDER BY FixtureDate”, conn);

DataSet ds = new DataSet();

adapter.Fill(ds, “Fixtures”);

return ds;
}

}

6. Change the namespace attribute at the top of the class to the following:

[WebService(Namespace=”http://wroxunited.net/”)]

7. Save this file.

How It Works
Inside your [WebMethod] declaration, you have a simple functionthat creates a connection using the
connection string, and then creates a SqlDataAdapter and passes it the SQL to query the fixtures table:

public DataSet Fixtures()
{

SqlConnection conn = new
SqlConnection(ConfigurationManager.ConnectionStrings[“WroxUnited”].ConnectionString
);

SqlDataAdapter adapter = new SqlDataAdapter(“SELECT FixtureDate, Opponents,
FixtureType, GoalsFor, GoalsAgainst FROM Fixtures ORDER BY FixtureDate”, conn);

DataSet ds = new DataSet();

adapter.Fill(ds, “Fixtures”);

return ds;
}

440

Chapter 12

15_042583 ch12.qxd 4/4/06 2:49 PM Page 440

You create a dataset, and fill this dataset with the contents of the adapter (in other words, the result of
your query) and then return the dataset as a result. You also had to add a couple of namespaces. This is
because the SqlDataAdapter isn’t accessible by default, and so to use it you have to add System.Data
and System.Data.SqlClient to enable you to create a connection and to hook up to your SQL
database. You also changed the default namespace from http://tempuri.org (the default namespace
provided by Microsoft) to http://www.wroxunited.net, which is the URL of the Wrox United site.

There is nothing unusual about this function — it’s actually the code that surrounds this function that is
important. This is what you look at in the next section.

Testing Your Web Service
You’ve created your web service and taken a look at its structure, but you haven’t actually done any-
thing with it yet or tested it. Fortunately you already have tools at your disposal to test the web service.
Being able to browse to the endpoint of your service enables you to try the web service out.

Try It Out Testing the Fixtures Web Service
1. When you created FixtureService.cs and placed it in the App_Code folder, it automatically

created an endpoint (.asmx file) for you. Go to Solution Explorer and select Fixture
Service.asmx. Right-click it and select View in Browser. You will see something similar to
Figure 12-9.

Figure 12-9

2. Click Fixtures, and you will arrive at a screen similar to the one displayed in Figure 12-10. From
here you can test your service. Note that the service doesn’t require any input.

3. Click Invoke and scroll down the screen until you see the XML depicted in Figure 12-11.

441

Web Services

15_042583 ch12.qxd 4/4/06 2:49 PM Page 441

Figure 12-10

Figure 12-11

442

Chapter 12

15_042583 ch12.qxd 4/4/06 2:49 PM Page 442

How It Works
You can see that the test has returned the fixtures and results of Wrox United’s matches within the XML.
The answers supplied are in pure text, so this is something that can be easily passed back and forth
across the web. You started by going to the endpoint of the service and clicking the link. From the testing
page, you clicked Invoke to produce the web service result in XML. This web service generated a set of
fixtures from the class FixtureService.cs and the resulting dataset is rendered as a set of XML ele-
ments: <FixtureDate>, <Opponents>, <FixtureType>, <GoalsFor>, and <GoalsAgainst>.

The WSDL Contract
If you go back to the endpoint FixtureService.asmx and browse it again, you’ll find a line with a link
reading, “For a formal definition, please review the Service Description.” If you click the Service
Description link, you will see the page shown in Figure 12-12, which contains the WSDL.

Figure 12-12

This is yet more behind-the-scenes work. WSDL is short for Web Services Description Language and it is
an XML file that defines how the interaction between a web service and its consumer will occur. For
example, WSDL states whether the web service uses GET, POST, or SOAP. The WSDL document defines
whether the web service requires 0, 1, or 20 parameters, and defines how many you expect back. It can
also specify that when, for example, a web service expects two specific parameters and returns a single

443

Web Services

15_042583 ch12.qxd 4/4/06 2:49 PM Page 443

value, what the names, order, and data types of each input and output value should be. With WSDL, all
of the information necessary is present to begin using the web service functionality. WSDL is yet another
standard managed by W3.org and you can find the standard details at www.w3.org/TR/wsdl.

At the head of the WSDL document is a declaration for the <definitions> element, which contains
various namespaces, which make references to SOAP. Next up is the <types> element, which defines
each of the data types that the web service expects to receive and return after its completion. The
<types> element is written in yet another XML language, XSD (XML Schema Definition Language).

If you want to see a particular definition of a data type, you need to scroll down the screen and expand
each node within Internet Explorer.

After the <types> element are various <message>, <port type>, and <binding> elements, which all
refer to transmissions between the web service and consumer. The WebMethod message named
FixtureService is contained in here, and various SOAP message structures are defined. In short, this file
has everything needed to handle communication with your web service. And it was automatically cre-
ated when you created your .asmx file.

Although you’ve consumed web services by browsing directly to the endpoint (the .asmx file), you
haven’t actually tackled how you’d go about including the web service’s functionality within your own
program, which is the purpose of the next section.

Web Service Discovery
Perhaps another reason why web services haven’t been as successful as they might have been is that web
service discovery has been a rather hit-and-miss affair. If you think back, you’ve created your extrava-
gant rainfall-amount-cataloguing weather service, now how do you let people know about it? Stick it on
your web site and hope the Google spiders will index it sooner rather than later? Stand down at your
local shopping center with a placard around your neck? Web service discovery is like the process of
locating any item on a search engine. You know roughly what you want to find; you just need to know
the URL of where to find it. Web services are the same.

If you are the only person who needs to know about the web service, then it’s a very simple affair — you
just add a web reference in Visual Web Developer. When you add the web reference to the web site, it
handles not only the process of compiling your web service for you, but also the process of discovering a
web service. However, you first have to compile the web service. In prior incarnations of ASP.NET, creat-
ing a web service was a bit more fiddly than it is in ASP.NET 2.0, and it involved using the command-
line prompt. You shouldn’t need to drop down to a command prompt, though. Instead, you can simply
use Visual Web Developer’s IntelliSense feature to compile your web services for you. However, to make
it available to a wider range of people, this is inadequate.

Two technologies are used in making web services available. The great thing is that you really don’t
need to know too much about either. This is because Visual Web Developer has a feature that makes the
discovery of web services very straightforward: the Add Web Reference option. However, before you
use it, the next sections take a brief look at the two technologies underlying web service discovery.

444

Chapter 12

15_042583 ch12.qxd 4/4/06 2:49 PM Page 444

DISCO
DISCO is a colorful name that belies a rather more prosaic abbreviation — discovery. DISCO is a
Microsoft technology that is generally used to make web services available on your local machine. To do
this, you place information about the web service in a .disco document. This is an XML document that
contains links to other resources that describe the web service, and can be thought of like an HTML file
that contains human-readable documentation or a WSDL file.

Rather than having to worry about creating this yourself, Visual Web Developer takes care of this task
for you when you add a web reference. It creates the .disco file from the .asmx endpoint file and gener-
ates a .DISCOMAP file, both of which are placed in the app_WebReferences folder. These documents
can then be used with Visual Web Developer automatically to find your web service.

UDDI
UDDI goes beyond DISCO. It’s like a giant directory of web services, and only four big companies that
use web services keep one. Following the closure of Microsoft’s UDDI registry (formerly at http://
uddi.microsoft.com), the main one is IBM’s www-3.ibm.com/services/uddi/. The registries aren’t
just restricted to the companies involved — you can publish your own web service details within these
directories. The UDDI directory was intended to work in the same way as a phone directory, with white
pages, yellow pages, and green pages. White pages contained the business details, yellow pages con-
tained the classification of the business, and the green pages contained technical information about the
web service. Because a lot of web services are created just for the businesses involved and not for general
public use, these never took off in the way they were intended to. However, if you create a web service
and you want to market it to the public, or give it away for free, then putting it in a UDDI repository is
very simple. Just go to the previously mentioned URL and follow the registration instructions.

Once again, Visual Web Developer is closely integrated with UDDI, and you can browse different registries
when you come to add a web reference to your web site, and add a service to the registry in this way.

Discovering Your Web Service
DISCO and UDDI are both technologies that go on behind the scenes, and though you can make use of
both of them, you don’t require any specialist knowledge to do so. More often than not, you’ll probably
just want to make use of a web service at a local level, within your application. In the following Try It
Out, you see how you can go about discovering the fixture service that you have just added to your
application, by adding a web reference to it.

Try It Out Adding a Web Reference to Your Application
1. Staying within the WroxUnited web site solution, from Visual Web Developer select the Web

Site➪Add Web Reference option. You will see the screen shown in Figure 12-13.

445

Web Services

15_042583 ch12.qxd 4/4/06 2:49 PM Page 445

Figure 12-13

2. From here you can either browse to web services in your local application or on the local
machine. You have already created a web service, so click Web Services in This Solution to
arrive at the screen displayed in Figure 12-14.

Figure 12-14

3. Only one web service should be in the solution so far, because you’ve only created one. Click
the FixtureService link and you should be able to see a view of the web service .asmx file (see
Figure 12-15).

446

Chapter 12

15_042583 ch12.qxd 4/4/06 2:49 PM Page 446

Figure 12-15

4. Click Add Reference. In Solution Explorer, you should see a folder called App_WebReferences,
and underneath this folder, another folder, localhost, which contains three files, as shown in
Figure 12-16.

Figure 12-16

How It Works
You created the .disco and .wsdl files in this Try It Out automatically. The process of adding a web refer-
ence involved selecting a web service (there was only one to select) and adding a reference. The refer-
ence then appeared in the App_WebReferences folder. The .wsdl and .disco files were created at the
same time. This means can access the web service from within your code. This is the ultimate point of
your web service and you’re almost there now.

Adding the Fixture Service to Your
Application

The web service now exists as an object within your code that you can access and query the methods of,
just like you would with any normal object. In fact, to your application, for all intents and purposes this
is a local object. There is a sleight-of-hand going on here. What .NET Framework has done for you is to
create a proxy object. This object acts like the web service and calls the methods on your behalf and actu-
ally passes the details to the web service.

447

Web Services

15_042583 ch12.qxd 4/4/06 2:49 PM Page 447

This might sound quite complicated, but there really is no difference between creating this proxy object
and creating a normal object. In the next Try It Out, you create a small page in your application that con-
sumes your web service.

Try It Out Adding the Service to Your Application
1. Create a new Web Form in Visual Web Developer. In Solution Explorer, right-click the top line

and select Add New Item. Select Web Form and call it Consume.aspx, as shown in Figure 12-17,
making sure that the Place Code in Separate File box is checked. Also check the Select Master
Page box. On the second page, select site.master as a Master page.

Figure 12-17

2. In Design View, add a single grid view tool to your new Web Form as in Figure 12-18.

Figure 12-18
448

Chapter 12

15_042583 ch12.qxd 4/4/06 2:49 PM Page 448

3. Click the page alongside the new grid, in the blank part of the content are to open
Consume.aspx.cs’s Page_Load event and add the following code inside:

public partial class Consume : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{ localhost.FixtureService wsConvert = new localhost.FixtureService();

GridView1.DataSource = wsConvert.Fixtures();
GridView1.DataBind();

}

4. Save the page and view it in the browser. It will look like Figure 12-19.

Figure 12-19

How It Works
The GridView control has created a table that has bound to the results and fixture provided by your fix-
tures web service. Only three lines of code were necessary in your final application to do this:

localhost.FixtureService wsConvert = new localhost.FixtureService();

GridView1.DataSource = wsConvert.Fixtures();
GridView1.DataBind();

First you created a proxy object from localhost.FixtureService called wsConvert. In the previous
example, you created a localhost folder under your App_WebReferences folder, which contained the
.wsdl and .disco files.

449

Web Services

15_042583 ch12.qxd 4/4/06 2:49 PM Page 449

Next, you bound to the Fixture method of your new wsConvert proxy object, and then you bound to
the GridView control. Your web service output is rendered in Grid View. You’re now free to style and
alter the presentation of the web service in any way you choose.

Putting It All Together
Here’s a quick recap. We’ve separated out each step of creating, testing, discovering, and consuming a
web service so far, and we might have created the illusion that there are a lot of separate steps to per-
form. This isn’t really the case, because we’ve had to abstract out each step to explain what is going on.
Now you can put them all together in one large, fluid example, and create a separate user control that
you can place in any application.

One common feature of many sports sites is the capability to access league tables and show a miniatur-
ized view of where your team is in the league, and though the Wrox United league table isn’t huge (con-
taining only eight teams), you can certainly create a web service that will show the team above and
below Wrox United in the league. There are two provisos to this of course. One is that in the unlikely
event that Wrox United is at the top of the league, you need to show the two teams underneath them. In
the far more likely scenario that Wrox United is at the bottom, you should show the two teams above
them instead. However, we’ll leap those particular chasms when we get to them.

Try It Out Creating a League Table Mini View Web Service
1. Go to Solution Explorer, right-click the top line, select Add New Item, and then select the Web

Service option. Change the name to LeagueMiniView.asmx and click OK.

2. Add the extra namespaces at the top of the page underneath the existing using statements:

using System.Data;
using System.Data.SqlClient;
using System.Configuration;

3. Remove the HelloWorld() method and add the following code to the WebMethod (note that
the SQL string should all be on one line):

[WebMethod]
public DataSet ViewLeague()

{
SqlConnection conn = new

SqlConnection(ConfigurationManager.ConnectionStrings[“WroxUnited”].ConnectionString
);

string sqlstring;

sqlstring = “SELECT [OpponentID], [Name], [TotalGoalsFor], [TotalGoalsAgainst],
[TotalGoalsFor]-[TotalGoalsAgainst] AS [GoalDifference], [Points] FROM [Opponents]
Order By [Points] DESC, [GoalDifference] DESC, [TotalGoalsFor] DESC”;

SqlDataAdapter adapter = new SqlDataAdapter(sqlstring, conn);
SqlDataAdapter adapter2 = new SqlDataAdapter(sqlstring, conn);

DataSet ds = new DataSet();
DataSet ds2 = new DataSet();

450

Chapter 12

15_042583 ch12.qxd 4/4/06 2:49 PM Page 450

int position=0;
int offset;
DataRowCollection rows;

adapter.Fill(ds, “ViewLeague”);
rows = ds.Tables[“ViewLeague”].Rows;

for (int i = 0; i< rows.Count; i++)
{

if (rows[i][“Name”].ToString() == “Wrox United”)
{
position = i + 1;

}
}

if (position > 1 && position < rows.Count)
{

offset = position – 2;
}

else if (position == 1)
{

offset = position –1;
}

else
{

offset = position -3;
}
adapter2.Fill(ds2, offset, 3, “ViewLeague”);

ds2.Tables[“ViewLeague”].Columns.Add(“Position”, typeof(int));
rows = ds2.Tables[“ViewLeague”].Rows;
for (int i = 0;i< rows.Count;i++)
{

rows[i][“Position”] = offset + i + 1;
}

return ds2;
}

4. Change the namespace from tempuri.org to wroxunited.net again, to [WebService(Name
space:=”http://wroxunited.net/”)].

5. Save this file.

6. You now need to create a page that can use this web service. Create a new web user control
called LeagueView.ascx and add a GridView control to it. Double-click the LeagueView web
user control in Design View and add the following code to LeagueView.ascx.cs:

public partial class LeagueView : System.Web.UI.UserControl
{

protected void Page_Load(object sender, EventArgs e)
{

localhost.LeagueMiniView wsConvert = new localhost.LeagueMiniView();
GridView1.DataSource = wsConvert.ViewLeague();
GridView1.DataBind();

}
}

451

Web Services

15_042583 ch12.qxd 4/4/06 2:49 PM Page 451

7. Save the page. Add this control to default.aspx by changing that page’s code as follows.

<%@ Register TagPrefix=”wu” TagName=”News” Src=”News.ascx” %>
<%@ Register TagPrefix=”wu” TagName=”LeagueView” Src=”~/LeagueView.ascx” %>
<asp:Content ID=”Content1” ContentPlaceHolderID=”mainContent” Runat=”server”>

<h2>Welcome to the Wrox United Web site.</h2>
<p>We’re a great football team. No really, we are. Don’t take any notice
of our past performance. We’re just unlucky.</p>
<uc1:leagueview id=”miniview” runat=”server”></uc1:leagueview>
<uc1:news id=”News1” runat=”server” ItemsToShow=”5”></uc1:news>

</asp:Content>

8. Go to default.aspx and view it (see Figure 12-20).

Figure 12-20

How It Works
Hopefully you will be getting a feel for this now. Although you could make the control a little more
unobtrusive, the basic gist is there. Admittedly, it’s a little repetitious, but should make it easier to
remember. Once again your web service has returned a dataset. This time, the WebMethod has a lot more
to do. You start by creating a function that returns your dataset:

public Function DataSet ViewLeague()

The first task within the function is to connect to the database. You use the predefined WroxUnited con-
nection string to do this.

SqlConnection conn = new
SqlConnection(ConfigurationManager.ConnectionStrings[“WroxUnited”].ConnectionString
);

452

Chapter 12

15_042583 ch12.qxd 4/4/06 2:49 PM Page 452

You then create the SQL that is needed to return your Mini-League table. You create two
SqlDataAdapters, one to go with each SQL string. You need two, because one is a full table and the
other is your mini-view of the same league table. adapter2 contains your new shortened view of the
table with only three teams, whereas adapter contains the full table:

sqlstring = “SELECT [OpponentID], [Name], [TotalGoalsFor], [TotalGoalsAgainst],
[TotalGoalsFor]-[TotalGoalsAgainst] AS [GoalDifference], [Points] FROM [Opponents]
Order By [Points] DESC, [GoalDifference] DESC, [TotalGoalsFor] DESC”;

SqlDataAdapter adapter = new SqlDataAdapter(sqlstring, conn);
SqlDataAdapter adapter2 = new SqlDataAdapter(sqlstring, conn);

You then create two datasets, and create some variables to help you keep track of where you are in the
datasets:

DataSet ds = new DataSet();
DataSet ds2 = new DataSet();
int position=0;
int offset;
DataRowCollection rows;

Next you fill the first adapter with the results of the first SQL query in sqlstring1, which returns the
whole league table in order. You then iterated through this table, position by position, until you find an
entry that matches “Wrox United”. You save that position into the variable position:

for (int i = 0; i< To rows.Count; i++)
{

if (rows[i][“Name”].ToString() == “Wrox United”)
{
position = i + 1;

}
}

There are three scenarios here:

❑ The golden scenario: Wrox United is top, and you need to display the second and third place
teams.

❑ The doomsday scenario: Wrox United is bottom and you need to display the two teams above
them.

❑ The usual scenario: Wrox United is neither top nor bottom, but somewhere in between, in which
case you display one team above them and one team below them.

Your first if condition deals with the case where the position isn’t top or bottom of the league. You take
2 off the position (so if Wrox United is 5, this would be 3). Then you fill the adapter2 with the
adapter2 starting at position 3, and the number 3 indicates that there are three teams only. For example:

Adapter2.Fill(name of dataset, position to start in dataset, number of rows, name of query);.

So you say if the position isn’t 1 and isn’t last (you obtain the amount for last by counting the number of
teams in the league), then you set the offset to the position minus 2 and pass that to the adapter2.Fill
method at the end of the if then condition:

453

Web Services

15_042583 ch12.qxd 4/4/06 2:49 PM Page 453

if (position > 1 && position < rows.Count)
{

offset = position - 2;
}

Of course if Wrox United has come in fifth, why are you starting with third? Surely that would display
third, fourth, and fifth, when actually you intend to display fourth, fifth, and sixth. The answer is that
when you filled your adapter, you started at row 0. The team that came first is 0, the team that came sec-
ond is 1, and so on. So the preceding line to fill the adapter actually does return only three teams, and
will return the teams in fourth, fifth, and sixth.

Your second condition deals with what happens if Wrox United is top. You check to see if the position is
1, you set the offset to 0, (1-1), and then you fill the adapter at the end of the if condition with the
dataset starting at row 0, with the next three teams:

else if (position == 1)
{

offset = position - 1;
}

Last, you can deduce that if your team isn’t first and also didn’t finish between first and last, then they
must be last. You set the offset variable accordingly, and fill your data adapter:

else
{

offset = position - 3;
}
adapter2.Fill(ds2, offset, 3, “ViewLeague”);

You then add a new column to your second dataset called Position, and you read in the positions for
each team in your mini-table:

rows = ds2.Tables[“ViewLeague”].Rows;
for (int i As Integer = 0; i< rows.Count;i++)
{

rows[i][“Position”] = offset + i + 1;
}

return ds2;
}

}

Having created the method that fuels your web service, you then need some way of being able to refer-
ence it. Because you have a dataset, you create a user control called leagueview.ascx and then add a
GridView control to the user control and bind it to your web service.

The final step is to add a reference to your new user control to the Wrox United front page, so that it is
displayed in the appropriate position. It is rather large and cumbersome, so you might choose to style it
more and position it differently. This is left as an exercise for you to complete if you so desire, because
any more code would distract from the already large code listings you have created.

454

Chapter 12

15_042583 ch12.qxd 4/4/06 2:49 PM Page 454

Remote Web Services — PocketPC
Application

This chapter has stressed that what makes web services so flexible is their capability to work across plat-
forms. However, you’ve had to take that for granted, because not many people will have a Mac or Linux
machine in addition to their own PC. There is one platform, though, that will be familiar to quite a few
readers, and that is the PocketPC platform that runs on PDAs and other mobile technologies. Because
we appreciate that not everyone will be able to use the following Try It Out, we will keep it relatively
brief, but it demonstrates how your online reporters can supply updates to the Wrox United web site
using just a web service with a PocketPC application on their PDA. Because you have already created
the application that can submit data, all you need to do in this Try It Out is create a web service that will
receive scores from reporters and alter the scores on the Wrox United site accordingly.

The extra bit of functionality that this Try It Out also includes is the ability to send parameters with the
web service. This is just like sending parameter in a method, as you saw in Chapter 8.

To be able to run this Try It Out, you will need a piece of hardware capable of running PocketPC appli-
cations. This Try It Out was tested and run on a Dell AXIM PDA that was running PocketPC 2003.
While we endeavor to make sure this application will work on all PDAs running PocketPC, due to the
diverse nature of the PDA, we can make no such guarantees. If you don’t have a PDA, you could try
running it on an emulator instead.

Try It Out Updating the Scores Web Service
1. Make sure you have a copy of the PocketPC application from c:\BegASPNet2\Chapters\

Begin\Chapter12\PDA.

2. Open the C:\BegASPNet2\Begin\Chapter12\WroxUnited web site.

3. Go to Solution Explorer. Right-click the top line, select Add New Item, and then select the Web
Service option. Change the name to UpdateScore.asmx and click OK.

4. Add the extra namespaces at the top of the page underneath the existing Imports statements:

using System.Data;
using System.Data.SqlClient;
using System.Configuration;

5. Add the following web method.

[WebMethod]
public void UpdateGoals(int FixtureID , bool GoalFor ,

int PlayerID , int GoalTime)
{

SqlConnection conn = new
SqlConnection(ConfigurationManager.ConnectionStrings[“WroxUnited”].ConnectionString
);

conn.Open();
SqlCommand cmd = new SqlCommand(“usp_UpdateScore”, conn);
cmd.CommandType = CommandType.StoredProcedure;

cmd.Parameters.Add(“@FixtureID”, SqlDbType.Int).Value = FixtureID;

455

Web Services

15_042583 ch12.qxd 4/4/06 2:49 PM Page 455

cmd.Parameters.Add(“@GoalFor”, SqlDbType.Bit).Value = GoalFor;

cmd.ExecuteNonQuery();

if (GoalFor)
{

Goal(FixtureID, PlayerID, GoalTime);
}

}

6. Add another web method underneath the previous one:

[WebMethod]
public void Goal(int FixtureID, int PlayerID, int GoalTime)

{
SqlConnection conn = new

SqlConnection(ConfigurationManager.ConnectionStrings[“WroxUnited”].ConnectionString
);

conn.Open();
SqlCommand cmd = new SqlCommand(“usp_Goal”, conn);
cmd.CommandType = CommandType.StoredProcedure;

cmd.Parameters.Add(“@FixtureID”, SqlDbType.Int).Value = FixtureID;
cmd.Parameters.Add(“@PlayerID”, SqlDbType.Int).Value = PlayerID;
cmd.Parameters.Add(“@GoalTime”, SqlDbType.Int).Value = GoalTime;

cmd.ExecuteNonQuery();

}

7. Change the namespace from http//:tempuri.org to http://wroxunited.net, once again
in the line at the beginning of the definition of the web service:

[WebService(Namespace:=”http://wroxunited.net/”)]

8. Save this file.

9. Run the PDA application, add a scorer and goal details on the page, and hit the submit button
(note that the PDA must have an active Internet connection for this to work). For example, in
Figure 12-21, we’ve suggested adding Jerry Johnston at 90 minutes in the Wrox United versus
Mellingham fixture.

10. Run the Wrox United site and go to the scorers link, which now shows the updated details
where Jerry Johnston has been added to the scorers list, as shown in Figure 12-22.

456

Chapter 12

15_042583 ch12.qxd 4/4/06 2:49 PM Page 456

Figure 12-21

Figure 12-22

457

Web Services

15_042583 ch12.qxd 4/4/06 2:49 PM Page 457

How It Works
In this Try It Out, you created two web methods as part of your web service. Which web method you use
depends on whether Wrox United scored the goal or whether the goal was scored by an opponent. If
Wrox United scored a goal, then you need to update the goal, the player who scored it, and the time it
was scored. If the opposition scored it, then you only need to use two of the parameters to update the
score in the database. To use the web service, you start by calling the UpdateScore method first and
then you detect whether it is a Wrox United goal, and only if it is a Wrox United goal do you update the
Goal method as well.

The UpdateGoals web method updates which side scored the goal and the Score method takes four
parameters, shown in bold in the following code:

public Sub void UpdateGoals(int FixtureID, bool GoalFor, _
int PlayerID, int GoalTime)

The web method creates a connection and a command, and sets the command type as stored procedure
(stored procedures are discussed in Chapter 14):

SqlConnection conn = new
SqlConnection(ConfigurationManager.ConnectionStrings[“WroxUnited”].ConnectionString
);

conn.Open();
SqlCommand cmd = new SqlCommand(“usp_UpdateScore”, conn);
cmd.CommandType = CommandType.StoredProcedure;

You pass the parameters of the FixtureID and the whether the goal was for or against us and execute
the query.

cmd.Parameters.Add(“@FixtureID”, SqlDbType.Int).Value = FixtureID;
cmd.Parameters.Add(“@GoalFor”, SqlDbType.Bit).Value = GoalFor;

cmd.ExecuteNonQuery();

If the goal was for us, then you call the Goal web method with the FixtureID, the PlayerID, and the
GoalTime:

if (GoalFor)
{

Goal(FixtureID, PlayerID, GoalTime);
}

The Goal web method updates the Wrox United goals and the Score method only takes three parame-
ters, shown in bold here:

public void Goal(int FixtureID, int PlayerID, int GoalTime)

These three parameters are the fixture number, the number of the player, and the timing of the goal. In
the PDA application, you selected the FixtureID from a selection of possible fixtures (for example,
Wrox United versus Ponsonby Athletic) rather than selecting FixtureID 27 from a DropDownList con-
trol, and you selected the name of the player from a DropDownList control along with check box indi-
cating if it was a goal for or against Wrox United. In the text box, you typed the time of the goal. These
are passed to your web method.

458

Chapter 12

15_042583 ch12.qxd 4/4/06 2:49 PM Page 458

This web method is very similar to the previous one in that it you create a connection and call a stored pro-
cedure, which will update the Wrox United database. It passes the three parameters and executes the query:

SqlConnection conn = new
SqlConnection(ConfigurationManager.ConnectionStrings[“WroxUnited”].ConnectionString
);

conn.Open();
SqlCommand cmd = new SqlCommand(“usp_Goal”, conn);
cmd.CommandType = CommandType.StoredProcedure;

cmd.Parameters.Add(“@FixtureID”, SqlDbType.Int).Value = FixtureID;
cmd.Parameters.Add(“@PlayerID”, SqlDbType.Int).Value = PlayerID;
cmd.Parameters.Add(“@GoalTime”, SqlDbType.Int).Value = GoalTime;

cmd.ExecuteNonQuery();

Much of the work is done behind the scenes with the PocketPC application. However, as long as the
Wrox United application makes the information available in a standard way (as was done here), then
any application — whether a Windows application, a web application, or a PDA application — can use it
via an Internet connection.

Web Service Security
This chapter’s introduction mentioned that one of the reasons that web services’ lack of adoption in some
quarters may be due to the lack of ease with which they can be secured. If you create a web service, and
you want to market it, then you need to be able to control and regulate access to the web service.

While certainly possible in ASP.NET 1.x, it wasn’t the easiest of tasks and this is one area that has defi-
nitely been improved in ASP.NET 2.0. Also, as you’ve seen, the web service request and response is sent
as XML documents (in other words, pure text), so if you’re not sending via SSL, then anyone is able to
intercept and steal the code. A couple of new facilities in ASP.NET 2.0 help you deal with this.

Encryption and Message-Based Security
Encryption is the process of scrambling the text containing your web service so that only the intended
reader is able to decrypt it with the aid of a key. Message-based security was introduced in web services.

Message-based security allows you to hand your encrypted messages to anyone, and they won’t be able to
decrypt the encrypted data. If your message is modified, you will be able to detect that straightaway
because the signature attached to the message will be invalid and you can throw those messages away. It
works by encrypting the message at both request and response level and is defined in the web services WS-
Security specification (a relatively new W3 specification detailing how to handle web services security).

Authentication and Access Controls for Services
Authentication is the process of checking to see if a particular user is who they claim to be. This is usu-
ally done by the common user ID and password entry. One way to secure a web service is to force any-
one who attempts to use a service to have to supply credentials first. They have to supply a user ID and
password, and if they don’t they are refused access to the web service.

459

Web Services

15_042583 ch12.qxd 4/4/06 2:50 PM Page 459

You can find more details at http://msdn.microsoft.com/library/default.asp?url=/
library/en-us/rsprog/htm/rsp_prog_soapapi_dev_6ne8.asp.

Using both of these facilities is beyond the scope of this book. They are mentioned here because people
would have previously disregarded web services for transferring sensitive and confidential information,
but that no longer needs to be the case.

Summary
Web services are a massive subject that could command a whole book quite easily in their own right. We
have been necessarily curt in our treatment of them to give you an idea of how they might be accessed
and used within your own applications. As you saw at the beginning of this chapter, a web service is
simply a functionality that can be remotely called over the web. However, the distinct advantage they
enjoyed over other similar methods is that all information was sent and returned in the form of XML
documents (and therefore text). Specifically, this chapter covered the following topics:

❑ The process of using a web service, which can be broken down into creating a web service, mak-
ing the web service available for discovery, and ultimately consuming the web service.

❑ A lot of new technologies introduced in this chapter (fortunately Visual Web Developer handles
them smoothly for us), including SOAP, which is a framework for exchanging messages and is used
in the transmission of web services. ASOAP document is transmitted as part of the HTTP data.
DISCO and UDDI are used to make the web service available so that people can see and use it.

❑ A proxy object within your code takes the place of the web service and allows you to access the
different methods of the web service as though it were on the same PC.

Although each of these technologies has a role to play, they have been much hidden from us. The files
and objects are created automatically for us, and the bottom line is that if you create a method or object,
basically all you need to do is start a [WebMethod] with a few extra configuration details, and the rest is
done for you.

The next chapter deals with e-commerce by showing you how to set up a shopping cart and how to shop
for merchandise on Wrox United’s web site.

Exercises
1. What is the role of SOAP in web services?

2. Create a web service that retrieves a Wrox United score whenever they’ve scored more than one
goal.

3. Create a page that consumes the third-party weather forecast for Birmingham, United Kingdom.
(Hint: You will also need to discover this service first.)

460

Chapter 12

15_042583 ch12.qxd 4/4/06 2:50 PM Page 460

13
E-Commerce

This is the first version of this book that’s ever dared to talk about e-commerce. This isn’t because
we’ve forgotten to, or because we think it’s unimportant, but mainly because this is the first ver-
sion of ASP.NET where it hasn’t been too complicated to even think about. I must admit it’s the
one area as a developer that even I (or any developer) will tread very carefully. The reason is
simple — money. When you’re handling other people’s money, you really must make every effort
to ensure that nothing can go wrong. If not, you, or the company you work for, could be held
responsible and personally liable for every penny lost or stolen.

If you’re not frightened off by that rather stern introduction, then I must hasten to add that there
has never been a better time for building e-commerce functionality into your applications. By e-
commerce I’m using an all-embracing term, because e-commerce covers a multitude of features. In
fact, it extends over the entire process of buying and selling an item on the web. If you consider
what happens when you visit a site such as Amazon, with an intention to purchase something,
there are several stages. First is the product catalog that displays the list of items from which you
want to make a purchase. After you choose an item, it is moved into your shopping cart. You can
continue shopping and add more items, and when you finish, you check out. After you check out,
your order has to be processed. These kinds of questions have to be answered when order process-
ing: Is your item in stock? How long will it take to order if it isn’t? Where should it be delivered?
Next comes the bit we all hate: getting the credit card out and supplying details, checking that the
number is valid, and the dates. The whole transaction should be secure. Then you get a summary
and maybe an e-mail containing the details of the sale. ASP.NET 2.0 introduces a terrific range of
controls to help you build a workable e-commerce solution for any web site.

Of course it isn’t possible to fully model every step of this process in just one chapter, and as with
web services, entire books are devoted to this subject. Also, it isn’t practical to set up a credit
card–handling facility for the sake of testing one chapter. However, with the new components that
ASP.NET 2.0 brings, you can create a product catalog, a shopping cart, and a checkout system;
update the stock details and product catalog; get users to enter their details; and see how you
would handle real credit card details. This should give you a strong overview of how you can add
the capability to buy and sell items from your web site, and although it is something to be wary of
and treated very seriously, it isn’t something to be scared of adding, because ASP.NET 2.0 makes it
simpler than ever before.

16_042583 ch13.qxd 4/4/06 2:50 PM Page 461

This chapter looks at the following:

❑ The typical process involved in an e-commerce transaction

❑ Creating a product catalog

❑ Creating a shopping cart and remembering which items you have in it

❑ Completing an e-commerce transaction and checkout

❑ What you need to do to process the order

❑ The considerations involved in credit card–handling

❑ Conducting secure transactions

The E-Commerce Pipeline
The once-common term pipeline is used to describe the whole e-commerce process, from browsing for par-
ticular products all the way through to having the product or products in your hand. Although the term
has fallen out of the common vernacular slightly, it’s one that we use here because it accurately reflects
what is going on. Although different businesses may have different variations on the pipeline, it remains
fundamentally similar for most web sites. A typical e-commerce pipeline might look like Figure 13-1.

Figure 13-1

It’s referred to as a pipeline because the next stage is dependent on the last and you have to pass the
details through each stage. So like water flowing from a reservoir, through the pipes, to your faucet, here
it’s the same with the product. You select a product, you add that product to the shopping cart, you
check out with that selected product, you get a total price for the product you want to purchase, you pay
for the product, you get confirmation of that purchase, and then hopefully, the product is sent to you. At
any stage of the pipeline, you must be able to halt the transaction, with the minimum of hassle. The only
moment the transaction becomes irrevocable is when you hit Confirm Purchase. Even then, you should
be able to return the product to the shop if you ordered the wrong one, or you just plain don’t like it.
However, although we’re not going to go to quite to that extreme level of detail, you should get the idea.

The Wrox United web site already has a fully formed pipeline, and what you’re going to do in this chap-
ter is rebuild the pipeline from the ground up, step by step, right from the initial design, and learn about
the decisions that need to be made as it is built. You should see that e-commerce isn’t just about pro-
gramming a solution, but it’s about design, layout, and taking into account the customer’s needs and
requirements. This chapter spends a lot of time away from the programming “factory floor” talking
about these needs, too.

Browse the

Product Catalog

Add an Item

to the cart

Checkout Process the

Order

Take the Credit

Card Details

Confirm

Purchase & Send

462

Chapter 13

16_042583 ch13.qxd 4/4/06 2:50 PM Page 462

The Product Catalog
This chapter starts at the beginning with the Product catalog. Catalog is the commonly accepted term for
an online version of a store’s brochure. It is the one rare occasion where jargon hasn’t gotten involved to
complicate matters, because the word describes perfectly what it does. Every e-commerce site depends
upon its catalog — it’s the place from which customers will pick and choose which items to buy, and
place them in the shopping cart. Wrox United is no different in this respect.

The Structure of the Catalog
The first question should be, “What are we going to sell?” The Wrox United team, like most franchises,
has its own range of branded items, and you want to make all of them available on the web site for the
public to buy. The current Wrox United product range looks like this:

❑ Scarf (plain edition or striped edition)

❑ Car Sticker

❑ Lucky Mascot

❑ Large Flag (for the match)

❑ Fan Club Membership

❑ Replica Kit (Home and Away)

❑ Small Flag (for the car)

❑ Mouse Pad

❑ Hat

❑ Bug

Already you can see that there might be different categories of items that you might need to differentiate
between in your catalog, such as a Home Replica Kit and an Away Replica Kit. However, the product
range is small, boasting just 10 different items, so you can make the decision not to subdivide the catalog
into different categories, because you should be able to display the details on just one page, and treat
them all as individual items.

The Design of the Catalog
Having sorted out what you’re going to sell, the next question is, “What should our customers want to
see when they come to purchase an item?” Because there are only 10 items on display, you’ll do your
best to make sure that all of the items are displayed together on one page. That means cramming in a lot
on just one page, so you can use a grid to lay them out and try to get away with not adding too much to
the page.

For the Wrox United products, perhaps the absolute minimum you could offer is as follows:

❑ Product image

❑ Product title

❑ Price

463

E-Commerce

16_042583 ch13.qxd 4/4/06 2:50 PM Page 463

Behind the scenes, you’ll also need to make sure that you can uniquely identify each product you offer,
so you’ll need a product ID as well. When customers come to examine a product, they’ll probably want
to know a little more about it, such as a product description, but you can deal with this on a separate
page dedicated to the item.

In addition to this, you could also consider a wider set of attributes that you might want listed for each
product, such as how many products are currently in stock, how long they will take to deliver, the
release date of the product, customer reviews and testimonials regarding how wonderful or appalling
the product is, and even a cross-linking reference that mentions which other items customers purchased
when they purchased this item.

For Wrox United, this is all complete overkill — there are only so many things you can say about a flag.
However, you should be able to see that what you will require in the database will be specific to your
particular business. For Wrox United, it’s easy to settle on the aforementioned five fields (Image, Title,
Price, Description, and for behind the scenes, the unique Product ID). Normally, the first stage would be
to build or alter the database to add these categories, but all of them are already contained within the
Products table of the database, so you don’t need to add anything else to it. You’ve got a structure of the
catalog and you’ve got a design, and a database that supports it, so you can proceed straight to the next
stage and implement it.

Implementation of the Catalog
The product catalog actually breaks down into two pages: one is like an index of all the products in your
catalog and the second is the page that shows particular details about the item. In this Try It Out, you
start by building the product catalog.

Try It Out Building an Index Page for the Catalog
1. Open Visual Web Developer and open the C:\BegASPNET2\Chapters\Begin\Chapter13 web

site. Open the blank wroxshop.aspx page.

2. First you’ll add some controls. Drag a SqlDataSource control from the Data menu of the
Toolbox into the Design View of the page, and click the smart tasks panel that appears (see
Figure 13-2).

3. Click Configure Data Source from the Tasks panel, and select WroxUnitedConnectionString
(which is already automatically configured, as indeed connection strings are for all databases
within the App_Data folder), as shown in Figure 13-3.

4. Click Next and then from the Configure the Select Statement dialog box that appears, select the
Products table and all of the fields contained within it, as shown in Figure 13-4.

5. Click Next. Test the query to make sure it retrieves the data and then click Finish, which takes
you back to Design View.

6. Now you need to add a second control to your page. From the Data menu of the Toolbox, select
the DataList control. Click the smart tag dialog box that appears. From the Choose Data
Source drop-down list, select SqlDataSource1, as shown in Figure 13-5.

464

Chapter 13

16_042583 ch13.qxd 4/4/06 2:50 PM Page 464

Figure 13-2

Figure 13-3

465

E-Commerce

16_042583 ch13.qxd 4/4/06 2:50 PM Page 465

Figure 13-4

Figure 13-5

466

Chapter 13

16_042583 ch13.qxd 4/4/06 2:50 PM Page 466

7. Click the smart tag dialog box above the DataList control and select Edit Templates. (Chapter
7 looked at the process of editing an ItemTemplate if you need a quick reminder.) Figure 13-6
shows your default layout.

Figure 13-6

8. This ensuing layout needs a bit of refining to be suitable for displaying a catalog. First delete all
of the explanatory text, such as Name and Description, using the Backspace key. Also, you don’t
need to display all of the items from the Products table — in fact, you only need a picture of the
item, its price, and its name on the catalog page, as agreed on in the design. Delete the Product
ID and Description and move the Picture URL to the top. You can drag and drop the Label con-
trols to order them correctly, as shown in Figure 13-7.

Figure 13-7

9. Delete the PictureURL label, because you want to display an image here rather than a label.
Select ImageButton from the menu and drag it across to where the PictureURLLabel was. A
red cross and the smart tag dialog box with the legend Edit Data Bindings should appear (see
Figure 13-8). (You saw in Chapter 7 how to do this, but it delved directly into the code, whereas
here you’re using the wizard.)

Figure 13-8

10. Select Edit Data bindings and then select the Custom binding radio button. Amend the Code
expression box so that it reads as follows:

Eval (“PictureURL”,”ProductImages\\thumb_{0}”)

Figure 13-9 shows how everything should look.

467

E-Commerce

16_042583 ch13.qxd 4/4/06 2:50 PM Page 467

Figure 13-9

11. Click OK. Select the smart tag dialog box that appears next to PriceLabel and select Edit
DataBindings (see Figure 13-10). This time select the Text property under Bindable properties,
and select the Currency option from the Format drop-down list.

Figure 13-10

12. Click OK. You have a couple of final tasks to perform. Go to the smart tag dialog and select End
Template Editing. Click the smart tag dialog box by the DataList control and select Property
builder. Set the Columns to 4 and change the Direction from Vertical to Horizontal, as shown in
Figure 13-11. Then click OK.

13. You’ve now finished the layout of the catalog. Run the project and view the catalog. It should
look like Figure 13-12.

468

Chapter 13

16_042583 ch13.qxd 4/4/06 2:50 PM Page 468

Figure 13-11

Figure 13-12

469

E-Commerce

16_042583 ch13.qxd 4/4/06 2:50 PM Page 469

How It Works
You created a catalog that pretty much resembles the one on the Wrox United web site. You created your
images as image buttons, which will eventually act as links to the individual product item page. If you
click an image, it doesn’t take you anywhere (yet), but in all other respects it is the same as the example
site. In this Try It Out, two controls do the work. If you go back to Visual Web Developer and view the
source for this page, you will see the following code:

<asp:SqlDataSource ID=”SqlDataSource1” runat=”server” ConnectionString=”<%$
ConnectionStrings:WroxUnited %>” SelectCommand=”SELECT [Name], [Description],
[Price], [ProductID], [PictureURL] FROM [Products]”>
</asp:SqlDataSource>

<asp:DataList ID=”DataList1” runat=”server” DataKeyField=”ProductID”
DataSourceID=”SqlDataSource1” RepeatColumns=”4” RepeatDirection=”Horizontal”>

<ItemTemplate>
<asp:ImageButton ID=”ImageButton1” runat=”server” ImageUrl=’<%#
Eval(“PictureURL”, “ProductImages\\thumb_{0}”) %>’ />

<asp:Label ID=”NameLabel” runat=”server” Text=’<%# Eval(“Name”)%>’>
</asp:Label>

<asp:Label ID=”PriceLabel” runat=”server” Text=’<%# Eval(“Price”,
“{0:C}”) %>’></asp:Label>

</ItemTemplate>
</asp:DataList>

The first control, SqlDataSource1, is the one that sources your catalog. The details of what is for sale in
the Wrox United web site are stored in the Products table. It contains the connection string that enables
you to connect to the database, as well as a SelectCommand attribute that specifies the SQL that will
pluck the Name, Description, Price, ProductID, and the URL of the image from the Products table. The
SqlDataSource on its own doesn’t display anything, though. It needs the DataList to do this for it.

The DataList contains three controls as well as the formatting needed to display your catalog correctly.
You started by replacing the Label control contained for PictureURL with an Image button. You did
this because, if you hadn’t, a label would just have displayed the text URL of the image, such as
ProductImages\Item1.gif. Secondly, you chose an ImageButton in place of an image because you
needed a link to the product item page. Rather than having to move or re-create this folder of product
images, we placed it in the web site folder already, and all you had to do is reference it as follows:

Eval(“PictureURL”, “ProductImages\\thumb_{0}”)

The data-binding expression has two parameters: the first is the name of the field from the Products
table you want to bind to your image button and the second is the contents of the field itself (indicated
by {0}). You altered the second parameter so that it pointed to the ProductImages folder. Then you
placed “thumb_”, which indicates that you don’t want to use a full-sized image, but instead, you want
to usea thumbnail of the image for the catalog.

You used labels for the other two items in the catalog, because you only needed to display text, but for
your price, you changed the format so that it displayed it in currency format as $0.00, rather than just
0.0000. Last, you altered the layout so that it displayed the items in a horizontal grid format, four across
in each row.

470

Chapter 13

16_042583 ch13.qxd 4/4/06 2:50 PM Page 470

The Product Item Page
In our design discussion, we talked about all the possible features you might want to add to a specific
product page, but settled on only really needing an enhanced description of the product. Of course your
item page shouldn’t contain any less information about the product than the catalog, so you will need to
display the name, image, and price in addition to the description. You add that to your web site in the
following Try It Out.

Try It Out Building a Product Page for the Catalog
1. Go to Solution Explorer, right-click the top item in it, and select Add New Item. Add a new Web

Form and call it WroxShopItem.aspx.

2. Once again you need the SqlDataSource and DataList controls. In Design View, drag a
SqlDataSource control from the Data section of the Toolbox.

3. Click the Configure Data Source flyout of the SqlDataSource control and select the
WroxUnitedUnitedConnectionString from the drop-down list in the Choose your Data
Connection dialog box that appears.

4. Click Next and, as with the previous Try It Out, select the Products table and select each of the
items within it, as shown in Figure 13-13.

Figure 13-13

471

E-Commerce

16_042583 ch13.qxd 4/4/06 2:50 PM Page 471

5. Click WHERE. You will be presented with the screen depicted in Figure 13-14. Select ProductID
from the Column drop-down list; select QueryString from the Source drop-down list; and type
in ProductID to the QueryString field, leaving the Default value blank. This step allows you to
hone in on your single selected product. You use the filter clause to match the product ID of the
selected product and therefore only show details about that particular product. Click Add.

Figure 13-14

6. Click OK, and then click Next and Finish to return to Design View.

7. Add a DataList control, click Configure DataSource, and select SqlDataSource1 from the
Choose Data Source drop-down list.

8. Click Edit Templates from the list, and delete all the text alongside the labels. Move the
PictureURL label to the top. This time, only remove the product ID label, so that it now looks
like Figure 13-15.

Figure 13-15

9. Right-click PictureURLLabel and select Properties. In the Properties window, change the
Visible property to false. You’re going to need the URL, but you don’t want it displayed on the

472

Chapter 13

16_042583 ch13.qxd 4/4/06 2:50 PM Page 472

screen. PictureURLLabel is used to provide the URL of where to find the image of your prod-
uct; however, you don’t want the actual URL text displayed, but rather the image itself.

10. In Design View, add an Image control from the Standard section of the Toolbox to the top of the
controls.

11. Click the smart tag dialog box next to the Image control and select Edit Data Bindings.

12. In the dialog box that appears, click Custom Bindings and amend the text so that it reads as fol-
lows (which is slightly differently from the last Try It Out, because you want a full-sized version
of the image, not a thumbnail):

Eval(“PictureURL”, “ProductImages\\{0}”)

13. Click OK, and then go to Price Label and select the Edit Data Bindings option from the menu
that appears when you click the black arrow. Enter the following code in the Custom Bindings
drop-down list box:

Eval(“Price”, “{0:##0.00}”)

14. Click OK. In Design View, select Hyperlink from the Standard section of the Toolbox menu and
place it below the DataList control, as shown in Figure 13-16.

Figure 13-16

15. Right-click HyperLink and select the Properties option. Change the Text property so it reads
Return to Shop, and change the NavigateURL property so that it reads ~/WroxShop.aspx, as
shown in Figure 13-17. Alternatively, you can click the ellipsis button in the NavigateURL prop-
erty box and choose wroxshop from there.

16. Close the Properties window, and go to Design View in the first page you created (WroxShop
.aspx).

This is slightly different from before, because you want to use the currency format.
However, currency format adds a $ symbol, and you want to use this value in your
code later, so you don’t want to include the $ symbol in the label.

473

E-Commerce

16_042583 ch13.qxd 4/4/06 2:50 PM Page 473

Figure 13-17

17. Select the DataList control underneath SqlDataSource1. From the smart tag dialog box,
select Edit Templates➪Item Template.

18. Go to the Image Button (the graphic with the red cross), click the smart tag dialog box, and
select Edit Data Bindings.

19. Click Show All Properties and select PostbackURL. Check the Custom bindings and change it so
that it reads as follows:

Eval(“ProductID”,”WroxShopItem.aspx?ProductID={0}”)

20. Click End Template Editing for both pages, run the application from WroxShop.aspx, and click
the Scarf image. You should see what appears in Figure 13-18.

21. To get details about another product, click Return to Shop and go back and select the corre-
sponding product image.

474

Chapter 13

16_042583 ch13.qxd 4/4/06 2:50 PM Page 474

Figure 13-18

How It Works
The Product Item page is put together in much the same way as the Product Catalog, the main difference
being that instead of all of the items being viewed, you only want to look at the details of a single item. If
you view the source, you will see that it comprises the SqlDataSource and DataList controls:

<form id=”form1” runat=”server”>
<asp:SqlDataSource ID=”SqlDataSource1” runat=”server” ConnectionString=”<%$

ConnectionStrings:WroxUnited %>”
SelectCommand=”SELECT DISTINCT [ProductID], [Name], [Description],
[Price], [PictureURL] FROM [Products] WHERE ([ProductID] = @ProductID)”>

<SelectParameters>
<asp:QueryStringParameter Name=”ProductID”
QueryStringField=”ProductID” Type=”Int32” />

</SelectParameters>
</asp:SqlDataSource>
<asp:DataList ID=”DataList1” runat=”server” DataKeyField=”ProductID”
DataSourceID=”SqlDataSource1”>

<ItemTemplate>
<asp:Label visible=”false” ID=”PictureURL”

Text=’<%#Eval(“PictureURL”)%>’ />
<asp:Image ID=”Image1” runat=”server” ImageUrl=’<%#
Eval(“PictureURL”, “ProductImages\\{0}”) %>’ />

<asp:Label ID=”NameLabel” runat=”server” Text=’<%# Eval(“Name”)
%>’></asp:Label>

<asp:Label ID=”DescriptionLabel” runat=”server” Text=’<%#

475

E-Commerce

16_042583 ch13.qxd 4/4/06 2:50 PM Page 475

Eval(“Description”) %>’>
</asp:Label>

<asp:Label ID=”PriceLabel” runat=”server” Text=’<%# Eval(“Price”,
“{0:##0.00}”) %>’></asp:Label>

</ItemTemplate>
</asp:DataList>
<asp:HyperLink ID=”HyperLink1” runat=”server”
NavigateUrl=”~/WroxShop.aspx”>Return to Shop</asp:HyperLink>

</form>

The difference is that this time the SqlDataSource’s SelectCommand attribute has an extra WHERE
clause:

SelectCommand=”SELECT DISTINCT [ProductID], [Name], [Description],
[Price], [PictureURL] FROM [Products] WHERE ([ProductID] = @ProductID)”

This references a ProductID parameter. Underneath this element, the SqlDataSource1 also contains a
SelectParameters element, which specifies where you are going to get the parameter from:

<SelectParameters>
<asp:QueryStringParameter Name=”ProductID”
QueryStringField=”ProductID” Type=”Int32” />

</SelectParameters>

These parameters are used to transfer the details about the item you have clicked. This is where the hid-
den ProductID comes into play. You haven’t used it so far, but now you most definitely need it. Each
item in your catalog has a unique identifier, this being ProductID. You collect ProductID when the image
is collected and send it as a QueryString as follows:

http://localhost/Chapter13/WroxShopItem.aspx?ProductID=1

Then your second page (WroxShopItem.aspx) is able to pick that up and use it in the WHERE clause of
the SELECT command of the SqlDataSource control to return the details of that single item. The
DataList control of WroxShopItem is similar to the WroxShop DataList control. The are only two
changes, the first being that instead of referencing the thumbnail version of the image, you just use the
whole version of the image. Space is no longer such an essential here, because you don’t have to worry
about nine other items. The second change is that you have added the Description from the Products
table as an extra label. You’ve also used the PictureURL from PictureURLLabel as a URL for your
<asp:Image> control that you use to display the merchandise. Apart from that, it is business as usual.

You’re actually quite a distance into this chapter and so far you haven’t created anything totally specific
to e-commerce. The problem is that without a catalog and a set of items, you have nothing to put into
your cart. The order in which you create things is essential. Now that you have a catalog and the ability
to browse specific items in the catalog, it’s at last time to wheel out your shopping cart.

476

Chapter 13

16_042583 ch13.qxd 4/4/06 2:50 PM Page 476

The Shopping Cart
The shopping cart is a simple enough control in principle, but until ASP.NET 2.0, it has been an awk-
ward feature to create. The reason is this — how do you go about remembering which items are stored in
the cart? The quick answer is state. State management, though, has never been quite as straightforward
as it perhaps should be. Chapter 14 looks at sessions and state in detail, but we need to talk about it
briefly here.

It’s not a new feature and to be fair, it’s been going on behind the scenes throughout this book, because
every page contains a ViewState control that holds an encrypted version of each page’s control con-
tents. However, this is squared against the fact that the Internet is stateless, and every time you move
from page to page, the web server acts like a goldfish — asking the same question, “Who are you?” So
you must do the remembering for the web server.

Previously, in ASP.NET 1.1, you could go about remembering the items in the cart in one of two common
ways. Either you could create a cart and stick the whole contents of the cart in a Session object, and
lose the list of items every time someone logged out and back in again, or alternatively you could create
a shopping cart item in the database, and then be tied to updating the database each time you added
something to the cart. The advantage of the second approach is of course that if you lost your Internet
connection suddenly when you came to log back in, you would still have the contents of the cart. This is
particularly useful if you’ve just spent an hour assembling the weekly shop, only to have to endure your
ISP’s 0.01% downtime at that crucial point. Of course, the first approach could make use of cookies so
that it could link back to your shopping cart if you logged on again, but then this would rely on a whole
membership system, so you can see how suddenly your nice small shopping cart becomes a rather
larger and more complex shopping cart and membership system.

ASP.NET 2.0 is able to take some of the advantages from both approaches (remembering the between
connections) while leaving at home some of the awkwardness (constant database access, needing to log
on as a member before you can use the shopping cart). It does this by making use of the new profiles fea-
tures that you looked at in Chapter 11. You’ll see how you can use this as you build your shopping cart
control. First, though, you need to build the object that is going to form the foundations of your shop-
ping cart’s memory.

The Shopping Object
You’re going to create an object that can store your items. You start again at the drawing board by creat-
ing a design. The first thing to mention is that your shopping object has to look after two things: the
items in the cart and the cart itself. Therefore, you’re going to need two objects:

❑ CartItem

❑ ShoppingCart

Both merit some more in-depth discussion as to what is required.

The CartItem Object
The CartItem object is easiest. Design is often just a case of sitting down with pen and paper and trying
to imagine what you as a user would require from a site. A second option is to look at what everyone
else is doing. However, it’s probably best to stick to this order when brainstorming, because what you

477

E-Commerce

16_042583 ch13.qxd 4/4/06 2:50 PM Page 477

might require from a site might be unduly influenced by you looking at other vendors’ sites. So you’re
going to have a quick think now. It doesn’t matter if you don’t get it absolutely right the first time,
because you can amend it as you go along.

With your shopping cart, a good first stab would be the following list of attributes:

❑ A representation of the item

❑ The quantity of the item

❑ The price of the item

❑ The total price

For the representation of the item, you could quite easily use the title or the description of the item, but
given that you have some thumbnail pictures at hand, it would be nice to use them as well. In your cart
you will start with the name and a link to the image of the item purchased. The quantity and the price
are both self-explanatory enough. However, the total price needs a little expanding. You could have a
total price as shown in the following table.

