
Xavier Pacheco and Steve Teixeira

A Division of Macmillan USA
201 West 103rd St., Indianapolis, Indiana, 46290 USA

Delphi 5 Developer’s Guide

00.65227_FM 11/30/99 5:41 PM Page i

Delphi 5 Developer’s Guide
Copyright© 2000 by Sams Publishing
All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without written permission from the pub-
lisher. No patent liability is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in the preparation
of this book, the publisher and authors assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of
the information contained herein.

International Standard Book Number: 0-672-31781-8

Library of Congress Catalog Card Number: 99-64768

Printed in the United States of America

First Printing: December 1999

01 00 99 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams Publishing cannot attest to
the accuracy of this information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “as is” basis. The authors and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages aris-
ing from the information contained in this book or from the use of the CD or
programs accompanying it.

ASSOCIATE PUBLISHER

Michael Stephens

ACQUISITIONS EDITOR

Shelley Johnston

DEVELOPMENT EDITOR

Gus A. Miklos

MANAGING EDITOR

Charlotte Clapp

PROJECT EDITOR

Carol Bowers

COPY EDITOR

Bart Reed

TECHNICAL EDITORS

Lance Bullock
Chris Hesik
Ellie Peters

TEAM COORDINATOR

Pamalee Nelson

MEDIA DEVELOPER

Dan Scherf

INTERIOR DESIGNER

Anne Jones

COVER DESIGNER

Anne Jones

COPY WRITER

Eric Bogert

PRODUCTION

D & G Limited, LLC

00.65227_FM 11/30/99 5:41 PM Page ii

Contents at a Glance
Introduction 1

PART I Essentials for Rapid Development 5
1 Windows Programming in Delphi 5 7

2 The Object Pascal Language 33

3 The Win32 API 123

4 Application Frameworks and Design Concepts 135

5 Understanding Windows Messaging 191

6 Coding Standards 217 + CD

7 Using ActiveX Controls with Delphi 219 + CD

PART II Advanced Techniques 221
8 Graphics Programming 223 + CD

9 Dynamic Link Libraries 225

10 Printing in Delphi 5 273 + CD

11 Writing Multithreaded Applications 275

12 Working with Files 337

13 Hard-Core Techniques 407

14 Snooping Information 483

15 Porting to Delphi 5 543 + CD

16 MDI Applications 545 + CD

17 Sharing Information with the Clipboard 547

18 Multimedia Programming with Delphi 561 + CD

19 Testing and Debugging 563 + CD

PART III Component-Based Development 565
20 Key Elements of the Visual Component Library 567

21 Writing Delphi Custom Components 613

22 Advanced Component Techniques 691

23 COM and ActiveX 773

24 Extending the Windows Shell 901

25 Creating ActiveX Controls 981

00.65227_FM 11/30/99 5:41 PM Page iii

26 Using Delphi’s Open Tools API 1055

27 CORBA Development with Delphi 1095

PART IV Database Development 1147
28 Writing Desktop Database Applications 1149

29 Developing Client/Server Applications 1219

30 Extending Database VCL 1217 + CD

31 Internet-Enabling Your Applications with WebBroker 1273

32 MIDAS Development 1309

PART V Rapid Database Application Development 1359
33 Inventory Manager: Client/Server Development 1361

34 Client Tracker: MIDAS Development 1415

35 DDG Bug Reporting Tool—Desktop Application Development 1439

36 DDG Bug Reporting Tool: Using WebBroker 1469

PART VI Appendixes 1493
A Error Messages and Exceptions 1495 + CD

B BDE Error Codes 1497 + CD

C Suggested Reading 1499

Index 1503

00.65227_FM 11/30/99 5:41 PM Page iv

Table of Contents
Introduction 1

PART I Essentials for Rapid Development 5

1 Windows Programming in Delphi 5 7
The Delphi Product Family ..8
Delphi: What and Why ..10

The Quality of the Visual Development Environment11
The Speediness of the Compiler Versus the Efficiency of the

Compiled Code ..12
The Power of the Programming Language Versus

Its Complexity..13
The Flexibility and Scalability of the Database Architecture14
The Design and Usage Patterns Enforced by the Framework14

A Little History..15
Delphi 1 ..15
Delphi 2 ..16
Delphi 3 ..17
Delphi 4 ..17
Delphi 5 ..18
The Future? ..18

The Delphi IDE..19
The Main Window..19
The Form Designer ..21
The Object Inspector ..21
The Code Editor ..22
The Code Explorer ..22

A Tour of Your Project’s Source..23
Tour of a Small Application ..25
What’s So Great About Events, Anyway? ..27

Contract-Free Programming ..27
Turbo Prototyping..28
Extensible Components and Environment ..28
The Top 10 IDE Features You Must Know and Love29

1. Class Completion ..29
2. AppBrowser Navigation ..29
3. Interface/Implementation Navigation ..30
4. Dock It! ..30
5. A Real Browser ..30
6. GUID, Anyone?..30
7. C++ Syntax Highlighting ..31

00.65227_FM 11/30/99 5:41 PM Page v

Delphi 5 Developer’s Guide
vi

8. To Do… ..31
9. Use the Project Manager ..31
10. Use Code Insight to Complete Declarations and Parameters32

Summary ..32

2 The Object Pascal Language 33
Comments ..34
New Procedure and Function Features ..35

Parentheses ..35
Overloading ..35
Default Value Parameters ..35

Variables ..36
Constants..38
Operators..40

Assignment Operators ..40
Comparison Operators..41
Logical Operators ..41
Arithmetic Operators ..42
Bitwise Operators ..43
Increment and Decrement Procedures..44

Object Pascal Types ..44
A Comparison of Types..45
Characters ..47
A Multitude of Strings..47
Variant Types ..59
Currency ..70

User-Defined Types ..71
Arrays ..71
Dynamic Arrays..72
Records ..74
Sets..75
Objects ..77
Pointers ..78
Type Aliases..81

Typecasting and Type Conversion ..82
String Resources ..83
Testing Conditions ..83

The if Statement ..83
Using case Statements ..84

Loops..85
The for Loop ..85
The while Loop ..86
repeat..until ..87
The Break() Procedure ..87

00.65227_FM 11/30/99 5:41 PM Page vi

CONTENTS
vii

The Continue() Procedure ..87
Procedures and Functions ..88

Passing Parameters ..89
Scope..93
Units ..94

The uses Clause ..95
Circular Unit References ..96

Packages ..96
Using Delphi Packages ..97
Package Syntax ..97

Object-Oriented Programming ..97
Object-Based Versus Object-Oriented Programming99

Using Delphi Objects ..100
Declaration and Instantiation..100
Destruction..101
Methods ..102
Method Types ..102
Properties ..105
Visibility Specifiers ..105
Inside Objects ..107
TObject: The Mother of All Objects ..107
Interfaces ..108

Structured Exception Handling..112
Exception Classes ..115
Flow of Execution ..117
Reraising an Exception ..119

Runtime Type Information ..120
Summary ..121

3 The Win32 API 123
Objects—Then and Now ..124

Kernel Objects ..124
GDI and User Objects ..127

Multitasking and Multithreading ..128
Win32 Memory Management ..129

Just What Is the Flat Memory Model? ..130
How Does the Win32 System Manage Memory?130

Error Handling in Win32 ..133
Summary ..134

4 Application Frameworks and Design Concepts 135
Understanding the Delphi Environment and Project Architecture136
Files That Make Up a Delphi 5 Project ..137

The Project File ..137
Project Unit Files..138

00.65227_FM 11/30/99 5:41 PM Page vii

Delphi 5 Developer’s Guide
viii

Form Files ..138
Resource Files ..139
Project Options and Desktop Settings Files140
Backup Files ..140
Package Files ..141

Project Management Tips ..141
One Project, One Directory..141
Units for Sharing Code ..141
Multiple Projects Management (Project Groups)144

The Framework Classes of a Delphi 5 Project145
The TForm Class ..145
The TApplication Class ..153
TApplication’s Methods ..156
TApplication’s Events ..158
The TScreen Class..159

Defining a Common Architecture: Using the Object Repository160
Thoughts on Application Architecture ..161
Delphi’s Inherent Architecture ..161
An Architecture Example ..162
The Child Form (TChildForm) ..162
The Database Base Mode Form (TDBModeForm)165
The Database Navigation/Status Form (TDBNavStatForm)..........167
Using Frames in Application Framework Design172

Miscellaneous Project Management Routines174
Adding Resources to Your Project ..175
Changing the Screen’s Cursor ..177
Preventing Multiple Instances of a Form

from Being Created..178
Adding Code to the DPR File ..179
Overriding the Application’s Exception Handling180
Displaying a Splash Screen ..182
Minimizing Form Size..184
Running a Formless Project ..186
Exiting Windows ..186
Preventing Windows Shutdown..188

Summary ..189

5 Understanding Windows Messaging 191
What Is a Message? ..192
Types of Messages ..193
How the Windows Message System Works ..194
Delphi’s Message System..195

Message-Specific Records..196

00.65227_FM 11/30/99 5:41 PM Page viii

CONTENTS
ix

Handling Messages ..197
Message Handling: Not Contract Free ..199
Assigning Message Result Values ..200
The TApplication Type’s OnMessage Event200

Sending Your Own Messages ..201
The Perform() Method..202
The SendMessage() and PostMessage() API Functions202

Nonstandard Messages ..203
Notification Messages ..203
Internal VCL Messages ..204
User-Defined Messages ..205

Anatomy of a Message System: VCL ..207
The Relationship Between Messages and Events214
Summary ..215

6 Coding Standards Document 217
Introduction ..2 (CD)
General Source Code Formatting Rules ..2 (CD)

Indentation ..2 (CD)
Margins..2 (CD)
begin..end Pair ..3 (CD)

Object Pascal ..3 (CD)
Parentheses ..3 (CD)
Reserved Words and Key Words ..3 (CD)
Procedures and Functions (Routines)4 (CD)
Variables ..5 (CD)
Types ..6 (CD)
Statements ..8 (CD)
Structured Exception Handling ..9 (CD)
Classes ..10 (CD)

Files ..12 (CD)
Project Files ..12 (CD)
Form Files ..12 (CD)
Data Module Files ..13 (CD)
Remote Data Module Files ..13 (CD)
Unit Files ..13 (CD)
File Headers ..14 (CD)

Forms and Data Modules ..15 (CD)
Forms ..15 (CD)
Data Modules ..17 (CD)

Packages ..17 (CD)
Use of Runtime Versus Design Packages17 (CD)
File Naming Standards..17 (CD)

00.65227_FM 11/30/99 5:41 PM Page ix

Delphi 5 Developer’s Guide
x

Components ..18 (CD)
User-Defined Components ..18 (CD)
Component Instance Naming Conventions18 (CD)

Coding Standards Document Updates..19 (CD)

7 Using ActiveX Controls with Delphi 219
What Is an ActiveX Control? ..22 (CD)
Deciding When To Use an ActiveX Control23 (CD)
Adding an ActiveX Control to the Component Palette................23 (CD)
The Delphi Component Wrapper ..26 (CD)

Where Do Wrapper Files Come From?36 (CD)
Enumerations ..36 (CD)
Control Interfaces..36 (CD)
TOleControl Descendant ..36 (CD)
The Methods..37 (CD)
The Properties ..37 (CD)

Using ActiveX Controls in Your Applications38 (CD)
Shipping ActiveX Control–Equipped Applications40 (CD)
ActiveX Control Registration ..40 (CD)
BlackJack: An OCX Application Example40 (CD)

The Card Deck ..41 (CD)
The Game ..44 (CD)
Invoking an ActiveX Control Method54 (CD)

Summary ..55 (CD)

PART II Advanced Techniques 221

8 Graphics Programming with GDI and Fonts 223
Delphi’s Representation of Pictures: TImage58 (CD)
Saving Images ..60 (CD)
Using the TCanvas Properties ..62 (CD)

Using Pens ..62 (CD)
Using TCanvas’s Pixels ..70 (CD)
Using Brushes ..70 (CD)
Using Fonts ..77 (CD)
Using the CopyMode Property ..78 (CD)
Other Properties ..82 (CD)

Using the TCanvas Methods ..83 (CD)
Drawing Lines with TCanvas..83 (CD)
Drawing Shapes with TCanvas ..84 (CD)
A Code Example for Drawing Shapes....................................84 (CD)
Painting Text with TCanvas ..89 (CD)

Coordinate Systems and Mapping Modes....................................95 (CD)
Device Coordinates ..95 (CD)
Logical Coordinates ..96 (CD)

00.65227_FM 11/30/99 5:41 PM Page x

CONTENTS
xi

Screen Coordinates..96 (CD)
Form Coordinates..96 (CD)
Coordinate Mapping..97 (CD)
Setting the Mapping Mode..100 (CD)
Setting the Window/Viewport Extents100 (CD)
Mapping Mode Example Project ..102 (CD)

Creating a Paint Program ..108 (CD)
How the Paint Program Works..122 (CD)

Performing Animation with Graphics Programming124 (CD)
Advanced Fonts ..134 (CD)

Types of Win32 Fonts ..134 (CD)
Basic Font Elements..134 (CD)
GDI Font Categories ..136 (CD)
Displaying Different Font Types ..138 (CD)

A Font-Creation Sample Project ..138 (CD)
How the Project Works ..138 (CD)
The TLOGFONT Structure ..143 (CD)
Displaying Information About Fonts146 (CD)

Summary ..151 (CD)

9 Dynamic Link Libraries 225
What Exactly Is a DLL? ..226
Static Linking Versus Dynamic Linking..228
Why Use DLLs? ..230

Sharing Code, Resources, and Data with Multiple Applications ..230
Hiding Implementation ..230
Custom Controls ..231

Creating and Using DLLs..231
Counting Your Pennies (A Simple DLL)231
Displaying Modal Forms from DLLs ..235

Displaying Modeless Forms from DLLs ..237
Using DLLs in Your Delphi Applications ..239
Loading DLLs Explicitly ..241
The Dynamically Linked Library Entry/Exit Function244

Process/Thread Initialization and Termination Routines244
DLL Entry/Exit Example ..245

Exceptions in DLLs ..250
Capturing Exceptions in 16-Bit Delphi..250
Exceptions and the Safecall Directive..251

Callback Functions ..251
Using the Callback Function ..254
Drawing an Owner-Draw List Box ..255

Calling Callback Functions from Your DLLs......................................255

00.65227_FM 11/30/99 5:41 PM Page xi

Delphi 5 Developer’s Guide
xii

Sharing DLL Data Across Different Processes258
Creating a DLL with Shared Memory ..259
Using a DLL with Shared Memory..263

Exporting Objects from DLLs ..266
Summary ..272

10 Printing in Delphi 5 273
The TPrinter Object..154 (CD)
TPrinter.Canvas ..155 (CD)
Simple Printing ..156 (CD)

Printing the Contents of a TMemo Component....................156 (CD)
Printing a Bitmap ..158 (CD)
Printing Rich Text–Formatted Data159 (CD)

Printing a Form ..159 (CD)
Advanced Printing ..159 (CD)

Printing a Columnar Report ..160 (CD)
Aborting the Printing Process ..167 (CD)
Printing Envelopes ..168 (CD)
A Simple Print Preview ..182 (CD)

Miscellaneous Printing Tasks ..184 (CD)
The TDeviceMode Structure ..184 (CD)
Specifying Copies to Print ..186 (CD)
Specifying Printer Orientation ..186 (CD)
Specifying Paper Size ..187 (CD)
Specifying Paper Length ..187 (CD)
Specifying Paper Width ..187 (CD)
Specifying Print Scale ..188 (CD)
Specifying Print Color ..188 (CD)
Specifying Print Quality..188 (CD)
Specifying Duplex Printing ..189 (CD)
Changing the Default Printer ..189 (CD)

Obtaining Printer Information ..191 (CD)
GetDeviceCaps() and DeviceCapabilities()191 (CD)
Printer Information Sample Program....................................192 (CD)

Summary ..207 (CD)

11 Writing Multithreaded Applications 275
Threads Explained ..276

A New Type of Multitasking..276
Using Multiple Threads in Delphi Applications277
Misuse of Threads ..277

The TThread Object ..278
TThread Basics ..278
Thread Instances ..281

00.65227_FM 11/30/99 5:41 PM Page xii

CONTENTS
xiii

Thread Termination ..281
Synchronizing with VCL..283
A Demo Application ..286
Priorities and Scheduling..288
Suspending and Resuming Threads ..291
Timing a Thread ..291

Managing Multiple Threads ..293
Thread-Local Storage ..293
Thread Synchronization..297

A Sample Multithreaded Application ..310
The User Interface ..311
The Search Thread..316
Adjusting the Priority ..322

Multithreading Database Access..324
Multithreaded Graphics ..330
Summary ..335

12 Working with Files 337
Dealing with File I/O ..338

Working with Text Files ..338
Working with Typed Files (Files of Record)..................................344
Working with Untyped Files ..355

The TTextRec and TFileRec Record Structures..................................360
Working with Memory-Mapped Files ..361

Purposes for Memory-Mapped Files..361
Using Memory-Mapped Files ..362
Memory-Mapped File Coherence ..371
The Text-File Search Utility ..371

Directories and Drives ..380
Obtaining a List of Available Drives and Drive Types380
Obtaining Drive Information..381
Obtaining the Location of the Windows Directory384
Obtaining the Location of the System Directory384
Obtaining the Name of the Current Directory385
Searching for a File Across Directories ..386
Copying and Deleting a Directory Tree ..389
Getting File Version Information..392
Getting the Version Numbers ..400
Getting the Operating System Information401
Using the TVerInfoRes Class ..401

Using the SHFileOperation() function ..404
Summary ..406

00.65227_FM 11/30/99 5:41 PM Page xiii

Delphi 5 Developer’s Guide
xiv

13 Hard-Core Techniques 407
Advanced Application Message Handling ..408

Subclassing ..408
HookMainWindow() ..414

Preventing Multiple Application Instances..416
Using BASM with Delphi ..421

How Does BASM Work? ..422
Easy Parameter Access ..423
var Parameters ..423
Register Calling Convention ..424
All-Assembly Procedures ..424
Records ..425

Using Windows Hooks ..426
Setting the Hook ..426
Using the Hook Function ..428
Using the Unhook Function ..428
Using SendKeys: A JournalPlayback Hook428

Using C/C++ OBJ Files ..443
Calling a Function ..444
Name Mangling ..445
Sharing Data ..445
Using the Delphi RTL ..447

Using C++ Classes ..452
Thunking ..457

Generic Thunking ..458
WM_COPYDATA ..470

Obtaining Package Information ..477
Summary ..481

14 Snooping System Information 483
InfoForm: Obtaining General Information ..484

Formatting the Strings ..485
Obtaining Memory Status ..486
Getting the OS Version ..488
Obtaining Directory Information..489
Getting System Information ..490
Checking Out the Environment ..494

Platform-Neutral Design..500
Windows 95/98: Using ToolHelp32 ..501

Snapshots ..502
Process Walking..503
Thread Walking ..507
Module Walking ..510
Heap Walking ..512

00.65227_FM 11/30/99 5:41 PM Page xiv

CONTENTS
xv

Heap Viewing ..515
The Source..517

Windows NT/2000: PSAPI..527
Summary ..541

15 Porting to Delphi 5 543
New to Delphi 5 ..210 (CD)

Which Version? ..210 (CD)
Units, Components, and Packages ..212 (CD)

Migrating from Delphi 4 ..212 (CD)
IDE Issues ..212 (CD)
RTL Issues ..213 (CD)
VCL Issues ..213 (CD)
Internet Development Issues ..214 (CD)
Database Issues ..214 (CD)

Migrating from Delphi 3 ..214 (CD)
Unsigned 32-Bit Integers ..214 (CD)
64-Bit Integer ..216 (CD)
The Real Type ..216 (CD)

Migrating from Delphi 2 ..216 (CD)
Changes to Boolean Types ..216 (CD)
ResourceString ..217 (CD)
RTL Changes ..217 (CD)
TCustomForm ..218 (CD)
GetChildren() ..218 (CD)
Automation Servers ..218 (CD)

Migrating from Delphi 1 ..219 (CD)
Strings and Characters ..219 (CD)
Variable Size and Range ..227 (CD)
Record Alignment ..228 (CD)
32-Bit Math ..229 (CD)
The TDateTime Type ..229 (CD)
Unit Finalization..229 (CD)
Assembly Language ..230 (CD)
Calling Conventions ..231 (CD)
Dynamic Link Libraries (DLLs) ..231 (CD)
Windows Operating System Changes233 (CD)
32-Bit Address Space ..233 (CD)
32-Bit Resources ..234 (CD)
VBX Controls..234 (CD)
Changes to the Windows API Functions234 (CD)
Concurrent 16-Bit and 32-Bit Projects237 (CD)

Summary ..238 (CD)

00.65227_FM 11/30/99 5:41 PM Page xv

Delphi 5 Developer’s Guide
xvi

16 MDI Applications 545
Creating the MDI Application..240 (CD)

Understanding MDI Basics ..240 (CD)
The Child Form ..242 (CD)
The Main Form ..264 (CD)

Working with Menus ..272 (CD)
Merging Menus with MDI Applications272 (CD)
Adding a List of Open Documents to the Menu273 (CD)

Miscellaneous MDI Techniques ..273 (CD)
Drawing a Bitmap in the MDI Client Window274 (CD)
Creating a Hidden MDI Child Form281 (CD)
Minimizing, Maximizing, and Restoring

All MDI Child Windows ..284 (CD)
Summary ..287 (CD)

17 Sharing Information with the Clipboard 547
In the Beginning, There Was the Clipboard ..548

Using the Clipboard with Text ..549
Using the Clipboard with Images ..550

Creating Your Own Clipboard Format ..551
Creating a Clipboard-Aware Object ..552
Using the Custom Clipboard Format ..557

Summary ..560

18 Multimedia Programming with Delphi 561
Creating a Simple Media Player ..290 (CD)
Using WAV Files in Your Applications291 (CD)
Playing Video..293 (CD)

Showing the First Frame ..294 (CD)
Using the Display Property ..294 (CD)
Using the DisplayRect Property..295 (CD)
Understanding TMediaPlayer Events295 (CD)
Viewing the Source Code for DDGMPlay296 (CD)

Device Support ..298 (CD)
Creating an Audio CD Player ..299 (CD)

Displaying a Splash Screen ..299 (CD)
Beginning the CD Player ..301 (CD)
Updating the CD Player Information....................................303 (CD)
Methods for Updating the CD Player305 (CD)
CD Player Source..306 (CD)

Summary ..314 (CD)

19 Testing and Debugging 563
Common Program Bugs ..317 (CD)

Using a Class Variable Before It’s Created317 (CD)

00.65227_FM 11/30/99 5:41 PM Page xvi

CONTENTS
xvii

Ensuring That Class Instances Are Freed318 (CD)
Taming the Wild Pointer ..319 (CD)
Using Uninitialized PChar-Type Variables320 (CD)
Dereferencing a nil Pointer ..320 (CD)

Using the Integrated Debugger ..321 (CD)
Using Command-Line Parameters ..321 (CD)
Breakpoints..321 (CD)
Executing Code Line by Line ..325 (CD)
Using the Watch Window..326 (CD)
Debug Inspectors ..326 (CD)
Using the Evaluate and Modify Options327 (CD)
Accessing the Call Stack ..327 (CD)
Viewing Threads..328 (CD)
Event Log ..329 (CD)
Modules View..329 (CD)
DLL Debugging ..330 (CD)
The CPU View ..331 (CD)

Summary ..332 (CD)

PART III Component-Based Development 565

20 Key Elements of the VCL and Runtime Type Information 567
What Is a Component? ..569
Component Types ..569

Standard Components ..569
Custom Components ..570
Graphical Components ..570
Nonvisual Components ..571

The Component Structure..571
Properties ..571
Types of Properties ..573
Methods ..574
Events ..574
Streamability ..576
Ownership ..576
Parenthood ..577

The Visual Component Hierarchy ..578
The TPersistent Class ..579
TPersistent Methods ..579
The TComponent Class ..580
The TControl Class ..582
The TWinControl Class..582
The TGraphicControl Class..584
The TCustomControl Class ..584
Other Classes ..584

00.65227_FM 11/30/99 5:41 PM Page xvii

Delphi 5 Developer’s Guide
xviii

Runtime Type Information ..587
The TypInfo.pas Unit: Definer of Runtime Type Information589
Obtaining Type Information ..591
Obtaining Type Information on Method Pointers599
Obtaining Type Information for Ordinal Types604

Summary ..612

21 Writing Delphi Custom Components 613
Component Building Basics ..614

Deciding Whether to Write a Component......................................614
Component Writing Steps ..615
Deciding on an Ancestor Class ..616
Creating a Component Unit..617
Creating Properties ..619
Creating Events ..629
Creating Methods ..634
Constructors and Destructors ..635
Registering Your Component..638
Testing the Component ..639
Providing a Component Icon..642

Sample Components ..642
Extending Win32 Component Wrapper Capabilities642
TddgRunButton: Creating Properties ..653

TddgButtonEdit—Container Components ..660
Design Decisions ..660
Surfacing Properties ..661
Surfacing Events ..661
TddgDigitalClock—Creating Component Events..........................664
Adding Forms to the Component Palette668

Component Packages ..671
Why Use Packages? ..671
Why Not to Use Packages..672
Types of Packages ..672
Package Files ..673
Package-Enable Your Delphi 5 Applications..................................673
Installing Packages into Delphi’s IDE ..674
Designing Your Own Packages ..674
Package Versioning ..680
Package Compiler Directives ..680
More on the {$WEAKPACKAGEUNIT} Directive680
Package-Naming Conventions..681

Add-In Packages ..682
Generating Add-In Forms ..682

Summary ..689

00.65227_FM 11/30/99 5:41 PM Page xviii

CONTENTS
xix

22 Advanced Component Design Techniques 691
Pseudo-Visual Components ..692

Extending Hints ..692
Creating a THintWindow Descendant..692
An Elliptical Window ..695
Enabling the THintWindow Descendant ..696
Deploying TDDGHintWindow ..696

Animated Components ..696
The Marquee Component ..696
Writing the Component ..697
Drawing on an Offscreen Bitmap ..697
Painting the Component ..699
Animating the Marquee..700
Testing TddgMarquee ..710

Writing Property Editors..713
Creating a Descendant Property Editor Object714
Editing the Property as Text ..715
Registering the New Property Editor ..719
Editing the Property as a Whole with a Dialog..............................721

Component Editors ..724
TComponentEditor ..725
TDefaultEditor..726
A Simple Component ..726
A Simple Component Editor ..726
Registering a Component Editor ..727

Streaming Nonpublished Component Data ..730
Defining Properties ..731
An Example of DefineProperty() ..732
TddgWaveFile: An Example of DefineBinaryProperty()734

Property Categories..742
Category Classes ..743
Custom Categories..745

Lists of Components: TCollection and TCollectionItem748
Defining the TCollectionItem Class: TRunBtnItem750
Defining the TCollection Class: TRunButtons751
Implementing the TddgLaunchPad, TRunBtnItem,

and TRunButtons Objects..752
Editing the List of TCollectionItem Components

with a Dialog Property Editor..760
Summary ..772

23 COM-Based Technologies 773
COM Basics ..774

COM: The Component Object Model..774

00.65227_FM 11/30/99 5:41 PM Page xix

Delphi 5 Developer’s Guide
xx

COM Versus ActiveX Versus OLE ..775
Terminology..775
What’s So Great About ActiveX? ..776
OLE 1 Versus OLE 2..776
Structured Storage ..777
Uniform Data Transfer ..777
Threading Models ..777
COM+ ..778

COM Meets Object Pascal ..778
Interfaces ..778
The HResult Return Type ..786

COM Objects and Class Factories ..786
TComObject and TComObjectFactory ..787
In-Process COM Servers ..788
Out-of-Process COM Servers ..791

Aggregation..792
Distributed COM ..792
Automation ..793

IDispatch ..794
Type Information ..795
Late Versus Early Binding..795
Registration ..796
Creating Automation Servers ..796
Creating Automation Controllers ..817

Advanced Automation Techniques ..825
Automation Events ..825
Automation Collections..837
New Interface Types in the Type Library847
Exchanging Binary Data ..848
Behind the Scenes: Language Support for COM852

Microsoft Transaction Server (MTS) ..857
Why MTS? ..858
What Is MTS? ..858
MTS in Delphi..863

TOleContainer..885
A Small Sample Application ..886
A Bigger Sample Application ..888

Summary ..899

24 Extending the Windows Shell 901
A Tray-Notification Icon Component..902

The API ..902
Handling Messages ..905
Icons and Hints ..905

00.65227_FM 11/30/99 5:41 PM Page xx

CONTENTS
xxi

Mouse Clicks ..906
Hiding the Application ..908
Sample Tray Application ..916

Application Desktop Toolbars ..918
The API ..918
TAppBar: The AppBar Form..920
Using TAppBar ..929

Shell Links ..932
Obtaining an IShellLink Instance ..934
Using IShellLink ..934
A Sample Application ..943

Shell Extensions ..952
The COM Object Wizard ..954
Copy Hook Handlers ..954
Context Menu Handlers..960
Icon Handlers..970

Summary ..979

25 Creating ActiveX Controls 981
Why Create ActiveX Controls? ..982
Creating an ActiveX Control ..982

The ActiveX Control Wizard..983
The ActiveX Framework ..1014
Property Pages ..1017

ActiveForms ..1030
Adding Properties to ActiveForms ..1030
ActiveX on the Web ..1039

Communicating with the Web Browser1039
Web Deployment ..1049

Summary ..1053

26 Using Delphi’s Open Tools API 1055
Open Tools Interfaces ..1056
Using the Open Tools API ..1058

A Dumb Wizard..1058
The Wizard Wizard ..1062
DDG Search..1075

Form Wizards ..1086
Summary ..1094

27 CORBA Development with Delphi 1095
Object Request Brokers ..1096
Interfaces..1096
Stubs and Skeletons ..1097

00.65227_FM 11/30/99 5:41 PM Page xxi

Delphi 5 Developer’s Guide
xxii

The VisiBroker ORB..1098
VisiBroker Runtime Support Services ..1098
VisiBroker Administration Tools..1099

Delphi CORBA Support ..1099
CORBA Support Classes..1101
CORBA Object Wizard ..1102
The Delphi Type Library Editor ..1110

Creating CORBA Solutions with Delphi 51111
Building a CORBA Server ..1111
Implementing the Methods of IQueryServer1113
Building an Early-Bound CORBA Client1129
Building a Late-Bound CORBA Client1133
Cross-Language CORBA ..1136

Deploying the VisiBroker ORB ..1145
Summary ..1146

PART IV Database Development 1147

28 Writing Desktop Database Applications 1149
Working with Datasets ..1150

VCL Database Architecture..1151
BDE Data-Access Components..1151
Opening a Dataset ..1152
Navigating Datasets..1153
TDataSource ..1160
Working with Fields ..1160
Refreshing the Dataset..1176
Altered States..1177
Filters ..1178

Using TTable..1181
Searching for Records ..1181
Master/Detail Tables ..1184
TTable Events ..1186
Creating a Table in Code ..1186

Data Modules ..1188
The Search, Range, and Filter Demo ..1189

The Data Module..1189
The Main Form ..1190
The Range Form ..1192
The Key Search Form ..1194
The Filter Form ..1197

TQuery and TStoredProc: The Other Datasets..................................1200
TQuery..1201
TStoredProc ..1201

00.65227_FM 11/30/99 5:41 PM Page xxii

CONTENTS
xxiii

Text File Tables..1201
The Schema File ..1202
The Data File ..1204
Using the Text Table ..1204
Limitations..1204
Text Table Import ..1205

Connecting with ODBC ..1206
Where to Find an ODBC Driver ..1206
An ODBC Example: Connecting to MS Access..........................1207

ActiveX Data Objects (ADO)..1211
The Who’s Who of Microsoft Data Access..................................1212
ADOExpress Components..1213
Example: Connecting via ADO..1216
ADO Deployment ..1217

Summary ..1218

29 Developing Client/Server Applications 1219
Why Client/Server?..1220
Client/Server Architecture ..1221

The Client ..1221
The Server ..1222
Business Rules..1222
Fat Client, Fat Server, or Middle Tier: Where Do

Business Rules Belong? ..1223
Client/Server Models ..1225

The Two-Tiered Model ..1226
The Three-Tiered Model ..1226

Client/Server Versus Desktop Database Development1227
Set-Oriented Versus Record-Oriented Data Access1228
Data Security ..1228
Record-Locking Methods ..1228
Data Integrity..1229
Transaction Orientation ..1230

SQL: Its Role in Client/Server Development1230
Delphi Client/Server Development..1231
The Server: Designing the Back End ..1232

Database Objects ..1232
Defining Tables ..1233
Using Domains ..1235
Defining the Business Rules with Views, Stored Procedures,

and Triggers ..1236
Privileges/Access Rights to Database Objects1243

The Client: Designing the Front End ..1245
Using the TDatabase Component ..1245
TTable or TQuery ..1255

00.65227_FM 11/30/99 5:41 PM Page xxiii

Delphi 5 Developer’s Guide
xxiv

Using the TQuery Component ..1257
Executing Stored Procedures..1265

Summary ..1269

30 Extending Database VCL 1271
Using the BDE..334 (CD)

The BDE Unit ..334 (CD)
Check() ..334 (CD)
Cursors and Handles ..335 (CD)
Synching Cursors ..335 (CD)

dBASE Tables ..336 (CD)
Physical Record Number ..336 (CD)
Viewing Deleted Records..337 (CD)
Testing for a Deleted Record ..339 (CD)
Undeleting a Record..339 (CD)
Packing a Table ..340 (CD)

Paradox Tables..341 (CD)
Sequence Number ..341 (CD)
Table Packing ..341 (CD)
Limiting TQuery Result Sets ..348 (CD)
BDE Miscellany ..350 (CD)
Writing Data-Aware VCL Controls355 (CD)

Extending TDataSet..359 (CD)
In the Olden Days… ..359 (CD)
Modern Times ..360 (CD)
Creating a TDataSet Descendant ..361 (CD)

Summary ..387 (CD)

31 Internet-Enabling Your Applications with WebBroker 1273
ISAPI, NSAPI, and CGI Web Server Extensions..............................1275

The Common Gateway Interface..1275
ISAPI and NSAPI ..1276

Creating Web Applications with Delphi ..1277
TWebModule and TWebDispatcher ..1277
TWebRequest and TWebResponse ..1281

Dynamic HTML Pages with HTML Content Producers1285
TPageProducer..1285
TDataSetTableProducer and TQueryTableProducer1288

Maintaining State with Cookies ..1295
Redirecting to a Different Web Site ..1300
Retrieving Information from HTML Forms1301
Data Streaming ..1303
Summary ..1307

00.65227_FM 11/30/99 5:41 PM Page xxiv

CONTENTS
xxv

32 Midas Development 1309
Mechanics of Creating a Multitier Application1310
Benefits of the Multitier Architecture..1311

Centralized Business Logic ..1311
Thin-Client Architecture ..1311
Automatic Error Reconciliation ..1312
Briefcase Model..1312
Fault Tolerance ..1312
Load Balancing ..1312
Classic Mistakes ..1313

Typical MIDAS Architecture ..1313
Server..1314
Client ..1317

Using MIDAS to Create an Application..1319
Setting Up the Server ..1319
Retrieving Data ..1321

More Options to Make Your Application Robust1327
Client Optimization Techniques ..1327
Application Server Techniques ..1330

Real-World Examples ..1332
More Client Dataset Features ..1343
Deploying MIDAS Applications..1353

Licensing Issues..1353
DCOM Configuration ..1354
Files to Deploy ..1355
Internet Deployment Considerations (Firewalls)1356

Summary ..1358

PART V Rapid Database Application Development 1359

33 Inventory Manager: Client/Server Development 1361
Designing the Back End ..1362

Defining Domains ..1364
Defining the Tables ..1365
Defining Generators ..1367
Defining Triggers..1367
Defining Stored Procedures..1368
Granting Permissions..1371

Centralizing Database Access: The Business Rules..........................1371
Login/Logout Methods ..1383
Customer Table Methods..1385
Part Table Methods ..1385
Sales Methods ..1385
Temporary Table Methods..1386

00.65227_FM 11/30/99 5:41 PM Page xxv

Delphi 5 Developer’s Guide
xxvi

Designing the User Interface ..1388
TMainForm: The Application’s Main Form1388
TCustomerForm: Customer Entry..1394
TPartsForm: Inventory Entry..1398
TSalesForm: Sales Browsing ..1403
TNewSalesForm: Sales Entry ..1404
The CustomerSearch Dialog ..1408

Summary ..1414

34 Client Tracker: MIDAS Development 1415
Designing the Server Application..1416
Designing the Client Application ..1419

Client Data Module ..1419
Client Main Form ..1430

Summary ..1437

35 DDG Bug-Reporting Tool: Desktop Application Development 1439
General Application Requirements..1440

World Wide Web–Ready ..1440
User Data Entry and Logon..1440
Bug Manipulation, Browsing, and Filtering1440
Bug Actions ..1441
Other UI Functionality ..1441

The Data Model ..1441
Developing the Data Module ..1441

Application Initialization and Login ..1453
Generating Paradox Keys ..1454
Bug-Manipulation Routines ..1455
Browsing/Filtering Bugs ..1455
Adding Users ..1455
Adding Actions ..1457

Developing the User Interface ..1459
The Main Form ..1459
Other User Interface Issues ..1467

Enabling the Application for the Web ..1467
Summary ..1467

36 DDG Bug-Reporting Tool: Using WebBroker 1469
The Page Layout ..1470
Changes to the Data Module ..1471
Setting Up the TDataSetTableProducer Component: dstpBugs1471
Setting Up the TWebDispatcher Component: wbdpBugs1472
Setting Up the TPageProducer Component: pprdBugs1473

00.65227_FM 11/30/99 5:41 PM Page xxvi

CONTENTS
xxvii

Coding the DDGWebBugs ISAPI Server: Adding
TActionItem Instances ..1473

Helper Routines ..1473
The Introduction Page ..1474
Obtaining and Verifying the User Login Name1476

Browsing Bugs ..1480
Browsing All Bugs ..1480
Browsing User-Entered Bugs ..1482
Formatting Table Cells and Displaying Bug Detail1484

Adding a New Bug ..1486
Retrieving the Bug Data ..1486
Verifying Bug Insertion ..1488

Summary ..1491

PART VI Appendixes 1493

A Error Messages and Exceptions 1495
Layers of Handlers, Layers of Severity......................................390 (CD)
Runtime Errors ..391 (CD)

Exceptions ..391 (CD)
Win32 System Errors ..397 (CD)

B BDE Error Codes 1497

C Suggested Reading 1499
Delphi Programming..1500
Component Design ..1500
Windows Programming ..1500
Object-Oriented Programming ..1500
Software Project Management and User Interface Design1500
COM/ActiveX/OLE ..1501

Index 1503

00.65227_FM 11/30/99 5:41 PM Page xxvii

Foreword
I started work at Borland in the summer of 1985. I came to work here to be a part of the new
generation of programming tools (the UCSD Pascal System and command line tools just
weren’t enough), to help improve the process of programming (maybe even leaving a little
more time for our families and friends), and finally, to help enrich the lives of programmers
(myself included). Turbo Pascal 1.0 changed the face of programming tools forever. It set the
standard in 1983.

Delphi also changed the face of programming once again. Delphi 1.0 focused on making
object-oriented programming, Windows programming, and database programming easier.
Later versions of Delphi focused on easing the pain of writing Internet and distributed applica-
tions. Although we’ve added a host of features to our products over the years and written
pages of documentation and megabytes of online help, there’s still more information, knowl-
edge, and advice that is required for developers to complete successful projects.

Delphi 5—“Sixteen Years in the Making” the headline might read. Not this book, but the prod-
uct. Sixteen years, you might ask? It’s been approximately sixteen years since the first Turbo
Pascal version appeared in November 1983. By Internet standards, that amount of time would
easily overflow an Int64. Delphi 5 is the next great version to arrive.

Actually, it is the 13th version of our compiler. You don’t believe me? Just run DCC32.EXE
from the command line (we used to say DOS prompt), and you’ll see the compiler version
number and command line parameter help text output. It takes a lot of engineers, testers, docu-
mentors, authors, fans, friends, and relatives to produce a product. It takes a special breed of
writers to be able to write a book about Delphi.

What does it take to write a developer’s guide? The simple answer is “a lot.” How can I define
a lot? I can’t—it’s impossible to define. Instead of a definition, I can only offer a few bits of
information to help in forming the definition, a “recipe” if you will:

“Davey Hackers Quick ‘n Easy Writer’s Recipe”

Delphi 5 Developer’s Guide

Ingredients:

Delphi 5 (Standard, Professional, or Enterprise edition)

Two 150-pound professional strength book authors

1000’s of tablespoons of words

1000’s of cups of source code

00.65227_FM 11/30/99 5:41 PM Page xxviii

Decades of helpings of experience (including years working on Delphi)

Handfuls of wisdom

Hours of hacking

Weeks of debugging

Quarts and quarts of fluids (my choice would be Diet Pepsi)

Hundreds of hours of sleep

Preparation:

Preheat your PC to 110 volts (220 volts for most developers outside the US).

Apply heat to the developers.

To your hard drive, mix in the Delphi 5 field test versions, all the text, and source code
ingredients.

Stir in the years of experience, hours of hacking, weeks of debugging, handfuls of wis-
dom, and quarts of fluids.

Drain off the hours of sleep.

Let the remaining ingredients stand at room temperature for a while.

Yield:

One Delphi 5 Developer’s Guide by Steve Teixeira and Xavier Pacheco.

Variations:

Substitute your favorite choice of fluids—water, juice, coffee, and so forth.

To quote a famous comedienne, “All seriousness aside.” I’ve known Steve Teixeira (some call
him T-Rex) and Xavier Pacheco (some call him just X) for years as friends, fellow employees,
speakers at our annual developer’s conference, and as members of the Borland community.

Previous editions of their Developer’s Guides have been received enthusiastically by Delphi
developers around the world. Here now is the latest version ready for everyone to enjoy.

Have fun, and learn a lot. Here’s hoping all of your Delphi projects are enjoyable, successful,
and rewarding.

David Intersimone, “David I”
Vice President, Developer Relations
Inprise Corporation

00.65227_FM 11/30/99 5:41 PM Page xxix

About the Author
Steve Teixeira is the vice president of Software Development at DeVries Data Systems, a
Silicon Valley–based consulting firm specializing in Borland/Inprise solutions. Previously,
Steve was a research and development software engineer at Inprise Corporation, where he
helped design and build Borland Delphi and Borland C++Builder. Steve is also a columnist for
The Delphi Magazine, a professional consultant and trainer, and an internationally known
speaker. Steve lives in Saratoga, California with his wife and son.

Xavier Pacheco is the President and Chief Consultant for Xapware Technologies, Inc., a
Colorado Springs–based consulting/training firm. Xavier frequently speaks at industry confer-
ences and is a contributing author for Delphi periodicals. He is an internationally known
Delphi consultant and trainer and a member of Borland’s select group of support volunteers—
TeamB. Xavier enjoys spending time with his wife, Anne, and his daughter, Amanda. Xavier
and Anne live in Colorado with their German shepherds, Rocky and Shasta.

00.65227_FM 11/30/99 5:41 PM Page xxx

Dedication
Xavier’s Dedication

For Anne

Steve’s Dedication
For Helen and Cooper

Acknowledgments
We need to thank those without whose help this book would never have been written. In addi-
tion to our thanks, we also want to point out that any errors or omissions you find in the book
in spite of everyone’s efforts are our own.

We’d first like to thank our technical reviewers and good friends, Lance Bullock, Chris Hesik,
and Ellie Peters. The ideal technical reviewer is both bright and detail-oriented, and we were
fortunate enough to get three individuals who meet those qualifications in spades! These folks
did a great job on a very tight schedule, and we’re forever grateful for their efforts.

Next, gargantuan thanks to our contributing authors, who lent their superior software develop-
ment and writing skills to making Delphi 5 Developer’s Guide better than it could have been
otherwise. MIDAS guru Dan Miser pitched in by writing the excellent Chapter 32, “MIDAS
Development.” Lance Bullock, to whom we offer double the normal dose of gratitude, man-
aged to squeeze writing Chapter 27, “CORBA Development with Delphi,” in among his duties
as a technical reviewer. Finally, Web wizard Nick Hodges (TSmiley inventor) is back in this
edition of the book in Chapter 31, “Internet-Enabling Your Applications with WebBroker.”

Thanks to David Intersimone, who managed to find the time to write the foreword for this
book despite his busy schedule.

While writing Delphi 5 Developer’s Guide, we received advice or tips from a number of our
friends and coworkers. These people include Alain “Lino” Tadros, Roland Bouchereau,
Charlie Calvert, Josh Dahlby, David Sampson, Jason Sprenger, Scott Frolich, Jeff Peters, Greg
de Vries, Mark Duncan, Anders Ohlsson, David Streever, Rich Jones, and others too numerous
to mention.

00.65227_FM 11/30/99 5:41 PM Page xxxi

Finally, thanks to the gang at Macmillan: Shelley Johnston, Gus Miklos, Dan Scherf, and the
zillions of behind-the-scenes people that we never meet but without whose help this book
would not be a reality.

Special Thanks from Xavier
I can never be thankful enough for God’s abundant blessings, the greatest of which is His Son,
Jesus—my Savior. I thank God for my wife Anne, whose love, patience, and understanding I
will always need. Thank you Anne, for your support and encouragement and mostly for your
prayers and commitment to our Holy Father. I am thankful for my daughter Amanda, and the
joy she brings. Amanda, you are truly a blessing to my life.

Special Thanks from Steve
I’d like to thank my family, especially Helen, who is always reminding me of what is impor-
tant and helping me work through the tough spots, and Cooper, who provides complete clarity
when I view the world through his eyes.

00.65227_FM 11/30/99 5:41 PM Page xxxii

Tell Us What You Think!
As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we’re doing right, what we could do better, what areas you’d
like to see us publish in, and any other words of wisdom you’re willing to pass our way.

I welcome your comments. You can fax, email, or write me directly to let me know what you
did or didn’t like about this book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book
and that, due to the high volume of mail I receive, I might not be able to reply to every mes-
sage.

When you write, please be sure to include this book’s title and author as well as your name
and phone or fax number. I will carefully review your comments and share them with the
authors and editors who worked on the book.

Fax: 317-581-4770

Email: mstephens@mcp.com

Mail: Michael Stephens
Associate Publisher
Sams Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

00.65227_FM 11/30/99 5:41 PM Page xxxiii

00.65227_FM 11/30/99 5:41 PM Page xxxiv

Introduction
Can you believe that it’s been nearly five years since we began work on the first edition of
Delphi Developer’s Guide? At the time, we were just a couple of developers working in
Borland’s languages support department looking for a new software challenge. We had an idea
for a book that made a point of avoiding things you could learn in the product documentation
in favor of showing proper coding practices and a few cool techniques. We also figured our
experience in developer support would enable us to answer developer’s questions before they
were even asked. We pitched the idea to Sams, and they loved it. Then began the many gruel-
ing months of manuscript development, programming, late nights, programming, and maybe a
few deadlines missed (because we were so busy programming). Finally, the book was finished.

Our expectations were modest. At first, we were just hoping we would break even. However,
after several months of robust sales, we thought that our concept of a no-nonsense developer’s
guide was just what the doctor (or in this case, the developer) ordered. Our feelings were legit-
imized when you, the reader, voted Delphi Developer’s Guide to the Delphi Informant
Reader’s Choice award for best Delphi book.

I think our publisher slipped something into the water, because we couldn’t stop writing. We
released Delphi 2 Developer’s Guide the next year, completed a manuscript for Delphi 3
Developer’s Guide (which was unfortunately never published) the following year, and pub-
lished Delphi 4 Developer’s Guide the year after that, for which we were again honored with
the Delphi Informant Reader’s Choice award for best Delphi book. What you have in your
hands is our latest work, Delphi 5 Developer’s Guide, and we think you’ll find it an even more
valuable resource than any previous edition.

Currently, Steve is the vice president of Software Development at DeVries Data Systems, a
Silicon Valley-based consulting firm that specializes in Borland solutions, and Xavier runs his
own Delphi consulting and training firm, XAPWARE Technologies Inc. We feel that our
unique combination of experience “in the trenches” in Borland’s developer support and R&D
departments combined with our real-world experience as developers and inside knowledge of
the Delphi product all add up to one darn good Delphi book.

Simply stated, if you want to develop applications in Delphi, this is the book for you. Our goal
is not just to show you how to develop applications using Delphi but rather how to develop
applications the right way. Delphi is a very unique tool that enables you to drastically reduce
the time it takes to develop applications while still offering a level of performance that meets
or exceeds that of most C++ compilers on the market. This book shows you how to get the best
of these two worlds by demonstrating effective use of Delphi’s design-time environment and
proper techniques for code reuse and by showing you how to write good, clean, efficient code.

01.65227_Intro 11/30/99 5:43 PM Page 1

Delphi 5 Developer’s Guide
2

This book is divided into five parts. Part I, “Essentials for Rapid Development,” provides you
with a strong foundation in the important aspects of Delphi and Win32 programming. Part II,
“Advanced Techniques,” builds upon this foundation by helping you build small but useful
applications and utilities that help to expand your knowledge of more in-depth programming
topics. Part III, “Component-Based Development,” discusses VCL component development and
development using COM. Part IV, “Database Development,” takes you through database devel-
opment in Delphi, from local tables through SQL databases and multitier solutions. Part V,
“Rapid Database Application Development,” brings together much of what you learned in the
previous parts in order to build larger-scale real-world applications.

Chapters on the CD
No doubt you’ve seen the table of contents by now, and you may have noticed that there are
several chapters that appear only on the CD and are not in the printed book. The reason for this
is simple: We wrote more material than could be bound into a single book. Faced with this
problem, we had several choices. We could split Delphi 5 Developer’s Guide into two books,
but we chose not to do that primarily because it would be more expensive for readers to obtain
the material. Another option was to leave out some chapters entirely, but we felt that doing so
would create some obvious gaping holes in the book’s coverage. The choice we made, of
course, was to put some chapters on the CD. This allowed us to balance the forces of coverage,
convenience, and cost. It’s important to remember that the chapters on the CD are not “extras”
but are a full-fledged part of the book. They were written, reviewed, and edited with the same
care and close attention to detail as the rest of the book.

Who Should Read This Book
As the title of this book states, this book is for developers. So, if you’re a developer and you
use Delphi, you should have this book. In particular, however, this book is aimed at three
groups of people:

• Delphi developers who are looking to take their craft to the next level.

• Experienced Pascal, BASIC, or C/C++ programmers who are looking to hit the ground
running with Delphi.

• Programmers who are looking to get the most out of Delphi by leveraging the Win32 API
and using some of Delphi’s less obvious features.

01.65227_Intro 11/30/99 5:43 PM Page 2

INTRODUCTION
3

Conventions Used in This Book
The following typographic conventions are used in this book:

• Code lines, commands, statements, variables, program output, and any text you see on
the screen appears in a computer typeface.

• Anything that you type appears in a bold computer typeface.

• Placeholders in syntax descriptions appear in an italic computer typeface. Replace the
placeholder with the actual filename, parameter, or whatever element it represents.

• Italics highlight technical terms when they first appear in the text and sometimes are
used to emphasize important points.

• Procedures and functions are indicated by opening and closing parentheses after the pro-
cedure or function name. Although this is not standard Pascal syntax, it helps to differen-
tiate them from properties, variables, and types.

Within each chapter you’ll encounter several Notes, Tips, and Cautions that help to highlight
the important points and aid you in steering clear of the pitfalls.

You will find all the source code and project files on the CD accompanying this book, as well
as source samples that we could not fit in the book itself. Also, take a look at the components
and tools in the directory \THRDPRTY, where you’ll find some powerful trial versions of third-
party components.

Updates to This Book
Updates, extras, and errata information for this book are available via the Web. Visit
http://www.xapware.com/ddg for the latest news.

Getting Started
People sometimes ask us what drives us to continue to write Delphi books. It’s hard to explain,
but whenever we meet with other developers and see their obviously well-used, bookmarked,
ratty-looking copy of Delphi Developer’s Guide, it somehow makes it worthwhile.

Now it’s time to relax and have some fun programming with Delphi. We’ll start slow but
progress into the more advanced topics at a quick but comfortable pace. Before you know it,
you’ll have the knowledge and technique required to truly be called a Delphi guru.

01.65227_Intro 11/30/99 5:43 PM Page 3

01.65227_Intro 11/30/99 5:43 PM Page 4

IN THIS PART
1 Windows Programming in Delphi 5 7

2 The Object Pascal Language 33

3 The Win32 API 123

4 Application Frameworks and
Design Concepts 135

5 Understanding Windows Messaging 191

6 Coding Standards Document 217

7 Using ActiveX Controls with Delphi 219

Essentials for Rapid
Development

PART

I

02.65227_Part I 11/30/99 5:43 PM Page 5

02.65227_Part I 11/30/99 5:43 PM Page 6

CHAPTER

1
Windows Programming
in Delphi 5

IN THIS CHAPTER
• The Delphi Product Family 8

• Delphi: What and Why 10

• A Little History 15

• The Delphi IDE 19

• A Tour of Your Project’s Source 23

• Tour of a Small Application 25

• What’s So Great About
Events, Anyway? 27

• Turbo Prototyping 28

• Extensible Components and
Environment 28

• The Top 10 IDE Features You Must Know
and Love 29

• Summary 32

03.65227_CH01x 11/30/99 5:44 PM Page 7

This chapter is intended to provide you with a high-level overview of Delphi, including history,
feature sets, how Delphi fits into the world of Windows development, and general tidbits of
information you need to know to be a Delphi developer. And just to get your technical juices
flowing, this chapter also discusses the need-to-know features of the Delphi IDE, pointing out
some of those hard-to-find features that even seasoned Delphi developers may not know about.
This chapter isn’t about providing an education on the very basics of how one develops soft-
ware in Delphi. We figure you spent good money on this book to learn new and interesting
things—not to read a rehash of content you can already find in Borland’s documentation. True
to that, our mission is to deliver the goods: to show you the power features of this product and
ultimately how to employ those features to build commercial-quality software. Hopefully, our
backgrounds and experience with the tool will enable us to provide you with some interesting
and useful insights along the way. We feel that experienced and new Delphi developers alike
will benefit from this chapter (and this book!), as long as new developers understand that this
isn’t ground zero for a Delphi developer. Start with the Borland documentation and simple
examples. Once you’ve got the hang of how the IDE works and the general flow of application
development, welcome aboard and enjoy the ride!

The Delphi Product Family
Delphi 5 comes in three flavors designed to fit a variety of needs: Delphi 5 Standard, Delphi 5
Professional, and Delphi 5 Enterprise. Each of these versions is targeted at a different type of
developer.

Delphi 5 Standard is the entry-level version. It provides everything you need to start writing
applications with Delphi, and it’s ideal for hobbyists and students who want to break into
Delphi programming on a budget. This version includes the following features:

• Optimizing 32-bit Object Pascal compiler.

• Visual Component Library (VCL), which includes over 85 components standard on the
Component Palette.

• Package support, which enables you to create small executables and component libraries.

• An IDE that includes an editor, debugger, form designer, and a host of productivity fea-
tures. The form designer supports visual form inheritance and linking.

• Delphi 1, which is included for 16-bit Windows development.

• Full support for Win32 API, including COM, GDI, DirectX, multithreading, and various
Microsoft and third-party software development kits (SDKs).

Delphi 5 Professional is intended for use by professional developers who don’t require client/
server features. If you’re a professional developer building and deploying applications or Delphi
components, this product is designed for you. The Professional edition includes everything in
the Standard edition, plus the following:

Essentials for Rapid Development

PART I
8

03.65227_CH01x 11/30/99 5:44 PM Page 8

• More than 150 VCL components on the Component Palette

• Database support, including data-aware VCL controls, the Borland Database Engine
(BDE) 5.0, BDE drivers for local tables, a virtual dataset architecture that enables you to
incorporate other database engines into VCL, the Database Explorer tool, a data reposi-
tory, ODBC support, and InterBase Express native InterBase components

• Wizards for creating COM components, such as ActiveX controls, ActiveForms,
Automation servers, and property pages

• The QuickReports reporting tool for integrating custom reports into your applications

• The TeeChart graphing and charting components for data visualization

• A single-user Local InterBase Server (LIBS), which enables you to do SQL-based
client/server development without being connected to a network

• The Web Deployment feature for easy distribution of ActiveX content via the Web

• The InstallSHIELD Express application-deployment tool

• The OpenTools API for developing components that integrate tightly within the Delphi
environment as well as an interface for PVCS version control

• WebBroker and FastNet Wizards and components for developing applications for the
Internet

• Source code for the VCL, runtime library (RTL), and property editors

• The WinSight32 tool for browsing window and message information

Delphi 5 Enterprise is targeted toward high-end and corporate client/server developers. If
you’re developing applications that communicate with SQL database servers, this edition con-
tains all the tools necessary to take you through the client/server application development
cycle. The Enterprise version includes everything included in the other two Delphi editions,
plus the following:

• Over 200 VCL components on the Component Palette

• Multitier Distributed Application Services (MIDAS) support and development license,
providing an unprecedented level of ease for multitier application development

• CORBA support, including version 3.32 of the VisiBroker ORB

• InternetExpress XML components

• TeamSource source control software, which enables team development and supports
various versioning engines (ZIP and PVCS included)

• Native Microsoft SQL Server 7 support

• Advance support for Oracle8, including abstract data type fields

• Direct support for ActiveX Data Objects (ADO)

Windows Programming in Delphi 5

CHAPTER 1
9

1

W
IN

D
O

W
S

P
R

O
G

R
A

M
M

IN
G

IN
D

ELPH
I5

03.65227_CH01x 11/30/99 5:44 PM Page 9

• DecisionCube components, which provide visual, multidimensional analysis of data
(includes source)

• SQL Links BDE drivers for InterBase, Oracle, Microsoft SQL Server, Sybase, Informix,
and DB2 database servers as well as a license for unlimited redistribution of these drivers

• SQL Database Explorer, which enables you to browse and edit server-specific metadata

• SQL Builder graphic query-building tool

• SQL Monitor, which enables you to view SQL communications to and from the server so
that you can debug and fine-tune your SQL application performance

• Data Pump Expert for rapid upsizing

• A five-user InterBase for Windows NT license

Delphi: What and Why
We’re often asked questions such as “What makes Delphi so good?” and “Why should I
choose Delphi over Tool X?” Over the years, we’ve developed two answers to these types of
questions: a long answer and a short answer. The short answer is productivity. Using Delphi is
simply the most productive way we’ve found to build applications for Windows. Of course,
there are those (bosses and perspective clients) for whom the short answer will not suffice, so
then we must break out the long answer. The long answer describes the combined qualities that
make Delphi so productive. We boil down the productivity of software development tools into
a pentagon of five important attributes:

• The quality of the visual development environment

• The speediness of the compiler versus the efficiency of the compiled code

• The power of the programming language versus its complexity

• The flexibility and scalability of the database architecture

• The design and usage patterns enforced by the framework

Although there are admittedly many other factors involved, such as deployment issues, docu-
mentation, third-party support, and so on, we’ve found this simple model to be quite accurate
in explaining to folks why we choose Delphi. Some of these categories also involve some
amount of subjectivity, but that’s the point; how productive are you with a particular tool? By
rating a tool on a scale of 1 to 5 for each attribute and plotting each on an axis of the graph
shown in Figure 1.1, the end result will be a pentagon. The greater the surface area of this
pentagon, the more productive the tool.

We won’t tell you what we came up with when we used this formula—that’s for you to decide!
Let’s take a deeper look at each of these attributes and how they apply to Delphi and how they
compare with other Windows development tools.

Essentials for Rapid Development

PART I
10

03.65227_CH01x 11/30/99 5:44 PM Page 10

Windows Programming in Delphi 5

CHAPTER 1
11

1

W
IN

D
O

W
S

P
R

O
G

R
A

M
M

IN
G

IN
D

ELPH
I5

Visual IDE

C
om

piler

LanguageDatabase

Fr
am

ew
or

k

FIGURE 1.1
The development tool productivity graph.

The Quality of the Visual Development Environment
The visual development environment can generally be divided into three constituent compo-
nents: the editor, the debugger, and the form designer. Like most modern rapid application
development (RAD) tools, these three components work in harmony as you design an applica-
tion. While you’re working in the form designer, Delphi is generating code behind the scenes
for the components you drop and manipulate on forms. You can add additional code in the
editor to define application behavior, and you can debug your application from the same editor
by setting breakpoints, watches, and so on.

Delphi’s editor is generally on par with those of other tools. The CodeInsight technologies,
which save you a lot of typing, are probably the best around. They’re based on compiler infor-
mation, rather than type library info like Visual Basic, and are therefore able to help in a wider
variety of situations. Although the Delphi editor sports some good configuration options, I
would rate Visual Studio’s editor as more configurable.

In version 5, Delphi’s debugger has finally caught up with the debugger featured in Visual
Studio, with advanced features such as remote debugging, process attachment, DLL and pack-
age debugging, automatic local watches, and a CPU window. Delphi also has some nice IDE
support for debugging by allowing windows to be placed and docked where you like during
debugging and enabling that state to be saved as a named desktop setting. One very nice
debugger feature that’s commonplace in interpreted environments such as Visual Basic and
some Java tools is the ability to change code to modify application behavior while the applica-
tion is being debugged. Unfortunately, this type of feature is much more difficult to accomplish
when compiling to native code and is therefore unsupported by Delphi.

03.65227_CH01x 11/30/99 5:44 PM Page 11

A form designer is usually a feature unique to RAD tools, such as Delphi, Visual Basic,
C++Builder, and PowerBuilder. More classical development environments, such as Visual C++
and Borland C++, typically provide dialog editors, but those tend not to be as integrated into
the development workflow as a form designer. Based on the productivity graph from Figure
1.1, you can see that the lack of a form designer really has a negative effect on the overall pro-
ductivity of the tool for application development. Over the years, Delphi and Visual Basic have
engaged in a sort of tug-of-war of form designer features, with each new version surpassing the
other in functionality. One trait of Delphi’s form designer that sets it apart from others is the
fact that Delphi is built on top of a true object-oriented framework. Given that, changes you
make to base classes will propagate up to any ancestor classes. A key feature that leverages this
trait is visual form inheritance (VFI). VFI enables you to dynamically descend from any of the
other forms in your project or in the Gallery. What’s more, changes made to the base form
from which you descend will cascade and reflect in its descendants. You’ll find more informa-
tion on this important feature in Chapter 4, “Application Frameworks and Design Concepts.”

The Speediness of the Compiler Versus the Efficiency
of the Compiled Code
A speedy compile enables you to develop software incrementally, thus making frequent
changes to your source code, recompiling, testing, changing, recompiling, testing again, and
so forth a very efficient development cycle. When compilation speed is slower, developers are
forced to make source changes in batch, making multiple modifications prior to compiling
and adapting to a less efficient development cycle. The advantage of runtime efficiency is self-
evident; faster runtime execution and smaller binaries are always good.

Perhaps the best-known feature of the Pascal compiler upon which Delphi is based is that it’s
fast. In fact, it’s probably the fastest high-level language native code compiler for Windows.
C++, which has traditionally been dog-slow in terms of compile speed, has made great strides
in recent years with incremental linking and various caching strategies found in Visual C++
and C++Builder in particular. Still, even these C++ compilers are typically several times
slower than Delphi’s compiler.

Does all this compile-time speed mean a tradeoff in runtime efficiency? The answer is, of
course, no. Delphi shares the compiler back end with the C++Builder compiler, so the effi-
ciency of the generated code is on par with that of a very good C++ compiler. In the latest reli-
able benchmarks, Visual C++ actually rated tops in speed and size efficiency in many cases,
thanks to some very nice optimizations. Although these small advantages are unnoticeable for
general application development, they may make a difference if you’re writing computation-
intensive code.

Essentials for Rapid Development

PART I
12

03.65227_CH01x 11/30/99 5:44 PM Page 12

Visual Basic is a little unique with regard to compiler technology. During development, VB
operates in an interpreted mode and is quite responsive. When you wish to deploy, you can
invoke the VB compiler to generate the EXE. This compiler is fairly poky and its speed effi-
ciency rates well behind Delphi and C++ tools.

Java is another interesting case. Top Java-based tools such as JBuilder and Visual J++ boast
compile times approaching that of Delphi. Runtime speed efficiency, however, often leaves
something to be desired, because Java is an interpreted language. Although Java continues to
make steady improvements, runtime speed in most cases is far behind that of Delphi and C++.

The Power of the Programming Language
Versus Its Complexity
Power and complexity are very much in the eye of the beholder, and this particular category
has served as the guidon for many an online flame war. What’s easy to one person might be
difficult to another, and what’s limiting to one may be considered elegant by yet another.
Therefore, the following is based on the authors’ experience and personal preferences.

Assembly is the ultimate power language. There’s very little you can’t do. However, writing
even the simplest Windows application in assembly is an arduous and error-prone venture. Not
only that, but it’s sometimes near impossible to maintain an assembly code base in a team
environment for any length of time. As code passes from one owner to the next to the next,
design ideas and intents become more and more cloudy, until the code starts to look more like
Sanskrit than a computer language. Therefore, we would score assembly very low in this cate-
gory because, although powerful, assembly language is too complex for nearly all application
development chores.

C++ is another extremely powerful language. With the aid of really potent features such as pre-
processor macros, templates, operator overloading, and more, you can very nearly design your
own language within C++. If the vast array of features at your disposal are used judiciously,
you can develop very clear and maintainable code. The problem, however, is that many devel-
opers can’t resist overusing these features, and it’s quite easy to create truly horrible code. In
fact, it’s easier to write bad C++ code than good because the language doesn’t lend itself
toward good design—it’s up to the developer.

Two languages that we feel are very similar in that they strike a very good balance between
complexity and power are Object Pascal and Java. Both take the approach of limiting available
features in an effort to enforce logical design on the developer. For example, both avoid the
very object-oriented but easy-to-abuse notion of multiple inheritance in favor of enabling a
class to implement multiple interfaces. Both lack the nifty but dangerous feature of operator
overloading. Also, both make source files first-class citizens in the language rather than a detail
to be dealt with by the linker. What’s more, both languages take advantage of power features

Windows Programming in Delphi 5

CHAPTER 1
13

1

W
IN

D
O

W
S

P
R

O
G

R
A

M
M

IN
G

IN
D

ELPH
I5

03.65227_CH01x 11/30/99 5:44 PM Page 13

that add the most bang for the buck, such as exception handling, Runtime Type Information
(RTTI), and native memory-managed strings. Not coincidentally, both languages were not writ-
ten by committee but rather nurtured by an individual or small group within a single organiza-
tion with a common understanding of what the language should be.

Visual Basic started life as a language designed to be easy enough for programming beginners
to pick up quickly (hence the name). However, as language features were added to address
shortcomings over the years, Visual Basic has become more and more complex. In an effort to
hide the details from developers, Visual Basic still maintains some walls that must be navigated
around in order to build complex projects.

The Flexibility and Scalability
of the Database Architecture
Because of Borland’s lack of a database agenda, Delphi maintains what we feel to be one of
the most flexible database architectures of any tool. Out of the box, the BDE works great and
performs well for most applications against a wide range of local, client/server, and ODBC
database platforms. If you’re not happy with that, you can eschew the BDE in favor of the new
native ADO components. If ADO isn’t your scene, you can write your own data-access class
by leveraging the abstract dataset architecture or purchase a third-party dataset solution.
Furthermore, MIDAS makes it easy to logically or physically divide, into multiple tiers, access
to any of these data sources.

Microsoft tools logically tend to focus on Microsoft’s own databases and data-access solutions,
be they ODBC, OLE DB, or others.

The Design and Usage Patterns Enforced
by the Framework
This is the magic bullet, the holy grail of software design that other tools seem to be missing.
All other things being equal, VCL is the most important part of Delphi. The ability to manipu-
late components at design time, design components, and inherit behavior from other compo-
nents using object-oriented (OO) techniques it a critical ingredient to Delphi’s level of
productivity. When writing VCL components, you can’t help but employ solid OO design
methodologies in many cases. By contrast, other component-based frameworks are often too
rigid or too complicated. ActiveX controls, for example, provide many of the same design-time
benefits of VCL controls, but there’s no way to inherit from an ActiveX control to create a new
class with some different behaviors. Traditional class frameworks, such as OWL and MFC,
typically require you to have a great deal of internal framework knowledge in order to be pro-
ductive, and they’re hampered by a lack of RAD tool-like design-time support. One tool in the
landscape that matches features with VCL in this manner is Visual J++’s Windows Foundation

Essentials for Rapid Development

PART I
14

03.65227_CH01x 11/30/99 5:44 PM Page 14

Classes (WFC). However, at the time of this writing, the future of Visual J++ is unclear due to
a pending lawsuit brought on by Sun Microsystems over Java issues.

A Little History
Delphi is, at heart, a Pascal compiler. Delphi 5 is the next step in the evolution of the same
Pascal compiler that Borland has been developing since Anders Hejlsberg wrote the first Turbo
Pascal compiler more than 15 years ago. Pascal programmers throughout the years have
enjoyed the stability, grace, and, of course, the compile speed that Turbo Pascal offers. Delphi
5 is no exception—its compiler is the synthesis of more than a decade of compiler experience
and a state-of-the-art 32-bit optimizing compiler. Although the capabilities of the compiler
have grown considerably over the years, the speed of the compiler has remarkably diminished
only slightly. What’s more, the stability of the Delphi compiler continues to be a yardstick by
which others are measured.

Now it’s time for a little walk down memory lane, as we look at each of the versions of Delphi
and a little of the historical context surrounding each product’s release.

Delphi 1
In the early days of DOS, programmers had a choice between productive-but-slow BASIC and
efficient-but-complex assembly language. Turbo Pascal, which offered the simplicity of a
structured language and the performance of a real compiler, bridged that gap. Windows 3.1
programmers faced a similar choice—a choice between a powerful-yet-unwieldy language
such as C++ and an easy-to-use-but-limiting language such as Visual Basic. Delphi 1 answered
that call by offering a radically different approach to Windows development: visual develop-
ment, compiled executables, DLLs, databases, you name it—a visual environment without lim-
its. Delphi 1 was the first Windows development tool to combine a visual development
environment, an optimizing native-code compiler, and a scalable database access engine. It
defined the phrase rapid application development (RAD).