Item Quantity Price

Scarf 2 $4.95

Bug 2 $0.75

Total Price $11.40

It looks a little strange. That’s because you’re immediately totalling the $4.95 and the 75 cents, and they
don’t add up to make $11.40. So as well as the total price, it might be better to do it spreadsheet style and
total the price and the quantity first and create a total for each line, as shown in the following table.

Item Quantity Price Item Total

Scarf 2 $4.95 $9.90

Bug 2 $0.75 $1.50

Total Price $11.40

Now add line total to the list of attributes you want to store. That’s as much as you need for each
CartItem, so let’s move onto the ShoppingCart.

The ShoppingCart Object
The CartItem object was the easiest, because it’s fairly static in its conception. Either you have a
CartItem object or you don’t, unless you prescribe to some sort of parallel universe theory where you
can have both at the same time. However, computing is quite complicated enough already without par-
allel universes to think about, too. The reason the ShoppingCart object is more complex is because it
will comprise one or several items in the cart. So you immediately need somewhere to store a stack of
cart items in your object. Rather than a warehouse or a shopping trolley, you can use the collections
talked about in Chapter 9 to do this.

478

Chapter 13

16_042583 ch13.qxd 4/4/06 2:50 PM Page 478

This also raises other questions, namely how do you differentiate between different items in the cart, and
how do you maintain some sort of order with them? The answer is to add an index, so that, for example,
if you add a scarf and that is item 1 in the cart, and then you add a bug, that becomes item 2 in the cart.

Your cart will also need to deal with the set of possible actions that you can perform on the contents of
the cart. Briefly the most common actions you might perform on a shopping cart are as follows:

❑ Adding an item to the cart

❑ Updating the information about an item in the cart

❑ Updating the total price of all of the items in the cart

❑ Deleting an item from the cart

You will need to handle these four actions. Last, because you are keeping a record of all of the items
within the cart, it might be easier to move the total purchase price across to this object instead. This is
just the kind of amendment we talked about earlier when creating a design. Better to discover it now,
than when you’ve actually created it. So the things you are going to have built into your ShoppingCart
object are the cart item collection; an index; the add, update, and delete actions; and a final total.

Now that you’ve got an outline of what you need to store, in this Try It Out you build the object to
store it.

Try It Out Building the ShoppingCart Object
1. Go to Solution Explorer, right-click the top item, and select Add New Item. Choose Class and

call it Shopping.cs.

2. Click Add. Visual Web Developer might inform you that you are attempting to add a class to an
ASP.NET application and that it should be moved to the App_Code folder to be generally con-
sumable. If so, then click Yes to accept this proposition.

3. Add the following code to create a shopping cart item object, called CartItem:

using System.Data;
using System.Web;
using System.Data.SqlClient;
using System.Collections.Generic;

namespace Wrox.Commerce
{

[Serializable]
public class CartItem
{

private int _productID;
private string _productName;
private string _productImageUrl;
private int _quantity;
private double _price;
private double _lineTotal;

public void New()

479

E-Commerce

16_042583 ch13.qxd 4/4/06 2:50 PM Page 479

{
}

public void New(int ProductID , string ProductName ,
string ProductImageUrl , int Quantity ,
double Price)
{

_productID = ProductID;
_productName = ProductName;
_productImageUrl = ProductImageUrl;
_quantity = Quantity;
_price = Price;
_lineTotal = Quantity * Price;

}

public int ProductID
{

get
{

return _productID;
}
set
{

_productID = value;
}

}

public string ProductName
{

get
{

return _productName;
}
set {

_productName = value;
}

}

public string ProductImageUrl
{
get
{

return _productImageUrl;
}
set
{

_productImageUrl = value;
}

}

public int Quantity
{
get
{

480

Chapter 13

16_042583 ch13.qxd 4/4/06 2:50 PM Page 480

return _quantity;
}
set
{

_quantity = value;
}

}

public double Price
{
get
{
return _price;

}
set
{

_price = value
}

}

public double LineTotal
{

get
{

return _quantity * _price;
}

}

}
}

4. Underneath the CartItem class, add the following code to create the ShoppingCart object:

[Serializable]
public class ShoppingCart
{

private DateTime _dateCreated;
private DateTime _lastUpdate;
private List<CartItem> _items;

public ShoppingCart()
{

if (this._items == null)
{

this._items = new List<CartItem>();
this._dateCreated = DateTime.Now;

}
}

public List<CartItem> Items
{

get
{

return _items;

481

E-Commerce

16_042583 ch13.qxd 4/4/06 2:50 PM Page 481

}
set
{

_items = value;
}

}

public void Insert (int ProductID , double Price,
int Quantity, string ProductName ,
string ProductImageUrl)

{
int ItemIndex = ItemIndexOfID(ProductID);
if (ItemIndex == -1)
{
CartItem

NewItem = new CartItem();
NewItem.ProductID = ProductID;
NewItem.Quantity = Quantity;
NewItem.Price = Price;
NewItem.ProductName = ProductName;
NewItem.ProductImageUrl = ProductImageUrl;
_items.Add(NewItem);

}
else
{

_items[ItemIndex].Quantity += 1;

}
_lastUpdate = DateTime.Now;

}

public void Update(int RowID, int ProductID, int Quantity
, double Price)

{
CartItem Item = _items[RowID];
Item.ProductID = ProductID;
Item.Quantity = Quantity;
Item.Price = Price;
_lastUpdate = DateTime.Now;

}

public void DeleteItem(int rowID)
{

_items.RemoveAt(rowID);
_lastUpdate = DateTime.Now;

}

private int ItemIndexOfID(int ProductID)
{

int index=0;
foreach (CartItem item in _items)

{
if (item.ProductID == ProductID)
{
return index;

482

Chapter 13

16_042583 ch13.qxd 4/4/06 2:50 PM Page 482

}
index += 1;

}
return -1;

}

public double Total
{
get
{
double t=0;

if (_items == null)
{

return 0;
}

foreach (CartItem Item in _items)
{

t += Item.LineTotal;
}

return t;
}

}
}

}

5. Save this page. Unfortunately you can’t do anything with the class until you come to instantiate
an instance of the object, so there’s nothing to see just yet.

How It Works
The ShoppingCart class provides you with an object that you can just insert into your code. You start
by defining both objects as being in the Wrox.Commerce namespace. This means that you can insert
them into any page by using the following reference at the top of a page:

<%@ Import Namespace = “Wrox.Commerce” %>

This reference enables you to make use of all of the properties and methods within the ShoppingCart
object. There is a lot of code here within the object, so let’s briefly skip through what is happening with
each object inside the ShoppingCart object.

The CartItem is just a series of properties to store each of the cart attributes in. You define a set of pri-
vate variables that represent each of the items in your CartItem object. In addition to the five previ-
ously mentioned, the productID is there so you can uniquely identify the type of item:

private int _productID;
private string _productName;
private string _productImageUrl;
private int _quantity;
private double _price;
private double _lineTotal;

483

E-Commerce

16_042583 ch13.qxd 4/4/06 2:50 PM Page 483

The productID attribute is an integer, because it stores your unique identifier. The productName
attribute is text, so you store that as a string. Next comes the productImageUrl attribute. Rather than
store a physical image, you store a URL of the location where you can find that image (thus saving you
from having to physically store the images in the database), which is also stored as text. The quantity
attribute is stored as an int, because it is impossible to have a fraction of an item (Wrox United doesn’t
sell half a scarf, or a bug with two legs). The price attribute, however, is a representation of currency, so
that requires a double data type because you will be dealing with fractions. The lineTotal attribute is
made from quantity multiplied by price, so that must also be a double data type.

Each of these attributes must be both readable and writable, so you create a set of properties for each in
this format, using the ProductID() property as an example:

public int ProductID
{

get
{

return _productID;
}
set
{

_productID = value;
}

}

Each of the properties takes this format with both Get and Set constructors, referencing the variables
you defined at the top of the ShoppingCart definition. The only one that is any different is the
LineTotal() property, which is a multiplication of the quantity and price properties. You don’t
want anyone to be able to alter this because you change it yourself, so it only has a get constructor:

public double LineTotal
{

get
{

return _quantity * _price;
}

}

That sums up the entire CartItem object. The ShoppingCart object is a little trickier. Because you are
constantly updating your shopping cart, you need to keep a track of when it was created and when it
was last updated. You start by defining a couple of variables that do this for you:

private DateTime _dateCreated;
private DateTime _lastUpdate;

These two variables store the time at which the ShoppingCart object was created and the time at which
it was last updated. Next you create the collection. The collection is a List object and it contains a list of
CartItem objects. The ShoppingCart constructor that you can call in your code is used to create a new
instance of a shopping cart:

public ShoppingCart()
{

if (this._items == null)

484

Chapter 13

16_042583 ch13.qxd 4/4/06 2:50 PM Page 484

{
this._items = new List<CartItem>();
this._dateCreated = DateTime.Now;

}
}

You create a property called Items in which to store your List of CartItems:

public List<CartItem> Items
{

get
{

return _items;
}
set
{

_items = value;
}

}

Then you come to your four actions, which you code as three methods (the two update actions are han-
dled in one Update action). The first method insert requires all the information that your cart requires,
namely ProductID, Quantity, Price, ProductName, and the ProductImageUrl:

public void Insert (int ProductID , double Price,
int Quantity, string ProductName ,
string ProductImageUrl)

{
int ItemIndex = ItemIndexOfID(ProductID);
if (ItemIndex == -1)
{
CartItem

NewItem = new CartItem();
NewItem.ProductID = ProductID;
NewItem.Quantity = Quantity;
NewItem.Price = Price;
NewItem.ProductName = ProductName;
NewItem.ProductImageUrl = ProductImageUrl;
_items.Add(NewItem);

}
else
{

_items[ItemIndex].Quantity += 1;
}
_lastUpdate = DateTime.Now;

}

When you add a new item into the cart (the Insert method), you need to create an index to track this. If
the index is –1, you know that item is not already present in the cart, and you need to create a new cart
item with the accompanying ProductID, Quantity, Price, ProductName, and ProductImageUrl
details. If it is present, you just need to add one to the quantity. Because you have just made the last
update to the cart, you also need to record this in the lastUpdate variable and use the DateTime.Now
function to record the current date and time.

485

E-Commerce

16_042583 ch13.qxd 4/4/06 2:50 PM Page 485

The Update action is in fact just a recalculation of Price; as mentioned earlier. Quantity is the only
item you can actually change when you update the cart details. (If you think about it, this makes sense,
because you can’t have the customers updating the price, product name, or description.) The quantity
affects the price.

public void Update(int RowID, int ProductID, int Quantity ,
double Price)

{
CartItem Item = _items[RowID];
Item.ProductID = ProductID;
Item.Quantity = Quantity;
Item.Price = Price;
_lastUpdate = DateTime.Now;

}

You identify the item again using the index. You read the ProductID, the Quantity, and the Price
from the CartItem collection, and set it to the new Quantity for your chosen product. You update the
time the cart was updated as well.

You’ve looked at the Update and Insert methods, so that just leaves the question of how customers can
remove items from the cart. This is done via the Delete method. The Delete method is the simplest of
the three — all you need to do is use the index to identify which item has been selected for deletion and
remove it with the RemoveAt method. You also set the _lastUpdate variable to contain the current
time, because you have just updated the cart by deleting an item from it:

public void DeleteItem(int rowID)
{

_items.RemoveAt(rowID);
_lastUpdate = DateTime.Now;

}

Under the Insert, Update, and DeleteItem methods is the index property. The index property is as
follows:

private int ItemIndexOfID(int ProductID)
{

int index=0;
foreach (CartItem item in _items)

{
if (item.ProductID == ProductID)
{
return index;

}
index += 1;

}
return -1;

}

The index, which is used to identify each item in the cart, stores each product’s Product ID. If the first
item in the cart was a scarf, then the first item in the index will contain the scarf’s ProductID. If you
haven’t got a ProductID, you return -1 instead to indicate that this product is not currently in the cart,
and that you need to create a CartItem object for it.

486

Chapter 13

16_042583 ch13.qxd 4/4/06 2:50 PM Page 486

The Total comes last:

public double Total
{
get
{
double t=0;

if (_items == null)
{

return 0;
}

foreach (CartItem Item in _items)
{

t += Item.LineTotal;
}

return t;
}

}
}

It’s a fairly simple property too. If there are no items in your collection (you check this by seeing if it Is
Nothing) then you don’t have any arithmetic to do. Otherwise, you iterate through each Item in the
CartItem collection, adding the LineTotal property for that item, and you return the total amount as
the variable t.

The Profile
You have your ShoppingCart object, which will act as the memory of the shopping cart, but this still
doesn’t answer a key question — how are you going to keep this shopping cart if your user gets his
Internet connection violently terminated? In fact, you’ve already looked at the solution to this in a previ-
ous chapter.

In Chapter 11, you looked at how you can create a user profile and how it can be used to create a particu-
lar personalized view of the site for any user who logs on to the site. In particular, you stored the mem-
ber’s name, address (including city, county, and country), e-mail, whether he wanted to receive mailings
or not, and his particular theme of the site. It is via this capability that you can also store the
ShoppingCart object. Rather than getting you to create the whole profile, we’ve already provided it in
the ready-to-go application that is available for download from www.wrox.com for this chapter.

I can hear the wiseguys at the back now — so I see how to save the cart, but surely you still have to log in
to get associated with your cart? That’s where the wiseguys are wrong. Another great new feature of
ASP.NET is the capability to track seemingly anonymous users via the personalization and profiling sys-
tem. If the wiseguys had been paying attention in Chapter 11, they would have known that.

In Chapter 11, you saw how you could set up a template to handle anonymous users, and how you
could also migrate the details from the anonymous person’s shopping cart to the bona fide logged-in
user’s shopping cart. Now it’s time to fill in the other jigsaw pieces. How does this fit into the overall
shopping cart picture?

487

E-Commerce

16_042583 ch13.qxd 4/4/06 2:50 PM Page 487

Well, you can set an attribute to track anonymous users so that even if they haven’t logged in, and have
their connection to the application terminated, then when they come back they will still have their shop-
ping cart contents intact. This is all contained within the Web.config file, which you have already par-
tially predefined for the application in this chapter, so that your e-commerce application makes use of
changes introduced to the Wrox United site in Chapter 11, and therefore requires a minimal amount of
extra code. You add that capability in the next Try It Out.

Try It Out Amending the Profile to Use the ShoppingCart Object
1. In the Chapter13 application, go to Solution Explorer and open the Web.config file. Scroll

down to find the <profile> element and add the highlighted code:

<anonymousIdentification enabled=”true”/>
<profile enabled=”true”>

<properties>
<add name=”MemberName”/>
<add name=”Name”/>
<add name=”Address”/>
<add name=”City”/>
<add name=”County”/>
<add name=”PostCode”/>
<add name=”Country”/>
<add name=”Mailings” type=”System.Boolean”/>
<add name=”Email”/>
<add name=”Theme”/>
<add name=”Cart” serializeAs=”Binary”

type=”Wrox.Commerce.ShoppingCart”
allowAnonymous=”true”/>

</properties>
</profile>

2. Save Web.config.

How It Works
Because Web.config is used by your application, the simple act of saving any changes ensures that the
update is immediately applied. You’ve added only two items. The first just switches on anonymous
identification, which is switched off by default:

<anonymousIdentification enabled=”true” />

The second is the cart definition:

<add name=”Cart” serializeAs=”Binary”
type=”Wrox.Commerce.ShoppingCart”
allowAnonymous=”true”/>

You use the type attribute to refer to the ShoppingCart object. You set the allowAnonymous attribute
to true so that this particular property is tracked even when the user hasn’t logged in. Last, there is a bit
of technical detail in the serializeAs property, which needn’t concern you. It simply enables you to
make use of your ShoppingCart object. You can find more details about it at http://msdn2
.microsoft.com/en-us/library/system.configuration.SettingsSerializeAsAttribute
.aspx.

488

Chapter 13

16_042583 ch13.qxd 4/4/06 2:50 PM Page 488

The Shopping Cart Control
Unfortunately, among the multitude of new controls, there is no predefined shopping cart control that
you can use, so you are going to have to create one. However, what you can do is make use of some of
the existing ASP.NET 2.0 controls and you can construct a shopping cart control that you can use in any
application you build. In ASP.NET 2.0, the data handling features have taken a giant leap forward, and
you can use the GridView control and some clever data-binding to create your shopping cart for you.

Before you rush into building the cart, though, it’s worth thinking a little bit more about design. How are
you going to access your cart? How are you going to display the items in it? The first question is easy
enough to answer: You add a button to your product item page, which when clicked simply adds the item
to the cart. However, where should you go then? Rather than going to your shopping cart, you probably
want to return to your catalog. Shopping carts by nature should be unobtrusive — you don’t want to be
confronted with the contents of your cart every time you stick an item in, which is probably not conducive
to impulse buying (and by inference profitable selling). It’s much easier only to be confronted with the
contents when you get to the checkout. So your system develops a structure like Figure 13-19.

Figure 13-19

This diagram shows how you can navigate between the different parts of your application. You can
move from the Product Catalog page, either to the shopping cart itself or to the Product Item page. From
the Product Item page you can add an item, which in turn will appear in the shopping cart.

The second question, then, is about how you should display your shopping cart. If you were feeling
extremely confident about the layout, you could probably have a little control pop up at the side that
appeared in every page of the site, but because you don’t want to have to spend a lot of time with the
jigsaw puzzle of fitting things into your web site design, you’ll just make the shopping cart a separate
page that can be easily accessed via a separate link. You’ve already earmarked the GridView control to
display the contents of your cart, so continue and build the next stage of your pipeline.

In this Try It Out, you create a user control, the ShoppingCart control, and then add it to a page. The
user control is a lot more portable (you learned about them in Chapter 10 and how they help you to
reuse code effectively).

Try It Out Adding a Shopping Cart Control
1. Open Solution Explorer in Visual Web Developer. Right-click the top item and select Add New

Item. Add a Web User Control and call it ShoppingCart.ascx.

2. In Design View, select the GridView control from the Data section of the Toolbox. Click the
smart tag dialog box and select the Edit Columns option.

Shopping Cart

Product Catalog Product Item Add an Item

489

E-Commerce

16_042583 ch13.qxd 4/4/06 2:50 PM Page 489

3. From the dialog box that appears, select one TemplateField, four BoundFields, and one
CommandField, as shown in Figure 13-20. These will be used to represent the ProductImage,
ProductName, Quantity, Price, and LineTotal (that is, quantity multiplied by price) of that
particular item and a button to edit that item or to delete it from your shopping cart, respectively.

Figure 13-20

4. Select the BoundFields field and change the properties one by one in the Properties window as
shown in the following table.

Don’t click OK in between adding each item, which will take you back to Design View.

DataField HeaderText ReadOnly DataFormatString

Bound Field 1 ProductName Product True

Bound Field 2 Quantity Quantity False

Bound Field 3 Price Price True {0:c}

Bound Field 4 LineTotal Total True {0:c}

5. Go to the CommandField and set the ShowEditButton and ShowDeleteButton properties to
True.

6. Click OK to go back to Design View. Click the smart tag dialog box, and select Edit Templates
from the flyout that appears.

7. Now drop an Image control into the ItemTemplate and click the smart tag dialog box, as dis-
played in Figure 13-21.

490

Chapter 13

16_042583 ch13.qxd 4/4/06 2:50 PM Page 490

Figure 13-21

8. Select Edit Data Bindings and select ImageUrl from the Bindable properties. Add the following
code to the Code Expression box:

Eval(“ProductImageUrl”, “~/ProductImages/thumb_{0}”)

9. Return to Design View and select the smart tag dialog box on the GridView control. Select Edit
Templates➪EmptyDataTemplate from the menu that appears. Type the following text directly
into the EmptyDataTemplate (see Figure 13-22): There is nothing in your shopping cart. You
can buy items from the Shop.

Figure 13-22

10. Return to Source view and add an anchor <a> tag around the Shop section as follows:

Shop.

This is the text that will be displayed when the user views a shopping cart with no items in it.
You supply a link back to the main shopping page as well.

11. In Design View, and right-click the GridView control and select Properties. Enter the values
shown in the following table.

Property Value

(ID) CartGrid

AutoGenerateColumns False

DataKeyNames ProductID

12. Right-click Solution Explorer and select Add a New Item. Select a Web Form and call the new
item ShoppingCartPage.aspx. Note that this is an .aspx file now unlike the user control you
have just created. This is the page that will host your user control.

13. In Design View, drag ShoppingCart.ascx onto the page, as shown in Figure 13-23.

491

E-Commerce

16_042583 ch13.qxd 4/4/06 2:50 PM Page 491

Figure 13-23

How It Works
This finishes the first stage of your ShoppingCart control. You created your control and you added a
thumbnail image and fields to store the Quantity, Price, and LineTotal of the product, as well as a
button enabling you to edit or delete your choices in the cart.

If you go to Source View, it will currently look as follows:

<asp:GridView ID=”CartGrid” Runat=”server” AutoGenerateColumns=”False”
DataKeyNames=”ProductID” >

<Columns>
<asp:TemplateField>

<ItemTemplate>
<asp:Image id=”ProductImage” Runat=”server” ImageUrl=’<%#
Eval(“ProductImageURL”, “~/ProductImages/thumb_{0}”)%>’ />

</ItemTemplate>
</asp:TemplateField>
<asp:BoundField DataField=”ProductName” HeaderText=”Product”
ReadOnly=”True” />

<asp:BoundField DataField=”Quantity” HeaderText=”Quantity” />
<asp:BoundField DataField=”Price” HeaderText=”Price”
DataFormatString=”{0:c}” ReadOnly=”True” />

492

Chapter 13

16_042583 ch13.qxd 4/4/06 2:50 PM Page 492

<asp:BoundField DataField=”LineTotal” HeaderText=”Total”
DataFormatString=”{0:c}” ReadOnly=”True” />

<asp:CommandField ShowEditButton=”True”
ShowDeleteButton=”true”></asp:CommandField>

</Columns>
<EmptyDataTemplate>

There is nothing in your shopping cart. You can buy items from the
Shop.

</EmptyDataTemplate>
</asp:GridView>

This is all very familiar and close to what you supplied to the DataList controls in your Catalog and
Item pages. You bind the ProductImageURL to an image in the ItemTemplate. You have several bound
fields that will display text. The price fields have settings for the DataFormatString so that they dis-
play their values correctly as prices. However, there is one setting to note. In your bound fields, you
made three of the four rows read-only. The Quantity row was left editable so that you can edit the con-
tents of your cart.

You’ve also added an EmptyDataTemplate to display a message in the event that there is nothing in the
cart. However, at the moment, you have no data source. In the Catalog and Item pages, you first created
a SqlDataSource control and bound it to the DataList control. You haven’t bound the ShoppingCart
control to anything yet.

Automating the Shopping Cart
So far, so good, you have your ShoppingCart control fully designed. However, it doesn’t do much at
the moment. In fact, it doesn’t do anything! If you want the cart to be responsive, you will need to add
some code telling ASP.NET 2.0 what to do when something occurs. When you created your bound fields
in the shopping cart, three of the four bound fields were read-only. The last one, Quantity, was left
editable. This makes life simpler, because it means that you only need to anticipate what happens if
someone changes the quantity of items within a particular row in the cart.

You will want to cater to four possible events, because there are four possible scenarios:

❑ Editing the cart: When you enter a new quantity.

❑ Canceling an edit in the cart: When you decide you don’t want go with the quantity value
you’ve changed.

❑ Updating the cart: When you want that new quantity to take effect.

❑ Deleting items from the cart: When you want to completely remove an item from the cart.

This will require some code-behind. You looked at code-behind in Chapters 9 and 10. Here your code-
behind will be run directly in response to one of these four events occurring. So after you’ve updated the
shopping cart, how do you associate that with a particular user? You’ve already created a profile — now
all you need to do is to reference that profile within your code, via the Profile object.

Go ahead and add this code to your shopping cart in the next Try It Out.

493

E-Commerce

16_042583 ch13.qxd 4/4/06 2:50 PM Page 493

Try It Out Automating the Shopping Cart
1. Go to your ShoppingCart control. Right-click GridView and select Properties. From the

Properties window, select the lightning bolt button (the fourth one), as shown in Figure 13-24.
This displays a list of events.

Figure 13-24

2. Double-click the RowEditing event. In Source View, a gap appears for the events. Add the fol-
lowing highlighted code to the events:

protected void CartGrid_RowEditing(object sender, GridViewEditEventArgs e)
{ CartGrid.EditIndex = e.NewEditIndex;

BindGrid();
}

3. Go back to Design View, right-click GridView, and select Properties. It should take you straight
to Events this time. Double-click the RowUpdating event. Add the following highlighted code:

protected void CartGrid_RowUpdating(object sender, GridViewUpdateEventArgs e)
{ TextBox QuantityTextBox =
(TextBox)CartGrid.Rows[e.RowIndex].Cells[2].Controls[0];

int Quantity = Convert.ToInt32(QuantityTextBox.Text);
if (Quantity == 0)
{

Profile.Cart.Items.RemoveAt(e.RowIndex);
}
else
{

Profile.Cart.Items[e.RowIndex].Quantity = Quantity;
}
CartGrid.EditIndex = -1;
BindGrid();

}

4. Go back to Design View. Right-click GridView and select Properties. Double-click the
RowCancelingEdit event. Add the highlighted code:

protected void CartGrid_RowCancelingEdit(object sender, GridViewCancelEditEventArgs
e)

{ CartGrid.EditIndex = -1;
BindGrid();

}

5. In Design View, right-click GridView and select Properties. Double-click the RowDeleting
event. Add the highlighted code:

protected void CartGrid_RowDeleting(object sender, GridViewDeleteEventArgs e)
{

Profile.Cart.Items.RemoveAt(e.RowIndex);
BindGrid();

}

494

Chapter 13

16_042583 ch13.qxd 4/4/06 2:50 PM Page 494

6. From Design View, double-click the blank page surrounding the ShoppingCart control, and
add the highlighted code to the Page_Load event:

protected void Page_Load(object sender, EventArgs e)
{

if (Profile.Cart == null) {
Profile.Cart = new Wrox.Commerce.ShoppingCart();

}

if (!Page.IsPostBack)
{

BindGrid();
}
if (Profile.Cart.Items == null)
{
TotalLabel.Visible = false;

}
}

7. You may have noticed that you’ve also referenced a function called BindGrid()within all of
these events. This function does the binding so that your shopping cart can display something.
You need to add this code for BindGrid() underneath the functions within the code-behind as
well:

private void BindGrid()
{

CartGrid.DataSource = Profile.Cart.Items;
DataBind();

TotalLabel.Text = String.Format(“Total:{0,19:C}”, Profile.Cart.Total);
}

8. At the top of the page, add a reference to your ShoppingCart object:

using Wrox.Commerce;

9. Switch to Design View and drag a Label control onto the screen and place it under the
GridView control. Right-click the Label control and select Properties. Delete the Text property
and change the ID property to TotalLabel, as shown in Figure 13-25.

Figure 13-25

495

E-Commerce

16_042583 ch13.qxd 4/4/06 2:50 PM Page 495

10. View the page ShoppingCartPage.aspx. You will see what appears in Figure 13-26.

Figure 13-26

How It Works
For the first time you’re able to browse your shopping cart, although you only get to view the
EmptyDataTemplate at the moment. Your code, though, provides all of the necessary functionality to be
able to use the cart properly. The RowEditing method allows you to store the ID of the Product you are
editing to the index:

CartGrid.EditIndex = e.NewEditIndex;
BindGrid();

After this, you bind to the grid. The RowCancelEdit sets it back to the default of -1:

CartGrid.EditIndex = -1;
BindGrid();

This means that no row in the grid is currently selected. Once again you bind to the grid afterwards.
Your Delete method removes the index number from the cart stored in the profile and binds to the grid:

Profile.Cart.Items.RemoveAt(e.RowIndex);
BindGrid();

The update first has to obtain the quantity figure from the text box, and then it converts it to an integer.
If you’ve set the quantity to 0, then this acts the same as a delete, so you perform a RemoveAt to remove
the CartItem object. Otherwise you simply re-adjust the quantity and reset the index to -1 and bind to
the grid:

TextBox QuantityTextBox =
(TextBox)CartGrid.Rows[e.RowIndex].Cells[2].Controls[0];

int Quantity = Convert.ToInt32(QuantityTextBox.Text);
if (Quantity == 0)
{

Profile.Cart.Items.RemoveAt(e.RowIndex);
}

496

Chapter 13

16_042583 ch13.qxd 4/4/06 2:50 PM Page 496

else
{

Profile.Cart.Items[e.RowIndex].Quantity = Quantity;
}
CartGrid.EditIndex = -1;
BindGrid();

You need to consider two final sections of code. The first is the BindGrid function, which performs your
data binding for you and is called by each of the events:

CartGrid.DataSource = Profile.Cart.Items;
DataBind();
TotalLabel.Text = String.Format(“Total:{0,19:C}”, Profile.Cart.Total);

It simply sets the GridView control’s DataSource property to point to the Items collection of your par-
ticular profile and then sets the total for your cart.

The second second section of code to consider is the contents of the Page_Load event handler, which is
fired whenever a page is started up:

if (Profile.Cart == null)
{

Profile.Cart = new Wrox.Commerce.ShoppingCart();
}
if (!Page.IsPostBack)
{

BindGrid();
}
if (Profile.Cart.Items == null)
{

TotalLabel.Visible = false;
}

This basically says, “If the cart is empty, create an empty instance of the shopping cart (so that any sub-
sequent calls to a non-existent cart don’t fail).” It then says, “If the page hasn’t been posted back, and is
therefore the first time the user has seen the page, bind the grid,” and it goes on to make the total label
invisible if there is nothing in the cart and sets the format correctly for displaying the total as a currency.
There is a distinction to be made here, between the first IF and third IF statement. The first IF statement
will be triggered if the cart hasn’t been created. The third IF will be triggered if the cart has been created
but is empty (in other words, if someone has removed all the items from it). You have to be able to han-
dle both scenarios when updating the cart in your profile.

The Add-to-Cart Facility
Your shopping cart is now fully functional in all but one respect. You can edit it and delete items from it,
but you still can’t add any items to it. This is because the adding of items needs to be done from a differ-
ent page entirely.

497

E-Commerce

16_042583 ch13.qxd 4/4/06 2:50 PM Page 497

The next part of your odyssey is to place an “add to cart” button, back on the previous Product Item
page. In the following Try It Out, this will add the corresponding item to your cart every time a button is
clicked. If you click it twice on two separate occasions, it will update the quantity for you.

Try It Out Adding the Add to Cart Button
1. Open WroxShopItem.aspx in Visual Web Developer, go to Design View, and add an

ImageButton, above the Return to Shop link. Via the Properties window, change the button
name to btnAddToCart, and change the ImageUrl property to “~/Images/AddToCart.gif”, as
shown in Figure 13-27.

Figure 13-27

2. Double-click the button and add the following code:

protected void btnAddToCart_Click(object sender, ImageClickEventArgs e)
{

498

Chapter 13

16_042583 ch13.qxd 4/4/06 2:50 PM Page 498

double Price =
double.Parse(((Label)DataList1.Controls[0].FindControl(“PriceLabel”)).Text);

string ProductName =
((Label)DataList1.Controls[0].FindControl(“NameLabel”)).Text;

string PictureURL =
((Label)DataList1.Controls[0].FindControl(“PictureUrlLabel”)).Text;

int ProductID = int.Parse(Request.QueryString[“ProductID”]);

if (Profile.Cart == null) {
Profile.Cart = new Wrox.Commerce.ShoppingCart();

}
Profile.Cart.Insert(ProductID, Price, 1, ProductName, PictureURL);
Server.Transfer(“WroxShop.aspx”);

}

3. Go back to WroxShop.aspx in Design View. Add a hyperlink button from the General section of
the Toolbox. Right-click the link, select Properties, and change the properties listed in the fol-
lowing table.

Property Value

ID ShoppingCartLink

NavigateURL ~/ShoppingCartPage.aspx

Text View Shopping Cart

It will now look like Figure 13-28.

Figure 13-28

4. Give the shopping cart a test drive. Go to WroxShop.aspx and select the scarf, as shown in
Figure 13-29.

499

E-Commerce

16_042583 ch13.qxd 4/4/06 2:50 PM Page 499

Figure 13-29

5. Click Add to Cart. This takes you back to the main shopping screen. Now click View Shopping
Cart, and as you can see in Figure 13-30, your item has been added to the cart.

Figure 13-30

6. Click Edit to change the Quantity box into a text box that you can edit (see Figure 13-31).

500

Chapter 13

16_042583 ch13.qxd 4/4/06 2:50 PM Page 500

Figure 13-31

7. Type 2 and click Update. The totals are updated, as shown in Figure 13-32.

Figure 13-32

8. Click Delete. The item is removed from your cart.

How It Works
By adding two bits to the application in this Try It Out, you enabled the whole functionality of the shop-
ping cart. You started by adding a button to the Product Item page and creating some code that ran
when the button was clicked. The code handles the business of adding an item to your shopping cart.
You start by getting the Price, ProductName, PictureUrl and ProductID:

double Price =
double.Parse(((Label)DataList1.Controls[0].FindControl(“PriceLabel”)).Text);

string ProductName =
((Label)DataList1.Controls[0].FindControl(“NameLabel”)).Text;

string PictureURL =
((Label)DataList1.Controls[0].FindControl(“PictureUrlLabel”)).Text;

int ProductID = int.Parse(Request.QueryString[“ProductID”]);

501

E-Commerce

16_042583 ch13.qxd 4/4/06 2:50 PM Page 501

This information has already been stored in the page. You use the FindControl method of a control to
locate a control. The DataList control contains an item template, so you have to move into the controls
collection of the DataList control to get at the Label controls. You can cast the contents of the control to
text by prefixing them with the control type in brackets. So each of the three lines works like this. You
declare a variable in which to store your item. You search the DataList control for your Label control
using FindControl, and supply it with the name of the control you want to find. You convert the con-
trol from a “generic” control into a specific Label control. (Note that this only works if the control you
are casting to actually is a Label control.) So for the Price, you search for the PriceLabel control’s
contents and you retrieve the text property of the label. There is actually another level of conversion
required here. You want the price as a double data type, so you convert the text item you receive into a
double and store it in the double data type. The PictureUrlLabel is the one you didn’t delete in the
second Try It Out of this chapter because we said you’d need it later. This is where you need it. Having
stored the Price, ProductName, and PictureURL, you still need the ProductID. This can be located in
the query string passed to the page:

int ProductID = int.Parse(Request.QueryString[“ProductID”]);

You check to see if a cart exists for this profile:

if (Profile.Cart == null) {
Profile.Cart = new Wrox.Commerce.ShoppingCart();

}
Profile.Cart.Insert(ProductID, Price, 1, ProductName, PictureURL);
Server.Transfer(“WroxShop.aspx”);

}

If a cart doesn’t exist, you create a new one. Then you need to insert a new item into your shopping cart
along with the ProductID, Price, ProductName, PictureURL, and the quantity of 1:

Profile.Cart.Insert(ProductID, Price, 1, ProductName, PictureURL);

Last, you simply transfer the user back to the initial Product Catalog page:

Server.Transfer(“WroxShop.aspx”);

This stage can continue cyclically until the user either leaves the application or needs to check out.

Checkout
Checking out is perhaps the lengthiest stage of the whole process. The checkout process involves a num-
ber of considerations, not just the totalling up of the items and how much they cost, but also things like
stock availability, getting the user’s address and delivery details, obtaining and verifying payment for
the items, and some sort of rounding up of the whole process.

Checkout is, in itself, a mini set of stages. If you’re serious about implementing your own e-commerce
process, it’s worth checking some of the major e-commerce vendors (such as Amazon), seeing what they
do in their checkout process, and asking is it quick and intuitive to use? A lot of time and effort has gone
into producing checkout processes that can be completed in the minimum number of steps, with the
minimum number of clicks.

502

Chapter 13

16_042583 ch13.qxd 4/4/06 2:50 PM Page 502

In your design, consider checkout as comprising the following:

❑ Order processing

❑ Login

❑ Enter or get the address and delivery details

❑ Get the credit card details

❑ Finish

This is one part of the process that is impossible to model completely, without actually building a real,
live, working e-commerce site. However, some considerations about each step are worth talking about.

Order Processing
The first step of the checkout process is to check whether or not the item is in stock. With a large retailer
such as Amazon, not all of the items they carry will be sourced by them. They have a range of suppliers,
and they often need to check with them first to see if a particular item is in stock. Hence you will find
that some products will ship from Amazon within 24 hours, whereas others may take between four and
six weeks. In reality there is often another pipeline (similar to Figure 13-33) going on here that has to be
negotiated.

Figure 13-33

With Wrox United, you’re not going to delve into this level of detail. You are going to assume that all
goods are stored in the Wrox United warehouse, and after you’ve checked the stock level and they are in
stock, they are good to be released for shipping.

Login
We’ve already mentioned that the Wrox United application uses one of ASP.NET 2.0’s best features to
keep track of the shopping cart, in that you don’t have to physically log in to keep track of your shop-
ping cart. However, when you come to checkout, you must log in, because you need to supply your
address details and credit card information. You need to supply a login box and password to be able to
authenticate your user’s details. You will use the standard ASP.NET 2.0 login control to do this.

Address/Delivery Details
The address details are fairly easy to sort as well. One of two scenarios could occur. Either you have
already captured the user’s details and you can access the details that are stored with the profile, or if
you don’t have them on record, you must request that the user enter them into a series of text boxes. You
can either use the Profile that was created in Chapter 11 and that stores these details, or you can store the
details supplied in the text boxes by the user.

Inform Supplier Check Stock Order Ready/Charge Card Supplier Ships Goods Notification
Of Shipping

503

E-Commerce

16_042583 ch13.qxd 4/4/06 2:50 PM Page 503

Credit Card Handling
Here you’re going to cop out and not handle credit cards at all — you’ll just add a small dummy section.
This gives the impression that it isn’t a major part of the e-commerce pipeline, but don’t be fooled for a
moment — it is of course critical to the success of the pipeline. For obvious reasons, you can’t set up an
actual credit card–handling facility. For starters, you don’t have a physical product to sell. Fetching as
the Wrox United kits undoubtedly would be, they only exist in cyberspace. So here we can’t provide any
code, but instead can quickly consider what you need to take into account when setting up a credit
card–handling facility on your web site.

Credit card retailers first starting out need a merchant ID, usually supplied via their bank, which gives
some sort of guarantee that the business is genuine. Most Internet businesses require the same thing. In
the U.S., there are two ways to do this. The first is to provide all the processing and handling of credit
cards yourself, and the second is to get someone else to do it on your behalf.

In-House Credit Card Transactions
Setting up credit card processing in-house is the ideal way to keep an eye on all your transactions, but it
can be quite a slow and unwieldy process. You require an e-commerce ID (also known as a merchant
number or as an Internet Merchant Account [IMA] in the UK) from a third party who can actually pro-
cess the credit card details for you, meaning the third party can decide whether or not a particular credit
card number is genuine. You will have to apply for an account with the third party and provide a lot of
details that help establish your authenticity.

Obtaining an E-Commerce ID, Merchant Number, or IMA

In the U.S., you can go to one of the following web sites:

❑ Verisign/CyberCash: www.icverify.com

❑ First Data/Card Service: www.cardservice.com

In the UK, you can go to one of these web sites:

❑ WorldPay: www.worldpay.co.uk

❑ DataCash: www.datacash.com

For worldwide transaction processing, you can try PayPal (www.paypal.com), which accepts credit
cards once you have set up a business account with them.

Payment Gateways

After you have your e-commerce ID, merchant number, or IMA, you still need another link in the chain,
a way of communicating from a payment gateway to a bank. You should be able to use the same com-
pany you obtained an e-commerce ID from to do this. You supply the e-commerce ID to the bank, and
they use it to track the money’s movements to the gateway service and back again. These services usu-
ally come at a hefty price. If all this sounds too complex, you might want to consider the alternative.

Bureau Services
Because this is a beginner’s book, it’s probably safe to assume that the first site you start developing
won’t be a major store. More likely you’ll be working on a small store (maybe your own) that perhaps

504

Chapter 13

16_042583 ch13.qxd 4/4/06 2:50 PM Page 504

won’t really want to cover the risks and costs associated with having a system handling credit cards
itself. In the early days of e-commerce on the web, there were a series of high-profile hacks. One notori-
ous one was where all customers of a high-profile music store had their credit card details stolen when
the database containing them was compromised. Rather than having to worry about all the risks from
encrypting card details to storing them in a way to ensure their complete safety, it’s easier to get some-
one else to do this for you. These are termed bureau services. When you get to the part of a site where you
check out, instead of handling the details, you link to the bureau service’s site, and they handle the
whole process for you from then on.

Until relatively recently, bureau services were expensive propositions that required quite a large finan-
cial commitment on the part of the seller. Several years ago, I costed a small record label’s ability to do
this, and the cheapest I could find to provide an online store would have meant they would have to have
sold several hundred CDs a month to cover the gateway fees alone. The rise of eBay has led to a massive
rise in demand of people who want to handle their own sales instantly, so rather than having to wait for
checks (which carry risk of both fraud and bouncing if the funds aren’t present), or doing money trans-
fers via banks or a third party such as Western Union, they want to be able to handle credit card transac-
tions. In addition to that, they might only ever want to handle as little as 10 or 20 sales.

Two popular solutions supply this service, and can actually supply common components such as a
shopping cart for you:

❑ PayPal: www.paypal.com

❑ BTClick&Buy: www.btclickandbuy.com

Other sites exist too. There are digital credit card services that specialize in micropayments when paying
for small items such as single mp3s. It all depends on what you want to sell and how much you want to
sell it for. If these two sites don’t provide a solution that suits you, then look around for something more
suited to your needs. If you want further details about how to handle credit card transactions, we sug-
gest you read the details given on the sites mentioned in these sections.

Summarizing the Transaction
Typically, after you’ve completed your transaction, it would be good to receive a notification or receipt
of what you’ve ordered. This is actually a relatively simple step of the process, but to e-mail somebody
requires a working SMTP server, so for that reason alone, you aren’t going to implement this step.

How You Intend to Checkout
Once again, you are governed by keeping things simple. What is the minimum you can boil down your
checkout process to?

The five-stage process will be as follows:

❑ Login

❑ Delivery address

❑ Payment

❑ Confirmation of the order

❑ Finish

505

E-Commerce

16_042583 ch13.qxd 4/4/06 2:50 PM Page 505

You will also need a breadcrumb to you to help you keep an eye on where you are in the whole checkout
process. As mentioned at the beginning of the chapter, one priority is being able to abort the transaction
at any point prior to confirming the purchase.

What you’re not going to do is the stock handling (reducing items and keep track of stock levels) or
sending a confirmation-of-order e-mail. The chapter is already big enough as it is and these things are
arguably stretched over different disciplines to e-commerce. What you are going to do in the next Try It
Out is create the final stages of the e-commerce pipeline.

Try It Out Checking Out
1. In Solution Explorer in Visual Web Developer, right-click the C:\...\Chapter13 heading at

the top and select Add New Item. Add a Web Form called Checkout.aspx and check the Place
Code in Separate File box to ensure a separate code-behind file is created.

2. In Design View, from the Toolbox grab a Wizard control and drop it onto the page, as shown in
Figure 13-34.

Figure 13-34

3. From the smart tag dialog box, select the Add/Remove wizard steps option.

506

Chapter 13

16_042583 ch13.qxd 4/4/06 2:50 PM Page 506

4. In the dialog box that appears, you are going to add three extra steps. This is so you have five
steps: one for login, one for address, one for credit card details, one to confirm the order, and
one to finish the transaction. Start by clicking Add (see Figure 13-35) and entering Step 3 next to
Title. Then clicking Add again and enter Step 4. Click Add one more time and enter Step 5.

Figure 13-35

5. Go back and change the Title property in each so that it reads as shown in Figure 13-36.

Figure 13-36

6. Click OK.

7. From the Login section of the Toolbox, drag a Login box into the <asp:Wizard> control, as
shown in Figure 13-37.

507

E-Commerce

16_042583 ch13.qxd 4/4/06 2:50 PM Page 507

Figure 13-37

8. Click Source View. Add the following code to the Wizard step for Step 2 (Delivery Address):

<asp:checkbox id=”chkUseProfileAddress” runat=”server” autopostback=”True”
text=”Use membership address”
OnCheckedChanged=”chkUseProfileAddress_CheckedChanged”></asp:checkbox>

<table border=”0”>
<tr><td>Name</td><td><asp:textbox id=”txtName” runat=”server” /></td></tr>
<tr><td>Address</td><td><asp:textbox id=”txtAddress” runat=”server” /></td></tr>
<tr><td>City</td><td><asp:textbox id=”txtCity” runat=”server” /></td></tr>
<tr><td>County</td><td><asp:textbox id=”txtCounty” runat=”server” /></td></tr>
<tr><td>Postcode</td><td><asp:textbox id=”txtPostCode” runat=”server” />

</td></tr>
<tr><td>Country</td><td><asp:textbox id=”txtCountry” runat=”server” /></td></tr>

</table>

9. Add the following code to the Wizard step for Step 3 (Payment):

<asp:DropDownList id=”lstCardType” runat=”server”>
<asp:ListItem>MasterCard</asp:ListItem>
<asp:ListItem>Visa</asp:ListItem>

</asp:DropDownList>

Card Number: <asp:Textbox id=”txtNumber” runat=”server”

Text=”0123456789” ReadOnly=”True”/>

Expires:
<asp:textbox id=”txtExpiresMonth” runat=”server” columns=”2” />
/
<asp:textbox id=”txtExpiresYear” runat=”server” columns=”4” />

508

Chapter 13

16_042583 ch13.qxd 4/4/06 2:50 PM Page 508

10. Go back to Design View for Step 4 (Confirmation). Type the following:

Please confirm the amount you wish to have
deducted from your credit card.

11. Select ShoppingCart.ascx and drag it into the Wizard control above the text you have cre-
ated, as shown in Figure 13-38.

Figure 13-38

12. Click Complete and in Design View for Step 5 (Complete), type Thank you for your order.

13. Go to Source View and above the <asp:Wizard> control, add the following:

<asp:Label id=”NoCartlabel” runat=”server” visible=”false”>
There are no items in your cart. Visit the shop to buy items.
</asp:Label>

<div style=”float:right”>
<asp:LoginView ID=”LoginView1” Runat=”server”>

<AnonymousTemplate>
<asp:passwordrecovery id=”PasswordRecovery1” runat=”server” />

</AnonymousTemplate>
</asp:LoginView>

</div>

14. Above this code, add the following:

<%@ Import Namespace =”System.Data.SqlClient”%>
<%@ Import Namespace =”Wrox.Commerce”%>

509

E-Commerce

16_042583 ch13.qxd 4/4/06 2:50 PM Page 509

15. Save the design.

16. Go to Solution Explorer, and select checkout.aspx.cs.

17. Add the following code-behind in place of whatever is already there:

using System;
using System.Data;
using System.Data.SqlClient;
using System.Configuration;
using Wrox.Commerce;
using System.Web.UI.WebControls;
using System.Web.Security;

public partial class Checkout : System.Web.UI.Page
{

void Page_Load(object sender, EventArgs e)
{

if (!Page.IsPostBack)
{

if (Profile.Cart == null)
{
NoCartlabel.Visible = true;
Wizard1.Visible = false;

}

if (User.Identity.IsAuthenticated)
{

Wizard1.ActiveStepIndex = 1;
}
else
{

Wizard1.ActiveStepIndex = 0;
}

}

}

protected void chkUseProfileAddress_CheckedChanged(object sender ,
System.EventArgs e)

{
// fill the delivery address from the profile, but only if it’s empty
// we don’t want to overwrite the values
if (chkUseProfileAddress.Checked && txtName.Text.Trim() == “”)
{

txtName.Text = Profile.Name;
txtAddress.Text = Profile.Address;
txtCity.Text = Profile.City;
txtCounty.Text = Profile.County;
txtPostCode.Text = Profile.PostCode;
txtCountry.Text = Profile.Country;

}

}

protected void Wizard1_FinishButtonClick(object sender,
System.Web.UI.WebControls.WizardNavigationEventArgs e)

510

Chapter 13

16_042583 ch13.qxd 4/4/06 2:50 PM Page 510

{
// Insert the order and order lines into the database
SqlConnection conn = null;
SqlTransaction trans = null;
SqlCommand cmd;

try
{

conn = new
SqlConnection(ConfigurationManager.ConnectionStrings[“WroxUnited”].ConnectionString
);

conn.Open();

trans = conn.BeginTransaction();

cmd = new SqlCommand();
cmd.Connection = conn;
cmd.Transaction = trans;

// set the order details
cmd.CommandText = “INSERT INTO Orders(MemberName, OrderDate, Name, Address,

County, PostCode, Country, SubTotal, Discount, Total) “ +
“VALUES (@MemberName, @OrderDate, @Name, @Address, @County, @PostCode, @Country,
@SubTotal, @Discount, @Total)”;

cmd.Parameters.Add(“@MemberName”, SqlDbType.VarChar, 50);
cmd.Parameters.Add(“@OrderDate”, SqlDbType.DateTime);
cmd.Parameters.Add(“@Name”, SqlDbType.VarChar, 50);
cmd.Parameters.Add(“@Address”, SqlDbType.VarChar, 255);
cmd.Parameters.Add(“@County”, SqlDbType.VarChar, 50);
cmd.Parameters.Add(“@PostCode”, SqlDbType.VarChar, 15);
cmd.Parameters.Add(“@Country”, SqlDbType.VarChar, 50);
cmd.Parameters.Add(“@SubTotal”, SqlDbType.Money);
cmd.Parameters.Add(“@Discount”, SqlDbType.Money);
cmd.Parameters.Add(“@Total”, SqlDbType.Money);

cmd.Parameters[“@MemberName”].Value = User.Identity.Name;
cmd.Parameters[“@OrderDate”].Value = DateTime.Now;
cmd.Parameters[“@Name”].Value =

((TextBox)Wizard1.FindControl(“txtName”)).Text;
cmd.Parameters[“@Address”].Value =

((TextBox)Wizard1.FindControl(“txtAddress”)).Text;
cmd.Parameters[“@County”].Value =

((TextBox)Wizard1.FindControl(“txtCounty”)).Text;
cmd.Parameters[“@PostCode”].Value =

((TextBox)Wizard1.FindControl(“txtPostCode”)).Text;
cmd.Parameters[“@Country”].Value =

((TextBox)Wizard1.FindControl(“txtCountry”)).Text;
cmd.Parameters[“@SubTotal”].Value = Profile.Cart.SubTotal;
cmd.Parameters[“@Discount”].Value = Profile.Cart.MemberDiscount;
cmd.Parameters[“@Total”].Value = Profile.Cart.Total;

int OrderID = Convert.ToInt32(cmd.ExecuteScalar());

// change the query and parameters for the order lines
cmd.CommandText = “INSERT INTO OrderLines(OrderID, ProductID, Quantity,

Price) “ +

511

E-Commerce

16_042583 ch13.qxd 4/4/06 2:50 PM Page 511

“VALUES (@OrderID, @ProductID, @Quantity, @Price)”;
cmd.Parameters.Clear();
cmd.Parameters.Add(“@OrderID”, SqlDbType.Int);
cmd.Parameters.Add(“@ProductID”, SqlDbType.Int);
cmd.Parameters.Add(“@Quantity”, SqlDbType.Int);
cmd.Parameters.Add(“@Price”, SqlDbType.Money);

cmd.Parameters[“@OrderID”].Value = OrderID;
foreach (CartItem item in Profile.Cart.Items)
{

cmd.Parameters[“@ProductID”].Value = item.ProductID;
cmd.Parameters[“@Quantity”].Value = item.Quantity;
cmd.Parameters[“@Price”].Value = item.Price;

cmd.ExecuteNonQuery();
}

// commit the transaction
trans.Commit();

}
catch (SqlException SqlEx)
{

// some form of error - rollback the transaction
// and rethrow the exception
if (trans != null)

trans.Rollback();

CreateOrderErrorLabel.Visible = true;

// Log the exception
// Tools.log(“An error occurred while creating the order”, SqlEx)
throw new Exception(“An error occurred while creating the order”, SqlEx);

}
finally
{

if (conn != null)
conn.Close();

}

// we will only reach here if the order has been created sucessfully
// so clear the cart
Profile.Cart.Items.Clear();

}

protected void Wizard1_NextButtonClick(object sender,
System.Web.UI.WebControls.WizardNavigationEventArgs e)

{
if (e.CurrentStepIndex == 0)
{

System.Web.UI.WebControls.Login l = (Login)Wizard1.FindControl(“Login1”);

if (Membership.ValidateUser(l.UserName, l.Password))
{

512

Chapter 13

16_042583 ch13.qxd 4/4/06 2:50 PM Page 512

FormsAuthentication.SetAuthCookie(l.UserName, l.RememberMeSet);
e.Cancel = false;

}
else
{

l.InstructionText = “Your login attempt was not successful. Please try
again.”;

l.InstructionTextStyle.ForeColor = System.Drawing.Color.Red;

e.Cancel = true;
}

}
else
{

if (!User.Identity.IsAuthenticated)
{

e.Cancel = true;
Wizard1.ActiveStepIndex = 0;

}
}

}

protected void Wizard1_ActiveStepChanged(object sender, System.EventArgs e)
{

if (!User.Identity.IsAuthenticated)
Wizard1.ActiveStepIndex = 0;

}

}

18. Open ShoppingCartPage.aspx and in Design View, add a hyperlink to the page. Right-click
the link and change the properties as shown in the following table.

Property Value

ID Checkout

Text Checkout

NavigateURL ~/Checkout.aspx

19. Run Wroxshop.aspx, add two scarves to your shopping cart, and click Checkout. Supply login
details in the fields shown in Figure 13-39.

20. Click Next after you’re logged in, and then either click your membership address or supply
your address details (see Figure 13-40).

21. Click Next, and you’ll arrive at the screen shown in Figure 13-41. This is your credit card
handler — it doesn’t require any user details.

513

E-Commerce

16_042583 ch13.qxd 4/4/06 2:50 PM Page 513

Figure 13-39

Figure 13-40

Figure 13-41

514

Chapter 13

16_042583 ch13.qxd 4/4/06 2:50 PM Page 514

22. Click Next. On the last page (see Figure 13-42), you see a summary of the details.

Figure 13-42

23. Click Finish to end the checkout.

How It Works
This completes your e-commerce pipeline. You started by creating the five stages of the checkout process
using the <asp:wizard> control. The login stage used a Login control, and the delivery address used a
check box and a series of text boxes to record the details. The payment stage took the credit card details
via a drop-down list, which contained the type of credit card, and you had text boxes for the card num-
ber and expiration date. You didn’t validate these details in any way. In the confirmation stage, you just
inserted a copy of the shopping cart control, and the last step simply displayed a short thank you
message.

You added a control LoginView, which contained your anonymous template:

<asp:LoginView ID=”LoginView1” Runat=”server”>
<AnonymousTemplate>

<asp:passwordrecovery id=”PasswordRecovery1” runat=”server” />
</AnonymousTemplate>

</asp:LoginView>

This displayed the password recovery control, which is displayed to aid any user who might have for-
gotten their password.

It was left to the code-behind to provide the meat of the example. When the page first loads, you check
to see if there is anything in the cart. If there isn’t, then you make the Wizard invisible and show the
nocartlabel, which informs the user that there is nothing in the cart. The second check is to see if the
user identity has been authenticated. This is a test of whether or not they have logged in. If they have
logged in already, you jump them past the login stage, or else you have to get them logged in first:

void Page_Load(object sender, EventArgs e)
{

if (!Page.IsPostBack)

515

E-Commerce

16_042583 ch13.qxd 4/4/06 2:50 PM Page 515

{
if (Profile.Cart == null)
{
NoCartlabel.Visible = true;
Wizard1.Visible = false;

}

if (User.Identity.IsAuthenticated)
{

Wizard1.ActiveStepIndex = 1;
}
else
{

Wizard1.ActiveStepIndex = 0;
}

}

}

The next procedure in the code is the code that responds to the check box being altered in Step 2, the
delivery address. If this box is checked, you fill the text boxes with the details stored in the user’s profile.
Otherwise you leave them empty:

protected void chkUseProfileAddress_CheckedChanged(object sender,
System.EventArgs e)

{
// fill the delivery address from the profile, but only if it’s empty
// we don’t want to overwrite the values
if (chkUseProfileAddress.Checked && (txtName.Text.Trim() == “”))
{

txtName.Text = Profile.Name;
txtAddress.Text = Profile.Address;
txtCity.Text = Profile.City;
txtCounty.Text = Profile.County;
txtPostCode.Text = Profile.PostCode;
txtCountry.Text = Profile.Country;

}

}

NextButtonClick is used to check whether the user has logged in successfully and can therefore
progress to the next step of the Wizard. This step only comes into play if you are actually on the login
stage at the time. You check to see if the user has been validated and, if not, you display an appropriate
error message informing the user that they aren’t able to log in this time. Otherwise you validate the user:

protected void Wizard1_NextButtonClick(object sender,
System.Web.UI.WebControls.WizardNavigationEventArgs e)

{
if (e.CurrentStepIndex == 0)
{

System.Web.UI.WebControls.Login l = (Login)Wizard1.FindControl(“Login1”);

if (Membership.ValidateUser(l.UserName, l.Password))
{

FormsAuthentication.SetAuthCookie(l.UserName, l.RememberMeSet);

516

Chapter 13

16_042583 ch13.qxd 4/4/06 2:50 PM Page 516

e.Cancel = false;
}
else
{

l.InstructionText = “Your login attempt was not successful. Please try
again.”;

l.InstructionTextStyle.ForeColor = System.Drawing.Color.Red;

e.Cancel = true;
}

}
else
{

if (!User.Identity.IsAuthenticated)
{

e.Cancel = true;
Wizard1.ActiveStepIndex = 0;

}
}

}

FinishButtonClick contains perhaps the longest set of code, but it isn’t as daunting as it looks. This is
where you write the user’s order to the database. You have to be able to roll this back if a mistake has
occurred. You start by creating a connection string, and you create a transaction. Then you read in all of
the details supplied in the checkout process into parameters. There are a lot of them! You have the mem-
ber name, the delivery address, the credit card details, and the whole shopping cart total:

protected void Wizard1_FinishButtonClick(object sender,
System.Web.UI.WebControls.WizardNavigationEventArgs e)

{
// Insert the order and order lines into the database
SqlConnection conn = null;
SqlTransaction trans = null;
SqlCommand cmd;

try
{

conn = new
SqlConnection(ConfigurationManager.ConnectionStrings[“WroxUnited”].ConnectionString
);

conn.Open();

trans = conn.BeginTransaction();

cmd = new SqlCommand();
cmd.Connection = conn;
cmd.Transaction = trans;

// set the order details
cmd.CommandText = “INSERT INTO Orders(MemberName, OrderDate, Name, Address,

County, PostCode, Country, SubTotal, Discount, Total) “ +
“VALUES (@MemberName, @OrderDate, @Name, @Address, @County, @PostCode, @Country,
@SubTotal, @Discount, @Total)”;

cmd.Parameters.Add(“@MemberName”, SqlDbType.VarChar, 50);
cmd.Parameters.Add(“@OrderDate”, SqlDbType.DateTime);

517

E-Commerce

16_042583 ch13.qxd 4/4/06 2:50 PM Page 517

cmd.Parameters.Add(“@Name”, SqlDbType.VarChar, 50);
cmd.Parameters.Add(“@Address”, SqlDbType.VarChar, 255);
cmd.Parameters.Add(“@County”, SqlDbType.VarChar, 50);
cmd.Parameters.Add(“@PostCode”, SqlDbType.VarChar, 15);
cmd.Parameters.Add(“@Country”, SqlDbType.VarChar, 50);
cmd.Parameters.Add(“@SubTotal”, SqlDbType.Money);
cmd.Parameters.Add(“@Discount”, SqlDbType.Money);
cmd.Parameters.Add(“@Total”, SqlDbType.Money);

cmd.Parameters[“@MemberName”].Value = User.Identity.Name;
cmd.Parameters[“@OrderDate”].Value = DateTime.Now;
cmd.Parameters[“@Name”].Value =

((TextBox)Wizard1.FindControl(“txtName”)).Text;
cmd.Parameters[“@Address”].Value =

((TextBox)Wizard1.FindControl(“txtAddress”)).Text;
cmd.Parameters[“@County”].Value =

((TextBox)Wizard1.FindControl(“txtCounty”)).Text;
cmd.Parameters[“@PostCode”].Value =

((TextBox)Wizard1.FindControl(“txtPostCode”)).Text;
cmd.Parameters[“@Country”].Value =

((TextBox)Wizard1.FindControl(“txtCountry”)).Text;
cmd.Parameters[“@SubTotal”].Value = Profile.Cart.SubTotal;
cmd.Parameters[“@Discount”].Value = Profile.Cart.MemberDiscount;
cmd.Parameters[“@Total”].Value = Profile.Cart.Total;

int OrderID = Convert.ToInt32(cmd.ExecuteScalar());

After you’ve written the data into the Orders table, you need to create an order in which you write into
the OrderLines table. This contains an order ID, the product ID, the quantity, and the price. After this,
you commit the transaction:

// change the query and parameters for the order lines
cmd.CommandText = “INSERT INTO OrderLines(OrderID, ProductID, Quantity,

Price) “ +
“VALUES (@OrderID, @ProductID, @Quantity, @Price)”;

cmd.Parameters.Clear();
cmd.Parameters.Add(“@OrderID”, SqlDbType.Int);
cmd.Parameters.Add(“@ProductID”, SqlDbType.Int);
cmd.Parameters.Add(“@Quantity”, SqlDbType.Int);
cmd.Parameters.Add(“@Price”, SqlDbType.Money);

cmd.Parameters[“@OrderID”].Value = OrderID;
foreach (CartItem item in Profile.Cart.Items)
{

cmd.Parameters[“@ProductID”].Value = item.ProductID;
cmd.Parameters[“@Quantity”].Value = item.Quantity;
cmd.Parameters[“@Price”].Value = item.Price;

cmd.ExecuteNonQuery();
}

// commit the transaction

518

Chapter 13

16_042583 ch13.qxd 4/4/06 2:50 PM Page 518

trans.Commit();

}

The next part is the exception handler. If there is any kind of database error, you have to roll back the
exception and write it to the error log. Exception handling is explained in more detail in Chapter 15. This
code is specifically tailored to handle SQL errors and will cause an error in the application:

catch (SqlException SqlEx)
{

// some form of error - rollback the transaction
// and rethrow the exception
if (trans != null)

trans.Rollback();

CreateOrderErrorLabel.Visible = true;

// Log the exception
// Tools.log(“An error occurred while creating the order”, SqlEx)
throw new Exception(“An error occurred while creating the order”, SqlEx);

}

Last, you close the connection and you clear the cart profile of the items if the transaction has been
successful:

finally
{

if (conn != null)
conn.Close();

}

// we will only reach here if the order has been created sucessfully
// so clear the cart
Profile.Cart.Items.Clear();

There is also a failsafe step that checks to see if you have jumped in the Wizard. Normally this will be
under the direction of the program — in other words, you check to see if the user has logged in and jump
them forward one step. However, it’s possible that an unscrupulous user might have jumped into this
procedure halfway through, or that the procedure has accidentally “forgotten” the login details (nor-
mally caused by the session variable being lost — this might happen if ASP.NET restarts halfway
through the Wizard). In this case, you check to see if the user has logged in, and if you have no record of
them (in other words, they aren’t authenticated), then you jump them back to the login dialog:

protected void Wizard1_ActiveStepChanged(object sender, System.EventArgs e)
{

if (!User.Identity.IsAuthenticated)
Wizard1.ActiveStepIndex = 0;

}
}

The checkout process is a lengthy one, but it is the most essential part. If you get this wrong, you will
never get any orders!

519

E-Commerce

16_042583 ch13.qxd 4/4/06 2:50 PM Page 519

Secure Transactions
You might be forgiven for thinking that you’re missing one vital part of the process. How do you ensure
that your transaction isn’t compromised and that credit card details aren’t left wide open to the ether? Of
course the nature of the HTTP protocol is exactly that, you send text across to the web server and you
receive text back again. There’s nothing to stop anybody out there from listening and recording your
details.

Fortunately, there is a two-pronged attack with which you can ensure transactions are secure and that
the credit card details and other confidential information are not compromised:

❑ Encryption: You must encode, or scramble, the information that is sent to the web server and
received back from the web server. The web server has a public key, and users will have a pri-
vate key that enables them to decode the information. Only having the public key and the pri-
vate key together will allow you to encrypt the message. The web server will have a public key
and its own private key at the other end. To encrypt messages, you use a secure communica-
tions protocol. Either Secure Sockets Layer (SSL) or Secure HTTP (S-HTTP) would provide this
functionality. You can specify encryption methods and whether to use SSL on a connection in
the Web.config file.

❑ Certificates: To guarantee that the site you are dealing with at the other end is reputable, it can
be certified by a Certificate Authority. Verisign (www.verisign.com) is perhaps the most com-
mon Certificate Authority. The authority is paid a yearly fee by the e-commerce vendor and in
return, the authority performs checks on the business to prove that it is legitimate. These checks
are then recorded in the form of a certificate. You can browse particular sites’ certificates during
the checkout process. To make your site trustworthy, you should go about obtaining a certificate
from a Certificate Authority.

You’re not going to implement any of these features on the Wrox United site for reasons of practicality,
but if you want to implement an e-commerce solution, you must make use of encryption and certificates.

What Else Can You Do?
Having gone this far in the chapter, you probably deserve a cup of tea and a sit down. However, while
you’re enjoying your well-earned brew, this would be a good time to get your thinking cap on and have
a think about what else you could add to the shop. An e-commerce site is like a community and can con-
tinually evolve as your site evolves — you shouldn’t think that you’ve done everything possible with it.
The following list outlines some things to consider as your e-commerce site evolves:

❑ Improving the product catalog: You can show how many products are currently in stock, how
long they will take to deliver, and the release date of a product. You can add customer reviews
or testimonies to how wonderful or appalling the product is, and add a cross-linking reference
that mentions which other items a customer bought when they purchased a particular item.

❑ Improving membership tracking and personalization: Add a member discount, record credit
card details, and mail out special offers related to past purchases (so if a customer bought a
replica kit in 2004, when the 2005 version comes out, it might be good to e-mail them).

520

Chapter 13

16_042583 ch13.qxd 4/4/06 2:50 PM Page 520

❑ Improving the shopping cart: Make the shopping cart visible at all times.

❑ Improving the checkout process: Make the checkout process simpler so that it can be achieved
in as few clicks as possible.

Summary
Hopefully this rather intense chapter hasn’t scared you away. E-commerce is a lengthy and complex
process — however, the new features of ASP.NET 2.0 make it approachable and possible to program for
the first time without weeks of heartache and stress. Although e-commerce isn’t something to be taken
lightly, it is something that can be added to an application with a little bit of thought and careful work.

This chapter started by describing the e-commerce pipeline, which is outlined as follows:

❑ Select an item from the catalog

❑ Put the item in the shopping cart

❑ Check out with the item or items

❑ Supply address details

❑ Pay for the item

❑ Confirm the transaction

You started by creating a design for your product catalog and then you built a Catalog page. From the
catalog you allowed the user to hone in on particular items, and you did this via a Product Item page.
Neither of these items specifically required the use of the shopping cart, so you held off creating one.
They just queried the database and displayed the relevant details. However, without these pages, you
would not be able to shop effectively.

With a catalog working, you could add the cart. The cart consisted of two objects: the CartItem object
(one for each item selected by the user from the catalog and the ShoppingCart object, (which contained
a bundle of CartItem objects). To enable the shopping cart, you added Insert, Update, and Delete
methods, which allowed you to put things into, change the amount of, and remove items from your
shopping cart. Last, you connected the shopping cart to your catalog by creating an Add an Item button
to your Product Item page.

Next you created a checkout process that handled the login, the confirmation of the delivery address, and
the credit card details, and finished the procedure. Although you couldn’t handle the card details with the
application, you learned about the various options offered. Finally you learned how to make the transac-
tions secure and some ways to extend and improve the e-commerce procedure in Wrox United.

Exercises
An e-commerce site could potentially offer many extra features. In these exercises, you’re going to focus
on just one. Some fan sites offer the capability for their members to purchase items at a reduced price, a
membership discount. How would you go about implementing it? Each question is about a stage of the
implementation and together they will give you this functionality.

521

E-Commerce

16_042583 ch13.qxd 4/4/06 2:50 PM Page 521

1. The member discount is something that is applied to the shopping cart as you add items to the
cart. What do you need to add to the ShoppingCart object to make sure it can store a discount
of 10% for fan club members? You can assume that you can detect a fan club member with the
property HttpContext.Current.User.IsInRole(“FanClubMember”).

Hint: You will need to create a subtotal as well.

2. How can you display the member discount details on the Shopping Cart page so that only a fan
club member will see them?

522

Chapter 13

16_042583 ch13.qxd 4/4/06 2:50 PM Page 522

14
Performance

Throughout the book you’ve learned a range of techniques to help you build web sites, and really
concentrated on the possibilities regarding what controls and code you can use to produce great
functionality for your site. One thing you haven’t looked at, though, is how to make your site per-
form as well as it possibly can. After all, it doesn’t matter how great your site looks — if it per-
forms badly, it fails. Internet users are an impatient lot and expect sites to be fast.

Although performance should be addressed throughout the design and building of a site, this isn’t
always practical, especially for the beginner. So this chapter revisits some of the earlier pages to
see how they can be improved, and discusses the techniques that can be used to create the best
performing sites.

In particular, this chapter looks at the following:

❑ How to design and test for performance

❑ The techniques to use in ASP.NET pages and data handling to ensure the fastest
possible pages

❑ What caching is and how it can be used

Let’s start with the things you can do to either existing code or new code that you write.

Simple Techniques
Several simple things are easy to do and provide good performance, as well as being good design
techniques and aiding future development work and maintenance. After all, writing applications
isn’t just about getting the best from them now, but also getting the best from them in the future.

17_042583 ch14.qxd 4/4/06 2:51 PM Page 523

Being able to fix and update web applications easily is just as much a part of development as producing
the application in the first place. This section on simple techniques looks at the following:

❑ How to dispose of resources after they are no longer required

❑ How to ensure connecting to a database is done in the best possible way

❑ How using stored procedures can improve data access performance

❑ How to use generics to improve performance of collections

❑ How session state can be minimized to allow less processing to be done by ASP.NET

❑ How view state can be tuned to reduce the amount of data sent to and from the web server

This section starts with object disposal.

Object Disposal
In performance terms, certain things are expensive; that is, they can lead to performance problems. The
reason for this is that objects need resources to manage them, resources such as CPU and memory. The
fewer of these resources used, the less work the server is doing, which in turn leads to more pages for
more users. If the use of these resources can be minimized, the site will perform better, and part of that
minimization is to make sure you only use the resource for as little time as possible.

In general, objects that use expensive resources like the file system, graphics, or databases should be dis-
posed of as soon as they are no longer needed. The only exception is database connections in ASP.NET
applications, as discussed in the “Database Connections” section later in the chapter. Disposal of objects
frees up resources, such as files and memory, allowing the web server to perform more efficiently. By
default, resources are disposed of automatically by the Garbage Collector, but it is possible to improve
performance by taking control of object disposal yourself, and you can do this in two ways. You can
either use a standard pattern for creating the resource, using it, and then disposing of it, or you can use
the using statement. This section looks at both methods, because you’ll see both in documentation.

In the Wrox United site, one area where this is used is for images. Certain users have permission to
upload images. Administrators can upload new images for the shop, the owner and coach can upload
player pictures, and reporters and fan club members can upload match pictures. Part of this upload pro-
cess involves creating a thumbnail image, which uses the Image object, something that should be dis-
posed of as soon as it’s no longer required. Disposal is necessary for two reasons. The first is because the
image is a file-based resource, and the file may be required by other pages, so making sure you don’t
have any connection to it means it’s available for others — the sooner you remove it, the sooner someone
else can access it. The second reason for disposal is because images take memory, so disposing of the
image means the memory is freed and available for other processes.

The routine for creating thumbnails is in the ImageHandling.cs file, in the App_Code directory, and is a
simple class with a single shared method (actually, there are two methods, but one is only required as
part of the image handling and isn’t actually used).

The general structure of this code is to create a new Image object from an existing image stored on disc.
Then a new Image object is created using the GetThumbnailImage method, which specifies the new
width and height. It’s pretty simple, but it involves two Image objects, so it requires two lots of disposal.
The next section looks at how this routine works using the two ways of resource disposal.

524

Chapter 14

17_042583 ch14.qxd 4/4/06 2:51 PM Page 524

Disposal with try/catch
To dispose using the try/catch methods you follow this simple pattern:

try
{

// create resource
}
catch()
{

// handle exception
}
finally
{

// dispose of resource
}

Your image code using this pattern is as follows:

public static void GenerateThumbnail(string SourceImagePath,
string TargetImagePath)

{
short newHeight;
short newWidth;
Image sourceImage = null;
Image targetImage = null;

try
{

sourceImage = Image.FromFile(SourceImagePath);

newHeight = short(sourceImage.Height * 0.25);
newWidth = short(sourceImage.Width * 0.25);

Image.GetThumbnailImageAbort abort1 = new
Image.GetThumbnailImageAbort(ImageHandling.ThumbnailCallback);

try
{

targetImage = sourceImage.GetThumbnailImage(newWidth, newHeight,
cb, IntPtr.Zero);

targetImage.Save(TargetImagePath, Imaging.ImageFormat.Gif);
}
catch (Exception ex)
{

// log exception
}
finally
{

if (targetImage != null)
targetImage.Dispose();

}
}
catch (Exception ex)
{

525

Performance

17_042583 ch14.qxd 4/4/06 2:51 PM Page 525

// log exception
}
finally
{

if (sourceImage != null)
sourceImage.Dispose();

}
}

You can immediately see this is a little hard to read. There are two try/catch blocks, one within the
other. The outer one is for sourceImage— the original image. This is loaded from a file using Image.
FromFile, and then the new width and height are calculated using the Height and Width properties of
the source image — the new height and width are 25% of the original. After the new size is defined, a
callback variable (cb) is created in case there is an error during the creation of the thumbnail — the
GetThumbnailImage method will call the callback if an error occurs. We’re not actually handling any
errors because we decided that it isn’t critical if thumbnails aren’t generated. If you have an application
where it is critical to know about these errors, you could log the error in the callback routine.

The inner try/catch block then surrounds targetImage, which is generated from sourceImage using
GetThumbnailImage with the new width and height. This creates a new image based on the new size.
After it is generated, targetImage is then saved to a file as a GIF image.

The finally blocks of each try/catch check that the Image object exists before disposing of the object,
by calling the Dispose method.

Disposal with Using
The using statement makes the preceding code much simpler, as shown here:

public static void GenerateThumbnail(string SourceImagePath,
string TargetImagePath)

{
using (Image sourceImage = Image.FromFile(SourceImagePath))
{

short newHeight = (short) Math.Round((double)(sourceImage.Height * 0.25));
short newWidth = (short) Math.Round((double)(sourceImage.Width * 0.25));
Image.GetThumbnailImageAbort abort1 = new

Image.GetThumbnailImageAbort(ImageHandling.ThumbnailCallback);
using (Image targetImage = sourceiMage.GetThumbnailImage(newWidth, newHeight,

abort1, IntPtr.Zero))
{

targetImage.Save(TargetImagePath, ImageFormat.Gif);
}

}
}

You can immediately see how much easier this is to read, as well as how much more sense it makes. The
using statement created the resource, which is then automatically disposed of when the trailing brace
(}) of the code block is reached. The syntax for the using statement is as follows:

using (resource)
{

// code that uses the resource
}

526

Chapter 14

17_042583 ch14.qxd 4/4/06 2:51 PM Page 526

What happens is that when the trailing brace (}) is reached, the resource is disposed of immediately —
there’s no waiting for the Garbage Collector to dispose of it. In the code you have the following:

using (Image sourceImage = Image.FromFile(SourceImagePath))

This is similar to declaring variables, in that it declares a variable, sourceImage, and assigns it a value.
Unlike variable declaration though, the variable is disposed of as soon as the trailing brace is reached. So
as soon as the trailing brace is done, the sourceImage variable is gone. In fact, because its scope is
defined as part of the using statement, sourceImage isn’t accessible outside of the using code block.

You only need to explicitly dispose of resources if they are deemed expensive resources, such as files
(images, text files, and so forth) or graphics resources that use lots of memory. Normal variables and
objects, even those you might think take a lot of memory such as a DataSet, should not be disposed of
explicitly.

Database Connections
Fetching data from a database can be done automatically by way of the data source controls, or manu-
ally though the objects in the System.Data namespaces. One of these objects applies to connecting to
a database — for SQL Server or SQL Server Express, that object is the SqlConnection. In general,
databases are limited to the number of connections they can have. Each connection takes resources and
may stop another application from connecting, so these should be used as sparingly as possible, and
only kept open for as short a time as possible. The general rule is to open the connection as late as possi-
ble, fetch the data, and close the connection as soon as possible, disposing of the connection once done.
The Using statement is excellent for this:

using (SqlConnection conn = new SqlConnection(“. . .”))
{

// code that uses the connection
}

Here the using statement keeps track of the connection object, conn, which is closed and disposed of
when the trailing brace is reached.

In general, if you are manually creating connections, you should dispose of them as soon as you are fin-
ished. If you are using the data source controls, object disposal is handled automatically for you.

Stored Procedures
In the examples you’ve seen so far in this book, the data has been fetched either using a data source con-
trol such as the SqlDataSource or using code, where a SqlCommand or SqlDataAdapter were used. In
all cases, the command that fetched the data, the SQL, was entered directly, such as:

SELECT [ProductID], [Name], [Description], [Price], [PictureURL] FROM [Products]

Now there’s nothing intrinsically wrong with this — it’s a standard SQL statement that works fine.
However, it’s not the fastest way to fetch data, because the database has to work out exactly how it is
going to fetch the data when the command is executed. This involves creating what’s known as an execu-
tion plan — a plan of how the SQL is going to be executed, how tables are to be joined if there are multiple

527

Performance

17_042583 ch14.qxd 4/4/06 2:51 PM Page 527

tables, which indexes to use, and so on, and it does this every time. After the plan has been created, the
stored procedure is also compiled and the compiled copy is the one that is executed.

A much better solution would be to work out the execution plan and store it for subsequent use. So
when a query is executed, the plan is ready and doesn’t need recalculating. You can do this by way of
stored procedures, which are a way of wrapping up SQL into an easily manageable form. It’s a bit like a
procedure or a function in that the SQL to be executed can be wrapped in a stored procedure and the
stored procedure name used to execute it. Consider this SqlDataSource:

<asp:SqlDataSource id=”SqlDataSource1” runat=”server”
ConnectionString=”<%$ConnectionStrings:WroxUnited%>”
SelectedCommand=”SELECT [ProductID], [Name], [Description], [Price], [PictureURL]

FROM [Products]”
</asp:SqlDataSource>

Using a stored procedure, the code would look like this:

<asp:SqlDataSource id=”SqlDataSource1” runat=”server”
ConnectionString=”<%$ConnectionStrings:WroxUnited%>”
SelectedCommand=”usp_Products”
SelectCommandType=”StoredProcedure”

</asp:SqlDataSource>

From the code perspective, this is already better for two reasons: it makes the code neater and easier to
read; and it abstracts the SQL into a central place, the database. Having the SQL in the database is good
because it’s the natural place for it — it’s code that deals directly with the tables and columns. It also
means your code is easier to manage because you know that all of the SQL is in one place. A sensible nam-
ing scheme means stored procedures are easy to locate — we’ve used the naming scheme of usp_ followed
by the name of the table. The prefix usp_ is a common one and denotes User Stored Procedure — many of
system stored procedures that SQL Server provide are prefixed by sp_, so adding the u makes it obvious
which procedures are ours and which are the server’s. The other addition when using stored procedures
is the SelectCommandType attribute, which tells the SqlDataSource that the command being issued is a
stored procedure, rather than a textual SQL statement.

The syntax for creating a stored procedure is as follows:

CREATE PROCEDURE ProcedureName
AS

SqlStatement

ProcedureName is the name of the procedure (usp_Products) and SqlStatement is the SQL statement
that will be run when the stored procedure is called. So, how do you actually go about creating stored
procedures, and what exactly do they contain? You give this a go in the following Try It Out.

Try It Out Creating and Using Stored Procedures
1. In the WroxUnited VWD application for this chapter (Chapters/Begin/Chapter14/

WroxUnited), load the Shop.aspx file and change the SelectCommand to usp_Products.

528

Chapter 14

17_042583 ch14.qxd 4/4/06 2:51 PM Page 528

2. Add the following new attribute to the SqlDataSource:

SelectCommandType=”StoredProcedure”

3. Save the file.

4. Select the Database Explorer tab and expand WroxUnited.mdf, which will appear under Data
Connections (see Figure 14-1).

Figure 14-1

5. Right-click Stored Procedures and select Add New Stored Procedure from the menu.

6. Modify the procedure so that it looks like this:

CREATE PROCEDURE dbo.usp_Products
AS

SELECT ProductID, [Name], Description, Price, PictureURL
FROM Products
ORDER BY [Name]

7. Save and close the procedure.

8. Right-click WroxUnited.mdf and select Close Connection from the menu. This ensures that
when you run the application, you don’t receive an error telling you that the data file couldn’t
be opened because it is in use by another process.

9. On the Wrox United web site, navigate to the Shop page to confirm that the page displays as
you expect it to. You’ll see no change from the user perspective, because stored procedures are
a programming concept, and apart from speed, have no impact on what the user sees.

How It Works
The first thing to look at is the stored procedure itself:

CREATE PROCEDURE dbo.usp_Products
AS

529

Performance

17_042583 ch14.qxd 4/4/06 2:51 PM Page 529

SELECT ProductID, [Name], Description, Price, PictureURL
FROM Products
ORDER BY [Name]

So you can see that the name of your stored procedure is usp_Products. The dbo part indicates the
owner of the procedure, and in this case the owner is dbo— a synonym for the database owner.
Anything after the AS statement is the actual procedure itself, and yours simply consists of a SELECT
statement. In fact, this is the same SELECT statement that was generated by VWD when the
SqlDataSource was created, with the addition of an ORDER BY clause to order the results by the product
name. This is a good way to combine the ease of data source controls with stored procedures — let the
designer create the control, and then copy the SQL statement into a stored procedure and use the proce-
dure name in the data source control. The column Name is wrapped within square brackets because Name
is a keyword within SQL. The stored procedure works without the brackets, but using them tells SQL
Server that this use of Name is a column, and saves SQL Server having to work that out on its own.

The procedure name starts with usp_ for usability and historic reasons. You don’t want your stored pro-
cedure to have the same name as the table, but keeping the table name is useful, because it helps to iden-
tify which stored procedures are related to which tables. In SQL Server, the system-stored procedures
start with sp_ (an acronym for stored procedure), so using that as a prefix would confuse your stored
procedures with the system ones. So usp_ (an acronym for user stored procedure) is generally used
instead. This isn’t a requirement, but you’ll find that it is a common practice.

SQL is both case and context insensitive, meaning no line continuation characters are required.

In the ASP.NET page, the SQL statement has been replaced by the name of the stored procedure. By
default, the SqlDataSource control expects a SQL statement, so when using a stored procedure, you
have to add the SelectCommandType attribute, setting its value to StoredProcedure. This tells
ASP.NET that the command isn’t a SQL statement to be executed, but that the named stored procedure
should be used instead.

Modifying Stored Procedures
To modify a stored procedure, you open it (double-click or right-click and select Open from the menu)
from within the Database Explorer, where you will be presented with the following:

ALTER PROCEDURE dbo.usp_Products
AS

SELECT ProductID, Name, Description, Price, PictureURL
FROM Products
ORDER BY Name

Notice that CREATE PROCEDURE has been replaced with ALTER PROCEDURE. The CREATE statement is
only used when creating stored procedures, and subsequently ALTER is used. After you’ve completed
your changes, perhaps changing the columns being selected, you can just save the file, and the proce-
dure in the database will be updated. In fact, just the matter of saving a new query changes CREATE to
ALTER.

Stored Procedure Names
In addition to using the usp_ prefix, you may want to use a consistent naming scheme for your stored
procedures. For example, a procedure that returns all rows from a table could simply have the prefix

530

Chapter 14

17_042583 ch14.qxd 4/4/06 2:51 PM Page 530

plus the table name, or perhaps be GetTableName, usp_Products or usp_GetProducts. For a
procedure that returns on a single row, the single form would work well: usp_GetProduct, or
usp_GetProductByID. Stored procedures that modify data should include the modification type:
usp_InsertProduct or usp_UpdateProduct. Alternatively, place the table name before the action:
usp_ProductInsert, usp_ProductUpdate, or usp_ProductGet. This latter scheme means that all
procedures related to the same table will show together in the procedure list, while the former scheme
means that procedures are grouped by their action. There’s no single way of doing this, and it’s really
just a matter of preference, but pick one scheme and stick to it, so that you can find procedures easily.

Using the Query Builder
If you don’t want to use the copy-and-paste method for creating SQL statements, you can use the Query
Builder. You can access this when creating or modifying a stored procedure by selecting the Insert SQL
item from the right mouse menu — just right-click anywhere in the stored procedure editor window to
get the menu. You first see a window where you select the table (see Figure 14-2).

Figure 14-2

You can double-click a table to add it, or select the table and use the Add button. When you have
selected your table and closed the window, you see the Query Builder, shown in Figure 14-3.

The Query Builder is an excellent way of learning SQL, because it presents you with an easy-to-under-
stand graphical way of designing queries, and shows the actual SQL statement. When the Query Builder
is closed, the SQL is inserted into the stored procedure. It doesn’t update the existing SQL but inserts the
new SQL instead.

If you want to use the Query Builder to edit the existing SQL in a stored procedure, you need to place
the cursor within the SQL block when editing the procedure — this block is outlined in blue — and select
the Design SQL Block from the right mouse menu. When you select this option, the Query Builder comes
up right away with the existing SQL in place.

531

Performance

17_042583 ch14.qxd 4/4/06 2:51 PM Page 531

Figure 14-3

Modifying Data and Parameters
The query and stored procedure shown earlier only fetch data, but three other types of queries can be
run: updates, inserts, and deletes. Just like SELECT queries, these update queries can also be converted
into stored procedures. As an example, take a look at the administrative Edit News page, where the sec-
ond SqlDataSource is defined like so:

<asp:sqldatasource id=”SqlDataSource2” runat=”server”
ConnectionString=”<%$ ConnectionStrings:WroxUnited %>”
SelectCommand=”SELECT * FROM [News] WHERE [NewsID] = @NewsID”
UpdateCommand=”UPDATE [News] SET [DateToShow] = @DateToShow, [Description] =

@Description, [PictureURL] = @PictureURL, [Category] = @Category, [Title] = @Title
WHERE [NewsID] = @NewsID”

InsertCommand=”INSERT INTO [News] ([DateToShow], [Description], [PictureURL],
[Category], [Title]) VALUES (@DateToShow, @Description, @PictureURL, @Category,
@Title)”

DeleteCommand=”DELETE FROM [News] WHERE [NewsID] = @NewsID”
OnDeleted=”SqlDataSource2_Deleted”
OnInserted=”SqlDataSource2_Inserted”
OnUpdated=”SqlDataSource2_Updated”>

The important parts are the SelectCommand, UpdateCommand, InsertCommand, and DeleteCommand
attributes, which define the SQL used when fetching and modifying data. There are also a number of
parameters, which provide the mapping from the ASP.NET controls to the queries:

532

Chapter 14

17_042583 ch14.qxd 4/4/06 2:51 PM Page 532

<DeleteParameters>
<asp:Parameter Type=”Int32” Name=”NewsID”></asp:Parameter>

</DeleteParameters>
<UpdateParameters>

<asp:Parameter Type=”DateTime” Name=”DateToShow”></asp:Parameter>
<asp:Parameter Type=”String” Name=”Description”></asp:Parameter>
<asp:Parameter Type=”String” Name=”PictureURL”></asp:Parameter>
<asp:Parameter Type=”String” Name=”Category”></asp:Parameter>
<asp:Parameter Type=”String” Name=”Title”></asp:Parameter>
<asp:Parameter Type=”Int32” Name=”NewsID”></asp:Parameter>

</UpdateParameters>
<SelectParameters>

<asp:ControlParameter Name=”NewsID” Type=”Int32” ControlID=”GridView1”
PropertyName=”SelectedValue”></asp:ControlParameter>
</SelectParameters>
<InsertParameters>

<asp:Parameter Type=”DateTime” Name=”DateToShow”></asp:Parameter>
<asp:Parameter Type=”String” Name=”Description”></asp:Parameter>
<asp:Parameter Type=”String” Name=”PictureURL”></asp:Parameter>
<asp:Parameter Type=”String” Name=”Category”></asp:Parameter>
<asp:Parameter Type=”String” Name=”Title”></asp:Parameter>

</InsertParameters>

When you’re converting these queries to stored procedures, the parameters can remain the same,
because the stored procedures will still require information to be passed into them. So in the next Try It
Out, you convert this page and see how the parameters and other queries work.

Try It Out Modifying Data and Parameters
1. Open the Admin\EditNews.aspx page and find the SqlDataSource2 control.

2. In the Database Explorer, expand the WroxUnited.mdf file and add a new stored procedure
(select the Stored Procedures item in the Database Explorer and from the right mouse menu
select Add New Stored Procedure).

3. Delete the existing contents of the new stored procedure and replace them with the following:

CREATE PROCEDURE dbo.usp_NewsByID
@NewsID int

AS
SELECT * FROM News
WHERE NewsID = @NewsID

You can copy and paste the SQL from EditNews.aspx if you like. If copying the SQL, you don’t
have to worry about the square brackets — these were placed around column names when the
data source control was created and ensure that the column names are not interpreted as key-
words. Because none of the columns in this procedure are the same as keywords, it doesn’t mat-
ter if you have the square brackets or not.

4. Save and close the procedure.

533

Performance

17_042583 ch14.qxd 4/4/06 2:51 PM Page 533

5. Create another new procedure, replacing the default text with the following code:

CREATE PROCEDURE dbo.usp_NewsUpdate
@DateToShow datetime,
@Description text,
@PictureUrl varchar(50),
@Category varchar(50),
@Title varchar(50),
@NewsID int

AS
UPDATE News
SET DateToShow = @DateToShow, Description = @Description,

PictureUrl = @PictureUrl, Category = @Category,
Title = @Title

WHERE NewsID = @NewsID

6. Save and close the procedure.

7. Create another new procedure, replacing the default text with the following code:

CREATE PROCEDURE dbo.usp_NewsInsert
@DateToShow datetime,
@Description text,
@PictureUrl varchar(50),
@Category varchar(50),
@Title varchar(50)

AS
INSERT INTO News(DateToShow, Description, PictureUrl, Category, Title)
VALUES (@DateToShow, @Description, @PictureUrl, @Category, @Title)

8. Save and close the procedure.

9. Create another new procedure, replacing the default text with the following:

CREATE PROCEDURE dbo.usp_NewsDelete
@NewsID int

AS
DELETE FROM News
WHERE NewsID = @NewsID

10. Save and close the procedure.

11. In the Database Explorer, close the database connection by right-clicking WroxUnited.mdf and
selecting the Close Connection menu item.

12. In EditNews.aspx change the SQL commands to their appropriate stored procedures, using the
following table as a guide.

Command Stored Procedure

SelectCommand usp_NewsByID

UpdateCommand usp_NewsUpdate

InsertCommand usp_NewsInsert

DeleteCommand usp_NewsDelete

534

Chapter 14

17_042583 ch14.qxd 4/4/06 2:51 PM Page 534

13. Add the following attributes to SqlDataSource2:

SelectCommandType=”StoredProcedure”
UpdateCommandType=”StoredProcedure”
InsertCommandType=”StoredProcedure”
DeleteCommandType=”StoredProcedure”

14. Save the page and run the application to prove that the page still works as expected. (like the
previous example, you won’t see anything different when running the application). To edit the
news items, you’ll have to be a user in one of the following roles: Reporter, Owner, Manager,
or Admin. You can find out login details by using the “help” link on the login box when not
logged in to the site, but you can use dave, dan, jim, chrish, chrisu, or john.

How It Works
From the first example you can see that the SQL statements in the data source control have been replaced
by names of stored procedures, and the appropriate CommandType attributes are set to indicate this. The
stored procedures are different from the one used in the first example, though, so take a look at some of
the specifics, starting with the one to fetch a row to be edited:

CREATE PROCEDURE dbo.usp_NewsByID
@NewsID int

AS
SELECT * FROM News
WHERE NewsID = @NewsID

The first thing to notice is that there is an extra line between the CREATE PROCEDURE and the AS state-
ment. This is where parameters are placed and is very similar to parameters for methods, as discussed in
Chapter 9. In this case, you have a parameter called @NewsID, whose data type is an int (an integer).
Parameters in SQL are always preceded by the at symbol (@). The value for this parameter is supplied
in the same way as if this SelectCommand were a SQL statement, by the SelectParameters:

<SelectParameters>
<asp:ControlParameter Name=”NewsID” Type=”Int32”

Control=”GridView1” PropertyName=”SelectedValue”></asp:ControlParameter>
</SelectParameters>

The value of the Name attribute is passed through into the @NewsID parameter of the stored procedure.
Within the procedure, the parameter is used to restrict the rows returned, so only rows where the
NewsID matches the value of the @NewsID parameter are returned.

The same technique applies for the other stored procedures. For example, to update a news story, the fol-
lowing stored procedure is used:

CREATE PROCEDURE dbo.usp_NewsUpdate
@DateToShow datetime,
@Description text,
@PictureUrl varchar(50),
@Category varchar(50),
@Title varchar(50),
@NewsID int

AS

535

Performance

17_042583 ch14.qxd 4/4/06 2:51 PM Page 535

UPDATE News
SET DateToShow = @DateToShow, Description = @Description,

PictureUrl = @PictureUrl, Category = @Category,
Title = @Title

WHERE NewsID = @NewsID

There are more parameters here, each separated by a comma. The data types are also slightly different
from what you might expect, because SQL handles strings differently from .NET. For example, the
Description and PictureUrl are both a String type in .NET, but there are two data types used in
SQL. This is because SQL allows for strings of a fixed maximum length (in which case the varchar data
type is used with the maximum in parentheses) or for unlimited strings (in which case the text data
type is used). varchar only defines the maximum length for the string, and doesn’t necessarily store
that much data. For example, PictureUrl is declared as varchar(50), but if the PictureUrl only con-
tains 10 characters, then only 10 characters are stored. There is another data type for handling strings,
char, which does store all characters. So if PictureUrl was declared as char(50) and only 10 were
used, what is stored is the actual string followed by 40 spaces. Those spaces would be automatically
added when the string was inserted into the database and would remain when the data is fetched,
which means you might have to truncate your data when displaying it. Unless you are storing a string
that you know is fixed (three-character currency codes for example), then a varchar data type is best.

We don’t have time to go into more detail on the SQL itself, because it’s really outside the scope of what
we cover in this book. The important thing to remember is that using stored procedures improves per-
formance as well as centralizing data access statements.

For more on SQL, get a copy of Beginning SQL, by Paul Wilton and John Colby, and for more on database
access in ASP.NET, see Beginning ASP.NET 2.0 Databases by John Kauffman. Both books are by Wrox Press.

Strongly Typed Collections
Chapter 9 briefly mentioned generics as a way to improve code in a number of areas: readability, reduc-
ing errors, and performance. We’re not going to go into much detail about generics — it’s a wide topic —
but it does have an impact on performance, especially in regard to collections. So it’s worth reiterating
the differences between a normal collection and a generic one. Take the standard ArrayList as an
example, which can be used like this:

using System.Collections;

ArrayList myList = new ArrayList();
myList.Add(“abc”);
myList.Add(“def”);

String s = (string)myList[0];

Now there’s nothing wrong with this code — it works fine and is probably used in lots of web sites, but
it’s not the most efficient way to store a list of strings. This is because the ArrayList stores objects, so
when a string is placed into the list, it is converted to an object data type. Likewise, when you’re fetch-
ing data from the list, it needs to be converted back to its native type. This conversion between types is
an overhead.

536

Chapter 14

17_042583 ch14.qxd 4/4/06 2:51 PM Page 536

With a generic collection, the overhead is avoided because the collection is automatically of the correct
type. Instead of an ArrayList, a generic List can be used:

using System.Collections.Generic;

List<string> myList = new List<string>;
myList.Add(“abc”);
myList.Add(“def”);

string s = myList[0];

When declaring the List, you set the type of object it contains within angle brackets — in this case
string. When objects are added to the list, they don’t need to be converted because the list is only stor-
ing strings. Similarly, no conversion is required when you’re reading a value from the list. As a result,
there’s a performance improvement when adding data and fetching it.

The added benefit of generic collections is that you can’t store anything other than the defined type in
them. This reduces potential error situations, because attempted storage of the wrong data type will
result in a compiler error.

Session State
Chapter 6 explained the stateless nature of web sites, and that without programming they forget informa-
tion between requests. The ASP.NET controls retain information about their state, and the Profile retains
information about a user, but there is no storage of data about a session, unless this is coded into the
application. The session can be described as the time spent browsing a site, from the moment you first
start browsing to the moment you close your browser. That’s an important point, because once the
browser closes the session ends — if you start browsing after closing the browser, you have a new session.

In previous versions of ASP.NET, many things that are now part of the framework had to be coded, and
the session was often used for temporary storage of items such as user details, shopping carts, and so on.
With the Profile storing user preferences and the Membership services storing user details, the need for
session storage has been reduced. Membership is covered in Chapter 4, and the Profile is covered in
Chapter 11, so refer to those chapters for details of what is stored.

This is important to know because session state takes resources, both the processor and memory, and if
it’s not required then why have it there? By default, the session is enabled for read and write access, but
this can be disabled if your application is never going to use session state. You can do this in the applica-
tion configuration file (Web.config), by using the sessionState element:

<sessionState mode=”Off” />

This turns off session state, which will save valuable resources.

If session state is required, but none of the pages need to update it, then it can be made read-only (or
turned off for pages) by changing the enableSessionState attribute of the pages element in
Web.config:

<pages enableSessionState=”ReadOnly” />

537

Performance

17_042583 ch14.qxd 4/4/06 2:51 PM Page 537

The values can be False to turn off session state, True to enable it, and ReadOnly to make it read-only.
The ReadOnly property can also be applied to the Page directive on individual pages as follows:

<%@ Page enableSessionState=”ReadOnly” %>

It should be noted that for low-user sites, turning off session state probably won’t make much difference,
but it could have an impact on a high-performance site with a large number of active users. You should
also make sure that developers know that session state is turned off for a site, otherwise they may try to
code for it when it isn’t available.

View State
The way ASP.NET server controls retain their state is a great boon for the programmer and makes con-
struction of web sites far easier than it used to be. The retention of state is called the view state and is
stored within a hidden control on the page, so no extra programming is needed. This does, however,
come with a downside, and that downside is that the size of the page increases, which in turn leads to a
slower-loading page. The advantages of view state outweigh the disadvantages, but it’s useful to under-
stand how it works. Take a look at the Wrox United home page, which contains many controls. There are
some links at the top, a menu and the login and shopping cart on the left, and then the main content,
which consists of the news. All of these are handled by controls, and only the central content is specific
to the individual page — the rest is supplied by the Master page, and therefore appears on every page.

This is important from the performance perspective because the view state for the menu is 2780 bytes.
That might not seem like a lot, but it’s sent on every page request and returned on every postback. Plus
that’s just the menu control; others have view state too. Essentially any control that participates in post-
back will probably have view state and thus the more controls, the more view state.

Like session state, view state can also be disabled, both at the page and control level, using the
EnableViewState attribute. To enable this for all controls on a page (or the Master page) you modify
the Page directive as follows:

<%@ Page EnableViewState=”False” %>

For controls, the attribute is the same. For example, the menu control in site.master could have view
state disabled like so:

<asp:Menu id=”MyMenu” runat=”server”
EnableViewState=”False” />

The menu continues to work as before, but now it has no view state so the page has more than 2000
bytes less to transmit every time. This technique can be applied to other controls, especially those such
as grids or lists. One case is the Players page (players.aspx), which uses a DataList to show the
player details, and has no interaction. Turning off view state for this control reduces the page size by
another 2700 bytes.

In fact, many of the controls don’t actually need view state, and those that interact with the page might
be able to have view state disabled. This is different from previous versions of ASP.NET where disabling
view state stopped some controls from working. View state can be disabled for the entire application in a
similar way to session state, by modifying the pages element in the Web.config file:

538

Chapter 14

17_042583 ch14.qxd 4/4/06 2:51 PM Page 538

<pages enableViewState=”false” />

If this was done, you could then turn on view state for those controls that need it.

Later in the chapter, you’ll look at how you can find out how large controls are and how much view
state they store. But first, the next section looks at how you can use code to improve performance.

Pages and Code
Many techniques can be used in code to help with performance, from a simple use of framework classes
to a properly architected application. Some techniques will only come from experience, some will only
be relevant to certain applications, and some are things you should generally know.

One thing you should know is the .NET Framework class library. You don’t have to know it inside out,
nor remember all of the classes, but it’s a good idea to familiarize yourself with the classes and names-
paces. It’s definitely worthwhile spending some time just browsing through the reference documenta-
tion, getting a feeling for what’s possible. For example, many string handling routines are built right into
the String object, and there are data type conversion classes, collections for storing multiple copies of
objects, and so on.

Data Binding and Postback
If you aren’t using data source controls for your data binding, one thing you should make sure you do is
to only bind when you need to. Data binding involves fetching the data from the database (and as previ-
ously mentioned, data access is expensive) and binding each row and column from the data to the rows
and columns in a control. There’s no point doing all of that data access and binding unless it’s absolutely
necessary. For example, consider the following code:

protected void Page_Load(object Sender, EventArgs e)
{

GridView1.DataSource = SomeCollection;
GridView1.DataBind();

}

This simply binds a GridView control to a collection of data (the data is irrelevant for this discussion),
but remember that if the page has buttons that post back, then the Page_Load event is run every time,
so the data is bound every time. If the grid isn’t going to change, and it retains its state, why rebind it?
Using the IsPostBack property can avoid this:

protected void Page_Load(object Sender, EventArgs e)
{

if (!Page.IsPostBack)
{

GridView1.DataSource = SomeCollection;
GridView1.DataBind();

}
}

539

Performance

17_042583 ch14.qxd 4/4/06 2:51 PM Page 539

Now the grid is only bound the first time the page is loaded. This may seem like an obvious point, but
you’d be surprised how easy it is to forget. Remember that database access is relatively expensive — it
consumes both time and resources.

If you are updating data and you do need to rebind the grid after a postback, you can bind in the button
event as well, after the data has been changed. What you don’t want to do is bind the grid in when the
page loads, update the data, and then rebind the grid again.

Object References
One standard performance optimization is the use of references to objects or items in collections. For
example, imagine you are processing some user input, perhaps a name, entered into the text box with
an ID of NameTextBox. You have to work with the entered name in several places in some code, so you
do this:

ValidateName(NameTextBox.Text);
UpdateDatabase(NameTextBox.Text);
DisplayName(NameTextBox.Text);

You can see that the Text property of the name is referenced three times. What happens if you realize
the user could have entered leading and trailing spaces, but that your routines need these stripped off?
You might be tempted to just trim the spaces each time, like so:

ValidateName(NameTextBox.Text.Trim());
UpdateDatabase(NameTextBox.Text.Trim());
DisplayName(NameTextBox.Text.Trim());

A much better solution is to only reference the name once, storing the value in a local variable as follows:

string Name = NameTextBox.Text.Trim();

ValidateName(Name);
UpdateDatabase(Name);
DisplayName(Name);

Not only is this easier to read, but it’s also more efficient — you’re performing the Trim once, and only
referencing the Text property once.

In general, this technique should be used wherever you reference objects properties, or call methods,
several times. There’s probably very little performance improvement for referencing a Text property a
few times, but it does sometimes aid readability, and it would certainly improve performance in a high-
volume site. Consider the search box on Amazon — how many times a day does that get used?

StringBuilder Versus String Concatenation
Joining strings is a common occurrence and the technique most people use is concatenation, like so:

string FirstName = “Bill”;
string LastName = “Barker”;
string FullName = FirstName + “ “ + LastName;

540

Chapter 14

17_042583 ch14.qxd 4/4/06 2:51 PM Page 540

Here the plus sign (+) is used to join strings. The FullName is created from the FirstName, a space, and
then the LastName. With just these three strings, trying to improve performance probably isn’t worth-
while, but when more strings are added, there is a significant overhead. The reason is that strings are
immutable, which means that after they are created, they can never be changed. For example, consider
creating a mail message to send to new members of the Wrox United fan club:

string Message = “Dear “ + MemberName +
“. Welcome to the Wrox United Fan Club. As a member you’ll” +
“ receive regular newsletters to keep you up-to-date with the” +
“ activities of the club, special discounts in the club store,” +
“ advance notice of special events, and many more exciting freebies.”;

EmailMessage.Body = Message;

This is fine as it stands because most of this is literal strings — that is, text within quotation marks. When
literal strings are concatenated, the compiler will join them so there is no overhead. But what if the
strings are user-supplied? For example, you might have the following code, where the strings are taken
from a Web Form:

string Address = AddressLine1.Text + AddressLine2 + AddressLine3 +
AddressLine4.Text + AddressLine5.Text;

This also is fine, and despite what you might read elsewhere, this is still very efficient because the com-
piler knows how many strings there are and can optimize the code for you. We’ve mentioned these two
scenarios because certain books and articles explicitly state that this code is very inefficient — ignore
them, because the code is fine. Where you might have a performance problem is when the number of
strings is large (more than 10) or unknown. For example, imagine a string being built from some rows in
a database (returned as a SqlDataReader, rdr), where you might have the following code:

string str;
while (rdr.Read())

str += rdr.GetString(0);

return str;

This loops while the reader has some data and appends the data from column 0 to the string variable str.
As it stands, this is very inefficient because the compiler doesn’t know how many strings there will be, so
it cannot perform any optimization. Although this looks innocuous, you have to remember that strings
are immutable, so after they are created, they are never changed. The preceding code, therefore, doesn’t
really append one string to another — it actually creates a new string made up from the two being
appended. This new string is then assigned to str, and this happens each time through the loop. To
improve performance, the StringBuilder class can be used, which is in the System.Text namespace:

using System.Text;

StringBuilder sb = new StringBuilder();
while (rdr.Read())

sb.Append(rdr.GetString(0));

return sb.ToString();

541

Performance

17_042583 ch14.qxd 4/4/06 2:51 PM Page 541

When the StringBuilder object is created, it allocates a buffer of memory, and as strings are appended
to it using the Append class, the buffer gradually fills up. When full, another chunk of memory is allo-
cated, ready for more strings, so memory allocation happens infrequently and in chunks. This is far more
efficient than appending strings to each other where the memory allocation happens for each string.

In general, you should use a StringBuilder object where you are appending a large number of strings,
or where the number of strings is unknown.

Picking the Right Collection
Numerous collections exist and at first glance some seem just as good as others, but you need to care-
fully consider the use of the collection to ensure optimal performance. The following list describes the
collections and what their best uses are:

❑ The ArrayList dynamically resizes as items are added and is best used to store custom object
types when the data changes frequently — for example, when you are performing frequent
inserts and deletes.

❑ The HashTable is a collection of pairs of data (a key and a value) and is best suited for data that
doesn’t change frequently. It is especially useful for data that is queried often.

❑ The ListDictionary should only be used to store small amounts of data, generally fewer than
10 items.

❑ The NamevalueCollection is a sorted collection of keys and values and is best for data that is
already sorted. It is efficient for data that frequently changes or needs to be queried often.

❑ The Queue provides first-in, first-out storage, so it should be used when sequentially ordered
data is required.

❑ The SortedList stores keys and values in a sorted order. This makes adding data slow, because
existing items need to be rearranged to ensure the new item is in the correct order. A SortedList
is best for data that doesn’t change often.

❑ The Stack provides first-in, first-out storage, so it should be used when sequentially ordered
data is required.

❑ The StringCollection is a strongly typed ArrayList, so it is useful for storing strings in an
arbitrary order, and for strings that change frequently.

❑ The StringDictionary is a strongly typed HashTable, so it is useful when strings need to be
stored and those strings don’t change often.

Using the correct collection not only improves performance but also reduces the potential for errors. For
example, if you need to store strings, use a StringCollection or a StringDictionary, because they
only store strings — trying to store another data type results in a compiler error, so your code is protected
against storage of incorrect types. A generic list will always be faster than its non-generic equivalent.

Now it’s time to turn away from the coding aspects of performance and look toward a feature that
ASP.NET provides for us. Although coding and configuration is still required, it’s not the code itself
that will improve performance — rather, it is ASP.NET itself.

542

Chapter 14

17_042583 ch14.qxd 4/4/06 2:51 PM Page 542

Caching
Caching is the term given to keeping a copy of something for later use, and provides a way of avoiding
resource-intensive operations. For example, we’ve already talked about databases being expensive in
terms of performance, but there’s no real way to avoid them with data-driven sites. So what you can do
is minimize database access by fetching data and storing it elsewhere (but not another slow resource
such as a file). Another type of caching can just involve operations that don’t need to be done multiple
times — storing the result of that operation saves having to redo it when required.

Caching can be used in many ways, but luckily ASP.NET has made some of these easier.

Page Caching
You already know that ASP.NET pages are compiled, but you probably haven’t thought much about it.
After all, it works, so what’s the big deal? Well, knowing how it works means you can understand how
page caching works, and means you can use it effectively. The following set of diagrams show how the
compilation works and how it affects caching. Figure 14-4 starts with the first request of a page, which is
compiled and stored on disk in intermediate language — this isn’t a fully compiled executable, but is a
shortened source code format. The .NET runtime then compiles the intermediate code, which executes,
and the result of that execution is the HTML that is returned to the browser.

Figure 14-4

The second time the page is requested (see Figure 14-5), assuming the source hasn’t been changed, the
intermediate code is still available, so the compilation stage is bypassed.

Disk

Request
ASP.NET page Compiler

Intermediate Code
Response

.NET CLR
Runtime

543

Performance

17_042583 ch14.qxd 4/4/06 2:51 PM Page 543

Figure 14-5

Already we have an improvement, just by the intermediate code being cached. What can also happen is
that the page output can be cached, if designed as part of the page. When the intermediate code is com-
piled, the HTML is not only returned to the browser, but it is also stored on disk, as shown in Figure 14-6.

Figure 14-6

Disk

Disk

Request
ASP.NET page Compiler

Intermediate Code
Response

.NET CLR
Runtime

Disk

Request
ASP.NET page Compiler

Intermediate Code
Response

.NET CLR
Runtime

544

Chapter 14

17_042583 ch14.qxd 4/4/06 2:51 PM Page 544

Now you have a great situation, because subsequent requests for the page simply get the HTML from
the cache. All areas of compilation are avoided, as illustrated in Figure 14-7.

Figure 14-7

Now take a look at how you can implement this type of caching.

Output Caching
Output caching is the simplest of the page caching techniques shown in the previous section, whereby
the entire page is cached. Give this a go in the next Try It Out to see how easy it is.

Try It Out Output Caching
1. In VWD, open History.aspx.

2. As the first line in the content, above the existing h1 element, add the following:

<div class=”boxFloatRight”><%=DateTime.Now%></div>

3. Save the file and run the application, navigating to the History page under the About menu.
Notice the time to the right of the title, and press F5 to refresh the page. Press F5 several times,
noting that the time is updated.

4. Close the browser. In VWD, edit the History.aspx page again, adding the following line, near
the top of the page, underneath the @Page directive:

<%@ OutputCache Duration=”30” VaryByParam=”none” %>

Disk

Disk

Request
ASP.NET page Compiler

Intermediate Code
Response

.NET CLR
Runtime

545

Performance

17_042583 ch14.qxd 4/4/06 2:51 PM Page 545

5. Save the file and re-run the application. Try pressing F5 several times and notice that now the
time isn’t updated. Wait at least 30 seconds and refresh the page again — notice that the time has
changed.

How It Works
Output caching works as shown in Figures 14-4 through 14-7. The OutputCache directive tells ASP.NET
that after the output of the page has been created, it is to be stored in the cache. The Duration is the
time in seconds that the page is to remain in the cache — any requests within those 30 seconds are served
from the cache. After the 30 seconds are up, the cached page expires and is removed from the cache. The
next request will re-execute the page, whereupon it is placed into the cache again. (The VaryByParam
attribute is discussed in a just a bit.)

The div displaying the current time shows the time the page was executed. So the first time you request
the page, the current time is shown, because this is when the HTML is generated. But because the HTML
is cached, subsequent views of the page receive the cached HTML, which of course has the time fixed.
It’s only when the page is removed from the cache that it’s re-executed and the time updated.

The advantage of this system is that pages that are used frequently will be often cached, whereas pages
that aren’t used often get discarded from the cache.