The combination of compiler, RAD tool, and fast database access was too compelling for scads
of VB developers, and Delphi won many converts. Also, many Turbo Pascal developers rein-
vented their careers by transitioning to this slick, new tool. Word got out that Object Pascal
wasn’t the same as that language they made us use in college that made us feel like we were
programming with one hand behind our backs, and many more developers came to Delphi to
take advantage of the robust design patterns encouraged by the language and the tool. The
Visual Basic team at Microsoft, lacking serious competition before Delphi, was caught totally
unprepared. Slow, fat, and dumb, Visual Basic 3 was arguably no match for Delphi 1.

Windows Programming in Delphi 5

CHAPTER 1
15

1

W
IN

D
O

W
S

P
R

O
G

R
A

M
M

IN
G

IN
D

ELPH
I5

03.65227_CH01x 11/30/99 5:44 PM Page 15

The year was 1995. Borland was appealing a huge lawsuit loss to Lotus for infringing on the
1-2-3 “look and feel” with Quattro. Borland was also taking lumps from Microsoft for
trying to play in the application space with Microsoft. Borland got out of the application busi-
ness by selling the Quattro business to Novell and targeting dBASE and Paradox to database
developers, as opposed to casual users. While Borland was playing in the applications market,
Microsoft had quietly leveraged its platform business to take away from Borland a vast share
of the Windows developer tools market. Newly refocused on its core competency of developer
tools, Borland was looking to do some damage with Delphi and a new release of Borland C++.

Delphi 2
A year later, Delphi 2 provided all these same benefits under the modern 32-bit operating sys-
tems of Windows 95 and Windows NT. Additionally, Delphi 2 extended productivity with addi-
tional features and functionality not found in version 1, such as a 32-bit compiler that produces
faster applications, an enhanced and extended object library, revamped database support,
improved string handling, OLE support, Visual Form Inheritance, and compatibility with 16-bit
Delphi projects. Delphi 2 became the yardstick by which all other RAD tools are measured.

The year was 1996, and the most important Windows platform release since 3.0—32-bit
Windows 95—had just happened in the latter part of the previous year. Borland was eager to
make Delphi the preeminent development tool for that platform. An interesting historical note
is that Delphi 2 was originally going to be called Delphi32, to underscore the fact that it was
designed for 32-bit Windows. However, the product name was changed before release to
Delphi 2 to illustrate that Delphi was a mature product and avoid what is known in the soft-
ware business as the “1.0 blues.”

Microsoft attempted to counter with Visual Basic 4, but it was plagued by poor performance,
lack of 16-to-32-bit portability, and key design flaws. Still, there’s an impressive number of
developers who continued to use Visual Basic for whatever the reason. Borland also longed to
see Delphi penetrate the high-end client/server market occupied by tools such as PowerBuilder,
but this version didn’t yet have the muscle necessary to unseat such products from their corpo-
rate perches.

The corporate strategy at this time was undeniably to focus on corporate customers. The deci-
sion to change direction in this way was no doubt fueled by the diminishing market relevance
of dBASE and Paradox, and the dwindling revenues realized in the C++ market also aided this
decision. In order to help jumpstart that effort to take on the enterprises, Borland made the
mistake of acquiring Open Environment Corporation, a middleware company with basically
two products: an outmoded DCE-based middleware that you might call an ancestor of CORBA
and a proprietary technology for distributed OLE about to be ushered into obsolescence by
DCOM.

Essentials for Rapid Development

PART I
16

03.65227_CH01x 11/30/99 5:44 PM Page 16

Delphi 3
During the development of Delphi 1, the Delphi development team was preoccupied with sim-
ply creating and releasing a groundbreaking development tool. For Delphi 2, the development
team had its hands full primarily with the tasks of moving to 32 bit (while maintaining almost
complete backward compatibility) and adding new database and client/server features needed
by corporate IT. While Delphi 3 was being created, the development team had the opportunity
to expand the tool set to provide an extraordinary level of breadth and depth for solutions to
some of the sticky problems faced by Windows developers. In particular, Delphi 3 made it easy
to use the notoriously complicated technologies of COM and ActiveX, World Wide Web appli-
cation development, “thin client” applications, and multitier databases architectures. Delphi 3’s
Code Insight helped to make the actual code-writing process a bit easier, although for the most
part, the basic methodology for writing Delphi applications was the same as in Delphi 1.

This was 1997, and the competition was doing some interesting things. On the low end,
Microsoft finally started to get something right with Visual Basic 5, which included a compiler
to address long-standing performance problems, good COM/ActiveX support, and some key
new platform features. On the high-end, Delphi was now successfully unseating products such
as PowerBuilder and Forte in corporations.

Delphi lost a key member of the team during the Delphi 3 development cycle when Anders
Hejlsberg, the Chief Architect, decided to move on and took a position with Microsoft
Corporation. The team didn’t lose a beat, however, because Chuck Jazdzewski, long time co-
architect was able to step into the head role. The corporation also lost Chief Technical Officer
Paul Gross around this time, also to Microsoft, although that loss was arguably more of a pub-
lic relations problem than an impact on the day-to-day software development business.

Delphi 4
Delphi 4 focused on making Delphi development easier. The Module Explorer was introduced
in Delphi, and it enabled you to browse and edit units from a convenient graphical interface.
New code navigation and class completion features enabled you to focus on the meat of your
applications with a minimum of busy work. The IDE was redesigned with dockable toolbars
and windows to make your development more convenient, and the debugger was greatly
improved. Delphi 4 extended the product’s reach into the enterprise with outstanding multitier
support using technologies such as MIDAS, DCOM, MTS, and CORBA.

This was 1998, and Delphi had effectively secured its position relative to the competition. The
front lines had stabilized somewhat, although Delphi continued to slowly gain market share.
CORBA was the industry buzz, and Delphi had it and the competition did not. There was a bit
of a down-side to Delphi 4 as well: After enjoying several years of being the most stable devel-
opment tool on the market, Delphi 4 had earned a reputation among long-time Delphi users for
not living up to the very high standard for solid engineering and stability.

Windows Programming in Delphi 5

CHAPTER 1
17

1

W
IN

D
O

W
S

P
R

O
G

R
A

M
M

IN
G

IN
D

ELPH
I5

03.65227_CH01x 11/30/99 5:44 PM Page 17

The release of Delphi 4 followed the acquisition of Visigenic, one of the CORBA industry lead-
ers. Borland, now called Inprise after making the questionable decision to change the company’s
name to better penetrate the enterprise, was in a position to lead the industry to new ground by
integrating its tools with the CORBA technology. To really win, CORBA needed to be made
as easy as COM or Internet development had been made in past versions of Borland tools.
However, for various reasons, the integration wasn’t as full as it should have been, and the
CORBA-development tool integration was destined to play a bit part in the overall software-
development picture.

Delphi 5
Delphi 5 moves ahead on a few of fronts: First, Delphi 5 continues what Delphi 4 started by
adding many more features to make easy those tasks that traditionally take time, hopefully
enabling you to concentrate more on what you want to write and less on how to write it. These
new productivity features include further IDE and debugger enhancements, TeamSource team
development software, and translation tools. Second, Delphi 5 contains a host of new features
aimed squarely at making Internet development easier. These new Internet features include the
Active Server Object Wizard for ASP creation, the InternetExpress components for XML sup-
port, and new MIDAS features, making it a very versatile data platform for the Internet.
Finally, Borland built time into the schedule to deliver the most important feature of all for
Delphi 5: stability. Like fine wine, you cannot rush great software, and Borland waited until
Delphi 5 was ready before letting it out the door.

Delphi 5 was released in the latter half of 1999. Delphi continues to penetrate the enterprise,
while Visual Basic continues to serve as competition on the low end. However, the battle lines
still appear stable. Inprise had the good sense to bring back the Borland name, much to the
delight of long-time customers. The executive offices went through some turbulent times, with
the company divisionalized between tools and middleware, the abrupt departure of CEO Del
Yocam, and the hiring of Internet-savvy CEO Dale Fuller. Fuller has refocused the company
back on software developers, and the products appear as good as ever. Here’s to hoping that
Inprise is finally back on the right track.

The Future?
Although the history of the product is important, perhaps more important is what lies ahead in
Delphi’s future. Using history as a guide, we can divine with good probability that Delphi will
remain a great way to develop Windows applications for a long time to come. I think the real
question is whether we’ll ever see Delphi versions that target platforms other than Win32.
Based on the information coming out of Borland, it certainly seems that this is certainly some-
thing that occupies their minds. At the Borland Conference in 1998, Delphi Chief Architect
Chuck Jazdzewski demonstrated a version of the Delphi compiler that generated Java byte-
code, which could theoretically target any computer equipped with a Java Virtual Machine.

Essentials for Rapid Development

PART I
18

03.65227_CH01x 11/30/99 5:44 PM Page 18

Although there are obvious technical hurdles with such a technology, and it still remains to be
seen whether the Delphi for Java technology will ever make it into a product, it affirms the
notion that moving Delphi to other platforms is a part of the game plan. More recently, at the
Borland Conference in 1999, CEO Dale Fuller let slip at the opening keynote that there are
plans in the works to produce a version of Delphi targeted toward the Linux platform.

The Delphi IDE
Just to make sure we’re all on the same page with regard to terminology, Figure 1.2 shows the
Delphi IDE and calls attention to its major constituents: the main window, the Component
Palette, the toolbars, the Form Designer, the Code Editor, the Object Inspector, and the Code
Explorer.

Windows Programming in Delphi 5

CHAPTER 1
19

1

W
IN

D
O

W
S

P
R

O
G

R
A

M
M

IN
G

IN
D

ELPH
I5

FIGURE 1.2
The Delphi 5 IDE.

The Main Window
Think of the main window as the control center for the Delphi IDE. The main window has all
the standard functionality of the main window of any other Windows program. It consists of
three parts: the main menu, the toolbars, and the Component Palette.

Toolbars Main Window Component Palette

Object
Inspector

Form Designer Code Explorer Code Editor

03.65227_CH01x 11/30/99 5:44 PM Page 19

The Main Menu
As in any Windows program, you go to the main menu when you need to open and save files,
invoke wizards, view other windows, modify options, and so on. Each item on the main menu
can also be invoked via a button on a toolbar.

The Delphi Toolbars
The toolbars enable single-click access to some operation found on the main menu of the IDE,
such as opening a file or building a project. Notice that each of the buttons on the toolbars
offer a tooltip that contain a description of the function of a particular button. Not including the
Component Palette, there are five separate toolbars in the IDE: Debug, Desktops, Standard,
View, and Custom. Figure 1.2 shows the default button configuration for these toolbars, but
you can add or remove buttons by selecting Customize from the local menu on a toolbar.
Figure 1.3 shows the Customize toolbar dialog box. You add buttons by dragging them from
this dialog box and drop them on any toolbar. To remove a button, drag it off the toolbar.

Essentials for Rapid Development

PART I
20

FIGURE 1.3
The Customize toolbar dialog box.

IDE toolbar customization doesn’t stop at configuring which buttons are shown. You can also
relocate each of the toolbars, the Component Palette, or the menu within the main window. To
do this, click the raised gray bars on the right side of the toolbars and drag them around the
main window. If you drag the mouse outside the confines of the main window while doing
this, you’ll see yet another level of customization: the toolbars can be undocked from the main
window and reside in their own floating tool windows. Undocked views of the toolbars are
shown in Figure 1.4.

The Component Palette
The Component Palette is a double-height toolbar that contains a page control filled with all
the VCL components and ActiveX controls installed in the IDE. The order and appearance of
pages and components on the Component Palette can be configured via a right-click or by
selecting Component, Configure Palette from the main menu.

03.65227_CH01x 11/30/99 5:44 PM Page 20

FIGURE 1.4
Undocked toolbars.

The Form Designer
The Form Designer begins as an empty window, ready for you to turn it into a Windows appli-
cation. Consider the Form Designer your artist’s canvas for creating Windows applications;
here is where you determine how your applications will be represented visually to your users.
You interact with the Form Designer by selecting components from the Component Palette and
dropping them onto your form. After you have a particular component on the form, you can
use the mouse to adjust the position or size of the component. You can control the appearance
and behavior of these components by using the Object Inspector and Code Editor.

The Object Inspector
With the Object Inspector, you can modify a form’s or component’s properties or enable your
form or component to respond to different events. Properties are data such as height, color, and
font that determine how an object appears onscreen. Events are portions of code executed in
response to occurrences within your application. A mouse-click message and a message for a
window to redraw itself are two examples of events. The Object Inspector window uses the
standard Windows notebook tab metaphor in switching between component properties or
events; just select the desired page from the tabs at the top of the window. The properties and
events displayed in the Object Inspector reflect whichever form or component currently has
focus in the Form Designer.

New to Delphi 5 is the ability to arrange the contents of the Object Inspector by category or
alphabetically by name. You can do this by right-clicking anywhere in the Object Inspector and
selecting Arrange from the local menu. Figure 1.5 shows two Object Inspectors side by side.
The one on the left is arranged by category, and the one on the right is arranged by name. You
can also specify which categories you would like to view by selecting View from the local menu.

One of the most useful tidbits of knowledge that you as a Delphi programmer should know is
that the help system is tightly integrated with the Object Inspector. If you ever get stuck on a
particular property or event, just press the F1 key, and WinHelp comes to the rescue.

Windows Programming in Delphi 5

CHAPTER 1
21

1

W
IN

D
O

W
S

P
R

O
G

R
A

M
M

IN
G

IN
D

ELPH
I5

03.65227_CH01x 11/30/99 5:44 PM Page 21

FIGURE 1.5
Viewing the Object Inspector by category and by name.

The Code Editor
The Code Editor is where you type the code that dictates how your program behaves and
where Delphi inserts the code that it generates based on the components in your application.
The top of the Code Editor window contains notebook tabs, where each tab corresponds to a
different source code module or file. Each time you add a new form to your application, a new
unit is created and added to the set of tabs at the top of the Code Editor. The local menu in the
Code Editor gives you a wide range of options while you’re editing, such as closing files, set-
ting bookmarks, and navigating to symbols.

Essentials for Rapid Development

PART I
22

TIP

You can view multiple Code Editor windows simultaneous by selecting View, New
Edit Window from the main menu.

The Code Explorer
The Code Explorer provides a tree-style view of the unit shown in the Code Editor. The Code
Explorer allows easy navigation of units in addition to the ability to easily add new elements
or rename existing elements in a unit. It’s important to remember that there’s a one-to-one rela-
tionship between Code Explorer windows and Code Editor windows. Right-click a node in the
Code Explorer to view the options available for that node. You can also control behaviors such

03.65227_CH01x 11/30/99 5:44 PM Page 22

as sorting and filtering in the Code Explorer by modifying the options found on the Explorer
tab of the Environment Options dialog box.

A Tour of Your Project’s Source
The Delphi IDE generates Object Pascal source code for you as you work with the visual com-
ponents of the Form Designer. The simplest example of this capability is starting a new project.
Select File, New Application in the main window to see a new form in the Form Designer and
that form’s source code skeleton in the Code Editor. The source code for the new form’s unit is
shown in Listing 1.1.

LISTING 1.1 Source Code for an Empty Form

unit Unit1;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs;

type
TForm1 = class(TForm)
private
{ Private declarations }

public
{ Public declarations }

end;

var
Form1: TForm1;

implementation

{$R *.DFM}

end.

It’s important to note that the source code module associated with any form is stored in a unit.
Although every form has a unit, not every unit has a form. If you’re not familiar with how the
Pascal language works and what exactly a unit is, see Chapter 2, “The Object Pascal
Language,” which discusses the Object Pascal language for those who are new to Pascal from
C++, Visual Basic, Java, or another language.

Windows Programming in Delphi 5

CHAPTER 1
23

1

W
IN

D
O

W
S

P
R

O
G

R
A

M
M

IN
G

IN
D

ELPH
I5

03.65227_CH01x 11/30/99 5:44 PM Page 23

Let’s take a unit skeleton one piece at a time. Here’s the top portion:

type
TForm1 = class(TForm)
private
{ Private declarations }

public
{ Public declarations }

end;

It indicates that the form object, itself, is an object derived from TForm, and the space in which
you can insert your own public and private variables is labeled clearly. Don’t worry about what
object, public, or private means right now. Chapter 2, “The Object Pascal Language,” discusses
Object Pascal in more detail.

The following line is very important:

{$R *.DFM}

The $R directive in Pascal is used to load an external resource file. This line links the .DFM
(which stands for Delphi form) file into the executable. The .DFM file contains a binary repre-
sentation of the form you created in the Form Designer. The * symbol in this case isn’t
intended to represent a wildcard; it represents the file having the same name as the current unit.
So, for example, if the preceding line was in a file called Unit1.pas, the *.DFM would repre-
sent a file by the name of Unit1.dfm.

Essentials for Rapid Development

PART I
24

NOTE

A feature new to Delphi 5 is the ability for the IDE to save new DFM files a text
rather than as binary. This option in enabled by default, but you can modify it using
the New forms as text checkbox on the Preferences page of the Environment Options
dialog. While saving forms as text format is just slightly less efficient in terms of size,
it’s a good practice for a couple of reasons: First, it is very easy to make minor
changes to text DFMs in any text editor. Second, if the file should become corrupted,
it is far easier to repair a corrupted text file than a corrupted binary file. Keep in
mind also that previous versions of Delphi expect binary DFM files, so you will need
to disable this option if you wish to create projects that will be used by other ver-
sions of Delphi.

The application’s project file is worth a glance, too. A project filename ends in .DPR (which
stands for Delphi project) and is really nothing more than a Pascal source file with a different
file extension. The project file is where the main portion of your program (in the Pascal sense)
lives. Unlike other versions of Pascal with which you might be familiar, most of the “work” of

03.65227_CH01x 11/30/99 5:44 PM Page 24

your program is done in units rather than in the main module. You can load your project’s
source file into the Code Editor by selecting Project, View Source from the main menu. Here’s
the project file from the sample application:

program Project1;

uses
Forms,
Unit1 in ‘Unit1.pas’ {Form1};

{$R *.RES}

begin
Application.Initialize;
Application.CreateForm(TForm1, Form1);
Application.Run;

end.

As you add more forms and units to the application, they appear in the uses clause of the pro-
ject file. Notice, too, that after the name of a unit in the uses clause, the name of the related
form appears in comments. If you ever get confused about which units go with which forms,
you can regain your bearings by selecting View, Project Manager to bring up the Project
Manager window.

Windows Programming in Delphi 5

CHAPTER 1
25

1

W
IN

D
O

W
S

P
R

O
G

R
A

M
M

IN
G

IN
D

ELPH
I5

NOTE

Each form has exactly one unit associated with it, and you can also have other “code-
only” units that are not associated with any form. In Delphi, you work mostly within
your program’s units, and you’ll rarely edit your project’s .DPR file.

Tour of a Small Application
The simple act of plopping a component such as a button onto a form causes code for that ele-
ment to be generated and added to the form object:

type
TForm1 = class(TForm)
Button1: TButton;

private
{ Private declarations }

public
{ Public declarations }

end;

03.65227_CH01x 11/30/99 5:44 PM Page 25

Now, as you can see, the button is an instance variable of the TForm1 class. When you refer to
the button in contexts outside TForm1 later in your source code, you must remember to address
it as part of the scope of TForm1 by saying Form1.Button1. Scoping is explained in more detail
in Chapter 2, “The Object Pascal Language.”

When this button is selected in the Form Designer, you can change its behavior through the
Object Inspector. Suppose that, at design time, you want to change the width of the button to
100 pixels, and at runtime, you want to make the button respond to a press by doubling its own
height. To change the button width, move over to the Object Browser window, find the Width
property, and change the value associated with Width to 100. Note that the change doesn’t take
effect in the Form Designer until you press Enter or move off the Width property. To make the
button respond to a mouse click, select the Events page on the Object Inspector window to
reveal the list of events to which the button can respond. Double-click in the column next to
the OnClick event, and Delphi generates a procedure skeleton for a mouse-click response and
whisks you away to that spot in the source code—in this case, a procedure called
TForm1.Button1Click(). All that’s left to do is to insert the code to double the button’s width
between the begin..end of the event’s response method:

Button1.Height := Button1.Height * 2;

To verify that the “application” compiles and runs, press the F9 key on your keyboard and
watch it go!

Essentials for Rapid Development

PART I
26

NOTE

Delphi maintains a reference between generated procedures and the controls to
which they correspond. When you compile or save a source code module, Delphi
scans your source code and removes all procedure skeletons for which you haven’t
entered any code between the begin and end. This means that if you didn’t write any
code between the begin and end of the TForm1.Button1Click() procedure, for
example, Delphi would have removed the procedure from your source code. The bot-
tom line here is this: Don’t delete event handler procedures that Delphi has created;
just delete your code and let Delphi remove the procedures for you.

After you have fun making the button really big on the form, terminate your program and go
back to the Delphi IDE. Now is a good time to mention that you could have generated a
response to a mouse click for your button just by double-clicking a control after dropping it
onto the form. Double-clicking a component automatically invokes its associated component
editor. For most components, this response generates a handler for the first of that component’s
events listed in the Object Inspector.

03.65227_CH01x 11/30/99 5:44 PM Page 26

What’s So Great About Events, Anyway?
If you’ve ever developed Windows applications the traditional way, without a doubt you’ll find
the ease of use of Delphi events a welcome alternative to manually catching Windows mes-
sages, cracking those messages, and testing for window handles, control IDs, WParam parame-
ters, LParam parameters, and so on. If you don’t know what all that means, that’s okay; Chapter
5, “Understanding Windows Messaging,” covers messaging internals.

A Delphi event is often triggered by a Windows message. The OnMouseDown event of a
TButton, for example, is really just an encapsulation of the Windows WM_xBUTTONDOWN mes-
sages. Notice that the OnMouseDown event gives you information such as which button was
pressed and the location of the mouse when it happened. A form’s OnKeyDown event provides
similar useful information for key presses. For example, here’s the code that Delphi generates
for an OnKeyDown handler:

procedure TForm1.FormKeyDown(Sender: TObject; var Key: Word;
Shift: TShiftState);
begin

end;

All the information you need about the key is right at your fingertips. If you’re an experienced
Windows programmer, you’ll appreciate that there aren’t any LParam or WParam parameters,
inherited handlers, translates, or dispatches to worry about. This goes way beyond “message
cracking” as you might know it because one Delphi event can represent several different
Windows messages, as it does with OnMouseDown (which handles a variety of mouse messages).
What’s more, each of the message parameters is passed in as easy-to-understand parameters.
Chapter 5, “Understanding Windows Messaging,” gets into the gory details of how Delphi’s
internal messaging system works.

Contract-Free Programming
Arguably the biggest benefit that Delphi’s event system has over the standard Windows mes-
saging system is that all events are contract free. What contract free means to the programmer
is that you never are required to do anything inside your event handlers. Unlike standard
Windows message handling, you don’t have to call an inherited handler or pass information
back to Windows after handling an event.

Of course, the downside to the contract-free programming model that Delphi’s event system
provides is that it doesn’t always give you the power or flexibility that directly handling
Windows messages gives you. You’re at the mercy of those who designed the event as far as
what level of control you’ll have over your application’s response to the event. For example,
you can modify and kill keystrokes in an OnKeyPress handler, but an OnResize handler pro-
vides you only with a notification that the event occurred—you have no power to prevent or
modify the resizing.

Windows Programming in Delphi 5

CHAPTER 1
27

1

W
IN

D
O

W
S

P
R

O
G

R
A

M
M

IN
G

IN
D

ELPH
I5

03.65227_CH01x 11/30/99 5:44 PM Page 27

Never fear, though. Delphi doesn’t prevent you from working directly with Windows messages.
It’s not as straightforward as the event system because message handling assumes that the pro-
grammer has a greater level of knowledge of what Windows expects of every handled message.
You have complete power to handle all Windows messages directly by using the message key-
word. You’ll find out much more about writing Windows message handlers in Chapter 5,
“Understanding Windows Messaging.”

The great thing about developing applications with Delphi is that you can use the high-level
easy stuff (such as events) when it suits you and still have access to the low-level stuff when-
ever you need it.

Turbo Prototyping
After hacking Delphi for a little while, you’ll probably notice that the learning curve is espe-
cially mild. In fact, even if you’re new to Delphi, you’ll find that writing your first project in
Delphi pays immediate dividends in the form of a short development cycle and a robust appli-
cation. Delphi excels in the one facet of application development that has been the bane of
many a Windows programmer: user interface (UI) design.

Sometimes the designing of the UI and the general layout of a program is referred to as proto-
typing. In a nonvisual environment, prototyping an application often takes longer than writing
the application’s implementation, or what is called the back end. Of course, the back end of an
application is the whole objective of the program in the first place, right? Sure, an intuitive and
visually pleasing UI is a big part of the application, but what good would it be, for example, to
have a communications program with pretty windows and dialog boxes but no capacity to send
data through a modem? As it is with people, so it is with applications; a pretty face is nice to
look at, but it has to have substance to be a regular part of our lives. Please, no comments
about back ends.

Delphi enables you to use its custom controls to whip out nice-looking UIs in no time flat. In
fact, you’ll find that after you become comfortable with Delphi’s forms, controls, and event-
response methods, you’ll cut huge chunks off the time you usually take to develop application
prototypes. You’ll also find that the UIs you develop in Delphi look just as nice as—if not bet-
ter than—those designed with traditional tools. Often, what you “mock up” in Delphi turns out
to be the final product.

Extensible Components and Environment
Because of the object-oriented nature of Delphi, in addition to creating your own components
from scratch, you can also create your own customized components based on stock Delphi
components. Chapter 21, “Writing Delphi Custom Components,” shows you how to take some

Essentials for Rapid Development

PART I
28

03.65227_CH01x 11/30/99 5:44 PM Page 28

existing Delphi components and extend their behavior to create new components. Additionally,
Chapter 7, “Using ActiveX Controls with Delphi,” describes how to incorporate ActiveX con-
trols into your Delphi applications.

In addition to allowing you to integrate custom components into the IDE, Delphi provides the
capability to integrate entire subprograms, called experts, into the environment. Delphi’s
Expert Interface enables you to add special menu items and dialog boxes to the IDE to inte-
grate some feature that you feel is worthwhile. An example of an expert is the Database Form
Expert located on the Delphi Database menu. Chapter 26, “Using Delphi’s Open Tools API,”
outlines the process for creating experts and integrating them into the Delphi IDE.

The Top 10 IDE Features You Must Know and Love
Before we can let you any further into the book, we’ve got to make sure you’re equipped with
the tools you need to survive and the knowledge to use them. In that spirit, what follows is a
list of what we feel are the top 10 IDE features you must learn to know and love.

1. Class Completion
Nothing wastes a developer’s time more than have to type in all that blasted code! How often is
it that you know exactly what you want to write but are limited by how fast your fingers can
fly over the keys? Until the spec for the PCI-to-medulla oblongata bus is completed to com-
pletely rid you of all that typing, Delphi has a feature called class completion that goes a long
way toward alleviating the busy work.

Arguably, the most important feature of Class completion is that it is designed to work without
being in your face. Simply type in part of a class declaration, hit the magic Ctrl+Shift+C key-
stroke, and class completion will attempt to figure our what you’re trying to do and generate
the right code. For example, if you put the declaration for a procedure called Foo in your class
and invoke class completion, it will automatically create the definition for this method in the
implementation part of the unit. Declare a new property that reads from a field and writes to a
method and invoke class completion, and it will automatically generate the code for the field
and declare and implement the method.

If you haven’t already gotten hooked on class completion, give it a whirl. Soon you’ll be lost
without it.

2. AppBrowser Navigation
Do you ever look at a line of code in your Code Editor and think, “Gee, I wish I knew where
that method is declared”? Well, finding out is as easy as holding down the Ctrl key and click-
ing the name of the token you wish to find. The IDE will use debug information assembled in

Windows Programming in Delphi 5

CHAPTER 1
29

1

W
IN

D
O

W
S

P
R

O
G

R
A

M
M

IN
G

IN
D

ELPH
I5

03.65227_CH01x 11/30/99 5:44 PM Page 29

the background by the compiler to jump to the declaration of the token. Very handy. And like a
web browser, there’s a history stack that you can navigate forward and back through using the
little arrows to the right of the tabs in the Code Editor.

3. Interface/Implementation Navigation
Want to navigate between the interface and implementation of a method? Just put the cursor on
the method and use Ctrl+Shift+up arrow or down arrow to toggle between the two positions.

4. Dock It!
The IDE allows you to organize the windows on your screen by docking together multiple win-
dows as panes in a single window. If you have full window drag set in your windows desktop,
you can easily tell which windows are dockable because they draw a dithered box when they’re
dragged around the screen. The Code Editor offers three docking bays on its left, bottom, and
right sides to which you can affix windows. Windows can be docked side-by-side by dragging
one window to an edge of another or tab-docked by dragging one window to the middle of
another. Once you come up with an arrangement you like, be sure to save it using the Desktops
toolbar. Want to prevent a window from docking? Hold down the Ctrl key while dragging it or
right-click in the window and uncheck Dockable in the local menu.

Essentials for Rapid Development

PART I
30

TIP

Here’s a cute hidden feature: Right-click the tabs of tab-docked windows and you’ll
be able to move the tabs to the top, bottom, left, or right of the window.

5. A Real Browser
Delphi 1 through 4 shipped with essentially the same icky object browser. If you didn’t know it
was there, don’t feel alone; many folks never used it because it didn’t have a lot to offer.
Finally, Delphi 5 comes equipped with a completely redone object browser! Shown in Figure
1.6, the new browser is accessible by selecting View, Browser in the main menu. This tool pre-
sents a tree view that lets you navigate globals, classes, and units and drill down into scope,
inheritance, and references of the symbols.

6. GUID, Anyone?
In the small-but-useful category, you’ll find the Ctrl+Shift+G keystroke. Striking this keystroke
will place a fresh new GUID in the Code Editor. A real timesaver when you’re declaring new
interfaces.

03.65227_CH01x 11/30/99 5:44 PM Page 30

FIGURE 1.6
The new browser.

7. C++ Syntax Highlighting
If you’re like us, you often like to view C++ files, such as SDK headers, while you work in
Delphi. Because Delphi and C++Builder share the same editor source code, one of the advan-
tages to users is syntax highlighting of C++ files. Just load up a C++ file such as a .CPP or .H
module in the Code Editor, and it handles the rest automatically.

8. To Do…
Use the To Do List to manage work in progress in your source files. You may view the To Do
List by selecting View, To Do List from the main menu. This list is automatically populated
from any comments in your source code that begin with the token TODO. You can use the To Do
Items window to set the owner, priority, and category for any To Do item. This window is
shown in Figure 1.7, docked to the bottom of the Code Editor.

9. Use the Project Manager
The Project Manager can be a big timesaver when navigating around large projects—especially
those projects that are composed of multiple EXE or DLL modules, but it’s amazing how many
people forget that it’s there. You can access the Project Manager by selecting View, Project
Manager from the main menu. Delphi 5 adds some nice new features to the Project Manager,
such as drag-and-drop copying and copy and paste between projects.

Windows Programming in Delphi 5

CHAPTER 1
31

1

W
IN

D
O

W
S

P
R

O
G

R
A

M
M

IN
G

IN
D

ELPH
I5

03.65227_CH01x 11/30/99 5:44 PM Page 31

FIGURE 1.7
To Do Items window.

10. Use Code Insight to Complete Declarations and
Parameters
When you type Identifier., a window will automatically pop up after the dot to provide you
with a list of properties, methods, events, and fields available for that identifier. You can right-
click this window to sort the list by name or by scope. If the window goes away before you’re
ready, just hit Ctrl+space to bring it back up.

Remembering all the parameters to a function can be a pain, so it’s nice that Code Insight auto-
matically helps by providing a tooltip with the parameter list when you type FunctionName(in
the Code Editor. Remember to hit Ctrl+Shift+space to bring the tooltip back up if it goes away
before you’re ready.

Summary
By now you should have an understanding of the Delphi 5 product line and the Delphi IDE as
well as how Delphi fits into the Windows development picture in general. This chapter was
intended to acclimate you to Delphi and to the concepts used throughout the book. Now the
stage has been set for the really technical stuff to come. Before you move much deeper into the
book, make sure you’re comfortable using and navigating around the IDE and know how to
work with small projects.

Essentials for Rapid Development

PART I
32

03.65227_CH01x 11/30/99 5:44 PM Page 32

CHAPTER

2
The Object Pascal Language

IN THIS CHAPTER
• Comments 34

• New Procedure and Function Features 35

• Variables 36

• Constants 38

• Operators 40

• Object Pascal Types 44

• User-Defined Types 71

• Typecasting and Type Conversion 82

• String Resources 83

• Testing Conditions 83

• Loops 85

• Procedures and Functions 88

• Scope 93

• Units 94

• Packages 96

• Object-Oriented Programming 97

• Using Delphi Objects 100

• Structured Exception Handling 112

• Runtime Type Information 120

• Summary 121

04.65227_Ch02x 11/30/99 5:46 PM Page 33

This chapter sets aside the visual elements of Delphi in order to provide you with an overview
of Delphi’s underlying language—Object Pascal. To begin with, you’ll receive an introduction
to the basics of the Object Pascal language, such as language rules and constructs. Later on,
you’ll learn about some of the more advanced aspects of Object Pascal, such as classes and
exception handling. Because this isn’t a beginner’s book, it assumes that you have some expe-
rience with other high-level computer languages such as C, C++, or Visual Basic, and it com-
pares Object Pascal language structure to that of those other languages. By the time you’re
finished with this chapter, you’ll understand how programming concepts such as variables,
types, operators, loops, cases, exceptions, and objects work in Pascal as compared to C++ and
Visual Basic.

Even if you have some recent experience with Pascal, you’ll find this chapter useful, as this is
really the only point in the book where you learn the nitty-gritty of Pascal syntax and semantics.

Comments
As a starting point, you should know how to make comments in your Pascal code. Object
Pascal supports three types of comments: curly brace comments, parentheses/asterisk com-
ments, and C++-style double backslash comments. Examples of each type of comment follow:

{ Comment using curly braces }

(* Comment using paren and asterisk *)

// C++-style comment

The two types of Pascal comments are virtually identical in behavior. The compiler considers
the comment to be everything between the open-comment and close-comment delimiters. For
C++-style comments, everything following the double backslash until the end of the line is
considered a comment.

Essentials for Rapid Development

PART I
34

NOTE

You cannot nest comments of the same type. Although it is legal syntax to nest
Pascal comments of different types inside one another, we don’t recommend the
practice. Here are some examples:

{ (* This is legal *) }
(* { This is legal } *)
(* (* This is illegal *) *)
{ { This is illegal } }

04.65227_Ch02x 11/30/99 5:46 PM Page 34

New Procedure and Function Features
Because procedures and functions are fairly universal topics as far as programming languages
are concerned, we won’t go into too much detail here. We just want to fill you in on a few new
or little-known features.

Parentheses
Although not new to Delphi 5, one of the lesser-known features of Object Pascal is that paren-
theses are optional when calling a procedure or function that takes no parameters. Therefore,
the following syntax examples are both valid:

Form1.Show;
Form1.Show();

Granted, this feature isn’t one of those things that sends chills up and down your spine, but it’s
particularly nice for those who split their time between Delphi and languages such as C++ or
Java, where parentheses are required. If you’re not able to spend 100 percent of your time in
Delphi, this feature means you don’t have to remember to use different function-calling syntax
for different languages.

Overloading
Delphi 4 introduced the concept of function overloading (that is, the ability to have multiple
procedures or functions of the same name with different parameter lists). All overloaded meth-
ods are required to be declared with the overload directive, as shown here:

procedure Hello(I: Integer); overload;
procedure Hello(S: string); overload;
procedure Hello(D: Double); overload;

Note that the rules for overloading methods of a class are slightly different and are explained in
the section “Method Overloading.” Although this is one of the features most requested by
developers since Delphi 1, the phrase that comes to mind is, “Be careful what you wish for.”
Having multiple functions and procedures with the same name (on top of the traditional ability
to have functions and procedures of the same name in different units) can make it more diffi-
cult to predict the flow of control and debug your application. Because of this, overloading is a
feature you should employ judiciously. Not to say that you should avoid it; just don’t overuse it.

Default Value Parameters
Also introduced in Delphi 4 were default value parameters (that is, the ability to provide a
default value for a function or procedure parameter and not have to pass that parameter when

The Object Pascal Language

CHAPTER 2
35

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

04.65227_Ch02x 11/30/99 5:46 PM Page 35

calling the routine). In order to declare a procedure or function that contains default value para-
meters, follow the parameter type with an equal sign and the default value, as shown in the
following example:

procedure HasDefVal(S: string; I: Integer = 0);

The HasDefVal() procedure can be called in one of two ways. First, you can specify both para-
meters:

HasDefVal(‘hello’, 26);

Second, you can specify only parameter S and use the default value for I:

HasDefVal(‘hello’); // default value used for I

You must follow several rules when using default value parameters:

• Parameters having default values must appear at the end of the parameter list. Parameters
without default values may not follow parameters with default values in a procedure or
function’s parameter list.

• Default value parameters must be of an ordinal, pointer, or set type.

• Default value parameters must be passed by value or as const. They may not be refer-
ence (out) or untyped parameters.

One of the biggest benefits of default value parameters is in adding functionality to existing
functions and procedures without sacrificing backward compatibility. For example, suppose
you sell a unit that contains a revolutionary function called AddInts() that adds two numbers:

function AddInts(I1, I2: Integer): Integer;
begin
Result := I1 + I2;

end;

In order to keep up with the competition, you feel you must update this function so that it has
the capability for adding three numbers. However, you’re loathe to do so because adding a
parameter will cause existing code that calls this function to not compile. Thanks to default
parameters, you can enhance the functionality of AddInts() without compromising compatibil-
ity. Here’s an example:

function AddInts(I1, I2: Integer; I3: Integer = 0);
begin
Result := I1 + I2 + I3;

end;

Variables
You might be used to declaring variables off the cuff: “I need another integer, so I’ll just
declare one right here in the middle of this block of code.” If that has been your practice,

Essentials for Rapid Development

PART I
36

04.65227_Ch02x 11/30/99 5:46 PM Page 36

you’re going to have to retrain yourself a little in order to use variables in Object Pascal.
Object Pascal requires you to declare all variables up front in their own section before you
begin a procedure, function, or program. Perhaps you used to write free-wheeling code like
this:

void foo(void)
{
int x = 1;
x++;
int y = 2;
float f;
//... etc ...

}

In Object Pascal, any such code must be tidied up and structured a bit more to look like this:

Procedure Foo;
var
x, y: Integer;
f: Double;

begin
x := 1;
inc(x);
y := 2;
//... etc ...

end;

The Object Pascal Language

CHAPTER 2
37

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

NOTE

Object Pascal—like Visual Basic, but unlike C and C++—is not a case-sensitive lan-
guage. Upper- and lowercase is used for clarity’s sake, so use your best judgment, as
the style used in this book indicates. If the identifier name is several words mashed
together, remember to capitalize for clarity. For example, the following name is
unclear and difficult to read:

procedure thisprocedurenamemakesnosense;

This code is quite readable, however:

procedure ThisProcedureNameIsMoreClear;

For a complete reference on the coding style guidelines used for this book, see
Chapter 6, “Coding Standards,” on the CD accompanying this book.

You might be wondering what all this structure business is and why it’s beneficial. You’ll find,
however, that Object Pascal’s structured style lends itself to code that’s more readable, main-
tainable, and less buggy than the more scattered style of C++ or Visual Basic.

04.65227_Ch02x 11/30/99 5:46 PM Page 37

Notice how Object Pascal enables you to group more than one variable of the same type
together on the same line with the following syntax:

VarName1, VarName2: SomeType;

Remember that when you’re declaring a variable in Object Pascal, the variable name precedes
the type, and there’s a colon between the variables and types. Note that the variable initializa-
tion is always separate from the variable declaration.

A language feature introduced in Delphi 2 enables you to initialize global variables inside a
var block. Here are some examples demonstrating the syntax for doing so:

var
i: Integer = 10;
S: string = ‘Hello world’;
D: Double = 3.141579;

Essentials for Rapid Development

PART I
38

NOTE

Preinitialization of variables is only allowed for global variables, not variables that
are local to a procedure or function.

TIP

The Delphi compiler sees to it that all global data is automatically zero-initialized.
When your application starts, all integer types will hold 0, floating-point types will
hold 0.0, pointers will be nil, strings will be empty, and so forth. Therefore, it’s not
necessary to zero-initialize global data in your source code.

Constants
Constants in Pascal are defined in a const clause, which behaves similarly to C’s const key-
word. Here’s an example of three constant declarations in C:

const float ADecimalNumber = 3.14;
const int i = 10;
const char * ErrorString = “Danger, Danger, Danger!”;

The major difference between C constants and Object Pascal constants is that Object Pascal,
like Visual Basic, does not require you to declare the constant’s type along with the value in
the declaration. The Delphi compiler automatically allocates proper space for the constant

04.65227_Ch02x 11/30/99 5:46 PM Page 38

based on its value, or, in the case of scalar constants such as Integer, the compiler keeps track
of the values as it works, and space never is allocated. Here’s an example:

const
ADecimalNumber = 3.14;
i = 10;
ErrorString = ‘Danger, Danger, Danger!’;

The Object Pascal Language

CHAPTER 2
39

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

NOTE

Space is allocated for constants as follows: Integer values are “fit” into the smallest
type allowable (10 into a ShortInt, 32,000 into a SmallInt, and so on). Alphanumeric
values fit into Char or the currently defined (by $H) string type. Floating-point values
are mapped to the extended data type, unless the value contains four or fewer deci-
mal places explicitly, in which case it’s mapped to a Comp type. Sets of Integer and
Char are of course stored as themselves.

Optionally, you can also specify a constant’s type in the declaration. This provides you with
full control over how the compiler treats your constants:

const
ADecimalNumber: Double = 3.14;
I: Integer = 10;
ErrorString: string = ‘Danger, Danger, Danger!’;

Object Pascal permits the usage of compile-time functions in const and var declarations.
These routines include Ord(), Chr(), Trunc(), Round(), High(), Low(), and SizeOf(). For
example, all of the following code is valid:

type
A = array[1..2] of Integer;

const
w: Word = SizeOf(Byte);

var
i: Integer = 8;
j: SmallInt = Ord(‘a’);
L: Longint = Trunc(3.14159);
x: ShortInt = Round(2.71828);
B1: Byte = High(A);
B2: Byte = Low(A);
C: char = Chr(46);

04.65227_Ch02x 11/30/99 5:46 PM Page 39

If you try to change the value of any of these constants, the Delphi compiler emits an error
explaining that it’s against the rules to change the value of a constant. Because constants are
read-only, Object Pascal optimizes your data space by storing those constants that merit stor-
age in the application’s code pages. If you’re unclear about the notions of code and data pages,
see Chapter 3, “The Win32 API.”

Essentials for Rapid Development

PART I
40

CAUTION

The behavior of 32-bit Delphi type-specified constants is different from that in 16-bit
Delphi 1. In Delphi 1, the identifier declared wasn’t treated as a constant but as a
preinitialized variable called a typed constant. However, in Delphi 2 and later, type-
specified constants have the capability of being truly constant. Delphi provides a
backward-compatibility switch on the Compiler page of the Project, Options dialog
box, or you can use the $J compiler directive. By default, this switch is enabled for
compatibility with Delphi 1 code, but you’re best served not to rely on this capability
because the implementers of the Object Pascal language are trying to move away
from the notion of assignable constants.

NOTE

Object Pascal does not have a preprocessor as do C and C++. There’s no concept of a
macro in Object Pascal and, therefore, no Object Pascal equivalent for C’s #define for
constant declaration. Although you may use Object Pascal’s $define compiler direc-
tive for conditional compiles similar to C’s #define, you cannot use it to define con-
stants. Use const in Object Pascal where you would use #define to declare a constant
in C or C++.

Operators
Operators are the symbols in your code that enable you to manipulate all types of data. For
example, there are operators for adding, subtracting, multiplying, and dividing numeric data.
There are also operators for addressing a particular element of an array. This section explains
some of the Pascal operators and describes some of the differences between their C and Visual
Basic counterparts.

Assignment Operators
If you’re new to Pascal, Delphi’s assignment operator is going to be one of the toughest things
to get used to. To assign a value to a variable, use the := operator as you would C or Visual

04.65227_Ch02x 11/30/99 5:46 PM Page 40

Basic’s = operator. Pascal programmers often call this the gets or assignment operator, and the
expression

Number1 := 5;

is read either “Number1 gets the value 5,” or “Number1 is assigned the value 5.”

Comparison Operators
If you’ve already programmed in Visual Basic, you should be very comfortable with Delphi’s
comparison operators because they’re virtually identical. These operators are fairly standard
throughout programming languages, so they’re covered only briefly in this section.

Object Pascal uses the = operator to perform logical comparisons between two expressions or
values. Object Pascal’s = operator is analogous to C’s == operator, so a C expression that would
be written as

if (x == y)

would be written as this in Object Pascal:

if x = y

The Object Pascal Language

CHAPTER 2
41

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

NOTE

Remember that in Object Pascal, the := operator is used to assign a value to a vari-
able, and the = operator compares the values of two operands.

Delphi’s “not equal to” operator is <>, and its purpose is identical to C’s != operator. To deter-
mine whether two expressions are not equal, use this code:

if x <> y then DoSomething

Logical Operators
Pascal uses the words and and or as logical “and” and “or” operators, whereas C uses the &&
and || symbols, respectively, for these operators. The most common use of the and and or
operators is as part of an if statement or loop, as demonstrated in the following two examples:

if (Condition 1) and (Condition 2) then
DoSomething;

while (Condition 1) or (Condition 2) do
DoSomething;

04.65227_Ch02x 11/30/99 5:46 PM Page 41

Pascal’s logical “not” operator is not, which is used to invert a Boolean expression. It’s analo-
gous to C’s ! operator. It’s also often used as a part of if statements, as shown here:

if not (condition) then (do something); // if condition is false then...

Table 2.1 provides an easy reference of how Pascal operators map to corresponding C/C++ and
Visual Basic operators.

TABLE 2.1 Assignment, comparison, and logical operators

Operator Pascal C/C++ Visual Basic

Assignment := = =

Comparison = == = or Is*

Not equal to <> != <>

Less than < < <

Greater than > > >

Less than or equal to <= <= <=

Greater than or equal to >= >= >=

Logical and and && And

Logical or or || Or

Logical not not ! Not

*The Is comparison operator is used for objects, while the = comparison operator is used for other types.

Arithmetic Operators
You should already be familiar with most Object Pascal arithmetic operators because they’re
generally similar to those used in C, C++, and Visual Basic. Table 2.2 illustrates all the Pascal
arithmetic operators and their C/C++ and Visual Basic counterparts.

TABLE 2.2 Arithmetic operators

Operator Pascal C/C++ Visual Basic

Addition + + +

Subtraction - - -

Multiplication * * *

Floating-point division / / /

Integer division div / \

Modulus mod % Mod

Exponent None None ^

Essentials for Rapid Development

PART I
42

04.65227_Ch02x 11/30/99 5:46 PM Page 42

You may notice that Pascal and Visual Basic provide different division operators for floating-
point and integer math, while this is not the case for C/C++. The div operator automatically
truncates any remainder when you’re dividing two integer expressions.

The Object Pascal Language

CHAPTER 2
43

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

NOTE

Remember to use the correct division operator for the types of expressions with
which you’re working. The Object Pascal compiler gives you an error if you try to
divide two floating-point numbers with the integer div operator or two integers
with the floating-point / operator, as the following code illustrates:

var
i: Integer;
r: Real;

begin
i := 4 / 3; // This line will cause a compiler error
f := 3.4 div 2.3; // This line also will cause an error

end;

Many other programming languages do not distinguish between integer and floating-
point division. Instead, they always perform floating-point division and then convert
the result back to an integer when necessary. This can be rather expensive in terms of
performance. The Pascal div operator is faster and more specific.

Bitwise Operators
Bitwise operators are operators that enable you to modify individual bits of a given variable.
Common bitwise operators enable you to shift the bits to the left or right or to perform bitwise
“and,” “not,” “or,” and “exclusive or” (xor) operations with two numbers. The Shift+Left and
Shift+Right operators are shl and shr, respectively, and they’re much like C’s << and >> oper-
ators. The remainder of Pascal’s bitwise operators is easy enough to remember: and, not, or,
and xor. Table 2.3 lists the bitwise operators.

TABLE 2.3 Bitwise operators

Operator Pascal C Visual Basic

And and & And

Not not ~ Not

Or or | Or

Xor xor ^ Xor

Shift+Left shl << None

Shift+Right shr >> None

04.65227_Ch02x 11/30/99 5:46 PM Page 43

Increment and Decrement Procedures
Increment and decrement procedures generate optimized code for adding or subtracting 1 from
a given integral variable. Pascal doesn’t really provide honest-to-gosh increment and decrement
operators similar to C’s ++ and —- operators, but Pascal’s Inc() and Dec() procedures com-
pile optimally to one machine instruction.

You can call Inc() or Dec() with one or two parameters. For example, the following two lines
of code increment and decrement variable, respectively, by 1, using the inc and dec assembly
instructions:

Inc(variable);
Dec(variable);

Compare the following two lines, which increment or decrement variable by 3 using the add
and sub assembly instructions:

Inc(variable, 3);
Dec(variable, 3);

Table 2.4 compares the increment and decrement operators of different languages.

Essentials for Rapid Development

PART I
44

NOTE

With compiler optimization enabled, the Inc() and Dec() procedures often produce
the same machine code as variable :=variable + 1 syntax, so use whichever you
feel more comfortable with for incrementing and decrementing variables.

TABLE 2.4 Increment and decrement operators

Operator Pascal C Visual Basic

Increment Inc() ++ None

Decrement Dec() —- None

Object Pascal Types
One of Object Pascal’s greatest features is that it’s strongly typed, or typesafe. This means that
actual variables passed to procedures and functions must be of the same type as the formal
parameters identified in the procedure or function definition. You won’t see any of the famous
compiler warnings about suspicious pointer conversions that C programmers have grown
to know and love. This is because the Object Pascal compiler will not permit you to call a

04.65227_Ch02x 11/30/99 5:46 PM Page 44

function with one type of pointer when another type is specified in the function’s formal para-
meters (although functions that take untyped Pointer types accept any type of pointer).
Basically, Pascal’s strongly typed nature enables it to perform a sanity check of your code—
to ensure you’re not trying to put a square peg in a round hole.

A Comparison of Types
Delphi’s base types are similar to those of C and Visual Basic. Table 2.5 compares and con-
trasts the base types of Object Pascal with those of C/C++ and Visual Basic. You may want to
earmark this page because this table provides an excellent reference for matching types when
calling functions in non-Delphi dynamic link libraries (DLLs) or object files (OBJs) from
Delphi (and vice versa).

TABLE 2.5 A PASCAL TO C/C++ TO VISUAL BASIC 32-BIT TYPE COMPARISON

Visual
Type of Variable Pascal C/C++ Basic

8-bit signed integer ShortInt char None

8-bit unsigned integer Byte BYTE, Byte
unsigned short

16-bit signed integer SmallInt short Short

16-bit unsigned integer Word unsigned short None

32-bit signed integer Integer, int, long Integer, Long
Longint

32-bit unsigned integer Cardinal, unsigned long None
LongWord

64-bit signed integer Int64 __int64 None

4-byte floating point Single float Single

6-byte floating point Real48 None None

8-byte floating point Double double Double

10-byte floating point Extended long double None

64-bit currency currency None Currency

8-byte date/time TDateTime None Date

16-byte variant Variant, VARIANT Variant

OleVariant, Variant†, (Default)
TVarData OleVariant†

1-byte character Char char None

The Object Pascal Language

CHAPTER 2
45

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

continues

04.65227_Ch02x 11/30/99 5:46 PM Page 45

TABLE 2.5 Continued

Visual
Type of Variable Pascal C/C++ Basic

2-byte character WideChar WCHAR

Fixed-length byte string ShortString None None

Dynamic string AnsiString AnsiString† String

Null-terminated string PChar char * None

Null-terminated wide string PWideChar LPCWSTR None

Dynamic 2-byte string WideString WideString† None

1-byte Boolean Boolean, (Any 1-byte) None
ByteBool

2-byte Boolean WordBool (Any 2-byte) Boolean

4-byte Boolean BOOL, BOOL None
LongBool

† A Borland C++Builder class that emulates the corresponding Object Pascal type

Essentials for Rapid Development

PART I
46

NOTE

If you’re porting 16-bit code from Delphi 1.0, be sure to bear in mind that the size of
both the Integer and Cardinal types has increased from 16 to 32 bits. Actually, that’s
not quite accurate: Under Delphi 2 and 3 the Cardinal type was treated as an
unsigned 31-bit integer in order to preserve arithmetic precision (because Delphi 2 and
3 lacked a true unsigned 32-bit integer to which results of integer operations could be
promoted). Under Delphi 4 and higher, Cardinal is a true unsigned 32-bit integer.

CAUTION

In Delphi 1, 2, and 3, the Real type identifier specified a 6-byte floating-point num-
ber, which is a type unique to Pascal and generally incompatible with other lan-
guages. In Delphi 4, Real is an alias for the Double type. The old 6-byte floating-point
number is still there, but it’s now identified by Real48. You can also force the Real
identifier to refer to the 6-byte floating-point number using the {$REALCOMPATIBILITY
ON} directive.

04.65227_Ch02x 11/30/99 5:46 PM Page 46

Characters
Delphi provides three character types:

• AnsiChar. This is the standard one-byte ANSI character that programmers have grown to
know and love.

• WideChar. This character is two bytes in size and represents a Unicode character.

• Char. This is currently identical to AnsiChar, but Borland warns that the definition may
change in a later version of Delphi to a WideChar.

Keep in mind that because a character is no longer guaranteed to be one byte in size, you
shouldn’t hard-code the size into your applications. Instead, you should use the SizeOf() func-
tion where appropriate.

The Object Pascal Language

CHAPTER 2
47

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
ENOTE

The SizeOf() standard procedure returns the size, in bytes, of a type or instance.

A Multitude of Strings
Strings are variable types used to represent groups of characters. Every language has its own
spin on how string types are stored and used. Pascal has several different string types to suit
your programming needs:

• AnsiString, the default string type for Object Pascal, is comprised of AnsiChar charac-
ters and allows for virtually unlimited lengths. It’s also compatible with null-terminated
strings.

• ShortString remains in the language primarily for backward compatibility with Delphi
1. Its capacity is limited to 255 characters.

• WideString is similar in functionality to AnsiString except that it consists of WideChar
characters.

• PChar is a pointer to a null-terminated Char string—like C’s char * and lpstr types.

• PAnsiChar is a pointer to a null-terminated AnsiChar string.

• PWideChar is a pointer to a null-terminated WideChar string.

By default, when you declare a string variable in your code, as shown in the following exam-
ple, the compiler assumes that you’re creating an AnsiString:

var
S: string; // S is an AnsiString

04.65227_Ch02x 11/30/99 5:46 PM Page 47

Alternatively, you can cause variables declared as string types to instead be of type
ShortString using the $H compiler directive. When the value of the $H compiler directive is
negative, string variables are ShortString types, and when the value of the directive is posi-
tive (the default), string variables are AnsiString types. The following code demonstrates
this behavior:

var
{$H-}
S1: string; // S1 is a ShortString
{$H+}
S2: string; // S2 is an AnsiString

The exception to the $H rule is that a string declared with an explicit size (limited to a maxi-
mum of 255 characters) is always a ShortString:

var
S: string[63]; // A ShortString of up to 63 characters

The AnsiString Type
The AnsiString (or long string) type was introduced to the language in Delphi 2. It exists pri-
marily as a result of widespread Delphi 1 customer demand for an easy-to-use string type with-
out the intrusive 255-character limitation. AnsiString is that and more.

Although AnsiString types maintain an interface almost identical their predecessors, they’re
dynamically allocated and garbage-collected. Because of this, AnsiString is sometimes
referred to as a lifetime-managed type. Object Pascal also automatically manages allocation of
string temporaries as needed, so you needn’t worry about allocating buffers for intermediate
results as you would in C/C++. Additionally, AnsiString types are always guaranteed to be
null terminated, which makes them compatible with the null-terminated strings used by the
Win32 API. The AnsiString type is actually implemented as a pointer to a string structure in
heap memory. Figure 2.1 shows how an AnsiString is laid out in memory.

Essentials for Rapid Development

PART I
48

Allocation size Ref count Length D D G #0

AnsiString

FIGURE 2.1
An AnsiString in memory.

CAUTION

The complete internal format of the long string type is left undocumented by
Borland, and Borland reserves the right to change the internal format of long strings

04.65227_Ch02x 11/30/99 5:46 PM Page 48

with future releases of Delphi. The information here is intended mainly to help you
understand how AnsiString types work, and you should avoid being dependent on
the structure of an AnsiString in your code.

Developers who avoided the implementation of details of string moving from Delphi
1 to Delphi 2 were able to migrate their code with no problems. Those who wrote
code that depended on the internal format (such as the 0th element in the string
being the length) had to modify their code for Delphi 2.

The Object Pascal Language

CHAPTER 2
49

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

As Figure 2.1 illustrates, AnsiString types are reference counted, which means that several
strings may point to the same physical memory. String copies, therefore, are very fast because
it’s merely a matter of copying a pointer rather than copying the actual string contents. When
two or more AnsiString types share a reference to the same physical string, the Delphi mem-
ory manager uses a copy-on-write technique, which enables it to wait until a string is modified
to release a reference and allocate a new physical string. The following example illustrates
these concepts:

var
S1, S2: string;

begin
// store string in S1, ref count of S1 is 1
S1 := ‘And now for something... ‘;
S2 := S1; // S2 now references S1. Ref count of S1 is 2.
// S2 is changed, so it is copied to its own
// memory space, and ref count of S1 is decremented

S2 := S2 + ‘completely different!’;

Lifetime-Managed Types
In addition to AnsiString, Delphi provides several other types that are lifetime-
managed. These types include WideString, Variant, OleVariant, interface,
dispinterface, and dynamic arrays. You’ll learn more about each of these types later
in this chapter. For now, we’ll focus on what exactly lifetime-managed types are and
how they work.

Lifetime-managed types, sometimes called garbage-collected types, are types that
potentially consume some particular resource while in use and release the resource
automatically when they fall out of scope. Of course, the variety of resources used

continues

04.65227_Ch02x 11/30/99 5:46 PM Page 49

Essentials for Rapid Development

PART I
50

depends on the type involved. For example, an AnsiString consumes memory for the
character string while in use, and the memory occupied by the character string is
released when it leaves scope.

For global variables, this process is fairly straightforward: As a part of the finalization
code generated for your application, the compiler inserts code to ensure that each
lifetime-managed global variable is cleaned up. Because all global data is zero-
initialized when your application loads, each lifetime-managed global variable will
always initially contain a zero, empty, or some other value indicating the variable is
“unused.” This way, the finalization code won’t attempt to free resources unless
they’re actually used in your application.

Whenever you declare a local lifetime-managed variable, the process is slightly more
complex: First, the compiler inserts code to ensure that the variable is initialized to
zero when the function or procedure is entered. Next, the compiler generates a
try..finally exception-handling block, which it wraps around the entire function
body. Finally, the compiler inserts code in the finally block to clean up the lifetime-
managed variable (exception handling is explained in more detail in the section
“Structured Exception Handling”). With this in mind, consider the following procedure:

procedure Foo;
var
S: string;

begin
// procedure body
// use S here

end;

Although this procedure looks simple, if you take into account the code generation
by the compiler behind the scenes, it would actually look like this:

procedure Foo;
var
S: string;

begin
S := ‘’;
try
// procedure body
// use S here

finally
// clean up S here

end;
end;

String Operations
You can concatenate two strings by using the + operator or the Concat() function. The pre-
ferred method of string concatenation is the + operator because the Concat() function exists

04.65227_Ch02x 11/30/99 5:46 PM Page 50

primarily for backward compatibility. The following example demonstrates the use of + and
Concat():

{ using + }
var
S, S2: string

begin
S:= ‘Cookie ‘:
S2 := ‘Monster’;
S := S + S2; { Cookie Monster }

end.

{ using Concat() }
var
S, S2: string;

begin
S:= ‘Cookie ‘;
S2 := ‘Monster’;
S := Concat(S, S2); { Cookie Monster }

end.

The Object Pascal Language

CHAPTER 2
51

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

NOTE

Always use single quotation marks (‘A String’) when working with string literals in
Object Pascal.

TIP

Concat() is one of many “compiler magic” functions and procedures (like ReadLn()
and WriteLn(), for example) that don’t have an Object Pascal definition. Because
such functions and procedures are intended to accept an indeterminate number of
parameters or optional parameters, they cannot be defined in terms of the Object
Pascal language. Because of this, the compiler provides a special case for each of
these functions and generates a call to one of the “compiler magic” helper functions
defined in the System unit. These helper functions are generally implemented in
assembly language in order to circumvent Pascal language rules.

In addition to the “compiler magic” string support functions and procedures, there
are a variety of functions and procedures in the SysUtils unit designed to make
working with strings easier. Search for “String-handling routines (Pascal-style)” in the
Delphi online help system.

Furthermore, you’ll find some very useful homebrewed string utility functions and
procedures in the StrUtils unit in the \Source\Utils directory on the CD-ROM
accompanying this book.

04.65227_Ch02x 11/30/99 5:46 PM Page 51

Length and Allocation
When first declared, an AnsiString has no length and therefore no space allocated for the
characters in the string. To cause space to be allocated for the string, you can assign the string
to a literal or another string, or you can use the SetLength() procedure, as shown here:

var
S: string; // string initially has no length

begin
S := ‘Doh!’; // allocates at least enough space for string literal
{ or }
S := OtherString // increases ref count of OtherString

// (assume OtherString already points to a valid string)
{ or }
SetLength(S, 4); // allocates enough space for at least 4 chars

end;

You can index the characters of an AnsiString like an array, but be careful not to index
beyond the length of the string. For example, the following code snippet will cause an error:

var
S: string;

begin
S[1] := ‘a’; // Won’t work because S hasn’t been allocated!

end;

This code, however, works properly:

var
S: string;

begin
SetLength(S, 1);
S[1] := ‘a’; // Now S has enough space to hold the character

end;

Win32 Compatibility
As mentioned earlier, AnsiString types are always null-terminated, so they’re compatible with
null-terminated strings. This makes it easy to call Win32 API functions or other functions
requiring PChar-type strings. All that’s required is that you typecast the string as a PChar
(typecasting is explained in more detail in the section “Typecasting and Type Conversion”).
The following code demonstrates how to call the Win32 GetWindowsDirectory() function,
which accepts a PChar and buffer length as parameters:

var
S: string;

begin
SetLength(S, 256); // important! get space for string first
// call function, S now holds directory string
GetWindowsDirectory(PChar(S), 256);

end;

Essentials for Rapid Development

PART I
52

04.65227_Ch02x 11/30/99 5:46 PM Page 52

After using an AnsiString where a function or procedure expects a PChar, you must manually
set the length of the string variable to its null-terminated length. The RealizeLength() func-
tion, which also comes from the STRUTILS unit, accomplishes that task:

procedure RealizeLength(var S: string);
begin
SetLength(S, StrLen(PChar(S)));

end;

Calling RealizeLength() completes the substitution of a long string for a PChar:

var
S: string;

begin
SetLength(S, 256); // important! get space for string first
// call function, S now holds directory string
GetWindowsDirectory(PChar(S), 256);
RealizeLength(S); // set S length to null length

end;

The Object Pascal Language

CHAPTER 2
53

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

CAUTION

Exercise care when typecasting a string to a PChar variable. Because strings are
garbage-collected when they go out of scope, you must pay attention when making
assignments such as P := PChar(Str), where the scope (or lifetime) of P is greater
than Str.

Porting Issues
When you’re porting 16-bit Delphi 1 applications, you need to keep in mind a number of
issues when migrating to AnsiString types:

• In places where you used the PString (pointer to a ShortString) type, you should
instead use the string type. Remember, an AnsiString is already a pointer to a string.

• You can no longer access the 0th element of a string to get or set the length. Instead, use
the Length() function to get the string length and the SetLength() procedure to set the
length.

• There’s no longer any need to use StrPas() and StrPCopy() to convert back and forth
between strings and PChar types. As shown earlier, you can typecast an AnsiString to a
PChar. When you want to copy the contents of a PChar to an AnsiString, you can use a
direct assignment:

StringVar := PCharVar;

04.65227_Ch02x 11/30/99 5:46 PM Page 53

The ShortString Type
If you’re a Delphi veteran, you’ll recognize the ShortString type as the Delphi 1.0 string
type. ShortString types are sometimes referred to as Pascal strings or length-byte strings. To
reiterate, remember that the value of the $H directive determines whether variables declared as
string are treated by the compiler as AnsiString or ShortString.

In memory, the string resembles an array of characters where the 0th character in the string
contains the length of the string, and the string itself is contained in the following characters.
The storage size of a ShortString defaults to the maximum of 256 bytes. This means that you
can never have more than 255 characters in a ShortString (255 characters + 1 length byte =
256). As with AnsiString, working with ShortString is fairly painless because the compiler
allocates string temporaries as needed, so you don’t have to worry about allocating buffers for
intermediate results or disposing of them as you do with C.

Figure 2.2 illustrates how a Pascal string is laid out in memory.

Essentials for Rapid Development

PART I
54

CAUTION

Remember that you must use the SetLength() procedure to set the length of a long
string, whereas the past practice was to directly access the 0th element of a short
string to set the length. This issue will arise when you attempt to port 16-bit Delphi
1.0 code to 32 bits.

D#3 D G

FIGURE 2.2
A ShortString in memory.

A ShortString variable is declared and initialized with the following syntax:

var
S: ShortString;

begin
S := ‘Bob the cat.’;

end.

Optionally, you can allocate fewer than 256 bytes for a ShortString using just the string
type identifier and a length specifier, as in the following example:

var
S: string[45]; { a 45-character ShortString }

begin
S := ‘This string must be 45 or fewer characters.’;

end.

04.65227_Ch02x 11/30/99 5:46 PM Page 54

The preceding code causes a ShortString to be created regardless of the current setting of the
$H directive. The maximum length you can specify is 255 characters.

Never store more characters to a ShortString than you have allocated memory for. If you
declare a variable as a string[8], for example, and try to assign
‘a_pretty_darn_long_string’ to that variable, the string would be truncated to only eight
characters, and you would lose data.

When using an array subscript to address a particular character in a ShortString, you could
get bogus results or corrupt memory if you attempt to use a subscript index that’s greater than
the declared size of the ShortString. For example, suppose you declare a variable as follows:

var
Str: string[8];

If you then attempt to write to the 10th element of the string as follows, you’re likely to corrupt
memory used by other variables:

var
Str: string[8];
i: Integer;

begin
i := 10;

Str[i] := ‘s’; // will corrupt memory

You can have the compiler link in special logic catch these types of errors at runtime by select-
ing Range Checking in the Options, Project dialog box.

The Object Pascal Language

CHAPTER 2
55

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

TIP

Although including range-checking logic in your program helps you find string
errors, range checking slightly hampers the performance of your application. It’s com-
mon practice to use range checking during the development and debugging phases
of your program, but you should remove range checking after you become confident
in the stability of your program.

Unlike AnsiString types, ShortString types are not inherently compatible with null-termi-
nated strings. Because of this, a bit of work is required to be able to pass a ShortString to a
Win32 API function. The following function, ShortStringAsPChar(), is taken from the STRU-
TILS.PAS unit mentioned earlier:

func function ShortStringAsPChar(var S: ShortString): PChar;
{ Function null-terminates a string so it can be passed to functions }
{ that require PChar types. If string is longer than 254 chars, then it will }

04.65227_Ch02x 11/30/99 5:46 PM Page 55

{ be truncated to 254. }
begin
if Length(S) = High(S) then Dec(S[0]); { Truncate S if it’s too long }
S[Ord(Length(S)) + 1] := #0; { Place null at end of string }
Result := @S[1]; { Return “PChar’d” string }

end;

Essentials for Rapid Development

PART I
56

CAUTION

The functions and procedures in the Win32 API require null-terminated strings. Do
not try to pass a ShortString type to an API function because your program will not
compile. Your life will be easier if you use long strings when working with the API.

The WideString Type
The WideString type is a lifetime-managed type similar to AnsiString; they’re both dynami-
cally allocated, garbage collected, and even assignment compatible with one another. However,
WideString differs from AnsiString in three key respects:

• WideString types consist of WideChar characters rather than AnsiChar characters, mak-
ing them compatible with Unicode strings.

• WideString types are allocated using the SysAllocStrLen() API function, making them
compatible with OLE BSTR strings.

• WideString types are not reference counted, so assigning one WideString to another
requires the entire string to be copied from one location in memory to another. This
makes WideString types less efficient than AnsiString types in terms of speed and
memory use.

As mentioned earlier, the compiler automatically knows how to convert between variables of
AnsiString and WideString types, as shown here:

var
W: WideString;
S: string;

begin
W := ‘Margaritaville’;
S := W; // Wide converted to Ansi
S := ‘Come Monday’;
W := S; // Ansi converted to Wide

end;

In order to make working with WideString types feel natural, Object Pascal overloads the
Concat(), Copy(), Insert(), Length(), Pos(), and SetLength() routines and the +, =, and <>
operators for use with WideString types. Therefore, the following code is syntactically correct:

04.65227_Ch02x 11/30/99 5:46 PM Page 56

var
W1, W2: WideString;
P: Integer;

begin
W1 := ‘Enfield’;
W2 := ‘field’;
if W1 <> W2 then
P := Pos(W1, W2);

end;

As with the AnsiString and ShortString types, you can use array brackets to reference indi-
vidual characters of a WideString:

var
W: WideString;
C: WideChar;

begin
W := ‘Ebony and Ivory living in perfect harmony’;
C := W[Length(W)]; // C holds the last character in W

end;

Null-Terminated Strings
Earlier, this chapter mentioned that Delphi has three different null-terminated string types:
PChar, PAnsiChar, and PWideChar. As their names imply, each of these represents a null-
terminated string of each of Delphi’s three character types. In this chapter, we refer to each of
these string types generically as PChar. The PChar type in Delphi exists mainly for compatibil-
ity with Delphi 1.0 and the Win32 API, which makes extensive use of null-terminated strings.
A PChar is defined as a pointer to a string followed by a null (zero) value (if you’re unsure of
exactly what a pointer is, read on; pointers are discussed in more detail later in this section).
Unlike memory for AnsiString and WideString types, memory for PChar types is not auto-
matically allocated and managed by Object Pascal. Therefore, you’ll usually need to allocate
memory for the string to which it points, using one of Object Pascal’s memory-allocation func-
tions. The theoretical maximum length of a PChar string is just under 4GB. The layout of a
PChar variable in memory is shown in Figure 2.3.