The VaryByParam attribute dictates whether any external influences affect how the page is cached.
Setting the value to none means that nothing affects the caching — only one copy will be cached.
However, what about pages that allow selections and fetch data based on those selections? One example
is the Fixtures page, which can either show past fixtures or future fixtures, depending on a value passed
in as part of the querystring. If VaryByParam=”none” is used, only one copy of the page would be
cached, so the first Fixtures page requested would be cached. Say two people view the fixtures one after
another, and that the first view is for future fixtures, which would be cached. If the second person requests
past fixtures, he or she would be returned the cached page, which was for future fixtures. In fact, with this
model, the past fixtures wouldn’t be viewable until the first page was evicted from the cache.

To get around this, VaryByParam can be set to the name of the querystring variable, which means that a
copy of the page would be cached for each different value of the variable. This could be implemented in
the Fixtures page simply by adding the following cache directive:

<%@ OutputCache Duration=”30” VaryByParam=”type” %>

The two menu entries for fixtures have the following as their URLs:

Fixtures.aspx?type=future
Fixtures.aspx?type=past

Now when two people request the different fixture pages, two copies are stored in the cache, one for
each type.

Fragment Caching
Fragment caching enables portions of a page to be cached while the rest of the page remains dynamic.
This is ideal for those pages that contain a mixture of static and dynamic content, and is achieved by

546

Chapter 14

17_042583 ch14.qxd 4/4/06 2:51 PM Page 546

having the content that is to be cached contained within a user control. The user control then uses the
OutputCache directive to dictate how it should be cached, in the same way that pages use it:

<%@ Control OutputCache Duration=”30” VaryByParam=”none” %>

When the user control is placed on the page, only the content for the user control will be cached, allow-
ing the rest of the page to remain dynamic.

This is useful for pages where the data is very dynamic and changing often and you don’t want the page
cached, but there is some content (perhaps from a database) that doesn’t change often and can be cached.

Post Cache Substitution
Post cache substitution is the opposite of fragment caching, where the page is cached but a portion of the
page is dynamic. This is achieved with the Substitution control, which works differently from other
forms of caching. You still use the OutputCache directive on the page to determine the caching, but the
Substitution control is simply a placeholder into which the content is to be placed, and this content
has to be created manually. The Substitution control has a property called MethodName that indicates
a function that will return a string of data to be substituted into the cached page. For example, the page
would be as follows:

<%@ Page CodeFile=”PCS.aspx.cs” Inherits=”PCS” %>
<%@ OutputCache Duration=”30” VaryByParam=”none” %>
<html>

<form runat=”server”>
<div class=”boxFloatRight”><%=DateTime.Now%></div>
<asp:Substitution id=”sub1” runat=”server” MethodName=”Substitute” />

</form>
</html>

The code-behind would be as follows:

partial class PCS : System.Web.UI.Page
{

static string Substitute(HttpContext myContext)
{

return “Date fetched on “ + DateTime.Now.ToString();
}

}

When this page is run, it will be cached, so the div with the date and time will remain the same. But
each time the page is requested, the Substitute method will be called, so the data that it returns will
not be cached. Here’s how it works.

The first time the page is requested by a user, the normal caching regime is applied — the page will be
placed into the output cache. However, because there is a Substitution control on the page, the output
cache keeps a note of the MethodName (for each Substitution control if there is more than one on the
page). When the page is next requested, instead of being returned directly from the cache, the method
detailed in MethodName is called, which changes the contents of the Substitution control. At this
point, it is integrated with the copy of the page in the output cache and returned to the user. In this case,
you get the benefit of output caching but with the flexibility of dynamic content.

547

Performance

17_042583 ch14.qxd 4/4/06 2:51 PM Page 547

What’s interesting about post cache substitution is that it’s available to you if you write custom controls,
meaning you can drop controls onto a page that automatically display up-to-date content irrespective of
whether or not the page is cached. The AdRotator control works like this, so if you place an AdRotator
onto a page, the ads will always be updated even if the page is cached. This works because within the
AdRotator code there is a post cache substitution that is dependent on the file that stores the ads. When
the AdRotator is on a page and that page is rendered, the AdRotator always checks the cache because
that’s what the post cache substitution does. If the ad’s file hasn’t changed, the cache entry will still be
present, but if the file has changed, the cache entry will have been removed, so the ad’s file is re-read.
With the AdRotator you get the benefits of caching but without the problem of stale ads — an important
consideration if customers are paying for ad space.

Designing for Performance
This is the vaguest area of the book, because much of the topic varies upon the particular application.
There are general techniques that can be used, but some specific things depend on your site. For exam-
ple, you wouldn’t want to go to extreme lengths to extract the last ounce of performance from an
intranet site with only 50 users. Sure, make it perform as best as you can, but sometimes there are trade-
offs that aren’t really justified. Is it worth spending a week of your time to gain an extra couple of sec-
onds? Possibly, but not always.

When designing for performance, you have to think ahead and answer the following questions:

❑ How many people are going to use the site? For an intranet site, you’ll have a fixed number of
users — the employees in the company. For an Internet site, the user base is unlimited. More
users mean more resources will be required on the web server.

❑ How much page interaction is there going to be? Do the pages just fetch and display data, or
will the user be answering questions, making selections, and so on? You obviously want your
pages to respond quickly whichever the interaction type, but for the latter, shaving off those
extra seconds might be worthwhile.

❑ Can any of the pages be pure HTML? If there is no reason for having an ASP.NET page, then
don’t. HTML and ASP.NET pages can interact, and HTML pages are faster because they don’t
require processing by ASP.NET. Also, when you’re using Internet Information Server 6 on
Windows Server 2003, HTML pages are particularly fast because of the way in which they are
stored and processed by the web server.

❑ How much database access will there be? This may affect how you configure some of the
caching options shown earlier.

One thing you have to be aware of is what ASP.NET does and what the web server does. For example, in
Chapter 4 you looked at security and saw how to protect sites and pages so that only certain users can
access them. This security only works for ASP.NET pages and not HTML pages, so you have to weigh
any performance improvements you might gain from HTML pages against the security implications. If
you have pages that need to be secure, then they need to be ASP.NET pages, even if they don’t contain
any dynamic content. Using ASP.NET pages also allows you to take advantage of other aspects of
ASP.NET, such as Master pages, themes, and navigation. Alternatively, you can configure Internet
Information Server so that HTML pages are processed by ASP.NET as well as ASP.NET pages. This
brings the addition of security, but at the loss of performance.

548

Chapter 14

17_042583 ch14.qxd 4/4/06 2:51 PM Page 548

Generally, you should use the topics shown in this chapter, such as stored procedures and caching. There
are other things that you shouldn’t do, though, such as allowing users to free-search on a large database —
it’s inevitable that users will at some stage try to query for more data than they really need, causing a slow-
down on the database and a slow-loading page. This they’ll complain about. You may think it’s their fault
for running that query, but in reality, it would be your fault (or rather the designer of the application, which
may not be you). You can avoid this situation by designing the application so this sort of long-running
query isn’t possible, or that if it is necessary, you ensure your database tables are indexed adequately.

Web Server Hardware and Software
This is always a controversial topic, but the physical platform shouldn’t be ignored. Though it’s easy to
throw more hardware at the problem of poor performance, spending money is never the entire solution,
nor is it always possible — the bean counters who control the money often can’t see the justification or
just don’t have the money. But that shouldn’t mean it’s not a valuable topic to think about, and act on if
possible. You don’t necessarily have to spend a lot on hardware to benefit. Swapping your processor for
a faster one is a choice many people would consider, but it could be a waste — not only is it relatively
expensive (a new motherboard might also be required, as well as the expense of the processor), but it also
might not be required. Memory, on the other hand, is nearly always a cost-effective upgrade. Memory is
cheap, and a web server with lots of memory will perform better than one with little memory — there’s
more memory for the web server to work with plus more available for caching.

The software also shouldn’t be ignored. Windows Server 2003 uses Internet Information Server 6 and in
a like-for-like situation will generally perform better than version 5 (on Windows Server 2000). There are
obvious licensing costs involved, but if you have the option, IIS6 is a worthwhile upgrade.

Testing Performance
How do you go about testing the performance of applications? Perhaps you want to test a new applica-
tion or an application you’ve inherited, and you want to see if it’s performing to its best ability. A num-
ber of techniques and tools are available that you can use, not all of them computer-based. One of them
is just natural common sense, and this involves being realistic about your expectations, and the expecta-
tions of the web site users. For example, if you were creating an application that showed a picture
gallery, you’d expect there to be some delay because pictures can be large and take time to load. But the
aforementioned free database query is another matter — you understand the complexities involved, but
your users may not, and they’ll expect all queries to return with the same speed.

One of the first things you need to do is establish a baseline.tThis is the set of expectations and numbers
that detail how the site performs currently: how fast pages are returned to the user, the number of pages
served within a time period, and so on. This is important, because without any numbers you have no
accuracy — you’re in the realms of guesswork. With numbers, you can make changes and see whether
they improve performance (more pages served over a given timeframe means more users). The follow-
ing sections look at some simple ways of getting these numbers.

Tracing
The simplest method is to use ASP.NET tracing, and though it is not designed as a performance tool, it can
be used to gain a great deal of understanding into how your pages are performing. One of the primary

549

Performance

17_042583 ch14.qxd 4/4/06 2:51 PM Page 549

uses for tracing is to help with debugging, and you’ll look at that in detail in the next chapter, but for now
you can concentrate on its use for analyzing performance.

Tracing works by a simple configuration change, either in the page or in Web.config, which instructs
ASP.NET to output additional information at the bottom of the page. You do this in the following
Try It Out.

Try It Out Tracing
1. From the Wrox United web site in VWD, open the Shop.aspx file (it’s in the main directory).

2. Add the Trace attribute to the Page directive (it doesn’t matter where in the Page directive
it goes):

<%@ Page Language=”VB” Trace=”True” MasterPageFile=”...”

3. Save the file and run the application. You’ll see something resembling Figure 14-8. You may see
more or less depending on your screen resolution.

Figure 14-8

550

Chapter 14

17_042583 ch14.qxd 4/4/06 2:51 PM Page 550

How It Works
It’s not so much how it works as what it does, adding several pages worth of information to the end of
the page. Chapter 15 looks at some of these sections in more detail, but for now let’s concentrate on the
Trace Information and the Control Tree.

The Trace Information shows four columns:

❑ Category: The category of the message. All messages generated by ASP.NET for the page have
the page name as the category.

❑ Message: An individual trace message. By default, some of the ASP.NET events are shown, with
two messages for each, one for the start of the event and one for the end.

❑ From First(s): The time in seconds since the first message was displayed.

❑ From Last(s): The time in seconds since the last message was displayed.

Immediately you can see that you have some rough performance information, because the total time
taken to render the page is shown in the From First column for the End Render method (shown in the
Message column). In general, this isn’t a great guide to performance, but the trace information can help
you narrow down slow-running areas when you realize you can add your own messages. This is
achieved with the Write method of the Trace class. For example:

Trace.Write(“My Category”, “My Message”);

This means you can wrap sections of code within trace statements to see which perform poorly. Chapter
15 looks at the tracing in more detail.

The second section that is of use for performance analysis is the Control Tree, which shows all of the con-
trols on the page as a hierarchical list. Earlier in the chapter, we talked about view state and how mini-
mizing it meant that less was being sent to the browser, and it’s this section that allows you to see the
view state. There are five columns:

❑ Control UniqueID: The unique ID of the control on the page. This will differ from the ID you’ve
given a control, because it is a combination of the supplied ID plus the IDs of parent controls.

❑ Type: The data type of the control. You can clearly see from this that all content, even straight
text, is converted to a control.

❑ Render Size Bytes (including children): The size, in bytes, of the control. For the entire page,
which shows as __Page, the first control in the Control Tree section, this tells you the size of the
page.

❑ ViewState Size Byes (excluding children): The size, in bytes, of the view state for this control.
Note that this doesn’t include child controls.

❑ ControlState Size Bytes (excluding children): The size, in bytes, of the control state for this con-
trol. Note that this doesn’t include child controls.

For performance purposes, it’s the numbers that are useful. The render size indicates the size of the con-
trols, so you can see if controls are outputting more code than necessary. The view state can be turned off
in many areas, further reducing the size of the page (which in turn reduces the time taken to render it).

551

Performance

17_042583 ch14.qxd 4/4/06 2:51 PM Page 551

The control state can’t be turned off, but in general, controls use very little control state so this shouldn’t
be taken as a performance issue.

Tracing only gives rudimentary information about the performance of a site, but it’s a useful starting
point for analyzing pages. What it doesn’t tell you is how well a site performs as a whole, or when mul-
tiple people access it. For that you need specialist tools.

Stress Testing Tools
Stress testing is the term given to running an application under high load, with lots of users. You could
try to persuade lots of people to access the site, but that’s not generally practical, so tools are used to
simulate multiple users. Stress testing tools work by accessing pages continuously for a defined period
of time, and recording the statistics for those pages. This gives accurate data on how a site performs
under stress, and because the tools can take into account things such as certain pages being accessed
more than others, the data is very accurate. Another great feature is that some of these tools can read
existing web log files and build a stress test from them, which means they are using real-life data to per-
form testing.

A detailed look at stress testing tools is outside the scope of this book, but if you want to look into this in
more detail, Visual Studio 2005 comes with a stress testing tool. If you’re working in a corporate environ-
ment, you might already have all of the tools you need. You can find a scaled-down version of the Visual
Studio tool from the Microsoft Download site at www.microsoft.com/downloads. Search for “Web
Application Stress Tool.” The related resources on the download page point to documents showing how
this tool works.

One very important change to make before running any stress tests is to turn off debugging, so make
sure that the debug attribute is either removed from a page or is set to False:

<%@ Page debug=”False” ... %>

In the Web.config file, you should also ensure that the debug attribute of the compilation element is
set to false:

<compilation debug=”false” ... />

The importance of this cannot be over-emphasized, because an application with debugging will perform
slower than one without. This is because the .NET runtime tracks debug code, and ASP.NET doesn’t
batch compile pages. It also creates additional temporary files. All of these can have a significant impact
on performance tests.

Performance Monitor
Another area that’s really too detailed to go into here is that of performance counters, which can be
viewed from the Performance Monitor tool in the Windows Administrative Tools folder. These enable
you to measure all sorts of statistics about the workings of your computer, including the CPU usage, the
amount of memory being used, and so on. There are also groups and counters for ASP.NET so you can see
how well ASP.NET is performing. For more details on performance monitoring, see the “Performance
Counters for ASP.NET” topic in the ASP.NET documentation for more details.

552

Chapter 14

17_042583 ch14.qxd 4/4/06 2:51 PM Page 552

Summary
This chapter looked at a variety of topics that will help your web sites perform to their best ability. It
started by looking at some SQL issues, such as database connections and stored procedures, and showed
how they not only will help with performance, but also make your code easier to read and maintain. The
latter of these is worthwhile achieving on its own, so these techniques really are useful. Additionally, this
chapter covered the following topics:

❑ Generic collections, which you won’t encounter too many times as a beginner, but should cer-
tainly strive to use as you grow in expertise. Generics, as a specific area of programming, offer
much more that just the collections, but these alone bring great benefits such as readability and
improved performance.

❑ Session state and view state, showing how both can be turned off to reduce the amount of pro-
cessing that ASP.NET needs to do when running pages.

❑ Binding, object references, concatenation, and collections. All of these are topics that will make
you think about your code as you design and write it. Stepping back and thinking about code is
often a good exercise because it makes you think about the site as a whole.

❑ Caching, which is an easy thing to implement, yet brings great performance improvements.
Caching can happen at many levels, from ASP.NET to the database, and all reduce the amount of
work required to create pages. Caching should be used wherever data isn’t changing frequently.

❑ A brief look at design and testing, to see what you have to think about and how you go about
seeing if your site can perform faster.

The next chapter looks at what happens when things go wrong, examining things like debugging and
error handling.

Exercises
1. Convert the two shop pages, Shop.aspx and ShopItem.aspx, from using SQL statements to

stored procedures.

2. Add caching to the ShopItem.aspx page, so that the page is cached. Note that you need to take
into account that this page shows different products, so the cache needs to be varied by the
product being shown.

553

Performance

17_042583 ch14.qxd 4/4/06 2:51 PM Page 553

17_042583 ch14.qxd 4/4/06 2:51 PM Page 554

15
Dealing with Errors

This chapter covers another topic that you need to think about during the whole of site
construction — how to deal with errors. In many ways, this chapter could fit at the beginning of
the book, because it’s highly likely you’ll get errors as you work through the book. What this
chapter covers could be useful, but some of what’s discussed here uses code and depends on other
chapters, so we’ve left it until now.

It’s a fact that you will get errors when creating applications, and that’s okay. We all make mis-
takes, so this is nothing to be ashamed of or worried about. Some will be simply typing mistakes
and some will be more complex, maybe due to lack of practice, but these go away with time. So
what this chapter looks at is a variety of topics covering all aspects of handling errors. In particu-
lar, it examines the following:

❑ How to write code so that it is error proof

❑ What exceptions are and how they can be handled

❑ How to centrally handle exceptions

❑ How to use debugging and tracing to work out where errors are occurring

The first section looks at how to bulletproof code.

Defensive Coding
Defensive coding is all about anticipation — working out what could possibly go wrong and cod-
ing to prevent it. One of the precepts of defensive coding is that you should never assume any-
thing, especially if user input is involved. Most users will be quite happy to use the site as
intended, but hackers will search for ways to break into sites, so you have to do anything you can
to minimize this risk.

Being hacked isn’t the only reason to code defensively. A coding bug or vulnerability may not be
found by a user, but by yourself or a tester. Fixing this bug, then, involves resources — perhaps a
project manager, a developer to fix the bug, or a tester to retest the application, all of which take

18_042583 ch15.qxd 4/4/06 2:52 PM Page 555

time and money. Also, any change to the code leads to potential bugs — there may not be any, but there’s
always the possibility. As you add code to correct bugs, the original code becomes more complex, and
you occasionally end up with imperfect solutions because you had to code around existing code.

So what can you do to protect your code? Well, there are several techniques to defensive coding.

Parameter Checking
The first of the defensive coding techniques is checking the parameters of methods. When writing sub-
routines or functions, you should never assume that a parameter has a valid value — you should check it
yourself, especially if the content originates from outside of your code. Take the code for the shopping
cart for an example — this is in App_Code\Shopping.cs. One of the methods of the cart allows the item
to be updated, like so:

public void Update(int RowID, int ProductID,
int Quantity, double Price)

{
CartItem Item = _items[RowID];

Item.ProductID = ProductID;
Item.Quantity = Quantity;
Item.Price = Price;
_lastUpdate = DateTime.Now;

}

This is fairly simple code, but it does no checking on the parameters that are passed in. The reason for
this is that the code that uses this gets the parameter values from the database before passing them in. So
although you can say that the code is okay, what happens if this code is reused in another project? What
happens if someone circumvents the calling code to pass in an incorrect price, one lower than that stored
in the database? Or more simply, what if the RowID passed in is invalid? With this as an example, you
could modify the code like so:

public void Update(int RowID, int ProductID,
int Quantity, double Price)

{
if (RowID < _items.Count)
{

CartItem Item = _items[RowID];

Item.ProductID = ProductID;
Item.Quantity = Quantity;
Item.Price = Price;
_lastUpdate = DateTime.Now;

}
}

You’ve now protected this against an incorrect RowID, so no errors will occur when this method is called.
It’s a simple check, ensuring that the ID of the row to be updated isn’t larger than the number of rows.

In general, you should always check incoming parameters if the method is a public one — that is, it is
called from outside the class. If it’s a method that isn’t accessible from outside of the class (private or

556

Chapter 15

18_042583 ch15.qxd 4/4/06 2:52 PM Page 556

protected), then this is less important because you’re probably supplying those parameters yourself,
although this doesn’t necessarily mean the parameters will be correct — you might get the values from
elsewhere before passing them into the method.

Avoiding Assumptions
In addition to checking parameters, you should avoid assumptions in your code. For example, consider
an example that I actually had just now while formatting this document, where there was an error in my
own code (yes, shocking isn’t it?). I have VBA macros in Word to perform formatting for the styles of the
book, one of which is for the grey code block. It’s a generic routine that accepts three strings, which are
the Word styles to use for the first line, the intermediate lines, and the last line, as shown here:

Private Sub FormatParas(First As String, Middle As String, Last As String)

Dim iRow As Integer

Selection.Paragraphs(1).Style = First
For iRow = 2 To Selection.Paragraphs.Count - 1

Selection.Paragraphs(iRow).Style = Middle
Next
Selection.Paragraphs(iRow).Style = Last

End Sub

This code uses Word objects to format paragraphs and assumes that there will be more than one para-
graph, which seems sensible because each line is a separate paragraph and there is a separate macro to
format code that is only a single line. The code works by setting the first paragraph in the selection to
the style defined by First. For subsequent lines (line two downward), the Middle style is used, and
for the final line, Last is used as the style. However, if there is only one paragraph in the selection, the
For...Next loop doesn’t run (Selection.Paragraphs.Count being 1), but it does set iRow to 2. The
final line fails because iRow is 2 and there is only one paragraph in the selection. I failed in this code
because I didn’t defend it against user failure (me being the user in this case), where the selection was
only a single paragraph.

The corrected code is as follows:

Private Sub FormatParas(First As String, Middle As String, Last As String)

If Selection.Paragraphs.Count = 1 Then
Selection.Paragraphs(1).Style = Last
Exit Sub

End If

Dim iRow As Integer

Selection.Paragraphs(1).Style = First
For iRow = 2 To Selection.Paragraphs.Count - 1

Selection.Paragraphs(iRow).Style = Middle
Next
Selection.Paragraphs(iRow).Style = Last

End Sub

557

Dealing with Errors

18_042583 ch15.qxd 4/4/06 2:52 PM Page 557

With this code, a check is made for the number of paragraphs before the loop is done, and if there is only
a single paragraph, no looping is done.

This is a surprisingly common occurrence — errors made because of simple assumptions. This particular
code has been in use for several years without failure, but today, although it was user error that caused
the problem, the failure is in the code for not protecting itself. The dumb user (me) had what looked like
multiple paragraphs, but because of soft carriage returns in fact had only one. So the user was wrong,
but the code didn’t protect against it.

Query Parameters
If you build your applications using the wizards and data source controls, then you won’t run into this
problem, because the generated SQL statements contain parameters. But if you manually construct SQL,
or inherit an application, you may see code like this:

string SQL = “SELECT * FROM Products “ +
“WHERE ProductID=” + Request.QueryString[“ProductID”[

Or like this:

string SQL = “SELECT * FROM Employee “ +
“WHERE LastName=’” + LastName.Text + “‘“

Both of these dynamically construct a SQL statement, concatenating strings. The first uses a value from
the QueryString, the second from a TextBox. The problem here is that there’s no validation on the user
input, so it’s easy to perform what’s known as SQL injection, where rogue SQL statements are injected
into existing ones. With the second example, if the user enters a last name, the SQL would be as follows:

SELECT * FROM Employee WHERE LastName=’Paton’

However, the user could enter the following:

Paton’ OR 1=1 --

This would turn the SQL into the following:

SELECT * FROM Employee WHERE LastName=’Paton’ OR 1=1 --’

The first thing to know is that -- is a comment in SQL, so the trailing quote is ignored. The SQL state-
ment matches any LastName that is Paton, which is the intended match, but also the 1=1 statement,
which will always be true. The result is that all employees would be shown, which is definitely not the
intended purpose. This is mild, however, compared to the user who enters the following:

Paton’ ; DROP TABLE Employee –

The SQL statement is now as follows:

SELECT * FROM Employee WHERE LastName= ‘Paton’ ; DROP TABLE Employee --’

558

Chapter 15

18_042583 ch15.qxd 4/4/06 2:52 PM Page 558

The SELECT statement works as expected, but there’s now a second SQL statement — the semicolon sep-
arates statements in SQL. So the query runs, and then the table is dropped — no more employees. Serious
trouble. This could easily have been any other SELECT statement to find out more information about the
database, or even dropping the entire database.

The solution to SQL injection is to use parameters, because these automatically prevent this type of attack.
If you’re using stored procedures, which you should be, then parameters are required for passing infor-
mation into the procedure, but when you’re building SQL dynamically, you can still use parameters. So if
you were running a SqlCommand, you could do this:

string SQL = “SELECT * FROM Employee WHERE LastName=@LastName”
SqlCommand cmd = new SqlCommand(SQL, conn);

cmd.Parameters.Append(“@LastName”, SqlDbType.VarChar, 50);

cmd.Paramaters[“@LastName”].Value = LastName.Text;

Here @LastName is the parameter name, and because the value is assigned via the parameter, no SQL
injection can take place. This is because ADO.NET protects against SQL injection attacks when using
parameters — the values passed into parameters are checked for specific content that would signify an
attack.

Validation
We’ve already mentioned that any user input is automatically suspicious, and one of the things that can
be done to mitigate the risk is to validate that input, stopping the user from entering bad input in the
first place. This is good for two reasons: first, it means the code is safer, and second, users won’t have to
deal with potentially confusing error messages. They might still get messages telling them that their
input is incorrect, but at least they won’t get an obscure error message because your code failed.

To help with this problem, there is a suite of five validation controls with ASP.NET 2.0 that can check
user input before it even gets to your code:

❑ RequiredFieldValidator: Ensures that a field is not left empty.

❑ CompareValidator: Compares the entered text with a value, or with another control.

❑ RangeValidator: Ensures the entered text is within a specified range.

❑ RegularExpressionValidator: Matches the entered text against a regular expression.

❑ CustomValidator: Runs custom code to validate the entered text.

These are standard ASP.NET controls that are placed on the page, generally alongside the control they
are validating. There is also a ValidationSummary control that allows display of error messages in one
place. You add these in the following Try It Out.

Try It Out Validation Controls
1. In VWD, in the Wrox United project for this chapter (C:\BegASPNET2\Chapters\Begin\

Chapter15\WroxUnited), open FanClub\FanClubMatchReport.aspx.

559

Dealing with Errors

18_042583 ch15.qxd 4/4/06 2:52 PM Page 559

2. Find FormView1 and find TextBox1 in the <EditItemTemplate>. Between TextBox1 and the

, add the following:

<asp:RequiredFieldValidator id=”rfv1” runat=”server”

ControlToValidate=”TextBox1”
Text=”You haven’t entered the report!” />

3. Do the same for the <InsertItemTemplate>— enter exactly the same code between TextBox1
and the
.

4. Save the file and run the application, logging in as a fan club member (use Dave or Lou as the
user — the passwords are dave@123 and lou@123).

5. Select the Add Match Report from the Fan Club menu, pick a match, and select the Add New
Report link.

6. Don’t enter any text in the text area, but press the Save New Report link. You’ll see an error mes-
sage, shown in Figure 15-1.

Figure 15-1

7. Enter some text and save the report.

8. Click the Add New Report link again to add another report.

9. Don’t enter any text, but click the Cancel New Report link instead. Notice that the error message
is displayed again. You can’t cancel unless some text has been entered, so let’s correct that.

10. Stop the application and, back in VWD, edit the page. Find btnCancelReport (a LinkButton
that is in both the <EditItemTemplate> and <InsertItemTemplate>), and for both occur-
rences, add the following attribute:

CausesValidation=”False”

11. Save the file and repeat steps 5 and 6. Notice that you can now cancel even if no text has been
entered.

560

Chapter 15

18_042583 ch15.qxd 4/4/06 2:52 PM Page 560

How It Works
This works because the validation control is linked to the text box and won’t allow the page to be posted
back to the server until some text has been entered. Here’s a look at the validator in more detail:

<asp:RequiredFieldValidator id=”rfv1” runat=”server”
ControlToValidate=”TextBox1”
Text=”You haven’t entered the report!” />

The two properties you’re interested in are the ControlToValidate and the Text. The first is what
links the controls — in this case, it’s TextBox1 that the validator will check. If no text is entered, the
contents of the Text property are displayed. If text has been entered, the validator does nothing and no
output is shown.

Validation occurs whenever a control would cause the page to be posted back to the server — this could
be a Button, a LinkButton, and so forth, but what’s important to note is that by default no postback
occurs because the validation is done client-side in the browser. This means that the user sees a respon-
sive display without that refresh that can be so annoying. However, you don’t want the validation to
take place when you’re trying to cancel an edit — if you’re canceling, it doesn’t matter whether there’s
anything in the text box. By default, all means of posting back cause validation to occur, but by setting
the CausesValidation property to False for the cancel link, no validation takes place.

Validating Multiple Controls
The previous example showed how to validate a single control, with the error message shown directly
by the control. However, there are times when you want to validate several controls, and in these cases,
it’s not always sensible to have the error message presented directly by the control. For example, you
might have a grid of data, or the data you are editing might be neatly aligned. Under these circum-
stances, you might not want to have the message displayed, because it would change the layout of the
screen. However, you probably still want some form of indication as to which editable field failed the
validation, as well as having the full error message displayed somewhere. For that, you use the
ValidationSummary control. The following Try It Out shows how this can be done.

Try It Out The ValidationSummary Control
1. Open FanClub.aspx and add RequiredFieldValidator controls between the end of the text

boxes and the </td>. You’ll need the following validators:

<asp:RequiredFieldValidator id=”rfv1” runat=”server”
ControlToValidate=”txtName”
Text=”*” ErrorMessage=”You must enter a value for your name” />

<asp:RequiredFieldValidator id=”rfv2” runat=”server”
ControlToValidate=”txtAddress”
Text=”*” ErrorMessage=”You must enter a value for the address” />

Validation should always be done server-side, but can optionally be done client-side
as well. You should never rely solely upon client-side validation, because it’s easy
for hackers to post data directly to a page, bypassing the client-side validation. The
default settings in ASP.NET 2.0 are for both client- and server-side validation.

561

Dealing with Errors

18_042583 ch15.qxd 4/4/06 2:52 PM Page 561

<asp:RequiredFieldValidator id=”rfv3” runat=”server”
ControlToValidate=”txtCity”
Text=”*” ErrorMessage=”You must enter a value for the city” />

<asp:RequiredFieldValidator id=”rfv4” runat=”server”
ControlToValidate=”txtCounty”
Text=”*” ErrorMessage=”You must enter a value for the county” />

<asp:RequiredFieldValidator id=”rfv5” runat=”server”
ControlToValidate=”txtPostCode”
Text=”*” ErrorMessage=”You must enter a value for the post code” />

<asp:RequiredFieldValidator id=”rfv6” runat=”server”
ControlToValidate=”txtCountry”
Text=”*” ErrorMessage=”You must enter a value for the country” />

<asp:RequiredFieldValidator id=”rfv7” runat=”server”
ControlToValidate=”txtEmail”
Text=”*” ErrorMessage=”You must enter a value for the email address” />

<asp:RequiredFieldValidator id=”rfv8” runat=”server”
ControlToValidate=”txtAlias”
Text=”*” ErrorMessage=”You must enter a value for the membership alias” />

For example, the Name would be:

<tr>
<td>Name:</td>
<td><asp:TextBox id=”txtName” runat=”server” />

<asp:RequiredFieldValidator id=”rfv1” runat=”server”
ControlToValidate=”txtName”

Text=”*” ErrorMessage=”You must enter a value for the name” />
</td>

</tr>

2. After the validator for the e-mail address, add the following:

<asp:RegularExpressionValidator id=”rev1” runat=”server”
ControlToValidate=”txtEmail”
Text=”*” ErrorMessage=”Please enter a valid email address” />

3. Switch the page into Design View and select the LoginView control, FCLoginView. From the
Common Tasks menu, select RoleGroup[0]–FanClubMember from the Views list (see Figure 15-2).
This will show the controls in the RoleGroup for users in the FanClubMemberRole.

Figure 15-2

4. Scroll down the page to find the RegularExpressionValidator — this is the right-hand validator
next to the Email text box. Select this validator, and in the Properties area, click the
ValidationExpression property. Then click the button that appears, as shown in Figure 15-3.

562

Chapter 15

18_042583 ch15.qxd 4/4/06 2:52 PM Page 562

Figure 15-3

5. The window that appears is the Regular Expression Editor, which comes pre-filled with a selec-
tion of common expressions. Select Internet E-mail Address and click OK, and the selected
expression will be filled into the ValidationExpression property.

6. Switch the page back to Source View, and before the Button (btnSaveChanges), add the
following:

<asp:ValidationSummary id=”vs” runat=”server” DisplayMode=”BulletList” />

7. Save the file and run the application. Log in as either Dave (using the password dave@123) or
Lou (using the password lou@123), and navigate to the Fan Club home page.

8. Add text to the fields, but leave the City and Email fields blank. Click the Save Changes link
and you’ll see Figure 15-4.

Figure 15-4

9. Enter some text into the Email field, but make sure it isn’t a valid e-mail address. Click the Save
Changes link again and notice how the error message has changed.

563

Dealing with Errors

18_042583 ch15.qxd 4/4/06 2:52 PM Page 563

10. Delete the text from the Name field and press the Tab key to move to the next field. Notice that
as soon as you tab out of the field, a red star appears next to the field, indicating an error.

How It Works
Several differences exist between this example and the first one where you used only one Required
FieldValidator. In this example, there are several, each for different fields, as well as other validation
controls. One thing you may have noticed about the required field validators is that no error message
was displayed alongside the fields they are validating. That’s because the Text property was set to *—
just a simple marker to indicate an error in the field. The Text property is displayed inline — that is,
wherever the validator is placed. The ErrorMessage property is used wherever the error is displayed,
and in this case, that is shown by the ValidationSummary.

The ValidationSummary is fairly obvious in its purpose, because it simply displays in one location all
error messages from validators. This allows the validators to be discrete, showing just a simple asterisk
to mark the field in error without causing displacement on the screen, but still to have a full error mes-
sage. The DisplayMode for the summary can be a list, bulleted list, or a paragraph.

The other validator used was the RegularExpressionValidator, which checks the entered text
against a regular expression — this is a format for defining character sequences. If you want to use regu-
lar expressions for other fields, such as postal codes, then the Regular Expression Editor has some
expressions. Otherwise, you can find many others at www.regexlib.com/, which has a searchable
database of expressions freely available. You may have noticed that the Email field had two validators:
one to ensure some text was entered, and one to ensure that the entered text was valid. Both validate the
same control because they both have their ControlToValidate property set to txtEmail. You can mix
and match the other validators in the same way, which gives great flexibility in ensuring that entered
data is correct.

The other thing you may have noticed was that tabbing from field to field also showed the asterisk, but
not the error message in the summary. Because validation is being done client-side, the client script
knows that text is required for a field, so if the field is left empty, it can signal an error. But because the
summary is intended to show all errors, this isn’t filled in unless a postback is tried. So you get the best
of both worlds — dynamic error handling with full error messages.

Exception Handling
Exception handling is the term given to anything out of the ordinary that happens in your application —
exceptional circumstances. Although handling exceptions is part of defensive coding, there’s a difference
between programming for things that could quite easily go wrong, or are even expected to go wrong,
such as incorrect passwords, and those things over which you have no control. For example, consider
what happens if you can’t connect to the database. How would you handle that situation? Now it’s
likely that there’s nothing you can really do in your application, because it may well be dependent upon
the database, but you still don’t want your users to see an ugly error message. Instead, you want to dis-
play your own message, maybe letting them know that there is a problem and they can try again later.

The trick is to have a strategy, to work out in advance what you’re going to do when something goes
wrong.

564

Chapter 15

18_042583 ch15.qxd 4/4/06 2:52 PM Page 564

What Are Exceptions?
Exceptions are a range of classes, all deriving from the same base class called Exception. Many differ-
ent exceptions exist, such as FileNotFoundException, which would occur when trying to access a file
that doesn’t exist; and SqlException, which would occur when there is a database problem.

At some stage while working through the examples in the book, you may have seen something like
Figure 15-5.

Figure 15-5

This occurred because of an incorrect SQL statement — one of the column names was wrong. This sort of
exception is unlikely to get out into a live application, but other exceptions are, so you need to learn how
to trap them.

The Exception Object
The Exception object is the base class for all exceptions and defines the base properties that all excep-
tions have. These properties are explained in the following table.

Property Description

Data A collection of key/value pairs that provide additional details about
the exception.

HelpLink The link to the help file that contains a description of the exception.

InnerException The underlying exception that caused the problem.

Message Text that describes the exception.

Source The name of the application or object that caused the problem.

StackTrace The trace of method calls that lead up to the problem.

TargetSite The method that threw the current exception.

565

Dealing with Errors

18_042583 ch15.qxd 4/4/06 2:52 PM Page 565

One thing that that you might notice is that there is an InnerException property. This allows excep-
tions to be stacked, which is useful when you have layers of code. For example, an underlying part of
the .NET Framework may raise an exception, but that might be wrapped within another exception to
provide more information.

Other exceptions might define additional properties to describe the specifics on the exception. For exam-
ple, SqlException also defines the properties described in the following table.

Property Description

Class The severity of the error, as defined by SQL Server.

Errors A collection of SqlError objects detailing the problem.

LineNumber The line number within the SQL or stored procedure where the
problem occurred.

Number The error number.

Procedure The name of the stored procedure where the problem occurred.

Server The name of the SQL Server machine.

Source The name of the data provider.

State The error code from SQL Server.

You can see that when exceptions occur, you have a certain amount of information regarding the prob-
lem, but if you use the correct type of exception, you get more information. This is discussed later in the
chapter.

How to Trap Exceptions
Trapping exceptions is crucial to maintaining control of your application, and is done with Try Catch
statements. This is easiest to understand through an example, using some code you saw earlier in the
book (Chapter 14) — the code that generates thumbnails for uploaded images:

public static void GenerateThumbnail(string SourceImagePath,
string TargetImagePath)

{
using (Image sourceImage = Image.FromFile(SourceImagePath))
{

short newHeight = (short) Math.Round((double)(sourceImage.Height * 0.25));
short newWidth = (short) Math.Round((double)(sourceImage.Width * 0.25));
Image.GetThumbnailImageAbort abort1 = new

Image.GetThumbnailImageAbort(ImageHandling.ThumbnailCallback);
using (Image targetImage = sourceiMage.GetThumbnailImage (newWidth, newHeight,

abort1, IntPtr.Zero))
{

targetImage.Save(TargetImagePath, ImageFormat.Gif);
}

}
}

566

Chapter 15

18_042583 ch15.qxd 4/4/06 2:52 PM Page 566

At the moment, this code doesn’t protect itself in any way, but you can add both defensive coding and
exception handling. The source image, for example, must exist before it can be converted, so that can be
checked first, but the target image doesn’t exist, so you need to protect against some problem when sav-
ing it. Here’s how the code could look:

public static void GenerateThumbnail(string SourceImagePath,
string TargetImagePath)

{
if (!File.Exists(sourceImage))

return;

using (Image sourceImage = Image.FromFile(SourceImagePath))
{

short newHeight = (short) Math.Round((double)(sourceImage.Height * 0.25));
short newWidth = (short) Math.Round((double)(sourceImage.Width * 0.25));
Image.GetThumbnailImageAbort abort1 = new

Image.GetThumbnailImageAbort(ImageHandling.ThumbnailCallback);
using (Image targetImage = sourceiMage.GetThumbnailImage(newWidth, newHeight,

abort1, IntPtr.Zero))
{

try
{

targetImage.Save(TargetImagePath, ImageFormat.Gif);
}
catch(Exception ex)
{

Tools.Log(“ImageHandling.GenerateThumbnail”, ex);
}

}
}

}

The first thing to note is the defensive coding for the source image. This uses the Exists method of the
File class to see if the file exists, and if it doesn’t, you simply exit silently. The exception handling is
wrapped around the saving of the target file and follows this general principle:

try
{

Place the code here that you need to trap exceptions for
}
catch (Exception ex)
{

Place the code here to handle the exception
This could be displaying a tidy message or logging the exception

}

In the code, targetImage.Save is the line that could potentially cause an exception. It might not be
possible to save the file for a variety of reasons: an incorrect file name, permissions, and so on. If an
exception does occur, execution immediately transfers to the Catch block, so any lines within the Try
that were after the line in fault would not be executed.

567

Dealing with Errors

18_042583 ch15.qxd 4/4/06 2:52 PM Page 567

The catch block is interesting because there can be more than one of them. For example:

try
{

code to read from a database
}
catch (SqlException sqlEx)
{

A SQL exception, so something is wrong with the database
}
catch (Exception ex)
{

Any other error
}

When there is more than one catch block and an exception occurs, the exceptions are compared in the
order in which they are declared. So if an exception was raised, it would be tested to see if it was a
SqlException, and if it was, the SqlException catch block would be run. If the exception wasn’t a
SqlException, the next one down would be tried until a match was found or until the closing brace (})
of the try code block was reached. Because all exceptions ultimately inherit from Exception, this is the
last chance saloon — the default exception if you will.

It’s important that when you’re using multiple catch blocks, you place the most granular first. For
example, in the previous code example, consider if this had been done:

try
{

code to read from a database
}
catch (Exception ex)
{

Any other error
}
catch (SqlException sqlEx)
{

A SQL exception, so something is wrong with the database
}

Even if a SqlException was raised, it would never be trapped because the catch for Exception
would trap it. This is because Exception matches all exceptions, which is why you should always place
it last when using multiple catch blocks.

There is also another part to try catch, which is the finally block. This is optional, and is a block of
code that always runs, whether or not an exception is raised. Again, this is easier to see as code:

try
{

code to read from a database
}
catch (Exception ex)
{

Code to handle the exception

568

Chapter 15

18_042583 ch15.qxd 4/4/06 2:52 PM Page 568

}
finally
{

This code will always run
}

What happens here depends on whether an exception is raised. If not, then all of the lines of code in the
try block are run, followed by the code in the finally block. If an exception is raised, the appropriate
catch block is run, followed by the finally block. This gives you a chance to perform any clean-up
operations that might be required. A typical example of this is when you’re performing some database
action, and you want to close the database connection whether or not an exception was raised:

SqlConnection conn;

try
{

conn = new SqlConnection(“ . . . “);
conn.Open();

// do some database action
}
catch (Exception sqlEx)
{

// log the exception
Tools.Log(“A database exception occurred”, sqlEx);

}
finally
{

if (conn != null)
conn.Close();

}

In this code, the connection is declared outside of the try block, allowing it to be referenced from within
all code blocks (such as the catch and finally blocks). In the finally block, you don’t just automati-
cally close the connection because the exception might have been raised when trying to open the connec-
tion, so the connection object (conn) might not have a value. So conn is first checked to see if it has a
value, and only then is it closed.

The following Try It Out gives you a better feel for how it can be used. You’re going to update the
Checkout page for the Wrox United shop to ensure that any database errors are handled gracefully and
that they don’t leave the database in an inconsistent state.

Try It Out Trapping Exceptions
1. In the Wrox United application for the chapter, open the code file for Checkout.aspx and move

to the Wizard1_FinishButtonClick event. This is the event that runs when the checkout wiz-
ard has finished collecting information from the user and will move the order from the shop-
ping cart into the database.

2. Add the following variable declaration at the top of the method:

SqlTransaction trans = null;

569

Dealing with Errors

18_042583 ch15.qxd 4/4/06 2:52 PM Page 569

3. Modify the first few lines after the variable declarations so it looks like the following code — the
new lines to add are shaded:

try
{

conn = New SqlConnection(. . .);
conn.Open();

trans = conn.BeginTransaction();

cmd = New SqlCommand();
cmd.Connection = conn;
cmd.Transaction = trans;
. . .

4. You need to do the same at the end of the method, so modify the code to look like this:

cmd.ExecuteNonQuery();
}

trans.Commit();
}
catch (SqlException SqlEx)
{

if (trans != null)
trans.Rollback();

CreateOrderErrorLabel.Visible = true;
return;

}
finally
{

if (conn != null)
conn.Close();

}

Profile.Cart.Items.Clear();
}

5. To ensure that the exception is seen in practice, there actually needs to be some error, so you’ll
force one by making the SQL statement incorrect. Change the SQL statement that inserts into the
Orders table to insert into no_Orders:

cmd.CommandText = “INSERT INTO no_ORDERS(MemberName ...”;

6. Save the file and run the application.

7. Go to the shop and add some items to your cart and then go to the Checkout page. Step through
the checkout wizard. After clicking the Finish button, you’ll see the message stating that an
error has occurred. Although it says that the administrator and shop know about this, you’ll be
coding those bits later in the chapter.

570

Chapter 15

18_042583 ch15.qxd 4/4/06 2:52 PM Page 570

How It Works
The code to trap any database exceptions is fairly straightforward, but you’ve added something else to
ensure the integrity of the database, and this is a transaction. A transaction, in database terms, ensures
that either all commands succeed or none of them do. The problem is that an order is being created in
the Orders table and the items being ordered are created in the Order Items table. So at least two com-
mands are being run, one for each table, but there will be a command for each order line. With any
database operation, there is a chance of failure, and you need to ensure that both operations succeed,
inserting the data into the Orders and Order Items table. You wouldn’t want the order to be created but
no order items, nor would you want the reverse. Both are problems. With only an order line, the system
thinks that an order is there, but there are no items. The reverse means there would be order lines, but no
corresponding order, and thus no way to access those order lines.

Wrapping all of these commands within a transaction means that the order and order lines are not only
directly written to their tables, but they are also placed in a transaction log, a special table handled by
the database. If there are no problems during the transaction, it is committed and all is as expected. If
there are problems, however, the transaction is rolled back, which means that the rows that were added as
part of the transaction are removed. So there are only two outcomes — all rows are added, or none are
added. This means that an exception will leave the database in a consistent state, as it was when the
transaction started. (It’s a bit like time travel, but without all those weird states of seeing your parents
when they were your age.)

Look at the code to see how this fits in with the exception handling. You saw the creation of this code in
Chapter 13, when looking at e-commerce and the creation of the checkout process, but the explanation of
the exception handling was postponed until this chapter.

The first thing is the declaration of a new variable, of type SqlTransaction:

SqlTransaction trans = null;

It is assigned an initial value of null to avoid potential runtime errors. In your code, this isn’t a prob-
lem, but if you remove = null from the declaration and recompile the application, you can see that
VWD displays an error stating “Use of unassigned local variable ‘conn’” The reason is that the compiler
cannot be sure that the variable will have an assigned value, so it gives a warning. You’ll see where this
assigned value of Nothing comes in later.

After the declaration, the code is wrapped within a Try Catch block:

try
{

conn = New SqlConnection(. . .);
conn.Open();

After the connection is open, a transaction is started. This gives you the marker point for the database
commands, and it’s to this state of the database that you will roll back if an exception occurs. The
BeginTransaction method of the SqlConnection returns a SqlTransaction object, so later in the
code, this can be used to commit or rollback the database changes:

trans = conn.BeginTransaction();

571

Dealing with Errors

18_042583 ch15.qxd 4/4/06 2:52 PM Page 571

With the transaction created, it is then assigned to the command using the Transaction property:

cmd = New SqlCommand();
cmd.Connection = conn;
cmd.Transaction = trans;

Now that the transaction has been assigned, the code can insert the required data into the tables. After
that has happened, the transaction can be committed:

trans.Commit();

That’s all the code for a successful operation, but if there is a problem, the exception needs to be caught:

catch (SqlException SqlEx)

Within the catch block, the transaction needs to be rolled back because some problem arose. But, before
the transaction can be rolled back, the trans object needs to be checked to see if it contains a value.
Remember that when the SqlTransaction object was declared, it was given a value of null. Within
the try statement, the first lines of code create and open a connection, and these two lines of code could
raise an exception. If that happened, the SqlTransaction object wouldn’t have been created, so the
trans variable would still have its default value of null. That’s why the compiler gives an error and
why the default value is set. So you only want to roll back the transaction if it was actually started, in
which case the trans variable would not be null:

if (trans != null)
trans.Rollback();

After the transaction has been rolled back, an error message is displayed, by simply making a Label
control visible. After this is done, you can return from the method:

CreateOrderErrorLabel.Visible = true;
return;

Before you return, though, the connection needs to be closed, and this needs to be done whether or not
an exception occurred, so a finally block is used. Remember that the finally block is always run.
Like the transaction, the connection also has an initial value of null, and this is used to ensure that there
is a connection before you try to close it:

finally
{

if (conn != null)
conn.Close();

}

The final thing to do is to clear the items from the cart, because they’ve now been added to the Orders
and Order Items tables:

Profile.Cart.Items.Clear();

You can see that in use, the try catch block is quite simple, and that in conjunction with transactions, it
allows the integrity of the database to remain. Displaying an error on the screen to let users know a

572

Chapter 15

18_042583 ch15.qxd 4/4/06 2:52 PM Page 572

problem occurred is a good thing, but the site administrators also need to know, so the next section looks
at how these details could be logged to a file.

Logging Exceptions
Trapping exceptions is good, but you generally need to log them somehow. After all, if things go wrong
you really want to know about it. Logging can be performed in many ways, with the log file being writ-
ten to a variety of places, including a database table, the Event Log (either under Application events or a
custom log), and a log file. There are advantages and disadvantages to all forms of logging. For example,
you might not be able to write to the Event Log, because you might not have permission. Or if you can
write to the Event Log, how would you then view the entries? Most web servers are tightly guarded and
viewing the Event Log might not be allowed. The advantage of the Event Log is that exceptions are con-
tained along with other application errors.

This section looks at the log file option, because it provides an easy way to log exceptions. A simple text
file is used to store details of exceptions, showing the time and the details of the exception. Each excep-
tion is appended to the existing file, or if no file exists it will be created. Although you are using a log
file, the technique works for the other ways of logging; the difference is simply where you log the excep-
tion. In the following Try It Out, you modify the exception code you added to the checkout.

Try It Out Logging Exceptions
1. In the Wrox United application for the chapter, open the code file for Checkout.aspx and move

to the Wizard1_FinishButtonClick event.

2. In the section where the SqlException is caught, modify the code so that it looks like this:

catch (SqlException SqlEx)
{

if (trans != null)

trans.Rollback();

Tools.Log(“An error occurred while creating the order”, SqlEx);

CreateOrderErrorLabel.Visible = true;
return;

3. Save the file.

4. In the App_Code directory, create a new class called Tools (right-click App_Code and select Add
New Item).

5. In the new Tools.cs class file, add the following Imports statements at the top of the file:

using System.IO;
using System.Web;

6. Within the Tools class, add the following methods:

public static void Log(string Message)
{

Log(Message, null);

573

Dealing with Errors

18_042583 ch15.qxd 4/4/06 2:52 PM Page 573

}

public static void Log(string Message, Exception Ex)
{

string fileName = Path.Combine(
HttpContext.Current.Request.PhysicalApplicationPath, “WroxUnited.log”);

using (StreamWriter logFile = new StreamWriter(fileName, true))
{

logFile.WriteLine(“{0}: {1}”, DateTime.Now, Message);
if (Ex != null)

logFile.WriteLine(Ex.ToString());
logFile.Close();

}
}

7. Save the file and run the application. Log in, add some items to the shopping cart, and then fol-
low the checkout procedure. When you finish the checkout, the screen will say that an error
occurred.

8. Navigate to the directory in which the web site is running and open WroxUnited.log. You’ll
see the exception details logged.

9. Don’t forget to change the SQL statement back to a correct one after you’ve run this example.
Just remove the no_ from the table name:

cmd.CommandText = “INSERT INTO ORDERS(MemberName ...”;

How It Works
The first code modification was to log the exception from within the Catch block in the Checkout page:

Tools.Log(“An error occurred while creating the order”, SqlEx);

This calls the Log method of the Tools class, passing into it a string describing the problem, and the
exception SqlException object. The Log method is a static method, so you didn’t have to create an
instance of the Tools class.

The exception will now be logged, so the logging class is created. This is a class file and is placed in the
App_Code directory, which means that it will automatically be compiled. Within the Tools class, the
first thing that is done is to add some namespaces:

using System.IO;
using System.Web;

System.IO is required because that is where the file handling routines are stored, and System.Web will
allow you access to details of the current web site.

Next is the routine that trapped the exception, where the following was added:

Tools.Log(“An error occurred while creating the order”, SqlEx);

574

Chapter 15

18_042583 ch15.qxd 4/4/06 2:52 PM Page 574

This calls the Log method of the Tools class, passing in an error message and the exception. Notice that
it wasn’t necessary to create an instance of the Tools class. Because the class is just a container for sim-
ple methods, those methods have been made static, so a class instance isn’t required (static methods
were explained in Chapter 9). The code for these is fairly simple, too, and shows a good case of over-
loaded methods.

The first method accepts a single argument, the error message to log. It doesn’t actually do any logging
itself, but calls another Log method, passing the message into that. It also passes null as a second
parameter:

public static void Log(string Message)
{

Log(Message, null);
}

The second method, also called Log, is where the real work is done. This method accepts two parame-
ters. The first is the error message, and the second is an Exception object:

public static void Log(string Message, Exception Ex)

Next, the file name needs to be worked out. This can be placed in any suitable location, but keeping it
in the home directory of the web site is a good idea. The path for that directory can be retrieved by the
PhysicalApplicationPath property of the current Request. However, because this code isn’t within
an ASP.NET page, but is a class, the Request property isn’t directly available. To get access to it,
HttpContext.Current is used — this is the context of the current HTTP request that the ASP.NET page
is running under.

The full file name needs to contain both the path and the file, so these are combined using the Combine
method of the Path class. This will append a directory separator (the \ symbol) if one is required:

string fileName = Path.Combine(
HttpContext.Current.Request.PhysicalApplicationPath, “WroxUnited.log”);

When the full file name is available, the file can be opened, and for this a StreamWriter is used:

using (StreamWriter logFile = new StreamWriter(fileName, true))

Streams can be of different types, such as memory, but passing in the fileName parameter when the
StreamWriter is created enables you to write directly to a file. The second parameter, true, indicates
that data should be appended to the file, rather than a new file being created (which is the default). The
using statement ensures that the reference to this file is disposed of when the code block is closed — this
frees up the file resource as soon as it is no longer used, a technique that should always be followed.

After the file is opened, the WriteLine method is used to write data to the file:

logFile.WriteLine(“{0}: {1}”, DateTime.Now, Message);

WriteLine is an interesting method, because it can take many parameters. It always takes at least one
parameter, but there can be others. The first parameter is the string to be written, but you want the cur-
rent date and time, plus the message to be written as well. Rather than concatenating a string with these

575

Dealing with Errors

18_042583 ch15.qxd 4/4/06 2:52 PM Page 575

details, they can be added as parameters and placeholders used in the string to identify where they
should go. The placeholders are identified by a number within curly braces, so {0} will be replaced by
the current date and time, and {1} will be replaced by the message.

After the main message has been written to the file, the exception, passed into the Log method as a
parameter, is tested. If it is not null, then an exception has been passed in, so this is also written to the
file. The ToString method of the exception is used to get the descriptive text of the exception:

if (Ex != null)
logFile.WriteLine(Ex.ToString());

The file is closed when all of the details have been written to the file:

logFile.Close();

After the using code block is ended, the file resources will be freed:

}
}

At the end of this procedure, there is a Log method that can be called in two ways. The first way is as fol-
lows:

Tools.Log(“error message”);

The second way is like this:

Tools.Log(“error message”, exception);

This sort of overloaded method brings extra flexibility, because it allows you to use the same routine for
different types of logging. If there’s no exception, you use a different form of the Log method.

One thing you might have noticed is that the second parameter of the Log method is of type Exception,
but when this method was called, a variable of type SqlException was passed in. This is acceptable
because SqlException is derived from Exception Temember in Chapter 9 where inheritance was cov-
ered? SqlException inherits from DbException, which inherits from ExternalException, which
inherits from Exception. It seems a long chain of inheritance, but that doesn’t matter for parameter
methods; as long as the type passed into a parameter ultimately derives from the type declared in the
parameter, there will be no compilation errors. The types are compatible.

Mailing Exceptions
Log files are a great way to store exceptions, but they are generally passive — you have to go and look at
them. A more active option for dealing with exceptions is to have them mailed to someone, perhaps the
web site administrator. This is easy to achieve in ASP.NET 2.0, because classes are built in for sending
mail messages, and these live in the System.Net.Mail namespace. Here’s some code that could be used
in addition to, or instead of, the file logging:

576

Chapter 15

18_042583 ch15.qxd 4/4/06 2:52 PM Page 576

public static void SendMail(string Message, Exception Ex)
{

using (MailMessage msg =
new MailMessage(“website@wroxunited.net”, “admin@wroxunited.net”))

{
msg.Subject = “WroxUnited.net Web Site Error”;
if (Ex == null)

msg.Body = “There was an error on the website”;
else

msg.Body = Ex.ToString();

SmtpClient client = new SmtpClient(“MyMailServer”);
client.UseDefaultCredentials = true;
client.Send(msg);

}
}

Two classes are in use here. The MailMessage class defines the message to be sent — the constructor sets
the “from” and “to” addresses for the message, and the Subject and Body properties set the subject line
and the contents. The second class is the SmtpClient, the constructor of which defines the name of the
mail server. Setting UseDefaultCredentials to true allows the ASP.NET code to connect to the server
using Windows network credentials. Finally, the Send method actually sends the mail.