The Object Pascal Language

CHAPTER 2
57

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

TIP

Because Object Pascal’s AnsiString type can be used as a PChar in most situations,
you should use this type rather than the PChar type wherever possible. Because mem-
ory management for strings occurs automatically, you greatly reduce the chance of
introducing memory-corruption bugs into your applications if, where possible, you
avoid PChar types and the manual memory allocation associated with them.

04.65227_Ch02x 11/30/99 5:46 PM Page 57

FIGURE 2.3
A PChar in memory.

As mentioned earlier, PChar variables require you to manually allocate and free the memory
buffers that contain their strings. Normally, you allocate memory for a PChar buffer using the
StrAlloc() function, but several other functions can be used to allocate memory for PChar
types, including AllocMem(), GetMem(), StrNew(), and even the VirtualAlloc() API func-
tion. Corresponding functions also exist for many of these functions, which must be used to
deallocate memory. Table 2.6 lists several allocation functions and their corresponding deallo-
cation functions.

TABLE 2.6 Memory allocation and deallocation functions

Memory Allocated with… Must Be Freed with…

AllocMem() FreeMem()

GlobalAlloc() GlobalFree()

GetMem() FreeMem()

New() Dispose()

StrAlloc() StrDispose()

StrNew() StrDispose()

VirtualAlloc() VirtualFree()

The following example demonstrates memory allocation techniques when working with PChar
and string types:

var
P1, P2: PChar;
S1, S2: string;

begin
P1 := StrAlloc(64 * SizeOf(Char)); // P1 points to an allocation of 63 Chars
StrPCopy(P1, ‘Delphi 5 ‘); // Copy literal string into P1
S1 := ‘Developer’’s Guide’; // Put some text in string S1
P2 := StrNew(PChar(S1)); // P1 points to a copy of S1
StrCat(P1, P2); // concatenate P1 and P2
S2 := P1; // S2 now holds ‘Delphi 5 Developer’s Guide’
StrDispose(P1); // clean up P1 and P2 buffers
StrDispose(P2);

end.

Essentials for Rapid Development

PART I
58

D #0D G

PChar

04.65227_Ch02x 11/30/99 5:46 PM Page 58

Notice, first of all, the use of SizeOf(Char) with StrAlloc() when allocating memory for P1.
Remember that the size of a Char may change from one byte to two in future versions of
Delphi; therefore, you cannot assume the value of Char to always be one byte. SizeOf()
ensures that the allocation will work properly no matter how many bytes a character occupies.

StrCat() is used to concatenate two PChar strings. Note here that you cannot use the + opera-
tor for concatenation as you can with long string and ShortString types.

The StrNew() function is used to copy the value contained by string S1 into P2 (a PChar). Be
careful when using this function. It’s common to have memory-overwrite errors when using
StrNew() because it allocates only enough memory to hold the string. Consider the following
example:

var
P1, P2: Pchar;
begin
P1 := StrNew(‘Hello ‘); // Allocate just enoughmemory for P1 and P2
P2 := StrNew(‘World’);
StrCat(P1, P2); // BEWARE: Corrupts memory!
.
.
.

end;

The Object Pascal Language

CHAPTER 2
59

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

TIP

As with other types of strings, Object Pascal provides a decent library of utility func-
tions and procedures for operating on PChar types. Search for “String-handling rou-
tines (null-terminated)” in the Delphi online help system.

You’ll also find some useful null-terminated functions and procedures in the StrUtils
unit in the \Source\Utils directory on the CD-ROM accompanying this book.

Variant Types
Delphi 2.0 introduced a powerful data type called the Variant. Variants were brought about
primarily in order to support OLE Automation, which uses the Variant type heavily. In fact,
Delphi’s Variant data type is an encapsulation of the variant used with OLE. Delphi’s imple-
mentation of variants has also proven to be useful in other areas of Delphi programming, as
you’ll soon learn. Object Pascal is the only compiled language that completely integrates vari-
ants as a dynamic data type at runtime and as a static type at compile time in that the compiler
always knows that it’s a variant.

04.65227_Ch02x 11/30/99 5:46 PM Page 59

Delphi 3 introduced a new type called OleVariant, which is identical to Variant except that it
can only hold Automation-compatible types. In this section, we initially focus on the Variant
type and then we discuss OleVariant and contrast it with Variant.

Variants Change Types Dynamically
One of the main purposes of variants is to have a variable whose underlying data type cannot
be determined at compile time. This means that a variant can change the type to which it refers
at runtime. For example, the following code will compile and run properly:

var
V: Variant;

begin
V := ‘Delphi is Great!’; // Variant holds a string
V := 1; // Variant now holds an Integer
V := 123.34; // Variant now holds a floating point
V := True; // Variant now holds a boolean
V := CreateOleObject(‘Word.Basic’); // Variant now holds an OLE object

end;

Variants can support all simple data types, such as integers, floating-point values, strings,
Booleans, date and time, currency, and also OLE Automation objects. Note that variants cannot
refer to Object Pascal objects. Also, variants can refer to a nonhomogeneous array, which can
vary in size and whose data elements can refer to any of the preceding data types (including
another variant array).

The Variant Structure
The data structure defining the Variant type is defined in the System unit and is also shown in
the following code:

type
PVarData = ^TVarData;
TVarData = packed record
VType: Word;
Reserved1, Reserved2, Reserved3: Word;
case Integer of
varSmallint: (VSmallint: Smallint);
varInteger: (VInteger: Integer);
varSingle: (VSingle: Single);
varDouble: (VDouble: Double);
varCurrency: (VCurrency: Currency);
varDate: (VDate: Double);
varOleStr: (VOleStr: PWideChar);
varDispatch: (VDispatch: Pointer);
varError: (VError: LongWord);
varBoolean: (VBoolean: WordBool);

Essentials for Rapid Development

PART I
60

04.65227_Ch02x 11/30/99 5:46 PM Page 60

varUnknown: (VUnknown: Pointer);
varByte: (VByte: Byte);
varString: (VString: Pointer);
varAny: (VAny: Pointer);
varArray: (VArray: PVarArray);
varByRef: (VPointer: Pointer);

end;

The TVarData structure consumes 16 bytes of memory. The first two bytes of the TVarData
structure contain a word value that represents the data type to which the variant refers. The fol-
lowing code shows the various values that may appear in the VType field of the TVarData
record. The next six bytes are unused. The remaining eight bytes contain the actual data or a
pointer to the data represented by the variant. Again, this structure maps directly to OLE’s
implementation of the variant type. Here’s the code:

{ Variant type codes }
const
varEmpty = $0000;
varNull = $0001;
varSmallint = $0002;
varInteger = $0003;
varSingle = $0004;
varDouble = $0005;
varCurrency = $0006;
varDate = $0007;
varOleStr = $0008;
varDispatch = $0009;
varError = $000A;
varBoolean = $000B;
varVariant = $000C;
varUnknown = $000D;
varByte = $0011;
varStrArg = $0048;
varString = $0100;
varAny = $0101;
varTypeMask = $0FFF;
varArray = $2000;
varByRef = $4000;

The Object Pascal Language

CHAPTER 2
61

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

NOTE

As you may notice from the type codes in the preceding listing, a Variant cannot
contain a reference to a Pointer or class type.

04.65227_Ch02x 11/30/99 5:46 PM Page 61

You’ll notice from the TVarData listing that the TVarData record is actually a variant record.
Don’t confuse this with the Variant type. Although the variant record and Variant type have
similar names, they represent two totally different constructs. Variant records allow for multiple
data fields to overlap in the same area of memory (like a C/C++ union). This is discussed in
more detail in the “Records” section later in this chapter. The case statement in the TVarData
variant record indicates the type of data to which the variant refers. For example, if the VType
field contains the value varInteger, only four bytes of the eight data bytes in the variant por-
tion of the record are used to hold an integer value. Likewise, if VType has the value varByte,
only one byte of the eight are used to hold a byte value.

You’ll notice that if VType contains the value varString, the eight data bytes don’t actually
hold the string; instead, they hold a pointer to this string. This is an important point because
you can access fields of a variant directly, as shown here:

var
V: Variant;

begin
TVarData(V).VType := varInteger;
TVarData(V).VInteger := 2;

end;

You must understand that in some cases this is a dangerous practice because it’s possible to
lose the reference to a string or other lifetime-managed entity, which will result in your appli-
cation leaking memory or other resources. You’ll see what we mean by the term garbage col-
lected in the following section.

Variants Are Lifetime Managed
Delphi automatically handles the allocation and deallocation of memory required of a Variant
type. For example, examine the following code, which assigns a string to a Variant variable:

procedure ShowVariant(S: string);
var
V: Variant

begin
V := S;
ShowMessage(V);

end;

As discussed earlier in this chapter in the sidebar on lifetime-managed types, several things are
going on here that might not be apparent. Delphi first initializes the variant to an unassigned
value. During the assignment, it sets its VType field to varString and copies the string pointer
into its VString field. It then increases the reference count of string S. When the variant leaves
scope (that is, the procedure ends and returns to the code that called it), it’s cleared and the ref-
erence count of string S is decremented. Delphi does this by implicitly inserting a

Essentials for Rapid Development

PART I
62

04.65227_Ch02x 11/30/99 5:46 PM Page 62

try..finally block in the procedure, as shown here:

procedure ShowVariant(S: string);
var
V: Variant

begin
V := Unassigned; // initialize variant to “empty”
try
V := S;
ShowMessage(V);

finally
// Now clean up the resources associated with the variant

end;
end;

This same implicit release of resources occurs when you assign a different data type to the
variant. For example, examine the following code:

procedure ChangeVariant(S: string);
var
V: Variant

begin
V := S;
V := 34;

end;

This code boils down to the following pseudo-code:

procedure ChangeVariant(S: string);
var
V: Variant

begin
Clear Variant V, ensuring it is initialized to “empty”
try
V.VType := varString; V.VString := S; Inc(S.RefCount);
Clear Variant V, thereby releasing reference to string;
V.VType := varInteger; V.VInteger := 34;

finally
Clean up the resources associated with the variant

end;
end;

If you understand what happens in the preceding examples, you’ll see why it’s not recom-
mended that you manipulate fields of the TVarData record directly, as shown here:

procedure ChangeVariant(S: string);
var
V: Variant

The Object Pascal Language

CHAPTER 2
63

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

04.65227_Ch02x 11/30/99 5:46 PM Page 63

begin
V := S;
TVarData(V).VType := varInteger;
TVarData(V).VInteger := 32;
V := 34;

end;

Although this may appear to be safe, it’s not because it results in the failure to decrement the
reference count of string S, probably resulting in a memory leak. As a general rule, don’t
access the TVarData fields directly, or if you do, be absolutely sure that you know exactly what
you’re doing.

Typecasting Variants
You can explicitly typecast expressions to type Variant. For example, the expression

Variant(X)

results in a Variant type whose type code corresponds to the result of the expression X, which
must be an integer, real, currency, string, character, or Boolean type.

You can also typecast a variant to that of a simple data type. For example, given the assignment

V := 1.6;

where V is a variable of type Variant, the following expressions will have the results shown:

S := string(V); // S will contain the string ‘1.6’;
// I is rounded to the nearest Integer value, in this case: 2.
I := Integer(V);
B := Boolean(V); // B contains False if V contains 0, otherwise B is True
D := Double(V); // D contains the value 1.6

These results are dictated by certain type-conversion rules applicable to Variant types. These
rules are defined in detail in Delphi’s Object Pascal Language Guide.

By the way, in the preceding example, it’s not necessary to typecast the variant to another data
type to make the assignment. The following code would work just as well:

V := 1.6;
S := V;
I := V;
B := V;
D := V;

What happens here is that the conversions to the target data types are made through an implicit
typecast. However, because these conversions are made at runtime, there’s much more code
logic attached to this method. If you’re sure of the type a variant contains, you’re better off
explicitly typecasting it to that type in order to speed up the operation. This is especially true if
the variant is being used in an expression, which we’ll discuss next.

Essentials for Rapid Development

PART I
64

04.65227_Ch02x 11/30/99 5:46 PM Page 64

Variants in Expressions
You can use variants in expressions with the following operators: +, =, *, /, div, mod, shl, shr,
and, or, xor, not, :=, <>, <, >, <=, and >=.

When using variants in expressions, Delphi knows how to perform the operations based on the
contents of the variant. For example, if two variants, V1 and V2, contain integers, the expression
V1 + V2 results in the addition of the two integers. However, if V1 and V2 contain strings, the
result is a concatenation of the two strings. What happens if V1 and V2 contain two different
data types? Delphi uses certain promotion rules in order to perform the operation. For example,
if V1 contains the string ‘4.5’ and V2 contains a floating-point number, V1 will be converted to
a floating point and then added to V2. The following code illustrates this:

var
V1, V2, V3: Variant;

begin
V1 := ‘100’; // A string type
V2 := ‘50’; // A string type
V3 := 200; // An Integer type
V1 := V1 + V2 + V3;

end;

Based on what we just mentioned about promotion rules, it would seem at first glance that the
preceding code would result in the value 350 as an integer. However, if you take a closer look,
you’ll see that this is not the case. Because the order of precedence is from left to right, the
first equation executed is V1 + V2. Because these two variants refer to strings, a string concate-
nation is performed, resulting in the string ‘10050’. That result is then added to the integer
value held by the variant V3. Because V3 is an integer, the result ‘10050’ is converted to an
integer and added to V3, thus providing an end result of 10250.

Delphi promotes the variants to the highest type in the equation in order to successfully carry
out the calculation. However, when an operation is attempted on two variants of which Delphi
cannot make any sense, an “invalid variant type conversion” exception is raised. The following
code illustrates this:

var
V1, V2: Variant;

begin
V1 := 77;
V2 := ‘hello’;
V1 := V1 / V2; // Raises an exception.

end;

As stated earlier, it’s sometimes a good idea to explicitly typecast a variant to a specific data
type if you know what that type is and if it’s used in an expression. Consider the following line
of code:

V4 := V1 * V2 / V3;

The Object Pascal Language

CHAPTER 2
65

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

04.65227_Ch02x 11/30/99 5:46 PM Page 65

Before a result can be generated for this equation, each operation is handled by a runtime func-
tion that goes through several gyrations to determine the compatibility of the types the variants
represent. Then the conversions are made to the appropriate data types. This results in a large
amount of overhead and code size. A better solution is obviously not to use variants. However,
when necessary, you can also explicitly typecast the variants so the data types are resolved at
compile time:

V4 := Integer(V1) * Double(V2) / Integer(V3);

Keep in mind that this assumes you know the data types the variants represent.

Empty and Null
Two special VType values for variants merit a brief discussion. The first is varEmpty, which
means that the variant has not yet been assigned a value. This is the initial value of the variant
set by the compiler as it comes into scope. The other is varNull, which is different from
varEmpty in that it actually represents the value Null as opposed to a lack of value. This dis-
tinction between no value and a Null value is especially important when applied to the field
values of a database table. In Chapter 27, “Writing Desktop Database Applications,” you’ll
learn how variants are used in the context of database applications.

Another difference is that attempting to perform any equation with a variant containing a
varEmpty VType value will result in an “invalid variant operation” exception. The same is not
true of variants containing a varNull value, however. When a variant involved in an equation
contains a Null value, that value will propagate to the result. Therefore, the result of any equa-
tion containing a Null is always Null.

If you want to assign or compare a variant to one of these two special values, the System unit
defines two variants, Unassigned and Null, which have the VType values of varEmpty and
varNull, respectively.

Essentials for Rapid Development

PART I
66

CAUTION

It may be tempting to use variants instead of the conventional data types because
they seem to offer so much flexibility. However, this will increase the size of your code
and cause your applications to run more slowly. Additionally, it will make your code
more difficult to maintain. Variants are useful in many situations. In fact, the VCL,
itself, uses variants in several places, most notably in the ActiveX and database areas,
because of the data type flexibility they offer. Generally speaking, however, you
should use the conventional data types instead of variants. Only in situations where
the flexibility of the variant outweighs the performance of the conventional method
should you resort to using variants. Ambiguous data types beget ambiguous bugs.

04.65227_Ch02x 11/30/99 5:46 PM Page 66

Variant Arrays
Earlier we mentioned that a variant can refer to a nonhomogeneous array. Therefore, the fol-
lowing syntax is valid:

var
V: Variant;
I, J: Integer;

begin
I := V[J];

end;

Bear in mind that, although the preceding code will compile, you’ll get an exception at runtime
because V does not yet contain a variant array. Object Pascal provides several variant array sup-
port functions that allow you to create a variant array. Two of these functions are
VarArrayCreate() and VarArrayOf().

VarArrayCreate()
VarArrayCreate() is defined in the System unit as

function VarArrayCreate(const Bounds: array of Integer;
VarType: Integer): Variant;

To use VarArrayCreate(), you pass in the array bounds for the array you want to create and a
variant type code for the type of the array elements (the first parameter is an open array, which
is discussed in the “Passing Parameters” section later in this chapter). For example, the follow-
ing code returns a variant array of integers and assigns values to the array items:

var
V: Variant;

begin
V := VarArrayCreate([1, 4], varInteger); // Create a 4-element array
V[1] := 1;
V[2] := 2;
V[3] := 3;
V[4] := 4;

end;

If variant arrays of a single type aren’t confusing enough, you can pass varVariant as the type
code in order to create a variant array of variants! This way, each element in the array has the
ability to contain a different type of data. You can also create a multidimensional array by pass-
ing in the additional bounds required. For example, the following code creates an array with
the bounds [1..4, 1..5]:

V := VarArrayCreate([1, 4, 1, 5], varInteger);

The Object Pascal Language

CHAPTER 2
67

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

04.65227_Ch02x 11/30/99 5:46 PM Page 67

VarArrayOf()
The VarArrayOf() function is defined in the System unit as

function VarArrayOf(const Values: array of Variant): Variant;

This function returns a one-dimensional array whose elements are given in the Values parame-
ter. The following example creates a variant array of three elements with an integer, a string,
and a floating-point value:

V := VarArrayOf([1, ‘Delphi’, 2.2]);

Variant Array Support Functions and Procedures
In addition to VarArrayCreate() and VarArrayOf(), there are several other variant array sup-
port functions and procedures. These functions are defined in the System unit and are also
shown here:

procedure VarArrayRedim(var A: Variant; HighBound: Integer);
function VarArrayDimCount(const A: Variant): Integer;
function VarArrayLowBound(const A: Variant; Dim: Integer): Integer;
function VarArrayHighBound(const A: Variant; Dim: Integer): Integer;
function VarArrayLock(const A: Variant): Pointer;
procedure VarArrayUnlock(const A: Variant);
function VarArrayRef(const A: Variant): Variant;
function VarIsArray(const A: Variant): Boolean;

The VarArrayRedim() function allows you to resize the upper bound of the rightmost dimen-
sion of a variant array. The VarArrayDimCount() function returns the number of dimensions in
a variant array. VarArrayLowBound() and VarArrayHighBound() return the lower and upper
bounds of an array, respectively. VarArrayLock() and VarArrayUnlock() are two special func-
tions, which are described in later detail in the next section.

VarArrayRef() is intended to work around a problem that exists in passing variant arrays to
OLE Automation servers. The problem occurs when you pass a variant containing a variant
array to an automation method, like this:

Server.PassVariantArray(VA);

The array is passed not as a variant array but rather as a variant containing a variant array—an
important distinction. If the server expected a variant array rather than a reference to one, the
server will likely encounter an error condition when you call the method with the preceding
syntax. VarArrayRef() takes care of this situation by massaging the variant into the type and
value expected by the server. Here’s the syntax for using VarArrayRef():

Server.PassVariantArray(VarArrayRef(VA));

VarIsArray() is a simple Boolean check, which returns True if the variant parameter passed to
it is a variant array or False otherwise.

Essentials for Rapid Development

PART I
68

04.65227_Ch02x 11/30/99 5:46 PM Page 68

Initializing a Large Array: VarArrayLock() and VarArrayUnlock()
Variant arrays are important in OLE Automation because they provide the only means for pass-
ing raw binary data to an OLE Automation server (note that pointers are not a legal type in
OLE Automation, as you’ll learn in Chapter 23, “COM and ActiveX”). However, if used incor-
rectly, variant arrays can be a rather inefficient means of exchanging data. Consider the follow-
ing line of code:

V := VarArrayCreate([1, 10000], VarByte);

This line creates a variant array of 10,000 bytes. Suppose you have another array (nonvariant)
declared of the same size and you want to copy the contents of this nonvariant array to the
variant array. Normally, you can only do this by looping through the elements and assigning
them to the elements of the variant array, as shown here:

begin
V := VarArrayCreate([1, 10000], VarByte);
for i := 1 to 10000 do
V[i] := A[i];

end;

The problem with this code is that it’s bogged down by the significant overhead required just
to initialize the variant array elements. This is due to the assignments to the array elements
having to go through the runtime logic to determine type compatibility, the location of each
element, and so forth. To avoid these runtime checks, you can use the VarArrayLock() func-
tion and the VarArrayUnlock() procedure.

VarArrayLock() locks the array in memory so that it cannot be moved or resized while it’s
locked, and it returns a pointer to the array data. VarArrayUnlock() unlocks an array locked
with VarArrayLock() and once again allows the variant array to be resized and moved in
memory. After the array is locked, you can employ a more efficient means to initialize the data
by using, for example, the Move() procedure with the pointer to the array’s data. The following
code performs the initialization of the variant array shown earlier, but in a much more efficient
manner:

begin
V := VarArrayCreate([1, 10000], VarByte);
P := VarArrayLock(V);
try
Move(A, P^, 10000);

finally
VarArrayUnlock(V);

end;
end;

The Object Pascal Language

CHAPTER 2
69

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

04.65227_Ch02x 11/30/99 5:46 PM Page 69

Supporting Functions
There are several other support functions for variants that you can use. These functions are
declared in the System unit and are also listed here:

procedure VarClear(var V: Variant);
procedure VarCopy(var Dest: Variant; const Source: Variant);
procedure VarCast(var Dest: Variant; const Source: Variant; VarType: Integer);
function VarType(const V: Variant): Integer;
function VarAsType(const V: Variant; VarType: Integer): Variant;
function VarIsEmpty(const V: Variant): Boolean;
function VarIsNull(const V: Variant): Boolean;
function VarToStr(const V: Variant): string;
function VarFromDateTime(DateTime: TDateTime): Variant;
function VarToDateTime(const V: Variant): TDateTime;

The VarClear() procedure clears a variant and sets the VType field to varEmpty. VarCopy()
copies the Source variant to the Dest variant. The VarCast() procedure converts a variant to a
specified type and stores that result into another variant. VarType() returns one of the varXXX
type codes for a specified variant. VarAsType() has the same functionality as VarCast().
VarIsEmpty() returns True if the type code on a specified variant is varEmpty. VarIsNull()
indicates whether a variant contains a Null value. VarToStr() converts a variant to its string
representation (an empty string in the case of a Null or empty variant). VarFromDateTime()
returns a variant that contains a given TDateTime value. Finally, VarToDateTime() returns the
TDateTime value contained in a variant.

OleVariant
The OleVariant type is nearly identical to the Variant type described throughout this section
of this chapter. The only difference between OleVariant and Variant is that OleVariant only
supports Automation-compatible types. Currently, the only VType supported that’s not
Automation-compatible is varString, the code for AnsiString. When an attempt is made to
assign an AnsiString to an OleVariant, the AnsiString will be automatically converted to an
OLE BSTR and stored in the variant as a varOleStr.

Currency
Delphi 2.0 introduced a new type called Currency, which is ideal for financial calculations.
Unlike floating-point numbers, which allow the decimal point to “float” within a number,
Currency is a fixed-point decimal type that’s hard-coded to a precision of 15 digits before the
decimal and four digits after the decimal. As such, it’s not susceptible to round-off errors as are
floating-point types. When porting your Delphi 1.0 projects, it’s a good idea to use this type in
place of Single, Real, Double, and Extended where money is involved.

Essentials for Rapid Development

PART I
70

04.65227_Ch02x 11/30/99 5:46 PM Page 70

User-Defined Types
Integers, strings, and floating-point numbers often are not enough to adequately represent vari-
ables in the real-world problems that programmers must try to solve. In cases like these, you
must create your own types to better represent variables in the current problem. In Pascal, these
user-defined types usually come in the form of records or objects; you declare these types
using the Type keyword.

Arrays
Object Pascal enables you to create arrays of any type of variable (except files). For example, a
variable declared as an array of eight integers reads like this:

var
A: Array[0..7] of Integer;

This statement is equivalent to the following C declaration:

int A[8];

It’s also equivalent to this Visual Basic statement:

Dim A(8) as Integer

Object Pascal arrays have a special property that differentiate them from other languages: They
don’t have to begin at a certain number. You can therefore declare a three-element array that
starts at 28, as in the following example:

var
A: Array[28..30] of Integer;

Because Object Pascal arrays aren’t guaranteed to begin at 0 or 1, you must use some care
when iterating over array elements in a for loop. The compiler provides built-in functions
called High() and Low(), which return the lower and upper bounds of an array variable or
type, respectively. Your code will be less error prone and easier to maintain if you use these
functions to control your for loop, as shown here:

var
A: array[28..30] of Integer;
i: Integer;

begin
for i := Low(A) to High(A) do // don’t hard-code for loop!
A[i] := i;

end;

The Object Pascal Language

CHAPTER 2
71

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

04.65227_Ch02x 11/30/99 5:46 PM Page 71

To specify multiple dimensions, use a comma-delimited list of bounds:

var
// Two-dimensional array of Integer:
A: array[1..2, 1..2] of Integer;

To access a multidimensional array, use commas to separate each dimension within one set of
brackets:

I := A[1, 2];

Dynamic Arrays
Dynamic arrays are dynamically allocated arrays in which the dimensions are not known at
compile time. To declare a dynamic array, just declare an array without including the dimen-
sions, like this:

var
// dynamic array of string:
SA: array of string;

Before you can use a dynamic array, you must use the SetLength() procedure to allocate
memory for the array:

begin
// allocate room for 33 elements:
SetLength(SA, 33);

Once memory has been allocated, you can access the elements of the dynamic array just like a
normal array:

SA[0] := ‘Pooh likes hunny’;
OtherString := SA[0];

Essentials for Rapid Development

PART I
72

TIP

Always begin character arrays at 0. Zero-based character arrays can be passed to
functions that require PChar-type variables. This is a special-case allowance that the
compiler provides.

NOTE

Dynamic arrays are always zero-based.

04.65227_Ch02x 11/30/99 5:46 PM Page 72

Dynamic arrays are lifetime managed, so there’s no need to free them when you’re through
using them because they’ll be released when they leave scope. However, there may come a
time when you wish remove the dynamic array from memory before it leaves scope (if it uses a
lot of memory, for example) To do this, you need only assign the dynamic array to nil:

SA := nil; // releases SA

Dynamic arrays are manipulated using reference semantics similar to AnsiString types rather
than value semantics like a normal array. A quick test: What is the value of A1[0] at the end of
the following code fragment?

var
A1, A2: array of Integer;

begin
SetLength(A1, 4);
A2 := A1;
A1[0] := 1;
A2[0] := 26;

The correct answer is 26. The reason is because the assignment A2 := A1 does not create a
new array but instead provides A2 with a reference to the same array as A1. Therefore, any
modifications to A2 will also affect A1. If you wish instead to make a complete copy of A1 in
A2, use the Copy() standard procedure:

A2 := Copy(A1);

After this line of code is executes, A2 and A1 will be two separate arrays initially containing the
same data. Changes to one will not affect the other. You can optionally specify the starting ele-
ment and number of elements to be copied as parameters to Copy(), as shown here:

// copy 2 elements, starting at element one:
A2 := Copy(A1, 1, 2);

Dynamic arrays can also be multidimensional. To specify multiple dimensions, add an addi-
tional array of to the declaration for each dimension:

var
// two-dimensional dynamic array of Integer:
IA: array of array of Integer;

To allocate memory for a multidimensional dynamic array, pass the sizes of the other dimen-
sions as additional parameters to SetLength():

begin
// IA will be a 5 x 5 array of Integer
SetLength(IA, 5, 5);

The Object Pascal Language

CHAPTER 2
73

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

04.65227_Ch02x 11/30/99 5:46 PM Page 73

You access multidimensional dynamic arrays the same way you do normal multidimensional
arrays; each element is separated by a comma with a single set of brackets:

IA[0,3] := 28;

Records
A user-defined structure is referred to as a record in Object Pascal, and it’s the equivalent of
C’s struct or Visual Basic’s Type. As an example, here’s a record definition in Pascal as well
as equivalent definitions in C and Visual Basic:

{ Pascal }
Type
MyRec = record
i: Integer;
d: Double;

end;

/* C */
typedef struct {
int i;
double d;

} MyRec;

‘Visual Basic
Type MyRec
i As Integer
d As Double

End Type

When working with a record, you use the dot symbol to access its fields. Here’s an example:

var
N: MyRec;

begin
N.i := 23;
N.d := 3.4;

end;

Object Pascal also supports variant records, which allow different pieces of data to overlay the
same portion of memory in the record. Not to be confused with the Variant data type, variant
records allow each overlapping data field to be accessed independently. If your background is
C/C++, you’ll recognize a variant record as being the same concept as a union within C
struct. The following code shows a variant record in which a Double, Integer, and char all
occupy the same memory space:

type
TVariantRecord = record
NullStrField: PChar;
IntField: Integer;

Essentials for Rapid Development

PART I
74

04.65227_Ch02x 11/30/99 5:46 PM Page 74

case Integer of
0: (D: Double);
1: (I: Integer);
2: (C: char);

end;

The Object Pascal Language

CHAPTER 2
75

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

NOTE

The rules of Object Pascal state that the variant portion of a record cannot be of any
lifetime-managed type.

Here’s the C++ equivalent of the preceding type declaration:

struct TUnionStruct
{
char * StrField;
int IntField;
union
{
double D;
int i;
char c;

};
};

Sets
Sets are a uniquely Pascal type that have no equivalent in Visual Basic, C, or C++ (although
Borland C++Builder does implement a template class called Set, which emulates the behavior
of a Pascal set). Sets provide a very efficient means of representing a collection of ordinal,
character, or enumerated values. You can declare a new set type using the keywords set of
followed by an ordinal type or subrange of possible set values. Here’s an example:

type
TCharSet = set of char; // possible members: #0 - #255
TEnum = (Monday, Tuesday, Wednesday, Thursday, Friday);
TEnumSet = set of TEnum; // can contain any combination of TEnum members
TSubrangeSet = set of 1..10; // possible members: 1 - 10
TAlphaSet = set of ‘A’..’z’; // possible members: ‘A’ - ‘z’

Note that a set can only contain up to 256 elements. Additionally, only ordinal types may fol-
low the set of keywords. Therefore, the following declarations are illegal:

type
TIntSet = set of Integer; // Invalid: too many elements
TStrSet = set of string; // Invalid: not an ordinal type

04.65227_Ch02x 11/30/99 5:46 PM Page 75

Sets store their elements internally as individual bits. This makes them very efficient in terms
of speed and memory usage. Sets with fewer than 32 elements in the base type can be stored
and operated upon in CPU registers, for even greater efficiency. Sets with 32 or more elements
(such as a set of char–255 elements) are stored in memory. To get the maximum performance
benefit from sets, keep the number of elements in the set’s base type under 32.

Using Sets
Use square brackets when referencing set elements. The following code demonstrates how to
declare set-type variables and assign them values:

type
TCharSet = set of char; // possible members: #0 - #255
TEnum = (Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday);
TEnumSet = set of TEnum; // can contain any combination of TEnum members

var
CharSet: TCharSet;
EnumSet: TEnumSet;
SubrangeSet: set of 1..10; // possible members: 1 - 10
AlphaSet: set of ‘A’..’z’; // possible members: ‘A’ - ‘z’

begin
CharSet := [‘A’..’J’, ‘a’, ‘m’];
EnumSet := [Saturday, Sunday];
SubrangeSet := [1, 2, 4..6];
AlphaSet := []; // Empty; no elements

end;

Set Operators
Object Pascal provides several operators for use in manipulating sets. You can use these opera-
tors to determine set membership, union, difference, and intersection.

Membership
Use the in operator to determine whether a given element is contained in a particular set. For
example, the following code would be used to determine whether the CharSet set mentioned
earlier contains the letter ‘S’:

if ‘S’ in CharSet then
// do something;

The following code determines whether EnumSet lacks the member Monday:

if not (Monday in EnumSet) then
// do something;

Union and Difference
Use the + and - operators or the Include() and Exclude() procedures to add and remove ele-
ments to and from a set variable:

Essentials for Rapid Development

PART I
76

04.65227_Ch02x 11/30/99 5:46 PM Page 76

Include(CharSet, ‘a’); // add ‘a’ to set
CharSet := CharSet + [‘b’]; // add ‘b’ to set
Exclude(CharSet, ‘x’); // remove ‘z’ from set
CharSet := CharSet - [‘y’, ‘z’]; // remove ‘y’ and ‘z’ from set

The Object Pascal Language

CHAPTER 2
77

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

TIP

When possible, use Include() and Exclude() to add and remove a single element to
and from a set rather than the + and - operators. Both Include() and Exclude()
constitute only one machine instruction each, whereas the + and - operators require
13 + 6n (where n is the size in bits of the set) instructions.

Intersection
Use the * operator to calculate the intersection of two sets. The result of the expression Set1 *
Set2 is a set containing all the members that Set1 and Set2 have in common. For example, the
following code could be used as an efficient means for determining whether a given set con-
tains multiple elements:

if [‘a’, ‘b’, ‘c’] * CharSet = [‘a’, ‘b’, ‘c’] then
// do something

Objects
Think of objects as records that also contain functions and procedures. Delphi’s object model
is discussed in much greater detail later in the “Using Delphi Objects” section of this chapter,
so this section covers just the basic syntax of Object Pascal objects. An object is defined as fol-
lows:

Type
TChildObject = class(TParentObject);
SomeVar: Integer;
procedure SomeProc;

end;

Although Delphi objects are not identical to C++ objects, this declaration is roughly equivalent
to the following C++ declaration:

class TChildObject : public TParentObject
{
int SomeVar;
void SomeProc();

};

04.65227_Ch02x 11/30/99 5:46 PM Page 77

Methods are defined in the same way as normal procedures and functions (which are discussed
in the section “Procedures and Functions”), with the addition of the object name and the dot
symbol operator:

procedure TChildObject.SomeProc;
begin
{ procedure code goes here }

end;

Object Pascal’s . symbol is similar in functionality to Visual Basic’s . operator and C++’s ::
operator. You should note that, although all three languages allow usage of classes, only Object
Pascal and C++ allow creation of new classes that behave in a fully object-oriented manner,
which we’ll describe in the section “Object-Oriented Programming.”

Essentials for Rapid Development

PART I
78

NOTE

Object Pascal objects are not laid out in memory the same as C++ objects, so it’s not
possible to use C++ objects directly from Delphi (and vice versa). However, Chapter
13, “Hard-Core Techniques,” shows a technique for sharing objects between C++ and
Delphi.

An exception to this is Borland C++Builder’s capability of creating classes that map
directly to Object Pascal classes using the proprietary __declspec(delphiclass)
directive. Such objects are likewise incompatible with regular C++ objects.

Pointers
A pointer is a variable that contains a memory location. You already saw an example of a
pointer in the PChar type earlier in this chapter. Pascal’s generic pointer type is called, aptly,
Pointer. A Pointer is sometimes called an untyped pointer because it contains only a memory
address, and the compiler doesn’t maintain any information on the data to which it points. That
notion, however, goes against the grain of Pascal’s typesafe nature, so pointers in your code
will usually be typed pointers.

NOTE

Pointers are a somewhat advanced topic, and you definitely don’t need to master
them to write a Delphi application. As you become more experienced, pointers will
become another valuable tool for your programmer’s toolbox.

04.65227_Ch02x 11/30/99 5:46 PM Page 78

Typed pointers are declared by using the ^ (or pointer) operator in the Type section of your
program. Typed pointers help the compiler keep track of exactly what kind of type a particular
pointer points to, thus enabling the compiler to keep track of what you’re doing (and can do)
with a pointer variable. Here are some typical declarations for pointers:

Type
PInt = ^Integer; // PInt is now a pointer to an Integer
Foo = record // A record type
GobbledyGook: string;
Snarf: Real;

end;
PFoo = ^Foo; // PFoo is a pointer to a foo type

var
P: Pointer; // Untyped pointer
P2: PFoo; // Instance of PFoo

The Object Pascal Language

CHAPTER 2
79

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

NOTE

C programmers will notice the similarity between Object Pascal’s ^ operator and C’s *
operator. Pascal’s Pointer type corresponds to C’s void * type.

Remember that a pointer variable only stores a memory address. Allocating space for whatever
the pointer points to is your job as a programmer. You can allocate space for a pointer by using
one of the memory-allocation routines discussed earlier and shown in Table 2.6.

NOTE

When a pointer doesn’t point to anything (its value is zero), its value is said to be
Nil, and it is often called a nil or null pointer.

If you want to access the data that a particular pointer points to, follow the pointer variable
name with the ^ operator. This method is known as dereferencing the pointer. The following
code illustrates working with pointers:

Program PtrTest;
Type
MyRec = record
I: Integer;
S: string;
R: Real;

end;

04.65227_Ch02x 11/30/99 5:46 PM Page 79

PMyRec = ^MyRec;
var
Rec : PMyRec;

begin
New(Rec); // allocate memory for Rec
Rec^.I := 10; // Put stuff in Rec. Note the dereference
Rec^.S := ‘And now for something completely different.’;
Rec^.R := 6.384;
{ Rec is now full }
Dispose(Rec); // Don’t forget to free memory!

end.

Essentials for Rapid Development

PART I
80

When to Use New()
Use the New() function to allocate memory for a pointer to a structure of a known
size. Because the compiler knows how big a particular structure is, a call to New() will
cause the correct number of bytes to be allocated, thus making it safer and more con-
venient to use than GetMem() or AllocMem(). Never allocate Pointer or PChar vari-
ables by using the New() function because the compiler cannot guess how many bytes
you need for this allocation. Remember to use Dispose() to free any memory you
allocate using the New() function.

You’ll typically use GetMem() or AllocMem() to allocate memory for structures for
which the compiler cannot know the size. The compiler cannot tell ahead of time how
much memory you want to allocate for PChar or Pointer types, for example, because
of their variable-length nature. Be careful not to try to manipulate more data than
you have allocated with these functions, however, because this is one of the classic
causes of an Access Violation error. You should use FreeMem() to clean up any memory
you allocate with GetMem() or AllocMem(). AllocMem(), by the way, is a bit safer than
GetMem() because AllocMem() always initializes the memory it allocates to zero.

One aspect of Object Pascal that may give C programmers some headaches is the strict type
checking performed on pointer types. For example, the variables a and b in the following
example are not type compatible:

var
a: ^Integer;
b: ^Integer;

By contrast, the variables a and b in the equivalent declaration in C are type compatible:

int *a;
int *b

Object Pascal creates a unique type for each pointer-to-type declaration, so you must create a
named type if you want to assign values from a to b, as shown here:

04.65227_Ch02x 11/30/99 5:46 PM Page 80

type
PtrInteger = ^Integer; // create named type

var
a, b: PtrInteger; // now a and b are compatible

Type Aliases
Object Pascal has the ability to create new names, or aliases, for types that are already defined.
For example, if you want to create a new name for an Integer called MyReallyNiftyInteger,
you could do so using the following code:

type
MyReallyNiftyInteger = Integer;

The newly defined type alias is compatible in all ways with type for which it’s an alias.
Meaning, in this case, that you could use MyReallyNiftyInteger anywhere where you could
use Integer.

It’s possible, however, to define strongly typed aliases that are considered new, unique types by
the compiler. To do this, use the type reserved word in the following manner:

type
MyOtherNeatInteger = type Integer;

Using this syntax, the MyOtherNeatInteger type will be converted to an Integer when neces-
sary for purposes of assignment, but MyOtherNeatInteger will not be compatible with Integer
when used in var and out parameters. Therefore, the following code is syntactically correct:

var
MONI: MyOtherNeatInteger;
I: Integer;

begin
I := 1;
MONI := I;

On the other hand, the following code will not compile:

procedure Goon(var Value: Integer);
begin
// some code

end;

var
M: MyOtherNeatInteger;

begin
M := 29;
Goon(M); // Error: M is not var compatible with Integer

The Object Pascal Language

CHAPTER 2
81

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

04.65227_Ch02x 11/30/99 5:46 PM Page 81

In addition to these compiler-enforced type compatibility issues, the compiler also generates
runtime type information for strongly typed aliases. This enables you to create unique property
editors for simple types, as you’ll learn in Chapter 22, “Advanced Component Techniques.”

Typecasting and Type Conversion
Typecasting is a technique by which you can force the compiler to view a variable of one type
as another type. Because of Pascal’s strongly typed nature, you’ll find that the compiler is very
picky about types matching up in the formal and actual parameters of a function call. Hence,
you occasionally will be required to cast a variable of one type to a variable of another type to
make the compiler happy. Suppose, for example, you need to assign the value of a character to
a byte variable:

var
c: char;
b: byte;

begin
c := ‘s’;
b := c; // compiler complains on this line

end.

In the following syntax, a typecast is required to convert c into a byte. In effect, a typecast
tells the compiler that you really know what you’re doing and want to convert one type to
another:

var
c: char;
b: byte;

begin
c := ‘s’;
b := byte(c); // compiler happy as a clam on this line

end.

Essentials for Rapid Development

PART I
82

NOTE

You can typecast a variable of one type to another type only if the data size of the
two variables is the same. For example, you cannot typecast a Double as an Integer.
To convert a floating-point type to an integer, use the Trunc() or Round() functions.
To convert an integer into a floating-point value, use the assignment operator:
FloatVar := IntVar.

Object Pascal also supports a special variety of typecasting between objects using the as opera-
tor, which is described later in the “Runtime Type Information” section of this chapter.

04.65227_Ch02x 11/30/99 5:46 PM Page 82

String Resources
Delphi 3 introduced the ability to place string resources directly into Object Pascal source code
using the resourcestring clause. String resources are literal strings (usually those displayed
to the user) that are physically located in a resource attached to the application or library rather
than embedded in the source code. Your source code references the string resources in place of
string literals. By separating strings from source code, your application can be more easily
translated by added string resources in a different language. String resources are declared in the
form of identifier = string literal in the resourcestring clause, as shown here:

resourcestring
ResString1 = ‘Resource string 1’;
ResString2 = ‘Resource string 2’;
ResString3 = ‘Resource string 3’;

Syntactically, resource strings can be used in your source code in a manner identical to string
constants:

resourcestring
ResString1 = ‘hello’;
ResString2 = ‘world’;

var
String1: string;

begin
String1 := ResString1 + ‘ ‘ + ResString2;
.
.
.

end;

Testing Conditions
This section compares if and case constructs in Pascal to similar constructs in C and Visual
Basic. We assume you’ve used these types of programmatic constructs before, so we don’t
spend time explaining them to you.

The if Statement
An if statement enables you to determine whether certain conditions are met before executing
a particular block of code. As an example, here’s an if statement in Pascal, followed by equiv-
alent definitions in C and Visual Basic:

{ Pascal }
if x = 4 then y := x;

The Object Pascal Language

CHAPTER 2
83

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

04.65227_Ch02x 11/30/99 5:46 PM Page 83

Use the begin and end keywords in Pascal almost as you would use { and } in C and C++. For
example, use the following construct if you want to execute multiple lines of text when a given
condition is true:

if x = 6 then begin
DoSomething;
DoSomethingElse;
DoAnotherThing;

end;

You can combine multiple conditions using the if..else construct:

if x =100 then
SomeFunction

else if x = 200 then
SomeOtherFunction

else begin
SomethingElse;
Entirely;

end;

Using case Statements
The case statement in Pascal works in much the same way as a switch statement in C and
C++. A case statement provides a means for choosing one condition among many possibilities
without a huge if..else if..else if construct. Here’s an example of Pascal’s case statement:

case SomeIntegerVariable of
101 : DoSomething;
202 : begin

DoSomething;

Essentials for Rapid Development

PART I
84

NOTE

If you have an if statement that makes multiple comparisons, make sure you enclose
each set of comparisons in parentheses for code clarity. Do this:

if (x = 7) and (y = 8) then

However, don’t do this (it causes the compiler displeasure):

if x = 7 and y = 8 then

/* C */
if (x == 4) y = x;

‘Visual Basic
If x = 4 Then y = x

04.65227_Ch02x 11/30/99 5:46 PM Page 84

Here’s the C switch statement equivalent to the preceding example:

switch (SomeIntegerVariable)
{
case 101: DoSomeThing; break;
case 202: DoSomething;

DoSomethingElse; break
case 303: DoAnotherThing; break;
default: DoTheDefault;

}

Loops
A loop is a construct that enables you to repeatedly perform some type of action. Pascal’s loop
constructs are very similar to what you should be familiar with from your experience with
other languages, so this chapter doesn’t spend any time teaching you about loops. This section
describes the various loop constructs you can use in Pascal.

The for Loop
A for loop is ideal when you need to repeat an action a predetermined number of times.
Here’s an example, albeit not a very useful one, of a for loop that adds the loop index to a
variable 10 times:

var
I, X: Integer;

begin
X := 0;
for I := 1 to 10 do
inc(X, I);

end.

The Object Pascal Language

CHAPTER 2
85

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

NOTE

The selector type of a case statement must be an ordinal type. It’s illegal to use
nonordinal types, such as strings, as case selectors.

DoSomethingElse;
end;

303 : DoAnotherThing;
else DoTheDefault;

end;

04.65227_Ch02x 11/30/99 5:46 PM Page 85

The C equivalent of the preceding example is as follows:

void main(void) {
int x, i;
x = 0;
for(i=1; i<=10; i++)
x += i;

}

Here’s the Visual Basic equivalent of the same concept:

X = 0
For I = 1 to 10
X = X + I

Next I

Essentials for Rapid Development

PART I
86

CAUTION

A caveat to those familiar with Delphi 1: Assignments to the loop control variable are
no longer allowed due to the way the loop is optimized and managed by the 32-bit
compiler.

The while Loop
Use a while loop construct when you want some part of your code to repeat itself while some
condition is true. A while loop’s conditions are tested before the loop is executed, and a classic
example for the use of a while loop is to repeatedly perform some action on a file as long as
the end of the file is not encountered. Here’s an example that demonstrates a loop that reads
one line at a time from a file and writes it to the screen:

Program FileIt;

{$APPTYPE CONSOLE}

var
f: TextFile; // a text file
s: string;

begin
AssignFile(f, ‘foo.txt’);
Reset(f);
while not EOF(f) do begin
readln(f, S);
writeln(S);

end;
CloseFile(f);

end.

04.65227_Ch02x 11/30/99 5:46 PM Page 86

Pascal’s while loop works basically the same as C’s while loop or Visual Basic’s Do While loop.

repeat..until
The repeat..until loop addresses the same type of problem as a while loop but from a dif-
ferent angle. It repeats a given block of code until a certain condition becomes True. Unlike a
while loop, the loop code is always executed at least once because the condition is tested at the
end of the loop. Pascal’s repeat..until is roughly equivalent to C’s do..while loop.

For example, the following code snippet repeats a statement that increments a counter until the
value of the counter becomes greater than 100:

var
x: Integer;

begin
X := 1;
repeat
inc(x);

until x > 100;
end.

The Break() Procedure
Calling Break() from inside a while, for, or repeat loop causes the flow of your program to
skip immediately to the end of the currently executing loop. This method is useful when you
need to leave the loop immediately because of some circumstance that may arise within the
loop. Pascal’s Break() procedure is analogous to C’s Break and Visual Basic’s Exit statement.
The following loop uses Break() to terminate the loop after five iterations:

var
i: Integer;

begin
for i := 1 to 1000000 do
begin
MessageBeep(0); // make the computer beep
if i = 5 then Break;

end;
end;

The Continue() Procedure
Call Continue() inside a loop when you want to skip over a portion of code and the flow of
control to continue with the next iteration of the loop. Note in the following example that the
code after Continue() is not executed in the first iteration of the loop:

var
i: Integer;

The Object Pascal Language

CHAPTER 2
87

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

04.65227_Ch02x 11/30/99 5:46 PM Page 87

begin
for i := 1 to 3 do
begin
writeln(i, ‘. Before continue’);
if i = 1 then Continue;
writeln(i, ‘. After continue’);

end;
end;

Procedures and Functions
As a programmer, you should already be familiar with the basics of procedures and functions.
A procedure is a discrete program part that performs some particular task when it’s called and
then returns to the calling part of your code. A function works the same except that a function
returns a value after its exit to the calling part of the program.

If you’re familiar with C or C++, consider that a Pascal procedure is equivalent to a C or C++
function that returns void, whereas a function corresponds to a C or C++ function that has a
return value.

Listing 2.1 demonstrates a short Pascal program with a procedure and a function.

LISTING 2.1 An Example of Functions and Procedures

Program FuncProc;

{$APPTYPE CONSOLE}

procedure BiggerThanTen(i: Integer);
{ writes something to the screen if I is greater than 10 }
begin
if I > 10 then
writeln(‘Funky.’);

end;

function IsPositive(I: Integer): Boolean;
{ Returns True if I is 0 or positive, False if I is negative }
begin
if I < 0 then
Result := False

else
Result := True;

end;

var
Num: Integer;

begin

Essentials for Rapid Development

PART I
88

04.65227_Ch02x 11/30/99 5:46 PM Page 88

Passing Parameters
Pascal enables you to pass parameters by value or by reference to functions and procedures.
The parameters you pass can be of any base or user-defined type or an open array (open arrays
are discussed later in this chapter). Parameters also can be constant if their values will not
change in the procedure or function.

Value Parameters
Value parameters are the default mode of parameter passing. When a parameter is passed by
value, it means that a local copy of that variable is created, and the function or procedure oper-
ates on the copy. Consider the following example:

procedure Foo(s: string);

When you call a procedure in this way, a copy of string s will be made, and Foo() will operate
on the local copy of s. This means that you can choose the value of s without having any effect
on the variable passed into Foo().

The Object Pascal Language

CHAPTER 2
89

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

NOTE

The local variable Result in the IsPositive() function deserves special attention.
Every Object Pascal function has an implicit local variable called Result that contains
the return value of the function. Note that unlike C and C++, the function doesn’t
terminate as soon as a value is assigned to Result.

You also can return a value from a function by assigning the name of a function to a
value inside the function’s code. This is standard Pascal syntax and a holdover from
previous versions of Borland Pascal. If you choose to use the function name within
the body, be careful to note that there is a huge difference between using the func-
tion name on the left side of an assignment operator and using it somewhere else in
your code. If you use it on the left, you are assigning the function return value. If you
use it somewhere else in your code, you are calling the function recursively!

Note that the implicit Result variable is not allowed when the compiler’s Extended
Syntax option is disabled in the Project, Options, Compiler dialog box or when you’re
using the {$X-} directive.

Num := 23;
BiggerThanTen(Num);
if IsPositive(Num) then
writeln(Num, ‘Is positive.’)

else
writeln(Num, ‘Is negative.’);

end.

04.65227_Ch02x 11/30/99 5:46 PM Page 89

Reference Parameters
Pascal enables you to pass variables to functions and procedures by reference; parameters
passed by reference are also called variable parameters. Passing by reference means that the
function or procedure receiving the variable can modify the value of that variable. To pass a
variable by reference, use the keyword var in the procedure’s or function’s parameter list:

procedure ChangeMe(var x: longint);
begin
x := 2; { x is now changed in the calling procedure }

end;

Instead of making a copy of x, the var keyword causes the address of the parameter to be
copied so that its value can be directly modified.

Using var parameters is equivalent to passing variables by reference in C++ using the & opera-
tor. Like C++’s & operator, the var keyword causes the address of the variable to be passed to
the function or procedure rather than the value of the variable.

Constant Parameters
If you don’t want the value of a parameter passed into a function to change, you can declare it
with the const keyword. The const keyword not only prevents you from modifying the value
of the parameters but it also generates more optimal code for strings and records passed into
the procedure or function. Here’s an example of a procedure declaration that receives a con-
stant string parameter:

procedure Goon(const s: string);

Open Array Parameters
Open array parameters provide you with the capability for passing a variable number of argu-
ments to functions and procedures. You can either pass open arrays of some homogenous type
or constant arrays of differing types. The following code declares a function that accepts an
open array of integers:

function AddEmUp(A: array of Integer): Integer;

You may pass variables, constants, or constant expressions to open array functions and proce-
dures. The following code demonstrates this by calling AddEmUp() and passing a variety of dif-
ferent elements:

var
i, Rez: Integer;

const
j = 23;

begin
i := 8;

Essentials for Rapid Development

PART I
90

04.65227_Ch02x 11/30/99 5:46 PM Page 90

Rez := AddEmUp([i, 50, j, 89]);

In order to work with an open array inside the function or procedure, you can use the High(),
Low(), and SizeOf() functions in order to obtain information about the array. To illustrate this,
the following code shows an implementation of the AddEmUp() function that returns the sum of
all the numbers passed in A:

function AddEmUp(A: array of Integer): Integer;
var
i: Integer;

begin
Result := 0;
for i := Low(A) to High(A) do
inc(Result, A[i]);

end;

Object Pascal also supports an array of const, which allows you to pass heterogeneous data
types in an array to a function or procedure. The syntax for defining a function or procedure
that accepts an array of const is as follows:

procedure WhatHaveIGot(A: array of const);

You could call the preceding function with the following syntax:

WhatHaveIGot([‘Tabasco’, 90, 5.6, @WhatHaveIGot, 3.14159, True, ‘s’]);

The compiler implicitly converts all parameters to type TVarRec when they are passed to the
function or procedure accepting the array of const. TVarRec is defined in the System unit as
follows:

type
PVarRec = ^TVarRec;
TVarRec = record
case Byte of
vtInteger: (VInteger: Integer; VType: Byte);
vtBoolean: (VBoolean: Boolean);
vtChar: (VChar: Char);
vtExtended: (VExtended: PExtended);
vtString: (VString: PShortString);
vtPointer: (VPointer: Pointer);
vtPChar: (VPChar: PChar);
vtObject: (VObject: TObject);
vtClass: (VClass: TClass);
vtWideChar: (VWideChar: WideChar);
vtPWideChar: (VPWideChar: PWideChar);
vtAnsiString: (VAnsiString: Pointer);
vtCurrency: (VCurrency: PCurrency);
vtVariant: (VVariant: PVariant);

The Object Pascal Language

CHAPTER 2
91

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

04.65227_Ch02x 11/30/99 5:46 PM Page 91

vtInterface: (VInterface: Pointer);
vtWideString: (VWideString: Pointer);
vtInt64: (VInt64: PInt64);

end;

The VType field indicates what type of data the TVarRec contains. This field can have any one
of the following values:

const
{ TVarRec.VType values }
vtInteger = 0;
vtBoolean = 1;
vtChar = 2;
vtExtended = 3;
vtString = 4;
vtPointer = 5;
vtPChar = 6;
vtObject = 7;
vtClass = 8;
vtWideChar = 9;
vtPWideChar = 10;
vtAnsiString = 11;
vtCurrency = 12;
vtVariant = 13;
vtInterface = 14;
vtWideString = 15;
vtInt64 = 16;

As you might guess, because array of const in the code allows you to pass parameters
regardless of their type, they can be difficult to work with on the receiving end. As an example
of how to work with array of const, the following implementation for WhatHaveIGot() iter-
ates through the array and shows a message to the user indicating what type of data was passed
in which index:

procedure WhatHaveIGot(A: array of const);
var
i: Integer;
TypeStr: string;

begin
for i := Low(A) to High(A) do
begin
case A[i].VType of
vtInteger : TypeStr := ‘Integer’;
vtBoolean : TypeStr := ‘Boolean’;
vtChar : TypeStr := ‘Char’;
vtExtended : TypeStr := ‘Extended’;
vtString : TypeStr := ‘String’;
vtPointer : TypeStr := ‘Pointer’;
vtPChar : TypeStr := ‘PChar’;

Essentials for Rapid Development

PART I
92

04.65227_Ch02x 11/30/99 5:46 PM Page 92

vtObject : TypeStr := ‘Object’;
vtClass : TypeStr := ‘Class’;
vtWideChar : TypeStr := ‘WideChar’;
vtPWideChar : TypeStr := ‘PWideChar’;
vtAnsiString : TypeStr := ‘AnsiString’;
vtCurrency : TypeStr := ‘Currency’;
vtVariant : TypeStr := ‘Variant’;
vtInterface : TypeStr := ‘Interface’;
vtWideString : TypeStr := ‘WideString’;
vtInt64 : TypeStr := ‘Int64’;

end;
ShowMessage(Format(‘Array item %d is a %s’, [i, TypeStr]));

end;
end;

Scope
Scope refers to some part of your program in which a given function or variable is known to
the compiler. A global constant is in scope at all points in your program, for example, whereas
a variable local to some procedure only has scope within that procedure. Consider Listing 2.2.

LISTING 2.2 An Illustration of Scope

program Foo;

{$APPTYPE CONSOLE}

const
SomeConstant = 100;

var
SomeGlobal: Integer;
R: Real;

procedure SomeProc(var R: Real);
var
LocalReal: Real;

begin
LocalReal := 10.0;
R := R - LocalReal;

end;

begin
SomeGlobal := SomeConstant;
R := 4.593;
SomeProc(R);

end.

The Object Pascal Language

CHAPTER 2
93

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

04.65227_Ch02x 11/30/99 5:46 PM Page 93

SomeConstant, SomeGlobal, and R have global scope—their values are known to the compiler
at all points within the program. Procedure SomeProc() has two variables in which the scope is
local to that procedure: R and LocalReal. If you try to access LocalReal outside of
SomeProc(), the compiler displays an unknown identifier error. If you access R within
SomeProc(), you’ll be referring to the local version, but if you access R outside that procedure,
you’ll be referring to the global version.

Units
Units are the individual source code modules that make up a Pascal program. A unit is a place
for you to group functions and procedures that can be called from your main program. To be a
unit, a source module must consist of at least three parts:

• A unit statement. Every unit must have as its first line a statement saying that it’s a unit
and identifying the unit name. The name of the unit always must match the filename. For
example, if you have a file named FooBar, the statement would be

unit FooBar;

• The interface part. After the unit statement, a unit’s next functional line of code
should be the interface statement. Everything following this statement, up to the
implementation statement, is information that can be shared with your program and
with other units. The interface part of a unit is where you declare the types, constants,
variables, procedures, and functions that you want to make available to your main pro-
gram and to other units. Only declarations—never procedure bodies—can appear in the
interface. The interface statement should be one word on one line:

interface

• The implementation part. This follows the interface part of the unit. Although the
implementation part of the unit contains primarily procedures and functions, it’s also
where you declare any types, constants, and variables that you do not want to make
available outside of this unit. The implementation part is where you define any func-
tions or procedures that you declared in the interface part. The implementation state-
ment should be one word on one line:

implementation

Optionally, a unit can also include two other parts:

• An initialization part. This portion of the unit, which is located near the end of the
file, contains any initialization code for the unit. This code will be executed before the
main program begins execution, and it executes only once.

• A finalization part. This portion of the unit, which is located in between the
initialization and end. of the unit, contains any cleanup code that executes when the
program terminates. The finalization section was introduced to the language in Delphi

Essentials for Rapid Development

PART I
94

04.65227_Ch02x 11/30/99 5:46 PM Page 94

The Object Pascal Language

CHAPTER 2
95

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

NOTE

When several units have initialization/finalization code, execution of each sec-
tion proceeds in the order in which the units are encountered by the compiler (the
first unit in the program’s uses clause, then the first unit in that unit’s uses clause,
and so on). Also, it’s a bad idea to write initialization and finalization code that relies
on such ordering because one small change to the uses clause can cause some diffi-
cult-to-find bugs!

The uses Clause
The uses clause is where you list the units that you want to include in a particular program or
unit. For example, if you have a program called FooProg that uses functions and types in two
units, UnitA and UnitB, the proper uses declaration is as follows:

Program FooProg;

uses UnitA, UnitB;

Units can have two uses clauses: one in the interface section and one in the implementation
section.

Here’s code for a sample unit:

Unit FooBar;

interface

uses BarFoo;

{ public declarations here }

implementation

uses BarFly;

{ private declarations here }

initialization
{ unit initialization here }

2.0. In Delphi 1.0, unit finalization was accomplished by adding a new exit procedure
using the AddExitProc() function. If you’re porting an application from Delphi 1.0, you
should move your exit procedures into the finalization part of your units.

04.65227_Ch02x 11/30/99 5:46 PM Page 95

finalization
{ unit clean-up here }

end.

Circular Unit References
Occasionally, you’ll have a situation where UnitA uses UnitB and UnitB uses UnitA. This is
called a circular unit reference. The occurrence of a circular unit reference is often an indica-
tion of a design flaw in your application; you should avoid structuring your program with a cir-
cular reference. The optimal solution is often to move a piece of data that both UnitA and
UnitB need to use out to a third unit. However, as with most things, sometimes you just can’t
avoid the circular unit reference. In such a case, move one of the uses clauses to the imple-
mentation part of your unit and leave the other one in the interface part. This usually solves
the problem.

Packages
Delphi packages enable you to place portions of your application into separate modules, which
can be shared across multiple applications. If you already have an existing investment in
Delphi 1 or 2 code, you’ll appreciate that you can take advantage of packages without any
changes to your existing source code.

Think of a package as a collection of units stored in a separate DLL-like module (a Borland
Package Library, or BPL file). Your application can then link with these “packaged” units at
runtime rather than compile/link time. Because the code for these units resides in the BPL file
rather than in your EXE or DLL, the size of your EXE or DLL can become very small. Four
types of packages are available for you to create and use:

• Runtime package. This type of package contains units required at runtime by your appli-
cation. When compiled to depend on a particular runtime package, your application will
not run in the absence of that package. Delphi’s VCL50.BPL is an example of this type of
package.

• Design package. This type of package contains elements necessary for application design
such as components, property and component editors, and experts. It can be installed into
Delphi’s component library using the Component, Install Package menu item. Delphi’s
DCL*.BPL packages are examples of this type of package. This type of package is
described in more detail in Chapter 21, “Writing Delphi Custom Components.”

• Runtime and design package. This package serves both of the purposes listed in the first
two items. Creating this type of package makes application development and distribution
a bit simpler, but this type of package is less efficient because it must carry the baggage
of design support even in your distributed applications.

Essentials for Rapid Development

PART I
96

04.65227_Ch02x 11/30/99 5:46 PM Page 96

• Neither runtime nor design package. This rare breed of package is intended to be used
only by other packages and is not intended to be referenced directly by an application or
used in the design environment.

Using Delphi Packages
Package-enabling your Delphi applications is easy. Simply check the Build with Runtime
Packages check box in the Project, Options, Packages dialog box. The next time you build
your application after selecting this option, your application will be linked dynamically to run-
time packages rather than having units linked statically into your EXE or DLL. The result will
be a much more svelte application (although bear in mind that you’ll have to deploy the neces-
sary packages with your application).

Package Syntax
Packages are most commonly created using the Package Editor, which you invoke by choosing
the File, New, Package menu item. This editor generates a Delphi Package Source (DPK) file,
which will be compiled into a package. The syntax for this DPK file is quite simple, and it
uses the following format:

package PackageName

requires Package1, Package2, ...;

contains
Unit1 in ‘Unit1.pas’,
Unit2, in ‘Unit2.pas’,

...;
end.

Packages listed in the requires clause are required in order for this package to load. Typically,
packages containing units used by units listed in the contains clause are listed here. Units
listed in the contains clause will be compiled into this package. Note that units listed here
must not also be listed in the contains clause of any of the packages listed in the requires
clause. Note also that any units used by units in the contains clause will be implicitly pulled
into this package (unless they’re contained in a required package).

Object-Oriented Programming
Volumes have been written on the subject of object-oriented programming (OOP). Often, OOP
seems more like a religion than a programming methodology, spawning arguments about its
merits (or lack thereof) passionate and spirited enough to make the Crusades look like a slight

The Object Pascal Language

CHAPTER 2
97

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

04.65227_Ch02x 11/30/99 5:46 PM Page 97

disagreement. We’re not orthodox OOPists, and we’re not going to get involved in the relative
merits of OOP; we just want to give you the lowdown on a fundamental principle on which
Delphi’s Object Pascal Language is based.

OOP is a programming paradigm that uses discrete objects—containing both data and code—
as application building blocks. Although the OOP paradigm doesn’t necessarily lend itself to
easier-to-write code, the result of using OOP traditionally has been easy-to-maintain code.
Having objects’ data and code together simplifies the process of hunting down bugs, fixing
them with minimal effect on other objects, and improving your program one part at a time.
Traditionally, an OOP language contains implementations of at least three OOP concepts:

• Encapsulation. Deals with combining related data fields and hiding the implementation
details. The advantages of encapsulation include modularity and isolation of code from
other code.

• Inheritance. The capability to create new objects that maintain the properties and behav-
ior of ancestor objects. This concept enables you to create object hierarchies such as
VCL—first creating generic objects and then creating more specific descendants of those
objects that have more narrow functionality.

The advantage of inheritance is the sharing of common code. Figure 2.4 presents an
example of inheritance—how one root object, fruit, is the ancestor object of all fruits,
including the melon. The melon is ancestor of all melons, including the watermelon. You
get the picture.

Essentials for Rapid Development

PART I
98

Fruit

PippinRed Delicious

GreenRed Honey DewWatermelon

BananasApples Melons

FIGURE 2.4
An illustration of inheritance.

• Polymorphism. Literally, polymorphism means “many shapes.” Calls to methods of an
object variable will call code appropriate to whatever instance is actually in the variable.

04.65227_Ch02x 11/30/99 5:46 PM Page 98

A Note on Multiple Inheritance
Object Pascal does not support multiple inheritance of objects as C++ does. Multiple
inheritance is the concept of a given object being derived from two separate objects,
creating an object that contains all the code and data of the two parent objects.

To expand on the analogy presented in Figure 2.4, multiple inheritance enables you
to create a candy apple object by creating a new object that inherits from the apple
class and some other class called “candy.” Although this functionality seems useful, it
often introduces more problems and inefficiencies into your code than it solves.

Object Pascal provides two approaches to solving this problem. The first solution is to
make one class contain the other class. You’ll see this solution throughout Delphi’s
VCL. To build upon the candy apple analogy, you would make the candy object a
member of the apple object. The second solution is to use interfaces (you’ll learn
more about interfaces in the section “Interfaces”). Using interfaces, you could essen-
tially have one object that supports both a candy and an apple interface.

The Object Pascal Language

CHAPTER 2
99

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

NOTE

It’s generally considered bad OOP style to access an object’s fields directly. This is
because the implementation details of the object may change. Instead, use accessor
properties, which allow a standard object interface without becoming embroiled in
the details of how the objects are implemented. Properties are explained in the
“Properties” section later in this chapter.

Object-Based Versus Object-Oriented Programming
In some tools, you manipulate entities (objects), but you cannot create your own objects.
ActiveX (formerly OCX) controls in Visual Basic are a good example of this. Although you

You should understand the following three terms before you continue to explore the concept of
objects:

• Field. Also called field definitions or instance variables, fields are data variables con-
tained within objects. A field in an object is just like a field in a Pascal record. In C++,
fields sometimes are referred to as data members.

• Method. The name for procedures and functions belonging to an object. Methods are
called member functions in C++.

• Property. An entity that acts as an accessor to the data and code contained within an
object. Properties insulate the end user from the implementation details of an object.

04.65227_Ch02x 11/30/99 5:46 PM Page 99

can use an ActiveX control in your applications, you cannot create one, and you cannot inherit
one ActiveX control from another in Visual Basic. Environments such as these often are called
object-based environments.

Delphi is a fully object-oriented environment. This means that you can create new objects in
Delphi either from scratch or based on existing components. This includes all Delphi objects,
be they visual, nonvisual, or even design-time forms.

Using Delphi Objects
As mentioned earlier, objects (also called classes) are entities that can contain both data and
code. Delphi objects also provide you with all the power of object-oriented programming in
offering full support of inheritance, encapsulation, and polymorphism.

Declaration and Instantiation
Of course, before using an object, you must have declared an object using the class keyword.
As described earlier in this chapter, objects are declared in the type section of a unit or
program:

type
TFooObject = class;

In addition to an object type, you usually also will have a variable of that class type, or
instance, declared in the var section:

var
FooObject: TFooObject;

You create an instance of an object in Object Pascal by calling one of its constructors. A con-
structor is responsible for creating an instance of your object and allocating any memory or ini-
tializing any fields necessary so that the object is in a usable state upon exiting the constructor.
Object Pascal objects always have at least one constructor called Create()—although it’s pos-
sible for an object to have more than one constructor. Depending on the type of object,
Create() can take different numbers of parameters. This chapter focuses on the simple case
where Create() takes no parameters.

Unlike C++, object constructors in Object Pascal are not called automatically, and it’s incum-
bent on the programmer to call the object constructor. The syntax for calling a constructor is as
follows:

FooObject := TFooObject.Create;

Notice that the syntax for a constructor call is a bit unique. You’re referencing the Create()
method of the object by the type rather than the instance, as you would with other methods.

Essentials for Rapid Development

PART I
100

04.65227_Ch02x 11/30/99 5:46 PM Page 100

Destruction
When you’re finished using an object, you should deallocate the instance by calling its Free()
method. The Free() method first checks to ensure that the object instance is not Nil; then it
calls the object’s destructor method, Destroy(). The destructor, of course, does the opposite of
the constructor; it deallocates any allocated memory and performs any other housekeeping
required in order for the object to be properly removed from memory. The syntax is simple:

FooObject.Free;

Unlike the call to Create(), the object instance is used in the call to the Free() method.
Remember never to call Destroy() directly but instead to call the safer Free() method.

The Object Pascal Language

CHAPTER 2
101

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

NOTE

When an object instance is created using the constructor, the compiler will ensure
that every field in your object is initialized. You can safely assume that all numbers
will be initialized to 0, all pointers to Nil, and all strings will be empty.

CAUTION

In C++, the destructor of an object declared statically is called automatically when
your object leaves scope, but you must call the destructor for any dynamically allo-
cated objects. The rule is the same in Object Pascal, except that all objects are implic-
itly dynamic in Object Pascal, so you must follow the rule of thumb that anything you
create, you must free. There are a couple of important exceptions to this rule, how-
ever. The first is when your object is owned by other objects (as described in Chapter
20, “Key Elements of the Visual Component Library”), it will be freed for you. The sec-
ond is reference counted objects (such as those descending from TInterfacedObject
or TComObject), which are destroyed when the last reference is released.

You might be asking yourself how all these methods got into your little object. You certainly
didn’t declare them yourself, right? Right. The methods just discussed actually come from the
Object Pascal’s base TObject object. In Object Pascal, all objects are always descendants of
TObject regardless of whether they’re declared as such. Therefore, the declaration

This may seem odd at first, but it does make sense. FooObject, a variable, is undefined at the
time of the call, but the code for TFooObject, a type, is static in memory. A static call to its
Create() method is therefore totally valid.

The act of calling a constructor to create an instance of an object is often called instantiation.

04.65227_Ch02x 11/30/99 5:46 PM Page 101

Type TFoo = Class;

is equivalent to the declaration

Type TFoo = Class(TObject);

Methods
Methods are procedures and functions belonging to a given object. Methods are those things
that give an object behavior rather than just data. Two important methods of the objects you
create are the constructor and the destructor methods, which we just covered. You can also cre-
ate custom methods in your objects to perform a variety of tasks.

Creating a method is a two-step process. You first must declare the method in the object type
declaration, and then you must define the method in the code. The following code demon-
strates the process of declaring and defining a method:

type
TBoogieNights = class
Dance: Boolean;
procedure DoTheHustle;

end;
procedure TBoogieNights.DoTheHustle;
begin
Dance := True;

end;

Note that when defining the method body, you have to use the fully qualified name, as you did
when defining the DoTheHustle method. It’s important also to note that the object’s Dance field
can be accessed directly from within the method.

Method Types
Object methods can be declared as static, virtual, dynamic, or message. Consider the fol-
lowing example object:

TFoo = class
procedure IAmAStatic;
procedure IAmAVirtual; virtual;
procedure IAmADynamic; dynamic;
procedure IAmAMessage(var M: TMessage); message wm_SomeMessage;

end;

Static Methods
IAmAStatic is a static method. The static method is the default method type, and it works sim-
ilarly to a regular procedure or function call. The compiler knows the address of these meth-
ods, and so, when you call a static method, it’s able to link that information into the executable

Essentials for Rapid Development

PART I
102

04.65227_Ch02x 11/30/99 5:46 PM Page 102

statically. Static methods execute the fastest; however, they do not have the ability to be over-
ridden to provide polymorphism.

Virtual Methods
IAmAVirtual is a virtual method. Virtual methods are called in the same way as static methods,
but because virtual methods can be overridden, the compiler does not know the address of a
particular virtual function when you call it in your code. The compiler, therefore, builds a
Virtual Method Table (VMT) that provides a means to look up function addresses at runtime.
All virtual method calls are dispatched at runtime through the VMT. An object’s VMT contains
all its ancestor’s virtual methods as well as the ones it declares; therefore, virtual methods use
more memory than dynamic methods, although they execute faster.

Dynamic Methods
IAmADynamic is a dynamic method. Dynamic methods are basically virtual methods with a dif-
ferent dispatching system. The compiler assigns a unique number to each dynamic method and
uses those numbers, along with method addresses, to build a Dynamic Method Table (DMT).
Unlike the VMT, an object’s DMT contains only the dynamic methods that it declares, and that
method relies on its ancestor’s DMTs for the rest of its dynamic methods. Because of this,
dynamic methods are less memory intensive than virtual methods, but they take longer to call
because you may have to propagate through several ancestor DMTs before finding the address
of a particular dynamic method.

Message Methods
IAmAMessage is a message-handling method. The value after the message keyword dictates
what message the method will respond to. Message methods are used to create an automatic
response to Windows messages, and you generally don’t call them directly. Message handling
is discussed in detail in Chapter 5, “Understanding Messages.”

Overriding Methods
Overriding a method is Object Pascal’s implementation of the OOP concept of polymorphism.
It enables you to change the behavior of a method from descendant to descendant. Object
Pascal methods can be overridden only if they’re first declared as virtual or dynamic. To
override a method, just use the override directive instead of virtual or dynamic in your
descendant object type. For example, you could override the IAmAVirtual and IAmADynamic
methods as shown here:

TFooChild = class(TFoo)
procedure IAmAVirtual; override;
procedure IAmADynamic; override;
procedure IAmAMessage(var M: TMessage); message wm_SomeMessage;

end;

The Object Pascal Language

CHAPTER 2
103

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

04.65227_Ch02x 11/30/99 5:46 PM Page 103

The override directive replaces the original method’s entry in the VMT with the new method.
If you had re-declared IAmAVirtual and IAmADynamic with the virtual or dynamic keyword
instead of override, you would have created new methods rather than overriding the ancestor
methods. Also, if you attempt to override a static method in a descendant type, the static
method in the new object completely replaces the method in the ancestor type.

Method Overloading
Like regular procedures and functions, methods can be overloaded so that a class can contain
multiple methods of the same name with differing parameter lists. Overloaded methods must
be marked with the overload directive, although the use of the directive on the first instance of
a method name in a class hierarchy is optional. The following code example shows a class con-
taining three overloaded methods:

type
TSomeClass = class
procedure AMethod(I: Integer); overload;
procedure AMethod(S: string); overload;
procedure AMethod(D: Double); overload;

end;

Reintroducing Method Names
Occasionally, you may want to add a method to one of your classes to replace a method of the
same name in an ancestor of your class. In this case, you don’t want to override the ancestor
method but instead obscure and completely supplant the base class method. If you simply add
the method and compile, you’ll see that the compiler will produce a warning explaining that
the new method hides a method of the same name in a base class. To suppress this error, use
the reintroduce directive on the method in the ancestor class. The following code example
demonstrates proper use of the reintroduce directive:

type
TSomeBase = class
procedure Cooper;

end;

TSomeClass = class
procedure Cooper; reintroduce;

end;

Self
An implicit variable called Self is available within all object methods. Self is a pointer to the
class instance that was used to call the method. Self is passed by the compiler as a hidden
parameter to all methods.

Essentials for Rapid Development

PART I
104

04.65227_Ch02x 11/30/99 5:46 PM Page 104

Properties
It may help to think of properties as special accessor fields that enable you to modify data and
execute code contained within your class. For components, properties are those things that
show up in the Object Inspector window when published. The following example illustrates a
simplified Object with a property:

TMyObject = class
private
SomeValue: Integer;
procedure SetSomeValue(AValue: Integer);

public
property Value: Integer read SomeValue write SetSomeValue;

end;
procedure TMyObject.SetSomeValue(AValue: Integer);
begin
if SomeValue <> AValue then
SomeValue := AValue;

end;

TMyObject is an object that contains the following: one field (an integer called SomeValue), one
method (a procedure called SetSomeValue), and one property called Value. The sole purpose
of the SetSomeValue procedure is to set the value of the SomeValue field. The Value property
doesn’t actually contain any data. Value is an accessor for the SomeValue field; when you ask
Value what number it contains, it reads the value from SomeValue. When you attempt to set the
value of the Value property, Value calls SetSomeValue to modify the value of SomeValue. This
is useful for two reasons: First, it allows you to present the users of the class with a simple
variable without making them worry about the class’s implementation details. Second, you can
allow the users to override accessor methods in descendant classes for polymorphic behavior.

Visibility Specifiers
Object Pascal offers you further control over the behavior of your objects by enabling you to
declare fields and methods with directives such as protected, private, public, published,
and automated. The syntax for using these keywords is as follows:

TSomeObject = class
private
APrivateVariable: Integer;
AnotherPrivateVariable: Boolean;

protected
procedure AProtectedProcedure;
function ProtectMe: Byte;

public
constructor APublicContructor;
destructor APublicKiller;

The Object Pascal Language

CHAPTER 2
105

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

04.65227_Ch02x 11/30/99 5:46 PM Page 105

published
property AProperty read APrivateVariable write APrivateVariable;

end;

You can place as many fields or methods as you want under each directive. Style dictates that
you should indent the specifier the same as you indent the class name. The meanings of these
directives follow:

• private. These parts of your object are accessible only to code in the same unit as your
object’s implementation. Use this directive to hide implementation details of your objects
from users and to prevent users from directly modifying sensitive members of your
object.

• protected. Your object’s protected members can be accessed by descendants of your
object. This capability enables you to hide the implementation details of your object
from users while still providing maximum flexibility to descendants of your object.

• public. These fields and methods are accessible anywhere in your program. Object con-
structors and destructors always should be public.

• published. Runtime Type Information (RTTI) to be generated for the published portion
of your objects enables other parts of your application to get information on your
object’s published parts. The Object Inspector uses RTTI to build its list of properties.

• automated. The automated specifier is obsolete but remains for compatibility with
Delphi 2. Chapter 23, “COM and ActiveX,” has more details on this.

Here, then, is code for the TMyObject class that was introduced earlier, with directives added to
improve the integrity of the object:

TMyObject = class
private
SomeValue: Integer;
procedure SetSomeValue(AValue: Integer);

published
property Value: Integer read SomeValue write SetSomeValue;

end;

procedure TMyObject.SetSomeValue(AValue: Integer);
begin
if SomeValue <> AValue then
SomeValue := AValue;

end;

Now, users of your object will not be able to modify the value of SomeValue directly, and they
will have to go through the interface provided by the property Value to modify the object’s
data.

Essentials for Rapid Development

PART I
106

04.65227_Ch02x 11/30/99 5:46 PM Page 106

”Friend” Classes
The C++ language has a concept of friend classes (that is, classes that are allowed access to the
private data and functions in other classes). This is accomplished in C++ using the friend key-
word. Although, strictly speaking, Object Pascal doesn’t have a similar keyword, it does allow
for similar functionality. All objects declared within the same unit are considered “friends” and
are allowed access to the private information located in other objects in that unit.

Inside Objects
All class instances in Object Pascal are actually stored as 32-bit pointers to class instance data
located in heap memory. When you access fields, methods, or properties within a class, the
compiler automatically performs a little bit of hocus-pocus that generates the code to derefer-
ence that pointer for you. Therefore, to the untrained eye, a class appears as a static variable.
What this means, however, is that unlike C++, Object Pascal offers no reasonable way to allo-
cate a class from an application’s data segment other than from the heap.

TObject: The Mother of All Objects
Because everything descends from TObject, every class has some methods that it inherits from
TObject, and you can make some special assumptions about the capabilities of an object.
Every class has the ability, for example, to tell you its name, its type, or even whether it’s
inherited from a particular class. The beauty of this is that you, as an applications programmer,
don’t have to care what kind of magic the compiler does to makes this happen. You can just
take advantage of the functionality it provides!

TObject is a special object because its definition comes from the System unit, and the Object
Pascal compiler is “aware” of TObject. The following code illustrates the definition of the
TObject class:

type
TObject = class
constructor Create;
procedure Free;
class function InitInstance(Instance: Pointer): TObject;
procedure CleanupInstance;
function ClassType: TClass;
class function ClassName: ShortString;
class function ClassNameIs(const Name: string): Boolean;
class function ClassParent: TClass;
class function ClassInfo: Pointer;
class function InstanceSize: Longint;
class function InheritsFrom(AClass: TClass): Boolean;
class function MethodAddress(const Name: ShortString): Pointer;
class function MethodName(Address: Pointer): ShortString;
function FieldAddress(const Name: ShortString): Pointer;

The Object Pascal Language

CHAPTER 2
107

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

04.65227_Ch02x 11/30/99 5:46 PM Page 107

function GetInterface(const IID: TGUID; out Obj): Boolean;
class function GetInterfaceEntry(const IID: TGUID): PInterfaceEntry;
class function GetInterfaceTable: PInterfaceTable;
function SafeCallException(ExceptObject: TObject;
ExceptAddr: Pointer): HResult; virtual;

procedure AfterConstruction; virtual;
procedure BeforeDestruction; virtual;
procedure Dispatch(var Message); virtual;
procedure DefaultHandler(var Message); virtual;
class function NewInstance: TObject; virtual;
procedure FreeInstance; virtual;
destructor Destroy; virtual;

end;

You’ll find each of these methods documented in Delphi’s online help system.

In particular, note the methods that are preceded by the keyword class. Prepending the
class keyword to a method enables it to be called like a normal procedure or function without
actually having an instance of the class of which the method is a member. This is a juicy bit of
functionality that was borrowed from C++’s static functions. Be careful, though, not to make
a class method depend on any instance information; otherwise, you’ll get a compiler error.

Interfaces
Perhaps the most significant addition to the Object Pascal language in the recent past is the
native support for interfaces, which was introduced in Delphi 3. Simply put, an interface
defines a set of functions and procedures that can be used to interact with an object. The defin-
ition of a given interface is known to both the implementer and the client of the interface—act-
ing as a contract of sorts for how an interface will be defined and used. A class can implement
multiple interfaces, providing multiple known “faces” by which a client can control an object.

As its name implies, an interface defines only, well, an interface by which object and clients
communicate. This is similar in concept to a C++ PURE VIRTUAL class. It’s the job of a class
that supports an interface to implement each of the interface’s functions and procedures.

In this chapter you’ll learn about the language elements of interfaces. For information on using
interfaces within your applications, see Chapter 23, “COM and ActiveX.”

Defining Interfaces
Just as all Delphi classes implicitly descend from TObject, all interfaces are implicitly derived
from an interface called IUnknown. IUnknown is defined in the System unit as follows:

type
IUnknown = interface
[‘{00000000-0000-0000-C000-000000000046}’]
function QueryInterface(const IID: TGUID; out Obj): Integer; stdcall;

Essentials for Rapid Development

PART I
108

04.65227_Ch02x 11/30/99 5:46 PM Page 108

function _AddRef: Integer; stdcall;
function _Release: Integer; stdcall;

end;

As you can see, the syntax for defining an interface is very similar to that of a class. The pri-
mary difference is that an interface can optionally be associated with a globally unique identi-
fier (GUID), which is unique to the interface. The definition of IUnknown comes from the
Component Object Model (COM) specification provided by Microsoft. This is also described
in more detail in Chapter 23, “COM and ActiveX.”

Defining a custom interface is straightforward if you understand how to create Delphi classes.
The following code defines a new interface called IFoo, which implements one method
called F1():

type
IFoo = interface
[‘{2137BF60-AA33-11D0-A9BF-9A4537A42701}’]
function F1: Integer;

end;

The Object Pascal Language

CHAPTER 2
109

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

TIP

The Delphi IDE will manufacture new GUIDs for your interfaces when you use the
Ctrl+Shift+G key combination.

The following code defines a new interface, IBar, which descends from IFoo:

type
IBar = interface(IFoo)
[‘{2137BF61-AA33-11D0-A9BF-9A4537A42701}’]
function F2: Integer;

end;

Implementing Interfaces
The following bit of code demonstrates how to implement IFoo and IBar in a class called
TFooBar:

type
TFooBar = class(TInterfacedObject, IFoo, IBar)
function F1: Integer;
function F2: Integer;

end;

function TFooBar.F1: Integer;
begin
Result := 0;

04.65227_Ch02x 11/30/99 5:46 PM Page 109

end;

function TFooBar.F2: Integer;
begin
Result := 0;

end;

Note that multiple interfaces can be listed after the ancestor class in the first line of the class
declaration in order to implement multiple interfaces. The binding of an interface function to a
particular function in the class happens when the compiler matches a method signature in the
interface with a matching signature in the class. A compiler error will occur if a class declares
that it implements an interface but the class fails to implement one or more of the interface’s
methods.

If a class implements multiple interfaces that have methods of the same signature, you must
alias the same-named methods as shown in the short example following:

type
IFoo = interface
[‘{2137BF60-AA33-11D0-A9BF-9A4537A42701}’]
function F1: Integer;

end;

IBar = interface
[‘{2137BF61-AA33-11D0-A9BF-9A4537A42701}’]
function F1: Integer;

end;

TFooBar = class(TInterfacedObject, IFoo, IBar)
// aliased methods
function IFoo.F1 = FooF1;
function IBar.F1 = BarF1;
// interface methods
function FooF1: Integer;
function BarF1: Integer;

end;

function TFooBar.FooF1: Integer;
begin
Result := 0;

end;

function TFooBar.BarF1: Integer;
begin
Result := 0;

end;

Essentials for Rapid Development

PART I
110

04.65227_Ch02x 11/30/99 5:46 PM Page 110

The implements Directive
Delphi 4 introduced the implements directive, which enables you to delegate the implementa-
tion of interface methods to another class or interface. This technique is sometimes called
implementation by delegation. Implements is used as the last directive on a property of class or
interface type like this:

type
TSomeClass = class(TInterfacedObject, IFoo)
// stuff
function GetFoo: TFoo;
property Foo: TFoo read GetFoo implements IFoo;
// stuff

end;

The use of implements in the preceding code example instructs the compiler to look to the Foo
property for the methods that implement the IFoo interface. The type of the property must be a
class that contains IFoo methods or an interface of type IFoo or a descendant of IFoo. You can
also provide a comma-delimited list of interfaces following the implements directive, in which
case the type of the property must contain the methods to implement the multiple interfaces.

The implements directive buys you two key advantages in your development: First, it allows
you to perform aggregation in a no-hassle manner. Aggregation is a COM concept pertaining to
the combination of multiple classes for a single purpose (see Chapter 23, “COM and ActiveX,”
for more information on aggregation). Second, it allows you to defer the consumption of
resources necessary to implement an interface until it’s absolutely necessary. For example, say
there was an interface whose implementation requires allocation of a 1MB bitmap, but that
interface is seldom required by clients. You probably wouldn’t want to implement that interface
all the time “just in case” because that would be a waste of resources. Using implements, you
could create the class to implement the interface on demand in the property accessor method.

Using Interfaces
A few important language rules apply when you’re using variables of interface types in your
applications. The foremost rule to remember is that an interface is a lifetime-managed type.
This means it’s always initialized to nil, it’s reference counted, a reference is automatically
added when you obtain an interface, and it’s automatically released when it leaves scope or is
assigned the value nil. The following code example illustrates the lifetime management of an
interface variable:

var
I: ISomeInterface;

begin
// I is initialized to nil
I := FunctionReturningAnInterface; // ref count of I is incremented
I.SomeFunc;

The Object Pascal Language

CHAPTER 2
111

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

04.65227_Ch02x 11/30/99 5:46 PM Page 111

// ref count of I is decremented. If 0, I is automatically released
end;

Another unique rule of interface variables is that an interface is assignment compatible with
classes that implement the interface. For example, the following code is legal using the
TFooBar class defined earlier:

procedure Test(FB: TFooBar)
var

F: IFoo;
begin

F := FB; // legal because FB supports IFoo
.
.
.

Finally, the as typecast operator can be used to QueryInterface a given interface variable for
another interface (this is explained in greater detail in Chapter 23). This is illustrated here:

var
FB: TFooBar;
F: IFoo;
B: IBar;

begin
FB := TFooBar.Create
F := FB; // legal because FB supports IFoo
B := F as IBar; // QueryInterface F for IBar
.
.
.

If the requested interface is not supported, an exception will be raised.

Structured Exception Handling
Structured exception handling (SEH) is a method of error handling that enables your applica-
tion to recover gracefully from otherwise fatal error conditions. In Delphi 1, exceptions were
implemented in the Object Pascal language, but starting in Delphi 2, exceptions are a part of
the Win32 API. What makes Object Pascal exceptions easy to use is that they’re just classes
that happen to contain information about the location and nature of a particular error. This
makes exceptions as easy to implement and use in your applications as any other class.

Delphi contains predefined exceptions for common program-error conditions, such as out of
memory, divide by zero, numerical overflow and underflow, and file I/O errors. Delphi also
enables you to define your own exception classes as you may see fit in your applications.

Essentials for Rapid Development

PART I
112

04.65227_Ch02x 11/30/99 5:46 PM Page 112

Listing 2.3 demonstrates how to use exception handling during file I/O.

LISTING 2.3 File I/O using exception handling

Program FileIO;

uses Classes, Dialogs;

{$APPTYPE CONSOLE}

var
F: TextFile;
S: string;

begin
AssignFile(F, ‘FOO.TXT’);
try
Reset(F);
try
ReadLn(F, S);

finally
CloseFile(F);

end;
except
on EInOutError do
ShowMessage(‘Error Accessing File!’);

end;
end.

In Listing 2.3, the inner try..finally block is used to ensure that the file is closed regardless
of whether any exceptions come down the pike. What this block means in English is “Hey, pro-
gram, try to execute the statements between the try and the finally. If you finish them or run
into an exception, execute the statements between the finally and the end. If an exception
does occur, move on to the next exception-handling block.” This means that the file will be
closed and the error can be properly handled no matter what error occurs.

The Object Pascal Language

CHAPTER 2
113

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

NOTE

The statements after finally in a try..finally block execute regardless of whether
an exception occurs. Make sure that the code in your finally block does not assume
that an exception has occurred. Also, because the finally statement doesn’t stop the
migration of an exception, the flow of your program’s execution will continue on to
the next exception handler.

04.65227_Ch02x 11/30/99 5:46 PM Page 113

The outer try..except block is used to handle the exceptions as they occur in the program.
After the file is closed in the finally block, the except block puts up a message informing the
user that an I/O error occurred.

One of the key advantages that exception handling provides over the traditional method of
error handling is the ability to distinctly separate the error-detection code from the error-
correction code. This is a good thing primarily because it makes your code easier to read and
maintain by enabling you to concentrate on one distinct aspect of the code at a time.

The fact that you cannot trap any specific exception by using the try..finally block is signif-
icant. When you use a try..finally block in your code, it means that you don’t care what
exceptions might occur. You just want to perform some tasks when they do occur to gracefully
get out of a tight spot. The finally block is an ideal place to free any resources you’ve allo-
cated (such as files or Windows resources), because it will always execute in the case of an
error. In many cases, however, you need some type of error handling that’s able to respond dif-
ferently depending on the type of error that occurs. You can trap specific exceptions by using a
try..except block, which is again illustrated in Listing 2.4.

LISTING 2.4 A try..except exception-handling block

Program HandleIt;

{$APPTYPE CONSOLE}

var
R1, R2: Double;

begin
while True do begin
try
Write(‘Enter a real number: ‘);
ReadLn(R1);
Write(‘Enter another real number: ‘);
ReadLn(R2);
Writeln(‘I will now divide the first number by the second...’);
Writeln(‘The answer is: ‘, (R1 / R2):5:2);

except
On EZeroDivide do
Writeln(‘You cannot divide by zero!’);

On EInOutError do
Writeln(‘That is not a valid number!’);

end;
end;

end.

Essentials for Rapid Development

PART I
114

04.65227_Ch02x 11/30/99 5:46 PM Page 114

You can achieve the same effect as a try..except..else construct by not specifying the
exception class in a try..except block, as shown in this example:

try
Statements

except
HandleException // almost the same as else statement

end;

Exception Classes
Exceptions are merely special instances of objects. These objects are instantiated when an
exception occurs and are destroyed when an exception is handled. The base exception object is
called Exception, and that object is defined as follows:

type
Exception = class(TObject)
private
FMessage: string;
FHelpContext: Integer;

public

The Object Pascal Language

CHAPTER 2
115

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

CAUTION

When using the try..except..else construct, you should be aware that the else
part will catch all exceptions—even exceptions you might not expect, such as out-of-
memory or other runtime-library exceptions. Be careful when using the else clause,
and use the clause sparingly. You should always reraise the exception when you trap
with unqualified exception handlers. This is explained in the section “Reraising an
Exception.”

Although you can trap specific exceptions with the try..except block, you also can catch
other exceptions by adding the catchall else clause to this construct. The syntax of the
try..except..else construct follows:

try
Statements

except
On ESomeException do Something;

else
{ do some default exception handling }

end;

04.65227_Ch02x 11/30/99 5:46 PM Page 115

Essentials for Rapid Development

PART I
116

constructor Create(const Msg: string);
constructor CreateFmt(const Msg: string; const Args: array of const);
constructor CreateRes(Ident: Integer); overload;
constructor CreateRes(ResStringRec: PResStringRec); overload;
constructor CreateResFmt(Ident: Integer; const Args: array of const);

overload;
constructor CreateResFmt(ResStringRec: PResStringRec; const Args: array of

const); overload;
constructor CreateHelp(const Msg: string; AHelpContext: Integer);
constructor CreateFmtHelp(const Msg: string; const Args: array of const;
AHelpContext: Integer);

constructor CreateResHelp(Ident: Integer; AHelpContext: Integer); overload;
constructor CreateResHelp(ResStringRec: PResStringRec; AHelpContext:

Integer); overload;
constructor CreateResFmtHelp(ResStringRec: PResStringRec; const Args: array

of const;
AHelpContext: Integer); overload;

constructor CreateResFmtHelp(Ident: Integer; const Args: array of const;
AHelpContext: Integer); overload;

property HelpContext: Integer read FHelpContext write FHelpContext;
property Message: string read FMessage write FMessage;

end;

The important element of the Exception object is the Message property, which is a string.
Message provides more information or explanation on the exception. The information provided
by Message depends on the type of exception that’s raised.

CAUTION

If you define your own exception object, make sure that you derive it from a known
exception object such as Exception or one of its descendants. The reason for this is
so that generic exception handlers will be able to trap your exception.

When you handle a specific type of exception in an except block, that handler also will catch
any exceptions that are descendants of the specified exception. For example, EMathError is the
ancestor object for a variety of math-related exceptions, such as EZeroDivide and EOverflow.
You can catch any of these exceptions by setting up a handler for EMathError, as shown here:

try
Statements

except
on EMathError do // will catch EMathError or any descendant
HandleException

end;

04.65227_Ch02x 11/30/99 5:46 PM Page 116

Any exceptions that you do not explicitly handle in your program eventually will flow to, and
be handled by, the default handler located within the Delphi runtime library. The default han-
dler will put up a message dialog box informing the user that an exception occurred.
Incidentally, Chapter 4, “Application Frameworks and Design Concepts,” will show an exam-
ple of how to override the default exception handling.

When handling an exception, you sometimes need to access the instance of the exception
object in order to retrieve more information on the exception, such as that provided by its
Message property. There are two ways to do this: Use an optional identifier with the on
ESomeException construct or use the ExceptObject() function.

You can insert an optional identifier in the on ESomeException portion of an except block and
have the identifier map to an instance of the currently raised exception. The syntax for this is to
preface the exception type with an identifier and a colon, as follows:

try
Something

except
on E:ESomeException do
ShowMessage(E.Message);

end;

In this case, the identifier (E in this case) becomes the instance of the currently raised excep-
tion. This identifier is always of the same type as the exception it prefaces.

You can also use the ExceptObject() function, which returns an instance of the currently
raised exception. The drawback to ExceptObject(), however, is that it returns a TObject that
you must then typecast to the exception object of your choice. The following example shows
the usage of this function:

try
Something

except
on ESomeException do
ShowMessage(ESomeException(ExceptObject).Message);

end;

The ExceptObject() function will return Nil if there is no active exception.

The syntax for raising an exception is similar to the syntax for creating an object instance. To
raise a user-defined exception called EBadStuff, for example, you would use this syntax:

Raise EBadStuff.Create(‘Some bad stuff happened.’);

Flow of Execution
After an exception is raised, the flow of execution of your program propagates up to the next
exception handler until the exception instance is finally handled and destroyed. This process is

The Object Pascal Language

CHAPTER 2
117

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

04.65227_Ch02x 11/30/99 5:46 PM Page 117

determined by the call stack and therefore works program-wide (not just within one procedure
or unit). Listing 2.5 illustrates the flow of execution of a program when an exception is raised.
This listing is the main unit of a Delphi application that consists of one form with one button
on the form. When the button is clicked, the Button1Click() method calls Proc1(), which
calls Proc2(), which in turn calls Proc3(). An exception is raised in Proc3(), and you can
witness the flow of execution propagating through each try..finally block until the excep-
tion is finally handled inside Button1Click().

Essentials for Rapid Development

PART I
118

TIP

When you run this program from the Delphi IDE, you’ll be able to see the flow of exe-
cution better if you disable the integrated debugger’s handling of exceptions by
unchecking Tools, Debugger Options, Language Exceptions, Stop on Delphi Exceptions.

LISTING 2.5 Main unit for the exception propagation project

unit Main;

interface

uses
SysUtils, Windows, Messages, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls;

type
TForm1 = class(TForm)
Button1: TButton;
procedure Button1Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form1: TForm1;

implementation

{$R *.DFM}

type
EBadStuff = class(Exception);

04.65227_Ch02x 11/30/99 5:46 PM Page 118

procedure Proc3;
begin
try
raise EBadStuff.Create(‘Up the stack we go!’);

finally
ShowMessage(‘Exception raised. Proc3 sees the exception’);

end;
end;

procedure Proc2;
begin
try
Proc3;

finally
ShowMessage(‘Proc2 sees the exception’);

end;
end;

procedure Proc1;
begin
try
Proc2;

finally
ShowMessage(‘Proc1 sees the exception’);

end;
end;

procedure TForm1.Button1Click(Sender: TObject);
const
ExceptMsg = ‘Exception handled in calling procedure. The message is “%s”’;

begin
ShowMessage(‘This method calls Proc1 which calls Proc2 which calls Proc3’);
try
Proc1;

except
on E:EBadStuff do
ShowMessage(Format(ExceptMsg, [E.Message]));

end;
end;

end.

Reraising an Exception
When you need to perform special handling for a statement inside an existing try..except
block and still need to allow the exception to flow to the block’s outer default handler, you can

The Object Pascal Language

CHAPTER 2
119

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

04.65227_Ch02x 11/30/99 5:46 PM Page 119

use a technique called reraising the exception. Listing 2.6 demonstrates an example of rerais-
ing an exception.

LISTING 2.6 Reraising an exception

try // this is outer block
{ statements }
{ statements }
(statements }
try // this is the special inner block
{ some statement that may require special handling }

except
on ESomeException do
begin
{ special handling for the inner block statement }
raise; // reraise the exception to the outer block

end;
end;

except
// outer block will always perform default handling
on ESomeException do Something;

end;

Runtime Type Information
Runtime Type Information (RTTI) is a language feature that gives a Delphi application the
capability to retrieve information about its objects at runtime. RTTI is also the key to links
between Delphi components and their incorporation into the Delphi IDE, but it isn’t just an
academic process that occurs in the shadows of the IDE.

Objects, by virtue of being TObject descendants, contain a pointer to their RTTI and have sev-
eral built-in methods that enable you to get some useful information out of the RTTI. The fol-
lowing table lists some of the TObject methods that use RTTI to retrieve information about a
particular object instance.

Function Return Type Returns

ClassName() string The name of the object’s class

ClassType() TClass The object’s type

InheritsFrom() Boolean Boolean to indicate whether the class
descends from a given class

ClassParent() TClass The object ancestor’s type

InstanceSize() word The size, in bytes, of an instance

ClassInfo() Pointer A pointer to the object’s in-memory
RTTI

Essentials for Rapid Development

PART I
120

04.65227_Ch02x 11/30/99 5:46 PM Page 120

Object Pascal provides two operators, is and as, that allow comparisons and typecasts of
objects via RTTI.

The as keyword is a new form of typesafe typecast. It enables you to cast a low-level object to
a descendant and will raise an exception if the typecast is invalid. Suppose you have a proce-
dure to which you want to be able to pass any type of object. This function definition could be
defined as

Procedure Foo(AnObject: TObject);

If you want to do something useful with AnObject later in this procedure, you’ll probably have
to cast it to a descendant object. Suppose you want to assume that AnObject is a TEdit descen-
dant, and you want to change the text it contains (a TEdit is a Delphi VCL edit control). You
can use the following code:

(Foo as TEdit).Text := ‘Hello World.’;

You can use the Boolean comparison operator is to check whether two objects are of compati-
ble types. Use the is operator to compare an unknown object to a known type or instance to
determine what properties and behavior you can assume about the unknown object. For exam-
ple, you might want to check to see whether AnObject is pointer-compatible with TEdit before
attempting to typecast it:

If (Foo is TEdit) then
TEdit(Foo).Text := ‘Hello World.’;

Notice that you did not use the as operator to perform the typecast in this example. That’s
because a certain amount of overhead is involved in using RTTI, and because the first line has
already determined that Foo is a TEdit, you can optimize by performing a pointer typecast in
the second line.

Summary
Quite a bit of material was covered in this chapter. You learned the basic syntax and semantics
of the Object Pascal language, including variables, operators, functions, procedures, types, con-
structs, and style. You should also have a clear understanding of OOP, objects, fields, proper-
ties, methods, TObject, interfaces, exception handling, and RTTI.

Now that you have the big picture of how Delphi’s object-oriented Object Pascal language
works, you’re ready to move on to more advanced discussions of the Win32 API and the Visual
Component Library.

The Object Pascal Language

CHAPTER 2
121

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

04.65227_Ch02x 11/30/99 5:46 PM Page 121

04.65227_Ch02x 11/30/99 5:46 PM Page 122

CHAPTER

3
The Win32 API

IN THIS CHAPTER
• Objects—Then and Now 124

• Multitasking and Multithreading 128

• Win32 Memory Management 129

• Error Handling in Win32 133

• Summary 134

05.65227_Ch03x 11/30/99 5:47 PM Page 123

This chapter gives you an introduction to the Win32 API and the Win32 system in general. The
chapter discusses the capabilities of the Win32 system and also points out some key differences
from the 16-bit implementation of various features. The intent of this chapter is not to docu-
ment the Win32 system in depth but rather to give you a basic idea of how Win32 operates. By
having a basic understanding of the Win32 operation, you’ll be able use advanced features pro-
vided by the Win32 system whenever the need arises.

Objects—Then and Now
The term objects is used for a number of reasons. When we speak of the Win32 architecture,
we’re not speaking of objects as they exist in object-oriented programming or the Component
Object Model (COM). Objects have a totally different meaning in this context, and to make
things more confusing, object means something different in 16-bit Windows than it does in
Win32. We want to make sure you understand what objects are in Win32.

Basically two types of objects are in the Win32 environment: kernel objects and GDI/User
objects.

Kernel Objects
Kernel objects are native to the Win32 system and include events, file mappings, files, mail-
slots, mutexes, pipes, processes, semaphores, and threads. The Win32 API includes various
functions specific to each kernel object. Before discussing kernel objects in general, we want
to discuss processes that are essential to understanding how objects are managed in the Win32
environment.

Processes and Threads
A process can be thought of as a running application or an application instance. Therefore, sev-
eral processes can be active at once in the Win32 environment. Each process gets its own 4GB
address space for its code and data. Within this 4GB address space, any memory allocations,
threads, file mappings, and so on exist. Additionally, any dynamic link libraries (DLLs) loaded
by a process are loaded into the address space of the process. We’ll say more about the mem-
ory management of the Win32 system later in this chapter, in the section “Win32 Memory
Management.”

Processes are inert. In other words, they execute nothing. Instead, each process gets a primary
thread that executes code within the context of the process that owns this thread. A process
may contain several threads; however, it has only one main or primary thread.

Essentials for Rapid Development

PART I
124

05.65227_Ch03x 11/30/99 5:47 PM Page 124

When a process is created, the system creates the main thread for it. This thread may then cre-
ate additional threads, if necessary. The Win32 system allocates CPU time called time slices to
the threads of the process.

Table 3.1 shows some common process functions of the Win32 API.

TABLE 3.1 Process Functions

Function Purpose

CreateProcess() Creates a new process and its primary thread. This function replaces
the WinExec() function used in Windows 3.11.

ExitProcess() Exits the current process, terminating the process and all threads
related to that process.

GetCurrentProcess() Returns a pseudohandle of the current process. A pseudohandle is a
special handle that can be interpreted as the current process handle.
A real handle can be obtained by using the DuplicateHandle()
function.

DuplicateHandle() Duplicates the handle of a kernel object.

GetCurrentProcessID() Retrieves the current process ID, which uniquely identifies the
process throughout the system until the process has terminated.

GetExitCodeProcess() Retrieves the exit status of a specified process.

GetPriorityClass() Retrieves the priority class for a specified process. This value and
the values of each thread priority in the process determine the base
priority level for each thread.

GetStartupInfo() Retrieves the contents of the TStartupInfo structure initialized
when the process was created.

OpenProcess() Returns a handle of an existing process as specified by a process ID.

SetPriorityClass() Sets a process’s priority class.

TerminateProcess() Terminates a process and kills all threads associated with that process.

WaitForInputIdle() Waits until the process is waiting for input from the user.

The Win32 API

CHAPTER 3
125

3

T
H

E
W

IN32 A
PI

NOTE

A thread is an operating system object that represents a path of code execution
within a particular process. Every Win32 application has at least one thread—often
called the primary thread or default thread—but applications are free to create other
threads to perform other tasks. Threads are covered in greater depth in Chapter 11,
“Writing Multithreaded Applications.”

05.65227_Ch03x 11/30/99 5:47 PM Page 125

Some Win32 API functions require an application’s instance handle, whereas others require a
module handle. In 16-bit Windows, there was a distinction between these two values. This is
not true under Win32. Every process gets its own instance handle. Your Delphi 5 applications
can refer to this instance handle by accessing the global variable, HInstance. Because
HInstance and the application’s module handle are the same, you can pass HInstance to
Win32 API functions calling for a module handle, such as the GetModuleFileName() function,
which returns the filename of a specified module. See the following Caution for when
HInstance does not refer to the module handle of the current application.

Essentials for Rapid Development

PART I
126

CAUTION

HInstance will not be the module handle of the application for code that’s compiled
into packages. Use MainInstance to refer always to the host application module and
HInstance to refer to the module in which your code resides.

Another difference between Win32 and 16-bit Windows has to do with the HPrevInst global
variable. In 16-bit Windows, this variable held the handle of a previously run instance of the
same application. You could use the value to prevent multiple instances of your application
from running. This no longer works in Win32. Each process runs within its own 4GB address
space and can’t see any other processes. Therefore, HPrevInst is always assigned the value 0.
You must use other techniques to prevent multiple instances of your application from running,
as shown in Chapter 13, “Hard-core Techniques.”

Types of Kernel Objects
There are several kinds of kernel objects. When a kernel object is created, it exists in the
address space of the process, and that process gets a handle to that object. This handle can’t
be passed to other processes or reused by the next process to access the same kernel object.
However, a second process can obtain its own handle to a kernel object that already exists by
using the appropriate Win32 API function. For example, the CreateMutex() Win32 API func-
tion creates a named or unnamed mutex object and returns its handle. The OpenMutex() Win32
API returns the handle to an existing named mutex object. OpenMutex() passes the name of the
mutex whose handle is being requested.

NOTE

Named kernel objects are optionally assigned a null-terminated string name when
created with their respective CreateXXXX() functions. This name is registered in the
Win32 system. Other processes can access the same kernel object by opening it, using

05.65227_Ch03x 11/30/99 5:47 PM Page 126

If you want to share a mutex across processes, you can have the first process create the mutex
by using the CreateMutex() function. This process must pass a name that will be associated
with this new mutex. Other processes must use the OpenMutex() function, to which they pass
the same name of the mutex used by the first process. OpenMutex() will return a handle to the
mutex object of the given name. Various security constraints may be imposed on other
processes accessing existing kernel objects. Such security constraints are specified when the
mutex is initially created with CreateMutex(). Look to the online help for these constraints as
they apply to each kernel object.

Because multiple processes can access kernel objects, kernel objects are maintained by a usage
count. As a second application accesses the object, the usage count is incremented. When it’s
done with the object, the application should call the CloseHandle() function, which decre-
ments the object’s usage count.

GDI and User Objects
Objects in 16-bit Windows referred to entities that could be referenced by a handle. This didn’t
include kernel objects because they didn’t exist under 16-bit Windows.

In 16-bit Windows, there are two types of objects: those stored in the GDI and User local
heaps, and those allocated from the global heap. Examples of GDI objects are brushes, pens,
fonts, palettes, bitmaps, and regions. Examples of User objects are windows, window classes,
atoms, and menus.

A direct relationship exists between an object and its handle. An object’s handle is a selector that,
when converted into a pointer, points to a data structure describing an object. This structure exists
in either the GDI or User default data segment, depending on the type of object to which the han-
dle refers. Additionally, a handle for an object referring to the global heap is a selector to the
global memory segment; therefore, when converted to a pointer, it points to that memory block.

A result of this particular design is that objects in 16-bit Windows are sharable. The globally
accessible Local Descriptor Table (LDT) stores the handles to these objects. The GDI and User
default data segments are also globally accessible to all applications and DLLs under 16-bit
Windows. Therefore, any application or DLL can get to an object used by another application.
Do note that objects such as the LDT are only sharable in Windows 3.1 (16-bit Windows).
Many applications use this arrangement for different purposes. One example is to enable appli-
cations to share memory.

The Win32 API

CHAPTER 3
127

3

T
H

E
W

IN32 A
PI

the OpenXXXX() function, and passing the specified object name. A demonstration of
this technique is used in Chapter 13, “Hard-core Techniques,” where we show you
how to prevent multiple instances of an application from running.

05.65227_Ch03x 11/30/99 5:47 PM Page 127

Win32 deals with GDI and User objects a bit differently, and the same techniques you used in
16-bit Windows might not be applicable to the Win32 environment.

To begin with, Win32 introduces kernel objects, which we’ve already discussed. Also, the
implementation of GDI and User objects is different under Win32 than under 16-bit Windows.

Under Win32, GDI objects are not shared like their 16-bit counterparts. GDI objects are stored
in the address space of the process rather than in a globally accessible memory block (each
process gets its own 4GB address space). Additionally, each process gets its own handle table,
which stores handles to GDI objects within the process. This is an important point to remem-
ber, because you don’t want to be passing GDI object handles to other processes.

Earlier, we mentioned that LDTs are accessible from other applications. In Win32, each
process address space is defined by its own LDT. Therefore, Win32 uses LDTs as they were
intended: as process-local tables.

Essentials for Rapid Development

PART I
128

CAUTION

Although it’s possible that a process could call SelectObject() on a handle from
another process and successfully use that handle, this would be entirely coincidental.
GDI objects have different meanings in different processes, so you don’t want to
practice this method.

The managing of GDI handles happens in the Win32 GDI subsystem, which includes the vali-
dation of GDI objects and the recycling of handles.

User objects work similarly to GDI objects and are managed by the Win32 User subsystem.
However, any handle tables are also maintained by User—not in the address space of the
process, as with the GDI handle tables. Therefore, objects such as windows, window classes,
atoms, and so on are sharable across processes.

Multitasking and Multithreading
Multitasking is a term used to describe an operating system’s capability of running multiple
applications concurrently. The system does this by issuing time slices to each application. In
this sense, multitasking is not true multitasking but rather task switching. In other words, the
operating system isn’t really running multiple applications at the same time. Instead, it’s run-
ning one application for a certain amount of time and then switching to another application and
running it for a certain amount of time. It does this for each application. To the user it appears
as though all applications are running simultaneously because the time slices are small.

05.65227_Ch03x 11/30/99 5:47 PM Page 128

This concept of multitasking isn’t really a new feature of Windows and has existed in previous
versions. The key difference between the Win32 implementation of multitasking and that of
earlier versions of Windows is that Win32 uses preemptive multitasking, whereas earlier ver-
sions use nonpreemptive multitasking (which means that the Windows system doesn’t schedule
time to applications based on the system timer). Applications have to tell Windows that they’re
finished processing code before Windows can grant time to other applications. This is a prob-
lem because a single application can tie up the system with a lengthy process. Therefore,
unless the programmers of the application make sure that the application gives up time to other
applications, problems can arise for the user.

Under Win32, the system grants CPU time to the threads for each process. The Win32 system
manages the time allotted to each thread based on thread priorities. This concept is discussed
in greater depth in Chapter 11, “Writing Multithreaded Applications.”

The Win32 API

CHAPTER 3
129

3

T
H

E
W

IN32 A
PI

NOTE

The Windows NT/2000 implementation of Win32 offers the capacity to perform true
multitasking on machines with multiple processors. Under these conditions, each
application can be granted time on its own processor. Actually, each individual
thread can be given CPU time on any available CPU in a multiprocessor machine.

Multithreading is the capability of an application to multitask within itself. This means that
your application can perform different types of processing simultaneously. A process can have
several threads, and each thread contains its own distinct code to execute. Threads may have
dependencies on one another and therefore must be synchronized. For example, it wouldn’t be
a good idea to assume that a particular thread will finish processing its code when its result
will be used by another thread. Thread-synchronization techniques are used to coordinate
multiple-thread execution. Threads are discussed in greater depth in Chapter 11, “Writing
Multithreaded Applications.”

Win32 Memory Management
The Win32 environment introduces you to the 32-bit flat memory model. Finally, Pascal pro-
grammers can declare that big array without running into a compile error:

BigArray = array[1..100000] of integer;

The following sections discuss the Win32 memory model and how the Win32 system lets you
manipulate memory.

05.65227_Ch03x 11/30/99 5:47 PM Page 129

Just What Is the Flat Memory Model?
The 16-bit world uses a segmented memory model. Under that model, addresses are represented
with a segment:offset pair. The segment refers to a base address, and the offset represents a num-
ber of bytes from that base. The problem with this scheme is that it’s confusing to the average
programmer, especially when dealing with large memory requirements. It’s also limiting—data
structures larger than 64KB are extremely painful to manage and are therefore avoided.

Under the flat-memory model, these limitations are gone. Each process has its own 4GB
address space to use for allocating large data structures. Additionally, an address actually repre-
sents a unique memory location.

How Does the Win32 System Manage Memory?
It’s not likely that your computer has 4GB installed. How does the Win32 system make more
memory available to your processes than the amount of physical memory installed on the com-
puter? Addresses that are 32 bit don’t actually represent a memory location in physical mem-
ory. Instead, Win32 uses virtual addresses.

By using virtual memory, each process can get its own 4GB virtual address space. The upper
2MB area of this address space belongs to Windows, and the bottom 2MB is where your appli-
cations reside and where you can allocate memory. One advantage to this scheme is that the
thread for one process can’t access the memory in another process. The address $54545454 in
one process points to a completely different location than the same address in another process.

It’s important to note that a process doesn’t actually have 4GB of memory but rather has the
capability to access a range of addresses up to 4GB. The amount of memory available to a
process really depends on how much physical RAM is installed on the machine and how much
space is available on disk for a paging file. The physical RAM and the paging file are used by
the system to break the memory available to a process into pages. The size of a page depends
on the type of system on which Win32 is installed. These page sizes are 4KB for Intel plat-
forms and 8KB for Alpha platforms. The defunct PowerPC and MIPS platforms used 4KB
pages as well. The system then moves pages from the paging file to physical memory and back
as needed. The system maintains a page map to translate the virtual addresses of a process to a
physical address. We won’t get into the hairy details of how all this happens; we just want to
familiarize you with the general scheme of things at this point.

A developer can manipulate memory in the Win32 environment in essentially three ways:
using virtual memory, file-mapping objects, and heaps.

Virtual Memory
Win32 provides you with a set of low-level functions that enable you to manipulate the virtual
memory of a process. This memory exists in one of the following three states:

Essentials for Rapid Development

PART I
130

05.65227_Ch03x 11/30/99 5:47 PM Page 130

• Free. Memory that’s available to be reserved and/or committed.

• Reserved. Memory within an address range that’s reserved for future use. Memory within
this address is protected from other allocation requests. However, this memory cannot be
accessed by the process because no physical memory is associated with it until it’s com-
mitted. The VirtualAlloc() function is used to reserve memory.

• Committed. Memory that has been allocated and associated with physical memory.
Committed memory can be accessed by the process. The VirtualAlloc() function is
used to commit virtual memory.

As stated earlier, Win32 provides various VirtualXXXX() functions for manipulating virtual
memory, as shown in Table 3.2. These functions are also documented in detail in the online help.

TABLE 3.2 Virtual Memory Functions

Function Purpose

VirtualAlloc() Reserves and/or commits pages in a process’s virtual address space.

VirtualFree() Releases and/or decommits pages in a process’s virtual address space.

VirtualLock() Locks a region of a process’s virtual address to prevent it from being
swapped to a page file. This prevents page faults with subsequent
accesses to that region.

VirtualUnLock() Unlocks a specified region of memory in a process’s address space so
that it can be swapped to a page file if necessary.

VirtualQuery() Returns information about a range of pages in the calling process’s
virtual address space.

VirtualQueryEx() Returns the same information as VirtualQuery() except that it
allows you to specify the process.

VirtualProtect() Changes access protection for a region of committed pages in the
calling process’s virtual address space.

VirtualProtectEx() Same as VirtualProtect() except that it makes changes to a
specified process.

The Win32 API

CHAPTER 3
131

3

T
H

E
W

IN32 A
PI

NOTE

The xxxEx() routines listed in this table can only be used by a process that has
debugging privileges on the other process. It’s complicated and rare for anything but
a debugger to use these routines.

05.65227_Ch03x 11/30/99 5:47 PM Page 131

Memory-Mapped Files
Memory-mapped files (file-mapping objects) allow you to access disk files in the same way
you would access dynamically allocated memory. This is done by mapping all or part of the
file to the calling process’s address range. After this is done, you can access the file’s data by
using a simple pointer. Memory-mapped files are discussed in greater detail in Chapter 12,
“Working with Files.”

Heaps
Heaps are contiguous blocks of memory in which smaller blocks can be allocated. Heaps effi-
ciently manage the allocation and manipulation of dynamic memory. Heap memory is manipu-
lated using various HeapXXXX() Win32 API functions. These functions are listed in Table 3.3
and are also documented in detail in Delphi’s online help.

TABLE 3.3 Heap Functions

Function Purpose

HeapCreate() Reserves a contiguous block in the virtual address space of the call-
ing process and allocates physical storage for a specified initial por-
tion of this block

HeapAlloc() Allocates a block of nonmovable memory from a heap

HeapReAlloc() Reallocates a block of memory from the heap, thus allowing you to
resize or change the heap’s properties

HeapFree() Frees a memory block allocated from the heap with HeapAlloc()

HeapDestroy() Destroys a heap object created with HeapCreate()

Essentials for Rapid Development

PART I
132

NOTE

It’s important to note that there are several differences in the Win32 implementation
of Windows NT/2000 and Windows 95/98. Generally, these differences have to do
with security and speed. The Windows 95/98 memory manager, for instance, is leaner
than that of Windows NT/2000 (NT maintains more internal tracking information on
heap blocks). However, the NT virtual memory manager is generally regarded as
much faster than Windows 95/98.

Be aware of such differences when using the various functions associated with these
Windows objects. The online help will point out platform-specific variations of such a
function’s usage. Be sure to refer to the help whenever using these functions.

05.65227_Ch03x 11/30/99 5:47 PM Page 132

Error Handling in Win32
Most Win32 API functions return either True or False, indicating that the function was either
successful or unsuccessful, respectively. If the function is unsuccessful (the function returns
False), you must use the GetLastError() Win32 API function to obtain the error code value
for the thread in which the error occurred.

The Win32 API

CHAPTER 3
133

3

T
H

E
W

IN32 A
PI

NOTE

Not all Win32 system API functions set error codes that are accessible by
GetLastError(). For example, many GDI routines don’t set error codes.

This error code is maintained on a per-thread basis, so GetLastError() must be called in the
context of the thread causing the error. The following is an example of this function’s usage:

if not CreateProcess(CommandLine, nil, nil, nil, False,
NORMAL_PRIORITY_CLASS, nil, nil, StartupInfo, ProcessInfo) then
raise Exception.Create(‘Error creating process: ‘+
IntToStr(GetLastError));

TIP

The Delphi 5 SysUtils.pas unit has a standard exception class and utility function to
convert system errors into exceptions. These functions are Win32Check() and
RaiseLastWin32Error(), which raises an EWin32Error exception. Use these helper
routines instead of writing your own result checks.

This code attempts to create a process specified by the null-terminated string CommandLine.
We’ll defer discussing the CreateProcess() method for a later chapter since we’re focusing on
the GetLastError() function. If CreateProcess() fails, an exception is raised. This exception
displays the last error code that resulted from the function call by getting it from the
GetLastError() function. You might use a similar approach in your application.

TIP

Error codes returned by GetLastError() are typically documented in the online help
under the functions that cause the error to occur. Therefore, the error code for
CreateMutex() would be documented under CreateMutex() in the Win32 online help.

05.65227_Ch03x 11/30/99 5:47 PM Page 133

Summary
This chapter introduced you to the Win32 API. You should now have an idea of the new kernel
objects available as well as how Win32 manages memory. You should also be familiar with the
different memory-management features available to you. As a Delphi developer, it isn’t neces-
sary that you know all the ins and outs of the Win32 system. However, you should possess a
basic understanding of the Win32 system, its functions, and how you can use these functions to
maximize your development effort. This chapter provides you with a starting point.

Essentials for Rapid Development

PART I
134

05.65227_Ch03x 11/30/99 5:47 PM Page 134

CHAPTER

4
Application Frameworks and
Design Concepts

IN THIS CHAPTER
• Understanding the Delphi Environment

and Project Architecture 136

• Files That Make Up a Delphi 5
Project 137

• Project Management Tips 141

• The Framework Classes of a Delphi 5
Project 145

• Defining a Common Architecture: Using
the Object Repository 160

• Miscellaneous Project Management
Routines 174

• Summary 189

06.65227_Ch04x 11/30/99 5:48 PM Page 135

This chapter is about Delphi project management and architecting. It shows you how to use
forms properly in your applications as well as how to manipulate their behavioral and visual
characteristics. The techniques discussed in this chapter include application startup/initializa-
tion procedures, form reuse/inheritance, and user interface enhancement. The text discusses the
framework classes that make up Delphi 5 applications: TApplication, TForm, TFrame, and
TScreen. We’ll then show you why understanding these concepts is essential to properly archi-
tecting Delphi applications.

Understanding the Delphi Environment and
Project Architecture
There are at least two important factors in properly building and managing Delphi 5 projects.
The first is knowing the ins and outs of the development environment in which you create your
projects. The second is having a solid understanding of the inherent architecture of the applica-
tions created with Delphi 5. This chapter doesn’t walk you through the Delphi 5 environment
(the Delphi documentation shows you how to work within that environment); instead, this
chapter points out features of the Delphi 5 IDE that help you manage your projects more effec-
tively. This chapter will also explain the architecture inherent in all Delphi applications. This
will not only allow you to maximize the environment’s features but also to properly use a solid
architecture instead of fighting it—a common mistake among those who don’t understand
Delphi project architectures.

Our first suggestion is to become well acquainted with the Delphi 5 development environment.
This book assumes that you’re already familiar with the Delphi 5 IDE. Second, this book
assumes that you’ve thoroughly read the Delphi 5 documentation (hint). However, you should
navigate through each of the Delphi 5 menus and bring up each of its dialog boxes. When you
see an option, setting, or action you’re unsure of, bring up the online help and read through it.
The time you spend doing this can prove interesting as well as insightful (not to mention that
you’ll learn how to navigate through the online help efficiently).

Essentials for Rapid Development

PART I
136

TIP

The Delphi 5 help system is without a doubt the most valuable and speedy reference
you have at your disposal. It would be advantageous to learn how to use it to
explore the thousands of help screens available.

Delphi 5 contains help on everything from how to use the Delphi 5 environment to
details on the Win32 API and complex Win32 structures. You can get immediate help
on a topic by typing the topic in the editor and, with the cursor still on the word you
typed, pressing Ctrl+F1. The help screen appears immediately. Help is also available

06.65227_Ch04x 11/30/99 5:48 PM Page 136

Files That Make Up a Delphi 5 Project
A Delphi 5 project is composed of several related files. Some files are created at design time as
you define forms. Others aren’t created until you compile the project. To manage a Delphi 5
project effectively, you must know the purpose of each of these files. Both the Delphi 5 docu-
mentation and the online help give detailed descriptions of the Delphi 5 project files. It’s a
good idea to review the documentation to ensure that you’re familiar with these files before
going on with this chapter.

The Project File
The project file is created at design time and has the extension .dpr. This file is the main pro-
gram source file. The project file is where the main form and any automatically created forms
are instantiated. You’ll seldom have to edit this file except when performing program initializa-
tion routines, displaying a splash screen, or performing various other routines that must happen
immediately when the program starts. The following code shows a typical project file:

program Project1;
uses
Forms,
Unit1 in ‘Unit1.pas’ {Form1};

{$R *.RES}
begin
Application.Initialize;
Application.CreateForm(TForm1, Form1);
Application.Run;

end.

Pascal programmers will recognize this file as a standard Pascal program file. Notice that this
file lists the form unit Unit1 in the uses clause. Project files list all form units that belong to
the project in the same manner. The following line refers to the project’s resource file:

{$R *.RES}

This line tells the compiler to link the resource file that has the same name as the project file
and an .RES extension to this project. The project resource file contains the program icon and
version information.

Application Frameworks and Design Concepts

CHAPTER 4
137

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

from the Delphi 5 dialog boxes by selecting the Help button or by pressing F1 when a
particular component has focus. You can also navigate through help by simply select-
ing Help from Delphi 5’s Help menu.

06.65227_Ch04x 11/30/99 5:48 PM Page 137

Finally, the begin..end block is where the application’s main code is executed. In this simple
example, the main form, Form1, is created. When Application.Run() executes, Form1 is dis-
played as the main form. You can add code in this block, as shown later in this chapter.

Project Unit Files
Units are Pascal source files with a .pas extension. There are basically three types of units
files: form/data module and frame units, component units, and general-purpose units.

• Form/data module and frame units are units automatically generated by Delphi 5.
There’s one unit for each form/data module or frame you create. For example, you can’t
have two forms defined in one unit and use them both in the Form Designer. For the pur-
pose of explaining form files, we won’t make a distinction between forms, data modules,
and frames.

• Component units are unit files created by you or Delphi 5 whenever you create a new
component.

• General-purpose units are units you can create for data types, variables, procedures, and
classes you want to make accessible to your applications.

Details about units are provided later in this chapter.

Form Files
A form file contains a binary representation of a form. Whenever you create a new form,
Delphi 5 creates both a form file (with the extension .dfm) and a Pascal unit (with the exten-
sion .pas) for your new form. If you look at a form’s unit file, you’ll see the following line:

{$R *.DFM}

This line tells the compiler to link the corresponding form file (the form file that has the same
name as the unit file and a .DFM extension) to the project.

You typically don’t edit the form file itself (although it’s possible to do so). You can load the
form file into the Delphi 5 editor so that you can view or edit the text representation of this
file. Select File, Open and then select the option to open only form files (.dfm). You can also
do this by simply right-clicking the Form Designer and selecting View as Text from the pop-up
menu. When you open the file, you see the text representation of the form.

Viewing the textual representation of the form is handy because you can see the nondefault
property settings for the form and any components that exist on the form. One way you can
edit the form file is to change a component type. For example, suppose that the form file con-
tains this definition for a TButton component:

object Button1: TButton
Left = 8

Essentials for Rapid Development

PART I
138

06.65227_Ch04x 11/30/99 5:48 PM Page 138

Top = 8
Width = 75
Height = 25
Caption = ‘Button1’
TabOrder = 0

end

If you change the line object Button1: TButton to object Button1: TLabel, you change
the component type to a TLabel component. When you view the form, you see a label on the
form and not a button.

Application Frameworks and Design Concepts

CHAPTER 4
139

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

NOTE

Changing component types in the form file might result in a property read error. For
example, changing a TButton component (which has a TabOrder property) to a
TLabel component (which doesn’t have a TabOrder property) results in this error.
However, there’s no need for concern because Delphi will correct the reference to
the property the next time the form is saved.

CAUTION

You must be extremely careful when you edit the form file. It’s possible to corrupt it,
which will prevent Delphi 5 from opening the form later.

NOTE

New to Delphi 5 is the ability to save forms in text file format. This was made possi-
ble to allow editing with other common tools such as Notepad.exe. Simply right-click
the form to invoke the context menu and select Text DFM.

Resource Files
Resource files contain binary data, also called resources, that are linked to the application’s
executable file. The RES file automatically created by Delphi 5 contains the project’s applica-
tion icon, the application’s version information, and other information. You can add resources
to your application by creating a separate resource file and linking it to your project. You can
create this resource file with a resource editor such as the Image Editor provided with Delphi 5
or the Resource Workshop.

06.65227_Ch04x 11/30/99 5:48 PM Page 139

Project Options and Desktop Settings Files
The project options file (with the extension .dof) is where the options specified from the
Project, Options menu are saved. This file is created when you first save your project; the file
is saved again with each subsequent save.

The desktop options file (with the extension .dsk) stores the options specified from the Tools,
Environment Options menu for the desktop. Desktop option settings differ from project option
settings in that project options are specific to a given project; desktop settings apply to the
Delphi 5 environment.

Essentials for Rapid Development

PART I
140

CAUTION

Don’t edit the resource file that Delphi creates automatically at compile time. Doing
so will cause any changes to be lost the next time you compile. If you want to add
resources to your application, create a separate resource file with a different name
from that of your project file. Then link the new file to your project by using the $R
directive, as shown in the following line:

{$R MYRESFIL.RES}

TIP

A corrupt DSK or DOF file can cause unexpected results, such as a GPF, during compi-
lation. If this happens, delete both the DOF and DSK files. They’re regenerated when
you save your project and when you exit Delphi 5; the IDE and project will revert to
the default settings.

Backup Files
Delphi 5 creates backup files for the DPR project file and for any PAS units on the second and
any subsequent saves. The backup files contain the last copy of the file before the save was
performed. The project backup file has the extension .~dp. Unit backup files have the exten-
sion .~pa.

A binary backup of the DFM form file is also created after you’ve saved it for the second or
subsequent time. This form file backup has a .~df extension.

You harm nothing if you delete any of these files—as long as you realize that you’re deleting
your last backup. Also, if you find that you prefer not to create these files at all, you can prevent
Delphi from creating them by deselecting Create Backup File in the Editor Properties dialog
box’s Display page.

06.65227_Ch04x 11/30/99 5:48 PM Page 140

Package Files
Packages are simply DLLs that contain code that can be shared among many applications.
However, packages are specific to Delphi in that they allow you to share components, classes,
data, and code between modules. This means that you can now reduce the footprint of your
applications drastically by using components residing in packages instead of linking them
directly into your applications. Later chapters talk much more about packages. Package source
files use the extension .dpk (short for Delphi package). When compiled, a BPL file is created
(A .BPL file is simply a dll). This BPL may be composed of several units or DCU (Delphi
compiled units) files, which can be any of the unit types previously mentioned. The binary
image of a DPK file containing all included units and the package header has the extension
.dcp (Delphi compiled package). Don’t be concerned if this seems confusing now; we’ll
explain packages in more detail later.

Project Management Tips
There are several ways to optimize the development process by using techniques that facilitate
better organization and code reuse. The next few sections offer some tips on these techniques.

One Project, One Directory
It’s a good idea to manage your projects so that one project’s files are separate from other pro-
jects’ files. Doing so prevents one project from overwriting another project’s files.

Notice that each project on the CD-ROM that accompanies this book is in its own directory.
You should follow this approach and maintain each of your projects in its own directory.

Application Frameworks and Design Concepts

CHAPTER 4
141

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

File Naming Conventions
It’s a good idea to establish a standard file naming convention for the files that make
up your projects. You might take a look at the DDG Coding Standards Document
included on the CD-ROM and used by the authors for the projects contained in this
book. (See Chapter 6, “Delphi 5 Developer’s Guide Coding Standards Document.”)

Units for Sharing Code
You can share commonly used routines with other applications by placing such routines in
units that can be accessed by multiple projects. Typically, you create a utility directory some-
where on your hard drive and place your units in that directory. When you need to access a
particular function that exists in one of the units in that directory, you just place the unit’s
name in the uses clause of the unit/project file requiring access.

06.65227_Ch04x 11/30/99 5:48 PM Page 141

You must also add the utility directory’s path to the search path on the Directories/Conditionals
page in the Project Options dialog box. Doing so ensures that Delphi 5 knows where to find
your utility units.

Essentials for Rapid Development

PART I
142

TIP

By using the Project Manager, you can add a unit from another directory to an exist-
ing project, which automatically takes care of adding the search path.

To explain how to use utility units, Listing 4.1 shows a small unit, StrUtils.pas, that contains
a single string-utility function. In reality, such units would probably contain many more rou-
tines, but this suffices as an example. The comments explain the function’s purpose.

LISTING 4.1 The StrUtils.pas Unit

unit strutils;
interface
function ShortStringAsPChar(var S: ShortString): PChar;
implementation
function ShortStringAsPChar(var S: ShortString): PChar;
{ This function null-terminates a short string so that it can be passed to
functions that require PChar types. If string is longer than 254 chars, then
it will be truncated to 254.

}
begin
if Length(S) = High(S) then Dec(S[0]); { Truncate S if it’s too long }
S[Ord(Length(S)) + 1] := #0; { Place null at end of string }
Result := @S[1]; { Return “PChar’d” string }

end;
end.

Suppose that you have a unit, SomeUnit.Pas, that requires the use of this function. Simply add
StrUtils to the uses clause of the unit in need, as shown here:

unit SomeUnit;
interface
...
implementation
uses
strutils;

...
end.

06.65227_Ch04x 11/30/99 5:48 PM Page 142

Also, you must ensure that Delphi 5 can find the unit StrUtils.pas by adding it to the search
path from the Project, Options menu.

When you do this, you can use the function ShortStringAsPChar() anywhere in the imple-
mentation section of SomeUnit.pas. You must place StrUtils in the uses clause of all units
that need access to the ShortStringAsPChar() function. It isn’t enough to add StrUtils to
only one unit in a project, or even to the project file (DPR) of the application to make the rou-
tine available throughout the entire application.

Application Frameworks and Design Concepts

CHAPTER 4
143

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

TIP

Because ShortStringAsPChar() is a handy function, it pays to place it in a utility unit
where it can be reused by any application so that you don’t have to remember how
or where you last used it.

Units for Global Identifiers
Units are also useful for declaring global identifiers for your project. As mentioned earlier, a
project typically consists of many units—form units, component units, and general-purpose
units. What if you need a particular variable to be present and accessible to all units throughout
the running of your application? The following steps show a simple way to create a unit to
store these global identifiers:

1. Create a new unit in Delphi 5.

2. Give the unit a name indicating that it holds global identifiers for the application (for
example, Globals.Pas or ProjGlob.pas).

3. Place the variables, types, and so on in the interface section of your global unit. These
are the identifiers that will be accessible to other units in the application.

4. To make these identifiers accessible to a unit, just add the unit name to the uses clause
of the unit that needs access (as described earlier in this chapter in the discussion about
sharing code in units).

Making Forms Know About Other Forms
Just because each form is contained within its own unit doesn’t mean that it can’t access
another form’s variables, properties, and methods. Delphi generates code in the form’s corre-
sponding PAS file, declaring the instance of that form as a global variable. All that’s required is
that you add the name of the unit defining a particular form to the uses clause of the unit
defining the form needing access. For example, if Form1, defined in UNIT1.PAS, needs access
to Form2, defined in UNIT2.PAS, just add UNIT2 to UNIT1’s uses clause:

06.65227_Ch04x 11/30/99 5:48 PM Page 143

unit Unit1;
interface
...
implementation
uses
Unit2;

...
end.

Now UNIT1 can refer to Form2 anywhere in its implementation section.

Essentials for Rapid Development

PART I
144

NOTE

Form linking will ask you if you want to include Unit2 in Unit1’s uses clause when
you compile the project if you refer to the Unit2’s form (call it Form2); all that’s nec-
essary is to refer to Form2 somewhere in Unit1.

Multiple Projects Management (Project Groups)
Often, a product is made up of multiple projects (projects that are dependent on one another).
Examples of such projects are the separate tiers in a multitiered application. Also, DLLs to be
used in other projects might be considered part of the overall project, even though DLLs are
separate projects themselves.

Delphi 5 allows you to manage such project groups. The Project Manager allows you to com-
bine several Delphi projects into one grouping called a project group. We won’t go into to the
details of using the Project Manager because Delphi’s documentation already does this. We do
want to emphasize how important it is to organize project groups and how the Project Manager
helps you do this.

It’s still important that each project live in its own directory and that all files specific to that
project alone reside in the same directory. Any shared units, forms, and so on should be placed
in a common directory that’s accessed by the separate projects. For example, your directory
structure might look something like this:

\DDGBugProduct
\DDGBugProduct\BugReportProject
\DDGBugProduct\BugAdminTool
\DDGBugProduct\CommonFiles

Given this structure, you have two separate directories for each Delphi project:
BugReportProject and BugAdminTool. However, both of these projects may use forms and
units that are common. You would place these files into the CommonFiles directory.

06.65227_Ch04x 11/30/99 5:48 PM Page 144

Organization is crucial in your development efforts, especially in a team development environ-
ment. It’s highly recommended that you establish a standard before your team dives into creat-
ing a bunch of files that are going to be difficult to manage. You can use the Delphi Project
Manager to help you understand your project-management structure.

The Framework Classes of a Delphi 5 Project
Most Delphi 5 applications have at least one instance of a TForm class. Also, Delphi 5 VCL
applications will have only one instance of a TApplication class and a TScreen class. These
three classes play important roles in managing the behavior of a Delphi 5 project. The follow-
ing sections familiarize you with the roles of these classes so that you have the knowledge to
modify their default behaviors when necessary.

The TForm Class
The TForm class is the focal point for Delphi 5 applications. In most cases, the entire applica-
tion revolves around the main form. From the main form, you can launch other forms, usually
as a result of a menu or button-click event. You might want Delphi 5 to create your forms auto-
matically, in which case you don’t have to worry about creating and destroying them. You may
also choose to create the forms dynamically at runtime.