You can configure some of these properties in the web configuration file, Web.config, which is where
you can also set authentication settings if they are required for connection to the mail server:

<configuration xmlns=”http://schemas.microsoft.com/.NetConfiguration/v2.0”>
<system.net>

<mailSettings>
<smtp deliveryMethod=”Network”>
<network

defaultCredentials=”False”
host=”MyMailServer”
password=”MyPassword”
port=”25”
userName=”MyUserName”
from=”website@wroxunited.net”/>

</smtp>
</mailSettings>

</system.net>
</configuration>

The properties for configuring mail are fairly simple. Setting defaultCredentials to false ensures
that the user name (userName) and password (password) specified are used to connect to the e-mail
server (host), and from sets the e-mail address of whom the e-mail is from. The port number has to do
with TCP networking — e-mail uses port number 25, and you don’t need to know any more about ports
apart from that number.

Sending mail isn’t just for notifying administrators of exceptions, and you can use it for all sorts of
things. The security framework will use these settings when it sends forgotten passwords if users
request them.

577

Dealing with Errors

18_042583 ch15.qxd 4/4/06 2:52 PM Page 577

You could use the e-mail code instead of, or in conjunction with, the logging to a file. For example, you
could have the following:

Tools.Log(“My error message”, SqlEx);
Tools.SendMail(“My error message”, SqlEx);

This would perform both actions, but it includes repeated code — the error message. An alternative
would be to add the e-mail code into the Log method, but that would always send the e-mail, which
might not be required. A better option might be to only send an e-mail if required, perhaps adding
another parameter to the Log method to indicate if the e-mail is to be sent:

Tools.Log(“My error message”, SqlEx, true);

The Log method could then have the following code:

public static void Log(string Message, Exception Ex,
bool SendEmailMessage)

{
if (SendEmailMessage)

SendEmail(Message, Ex);

// rest of logging code
}

This gives a combination of the passive reporting to a log file, and the active, which lets the administra-
tor know of problems as they occur.

Raising Exceptions
You’ve seen that you can trap exceptions, but you can also raise your own exceptions. One use for this
is that you can use the same exception handling mechanism to deal with custom errors as you use for
.NET errors. However, this comes with a warning, in that you should still adhere to the rule of only
using exceptions for exceptional circumstances. If you can handle the problem gracefully without using
exceptions, you should do so.

To raise an exception, you use the Throw statement. For example:

throw new Exception(“exception description”);

You can also pass in an underlying exception:

throw new exception(“exception description”, ex);

If you are within a Catch block, you can also re-throw the existing exception by just calling the Throw
statement on its own. You’ll see how this can be used a little later when handling exceptions globally is
discussed.

578

Chapter 15

18_042583 ch15.qxd 4/4/06 2:52 PM Page 578

Exceptions Best Practices
Using exceptions is good practice, but the following rules should be adhered to when dealing with
exceptions:

❑ You should only catch an exception if you actually expect the exception. This doesn’t mean that
it will happen, but that it could. A database failure is a good example, because these aren’t
unheard of. If you can understand why an exception would occur and you know how to deal
with it, then that’s a good case for catching it.

❑ Dealing with the exception doesn’t mean that you know how to cure it, but that something can be
done. For example, in the Checkout page modified earlier in the chapter, catching SqlException
was necessary to allow the use of transactions so the database wouldn’t be left in an inconsistent
state. That is dealing with the exception, even if there is nothing that can be done about the
underlying problem.

❑ As a general rule, it’s a good idea to avoid catching only the base Exception. Because this is the
base class for all exceptions, it’s not narrow enough in its focus.

❑ If you are performing database work, catch the appropriate exception (SqlException for SQL
Server).

Global Exception Handling
Handling exceptions where they happen is both good and bad. In the Checkout page, the exception had
to be dealt with locally because of the transaction, but in many cases, you might want some form of cen-
tralized exception handling. You also might want some way to handle exceptions not trapped elsewhere.
The Checkout page is again a good example, because there is handling for SqlException, but not for
anything else. What happens if some other exception occurs? This is an important point because it really
isn’t sensible to put Try Catch around every piece of code just in case an exception might occur. In fact,
that would be bad practice because it would make the code hard to read and isn’t required.

The way global exception handling is managed is with the Global.asax file, which contains code for
the application. In this case, the term application has a special meaning, because code in Global.asax
responds to application-level events. These are events that are raised at specific points during the run-
ning of the application, events that are raised by ASP.NET. Global.asax is a code-only page, and has no
user interaction.

Several events are contained in the Global.asax page:

❑ Application_Start: Raised when the application first starts. This will be when the first user
accesses the site and should be used to set any initial start conditions.

❑ Application_End: Raised when the application stops.

❑ Session_Start: Raised when a user starts a session. This will be when the user starts accessing
the site for the first time, and will include the time when a user closes the browser window and
opens it again.

579

Dealing with Errors

18_042583 ch15.qxd 4/4/06 2:52 PM Page 579

❑ Session_End: Raised when a user session ends. This isn’t when the browser window is closed,
because sessions have a timeout — if there is no user activity within that time, the session ends.

❑ Application_Error: Raised when an unhandled error occurs.

❑ Profile_OnMigrateAnonymous: Raised when an anonymous user logs in, and allows migra-
tion of any Profile properties. (The Profile was covered in Chapter 11.)

As you can see, the event you’re interested in is the Application_Error event, which is where you can
add code to centrally handle untrapped exceptions. You see how the Application_Error event can be
used in the following Try It Out.

Try It Out Handling Global Errors
1. Using Windows Explorer, navigate to the web site directory, C:\BegASPNET2\Chapters\

Begin\Chapter15\WroxUnited, and have a look at WroxUnited.log.

2. In the Wrox United application, open the global.asax file.

3. Add the following code to the Application_Error event procedure:

Exception ex = Server.GetLastError();

Tools.Log(“An unhandled error was caught by Application_Error”, ex);

4. Save the file.

5. Open checkout.aspx.cs and move to the Wizard1_FinishButtonClick event.

6. Comment out the code that logs the error and replace it with the following:

throw;

7. To ensure that the exception is seen in practice, there actually needs to be some error, so you’ll
force one by making the SQL statement incorrect. Change the SQL statement that inserts into the
Orders table to insert into no_Orders:

cmd.CommandText = “INSERT INTO no_ORDERS(MemberName ...”;

8. Save the file and run the application.

9. If there are no items in your cart, go to the Wrox United shop and add some items. Otherwise,
proceed to the Checkout page. Step through the checkout wizard. After clicking the Finish but-
ton, you’ll be switched back to VWD stating that an error has occurred. Press F5 to continue.

10. Using Windows Explorer, navigate to the web site directory, C:\BegASPNET2\Chapters\
Begin\Chapter15\WroxUnited, and check the WroxUnited.log file (or you can press the
refresh button in the Solution Explorer, and the new file will appear). You’ll notice that the
exception has been logged. Check the last error and see that it states that an error was caught by
Application_Error. Also notice that the next line states that an HttpUnhandledException
was thrown, followed by details of the SqlException.

11. Delete WroxUnited.log and switch back to the Checkout.aspx.cs code.

12. Change the throw statement to this:

throw new Exception(“An error occurred while creating the order”, SqlEx);

580

Chapter 15

18_042583 ch15.qxd 4/4/06 2:52 PM Page 580

13. Run the application again and follow the same procedure to generate the error.

14. Open WroxUnited.log again and look at the details. First there is the
HttpUnhandledException, then Exception with the text you added, and then the
SqlException.

How It Works
The first thing to understand is that the Application_Error in global.asax is raised when any
unhandled error occurs. In this event, in your code you need to find out what the error was that caused
the event to be raised, and for that you use the GetLastError method of the Server object. This returns
an exception object, which is passed into the Log method to log the error. So if you had a Try Catch
block around your code, how was it that you got to the Application_Error event? It’s because you re-
threw the error using the Throw statement — although you handled the initial SqlException, the re-
thrown exception wasn’t handled.

The important thing to note about what happened is that the exception is wrapped in another exception —
an HttpUnhandledException. All exceptions you get from within Application_Error will be like this.
The actual SqlException is shown because in the Log method, you used ToString to write out all of the
details of the exception. If you didn’t want the HttpUnhandledException shown, you could use the
InnerException property of the exception:

Exception ex = Server.GetLastError().InnerException;

When the exception is logged, now it would only show the actual exception that was unhandled.

In the second case, you used the following:

throw new Exception(“An error occurred while creating the order”, SqlEx);

This throws a new Exception, but passes into that the actual exception that caused the problem. So
you’ve wrapped the original exception within your own — a useful technique if you need to store more
details than are available in the original exception. Here you are just detailing that the problem arose
when an order was being created.

Don’t correct the SQL statement. You’ll need the incorrect statement in a later exercise when you look at
debugging.

In general, using this simple code in Application_Error and logging exceptions to a file means that
you always have details of problems that occur during the normal running of a site. You can use the
stack trace (more on this later) to see exactly where the problem was, and you don’t have to rely on users
telling you what they think the problem was (the two very rarely match).

Custom Error Pages
One problem with the error handling code shown so far is that the user still sees a confusing message.
Ideally, you’d like to present the user with something less shocking than a stack trace (a list of the meth-
ods called so far, which you’ll look at later), for two very good reasons. First, a stack trace is not what

581

Dealing with Errors

18_042583 ch15.qxd 4/4/06 2:52 PM Page 581

users need to see — if something has gone wrong, then they need to see a clear description, explaining
that it wasn’t their problem, and that something is being done about it. Second, showing a stack trace
gives away a lot of information about your site, details that can be used by hackers. Even if your site is
secure, they could cause unnecessary slowdowns as they try to hack the site.

In addition to exceptions, there are other types of errors that aren’t nice for a user to see. For example,
what if you rename a page but don’t update the links to it, or perhaps the user types in the wrong name
for a page? In these cases, you’d see the 404 — the error number that indicates a page could not be
found. ASP.NET applications can be configured to redirect the user to other pages, depending on the
type of error.

Configuring Custom Error Pages
Configuration of custom error pages is done in the Web.config file using the customErrors section.
For example:

<customErrors mode=”On” defaultRedirect=”customError.aspx”>
<error statusCode=”404” redirect=”missingPage.aspx” />

</customErrors>

The mode attribute can be one of the following:

❑ Off: The ASP.NET error details are always shown, even if a custom error page exists.

❑ On: The custom error is always shown, and the ASP.NET error details are never shown.

❑ RemoteOnly: The ASP.NET error details are only shown to local users, meaning users logged
on locally to the machine. For remote users (everyone else using the site), one of two things is
shown: a default page telling the user that an error has occurred, but without showing any error
details, or a custom error page if one exists.

The values of On or RemoteOnly should be used for a live site, whereas Off can be used for debugging
purposes.

The defaultRedirect attribute defines the page that is shown if an unhandled error occurs.

The error element details specific errors and the page to redirect to if that error occurs. In this case, the
statusCode is 404, which means a missing page, so the user will be redirected to missingPage.aspx if
the page they are looking for cannot be found. This enables you to have detailed pages for individual
errors, so you can help the user correct the problem. The missing page example could explain that the
page cannot be found and perhaps get users to check that they typed the correct URL.

In the following Try It Out, you create your own custom error page.

Try It Out Custom Error Pages
1. In the Wrox United application for the chapter, open Web.config and add the following within

the <system.web> section:

<customErrors mode=”On”>
<error statusCode=”404” redirect=”missingPage.aspx” />

</customErrors>

582

Chapter 15

18_042583 ch15.qxd 4/4/06 2:52 PM Page 582

2. Save the file.

3. Create a new Web Form called missingPage.aspx, making sure that the code isn’t placed in a
separate file, but that you pick the site.master file for the Master page.

4. Within the <asp:Content> controls, add the following text:

We’re sorry but the page you were looking for cannot
be found. It’s probably hiding behind the couch. We’ll
tell the Web site administrator to go and fetch it.

5. Save the file and run the application.

6. Navigate to a page that doesn’t exist — perhaps abc.aspx. You’ll need to type this page into the
address bar of the browser. Notice that the text you entered is displayed rather than the normal
message for a missing page.

How It Works
The working of this is quite simple, because when custom errors are enabled, ASP.NET intercepts the
errors. What it does depends on how you’ve configured the customErrors section. In this case, the
mode has been set to On, which means that custom errors will always be shown — this is required
because you are logged on to the machine locally, so remoteOnly wouldn’t work.

You’ve also configured a custom page for the statusCode of 404, so whenever a page cannot be found,
ASP.NET doesn’t show the normal error message but instead redirects to the custom error page. This
technique makes your site friendlier to use, which means that if an error does occur, the user isn’t left
with a frightening error message, but is presented with something more reassuring. Also, because this is
an ASP.NET page, you could make the error message more helpful. For example, you could check the
name of the file the user was looking for and see if something similar exists on the site, perhaps by look-
ing up the pages in the SiteMap or from a database. You could then either take the user to the nearest
matching page, or present them with a list of possible matches.

Error pages can be combined with logging to give very proactive feedback of problems within the site.
For example, sites often expand or change, and the names of pages sometimes change, but you might
forget to change a link to the changed page. If a user clicks a link on your site and that page isn’t found,
then sending an e-mail to the site administrator is very useful — the page in error can be quickly cor-
rected so that no other users see the problem.

Debugging and Tracing
Controlling how errors are shown to the user is only part of the story when developing web sites, and
tracking down those errors is just as important. Ideally, errors should be found during development and
testing, and in many ways the job of testing is just as development. Many companies, Microsoft included,
have teams of testers running through development projects, shaking out those errors.

As a developer, you are bound to make mistakes, ranging from simple typing errors to more complex
coding problems. The typing problems are usually easy to track down because they often cause compila-
tion errors, but runtime errors can be more problematic. Tracing and debugging are the two main tech-
niques used to find errors.

583

Dealing with Errors

18_042583 ch15.qxd 4/4/06 2:52 PM Page 583

Using ASP.NET Tracing
You first looked at tracing in Chapter 14. It is the technique of adding code to your pages, for a few rea-
sons: for debugging purposes, to output values of variables, or simply to find out where in your code
certain things happen. The great thing about ASP.NET tracing is that not only is it extremely simple to
do, but it’s also easily configurable and doesn’t require tracing code to be removed if you don’t want the
trace information shown. What’s also great is that you get a wealth of additional information about the
page, which can be useful for both debugging purposes and for learning about ASP.NET.

Tracing Individual Pages
Tracing can be turned on for individual pages by adding the Trace attribute to the Page directive:

<%@ Page Trace=”true” %>

On its own, this outputs a great deal of information about the page, but you can also add your own out-
put using the Trace class, which has methods to write output to the trace log:

Trace.Write(“my information”)

The following Try It Out shows tracing in action.

Try It Out Page-Level Tracing
1. In the Wrox United application for the chapter, open Checkout.aspx in Source View.

2. Add the Trace attribute to the Page directive:

<%@ Page Trace=”True” ... %>

3. Save the file and run the application.

4. Add some items from the shop to your shopping cart and navigate to the Checkout page, where
you’ll see that the bottom of the page has lots of information added. You might have to scroll
down the page to see all of the information.

5. Switch back to VWD and open the code file for the Checkout page.

6. At the top of the Page_Load event, add the following line of code:

Trace.Write(“In Page_Load”);

7. Before the check to see if the user is authenticated, add the following:

Trace.Write(“In page_Load”, User.Identity.IsAuthenticated.ToString());

if (User.Identity.IsAuthenticated)
...

8. Save the page and run the application, again navigating to the Checkout page.

9. Scroll the page down so you can see the Trace Information section, as shown in Figure 15-6.

10. Here you can see that the output from the Trace.Write statements is mixed with the output
that ASP.NET puts into the trace. Take a look at how this works and what information the trace
output produces.

584

Chapter 15

18_042583 ch15.qxd 4/4/06 2:52 PM Page 584

Figure 15-6

11. Edit Checkout.aspx again and set the Trace attribute to False:

<%@ Page Trace=”False” %>

12. Save the page and run the application, again navigating to the Checkout page. Notice that the
trace information is gone from the page, even though the Trace.Write statements are still in
the code.

How It Works
The first thing to look at is what all of this trace information is, and what it is useful for. There are many
sections, as detailed in the following table.

Section Contains

Request Details Details of the request, such as the status code.

Trace Information The flow of page events, showing the category, message, and
time from the first to last byte of information sent to the browser.

Control Tree The hierarchy of controls in the page.

Session State Any session variables in use.

Application State Any application variables in use.

Request Cookies Collection The cookies stored for the current site.

Response Cookies Collection Any cookies set during the page processing.

Headers Collection The HTTP headers.

Response Headers Collection Any headers set during the page processing.

Form Collection Contents of the form.

QueryString Collection Any querystring parameters for the request.

Server Variables The HTTP server variables.

585

Dealing with Errors

18_042583 ch15.qxd 4/4/06 2:52 PM Page 585

All of this information is useful, although some sections are more useful than others. The Control Tree,
for example, clearly shows the hierarchy of controls. You saw this in Chapter 14 when you looked at per-
formance, but it’s also useful for understanding how the page is made up from the hierarchy of controls.
At the top is the Page object, beneath that the Master page, and then controls within the Master page.
This continues with all of the page objects, and shows the unique name of the control as well as its type.

The Trace Information section shows the events in the order in which they are raised, so it is great for
seeing exactly when things happen. Without any trace information of your own, the standard page
events are shown, and anything you write is slotted into its correct space. So take a look what you
actually did:

protected void Page_Load(object sender, System.EventArgs e)
{

Trace.Write(“In Page_Load”);

if (!Page.IsPostBack)
{

if (Profile.Cart == null)
{

NoCartlabel.Visible = true;
Wizard1.Visible = false;

}

Trace.Write(“In Page_Load”, User.Identity.IsAuthenticated.ToString());
if (User.Identity.IsAuthenticated)

Wizard1.ActiveStepIndex = 1;
else

Wizard1.ActiveStepIndex = 0;
}

In the first statement, you used Trace.Write to output a single string, which is displayed in the
Message column. With the second Trace.Write, you passed in two parameters, and in this case, the
first becomes the Category and the second becomes the Message. You can put trace statements anywhere
within your code, and the output will be displayed in the Trace Information section, so it’s a great way
to simply see what’s happening in your code. There is a also a Warn method of the Trace class, which
outputs in the same way as Write, but the content is in red. This is useful for picking out statements
within the trace output.

The other thing you may have noticed is that by changing the value of the Trace attribute at the top of
page to False, no trace output is displayed. You didn’t have to remove the Trace.Write statements
from the code, because these are simply ignored if tracing isn’t enabled. This is great during develop-
ment, because you can liberally sprinkle Trace.Write statements throughout your code to give you a
good understanding of the program flow, and you can turn on or off the tracing without having to
remove or comment out these statements.

Tracing All Pages
Although tracing in individual pages is useful, what’s great is being able to control tracing for the entire
application. This is done with a configuration setting in Web.config, within the <system.web> section:

<trace enabled=”True” />

586

Chapter 15

18_042583 ch15.qxd 4/4/06 2:52 PM Page 586

When the enabled attribute is set to True, tracing is enabled for the application, but the output isn’t
shown in the pages. Instead, it is stored for viewing by way of a special URL —Trace.axd— which
doesn’t point to a physical file, but is instead interpreted by ASP.NET. You give application tracing a go
in the next Try It Out.

Try It Out Application-Level Tracing
1. In Source View in Checkout.aspx, remove the Trace attribute from the Page directive at the

top of the page.

2. Open Web.config and add the following within the <system.web> section:

<trace enabled=”True” />

3. Save the file and run the application, navigating to the Checkout page.

4. Within Internet Explorer, select File➪New➪Window (or press Control+N) to launch a new win-
dow from the same site.

5. In the address bar, change Checkout.aspx to Trace.axd and press Enter. You should see some-
thing like Figure 15-7.

Figure 15-7

6. Click the View Details link on the Checkout.aspx line, and you will see the trace page you’ve
already seen. Notice that it contains the two pieces of data that were added to Checkout.aspx
in the Page_Load event.

587

Dealing with Errors

18_042583 ch15.qxd 4/4/06 2:52 PM Page 587

How It Works
The working of this is simple: by enabling the trace element in Web.config, you are instructing
ASP.NET to keep track of the trace information, but not to show it in the page. When you navigate to
Trace.axd, ASP.NET recognizes this special URL, and instead of returning the standard 404 error page
(or a custom page if you have one configured), it returns a list of pages that have been accessed in the
application. Clicking the View Details link displays the trace information for that page.

The <trace> element has several attributes in Web.config, as described in the following table.

Attribute Description

enabled Indicates whether or not application tracing is enabled. The default value
is False.

localOnly When set to True, this ensures that Trace.axd is only accessible from the
local machine. True is the default value, and stops remote users of the
site from accessing the trace information.

mostRecent Indicates whether or not the most recent trace requests are kept. The
default is False, which keeps the first n items, where n is determined by
the requestLimit attribute. If this is True, then the most recent n items
are kept.

pageOutput When this is set to True, the trace output is shown in the actual page, as
well as being stored for show by Trace.axd. The default is False,
although this doesn’t affect pages that have tracing enabled on them
directly.

requestLimit The number of trace requests to store.

traceMode Indicates the order in which the trace requests are shown. The default is
SortByTime, where the order is time-based, but this can also be SortBy
Category, where the requests are shown alphabetically.

The greatest thing about application tracing is that it can be invaluable in finding bugs in a running sys-
tem. You can edit pages to add Trace.Write and turn on application tracing — the trace information
will be stored, but the users won’t see any of it. You can then examine the trace details to help diagnose
any problems.

Using the Debugger
The tracing features of ASP.NET 2.0 provide a great way to trace the flow of the application, but probably
the most important weapon in your coding arsenal is the debugger. This allows you to halt the application
while it is running, examine variables, and step through the code line by line. The debugger is built into
Visual Web Developer and Visual Studio 2005, so you don’t have to run a separate application — you sim-
ply run the application from the development tool. The best way to learn debugging is to actually use it,
as you do in the following Try It Out.

588

Chapter 15

18_042583 ch15.qxd 4/4/06 2:52 PM Page 588

Try It Out Debugging
1. In the Wrox United application for the chapter, open Checkout.aspx.cs.

2. In the Page_Load event, place the cursor on the line that checks to see if the cart has a value:

if (Profile.Cart == null)

3. Set a breakpoint on this line. You can do this in one of three ways. The first is by selecting the
Toggle Breakpoint option from the Debug menu. The next is by pressing F9, and the last is by
clicking the gray border at the left of the line of code:

4. Whichever method you use, this is a toggle, so performing the same action again removes the
breakpoint. When a breakpoint is set, the gray border will show a red circle and the line will be
highlighted, as shown in Figure 15-8.

Figure 15-8

5. Scroll down to the Wizard1_FinishButtonClick event, and place a breakpoint on the follow-
ing line:

foreach (CartItem item in Profile.Cart.Items)

6. Run the application from VWD or VS and navigate to the Checkout page. The page will not
display — you’ll see that you are stopped in the debugger (see Figure 15-9).

7. Press F5, or select Continue from the Debug menu. The page now appears.

8. Add some items to the shopping cart and then navigate to the end of the Checkout page again.
When the breakpoint is reached, press F5, and you’ll see the error message shown in Figure 15-10.

You’ve hit an exception so the debugger halts. This is because of a change to the checkout code
you did earlier, where you had an incorrect SQL statement so that you could force an exception.

589

Dealing with Errors

18_042583 ch15.qxd 4/4/06 2:52 PM Page 589

Figure 15-9

Figure 15-10

9. Click the View Detail link to show the details of the exception. Click the plus sign (+) to expand
the details (see Figure 15-11), and you’ll see that the exception shows your custom text and that
there is an InnerException.

10. Click this open to show the original exception, in that there isn’t a table called no_Orders.
This isn’t something that can be corrected while running the application, so you need to stop
debugging.

11. From the Debug menu, select Stop Debugging, or press Shift+F5.

590

Chapter 15

18_042583 ch15.qxd 4/4/06 2:52 PM Page 590

Figure 15-11

12. Edit the code to correct the error, changing no_Orders back to Orders:

cmd.CommandText = “INSERT INTO ORDERS(MemberName ...”;

13. Run the application again, and navigate to the Checkout page again, making sure you have
logged in and there are at least three items in your shopping cart.

14. When the breakpoint is reached in Page_Load, press F5 to continue.

15. Continue through the checkout process, noticing that the breakpoint doesn’t get hit when you
click the Next button. The breakpoint in Page_Load will only be reached the first time the page
is loaded because the code block in which the breakpoint is set is only when IsPostBack is
false.

16. When you get to the end of the checkout process, click Finish, and another breakpoint will be
reached, as shown in Figure 15-12.

17. From the Debug menu, select Step Over, or press F10. Notice that execution moves to the
next line.

18. Keep pressing F10 until you get to the line that sets the @Quantity parameter. Notice how exe-
cution moves to the next line each time you step.

19. Hover the cursor over the item of item.Quantity, and you’ll see the tooltip showing the value
of the variable.

20. Without moving the currently active line, hover the cursor over the item of the foreach line.
You’ll see another tooltip, but this time there isn’t a value. That’s because this is a complex type,
a CartItem, but notice that there is a little plus sign on the left.

591

Dealing with Errors

18_042583 ch15.qxd 4/4/06 2:52 PM Page 591

Figure 15-12

21. Hover over or click the +, and the properties (both public and private) are shown for the item
(see Figure 15-13).

Figure 15-13

22. From the Debug menu, select Step Into, or press F11. This will step into the line of code, opening
up the code for the shopping cart, in the property get, as depicted in Figure 15-14.

Figure 15-14

23. Keep pressing F11 until you are back into the checkout code.

24. Right-click the trans.Commit() line, and select the Run To Cursor option. Notice how all inter-
mediate code is run, but that the next line is the trans.Commit() line.

592

Chapter 15

18_042583 ch15.qxd 4/4/06 2:52 PM Page 592

25. From the Debug menu, select Delete All Breakpoints, or select Control+Shift+F9.

26. Press F5 to continue the code, and you’ll be back in the browser.

How It Works
Debugging works because VWD controls the interaction of code. Normally the code runs without inter-
ruption, but a breakpoint tells VWD to suspend code at the appropriate line. And because VWD is in
control, its debugging capabilities enable you to view variables, step through code line by line, and so
on. Stepping through code is further enhanced by the fact that you can step into code called from the
current routine. In this example, you stepped from the code in Checkout.aspx.cs into Shopping.cs,
enabling you to follow the program flow line by line.

Debugging is extremely useful for not only tracking down problems in code, but also for understanding
the flow of code. You can use it to understand which methods are called, the order in which they are
called, and what code does in those methods. It’s a practical skill that will make you a good program-
mer, so it’s worthwhile spending time getting used to the debugger.

It’s worth pointing out the difference between the various actions of the debug toolbar. These are sum-
marized in the following table. An empty entry for the shortcut key means that there is no default key
for that action.

Toolbar Icon Shortcut Key Description

F5 Run the application if it currently isn’t running, or con-
tinue running the application if it is currently paused at a
breakpoint.

Pause the running of the application.

Shift+F5 Stop debugging the application.

Ctrl+Shift+F5 Restart the application.

Show the next statement, which highlights the next state-
ment to be executed.

F11 Step into a method. If the current line contains a method
or property from another class, then stepping into that
method will load the code file for the class and allow
stepping through the code for the method or property.

F10 Step over a method. If the current line contains a method
or property from another class, then stepping over will
execute the line without allowing stepping through the
code for the method or property.

Table continued on following page

593

Dealing with Errors

18_042583 ch15.qxd 4/4/06 2:52 PM Page 593

Toolbar Icon Shortcut Key Description

Shift+F11 Step out, which steps out of the current method or prop-
erty. This is useful if you have stepped into a method but
don’t want to continue stepping though the lines. Step-
ping out will take you back to the calling routine.

Hex display, which displays the output in hexadecimal.

Show the output window, which shows the actions VWD
or VS take during debugging.

It’s worth getting used to using both the buttons and the shortcut keys because it makes debugging
quicker.

During the debugging exercise, you saw how you could hover the cursor over a variable to see the con-
tents of that variable. But the viewing of variables is not just restricted to hovering the cursor over them,
because there are special debugging windows that help with this. One of these is the Locals window (see
Figure 15-15), which shows the local variables for the current procedure.

Figure 15-15

Here you have all of the local variables, and those that are complex types can be expanded to show the
properties.

The Watch window allows you to watch variables. When in Debug mode, you can highlight a variable,
right-click it and select Add Watch from the menu. The use of the Watch window is the same as the
Locals window, the only difference being that the Watch window only shows variables that you choose.

The Call Stack shows the current stack trace, which is the hierarchy of methods — which methods have
been called from other methods. You can see the Call Stack at the bottom right of the screen when you
are debugging. For example, in the shopping cart code, the stack trace displayed in Figure 15-16 might
be shown.

Here the highlighted line is the current line of code, and you can see that it is the Quantity property of
the CartItem (get_Quantity is shown because this is actually how the underlying code works; show-
ing it is the Get part of the property). The second line shows the method that called this Quantity prop-
erty, and this is Wizard1_FinishButtonClick.

594

Chapter 15

18_042583 ch15.qxd 4/4/06 2:52 PM Page 594

Figure 15-16

There are other windows, but Locals, Watch, and Call Stack aree the most common, and to get the best
from the debugger you really have to practice. It’s worth experimenting just to get a feel for how the
debugger works, and the sort of things that are possible.

Summary
It may seem odd that we’ve had a whole chapter on the negative aspects of building web sites, but ulti-
mately this will make you a better developer. After all, possessing knowledge is all well and good, but
knowing how to cope with problems that arise is just as important. So this chapter looked at defensive
coding, where you must take a pessimistic attitude. This takes the view that your code should be as
robust as possible, not making assumptions about anything, such as parameters passed into methods.
This is especially true when you’re dealing with SQL statements that take data from the user, so you
looked at how to replace the building of a SQL statement using concatenation with SqlParameter
objects to prevent hacking attacks.

Another part of defensive coding is the use of validation controls, which provide a simple way to ensure
that data entered by users is correct. Because these controls give both client- and server-side validation,
users get a great experience because the validation notifies them of problems before posting back to the
server.

Additionally, this chapter discussed the following topics:

❑ Exceptions, where you learned how to cope with the unexpected (cue the inquisition leaping in
from off frame — ”Nobody expects the exception” — apologies to the Monty Python team)
Dealing with exceptions is a tricky business, and should be limited to those situations where
you can gracefully recover from the problem. One of the key tenets is that you should always
leave the application in a stable state when recovering from exceptions.

❑ Handling exceptions globally or at least how to manage their details globally, with the
global.asax file. You saw that for both trapped and untrapped exceptions, the details can be
centrally logged, ensuring that you always know of errors wherever they happen with the
application.

595

Dealing with Errors

18_042583 ch15.qxd 4/4/06 2:52 PM Page 595

❑ Tracing and debugging, and how you can track down problems within code. Tracing gives the
capability to write the status of the running code, with the capability to switch the trace output
on and off without affecting the trace statements themselves. Debugging delves into the code in
more detail, enabling you to step through the code as it runs. These are the key techniques of
learning how to find errors.

You’re very nearly at the end of the book, and a lot of material has been covered. The final chapter looks
at topics that will lead you from the book content to further learning and at topics of how to move for-
ward with the knowledge you have. It also covers how to deploy your application so that it can be
hosted by an ISP, allowing your great code to be seen by the whole world.

Exercises
1. Add defensive coding to the GenerateThumbnail method of the ImageHandling class stored

in the App_Code directory.

2. Add validation controls to the Checkout page, the part that accepts the delivery address. There
is a check box to copy the address from the membership details of the user, but there is nothing
to ensure that all of the fields are filled in.

3. Use the debugger.

596

Chapter 15

18_042583 ch15.qxd 4/4/06 2:52 PM Page 596

16
Deployment, Builds,

and Finishing Up

It’s been a long journey since you started this book by building a quick example web site, and then
starting to build your full-fledged Wrox United application. You now have a web site that uses
e-commerce to take customer details and credit card numbers, displays up-to-the-minute content,
allows users to view (and listen to) multimedia, and references a multitude of data sources, all
within the course of 15 chapters. This is the kind of thing that could have taken six months in the
past and a whole team of developers. However, it doesn’t end here. I’m often tempted at the end
of a project to put my feet up and say, well I’ve done all the hard work, it’s all smooth sailing now.
However, I have been painfully disabused of this notion on more than one occasion. Even if you’re
confident of the extremely unlikely scenario of your application having no bugs and being simple
to maintain, and your client never having any further questions to ask or features to add, you still
have to deploy your site. Visual Web Developer has a feature that allows you to copy your web
site from a local folder to a remote location, and you’ll make use of that in this chapter.

After you’ve deployed your site, what next? If you succeed in becoming a professional developer,
you will undoubtedly talk to plenty of companies who will set the final deadline as the day you
deliver the working code to them. If you pencil in another project the day after this deadline, you
might end up getting into trouble when you find yourself required back on site at your old project
because something breaks down or doesn’t work in the way it was intended. Testing is often com-
pletely overlooked by both companies and developers. Chapters 14 and 15 talked about various
ways for testing your code as you create it, but testing your code after you’ve deployed the site
should also feature in your timeline. If possible, you should also test it alongside your proposed
user base. Even if everything goes fine, you should be prepared to maintain this site, make adjust-
ments, and make sure that the site owners can run it in your absence.

And lastly, what should you do next after reading this book? Do you run out and apply for a set of
developer jobs? Or do you have to go out and buy another book? You’ll get a thorough grounding
in what you should be looking to do next.

19_042583 ch16.qxd 4/4/06 2:52 PM Page 597

This chapter discusses the following topics:

❑ Deploying your site

❑ Testing and maintaining your site

❑ Where to now?

Site Deployment
Site deployment is the process of installing your site on the customer’s machine and making your site
available and accessible to the outside world — in other words, broadcasting it to the masses. In the first
versions of ASP, and indeed with any pure HTML site, the idea of deployment went little beyond “parcel
up all your files in a zip file, and unzip them to the correct folder on the site.” For simple sites, this
approach still works, but for more complex ones, you’re asking for trouble if you follow this method and
expect no problems.

One of the weaknesses of Visual Web Developer is that, unlike Visual Studio.NET, there isn’t a special
deployment wizard that can wrap all the different bits and pieces into a single installation file. However,
there is an option in VWD that allows you to take your existing web site and publish the web site on a
remote machine. There is also a second method that can be used if you prefer, which you learn about
later in the chapter.

Before you do that, you should make sure you have everything necessary to ensure your site will work
on another machine by compiling a checklist.

Checklist
Here’s a simple checklist of common things you would normally expect to feature in a typical
deployment:

❑ HTML and CSS files: Your design and structure.

❑ ASPX files: Your main pages.

❑ ASPX.VB or ASPX.CS files: The code-behind files.

❑ ASCX and ASCX.VB/.CS files: The user controls.

❑ Database files (.MDB or .MDF): The back end of the site.

❑ Image files (.JPG, .GIF, .PNG): Easily forgotten but vital to the sites working.

❑ Multimedia files: Includes both video and audio files.

❑ XML files: .XML and .XSD files.

❑ Third-party components or controls: ActiveX controls, Java applets, or such like.

❑ License files: Required to make your components work.

598

Chapter 16

19_042583 ch16.qxd 4/4/06 2:52 PM Page 598

Quite often you will find that despite your best intentions, files can become spread out across folders all
over your machine. It’s a great idea to centralize them first and even try to deploy them on another local
machine of your own if you have one.

Compiling and Running Your Application
The next step is to make sure that your site actually compiles and runs. In Chapter 15, you looked at
simple reasons why a site might not compile, and there is no point in deploying a site that doesn’t com-
pile. Also be aware that even if your site happily compiles on your machine, it might not compile or run
on your host’s or client’s machine. You must make sure that things like local references are changed so
that file references are specific to the new machine and that the requisite components are installed. This
is the most likely reason for your code failing on your host’s machine. The best way to do this is to place
any machine-specific information within the Web.config file and then reference it from inside the
appSettings, as discussed in Chapter 2. Then you can change any information in the Web.config file
without affecting your application.

Say, for example, you put a reference to a folder in the <appSettings> section of Web.config and add
a key and a value attribute as follows:

<appSettings>
...
<add key=”WroxUnited” value=”C:\Program Files\Wrox United” />
...
</appSettings>

You can then access these values from your code as follows:

string WroxULocation =
System.ConfigurationManager.Configuration.AppSettings[“WroxUnited”];

Of course, you will probably be faced with a scenario where you want to have a reference to a local file
and also a reference to that same file in a location on your remote server. In this case, you can place a ref-
erence to both locations in Web.config. Here LOCALHOST is the active file location:

<appSettings>
<!-- LOCALHOST -->
<add key=”WroxUnited” value=”C:\Program Files\Wrox United” />

...
<!-- REMOTE
<add key=”WroxUnited” value=”D:\Websites\Wrox United” />
-->

</appSettings>

All you need to do then is uncomment the REMOTE settings and comment out the LOCALHOST settings
instead. In this way, no code needs to change. Make sure you comment which of the locations is local
and which is remote, because it might not be entirely obvious to anyone else who uses the code. If you
have reason to change the location of the file, you only have to change it once in Web.config and not
every time it is mentioned within your code.

599

Deployment, Builds, and Finishing Up

19_042583 ch16.qxd 4/4/06 2:52 PM Page 599

This doesn’t just stop with remote file locations, but also with connection strings. If you are using a local
database to test your code, you will have to change the connection settings as well. Your local database
might use SQL Express, but your main server might be SQL Server 2005 — once again, no extra code is
needed, it can just be worked by commenting the line out:

<ConnectionStrings>
<!-- LOCALHOST -->
<add key=”WroxUnitedConnectionString” value=”Data

Source=.\SQLEXPRESS;AttachDbFileName=|Data Directory|\WroxUnited.mdf;Integrated
Security=True;User Instance=True;” providername=”System.Data.SqlDataClient”/>
...

<!-- REMOTE
<add key=”WroxUnitedConnectionString” value=” Data

Source=MainSQLServer;AttachDbFileName=|Data Directory|\WroxUnited.mdf;Integrated
Security=True;User Instance=True;User ID=auser;Password=56gTR4£s “
providername=”System.Data.SqlDataClient” />

-->

</ConnectionStrings >

LOCALHOST in this example is the active string. If you changed the provider name, you could pass con-
nection strings to other databases such as Access or MySQL or even Oracle.

Publishing the Site
After you’re sure that everything is ready and everything compiles, you can use Visual Web Developer
to publish your web site for you. There isn’t much more to say on the subject — it’s literally easier to go
ahead and do it.

Try It Out Publishing the Wrox United Web Site
1. Open the chapter copy of WroxUnited (C:\BegASPNET2\Begin\Chapter16\WroxUnited) and

select the Web Site➪Copy Web Site option (see Figure 16-1).

Figure 16-1

600

Chapter 16

19_042583 ch16.qxd 4/4/06 2:52 PM Page 600

2. Click the Connections: Connect To box and enter WroxUnited2 into the text box, as shown in
Figure 16-2.

Figure 16-2

Notice that to actually deploy to a remote site, you need to select the Remote Site icon on the
left-hand menu and then supply the URL or IP address of the location of the site, possibly enter-
ing relevant user ID and password details in along the way. It is unfortunately not possible to
supply test web space for readers to deploy their sites to.

3. Click Open and click Yes when asked whether you would like to create a new folder.

4. Select all the files, as shown in Figure 16-3.

Figure 16-3

601

Deployment, Builds, and Finishing Up

19_042583 ch16.qxd 4/4/06 2:52 PM Page 601

5. Click the blue single right-arrow button to copy the files across (see Figure 16-4).

Figure 16-4

6. Close the web site down, by selecting Close Project from the File menu.

7. Select Open➪Web Site and select WroxUnited2.

8. Run the new web site. It should look like the old one (see Figure 16-5).

Figure 16-5

602

Chapter 16

19_042583 ch16.qxd 4/4/06 2:52 PM Page 602

How It Works
In this Try It Out, you used the Copy Web Site option of Visual Web Developer to produce a complete,
identical copy of the Wrox United site on your local machine. This mirrors the way in which you would
go about deploying a web site to a remote location. In fact, if you have a remote machine that is also run-
ning ASP.NET 2.0, try deploying the Wrox United site on it yourself.

There really is very little to the physical act of deployment. The problems you may encounter are either
caused by elements in your application that are locked in to your current setup (such as referencing files
on a C:\ drive, when the host uses E:\ instead) or if you attempt to copy files into a folder or location
where some files already exist. In this case, a blue question mark will appear next to the offending file in
the left-hand dialog box, and you will get a dialog box (see Figure 16-6) that asks you whether you want
to copy over the existing file.

Figure 16-6

Before .NET, if you needed to install a component or control, this would require copying your compo-
nent to the appropriate folder and registering that component via some ugly low-level tools we don’t
want to talk about here. In .NET, to install the component all you had to do was to copy the component’s
file into the bin folder of your application, which occasionally had some unexpected and unpleasant
side-effects; however, in .NET 2.0 dropping components into the App_Code folder is all you need to do
to be able to start using the component immediately. If you use third-party components (that is, separate
executables), these should be installed separately.

XCOPY Deployment
There is a second way to deploy applications in .NET, if you don’t have Visual Studio.NET. This is
known as XCOPY deployment. This is a command-line tool that can be used to copy your site from one
location to another. It takes a number of options, as detailed here:

❑ / E copies folders, subfolders, and files, including empty ones.

❑ / H copies both hidden files and system files in addition to the unhidden and non-system files.

❑ / I specifies that the destination is a folder and to create the folder if it does not already exist.

603

Deployment, Builds, and Finishing Up

19_042583 ch16.qxd 4/4/06 2:52 PM Page 603

❑ / K keeps all of the existing file and folder attributes such as read-only, which would otherwise
be lost.

❑ / O retains all of the security-related permission ACLs (Access Control Lists — rules for who
gets access to a particular resource) of the file and folders.

❑ / R overwrites files marked as read-only.

All you need to do is provide the location of where you want to copy the web site from and where you
need to copy the web site to, and along with the relevant options, it will copy everything that you need.
So typing in the following command would copy all files and folders to the WroxUnited3 folder:

XCOPY C:\BegASPNET2\Begin\Chapter16\WroxUnited
C:\BegASPNET2\Begin\Chapter16\WroxUnited3 /E

You can see how this works in the following Try It Out.

Try It Out Publishing Wrox United Using XCOPY
1. Click Start➪Run and type CMD to bring up the command prompt.

2. Type the following command and press Enter:

XCOPY C:\BegASPNET2\Begin\Chapter16\WroxUnited
C:\BegASPNET2\Begin\Chapter16\WroxUnited3 /E

3. You are presented with the screen shown in Figure 16-7, and asked whether the target is a file
name or directory. Press d because it is a directory. XCOPY will now copy all the files over.

Figure 16-7

4. Close the command prompt.

5. Open Visual Web Developer, choose File➪Open➪Web Site, and select WroxUnited3.

6. Run the new web site. It should look just like the last one (see Figure 16-8).

604

Chapter 16

19_042583 ch16.qxd 4/4/06 2:52 PM Page 604

Figure 16-8

How It Works
The XCOPY option works in the same way as the Copy Web Site option in Visual Web Developer. It
copies all of the files from one location to another. There are two main differences, however. The first
difference is that you don’t need Visual Web Developer installed, which is useful if you have been for-
warded a web site from someone else in a zip file and want to, say, install it locally, test it, and then
deploy it. The second difference is that because it is a command-line tool, it gives you more options on
which files to copy and which files not to copy, with settings like /R to overwrite existing files that are
marked as read-only.

Common Problems Encountered When Deploying a Site
You shouldn’t have any problems with the physical act of deployment itself. However, what happens if
you correctly copy all of the files over, install all of the relevant components, and install the third-party
ones, and deployment still doesn’t work?

With a fairly new technology, it’s harder to compile a definitive list of problems, bugs, and glitches the
user might experience — these things were put together from years of user frustrations. However, on our
travels in the beta versions of ASP.NET 2.0, we came across a couple of gotchas that could break your
site, which are worth talking about now.

605

Deployment, Builds, and Finishing Up

19_042583 ch16.qxd 4/4/06 2:52 PM Page 605

Enabling App Data Permissions
If you are getting errors whenever the user runs a page that accesses a database, then suspect permis-
sions problems immediately. Every time you move a database to a new server that uses SQL Server, you
have to set up the relevant permissions for the NETWORK SERVICE for the App_Data folder. The rea-
son you have to do this is ASP.NET 2.0 runs under this particular service, and so if ASP.NET 2.0 wants to
access the database, a request to access it will come from this particular service.

You can enable these permissions in two ways, either via Windows Explorer or via SQL Server
Enterprise Manager.

Enabling Permissions via Windows Explorer
Go to the folder of your web application in Windows Explorer, right-click your application, select the
Properties, and click the Security tab, which is shown in Figure 16-9.

Figure 16-9

In ASP.NET 1.1, you would add permissions for the ASPNET account to do this. In
ASP.NET 2.0, the NETWORK SERVICE account does the same. However, there have
been occasions in the beta where enabling NETWORK SERVICE didn’t work and
ASPNET permissions had to be enabled as well. If, after enabling permissions for
NETWORK SERVICE, things still don’t work in the way intended, you might want to
enable permissions for the ASPNET account, in the same way as outlined next for the
NETWORK SERVICE account. You can find more details about this in Appendix B.

606

Chapter 16

19_042583 ch16.qxd 4/4/06 2:52 PM Page 606

Click the Add button to bring up the Select Users or Groups dialog box (see Figure 16-10). Type
Network Service and click Check Names. (If you don’t type in the correct case, it will capitalize the
name for you.)

Figure 16-10

Click OK. In the Properties dialog box (refer to Figure 16-9), make sure the Write check box is checked (it
is unchecked by default) and click Apply. It’s as simple as that.

If the machine is joined to a domain, the user must select the Locations button and pick the current
machine, rather than the domain. That’s because NETWORK SERVICE is an account on your machine.
By default, the dialog will attempt to add the domain name, rather than the machine name.

Enabling Permissions via SQL Server Enterprise Manager
This method will only work if you have SQL Server installed. If you bring up SQL Query Analyzer, you
can run the following script (just type in the following code to SQL Analyzer), substituting in the name
of the database you want to grant access to (note that you will need to log in to the database as an
administrator first):

sp_grantlogin ‘NT AUTHORITY\Network Service’

USE aspnetdb
GO
sp_grantdbaccess ‘NT AUTHORITY\Network Service’, ‘Network Service’

Here’s an important note for Windows XP Home Edition users: There is no Security
tab visible because something called Simple File Sharing is enabled by default. To
turn off Simple File Sharing, you need to restart your PC in Safe Mode (by pressing
F8 before XP starts) and then log in as Administrator. You’ll get a warning about run-
ning in Safe Mode. Click Yes to accept it and then turn off Simple File Sharing. To
do this, double-click My Computer, click Tools➪Folder Options, click the View tab,
and then select the Use Simple File Sharing (Recommended) check box. Then you
can locate the folder whose permissions you want to change, right-click that folder,
select Properties, and change the permissions.

607

Deployment, Builds, and Finishing Up

19_042583 ch16.qxd 4/4/06 2:52 PM Page 607

USE aspnetdb
GO
sp_addrolemember ‘database_you_wish_to_grant_access_to, ‘Network Service’

Click Run to run the query, and this will have the same effect as the previous instructions.

Is Your Application Offline? (Using App_Offline.htm)
This is one of those things that I saw in the beta that really tripped me up; on one occasion I ran my
Wrox United application to test it and was staggered to find that every single page returned an HTTP
404 error. Even stranger, I was browsing them from within Visual Web Developer at the time. It took me
a few hours and help from the other people on the book to figure out what had happened. It actually
turned out to be a really useful feature.

If you need to take your site offline very quickly, you can place a file called app_offline.htm in your
main application folder. This makes your web site unavailable to everybody. You can place in the HTML
file the text that you want your users to be able to view for the duration of the site’s downtime. The
advantage is that ASP.NET is working throughout this downtime, and you are able to test the site with-
out having to worry about what users can see in the outside world. However, there are times when this
file is created for you, which led to the problems I had.

Apparently during some operations, the app_offline.htm file is temporarily copied to your applica-
tion folder and then, in theory, it should be removed when the operation is completed. A crash during an
operation can leave the file behind. Unfortunately, this was a zero-length file in beta 2, and this provided
no clue to the user as to what occurred. The user was just left with every page in their site returning 404
errors. Normally, the app_offline.htm file should not be left behind, but unfortunately in some cases,
it gets left over. In the final release of ASP.NET 2.0, there is a message that informs users of what hap-
pened so they know to remove the offending item (see Figure 16-11).

Figure 16-11

This can turn up quite a few times if your application is being unruly, so be warned. It will turn up in the
root folder of your application folder. In Figure 16-11, you see the version of it that comes with Visual
Web Developer by default.

608

Chapter 16

19_042583 ch16.qxd 4/4/06 2:52 PM Page 608

Problems with IIS
Of course, if you test your site with ASP.NET Development Server, you might encounter some problems
when you deploy your site on IIS. First, make sure your application is configured as a virtual directory
(this process is described in Appendix B). Occasionally IIS doesn’t work in the way it should, and often
non-specific errors can be fixed if you run the aspnet_regiis executable with the –i switch.

To do this, go to the command prompt and go to the C:\Windows\Microsoft.Net\Framework\v2.0.
50727 folder. From this folder, type the following and press Enter:

aspnet_regiis –i

This quite often sorts out non-specific problems such as HTTP 500 errors.

Trial and Error
If you still have no success, go back, delete all the files, and try it again. If you are getting a particular
error consistently, look up that error on http://support.microsoft.com and see if that has any solu-
tions. If this doesn’t fix things, then another way is to copy the text of the error and paste it straight into
Google or your favorite search engine. This usually comes up with some other people experiencing the
same problems and solutions more often than not. If not, try posting on one of the online forums recom-
mended later in this chapter.

Testing and Maintenance
After you’ve successfully negotiated deployment, you might be excused for doing a quick double take.
Testing, haven’t you already done that? Given that this is the 21st century, you might have expected atti-
tudes toward testing to have improved considerably — however, if anything, trends have reversed. For
example, several very popular games arrived on the market in a practically unusable state because they
hadn’t been tested correctly. Hastily compiled patches of 20–50MB were required to rectify the situation.
However, as a developer, you will probably not have this luxury. You will probably see your client week
in and week out, and if the application doesn’t work they will tell you about it and maybe withhold pay-
ment until the problem is rectified. They might still not grant you any extra time to test, but that is the
name of the game.

Testing Before and After
Of course, while you’re building an application, you should test every component, but once the build is
deployed and completed, you should also make time to test the application as a whole. In particular, you
should sit alongside your prospective users and watch them test it. Some clients believe that testing is
the whole responsibility of the developer, but the relationship the developer shares with his code is simi-
lar to that between the author and his text. You wouldn’t expect an author to be able to adequately edit
his own text, and if an author uses incorrect grammar, then it’s quite likely that they won’t be able to
spot their own incorrect grammar usage. If a developer creates a piece of logically unsound code, there’s
a fair chance they might not be able to spot it either. Only in hard testing, when a user who puts in often
totally unpredictable values, are some errors revealed. Some textbooks will tell you to put aside as much
time as you took to develop the application for testing it. This isn’t over-cautious — the bigger the appli-
cation, the greater the likelihood of bugs creeping in, and the longer it can take to find them. If possible

609

Deployment, Builds, and Finishing Up

19_042583 ch16.qxd 4/4/06 2:52 PM Page 609

with a web site for a client, get them to test it in-house, on a test server before they put it on a live server.
And don’t be worried to admit to bugs. Finding bugs isn’t the sign of a bad developer — a bad devel-
oper is one who refuses to admit to the possibility of any bugs in the first place. The best advice is get
your clients to test the application thoroughly and make sure they have time to do it. A couple of testing
methods are worth mentioning here.

Unit Tests
Unit tests are a particular form of testing where you write a test for every non-trivial function or method
in the code. You can separate the different sections of the program and demonstrate which parts are
working in this way. Unit tests make it easier for programmers to change individual pieces of code
because they can go back to the code and test the unit independently. So if you suddenly think of a new
feature, you can add it without worrying about having to break the entire application.

Writing a Test Plan
Because unit tests, or indeed the whole practice of testing, can be time consuming, it’s best to have a test
plan up front to aid the organization of testing. A test plan is simply a systematic written approach to
testing, detailing the experiments and tests you want to perform on the code. Test plans don’t just apply
to computer programs — they can apply to any kind of engineering. A single test case in a test plan for
a dishwasher might be, “Test what happens when you open the dishwasher door halfway through a
working cycle.” Some dishwashers would shower you with scalding water, some would refuse to open,
and some would stop mid-cycle and let you retrieve the last cup in the house. There isn’t necessarily a
right answer to what should happen, but you should write a list of scenarios that you would like to test,
and record the outcomes and check that the scenarios and outcomes are what you both want, and what
your end-user thinks is satisfactory.

Maintenance
Maintenance is the practice of keeping your site up and running after it has been successfully deployed.
In some ways, it’s like a glorified debugging process — some bugs might not show up until long after
the site’s deployment, but you’ll still be expected to fix them. In other ways, maintenance will be about
performance monitoring: how fast is your site running? How many users is it handling? Can it cope
with that? This is a science in itself. This is one area where ASP.NET 2.0 has come on in leaps and
bounds, with the addition of instrumentation, and the capability to instrument your application.

Instrumentation and Health Monitoring
Instrumentation or instrumenting is a term you will come across if you have to do any monitoring or
maintenance of your system. The instrumenting of your application is the monitoring of your system
or your application’s function, checking to see that all is working the way it should be.

ASP.NET 2.0 has a lot of instrumentation features for the developer. You’ve already looked at the ability
to run traces and logging and learned that there are performance counters that you can use, but are
beyond the scope of this book. However, there is another new feature that is of great interest and of
particular use after your application has been deployed, and that is the introduction of the
<healthMonitoring> element.

The <healthMonitoring> element can be used at the system or application level and enables you to
monitor when specific events have occurred and write notifications of these events to an event log, a

610

Chapter 16

19_042583 ch16.qxd 4/4/06 2:52 PM Page 610

SQL Server database, or even to e-mail the administrator. Events that might be of interest could be a
failed login, or an error occurring in the application. Besides logging events, the <healthMonitoring>
element enables you to test the “health” of the system via a heartbeat attribute, which sets up an event
that is generated at a predefined interval — if you can “hear” the heartbeat, you know your application
is working fine. If you don’t receive this heartbeat, you know there might well be problems.

To enable health monitoring, all you need to do is place the <healthMonitoring> element in your
Web.config file and set the enabled attribute to true. Health monitoring is handled by three elements
within <healthMonitoring>, which have a close relationship with each other:

❑ The <providers> element specifies where you want to send the information you have col-
lected, which can be an event log or a database.

❑ The <rules> element specifies the name of the provider you want to write your information to
and the event name you want to instrument.

❑ The <eventMappings> element specifies a name of event you want to monitor, and maps it to
an actual event or set of events. The settings of this element must correspond to a valid event
type. A list of valid types is contained within the <eventMappings> element in the Web.
config.comments file.

It just takes a couple of attribute changes to alter an application that writes to the event log for failed
logins, to one that e-mails the administrator with details.

Monitoring for Events
You can test for a range of events using the <healthMonitoring> element. These are as described in the
following table.

Event Name Description of Event

WebHeartbeatEvent A regular event that provides statistics about
the application or system.

WebManagementEvent A base class event for all events that carry
application and worker process information.

WebApplicationLifetimeEvent An event generated by every significant event
that occurs in an application’s lifetime, such as
startup, restart, and shutdown.

WebRequestEvent An event that is raised with every web request
and contains information about the request
and the thread on which it’s executing.

WebBaseErrorEvent A base class event for all health monitoring
error events.

WebErrorEvent An event generated when there are problems
with configuration or application code.

Table continued on following page

611

Deployment, Builds, and Finishing Up

19_042583 ch16.qxd 4/4/06 2:52 PM Page 611

Event Name Description of Event

WebRequestErrorEvent An event that is raised when an error occurs
during a web request. This ignores common
types of error such HTTP 404, and focuses on
things like unhandled exceptions.

WebFailureAuditEvent An event generated upon the failure of a secu-
rity-related event, such as a file authorization,
a URL authorization, or a login authentication.

WebSuccessAuditEvent An event generated upon the success of
a security-related event, such as a file autho-
rization, a URL authorization, or a login
authentication.

WebAuthenticationFailureAuditEvent An event generated upon an unsuccessful
login authentication.