Application Frameworks and Design Concepts

CHAPTER 4
145

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

NOTE

Delphi can create applications that don’t use forms (for example, console apps, ser-
vices, and COM servers). Therefore, the TForm class is not always the focal point of
your applications.

You can display the form to the end user by using one of two methods: modal or modeless.
The method you choose depends on how you intend the user to interact with the form and
other forms concurrently.

Displaying a Modal Form
A modal form is displayed so that the user can’t access the rest of the application until he or
she has dismissed the form. Modal forms are typically associated with dialog boxes, much like
the dialog boxes in Delphi 5 itself. In fact, you’ll probably use modal forms in most cases. To
display a form as modal, simply call its ShowModal() method. The following code shows how
you create an instance of a user-defined form, TModalForm, and then display it as a modal form:

Begin
// Create ModalForm instance
ModalForm := TModalForm.Create(Application);

06.65227_Ch04x 11/30/99 5:48 PM Page 145

try
if ModalForm.ShowModal = mrOk then // Show form in modal state
{ do something }; // Execute some code

finally
ModalForm.Free; // Free form instance
ModalForm := nil; // Set form variable to nil

end;
end;

This code shows how you would dynamically create an instance of TModalForm and assign it to
the variable ModalForm. It’s important to note that, if you create a form dynamically, you must
remove it from the list of available forms from the Auto-Create list box in the Project Options
dialog box. This dialog box is invoked by selecting Project, Options from the menu. If the form
instance is already created, however, you can show it as a modal form just by calling the
ShowModal() method. The surrounding code can be removed:

begin
if ModalForm.ShowModal = mrOk then // ModalForm is already created
{ do something }

end;

The ShowModal() method returns the value assigned to ModalForm’s ModalResult property. By
default, ModalResult is zero, which is the value of the predefined constant mrNone. When you
assign any nonzero value to ModalResult, the form is closed, and the assignment made to
ModalResult is passed back to the calling routine through the ShowModal() method.

Buttons have a ModalResult property. You can assign a value to this property that’s passed to
the form’s ModalResult property when the button is pressed. If this value is anything other
than mrNone, the form will close, and the value passed back from the ShowModal() method will
reflect that assigned to ModalResult.

You can also assign a value to the form’s ModalResult property at runtime:

begin
ModalForm.ModalResult := 100; // Assigning a value to ModalResult
// causing form to close.

end;

Table 4.1 shows the predefined ModalResult values.

TABLE 4.1 ModalResult Values?

Constant Value

mrNone 0

mrOk idOk

mrCancel idCancel

Essentials for Rapid Development

PART I
146

06.65227_Ch04x 11/30/99 5:48 PM Page 146

Constant Value

mrAbort idAbort

mrRetry idRetry

mrIgnore idIgnore

mrYes idYes

mrNo idNo

mrAll mrNo+1

Launching Modeless Forms
You can launch a modeless form by calling its Show() method. Calling a modeless form differs
from the modal method in that the user can switch between the modeless form and other forms
in the application. The intent of modeless forms is to allow users to work with different parts
of the application at the same time as the form is displayed. The following code shows how
you can dynamically create a modeless form:

Begin
// Check for an instance of modeless first
if not Assigned(Modeless) then
Modeless := TModeless.Create(Application); // Create form

Modeless.Show // Show form as non-modal
end; // instance already exists

This code also shows how you prevent multiple instances of one form class from being created.
Remember that a modeless form allows the user to interact with the rest of the application.
Therefore, nothing prevents the user from selecting the menu option again to create another
form instance of TModeless. It’s important that you manage the creation and destruction of
forms.

Here’s an important note about form instances: When you close a modeless form—either by
accessing the system menu or clicking the close button in the upper-right corner of the form—
the form isn’t actually freed from memory. The instance of the form still exists in memory
until you close the main form (that is, the application). In the preceding code example, the
then clause is executed only once, provided that the form is not autocreated. From that point
on, the else clause is executed because the form instance always exists from its previous cre-
ation. This is fine if that’s the way you want your application to function. However, if you want
the form to be freed whenever the user closes it, you must provide code for the OnClose event
handler for the form and set its Action parameter to caFree. This tells the VCL to free the
form when it’s closed:

procedure TModeless.FormClose(Sender: TObject;
var Action: TCloseAction);

Application Frameworks and Design Concepts

CHAPTER 4
147

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

06.65227_Ch04x 11/30/99 5:48 PM Page 147

begin
Action := caFree; // Free the form instance when closed

end;

The preceding version of the code solves the issue of the form not being freed. There’s another
issue, however. You might have noticed that this line was used in the first snippet of code
showing modeless forms:

if not Assigned(Modeless) then begin

This line checks for an instance of TModeless referenced by the Modeless variable. Actually,
this really checks to see that Modeless is not nil. Although Modeless will be nil the first time
you enter the routine, it won’t be nil when you enter the routine a second time after having
destroyed the form. The reason is because the VCL doesn’t set the variable Modeless to nil
when it’s destroyed. Therefore, this is something you must do yourself.

Unlike with a modal form, you can’t determine in code when the modeless form will be
destroyed. Therefore, you can’t destroy the form inside the routine that creates it. The user can
close the form at any moment while running the application. Therefore, setting Modeless to
nil must be a process of the TModeless class itself. The best place to do this is in the
OnDestroy event handler for TModeless:

procedure TModeless.FormDestroy(Sender: TObject);
begin
Modeless := nil; // Set the Modeless variable to nil when destroyed

end;

This ensures that the Modeless variable is set to nil every time it’s destroyed, thus preventing
the Assigned() method from failing. Keep in mind that it’s up to you to ensure that only one
instance of TModeless is created at a time, as shown in this routine.

Essentials for Rapid Development

PART I
148

CAUTION

Avoid the following pitfall when working with modeless forms:

begin
Form1 := TForm1.Create(Application);
Form1.Show;

end;

This code results in memory unnecessarily being consumed because, each time you
create a form instance, you overwrite the previous instance referenced by Form1.
Although you could refer to each instance of the form created through the
Screen.Forms list, the practice shown in the preceding code is not recommended.
Passing nil to the Create() constructor will result in no way to refer to the form
instance pointer after the Form1 instance variable is overwritten.

06.65227_Ch04x 11/30/99 5:48 PM Page 148

The project ModState.dpr on the accompanying CD-ROM illustrates using both modal and
modeless forms.

Managing a Form’s Icons and Borders
TForm has a BorderIcons property that’s a set that may contain the following values:
biSystemMenu, biMinimize, biMaximize, and biHelp. By setting any or all of these values to
False, you can remove the system menu, the maximize button, the minimize button and the
help button from the form. All forms have the Windows 95/98 close button.

You also can change the nonclient area of the form by changing the BorderStyle property. The
BorderStyle property is defined as follows:

TFormBorderStyle = (bsNone, bsSingle, bsSizeable, bsDialog,
➥bsSizeToolWin, bsToolWindow);

The BorderStyle property gives forms the following characteristics:

• bsDialog. Nonsizable border; close button only.

• bsNone. No border, nonsizable, and no buttons.

• bsSingle. Nonsizable border; all buttons available. If only one of the biMinimize and
biMaximize buttons is set to False, both buttons appear on the form. However, the but-
ton set to False is disabled. If both are False, neither button appears on the form. If
biSystemMenu is False, no buttons appear on the form.

• bsSizable. Sizable border. All buttons are available. The same circumstances exist for
this option regarding buttons as with the bsSingle setting.

• bsSizeToolWin. Sizable border. Close button only and small caption bar.

• bsToolWindow. Nonsizable border. Close button only and small caption bar.

Application Frameworks and Design Concepts

CHAPTER 4
149

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

NOTE

Changes to the BorderIcon and BorderStyle properties aren’t reflected at design
time. These changes happen at runtime only. This is also the case with other proper-
ties, most of which are found on TForm. The reason for this behavior is that it doesn’t
make sense to change the appearance of certain properties at design time. Take, for
example, the Visible property. It’s difficult to select a control on the form when its
Visible property is set to False because the control is invisible.

06.65227_Ch04x 11/30/99 5:48 PM Page 149

Take a look at the BrdrIcon.dpr project on the CD-ROM. This project shows how you can
change the BorderIcon and BorderStyle property at runtime so that you see the visual effect.
Listing 4.2 shows the main form for this project, which contains the relevant code.

LISTING 4.2 The Main Form for the BorderStyle/BorderIcon Project

unit MainFrm;

interface

Essentials for Rapid Development

PART I
150

Sticky Captions!
You might have noticed that none of the options mentioned allow you to create cap-
tionless, resizable forms. Although this isn’t impossible, doing so requires a bit of
trickery not yet covered. You must override the form’s CreateParams() method and
set the styles required for that window style. The following code snippet does this:

unit Nocapu;
interface
uses
SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls, Forms, Dialogs;

type
TForm1 = class(TForm)

public
{ override CreateParams method }
procedure CreateParams(var Params: TCreateParams); override;

end;
var
Form1: TForm1;

implementation
{$R *.DFM}
procedure TForm1.CreateParams(var Params: TCreateParams);
begin
inherited CreateParams(Params); { Call the inherited Params }
{ Set the style accordingly }
Params.Style := WS_THICKFRAME or WS_POPUP or WS_BORDER;

end;
end.

You’ll learn more about the CreateParams() method in Chapter 21, “Writing Delphi
Custom Components.”

You can find an example of a sizable, borderless form in the project NoCaption.dpr
on the CD-ROM that accompanies this book. This demo also illustrates how to capture
the WM_NCHITTEST message to enable moving the form without the caption by drag-
ging the form.

06.65227_Ch04x 11/30/99 5:48 PM Page 150

uses
SysUtils, Windows, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, ExtCtrls;

type
TMainForm = class(TForm)
gbBorderIcons: TGroupBox;
cbSystemMenu: TCheckBox;
cbMinimize: TCheckBox;
cbMaximize: TCheckBox;
rgBorderStyle: TRadioGroup;
cbHelp: TCheckBox;
procedure cbMinimizeClick(Sender: TObject);
procedure rgBorderStyleClick(Sender: TObject);

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

procedure TMainForm.cbMinimizeClick(Sender: TObject);
var
IconSet: TBorderIcons; // Temp variable to hold values.

begin
IconSet := []; // Initialize to an empty set
if cbSystemMenu.Checked then
IconSet := IconSet + [biSystemMenu]; // Add the biSystemMenu button

if cbMinimize.Checked then
IconSet := IconSet + [biMinimize]; // Add the biMinimize button

if cbMaximize.Checked then
IconSet := IconSet + [biMaximize]; // Add the biMaximize button

if cbHelp.Checked then
IconSet := IconSet + [biHelp];

BorderIcons := IconSet; // Assign result to the form’s
end; // BorderIcons property.

procedure TMainForm.rgBorderStyleClick(Sender: TObject);
begin
BorderStyle := TBorderStyle(rgBorderStyle.ItemIndex);

end;

end.

Application Frameworks and Design Concepts

CHAPTER 4
151

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

06.65227_Ch04x 11/30/99 5:48 PM Page 151

Form Reusability: Visual Form Inheritance
A useful feature of Delphi 5 is a concept known as visual form inheritance. In the first version
of Delphi, you could create a form and save it as a template, but you didn’t have the advantage
of true inheritance (the capability to access the ancestor form’s components, methods, and
properties). By using inheritance, all descendant forms share the same code as their ancestor.
The only overhead involves the methods you add to your descendant forms. Therefore, you
also gain the advantage of reducing your application’s overall footprint. Another advantage is
that changes made to the ancestor code are also applied to its descendants.

Essentials for Rapid Development

PART I
152

The Object Repository
Delphi 5 has a project-management feature that allows programmers to share forms,
dialog boxes, data modules, and project templates. This feature is called the Object
Repository. By using the Object Repository, developers can share the various objects
listed with developers of other projects. Additionally, the Object Repository allows
developers to maximize code reuse by allowing them to inherit their objects from
objects that exist in the Object Repository. Chapter 4 of the Delphi 5 User’s Guide covers
the Object Repository. It’s a good idea to become familiar with this powerful feature.

Inheriting a form from another form is simple because it’s completely built into the Delphi 5
environment. To create a form that descends from another form definition, you simply select
File, New from Delphi’s main menu, which invokes the New Items dialog box. This dialog box

TIP

In a network environment, you might want to share form templates with other pro-
grammers. This is possible by creating a shared repository. In the Environment
Options dialog box (select Tools, Environment Options), you can specify the location
of a shared repository. Each programmer must map to the same drive that points to
this directory location. Then, whenever File, New is selected, Delphi will scan this
directory for any shared items in the repository.

NOTE

Some properties in the Object Inspector affect the appearance of your form; others
define behavioral aspects for your form. Experiment with each property that’s unfa-
miliar. If you need to know more about a property, use the Delphi 5 help system to
find additional information.

06.65227_Ch04x 11/30/99 5:48 PM Page 152

The various forms listed are those that have been added previously to the Object Repository.
You’ll notice that there are three options for how to include the form in your project: Copy,
Inherit, and Use.

Choosing Copy adds an exact duplicate of the form to your project. If the form kept in the
Object Repository is modified, this won’t affect your copied form.

Choosing Inherit causes a new form class derived from the form you selected to be added to
your project. This powerful feature allows you to inherit from the class in the Object
Repository so that changes made to the Object Repository’s form are reflected by the form in
your project as well. This is the option that most developers ought to select.

Choosing Use causes the form to be added to your project as if you had created it as part of the
project. Changes you make to the item at design time will appear in all projects that also use
the form and any projects that inherit from the form.

The TApplication Class
Every form-based Delphi 5 program contains a global variable, Application, of the type
TApplication. TApplication encapsulates your program and performs many behind-the-
scenes functions that enable your application to work correctly within the Windows environ-
ment. These functions include creating your window class definition, creating the main
window for your application, activating your application, processing messages, adding context-
sensitive help, processing menu accelerator keys, and handling VCL exceptions.

Application Frameworks and Design Concepts

CHAPTER 4
153

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

NOTE

You don’t have to go through the Object Repository to get form inheritance. You can
inherit from forms that are in your project. Select File, New and then select the
Project page. From there, you can select an existing form in your project. Forms
shown in the Project page are not in the Object Repository.

NOTE

Only form-based Delphi applications contain the global Application object.
Applications such as console apps don’t contain a VCL Application object.

actually gives you a view of the objects that exist in the Object Repository (see the sidebar
“The Object Repository”). You then select the Forms page, which lists the forms that have been
added to the Object Repository.

06.65227_Ch04x 11/30/99 5:48 PM Page 153

You typically won’t have to be concerned about the background tasks that TApplication per-
forms. However, some situations might necessitate that you delve into the inner workings of
TApplication.

Because TApplication doesn’t appear in the Object Inspector, you can’t modify its properties
there. However, you can choose Project, Options and select the Application page, from which
you can set some of the properties for TApplication. Mostly, you work with the
TApplication instance, Application, at runtime—that is, you set its property values and
assign event handlers to Application when the program is running.

TApplication’s Properties
TApplication has several properties that you can access at runtime. The following sections
discuss some of the properties specific to TApplication and how you can use them to change
the default behavior of Application to enhance your project. TApplication’s properties are
also well documented in the Delphi 5 online help.

The TApplication.ExeName Property
The ExeName property of Application holds the full path and filename for the project. Because
this is a runtime, read-only property, you can’t modify it. However, you can read it—or even
let your users know where they ran the application from. For example, the following line of
code changes a main form’s caption to the contents of ExeName:

Application.MainForm.Caption := Application.ExeName;

Essentials for Rapid Development

PART I
154

TIP

Use the ExtractFileName() function to retrieve the filename from a string contain-
ing the full path of a file:

ShowMessage(ExtractFileName(Application.ExeName));

Use ExtractFilePath() to retrieve the path of a full path string:

ShowMessage(ExtractFilePath(Application.ExeName));

Finally, use ExtractFileExt() to extract the extension of a filename:

ShowMessage(ExtractFileExt(Application.ExeName));

The TApplication.MainForm Property
In the preceding section, you saw how to access the MainForm property to change its Caption
to reflect the ExeName for the application. MainForm points to a TForm so that you can access
any TForm property through MainForm. You can also access properties that you add to your
descendant forms, as long as you typecast MainForm accordingly:

(MainForm as TForm1).SongTitle := ‘The Flood’;

06.65227_Ch04x 11/30/99 5:48 PM Page 154

MainForm is a read-only property. You can specify which form in your application is the main
form at design time by using the Forms page in the Project Options dialog box.

The TApplication.Handle Property
The Handle property is an HWND (a window handle, in Win32 API terms). The window han-
dle is the owner of all top-level windows in your application. Handle is what makes modal dia-
log boxes modal over all windows of your application. You don’t have to access Handle that
often, unless you intend to take over the default behavior of the application in a way that isn’t
provided by Delphi. You may also refer to the Handle property when using Win32 API func-
tions requiring the application’s window handle. We’ll discuss Handle more later in the chapter.

The TApplication.Icon and TApplication.Title Properties
The Icon property holds the icon that represents the application when your project is mini-
mized. You can change the application’s icon by providing another icon and assigning it to
Application.Icon, as described in the later section “Adding Resources to Your Project.”

The text that appears next to the icon in the application’s task button on the Windows 95/98
taskbar is the application’s Title property. If you’re running Windows NT, this text appears
just underneath the icon. Changing the title of the task button is simple—just make a string
assignment to the Title property:

Application.Title := ‘New Title’;

Other Properties
The Active property is a read-only Boolean property that indicates whether the application has
focus and is active.

The ComponentCount property indicates the number of components that Application contains.
Mainly, these components are forms and a THintWindow instance if the Application.ShowHint
property is True. ComponentIndex is always -1 for any component that does not have an
owner. Therefore, TApplication.ComponentIndex is always -1. This property mainly applies
to forms and components on forms.

The Components property is an array of components that belong to the Application. There
will be TApplication.ComponentCount items in the Components array. The following code
shows how you would add the class names of all components referred to by ComponentCount
to a TListBox component:

var
i: integer;

begin
for i := 0 to Application.ComponentCount - 1 do
ListBox1.Items.Add(Application.Components[i].ClassName);

end;

Application Frameworks and Design Concepts

CHAPTER 4
155

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

06.65227_Ch04x 11/30/99 5:48 PM Page 155

The HelpFile property contains the Windows help filename, which enables you to add online
help to your application. It’s used by TApplication.HelpContext and other help invocation
methods.

The TApplication.Owner property is always nil because TApplication can’t be owned by
any other component.

The ShowHint property enables or disables the display of hints for the entire application. The
Application.ShowHint property overrides the values of any other component’s ShowHint
property. Therefore, if Application.ShowHint is False, hints are not displayed for any com-
ponent.

The Terminated property is True whenever the application has been terminated by closing the
main form or by calling the TApplication.Terminate() method.

TApplication’s Methods
TApplication has several methods with which you should be familiar. The following sections
discuss some of the methods specific to TApplication.

The TApplication.CreateForm() Method
The TApplication.CreateForm() method is defined as follows:

procedure CreateForm(InstanceClass: TComponentClass; var Reference)

This method creates an instance of a form with the type specified by InstanceClass and
assigns that instance to the Reference variable. Earlier, you saw how this method was called in
the project’s DPR file. The code had the following line, which creates the instance of Form1 of
type TForm1:

Application.CreateForm(TForm1, Form1);

The line would have been created automatically by Delphi 5 if Form1 appeared in the project’s
Auto-Create list. However, you can call this method elsewhere in your code if you’re creating a
form that doesn’t appear in the Auto-Create list (in which case the form’s instance wouldn’t
have been created automatically). This approach doesn’t differ much from calling the form’s
own Create() method, except that TApplication.CreateForm() checks to see whether the
TApplication.MainForm property is nil; if so, CreateForm() assigns the newly created form
to Application.MainForm. Subsequent calls to CreateForm() don’t affect this assignment.
Typically, you don’t call CreateForm(); you use a form’s Create() method instead.

The TApplication.HandleException() Method
The HandleException() method is where the TApplication instance displays information
about exceptions that occur in your project. This information is displayed with a standard
exception message box defined by VCL. You can override this message box by attaching an

Essentials for Rapid Development

PART I
156

06.65227_Ch04x 11/30/99 5:48 PM Page 156

event handler to the Application.OnException event, as shown in the later section
“Overriding the Application’s Exception Handling.”

TApplication’s HelpCommand(), HelpContext(),
and HelpJump() Methods
The HelpCommand(), HelpContext(), and HelpJump() methods each provide a way for you to
interface your projects with the Windows help system provided by the WINHELP.EXE program
that ships with Windows. HelpCommand() allows you to call any of the WinHelp macro com-
mands and macros defined in your help file. HelpContext() allows you to launch a help page
in the help file specified by the TApplication.HelpFile property. The page displayed is based
on the value of the Context parameter passed to HelpContext(). HelpJump() is much like
HelpContext(), except that it takes a JumpID string parameter.

The TApplication.ProcessMessages() Method
ProcessMessages() causes your application to actively go get any messages that are waiting
for it and then process them. This is useful when you have to perform a process within a tight
loop and you don’t want your code to prevent you from executing other code (such as process-
ing an abort button). In contrast, TApplication.HandleMessages() puts the application into an
idle state if there are no messages, whereas ProcessMessages() won’t put it in an idle state.
The ProcessMessages() method is used in Chapter 10, “Printing in Delphi 5.”

The TApplication.Run() Method
Delphi 5 automatically places the Run() method within the project file’s main block. You never
have to call this method yourself, but you should know where it goes and what it does in case
you ever have to modify the project file. Basically, TApplication.Run() first sets up an exit
procedure for the project, which ensures that all components are freed when the project ends. It
then enters a loop that calls the methods to process messages for the project until the applica-
tion is terminated.

The TApplication.ShowException() Method
The ShowException() method simply takes an exception class as a parameter and displays a
message box with information about that exception. This method comes in handy if you’re
overriding the Application’s exception handling method, as shown in the later section
“Overriding the Application’s Exception Handling.”

Other Methods
TApplication.Create() creates the TApplication instance. This method is called internally
by Delphi 5; you should never call it.

TApplication.Destroy() destroys the TApplication instance. This method is called inter-
nally by Delphi 5. You should never call this method.

Application Frameworks and Design Concepts

CHAPTER 4
157

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

06.65227_Ch04x 11/30/99 5:48 PM Page 157

TApplication.MessageBox() allows you to display a Windows message box. However, this
method doesn’t require that you pass a window’s handle, as the Windows MessageBox() func-
tion does.

TApplication.Minimize() places your application in a minimized state.

TApplication.Restore() restores your application to its previous size from a minimized or
maximized state.

TApplication.Terminate() terminates the execution of your application. Terminate is an
indirect call to PostQuitMessage, resulting in a graceful shutdown of the application (unlike
Halt()).

Essentials for Rapid Development

PART I
158

NOTE

Use the TApplication.Terminate() method to halt an application. Terminate() calls
the Windows API function PostQuitMessage(), which posts a message to your appli-
cation’s message queue. VCL responds by properly freeing objects that have been cre-
ated in your application. The Terminate() method is a clean way to stop your
application’s process. It’s important to note that your application does not terminate
at the call to Terminate(). Instead, it continues to run until the application returns to
its message queue and retrieves the WM_QUIT message. Halt(), on the other hand,
forcibly terminates your application without freeing any objects or shutting down
gracefully. Execution does not return from a call to Halt().

TApplication’s Events
TApplication has several events to which you can add event handlers. In past versions of
Delphi, these events were not accessible from the Object Inspector (for example, the events for
the form or components on the Component Palette). You had to add an event handler to the
Application variable by first defining the handler as a method and then assigning that method
to the handler at runtime. Delphi 5 adds a new component to the Additional page of the
Component Palette—TApplicationEvents. This component allows you to assign event han-
dlers at design time to the global Application instance. Table 4.2 lists the events associated
with TApplication.

TABLE 4.2 TApplication and TApplicationEvents Events

Event Description

OnActivate Occurs when the application becomes active; OnDeactivate occurs when
the application stops being active (for example, when you switch to another
application).

06.65227_Ch04x 11/30/99 5:48 PM Page 158

Event Description

OnException Occurs when an unhandled exception has occurred; you can add default
processing for unhandled exceptions. OnException occurs if the exception
makes it all the way up to the application object. Normally, you should
allow exceptions to be handled by the default exception handler and not
trapped by Application.OnException or lower code. If you must trap
an exception, reraise it and make sure that the exception instance carries a
full description of the situation so that the default exception handler can
present useful information.

OnHelp Occurs for any invocation of the help system, such as when F1 is pressed or
when the following methods are called: HelpCommand(),
HelpContext(), and HelpJump().

OnMessage Enables you to process messages before they’re dispatched to their intended
controls. OnMessage gets to peek at all messages posted to all controls in
the application. Exercise caution when using OnMessage because it could
result in a bottleneck.

OnHint Enables you to display hints associated with controls when the mouse is
positioned over the control. An example of this is a status line hint.

OnIdle Occurs when the application is switched into an idle state. OnIdle is not
called continuously. Once in the idle state, an application will not wake up
until it receives a message.

You work more with TApplication later in this chapter as well as in other projects in other
chapters.

Application Frameworks and Design Concepts

CHAPTER 4
159

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

NOTE

The TApplication.OnIdle event provides a handy way to perform certain processing
when no user interaction is occurring. One common use for the OnIdle event handler
is to update menus and speedbuttons based on the status of the application.

The TScreen Class
The TScreen class simply encapsulates the state of the screen on which your applications runs.
TScreen is not a component that you add to your Delphi 5 forms, nor do you create it dynami-
cally during runtime. Delphi 5 automatically creates a TScreen global variable called Screen,
which you can access from within your application. The TScreen class contains several proper-
ties that you’ll find useful. These properties are listed in Table 4.3.

06.65227_Ch04x 11/30/99 5:48 PM Page 159

TABLE 4.3 TScreen Properties

Property Meaning

ActiveControl A read-only property that indicates which control on the screen has cur-
rent focus. As focus shifts from one control to another, ActiveControl
is assigned the newly focused control before the OnExit event of the
control losing focus finishes.

ActiveForm Indicates the form that has focus. This property is set when another form
switches focus or when the Delphi 5 application gains focus from
another application.

Cursor The cursor shape that’s global to the application. By default, this is set
to crDefault. Each windowed component has its own Cursor prop-
erty that may be modified. However, when the cursor is set to something
other than crDefault, all other controls reflect that change until
Screen.Cursor is set back to crDefault. Another way to look at this
is Screen.Cursor = crDefault means “ask the control under the
mouse what cursor should be displayed.” Screen.Cursor <>
crDefault means “don’t ask.”

Cursors A list of all cursors available to the screen device.

DataModules A list of all data modules belonging to the application.

DataModuleCount The number of data modules belonging to the application.

FormCount The number of available forms in the application.

Forms A list of forms available to the application.

Fonts A list of font names available to the screen device.

Height The height of the screen device in pixels.

PixelsPerInch Indicates the relative scale of the system font.

Width The width of the screen device in pixels.

Defining a Common Architecture:
Using the Object Repository
Delphi makes it so easy to develop applications that you can get 60 percent into your applica-
tion development before you realize that you should have spent more time up front on applica-
tion architecture. A common problem with development is that developers are too anxious to
get coding before spending the appropriate time really thinking about application design. This
alone is one of the biggest contributors to project failure.

Essentials for Rapid Development

PART I
160

06.65227_Ch04x 11/30/99 5:48 PM Page 160

Thoughts on Application Architecture
This is not a book on architecture or object-oriented analysis and design. However, we strongly
feel that this is one of the most important aspects of application development in addition to
requirements, detail design, and everything else that constitutes the initial 80 percent of a prod-
uct before coding begins. We’ve listed some of our favorite references on topics such as object-
oriented analysis in Appendix C, “Suggested Reading.” It would be to your best interest to
research this topic thoroughly before you roll your sleeves up and start coding.

Here are a few examples of the many issues that come into play when considering application
architecture:

• Does the architecture support code reuse?

• Is the system organized so that modules, objects, and so on are localized?

• Can changes more easily be made to the architecture?

• Are the user interface and back end localized so that either can be replaced?

• Does the architecture support a team development effort? In other words, can team mem-
bers easily work on separate modules without overlap?

These are just a few of the things to consider during development.

Volumes have been written on this topic alone, so we won’t attempt to compete with that infor-
mation. We do, however, hope that we’ve sparked your interest enough to make you learn
about it if you aren’t already an architecture guru. The following sections illustrate a simple
method of architecting a common UI for a database application and how Delphi can help you
do that.

Delphi’s Inherent Architecture
You’ll often hear that you don’t have to be a component writer to be a Delphi developer.
Although true, it’s also true that if you’re a component writer, you’re a much better Delphi
developer.

This is because component writers clearly understand the object model and architecture that
Delphi applications inherit just by being Delphi applications. This means that component writ-
ers are better equipped to take advantage of this powerful and flexible model in their own
applications. In fact, you’ve probably already heard that Delphi is written in Delphi. Delphi is
an example of an application written with the same inherent architecture that your applications
can also use.

Even if you don’t intend to write components, you’ll be better off if you learn it anyway.
Become thoroughly knowledgeable of the VCL and the Object Pascal model as well as of the
Win32 operating system.

Application Frameworks and Design Concepts

CHAPTER 4
161

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

06.65227_Ch04x 11/30/99 5:48 PM Page 161

An Architecture Example
To demonstrate the power of form inheritance as well as the use of the Object Repository,
we’re going to define a common application architecture. The issues we’re focusing on are
code reusability, flexibility for change, consistency, and facility for team development.

The form class hierarchy, or rather, framework, consists of forms to be used specifically for
database applications. These forms are typical of most database applications. The forms should
be aware of the state of the database operation (edit, add, or browse). They should also contain
the common controls used in performing these operations on a database table, such as a toolbar
and status bar whose displays and controls change according to the form’s state. Additionally,
they should provide an event that can be invoked whenever the form mode changes.

This framework should also enable a team to work on isolated parts of an application without
requiring the entire application’s source code. Otherwise, there’s the likelihood that different
programmers would modify the same files.

For now, this framework’s hierarchy will contain three levels. This will be expanded on later in
the book.

Table 4.4 describes the purpose of each form in the framework.

TABLE 4.4 Database Form Framework

Form Class Purpose

TChildForm = class(TForm) Provides the capability to be inserted as a child to
another window

TDBModeForm = class(TChildForm) Is aware of a database state (browse, insert, edit)
and contains an event to be invoked upon state
change

TDBNavStatForm = class(TDBBaseForm) Typical database entry form that’s aware of its state
and contains the standard navigation bar and status
bar to be used by all database applications

The Child Form (TChildForm)
TChildForm is a base class for forms that can be launched as independent modal and modeless
forms and can become child windows to any other window.

This capability makes it easy for a team of developers to work on separate pieces of an appli-
cation apart from the overall application. It also provides a nice UI feature in that the user can
launch a form as a separate entity in an application, even though that might not be the normal

Essentials for Rapid Development

PART I
162

06.65227_Ch04x 11/30/99 5:48 PM Page 162

method of interacting with that form. Listing 4.3 is the source for TChildForm. You’ll find this
and all the other forms to be placed in the Object Repository in the \Code directory on the CD-
ROM.

LISTING 4.3 TChildForm Source

unit ChildFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, ExtCtrls, Menus;

type

TChildForm = class(TForm)
private
FAsChild: Boolean;
FTempParent: TWinControl;

protected
procedure CreateParams(var Params: TCreateParams); override;
procedure Loaded; override;

public
constructor Create(AOwner: TComponent); overload; override;
constructor Create(AOwner: TComponent;

AParent: TWinControl); reintroduce; overload;

// The method below must be overridden to return either the main menu
// of the form, or nil.
function GetFormMenu: TMainMenu; virtual; abstract;
function CanChange: Boolean; virtual;

end;

implementation

{$R *.DFM}
constructor TChildForm.Create(AOwner: TComponent);
begin
FAsChild := False;
inherited Create(AOwner);

end;

constructor TChildForm.Create(AOwner: TComponent; AParent: TWinControl);
begin

Application Frameworks and Design Concepts

CHAPTER 4
163

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

06.65227_Ch04x 11/30/99 5:48 PM Page 163

FAsChild := True;
FTempParent := aParent;
inherited Create(AOwner);

end;

procedure TChildForm.Loaded;
begin
inherited;
if FAsChild then
begin
align := alClient;
BorderStyle := bsNone;
BorderIcons := [];
Parent := FTempParent;
Position := poDefault;

end;
end;

procedure TChildForm.CreateParams(var Params: TCreateParams);
Begin
Inherited CreateParams(Params);
if FAsChild then
Params.Style := Params.Style or WS_CHILD;

end;

function TChildForm.CanChange: Boolean;
begin
Result := True;

end;

end.

This listing demonstrates a couple of techniques. First, it shows how to use the overload exten-
sions to the Object Pascal language, and second, it shows how to make a form a child of
another window.

Providing a Second Constructor
You’ll notice that we’ve declared two constructors for this child form. The first constructor
declared is used when the form is created as a normal form. This is the constructor with one
parameter. The second constructor, which takes two parameters, is declared as an overloaded
constructor. You would use this constructor to create the form as a child window. The parent to
the form gets passed as the AParent parameter. Notice that we’ve used the reintroduce direc-
tive to suppress the warning about hiding the virtual constructor.

Essentials for Rapid Development

PART I
164

06.65227_Ch04x 11/30/99 5:48 PM Page 164

The first constructor simply sets the FAsChild variable to False to ensure that the form is cre-
ated normally. The second constructor sets the value to True and sets FTempParent to the
AParent parameter. This value is used later as the parent of the child form in the Loaded()
method.

Making a Form a Child Window
To make a form a child window, there are a few things you need to do. First, you have to make
sure that various property settings have been set, which you’ll see is done programmatically in
TChildForm.Loaded(). In Listing 4.3, we ensure that when the form becomes a child it doesn’t
look like a dialog box. We do this by removing the border and any border icons. We also make
sure that the form is client-aligned and set the parent to the window referred to by the
FTempParent variable. If this form were going to be used as a child only, we could have made
these settings at design time. However, this form will also be launched as a normal form, so we
set these properties only if the FAsChild variable is True.

We also have to override the CreateParams() method to tell Windows to create the form as a
child window. We do this by setting the WS_CHILD style in the Params.Style property.

This base form is not restricted to a database application. In fact, you can use it for any form
that you want to have child window capabilities. You’ll find a demo of this child form being
used as both a normal form and as a child form in the ChildTest.dpr project found in the
\Form Framework directory on the CD-ROM.

Application Frameworks and Design Concepts

CHAPTER 4
165

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

NOTE

Delphi 5 introduces frames to the VCL. Frames work so that they can be embedded
within a form. Because frames serve as containers for components, they function
much like the child form shown previously. We’ll discuss frames in more detail
momentarily.

The Database Base Mode Form (TDBModeForm)
TDBModeForm is a descendant of TChildForm. Its purpose is to be aware of the state of a table
(browse, insert, and edit). This form also provides an event that occurs whenever the mode is
changed.

Listing 4.4. shows the source code for TDBModeForm.

06.65227_Ch04x 11/30/99 5:48 PM Page 165

LISTING 4.4 TDBModeForm

unit DBModeFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
CHILDFRM;

type

TFormMode = (fmBrowse, fmInsert, fmEdit);

TDBModeForm = class(TChildForm)
private
FFormMode : TFormMode;
FOnSetFormMode : TNotifyEvent;

protected
procedure SetFormMode(AValue: TFormMode); virtual;
function GetFormMode: TFormMode; virtual;

public
property FormMode: TFormMode read GetFormMode write SetFormMode;

published
property OnSetFormMode: TNotifyEvent read FOnSetFormMode

write FOnSetFormMode;

end;

var
DBModeForm: TDBModeForm;

implementation

{$R *.DFM}

procedure TDBModeForm.SetFormMode(AValue: TFormMode);
begin
FFormMode := AValue;
if Assigned(FOnSetFormMode) then
FOnSetFormMode(self);

end;

function TDBModeForm.GetFormMode: TFormMode;
begin
Result := FFormMode;

end;

end.

Essentials for Rapid Development

PART I
166

06.65227_Ch04x 11/30/99 5:48 PM Page 166

The implementation of TDBModeForm is straightforward. Although we’re using some techniques
we haven’t yet discussed, you should be able to follow what’s happening here. First, we just
defined the enumerated type, TFormMode, to represent the form’s state. Then we provided the
FormMode property and its read and write methods. The technique for creating the property and
read/write methods is discussed further in Chapter 21, “Writing Delphi Custom Components.”

A demo using TDBModeForm is in the project FormModeTest.DPR found in the \Form Framework
directory on the CD-ROM.

The Database Navigation/Status Form (TDBNavStatForm)
TDBNavStatForm brings the bulk of the functionality of this framework. This form contains the
common set of components to be used in our database applications. In particular, it has a navi-
gation bar and status bar that automatically change based on the form’s state. For example,
you’ll see that the Accept and Cancel buttons are initially disabled when the form is in the state
of fsBrowse. However, when the user places the form in the fsInsert or fsEdit state, the but-
tons become enabled. The status bar also displays the state the form is in.

Listing 4.5 shows the source code for TDBNavStatForm. Notice that we’ve eliminated the com-
ponent list from the listing. You’ll see these if you load the demo project for this form.

LISTING 4.5 TDBNavStatForm

unit DBNavStatFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
DBMODEFRM, ComCtrls, ToolWin, Menus, ExtCtrls, ImgList;

type
TDBNavStatForm = class(TDBModeForm)
{ components not included in listing. }
procedure sbAcceptClick(Sender: TObject);
procedure sbInsertClick(Sender: TObject);
procedure sbEditClick(Sender: TObject);

private
{ Private declarations }

protected
procedure Setbuttons; virtual;
procedure SetStatusBar; virtual;
procedure SetFormMode(AValue: TFormMode); override;

public

Application Frameworks and Design Concepts

CHAPTER 4
167

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

continues

06.65227_Ch04x 11/30/99 5:48 PM Page 167

LISTING 4.5 Continued

constructor Create(AOwner: TComponent); overload; override;
constructor Create(AOwner: TComponent; AParent: TWinControl); overload;
procedure SetToolBarParent(AParent: TWinControl);
procedure SetStatusBarParent(AParent: TWinControl);

end;

var
DBNavStatForm: TDBNavStatForm;

implementation

{$R *.DFM}

{ TDBModeForm3 }

procedure TDBNavStatForm.SetFormMode(AValue: TFormMode);
begin
inherited SetFormMode(AValue);
SetButtons;
SetStatusBar;

end;

procedure TDBNavStatForm.Setbuttons;

procedure SetBrowseButtons;
begin
sbAccept.Enabled := False;
sbCancel.Enabled := False;

sbInsert.Enabled := True;
sbDelete.Enabled := True;
sbEdit.Enabled := True;

sbFind.Enabled := True;
sbBrowse.Enabled := True;

sbFirst.Enabled := True ;
sbPrev.Enabled := True ;
sbNext.Enabled := True ;
sbLast.Enabled := True ;

end;

procedure SetInsertButtons;

Essentials for Rapid Development

PART I
168

06.65227_Ch04x 11/30/99 5:48 PM Page 168

begin
sbAccept.Enabled := True;
sbCancel.Enabled := True;

sbInsert.Enabled := False;
sbDelete.Enabled := False;
sbEdit.Enabled := False;

sbFind.Enabled := False;
sbBrowse.Enabled := False;

sbFirst.Enabled := False;
sbPrev.Enabled := False;
sbNext.Enabled := False;
sbLast.Enabled := False;

end;

procedure SetEditButtons;
begin
sbAccept.Enabled := True;
sbCancel.Enabled := True;

sbInsert.Enabled := False;
sbDelete.Enabled := False;
sbEdit.Enabled := False;

sbFind.Enabled := False;
sbBrowse.Enabled := True;

sbFirst.Enabled := False;
sbPrev.Enabled := False;
sbNext.Enabled := False;
sbLast.Enabled := False;

end;

begin
case FormMode of
fmBrowse: SetBrowseButtons;
fmInsert: SetInsertButtons;
fmEdit: SetEditButtons;

end; { case }

end;

procedure TDBNavStatForm.SetStatusBar;
begin

Application Frameworks and Design Concepts

CHAPTER 4
169

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

continues

06.65227_Ch04x 11/30/99 5:48 PM Page 169

LISTING 4.5 Continued

case FormMode of
fmBrowse: stbStatusBar.Panels[1].Text := ‘Browsing’;
fmInsert: stbStatusBar.Panels[1].Text := ‘Inserting’;
fmEdit: stbStatusBar.Panels[1].Text := ‘Edit’;

end;

mmiInsert.Enabled := sbInsert.Enabled;
mmiEdit.Enabled := sbEdit.Enabled;
mmiDelete.Enabled := sbDelete.Enabled;
mmiCancel.Enabled := sbCancel.Enabled;
mmiFind.Enabled := sbFind.Enabled;

mmiNext.Enabled := sbNext.Enabled;
mmiPrevious.Enabled := sbPrev.Enabled;
mmiFirst.Enabled := sbFirst.Enabled;
mmiLast.Enabled := sbLast.Enabled;

end;

procedure TDBNavStatForm.sbAcceptClick(Sender: TObject);
begin
inherited;
FormMode := fmBrowse;

end;

procedure TDBNavStatForm.sbInsertClick(Sender: TObject);
begin
inherited;
FormMode := fmInsert;

end;

procedure TDBNavStatForm.sbEditClick(Sender: TObject);
begin
inherited;
FormMode := fmEdit;

end;

constructor TDBNavStatForm.Create(AOwner: TComponent);
begin
inherited Create(AOwner);
FormMode := fmBrowse;

end;

constructor TDBNavStatForm.Create(AOwner: TComponent; AParent: TWinControl);

Essentials for Rapid Development

PART I
170

06.65227_Ch04x 11/30/99 5:48 PM Page 170

begin
inherited Create(AOwner, AParent);
FormMode := fmBrowse;

end;

procedure TDBNavStatForm.SetStatusBarParent(AParent: TWinControl);
begin
stbStatusBar.Parent := AParent;

end;

procedure TDBNavStatForm.SetToolBarParent(AParent: TWinControl);
begin
tlbNavigationBar.Parent := AParent;

end;

end.

The event handlers for the various TToolButton components basically set the form to its
appropriate state. This, in turn, invokes the SetFormMode() methods, which we’ve overridden
to call the SetButtons() and SetStatusBar() methods. SetButtons() enables or disables the
buttons accordingly based on the form’s mode.

You’ll notice that we’ve also provided two procedures to change the parent of the TToolBar
and TStatusBar components on the form. This functionality is provided so that when the form
is invoked as a child window, we can set the parent of these components to the main form.
When you run the demo provided in the \Form Framework directory on the CD-ROM, you’ll
see why this makes sense.

As stated earlier, TDBNavStatForm inherits the functionality to be an independent form as well
as a child window. The demo invokes an instance of TDBNavStatForm with the following code:

procedure TMainForm.btnNormalClick(Sender: TObject);
var
LocalNavStatForm: TNavStatForm;

begin
LocalNavStatForm := TNavStatForm.Create(Application);
try
LocalNavStatForm.ShowModal;

finally
LocalNavStatForm.Free;

end;
end;

The following code shows how to invoke the form as a child window:

procedure TMainForm.btnAsChildClick(Sender: TObject);
begin

Application Frameworks and Design Concepts

CHAPTER 4
171

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

06.65227_Ch04x 11/30/99 5:48 PM Page 171

if not Assigned(FNavStatForm) then
begin
FNavStatForm := TNavStatForm.Create(Application, pnlParent);
FNavStatForm.SetToolBarParent(self);
FNavStatForm.SetStatusBarParent(self);
mmMainMenu.Merge(FNavStatForm.mmFormMenu);
FNavStatForm.Show;
pnlParent.Height := pnlParent.Height - 1;

end;
end;

This code not only invokes the form as a child to the TPanel component, pnlParent, but also
sets the form’s TToolBar and TStatusBar components to reside on the main form.
Additionally, notice the call to TMainForm.mmMainMenu.Merge(). This allows us to merge any
menus that reside on the TDBNavStatForm instance with MainForm’s main menu. Naturally,
when we free the TDBNavStatForm instance, we must also make a call to
TMainForm.mmMainMenu.UnMerge(), as shown in the following code:

procedure TMainForm.btnFreeChildClick(Sender: TObject);
begin
if Assigned(FNavStatForm) then
begin
mmMainMenu.UnMerge(FNavStatForm.mmFormMenu);
FNavStatForm.Free;
FNavStatForm := nil;

end;
end;

Take a look at the demo provided on the CD-ROM. Figure 4.1 shows this project with both the
child form and independent TDBNavStatForm instances created. Notice that we’ve placed a
TImage component on the form to better display the form as a child. Figure 4.1 shows how we
use the same child form (the one with the picture) as both an embedded window and as a sepa-
rate form.

Later, we’ll use and expand on this same framework to create a fully functional database appli-
cation.

Using Frames in Application Framework Design
Delphi 5 now has frames. They allow you to create component containers that may be embed-
ded within another form. This is similar to what we’ve already demonstrated using
TChildForm. Frames, however, allow you to manipulate your component containers at design
time and to add them to the Component Palette so that they may be reused. Listing 4.6 shows
the main form for a project similar to the child form demo, except that it uses frames.

Essentials for Rapid Development

PART I
172

06.65227_Ch04x 11/30/99 5:48 PM Page 172

FIGURE 4.1
TDBNavStatForm as a normal form and as a child window.

LISTING 4.6 Frames Demo

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ExtCtrls;

type
TMainForm = class(TForm)
spltrMain: TSplitter;
pnlParent: TPanel;
pnlMain: TPanel;
btnFrame1: TButton;
btnFrame2: TButton;
procedure btnFrame1Click(Sender: TObject);
procedure btnFrame2Click(Sender: TObject);

private
{ Private declarations }
FFrame: TFrame;

public

Application Frameworks and Design Concepts

CHAPTER 4
173

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

continues

06.65227_Ch04x 11/30/99 5:48 PM Page 173

LISTING 4.6 Continued

{ Public declarations }
end;

var
MainForm: TMainForm;

implementation
uses Frame1Fram, Frame2Fram;

{$R *.DFM}

procedure TMainForm.btnFrame1Click(Sender: TObject);
begin
if FFrame <> nil then
FFrame.Free;

FFrame := TFrame1.Create(pnlParent);
FFrame.Align := alClient;
FFrame.Parent := pnlParent;

end;

procedure TMainForm.btnFrame2Click(Sender: TObject);
begin
if FFrame <> nil then
FFrame.Free;

FFrame := TFrame2.Create(pnlParent);
FFrame.Align := alClient;
FFrame.Parent := pnlParent;

end;

end.

In Listing 4.6, we show a main form that contains two panes made up of two separate panels.
The panel on the right will serve to hold our frame. We’ve defined two separate frames. The
private field, FFrame, is a reference to a TFrame class. Since, both our frames descend directly
from TFrame, FFrame can refer to both our TFrame descendants. The two buttons on the main
form each create a different TFrame and assign it to FFrame. The effect is the same as with
TChildForm. The demo FrameDemo.dpr is located on the accompanying CD-ROM.

Miscellaneous Project Management Routines
The projects that follow are a series of project-management routines that have been helpful to
many Delphi 5 developers.

Essentials for Rapid Development

PART I
174

06.65227_Ch04x 11/30/99 5:48 PM Page 174

Adding Resources to Your Project
Earlier, you learned that the RES file is the resource file for your application. You also learned
what Windows resources are. You can add resources to your applications by creating a separate
RES file to store your bitmaps, icons, cursors, and so on.

You must use a resource editor to build an RES file. After you create your RES file, you sim-
ply link it to your application by placing this statement in the application’s DPR file:

{$R MYFILE.RES}

This statement can be placed directly under the following statement, which links the resource
file with the same name as the project file to your project:

{$R *.RES}

If you’ve done this correctly, you can then load resources from the RES file by using the
TBitmap.LoadFromResourceName() or TBitmap.LoadFromResourceID() method. Listing 4.7
shows the technique for loading a bitmap, icon, and cursor from a resource (RES) file. You can
find this project, Resource.dpr, on the CD-ROM that accompanies this book. Notice that the
API functions used here—LoadIcon() and LoadCursor()—are all documented in the
Windows API help.

Application Frameworks and Design Concepts

CHAPTER 4
175

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

NOTE

The Windows API provides a function called LoadBitmap() that loads a bitmap (as its
name implies). However, this function does not return a color palette and therefore
does not work for loading 256-color bitmaps. Use TBitmap.LoadFromResouceName() or
TBitmap.LoadFromResouceID() instead.

LISTING 4.7 Examples of Loading Resources from an RES File

unit MainFrm;
interface
uses
Windows, Forms, Controls, Classes, StdCtrls, ExtCtrls;

const
crXHair = 1; // Declare a constant for the new cursor. This value

type // must be a positive number. or less than -20.

TMainForm = class(TForm)
imgBitmap: TImage;
btnChemicals: TButton;

continues

06.65227_Ch04x 11/30/99 5:48 PM Page 175

LISTING 4.7 Continued

btnClear: TButton;
btnChangeIcon: TButton;
btnNewCursor: TButton;
btnOldCursor: TButton;
btnOldIcon: TButton;
btnAthena: TButton;
procedure btnChemicalsClick(Sender: TObject);
procedure btnClearClick(Sender: TObject);
procedure btnChangeIconClick(Sender: TObject);
procedure btnNewCursorClick(Sender: TObject);
procedure btnOldCursorClick(Sender: TObject);
procedure btnOldIconClick(Sender: TObject);
procedure btnAthenaClick(Sender: TObject);

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

procedure TMainForm.btnChemicalsClick(Sender: TObject);
begin
{ Load the bitmap from the resource file. The bitmap must be
specified in all CAPS! }

imgBitmap.Picture.Bitmap.LoadFromResourceName(hInstance, ‘CHEMICAL’);
end;

procedure TMainForm.btnClearClick(Sender: TObject);
begin
imgBitmap.Picture.Assign(nil); // Clear the image

end;

procedure TMainForm.btnChangeIconClick(Sender: TObject);
begin
{ Load the icon from the resource file. The icon must be
specified in all CAPS! }

Application.Icon.Handle := LoadIcon(hInstance, ‘SKYLINE’);
end;

procedure TMainForm.btnNewCursorClick(Sender: TObject);
begin
{ Assign the new cursor to the Screen’s Cursor array }
Screen.Cursors[crXHair] := LoadCursor(hInstance, ‘XHAIR’);
Screen.Cursor := crXHair; // Now change the cursor

Essentials for Rapid Development

PART I
176

06.65227_Ch04x 11/30/99 5:48 PM Page 176

end;

procedure TMainForm.btnOldCursorClick(Sender: TObject);
begin
// Change back to default cursor
Screen.Cursor := crDefault;

end;

procedure TMainForm.btnOldIconClick(Sender: TObject);
begin
{ Load the icon from the resource file. The icon must be
specified in all CAPS! }

Application.Icon.Handle := LoadIcon(hInstance, ‘DELPHI’);
end;

procedure TMainForm.btnAthenaClick(Sender: TObject);
begin
{ Load the bitmap from the resource file. The bitmap must be
specified in all CAPS! }

imgBitmap.Picture.Bitmap.LoadFromResourceName(hInstance, ‘ATHENA’);
end;

end.

Changing the Screen’s Cursor
Probably one of the most commonly used TScreen properties is the Cursor property, which
enables you to change the global cursor for the application. For example, the following code
changes the current cursor to an hourglass to indicate that users must wait while a lengthy
process executes:

Screen.Cursor := crHourGlass
{ Do some lengthy process }
Screen.Cursor := crDefault;

crHourGlass is a predefined constant that indexes into the Cursors array. There are other cur-
sor constants, such as crBeam and crSize. The existing cursor values range from 0 to -20
(crDefault to crHelp). Look in the online help for the Cursors property to see a list of all
available cursors. You can assign these values to Screen.Cursor when necessary.

You also can create your own cursors and add them to the Cursors property array. To do this,
you must first define a constant with a value that doesn’t conflict with the already-available
cursors. Predefined cursor values are from -20 to 0. Application cursors should only use posi-
tive ID numbers. All negative cursor ID numbers are reserved by Borland. Here’s an example:

crCrossHair := 1;

Application Frameworks and Design Concepts

CHAPTER 4
177

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

06.65227_Ch04x 11/30/99 5:48 PM Page 177

You can use any resource editor (such as the Image Editor that ships with Delphi 5) to create
your custom cursor. You must save the cursor into a resource (RES) file. One important point:
You must give your RES file a different name than that of your project. Remember that Delphi
5 creates a RES file of the same name as your project whenever you compile your project. You
don’t want Delphi 5 to overwrite the cursor you create. When you compile your project, make
sure that the RES file is in the same directory as your source files so that Delphi 5 will link the
cursor resource with your application. You tell Delphi 5 to link the RES file by placing a state-
ment such as the following into the application’s DPR file:

{$R CrossHairRes.RES}

Finally, you must add the following lines of code to load the cursor, add it to the Cursors
property, and then switch to that cursor:

procedure TMainForm.FormCreate(Sender: TObject);
begin
Screen.Cursors[crCrossHair] := LoadCursor (hInstance, ‘CROSSHAIR’);
Screen.Cursor := crCrossHair;

end;

Here you use the LoadCursor() Win32 API function to load the cursor. LoadCursor() takes
two parameters: An instance handle to the module from which you want to get the cursor and
the name of the cursor as specified in the RES file. Make sure to write the cursor name in the
file in ALL CAPS!

hInstance refers to the application currently running. Next, assign the value returned from
LoadCursor() to the Cursors property at the location specified by crCrossHair, which was
previously defined. Finally, assign the current cursor to Screen.Cursor.

For an example, locate the project CrossHair.dpr on the CD-ROM. This project loads and
changes to the crosshair cursor created here and placed in the file CrossHairRes.res.

You might also want to invoke the Image Editor by selecting Tools, Image Editor and opening
the CrossHairRes.res file to see how the cursor was created.

Preventing Multiple Instances of a Form
from Being Created
If you use Application.CreateForm() or TForm.Create() in your code to create a form
instance, it’s a good idea to ensure that no instance of the form is being held by the Reference
parameter (as described in the earlier section “The TForm Class”). The following code fragment
shows this:

begin
if not Assigned(SomeForm) then begin
Application.CreateForm(TSomeForm, SomeForm);

Essentials for Rapid Development

PART I
178

06.65227_Ch04x 11/30/99 5:48 PM Page 178

try
SomeForm.ShowModal;

finally
SomeForm.Free;
SomeForm := nil;

end;
end
else
SomeForm.ShowModal;

end;

In this code, it’s necessary to assign nil to the SomeForm variable after it has been destroyed.
Otherwise, the Assigned() method doesn’t function properly, and the method fails. This
wouldn’t work for a modeless form, however. With modeless forms, you can’t determine in
code when the form is going to be destroyed. Therefore, you must make the nil assignment
from within the OnDestroy event handler of the form being destroyed. This method was
described earlier in this chapter.

Adding Code to the DPR File
You can place code in the project’s DPR file before you launch your main form. Such code can
be initialization code, a splash screen, database initialization—anything you deem necessary
before the main form is displayed. You also have the opportunity to terminate the application
before the main form comes up. Listing 4.8 shows a DPR file that prompts the user for a pass-
word before granting access to the application. This project is also on the CD-ROM as
Initialize.dpr.

LISTING 4.8 The Initialize.dpr File, Showing Project Initialization

program Initialize;

uses
Forms,
Dialogs,
Controls,
MainFrm in ‘MainFrm.pas’ {MainForm};

{$R *.RES}

var
Password: String;

begin
if InputQuery(‘Password’, ‘Enter your password’, PassWord) then
if Password = ‘D5DG’ then

Application Frameworks and Design Concepts

CHAPTER 4
179

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

continues

06.65227_Ch04x 11/30/99 5:48 PM Page 179

LISTING 4.8 Continued

begin
// Other initialization routines can go here.
Application.CreateForm(TMainForm, MainForm);

Application.Run;
end
else
MessageDlg(‘Incorrect Password, terminating program’, mtError, [mbok],

0);
end.

Overriding the Application’s Exception Handling
The Win32 system has a powerful error-handling capability—exceptions. By default, whenever
an exception occurs in your project, the Application instance automatically handles that
exception by displaying to the user a standard error box.

As you build larger applications, you’ll start to define exception classes of your own. Perhaps
the Delphi 5 default exception handling will no longer suit your needs because you have to
perform special processing on a specific exception. In such cases, it will be necessary to over-
ride TApplication’s default exception handling and replace it with your own custom routine.

You saw that TApplication has an OnException event handler to which you can add code.
When an exception occurs, this event handler is called. There you can perform your special
processing so that the default exception message doesn’t show.

However, recall that the TApplication object’s properties aren’t editable from the Object
Inspector. Therefore, you must use the TApplicationEvents component to add specialized
exception handling to your application.

Listing 4.9 shows you what you need to do to override the application’s default exception han-
dling.

LISTING 4.9 Main Form for the Exception Override Demo

unit MainFrm;

interface

uses
SysUtils, Windows, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, AppEvnts, Buttons;

type

Essentials for Rapid Development

PART I
180

06.65227_Ch04x 11/30/99 5:48 PM Page 180

ENotSoBadError = class(Exception);
EBadError = class(Exception);
ERealBadError = class(Exception);

TMainForm = class(TForm)
btnNotSoBad: TButton;
btnBad: TButton;
btnRealBad: TButton;
appevnMain: TApplicationEvents;
procedure btnNotSoBadClick(Sender: TObject);
procedure btnBadClick(Sender: TObject);
procedure btnRealBadClick(Sender: TObject);
procedure appevnMainException(Sender: TObject; E: Exception);

public
end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

procedure TMainForm.btnNotSoBadClick(Sender: TObject);
begin
raise ENotSoBadError.Create(‘This isn’’t so bad!’);

end;

procedure TMainForm.btnBadClick(Sender: TObject);
begin
raise EBadError.Create(‘This is bad!’);

end;

procedure TMainForm.btnRealBadClick(Sender: TObject);
begin
raise ERealBadError.Create(‘This is real bad!’);

end;

procedure TMainForm.appevnMainException(Sender: TObject; E: Exception);
var
rslt: Boolean;

begin
if E is EBadError then
begin
{ Show a custom message box and prompt for application termination. }
rslt := MessageDlg(Format(‘%s %s %s %s %s’, [‘An’, E.ClassName,

Application Frameworks and Design Concepts

CHAPTER 4
181

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

continues

06.65227_Ch04x 11/30/99 5:48 PM Page 181

LISTING 4.9 Continued

‘exception has occurred.’, E.Message, ‘Quit App?’]),
mtError, [mbYes, mbNo], 0) = mrYes;

if rslt then
Application.Terminate;

end
else if E is ERealBadError then
begin // Show a custom message

// and terminate the application.
MessageDlg(Format(‘%s %s %s %s %s’, [‘An’, E.ClassName,

‘exception has occured.’, E.Message, ‘Quitting Application’]),
mtError, [mbOK], 0);

Application.Terminate;
end
else // Perform default exception handling
Application.ShowException(E);

end;

end.

In Listing 4.9, the appevnMainException() method is the OnException event handler to the
TApplicationEvent component. This event handler uses RTTI to check the type of exception
that occurred and performs special processing based on the exception type. The comments in
the code discuss the process. You’ll also find the project that uses these routines,
OnException.dpr, on the CD-ROM accompanying this book.

Essentials for Rapid Development

PART I
182

TIP

If the Stop on Delphi Exceptions check box is selected in the Language Exceptions
page of the Debugger Options dialog box (accessed by selecting Tools, Debugger
Options), Delphi 5’s IDE debugger reports the exception in its own dialog box, before
your application has a chance to handle the exception. Although useful for debug-
ging, having this check box selected can be annoying when you want to see how your
project handles exceptions. Disable the option to make your project run normally.

Displaying a Splash Screen
Suppose you want to create a splash screen for your project. This form can display when you
launch your application and can stay visible while your application initializes. Displaying a
splash screen is actually simple. Here are the initial steps for creating a splash screen:

06.65227_Ch04x 11/30/99 5:48 PM Page 182

1. After creating your application’s main form, create another form to represent the splash
screen. Call this form SplashForm.

2. Use the Project, Options menu to ensure that SplashForm is not in the Auto-Create list.

3. Assign bsNone to SplashForm’s BorderStyle property and [] to its BorderIcons prop-
erty.

4. Place a TImage component onto SplashForm and assign alClient to the image’s Align
property.

5. Load a bitmap into the TImage component by selecting its Picture property.

Now that you’ve designed the splash screen, you only have to edit the project’s DPR file to dis-
play it. Listing 4.10 shows the project file (DPR) for which the splash screen is displayed.
You’ll find this project, Splash.dpr, on the accompanying CD-ROM.

LISTING 4.10 A DPR File with a Splash Screen

program splash;

uses
Forms,
MainFrm in ‘MainFrm.pas’ {MainForm},
SplashFrm in ‘SplashFrm.pas’ {SplashForm};

{$R *.RES}
begin
Application.Initialize;
{ Create the splash screen }
SplashForm := TSplashForm.Create(Application);
SplashForm.Show; // Display the splash screen
SplashForm.Update; // Update the splash screen to ensure it gets drawn

{ This while loop simply uses the TTimer component on the SplashForm
to simulate a lengthy process. }

while SplashForm.tmMainTimer.Enabled do
Application.ProcessMessages;

Application.CreateForm(TMainForm, MainForm);
SplashForm.Hide; // Hide the splash screen
SplashForm.Free; // Free the splash screen
Application.Run;

end.

Application Frameworks and Design Concepts

CHAPTER 4
183

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

06.65227_Ch04x 11/30/99 5:48 PM Page 183

Notice the while loop:

while SplashForm.tmMainTimer.Enabled do
Application.ProcessMessages;

This is simply a way to simulate a long process. A TTimer component was placed on
SplashForm, and its Interval property was set to 3000. When the OnTimer event of the TTimer
component occurs, after about three seconds, it executes the following line:

tmMainTimer.Enabled := False;

This will cause the while loop’s condition to be False and will jump execution out of the loop.

Minimizing Form Size
To illustrate how to suppress or control form sizing, we’ve created a project whose main form
has a blue background and a panel onto which components are placed. When the user resizes
the form, the panel remains centered. The form also prevents the user from shrinking the form
smaller than its panel. Listing 4.11 shows the form’s unit source code.

LISTING 4.11 The Source Code for the Template Form

unit BlueBackFrm;

interface

uses
SysUtils, Windows, Messages, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, Buttons, ExtCtrls;

type
TBlueBackForm = class(TForm)
pnlMain: TPanel;
bbtnOK: TBitBtn;
bbtnCancel: TBitBtn;
procedure FormResize(Sender: TObject);

private
Procedure CenterPanel;
{ Create a message handler for the WM_WINDOWPOSCHANGING message }
procedure WMWindowPosChanging(var Msg: TWMWindowPosChanging);

message WM_WINDOWPOSCHANGING;
end;

var
BlueBackForm: TBlueBackForm;

implementation

Essentials for Rapid Development

PART I
184

06.65227_Ch04x 11/30/99 5:48 PM Page 184

uses Math;
{$R *.DFM}

procedure TBlueBackForm.CenterPanel;
{ This procedure centers the main panel horizontally and
vertically inside the form’s client area

}
begin
{ Center horizontally }
if pnlMain.Width < ClientWidth then
pnlMain.Left := (ClientWidth - pnlMain.Width) div 2

else
pnlMain.Left := 0;

{ Center vertically }
if pnlMain.Height < ClientHeight then
pnlMain.Top := (ClientHeight - pnlMain.Height) div 2

else
pnlMain.Top := 0;

end;

procedure TBlueBackForm.WMWindowPosChanging(var Msg: TWMWindowPosChanging);
var
CaptionHeight: integer;

begin
{ Calculate the caption height }
CaptionHeight := GetSystemMetrics(SM_CYCAPTION);
{ This procedure does not take into account the width and
height of the form’s frame. You can use
GetSystemMetrics() to obtain these values. }

// Prevent window from shrinking smaller then MainPanel’s width
Msg.WindowPos^.cx := Max(Msg.WindowPos^.cx, pnlMain.Width+20);

// Prevent window from shrinking smaller then MainPanel’s width
Msg.WindowPos^.cy := Max(Msg.WindowPos^.cy, pnlMain.Height+20+CaptionHeight);

inherited;
end;

procedure TBlueBackForm.FormResize(Sender: TObject);
begin
CenterPanel; // Center MainPanel when the form is resized.

end;

end.

Application Frameworks and Design Concepts

CHAPTER 4
185

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

06.65227_Ch04x 11/30/99 5:48 PM Page 185

This form illustrates capturing window messages, specifically the WM_WINDOWPOSCHANGING mes-
sage, which occurs whenever the window size is about to be changed. This is an opportune
time to prevent the resizing of a window. Chapter 5, “Understanding Messages,” will delve
further into Windows messages. This demo can be found in the project TempDemo.dpr on the
CD-ROM.

Running a Formless Project
The form is the focal point of all Delphi 5 applications. However, nothing prevents you from
creating an application that has no form. The DPR file is nothing more than a program file that
“uses” units that define the forms and other objects. This program file can certainly perform
other programming processes that require no form. To do this, simply create a new project and
remove the main form from the project by selecting Project, Remove From Project. Your DPR
file will now contain the following code:

program Project1;
uses
Forms;
{$R *.RES}
begin
Application.Initialize;
Application.Run;

end.

In fact, you can even remove the uses clause and the calls to Application.Initialize and
Application.Run:

program Project1;
begin
end.

This is a rather useless project, but keep in mind that you can place pretty much whatever you
want in the begin..end block, which would be the starting point of a Win32 console application.

Exiting Windows
One reason you might want to exit Windows from an application is because your application
has made some system configuration changes that don’t go into effect until the user restarts
Windows. Rather than have the user perform that task through Windows, your application can
ask the user whether he or she wants to exit Windows; your application can then take care of
the dirty work. Keep in mind, however, that requiring a system restart is considered bad form
and should be avoided.

Exiting Windows requires the use of one of two Windows API functions: ExitWindows() or
ExitWindowsEx().

Essentials for Rapid Development

PART I
186

06.65227_Ch04x 11/30/99 5:48 PM Page 186

The ExitWindows() function is a carryover from 16-bit Windows. In that previous version of
Windows, you could specify various options that allowed you to reboot Windows after exiting.
However, in Win32, this function just logs the current user out of Windows and enables
another user to log on to the next Windows session.

ExitWindows() has been replaced by the new function ExitWindowsEx(). With this function,
you can log off, shut down Windows, or shut down Windows and restart the system (reboot).
Listing 4.12 shows the use of both functions.

LISTING 4.12 Exiting Windows Using ExitWindows() and ExitWindowsEx()

unit MainFrm;

interface

uses
SysUtils, Windows, Messages, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ExtCtrls;

type
TMainForm = class(TForm)
btnExit: TButton;
rgExitOptions: TRadioGroup;
procedure btnExitClick(Sender: TObject);

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

procedure TMainForm.btnExitClick(Sender: TObject);
begin
case rgExitOptions.ItemIndex of
0: Win32Check(ExitWindows(0, 0)); // Exit and log on as a

// different user.
1: Win32Check(ExitWindowsEx(EWX_REBOOT, 0)); // Exit/Reboot
2: Win32Check(ExitWindowsEx(EWX_SHUTDOWN, 0));// Exit to Power Off
// Exit/Log off/Log on as different user
3: Win32Check(ExitWindowsEx(EWX_LOGOFF, 0));

end;
end;

end.

Application Frameworks and Design Concepts

CHAPTER 4
187

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

06.65227_Ch04x 11/30/99 5:48 PM Page 187

Listing 4.12 uses the value of a radio button to determine which Windows exit option to use.
The first option uses ExitWindows() to log the user off and restart Windows, asking the user to
log on again.

The remaining options use the ExitWindowsEx() function. The second option exits Windows
and reboots the system. The third option exits Windows and shuts down the system so that the
user can turn off the computer. The fourth option performs the same task as the first, except
that it uses the ExitWindowsEx() function.

Both ExitWindows() and ExitWindowsEx() return True if successful and False otherwise. You
can use the Win32Check() function from SysUtils.pas, which calls the Win32 API function
GetLastError() and displays the proper error string in the event of an error.

Essentials for Rapid Development

PART I
188

NOTE

If you’re running Windows NT, the ExitWindowsEx() function will not shut down the
system; this requires a special privilege. You must use the Win32 API function
AdjustTokenPrivleges() to enable the SE_SHUTDOWN_NAME privilege. More informa-
tion on this topic can be found in the Win32 online help.

You’ll find an example of this code in the project ExitWin.dpr on the CD-ROM accompanying
this book.

Preventing Windows Shutdown
Shutting down Windows is one thing, but what if another application performs the same task—
that is, calls ExitWindowsEx()—while you’re editing a file and haven’t yet saved the file?
Unless you somehow capture the exit request, you chance losing valuable data. It’s simple to
capture the exit request. All that’s required is that you process the OnCloseQuery event for the
main form in your application. In that event handler, you can place code similar to the following:

procedure TMainForm.FormCloseQuery(Sender: TObject; var CanClose: Boolean);
begin
if MessageDlg(‘Shutdown?’, mtConfirmation, mbYesNoCancel, 0) = mrYes then
CanClose := True

else
CanClose := False;

end;

By setting CanClose to False, you tell Windows not to shut down. Another option is to set
CanClose to True only after prompting you to save a file if necessary. You’ll find this demon-
strated in the project NoClose.dpr on the accompanying CD-ROM.

06.65227_Ch04x 11/30/99 5:48 PM Page 188

Summary
This chapter focuses on project management techniques and architectural issues. It discusses
the key components that make up most Delphi 5 projects: TForm, TApplication, and TScreen.
We demonstrated how you might start designing your applications by first developing a com-
mon architecture. The chapter also shows various useful routines for your application.

Application Frameworks and Design Concepts

CHAPTER 4
189

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

NOTE

If you’re running a formless project, you must subclass the application’s window pro-
cedure and capture the WM_QUERYENDSESSION message that’s sent to each application
running whenever ExitWindows() or ExitWindowsEx() is called from any application.
If the application returns a nonzero value from this message, that application can
end successfully. The application should return zero to prevent Windows from shut-
ting down. You’ll learn more about processing Windows messages in Chapter 5,
“Understanding Messages.”

06.65227_Ch04x 11/30/99 5:48 PM Page 189

06.65227_Ch04x 11/30/99 5:48 PM Page 190

CHAPTER

5
Understanding Windows
Messaging

IN THIS CHAPTER
• What Is a Message? 192

• Types of Messages 193

• How the Windows Message
System Works 194

• Delphi’s Message System 195

• Handling Messages 197

• Sending Your Own Messages 201

• Nonstandard Messages 203

• Anatomy of a Message System:
VCL 207

• The Relationship Between Messages
and Events 214

• Summary 215

07.65227_Ch05x 11/30/99 5:50 PM Page 191

Although Visual Component Library (VCL) components expose many Win32 messages via
Object Pascal events, it’s still essential that you, the Win32 programmer, understand how the
Windows message system works.

As a Delphi applications programmer, you’ll find that the events surfaced by VCL will suit
most of your needs; only occasionally will you have to delve into the world of Win32 message
handling. As a Delphi component developer, however, you and messages will become very
good friends because you have to directly handle many Windows messages and then invoke
events corresponding to those messages.

What Is a Message?
A message is a notification of some occurrence sent by Windows to an application. Clicking a
mouse button, resizing a window, or pressing a key on the keyboard, for example, causes
Windows to send a message to an application notifying it of what occurred.

A message manifests itself as a record passed to an application by Windows. That record con-
tains information such as what type of event occurred and additional information specific to the
message. The message record for a mouse button click message, for example, contains the
mouse coordinates at the time the button was pressed. The record type passed from Windows
to the application is called a TMsg, which is defined in the Windows unit as shown in the follow-
ing code:

type
TMsg = packed record
hwnd: HWND; // the handle of the Window for which the message

// is intended
message: UINT; // the message constant identifier
wParam: WPARAM; // 32 bits of additional message-specific information
lParam: LPARAM; // 32 bits of additional message-specific information
time: DWORD; // the time that the message was created
pt: TPoint; // the position of the mouse cursor when the message

// was created
end;

Essentials for Rapid Development

PART I
192

What’s in a Message?
Does the information in a message record look like Greek to you? If so, here’s a little
insight to what’s what:

hwnd The 32-bit window handle of the window for which the message
is intended. The window can be almost any type of screen object
because Win32 maintains window handles for most visual
objects (windows, dialog boxes, buttons, edits, and so on).

07.65227_Ch05x 11/30/99 5:50 PM Page 192

Now that you have an idea what makes up an message, it’s time to take a look at some differ-
ent types of Windows messages.

Types of Messages
The Win32 API predefines a constant for each Windows message. These constants are the val-
ues kept in the message field of the TMsg record. All these constants are defined in Delphi’s
Messages unit; most are also described in the online help. Notice that each of these constants
begins with the letters WM, which stand for Windows Message. Table 5.1 lists some of the
common Windows messages, along with their meanings and values.

TABLE 5.1 Common Windows Messages

Message Identifier Value Tells a Window That…

WM_ACTIVATE $0006 It’s being activated or deactivated.

WM_CHAR $0102 WM_KEYDOWN and WM_KEYUP messages have been sent
for one key.

WM_CLOSE $0010 It should terminate.

WM_KEYDOWN $0100 A keyboard key is being pressed.

WM_KEYUP $0101 A keyboard key has been released.

WM_LBUTTONDOWN $0201 The user is pressing the left mouse button.

WM_MOUSEMOVE $0200 The mouse is being moved.

WM_PAINT $000F It must repaint its client area.

WM_TIMER $0113 A timer event has occurred.

WM_QUIT $0012 A request has been made to shut down the program.

Understanding Windows Messaging

CHAPTER 5
193

5

U
N

D
ER

STA
N

D
IN

G
W

IN
D

O
W

S
M

ESSA
G

IN
G

message A constant value that represents some message. These con-
stants can be defined by Windows in the Windows unit or by
you through user-defined messages.

wParam This field often contains a constant value associated with the
message; it can also contain a window handle or the identifica-
tion number of some window or control associated with the
message.

lParam This field often holds an index or pointer to some data in mem-
ory. Because wParam, lParam, and Pointer are all 32 bits in
size, you can typecast interchangeably between them.

07.65227_Ch05x 11/30/99 5:50 PM Page 193

How the Windows Message System Works
A Windows application’s message system has three key components:

• Message queue. Windows maintains a message queue for each application. A Windows
application must get messages from this queue and dispatch them to the proper windows.

• Message loop. This is the loop mechanism in a Windows program that fetches a message
from the application queue and dispatches it to the appropriate window, fetches the next
message, dispatches it to the appropriate window, and so on.

• Window procedure. Each window in your application has a window procedure that
receives each of the messages passed to it by the message loop. The window procedure’s
job is to take each window message and respond to it accordingly. A window procedure
is a callback function; a window procedure usually returns a value to Windows after pro-
cessing a message.

Essentials for Rapid Development

PART I
194

NOTE

A callback function is a function in your program that’s called by Windows or some
other external module.

Getting a message from point A (some event occurs, creating a message) to point B (a window
in your application responds to the message) is a five-step process:

1. Some event occurs in the system.

2. Windows translates this event into a message and places it into the message queue for
your application.

3. Your application retrieves the message from the queue and places it in a TMsg record.

4. Your application passes on the message to the window procedure of the appropriate win-
dow in your application.

5. The window procedure performs some action in response to the message.

Steps 3 and 4 make up the application’s message loop. The message loop is often considered
the heart of a Windows program because it’s the facility that enables your program to respond
to external events. The message loop spends its whole life fetching messages from the applica-
tion queue and passing them to the appropriate windows in your application. If there are no
messages in your application’s queue, Windows allows other applications to process their mes-
sages. Figure 5.1 shows these steps.

07.65227_Ch05x 11/30/99 5:50 PM Page 194

Understanding Windows Messaging

CHAPTER 5
195

5

U
N

D
ER

STA
N

D
IN

G
W

IN
D

O
W

S
M

ESSA
G

IN
G

Something Message
Loop

Window
Procedure

Message
Queue

Event
Occurs

Windows
creates a
message

Message is placed
at the end of the
applications message
queue

Message Loop
takes next
message from
the queue

And passes the
message on to the
window procedure
for the appropriate
window

FIGURE 5.1
The Windows Message system.

Delphi’s Message System
VCL handles many of the details of the Windows message system for you. The message loop
is built into VCL’s Forms unit, for example, so you don’t have to worry about fetching mes-
sages from the queue or dispatching them to a window procedure. Delphi also places the infor-
mation located in the Windows TMsg record into a generic TMessage record:

type
TMessage = record
Msg: Cardinal;
case Integer of
0: (
WParam: Longint;
LParam: Longint;
Result: Longint);

1: (
WParamLo: Word;
WParamHi: Word;
LParamLo: Word;
LParamHi: Word;
ResultLo: Word;
ResultHi: Word);

end;

Notice that TMessage record has a little less information than does TMsg. That’s because Delphi
internalizes the other TMsg fields; TMessage contains just the essential information you need to
handle a message.

07.65227_Ch05x 11/30/99 5:50 PM Page 195

It’s important to note that the TMessage record also contains a Result field. As mentioned ear-
lier, some messages require the window procedure to return some value after processing a mes-
sage. With Delphi, you accomplish this process in a straightforward fashion by placing the
return value in the Result field of TMessage. This process is explained in detail in the later
section “Assigning Message Result Values.”

Message-Specific Records
In addition to the generic TMessage record, Delphi defines a message-specific record for every
Windows message. The purpose of these message-specific records is to give you all the infor-
mation the message offers without having to decipher the wParam and lParam fields of a
record. All the message-specific records can be found in the Messages unit. As an example,
here’s the message record used to hold most mouse messages:

type
TWMMouse = record
Msg: Cardinal;
Keys: Longint;
case Integer of
0: (
XPos: Smallint;
YPos: Smallint);

1: (
Pos: TSmallPoint;
Result: Longint);

end;

All the record types for specific mouse messages (WM_LBUTTONDOWN and WM_RBUTTONUP, for
example) are simply defined as equal to TWMMouse, as in the following example:

TWMRButtonUp = TWMMouse;
TWMLButtonDown = TWMMouse;

Essentials for Rapid Development

PART I
196

NOTE

A message record is defined for nearly every standard Windows message. The nam-
ing convention dictates that the name of the record must be the same as the name
of the message with a T prepended, using camel capitalization and without the
underscore. For example, the name of the message record type for a WM_SETFONT
message is TWMSetFont.

By the way, TMessage works with all messages in all situations but isn’t as convenient
as message-specific records.

07.65227_Ch05x 11/30/99 5:50 PM Page 196

Handling Messages
Handling or processing a message means that your application responds in some manner to a
Windows message. In a standard Windows application, message handling is performed in each
window procedure. By internalizing the window procedure, however, Delphi makes it much
easier to handle individual messages; instead of having one procedure that handles all mes-
sages, each message has its own procedure. Three requirements must be met for a procedure to
be a message-handling procedure:

• The procedure must be a method of an object.

• The procedure must take one var parameter of a TMessage or other message-specific
record type.

• The procedure must use the message directive followed by the constant value of the mes-
sage you want to process.

Here’s an example of a procedure that handles WM_PAINT messages:

procedure WMPaint(var Msg: TWMPaint); message WM_PAINT;

Understanding Windows Messaging

CHAPTER 5
197

5

U
N

D
ER

STA
N

D
IN

G
W

IN
D

O
W

S
M

ESSA
G

IN
G

NOTE

When naming message-handling procedures, the convention is to give them the same
name as the message itself, using camel-capitalization and without the underscore.

As another example, let’s write a simple message-handling procedure for WM_PAINT that
processes the message simply by beeping.

Start by creating a new, blank project. Then access the Code Editor window for this project and
add the header for the WMPaint function to the private section of the TForm1 object:

procedure WMPaint(var Msg: TWMPaint); message WM_PAINT;

Now add the function definition to the implementation part of this unit. Remember to use the
dot operator to scope this procedure as a method of TForm1. Don’t use the message directive as
part of the function implementation:

procedure TForm1.WMPaint(var Msg: TWMPaint);
begin
Beep;
inherited;

end;

07.65227_Ch05x 11/30/99 5:50 PM Page 197

Notice the use of the inherited keyword here. Call inherited when you want to pass the
message to the ancestor object’s handler. By calling inherited in this example, you pass on
the message to TForm’s WM_PAINT handler.

Essentials for Rapid Development

PART I
198

NOTE

Unlike normal calls to inherited methods, here you don’t give the name of the inher-
ited method. That’s because the name of the method is unimportant when it’s dis-
patched. Delphi knows what method to call based on the message value used with
the message directive in the class interface.

The main unit in Listing 5.1 provides a simple example of a form that processes the WM_PAINT
message. Creating this project is easy: Just create a new project and add the code for the
WMPaint procedure to the TForm object.

LISTING 5.1 GetMess: A Message-Handling Example

unit GMMain;

interface

uses
SysUtils, Windows, Messages, Classes, Graphics, Controls,
Forms, Dialogs;

type
TForm1 = class(TForm)
private
procedure WMPaint(var Msg: TWMPaint); message WM_PAINT;

end;

var
Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.WMPaint(var Msg: TWMPaint);
begin
MessageBeep(0);
inherited;

end;

end.

07.65227_Ch05x 11/30/99 5:50 PM Page 198

Whenever a WM_PAINT message comes down the pike, it’s passed to the WMPaint procedure.
The WMPaint procedure simply informs you of the WM_PAINT message by making some noise
with the MessageBeep() procedure and then passes the message to the inherited handler.

Understanding Windows Messaging

CHAPTER 5
199

5

U
N

D
ER

STA
N

D
IN

G
W

IN
D

O
W

S
M

ESSA
G

IN
G

MessageBeep(): The Poor Man’s Debugger
While we’re on the topic of beeping, now is a good time for a slight digression. The
MessageBeep() procedure is one of the most straightforward and useful elements in
the Win32 API. Its use is simple: Call MessageBeep(), pass a predefined constant, and
Windows beeps the PC’s speaker (if you have a sound card, it plays a WAV file). Big
deal, you say? On the surface it may not seem like much, but MessageBeep() really
shines as an aid in debugging your programs.

If you’re looking for a quick-and-dirty way to tell whether your program is reaching a
certain place in your code—without having to bother with the debugger and break-
points—MessageBeep() is for you. Because it doesn’t require a handle or some other
Windows resource, you can use it practically anywhere in your code, and as a wise
man once said, “MessageBeep() is for the itch you can’t scratch with the debugger.” If
you have a sound card, you can pass MessageBeep() one of several predefined con-
stants to have it play a wider variety of sounds—these constants are defined under
MessageBeep() in the Win32 API help file.

If you’re like the authors and are too lazy to type out that whole big, long function
name and parameter, you can use the Beep() procedure found in the SysUtils unit.
The implementation of Beep() is simply a call to MessageBeep() with the parameter 0.

Message Handling: Not Contract Free
Unlike responding to Delphi events, handling Windows messages is not “contract free.” Often,
when you decide to handle a message yourself, Windows expects you to perform some action
when processing the message. Most of the time, VCL has much of this basic message process-
ing built in—all you have to do is call inherited to get to it. Think of it this way: You write a
message handler so that your application will do the things you expect, and you call inherited
so that your application will do the additional things Windows expects.

NOTE

The contractual nature of message handling can be more than just calling the inher-
ited handler. In message handlers, you’re sometimes restricted in what you can do.
For example, in a WM_KILLFOCUS message, you cannot set focus to another control
without causing a crash.

07.65227_Ch05x 11/30/99 5:50 PM Page 199

To demonstrate the inherited elements, try running the program in Listing 5.1 without calling
inherited in the WMPaint() method. Just remove the line that calls inherited so that the pro-
cedure looks like this:

procedure TForm1.WMPaint(var Msg: TWMPaint);
begin
MessageBeep(0);

end;

Because you never give Windows a chance to perform basic handling of the WM_PAINT mes-
sage, the form will never paint itself.

Sometimes there are circumstances in which you don’t want to call the inherited message han-
dler. An example is handling the WM_SYSCOMMAND messages to prevent a window from being
minimized or maximized.

Assigning Message Result Values
When you handle some Windows messages, Windows expects you to return a result value. The
classic example is the WM_CTLCOLOR message. When you handle this message, Windows expects
you to return a handle to a brush with which you want Windows to paint a dialog box or con-
trol. (Delphi provides a Color property for components that does this for you, so the example is
just for illustration purposes.) You can return this brush handle easily with a message-handling
procedure by assigning a value to the Result field of TMessage (or another message record)
after calling inherited. For example, if you were handling WM_CTLCOLOR, you could return a
brush handle value to Windows with the following code:

procedure TForm1.WMCtlColor(var Msg: TWMCtlColor);
var
BrushHand: hBrush;

begin
inherited;
{ Create a brush handle and place into BrushHand variable }
Msg.Result := BrushHand;

end;

The TApplication Type’s OnMessage Event
Another technique for handling messages is to use TApplication’s OnMessage event. When
you assign a procedure to OnMessage, that procedure is called whenever a message is pulled
from the queue and about to be processed. This event handler is called before Windows itself
has a chance to process the message. The Application.OnMessage event handler is of
TMessageEvent type and must be defined with a parameter list, as shown here:

procedure SomeObject.AppMessageHandler(var Msg: TMsg;
var Handled: Boolean);

Essentials for Rapid Development

PART I
200

07.65227_Ch05x 11/30/99 5:50 PM Page 200

All the message parameters are passed to the OnMessage event handler in the Msg parameter.
(Note that this parameter is of the Windows TMsg record type described earlier in this chapter.)
The Handled field requires you to assign a Boolean value indicating whether you have handled
the message.

The first step in creating an OnMessage event handler is to create a method that accepts the
same parameter list as a TMessageEvent. For example, here’s a method that keeps a running
count of how many messages your application receives:

var
NumMessages: Integer;

procedure Form1.AppMessageHandler(var Msg: TMsg; var Handled: Boolean);
begin
Inc(NumMessages);
Handled := False;

end;

The second and final step in creating the event handler is to assign a procedure to
Application.OnMessage somewhere in your code. This can be done in the DPR file after cre-
ating the project’s forms but before calling Application.Run:

Application.OnMessage := Form1.AppMessageHandler;

One limitation of OnMessage is that it’s executed only for messages pulled out of the queue and
not for messages sent directly to the window procedures of windows in your application.
Chapter 13, “Hard-core Techniques,” shows techniques for working around this limitation by
hooking into the application window procedure.

Understanding Windows Messaging

CHAPTER 5
201

5

U
N

D
ER

STA
N

D
IN

G
W

IN
D

O
W

S
M

ESSA
G

IN
G

TIP

OnMessage sees all messages posted to all window handles in your application. This is
the busiest event in your application (thousands of messages per second), so don’t do
anything in an OnMessage handler that takes a lot of time because you’ll slow your
whole application to a crawl. Clearly, this is one place where a breakpoint would be
a very bad idea.

Sending Your Own Messages
Just as Windows sends messages to your application’s windows, you will occasionally need to
send messages between windows and controls within your application. Delphi provides several
ways to send messages within your application, such as the Perform() method (which works
independently of the Windows API) and the SendMessage() and PostMessage() API functions.

07.65227_Ch05x 11/30/99 5:50 PM Page 201

The Perform() Method
VCL provides the Perform() method for all TControl descendants; Perform() enables you to
send a message to any form or control object given an instance of that object. The Perform()
method takes three parameters—a message and its corresponding lParam and wParam—and is
defined as follows:

function TControl.Perform(Msg: Cardinal; WParam, LParam: Longint):
Longint;

To send a message to a form or control, use the following syntax:

RetVal := ControlName.Perform(MessageID, wParam, lParam);

After you call Perform(), it doesn’t return until the message has been handled. The Perform()
method packages its parameters into a TMessage record and then calls the object’s Dispatch()
method to send the message—bypassing the Windows API messaging system. The Dispatch()
method is described later in this chapter.

The SendMessage() and PostMessage() API Functions
Sometimes you need to send a message to a window for which you don’t have a Delphi object
instance. For example, you might want to send a message to a non-Delphi window, but you
have only a handle to that window. Fortunately, the Windows API offers two functions that fit
this bill: SendMessage() and PostMessage(). These two functions are essentially identical,
except for one key difference: SendMessage(), similar to Perform(), sends a message directly
to the window procedure of the intended window and waits until the message is processed
before returning; PostMessage() posts a message to the Windows message queue and returns
immediately.

SendMessage() and PostMessage() are declared as follows:

function SendMessage(hWnd: HWND; Msg: UINT; wParam: WPARAM;
lParam: LPARAM): LRESULT; stdcall;

function PostMessage(hWnd: HWND; Msg: UINT; wParam: WPARAM;
lParam: LPARAM): BOOL; stdcall;

• hWnd is the window handle for which the message is intended.

• Msg is the message identifier.

• wParam is 32 bits of additional message-specific information.

• lParam is 32 bits of additional message-specific information.

Essentials for Rapid Development

PART I
202

07.65227_Ch05x 11/30/99 5:50 PM Page 202

Nonstandard Messages
Until now, the discussion has centered on regular Windows messages (those that begin with
WM_XXX). However, two other major categories of messages merit some discussion: notification
messages and user-defined messages.

Notification Messages
Notification messages are messages sent to a parent window when something happens in one of
its child controls that may require the parent’s attention. Notification messages occur only with
the standard Windows controls (button, list box, combo box, and edit control) and with the
Windows Common Controls (tree view, list view, and so on). For example, clicking or double-
clicking a control, selecting some text in a control, and moving the scroll bar in a control all
generate notification messages.

You can handle notification messages by writing message-handling procedures in the form that
contains a particular control. Table 5.2 lists the Win32 notification messages for standard
Windows controls.

TABLE 5.2 Standard Control Notification Messages

Notification Meaning

Button Notification

BN_CLICKED The user clicked a button.

BN_DISABLE A button is disabled.

BN_DOUBLECLICKED The user double-clicked a button.

BN_HILITE The user highlighted a button.

BN_PAINT The button should be painted.

BN_UNHILITE The highlight should be removed.

Understanding Windows Messaging

CHAPTER 5
203

5

U
N

D
ER

STA
N

D
IN

G
W

IN
D

O
W

S
M

ESSA
G

IN
G

NOTE

Although SendMessage() and PostMessage() are used similarly, their respective
return values are different. SendMessage() returns the result value of the message
being processed, but PostMessage() returns only a BOOL that indicates whether the
message was placed in the target window’s queue.

continues

07.65227_Ch05x 11/30/99 5:50 PM Page 203

TABLE 5.2 Continued

Notification Meaning

Combo Box Notification

CBN_CLOSEUP The list box of a combo box has closed.

CBN_DBLCLK The user double-clicked a string.

CBN_DROPDOWN The list box of a combo box is dropping down.

CBN_EDITCHANGE The user has changed text in the edit control.

CBN_EDITUPDATE Altered text is about to be displayed.

CBN_ERRSPACE The combo box is out of memory.

CBN_KILLFOCUS The combo box is losing the input focus.

CBN_SELCHANGE A new combo box list item is selected.

CBN_SELENDCANCEL The user’s selection should be canceled.

CBN_SELENDOK The user’s selection is valid.

CBN_SETFOCUS The combo box is receiving the input focus.

Edit Notification

EN_CHANGE The display is updated after text changes.

EN_ERRSPACE The edit control is out of memory.

EN_HSCROLL The user clicked the horizontal scrollbar.

EN_KILLFOCUS The edit control is losing the input focus.

EN_MAXTEXT The insertion is truncated.

EN_SETFOCUS The edit control is receiving the input focus.

EN_UPDATE The edit control is about to display altered text.

EN_VSCROLL The user clicked the vertical scrollbar.

List Box Notification

LBN_DBLCLK The user double-clicked a string.

LBN_ERRSPACE The list box is out of memory.

LBN_KILLFOCUS The list box is losing the input focus.

LBN_SELCANCEL The selection is canceled.

LBN_SELCHANGE The selection is about to change.

LBN_SETFOCUS The list box is receiving the input focus.

Internal VCL Messages
VCL has an extensive collection of its own internal and notification messages. Although you
don’t commonly use these messages in your Delphi applications, Delphi component writers

Essentials for Rapid Development

PART I
204

07.65227_Ch05x 11/30/99 5:50 PM Page 204

will find them useful. These messages begin with CM_ (for component message) or CN_ (for
component notification), and they are used to manage VCL internals such as focus, color, visi-
bility, window re-creation, dragging, and so on. You can find a complete list of these messages
in the “Creating Custom Components” portion of the Delphi online help.

User-Defined Messages
At some point, you’ll come across a situation in which one of your own applications must send
a message to itself, or you have to send messages between two of your own applications. At
this point, one question that might come to mind is, “Why would I send myself a message
instead of simply calling a procedure?” It’s a good question, and there are actually several
answers. First, messages give you polymorphism without requiring knowledge of the recipi-
ent’s type. Messages are therefore as powerful as virtual methods but more flexible. Also, mes-
sages allow for optional handling: If the recipient doesn’t do anything with the message, no
harm is done. Finally, messages allow for broadcast notifications to multiple recipients and
“parasitic” eavesdropping, which isn’t easily done with procedures alone.

Messages Within Your Application
Having an application send a message to itself is easy. Just use the Perform(), SendMessage(),
or PostMessage() function and use a message value in the range of WM_USER + 100 through
$7FFF (the value Windows reserves for user-defined messages):

const
SX_MYMESSAGE = WM_USER + 100;

begin
SomeForm.Perform(SX_MYMESSAGE, 0, 0);
{ or }
SendMessage(SomeForm.Handle, SX_MYMESSAGE, 0, 0);
{ or }
PostMessage(SomeForm.Handle, SX_MYMESSAGE, 0, 0);
.
.
.

end;

Then create a normal message-handling procedure for this message in the form in which you
want to handle the message:

TForm1 = class(TForm)
.
.
.

private

Understanding Windows Messaging

CHAPTER 5
205

5

U
N

D
ER

STA
N

D
IN

G
W

IN
D

O
W

S
M

ESSA
G

IN
G

07.65227_Ch05x 11/30/99 5:50 PM Page 205

procedure SXMyMessage(var Msg: TMessage); message SX_MYMESSAGE;
end;

procedure TForm1.SXMyMessage(var Msg: TMessage);
begin
MessageDlg(‘She turned me into a newt!’, mtInformation, [mbOk], 0);

end;

As you can see, there’s little difference between using a user-defined message in your
application and handling any standard Windows message. The real key here is to start at
WM_USER + 100 for interapplication messages and to give each message a name that has
something to do with its purpose.

Essentials for Rapid Development

PART I
206

CAUTION

Never send messages with values of WM_USER through $7FFF unless you’re sure that
the intended recipient is equipped to handle the message. Because each window can
define these values independently, the potential for bad things to happen is great
unless you keep careful tabs on which recipients you send WM_USER through $7FFF
messages to.

Messaging Between Applications
When you want to send messages between two or more applications, it’s usually best to use the
RegisterWindowMessage() API function in each application. This method ensures that every
application uses the same message number for a given message.

RegisterWindowMessage() accepts a null-terminated string as a parameter and returns a new
message constant in the range of $C000 through $FFFF. This means that all you have to do is
call RegisterWindowMessage() with the same string in each application between which you
want to send messages; Windows returns the same message value for each application. The
true benefit of RegisterWindowMessage() is that, because a message value for any given string
is guaranteed to be unique throughout the system, you can safely broadcast such messages to
all windows with fewer harmful side effects. It can be a bit more work to handle this kind of
message, though; because the message identifier isn’t known until runtime, you can’t use a
standard message handler procedure, and you must override a control’s WndProc() or
DefaultHandler() method or subclass an existing window procedure. A technique for han-
dling registered messages is demonstrated in Chapter 13, “Hard-core Techniques.”

07.65227_Ch05x 11/30/99 5:50 PM Page 206

Broadcasting Messages
TWinControl descendants can broadcast a message record to each of their owned controls—
thanks to the Broadcast() method. This technique is useful when you need to send the same
message to a group of components. For example, to send a user-defined message called um_Foo
to all of Panel1’s owned controls, use the following code:

var
M: TMessage;

begin
with M do
begin
Message := UM_FOO;
wParam := 0;
lParam := 0;
Result := 0;

end;
Panel1.Broadcast(M);

end;

Anatomy of a Message System: VCL
There’s much more to VCL’s message system than handling messages with the message direc-
tive. After a message is issued by Windows, it makes a couple of stops before reaching your
message-handling procedure (and it may make a few more stops afterward). All along the way,
you have the power to act on the message.

For posted messages, the first stop for a Windows message in VCL is the
Application.ProcessMessage() method, which houses the VCL main message loop. The next
stop for a message is the handler for the Application.OnMessage event. OnMessage is called as
messages are fetched from the application queue in the ProcessMessage() method. Because
sent messages aren’t queued, OnMessage won’t be called for sent messages.

For posted messages, the DispatchMessage() API is then called internally to dispatch the mes-
sage to the StdWndProc() function. For sent messages, StdWndProc() will be called directly by
Win32. StdWndProc() is an assembler function that accepts the message from Windows and
routes it to the object for which the message is intended.

Understanding Windows Messaging

CHAPTER 5
207

5

U
N

D
ER

STA
N

D
IN

G
W

IN
D

O
W

S
M

ESSA
G

IN
G

NOTE

The number returned by RegisterWindowMessage() varies between Windows sessions
and can’t be determined until runtime.

07.65227_Ch05x 11/30/99 5:50 PM Page 207

The object method that receives the message is called MainWndProc(). Beginning with
MainWndProc(), you can perform any special handling of the message your program might
require. Generally, you handle a message at this point only if you don’t want a message to go
through VCL’s normal dispatching.

After leaving the MainWndProc() method, the message is routed to the object’s WndProc()
method and then on to the dispatch mechanism. The dispatch mechanism, found in the object’s
Dispatch() method, routes the message to any specific message-handling procedure that
you’ve defined or that already exists within VCL.

Then the message finally reaches your message-specific handling procedure. After flowing
through your handler and the inherited handlers you might have invoked using the inherited
keyword, the message goes to the object’s DefaultHandler() method. DefaultHandler() per-
forms any final message processing and then passes the message to the Windows
DefWindowProc() function or other default window procedure (such as DefMDIProc) for any
Windows default processing. Figure 5.2 shows VCL’s message-processing mechanism.

Essentials for Rapid Development

PART I
208

NOTE

You should always call inherited when handling messages unless you’re absolutely
certain you want to prevent normal message processing.

TIP

Because all unhandled messages flow to DefaultHandler(), that’s usually the best
place to handle interapplication messages in which the values were obtained by way
of the RegisterWindowMessage() procedure.

To better understand VCL’s message system, create a small program that can handle a message
at the Application.OnMessage, WndProc(), message procedure, or DefaultHandler() stage.
This project is called CatchIt; its main form is shown in Figure 5.3.

The OnClick event handlers for PostMessButton and SendMessButton are shown in the fol-
lowing code. The former uses PostMessage() to post a user-defined message to the form; the
latter uses SendMessage() to send a user-defined message to the form. To differentiate between
post and send, note that the value 1 is passed in the wParam of PostMessage() and that the
value 0 (zero) is passed for SendMessage(). Here’s the code:

07.65227_Ch05x 11/30/99 5:50 PM Page 208

FIGURE 5.2
VCL’s message system.

Understanding Windows Messaging

CHAPTER 5
209

5

U
N

D
ER

STA
N

D
IN

G
W

IN
D

O
W

S
M

ESSA
G

IN
G

SomeClass WndProcMessage

SomeClass
Dispatch

SomeClass
Message Handler

Ancestor
Message Handler

AncestorN
Message Handler

SomeClass
Default Handler

FIGURE 5.3
The main form of the CatchIt message example.

procedure TMainForm.PostMessButtonClick(Sender: TObject);
{ posts message to form }
begin
PostMessage(Handle, SX_MYMESSAGE, 1, 0);

end;

procedure TMainForm.SendMessButtonClick(Sender: TObject);
{ sends message to form }
begin
SendMessage(Handle, SX_MYMESSAGE, 0, 0); // send message to form

end;

This application provides the user with the opportunity to “eat” the message in the OnMessage
handler, WndProc() method, message-handling method, or DefaultHandler() method (that is,
to not trigger the inherited behavior and to therefore stop the message from fully circulating

07.65227_Ch05x 11/30/99 5:50 PM Page 209

through VCL’s message-handling system). Listing 5.2 shows the completed source code for the
main unit of this project, thus demonstrating the flow of messages in a Delphi application.

LISTING 5.2 The Source Code for CIMain.PAS

unit CIMain;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, ExtCtrls, Menus;

const
SX_MYMESSAGE = WM_USER; // User-defined message value
MessString = ‘%s message now in %s.’; // String to alert user

type
TMainForm = class(TForm)
GroupBox1: TGroupBox;
PostMessButton: TButton;
WndProcCB: TCheckBox;
MessProcCB: TCheckBox;
DefHandCB: TCheckBox;
SendMessButton: TButton;
AppMsgCB: TCheckBox;
EatMsgCB: TCheckBox;
EatMsgGB: TGroupBox;
OnMsgRB: TRadioButton;
WndProcRB: TRadioButton;
MsgProcRB: TRadioButton;
DefHandlerRB: TRadioButton;
procedure PostMessButtonClick(Sender: TObject);
procedure SendMessButtonClick(Sender: TObject);
procedure EatMsgCBClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure AppMsgCBClick(Sender: TObject);

private
{ Handles messages at Application level }
procedure OnAppMessage(var Msg: TMsg; var Handled: Boolean);
{ Handles messages at WndProc level }
procedure WndProc(var Msg: TMessage); override;
{ Handles message after dispatch }
procedure SXMyMessage(var Msg: TMessage); message SX_MYMESSAGE;
{ Default message handler }
procedure DefaultHandler(var Msg); override;

end;

Essentials for Rapid Development

PART I
210

07.65227_Ch05x 11/30/99 5:50 PM Page 210

var
MainForm: TMainForm;

implementation

{$R *.DFM}

const
// strings which will indicate whether a message is sent or posted
SendPostStrings: array[0..1] of String = (‘Sent’, ‘Posted’);

procedure TMainForm.FormCreate(Sender: TObject);
{ OnCreate handler for main form }
begin
// set OnMessage to my OnAppMessage method
Application.OnMessage := OnAppMessage;
// use the Tag property of checkboxes to store a reference to their
// associated radio buttons
AppMsgCB.Tag := Longint(OnMsgRB);
WndProcCB.Tag := Longint(WndProcRB);
MessProcCB.Tag := Longint(MsgProcRB);
DefHandCB.Tag := Longint(DefHandlerRB);
// use the Tag property of radio buttons to store a reference to their
// associated checkbox
OnMsgRB.Tag := Longint(AppMsgCB);
WndProcRB.Tag := Longint(WndProcCB);
MsgProcRB.Tag := Longint(MessProcCB);
DefHandlerRB.Tag := Longint(DefHandCB);

end;

procedure TMainForm.OnAppMessage(var Msg: TMsg; var Handled: Boolean);
{ OnMessage handler for Application }
begin
// check to see if message is my user-defined message
if Msg.Message = SX_MYMESSAGE then
begin
if AppMsgCB.Checked then
begin
// Let user know about the message. Set Handled flag appropriately
ShowMessage(Format(MessString, [SendPostStrings[Msg.WParam],
‘Application.OnMessage’]));

Handled := OnMsgRB.Checked;
end;

end;
end;

Understanding Windows Messaging

CHAPTER 5
211

5

U
N

D
ER

STA
N

D
IN

G
W

IN
D

O
W

S
M

ESSA
G

IN
Gcontinues

07.65227_Ch05x 11/30/99 5:50 PM Page 211

LISTING 5.2 Continued

procedure TMainForm.WndProc(var Msg: TMessage);
{ WndProc procedure of form }
var
CallInherited: Boolean;

begin
CallInherited := True; // assume we will call the inherited
if Msg.Msg = SX_MYMESSAGE then // check for our user-defined message
begin
if WndProcCB.Checked then // if WndProcCB checkbox is checked...
begin
// Let user know about the message.
ShowMessage(Format(MessString, [SendPostStrings[Msg.WParam],
‘WndProc’]));

// Call inherited only if we are not supposed to eat the message.
CallInherited := not WndProcRB.Checked;

end;
end;
if CallInherited then inherited WndProc(Msg);

end;

procedure TMainForm.SXMyMessage(var Msg: TMessage);
{ Message procedure for user-defined message }
var
CallInherited: Boolean;

begin
CallInherited := True; // assume we will call the inherited
if MessProcCB.Checked then // if MessProcCB checkbox is checked
begin
// Let user know about the message.
ShowMessage(Format(MessString, [SendPostStrings[Msg.WParam],
‘Message Procedure’]));

// Call inherited only if we are not supposed to eat the message.
CallInherited := not MsgProcRB.Checked;

end;
if CallInherited then Inherited;

end;

procedure TMainForm.DefaultHandler(var Msg);
{ Default message handler for form }
var
CallInherited: Boolean;

begin
CallInherited := True; // assume we will call the inherited
// check for our user-defined message
if TMessage(Msg).Msg = SX_MYMESSAGE then begin

Essentials for Rapid Development

PART I
212

07.65227_Ch05x 11/30/99 5:50 PM Page 212

if DefHandCB.Checked then // if DefHandCB checkbox is checked
begin
// Let user know about the message.
ShowMessage(Format(MessString,
[SendPostStrings[TMessage(Msg).WParam], ‘DefaultHandler’]));

// Call inherited only if we are not supposed to eat the message.
CallInherited := not DefHandlerRB.Checked;

end;
end;
if CallInherited then inherited DefaultHandler(Msg);

end;

procedure TMainForm.PostMessButtonClick(Sender: TObject);
{ posts message to form }
begin
PostMessage(Handle, SX_MYMESSAGE, 1, 0);

end;

procedure TMainForm.SendMessButtonClick(Sender: TObject);
{ sends message to form }
begin
SendMessage(Handle, SX_MYMESSAGE, 0, 0); // send message to form

end;

procedure TMainForm.AppMsgCBClick(Sender: TObject);
{ enables/disables proper radio button for checkbox click }
begin
if EatMsgCB.Checked then
begin
with TRadioButton((Sender as TCheckBox).Tag) do
begin
Enabled := TCheckbox(Sender).Checked;
if not Enabled then Checked := False;

end;
end;

end;

procedure TMainForm.EatMsgCBClick(Sender: TObject);
{ enables/disables radio buttons as appropriate }
var
i: Integer;
DoEnable, EatEnabled: Boolean;

begin
// get enable/disable flag
EatEnabled := EatMsgCB.Checked;
// iterate over child controls of GroupBox in order to

Understanding Windows Messaging

CHAPTER 5
213

5

U
N

D
ER

STA
N

D
IN

G
W

IN
D

O
W

S
M

ESSA
G

IN
G

continues

07.65227_Ch05x 11/30/99 5:50 PM Page 213

LISTING 5.2 Continued

// enable/disable and check/uncheck radio buttons
for i := 0 to EatMsgGB.ControlCount - 1 do
with EatMsgGB.Controls[i] as TRadioButton do
begin
DoEnable := EatEnabled;
if DoEnable then DoEnable := TCheckbox(Tag).Checked;
if not DoEnable then Checked := False;
Enabled := DoEnable;

end;
end;

end.

Essentials for Rapid Development

PART I
214

CAUTION

Although it’s fine to use just the inherited keyword to send the message to an
inherited handler in message-handler procedures, this technique doesn’t work with
WndProc() or DefaultHandler(). With these procedures, you must also provide the
name of the inherited procedure or function, as in this example:

inherited WndProc(Msg);

You might have noticed that the DefaultHandler() procedure is somewhat unusual in that it
takes one untyped var parameter. That’s because DefaultHandler() assumes that the first
word in the parameter is the message number; it isn’t concerned with the rest of the informa-
tion being passed. Because of this, you typecast the parameter as a TMessage so that you can
access the message parameters.

The Relationship Between Messages and Events
Now that you know all the ins and outs of messages, recall that this chapter began by stating
that VCL encapsulates many Windows messages in its event system. Delphi’s event system is
designed to be an easy interface into Windows messages. Many VCL events have a direct cor-
relation with WM_XXX Windows messages. Table 5.3 shows some common VCL events and the
Windows message responsible for each event.

TABLE 5.3 VCL Events and Corresponding Windows Messages

VCL Event Windows Message

OnActivate WM_ACTIVATE

OnClick WM_XBUTTONDOWN

07.65227_Ch05x 11/30/99 5:50 PM Page 214

VCL Event Windows Message

OnCreate WM_CREATE

OnDblClick WM_XBUTTONDBLCLICK

OnKeyDown WM_KEYDOWN

OnKeyPress WM_CHAR

OnKeyUp WM_KEYUP

OnPaint WM_PAINT

OnResize WM_SIZE

OnTimer WM_TIMER

Table 5.3 is a good rule-of-thumb reference when you’re looking for events that correspond
directly to messages.

Understanding Windows Messaging

CHAPTER 5
215

5

U
N

D
ER

STA
N

D
IN

G
W

IN
D

O
W

S
M

ESSA
G

IN
G

TIP

Never write a message handler when you can use a predefined event to do the same
thing. Because of the contract-free nature of events, you’ll have fewer problems han-
dling events than you will handling messages.

Summary
By now, you should have a pretty clear understanding of how the Win32 messaging system
works and how VCL encapsulates that messaging system. Although Delphi’s event system is
great, knowing how messages work is essential for any serious Win32 programmer.

If you’re eager to learn more about handling Windows messages, check out Chapter 21,
“Writing Delphi Custom Components.” In that chapter, you see practical application of the
knowledge you gained in this chapter. For the next chapter, you’ll learn about how to write
your Delphi code to a set of standards in order to facilitate logical coding practices and sharing
of source code.

07.65227_Ch05x 11/30/99 5:50 PM Page 215

07.65227_Ch05x 11/30/99 5:50 PM Page 216

CHAPTER

6
Coding Standards Document

IN THIS CHAPTER
• Introduction 2

• General Source Code
Formatting Rules 2

• Object Pascal 3

• Files 12

• Forms and Data Modules 15

• Packages 17

• Components 18

• Coding Standards Document
Updates 19

The complete text for this chapter appears on
the CD-ROM.

08.65227_Ch06x 11/30/99 5:50 PM Page 217

Introduction
This document describes the coding standards for Delphi programming as used in Delphi 5
Developer’s Guide. In general, this document follows the often “unspoken” formatting guide-
lines used by Borland International with a few minor exceptions. The purpose for including
this document in Delphi 5 Developer’s Guide is to present a method by which development
teams can enforce a consistent style to the coding they do. The intent is to make it so that every
programmer on a team can understand the code being written by other programmers. This is
accomplished by making the code more readable by use of consistency.

This document by no means includes everything that might exist in a coding standard.
However, it does contain enough detail to get you started. Feel free to use and modify these
standards to fit your needs. We don’t recommend, however, that you deviate too far from the
standards used by Borland’s development staff. We recommend this because as you bring new
programmers to your team, the standards that they’re most likely to be most familiar with are
Borland’s. Like most coding standards documents, this document will evolve as needed.
Therefore, you’ll find the most updated version online at www.xapware.com/ddg.

This document does not cover user interface standards. This is a separate but equally impor-
tant topic. Enough third-party books and Microsoft documentation cover such guidelines that
we decided not to replicate this information but rather refer you to the Microsoft Developers
Network and other sources where that information is available.

Essentials for Rapid Development

PART I
218

08.65227_Ch06x 11/30/99 5:50 PM Page 218

CHAPTER

7
Using ActiveX Controls
with Delphi

IN THIS CHAPTER
• What Is an ActiveX Control? 22

• Deciding When To Use an
ActiveX Control 23

• Adding an ActiveX Control to
the Component Palette 23

• The Delphi Component Wrapper 26

• Using ActiveX Controls in Your
Applications 38

• Shipping ActiveX Control–Equipped
Applications 40

• ActiveX Control Registration 40

• BlackJack: An OCX Application
Example 40

• Summary 55

The complete text for this chapter appears on
the CD-ROM.

09.65227_Ch07x 11/30/99 5:51 PM Page 219

Delphi gives you the great advantage of easily integrating industry-standard ActiveX controls
(formerly known as OCX or OLE controls) into your applications. Unlike Delphi’s own custom
components, ActiveX controls are designed to be independent of any particular development
tool. This means that you can count on many vendors to provide a variety of ActiveX solutions
that open up a world of features and functionality.

ActiveX control support in 32-bit Delphi works similarly to the way VBX support works in
16-bit Delphi 1. You select an option to add new ActiveX controls from Delphi’s IDE main
menu or package editor, and Delphi builds an Object Pascal wrapper for the ActiveX control—
which is then compiled into a package and added to the Delphi Component Palette. Once
there, the ActiveX control seamlessly merges into the Component Palette along with your
other VCL and ActiveX components. From that point, you’re just a click and a drop away from
adding an ActiveX control to any of your applications. This chapter discusses integrating
ActiveX controls into Delphi, using an ActiveX control in your application, and shipping
ActiveX-equipped applications.

Essentials for Rapid Development

PART I
220

NOTE

Delphi 1 was the last version of Delphi to support VBX (Visual Basic Extension) con-
trols. If you have a Delphi 1 project that relies on one or more VBX controls, check
with the VBX vendors to see whether they supply a comparable ActiveX solution for
use in your 32-bit Delphi applications.

09.65227_Ch07x 11/30/99 5:51 PM Page 220

IN THIS PART
8 Graphics Programming with GDI and Fonts 223

9 Dynamic Link Libraries 225

10 Printing in Delphi 5 273

11 Writing Multithreaded Applications 275

12 Working with Files 337

13 Hard-core Techniques 407

14 Snooping System Information 483

15 Porting to Delphi 5 543

16 MDI Applications 545

17 Sharing Information with the Clipboard 547

18 Multimedia Programming with Delphi 561

19 Testing and Debugging 563

Advanced Techniques
PART

II

10.65227_Part II 11/30/1999 7:39 PM Page 221

10.65227_Part II 11/30/1999 7:39 PM Page 222

CHAPTER

8
Graphics Programming with
GDI and Fonts

IN THIS CHAPTER
• Delphi’s Representation of Pictures:

TImage 58

• Saving Images 60

• Using the TCanvas Properties 62

• Using the TCanvas Methods 83

• Coordinate Systems and
Mapping Modes 95

• Creating a Paint Program 108

• Performing Animation with Graphics
Programming 124

• Advanced Fonts 134

• A Font-Creation Sample Project 138

• Summary 151

The complete text for this chapter appears on
the CD-ROM.

11.65227_Ch08x 11/30/99 5:52 PM Page 223

In previous chapters, you worked with a property called Canvas. Canvas is appropriately
named because you can think of a window as an artist’s blank canvas on which various
Windows objects are painted. Each button, window, cursor, and so on is nothing more than a
collection of pixels in which the colors have been set to give it some useful appearance. In fact,
think of each individual window as a separate surface on which its separate components are
painted. To take this analogy a bit further, imagine that you’re an artist who requires various
tools to accomplish your task. You need a palette from which to choose different colors. You’ll
probably use different styles of brushes, drawing tools, and special artist’s techniques as well.
Win32 makes use of similar tools and techniques—in the programming sense—to paint the
various objects with which users interact. These tools are made available through the Graphics
Device Interface, otherwise known as the GDI.

Win32 uses the GDI to paint or draw the images you see on your computer screen. Before
Delphi, in traditional Windows programming, programmers worked directly with the GDI
functions and tools. Now, the TCanvas object encapsulates and simplifies the use of these func-
tions, tools, and techniques. This chapter teaches you how to use TCanvas to perform useful
graphics functions. You’ll also see how you can create advanced programming projects with
Delphi 5 and Win32 GDI. We illustrate this by creating a paint program and animation program.

Advanced Techniques

PART II
224

11.65227_Ch08x 11/30/99 5:52 PM Page 224

CHAPTER

9
Dynamic Link Libraries

IN THIS CHAPTER
• What Exactly Is a DLL? 226

• Static Linking Versus Dynamic Linking 228

• Why Use DLLs? 230

• Creating and Using DLLs 231

• Displaying Modeless Forms from DLLs 237

• Using DLLs in Your Delphi Applications 239

• Loading DLLs Explicitly 241

• The Dynamically Linked Library
Entry/Exit Function 244

• Exceptions in DLLs 250

• Callback Functions 251

• Calling Callback Functions from
Your DLLs 255

• Sharing DLL Data Across Different
Processes 258

• Exporting Objects from DLLs 266

• Summary 272

12.65227_Ch09x 11/30/99 5:53 PM Page 225

This chapter discusses Win32 dynamic link libraries, otherwise known as DLLs. DLLs are a
key component to writing any Windows application. This chapter discusses several aspects of
using and creating DLLs. It gives you an overview of how DLLs work and discusses how to
create and use DLLs. You learn different methods of loading DLLs and linking to the proce-
dures and functions they export. This chapter also covers the use of callback functions and
illustrates how to share DLL data among different calling processes.

What Exactly Is a DLL?
Dynamic link libraries are program modules that contain code, data, or resources that can be
shared among many Windows applications. One of the primary uses of DLLs is to enable
applications to load code to execute at runtime instead of linking that code to the application at
compile time. Therefore, multiple applications can simultaneously use the same code provided
by the DLL. In fact, the files Kernel32.dll, User32.dll, and GDI32.dll are three DLLs on
which Win32 relies heavily. Kernel32.dll is responsible for memory, process, and thread
management. User32.dll contains routines for the user interface that deal with the creation of
windows and the handling of Win32 messages. GDI32.dll deals with graphics. You’ll also hear
of other system DLLs, such as AdvAPI32.dll and ComDlg32.dll, which deal with object secu-
rity/Registry manipulation and common dialog boxes, respectively.

Another advantage to using DLLs is that your applications become modular. This simplifies
updating your applications because you need to replace only DLLs instead of replacing the
entire application. The Windows environment presents a typical example of this type of modu-
larity. Each time you install a new device, you also install a device driver DLL to enable that
device to communicate with Windows. The advantage to modularity becomes obvious when
you imagine having to reinstall Windows each time you install a new device to your system.

On disk, a DLL is basically the same as a Windows EXE file. One major difference is that a
DLL isn’t an independently executable file, although it may contain executable code. The most
common DLL file extension is .dll. Other file extensions are .drv for device drivers, .sys for
system files, and .fon for font resources, which contain no executable code.

Advanced Techniques

PART II
226

NOTE

Delphi introduces a special-purpose DLL known as a package, which is used in the
Delphi and C++Builder environments. We’ll go into greater depth on packages in
Chapter 21, “Writing Delphi Custom Components.”

DLLs share their code with other applications through a process called dynamic linking, which
is discussed later in this chapter. In general, when an application uses a DLL, the Win32 sys-
tem ensures that only one copy of that DLL resides in memory. It does this by using memory-
mapped files. The DLL is first loaded into the Win32 system’s global heap. It’s then mapped

12.65227_Ch09x 11/30/99 5:53 PM Page 226

into the address space of the calling process. In the Win32 system, each process is given its
own 32-bit linear address space. When the DLL is loaded by multiple processes, each process
receives its own image of the DLL. Therefore, processes don’t share the same physical code,
data, or resources, as was the case in 16-bit Windows. In Win32, the DLL appears as though
it’s actually code belonging to the calling process. For more information on Win32 constructs,
you can refer to Chapter 3, “The Win32 API.”

This doesn’t mean that when multiple processes load a DLL, the physical memory is con-
sumed by each usage of the DLL. The DLL image is placed into each process’s address space
by mapping its image from the system’s global heap to the address space of each process that
uses the DLL, at least in the ideal scenario (see the sidebar “Setting a DLL’s Preferred Base
Address”).

Dynamic Link Libraries

CHAPTER 9
227

9

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES

Setting a DLL’s Preferred Base Address
DLL code is only shared between processes if the DLL can be loaded into the process
address space of all interested clients at the DLL’s preferred base address. If the pre-
ferred base address and range of the DLL overlaps with something already allocated
in a process, the Win32 loader has to relocate the entire DLL image to some other
base address. When that happens, none of the relocated DLL image is shared with
any other process in the system—each relocated DLL instance consumes its own chunk
of physical memory and swap file space.

It’s critical that you set the base address of every DLL you produce to a value that
doesn’t conflict with or overlap other address ranges used by your application by
using the $IMAGEBASE directive.

If your DLL will be used by multiple applications, choose a unique base address that’s
unlikely to collide with application addresses at the low end of the process virtual
address range or common DLLs (such as VCL packages) at the high end of the address
range. The default base address for all executable files (EXEs and DLLs) is $400000,
which means unless you change your DLL base address, it will always collide with the
base address of its host EXE and therefore never be shared between processes.

There’s another side benefit to base address loading. Because the DLL doesn’t require
relocation or fixes (which is usually the case) and because it’s stored on a local disk
drive, the DLL’s memory pages are mapped directly onto the DLL file on disk. The DLL
code does not consume any space in the system’s page file (as called a swap file). This
is why the system’s total committed page count and size statistics can be much larger
than the system swap file plus RAM.

You’ll find detailed information on using the $IMAGEBASE directive by looking up
“Image Base Address” in the Delphi 5 online help.

12.65227_Ch09x 11/30/99 5:53 PM Page 227

Following are some terms you’ll need to know in regard to DLLs:

• Application. A Windows program residing in an .exe file.

• Executable. A file containing executable code. Executable files include .dll and .exe
files.

• Instance. When referring to applications and DLLs, an instance is the occurrence of an
executable. Each instance can be referred to by an instance handle, which is assigned by
the Win32 system. When an application is run twice, for example, there are two instances
of that application and, therefore, two instance handles. When a DLL is loaded, there’s
an instance of that DLL as well as a corresponding instance handle. The term instance,
as used here, should not be confused with the instance of a class.

• Module. In 32-bit Windows, module and instance can be used synonymously. This differs
from 16-bit Windows, in which the system maintains a database to manage modules and
provides a module handle for each module. In Win32, each instance of an application
gets its own address space; therefore, there’s no need for a separate module identifier.
However, Microsoft still uses the term in its own documentation. Just be aware that mod-
ule and instance are one and the same.

• Task. Windows is a multitasking (or task-switching) environment. It must be able to allo-
cate system resources and time to the various instances running under it. It does this by
maintaining a task database that maintains instance handles and other necessary informa-
tion to enable it to perform its task-switching functions. The task is the element to which
Windows grants resources and time blocks.

Static Linking Versus Dynamic Linking
Static linking refers to the method by which the Delphi compiler resolves a function or proce-
dure call to its executable code. The function’s code can exist in the application’s .dpr file or
in a unit. When linking your applications, these functions and procedures become part of the
final executable file. In other words, on disk, each function will reside at a specific location in
the program’s .exe file.

A function’s location also is predetermined at a location relative to where the program is
loaded in memory. Any calls to that function cause program execution to jump to where the
function resides, execute the function, and then return to the location from which it was called.
The relative address of the function is resolved during the linking process.

This is a loose description of a more complex process that the Delphi compiler uses to perform
static linking. However, for the purpose of this book, you don’t need to understand the underly-
ing operations that the compiler performs to use DLLs effectively in your applications.

Advanced Techniques

PART II
228

12.65227_Ch09x 11/30/99 5:53 PM Page 228

Suppose you have two applications that use the same function that resides in a unit. Both appli-
cations, of course, would have to include the unit in their uses statements. If you ran both
applications simultaneously in Windows, the function would exist twice in memory. If you had
a third application, there would be a third instance of the function in memory, and you would
be using up three times its memory space. This small example illustrates one of the primary
reasons for dynamic linking. Through dynamic linking, this function resides in a DLL. Then,
when an application loads the function into memory, all other applications that need to refer-
ence it can share its code by mapping the image of the DLL into their own process memory
space. The end result is that the DLL’s function exists only once in memory—theoretically.

With dynamic linking, the link between a function call and its executable code is resolved at
runtime by using an external reference to the DLL’s function. These references can be declared
in the application, but usually they’re placed in a separate import unit. The import unit
declares the imported functions and procedures and defines the various types required by DLL
functions.

For example, suppose you have a DLL named MaxLib.dll that contains a function:

function Max(i1, I2: integer): integer;

This function returns the higher of the two integers passed to it. A typical import unit would
look like this:

unit MaxUnit;

interface

function Max(I1, I2: integer): integer;

implementation

function Max; external ‘MAXLIB’;

end.

You’ll notice that although this looks somewhat like a typical unit, it doesn’t define the func-
tion Max(). The keyword external simply says that the function resides in the DLL of the
name that follows it. To use this unit, an application would simply place MaxUnit in its uses
statement. When the application runs, the DLL is loaded into memory automatically, and any
calls to Max() are linked to the Max() function in the DLL.

Dynamic Link Libraries

CHAPTER 9
229

9

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES

NOTE

Delphi implements a smart linker that automatically removes functions, procedures,
variables, and typed constants that never get referenced in the final project.
Therefore, functions that reside in large units that never get used don’t become a
part of your EXE file.

12.65227_Ch09x 11/30/99 5:53 PM Page 229

This illustrates one of two ways to load a DLL; it’s called implicit loading, which causes
Windows to automatically load the DLL when the application loads. Another method is to
explicitly load the DLL; this is discussed later in this chapter.

Why Use DLLs?
There are several reasons for using DLLs, some of which were mentioned earlier. In general,
you use DLLs to share code or system resources, to hide your code implementation or low-level
system routines, or to design custom controls. We discuss these topics in the following sections.

Sharing Code, Resources, and Data with Multiple
Applications
Earlier in this chapter, you learned that the most common reason for creating a DLL is to share
code. Unlike units, which enable you to share code with different Delphi applications, DLLs
enable you to share code with any Windows application that can call functions from DLLs.

Additionally, DLLs provide a way for you to share resources such as bitmaps, fonts, icons, and
so on that you normally would put into a resource file and link directly into your application. If
you place these resources into a DLL, many applications can make use of them without using
up the memory required to load them more often.

Back in 16-bit Windows, DLLs had their own data segment, so all applications that used a
DLL could access the same data-global and static variables. In the Win32 system, this is a dif-
ferent story. Because the DLL image is mapped to each process’s address space, all data in the
DLL belongs to that process. One thing worth mentioning here is that although the DLL’s data
isn’t shared between different processes, it’s shared by multiple threads within the same
process. Because threads execute independently of one another, you must take precautions not
to cause conflicts when accessing a DLL’s global data.

This doesn’t mean that there aren’t ways to make multiple processes share data made accessi-
ble through a DLL. One technique would be to create a shared memory area (using a memory-
mapped file) from within the DLL. Each application using that DLL would be able to read the
data stored in the shared memory area. This technique is shown later in the chapter.

Hiding Implementation
In some cases, you might want to hide the details of the routines that you make available from
a DLL. Regardless of your reason for deciding to hide your code’s implementation, a DLL pro-
vides a way for you to make your functions available to the public and not give away your
source code in doing so. All you need to do is provide an interface unit to enable others to
access your DLL. If you’re thinking that this is already possible with Delphi compiled units
(DCUs), consider that DCUs apply only to other Delphi applications that are created with the
same version of Delphi. DLLs are language-independent, so you can create a DLL that can be
used by C++, VB, or any other language that supports DLLs.

Advanced Techniques

PART II
230

12.65227_Ch09x 11/30/99 5:53 PM Page 230

The Windows unit is the interface unit to the Win32 DLLs. The Win32 API unit source files are
included with Delphi 5. One of the files you get is Windows.pas, the source to the Windows unit.
In Windows.pas, you find function definitions such as the following in the interface section:

function ClientToScreen(Hwnd: HWND; var lpPoint: TPoint): BOOL; stdcall;

The corresponding link to the DLL is in the implementation section, as in the following
example:

function ClientToScreen; external user32 name ‘ClientToScreen’;

This basically says that the procedure ClientToScreen() exists in the dynamic link library
User32.dll, and its name is ClientToScreen.

Custom Controls
Custom controls usually are placed in DLLs. These controls aren’t the same as Delphi custom
components. Custom controls are registered under Windows and can be used by any Windows
development environment. These types of custom controls are placed in DLLs to conserve
memory by having only one copy of the control’s code in memory when multiple copies of the
control are being used.

Dynamic Link Libraries

CHAPTER 9
231

9

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES

NOTE

The old custom control DLL mechanism is extremely crude and inflexible, which is
why Microsoft now uses OLE and ActiveX controls. These older forms of custom con-
trols are rare.

Creating and Using DLLs
The following sections take you through the process of actually creating a DLL with Delphi.
You’ll see how to create an interface unit so that you can make your DLLs available to other
programs. You’ll also learn how to incorporate Delphi forms into DLLs before going on to
using DLLs in Delphi.

Counting Your Pennies (A Simple DLL)
The following DLL example illustrates placing a routine that’s a favorite of many computer
science professors into a DLL. The routine converts a monetary amount in pennies to the mini-
mum number of nickels, dimes, or quarters needed to match the total number of pennies.

A Basic DLL
The library contains the PenniesToCoins() method. Listing 9.1 shows the complete DLL project.

12.65227_Ch09x 11/30/99 5:53 PM Page 231

LISTING 9.1 PenniesLib.dpr, a DLL to Convert Pennies to Other Coins

library PenniesLib;

{$DEFINE PENNIESLIB}

uses

SysUtils,

Classes,

PenniesInt;

function PenniesToCoins(TotPennies: word;

CoinsRec: PCoinsRec): word; StdCall;

begin

Result := TotPennies; // Assign value to Result

{ Calculate the values for quarters, dimes, nickels, pennies }

with CoinsRec^ do

begin

Quarters := TotPennies div 25;

TotPennies := TotPennies - Quarters * 25;

Dimes := TotPennies div 10;

TotPennies := TotPennies - Dimes * 10;

Nickels := TotPennies div 5;

TotPennies := TotPennies - Nickels * 5;

Pennies := TotPennies;

end;

end;

{ Export the function by name }

exports

PenniesToCoins;

end.

Notice that this library uses the unit PenniesInt. We’ll discuss this in more detail momentarily.

The exports clause specifies which functions or procedures in the DLL get exported and made
available to calling applications.

Defining an Interface Unit
Interface units enable users of your DLL to statically import your DLL’s routines into their
applications by just placing the import unit’s name in their module’s uses statement. Interface
units also allow the DLL writer to define common structures used by both the library and the
calling application. We demonstrate that here with the interface unit. Listing 9.2 shows the
source code to PenniesInt.pas.

Advanced Techniques

PART II
232

12.65227_Ch09x 11/30/99 5:53 PM Page 232

LISTING 9.2 PenniesInt.pas, the interface Unit for PenniesLib.Dll

unit PenniesInt;

{ Interface routine for PENNIES.DLL }

interface

type

{ This record will hold the denominations after the conversions have

been made }

PCoinsRec = ^TCoinsRec;

TCoinsRec = record

Quarters,

Dimes,

Nickels,

Pennies: word;

end;

{$IFNDEF PENNIESLIB}

{ Declare function with export keyword }

function PenniesToCoins(TotPennies: word;

CoinsRec: PCoinsRec): word; StdCall;

{$ENDIF}

implementation

{$IFNDEF PENNIESLIB}

{ Define the imported function }

function PenniesToCoins; external ‘PENNIESLIB.DLL’ name ‘PenniesToCoins’;

{$ENDIF}

end.

In the type section of this project, you declare the record TCoinsRec as well as a pointer to this
record. This record will hold the denominations that will make up the penny amount passed
into the PenniesToCoins() function. The function takes two parameters—the total amount of
money in pennies and a pointer to a TCoinsRec variable. The result of the function is the
amount of pennies passed in.

PenniesInt.pas declares the function that the PenniesLib.dll exports in its interface sec-
tion. The definition of the PenniesToCoins() function is placed in the implementation section.
This definition specifies that the function is an external function existing in the DLL file

Dynamic Link Libraries

CHAPTER 9
233

9

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES

12.65227_Ch09x 11/30/99 5:53 PM Page 233

PenniesLib.dll. It links to the DLL function by the name of the function. Notice that you
used a compiler directive PENNIESLIB to conditionally compile the declaration of the
PenniesToCoins() function. You do this because it’s not necessary to link this declaration
when compiling the interface unit for the library. This allows you to share the interface unit’s
type definitions with both the library and any applications that intend to use the library. Any
changes to the structures used by both only have to be made in the interface unit.

Advanced Techniques

PART II
234

TIP

To define an application-wide conditional directive, specify the conditional in the
Directories/Conditionals page of the Project, Options dialog box. Note that you must
rebuild your project for changes to conditional defines to take effect because Make
logic doesn’t reevaluate conditional defines.

NOTE

The following definition shows one of two ways to import a DLL function:

function PenniesToCoins; external ‘PENNIESLIB.DLL’ index 1;

This method is called importing by ordinal. The other method by which you can
import DLL functions is by name:

function PenniesToCoins; external ‘PENNIESLIB.DLL’ name ‘PenniesToCoins’;

The by-name method uses the name specified after the name keyword to determine
which function to link to in the DLL.

The by-ordinal method reduces the DLL’s load time because it doesn’t have to look
up the function name in the DLL’s name table. However, this method isn’t the pre-
ferred method in Win32. Importing by name is the preferred technique so that appli-
cations won’t be hypersensitive to relocation of DLL entry points as DLLs get updated
over time. When you import by ordinal, you are binding to a place in the DLL. When
you import by name, you’re binding to the function name, regardless of where it
happens to be placed in the DLL.

If this were an actual DLL that you planned to deploy, you would provide both
PenniesLib.dll and PenniesInt.pas to your users. This would enable them to use the DLL
by defining the types and functions in PenniesInt.pas that PenniesLib.dll requires.
Additionally, programmers using different languages, such as C++, could convert
PenniesInt.pas to their languages, thus enabling them to use your DLL in their development
environments. You’ll find a sample project that uses PenniesLib.dll on the CD that accompa-
nies this book.

12.65227_Ch09x 11/30/99 5:53 PM Page 234

Displaying Modal Forms from DLLs
This section shows you how to make modal forms available from a DLL. One reason why
placing commonly used forms in a DLL is beneficial is that it enables you to extend your
forms for use with any Windows application or development environment, such as C++ and
Visual Basic.

To do this, you remove your DLL-based form from the list of autocreated forms.

We’ve created such a form that contains a TCalendar component on the main form. The calling
application will call a DLL function that will invoke this form. When the user selects a day on
the calendar, the date will be returned to the calling application.

Listing 9.3 shows the source for CalendarLib.dpr, the DLL project file. Listing 9.4, in the
section, “Displaying Modeless Forms from DLLs,” shows the source code for DllFrm.pas, the
DLL form’s unit, which illustrates how to encapsulate the form into a DLL.

LISTING 9.3 Library Project Source—CalendarLib.dpr

unit DLLFrm;

interface

uses

SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,

Forms, Dialogs, Grids, Calendar;

type

TDLLForm = class(TForm)

calDllCalendar: TCalendar;

procedure calDllCalendarDblClick(Sender: TObject);

end;

{ Declare the export function }

function ShowCalendar(AHandle: THandle; ACaption: String):

TDateTime; StdCall;

implementation

{$R *.DFM}

function ShowCalendar(AHandle: THandle; ACaption: String): TDateTime;

var

DLLForm: TDllForm;

Dynamic Link Libraries

CHAPTER 9
235

9

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES

continues

12.65227_Ch09x 11/30/99 5:53 PM Page 235

LISTING 9.3 Continued

begin

// Copy application handle to DLL’s TApplication object

Application.Handle := AHandle;

DLLForm := TDLLForm.Create(Application);

try

DLLForm.Caption := ACaption;

DLLForm.ShowModal;

// Pass the date back in Result

Result := DLLForm.calDLLCalendar.CalendarDate;

finally

DLLForm.Free;

end;

end;

procedure TDLLForm.calDllCalendarDblClick(Sender: TObject);

begin

Close;

end;

end.

The main form in this DLL is incorporated into the exported function. Notice that the DLLForm
declaration was removed from the interface section and declared inside the function instead.

The first thing that the DLL function does is to assign the AHandle parameter to the
Application.Handle property. Recall from Chapter 4, “Application Frameworks and Design
Concepts,” that Delphi projects, including library projects, contain a global Application
object. In a DLL, this object is separate from the Application object that exists in the calling
application. For the form in the DLL to truly act as a modal form for the calling application,
you must assign the handle of the calling application to the DLL’s Application.Handle prop-
erty, as has been illustrated. Not doing so will result in erratic behavior, especially when you
start minimizing the DLL’s form. Also, as shown, you must make sure not to pass nil as the
owner of the DLL’s form.

After the form is created, you assign the ACaption string to the Caption of the DLL form. It’s
then displayed modally. When the form closes, the date selected by the user in the TCalendar
component is passed back to the calling function. The form closes after the user double-clicks
the TCalendar component.

Advanced Techniques

PART II
236

12.65227_Ch09x 11/30/99 5:53 PM Page 236

This is all that’s required when encapsulating a modal form into a DLL. In the next section,
we’ll discuss displaying a modeless form in a DLL.

Displaying Modeless Forms from DLLs
To illustrate placing modeless forms in a DLL, we’ll use the same calendar form as the previ-
ous section.

When displaying modeless forms from a DLL, the DLL must provide two routines. The first
routine must take care of creating and displaying the form. A second routine is required to free
the form. Listing 9.4 displays the source code for the illustration of a modeless form in a DLL.

LISTING 9.4 A Modeless Form in a DLL

unit DLLFrm;

interface

uses

Dynamic Link Libraries

CHAPTER 9
237

9

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES

CAUTION

ShareMem must be the first unit in your library’s uses clause and your project’s (select
View, Project Source) uses clause if your DLL exports any procedures or functions
that pass strings or dynamic arrays as parameters or function results. This applies to
all strings passed to and from your DLL—even those nested in records and classes.
ShareMem is the interface unit to the Borlndmm.dll shared memory manager, which
must be deployed along with your DLL. To avoid using Borlndmm.dll, pass string
information using PChar or ShortString parameters.

ShareMem is only required when heap-allocated strings or dynamic arrays are passed
between modules, and such transfers also transfer ownership of that string memory.
Typecasting an internal string to a PChar and passing it to another module as a PChar
does not transfer ownership of the string memory to the calling module, so ShareMem
is not required.

Note that this ShareMem issue applies only to DelphiC++Builder DLLs that pass strings
or dynamic arrays to other Delphi/BCB DLLs or EXEs. You should never expose Delphi
strings or dynamic arrays (as parameters or function results of DLL exported func-
tions) to non-Delphi DLLs or host apps. They won’t know how to dispose of the
Delphi items correctly.

Also, ShareMem is never required between modules built with packages. The memory
allocator is implicitly shared between packaged modules.

continues

12.65227_Ch09x 11/30/99 5:53 PM Page 237

LISTING 9.4 Continued

SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,

Forms, Dialogs, Grids, Calendar;

type

TDLLForm = class(TForm)

calDllCalendar: TCalendar;

end;

{ Declare the export function }

function ShowCalendar(AHandle: THandle; ACaption: String):

Longint; stdCall;

procedure CloseCalendar(AFormRef: Longint); stdcall;

implementation

{$R *.DFM}

function ShowCalendar(AHandle: THandle; ACaption: String): Longint;

var

DLLForm: TDllForm;

begin

// Copy application handle to DLL’s TApplication object

Application.Handle := AHandle;

DLLForm := TDLLForm.Create(Application);

Result := Longint(DLLForm);

DLLForm.Caption := ACaption;

DLLForm.Show;

end;

procedure CloseCalendar(AFormRef: Longint);

begin

if AFormRef > 0 then

TDLLForm(AFormRef).Release;

end;

end.

This listing displays the routines ShowCalendar() and CloseCalendar(). ShowCalendar() is
similar to the same function in the modal form example in that it makes the assignment of the
calling application’s application handle to the DLL’s application handle and creates the form.

Advanced Techniques

PART II
238

12.65227_Ch09x 11/30/99 5:53 PM Page 238

Instead of calling ShowModal(), however, this routine calls Show(). Notice that it doesn’t free
the form. Also, notice that the function returns a longint value to which you assign the
DLLForm instance. This is because a reference of the created form must be maintained, and it’s
best to have the calling application maintain this instance. This would take care of any issues
regarding other applications calling this DLL and creating another instance of the form.

In the CloseCalendar() procedure, you simply check for a valid reference to the form and
invoke its Release() method. Here, the calling application should pass back the same refer-
ence that was returned to it from ShowCalendar().