WebAuthenticationSuccessAuditEvent An event generated upon a successful login
authentication.

WebAuditEvent A base class for all audit events, both authenti-
cation and authorization.

WebViewStateFailureAuditEvent An event that is generated on view state fail-
ure. The failure may indicate an attempt to
tamper with the view state, or its reuse from
another machine with a different key.

There is also a broad range of providers (sources) to which you can write your event information. These
can all be found in the System.Web.Management namespace, and are detailed in the following table.

Provider Name What the Provider Holds

MailWebEventProvider Writes to an e-mail.

SimpleMailWebEventProvider Writes to a simplified e-mail.

TemplatedMailWebEventProvider Writes to a templated e-mail.

TraceWebEventProvider Writes to a trace.

EventLogWebEventProvider (the default provider) Writes to the Event Log.

SqlWebEventProvider Writes to a SQL Server database.

Which Events Are You Interested In?
You have a list of events, and a list of possible places where you can write the events about how they
were monitored. However, at the moment this is information overkill. You need to get back to basics and
answer a simple question: Which events are you interested in monitoring?

612

Chapter 16

19_042583 ch16.qxd 4/4/06 2:52 PM Page 612

Unfortunately, the answer is open-ended. It depends on what you want to monitor your application for.
A lot of the events in your list generate huge numbers of events, both when the application is working
correctly and when it isn’t.

A good place to start would be security. If you aren’t regularly changing code in your application, then
most likely the greatest threat to your application’s longevity and well-being is someone trying to hack.
A key to finding good security events to instrument for is to locate which events under normal circum-
stances shouldn’t be generating a large number, but in the event of an attack or suspicious data being
provided, will generate a lot of events. When your system is being attacked, you are likely to see a num-
ber of such events, which in turn can help act as an early warning system.

The key events that monitor the security-related aspects of the application might be as follows:

❑ WebErrorEvent

❑ WebAuthenticationFailureAuditEvent

❑ WebRequestErrorEvent

❑ WebViewStateFailureAuditEvent

The WebError event should be monitored because any code failure is suspicious. The
WebAuthenticationFailureAuditEvent should be monitored because any suspicious login
activity should be carefully monitored. WebRequestErrorEvent and WebViewStateFailure
AuditEvent might have failures if a hacker is trying to intercept responses from the server and
forwarding his or her own fraudulent page in response. By default, the WebErrorEvent and
WebAuthenticationFailureAuditEvent are turned on. This means that in the case of any failure,
they are automatically logged to the Event Log. So if such an error (for example, a division by zero error)
occurs in your application, you would see what’s shown in Figure 16-12 in your Event Log under
Application, under the source ASP.NET 2.050727.0 (or whichever version of ASP.NET is being run).

Figure 16-12

613

Deployment, Builds, and Finishing Up

19_042583 ch16.qxd 4/4/06 2:52 PM Page 613

Because failed logins are written to the event log by default, take a look at how you could also log suc-
cessful logins to your application in the Event Log. In this Try It Out, you track when a user logs in to
Wrox United successfully, and you write details about it to the Event Log.

Try It Out Adding Health Monitoring to Wrox United
1. Open Web.config in the Wrox United application for this chapter. In <system.web>, add a

<healthMonitoring> element as follows:

<healthMonitoring enabled=”true”>
</healthMonitoring>

2. Create another child element inside <healthMonitoring> called <rules>:

<rules>
<add provider=”EventLogProvider” name=”Success Audits” eventName=” LoginSuccess” />
</rules>

3. Create another child element inside <healthMonitoring> underneath <rules> called
<eventMappings>:

<eventMappings>
<add name=”LoginSuccess”
type=”System.Web.Management.WebAuthenticationSuccessAuditEvent,System.Web,Version=2
.0.0.0,Culture=neutral,PublicKeyToken=b03f5f7f11d50a3a”
startEventCode=”0” endEventCode=”2147483647”/> </eventMappings>

4. Run the application and login as Dave, password dave@123.

5. Go to the Control Panel and select Administrative Tools➪Event Log, and you’ll see the screen
shown in Figure 16-13.

Figure 16-13

614

Chapter 16

19_042583 ch16.qxd 4/4/06 2:52 PM Page 614

How It Works
The <healthMonitoring> element in the Web.config file does all of the work for you. You start by
enabling <healthMonitoring> and then placing three elements inside it to make it work.

The <rules> element is used to map an event onto a provider. The <rules> element has three compul-
sory attributes: provider, name, and eventName. The provider attribute matches the name attribute
specified in the <providers> element. You specify the Event Log in this element and a name for your
rule, “Success Audits”:

<rules>
<add provider=”EventLogProvider” name=”Success Audits” eventName=”LoginSuccess” />
</rules>

The <eventMappings> element specifies a user-friendly name for the event and the specific type of the
event you want to monitor. The type has to contain the system assembly details as well as information
about that assembly such as the Version number, Culture, and PublicKeyToken:

<eventMappings>
<add name=”LoginSuccess”
type=”System.Web.Management.WebAuthenticationSuccessAuditEvent,System.Web,Version=2
.0.0.0,Culture=neutral,PublicKeyToken=b03f5f7f11d50a3a”
startEventCode=”0” endEventCode=”2147483647”/> </eventMappings>

Inside the global Web.config, you will find a tallying <providers> element, which is referenced by
your <rules> element. The <providers> element specifies details about the source you write the error
information to, such as Event Log or SQL Server database. Providers always have two compulsory
attributes: name and type. The <provider> must use a name attribute corresponding with a name
specified in <eventMappings>. Providers may have other compulsory attributes, but these will vary
depending on the type of provider. The EventLogProvider only requires the name and type attributes.
The EventLogProvider looks like this:

<providers>
<add name=”EventLogProvider”
type=”System.Web.Management.EventLogWebEventProvider,System.Web,Version=2.0.0.0,
Culture=neutral,PublicKeyToken=b03f5f7f11d50a3a” /></providers>

If you scroll down the Event Log entry, you will see a whole stack of useful information about the login.
This information includes the event message, the time the error occurred, the location of the error, the
error message, the user’s IP address, whether or not they were authenticated, and much more.

Mailing an Administrator
Wrox United now writes to an Event Log, but this is only of use if the administrator is on hand to check
the Event Log. A more proactive approach might involve e-mailing the administrator each time the mon-
itored event takes place. Doing this requires only minimal alteration of the <healthMonitoring> ele-
ment. You only need to change the rules of which provider you are indicating and the provider itself,
and also add a SMTP section to the Web.config file (if there isn’t an existing one). You can simply
change the details of the <rules> element and the <providers> element and add an SMTP section.

615

Deployment, Builds, and Finishing Up

19_042583 ch16.qxd 4/4/06 2:52 PM Page 615

Note that this Try It Out requires a working SMTP server. You will only be able to do this exercise if you
have IIS installed with the SMTP service (done via the Add or Remove Programs section of Control
Panel), and it must be set up to relay e-mail. Relaying e-mail can be set up by right-clicking the SMTP
server in IIS, selecting Properties, choosing the Access tab, clicking the Relay button, and making sure
the number 127.0.0.1 (the number for localhost) is granted permission for relaying mail.

Try It Out Mailing the Administrator
1. Open Web.config and alter the <rules> element so that it reads as follows:

<add provider=”EmailProvider” name=”My Failure Audit” eventName=”Failure Audits” />

2. Go to the <providers> element and change it so that it reads as follows:

<add name=”EmailProvider”
type=”System.Web.Management.SimpleMailWebEventProvider”

from=”myemail@myserver.co.uk”
to=”myemail@myserver.co.uk”
subjectPrefix=”Failed Login Attempt:”
buffer=”true”
bufferMode=”Notification” />

Replace myemail@myserver.co.uk with your own SMTP server’s domain name. If your
machine is TESTONE, replace it with myemail@testone.com.

3. You’ll also need to add a section to Web.config to configure the SMTP section. An example set-
ting would look like the following, and of course you’d need to substitute in your own mail
server’s settings:

<system.net>
<mailSettings>

<!-- these settings define the mail server settings
from: the user name from which the email is sent - this is the application

that is sending the message
host: the name of your mail server
userName: the name the application will use to log into the mail server
password: the password for the above user name

-->
<smtp from=”admin@your-domain.com”>

<network host=”your-mail-server-name”
userName=”your-user-name”
password=”your-password” />

</smtp>
</mailSettings>

</system.net>

4. Run the application and wait. You should receive an e-mail within a minute.

How It Works
Instead of placing something in the Event Log, you are now e-mailed the details that you previously
viewed in the Application section of the Event Log. To do this, you changed the rules and provider ele-
ments to specify a different provider.

616

Chapter 16

19_042583 ch16.qxd 4/4/06 2:52 PM Page 616

The health monitoring features of ASP.NET 2.0 are a real plus for those of you trying to maintain an
application and for either tracking down security breaches or hard-to-find bugs.

Scalability
The last scenario you might have to consider is what happens if the web site takes off. What happens if
instead of the anticipated hundreds or thousands, you get millions of visitors? On one level, this might
hit the performance of your application, it might exceed limits within your application, and it also might
exceed the limits of your hardware.

For software considerations, it’s best not to impose small limits on arrays and databases when you create
them. You should always take care to close any open database connections. If you open up too many
connections, you can end up with a Connection Pooling error. Unlike classic ASP where it was common
practice to set the connection to Nothing, all that’s needed is to close any open connections once you’ve
finished them. The number of open connections that can be maintained is finite and connections are
reused from a pool. If you have only one unclosed connection on a small site, you might never notice it,
but on a large site, your users certainly will when they encounter this error.

For hardware considerations you might have to upgrade your server or servers, or even end up having
to move your site onto a web farm (a collection of servers, any one of which can receive a request and
deal with it). Web farms can have repercussions for the way you handle sessions, and you might be
forced to change settings in Web.config to accommodate this. Normally ASP.NET handles sessions in
memory, known as inproc, but you can change this so that either SQL Server or a separate state server
process handles sessions. These options, though, can slow your site down. However, when creating your
first site you’re unlikely to have to worry about these considerations, but it never hurts to make sure.

Where to Now?
Perhaps the most difficult question to answer in this entire book is “What should you do next?” You’ve
built an application, and if you’ve managed to do the exercises as well, you will have a fairly good
grounding in ASP.NET 2.0 already, but probably not one that will let you walk into a well-paid job. So
how can you improve on it? If you follow some philosophies, you can find yourself signed up for thou-
sand-dollar courses, or with a booklist the size of a wardrobe. Although these might be helpful, they
aren’t essential or advised courses of action.

I’m often asked by readers what is the most important part of becoming a developer or programmer,
and the answer I give is hands-on experience. You read about coding and coding techniques until you’re
blue in the face, but until you’re faced with a problem that you have to solve, you can’t really get a feel
for coding. The first tentative steps on most coders’ route are taking an existing application and modify-
ing it. Improving it. Adding to it. That’s what you should start now. Go back to the Wrox United applica-
tion and start amending it. Think how you could improve it. Would you change the design, the way it
works? Add some news articles, some new players, and some new graphics, and get comfortable with
the way it works. Then go away and think of an application that would be useful to you, but not too
ambitious, and start creating that. If you can’t think of anything, then e-mail your friends to see if
they’ve got anything that needs doing.

617

Deployment, Builds, and Finishing Up

19_042583 ch16.qxd 4/4/06 2:52 PM Page 617

Developing is a very proactive job. The idea of a coder sitting in a room and just writing an application
from start to finish and delivering it with no contact to the outside world is an outdated one. If your
code is being used by thousands of people, you should at least be talking to a fraction of them. If you
talk to people, they will undoubtedly have a million ideas you’d never have considered.

References
A lot of a developer’s time will be spent on the web looking up new concepts or error messages. Here’s a
list of some good places to start:

❑ http://p2p.wrox.com: The Wrox forums and first place to ask with trouble on the book.

❑ www.developerfusion.co.uk: The UK developer community for ASP.NET.

❑ www.asp.net: The official Microsoft ASP.NET web site.

❑ http://msdn.microsoft.com/asp.net/: The MSDN reference for all things ASP.NET-
related, and an essential reference for any developer.

❑ www.15seconds.com: A great magazine-like site with loads of free articles on ASP.NET 2.0.

❑ http://beta.asp.net: Microsoft’s coverage of the latest version of ASP.NET.

❑ www.dotnet247.com: A compendium, online cross-reference of all the Usenet newsgroups,
including all of the ASP.NET 2.0 groups.

❑ http://msdn.microsoft.com/coding4fun/default.aspx: MSDN’s site on fun coding
topics.

❑ www.codeproject.com: A good resource for free source code and tutorials.

Summary
This hasn’t really been a chapter about a particular subject, but rather an extended wrapping up and
welcome to the real world. To those ends, this chapter discussed the following:

❑ How you can go about deploying the Wrox United site with both Visual Web Developer and the
command-line prompt tool.

❑ The importance of testing your application after it has been deployed and getting your potential
users or your customer to test it as well.

❑ Maintenance, and very briefly, ASP.NET 2.0’s new instrumenting feature, the
<healthMonitoring> element, and how you might go about using it.

❑ A quick recheck of the Wrox United application and what you learned from it.

❑ Some suggestions about what you should do next after finishing this book.

You’re now ready to start developing without our help.

618

Chapter 16

19_042583 ch16.qxd 4/4/06 2:52 PM Page 618

Exercise
1. You are now developer and maintainer of the Wrox United web site. What else would you

add to the Wrox United site? Make a list of possible add-ons, and prioritize them with the sim-
plest to do first. Implement some of these add-ons. Just to get you thinking, you could add a
facility to post pictures or video clips from Wrox United matches, or you could add player
biographies. The possibilities are limitless here, so be creative.

619

Deployment, Builds, and Finishing Up

19_042583 ch16.qxd 4/4/06 2:52 PM Page 619

19_042583 ch16.qxd 4/4/06 2:52 PM Page 620

A
Exercise Answers

Chapter 1

Exercise 1

Explain the differences among the .NET 2.0 Framework, ASP.NET 2.0, VWD, and IIS.

Solution

The .NET 2.0 Framework is a very broad set of code (contained in classes) that is used by many
Microsoft products, including servers, database managers, and web servers.

ASP.NET 2.0 is a subset of the .NET 2.0 Framework that holds the classes used to create dynamic
web pages.

VWD is a tool used to create ASP.NET 2.0 web pages.

IIS is a web server that can execute the ASP.NET 2.0 code to create dynamic web pages.

Exercise 2

List some differences between ASP.NET Development Server and IIS.

Solution

IIS is a powerful web server designed to support publicly deployed sites. IIS scales to heavy loads,
multiple servers, and multi-processor machines. It has a robust security model. The user of IIS is a
special account named ASPNET. IIS does not expect pages to be in development while it is serving
them, so it does not lock pages.

ASP.NET Development Server is a lightweight web server designed to give developers a quick and
easy way to serve a page on their development machine. ASP.NET Development Server cannot han-
dle more than a small number of visitors simultaneously. The user of ASP.NET Development Server
is whoever is logged in to Windows at the time, and thus the security model is weak. ASP.NET
Development Server locks a page in VWD while it is being served.

20_042583 appa.qxd 4/4/06 2:53 PM Page 621

Exercise 3

When you drag the title bar of the toolbar it will only go to certain locations and certain sizes. How can
you put the title bar where you want it?

Solution

Select the toolbar and choose Menu➪Windows➪Floating. You can now place the toolbar in the size and
location you desire.

Exercise 4

How can you copy a .jpg file in C:\MyPhotos into your site for display on a page?

Solution

From VWD Solution Explorer, you can right-click the receiving folder and then select Add Existing Item.
Navigate to C:\Photos and select the photo of interest. Click OK.

From Windows Explorer, you can copy the .jpg file from its original folder to C:\Website\MyWebName.

Exercise 5

You want to add a subfolder to your site, but folder is not one of the items listed in Add Items. Why?

Solution

Adding a folder has its own entry in the menu that appears when you right-click a folder in the Solution
Explorer.

Exercise 6

Microsoft has written extensive code to make it easier for programmers to create web pages. How does a
programmer actually use that code?

Solution

The code is available in server-side controls. These are tags that look like HTML but start with
<asp: ... >. Within the control you can set properties to determine the appearance and behavior of
the control.

Exercise 7

Why are there no tools in the General panel of the Toolbox?

Solution

The General panel is a place for you to place snippets of code that you copy from a page and expect to
use again later. It starts out empty.

622

Appendix A

20_042583 appa.qxd 4/4/06 2:53 PM Page 622

Chapter 2

Exercise 1

Describe the functional difference between the Web.config file and Global.asax.

Solution

Web.config contains values (settings), whereas Global.asax contains code.

Exercise 2

What files discussed in this chapter are in XML format?

Solution

Web.config and Site.map.

Exercise 3

Take a look at the code for a Content page. Why does it lack directives and tags?

<!DOCTYPE HTML PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head ></head>

Solution

This code lacks directives and tags because those are supplied by the Master page.

Exercise 4

What values must match between a set of Master and Content pages?

Solution

The Content page’s first line directive of MasterPageFile must match the name of the master file.

The value of xxx in the Content page’s <asp:content ... ContentPlaceHolder ID=”xxx”> must
match the ID of the Master page’s <asp:ContentPlaceHolder ID=”xxx”>.

Chapter 3

Exercise 1

Practice using the drag-and-drop functionality of VWD to put together a simple web page that displays
the following information:

❑ The WroxUnited Logo (available for free download from www.wrox.com— or just use any small
image of your choice).

❑ The names of the players and some information about each of them, arranged in a table. Refer to
Figure 3-44 for a visual reference.

623

Exercise Answers

20_042583 appa.qxd 4/4/06 2:53 PM Page 623

Solution

The finished page should look like Figure A-1 when it is run.

Figure A-1

The HTML that generates this page will vary according to how you set up your table, but it should be
similar to the following code:

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Untitled Page</title>
</head>
<body>

<form id=”form1” runat=”server”>

This is my fan site for the Wrox United football team! I’ve met a few of the team
- here’s my notes from my meetings:

<table width=”600” cols=”2”>

<tr>
<td style=”width: 150px”>

Player</td>
<td style=”width: 400px”>

Notes</td>
</tr>
<tr>

<td style=”width: 150px”>
Chris Hart</td>

<td style=”width: 400px”>

624

Appendix A

20_042583 appa.qxd 4/4/06 2:53 PM Page 624

Signed my book!</td>
</tr>
<tr>

<td style=”width: 150px”>
Chris Ullman</td>

<td style=”width: 400px”>
Signed my football!</td>

</tr>
</table>

</form>
</body>
</html>

Exercise 2

Return to Wrox United and go to the Master page. Try deleting the Menu control and replacing it with a
TreeView control. Bind that control to the siteData data source, and you should see a fully populated
tree of items, both in Design View (refer to Figure 3-45) and when you run the page (refer to Figure 3-43).

Solution

Changing the Menu control to a TreeView control is a swift process, and you can see the results in
Figure A-2.

Figure A-2

625

Exercise Answers

20_042583 appa.qxd 4/4/06 2:53 PM Page 625

After you have a siteMap data source, it’s simple to plug in compatible controls and change the func-
tionality of the site with minimal effort.

Chapter 4

Exercise 1

Change the configuration of your Chapter 4 web site to allow anonymous access, but to deny access to
one specific user account.

Solution

Run through the Security wizard for the site and change the permissions as described, or modify
the Web.config file. If you are successful, you will have code similar to the following in your Web.
config file:

<roleManager enabled=”true” />
<authorization>

<allow users=”?” />
<deny users=”chrishart” />

</authorization>

Exercise 2

Add a subfolder to the Chapter 4 web site called Admin. Within this folder, add a page called
MainAdmin.aspx with a LoginName control on it and any other controls you might want. Change the
access permissions for that specific folder so that only members of the Administrators group can view
the page.

Solution

The MainAdmin.aspx page should have code similar to the following:

<form id=”form1” runat=”server”>
<div>
This is the administration page for the Chapter 4 site.

<asp:LoginView ID=”LoginView1” Runat=”server”>

<LoggedInTemplate>
You are logged in as <asp:LoginName ID=”LoginName1” Runat=”server” />

</LoggedInTemplate>
<AnonymousTemplate>

You are currently anonymous.
</AnonymousTemplate>

</asp:LoginView>
<asp:LoginStatus ID=”LoginStatus1” Runat=”server” />
</div>

</form>

The Web.config file for the Admin folder should have the following code:

626

Appendix A

20_042583 appa.qxd 4/4/06 2:53 PM Page 626

<?xml version=”1.0” encoding=”utf-8”?>
<configuration>

<system.web>
<authorization>

<allow roles=”administrators” />
<deny users=”*” />

</authorization>
</system.web>

</configuration>

Chapter 5

Exercise 1

You have an ASP.NET Label control on a page. The label has a font-italic=”true” attribute, and a
CssClass=”maintext” attribute:

<asp:label id=”myLabel” CssClass=”maintext” font-italic=”true”

text=”This is a label”></asp:label>

The page has an associated CSS style sheet (not associated with a theme) that defines a .maintext style
class has the following attributes:

.maintext
{

color: Navy;
font-family: Verdana;
font-weight: Bold;
font-style: normal;

}

How will the label appear when it is rendered?

Solution

You should see some text rendered in bold, blue Verdana, and italic, as shown in Figure A-3.

Figure A-3

627

Exercise Answers

20_042583 appa.qxd 4/4/06 2:53 PM Page 627

The font-style attribute in the CSS style sheet is overridden by the element-specific style in the page.

Exercise 2

You add a Theme=”ExerciseTheme” to the preceding page. You place the CSS style sheet from the pre-
vious exercise within the ExerciseTheme theme folder. How will the label control appear now?

Solution

The Theme attribute specifies that the page should now inherit all styles within the ExerciseTheme
theme folder, but the style attribute added to the element remains, and the font appears in italic.

Exercise 3

You define a skin for all labels within the ExerciseTheme theme folder and specify the following
attributes:

<asp:Label CssClass=”maintext” runat=”server” font-italic=”false”></asp:Label>

How will the label appear now?

Solution

This time around, the Label control’s italic style will override the page’s style, so you will see what is
shown in Figure A-4.

Figure A-4

Chapter 6

Exercise 1

In the Chapter06 project, create a new Web Form called Lists.aspx, add a ListBox control to the page,
and add three list items with values of One, Two, and Three. Add a Label control and a Button control
to the page. In the Click event of the Button, display the selected value of the ListBox in the Label.

628

Appendix A

20_042583 appa.qxd 4/4/06 2:53 PM Page 628

Solution

The controls you add to the page should be as follows:

<asp:ListBox ID=”ListBox1” runat=”server”>
<asp:ListItem Text=”One” />
<asp:ListItem Text=”Two” />
<asp:ListItem Text=”Two” />

</asp:ListBox>

<asp:Button ID=”Button1” runat=”server” Text=”Button” />
<asp:Label ID=”Label1” runat=”server” Text=”Label” />

For the Click event of the button, you should have the following:

protected void Button1_Click(object sender, System.EventArgs e)
{

Label1.Text = ListBox1.SelectedValue;
}

This event procedure relies on the fact that there is a property on the ListBox that identifies what the
value is for the selected item — the SelectedValue property. In fact, there is also a SelectedText
value, because a ListBox has both a Text and a Value property. The Text is what’s displayed, whereas
the Value is stored in the page and not shown to the user. This is useful for values that come from a
database, where the Value would be the ID of the item and the Text would be the description. The
same is true for a DropDownList control.

Exercise 2

Modify Exercise 1 so that just selecting an item in the list posts back to the server (meaning you don’t
need to click the button). You’ll need to add an event procedure to the ListBox, and in that event proce-
dure you can use the same code from the Click event of the Button to display the selected value in the
Label. Hint: The terms postback and automatic might be useful in your hunt for correct properties.

Solution

To allow the ListBox to post back automatically, you set the AutoPostBack property to True. Now
when a list item is selected, the postback will happen right away, rather than waiting for a button to be
clicked. On its own, this just posts back, so you also need an event procedure for the ListBox, and for
this you use the SelectedIndexChanged event, which is raised when the selected item changes. The
event is only raised when the selected item changes, so repeated clicking of the same item will not cause
unnecessary postbacks. The event procedure should be as follows:

protected void ListBox1_SelectedIndexChanged(object sender,
System.EventArgs e)

{
Label1.Text = ListBox1.SelectedValue;

}

The advantage of this event over a postback from a button event is that you can have your page change
depending upon the user selection. For example, you could have a grid filter the data shown depending
on the value in a list box.

629

Exercise Answers

20_042583 appa.qxd 4/4/06 2:53 PM Page 629

Exercise 3

Modify the EditSquad.aspx example so that the GridView is refreshed when a new player is added to
the squad. The technique is similar to the code you already have, but you’ll need to use a different event.
Remember that you can use the drop-down lists in the code view to find the events.

Solution

To refresh the GridView when a new player is added to the squad, you need to use the Inserted event.
Just as when the data for a SqlDataSource control is updated, the Updated event is raised, and when a
new row is inserted, the Inserted event is raised. You can create this in the same way as you did for the
Updated event, and use the same code in the event procedure.

The code for the Inserted event procedure is as follows:

protected void DetailsDataSource_Updated(object sender,
System.Web.UI.WebControls.SqlDataSourceStatusEventArgs e)

{
GridView1.DataBind();

}

Chapter 7

Exercise 1

Describe the general capabilities of data source and data-bound controls.

Solution

Data source controls connect to the source of data and enable communicating to the database the infor-
mation for behaviors such as reading, editing, and deleting.

Data-bound controls render spaces on the page that interact with the user, either to display values or to
accept input for changes to the data.

Exercise 2

Which data-bound controls render data in tables?

Solution

GridView (one datum in each cell), DataList, and Repeater (all fields of one record in each cell).

Exercise 3

Compare and contrast the DetailsView and FormView controls.

Solution

Both present data in a tabular form with only one record displayed at a time. Both controls support read-
ing and changing values, as well as creating and deleting entire records. The DetailsView control has a
built-in default template, whereas FormView has no default template.

630

Appendix A

20_042583 appa.qxd 4/4/06 2:53 PM Page 630

Exercise 4

Describe how a GridView control can limit its records to only those that match a player’s name selected
in a DropDownList of last names.

Solution

The DropDownList control displays names in its Text property, and holds the player’s ID number in
the Value property. The GridView control has a SelectCommand that contains a WHERE clause that sets
the ID equal to a parameter (prefaced by the @ sign). The GridView control also has a parameter tab
containing a parameter that is filled with the value of the selected item of the DropDownList. Set
AutoPostBack to TRUE in the DropDownList box so the following behavior is automatic:

❑ When a user changes a selection in the DropDownList, ASP.NET 2.0 automatically places the
value of that selection into the GridView control’s parameter tag, which means it will be
employed in the SelectCommand WHERE clause.

❑ ASP.NET 2.0 will then cause the GridView control to create a new request for data using the
new SelectCommand.

❑ The data returned will only have records that match the ID of the player selected in the
DropDownList.

Exercise 5

Which data source control is best suited for the Menu or SiteMapPath data-bound controls?

Solution

The SiteMapDataSource is best suited for the Menu and SiteMapPath data-bound controls because it
is optimized to read the XML file holding the site description information.

Chapter 8

Exercise 1

Enabling the capability to write to a database requires changes to the properties of a data source control,
a data-bound control, or both?

Solution

Both.

Exercise 2

Describe the difference between an asp:Parameter and an asp:ControlParameter.

Solution

An asp:Parameter holds the value that came from the record of the database. An
asp:ControlParameter holds a value that was entered by the user into a control.

631

Exercise Answers

20_042583 appa.qxd 4/4/06 2:53 PM Page 631

Exercise 3

What problem does the DataKeyNames property solve?

Solution

Some fields hold values that uniquely identify them among all records. When a user changes values in
those fields, there is a conundrum in that ASP.NET 2.0 needs the old values in order to find the record,
and the new values for the writing. DataKeyNames are those fields for which ASP.NET 2.0 will hold both
original and new values. When an update is made and a change is made to an ID field, ASP.NET 2.0 uses
the new value for the SET part of the command (which writes) and the old value for the WHERE part of
the command (which finds the one record to change).

Exercise 4

A page needs to delete the date of birth value from one record. Which command should be used?

Solution

Update. Delete would only be used to eliminate the entire record, not just one value in the record.

Exercise 5

What tags must be added to a page to allow a GridView to create new records?

Solution

This is a trick question because a GridView cannot perform inserts. But the GridView can have a button
that opens a DetailsView in Insert mode, which can create a new record.

Chapter 9

Exercise 1

Create a class and shared method (called DeliveryDate) to calculate a delivery date given the date of
an order. All deliveries should be made within three days of the order. Create a class and shared method
to calculate delivery date given the date of an order. All deliveries should be made within three days of
the order.

Solution
public class Orders
{

public static DateTime DeliveryDate(DateTime OrderDate)
{

return OrderDate.AddDays(3);
}

}

This simply uses the AddDays method of the DateTime type to add the required number of days.

632

Appendix A

20_042583 appa.qxd 4/4/06 2:53 PM Page 632

Exercise 2

Modify the DeliveryDate method to take into account that deliveries do not happen on the weekend.

Solution
public class Orders
{

public static DateTime DeliveryDate(DateTime OrderDate)
{

DateTime deliveryDay = OrderDate.AdddDays(3);

if (deliveryDate.DayOfWeek == DayOwWeek.Saturday)
deliveryDate = deliveryDate.AddDays(2);

else if (deliveryDate.DayOfWeek == DayOwWeek.Sunday)
deliveryDate = deliveryDate.AddDays(2);

return deliveryDay;
}

}

Here the delivery date is calculated and checked to see if it falls on a Saturday or Sunday, in which case
the delivery date is moved to the following Monday.

Exercise 3

Modify the DeliveryDate method to take into account that an order takes three working days to pro-
cess. So orders falling on a Wednesday will be delivered on the following Monday, and orders from
Thursday will be delivered on the following Tuesday.

Solution
public class Orders
{

public static DateTime DeliveryDate(DateTime OrderDate)
{

switch (OrderDate.DayOfWeek)
{

case DayOfWeek.Monday:
case DayOfWeek.Tuesday:
case DayOfWeek.Wednesday:

return OrderDate.AddDays(3);
case DayOfWeek.Thursday:
case DayOfWeek.Friday:
case DayOfWeek.Saturday:

return OrderDate.AddDays(5);
default:

return OrderDate.AddDays(4):
}

}
}

633

Exercise Answers

20_042583 appa.qxd 4/4/06 2:53 PM Page 633

This version of the method uses the switch statement to calculate different dates depending upon the
day of week on which the order was placed.

Exercise 4

For each of the following Boolean expressions, say for what integer values of A each of them will evalu-
ate to True and when they will evaluate to False:

a. NOT A=0

b. A > 0 OR A < 5

c. NOT A > 0 OR A < 5

d. A > 1 AND A < 5 OR A > 7 AND A < 10

e. A < 10 OR A > 12 AND NOT A > 20

Solution

a. True for all integers except 0. Without the NOT, the answer would only be 0. When weyou add
the NOT, it reverses to be all numbers except 0.

b. True for all integers. The left side alone would be True for all integers greater than 0 (only 0
and negative integers would be false). The right side includes all integers that are less than 5,
including 0 and negative integers. With the OR clause, an integer has to be within one of the two
expressions in order for the entire expression to be True. When you combine these two sets of
answers, you get all integers. (The integers 1 through 4 are included by both expressions.)

c. True for integers 5 and below. Integers 6 and above will evaluate to False. The issue here is
precedence between the NOT and OR operators. The NOT is only applied to the expression on the
left of the OR. Think of this problem as (NOT A > 0) OR (A < 5). On the left, you have True for
any numbers that are not greater than 0, so True is for 0 and negative numbers. On the right,
you have True for any number that is less than 5. With the two sides of the OR combined, you
have True for all negative numbers and 0, and positive numbers up to 5. Numbers greater than
and including 6 are True for either side and thus resolve to False.

d. True for 2, 3, 4, 8, and 9 only. Like the previous problem, the issue is to establish the precedence
of the operators. Think of this as (A > 1 AND A < 5) OR (A > 7 AND A < 10). On the left of the OR,
you can see that only integers 2, 3, and 4 would fit both criteria. The right side of the OR the situ-
ation is similar: only 8 and 9 meet both criteria. When you consider the OR, you have to combine
those two answer sets.

e. True for all integers 9 and below (including 0 and negatives) and for 13 through 20 inclusive.
False for 10, 11, 12, and all integers above (and inclusive of) 21. Think of this problem with
some parentheses. The OR is the last to be evaluated, so your parentheses are (A < 10) OR (A >
12 AND NOT A > 20). First look at the right side of the OR. Integers must meet both tests when
there is an AND clause, so that would be 13 through 20 are True. Now look at the left side of the
OR. Any number less than 10 will be True. The final answer is the combination of those two
answer sets.

634

Appendix A

20_042583 appa.qxd 4/4/06 2:53 PM Page 634

Chapter 10

Exercise 1

Create a new web site and a new page called CodeBehind.aspx with a single label, but making sure that
you don’t check the box marked Placed Code in a Separate File. Now create a code-behind file manually
for that page that displays the content of the label.

Solution

Create a class called CodeBehind.cs. Add the following line of code to CodeBehind.aspx:

<@Page CodeFile=”CodeBehind.cs” Class=”CodeBehind” %>

In the CodeBehind.aspx file, add the following within the Page_Load event:

Label1.Text = “Hello World”;

Exercise 2

How would you go about adding an image to accompany each news item? Note that it shouldn’t dis-
play if there is no news image present for that article.

Solution

Add the following to newsusercontrol.ascx:

<asp:Image style=”float:right” ID=”NewsImage” Runat=”server”

ImageUrl=’<%# Eval(“PictureURL”, “~/NewsImages/{0}”) %>’ />
<%#Eval(“Description”) %>

Add the following event handler that is called when an item of news is bound:

void NewsItem_DataBound(object sender ,
System.Web.UI.WebControls.RepeaterItemEventArgs e)

DataRowView row;
Image img;
if ((e.Item.ItemType == ListItemType.Item) || (e.Item.ItemType ==

ListItemType.AlternatingItem)
{
row = (DataRowView)e.Item.DataItem;

if (row(“PictureUrl”).ToString().Trim() == “”) {
img = (Image)e.Item.FindControl(“NewsImage”);
img.Visible = False;

}
}

}

635

Exercise Answers

20_042583 appa.qxd 4/4/06 2:53 PM Page 635

Chapter 11

Exercise 1

Create a new user account called Admin, and make this user a member of all of the groups. Log in to the
Wrox United site as Admin and test to see whether you can access all of the different pages in both the
fan club and the administration section.

Solution

Launch the ASP.NET Web Site Administration Tool and configure the Admin user as shown in
Figure A-5.

Figure A-5

Exercise 2

Remove the Admin user from any role other than the Administrator role and test the site again. Ensure
that you can access the following pages:

❑ Admin.aspx

❑ EditNews.aspx

❑ UpdateProducts.aspx

Solution

The Admin user account should now have the configuration shown in Figure A-6.

If you try to access the Wrox United site, you’ll see the links in Figure A-7 within the Administration
section.

636

Appendix A

20_042583 appa.qxd 4/4/06 2:53 PM Page 636

Figure A-6

Figure A-7

637

Exercise Answers

20_042583 appa.qxd 4/4/06 2:53 PM Page 637

Not only can you see these links, but clicking these links will take you to the appropriate pages.

Exercise 3

The Admin user has had a request by a reporter out in the field — he’s uploaded a score for a match, but
the score has just changed. Unfortunately, the reporter’s laptop has run out of battery, so he’s asked the
Admin user to update the score for him. Make sure that the Admin user can update the score of a match.

Solution

You have two options. First, you could add the Admin user to the Reporters role, thereby enabling the
access to the page as desired. The alternative is to enable access to the UpdateScore.aspx page on the
site to all site administrators by making the following change to the Web.config file within the root of
the Admin folder:

<location path=”UpdateScore.aspx”>
<system.web>

<authorization>
<allow roles=”Administrator, Reporter” />

</authorization>
</system.web>

</location>

Whichever method you decide on, the Admin user needs to be able to access the UpdateScore.aspx
page. If you are successful, you will see Figure A-8.

Figure A-8
638

Appendix A

20_042583 appa.qxd 4/4/06 2:53 PM Page 638

Exercise 4

Add a field to the user profile for the Wrox United application called DateOfBirth. Give this property a
data type of System.DateTime. Add an input field to the FanClub.aspx page so that users can update
their date of birth. Note that you will need to convert the value entered in a text box to a DateTime
value when you save the data — you might want to try the DateTime.Parse() function for this pur-
pose. To retrieve the data, use the Profile.DateOfBirth.ToShortDateString() function.

Solution

1. Add the following highlighted line to Web.config:

<profile enabled=”true”>
<properties>

<add name=”MemberName”/>
<add name=”Name”/>
<add name=”Address”/>
<add name=”City”/>
<add name=”County”/>
<add name=”PostCode”/>
<add name=”Country”/>
<add name=”Mailings” type=”System.Boolean”/>
<add name=”Email”/>
<add name=”DateOfBirth” type=”System.DateTime”/>
<add name=”Theme”/>
<add name=”Cart” serializeAs=”Binary” type=”Wrox.Commerce.ShoppingCart”

allowAnonymous=”true”/>
</properties>

</profile>

2. Modify FanClub.aspx to include a text box for entering and displaying the date of birth:

Name:

Address:

City:

County:

Postcode:

Country:

Subscribe to email updates:

Email:

Date of Birth:

Membership Alias:

Theme:

<asp:TextBox ID=”txtName” runat=”server” Columns=”30” />

...
<asp:TextBox ID=”txtEmail” runat=”server” />

<asp:TextBox ID=”txtDoB” runat=”server” />

<asp:TextBox ID=”txtAlias” runat=”server” />

...

639

Exercise Answers

20_042583 appa.qxd 4/4/06 2:53 PM Page 639

3. The code file for the FanClub.aspx page also needs some changes. First, modify the
btnSaveChanges_Click event handler code:

protected void btnSaveChanges_Click(object sender, System.EventArgs e)
{

Profile.Theme =
((DropDownList)FCLoginView.FindControl(“ThemeList”)).SelectedValue;

Profile.Name = ((TextBox)FCLoginView.FindControl(“txtName”)).Text;
Profile.Address = ((TextBox)FCLoginView.FindControl(“txtAddress”)).Text;
Profile.City = ((TextBox)FCLoginView.FindControl(“txtCity”)).Text;
Profile.County = ((TextBox)FCLoginView.FindControl(“txtCounty”)).Text;
Profile.PostCode = ((TextBox)FCLoginView.FindControl(“txtPostCode”)).Text;
Profile.Country = ((TextBox)FCLoginView.FindControl(“txtCountry”)).Text;
Profile.Mailings = ((CheckBox)FCLoginView.FindControl(“chkMailing”)).Checked;
Profile.Email = ((TextBox)FCLoginView.FindControl(“txtEmail”)).Text;
Profile.MemberName = ((TextBox)FCLoginView.FindControl(“txtAlias”)).Text;

TextBox DoB = (TextBox)FCLoginView.FindControl(“txtDoB”);
if (DoB.Text <> “”)
{

Profile.DateOfBirth = DateTime.Parse(DoB.Text);
}

Server.Transfer(SiteMap.CurrentNode.Url);
}

Note that you need to check that the text box is not empty (if you try to save with an empty text
box, you’ll see an error page due to an exception).

4. Add the following code to the DisplayProfileProperties()method:

private void DisplayProfileProperties()
{

TextBox NameBox = (TextBox)FCLoginView.FindControl(“txtName”);

if (NameBox != null)
{

((DropDownList)FCLoginView.FindControl(“ThemeList”)).SelectedValue =
Profile.Theme;

((TextBox)FCLoginView.FindControl(“txtName”)).Text = Profile.Name;
((TextBox)FCLoginView.FindControl(“txtAddress”)).Text = Profile.Address;
((TextBox)FCLoginView.FindControl(“txtCity”)).Text = Profile.City;
((TextBox)FCLoginView.FindControl(“txtCounty”)).Text = Profile.County;
((TextBox)FCLoginView.FindControl(“txtPostCode”)).Text = Profile.PostCode;
((TextBox)FCLoginView.FindControl(“txtCountry”)).Text = Profile.Country;
((CheckBox)FCLoginView.FindControl(“chkMailing”)).Checked = Profile.Mailings;
((TextBox)FCLoginView.FindControl(“txtEmail”)).Text = Profile.Email;
((TextBox)FCLoginView.FindControl(“txtAlias”)).Text = Profile.MemberName;
((TextBox)FCLoginView.FindControl(“txtDoB”)).Text =

Profile.DateOfBirth.ToShortDateString();
}

}

This code will convert the DateTime value stored in the user’s profile into its string representa-
tion so that it can be displayed on the screen. Because users are unlikely to know the exact
time they were born, you can ignore the time part of the date — which is why you used the
ToShortDateString() instead of ToString() method. After you are finished, you can test
it out on the user of your choice. Figure A-9 uses Alan the Admin.

640

Appendix A

20_042583 appa.qxd 4/4/06 2:53 PM Page 640

Figure A-9

Chapter 12

Exercise 1

What is the role of SOAP in web services?

Solution

SOAP is a framework for exchanging messages. Its role in web services is to parcel function calls and
parameters to enable you to call the web services remotely in a standardized way.

Exercise 2

Create a web service that retrieves a Wrox United score whenever they’ve scored more than one goal.

Solution
[WebMethod]
public DataSet Fixtures() As
{

641

Exercise Answers

20_042583 appa.qxd 4/4/06 2:53 PM Page 641

SqlConnection conn = new
SqlConnection(ConfigurationManager.ConnectionStrings[“WroxUnited”].ConnectionString
);

SqlDataAdapter adapter = new SqlDataAdapter(“SELECT FixtureDate, Opponents,
FixtureType, GoalsFor, GoalsAgainst FROM Fixtures WHERE GoalsFor>1 ORDER BY
FixtureDate”, conn);

DataSet ;

adapter.Fill(ds, “Fixtures”);

return ds;

}

Exercise 3

Create a page that consumes the third-party weather forecast for Birmingham, United Kingdom. (Hint:
You will also need to discover this service first.)

Solution

Add a Web Reference first via the Add Web Reference function and discover the service by typing the
URL www.webservicex.net/globalweather.asmx

Create a blank page and add a label called Weather Label to it. Then add the following code to the code-
behind:

partial class WeatherPage :System.Web.UI.Page
{
protected void Page_Load(object sender , EventArgs e)
{

net.webservicex.www.GlobalWeather wsConvert = new
net.webservicex.www.GlobalWeather();

wsConvert.Credentials = System.Net.CredentialCache.DefaultCredentials;
WeatherLabel.Text = wsConvert.GetWeather(“Birmingham”, “United

Kingdom”).ToString();
}
}

Chapter 13

Exercise 1

The member discount is something that is applied to the shopping cart as you add items to the cart.
What do you need to add to the ShoppingCart object to make sure it can store a discount of 10% for
fan club members? You can assume that you can detect a fan club member with the property:
HttpContext.Current.User.IsInRole(“FanClubMember”).

Hint: You will need to create a subtotal as well.

642

Appendix A

20_042583 appa.qxd 4/4/06 2:53 PM Page 642

Solution

You need to create a MemberDiscount property first:

public class ShoppingCart
{

private single const MemberDiscountPercentage = 0.1;
...

public readonly double MemberDiscount()
get

if (HttpContext.Current.User.IsInRole(“FanClubMember”))
{

return SubTotal * MemberDiscountPercentage;
}

else
{

return 0;
}

}
}

}

Then you need to create a SubTotal property because between the total and the individual prices of the
items, you need to show how you arrive at your figures — otherwise, it will just look like your shopping
cart doesn’t add up correctly:

public readonly double SubTotal()
get
{

double t
if (_items == null}
{

return 0;
}
foreach (CartItem Item In _items)

t += Item.LineTotal;
}
return t;

}
}

Then you’ll need in Source View to add a Panel called DiscountPanel and add two labels, one called
SubTotalLabel and another called MemberDiscount, and make sure both contain nothing to begin with
and that both are visible.

You’ll also need to add some extra parameters to the checkout.aspx page called @subtotal and
@memberdiscount, and make sure they are added as part of the INSERT clause in this page.

Exercise 2

How can you display the member discount details on the Shopping Cart page so that only a fan club
member will see them?

643

Exercise Answers

20_042583 appa.qxd 4/4/06 2:53 PM Page 643

Solution

You need to check to see whether a user is in the role FanClubMember, and only if they are do you then
apply the extra formatting to show the subtotal and the member discount items. Last, you display the
discount panel:

if (Context.User.IsInRole(“FanClubMember”))
SubTotalLabel.Text = string.Format(“Sub-Total:{0,35:C}”,
Profile.Cart.SubTotal);
MemberDiscount.Text = string.Format(“Member Discount:{0:C}”,
Profile.Cart.MemberDiscount);
DiscountPanel.Visible = True;

}

Chapter 14

Exercise 1

Convert the two shop pages, Shop.aspx and ShopItem.aspx, from using SQL statements to stored
procedures.

Solution

For Shop.aspx, you need to create the following stored procedure:

CREATE PROCEDCURE dbo.usp_Shop
AS

SELECT ProductID, Name, Description, Price, PictureURL
FROM Products
ORDER BY Name

Next, change the SelectCommand from the SQL to usp_Shop.

For ShopItem.aspx, the stored procedure should be as follows:

CREATE PROCEDURE dbo.usp_ShopItem
@ProductID int

AS
SELECT *
FROM Products
WHERE ProductID = @ProductID

Next, change the SelectCommand from the SQL to usp_ShopItem.

Exercise 2

Add caching to the ShopItem.aspx page, so that the page is cached. Note that you need to take into
account that this page shows different products, so the cache needs to be varied by the product being
shown.

644

Appendix A

20_042583 appa.qxd 4/4/06 2:53 PM Page 644

Solution

For this you simply add the OutputCache directive to the page, but because the product being shown is
defined in the querystring, you need to vary it with the following querystring:

<%@ OutputCache Duration=”3600” VaryByParam=”ProductID” %>

Chapter 15

Exercise 1

Add defensive coding to the GenerateThumbnail method of the ImageHandling class stored in the
App_Code directory.

Solution

Having learned what you have about defensive coding and exceptions, you might be tempted to change
the code for GenerateThumbnail to what was shown in the chapter, where both defensive coding and
exception handling were used. However, during the chapter, you used the Application_Error event
to centrally log exceptions, so the explicit logging within GenerateThumbnail isn’t required. But you
still need to code against a missing source file, so the code could be changed to the following:

public static void GenerateThumbnail(string SourceImagePath,
string TargetImagePath)

{
if (!File.Exists(sourceImagePath))

return;

using (Image image1 = Image.FromFile(SourceImagePath))
{

short num1 = (short) Math.Round((double) (image1.Height * 0.25));
short num2 = (short) Math.Round((double) (image1.Width * 0.25));
Image.GetThumbnailImageAbort abort1 =

new Image.GetThumbnailImageAbort(ImageHandling.ThumbnailCallback);
using (Image image2 = image1.GetThumbnailImage(num2, num1,

abort1, IntPtr.Zero))
{

image2.Save(TargetImagePath, ImageFormat.Gif);
}

}
}

This assumes that a failure generating the thumbnail isn’t critical, which may not be a correct assump-
tion. Thumbnails are generated when pictures are uploaded to the site — pictures such as products for
the shop, match photos, and so on. The site can run quite well when these images are missing, so it isn’t
critical, and any exception would be logged by the central code so the site administrators would know
about it.

645

Exercise Answers

20_042583 appa.qxd 4/4/06 2:53 PM Page 645

Exercise 2

Add validation controls to the Checkout page, the part that accepts the delivery address. There is a
check box to copy the address from the membership details of the user, but there is nothing to ensure
that all of the fields are filled in.

Solution

To ensure data is entered into the address boxes, you can use RequiredFieldValidator controls. You
can add a validator for each TextBox, adding it next to the field it validates:

<tr><td><asp:TextBox id=”txtName” runat=”server” />
<asp:RequiredFieldValidator id=”rfv1” runat=”server”

ControlToValidate=”txtName” Text=”*”
ErrorMessage=”You must enter a value for the delivery name” />

</td></tr>

You will also need a ValidationSummary, which can be put after the table containing the address fields:

</table>
<asp:ValidationSummary id=”vs” runat=”server” DisplayMode=”BulletList” />

</asp:WizardStep>

Exercise 3

Use the debugger.

Solution

This exercise is more important than you realize, because learning how to debug is critical, especially
when you are a beginner. When learning, you tend to make more mistakes, or perhaps code less effi-
ciently than you do with years of experience. That’s only natural, and learning how to quickly track
down bugs will make you a better developer, not only because you’ll be good at finding bugs, but also
because, in finding those bugs, you learn what the problem was and how to avoid it next time. So in
finding bugs you become a better coder.

Chapter 16

Exercise 1

You are now developer and maintainer of the Wrox United web site. What else would you add to the
Wrox United site? Make a list of possible add-ons, and prioritize them with the simplest to do first.
Implement some of these add-ons.

Solution

There is no hard and fast solution to this exercise, but to get some ideas for add-ons to your site, or to
compare notes with other developers and the authors of this book, go to http://p2p.wrox.com and
look for this book’s discussion board.

646

Appendix A

20_042583 appa.qxd 4/4/06 2:53 PM Page 646

B
Setup

The ASP.NET 2.0 runtime comes as part of the Visual Web Developer Express download. ASP has
undergone an evolution in terms of setup, each version being simpler (although often larger and
lengthier) to install than the previous one. In classic ASP 2.0, ASP was separate even from the IIS
web server itself, both of which had to be downloaded and attached manually to IIS. By version
3.0 of classic ASP, ASP had been integrated with the web server. With ASP.NET 1.x, you had to
download the .NET Framework separately to get ASP, and enable IIS, which by then was part of
the operating system. However, throughout each of these iterations, you still had to download and
install a database solution separately.

With ASP.NET 2.0, all four parts come together in one easy-to-install package — Visual Web
Developer Express 2005. ASP.NET 2.0, the web server, development tools, and the database are all
installed at the same time. The web server is a test-development server nicknamed ASP.NET
Development Server (after the discoverer of the gaps and particular matter in the rings of Saturn)
and can run without IIS, alongside IIS, or you can choose to use IIS in place of the ASP.NET
Development Server.

System Requirements
Before you install VWD Express, you should check that your system meets the minimum require-
ments. We have taken the requirements from the Microsoft web site. They are listed in the follow-
ing sections.

Processor
❑ Minimum: 600 megahertz (MHz) Pentium processor.

❑ Recommended: 1 gigahertz (GHz) Pentium processor.

21_042583 appb.qxd 4/4/06 2:53 PM Page 647

Operating System
VWD Express can be installed on any of the following systems:

❑ Microsoft Windows 2003 Server, Service Pack 1

❑ Windows XP (Home Edition and Professional), Service Pack 2

❑ Windows 2000 (Professional and Server), Service Pack 4

❑ Windows x64 editions

❑ Windows Vista

RAM
❑ Minimum: 192 megabytes (MB)

❑ Recommended: 256MB (512 MB or more with SQL Express)

Hard Disk
❑ Minimum: 500MB

❑ Full Installation: Up to 1.3GB of available space may be required

CD or DVD Drive
This is not required.

Display
❑ Minimum: 800x600 256 colors

❑ Recommended: 1024x768 High Color — 16-bit

Mouse
You need a Microsoft mouse or compatible pointing device.

As with plenty of Microsoft technologies, you’ll find that it may well work on other older setups; how-
ever, we cannot recommend this and we won’t answer questions about it either.

Visual Web Developer Express Installation
Follow these steps to install Visual Web Developer Express:

648

Appendix B

21_042583 appb.qxd 4/4/06 2:53 PM Page 648

1. Go to the following URL: http://msdn.microsoft.com/vstudio/express/vwd/.

2. Click the Download Now link, and from the next page, click the link to download from here.
You will see the page shown in Figure B-1 asking you whether you want to run or save the file.

Figure B-1

3. Click Run and you will see the dialog box shown in Figure B-2 after the vwdsetup.exe file has
fully downloaded. If you are using Firefox, you only need to download and double-click it.

Figure B-2

4. You will be asked whether you want to submit anonymous information about your setup expe-
riences (see Figure B-3). If you want to send information about your setup experience, check the
box. If not, click Next.

If you’re using a dialup connection, remain connected after you have downloaded
this file, because you will still need an active connection later during the installation
process.

649

Setup

21_042583 appb.qxd 4/4/06 2:53 PM Page 649

Figure B-3

5. In the next screen, shown in Figure B-4, you will see the end-user license agreement (EULA).
You have to agree to this to continue, so check the box and click Next.

Figure B-4

650

Appendix B

21_042583 appb.qxd 4/4/06 2:53 PM Page 650

6. After accepting the terms of the EULA, you then specify which installation options you want to
install in addition to .NET 2.0 and Visual Web Developer Express. The only compulsory option for
this book is SQL Server 2005 Express. As shown in Figure B-5, select that option and click Next.

Figure B-5

7. Specify where to install VWD (see Figure B-6). We suggest selecting the default, which is
C:\Program Files\Microsoft Visual Studio 8\, and clicking Install to begin the setup. (Don’t
worry if the default is something other than C on your machine — this makes no difference).

Figure B-6 651

Setup

21_042583 appb.qxd 4/4/06 2:53 PM Page 651

Unfortunately, downloading of all the components must now commence (see Figure B-7), and
with 120MB, this can take quite a while.

Figure B-7

Don’t be surprised to see Microsoft .NET Framework 2.0 continue to download for quite a while
after reaching the 120MB — this isn’t unusual. After it has completed this stage, it will begin
installation of the downloaded components, shown in Figure B-8.

Figure B-8
652

Appendix B

21_042583 appb.qxd 4/4/06 2:53 PM Page 652

8. At the end of this installation, you should see the screen shown in Figure B-9, asking you to
restart your machine. You should oblige by clicking Restart Now.

By chance, you may not see this screen. As a general rule, you shouldn’t restart more often than neces-
sary, so if you’re not prompted to restart, don’t do it.

Figure B-9

9. After your machine has restarted, the dialog box depicted in Figure B-10 is displayed, notifying
you of a successful install (or any problems that were encountered) and reminding you to regis-
ter the software within 30 days.

Figure B-10

10. Click Exit and you will now be able to start up both Visual Web Developer and SQL Express.

SQL Server needs Internet access during installation, so make sure it can access the
Internet. Otherwise, the installation will fail.

653

Setup

21_042583 appb.qxd 4/4/06 2:54 PM Page 653

Web Site Folder Setup
Next, set up the Websites folder with Windows Explorer, and create the folder C:\Websites\
WroxUnited (or use whichever drive is appropriate to your setup).

IIS Setup (Optional)
As we’ve already mentioned, Visual Web Developer Express comes with its own web server: the
ASP.NET Development Server, nicknamed Cassini. However, some of you might want to use IIS any-
way. Note that it isn’t possible to run two versions of the web site concurrently, one on IIS and one on
the development server, because the database attaches itself to the ASP.NET Development Server and
you will find you can’t run it with IIS without detaching the database first.

To use IIS, you must have Windows XP Professional, Windows 2000, or Windows 2003 Server installed.
Windows XP Home Edition comes without IIS, and it isn’t possible to install it on Home Edition if you
do manage to get a copy of IIS. To begin the install, follow these steps:

1. To install IIS go to the Start menu, navigate to Settings➪Control Panel, and click Add or Remove
Programs. From the left-hand menu of the dialog box (shown in Figure B-11), select the
Add/Remove Windows Components icon. This will bring up the Windows Components
Wizard.

Figure B-11

2. Make sure the Internet Information Services option is selected, as shown in Figure B-12.

To create a folder in Windows Explorer, select File➪New Folder and type in the
name Websites.

654

Appendix B

21_042583 appb.qxd 4/4/06 2:54 PM Page 654

Figure B-12

3. Click Details and you can select which of the options to install (see Figure B-13). You won’t need
all of the options, although you can install them separately at a later point. However, you must
make sure that you select the Common Files, the IIS snap-in, the Front Page Extensions, and the
World Wide Web Services options, because these are necessary to work with ASP.NET 2.0 and
Visual Web Developer Express.

Figure B-13

4. Click OK and make sure you have the Windows CD handy for the installation.

655

Setup

21_042583 appb.qxd 4/4/06 2:54 PM Page 655

Create Alias
If you choose to install IIS and want to use the Wrox United sample web site on IIS, you will need to cre-
ate an alias so that IIS can recognize which application you mean and serve it accordingly. The following
steps walk you through creating an alias:

1. From the Start menu, select Run. Type MMC in the text box, and click OK. In the MMC dialog
box that appears, select File➪Add/Remove Snap In. Click the Add button and select IIS Internet
Information Services from the dialog box that appears, as depicted in Figure B-14.