When using such a technique, you must be careful that your DLL never frees the form inde-
pendently of the host. If it does (for example, returning caFree in CanClose()), the call to
CloseCalendar() will crash.

Demos of both the modal and modeless forms are on the CD that accompanies this book.

Using DLLs in Your Delphi Applications
Earlier in this chapter, you learned that there are two ways to load or import DLLs: implicitly
and explicitly. Both techniques are illustrated in this section with the DLLs just created.

The first DLL created in this chapter included an interface unit. You’ll use this interface
unit in the following example to illustrate implicit linking of a DLL. The sample project’s main
form has a TMaskEdit, TButton, and nine TLabel components.

In this application, the user enters an amount of pennies. Then, when the user clicks the button,
the labels will show the breakdown of denominations of change adding up to that amount. This
information is obtained from the PenniesLib.dll exported function PenniesToCoins().

The main form is defined in the unit MainFrm.pas shown in Listing 9.5.

LISTING 9.5 Main Form for the Pennies Demo

unit MainFrm;

interface

uses

SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,

Forms, Dialogs, StdCtrls, Mask;

type

TMainForm = class(TForm)

lblTotal: TLabel;

lblQlbl: TLabel;

Dynamic Link Libraries

CHAPTER 9
239

9

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES

continues

12.65227_Ch09x 11/30/99 5:53 PM Page 239

LISTING 9.5 Continued

lblDlbl: TLabel;

lblNlbl: TLabel;

lblPlbl: TLabel;

lblQuarters: TLabel;

lblDimes: TLabel;

lblNickels: TLabel;

lblPennies: TLabel;

btnMakeChange: TButton;

meTotalPennies: TMaskEdit;

procedure btnMakeChangeClick(Sender: TObject);

end;

var

MainForm: TMainForm;

implementation

uses PenniesInt; // Use an interface unit

{$R *.DFM}

procedure TMainForm.btnMakeChangeClick(Sender: TObject);

var

CoinsRec: TCoinsRec;

TotPennies: word;

begin

{ Call the DLL function to determine the minimum coins required

for the amount of pennies specified. }

TotPennies := PenniesToCoins(StrToInt(meTotalPennies.Text), @CoinsRec);

with CoinsRec do

begin

{ Now display the coin information }

lblQuarters.Caption := IntToStr(Quarters);

lblDimes.Caption := IntToStr(Dimes);

lblNickels.Caption := IntToStr(Nickels);

lblPennies.Caption := IntToStr(Pennies);

end

end;

end.

Advanced Techniques

PART II
240

12.65227_Ch09x 11/30/99 5:53 PM Page 240

Notice that MainFrm.pas uses the unit PenniesInt. Recall that PenniesInt.pas includes the
external declarations to the functions existing in PenniesLib.dpr. When this application runs,
the Win32 system automatically loads PenniesLib.dll and maps it to the process address
space for the calling application.

Usage of an import unit is optional. You can remove PenniesInt from the uses statement and
place the external declaration to PenniesToCoins() in the implementation section of
MainFrm.pas, as in the following code:

implementation

function PenniesToCoins(TotPennies: word; ChangeRec: PChangeRec): word;

➥StdCall external ‘PENNIESLIB.DLL’;

You also would have to define PChangeRec and TChangeRec again in MainFrm.pas, or you can
compile your application using the compiler directive PENNIESLIB. This technique is fine in the
case where you only need access to a few routines from a DLL. In many cases, you’ll find that
you require not only the external declarations to the DLL’s routines but also access to the types
defined in the interface unit.

Dynamic Link Libraries

CHAPTER 9
241

9

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES

NOTE

Many times, when using another vendor’s DLL, you won’t have a Pascal interface
unit; instead, you’ll have a C/C++ import library. In this case, you have to translate the
library to a Pascal equivalent interface unit.

You’ll find this demo on the accompanying CD.

Loading DLLs Explicitly
Although loading DLLs implicitly is convenient, it isn’t always the most desired method.
Suppose you have a DLL that contains many routines. If it’s likely that your application will
never call any of the DLL’s routines, it would be a waste of memory to load the DLL every
time your application runs. This is especially true when using multiple DLLs with one applica-
tion. Another example is when using DLLs as large objects: a standard list of functions that are
implemented by multiple DLLs but do slightly different things, such as printer drivers and file
format readers. In this situation, it would be beneficial to load the DLL when specifically
requested to do so by the application. This is referred to as explicitly loading a DLL.

To illustrate explicitly loading a DLL, we return to the sample DLL with a modal form. Listing
9.6 shows the code for the main form of the application that demonstrates explicitly loading
this DLL. The project file for this application is on the accompanying CD.

12.65227_Ch09x 11/30/99 5:53 PM Page 241

LISTING 9.6 Main Form for Calendar DLL Demo Application

unit MainFfm;

interface

uses

SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,

Forms, Dialogs, StdCtrls;

type

{ First, define a procedural data type, this should reflect the

procedure that is exported from the DLL. }

TShowCalendar = function (AHandle: THandle; ACaption: String):

TDateTime; StdCall;

{ Create a new exception class to reflect a failed DLL load }

EDLLLoadError = class(Exception);

TMainForm = class(TForm)

lblDate: TLabel;

btnGetCalendar: TButton;

procedure btnGetCalendarClick(Sender: TObject);

end;

var

MainForm: TMainForm;

implementation

{$R *.DFM}

procedure TMainForm.btnGetCalendarClick(Sender: TObject);

var

LibHandle : THandle;

ShowCalendar: TShowCalendar;

begin

{ Attempt to load the DLL }

LibHandle := LoadLibrary(‘CALENDARLIB.DLL’);

try

{ If the load failed, LibHandle will be zero.

If this occurs, raise an exception. }

Advanced Techniques

PART II
242

12.65227_Ch09x 11/30/99 5:53 PM Page 242

if LibHandle = 0 then

raise EDLLLoadError.Create(‘Unable to Load DLL’);

{ If the code makes it here, the DLL loaded successfully, now obtain

the link to the DLL’s exported function so that it can be called. }

@ShowCalendar := GetProcAddress(LibHandle, ‘ShowCalendar’);

{ If the function is imported successfully, then set

lblDate.Caption to reflect the returned date from

the function. Otherwise, show the return raise an exception. }

if not (@ShowCalendar = nil) then

lblDate.Caption := DateToStr(ShowCalendar(Application.Handle, Caption))

else

RaiseLastWin32Error;

finally

FreeLibrary(LibHandle); // Unload the DLL.

end;

end;

end.

This unit first defines a procedural data type, TShowCalendar, that reflects the definition of the
function it will be using from CalendarLib.dll. It then defines a special exception, which is
raised when there’s a problem loading the DLL. In the btnGetCalendarClick() event handler,
you’ll notice the use of three Win32 API functions: LoadLibrary(), FreeLibrary(), and
GetProcAddress().

LoadLibrary() is defined this way:

function LoadLibrary(lpLibFileName: PChar): HMODULE; stdcall;

This function loads the DLL module specified by lpLibFileName and maps it into the address
space of the calling process. If this function succeeds, it returns a handle to the module. If it
fails, it returns the value 0, and an exception is raised. You can look up LoadLibrary() in the
online help for detailed information on its functionality and possible return error values.

FreeLibrary() is defined like this:

function FreeLibrary(hLibModule: HMODULE): BOOL; stdcall;

FreeLibrary() decrements the instance count of the library specified by LibModule. It
removes the library from memory when the library’s instance count is zero. The instance count
keeps track of the number of tasks using the DLL.

Here’s how GetProcAddress() is defined:

function GetProcAddress(hModule: HMODULE; lpProcName: LPCSTR):
FARPROC; stdcall

Dynamic Link Libraries

CHAPTER 9
243

9

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES

12.65227_Ch09x 11/30/99 5:53 PM Page 243

GetProcAddress() returns the address of a function within the module specified in its first
parameter, hModule. hModule is the THandle returned from a call to LoadLibrary(). If
GetProcAddress() fails, it returns nil. You must call GetLastError() for extended error
information.

In Button1’s OnClick event handler, LoadLibrary() is called to load CALDLL. If it fails to load,
an exception is raised. If the call is successful, a call to the window’s GetProcAddress() is
made to get the address of the function ShowCalendar(). Prepending the procedural data type
variable ShowCalendar with the address of operator (@) character prevents the compiler from
issuing a type mismatch error due to its strict type-checking. After obtaining the address of
ShowCalendar(), you can use it as defined by TShowCalendar. Finally, FreeLibrary() is
called within the finally block to ensure that the library is freed from memory when no
longer required.

You can see that the library is loaded and freed each time this function is called. If this func-
tion was called only once during the run of an application, it becomes apparent how explicit
loading can save much-needed and often limited memory resources. On the other hand, if this
function were called frequently, the DLL loading and unloading would add a lot of overhead.

The Dynamically Linked Library Entry/Exit
Function
You can provide optional entry and exit code for your DLLs when required under various ini-
tialization and shutdown operations. These operations can occur during process or thread ini-
tialization/termination.

Process/Thread Initialization and Termination Routines
Typical initialization operations include registering Windows classes, initializing global vari-
ables, and initializing an entry/exit function. This occurs during the method of entry for the
DLL, which is referred to as the DLLEntryPoint function. This function is actually represented
by the begin..end block of the DLL project file. This is the location where you would set up
an entry/exit procedure. This procedure must take a single parameter of the type DWord.

The global DLLProc variable is a procedural pointer to which you can assign the entry/exit pro-
cedure. This variable is initially nil unless you set up your own procedure. By setting up an
entry/exit procedure, you can respond to the events listed in Table 9.1.

TABLE 9.1 DLL Entry/Exit Events

Event Purpose

DLL_PROCESS_ATTACH The DLL is attaching to the address space of the current process
when the process starts up or when a call to LoadLibrary() is
made. DLLs initialize any instance data during this event.

Advanced Techniques

PART II
244

12.65227_Ch09x 11/30/99 5:53 PM Page 244

Event Purpose

DLL_PROCESS_DETACH The DLL is detaching from the address space of the calling
process. This occurs during a clean process exit or when a call to
FreeLibrary() is made. The DLL can uninitialize any instance
data during this event.

DLL_THREAD_ATTACH This event occurs when the current process creates a new thread.
When this occurs, the system calls the entry-point function of any
DLLs attached to the process. This call is made in the context of
the new thread and can be used to allocate any thread-specific
data.

DLL_THREAD_DETACH This event occurs when the thread is exiting. During this event,
the DLL can free any thread-specific initialized data.

Dynamic Link Libraries

CHAPTER 9
245

9

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES

CAUTION

Threads terminated abnormally—by calling TerminateThread()—are not guaranteed
to call DLL_THREAD_DETACH.

DLL Entry/Exit Example
Listing 9.7 illustrates how you would install an entry/exit procedure to the DLL’s DLLProc
variable.

LISTING 9.7 The Source Code for DllEntry.dpr

library DllEntry;

uses

SysUtils,

Windows,

Dialogs,

Classes;

procedure DLLEntryPoint(dwReason: DWord);

begin

case dwReason of

DLL_PROCESS_ATTACH: ShowMessage(‘Attaching to process’);

DLL_PROCESS_DETACH: ShowMessage(‘Detaching from process’);

DLL_THREAD_ATTACH: MessageBeep(0);

DLL_THREAD_DETACH: MessageBeep(0);

end;

continues

12.65227_Ch09x 11/30/99 5:53 PM Page 245

LISTING 9.7 Continued

end;

begin

{ First, assign the procedure to the DLLProc variable }

DllProc := @DLLEntryPoint;

{ Now invoke the procedure to reflect that the DLL is attaching to the

process }

DLLEntryPoint(DLL_PROCESS_ATTACH);

end.

The entry/exit procedure is assigned to the DLL’s DLLProc variable in the begin..end block of
the DLL project file. This procedure, DLLEntryPoint(), evaluates its word parameter to deter-
mine which event is being called. These events correspond to the events listed in Table 9.1. For
illustration purposes, we have each event display a message box when the DLL is being loaded
or destroyed. When a thread in the calling application is being created or destroyed, a message
beep occurs.

To illustrate the use of this DLL, examine the code shown in Listing 9.8.

LISTING 9.8 Sample Code for DLL Entry/Exit Demo

unit MainFrm;

interface

uses

Windows, Messages, SysUtils, Classes, Graphics, Controls,

Forms, Dialogs, StdCtrls, ComCtrls, Gauges;

type

{ Define a TThread descendant }

TTestThread = class(TThread)

procedure Execute; override;

procedure SetCaptionData;

end;

TMainForm = class(TForm)

btnLoadLib: TButton;

btnFreeLib: TButton;

btnCreateThread: TButton;

Advanced Techniques

PART II
246

12.65227_Ch09x 11/30/99 5:53 PM Page 246

btnFreeThread: TButton;

lblCount: TLabel;

procedure btnLoadLibClick(Sender: TObject);

procedure btnFreeLibClick(Sender: TObject);

procedure btnCreateThreadClick(Sender: TObject);

procedure btnFreeThreadClick(Sender: TObject);

procedure FormCreate(Sender: TObject);

private

LibHandle : THandle;

TestThread : TTestThread;

Counter : Integer;

GoThread : Boolean;

end;

var

MainForm: TMainForm;

implementation

{$R *.DFM}

procedure TTestThread.Execute;

begin

while MainForm.GoThread do

begin
Synchronize(SetCaptionData);

Inc(MainForm.Counter);

end;

end;

procedure TTestThread.SetCaptionData;

begin

MainForm.lblCount.Caption := IntToStr(MainForm.Counter);

end;

procedure TMainForm.btnLoadLibClick(Sender: TObject);

{ This procedure loads the library DllEntryLib.DLL }

begin

if LibHandle = 0 then

begin

LibHandle := LoadLibrary(‘DLLENTRYLIB.DLL’);

if LibHandle = 0 then

Dynamic Link Libraries

CHAPTER 9
247

9

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES

continues

12.65227_Ch09x 11/30/99 5:53 PM Page 247

LISTING 9.8 Continued

raise Exception.Create(‘Unable to Load DLL’);

end

else

MessageDlg(‘Library already loaded’, mtWarning, [mbok], 0);

end;

procedure TMainForm.btnFreeLibClick(Sender: TObject);

{ This procedure frees the library }

begin

if not (LibHandle = 0) then

begin

FreeLibrary(LibHandle);

LibHandle := 0;

end;

end;

procedure TMainForm.btnCreateThreadClick(Sender: TObject);

{ This procedure creates the TThread instance. If the DLL is loaded a

message beep will occur. }

begin

if TestThread = nil then

begin

GoThread := True;

TestThread := TTestThread.Create(False);

end;

end;

procedure TMainForm.btnFreeThreadClick(Sender: TObject);

{ In freeing the TThread a message beep will occur if the DLL is loaded. }

begin

if not (TestThread = nil) then

begin

GoThread := False;

TestThread.Free;

TestThread := nil;

Counter := 0;

end;

end;

Advanced Techniques

PART II
248

12.65227_Ch09x 11/30/99 5:53 PM Page 248

procedure TMainForm.FormCreate(Sender: TObject);

begin

LibHandle := 0;

TestThread := nil;

end;

end.

This project consists of a main form with four TButton components. BtnLoadLib loads the
DLL DllEntryLib.dll. BtnFreeLib frees the library from the process. BtnCreateThread cre-
ates a TThread descendant object, which in turn creates a thread. BtnFreeThread destroys the
TThread object. The lblCount is used just to show the thread execution.

The btnLoadLibClick() event handler calls LoadLibrary() to load DllEntryLib.dll. This
causes the DLL to load and be mapped to the process’s address space. Additionally, the initial-
ization code in the DLL gets executed. Again, this is the code that appears in the begin..end
block of the DLL, which performs the following to set up an entry/exit procedure for the DLL:

begin

{ First, assign the procedure to the DLLProc variable }

DllProc := @DLLEntryPoint;

{ Now invoke the procedure to reflect that the DLL is attaching to the

process }

DLLEntryPoint(DLL_PROCESS_ATTACH);

end.

This initialization section will only be called once per process. If another process loads this
DLL, this section will be called again, except in the context of the separate process—processes
don’t share DLL instances.

The btnFreeLibClick() event handler unloads the DLL by calling FreeLibrary(). When this
happens, the procedure to which the DLLProc points, DLLEntryProc(), gets called with the
value of DLL_PROCESS_DETACH passed as the parameter.

The btnCreateThreadClick() event handler creates the TThread descendant object. This
causes the DLLEntryProc() to get called, and the DLL_THREAD_ATTACH value is passed as the
parameter. The btnFreeThreadClick() event handler invokes DLLEntryProc again but passes
DLL_THREAD_DETACH as the value to the procedure.

Although you invoke only a message box when the events occur, you’ll use these events to per-
form any process or thread initialization or cleanup that might be necessary for your applica-
tion. Later, you’ll see an example of using this technique to set up sharable DLL global data.
You can look at the demo of this DLL in the project DLLEntryTest.dpr on the CD.

Dynamic Link Libraries

CHAPTER 9
249

9

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES

12.65227_Ch09x 11/30/99 5:53 PM Page 249

Exceptions in DLLs
This section discusses issues regarding DLLs and Win32 exceptions.

Capturing Exceptions in 16-Bit Delphi
Back in the 16-bit days with Delphi 1, Delphi exceptions were language specific. Therefore, if
exceptions were raised in a DLL, you were required to capture the exception before it escaped
from the DLL so that it wouldn’t creep up the calling modules stack, causing it to crash. You
had to wrap every DLL entry point with an exception handler, like this:

procedure SomeDLLProc;

begin

try

{ Do your stuff }

except

on Exception do

{ Don’t let it get away, handle it and don’t re-raise it }

end;

end;

This is no longer the case as of Delphi 2. Delphi 5 exceptions map themselves to Win32 excep-
tions. Exceptions raised in DLLs are no longer a compiler/language feature of Delphi but
rather a feature of the Win32 system.

For this to work, however, you must make sure that SysUtils is included in the DLL’s uses
clause. Not including SysUtils disables Delphi’s exception support inside the DLL.

Advanced Techniques

PART II
250

CAUTION

Most Win32 applications are not designed to handle exceptions, so even though
Delphi language exceptions get turned into Win32 exceptions, exceptions that you let
escape from a DLL into the host application are likely to shut down the application.

If the host application is built with Delphi or C++Builder, this shouldn’t be much of
an issue, but there’s still a lot of raw C and C++ code out there that doesn’t like
exceptions.

Therefore, to make your DLLs bulletproof, you might still consider using the 16-bit
method of protecting DLL entry points with try..except blocks to capture excep-
tions raised in your DLLs.

12.65227_Ch09x 11/30/99 5:53 PM Page 250

Exceptions and the Safecall Directive
Safecall functions are used for COM and exception handling. They guarantee that any excep-
tion will propagate to the caller of the function. A Safecall function converts an exception
into an HResult return value. Safecall also implies the StdCall calling convention. Therefore,
a Safecall function declared as

function Foo(i: integer): string; Safecall;

really looks like this according to the compiler:

function Foo(i: integer): string; HResult; StdCall;

The compiler then inserts an implicit try..except block that wraps the entire function con-
tents and catches any exceptions raised. The except block invokes a call to
SafecallExceptionHandler() to convert the exception into an HResult. This is somewhat
similar to the 16-bit method of capturing exceptions and passing back error values.

Callback Functions
A callback function is a function in your application called by Win32 DLLs or other DLLs.
Basically, Windows has several API functions that require a callback function. When calling
these functions, you pass in an address of a function defined by your application that Windows
can call. If you’re wondering how this all relates to DLLs, remember that the Win32 API is
really several routines exported from system DLLs. Essentially, when you pass a callback func-
tion to a Win32 function, you’re passing this function to a DLL.

One such function is the EnumWindows() API function, which enumerates through all top-
level windows. This function passes the handle of each window in the enumeration to your
application-defined callback function. You’re required to define and pass the callback func-
tion’s address to the EnumWindows() function. The callback function that you must provide to
EnumWindows() is defined this way:

function EnumWindowsProc(Hw: HWnd; lp: lParam): Boolean; stdcall;

Dynamic Link Libraries

CHAPTER 9
251

9

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES

NOTE

When a non-Delphi application uses a DLL written in Delphi, it won’t be able to uti-
lize the Delphi language-specific exception classes. However, it can be handled as a
Win32 system exception given the exception code of $0EEDFACE. The exception
address will be the first entry in the ExceptionInformation array of the Win32 sys-
tem EXCEPTION_RECORD. The second entry contains a reference to the Delphi excep-
tion object. Look up EXCEPTION_RECORD in the Delphi online help for additional
information.

12.65227_Ch09x 11/30/99 5:53 PM Page 251

We illustrate the use of the EnumWindows() function in the CallBack.dpr project on the CD
accompanying this book and shown in Listing 9.9.

LISTING 9.9 MainForm.pas, Source to Callback Example

unit MainFrm;

interface

uses

Windows, Messages, SysUtils, Classes, Graphics, Controls,

Forms, Dialogs, StdCtrls, ComCtrls;

type

{ Define a record/class to hold the window name and class name for

each window. Instances of this class will get added to ListBox1 }

TWindowInfo = class

WindowName, // The window name

WindowClass: String; // The window’s class name

end;

TMainForm = class(TForm)

lbWinInfo: TListBox;

btnGetWinInfo: TButton;

hdWinInfo: THeaderControl;

procedure btnGetWinInfoClick(Sender: TObject);

procedure FormDestroy(Sender: TObject);

procedure lbWinInfoDrawItem(Control: TWinControl; Index: Integer;

Rect: TRect; State: TOwnerDrawState);

procedure hdWinInfoSectionResize(HeaderControl: THeaderControl;

Section: THeaderSection);

end;

var

MainForm: TMainForm;

implementation

{$R *.DFM}

function EnumWindowsProc(Hw: HWnd; AMainForm: TMainForm):

Boolean; stdcall;

Advanced Techniques

PART II
252

12.65227_Ch09x 11/30/99 5:53 PM Page 252

{ This procedure is called by the User32.DLL library as it enumerates

through windows active in the system. }

var

WinName, CName: array[0..144] of char;

WindowInfo: TWindowInfo;

begin

{ Return true by default which indicates not to stop enumerating

through the windows }

Result := True;

GetWindowText(Hw, WinName, 144); // Obtain the current window text

GetClassName(Hw, CName, 144); // Obtain the class name of the window

{ Create a TWindowInfo instance and set its fields with the values of

the window name and window class name. Then add this object to

ListBox1’s Objects array. These values will be displayed later by

the listbox }

WindowInfo := TWindowInfo.Create;

with WindowInfo do

begin

SetLength(WindowName, strlen(WinName));

SetLength(WindowClass, StrLen(CName));

WindowName := StrPas(WinName);

WindowClass := StrPas(CName);

end;

// Add to Objects array

MainForm.lbWinInfo.Items.AddObject(‘’, WindowInfo); end;

procedure TMainForm.btnGetWinInfoClick(Sender: TObject);

begin

{ Enumerate through all top-level windows being displayed. Pass in the

call back function EnumWindowsProc which will be called for each

window }

EnumWindows(@EnumWindowsProc, 0);

end;

procedure TMainForm.FormDestroy(Sender: TObject);

var

i: integer;

begin

{ Free all instances of TWindowInfo }

for i := 0 to lbWinInfo.Items.Count - 1 do

TWindowInfo(lbWinInfo.Items.Objects[i]).Free

end;

Dynamic Link Libraries

CHAPTER 9
253

9

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES

continues

12.65227_Ch09x 11/30/99 5:53 PM Page 253

LISTING 9.9 Continued

procedure TMainForm.lbWinInfoDrawItem(Control: TWinControl;

Index: Integer;Rect: TRect; State: TOwnerDrawState);

begin

{ First, clear the rectangle to which drawing will be performed }

lbWinInfo.Canvas.FillRect(Rect);

{ Now draw the strings of the TWindowInfo record stored at the

Index’th position of the listbox. The sections of HeaderControl

will give positions to which to draw each string }

with TWindowInfo(lbWinInfo.Items.Objects[Index]) do

begin

DrawText(lbWinInfo.Canvas.Handle, PChar(WindowName),

Length(WindowName), Rect,dt_Left or dt_VCenter);

{ Shift the drawing rectangle over by using the size

HeaderControl1’s sections to determine where to draw the next

string }

Rect.Left := Rect.Left + hdWinInfo.Sections[0].Width;

DrawText(lbWinInfo.Canvas.Handle, PChar(WindowClass),

Length(WindowClass), Rect, dt_Left or dt_VCenter);

end;

end;

procedure TMainForm.hdWinInfoSectionResize(HeaderControl:

THeaderControl; Section: THeaderSection);

begin

lbWinInfo.Invalidate; // Force ListBox1 to redraw itself.

end;

end.

This application uses the EnumWindows() function to extract the window name and class name
of all top-level windows and adds them to the owner-draw list box on the main form. The main
form uses an owner-draw list box to make both the window name and window class name
appear in a columnar fashion. First we’ll explain the use of the callback function. Then we’ll
explain how we created the columnar list box.

Using the Callback Function
You saw in Listing 9.9 that we defined a procedure, EnumWindowsProc(), that takes a window
handle as its first parameter. The second parameter is user-defined data, so you may pass what-
ever data you deem necessary as long as its size is the equivalent to an integer data type.

Advanced Techniques

PART II
254

12.65227_Ch09x 11/30/99 5:53 PM Page 254

EnumWindowsProc() is the callback procedure that you’ll pass to the EnumWindows() Win32 API
function. It must be declared with the StdCall directive to specify that it uses the Win32 calling
convention. When passing this procedure to EnumWindows(), it will get called for each top-level
window whose window handle gets passed as the first parameter. You use this window handle to
obtain both the window name and class name of each window. You then create an instance of
the TWindowInfo class and set its fields with this information. The TWindowInfo class instance is
then added to the lbWinInfo.Objects array. The data in this list box will be used when the list
box is drawn to show this data in a columnar fashion.

Notice that, in the main form’s OnDestroy event handler, you make sure to clean up any allo-
cated instances of the TWindowInfo class.

The btnGetWinInfoClick()event handler calls the EnumWindows() procedure and passes
EnumWindowsProc() as its first parameter.

When you run the application and click the button, you’ll see that the information is obtained
from each window and is shown in the list box.

Drawing an Owner-Draw List Box
The window names and class names of top-level windows are drawn in a columnar fashion in
lbWinInfo from the previous project. This was done by using a TListBox with its Style prop-
erty set to lbOwnerDraw. When this style is set as such, the TListBox.OnDrawItem event is
called each time the TListBox is to draw one of its items. You’re responsible for drawing the
items as illustrated in the example.

In Listing 9.9, the event handler lbWinInfoDrawItem() contains the code that performs the
drawing of list box items. Here, you draw the strings contained in the TWindowInfo class
instances, which are stored in the lbWinInfo.Objects array. These values are obtained from
the callback function EnumWindowsProc(). You can refer to the code commentary to determine
what this event handler does.

Calling Callback Functions from Your DLLs
Just as you can pass callback functions to DLLs, you can also have your DLLs call callback
functions. This section illustrates how you can create a DLL whose exported function takes a
callback procedure as a parameter. Then, based on whether the user passes in a callback proce-
dure, the procedure gets called. Listing 9.10 contains the source code to this DLL.

LISTING 9.10 Calling a Callback Demo: Source Code for StrSrchLib.dll

library StrSrchLib;

uses

Wintypes,

WinProcs,

Dynamic Link Libraries

CHAPTER 9
255

9

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES

continues

12.65227_Ch09x 11/30/99 5:53 PM Page 255

LISTING 9.10 Continued

SysUtils,

Dialogs;

type

{ declare the callback function type }

TFoundStrProc = procedure(StrPos: PChar); StdCall;

function SearchStr(ASrcStr, ASearchStr: PChar; AProc: TFarProc):

Integer; StdCall;

{ This function looks for ASearchStr in ASrcStr. When founc ASearchStr,

the callback procedure referred to by AProc is called if one has been

passed in. The user may pass nil as this parameter. }

var

FindStr: PChar;

begin

FindStr := ASrcStr;

FindStr := StrPos(FindStr, ASearchStr);

while FindStr <> nil do

begin

if AProc <> nil then

TFoundStrProc(AProc)(FindStr);

FindStr := FindStr + 1;

FindStr := StrPos(FindStr, ASearchStr);

end;

end;

exports

SearchStr;

begin

end.

The DLL also defines a procedural type, TFoundStrProc, for the callback function, which will
be used to typecast the callback function when it’s called.

The exported procedure SearchStr() is where the callback function is called. The commentary
in the listing explains what this procedure does.

An example of this DLL’s usage is given in the project CallBackDemo.dpr in the \DLLCallBack
directory on the CD. The source for the main form of this demo is shown in Listing 9.11.

Advanced Techniques

PART II
256

12.65227_Ch09x 11/30/99 5:53 PM Page 256

LISTING 9.11 The Main Form for the DLL Callback Demo

unit MainFrm;

interface

uses

Windows, Messages, SysUtils, Classes, Graphics, Controls,

Forms, Dialogs, StdCtrls;

type

TMainForm = class(TForm)

btnCallDLLFunc: TButton;

edtSearchStr: TEdit;

lblSrchWrd: TLabel;

memStr: TMemo;

procedure btnCallDLLFuncClick(Sender: TObject);

end;

var

MainForm: TMainForm;

Count: Integer;

implementation

{$R *.DFM}

{ Define the DLL’s exported procedure }

function SearchStr(ASrcStr, ASearchStr: PChar; AProc: TFarProc):

Integer; StdCall external

‘STRSRCHLIB.DLL’;

{ Define the callback procedure, make sure to use the StdCall directive }

procedure StrPosProc(AStrPsn: PChar); StdCall;

begin

inc(Count); // Increment the Count variable.

end;

procedure TMainForm.btnCallDLLFuncClick(Sender: TObject);

var

S: String;

S2: String;

begin

Dynamic Link Libraries

CHAPTER 9
257

9

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES

continues

12.65227_Ch09x 11/30/99 5:53 PM Page 257

LISTING 9.11 Continued

Count := 0; // Initialize Count to zero.

{ Retrieve the length of the text on which to search. }

SetLength(S, memStr.GetTextLen);

{ Now copy the text to the variable S }

memStr.GetTextBuf(PChar(S), memStr.GetTextLen);

{ Copy Edit1’s Text to a string variable so that it can be passed to

the DLL function }

S2 := edtSearchStr.Text;

{ Call the DLL function }

SearchStr(PChar(S), PChar(S2), @StrPosProc);

{ Show how many times the word occurs in the string. This has been

stored in the Count variable which is used by the callback function }

ShowMessage(Format(‘%s %s %d %s’, [edtSearchStr.Text,

‘occurs’, Count, ‘times.’]));

end;

end.

This application contains a TMemo control. EdtSearchStr.Text contains a string that will be
searched for in memStr’s contents. memStr’s contents are passed as the source string to the DLL
function SearchStr(), and edtSearchStr.Text is passed as the search string.

The function StrPosProc() is the actual callback function. This function increments the value
of the global variable Count, which you use to hold the number of times the search string
occurs in memStr’s text.

Sharing DLL Data Across Different Processes
Back in the world of 16-bit Windows, DLL memory was handled differently than it is in the
32-bit world of Win32. One often-used trait of 16-bit DLLs is that they share global memory
among different applications. In other words, if you declare a global variable in a 16-bit DLL,
any application that uses that DLL will have access to that variable, and changes made to that
variable by an application will be seen by other applications.

In some ways, this behavior can be dangerous because one application can overwrite data on
which another application is dependent. In other ways, developers have made use of this char-
acteristic.

In Win32, this sharing of DLL global data no longer exists. Because each application process
maps the DLL to its own address space, the DLL’s data also gets mapped to that same address
space. This results in each application getting its own instance of DLL data. Changes made to
the DLL global data by one application won’t be seen from another application.

Advanced Techniques

PART II
258

12.65227_Ch09x 11/30/99 5:53 PM Page 258

If you’re planning on porting a 16-bit application that relies on the sharable behavior of DLL
global data, you can still provide a means for applications to share data in a DLL with other
applications. The process isn’t automatic, and it requires the use of memory-mapped files to
store the shared data. Memory-mapped files are covered in Chapter 12, “Working with Files.”
We’ll use them here to illustrate this method; however, you’ll probably want to return to and
review this section when you have a more thorough understanding of memory-mapped files
after reading Chapter 12.

Creating a DLL with Shared Memory
Listing 9.12 shows a DLL project file that contains the code to allow applications using this
DLL to share its global data. This global data is stored in the variable appropriately named
GlobalData.

LISTING 9.12 ShareLib: A DLL That Illustrates Sharing Global Data

library ShareLib;

uses

ShareMem,

Windows,

SysUtils,

Classes;

const

cMMFileName: PChar = ‘SharedMapData’;

{$I DLLDATA.INC}

var

GlobalData : PGlobalDLLData;

MapHandle : THandle;

{ GetDLLData will be the exported DLL function }

procedure GetDLLData(var AGlobalData: PGlobalDLLData); StdCall;

begin

{ Point AGlobalData to the same memory address referred to by GlobalData. }

AGlobalData := GlobalData;

end;

procedure OpenSharedData;

var

Size: Integer;

Dynamic Link Libraries

CHAPTER 9
259

9

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES

continues

12.65227_Ch09x 11/30/99 5:53 PM Page 259

LISTING 9.12 Continued

begin

{ Get the size of the data to be mapped. }

Size := SizeOf(TGlobalDLLData);

{ Now get a memory-mapped file object. Note the first parameter passes

the value $FFFFFFFF or DWord(-1) so that space is allocated from

the system’s paging file. This requires that a name for the memory-mapped

object get passed as the last parameter. }

MapHandle := CreateFileMapping(DWord(-1), nil, PAGE_READWRITE, 0,

Size, cMMFileName);

if MapHandle = 0 then

RaiseLastWin32Error;

{ Now map the data to the calling process’s address space and get a

pointer to the beginning of this address }

GlobalData := MapViewOfFile(MapHandle, FILE_MAP_ALL_ACCESS, 0, 0, Size);

{ Initialize this data }

GlobalData^.S := ‘ShareLib’;

GlobalData^.I := 1;

if GlobalData = nil then

begin

CloseHandle(MapHandle);

RaiseLastWin32Error;

end;

end;

procedure CloseSharedData;

{ This procedure un-maps the memory-mapped file and releases the memory-mapped

file handle }

begin

UnmapViewOfFile(GlobalData);

CloseHandle(MapHandle);

end;

procedure DLLEntryPoint(dwReason: DWord);

begin

case dwReason of

DLL_PROCESS_ATTACH: OpenSharedData;

DLL_PROCESS_DETACH: CloseSharedData;

end;

Advanced Techniques

PART II
260

12.65227_Ch09x 11/30/99 5:53 PM Page 260

end;

exports

GetDLLData;

begin

{ First, assign the procedure to the DLLProc variable }

DllProc := @DLLEntryPoint;

{ Now invoke the procedure to reflect that the DLL is attaching

to the process }

DLLEntryPoint(DLL_PROCESS_ATTACH);

end.

GlobalData is of the type PGlobalDLLData, which is defined in the include file DllData.inc.
This include file contains the following type definition (note that the include file is linked by
using the include directive $I):

type

PGlobalDLLData = ^TGlobalDLLData;

TGlobalDLLData = record

S: String[50];

I: Integer;

end;

In this DLL, you use the same process discussed earlier in the chapter to add entry and exit
code to the DLL in the form of an entry/exit procedure. This procedure is called
DLLEntryPoint(), as shown in the listing. When a process loads the DLL, the
OpenSharedData() method gets called. When a process detaches from the DLL, the
CloseSharedData() method is called.

We won’t go into too much detail here about memory-mapped file usage because we cover it
in more detail in Chapter 12, “Working with Files.” However, we’ll explain the basics of
what’s going on so that you understand the purpose of this DLL.

Memory-mapped files provide a means for you to reserve a region of address space in the
Win32 system to which physical storage gets committed. This is similar to allocating memory
and referring to that memory with a pointer. With memory-mapped files, however, you can
map a disk file to this address space and refer to the space within the file as though you were
just referencing an area of memory with a pointer.

With memory-mapped files, you must first get a handle to an existing file on disk to which a
memory-mapped object will be mapped. You then map the memory-mapping object to that file.
At the beginning of the chapter, we told you how the system shares DLLs with multiple appli-
cations by first loading the DLL into memory and then giving each application its own image
of the DLL so that it appears that each application has loaded a separate instance of the DLL.

Dynamic Link Libraries

CHAPTER 9
261

9

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES

12.65227_Ch09x 11/30/99 5:53 PM Page 261

In reality, however, the DLL exists in memory only once. This is done by using memory-
mapped files. You can use the same process to give access to data files. You just make neces-
sary Win32 API calls that deal with creating and accessing memory-mapped files.

Now, consider this scenario: Suppose an application, which we’ll call App1, creates a memory-
mapped file that gets mapped to a file on disk, MyFile.dat. App1 can now read and write data
in that file. If, while App1 is running, App2 also maps to that same file, changes made to the file
by App1 will be seen by App2. Actually, it’s a bit more complex; certain flags must be set so
that changes to the file are immediately set and so forth. For this discussion, it suffices to say
that changes will be realized by both applications because this is possible.

One of the ways in which memory-mapped files can be used is to create a file mapping from
the Win32 paging file rather than an existing file. This means that instead of mapping to an
existing file on disk, you can reserve an area of memory to which you can refer as though it
were a disk file. This prevents you from having to create and destroy a temporary file if all you
want to do is to create an address space that can be accessed by multiple processes. The Win32
system manages its paging file, so when memory is no longer required of the paging file, this
memory gets released.

In the preceding paragraphs, we presented a scenario that illustrated how two applications can
access the same file data by using a memory-mapped file. The same can be done between an
application and a DLL. In fact, if the DLL creates the memory-mapped file when it’s loaded by
an application, it will use the same memory-mapped file when loaded by another application.
There will be two images of the DLL, one for each calling application, both of which use the
same memory-mapped file instance. The DLL can make the data referred to by the file map-
ping available to its calling application. When one application makes changes to this data, the
second application will see these changes because they’re referring to the same data, mapped
by two different memory-mapped object instances. We use this technique in the example.

In Listing 9.12, OpenSharedData() is responsible for creating the memory-mapped file. It uses
the CreateFileMapping() function to first create the file-mapping object, which it then passes
to the MapViewOfFile() function. The MapViewOfFile() function maps a view of the file into
the address space of the calling process. The return value of this function is the beginning of
that address space. Now remember, this is the address space of the calling process. For two dif-
ferent applications using this DLL, this address location might be different, although the data
to which they refer will be the same.

Advanced Techniques

PART II
262

NOTE

The first parameter to CreateFileMapping() is a handle to a file to which the memory-
mapped file gets mapped. However, if you’re mapping to an address space of the sys-
tem paging file, pass the value $FFFFFFFF (which is the same as DWord(-1)) as this
parameter value. You must also supply a name for the file-mapping object as the last

12.65227_Ch09x 11/30/99 5:53 PM Page 262

After the call to MapViewOfFile(), the variable GlobalData refers to the address space for the
memory-mapped file. The exported function GetDLLData() assigns that memory to which
GlobalData refers to the AGlobalData parameter. AGlobalData is passed in from the calling
application; therefore, the calling application has read/write access to this data.

The CloseSharedData() procedure is responsible for unmapping the view of the file from the
calling process and releasing the file-mapping object. This doesn’t affect other file-mapping
objects or file mappings from other applications.

Using a DLL with Shared Memory
To illustrate the use of the shared memory DLL, we’ve created two applications that make use
of it. The first application, App1.dpr, allows you to modify the DLL’s data. The second appli-
cation, App2.dpr, also refers to the DLL’s data and continually updates a couple of TLabel
components by using a TTimer component. When you run both applications, you’ll be able to
see the sharable access to the DLL data—App2 will reflect changes made by App1.

Listing 9.13 shows the source code for the APP1 project.

LISTING 9.13 The Main Form for App1.dpr

unit MainFrmA1;

interface

uses

Windows, Messages, SysUtils, Classes, Graphics, Controls,

Forms, Dialogs, StdCtrls, ExtCtrls, Mask;

{$I DLLDATA.INC}

type

TMainForm = class(TForm)

edtGlobDataStr: TEdit;

btnGetDllData: TButton;

meGlobDataInt: TMaskEdit;

procedure btnGetDllDataClick(Sender: TObject);

Dynamic Link Libraries

CHAPTER 9
263

9

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES

parameter to CreateFileMapping(). This is the name that the system uses to refer to
this file mapping. If multiple processes create a memory-mapped file using the same
name, the mapping objects will refer to the same system memory.

continues

12.65227_Ch09x 11/30/99 5:53 PM Page 263

LISTING 9.13 Continued

procedure edtGlobDataStrChange(Sender: TObject);

procedure meGlobDataIntChange(Sender: TObject);

procedure FormCreate(Sender: TObject);

public

GlobalData: PGlobalDLLData;

end;

var

MainForm: TMainForm;

{ Define the DLL’s exported procedure }

procedure GetDLLData(var AGlobalData: PGlobalDLLData);

StdCall External ‘SHARELIB.DLL’;

implementation

{$R *.DFM}

procedure TMainForm.btnGetDllDataClick(Sender: TObject);

begin

{ Get a pointer to the DLL’s data }

GetDLLData(GlobalData);

{ Now update the controls to reflect GlobalData’s field values }

edtGlobDataStr.Text := GlobalData^.S;

meGlobDataInt.Text := IntToStr(GlobalData^.I);

end;

procedure TMainForm.edtGlobDataStrChange(Sender: TObject);

begin

{ Update the DLL data with the changes }

GlobalData^.S := edtGlobDataStr.Text;

end;

procedure TMainForm.meGlobDataIntChange(Sender: TObject);

begin

{ Update the DLL data with the changes }

if meGlobDataInt.Text = EmptyStr then

meGlobDataInt.Text := ‘0’;

GlobalData^.I := StrToInt(meGlobDataInt.Text);

end;

Advanced Techniques

PART II
264

12.65227_Ch09x 11/30/99 5:53 PM Page 264

procedure TMainForm.FormCreate(Sender: TObject);

begin

btnGetDllDataClick(nil);

end;

end.

This application also links in the include file DllData.inc, which defines the TGlobalDLLData
data type and its pointer. The btnGetDllDataClick() event handler gets a pointer to the DLL’s
data, which is accessed by a memory-mapped file in the DLL. It does this by calling the DLL’s
GetDLLData() function. It then updates its controls with the value of this pointer, GlobalData.
The OnChange event handlers for the edit controls change the values of GlobalData. Because
GlobalData refers to the DLL’s data, it modifies the data referred to by the DLL’s memory-
mapped file.

Listing 9.14 shows the source code for the main form for App2.dpr.

LISTING 9.14 The Source Code for Main Form for App2.dpr

unit MainFrmA2;

interface

uses

Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,

ExtCtrls, StdCtrls;

{$I DLLDATA.INC}

type

TMainForm = class(TForm)

lblGlobDataStr: TLabel;

tmTimer: TTimer;

lblGlobDataInt: TLabel;

procedure tmTimerTimer(Sender: TObject);

public

GlobalData: PGlobalDLLData;

end;

{ Define the DLL’s exported procedure }

procedure GetDLLData(var AGlobalData: PGlobalDLLData);

Dynamic Link Libraries

CHAPTER 9
265

9

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES

continues

12.65227_Ch09x 11/30/99 5:53 PM Page 265

LISTING 9.14 Continued

StdCall External ‘SHARELIB.DLL’;

var

MainForm: TMainForm;

implementation

{$R *.DFM}

procedure TMainForm.tmTimerTimer(Sender: TObject);

begin

GetDllData(GlobalData); // Get access to the data

{ Show the contents of GlobalData’s fields.}

lblGlobDataStr.Caption := GlobalData^.S;

lblGlobDataInt.Caption := IntToStr(GlobalData^.I);

end;

end.

This form contains two TLabel components, which get updated during the tmTimer’s OnTimer
event. When the user changes the values of the DLL’s data from App1, App2 will reflect these
changes.

You can run both applications to experiment with them. You’ll find them on this book’s CD.

Exporting Objects from DLLs
It’s possible to access an object and its methods even if that object is contained within a DLL.
There are some requirements, however, to how that object is defined within the DLL as well as
some limitations as to how the object can be used. The technique we illustrate here is useful in
very specific situations. Typically, you can achieve the same functionality by using packages or
interfaces.

The following list summarizes the conditions and limitations to exporting an object from a DLL:

• The calling application can only use methods of the object that have been declared as
virtual.

• The object instances must be created only within the DLL.

• The object must be defined in both the DLL and calling application with methods
defined in the same order.

• You cannot create a descendant object from the object contained within the DLL.

Advanced Techniques

PART II
266

12.65227_Ch09x 11/30/99 5:53 PM Page 266

Some additional limitations might exist, but the ones listed are the primary limitations.

To illustrate this technique, we’ve created a simple, yet illustrative example of an object that
we export. This object contains a function that returns the uppercase or lowercase value of a
string based on the value of a parameter indicating either uppercase or lowercase. This object
is defined in Listing 9.15.

LISTING 9.15 Object to Be Exported from a DLL

type

TConvertType = (ctUpper, ctLower);

TStringConvert = class(TObject)

{$IFDEF STRINGCONVERTLIB}

private

FPrepend: String;

FAppend : String;

{$ENDIF}

public

function ConvertString(AConvertType: TConvertType; AString: String):

String;

virtual; stdcall; {$IFNDEF STRINGCONVERTLIB} abstract; {$ENDIF}

{$IFDEF STRINGCONVERTLIB}

constructor Create(APrepend, AAppend: String);

destructor Destroy; override;

{$ENDIF}

end;

{ For any application using this class, STRINGCONVERTLIB is not defined and

therefore, the class definition will be equivalent to:

TStringConvert = class(TObject)

public

function ConvertString(AConvertType: TConvertType; AString: String):

String;

virtual; stdcall; abstract;

end;

}

Listing 9.15 is actually an include file named StrConvert.inc. The reason for placing this
object in an include file is to meet the third requirement in the preceding list—that the object
be equally defined in both the DLL and in the calling application. By placing the object in an

Dynamic Link Libraries

CHAPTER 9
267

9

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES

12.65227_Ch09x 11/30/99 5:53 PM Page 267

include file, both the calling application and DLL can include this file. If changes are made to
the object, you only have to compile both projects instead of typing the changes twice—once
in the calling application and once in the DLL—which is error prone.

Observe the following definition of the ConvertSring() method:

function ConvertString(AConvertType: TConvertType; AString: String):

➥String; virtual; stdcall;

The reason you declare this method as virtual is not so that one can create a descendant object
that can then override the ConvertString() method. Instead, it’s declared as virtual so that an
entry to the ConvertString() method is made in the Virtual Method Table (VMT). We won’t
go into detail on the VMT here; it’s discussed in Chapter 13, “Hard-Core Techniques.” For
now, think of the VMT as a block of memory that holds pointers to virtual methods of an
object. Because of the VMT, the calling application can obtain a pointer to the method of the
object. Without declaring the method as virtual, the VMT would not have an entry for the
method, and the calling application would have no way of obtaining the pointer to the method.
So really, what you have in the calling application is a pointer to the function. Because you’ve
based this pointer on a method type defined in an object, Delphi automatically handles any fix-
ups, such as passing the implicit self parameter to the method.

Note the conditional define STRINGCONVERTLIB. When you’re exporting the object, the only
methods that need redefinition in the calling application are the methods to be accessed exter-
nally from the DLL. Also, these methods can be defined as abstract methods to avoid generat-
ing a compile-time error. This is valid because at runtime, these methods will be implemented
in the DLL code. The commentary shows what the TStringConvert object looks like on the
application side.

Listing 9.16 shows the implementation of the TStringConvert object.

LISTING 9.16 Implementation of the TStringConvert Object

unit StringConvertImp;

{$DEFINE STRINGCONVERTLIB}

interface

uses SysUtils;

{$I StrConvert.inc}

function InitStrConvert(APrepend, AAppend: String): TStringConvert; stdcall;

implementation

constructor TStringConvert.Create(APrepend, AAppend: String);

begin

Advanced Techniques

PART II
268

12.65227_Ch09x 11/30/99 5:53 PM Page 268

inherited Create;

FPrepend := APrepend;

FAppend := AAppend;

end;

destructor TStringConvert.Destroy;

begin

inherited Destroy;

end;

function TStringConvert.ConvertString(AConvertType:

TConvertType; AString: String): String;

begin

case AConvertType of

ctUpper: Result := Format(‘%s%s%s’, [FPrepend, UpperCase(AString),

FAppend]);

ctLower: Result := Format(‘%s%s%s’, [FPrepend, LowerCase(AString),

FAppend]);

end;

end;

function InitStrConvert(APrepend, AAppend: String): TStringConvert;

begin

Result := TStringConvert.Create(APrepend, AAppend);

end;

end.

As stated in the conditions, the object must be created in the DLL. This is done in a standard
DLL exported function InitStrConvert(), which takes two parameters that are passed to the
constructor. We added this to illustrate how you would pass information to an object’s con-
structor through an interface function.

Also, notice that in this unit you declare the conditional directive STRINGCONVERTLIB. The rest
of this unit is self-explanatory. Listing 9.17 shows the DLL’s project file.

LISTING 9.17 The Project File for StringConvertLib.dll

library StringConvertLib;

uses

ShareMem,

SysUtils,

Classes,

Dynamic Link Libraries

CHAPTER 9
269

9

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES

continues

12.65227_Ch09x 11/30/99 5:53 PM Page 269

LISTING 9.17 Continued

StringConvertImp in ‘StringConvertImp.pas’;

exports

InitStrConvert;

end.

Generally, this library doesn’t contain anything we haven’t already covered. Do note, however,
that you used the ShareMem unit. This unit must be the first unit declared in the library project
file as well as in the calling application’s project file. This is an extremely important thing to
remember.

Listing 9.18 shows an example of how to use the exported object to convert a string to both
uppercase and lowercase. You’ll find this demo project on the CD as StrConvertTest.dpr.

LISTING 9.18 The Demo Project for the String Conversion Object

unit MainFrm;

interface

uses

Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,

StdCtrls;

{$I strconvert.inc}

type

TMainForm = class(TForm)

btnUpper: TButton;

edtConvertStr: TEdit;

btnLower: TButton;

procedure btnUpperClick(Sender: TObject);

procedure btnLowerClick(Sender: TObject);

private

public

end;

Advanced Techniques

PART II
270

12.65227_Ch09x 11/30/99 5:53 PM Page 270

var

MainForm: TMainForm;

function InitStrConvert(APrepend, AAppend: String): TStringConvert; stdcall;

external ‘STRINGCONVERTLIB.DLL’;

implementation

{$R *.DFM}

procedure TMainForm.btnUpperClick(Sender: TObject);

var

ConvStr: String;

FStrConvert: TStringConvert;

begin

FStrConvert := InitStrConvert(‘Upper ‘, ‘ end’);

try

ConvStr := edtConvertStr.Text;

if ConvStr <> EmptyStr then

edtConvertStr.Text := FStrConvert.ConvertString(ctUpper, ConvStr);

finally

FStrConvert.Free;

end;

end;

procedure TMainForm.btnLowerClick(Sender: TObject);

var

ConvStr: String;

FStrConvert: TStringConvert;

begin

FStrConvert := InitStrConvert(‘Lower ‘, ‘ end’);

try

ConvStr := edtConvertStr.Text;

if ConvStr <> EmptyStr then

edtConvertStr.Text := FStrConvert.ConvertString(ctLower, ConvStr);

finally

FStrConvert.Free;

end;

end;

end.

Dynamic Link Libraries

CHAPTER 9
271

9

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES

12.65227_Ch09x 11/30/99 5:53 PM Page 271

Summary
DLLs are an essential part of creating Windows applications while focusing in on code
reusability. This chapter covered the reasons for creating or using DLLs. The chapter illustrated
how to create and use DLLs in your Delphi applications and showed different methods of load-
ing DLLs. The chapter discussed some of the special considerations you must take when using
DLLs with Delphi and showed you how to make DLL data sharable with different applications.

With this knowledge under your belt, you should be able to create DLLs with Delphi and use
them in your Delphi applications with ease. You’ll learn more about DLLs in other chapters.

Advanced Techniques

PART II
272

12.65227_Ch09x 11/30/99 5:53 PM Page 272

CHAPTER

10
Printing in Delphi 5

IN THIS CHAPTER
• The TPrinter Object 154

• TPrinter.Canvas 155

• Simple Printing 156

• Printing a Form 159

• Advanced Printing 159

• Miscellaneous Printing Tasks 184

• Obtaining Printer Information 191

• Summary 207

The complete text for this chapter appears on
the CD-ROM.

13.65227_Ch10x 11/30/99 5:53 PM Page 273

Printing in Windows has been the bane of many a Windows programmer. However, don’t be
discouraged; Delphi simplifies most of what you need to know for printing. You can write sim-
ple printing routines to output text or bitmapped images with little effort. For more complex
printing, a few concepts and techniques are all you really need to enable you to perform any
type of custom printing. When you have that, printing isn’t so difficult.

Advanced Techniques

PART II
274

NOTE

You’ll find a set of reporting components by QuSoft on the QReport page of the
Component Palette. The documentation for this tool is located in the help file
QuickRpt.hlp.

QuSoft’s tools are suitable for applications that generate complex reports. However,
they limit you from getting to the nuts and bolts of printing at the source-code level,
where you have more control over what gets printed. This chapter doesn’t cover
QuickReports; instead, it covers creating your own reports in Delphi.

Delphi’s TPrinter object, which encapsulates the Windows printing engine, does a great deal
for you that you would otherwise have to handle yourself.

This chapter teaches you how to perform a whole range of printing operations by using
TPrinter. You learn the simple tasks that Delphi has made much easier for generating print-
outs. You also learn the techniques for creating advanced printing routines that should start you
on your way to becoming a printing guru.

13.65227_Ch10x 11/30/99 5:53 PM Page 274

CHAPTER

11
Writing Multithreaded
Applications

IN THIS CHAPTER
• Threads Explained 276

• The TThread Object 278

• Managing Multiple Threads 293

• A Sample Multithreaded
Application 310

• Multithreading Database Access 324

• Multithreaded Graphics 330

• Summary 335

14.65227_Ch11x 11/30/99 5:54 PM Page 275

The Win32 operating system provides you with the capability to have multiple threads of exe-
cution in your applications. Arguably the single most important benefit Win32 has over 16-bit
Windows, this feature provides the means for performing different types of processing simulta-
neously in your application. This is one of the primary reasons for upgrading to a 32-bit ver-
sion of Delphi, and this chapter gives you all the details on how to get the most out of threads
in your applications.

Threads Explained
As discussed in Chapter 3, “The Win32 API,” a thread is an operating system object that repre-
sents a path of code execution within a particular process. Every Win32 application has at least
one thread—often called the primary thread or default thread—but applications are free to cre-
ate other threads to perform other tasks.

Threads provide a means for running many distinct code routines simultaneously. Of course,
unless you have more than one CPU in your computer, two threads can’t truly run simultane-
ously. However, each thread is scheduled in fractions of seconds of time by the operating sys-
tem in such a way as to give the feeling that many threads are running simultaneously.

Advanced Techniques

PART II
276

TIP

Threads are not and never will be supported under 16-bit Windows. This means that
any 32-bit Delphi code you write using threads will never be backward-compatible to
Delphi 1.0. Keep this in mind if you develop applications for both platforms.

A New Type of Multitasking
The notion of threads is much different from the style of multitasking supported under 16-bit
Windows platforms. You might hear people talk about Win32 as a preemptive multitasking
operating system, whereas Windows 3.1 is a cooperative multitasking environment.

The key difference here is that under a preemptive multitasking environment the operating sys-
tem is responsible for managing which thread executes when. When execution of thread one is
stopped in order for thread two to receive some CPU cycles, thread one is said to have been
preempted. If the code that one thread is executing happens to put itself into an infinite loop,
it’s usually not a tragic situation because the operating system will continue to schedule time
for all the other threads.

Under Windows 3.1, the application developer is responsible for giving control back to
Windows at points during the application’s execution. Failure of an application to do so causes
the operating environment to appear locked up, and we all know what a painful experience that

14.65227_Ch11x 11/30/99 5:54 PM Page 276

can be. If you take a moment to think about it, it’s slightly amusing that the very foundation of
16-bit Windows depends on all applications behaving themselves and not putting themselves
into infinite loops, a recursion, or any other unneighborly situation. It’s because all applications
must cooperate for Windows to work correctly that this type of multitasking is referred to as
cooperative.

Using Multiple Threads in Delphi Applications
It’s no secret that threads represent a serious boon for Windows programmers. You can create
secondary threads in your applications anywhere that it’s appropriate to do some sort of back-
ground processing. Calculating cells in a spreadsheet or spooling a word processing document
to the printer are examples of situations where a thread would commonly be used. The goal of
the developer will most often be to perform necessary background processing while still pro-
viding the best possible response time for the user interface.

Most of VCL has a built-in assumption that it’s being accessed by only one thread at any given
time. While this limitation is especially apparent in the user interface portions of VCL, it’s
important to note that even many non-UI portions of VCL are not thread-safe.

Non-UI VCL
There are actually very few areas of VCL that are guaranteed to be thread-safe. Perhaps the
most notable among these thread-safe areas is VCL’s property streaming mechanism, which
ensures that component streams can be effectively read and written by multiple threads.
Remember that even very basic classes in VCL, such as TList, are not designed to be manipu-
lated from multiple simultaneous threads. In some cases, VCL provides thread-safe alternatives
that you can use in cases where you need them. For example, use a TThreadList in place of a
TList when the list will be subject to manipulation by multiple threads.

UI VCL
VCL requires that all user-interface control happens within the context of an application’s pri-
mary thread (the exception is the thread-safe TCanvas, which is explained later in this chapter).
Of course, techniques are available to update the user interface from a secondary thread (which
we discuss later), but this limitation essentially forces you to use threads a bit more judiciously
than you might do otherwise. The examples given in this chapter show some ideal uses for
multiple threads in Delphi applications.

Misuse of Threads
Too much of a good thing can be bad, and that’s definitely true in the case of threads. Even
though threads can help to solve some of the problems you may have from an application
design standpoint, they do introduce a whole new set of problems. For example, suppose
you’re writing an integrated development environment, and you want the compiler to execute

Writing Multithreaded Applications

CHAPTER 11
277

11

W
R

ITIN
G

M
U

LTITH
R

EA
D

ED
A

PPLIC
A

TIO
N

S

14.65227_Ch11x 11/30/99 5:54 PM Page 277

in its own thread so the programmer will be free to continue work on the application while the
program compiles. The problem here is this: What if the programmer changes a file that the
compiler is in the middle of compiling? There are a number of solutions to this problem, such
as making a temporary copy of the file while the compile continues or preventing the user from
editing not-yet-compiled files. The point is simply that threads are not a panacea; although they
solve some development problems, they invariably introduce others. What’s more, bugs due to
threading problems are also much, much harder to debug because threading problems are often
time-sensitive. Designing and implementing thread-safe code is also more difficult because you
have a lot more factors to consider.

The TThread Object
Delphi encapsulates the API thread object into an Object Pascal object called TThread.
Although TThread encapsulates almost all the commonly used thread API functions into one
discrete object, there are some points—particularly those dealing with thread synchroniza-
tion—where you have to use the API. In this section, you learn how the TThread object works
and how to use it in your applications.

TThread Basics
The TThread object is found in the Classes unit and is defined as follows:

type
TThread = class
private
FHandle: THandle;
FThreadID: THandle;
FTerminated: Boolean;
FSuspended: Boolean;
FFreeOnTerminate: Boolean;
FFinished: Boolean;
FReturnValue: Integer;
FOnTerminate: TNotifyEvent;
FMethod: TThreadMethod;
FSynchronizeException: TObject;
procedure CallOnTerminate;
function GetPriority: TThreadPriority;
procedure SetPriority(Value: TThreadPriority);
procedure SetSuspended(Value: Boolean);

protected
procedure DoTerminate; virtual;
procedure Execute; virtual; abstract;
procedure Synchronize(Method: TThreadMethod);
property ReturnValue: Integer read FReturnValue write FReturnValue;
property Terminated: Boolean read FTerminated;

public

Advanced Techniques

PART II
278

14.65227_Ch11x 11/30/99 5:54 PM Page 278

constructor Create(CreateSuspended: Boolean);
destructor Destroy; override;
procedure Resume;
procedure Suspend;
procedure Terminate;
function WaitFor: Integer;
property FreeOnTerminate: Boolean read FFreeOnTerminate
write FFreeOnTerminate;

property Handle: THandle read FHandle;
property Priority: TThreadPriority read GetPriority write
SetPriority;

property Suspended: Boolean read FSuspended write SetSuspended;
property ThreadID: THandle read FThreadID;
property OnTerminate: TNotifyEvent read FOnTerminate write
FOnTerminate;

end;

As you can tell from the declaration, TThread is a direct descendant of TObject and is there-
fore not a component. You might also notice that the TThread.Execute() method is abstract.
This means that the TThread class itself is abstract, meaning that you will never create an
instance of TThread itself. You will only create instances of TThread descendants. Speaking of
which, the most straightforward way to create a TThread descendant is to select Thread Object
from the New Items dialog box provided by the File, New menu option. The New Items dialog
box is shown in Figure 11.1.

Writing Multithreaded Applications

CHAPTER 11
279

11

W
R

ITIN
G

M
U

LTITH
R

EA
D

ED
A

PPLIC
A

TIO
N

S

FIGURE 11.1
The Thread Object item in the New Items dialog box.

After choosing Thread Object from the New Items dialog box, you’ll be presented with a dia-
log box that prompts you to enter a name for the new object. You could enter TTestThread, for
example. Delphi will then create a new unit that contains your object. Your object will initially
be defined as follows:

14.65227_Ch11x 11/30/99 5:54 PM Page 279

type
TTestThread = class(TThread)
private
{ Private declarations }

protected
procedure Execute; override;

end;

As you can see, the only method that you must override in order to create a functional descen-
dant of TThread is the Execute() method. Suppose, for example, that you want to perform a
complex calculation within TTestThread. In that case, you could define its Execute() method
as follows:

procedure TTestThread.Execute;
var
i: integer;

begin
for i := 1 to 2000000 do
inc(Answer, Round(Abs(Sin(Sqrt(i)))));

end;

Admittedly, the equation is contrived, but it still illustrates the point in this case because the
sole purpose of this equation is to take a relatively long time to execute.

You can now execute this sample thread by calling its Create() constructor. For now, you can
do this from a button click in the main form, as shown in the following code (remember to
include the unit containing TTestThread in the uses clause of the unit containing TForm1 to
avoid a compiler error):

procedure TForm1.Button1Click(Sender: TObject);
var
NewThread: TTestThread;

begin
NewThread := TTestThread.Create(False);

end;

If you run the application and click the button, you’ll notice that you can still manipulate the
form by moving it or resizing it while the calculation goes on in the background.

Advanced Techniques

PART II
280

NOTE

The single Boolean parameter passed to TThread’s Create() constructor is called
CreateSuspended, and it indicates whether to start the thread in a suspended state.
If this parameter is False, the object’s Execute() method will automatically be called
following Create(). If this parameter is True, you must call TThread’s Resume()

14.65227_Ch11x 11/30/99 5:54 PM Page 280

Thread Instances
Going back to the Execute() method for the TTestThread object, notice that it contains a local
variable called i. Consider what might happen to i if you create two instances of
TTestThread. Does the value for one thread overwrite the value for the other? Does the first
thread take precedence? Does it blow up? The answers are no, no, and no. Win32 maintains a
separate stack for each thread executing in the system. This means that as you create multiple
instances of the TTestThread object, each one keeps its own copy of i on its own stack.
Therefore, all the threads will operate independently of one another in that respect.

An important distinction to make, however, is that this notion of the same variable operating
independently in each thread doesn’t carry over to global variables. This topic is explored in
detail in the “Thread-Local Storage” and “Thread Synchronization” sections, later in this
chapter.

Thread Termination
A TThread is considered terminated when the Execute() method has finished executing. At
that point, the EndThread() Delphi standard procedure is called, which in turn calls the
ExitThread() API procedure. ExitThread() properly disposes of the thread’s stack and de-
allocates the API thread object. This cleans up the thread as far as the API is concerned.

You also need to ensure that the Object Pascal object is destroyed when you’re finished using a
TThread object. This will ensure that all memory occupied by that object has been properly
disposed of. Although this will automatically happen when your process terminates, you might
want to dispose of the object earlier so that your application doesn’t leak memory as it runs.
The easiest way to ensure that the TThread object is disposed of is to set its FreeOnTerminate
property to True. This can be done any time before the Execute() method finishes executing.
For example, you could do this for the TTestThread object by setting the property in the
Execute() method as follows:

Writing Multithreaded Applications

CHAPTER 11
281

11

W
R

ITIN
G

M
U

LTITH
R

EA
D

ED
A

PPLIC
A

TIO
N

S

method at some point to actually start the thread running. This will cause the
Execute() method to be invoked at that time. You would set CreateSuspended to
True if you need to set additional properties on your thread object before allowing
it to run. Setting the properties after the thread is running would be asking for
trouble.

To go a little deeper, the constructor of Create() calls the BeginThread() Delphi
Runtime Library (RTL) function, which calls the CreateThread() API function in order
to create the new thread. The value of the CreateSuspended parameter indicates
whether to pass the CREATE_SUSPENDED flag to CreateThread().

14.65227_Ch11x 11/30/99 5:54 PM Page 281

procedure TTestThread.Execute;
var
i: integer;

begin
FreeOnTerminate := True;
for i := 1 to 2000000 do
inc(Answer, Round(Abs(Sin(Sqrt(i)))));

end;

The TThread object also has an OnTerminate event that’s called when the thread terminates.
It’s also acceptable to free the TThread object from within a handler for this event.

Advanced Techniques

PART II
282

TIP

The OnTerminate event of TThread is called from the context of your application’s
main thread. This means that you can feel free to access VCL properties and methods
from within a handler for this event without using the Synchronize() method, as
described in the following section.

It’s also important to note that your thread’s Execute() method is responsible for checking the
status of the Terminated property to determine the need to make an earlier exit. Although this
means one more thing that you must worry about when working with threads, the flip side is
that this type of architecture ensures that the rug isn’t pulled out from under you, and that
you’ll be able to perform any necessary cleanup on thread termination. To add this code to the
Execute() method of TTestThread is rather simple, and the addition is shown here:

procedure TTestThread.Execute;
var
i: integer;

begin
FreeOnTerminate := True;
for i := 1 to 2000000 do begin
if Terminated then Break;
inc(Answer, Round(Abs(Sin(Sqrt(i)))));

end;
end;

CAUTION

In case of emergency, you can also use the Win32 API TerminateThread() function to
terminate an executing thread. You should do this only when no other options exist,
such as when a thread gets caught in an endless loop and stops responding. This
function is defined as follows:

14.65227_Ch11x 11/30/99 5:54 PM Page 282

Synchronizing with VCL
As mentioned several times earlier in this chapter, you should only access VCL properties or
methods from the application’s primary thread. This means that any code that accesses or
updates your application’s user interface should be executed from the context of the primary
thread. The disadvantages of this architecture are obvious, and this requirement might seem
rather limiting on the surface, but it actually has some redeeming advantages that you should
know about.

Advantages of a Single-Threaded User Interface
First, it greatly reduces the complexity of your application to have only one thread accessing
the user interface. Win32 requires that each thread that creates a window have its own message
loop using the GetMessage() function. As you might imagine, having messages coming into
your application from a variety of sources can make it extremely difficult to debug. Because an
application’s message queue provides a means for serializing input—fully processing one con-
dition before moving on to the next—you can depend in most cases on certain messages com-
ing before or after others. Adding another message loop throws this serialization of input out
the door, thereby opening you up to potential synchronization problems and possibly introduc-
ing a need for complex synchronization code.

Additionally, because VCL can depend on the fact that it will be accessed by only one thread
at any given time, the need for code to synchronize multiple threads inside VCL is obviated.

Writing Multithreaded Applications

CHAPTER 11
283

11

W
R

ITIN
G

M
U

LTITH
R

EA
D

ED
A

PPLIC
A

TIO
N

S

function TerminateThread(hThread: THandle; dwExitCode: DWORD);

The Handle property of TThread provides the API thread handle, so you could call this
function with syntax similar to that shown here:

TerminateThread(MyHosedThread.Handle, 0);

If you choose to use this function, you should be wary of the negative side effects it
will cause. First, this function behaves differently under Windows NT/2000 and
Windows 95/98. Under Windows 95/98, TerminateThread() disposes of the stack asso-
ciated with the thread; under Windows NT/2000, the stack sticks around until the
process is terminated. Second, on all Win32 operating systems, TerminateThread()
simply halts the execution, wherever it may be, and does not allow try..finally
blocks to clean up resources. This means that files opened by the thread would not
be closed, memory allocated by the thread would not be freed, and so forth. Also,
DLLs loaded by your process won’t be notified when a thread destroyed with
TerminateThread() goes away, and this may cause problems when the DLL closes.
See Chapter 9, “Dynamic Link Libraries,” for more information on thread notifications
in DLLs.

14.65227_Ch11x 11/30/99 5:54 PM Page 283

The net result of this is better overall performance of your application due to a more stream-
lined architecture.

The Synchronize() Method
TThread provides a method called Synchronize() that allows for some of its own methods to
be executed from the application’s primary thread. Synchronize() is defined as follows:

procedure Synchronize(Method: TThreadMethod);

Its Method parameter is of type TThreadMethod (which means a procedural method that takes
no parameter), which is defined as follows:

type
TThreadMethod = procedure of object;

The method you pass as the Method parameter is the one that’s then executed from the applica-
tion’s primary thread. Going back to the TTestThread example, suppose you want to display
the result in an edit control on the main form. You could do this by introducing to TTestThread
a method that makes the necessary change to the edit control’s Text property and calling that
method by using Synchronize().

In this case, suppose this method is called GiveAnswer(). Listing 11.1 shows the complete
source code for this unit, called ThrdU, which includes the code to update the edit control on
the main form.