Figure B-14

2. Expand the Internet Information Services, as shown in Figure B-15. Under that will be your
computer’s name. Expand that as well as the Web Sites option.

Figure B-15

656

Appendix B

21_042583 appb.qxd 4/4/06 2:54 PM Page 656

3. Right-click Default Web Site, and select New➪Virtual Directory from the menu to start the wiz-
ard. Type WroxUnited as the Virtual Directory Name as in Figure B-16.

Figure B-16

4. Click Next and browse to C:\Websites\WroxUnited as the local path, as shown in Figure B-17.

Figure B-17

5. Click Next and make sure the boxes are selected as shown in Figure B-18. Then click Next.

657

Setup

21_042583 appb.qxd 4/4/06 2:54 PM Page 657

Figure B-18

6. Click Finish. Close the MMC Console. A save is optional, and you can supply a name if you so
desire.

Wrox United Installation
Go to www.wrox.com and search for the dedicated page for Beginning ASP.NET 2.0 with C++ (ISBN:
0470042583). When you are there, you can download the Wrox United application, which comes as a
single downloadable zip file containing the database and application. Download the zip file and save it
to the C:\Websites\WroxUnited folder you created earlier. Next, unzip this file to C:\Websites\.
It will automatically put files in the WroxUnited folder for you, so be careful not to extract it to
C:\Websites\WroxUnited, because you could end up with C:\Websites\WroxUnited\WroxUnited.
In Windows Explorer, make sure that inside your C:\WebSites\WroxUnited is an App_Data folder
and that it has four files.

In particular, make sure that the following file names are present:

❑ WroxUnited.mdf

❑ ASPNETDB.mdf

❑ WroxUnited_log.ldf

❑ ASPNETDB_log.ldf

If not, go back and try downloading the zip file again.

658

Appendix B

21_042583 appb.qxd 4/4/06 2:54 PM Page 658

Network Service Enabling
The last step before you can test the application is that you might need to add Write permissions to the
Network Service account. This will allow ASP.NET to use the database and to read data from it and write
data to it, as is routinely required throughout the course of this book. You can skip this step if you are
using Windows Server 2003, because the Network Service account has these permissions already enabled
by default. If not, then you will almost certainly have to enable Write permissions first. Here’s how:

1. Go to Windows Explorer and select the C:\WebSites\WroxUnited\App_Data folder. Right-
click it and select Sharing and Security. Select the Security tab, shown in Figure B-19.

Figure B-19

If you can’t see the Security tab, this is because you have Simple File Sharing switched on. To
disable it, select Tools➪Folder Options from Windows Explorer, and select the View tab. Scroll
to the bottom and uncheck the Use Simple File Sharing option (see Figure B-20). If you can’t see
the Simple File Sharing option, this is because you have Windows XP Home Edition installed
and it has Simple File Sharing switched on permanently, and you cannot change it. Instead, you
will have to take another course as outlined in the next section.

659

Setup

21_042583 appb.qxd 4/4/06 2:54 PM Page 659

Figure B-20

2. Click the Add button in the Wrox United Properties dialog box and in the Select Users or
Groups dialog box that appears. Type NETWORK SERVICE into the text box and click Check
Names. NETWORK SERVICE will become underlined, as shown in Figure B-21.

Figure B-21

If the machine is joined to a domain, you must select the Locations button first and
pick the current machine, rather than the domain. That’s because NETWORK SER-
VICE is an account on your machine. By default, the dialog will attempt to add the
domain name, rather than the machine name.

660

Appendix B

21_042583 appb.qxd 4/4/06 2:54 PM Page 660

3. Click OK. You are returned to the Wrox United Properties dialog box. This time, select the new
NETWORK SERVICE option. Scroll down and check the box next to Write (see Figure B-22).
Click Apply, and then click OK.

Figure B-22

This will enable your account to access the database.

Windows XP Home Edition Users Only
If, when you come to browse for a Security tab in Windows Explorer, you can’t find one, this is because you
have Windows XP Home Edition installed and you have a slightly more complex route to enable the cor-
rect permissions. Apparently, Windows XP Home Edition users just aren’t allowed to have the same kind
of power as their XP Professional counterparts. To get around this, restart your computer in Safe Mode.

To do this, restart your machine, and before the Windows XP logo appears, hold down the F8 key and
select Safe Mode. Let XP continue and then log in as Administrator. You’ll receive a warning about run-
ning in Safe Mode, but click Yes anyway. Locate the C:\WebSites\WroxUnited folder in Windows
Explorer and right-click the App_Data folder. Select Properties and select the Security tab that has now
appeared. Now go back to step 1 in the previous section and follow the instructions from there on. At the
end, though, shut down and restart your machine in normal mode before you continue to the next step.

Checking the Installation with VWD and the ASP.NET
Development Server

After you have successfully downloaded the Wrox United zip file, unzipped it, and enabled the
Network Service, you are ready to check your installation. Follow these steps:

661

Setup

21_042583 appb.qxd 4/4/06 2:54 PM Page 661

1. Select the Start menu and navigate to All Programs. Select the Visual Web Developer 2005
Express Edition Icon at the bottom of the menu. VWD will open.

2. Select File➪Open Web Site, and browse to C:\Websites\WroxUnited and click Open. When the
web site has loaded into Solution Explorer, double-click default.aspx to open the file. Press
the F5 key to run the page and observe it in a browser. You should see what appears in Figure
B-23 in your browser.

Figure B-23

Checking the Installation with IIS
Follow this step only if you have installed IIS and intend to use it as your main web server. To open
WroxUnited with IIS, start Internet Explorer and type http://localhost/WroxUnited into the Address line.
The web site should start and display what’s shown in Figure B-24.

Please note that while Figure B-22 is seemingly identical to Figure B-21, the Address line reveals a small
difference. If you are running your site on ASP.NET Development Server (the free web server with
VWD), you will get the following line (potentially with a different number):

http://localhost:1231/WroxUnited

This indicates that the web server is running on port 1231. The ASP.NET Development Server will arbitrar-
ily assign a port number in the URL. If you are running the web site on IIS, then you see the following line:

http://localhost/WroxUnited

662

Appendix B

21_042583 appb.qxd 4/4/06 2:54 PM Page 662

Figure B-24

IIS by default runs on port 80, and this doesn’t need to be specified in the URL.

Occasionally, if port 80 is taken by another process, IIS will default to http://localhost:8080, or you
might have to specify it yourself if you get an error message saying Unexpected error 0x8ffe2740
occurred.

This means that another application is using port 80. To alter this, you need to start the IIS manager from
Administrative Tools in the Control Panel, right-click the Default Web site in the left panel, and select
Properties. From the Web Site tab, change the number there from 80 to 8080, or if 8080 is taken then 8081,
or the first one free above that number.

Troubleshooting
By and large, installation with SQL Express and the ASP.NET development is straightforward. However,
if you are trying to use SQL Server 2005 rather than SQL Express, you should run through the following
extra steps:

1. Add [machine\ASPNET] and [NT AUTHORITY\NETWORK SERVICE] as logins, substituting
machine with your machine name.

2. Attach the database (wroxunited.mdf), making ASPNET the db_owner.

3. Add [machine\ASPNET] and [NT AUTHORITY\NETWORK SERVICE] as database users.

4. Change the connection strings in web.config. That should be all for the WroxUnited database.
Then there’s the providers, which can be added to either the WroxUnited database or to a sepa-
rate one.

663

Setup

21_042583 appb.qxd 4/4/06 2:54 PM Page 663

5. Run aspnet_regsql (in the framework directory), to add user/roles/etc tables/procs to
the appropriate database.

6. Add provider sections in web.config, for <membership>, <roles>, and <profile>, setting
the default provider for each to the new provider added. These providers should point at the
ConnectionString for the database (which will be either WroxUnited or a new connection string
if you’re using another database).

Note that if you are using a different version of SQL Server than 2005, it isn’t possible to just attach the
database to the different version. If you are using the full version of 2005 and you encounter the following
problem:

Server Error in ‘/WroxUnited’ Application.
Failed to generate a user instance of SQL Server due to a failure in copying
database files. The connection will be closed.
Description: An unhandled exception occurred during the execution of the current
web request. Please review the stack trace for more information about the error and
where it originated in the code.
Exception Details: System.Data.SqlClient.SqlException: Failed to generate a user
instance of SQL Server due to a failure in copying database files. The connection
will be closed.

you will need to do the following:

1. Reboot windows.

2. Log in as Administrator (if you aren’t running with Admin privileges).

3. Delete the C:\Documents and Settings\username\Local Settings\Application Data\
Microsoft\Microsoft SQL Server Data\SQLEXPRESS directory.

You might need to logout and log back in as a “normal” user if you normally run with non-admin privileges.

If this doesn’t work, try the following solution — there is a known problem with remote logging on and
SQL Express, which the following steps should circumvent:

1. Go to the SQL Configuration Manager.

2. Right-click SQL Express and select Properties.

3. From the Logon tab, change the account from Network Service to Local System.

4. Try to run it again.

Apart from that, if you encounter a problem go to http://forums.asp.net or http://p2p.wrox.com
and check to see if your problem is addressed there.

664

Appendix B

21_042583 appb.qxd 4/4/06 2:54 PM Page 664

C
Wrox United

Database Design

Throughout this book, you’ve seen examples based on the fictional Wrox United soccer team web
site. The application relies on a SQL Server database, supplied with the code downloads for this
book (available at www.wrox.com). This database stores details of the players in the team, fixtures
and results, news items, orders from the shop, and so on.

This appendix is not intended to provide a thorough overview of database design principles, and
as such, we recommend that you read Wrox’s Beginning Database Design.

The database schema looks like Figure C-1.

Figure C-1

22_042583 appc.qxd 4/4/06 2:54 PM Page 665

This diagram illustrates the tables that exist within the database, and the relationships between those
tables. For example, players score goals, goals are scored at fixtures, match reports are written about spe-
cific fixtures, and so on. Many tables relate to other tables in the database, but there are some tables that
stand on their own; for example, the News table, which stores news articles. This table doesn’t link to
data stored in any other table. Notice also that the Orders, Products, and OrderLines tables are separate
from the rest of the database — these tables are used to store data relating to orders from the Wrox
United shop.

This appendix walks through the structure of each of the tables in the database and describes the rela-
tionships between them.

Players and Matches
The players on the Wrox United team are involved in many fixtures, and several related tables in the
database store related data for matches. Take a look at these tables first.

The Players Table
The following shows the structure of the Players table.

Field Data Type Allow Nulls

PlayerID (Primary Key) int No

FirstName varchar(25) No

LastName varchar(25) No

Position varchar(50) Yes

PictureURL varchar(255) Yes

DateJoined datetime Yes

DateLeft datetime Yes

This table is typical of all database tables in that it has the following:

❑ A primary key field that uniquely identifies each row in the database

❑ Fields designed to store textual data about each player (in varchar fields)

❑ Fields that store date and time information

❑ Flags indicating whether or not different fields require values

In this table, the primary key is the PlayerID field, which stores numeric values (integers) that are
unique to each player in the database. This field, along with the FirstName and LastName fields, is
marked as not allowing null values. In other words, if you enter a row of data in the table, you must

666

Appendix C

22_042583 appc.qxd 4/4/06 2:54 PM Page 666

enter values for each of these fields. However, the PlayerID field will be filled with an auto-generated
number for you (due to the way it is configured), so the only data you must enter when you create a new
row is the full name of the new player. The remaining information describing the player is optional. You
don’t have to specify which position the player occupies, and you don’t have to specify when he or she
joined.

Note that a varchar field is a field that stores character data of varying length. The number in brackets
is the maximum number of characters that can be stored in that field. If the field contains less than the
maximum length, it occupies less space in the database. A char field, by comparison, always takes up
the same size in the database, no matter how much of the available space is filled with data.

Figure C-2 shows an example of some data from the Players table.

Figure C-2

This screenshot comes straight from Visual Web Developer. You can right-click any database table in the
Database Explorer and select Show Table Data to try this out for yourself.

The Goals Table
The Goals table relates directly to the Players table, because players score goals during a match. The fol-
lowing shows the structure of the Goals table.

667

Wrox United Database Design

22_042583 appc.qxd 4/4/06 2:54 PM Page 667

Field Data Type Allow Nulls

GoalID (Primary Key) int No

FixtureID (Foreign Key) int Yes

PlayerID (Foreign Key) int Yes

Time int Yes

Notice that one of the fields in this table is the PlayerID field, which will store an integer value corre-
sponding to the ID of one of the players in the Players table, so if Dave Dickenson scored the first goal
for Wrox United, the goal in the table with GoalID of 1 will have a PlayerID of 4. Dave could later score
another goal for Wrox United, so another record in the Goal table would be created with another unique
value for GoalID, but with the same PlayerID. This type of field is called a foreign key because it relates
directly to a primary key in another table.

There is another field in the Goals table for storing ID values, which is the FixtureID field. This links
each goal to a particular fixture. Because players could score many goals at a single fixture, the relation-
ship between the Fixtures table and the Goals table is similar to that of the Players table and the Goals
table.

The Fixtures Table
The Fixtures table is structured as shown here.

Field Data Type Allow Nulls

FixtureID (Primary Key) int No

FixtureDate datetime No

FixtureType varchar(10) Yes

GoalsFor smallint Yes

GoalsAgainst smallint Yes

Notes text Yes

Opponents varchar(50) No

For each match played by the Wrox United team, there is an entry in the Fixtures table. Because fixtures
can be arranged several months in advance, the fixture date has to be entered as soon as the fixture is
arranged, and the opponents have to be entered. The number of goals scored can be entered later, after
the match has been played.

This sort of relationship — where one fixture can contain many goals, or where one
player could score many goals — is known as a one-to-many relationship.

668

Appendix C

22_042583 appc.qxd 4/4/06 2:54 PM Page 668

The MatchReports Table
After each match has taken place, it’s up to the reporters to write up the details of the match so that fans
can read all about it later. These reports are stored in the MatchReports table, which is structured like as
shown here.

Field Data Type Allow Nulls

ReportID (Primary Key) int No

FixtureID (Foreign Key) int No

Report text Yes

MemberName varchar(50) No

This table also links to the Fixtures table by including a FixtureID field in this table, linking a match
report to a specific fixture. The MemberName field stores the name of the reporter.

The Gallery Table
The Gallery table is used to store details of pictures uploaded by fan club members. The fields defined in
this table are shown here.

Field Data Type Allow Nulls

PictureID (Primary Key) int No

FixtureID (Foreign Key) int Yes

UploadedByMemberName varchar(50) Yes

Notes text Yes

PictureURL varchar(50) No

Each picture can relate to a specific fixture (notice the FixtureID field); however, because this field allows
the use of null values, this implies that pictures do not necessarily have to relate to fixtures.

Standalone Tables
The two standalone tables in the database are the Opponents table and the News table.

The Opponents Table
The Opponents table stands on its own in the database, and is defined as shown here.

The reason the Opponents table is on its own is a bit unfortunate, but the opposing team may decide to
change its name at some point in the future, which would change the name of all fixtures that Wrox
United played against them in the past if they were related. By keeping the tables separate, and only
using a name for each team, the name of the opponent in any particular match is preserved. 669

Wrox United Database Design

22_042583 appc.qxd 4/4/06 2:54 PM Page 669

Field Data Type Allow Nulls

OpponentID (Primary Key) int No

Name varchar(50) Yes

Won int Yes

Drawn int Yes

Lost int Yes

Points int Yes

TotalGoalsFor int Yes

TotalGoalsAgainst int Yes

This table can be updated with results of matches to maintain a tally of how well the Wrox United team
is performing in the league.

The News Table
The News table, described here, contains all of the news stories from the front page of the Wrox United site.

Field Data Type Allow Nulls

NewsID (Primary Key) Int No

DateToShow datetime No

Description text Yes

PictureURL varchar(50) Yes

Category varchar(50) Yes

Title varchar(50) Yes

Notice that each news item requires that a date be entered for each story, so that a story can remain hid-
den until a certain date has passed.

Wrox United Store Tables
The online shopping experience on the Wrox United site relies on data stored in three tables: the Orders
table, the Products table, and the OrderLines table. These tables are heavily reliant on each other.

The Orders Table
The Orders table, described here, contains a unique ID containing the main order details for an order.

670

Appendix C

22_042583 appc.qxd 4/4/06 2:54 PM Page 670

Field Data Type Allow Nulls

OrderID (Primary Key) Int No

OrderDate datetime No

OrderSentDate datetime Yes

MemberName varchar(50) No

Name varchar(50) No

Address varchar(255) No

County varchar(50) No

PostCode varchar(15) No

Country nchar(10) No

SubTotal money Yes

Discount money Yes

Total money Yes

In this table, you’ll notice that most of the fields are marked as mandatory (not allowing null values).
This highlights the fact that orders must have full address details before an order can be fulfilled. A cou-
ple of less familiar field types are in here too. The nchar data type will always take up 10 characters
space in the database, and the n in the name indicates that the data stored could contain Unicode charac-
ters. The other unfamiliar data type is money, which (as the name implies) can be used to store monetary
values.

Notice that there are no details in this table about which products have been bought in a particular
order. This information is stored in the OrderLines table.

The OrderLines Table
The OrderLines table, described here, links the Products table to the Orders table, indicating which items
have been bought in a particular order.

Field Data Type Allow Nulls

OrderLineID (Primary Key) int No

OrderID (Foreign Key) int No

ProductID (Foreign Key) int No

Quantity smallint No

Price money No

671

Wrox United Database Design

22_042583 appc.qxd 4/4/06 2:54 PM Page 671

Because an order can contain one or many products, there is a foreign key link here to the Products table.
However, because many different orders can be for the same product, there is also a foreign key link here
to the Orders table. This means that an individual line in this table stores details of one item, and one
order number. If you order more than one of a specific product, the Quantity is increased for the order
line, but you won’t end up with a new OrderLineID.

The Products Table
The Products table, described here, contains details of all of the products that can be bought from the
shop.

Field Data Type Allow Nulls

ProductID (Primary Key) int No

Name varchar(50) No

Description varchar(255) Yes

Price money No

PictureURL varchar(255) Yes

This simple table provides data about products, and is used both when users are browsing the shop and
when they’re buying items from the shop.

The relationship between the Orders table and the Products table is a many-to-many
relationship. In this situation, there has to be a central table that has one-to-many
relationships to both tables, and this is called the Join table.

672

Appendix C

22_042583 appc.qxd 4/4/06 2:54 PM Page 672

D
VWD Database Explorer

When you’re designing pages that work with data, you frequently need to check the metadata, for
example, to confirm the data type of a field. You also want to test your pages by quickly modifying
the data in tables. Furthermore, in some cases, you want to add a small and simple table to a
database, such as a list of shippers. In the past, these database tasks required that you leave your
web editor to open a second window with a database management tool. Visual Web Developer
offers a built-in tool named the Database Explorer that can perform these tasks without the need
for a separate management tool. Some functions are performed directly and others invoke a wiz-
ard to step you through the task.

This appendix covers the various techniques for working with the Database Explorer.

Opening the Database Explorer
You can view the Database Explorer either by choosing Menu➪View or by pressing Ctrl+Alt+S.
After it is open, the Database Explorer by default stacks on top of the Solution Explorer on the
right side of the screen. You can move it to a new dock location by dragging its title bar.

Adding an Existing Database to the
Database Explorer

The technique to connect the Database Explorer to a database depends on the type of database.
The following three sections cover the Microsoft databases. Most other databases (such as Oracle
or MySQL) will be the same as connecting to a SQL Server.

If you mess up the layout, you can return to the default by choosing
Menu➪Windows➪Reset Windows Layout.

23_042583 appd.qxd 4/4/06 4:23 PM Page 673

Accessing Files
Follow these steps:

1. On the Database Explorer toolbar, click Connect to Database, and from the first page of the wiz-
ard, select Microsoft Access Database File, as shown in Figure D-1.

Figure D-1

2. Browse to the file, and then add logon information if needed (see Figure D-2).

Figure D-2

3. You have the option to test the connection and then it is added to your list in the Database
Explorer.

674

Appendix D

23_042583 appd.qxd 4/4/06 4:23 PM Page 674

SQL Databases on a SQL Server (Including SQL Server
Express)

Follow these steps:

1. On the Database Explorer toolbar, click Connect to Database, and in the first page of the wizard
(shown in Figure D-3), select Microsoft SQL Server.

Figure D-3

In the next dialog box, the Data Source section is locked — it actually means the kind of data
source, not the name of the database.

2. Continuing on the Add Connection screen, for the Server Name text box, there are two options.
If you are using a full install of SQL Server, select the server name. If you are using SQL Server
Express (as we do in this book), type the following syntax exactly: (local)\SQLExpress, as
shown in Figure D-4.

Figure D-4

675

VWD Database Explorer

23_042583 appd.qxd 4/4/06 4:23 PM Page 675

Note the potential confusion when using SQL Server Express. Your PC name will be listed in the
drop-down box of servers, but that is not the server you want to specify. You must type into the
server name box the specific syntax to point to your local machine’s instance of SQL Server
Express.

3. Keep the choice for logon information set to Windows (see Figure D-5) unless you have devel-
oped an authentication table in SQL Server.

Figure D-5

4. After you have selected the server name, you can drop down the list of databases. Test the con-
nection and then click Finish to see your new data connection.

Saving SQL Databases as an MDF File
For highest performance, data is kept in SQL Server without an external file structure. But for portability,
a database can be configured to save its data in a Windows file that can be copied to a new server. The
file will have an extension of .mdf. We use an .mdf file to distribute data in this book. (The alternative
would be to have you download a long SQL script that would build the entire database internally in
your server and populate its data.) Connecting to an .mdf file is very similar to connecting to Access
Files. Just follow these steps:

1. On the Database Explorer toolbar, click Connect to Database, and select Microsoft SQL Server
Database File, as shown in Figure D-6.

Figure D-6

2. Browse to the file and add logon information if needed (see Figure D-7).

3. You have the option to test the connection and then it is added to your list in the Database Explorer.

676

Appendix D

23_042583 appd.qxd 4/4/06 4:23 PM Page 676

Figure D-7

Viewing Database Diagrams
The VWD Database Explorer provides a visual presentation of your database’s objects along with the
capability to drill down into each object’s properties. Follow these steps to walk through a diagram of
your database:

1. Within the Database Explorer, expand your Data Connections and then expand your database.
When you expand the Database Diagrams (see Figure D-8) the first time, you may be asked to
establish yourself as the dbo (database owner). Click Yes. Right-click the Database Diagram object
and add a new diagram. If asked, accept the creation of elements needed to build the diagram.

Figure D-8
677

VWD Database Explorer

23_042583 appd.qxd 4/4/06 4:23 PM Page 677

2. Add tables as desired and close the Add Table dialog box (see Figure D-9).

Figure D-9

The diagram can be so large that it is easy to miss tables. Note the Windows-standard horizontal
and vertical scroll bars to navigate the diagram (see Figure D-10).

Figure D-10

678

Appendix D

23_042583 appd.qxd 4/4/06 4:23 PM Page 678

3. You can rearrange the tables (the relationship lines will automatically adjust). Start by changing
the zoom size to 30% or so to be sure you see all of the tables and then do some rearranging. The
zoom window is on the diagram toolbar, shown in Figure D-11 set to 30%.

Figure D-11

4. Increase the zoom size to be able to read the data. For example, after rearrangement, 70% shows
all the tables for Wrox United, as shown in Figure D-12.

5. Right-click the title bar of a table (for example, Players) and select Properties from the menu. In
the Properties box (in the lower right of the monitor), you can view parameters such as the
Identity column. Right-click one field (see Figure D-13) of a table and select Properties to see how
that column has been configured, including the data type and length.

6. Carefully place the tip of the mouse arrow on a relationship line (for example, between Fixtures
and MatchReports) so that the mouse arrow changes to a horizontal double-ended arrow. Right-
click this relationship and select Properties to view data on the relationship, including enforce-
ment rules, as shown in Figure D-14.

679

VWD Database Explorer

23_042583 appd.qxd 4/4/06 4:23 PM Page 679

Figure D-12

Figure D-13
680

Appendix D

23_042583 appd.qxd 4/4/06 4:23 PM Page 680

Figure D-14

7. You can also print the Database Diagram or save it to include in documentation for the site.
Note that there are tools to position page breaks at specific axes of the diagram, as well as a tool
that allows you to add a text box of notes.

Exploring a Table’s Structure
In addition to the Database Diagram, you can look at tables through the Table node of the Database
Explorer, as follows:

1. Starting in Database Explorer, expand the list of databases and then the database of interest.
Expand the Tables node and select a table name (for example, MatchReports). In the Properties
window, shown in Figure D-15, you will see the approximate number of records.

Figure D-15
681

VWD Database Explorer

23_042583 appd.qxd 4/4/06 4:23 PM Page 681

2. Double-click a table name to open a list of the columns (fields) and populate the Properties win-
dows with data on the table as a whole, as shown in Figure D-16.

Figure D-16

These metadata can be changed in this view, assuming that you have the rights to make changes
to the database structure.

Observing and Editing Data of Existing Tables
If you right-click a table name in the Tables node of Database Explorer, you’ll see an option to Show
Table Data. This is a quick way to find out if your data-enabled web pages are actually carrying out their
tasks. You can also add, modify, or delete records to test results in data-reading pages.

Be extremely careful about changing data with the Show Table Data tool. For example, deletions or
changes of customers may divorce them from their orders. In some databases, the addition of a record
may require the addition of a partner record in another table. A simple correction to a spelling mistake
may cause a failure to properly look up data that is based on the old spelling. If you thoroughly under-
stand the schema and are changing independent data, you may avoid trouble. But in most cases, it is
better to make revisions based on the interface that ensconces proper validation, limits, and controls.

682

Appendix D

23_042583 appd.qxd 4/4/06 4:23 PM Page 682

Creating a New Database
It is rare that you will use VWD to create a database from scratch. Good databases require the kind of
planning and implementation tools that come with your database management system. However, in the
case of a small and simple database, VWD does offer the necessary planning and implementation tools.
You can add a new database in two ways: directly in the Database Explorer or by adding a SQL Database
through the Add New Item menu in Solution Explorer.

Follow these steps to create a database in Database Explorer:

1. In the Database Explorer, right-click Data Connections and select Create New SQL Server
Database.

2. Select a server. If you’re using SQL Server Express, use this exact syntax for the server name:
(local)\SQLExpress. Use Windows authentication unless you have created an authentication
scheme internal to SQL Server Express. Type the name of the new database into the bottom text box.

Database Explorer will automatically add the database to its list and you are ready to create
tables and add data.

You can also create a new database directly in the Solution Explorer. This technique is very similar to the
preceding procedure except for the first few steps:

1. Start in the Solution Explorer and right-click the root of the web site. Select Add New Item and
select the template of type SQL Database.

2. When prompted, agree to add to the App_Data folder.

VWD will now roll you over to the Database Explorer where you will see the new database and
folders for its objects (albeit empty). You can now create tables, add data, and perform other tasks.

Creating a New Table and Adding Data
Tables can be added and populated in the Database Explorer, as follows:

1. Expand the database, right-click the Tables node, and select Add New Table from the menu
shown in Figure D-17.

Figure D-17

683

VWD Database Explorer

23_042583 appd.qxd 4/4/06 4:23 PM Page 683

2. In the resulting list of columns, enter the names and data types. For example, as shown in
Figure D-18, a new table that holds a schedule of reporter’s interviews with the players would
start with a column (field) for InterviewID.

Figure D-18

Note that under Data Type, you can scroll down to find the UniqueIdentifier type, which is sim-
ilar to AutoNumber in Access.

3. In the panel below the columns list, you will find additional properties for the current column
such as default value and length.

4. Set the primary key by selecting a field and clicking the key tool in the table’s toolbar.

5. Finish by choosing Menu➪File➪Save Table.

Examining and Creating Views
Views provide a set of data. Instead of returning information directly from a table, a view returns only
certain fields, modified fields, or records. In many databases, the security rules will allow a web site to
request a view but not directly request data from a table — this provides a level of control for the
database administrator. For example, a table of employees may hold a field for salary level. A view that

684

Appendix D

23_042583 appd.qxd 4/4/06 4:23 PM Page 684

is authorized for the accounting department would include that field, but other users only have access to
views that do not include the salary data. Views are also useful for creating hybrid data, such as combin-
ing a NameFirst field and a NameLast field to show both names in a single field of a list box.

You can do a basic exercise where you create a view that would support a selection ListBox of Players.
You want the view to create two fields — the first is the player’s ID and the second is a combination of
the player’s last and first names, separated by a comma. Follow these steps:

1. In Database Explorer, expand your database, right-click the Views node, and select Add a New
View. This opens the designer for a new view in the background, and in the foreground, the
Add Table dialog (see Figure D-19) will open.

Figure D-19

2. In the Add Table dialog box, select Players and click Add. Close the dialog box.

3. Before you go on, experiment with turning on and off the panels to display a view. From left to
right, they are the Diagram, Query, SQL Statement, and Results. Because you are making a small
view, you can display all four. Figure D-20 shows the four panels. On the top is the pane of
tables, showing just the Players table with the single field of PlayerID selected. The next panel
down is the query designer, which shows the single field selected. The next panel shows the
very simple SQL statement: SELECT PlayerID FROM dbo.Players. The bottom panel shows
the results of choosing Query Designer➪Run to produce the results table.

685

VWD Database Explorer

23_042583 appd.qxd 4/4/06 4:23 PM Page 685

Figure D-20

4. Click the check box next to the PlayerID field in the Player table of the Diagram View (the top
panel) and note that the field is added to the Query and SQL Statement panels.

5. In the Query panel, go to the second row and type FullName into the alias cell. In the left col-
umn, type LastName + ‘, ‘ + FirstName.

6. Click the execute SQL tool (the red exclamation point) to see the results, displayed in Figure D-21.

686

Appendix D

23_042583 appd.qxd 4/4/06 4:23 PM Page 686

Figure D-21

7. Order the players’ names by last name. SQL does not like to order on a created (or alias) field, so
go to the third row of the Query panel and add the LastName field. Turn off its Output option.
Set the Sort Order column to 1, meaning this is the first criterion for sorting. In the Sort Type,
VWD will automatically set the order to Ascending. These four changes are shown in Figure
D-22. This step tells SQL to sort according to the last name, but not to output the LastName as
its own field. Execute the SQL.

687

VWD Database Explorer

23_042583 appd.qxd 4/4/06 4:23 PM Page 687

Figure D-22

8. Press Ctrl+S and save the view as PlayersForSelectionList. You now have a new view that can
be used in a selection list of a web page — for example, PlayerDetails.aspx, for which the
data controls follow. Note that in the DataSource1 (supporting the list box), you are not read-
ing from the Players table. Rather, you read from the PlayerSelection view. That view includes
your new field FullName, which you can set as the DataTextField in ListBox1:

<asp:ListBox ID=”ListBox1” runat=”server”
DataSourceID=”SqlDataSource1”
DataTextField=”FullName”
DataValueField=”PlayerID”
AutoPostBack=true>

</asp:ListBox>

<asp:SqlDataSource ID=”SqlDataSource1” runat=”server”
ConnectionString=”<%$ ConnectionStrings:WroxUnitedConnectionString %>”
SelectCommand=”SELECT [PlayerID], [FullName] FROM [PlayerSelection]”>
</asp:SqlDataSource>

<asp:DetailsView ID=”DetailsView1” runat=”server”

688

Appendix D

23_042583 appd.qxd 4/4/06 4:23 PM Page 688

DataSourceID=”SqlDataSource2”
...

</asp:DetailsView>

<asp:SqlDataSource ID=”SqlDataSource2” runat=”server”
ConnectionString=”<%$ ConnectionStrings:WroxUnitedConnectionString %>”
SelectCommand=”SELECT * FROM [Players] WHERE ([PlayerID] = @PlayerID)”>

<SelectParameters>
<asp:ControlParameter ControlID=”ListBox1”
DefaultValue=”1”
Name=”PlayerID”
PropertyName=”SelectedValue”
Type=”Int32” />

</SelectParameters>
</asp:SqlDataSource>
</asp:Content>

Examining a Stored Procedure (SPROC)
Like the other objects explored in this appendix, you can examine, edit, and create stored procedures, or
SPROCs. SPROCs are a set of one or more SQL commands that, as a group, carry out a task. The
Database Explorer offers a node for SPROCs, which can be expanded. A single click selects a SPROC and
shows, in the Properties window, if it is encrypted. A double-click opens the SPROC, which can then be
edited (assuming you have the rights to change the object).

The design of SPROCs is beyond the scope of this text, but you can take a quick look at one. For exam-
ple, in the Database Explorer, you can expand the WroxUnited database and then expand Stored
Procedures. Then you can double-click usp_OrderAdd to open it and view the following code. In this
simple SPROC, only one actual SQL statement gets executed:

ALTER PROCEDURE dbo.usp_OrderAdd
(
@MemberName varchar(5),
@Name varchar(50),
@Address varchar(255),
@PostCode varchar(15),
@County varchar(50),
@country varchar(50),
@SubTotal money,
@Discount money,
@Total money

)
AS
INSERT INTO Orders(MemberName, OrderDate, Name, Address, County, PostCode,

Country, SubTotal, Discount, Total)
VALUES (@MemberName, GETDATE(), @Name, @Address, @County, @PostCode, @Country,

@SubTotal, @Discount, @Total)

RETURN SCOPE_IDENTITY()

689

VWD Database Explorer

23_042583 appd.qxd 4/4/06 4:23 PM Page 689

This SPROC has three parts. The first and last lines establish the frame of the procedure and declare its
name. The second section, within parentheses, names the parameters that will be used to carry out the
procedure. The third part, the INSERT INTO statement following the AS command, describes the one
SQL statement to actually execute.

Summary
VWD provides the Database Explorer for the creation, modification, and examination of databases.
Generally, a web site will use an existing database, so the examination features are most useful.
However, when you’re testing a new site, you can go to the VWD Database Explorer to see if your pages
are updating data correctly, or you can modify data to see how the pages handle the rendering. In addi-
tion to introducing the Database Explorer, this appendix discussed the following topics:

❑ You can examine both data and metadata. The latter includes the list of fields in a table and
details about how those fields are structured, including their exact spelling, data type, size, and
other parameters that will be important when designing a page to use the fields.

❑ When creating a database, table or view, or SPROC, the Database Explorer will kick off a wizard
to guide you through the process. Keep in mind that when referring to your SQL Server Express
install, you must use the syntax of (local)\SQLExpress.

❑ For two reasons, use particular caution when modifying data or metadata for existing
databases. First, others may be expecting the database to be in its original state for their Web
Forms or Windows forms. Second, you may not be aware of the constraints and relationships
that can be ruined by incorrect changes in the data or structure.

690

Appendix D

23_042583 appd.qxd 4/4/06 4:23 PM Page 690

E
CSS and HTML

Quick Reference

This appendix provides a quick reference to CSS and HTML. It’s not meant to be an exhaustive
and complete list of all HTML controls, their properties and the CSS properties, but rather to give
the most common uses.

Styling Pages and Controls
You can style controls, or change their look and feel, in two ways: with properties of the control or
with Cascading Style Sheets (CSS). Ultimately, both achieve the same thing, making the control
look the way you want it to, but in practice, they are very different. Both Visual Web Developer
and Visual Studio 2005 use properties when setting the style for controls. For example, if you drop
a GridView onto your page and AutoFormat it with the Autumn format, you get the following:

<asp:GridView ID=”GridView1” runat=”server” BackColor=”White”
BorderColor=”#CC9966” BorderStyle=”None” BorderWidth=”1px” CellPadding=”4”>
<FooterStyle BackColor=”#FFFFCC” ForeColor=”#330099” />
<RowStyle BackColor=”White” ForeColor=”#330099” />
<PagerStyle BackColor=”#FFFFCC” ForeColor=”#330099”

HorizontalAlign=”Center” />
<SelectedRowStyle BackColor=”#FFCC66” Font-Bold=”True” ForeColor=”#663399”

/>
<HeaderStyle BackColor=”#990000” Font-Bold=”True” ForeColor=”#FFFFCC” />

</asp:GridView>

Here the BackColor sets the background color, and BorderColor sets the color of the border. The
same sort of thing applies to the style for parts of the control, such as the FooterStyle and
RowStyle.

Although the approach of including the individual style attributes works fine, there are some
issues:

24_042583 appe.qxd 4/4/06 2:55 PM Page 691

❑ It makes the code hard to read. Not only is it more text to read through, but the properties aren’t
always in a logical order. For example, on FooterStyle and RowStyle, the BackColor and
ForeColor are next to each other, but on the HeaderStyle, there is a Font-Bold attribute
between them.

❑ There is extra text, bulking out the page. With lots of styling applied to lots of controls, the page
size can increase, which can lead to performance degradation.

❑ It’s hard to amend if you decide to change colors. AutoFormat works fine, but if you want cus-
tom colors, you have to change each property individually.

CSS solves this problem by abstracting the actual styling away from the control, leaving the control with
just a simple reference to the styles being used. This is the CssClass property for web controls or the
class property for HTML controls. The GridView could now be as follows:

<asp:GridView ID=”GridView1” runat=”server” CssClass=”MyGrid”>
<FooterStyle CssClass=”MyGridFooter” />
<RowStyle CssClass=”MyGridRow” />
<PagerStyle CssClass=”MyGridPager” />
<SelectedRowStyle CssClass=”MyGridSelectedRow” />
<HeaderStyle CssClass=”MyGridHeader” />

</asp:GridView>

Immediately you can see that this is easier to read. The class names can be anything you want, and it is
best not to be control-specific, because CSS classes can be used across controls. For example, if the
FooterStyle and RowStyle needed the same styling, you could do the following:

<FooterStyle CssClass=”MyGridStandard” />
<RowStyle CssClass=”MyGridStandard” />

Here the same style name has been used, allowing the centralization of the styling. Style names should
also not contain things like color names. For example, don’t call a style TextRed just because it outputs
text in red. What happens if you want to change that text from red to blue? You can simply change the
style, but the class name would be misleading. Calling it TextHighlight is acceptable.

Creating Inline Styles
To create inline styles, you use the <style> element, which is usually placed within the <head> ele-
ment. For example:

<head>
<title>My Styled Page</title>
<style>

styling goes here
</style>

</head>

When using Master pages, you have to put the styling in the Master page, because Content pages don’t
allow a <head> element. Adding the style to the Master page is sensible though, because if all pages use
the Master page, they automatically get the styles.

692

Appendix E

24_042583 appe.qxd 4/4/06 2:55 PM Page 692

Linking Style Sheets to a Page
Another, and better, way to add styles is to use linked style sheets. In these cases, the style sheet is cre-
ated as a separate file (with a .css suffix) and linked to the page like so:

<head>
<title>My Styled Page</title>
<link rel=”stylesheet” type=”text/css” href=”site.css” />

</head>

The CSS is stored in site.css and the <link> element links this style sheet into the page at runtime.
Another great advantage of linked style sheets is that they can be cached by the browser, so the first time
a page is requested, the style sheet is loaded and cached. Subsequent pages that use the same style sheet
won’t need to reload it from the server because it’s already loaded.

CSS Inheritance
One of the core concepts of CSS is that inheritance is implicit in the styles. In many ways, the concept is
the same as inheritance in classes, in which a child class can inherit features from its parent. CSS works
the same way. This allows styling to be applied at the top level and inherited by contained controls. For
example, say you defined the paragraph tag (<p>) to have blue text like so:

p {
color: blue;

}

Any child tags would inherit that style:

<p>Hello everyone. I’m a paragraph with a bold word.</p>

The paragraph would appear in blue, including the bold word, because it inherits styles from the parent.
A bold tag not inside a paragraph would not be blue:

this is bold
<p>this is blue and bold</p>

The first line would be bold only, whereas the second line would be blue, including the bold word. The
 tag changes its style depending upon the context.

The technique of inherited styles reduces the amount of styling that needs to be done, and is especially
useful for setting default fonts and font sizes.

CSS Styles
Whichever method you use to add CSS styles, the styles themselves are the same, and are best seen by
an example. Take the example of blue text on a paragraph. The style could be as follows:

p {
color: blue;
font-weight: bold;

}

693

CSS and HTML Quick Reference

24_042583 appe.qxd 4/4/06 2:55 PM Page 693

Every paragraph would now appear in bold blue because this style sets the style for the <p> element.
Only the element name is used, and the angled brackets aren’t included. So p defines the element for
which the style applies, and the styling is surrounded by curly braces. Styles appear as a list separated
by semicolons. Styles are context independent, so they can be all on one line or on separate lines.
Likewise, the curly braces can be on separate lines.

In this example, two style properties are set, and the style is separated from the value by a colon. The
first, color, defines the color of the text, and its value is set to blue. The second, font-weight, defines
the weight of the font — how heavy it looks — and this is set to bold.

This technique enables styles to be set for HTML elements, and is typically used for the base elements.
For example, the Wrox United style sheet defines the following:

html, body {
background-color: #fff;
color: #000;
font: normal 90%/1.8em ‘Lucida Grande’, Verdana, Geneva, Lucida, Helvetica,

Arial, sans-serif;
margin: 0;

}
h1 {

font-size: 1.8em;
font-weight: bold;
margin-top: 0em;
margin-bottom: 0em;
color: #a83930;

}
h2 {

font-size: 1.6em;
margin: 1.0em 0em 1.0em 0em;
font-weight: bold;
color: #a83930;

}
h3 {

font-size: 1.2em;
margin: 1.0em 0em 1.0em 0em;
font-weight: bold;
color: #a83930;

}
p {

font-size: 1.1em;
line-height: 1.8em;
margin: 1.1em 0em 1.1em 0em;
text-align: left;

}

This defines the styles for the html and body elements, which due to inheritance become the default for
the rest of the page. Next are the headings and then the paragraph. The colors are described in the
“Colors” section later in this appendix.

694

Appendix E

24_042583 appe.qxd 4/4/06 2:55 PM Page 694

CSS Sizes
One thing you may have noticed in the previous style sheet is the use of em as a size, for both fonts and
margins. There are many ways of sizing things, including points, pixels, inches, and percentages or for
fonts, predefined sizes. One of the problems with defining sizes is that they mean different things to dif-
ferent people, especially if they use different browsers or different platforms. The sizing you can use are as
follows:

❑ Points (pt), which are a unit of print rather than a unit of the screen. Different browsers render
the same point size differently, giving different font sizes.

❑ Pixels (px), which represent an individual pixel on the screen. This again depends on the plat-
form and screen, because they define how many pixels per inch there are. The biggest drawback
with pixels is that they are not user scalable. For example, in Internet Explorer, you can select
Text Size from the View menu and change the size of the text being browsed, but if the page
designer used pixels, you have no way to resize the text.

❑ Physical units (in, cm, mm), which is a physical size. This again gives different results on differ-
ent sized screens.

❑ Named sizes, such as small, medium, large, x-large. These provide relative sizes, with small
being smaller than medium, and so on.

❑ Percentages (%), which define the size as a percentage of the default size (medium). So a font size
of 200% is twice the size of the default size.

❑ Ems (em), which represent the default font setting. Ems are user-resizable. 1 em represents one
unit of the default font size.

In the Wrox United application, ems have been used because they provide the best flexibility, and are
suitable for user resizing, which allows users with visual impairments to change the size of the text. You
may read much on the pros and cons of setting sizes for fonts, but as Frog Box Design (who did the CSS
and images for the Wrox United site) says:

We use relative sizes and em units because they scale better for people using larger fonts, but we do set a
relative percentage size, too.

Percentages are particularly useful when defining the width of block elements. For example, a width of
100% means the element will be the full width of its parent element. This is useful for things like grids
where you want them to be the full width of the screen.

Fonts
Deciding on which fonts to use can make a big difference to the readability of your site, because certain
fonts are easier to read on the screen than others. You can define many different aspects of the font
including the style (normal, bold, and so forth), the size, and the family. In the Wrox United style sheet,
the main font is defined as follows:

font: normal 90%/1.8em ‘Lucida Grande’, Verdana, Geneva, Lucida, Helvetica, Arial,
sans-serif;

695

CSS and HTML Quick Reference

24_042583 appe.qxd 4/4/06 2:55 PM Page 695

This has three parts:

❑ The style, which is normal.

❑ The size, which is 90%/1.8em. This means a font size of 90% and a line height of 1.8em (1.8
times the normal font size), providing nice spacing between the lines. The size of the font isn’t
directly related to the line height, and this declaration is a shortcut that allows both to be speci-
fied at the same time.

❑ The family, which defines the fonts to be used, if they are available. If a font is not available on
the browser, the next in line is tried. Here Lucida Grande will be tried first, Verdana next, and
so on. Fonts that have spaces in their names must have quotes around them.

These three parts could also have been defined like this:

font-style: normal;
font-size: 90%;
font-family: ‘Lucida Grande’, Verdana, Geneva, Lucida, Helvetica, Arial, sans-
serif;
line-height: 1.8em;

The single-line form is just a shortcut.

Colors
Colors can be predefined or you can specify the red, green, and blue values. For example, for blue text,
any of the following could be used:

color: blue;
color: #0000ff;
color: rgb(0, 0, 255)
color: rgb(0%, 0%, 100%);

These all produce the same result. The first uses a defined name, and the second uses a hexadecimal
notation where 00 represents no color and ff represents full colors. There are two digits for the red com-
ponent, two for green, and two for blue. So 0000ff means the following:

❑ 00 for red, so no red

❑ 00 for green, so no green

❑ ff for blue, so full blue

Using rgb enables you to specify this either in decimal (0 is no color and 255 is full color), or as percentages.

You might also see a shortcut form of the hexadecimal notation consisting of only three digits. This can
be used if the two digits for a color part are the same. So blue could be 00f.

CSS Selectors
Earlier, you saw how a paragraph could be styled:

696

Appendix E

24_042583 appe.qxd 4/4/06 2:55 PM Page 696

p {
color: blue;
font-weight: bold;

}

The p part is defined as the selector, and this can be an element, an element ID, or a class name, and the
way they are defined is different. To define an element ID, you place a hash sign (#) before the selector:

#header {
height: 100px;
padding: 0 10px 0 10px;
. . .

}

This would then correspond to an element with that ID:

<div id=”header”>

ID-based selectors can only be used by a single element because IDs have to be unique, so this should be
reserved for things that will only appear once. In the Wrox United style sheet, this is used for items such
as the header, sidebar, and so on.

To use a class name, you precede the selector with a period:

.title {
color: #a83930;
text-align: center;
. . .

}

This matches a CssClass property for a web server control, or the class property for an HTML control:

<asp:Label id=”Label1” runat=”server” CssClass=”title”>My Page</asp:Label>
<div class=”title>My Page</div>

Because the class name can be used by multiple controls, you should use it for common styling across
elements. The named selector can be designed to apply to all elements (as in the previous code), or just
selected elements:

div.title {
color: #a83930;

}

Here the selector only applies if a div element is given a class of title— any other element would not
get the style. The following line will be styled:

<div class=”title”>This will be styled</div>

However, the following line will not be styled:

While this will not be styled

Selector names are case-sensitive.

697

CSS and HTML Quick Reference

24_042583 appe.qxd 4/4/06 2:55 PM Page 697

Multiple Selectors
You can also define multiple selectors to have the same style by having them as a comma-separated list
at their definition:

span, div {
color: #a83930;

}

This defines both the span and div elements to have the same style. Multiple selectors work with ele-
ments, ID-based, and class-named forms.

Contextual Selectors
Selectors can also be contextual, meaning that they can be defined to only apply depending on the con-
text in which the element appears. For example, what if you wanted to style list elements (li and ul),
but only if they appear within the navigation bar at the left of the screen (#nav)? Your style could be as
follows:

#nav li {
color: #a83930;

}
#nav ul {

color: #a83930;
}

With these rules, the li and ul elements will only be styled if they are within a control with an ID of
#nav. Outside of the #nav control, no style will be applied.

Floating Elements
Sometimes you want to position elements to the left or right of others. You can’t achieve this with plac-
ing them one after another, because HTML is a flow-based layout, and elements are placed in their dec-
laration order. One way around this is fixed position, which positions elements directly, but this has
problems with users resizing their browser window, because the positioned elements may be outside the
new window size.

An easy way to do this is to use floating elements, and although they are restricted in what they do, they
can often provide the solution. For example, on the Wrox United home page there are news items, and
the date of the item is shown at the right of the page. Resizing the browser keeps this at the right,
because it has been floated to the right. The style for this is as follows:

.newsDate {
font: normal 0.9em/0.9em ‘Lucida Grande’, Verdana, Geneva, Lucida, Helvetica,

Arial, sans-serif;
float: right;
color: #666666;

}

Ignore the font and color — the important point is the float element:

float: right;

698

Appendix E

24_042583 appe.qxd 4/4/06 2:55 PM Page 698

This states that the element should be placed at the right of its containing control. So however wide the
parent control is, the news date will always appear at its right. Elements can also be floated to the left of
others. If you want to learn more about floating elements, it’s best to consult a specialized CSS book, but
details of some are included at the end of this appendix.

Pseudo Classes
In addition to standard classes, some special classes (called pseudo classes) apply to actions rather than the
anchor element. These allow specific classes to be applied to links. For example, consider the following:

a:hover {
text-decoration: none;

}
#nav a:hover {

text-decoration: none;
color: #a83930;
background-color: #fdea12;

}

Here the hover pseudo class is used, which indicates the style to be applied when the cursor is hovering
over a link. The first class sets the text-decoration to none, which removes the underline from links,
but only when they are hovered over. For links in the navigation area though, additional styling is done.

In addition to hover, three pseudo classes exist for links:

❑ link defines how an unclicked and unvisited link should be styled.

❑ visited defines how a link that has been visited should be styled.

❑ active defines how a currently active line should be styled.

There are other pseudo classes, but support for these in Internet Explorer is limited, so coding to use
them always requires a lot of effort. For that reason, they aren’t described here.

CSS Reference
The following table describes the CSS properties, but it does not include the aural properties for screen
readers. These should be supported on most modern browsers.

Property Description

background Changes the background color and image.

background-attachment Determines how background images should scroll. background-
attachment supports three values: scroll, fixed, and
inherit. The default value is scroll, which indicates that
images scroll. Specifying fixed means that images are fixed.
Specifying inherit indicates that images inherit behavior from
their parent.

Table continued on following page

699

CSS and HTML Quick Reference

24_042583 appe.qxd 4/4/06 2:55 PM Page 699

Property Description

background-color Defines the background color.

background-image Defines the image to show in the background of the element.

background-position Defines the position of a background image. It is defined as
two values to specify the horizontal and vertical positioning.
These can be top, center, or bottom for vertical alignment;
left, center, or right for horizontal alignment; percentages;
or fixed values.

background-repeat Indicates whether a background image is repeated and can be
repeat, repeat-x, repeat-y, no-repeat, or inherit.

border Defines the properties of the border of an element.

border-color Defines the color of a border.

border-collapse Indicates whether borders in tables collapse onto each other. It
can be one of collapse, separate, or inherit.

border-spacing Defines the amount of space between borders in a table.

border-style Defines the style of a border, and can be one of none, dotted,
dashed, solid, double, groove, ridge, inset, outset, or
inherit.

border-top Define the properties of a single border of an element.

border-bottom

border-left

border-right

border-top-color Define the color for an individual border of an element.

border-bottom-color

border-left-color

border-right-color

border-top-style Define the style for an individual border of an element.

border-bottom-style

border-left-style

border-right-style

700

Appendix E

24_042583 appe.qxd 4/4/06 2:55 PM Page 700

Property Description

border-top-width Define the width for an individual border of an element.

border-bottom-width

border-left-width

border-right-width

border-width Defines the width of the border for an element.

bottom Defines the distance to offset an element from the bottom edge
of its parent element.

caption-side Defines where a caption is placed in relation to a table, and can
be one of top, bottom, left, right, or inherit.

clear Clears any floating in action, and can be one of none, left,
right, both, or inherit.

clip Defines how much of an element is visible and can be a rectan-
gle rect[n,n,n,n], auto, or inherit.

color Defines the foreground color of an element.

content Defines the type of content and how it is to be displayed.

counter-increment Defines the property and amount for auto-incrementing lists.

counter-reset Resets the numerical value of auto-incrementing lists.

cursor Sets the shape of the cursor when over the element. It can be
one of auto, crosshair, default, pointer, move, e-resize,
ne-resize, nw-resize, n-resize, se-resize, sw-resize,
s-resize, w-resize, text, wait, help, inherit, or a URL
to an image.

direction Indicates the direction for letters, and can be one of ltr (left to
right, the default), rtl (right to left), or inherit.

display Determines how to display an element, and can be one of:
block, inline, list-item, none, or inherit.

empty-cells Defines how empty table cells are shown, and can be one of
hide, show, or inherit.

float Indicates how this element floats within the parent element,
and can be one of left, right, none, or inherit.

font Defines the attributes of the font for the element.

font-family Defines the font family for text.

font-size Defines the size of the font for text.

font-size-adjust Defines the aspect value for a font element.

Table continued on following page

701

CSS and HTML Quick Reference

24_042583 appe.qxd 4/4/06 2:55 PM Page 701

Property Description

font-stretch Defines how expanded or condensed a font is.

font-style Defines the style of the font, and can be one of italic,
normal, oblique, or inherit.

font-variant Defines whether the font is displayed in capital letters, and can
be normal, small-caps, or inherit.

font-weight Defines the thickness of the font, and can be absolute weight
values (100 to 900 in steps of 100), bold or normal, bolder or
lighter, or inherit.

height Defines the height of an element.

left When using absolute positioning, this defines how far from
the left edge of the parent the element is placed.

letter-spacing Defines the amount of space between letters.

line-height Defines the height between lines.

list-style Defines the properties for list elements.

list-style-image Defines the image to be used as the marker for a list element.

list-style-position Defines the positioning of the list relative to the list itself, and
can be one of inside, outside, or inherit.

list-style-type Defines the type of marker for the list, and can be one of
circle, decimal, disc, square, lower-roman, upper-
roman, lower-alpha, upper-alpha, none, or inherit.

margin Defines the amount of space between the border and the par-
ent element.

margin-top Define the amount of space between the border and the parent
element for an individual side of an element.

margin-bottom

margin-left

margin-right

marker-offset Defines the distance between the border of a list marker and
the list itself.

marks Defines whether crop marks are shown, and can be one of
crop, cross, both, none, or inherit.

max-height Define the maximum height and width of an element.
max-width

min-height Define the minimum height and width of an element.
min-width

702

Appendix E

24_042583 appe.qxd 4/4/06 2:55 PM Page 702

Property Description

orphans Defines the minimum number of lines or paragraph that must
be left at the bottom of a page.

outline Defines the properties of a button or form field that has focus.

outline-color Defines the color of a button or form field that has focus.

outline-style Defines the border style of a button or form field that has
focus.

outline-width Defines the border width of a button or form field that has
focus.

overflow Defines the visibility of content if it doesn’t fit within the ele-
ment, and can be one of auto, hidden, scroll, visible, or
inherit.

padding Defines the distance between one or more sides of the content
area and its border.

padding-top Define the distance between a side of the content area and its
border.

padding-bottom

padding-left

padding-right

page Defines the page type (such as regular or landscape) for
printed content.

page-break-after Define how the browser should insert page breaks, and can be
one of always, auto, avoid, left, right, or inherit.

page-break-before

page-break-inside Defines whether page breaks split an element across pages,
and can be auto, avoid, or inherit.

position Defines how an element is positioned relative to the flow of
the document, and can be absolute, fixed, relative,
static, or inherit.

quotes Defines the type of quotation mark to be used within embedded
quotes.

right Defines the distance an element should be from its parent’s
right edge.

size Defines the size of the printing area in a page.

table-layout Defines how the width of table cells is calculated, and can be
auto, fixed, or inherit.

text-align Defines the alignment of text, and can be one of center,
justify, left, right, or inherit.

Table continued on following page

703

CSS and HTML Quick Reference

24_042583 appe.qxd 4/4/06 2:55 PM Page 703

Property Description

text-decoration Defines the decoration on text, and can be one of blink,
line-through, none, overline, underline, or inherit.

text-indent Defines the amount of space to indent the first line of a
paragraph.

text-shadow Defines the amount of shadow to apply to text.

text-transform Defines the casing to use on text, and can be one of
capitalize, lowercase, none, uppercase, or inherit.

top Defines the distance between an element and its parent’s top
edge.

Unicode-bidi Defines Unicode text as having bidirectional characteristics.

vertical-align Defines the vertical alignment of the element.

visibility Defines how, or if, the element is shown, and can be one of
collapse, hidden, visible, or inherit.

white-space Defines how white space should be treated, and can be one of
normal, nowrap, pre, or inherit.

widows Defines the minimum number of lines that must be left at the
top of a page.

width Defines the width of the element.

word-spacing Defines the distance between words.

z-index Defines the depth of an element to allow overlapping elements.

Common HTML Tags by Category
Following is a list of some of the most commonly used HTML tags by category. When you know what
you want to do, but you’re not sure which tag will achieve the desired effect, use the following reference
tables to put you on the right track.

Document Structure

Tag Meaning

<! > Allows authors to add comments to code.

<!DOCTYPE> Defines the document type. This is required by all HTML
documents.

<base> Specifies the document’s base URL — its original location. It’s
not normally necessary to include this tag. It can only be used
in the <HEAD> section.

704

Appendix E

24_042583 appe.qxd 4/4/06 2:55 PM Page 704

Tag Meaning

<body> Contains the main part of the HTML document.

<comment> Allows authors to add comments to code.

<div> Defines a block division of the <BODY> section of the document.

<head> Contains information about the document.

<html> Signals the beginning and end of an HTML document.

<link> Defines the current document’s relationship with other
resources. Used in the <HEAD> section only.

<meta> Describes the content of a document.

<nextid> Defines a parameter in the <HEAD> section of the document.

 Defines an area for reference by a style sheet.

<style> Specifies the style sheet for the page.

Titles and Headings

Tag Meaning

<h1> Heading level 1.

<h2> Heading level 2.

<h3> Heading level 3.

<h4> Heading level 4.

<h5> Heading level 5.

<h6> Heading level 6.

<title> Defines the title of the document.

Paragraphs and Lines

Tag Meaning

 Line break.

<center> Centers subsequent text and images.

<hr> Draws a horizontal rule.

<nobr> Prevents a line of text breaking.

<p> Defines a paragraph.

<wbr> Inserts a soft line break in a block of <NOBR> text.

705

CSS and HTML Quick Reference

24_042583 appe.qxd 4/4/06 2:55 PM Page 705

Text Styles

Tag Meaning

<address> Indicates an address. The address is typically displayed in italics.

 Emboldens text.

<basefont> Sets font size to be used as default.

<big> Changes the physical rendering of the font to one size larger.

<blockquote> Formats a quote — typically by indentation.

<cite> Renders text in italics.

<code> Renders text in a font resembling computer code.

<dfn> Indicates the first instance of a term or important word.

 Emphasized text — usually italic.

 Changes font properties.

<i> Defines italic text.

<kbd> Indicates typed text. Useful for instruction manuals and the like.

<listing> Renders text in a fixed-width font.

<plaintext> Renders text in a fixed-width font without processing any other
tags it may contain.

<pre> Preformatted text. Renders text exactly how it is typed —
carriage returns, styles, and so forth, will be recognized.

<s> or <strike> Strikethrough. Renders the text as deleted (crossed out).

<small> Changes the physical rendering of a font to one size smaller.

 Strong emphasis — usually bold.

<style> Specifies the style sheet for the page.

<sub> Subscript.

<sup> Superscript.

<tt> Renders text in fixed width, typewriter-style font.

<u> Underlines text. This is not widely supported at present, and is
not recommended, because it can cause confusion with hyper-
links, which also normally appear underlined.

<var> Indicates a variable.

706

Appendix E

24_042583 appe.qxd 4/4/06 2:55 PM Page 706

Lists

Tag Meaning

<dd> Definition description. Used in definition lists with <DT> to
define the term.

<dir> Denotes a directory list by indenting the text.

<dl> Defines a definition list.

<dt> Defines a definition term. Used with definition lists.

 Defines a list item in any type of list other than a definition list.

<menu> Defines a menu list.

 Defines an ordered (numbered) list.

 Defines an unordered (bulleted) list.

Tables

Tag Meaning

<caption> Puts a title above a table.

<col> Defines column width and properties for a table.

<colgroup> Defines properties for a group of columns in a table.

<table> Defines a series of columns and rows to form a table.

<tbody> Defines the table body.

<td> Specifies a cell in a table.

<tfoot> Defines table footer.

<th> Specifies a header column. Text will be centered and bold.

<thead> Used to designate rows as the table’s header.

<tr> Defines the start of a table row.

Links

Tag Meaning

<a> Used to insert an anchor, which can be either a local reference
point or a hyperlink to another URL.

 Hyperlink to another document, the location of which is specified
by the url.

Table continued on following page

707

CSS and HTML Quick Reference

24_042583 appe.qxd 4/4/06 2:55 PM Page 707

Tag Meaning

 Link to a local reference point, the location of which is specified
by the name.

Graphics, Objects, Multimedia, and Scripts

Tag Meaning

<applet> Inserts an applet.

<area> Specifies the shape of a hot spot in a client-side image map.

<bgsound> Plays a background sound.

<embed> Defines an embedded object in an HTML document.

 Embeds an image or a video clip in a document.

<map> Specifies a collection of hot spots for a client-side image map.

<noscript> Specifies HTML to be displayed in browsers that don’t support
scripting.

<object> Inserts an object.

<param> Defines parameters for a Java applet.

<script> Inserts a script.

Forms

Tag Meaning

<button> Creates an HTML-style button.

<fieldset> Draws a box around a group of controls.

<form> Defines part of the document as a user fill-out form.

<input> Defines a user input box.

<label> Defines a label for a control.

<legend> Defines the text label to use in box created by a <FIELDSET> tag.

<option> Used within the <SELECT> tag to present the user with a number
of options.

<select> Denotes a list box or drop-down list.

<textarea> Defines a text area inside a <FORM> element.

708

Appendix E

24_042583 appe.qxd 4/4/06 2:55 PM Page 708

Frames

Tag Meaning

<frame> Defines a single frame in a frameset.

<frameset> Defines the main container for a frame.

<iframe> Defines a floating frame within a document.

<noframes> Allows for backward compatibility with non-frame-compliant
browsers.

HTML Common Attributes to the CSS
Property

The following table cross-references common HTML attributes with their corresponding CSS values.

Attribute CSS Values Description

align text-align Specifies how the element is aligned with respect
to its containing element, or to the rest of the
page.

alink :link pseudo class The color for active links in the page. A link is
active while the mouse button is held down over
the link.

background background: Specifies a background picture that is tiled
behind text and graphics.

bgcolor background-color Specifies the background color to be used for an
element.

border border Specifies if a border is to be drawn around the
element, and sets its thickness.

bordercolor border-color The color of all or some of the borders for an
element.

clear clear Causes the next element or text to be displayed
below left-aligned or right-aligned images.

color color The text or foreground color of an element.

face font-family Sets the font family or typeface of the current
font or base font.

height height Specifies the height of the element that is to be
drawn on the page.

Table continued on following page

709

CSS and HTML Quick Reference

24_042583 appe.qxd 4/4/06 2:55 PM Page 709

Attribute CSS Values Description

hidden visibility Forces the embedded object to be invisible in an
<EMBED> tag.

hspace margin Specifies the horizontal spacing or margin
between an element and its neighbors.

link :link pseudo class The color for links.

left left Position in pixels of the left-hand side of the
object in relation to its container.

leftmargin margin-left Specifies the left margin for the entire body of the
page, overriding the default margin.

marginheight margin-top Specifies the top and bottom margins for display-
ing text in a frame.

marginwidth margin-left Specifies the left and right margins for displaying
margin-right text in a frame.

nowrap white-space Indicates that the browser should not perform
automatic word wrapping of the text.

rightmargin margin-right Specifies the right margin for the entire body of
the page, overriding the default margin.

size size Specifies the size of the element.

top top Position of the top of the element. It also returns
topmost window object.

topmargin margin-top Specifies the margin for the top of the page, over-
riding the default top margin.

valign vertical-align Specifies how the contents should be aligned
vertically within the element.

visibility {visibility: Defines whether the element should be
visible | hidden} displayed on the page.

vlink :visited pseudo The color for visited links in the page.
class

vspace margin Specifies the vertical spacing or margin between
an element and its neighbors.

weight font-weight Defines the weight of the font used to render the
text.

width width Specifies the width of the element that will be
drawn in the page.

z-index z-index Position in the z-order or stacking order of the
page — the z coordinate.

710

Appendix E

24_042583 appe.qxd 4/4/06 2:55 PM Page 710

Recommended Reading
If you’d like to learn more about CSS, and we recommend you do, the books listed in the following
tables will be useful.

Title Beginning CSS: Cascading Style Sheets for Web Design

Author Richard York

Publisher Wrox Press

ISBN 0-7645-7642-9

Description As part of the Beginning series, this is a natural companion to this book,
covering all aspects of how to use CSS for web site design.

Title Accessible XHTML and CSS Web Sites: Problem–Design–Solution

Author Jon Duckett

Publisher Wrox Press

ISBN 0-7645-8306-9

Description This book is aimed more at how to make your web site accessible to people
with visual impairments or who use screen readers rather than standard
browsers. It’s something we should all aim to do when creating web sites.

Title Core CSS Second Edition

Author Keith Schengili-Roberts

Publisher Prentice Hall

ISBN 0-13-009278-9

Description This is a pure reference book to the whole of CSS, including some of the
future enhancements. It’s definitely not a learning book, but it provides
good examples as well as being an excellent reference.

Title Designing with Web Standards

Author Jeffrey Zeldman

Publisher New Riders

ISBN 0-7357-1201-8

Description A book for the more advanced user. It contains a wealth of information,
especially about the practicalities of CSS and their use in the real world. It
includes lots of material on cross-browser issues, such as sizes.

Another good resource is the web, and there are plenty of CSS tutorials. A good place to start is www
.w3schools.com/css/.

711

CSS and HTML Quick Reference

24_042583 appe.qxd 4/4/06 2:55 PM Page 711

24_042583 appe.qxd 4/4/06 2:55 PM Page 712

In
de

x

Index

SYMBOLS
+ (addition) operator, 307

{ } (curly brackets) in code, 288

/ (division) operator, 307

== (equal to) comparison operator), 308

> (greater than) comparison operator, 308

>= (greater than or equal to) comparison operator,

308

< (less than) comparison operator, 308

<= (less than or equal to) comparison operator), 308

!= (not equal to) comparison operator), 308

% (modulus) operator, 307

* (multiplication) operator, 307

+ (plus sign) concatenation operator, 306

- (subtraction) operator, 307

; (semicolons) in code, 288

^ logical operator, 310

|| logical operator, 310

! logical operator, 310

&& logical operator, 310

 HTML element, 65

<%@Master...%>

<%@PageMasterPageFile=%>

A
<a> element, HTML, 64

abstraction, 333

access controls, web services security, 459

AccessDataSource, 205

accessibility, 172

Accessors, classes

internal, 328

private, 328

protected, 328

protected internal, 328

public, 328

add-to-cart facility, shopping cart, 497–502

addition (+) arithmetic operator, 300

allowAnonymous flag, 422

ALTER PROCEDURE statement, 530

anonymous identification, System.Web settings, 46

anonymous shopping carts, 422–423

application

compiling, deployment and, 599–600

running, deployment and, 599–600

application events, 200–201

application settings, Web.config file, 45

Application_End event, global.asax, 201

Application_Error event, global.asax, 201

Application_Start event, global.asax, 200

applications

three-tier, 358–359

two-tier, 357–358

Wrox United, 8–10

App_Code folder, 357

25_042583 bindex.qxd 4/4/06 2:55 PM Page 713

App_Offline.htm, 608

architecture

postback, 184–185

web server architecture, 175–177

arithmetic operators

% (modulus), 300

* (multiplication), 300

+ (addition), 300

- (subtraction), 300

/ (division), 300

description, 307–308

ArrayList collection, 299, 542

arrays

binding list items to, 219

collections and, 299

collections comparison, 303

multi-dimensional, 298–299

single dimensional, 297–298

string arrays, declaring, 298

ASP.NET, compared to other technologies, 7–8

ASP.NET Development Server, 11

<asp:content> tag, 40

ContentPlaceHolderID values, 41

<asp:ContentPlaceHolder> tag, 40

ASPX files, deployment and, 598

assemblies, 379–380

assigning values, 289

assumptions, errors and, 557–558

attributes

CodeFile, 351

HTML elements, 62

inherits, 351

roles, 397

styles, 134–135, 138

authentication, 102

forms authentication, 125–128

Passport authentication, 126

SQL Authentication, 204

System.Web settings, 45

web services security, 459

Windows authentication, 125, 204

Authentication event, Login control, 187

authorization, 102

page-level, configuration, 396–404

B
Begin directory, 14

best practices

layout, 172–173

styles, 172–173

binding, syntax, 258

<body> element, HTML, 64

bool data type, 286

brackets in code, 288

breadcrumbs, 84

browsers, site design, 50, 52

btnAddToCart button, 498

btnCancelChanges button, 410

btnSaveChanges button, 410

btnSaveChanges_Click event handler, 417

bugability, usability of layout and, 172

bureau services, credit card shopping, 504–505

Button control, 80, 186

buttons, event procedures and, 183

byte data type, 286

C
C#

book code, 3

data types, 287

caching, 6

data invalidation caching, 7

fragment caching, 7, 546

page caching, 543, 545–548

performance and, page caching, 543–548

post cache substitution, 547–548

Calendar controls

SelectionChanged event, 187

VisibleMonthChanged event, 187

calling web services, 431

canceling events, 196–199

CartItem object, shopping cart, 477–478

Cascading Style Sheets. See CSS

casting, data type conversion and, 291

Chapters directory, 14

char data type, 286

CheckboxBox controls

CheckChanged event, 186

description, 81

714

App_Offline.htm

25_042583 bindex.qxd 4/4/06 2:55 PM Page 714

CheckBoxList controls, SelectedIndexChanged event,

187

CheckChanged event controls, 186

checkout, e-commerce, 502

address details, 503

credit card, 504–505

bureau services, 504

e-commerce ID, 504

IMAs, 504

in-house transactions, 504

merchant number, 504

payment gateways, 504

login, 503

order processing, 503

process, 505–519

Class property, SqlException object, 566

class creation properties, 330–334

public variables and, 333–334

read-only properties, 332

write-only properties, 333

classes, 327

Accessors, 328

constructors, 329–330

Convert, 290

creating, 328

events, 328

framework classes, data type conversion and, 290

inheritance, 338, 340–343

instances, 327

methods, 327, 334–337

objects and, 327

partial classes, 351

properties, 327, 330–332

public variables and, 333–334

read-only properties, 332

shared, 337

write-only properties, 333

string, 291,

variables, internal, 336–337

Click event, controls, 186

clients, dynamic client code, 69

CLR (Common Language Runtime), 6

data types, 287

code, 6

content and, 348–349

controls, Wrox application, 9

curly brackets, 288

design and, 349–350

inline, 178

roles and, 404–405

sample, directories, 14

semicolons in, 288

site maps, 42

code-behind, 350

advantages, 352

description, 178

event handlers, 351–352

file creation, 352–355

functions, 351–352

Page directive, 350

partial classes, 351

CodeFile attribute, 351

collections, 299

ArrayList, 299

arrays comparison, 303

Hashtable, 299

performance and, 536–537, 542

Queue, 299

SortedList, 300

Stack, 300

StringCollection, 300

strongly typed, 300

color, CSS, 696

Common Tasks menu, 17

CompareValidator, 559

comparison operators

!= (not equal to), 308

== (equal to), 308

< (less than), 308

<== (less than or equal to), 308

> (greater than), 308

>= greater than or equal to), 308

overview, 308–309

compilation,

full runtime compilation, 357

overview, 356–357

pre-runtime compilation, 356

715

compilation

In
de

x

25_042583 bindex.qxd 4/4/06 2:55 PM Page 715

componentization

App_Code filder, 357

code-behind, 350

event handlers, 351–352

file creation, 352–355

functions, 351–352

Page directive, 350

partial classes, 351

controls

assemblies, 379–380

composite controls, 379

custom server controls, 379–380

data layers

three-tier applications, 358–359

two-tier applications, 357–358

introduction, 347

ObjectDataSource control, 359

Wrox United, 364–367

user controls, 367–369

structure, 369–370

Wrox United, 375–379

composite controls, 379

concatenation, 306–307

configuration

authorization, page-level, 396–404

data controls, VWD and, 211–212

error pages, custom, 582–583

connection strings, 217–218

hiding, 215

Web.config file, 45

connections to data, 6

consistency issues, 5

constants, 305–306

constructors, class creation, 329–330

consumer sites, 6

<ContentPlaceHolder> tag, 40

ContentPlaceHolderID values, <asp:content> tags, 41

content, code and, 348–349

content pages

creating, 31–33

design and, 29–34

sample pages, 33–34

Control Tree, tracing

Control UniqueID, 551

ControlState SizeBytes, 551

Render Size Bytes, 551

Type, 551

ViewState Size Bytes, 551

controls

assemblies, 379–380

composite controls, 379

custom server controls, 379–380

data controls

configuration, VWD and, 211–212

multiple, 247–253

VWD Toolbox, 70

data source controls, 6, 205

AccessDataSource, 205

cross-over functionality, 261

hierarchical, 261

ObjectDataSource, 206

parameters, 242–247

properties, 212–215

relational, 261

SiteMapDataSource, 206

SqlDataSource, 205

XMLDataSource, 205

data-bound controls, 6, 206–207

cross-over functionality, 262

DataKeyNames, 262–263

DataList, 209

DetailsView, 210, 239–242

DropDownList, 210

FormView, 210, 239–242

GridView, 209, 225–229

GridView control, 206

ListBox, 210

hierarchical, 261

Menu, 210

relational, 261

Repeater, 210

selection list controls, 208

selection lists, 218–220

single record display controls, 207

716

componentization

25_042583 bindex.qxd 4/4/06 2:55 PM Page 716

SiteMapPath, 210

tabular controls, 207

tree controls, 208

TreeView, 210

events used, 186

Login, 103

MasterPage, 5

Navigation controls

Menu control, 90

SiteMapDataSource control, 90

TreeView control, 96

ObjectDataSource control, 359

server controls, CSS for, 160

server-side, 5

Shopping Cart, 489

styling, 691–692

user controls, 367, 369

structure, 369–370

Wrox United, 375–379

validation controls, 559

multiple, 561–564

ValidationSummary control, 561–564

Wrox application, code, 9

Convert class, 290

converting data types, 289

casting and, 291

explicit, 291

framework classes and, 290

CREATE PROCEDURE statement, 530

credit cards, e-commerce, 504–505

bureau services, 504

e-commerce ID, 504

IMAs, 504

in-house transactions, 504

merchant number, 504

payment gateways, 504

CSS (Cascading Style Sheets), 138–139

files, deployment and, 598

limitations, 146–147

links to, 141–142

master pages, 34

properties, 699, 704

server controls, 160

single page, 140–141

styling controls, 691–692

styling pages, 691–692

color, 696

floating elements, 698

fonts, 695–696

inheritance, 693

inline styles, 692

pseudo classes, 699

selectors, 696–698

sizes, 695

style sheets, linking to page, 693

styles, 693–694

syntax, 139–140

themes and, 163–164

CSS property, HTML attributes, 709, 711

curly brackets in code, 288

customization themes, 160

stylesheet themes and, 162

Try It Out, 161–162

CustomValidator, 559

D
data binding, performance and, 539–540

data bound controls, 6

data controls

configuration, VWD and, 211–212

multiple, 247–253

VWD Toolbox, 70

Data controls, Toolbox, 70

data events, 190–193

data invalidation caching, 7

data layers

three-tier applications, 358–359

two-tier applications, 357–358

Data panel, Toolbox, 18

Data property, Exception object, 565

data reads, Wrox application, 9

717

data reads, Wrox application

In
de

x

25_042583 bindex.qxd 4/4/06 2:55 PM Page 717

data source controls, 6, 205

AccessDataSource, 205

cross-over functionality, 261

hierarchical, 261

ObjectDataSource, 206

parameters, 242–247

properties, 212–215

relational, 261

SiteMapDataSource, 206

SqlDataSource, 205

XMLDataSource, 205

data types, 285

bool, 286

byte, 286

C#, 287

char, 286

CLR data types, 287

constants, 305–306

conversion, 289

casting and, 291

explicit, 291

framework classes and, 290

DateTime, 286

decimal, 286

double, 286

enumerations, 304–305

float, 286

int, 286

listing of, 286

long, 286

null values, 291

object, 286

sbyte, 286

short, 286

string, 286

uint, 286

ulong, 286

ushort, 286

Visual Basic, 287

data writing

introduction, 261–263

pictures, uploading, 274–283

records

changing existing, 263–269

deleting, 271–274

new, 269–271

Wrox application, 9

data-bound controls, 206–207

cross-over functionality, 262

DataKeyNames, 262–263

DataList, 209

DetailsView, 210, 239–242

DropDownList, 210

FormView, 210, 239–242

GridView, 209, 225–229

GridView control, 206

ListBox, 210

hierarchical, 261

Menu, 210

relational, 261

Repeater, 210

selection list controls, 208

selection lists, 218–220

single record display controls, 207

SiteMapPath, 210

tabular controls, 207

tree controls, 208

TreeView, 210

database connections, performance and, 527

Database Explorer (VWD), 24

adding databases, 673–676

creating databases, 683

creating tables, 683–684

editing data, 682

opening, 673

SPROCs, 689–690

table structures, 681–682

viewing diagrams, 677–681

views, 684–689

databases

design, 665–672

fields, 204

files, deployment and, 598

introduction, 203–204

records, 204

relational data, 203

718

data source controls

25_042583 bindex.qxd 4/4/06 2:55 PM Page 718

tables, 204

transactions, 571

DataBound event, DataList control, 187

DataItem property, ItemDataBound event, 192

DataKeyNames data-bound control, 262–263

DataList controls, 187, 207, 231

DataTextField property, 219

date types

dates, 294

simple types, 295–297

dates, 294

DateTime data type, 286

DateTime object, 294

DayOfWeek property, 294

DayOfYear property, 294

debugging, 588–595

decimal data type, 286

decisions

multiple selections, 315–316

single selections, 312–315

declarations

events, 182

event procedures, 182

variables, 288

defensive coding, errors and, 555–564

DELETE command, 271

DELETE statement, 264

Deleted event, SqlDataSource control, 187

DeleteParameters, 271

deployment, 7

ASCX files and, 598

ASCX.CS files and, 598

ASCX.VB files and, 598

ASPX files and, 598

ASPX.CS files and, 598

ASPX.VB files and, 598

CSS files and, 598

database files and, 598

HTML and, 598

image files and, 598

license files and 598

multimedia files and, 598

site deploying

application, compiling, 599–600

application, running, 599–600

checklist, 598

publishing site, 600–603

troubleshooting, 605–609

XCOPY and, 603–605

third-party components and, 598

Wrox application, 10

XML files and 598

Descrition attribute, <siteMapNode> tag, 42

design

catalog (e-commerce), 463–464

code and, 349–350

content pages, 29–34

databases, Wrox United, 665–672

master pages, 29–34

objectives, 28

page design, 55

static pages, 55–56

performance and, 548–549

site design, 27

troubleshooting errors, 53

site maps, 42–43

Web.config file and, 45–49

Design Surface, 16

default settings, 17

Design View, 16

navigation, 17

Source View, 16

Design View, controls, 17

DetailsView control, 207, 239–242

Development Server, Wrox United installation and, 661

development tools, 7

directives, web services, 435

directories

Begin, 14

Chapters, 14

End, 14

sample code, 14

DISCO, 445

discovery, web services, 444

DISCO, 445

UDDI, 445

719

discovery, web services

In
de

x

25_042583 bindex.qxd 4/4/06 2:55 PM Page 719

display requirements, 648

DisplayProfileProperties method, 417

Dispose method, 526

Disposing of objects, performance and

Introduction, 524

try/catch methods, 525–526

using statement, 526–527

<div> HTML element, 63, 66

division (/) arithmetic operator, 300

do loop, 317–318

dockable windows, 12

doomsday scenario, Wrox United, 453

double data type, 286

drag and drop, 4

DropDownList control, 81, 208, 218

dynamic client code, 69

dynamic content, 68

dynamic server code, 69

E
E-Commerce ID, obtaining, 504

e-commerce

catalog

design, 463–464

implementation, 464, 467, 470

product item page, 471–476

structure, 463

security, 520

shopping cart, 477

add-to-cart facility, 497–502

automation, 493–497

checkout, 502–519

Shopping Cart control, 489

shopping object, 477–488

Wrox application, 9

e-mail, System.Web settings, 46

efficiency, usability of layout and, 172

elements, HTML

 , 65

<a>, 64

<body>64

, 65

<div>, 63, 66

<form>, 64

<head>, 64

<hr>, 65

, 63

<input>, 64

<link>, 64

<script>, 64

, 63

<table>, 63

<td>, 63

<title>, 64

<tr>, 63

enabled attribute, <trace> element, 588

EnableViewState property, SiteMapDataSource

control, 95

encryption, 459

End directory, 14

endpoints, web services, 427

EndsWith method, 293

enumerations, 304–305

equal to (==) comparison operator, 308

error handling, 7

System.Web settings, 46

Wrox application, 10

Error List window, 22–23

error pages, custom, 582–583

errors, 23

assumptions and, 557–558

defensive coding and, 555–564

messages and, 23

parameter checking, 556–557

query parameters, 558–559

validation, 559–561

warnings and, 23

Errors property, SqlException object, 566

event handlers, 177

btnSaveChanges_Click, 417

code-behind and, 351–352

event procedures, 177

buttons, 183

declaration, 182

EventLogWebEvent Provider, System.Web.Management

namespace, 612

720

display requirements

25_042583 bindex.qxd 4/4/06 2:55 PM Page 720

events

adding to pages, 178–184

application events, 200–201

availability, 186

canceling, 196–199

classes, 328

declaration, 182

firing, 177

global, 200–201

indirect, 193–195

monitoring for, 613

PreRequestHandlerExecute, 421

raising, 177

selection list, 186–187

server-side, 177

triggers, 189–193

Wrox application, 9

exception handling, 7, 564

best practices, 579

Exception object, 565–566

global, 579–581

logging exceptions, 573–576

mailing exceptions, 576–578

raising exceptions, 578

trapping exceptions, 566–573

Wrox application, 10

Exception object, 565–566

Data property, 565

HelpLink property, 565

InnerException property, 565

Message property, 565

Source property, 565

StackTrace property, 565

TargetSite property, 565

exceptions, 565

exercise answers, 621–646

explicit conversion, 291

expressions, comparison operators, 309

F
fields, databases, 204

files

code-behind, 352–355

XML files, 204

firing events, 177

Fixture web service, Wrox United application, 447–450

float data type, 286

floating windows, 12

folders, Websites, 654–658

for loop, 318–319

foreach loop, 319–321

<form> element, HTML, 64

forms authentication, 125–128

FormView control, 207, 239–242

fragment caching, 7, 546

framework classes, data type conversion and, 290

full runtime compilation, 357

functions, code-behind and, 351–352

further reading, 711

G
General panel, Toolbox, 18

GET command, 176

get keyword, 331

global events, 200–201

global exception handling, 579–581

Global.asax file

Application_End event, 201

Application_Error event, 201

Application_Start event, 200

Profile_OnlyMigrationAnonymous event, 201

Session_End event, 201

Session_Start event, 201

site design and, 50

Global.asax page, global exception handling, 579

Goal web method, 458

Golden scenario, Wrox United, 453

greater than (>)comparison operator, 308

greater than or equal to (>=) comparison operator, 308

GridView control, 206–207, 225–227

paging, 227

primary uses, 209

RowDeleting event, 187

RowUpdating event, 187

SelectedIndexChanged event, 187

sorting, 227–229

tabular controls, 207

721

GridView control

In
de

x

25_042583 bindex.qxd 4/4/06 2:55 PM Page 721

H
handling exceptions, 7, 564

best practices, 579

Exception object, 565–566

global, 579–581

logging exceptions, 573–576

mailing exceptions, 576–578

raising exceptions, 578

trapping exceptions, 566–573

Wrox application, 10

hard disk requirements, 648

Hashtable collection, 299, 542

<head> element, HTML, 64

health monitoring, maintenance, 610–617

<healthMonitoring> element

WebApplicationLifetimeEvent, 611

WebAuditEvent, 612

WebAuthenticationFailureAuditEvent, 612

WebAuthenticationSuccessAuditEvent, 612

WebBaseErrorEvent, 611

WebErrorEvent, 611

WebFailureAuditEvent, 612

WebHeartbeatEvent, 611

WebManagementEvent, 611

WebRequestErrorEvent, 612

WebRequestEvent, 611

WebSuccessAuditEvent, 612

WebViewStateFailureAuditEvent, 612

HelpLink property, Exception object, 565

hierarchical data source controls, 261

hierarchical data-bound controls, 261

HTML (Hypertext Markup Language)

 element, 65

<a> element, 64

attributes, 62

CSS property, 709–711

<body> element, 64

brackets, 62

<div> element, 63, 66

elements, 62

files, deployment and, 598

<form> element, 64

<head> element, 64

 element, 63

<input> element, 64

<link> element, 64

overview, 62–66

rendering, 63

<script> element, 64

 element, 63

<table> element, 63

tags, categories, 704, 709

<td> element, 63

<title> element, 64

<tr> element, 63

XHTML, 66–68

HTML controls, 82–83

Toolbox, 71

HTML panel, Toolbox, 18

HTTP (HyperText Transfer Protocol), 175

state, 176–177

System. Web settings, 45

HTTP-GET, transmitting Web services, 431–432

HTTP-POST, transmitting Web services, 431–432

Hyperlink control, 81

I
Identity, security and, 102

IDEs (Integrated Development Environments), 7

VWD, 10

if statement, decisions, 312–315

IIS

setup, 654

Wrox United installation and, 662

IMA, obtaining, 504

Imagecontrol, 81

ImageButton control, Click event and, 186

images files, deployment and, 598

index page, catalog, 464, 467, 470

IndexOf method, 293

indirect events, 193–195

inheritance, 338–343

CSS, 693

inherits, attribute, 351

inline styles, 692

InnerException property, Exception object, 565

722

handling exceptions

25_042583 bindex.qxd 4/4/06 2:55 PM Page 722

INSERT INTO statement, new records, 269–271

Insert method, 293

INSERT statement, 264

new records, 269–271

Inserted event, SqlDataSource control, 187

installation

troubleshooting, 663–664

VWD, 648–653

Wrox United, 658

Development Server and, 661

IIS and, 662

network services, 659

VWD and, 661

Windows XP Home Edition, 661

instances, 327

instrumentation, maintenance, 610–617

int data type, 286

intermediate code, 356

internal Accessors, classes, 328

internal variables, 336–337

 HTML element, 63

<input> HTML element, 64

IsInRole() method, 404

ItemDataBound event

DataItem property, 192

ItemIndex property, 192

ItemType property, 192

ItemIndex property, ItemDataBound event, 192

ItemType property, ItemDataBound event, 192

L
Label control, 81

LastIndexOf method, 293

layout

accessibility, 172

best practices, 172–173

bugability, 172

efficiency, 172

learnability, 172

memorability, 172

satisfaction, 172

usability, 172

less than (<) comparison operator, 308

less than or equal to (<=) comparison operator, 308

license files, deployment and, 598

life cycle of web service, 430

calling web services, 431

responses, 435

responses, returning, 433–435

transmitting web services, 431–433

LineNumber property, SqlException object, 566

<link> HTML element, 64

LinkButton control, Click event and, 186

ListBox controls, 81, 208, 218

ListDictionary collection, 542

local variables, 344

localOnly attribute, <trace> element, 588

logging exceptions, 573–576

logical operators, 310–311

login, 5

e-commerce, 503

security, 103

Wrox application, 9

Login controls, 103

Login panel, Toolbox, 18

LoggedIn event, Login control, 187

logical operators

!, 310

&&, 310

^, 310

||, 310

login, Wrox United application, 9

Login control, 103

VWD toolbox, 70

Login panel, Toolbox VWD, 18

LoginError event, Login control, 187

LoginStatus control, introduction, 103

LoginView control, introduction, 103

Logon controls

Authenticate event, 187

LoggedIn event, 187

LoginError event, 187

long data type, 286

loops

do loop, 317–318

for loop, 318–319

foreach loop, 319–321

while loop, 317–318

723

loops

In
de

x

25_042583 bindex.qxd 4/4/06 2:55 PM Page 723

M
mailing administrator, 616–617

mailing exceptions, 576–578

MailMessage class, 577

MailWebEvent Provider, System.Web.Management

namespace, 612

maintenance

health monitoring, 610–617

instrumentation, 610–617

monitoring for events, 613

master pages

creating, 29–31

CSS, 34

design and, 29–34

levels, 39–41

samples, 33–34

Wrox application, 8

MasterPage control, 5

membership, 120

memorability, usability of layout and, 172

Menu control, 90

MenuItemDataBound event, 187

primary uses, 210

Updated event, 187

MenuItemDataBound event, 187

Merchant number, obtaining, 504

message-based security, web services, 459

Message property, Exception object, 565

messages, 23

errors and, 23

methods

class creation, 334–336

classes, 327

Dispose, 526

DisplayProfileProperties, 417

EndsWith, 293

Goal web method, 458

IndexOf, 293

Insert, 293

IsInRole(), 404

LastIndexOf, 293

PadLeft, 293

PadRight, 293

Parse, 290

Remove, 293

Replace, 294

Server.Transfer(), 414

shared, 337

StartsWith, 293

string methods, 293

SubString, 294

syntax, 334

ToLower, 293

ToUpper, 293

Trim, 292

TrimEnd, 292

TrimStart, 292

types of, 334

UpdateGoals, 458

User.IsInRole(), 404

virtual, 338

modulus (%) arithmetic operator, 300

monitoring for events, 613

mouse requirements, 648

mostRecent attribute, <trace> element, 588

MSIL (Microsoft Intermediate Language), intermdediate

code and, 356

multi-dimensional arrays, 298–299

multimedia files, deployment and, 598

multiple selections, decisions, 315–316

multiplication (*) arithmetic operator, 300

N
namespaces, 326

importance of, 326

System.Collections.Generic, 345

System.Web settings, 46

using statement, 326

web services, 436

Namevalue collection, 542

navigation, site maps, 5

Navigation controls, 83

Menu control, 90

SiteMapDataSource control, 90

SiteMapPath control, 83, 85

properties, 89–90

TreeView control, 96

VWD Toolbox, 70

724

mailing administrator

25_042583 bindex.qxd 4/4/06 2:55 PM Page 724

Navigation controls, Toolbox, 71

Navigation panel, Toolbox, 18

Network Service accounts, enabling, 659

nodes, site maps and, 42

not equal to (!=) comparison operator, 308

null values, data types, 291

Number property, SqlException object, 566

O
object data type, 286

object disposal, performance and

introduction, 524

try/catch methods, 525–526

using statement, 526–527

object orientation, abstraction, 333

object references, performance and, 540

ObjectDataSource control, 206, 359

Wrox United, 364–367

objects

classes and, 327

DateTime, 294

disposal, performance and, 524

try/catch methods, 525–526

using statement, 526–527

Exception object, 565–566

proxy, 447

operating system requirements, 648

operators, 306

arithmetic, 307–308

comparison, 308–309

concatenation, 306–307

logical, 310–311

precedence, 311–312

P
PadLeft method, 293

PadRight method, 293

page caching, 543–548

page design, 55

static pages, 55–56

Page directive, 350

page-level authorization, configuration, 396–404

Page_Load event declaration, 182–183

PageOutput attribute, <trace> element, 588

pages

content pages

creating, 31–33

design and, 29–34

sample pages, 33–34

running, 15–16

tracing, 584–586

all pages, 586–588

parameter checking, 556–557

parameters

data source controls, 242–247

query parameters, errors and, 558–559

stored procedures, 530–536

creating, 528–530

modifications, 530

performance and, 527–536

using, 528–530

Parse method, 290

parsing values, 290

partial classes, code-behind and, 351

Passport authentication, 126

Payment gateways, credit card shopping, 504

performance, 6, 548–549

caching and, page caching, 543–548

collections and, 536–537, 542

data binding and, 539–540

database connections and, 527

object disposal and, 524

try/catch methods, 525–526

using statement, 526–527

object references and, 540

post back and, 539–540

session state and, 537–538

stored procedures and, 527–536

StringBuilder and, 540–542

testing and, 549–552

view state and, 538–539

Wrox application, 9

personalization, 5

roles and, 406

web sites, 117–118

phishing e-mails, 102

pictures, uploading, 274–277

725

pictures, uploading

In
de

x

25_042583 bindex.qxd 4/4/06 2:55 PM Page 725

pipeline, definition, 462

plus sign (+) concatenation operator, 306

PocketPC application, remote web service, 455–459

post back, performance and, 539–540

post cache substitution, 547–548

POST command, 176

postback architecture, 184–185

precedence of operators, 311–312

preferences, profiles, 416–422

pre-runtime compilation, 356

PreRequestHandlerExecute event, 421

Private Accessors, classes, 328

Procedure property, SqlException object, 566

procedures, stored procedures, 527–530

processor, requirements, 647

Profile_OnMigrate event, 201

profiles

building, 406–422

enabling, 405–406

personalization, 406

preferences, 416–422

shopping carts, anonymous, 422–423

ShoppingCart object, 487–488

System.Web settings, 46

Wrox United, 408–415

properties

class creation, 330–332

public variables and, 333–334

read-only properties, 332

write-only properties, 333

classes, 327

CSS, 699, 704

data source controls, 212–215

DataTextField, 219

Exception object, 565

shared, 337

SiteMapPath control, 89–90

SqlException object, 566

window, 20–21

protected Accessors, classes, 328

protected internal Accessors, classes, 328

provider, 217–218

proxy objects, creating, 447

public Accessors, classes, 328

public class, web services, 436

public variables, properties and, 333–334

publishing site, 600–603

Q
Query Builder, 531

query parameters, errors and, 558–559

querystring data, URLs, 43

Queue collection, 299

R
Radio Button control, 81

RadioButtonList, 218

raising events, 177

raising exceptions, 578

RAM requirements, 648

RangeValidator, 559

read-only properties, 332

records, databases, 204

changing existing, 263–269

deleting, 271–274

new, 269–271

RegularExpressionValidator, 559

relational data, 203

relational data source controls, 261

relational data-bound controls, 261

Remove method, 293

rendering, HTML, 63

Repeater control, 231

Replace method, 294

RequestLimit attribute, <trace> element, 588

RequiredFieldValidator, 559

resources for further reading, 711

responses to web services, 435

returning, 433–435

Role Manager, System.Web settings, 46

roles, 5

code and, 404–405

introduction, 384

page visibility, 397

personalization and, 406

726

pipeline, definition

25_042583 bindex.qxd 4/4/06 2:55 PM Page 726

profiles, building, 406–422

user profiles, enabling, 405–406

Wrox application, 9

Wrox United, 385–395

roles attribute, 397

rolled back transactions, 571

RowDeleting event, GridView control, 187

RowUpdating event, GridView control, 187

S
sample code, directories, 14

satisfaction, usability of layout and, 172

sbyte data type, 286

scope, variables, 343–344

<script> HTML element, 64

security, 5

authentication, 102

forms authentication, 125–128

Passport authentication, 126

SQL Authentication, 204

System.Web settings, 45

web services security, 459

Windows authentication, 125

authorization, 102

certificates, 520

e-commerce, 520

encryption, 520

identity and, 102

login, 103

web services, 459

access controls, 459

authentication, 459

encryption, 459

message-based, 459

Wrox application, 9

Wrox United site, 128–131

SelectedIndexChanged event

CheckBoxList control, 187

controls, 186

GridView control, 187

RadioButtonList control, 187

selection list controls, 208

selection lists, 218–220

adding list items, 219

adding list items from data source, 220

binding items to array, 219

DropDownList, 218

ListBox, 218

RadioButtonList, 218

SelectionChanged event, Calendar control, 187

selectors, CSS, 696–697

contextual, 698

multiple, 698

semicolons in code, 288

Server Control Toolbox, 69–70

server controls

CSS for, 160

custom, 379–380

HTML controls, 82–83

Navigation controls, 83

SiteMapPath control, 83–85

overview, 71–72

Standard controls

Button, 80

CheckBox, 81

DropDown List, 81

Hyperlink, 81

Image, 81

Label, 81

Listbox, 81

Radio Button, 81

TextBox, 80

Toolbox, 70

Server property, SqlException object, 566

server-side controls, 5

Wrox application, 9

server-side events, 177

Server.Transfer() method, 414

servers, dynamic server code, 69

Session_End event, global.asax, 201

Session_Start event, global, asax, 201

session state, performance and, 537–538

setup

IIS, 654

system requirements, 647, 648

web site folders, 654–655, 658

727

setup

In
de

x

25_042583 bindex.qxd 4/4/06 2:55 PM Page 727

shared methods, 337

shared properties, 337

shopping cart, 477

add-to-cart facility, 497–502

anonymous, 422–423

automation, 493–497

bureau services, 504–505

canceling edits, 493

certificates, 520

checkout, 502

address details, 503

credit cards, 504–505

login, 503

order processing, 503

process, 505–519

deleting items, 493

E-Commerce ID, 504

editing, 493

encryption, 520

IMA, 504

in-house credit card transactions, 504

merchant number, 504

payment gateways, 504

Shopping Cart control, 489

shopping object, 477

CartItem object, 477–478

ShoppingCart object, 478–479, 487–488

updating, 493

ShoppingCart control, 489

ShoppingCart object, shopping cart, 478–479

building, 479–483

profile, 487–488

ShowStartingNode property, SiteMapDataSource

control, 95

short data type, 286

SimpleMailWebEvent Provider, System.Web

Management namespace, 612

single dimensional arrays, 297–298

single record display controls, 207

single selections, decisions, 312–315

site deployment

application

compiling, 599–600

running, 599–600

checklist, 598

publishing site, 600–603

troubleshooting, 605–609

application offline, 608

IIS, 609

permissions, 606–607

XCOPY and, 603–605

site design

content pages, 29–34

editing, web browser and, 50–52

Global. Asax file and, 50

introduction, 27

master pages, 29–34

personalization, 117–118

troubleshooting errors, 53

site maps, 5

code, 42

design and, 42–43

nodes, 42

Wrox application, 8

SiteMap file, 5

SiteMapDataSource, 90, 206

EnableViewState property, 95

ShowStartingNode property, 95

SiteMapProvider property, 95

StartFromCurrentNode property, 95

StartingNodeOffset property, 95

StartingNodeUrl property, 95

<siteMapNode> tag

Description attribute, 42

Title attribute, 42

URL attribute, 42

SiteMapPath control, 83–85, 208

primary uses, 210

properties, 89–90

SiteMapProvider property, SiteMapDataSource control,

95

sizes, CSS, 695

skin files, themes, 147

SMTP (Simple Mail Transport Protocol), 431

System.Web settings, 46

SOAP, 431

Solution Explorer, 11

content pages, creating, 31–33

displaying, 11

layout, 11

728

shared methods

25_042583 bindex.qxd 4/4/06 2:55 PM Page 728

master pages, creating, 29–31

Toolbox, 12

SortedList collection, 300

Source property

Exception object, 565

SqlException object, 566

 HTML element, 63

SQL Authentication, 204

SQL injection, 558

SqlDataSource, 205

Deleted event, 187

Inserted event, 187

Updated event, 187

SqlException object

Class property, 566

Errors property, 566

LineNumber property, 566

Number property, 566

Procedure property, 566

Server property, 566

Source property, 566

State property, 566

SqlWebEvent provider, System.Web Management

namespace, 612

SRPOCs (Stored Procedures), VWD, 689–690

Stack collection, 300, 542

StackTrace property, Exception object, 565

Standard controls, Toolbox, 70

Button, 80

CheckBox, 81

DropDown List, 81

Hyperlink, 81

Image, 81

Label, 81

Listbox, 81

Radio Button, 81

TextBox, 80

Standard panel, Toolbox, 18

StartFromCurrentNode property, SiteMapDataSource

control, 95

StartingHNodeOffset property, SiteMapDataSource

control, 95

StartingNodeUrl property, SiteMapDataSource

control, 95

StartsWith method, 293

State property, SqlException object, 566

statements

operators, 306

arithmetic, 307–308

comparison, 308–309

concatenation, 306–307

logical, 310–311

static pages, design, 55–56

stored procedures

commands, 534

creating, 528–530

introduction, 527–528

modifying, 530

naming, 530–531

string arrays, declaring, 298

string class, 291

string data type, 286

StringBuilder, performance and, 540–542

StringCollection collection, 300

StringDictionary collection, 542

strings, 291

connection, hiding, 215

EndsWith method, 293

IndexOf method, 293

Insert method, 293

LastIndexOf method, 293

PadLeft method, 293

PadRight method, 293

Remove method, 293

Replace method, 294

StartsWith method, 293

SubString method, 294

ToLower method, 293

ToUpper method, 293

Trim method, 292

TrimEnd method, 292

TrimStart method, 292

Style Builder dialog box, 135

styles

accesibility, 172

applying, 165–167

attributes, 134–138

best practices, 172–173

729

styles

In
de

x

25_042583 bindex.qxd 4/4/06 2:55 PM Page 729

styles (continued)

CSS, 138–139

limitations, 146–147

links to, 141–142

single page, 140–141

syntax, 139–140

introduction, 133

single page, 140–141

usability, 172

styles, CSS, 693–694

stylesheet themes, 160

customization themes and, 162

Try It Out, 161–162

styling controls, CSS, 691–692

styling pages, CSS, 691–692

color, 696

floating elements, 698

inheritance, 693

inline styles, 692

pseudo classes, 699

selectors, 696–698

sizes, 695

style sheets, linking to page, 693

styles, 693–694

SubString method, 294

Subtraction (-) arithmetic operator, 300

syntax

binding, 258

methods, 334

styles, 139–140

System.Collections namespace

ArrayList collection, 299

Hashtable collection, 299

Queue collection, 299

SortedList collection, 300

Stack collection, 300

StringCollection collection, 300

System.Collections. Generic namespace, 345

System.Net settings, Web.config file, 45

System.Web settings

Anonymous Identification settings, 46

authentication and, 45

debugging and, 45

error handling settings, 46

HTTP modules, 45

profile data, 46

Role Manager, 46

SMTP settings, 46

Web.config file, 45

Web.SiteMap file data, 46

System.Web.Management namespace

EventLogWebEvent Provider, 612

MailWebEvent Provider, 612

SimpleMailWebEvent Provider, 612

SqlWebEvent Provider, 612

TemplatedMailWebEvent Provider, 612

TraceWebEvent Provider, 612

system requirements, 647–648

T
<table> HTML element, 63

tables, databases, 204

tabular controls, 207

TargetSite property, Exception object, 565

<td> HTML element, 64

TemplatedMailWebEvent Provider, System.Web.Man-

agement namespace, 612

testing

before and after, 609

performance and, 549–552

stress testing, 552

unit testing, 610

web services, 441–443

writing plan, 610

TextBox control, 80

themes

applying, 154–160

creating, 147–154

CSS and, 163–164

customization, stylesheet themes and, 162

customization themes, 160

introduction, 147

skin file, 147

stylesheet, customization themes and, 162

stylesheet themes, 160

Wrox United, 167–172

730

styles (continued)

25_042583 bindex.qxd 4/4/06 2:55 PM Page 730

third-party web services, consuming, 427–430

three-tier applications, 358–359

<title> HTML element, 64

Title attribute, <siteMapNode> tag, 42

ToLower method, 293

Toolbox, 70–71

Data controls, 70

Data panel, 18

General panel, 18

HTML controls, 71

HTML panel, 18

Login controls, 71

Login panel, 18

Navigation controls, 71

Navigation panel, 18

panels, 18

Standard controls, 70

Standard panel, 18

Validation controls, 71

Validation panel, 18

WebParts controls, 71

WebParts panel, 18

Toolbox, VWD, 18–20

ToUpper method, 293

<tr> HTML element, 63

<trace> HTML element

enabled attribute, 588

localOnly attribute, 588

mostRecent attribute, 588

pageOutput attribute, 588

requestLimit attribute, 588

traceMode attribute, 588

Trace Information

Category, 551

From First(s), 551

From Last(s), 551

traceMode attribute, <trace> element, 588

TraceWebEvent provider, System.Web.Management

namespace, 612

tracing

pages

all pages, 586–588

individual, 584–586

performance testing and, 549

transactions, 571

rolled back, 571

transmitting web services, 431–433

trapping exceptions, 566–573

tree controls, 208

TreeView control, 96, 208

triggering events, 189–193

Trim method, 292

TrimEnd method, 292

TrimStart method, 292

troubleshooting

deployment, 605–609

application offline, 608

IIS, 609

permissions, 606–607

installation, 663–664

site design errors, 53

Try Catch statements, exceptions and, 566

Try/Catch methods, object disposal and, 525–526

Try It Out

access configuration, 398–403

Add-To-Cart button, 498–502

arrays, 301–303

authorization configuration, 398–403

caching, output caching, 545–546

catalog

index page, 464–470

product page, 471–476

code-behind file creation, 353–355

collections, 301–303

connection strings, hiding, 216–217

content pages, creating, 38–39

data component creation, 359–362

data controls, multiple, 248–253

data controls, parameters and, 244–247

data modifications, 533–536

data source controls, 212–215

selection lists bound to, 220–225

DataList control, 231–238

date types, simple types, 295–297

debugging, 589–595

decisions, 321–325

design, static pages, 56–62

DetailsView control, 240–242

731

Try It Out

In
de

x

25_042583 bindex.qxd 4/4/06 2:55 PM Page 731

Try It Out (continued)

e-commerce, checkout, 506–519

Error Lists window, 23–24

error pages, custom, 582–583

errors, global, 580–581

events

adding, 179–184

canceling, 197–199

data events, 190–193

indirect, 193–195

manually creating, 187–189

exception logging, 573–576

exception trapping, 569–573

file uploads, 276–277

FormView control, 240–242

GridView control, adding to Fixtures.aspx, 229–230

inheritance, 338–343

Login controls, 104–107

loops, 321–325

mailing administrator, 616–617

master pages

creating, 36–38

CSS import, 36–38

membership, 120–125

Menu control, 91–96

ObjectDataSource control,

binding to, 362–364

Wrox United, 365–367

parameters, modifying, 533–536

postback, checking for, 184–185

profiles

preferences, 416–422

Wrox United, 408–415

Properties window, 23–24

records

deleting, 272–274

new, 269–271

updating existing, 266–269

security configuration, Wrox United site, 128–131

server controls

Design view, 72–75

Source view, 75–80

settings change with Administration Tool, 52–53

shopping cart, automation, 494–497

Shopping Cart control, 489–493

ShoppingCart object, 479–487

profile, 488

site map creation, 44

SiteMapPath control, 85, 89

stored procedures, creating/using, 528–530

styles, applying, 165–167

styling, 134–135

CSS, 142–146

themes

applying, 154–160

creating, 148–154

CSS and, 163–164

customization, 161–162

stylesheet, 161–162

Wrox United, 168–171

Toolbox, VWD, 20

tracing, 550–552

page-level, 584–586

User Account configuration, 107–117

user controls, 370–374

News control, 375–379

user-specific information, displaying, 118–120

users, adding to roles, 120–125

validation controls, 559–561

ValidationSummary control, 561–564

views, VWD, 20

visibility, 398–403

web references, adding to Wrox United application,

445–447

web services

adding to application, 448–449

consuming, 427–430

Fixtures, 438–441

Fixtures:testing, 441–443

league table mini view web service creation, 450–454

scores, updating, 455–459

Wrox United

health monitoring, 614–615

publishing site, 600–603

Wrox United Fan Club, 387–395

Wrox United Site creation, 14–15

732

Try It Out (continued)

25_042583 bindex.qxd 4/4/06 2:55 PM Page 732

XML data

creating, 253–254

reading, 256–258

try/catch methods, object disposal, 525–526

two-tier applications, 357–358

U
UDDI, 445

uint data type, 286

ulong data type, 286

unit testing, 610

UPDATE statement, 264

updating records, 264

Updated event, SqlDataSource control, 187

UpdateGoals method, 458

uploading pictures, 274–277

URL attribute, <siteMapNode> tag, 42

URLs, querystring data, 43

user controls, 367–369

structure, 369–370

Wrox United, 375–379

User.IsInRole() method, 404

user profiles, enabling, 405–406

ushort data type, 286

using statement

namespaces, 326

object disposal and, 526–527

usual scenario, Wrox United, 453

V
validation

controls, 559

multiple, 561–564

ValidationSummary control, 561–564

errors, 559–561

Validation controls, Toolbox, 71

Validation panel, Toolbox, 18

values

assigning, 289

null values, data types, 291

parsing, 290

variables, 285

declarations, 288

internal, 336–337

local, 344

public, properties and, 333–334

scope, 343–344

View Page Source link, 3

view state, performance and, 538–539

virtual methods, 338

VisibleMonthChanged event, Calendar control, 187

Visual Basic data types, 287

Visual Studio, 7

Visual Web Developer, 7

Visual Web Developer (VWD) Express, 7, 10

data controls, configuration, 211–212

Database Explorer, 24

adding databases, 673–676

creating databases, 683

creating tables, 683–684

editing data, 682

opening, 673

SPROCs, 689–690

table structures, 681–682

viewing diagrams, 677–681

views, 684–689

installation, 648–653

Solution Explorer, 11

content page creation, 31–33

displaying, 11

layout, 11

master page creation, 29–31

Toolbox, 12

Toolbox, 18–20

web site

creating, 13–14

opening, 13–14

Wrox United installation and, 661

W
warnings, 23

web methods, web services, 436–438

web pages. See pages

733

web pages

In
de

x

25_042583 bindex.qxd 4/4/06 2:55 PM Page 733

web server architecture, 175–177

web services, 6

calling, 431

creating, 438–441

directives, 435

discovery, 444

DISCO, 445

UDDI, 445

endpoints, 427

Fixture, Wrox United application, 447–450

introduction, 425

life cycle, 430

calling web services, 431

responses, 434–435

responses, returning, 433–435

transmitting web services, 431–433

namespaces, 436

overview, 426

PocketPC application, 455–459

public class, 436

remote, PocketPC application, 455–459

responses, 435

returning, 433–435

security, 459

access controls, 459

authentication, 459

encryption, 459

message-based, 459

SOAP and, 431

testing, 441–443

third-party, consuming, 427–430

transmitting, 431–433

web methods, 436–438

WSDL, 443–444

web sites

creating, VWD and, 13–14

opening, VWD and, 13–14

www.wroxunited.net, 3

WebApplicationLifetimeEvent, <healthMonitoring>

element, 611

WebAuditEvent, <healthMonitoring> element, 612

WebAuthenticationFailureEvent, <healthMonitoring>

element, 612

WebAuthenticationSuccessEvent, <healthMonitoring>

element, 612

WebBaseErrorEvent, <healthMonitoring> element, 611

WebErrorEvent, <healthMonitoring> element, 611

WebFailureAuditEvent, <healthMonitoring> element,

612

WebHeartbeatEvent, <healthMonitoring> element, 611

WebManagementEvent, <healthMonitoring>

element, 611

Web.config file, site design and, 45–49

application settings, 45

connection strings, 45

Save Changes button, 413

System.Net settings, 45

System.Web settings, 45

WebParts controls, Toolbox, 71

WebParts panel, Toolbox, 18

WebRequestErrorEvent, <healthMonitoring> element,

612

WebRequestEvent, <healthMonitoring> element, 611

WebSuccessAuditEvent, <healthMonitoring> element,

611

WebViewStateFailureAuditEvent, <healthMonitoring>

element, 611

Web.SiteMap, System.Web settings, 46

Websites folder, 654–658

while loop, 317–318

windows

dockable, 12

Error List, 22–23

floating, 12

properties, 20–21

Windows authentication, 125, 204

Windows XP Home Edition, Wrox United installation

and, 661

write-only properties, 333

writing data

introduction, 261–263

pictures, uploading, 274–283

records

changing existing, 263–269

deleting, 271–274

new, 269–271

734

web server architecture

25_042583 bindex.qxd 4/4/06 2:55 PM Page 734

Wrox United Application

components, 9

controls, code, 9

data reads, 9

data writes, 9

database design, 665–672

deployment, 10

doomsday scenario

e-commerce, 9

error handling, 10

events, 9

exception handling, 10

Fixture web service, 447–450

golden scenario

installation, 658

Development Server and, 661

IIS and, 662

network services, 659

VWD and, 661

Windows XP Home Edition, 661

login system, 9

master pages, 8

ObjectDataSource control, 364–367

overview, 8–10

performance, 9

profiles, 408–415

roles, 9, 385–395

security system, 9

server-side controls, 9

site map, 8

themes in, 167–172

usual scenario, 453

user control, 375–379

Wrox United site security, 128–131

WSDL (Web Services Description Language), 443–444

X
XCOPY, deployment and, 603–605

XHTML, 66–68

XML data, 253–258

XML files, 204

deployment and, 598

XMLDataSource, 205

735

XMLDataSource

In
de

x

25_042583 bindex.qxd 4/4/06 2:55 PM Page 735

26_042583 bob.qxd 4/4/06 2:55 PM Page 738