LISTING 11.1 The ThrdU.PAS Unit

unit ThrdU;

interface

uses
Classes;

type
TTestThread = class(TThread)
private
Answer: integer;

protected
procedure GiveAnswer;
procedure Execute; override;

end;

implementation

Advanced Techniques

PART II
284

14.65227_Ch11x 11/30/99 5:54 PM Page 284

uses SysUtils, Main;

{ TTestThread }

procedure TTestThread.GiveAnswer;
begin
MainForm.Edit1.Text := InttoStr(Answer);

end;

procedure TTestThread.Execute;
var
I: Integer;

begin
FreeOnTerminate := True;
for I := 1 to 2000000 do
begin
if Terminated then Break;
Inc(Answer, Round(Abs(Sin(Sqrt(I)))));
Synchronize(GiveAnswer);

end;
end;

end.

You already know that the Synchronize() method enables you to execute methods from the
context of the primary thread, but up to this point you’ve treated Synchronize() as sort of a
mysterious black box. You don’t know how it works—you only know that it does. If you’d like
to take a peek at the man behind the curtain, read on.

The first time you create a secondary thread in your application, VCL creates and maintains a
hidden thread window from the context of its primary thread. The sole purpose of this window
is to serialize procedure calls made through the Synchronize() method.

The Synchronize() method stores the method specified in its Method parameter in a private
field called FMethod and sends a VCL-defined CM_EXECPROC message to the thread window,
passing Self (Self being the TThread object in this case) as the lParam of the message. When
the thread window’s window procedure receives this CM_EXECPROC message, it calls the method
specified in FMethod through the TThread object instance passed in the lParam. Remember,
because the thread window was created from the context of the primary thread, the window
procedure for the thread window is also executed by the primary thread. Therefore, the method
specified in the FMethod field is also executed by the primary thread.

To see a more visual illustration of what goes on inside Synchronize(), look at Figure 11.2.

Writing Multithreaded Applications

CHAPTER 11
285

11

W
R

ITIN
G

M
U

LTITH
R

EA
D

ED
A

PPLIC
A

TIO
N

S

14.65227_Ch11x 11/30/99 5:54 PM Page 285

FIGURE 11.2
A road map of the Synchronize() method.

Using Messages for Synchronization
As an alternative to the TThread.Synchronize() method, another technique for thread syn-
chronization is to use messages to communicate between threads. You can use the
SendMessage() or PostMessage() API function to send or post messages to windows operat-
ing in the context of another thread. For example, the following code could be used to set the
text in an edit control residing in another thread:

var
S: string;

begin
S := ‘hello from threadland’;
SendMessage(SomeEdit.Handle, WM_SETTEXT, 0, Integer(PChar(S)));

end;

A Demo Application
To fully illustrate how multithreading in Delphi works, you can save the current project as
EZThrd. Then you can also put a memo control on the main form so that it resembles what’s
shown in Figure 11.3.

Advanced Techniques

PART II
286

CM_EXECPROC
Message is processed by
window procedure of
thread window. IParam is
typecasted to TThread,
and call is made to
FMethod.

Set FMethod to Foo.
Sends CM_EXECPROC
messge to thread
window, passing Self as
IParam.

Hidden “thread window”Synchronize(Foo);

Primary ThreadSecondary Thread

FIGURE 11.3
The main form of the EZThrd demo.

14.65227_Ch11x 11/30/99 5:54 PM Page 286

The source code for the main unit is shown in Listing 11.2.

LISTING 11.2 The MAIN.PAS Unit for the EZThrd Demo

unit Main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, ThrdU;

type
TMainForm = class(TForm)
Edit1: TEdit;
Button1: TButton;
Memo1: TMemo;
Label1: TLabel;
Label2: TLabel;
procedure Button1Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

procedure TMainForm.Button1Click(Sender: TObject);
var
NewThread: TTestThread;

begin
NewThread := TTestThread.Create(False);

end;

end.

Notice that after you click the button to invoke the secondary thread, you can still type in the
memo control as if the secondary thread doesn’t exist. When the calculation is completed, the
result will be displayed in the edit control.

Writing Multithreaded Applications

CHAPTER 11
287

11

W
R

ITIN
G

M
U

LTITH
R

EA
D

ED
A

PPLIC
A

TIO
N

S

14.65227_Ch11x 11/30/99 5:54 PM Page 287

Priorities and Scheduling
As mentioned earlier, the operating system is in charge of scheduling each thread some CPU
cycles in which it may execute. The amount of time scheduled for a particular thread depends
on the priority assigned to the thread. An individual thread’s overall priority is determined by a
combination of the priority of the process that created the thread—called the priority class—
and the priority of the thread itself—called the relative priority.

Process Priority Class
The process priority class describes the priority of a particular process running on the system.
Win32 supports four distinct priority classes: Idle, Normal, High, and Realtime. The default
priority class for any process, of course, is Normal. Each of these priority classes has a corre-
sponding flag defined in the Windows unit. You can or any of these flags with the
dwCreationFlags parameter of CreateProcess() in order to spawn a process with a specific
priority. Additionally, you can use these flags to dynamically adjust the priority class of a given
process, as shown in a moment. Furthermore, each priority class can also be represented by a
numeric priority level, which is a value between 4 and 24 (inclusive).

Advanced Techniques

PART II
288

NOTE

Modifying a process’s priority class requires special process privileges under Windows
NT/2000. The default settings allow processes to set their priority classes, but these
can be turned off by system administrators, particularly on high-load Windows
NT/2000 servers.

Table 11.1 shows each priority class and its corresponding flag and numeric value.

TABLE 11.1 Process Priority Classes

Class Flag Value

Idle IDLE_PRIORITY_CLASS $40

Below normal* BELOW_NORMAL_PRIORITY_CLASS $4000

Normal NORMAL_PRIORITY_CLASS $20Above normal*
ABOVE_NORMAL_PRIORITY_CLASS $8000

High HIGH_PRIORITY_CLASS $80

Realtime REALTIME_PRIORITY_CLASS $100

*Available only on Windows 2000, and flag constant is not present in the Delphi 5 version of
Windows.pas.

14.65227_Ch11x 11/30/99 5:54 PM Page 288

To get and set the priority class of a given process dynamically, Win32 provides the
GetPriorityClass() and SetPriorityClass() functions, respectively. These functions are
defined as follows:

function GetPriorityClass(hProcess: THandle): DWORD; stdcall;

function SetPriorityClass(hProcess: THandle; dwPriorityClass: DWORD): BOOL;
stdcall;

The hProcess parameter in both cases represents a handle to a process. In most cases, you’ll
be calling these functions in order to access the priority class of your own process. In that case,
you can use the GetCurrentProcess() API function. This function is defined as follows:

function GetCurrentProcess: THandle; stdcall;

The return value of these functions is a pseudo-handle for the current process. We say pseudo
because the function doesn’t create a new handle, and the return value doesn’t have to be
closed with CloseHandle(). It merely provides a handle that can be used to reference an exist-
ing handle.

To set the priority class of your application to High, use code similar to the following:

if not SetPriorityClass(GetCurrentProcess, HIGH_PRIORITY_CLASS) then
ShowMessage(‘Error setting priority class.’);

Writing Multithreaded Applications

CHAPTER 11
289

11

W
R

ITIN
G

M
U

LTITH
R

EA
D

ED
A

PPLIC
A

TIO
N

S

CAUTION

In almost all cases, you should avoid setting the priority class of any process to
Realtime. Because most of the operating system threads run in a priority class lower
than Realtime, your thread will receive more CPU time than the OS itself, and that
could cause some unexpected problems.

Even bumping the priority class of the process to High can cause problems if the
threads of the process don’t spend most of their time idle or waiting for external
events (such as file I/O). One high-priority thread is likely to drain all CPU time away
from lower-priority threads and processes until it blocks on an event, goes idle, or
processes messages. Preemptive multitasking can easily be defeated by abusing
scheduler priorities.

Relative Priority
The other thing that goes into determining the overall priority of a thread is the relative priority
of a particular thread. The important distinction to make is that the priority class is associated
with a process and the relative priority is associated with individual threads within a process. A
thread can have any one of seven possible relative priorities: Idle, Lowest, Below Normal,
Normal, Above Normal, Highest, or Time Critical.

14.65227_Ch11x 11/30/99 5:54 PM Page 289

TThread exposes a Priority property of an enumerated type TThreadPriority. There’s an
enumeration in this type for each relative priority:

type
TThreadPriority = (tpIdle, tpLowest, tpLower, tpNormal, tpHigher,
tpHighest, tpTimeCritical);

You can get and set the priority of any TThread object simply by reading from or writing to its
Priority property. The following code sets the priority of a TThread descendant instance
called MyThread to Highest:

MyThread.Priority := tpHighest.

Like priority classes, each relative priority is associated with a numeric value. The difference is
that the relative priority is a signed value that, when added to a process’s class priority, is used
to determine the overall priority of a thread within the system. For this reason, relative priority
is sometimes called delta priority. The overall priority of a thread can be any value from 1 to
31 (1 being the lowest). Constants are defined in the Windows unit that represents the signed
value for each priority. Table 11.2 shows how each enumeration in TThreadPriority maps to
an API constant.

TABLE 11.2 Relative Priorities for Threads

TThreadPriority Constant Value

tpIdle THREAD_PRIORITY_IDLE -15*

tpLowest THREAD_PRIORITY_LOWEST -2

tpBelow Normal THREAD_PRIORITY_BELOW_NORMAL -1

tpNormal THREAD_PRIORITY_NORMAL 0

tpAbove Normal THREAD_PRIORITY_ABOVE_NORMAL 1

tpHighest THREAD_PRIORITY_HIGHEST 2

tpTimeCritical THREAD_PRIORITY_TIME_CRITICAL 15*

The reason the values for the tpIdle and tpTimeCritical priorities are marked with asterisks
is that, unlike the others, these relative priority values are not truly added to the class priority
to determine overall thread priority. Any thread that has the tpIdle relative priority, regardless
of its priority class, has an overall priority of 1. The exception to this rule is the Realtime pri-
ority class, which, when combined with the tpIdle relative priority, has an overall value of 16.
Any thread that has a priority of tpTimeCritical, regardless of its priority class, has an overall
priority of 15. The exception to this rule is the Realtime priority class, which, when combined
with the tpTimeCritical relative priority, has an overall value of 31.

Advanced Techniques

PART II
290

14.65227_Ch11x 11/30/99 5:54 PM Page 290

Suspending and Resuming Threads
Recall when you learned about TThread’s Create() constructor earlier in this chapter. At the
time, you discovered that a thread could be created in a suspended state, and that you must call
its Resume() method in order for the thread to begin execution. As you might guess, a thread
can also be suspended and resumed dynamically. You accomplish this using the Suspend()
method in conjunction with the Resume() method.

Timing a Thread
Back in the 16-bit days when we programmed under Windows 3.x, it was pretty common to
wrap some portion of code with calls to GetTickCount() or timeGetTime() to determine how
much time a particular calculation may take (something like the following, for example):

var
StartTime, Total: Longint;

begin
StartTime := GetTickCount;
{ Do some calculation here }
Total := GetTickCount - StartTime;

In a multithreaded environment, this is much more difficult to do, because your application
may be preempted by the operating system in the middle of the calculation in order to provide
CPU cycles to other processes. Therefore, any timing you do that relies on the system time
can’t provide a true measure of how long it spends crunching the calculation in your thread.

To avoid such problems, Win32 under Windows NT/2000 provides a function called
GetThreadTimes(), which provides quite detailed information on thread timing. This function
is declared as follows:

function GetThreadTimes(hThread: THandle; var lpCreationTime, lpExitTime,
lpKernelTime, lpUserTime: TFileTime): BOOL; stdcall;

The hThread parameter is the handle to the thread for which you want to obtain timing infor-
mation. The other parameters for this function are passed by reference and are filled in by the
function. Here’s an explanation of each:

• lpCreationTime. The time when the thread was created.

• lpExitTime. The time when the thread was exited. If the thread is still running, this
value is undefined.

• lpKernelTime. The amount of time the thread has spent executing operating system code.

• lpUserTime. The amount of time the thread has spent executing application code.

Writing Multithreaded Applications

CHAPTER 11
291

11

W
R

ITIN
G

M
U

LTITH
R

EA
D

ED
A

PPLIC
A

TIO
N

S

14.65227_Ch11x 11/30/99 5:54 PM Page 291

Each of the last four parameters is of type TFileTime, which is defined in the Windows unit as
follows:

type
TFileTime = record
dwLowDateTime: DWORD;
dwHighDateTime: DWORD;

end;

The definition of this type is a bit unusual, but it’s a part of the Win32 API, so here goes:
dwLowDateTime and dwHighDateTime are combined into a quad word (64-bit) value that repre-
sents the number of 100-nanosecond intervals that have passed since January 1, 1601. This
means, of course, that if you wanted to write a simulation of English fleet movements as they
defeated the Spanish Armada in 1588, the TFileTime type would be a wholly inappropriate
way to keep track of time…but we digress.

Advanced Techniques

PART II
292

TIP

Because the TFileTime type is 64 bits in size, you can typecast a TFileTime to an
Int64 type in order to perform arithmetic on TFileTime values. The following code
demonstrates how to quickly tell whether one TFileTime is greater than another:

if Int64(UserTime) > Int64(KernelTime) then Beep;

In order to help you work with TFileTime values in a manner more native to Delphi, the fol-
lowing functions allow you to convert back and forth between TFileTime and TDateTime
types:

function FileTimeToDateTime(FileTime: TFileTime): TDateTime;
var
SysTime: TSystemTime;

begin
if not FileTimeToSystemTime(FileTime, SysTime) then
raise EConvertError.CreateFmt(‘FileTimeToSystemTime failed. ‘ +
‘Error code %d’, [GetLastError]);

with SysTime do
Result := EncodeDate(wYear, wMonth, wDay) +
EncodeTime(wHour, wMinute, wSecond, wMilliseconds)

end;

function DateTimeToFileTime(DateTime: TDateTime): TFileTime;
var
SysTime: TSystemTime;

14.65227_Ch11x 11/30/99 5:54 PM Page 292

begin
with SysTime do
begin
DecodeDate(DateTime, wYear, wMonth, wDay);
DecodeTime(DateTime, wHour, wMinute, wSecond, wMilliseconds);
wDayOfWeek := DayOfWeek(DateTime);

end;
if not SystemTimeToFileTime(SysTime, Result) then
raise EConvertError.CreateFmt(‘SystemTimeToFileTime failed. ‘ +
+ ‘Error code %d’, [GetLastError]);

end;

Writing Multithreaded Applications

CHAPTER 11
293

11

W
R

ITIN
G

M
U

LTITH
R

EA
D

ED
A

PPLIC
A

TIO
N

S

CAUTION

Remember that the GetThreadTimes() function is implemented only under Windows
NT/2000. The function always returns False when called under Windows 95 or 98.
Unfortunately, Windows 95/98 doesn’t provide any mechanism for retrieving thread-
timing information.

Managing Multiple Threads
As indicated earlier, although threads can solve a variety of programming problems, they’re
also likely to introduce new types of problems that you must deal with in your applications.
Most commonly, these problems revolve around multiple threads accessing global resources,
such as global variables or handles. Additionally, problems can arise when you need to ensure
that some event in one thread always occurs before or after some other event in another thread.
In this section, you learn how to tackle these problems by using the facilities provided by
Delphi for thread-local storage and those provided by the API for thread synchronization.

Thread-Local Storage
Because each thread represents a separate and distinct path of execution within a process, it
logically follows that you will at some point want to have a means for storing data associated
with each thread. There are three techniques for storing data unique to each thread: the first
and most straightforward involves local (stack-based) variables. Because each thread gets its
own stack, each thread executing within a single procedure or function will have its own copy
of local variables. The second technique is to store local information in your TThread descen-
dant object. Finally, you can also use Object Pascal’s threadvar reserved word to take advan-
tage of operating system–level thread-local storage.

14.65227_Ch11x 11/30/99 5:54 PM Page 293

TThread Storage
Storing pertinent data in the TThread descendant object should be your technique of choice for
thread-local storage. It’s both more straightforward and more efficient than using threadvar
(described later). To declare thread-local data in this manner, simply add it to the definition of
your TThread descendant, as shown here:

type
TMyThread = class(TThread)
private
FLocalInt: Integer;
FLocalStr: String;
.
.
.

end;

Advanced Techniques

PART II
294

TIP

It’s about 10 times faster to access a field of an object than to access a threadvar
variable, so you should store your thread-specific data in your TThread descendant, if
possible. Data that doesn’t need to exist for more than the lifetime of a particular
procedure or function should be stored in local variables, because those are faster
still than the fields of a TThread object.

threadvar: API Thread-Local Storage
Earlier we mentioned that each thread is provided with its own stack for storing local variables,
whereas global data has to be shared by all threads within an application. For example, say you
have a procedure that sets or displays the value of a global variable. When you call the proce-
dure passing a text string, the global variable is set, and when you call the procedure passing
an empty string, the global variable is displayed. Such a procedure might look like this:

var
GlobalStr: String;

procedure SetShowStr(const S: String);
begin
if S = ‘’ then
MessageBox(0, PChar(GlobalStr), ‘The string is...’, MB_OK)

else
GlobalStr := S;

end;

If this procedure is called from within the context of one thread only, there wouldn’t be any
problems. You’d call the procedure once to set the value of GlobalStr and call it again to dis-
play the value. However, consider what can happen if two or more threads call this procedure

14.65227_Ch11x 11/30/99 5:54 PM Page 294

at any given time. In such a case, it’s possible that one thread could call the procedure to set
the string and then get preempted by another thread that might also call the function to set the
string. By the time the operating system gives CPU time back to the first thread, the value of
GlobalStr for that thread will be hopelessly lost.

For situations such as these, Win32 provides a facility known as thread-local storage that
enables you to create separate copies of global variables for each running thread. Delphi nicely
encapsulates this functionality with the threadvar clause. Just declare any global variables you
want to exist separately for each thread within a threadvar (as opposed to var) clause, and the
work is done. A redeclaration of the GlobalStr variable is as simple as this:

threadvar
GlobalStr: String;

The unit shown in Listing 11.3 illustrates this very problem. It represents the main unit to a
Delphi application that contains only a button on a form. When the button is clicked, the proce-
dure is called to set and then to show GlobalStr. Next, another thread is created, and the value
internal to the thread is set and shown again. After the thread creation, the primary thread again
calls SetShowStr to display GlobalStr.

Try running this application with GlobalStr declared as a var and then as a threadvar. You’ll
see a difference in the output.

LISTING 11.3 The MAIN.PAS Unit for Thread-Local Storage Demo

Done. -sunit Main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls;

type
TMainForm = class(TForm)
Button1: TButton;
procedure Button1Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
MainForm: TMainForm;

Writing Multithreaded Applications

CHAPTER 11
295

11

W
R

ITIN
G

M
U

LTITH
R

EA
D

ED
A

PPLIC
A

TIO
N

S

continues

14.65227_Ch11x 11/30/99 5:54 PM Page 295

LISTING 11.3 Continued

implementation

{$R *.DFM}

{ NOTE: Change GlobalStr from var to threadvar to see difference }
var
//threadvar
GlobalStr: string;

type
TTLSThread = class(TThread)
private
FNewStr: String;

protected
procedure Execute; override;

public
constructor Create(const ANewStr: String);

end;

procedure SetShowStr(const S: String);
begin
if S = ‘’ then
MessageBox(0, PChar(GlobalStr), ‘The string is...’, MB_OK)

else
GlobalStr := S;

end;

constructor TTLSThread.Create(const ANewStr: String);
begin
FNewStr := ANewStr;
inherited Create(False);

end;

procedure TTLSThread.Execute;
begin
FreeOnTerminate := True;
SetShowStr(FNewStr);
SetShowStr(‘’);

end;

procedure TMainForm.Button1Click(Sender: TObject);
begin
SetShowStr(‘Hello world’);
SetShowStr(‘’);
TTLSThread.Create(‘Dilbert’);

Advanced Techniques

PART II
296

14.65227_Ch11x 11/30/99 5:54 PM Page 296

Sleep(100);
SetShowStr(‘’);

end;

end.

Writing Multithreaded Applications

CHAPTER 11
297

11

W
R

ITIN
G

M
U

LTITH
R

EA
D

ED
A

PPLIC
A

TIO
N

SNOTE

The demo program calls the Win32 API Sleep() procedure after creating the thread.
Sleep() is declared as follows:

procedure Sleep(dwMilliseconds: DWORD); stdcall;

The Sleep() procedure tells the operating system that the current thread doesn’t
need any more CPU cycles for another dwMilliseconds milliseconds. Inserting this call
into the code has the effect of simulating system conditions where more multitasking
is occurring and introducing a bit more “randomness” into the application as to
which threads will be executing when.

It’s often acceptable to pass zero in the dwMilliseconds parameter. Although that
doesn’t prevent the current thread from executing for any specific amount of time, it
does cause the operating system to give CPU cycles to any waiting threads of equal
or greater priority.

Be careful of using Sleep() to work around mysterious timing problems. Sleep()
may work around a particular problem on your machine, but timing problems that
are not solved conclusively will pop up again on somebody else’s machine, especially
when the machine is significantly faster or slower or has a different number of
processors than your machine.

Thread Synchronization
When working with multiple threads, you’ll often need to synchronize the access of threads to
some particular piece of data or resource. For example, suppose you have an application that
uses one thread to read a file into memory and another thread to count the number of charac-
ters in the file. It goes without saying that you can’t count all the characters in the file until the
entire file has been loaded into memory. However, because each operation occurs in its own
thread, the operating system would like to treat them as two completely unrelated tasks. To fix
this problem, you must synchronize the two threads so that the counting thread doesn’t execute
until the loading thread finishes.

These are the types of problems that thread synchronization addresses, and Win32 provides a
variety of ways to synchronize threads. In this section, you’ll see examples of thread synchro-
nization techniques using critical sections, mutexes, semaphores, and events.

14.65227_Ch11x 11/30/99 5:54 PM Page 297

In order to examine these techniques, first take a look at a problem involving threads that need
to be synchronized. For the purpose of illustration, suppose you have an array of integers that
needs to be initialized with ascending values. You want to first go through the array and set the
values from 1 to 128 and then reinitialize the array with values from 128 to 255. You’ll then
display the final thread in a list box. An approach to this might be to perform the initializations
in two separate threads. Consider the code in Listing 11.4 for a unit that attempts to perform
this task.

LISTING 11.4 A Unit That Attempts to Initialize an Array in Threads

unit Main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls;

type
TMainForm = class(TForm)
Button1: TButton;
ListBox1: TListBox;
procedure Button1Click(Sender: TObject);

private
procedure ThreadsDone(Sender: TObject);

end;

TFooThread = class(TThread)
protected
procedure Execute; override;

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

const
MaxSize = 128;

var
NextNumber: Integer = 0;

Advanced Techniques

PART II
298

14.65227_Ch11x 11/30/99 5:54 PM Page 298

DoneFlags: Integer = 0;
GlobalArray: array[1..MaxSize] of Integer;

function GetNextNumber: Integer;
begin
Result := NextNumber; // return global var
Inc(NextNumber); // inc global var

end;

procedure TFooThread.Execute;
var
i: Integer;

begin
OnTerminate := MainForm.ThreadsDone;
for i := 1 to MaxSize do
begin
GlobalArray[i] := GetNextNumber; // set array element
Sleep(5); // let thread intertwine

end;
end;

procedure TMainForm.ThreadsDone(Sender: TObject);
var
i: Integer;

begin
Inc(DoneFlags);
if DoneFlags = 2 then // make sure both threads finished
for i := 1 to MaxSize do
{ fill listbox with array contents }
Listbox1.Items.Add(IntToStr(GlobalArray[i]));

end;

procedure TMainForm.Button1Click(Sender: TObject);
begin
TFooThread.Create(False); // create threads
TFooThread.Create(False);

end;

end.

Because both threads will execute simultaneously, what happens is that the contents of the
array are corrupted as it’s initialized. As proof, take a look at the output of this code, as shown
in Figure 11.4.

Writing Multithreaded Applications

CHAPTER 11
299

11

W
R

ITIN
G

M
U

LTITH
R

EA
D

ED
A

PPLIC
A

TIO
N

S

14.65227_Ch11x 11/30/99 5:54 PM Page 299

FIGURE 11.4
Output from unsynchronized array initialization.

The solution to this problem is to synchronize the two threads as they access the global array
so that they don’t both dive in at the same time. You can take any of a number of valid
approaches to this problem.

Critical Sections
Critical sections provide one of the most straightforward ways to synchronize threads. A criti-
cal section is some section of code that allows only one thread to execute through it at a time.
If you wrap the code used to initialize the array in a critical section, other threads will be
blocked from entering the code section until the first finishes.

Prior to using a critical section, you must initialize it using the InitializeCriticalSection()
API procedure, which is declared as follows:

procedure InitializeCriticalSection(var lpCriticalSection:
TRTLCriticalSection); stdcall;

lpCriticalSection is a TRTLCriticalSection record that’s passed by reference. The exact
definition of TRTLCriticalSection is unimportant, because you’ll rarely (if ever) actually look
at the contents of one. You’ll pass an uninitialized record in the lpCriticalSection parameter,
and the record will be filled by the procedure.

Advanced Techniques

PART II
300

NOTE

Microsoft deliberately obscures the structure of the TRTLCriticalSection record
because the contents vary from one hardware platform to another, and because tin-
kering with the contents of this structure can potentially wreak havoc on your
process. On Intel-based systems, the critical section structure contains a counter, a
field containing the current thread handle, and (potentially) a handle of a system
event. On Alpha hardware, the counter is replaced with an Alpha-CPU data structure
called a spinlock, which is more efficient than the Intel solution.

14.65227_Ch11x 11/30/99 5:54 PM Page 300

When the record is filled, you can create a critical section in your application by wrapping
some block of code with calls to EnterCriticalSection() and LeaveCriticalSection().
These procedures are declared as follows:

procedure EnterCriticalSection(var lpCriticalSection:
TRTLCriticalSection); stdcall;

procedure LeaveCriticalSection(var lpCriticalSection:
TRTLCriticalSection); stdcall;

As you might guess, the lpCriticalSection parameter you pass these guys is the same one
that’s filled in by the InitializeCriticalSection() procedure.

When you’re finished with the TRTLCriticalSection record, you should clean up by calling
the DeleteCriticalSection() procedure, which is declared as follows:

procedure DeleteCriticalSection(var lpCriticalSection:
TRTLCriticalSection); stdcall;

Listing 11.5 demonstrates the technique for synchronizing the array-initialization threads with
critical sections.

LISTING 11.5 Using Critical Sections

unit Main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls;

type
TMainForm = class(TForm)
Button1: TButton;
ListBox1: TListBox;
procedure Button1Click(Sender: TObject);

private
procedure ThreadsDone(Sender: TObject);

end;

TFooThread = class(TThread)
protected
procedure Execute; override;

end;

var
MainForm: TMainForm;

Writing Multithreaded Applications

CHAPTER 11
301

11

W
R

ITIN
G

M
U

LTITH
R

EA
D

ED
A

PPLIC
A

TIO
N

S

continues

14.65227_Ch11x 11/30/99 5:54 PM Page 301

LISTING 11.5 Continued

implementation

{$R *.DFM}

const
MaxSize = 128;

var
NextNumber: Integer = 0;
DoneFlags: Integer = 0;
GlobalArray: array[1..MaxSize] of Integer;
CS: TRTLCriticalSection;

function GetNextNumber: Integer;
begin
Result := NextNumber; // return global var
inc(NextNumber); // inc global var

end;

procedure TFooThread.Execute;
var
i: Integer;

begin
OnTerminate := MainForm.ThreadsDone;
EnterCriticalSection(CS); // CS begins here
for i := 1 to MaxSize do
begin
GlobalArray[i] := GetNextNumber; // set array element
Sleep(5); // let thread intertwine

end;
LeaveCriticalSection(CS); // CS ends here

end;

procedure TMainForm.ThreadsDone(Sender: TObject);
var
i: Integer;

begin
inc(DoneFlags);
if DoneFlags = 2 then
begin // make sure both threads finished
for i := 1 to MaxSize do
{ fill listbox with array contents }
Listbox1.Items.Add(IntToStr(GlobalArray[i]));

DeleteCriticalSection(CS);
end;

Advanced Techniques

PART II
302

14.65227_Ch11x 11/30/99 5:54 PM Page 302

end;

procedure TMainForm.Button1Click(Sender: TObject);
begin
InitializeCriticalSection(CS);
TFooThread.Create(False); // create threads
TFooThread.Create(False);

end;

end.

After the first thread passes through the call to EnterCriticalSection(), all other threads are
prevented from entering that block of code. The next thread that comes along to that line of
code is put to sleep until the first thread calls LeaveCriticalSection(). At that point, the sec-
ond thread is awakened and allowed to take control of the critical section. Figure 11.5 shows
the output of this application when the threads are synchronized.

Writing Multithreaded Applications

CHAPTER 11
303

11

W
R

ITIN
G

M
U

LTITH
R

EA
D

ED
A

PPLIC
A

TIO
N

S

FIGURE 11.5
Output from synchronized array initialization.

Mutexes
Mutexes work very much like critical sections except for two key differences: First, mutexes
can be used to synchronize threads across process boundaries. Second, mutexes can be given a
string name, and additional handles to existing mutex objects can be created by referencing
that name.

TIP

Semantics aside, the biggest difference between critical sections and event objects
such as mutexes is performance: Critical sections are very lightweight—as few as

continues

14.65227_Ch11x 11/30/99 5:54 PM Page 303

The function used to create a mutex is appropriately called CreateMutex(). This function is
declared as follows:

function CreateMutex(lpMutexAttributes: PSecurityAttributes;
bInitialOwner: BOOL; lpName: PChar): THandle; stdcall;

lpMutexAttributes is a pointer to a TSecurityAttributes record. It’s common to pass nil in
this parameter, in which case the default security attributes will be used.

bInitialOwner indicates whether the thread creating the mutex should be considered the
owner of the mutex when it’s created. If this parameter is False, the mutex is unowned.

lpName is the name of the mutex. This parameter can be nil if you don’t want to name the
mutex. If this parameter is non-nil, the function will search the system for an existing mutex
with the same name. If an existing mutex is found, a handle to the existing mutex is returned.
Otherwise, a handle to a new mutex is returned.

When you’re finished using a mutex, you should close it using the CloseHandle() API function.

Listing 11.6 again demonstrates the technique for synchronizing the array-initialization
threads, except this time it uses mutexes.

LISTING 11.6 Using Mutexes for Synchronization

Done. -sunit Main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls;

type
TMainForm = class(TForm)
Button1: TButton;
ListBox1: TListBox;

Advanced Techniques

PART II
304

10–15 clock cycles to enter or leave the critical section when there are no thread colli-
sions. As soon as there is a thread collision for that critical section, the system creates
an event object (a mutex, probably). The cost of using event objects such as mutexes
is that it requires a roundtrip into the kernel, which requires a process context switch
and a change of ring levels, which piles up to 400 to 600 clock cycles each way. All
this overhead is incurred even if your app doesn’t currently have multiple threads, or
if no other threads are contending for the resource you’re protecting.

14.65227_Ch11x 11/30/99 5:54 PM Page 304

procedure Button1Click(Sender: TObject);
private
procedure ThreadsDone(Sender: TObject);

end;

TFooThread = class(TThread)
protected
procedure Execute; override;

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

const
MaxSize = 128;

var
NextNumber: Integer = 0;
DoneFlags: Integer = 0;
GlobalArray: array[1..MaxSize] of Integer;
hMutex: THandle = 0;

function GetNextNumber: Integer;
begin
Result := NextNumber; // return global var
Inc(NextNumber); // inc global var

end;

procedure TFooThread.Execute;
var
i: Integer;

begin
FreeOnTerminate := True;
OnTerminate := MainForm.ThreadsDone;
if WaitForSingleObject(hMutex, INFINITE) = WAIT_OBJECT_0 then
begin
for i := 1 to MaxSize do
begin
GlobalArray[i] := GetNextNumber; // set array element
Sleep(5); // let thread intertwine

end;
end;

Writing Multithreaded Applications

CHAPTER 11
305

11

W
R

ITIN
G

M
U

LTITH
R

EA
D

ED
A

PPLIC
A

TIO
N

S

continues

14.65227_Ch11x 11/30/99 5:54 PM Page 305

LISTING 11.6 Continued

ReleaseMutex(hMutex);
end;

procedure TMainForm.ThreadsDone(Sender: TObject);
var
i: Integer;

begin
Inc(DoneFlags);
if DoneFlags = 2 then // make sure both threads finished
begin
for i := 1 to MaxSize do
{ fill listbox with array contents }
Listbox1.Items.Add(IntToStr(GlobalArray[i]));

CloseHandle(hMutex);
end;

end;

procedure TMainForm.Button1Click(Sender: TObject);
begin
hMutex := CreateMutex(nil, False, nil);
TFooThread.Create(False); // create threads
TFooThread.Create(False);

end;

end.

You’ll notice that in this case the WaitForSingleObject() function is used to control thread
entry into the synchronized block of code. This function is declared as follows:

function WaitForSingleObject(hHandle: THandle; dwMilliseconds: DWORD):
DWORD; stdcall;

The purpose of this function is to sleep the current thread up to dwMilliseconds milliseconds
until the API object specified in the hHandle parameter becomes signaled. Signaled means dif-
ferent things for different objects. A mutex becomes signaled when it’s not owned by a thread,
whereas a process, for example, becomes signaled when it terminates. Apart from an actual
period of time, the dwMilliseconds parameter can also have the value 0, which means to
check the status of the object and return immediately, or INFINITE, which means to wait for-
ever for the object to become signaled. The return value of this function can be any one of the
values shown in Table 11.3.

Advanced Techniques

PART II
306

14.65227_Ch11x 11/30/99 5:54 PM Page 306

TABLE 11.3 WAIT constants used by WaitForSingleObject() API function.

Value Meaning

WAIT_ABANDONED The specified object is a mutex object, and the thread owning the mutex was
exited before it freed the mutex. This circumstance is referred to as an aban-
doned mutex; in such a case, ownership of the mutex object is granted to the
calling thread, and the mutex is set to nonsignaled.

WAIT_OBJECT_0 The state of the specified object is signaled.

WAIT_TIMEOUT The timeout interval elapsed, and the object’s state is nonsignaled.

Again, when a mutex isn’t owned by a thread, it’s in the signaled state. The first thread to call
WaitForSingleObject() on this mutex is given ownership of the mutex, and the state of the
mutex object is set to nonsignaled. The thread’s ownership of the mutex is severed when the
thread calls the ReleaseMutex() function, passing the mutex handle as the parameter. At that
point, the state of the mutex again becomes signaled.

Writing Multithreaded Applications

CHAPTER 11
307

11

W
R

ITIN
G

M
U

LTITH
R

EA
D

ED
A

PPLIC
A

TIO
N

S

NOTE

In addition to WaitForSingleObject(), the Win32 API also has functions called
WaitForMultipleObjects() and MsgWaitForMultipleObjects(), which enable you to
wait for the state of one or more objects to become signaled. These functions are
documented in the Win32 API online help.

Semaphores
Another technique for thread synchronization involves using semaphore API objects.
Semaphores build on the functionality of mutexes while adding one important feature: They
offer the capability of resource counting so that a predetermined number of threads can enter
synchronized pieces of code at one time. The function used to create a semaphore is
CreateSemaphore(), and it’s declared as follows:

function CreateSemaphore(lpSemaphoreAttributes: PSecurityAttributes;
lInitialCount, lMaximumCount: Longint; lpName: PChar): THandle;stdcall;

Like CreateMutex(), the first parameter to CreateSemaphore() is a pointer to a
TSecurityAttributes record to which you can pass Nil for the defaults.

lInitialCount is the initial count of the semaphore object. This is a number between 0 and
lMaximumCount. A semaphore is signaled as long as this parameter is greater than zero. The
count of a semaphore is decremented whenever WaitForSingleObject() (or one of the other
wait functions) releases a thread. A semaphore’s count is increased by using the
ReleaseSemaphore() function.

14.65227_Ch11x 11/30/99 5:54 PM Page 307

lMaximumCount specifies the maximum count value of the semaphore object. If the semaphore
is used to count some resources, this number should represent the total number of resources
available.

lpName is the name of the semaphore. This parameter behaves the same as the parameter of the
same name in CreateMutex().

Listing 11.7 demonstrates using semaphores to perform synchronization of the array-initializa-
tion problem.

LISTING 11.7 Using Semaphores for Synchronization

Done. -sunit Main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls;

type
TMainForm = class(TForm)
Button1: TButton;
ListBox1: TListBox;
procedure Button1Click(Sender: TObject);

private
procedure ThreadsDone(Sender: TObject);

end;

TFooThread = class(TThread)
protected
procedure Execute; override;

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

const
MaxSize = 128;

var
NextNumber: Integer = 0;

Advanced Techniques

PART II
308

14.65227_Ch11x 11/30/99 5:54 PM Page 308

DoneFlags: Integer = 0;
GlobalArray: array[1..MaxSize] of Integer;
hSem: THandle = 0;

function GetNextNumber: Integer;
begin
Result := NextNumber; // return global var
Inc(NextNumber); // inc global var

end;

procedure TFooThread.Execute;
var
i: Integer;
WaitReturn: DWORD;

begin
OnTerminate := MainForm.ThreadsDone;
WaitReturn := WaitForSingleObject(hSem, INFINITE);
if WaitReturn = WAIT_OBJECT_0 then
begin
for i := 1 to MaxSize do
begin
GlobalArray[i] := GetNextNumber; // set array element
Sleep(5); // let thread intertwine

end;
end;
ReleaseSemaphore(hSem, 1, nil);

end;

procedure TMainForm.ThreadsDone(Sender: TObject);
var
i: Integer;

begin
Inc(DoneFlags);
if DoneFlags = 2 then // make sure both threads finished
begin
for i := 1 to MaxSize do
{ fill listbox with array contents }
Listbox1.Items.Add(IntToStr(GlobalArray[i]));

CloseHandle(hSem);
end;

end;

procedure TMainForm.Button1Click(Sender: TObject);
begin
hSem := CreateSemaphore(nil, 1, 1, nil);
TFooThread.Create(False); // create threads

Writing Multithreaded Applications

CHAPTER 11
309

11

W
R

ITIN
G

M
U

LTITH
R

EA
D

ED
A

PPLIC
A

TIO
N

S

continues

14.65227_Ch11x 11/30/99 5:54 PM Page 309

LISTING 11.7 Continued

TFooThread.Create(False);
end;

end.

Because you allow only one thread to enter the synchronized portion of code, the maximum
count for the semaphore is 1 in this case.

The ReleaseSemaphore() function is used to increase the count for the semaphore. Notice that
this function is a bit more involved than its cousin, ReleaseMutex(). The declaration for
ReleaseSemaphore() is as follows:

function ReleaseSemaphore(hSemaphore: THandle; lReleaseCount: Longint;
lpPreviousCount: Pointer): BOOL; stdcall;

The lReleaseCount parameter enables you to specify the number by which the count of the
semaphore will be increased. The old count will be stored in the longint pointed to by the
lpPreviousCount parameter if its value is not Nil. A subtle implication of this capability is
that a semaphore is never really owned by any thread in particular. For example, suppose the
maximum count of a semaphore is 10, and 10 threads call WaitForSingleObject() to set the
count of the thread to 0 and put the thread in a nonsignaled state. All it takes is one of those
threads to call ReleaseSemaphore() with 10 as the lReleaseCount parameter in order to not
only make the thread signaled again, but to increase the count back to 10. This powerful capa-
bility can introduce some hard-to-track-down bugs into your applications, so you should use it
with care.

Be sure to use the CloseHandle() function to free the semaphore handle allocated with
CreateSemaphore().

A Sample Multithreaded Application
To demonstrate the usage of TThread objects within the context of a real-world application,
this section focuses on creating a file-search application that performs its searches in a special-
ized thread. The project is called DelSrch, which stands for Delphi Search, and the main form
for this utility is shown in Figure 11.6.

The application works like this. The user chooses a path through which to search and provides
a file specification to indicate the types of files to be searched. The user also enters a token to
search for in the appropriate edit control. Some option check boxes on one side of the form
enable the user to tailor the application to suit his or her needs for a particular search. When
the user clicks the Search button, a search thread is created and the appropriate search informa-
tion—such as token, path, and file specification—is passed to the TThread descendant object.

Advanced Techniques

PART II
310

14.65227_Ch11x 11/30/99 5:54 PM Page 310

When the search thread finds the search token in certain files, information is appended to the
list box. Finally, if the user double-clicks a file in the list box, the user can browse it with a
text editor or view it from its desktop association.

Writing Multithreaded Applications

CHAPTER 11
311

11

W
R

ITIN
G

M
U

LTITH
R

EA
D

ED
A

PPLIC
A

TIO
N

S

FIGURE 11.6
The Main form for the DelSrch project.

Although this is a fairly full-featured application, we’ll focus mainly on explaining the applica-
tion’s key search features and how they relate to multithreading.

The User Interface
The main unit for the application is called Main.pas. Shown in Listing 11.8, this unit is respon-
sible for managing the main form and the overall user interface. In particular, this unit contains
the logic for owner-drawing the list box, invoking a viewer for files in the list box, invoking the
search thread, printing the list box contents, and reading and writing UI settings to an INI file.

LISTING 11.8 The Main.pas Unit for the DelSrch Project

unit SrchU;

interface

uses Classes, StdCtrls;

type
TSearchThread = class(TThread)
private

continues

14.65227_Ch11x 11/30/99 5:54 PM Page 311

LISTING 11.8 Continued

LB: TListbox;
CaseSens: Boolean;
FileNames: Boolean;
Recurse: Boolean;
SearchStr: string;
SearchPath: string;
FileSpec: string;
AddStr: string;
FSearchFile: string;
procedure AddToList;
procedure DoSearch(const Path: string);
procedure FindAllFiles(const Path: string);
procedure FixControls;
procedure ScanForStr(const FName: string; var FileStr: string);
procedure SearchFile(const FName: string);
procedure SetSearchFile;

protected
procedure Execute; override;

public
constructor Create(CaseS, FName, Rec: Boolean; const Str, SPath,
FSpec: string);

destructor Destroy; override;
end;

implementation

uses SysUtils, StrUtils, Windows, Forms, Main;

constructor TSearchThread.Create(CaseS, FName, Rec: Boolean; const Str,
SPath, FSpec: string);

begin
CaseSens := CaseS;
FileNames := FName;
Recurse := Rec;
SearchStr := Str;
SearchPath := AddBackSlash(SPath);
FileSpec := FSpec;
inherited Create(False);

end;

destructor TSearchThread.Destroy;
begin
FSearchFile := ‘’;
Synchronize(SetSearchFile);
Synchronize(FixControls);

Advanced Techniques

PART II
312

14.65227_Ch11x 11/30/99 5:54 PM Page 312

inherited Destroy;
end;

procedure TSearchThread.Execute;
begin
FreeOnTerminate := True; // set up all the fields
LB := MainForm.lbFiles;
Priority := TThreadPriority(MainForm.SearchPri);
if not CaseSens then SearchStr := UpperCase(SearchStr);
FindAllFiles(SearchPath); // process current directory
if Recurse then // if subdirs, then...
DoSearch(SearchPath); // recurse, otherwise...

end;

procedure TSearchThread.FixControls;
{ Enables controls in main form. Must be called through Synchronize }
begin
MainForm.EnableSearchControls(True);

end;

procedure TSearchThread.SetSearchFile;
{ Updates status bar with filename. Must be called through Synchronize }
begin
MainForm.StatusBar.Panels[1].Text := FSearchFile;

end;

procedure TSearchThread.AddToList;
{ Adds string to main listbox. Must be called through Synchronize }
begin
LB.Items.Add(AddStr);

end;

procedure TSearchThread.ScanForStr(const FName: string; var FileStr: string);
{ Scans a FileStr of file FName for SearchStr }
var
Marker: string[1];
FoundOnce: Boolean;
FindPos: integer;

begin
FindPos := Pos(SearchStr, FileStr);
FoundOnce := False;
while (FindPos <> 0) and not Terminated do
begin
if not FoundOnce then
begin
{ use “:” only if user doesn’t choose “filename only” }

Writing Multithreaded Applications

CHAPTER 11
313

11

W
R

ITIN
G

M
U

LTITH
R

EA
D

ED
A

PPLIC
A

TIO
N

S

continues

14.65227_Ch11x 11/30/99 5:54 PM Page 313

LISTING 11.8 Continued

if FileNames then
Marker := ‘’

else
Marker := ‘:’;

{ add file to listbox }
AddStr := Format(‘File %s%s’, [FName, Marker]);
Synchronize(AddToList);
FoundOnce := True;

end;
{ don’t search for same string in same file if filenames only }
if FileNames then Exit;

{ Add line if not filename only }
AddStr := GetCurLine(FileStr, FindPos);
Synchronize(AddToList);
FileStr := Copy(FileStr, FindPos + Length(SearchStr), Length(FileStr));
FindPos := Pos(SearchStr, FileStr);

end;
end;

procedure TSearchThread.SearchFile(const FName: string);
{ Searches file FName for SearchStr }
var
DataFile: THandle;
FileSize: Integer;
SearchString: string;

begin
FSearchFile := FName;
Synchronize(SetSearchFile);
try
DataFile := FileOpen(FName, fmOpenRead or fmShareDenyWrite);
if DataFile = 0 then raise Exception.Create(‘’);
try
{ set length of search string }
FileSize := GetFileSize(DataFile, nil);
SetLength(SearchString, FileSize);
{ Copy file data to string }
FileRead(DataFile, Pointer(SearchString)^, FileSize);

finally
CloseHandle(DataFile);

end;
if not CaseSens then SearchString := UpperCase(SearchString);
ScanForStr(FName, SearchString);

except
on Exception do

Advanced Techniques

PART II
314

14.65227_Ch11x 11/30/99 5:54 PM Page 314

begin
AddStr := Format(‘Error reading file: %s’, [FName]);
Synchronize(AddToList);

end;
end;

end;

procedure TSearchThread.FindAllFiles(const Path: string);
{ procedure searches Path subdir for files matching filespec }
var
SR: TSearchRec;

begin
{ find first file matching spec }
if FindFirst(Path + FileSpec, faArchive, SR) = 0 then
try
repeat
SearchFile(Path + SR.Name); // process file

until (FindNext(SR) <> 0) or Terminated; // find next file
finally
SysUtils.FindClose(SR); // clean up

end;
end;

procedure TSearchThread.DoSearch(const Path: string);
{ procedure recurses through a subdirectory tree starting at Path }
var
SR: TSearchRec;

begin
{ look for directories }
if FindFirst(Path + ‘*.*’, faDirectory, SR) = 0 then
try
repeat
{ if it’s a directory and not ‘.’ or ‘..’ then... }
if ((SR.Attr and faDirectory) <> 0) and (SR.Name[1] <> ‘.’) and
not Terminated then

begin
FindAllFiles(Path + SR.Name + ‘\’); // process directory
DoSearch(Path + SR.Name + ‘\’); // recurse

end;
until (FindNext(SR) <> 0) or Terminated; // find next directory

finally
SysUtils.FindClose(SR); // clean up

end;
end;

end.

Writing Multithreaded Applications

CHAPTER 11
315

11

W
R

ITIN
G

M
U

LTITH
R

EA
D

ED
A

PPLIC
A

TIO
N

S

14.65227_Ch11x 11/30/99 5:54 PM Page 315

Several things worth mentioning happen in this unit. First, you’ll notice the fairly small
PrintStrings() procedure that’s used to send the contents of TStrings to the printer. To
accomplish this, the procedure takes advantage of Delphi’s AssignPrn() standard procedure,
which assigns a TextFile variable to the printer. That way, any text written to the TextFile is
automatically written to the printer. When you’re finished writing to the printer, be sure to use
the CloseFile() procedure to close the connection to the printer.

Also of interest is the use of the ShellExecute() Win32 API procedure to launch a viewer for
a file that will be shown in the list box. ShellExecute() not only enables you to invoke exe-
cutable programs but also to invoke associations for registered file extensions. For example, if
you try to invoke a file with a .pas extension using ShellExecute(), it will automatically load
Delphi to view the file.

Advanced Techniques

PART II
316

TIP

If ShellExecute() returns a value indicating an error, the application calls
RaiseLastWin32Error(). This procedure, located in the SysUtils unit, calls the
GetLastError() API function and Delphi’s SysErrorMessage() in order to obtain
more detailed information about the error and to format that information into a
string. You can use RaiseLastWin32Error() in this manner in your own applications
if you want your users to obtain detailed error messages on API failures.

The Search Thread
The searching engine is contained within a unit called SrchU.pas, which is shown in Listing
11.9. This unit does a number of interesting things, including copying an entire file into a
string, recursing subdirectories, and communicating information back to the main form.

LISTING 11.9 The SrchU.pas Unit

unit SrchU;

interface

uses Classes, StdCtrls;

type
TSearchThread = class(TThread)
private
LB: TListbox;
CaseSens: Boolean;
FileNames: Boolean;

14.65227_Ch11x 11/30/99 5:54 PM Page 316

Recurse: Boolean;
SearchStr: string;
SearchPath: string;
FileSpec: string;
AddStr: string;
FSearchFile: string;
procedure AddToList;
procedure DoSearch(const Path: string);
procedure FindAllFiles(const Path: string);
procedure FixControls;
procedure ScanForStr(const FName: string; var FileStr: string);
procedure SearchFile(const FName: string);
procedure SetSearchFile;

protected
procedure Execute; override;

public
constructor Create(CaseS, FName, Rec: Boolean; const Str, SPath,
FSpec: string);

destructor Destroy; override;
end;

implementation

uses SysUtils, StrUtils, Windows, Forms, Main;

constructor TSearchThread.Create(CaseS, FName, Rec: Boolean; const Str,
SPath, FSpec: string);

begin
CaseSens := CaseS;
FileNames := FName;
Recurse := Rec;
SearchStr := Str;
SearchPath := AddBackSlash(SPath);
FileSpec := FSpec;
inherited Create(False);

end;

destructor TSearchThread.Destroy;
begin
FSearchFile := ‘’;
Synchronize(SetSearchFile);
Synchronize(FixControls);
inherited Destroy;

end;

procedure TSearchThread.Execute;

Writing Multithreaded Applications

CHAPTER 11
317

11

W
R

ITIN
G

M
U

LTITH
R

EA
D

ED
A

PPLIC
A

TIO
N

S

continues

14.65227_Ch11x 11/30/99 5:54 PM Page 317

LISTING 11.9 Continued

begin
FreeOnTerminate := True; // set up all the fields
LB := MainForm.lbFiles;
Priority := TThreadPriority(MainForm.SearchPri);
if not CaseSens then SearchStr := UpperCase(SearchStr);
FindAllFiles(SearchPath); // process current directory
if Recurse then // if subdirs, then...
DoSearch(SearchPath); // recurse, otherwise...

end;

procedure TSearchThread.FixControls;
{ Enables controls in main form. Must be called through Synchronize }
begin
MainForm.EnableSearchControls(True);

end;

procedure TSearchThread.SetSearchFile;
{ Updates status bar with filename. Must be called through Synchronize }
begin
MainForm.StatusBar.Panels[1].Text := FSearchFile;

end;

procedure TSearchThread.AddToList;
{ Adds string to main listbox. Must be called through Synchronize }
begin
LB.Items.Add(AddStr);

end;

procedure TSearchThread.ScanForStr(const FName: string;
var FileStr: string);

{ Scans a FileStr of file FName for SearchStr }
var
Marker: string[1];
FoundOnce: Boolean;
FindPos: integer;

begin
FindPos := Pos(SearchStr, FileStr);
FoundOnce := False;
while (FindPos <> 0) and not Terminated do
begin
if not FoundOnce then
begin
{ use “:” only if user doesn’t choose “filename only” }
if FileNames then
Marker := ‘’

Advanced Techniques

PART II
318

14.65227_Ch11x 11/30/99 5:54 PM Page 318

else
Marker := ‘:’;

{ add file to listbox }
AddStr := Format(‘File %s%s’, [FName, Marker]);
Synchronize(AddToList);
FoundOnce := True;

end;
{ don’t search for same string in same file if filenames only }
if FileNames then Exit;

{ Add line if not filename only }
AddStr := GetCurLine(FileStr, FindPos);
Synchronize(AddToList);
FileStr := Copy(FileStr, FindPos + Length(SearchStr),
Length(FileStr));

FindPos := Pos(SearchStr, FileStr);
end;

end;

procedure TSearchThread.SearchFile(const FName: string);
{ Searches file FName for SearchStr }
var
DataFile: THandle;
FileSize: Integer;
SearchString: string;

begin
FSearchFile := FName;
Synchronize(SetSearchFile);
try
DataFile := FileOpen(FName, fmOpenRead or fmShareDenyWrite);
if DataFile = 0 then raise Exception.Create(‘’);
try
{ set length of search string }
FileSize := GetFileSize(DataFile, nil);
SetLength(SearchString, FileSize);
{ Copy file data to string }
FileRead(DataFile, Pointer(SearchString)^, FileSize);

finally
CloseHandle(DataFile);

end;
if not CaseSens then SearchString := UpperCase(SearchString);
ScanForStr(FName, SearchString);

except
on Exception do
begin
AddStr := Format(‘Error reading file: %s’, [FName]);

Writing Multithreaded Applications

CHAPTER 11
319

11

W
R

ITIN
G

M
U

LTITH
R

EA
D

ED
A

PPLIC
A

TIO
N

S

continues

14.65227_Ch11x 11/30/99 5:54 PM Page 319

LISTING 11.9 Continued

Synchronize(AddToList);
end;

end;
end;

procedure TSearchThread.FindAllFiles(const Path: string);
{ procedure searches Path subdir for files matching filespec }
var
SR: TSearchRec;

begin
{ find first file matching spec }
if FindFirst(Path + FileSpec, faArchive, SR) = 0 then
try
repeat
SearchFile(Path + SR.Name); // process file

until (FindNext(SR) <> 0) or Terminated; // find next file
finally
SysUtils.FindClose(SR); // clean up

end;
end;

procedure TSearchThread.DoSearch(const Path: string);
{ procedure recurses through a subdirectory tree starting at Path }
var
SR: TSearchRec;

begin
{ look for directories }
if FindFirst(Path + ‘*.*’, faDirectory, SR) = 0 then
try
repeat
{ if it’s a directory and not ‘.’ or ‘..’ then... }
if ((SR.Attr and faDirectory) <> 0) and (SR.Name[1] <> ‘.’) and
not Terminated then

begin
FindAllFiles(Path + SR.Name + ‘\’); // process directory
DoSearch(Path + SR.Name + ‘\’); // recurse

end;
until (FindNext(SR) <> 0) or Terminated; // find next directory

finally
SysUtils.FindClose(SR); // clean up

end;
end;

end.

Advanced Techniques

PART II
320

14.65227_Ch11x 11/30/99 5:54 PM Page 320

When created, this thread first calls its FindAllFiles() method. This method uses
FindFirst() and FindNext() to search for all files in the current directory matching the file
specification indicated by the user. If the user has chosen to recurse subdirectories, the
DoSearch() method is then called in order to traverse down a directory tree. This method again
makes use of FindFirst() and FindNext() to find directories, but the twist is that it calls itself
recursively in order to traverse the tree. As each directory is found, FindAllFiles() is called
to process all matching files in the directory.

Writing Multithreaded Applications

CHAPTER 11
321

11

W
R

ITIN
G

M
U

LTITH
R

EA
D

ED
A

PPLIC
A

TIO
N

S

TIP

The recursion algorithm used by the DoSearch() method is a standard technique for
traversing a directory tree. Because recursive algorithms are notoriously difficult to
debug, the smart programmer will make use of ones that are already known to
work. It’s a good idea to save this method so that you can use it with other applica-
tions in the future.

To process each file, you’ll notice that the algorithm for searching for a token within a file
involves using the TMemMapFile object, which encapsulates a Win32 memory-mapped file. This
object is discussed in detail in Chapter 12, “Working with Files,” but for now you can just
assume that this provides an easy way to map the contents of a file into memory. The entire
algorithm works like this:

1. When a file matching the file spec is found by the FindAllFiles() method, the
SearchFile() method is called and the file contents are copied into a string.

2. The ScanForStr() method is called for each file-string. ScanForStr() searches for
occurrences of the search token within each string.

3. When an occurrence is found, the filename and/or the line of text is added to the list box.
The line of text is added only when the user unchecks the File Names Only check box.

Note that all the methods in the TSearchThread object periodically check the status of the
StopIt flag (which is tripped when the thread is told to stop) and the Terminated flag (which
is tripped when the TThread object is to terminate).

CAUTION

Remember that any methods within a TThread object that modify the application’s
user interface in any way must be called through the Synchronize() method, or the
user interface must be modified by sending messages.

14.65227_Ch11x 11/30/99 5:54 PM Page 321

Adjusting the Priority
Just to add yet another feature, DelSrch enables the user to adjust the priority of the search
thread dynamically. The form used for this purpose is shown in Figure 11.7, and the unit for
this form, PRIU.PAS, is shown in Listing 11.10.

Advanced Techniques

PART II
322

FIGURE 11.7
The thread priority form for the DelSrch project.

LISTING 11.10 The PriU.pas Unit

unit PriU;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, ComCtrls, Buttons, ExtCtrls;

type
TThreadPriWin = class(TForm)
tbrPriTrackBar: TTrackBar;
Label1: TLabel;
Label2: TLabel;
Label3: TLabel;
btnOK: TBitBtn;
btnRevert: TBitBtn;
Panel1: TPanel;
procedure tbrPriTrackBarChange(Sender: TObject);
procedure btnRevertClick(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure FormShow(Sender: TObject);
procedure btnOKClick(Sender: TObject);
procedure FormCreate(Sender: TObject);

private
{ Private declarations }
OldPriVal: Integer;

public
{ Public declarations }

end;

14.65227_Ch11x 11/30/99 5:54 PM Page 322

var
ThreadPriWin: TThreadPriWin;

implementation

{$R *.DFM}

uses Main, SrchU;

procedure TThreadPriWin.tbrPriTrackBarChange(Sender: TObject);
begin
with MainForm do
begin
SearchPri := tbrPriTrackBar.Position;
if Running then
SearchThread.Priority := TThreadPriority(tbrPriTrackBar.Position);

end;
end;

procedure TThreadPriWin.btnRevertClick(Sender: TObject);
begin
tbrPriTrackBar.Position := OldPriVal;

end;

procedure TThreadPriWin.FormClose(Sender: TObject;
var Action: TCloseAction);

begin
Action := caHide;

end;

procedure TThreadPriWin.FormShow(Sender: TObject);
begin
OldPriVal := tbrPriTrackBar.Position;

end;

procedure TThreadPriWin.btnOKClick(Sender: TObject);
begin
Close;

end;

procedure TThreadPriWin.FormCreate(Sender: TObject);
begin
tbrPriTrackBarChange(Sender); // initialize thread priority

end;

end.

Writing Multithreaded Applications

CHAPTER 11
323

11

W
R

ITIN
G

M
U

LTITH
R

EA
D

ED
A

PPLIC
A

TIO
N

S

14.65227_Ch11x 11/30/99 5:54 PM Page 323

The code for this unit is fairly straightforward. All it does is set the value of the SearchPri
variable in the main form to match that of the track bar position. If the thread is running, it also
sets the priority of the thread. Because TThreadPriority is an enumerated type, a straight
typecast maps the values 1 to 5 in the track bar to enumerations in TThreadPriority.

Multithreading Database Access
Although database programming isn’t really discussed until Chapter 28, “Writing Desktop
Database Applications,” this section is intended to give you some tips on how to use multiple
threads in the context of database development. If you’re unfamiliar with database programming
under Delphi, you might want to look through Chapter 28 before reading on in this section.

The most common request for database applications developers in Win32 is for the capability
to perform complex queries or stored procedures in a background thread. Thankfully, this type
of thing is supported by the 32-bit Borland Database Engine (BDE) and is fairly easy to do in
Delphi.

There are really only two requirements for running a background query through, for example, a
TQuery component:

• Each threaded query must reside within its own session. You can provide a TQuery with
its own session by placing a TSession component on your form and assigning its name
to the TQuery’s SessionName property. This also implies that, if your TQuery uses a
TDatabase component, a unique TDatabase must also be used for each session.

• The TQuery must not be attached to any TDataSource components at the time the query
is opened from the secondary thread. When the query is attached to a TDataSource, it
must be done through the context of the primary thread. TDataSource is only used to
connect datasets to user interface controls, and user interface manipulation must be per-
formed in the main thread.

To illustrate the techniques for background queries, Figure 11.8 shows the main form for a
demo project called BDEThrd. This form enables you to specify a BDE alias, user name, and
password for a particular database and to enter a query against the database. When the Go! but-
ton is clicked, a secondary thread is spawned to process the query and the results are displayed
in a child form.

The child form, TQueryForm, is shown in Figure 11.9. Notice that this form contains a TQuery,
TDatabase, TSession, TDataSource, and TDBGrid component. Therefore, each instance of
TQueryForm has its own instances of these components.

Advanced Techniques

PART II
324

14.65227_Ch11x 11/30/99 5:54 PM Page 324

FIGURE 11.8
The main form for the BDEThrd demo.

Writing Multithreaded Applications

CHAPTER 11
325

11

W
R

ITIN
G

M
U

LTITH
R

EA
D

ED
A

PPLIC
A

TIO
N

S

FIGURE 11.9
The child query form for the BDEThrd demo.

Listing 11.11 shows Main.pas, the application’s main unit.

LISTING 11.11 The Main.pas Unit for the BDEThrd Demo

Fixed. -sunit Main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, Grids, StdCtrls, ExtCtrls;

type
TMainForm = class(TForm)
pnlBottom: TPanel;
pnlButtons: TPanel;
GoButton: TButton;
Button1: TButton;
memQuery: TMemo;

continues

14.65227_Ch11x 11/30/99 5:54 PM Page 325

LISTING 11.11 Continued

pnlTop: TPanel;
Label1: TLabel;
AliasCombo: TComboBox;
Label3: TLabel;
UserNameEd: TEdit;
Label4: TLabel;
PasswordEd: TEdit;
Label2: TLabel;
procedure Button1Click(Sender: TObject);
procedure GoButtonClick(Sender: TObject);
procedure FormCreate(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

uses QryU, DB, DBTables;

var
FQueryNum: Integer = 0;

procedure TMainForm.Button1Click(Sender: TObject);
begin
Close;

end;

procedure TMainForm.GoButtonClick(Sender: TObject);
begin
Inc(FQueryNum); // keep querynum unique
{ invoke new query }
NewQuery(FQueryNum, memQuery.Lines, AliasCombo.Text, UserNameEd.Text,
PasswordEd.Text);

end;

procedure TMainForm.FormCreate(Sender: TObject);
begin
{ fill drop-down list with BDE Aliases }

Advanced Techniques

PART II
326

14.65227_Ch11x 11/30/99 5:54 PM Page 326

Session.GetAliasNames(AliasCombo.Items);
end;

end.

As you can see, there’s not much to this unit. The AliasCombo combobox is filled with BDE
aliases in the OnCreate handler for the main form using TSession’s GetAliasNames() method.
The handler for the Go! button OnClick event is in charge of invoking a new query by calling
the NewQuery() procedure that lives in a second unit, QryU.pas. Notice that it passes a new
unique number, FQueryNum, to the NewQuery() procedure with every button click. This number
is used to create a unique session and database name for each query thread.

Listing 11.12 shows the code for the QryU unit.

LISTING 11.12 The QryU.pas Unit

unit QryU;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Grids,

DBGrids, DB, DBTables, StdCtrls;

type
TQueryForm = class(TForm)
Query: TQuery;
DataSource: TDataSource;
Session: TSession;
Database: TDatabase;
dbgQueryGrid: TDBGrid;
memSQL: TMemo;
procedure FormClose(Sender: TObject; var Action: TCloseAction);

private
{ Private declarations }

public
{ Public declarations }

end;

procedure NewQuery(QryNum: integer; Qry: TStrings; const Alias, UserName,
Password: string);

implementation

{$R *.DFM}

Writing Multithreaded Applications

CHAPTER 11
327

11

W
R

ITIN
G

M
U

LTITH
R

EA
D

ED
A

PPLIC
A

TIO
N

S

continues

14.65227_Ch11x 11/30/99 5:54 PM Page 327

LISTING 11.12 Continued

type
TDBQueryThread = class(TThread)
private
FQuery: TQuery;
FDataSource: TDataSource;
FQueryException: Exception;
procedure HookUpUI;
procedure QueryError;

protected
procedure Execute; override;

public
constructor Create(Q: TQuery; D: TDataSource); virtual;

end;

constructor TDBQueryThread.Create(Q: TQuery; D: TDataSource);
begin
inherited Create(True); // create suspended thread
FQuery := Q; // set parameters
FDataSource := D;
FreeOnTerminate := True;
Resume; // thread that puppy!

end;

procedure TDBQueryThread.Execute;
begin
try
FQuery.Open; // open the query
Synchronize(HookUpUI); // update UI from main thread

except
FQueryException := ExceptObject as Exception;
Synchronize(QueryError); // show exception from main thread

end;
end;

procedure TDBQueryThread.HookUpUI;
begin
FDataSource.DataSet := FQuery;

end;

procedure TDBQueryThread.QueryError;
begin
Application.ShowException(FQueryException);

end;

procedure NewQuery(QryNum: integer; Qry: TStrings; const Alias, UserName,
Password: string);

Advanced Techniques

PART II
328

14.65227_Ch11x 11/30/99 5:54 PM Page 328

begin
{ Create a new Query form to show query results }
with TQueryForm.Create(Application) do
begin
{ Set a unique session name }
Session.SessionName := Format(‘Sess%d’, [QryNum]);
with Database do
begin
{ set a unique database name }
DatabaseName := Format(‘DB%d’, [QryNum]);
{ set alias parameter }
AliasName := Alias;
{ hook database to session }
SessionName := Session.SessionName;
{ user-defined username and password }
Params.Values[‘USER NAME’] := UserName;
Params.Values[‘PASSWORD’] := Password;

end;
with Query do
begin
{ hook query to database and session }
DatabaseName := Database.DatabaseName;
SessionName := Session.SessionName;
{ set up the query strings }
SQL.Assign(Qry);

end;
{ display query strings in SQL Memo }
memSQL.Lines.Assign(Qry);
{ show query form }
Show;
{ open query in its own thread }
TDBQueryThread.Create(Query, DataSource);

end;
end;

procedure TQueryForm.FormClose(Sender: TObject; var Action: TCloseAction);
begin
Action := caFree;

end;

end.

The NewQuery() procedure creates a new instance of the child form TQueryForm, sets up the
properties for each of its data-access components, and creates unique names for its TDatabase
and TSession components. The query’s SQL property is filled from the TStrings passed in the
Qry parameter, and the query thread is then spawned.

Writing Multithreaded Applications

CHAPTER 11
329

11

W
R

ITIN
G

M
U

LTITH
R

EA
D

ED
A

PPLIC
A

TIO
N

S

14.65227_Ch11x 11/30/99 5:54 PM Page 329

The code inside the TDBQueryThread itself is rather sparse. The constructor merely sets up
some instance variables, and the Execute() method opens the query and calls the HookupUI()
method through Synchronize() to attach the query to the data source. You should also take
note of the try..except block inside the Execute() procedure, which uses Synchronize() to
show exception messages from the context of the primary thread.

Multithreaded Graphics
We mentioned earlier that VCL isn’t designed to be manipulated simultaneously by multiple
threads, but this statement isn’t entirely accurate. VCL has the capability to have multiple
threads manipulate individual graphics objects. Thanks to new Lock() and Unlock() methods
introduced in TCanvas, the entire Graphics unit has been made thread-safe. This includes the
TCanvas, TPen, TBrush, TFont, TBitmap, TMetafile, TPicture, and TIcon classes.

The code for these Lock() methods is similar in that it uses a critical section and the
EnterCriticalSection() API function (described earlier in this chapter) to guard access to
the canvas or graphics object. After a particular thread calls a Lock() method, that thread is
free to exclusively manipulate the canvas or graphics object. Other threads waiting to enter the
portion of code following the call to Lock() will be put to sleep until the thread owning the
critical section calls Unlock(), which calls LeaveCriticalSection() to release the critical
section and let the next waiting thread (if any) into the protected portion of code. The follow-
ing portion of code shows how these methods can be used to control access to a canvas object:

Form.Canvas.Lock;
// code which manipulates canvas goes here
Form.Canvas.Unlock;

To further illustrate this point, Listing 11.13 shows the unit Main of the MTGraph project—an
application that demonstrates multiple threads accessing a form’s canvas.

LISTING 11.13 The Main.pas Unit of the MTGraph Project

unit Main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Menus;

type
TMainForm = class(TForm)
MainMenu1: TMainMenu;
Options1: TMenuItem;
AddThread: TMenuItem;
RemoveThread: TMenuItem;

Advanced Techniques

PART II
330

14.65227_Ch11x 11/30/99 5:54 PM Page 330

ColorDialog1: TColorDialog;
Add10: TMenuItem;
RemoveAll: TMenuItem;
procedure FormCreate(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure AddThreadClick(Sender: TObject);
procedure RemoveThreadClick(Sender: TObject);
procedure Add10Click(Sender: TObject);
procedure RemoveAllClick(Sender: TObject);

private
ThreadList: TList;

public
{ Public declarations }

end;

TDrawThread = class(TThread)
private
FColor: TColor;
FForm: TForm;

public
constructor Create(AForm: TForm; AColor: TColor);
procedure Execute; override;

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

{ TDrawThread }

constructor TDrawThread.Create(AForm: TForm; AColor: TColor);
begin
FColor := AColor;
FForm := AForm;
inherited Create(False);

end;

procedure TDrawThread.Execute;
var
P1, P2: TPoint;

procedure GetRandCoords;
var
MaxX, MaxY: Integer;

Writing Multithreaded Applications

CHAPTER 11
331

11

W
R

ITIN
G

M
U

LTITH
R

EA
D

ED
A

PPLIC
A

TIO
N

S

continues

14.65227_Ch11x 11/30/99 5:54 PM Page 331

LISTING 11.13 Continued

begin
// initialize P1 and P2 to random points within Form bounds
MaxX := FForm.ClientWidth;
MaxY := FForm.ClientHeight;
P1.x := Random(MaxX);
P2.x := Random(MaxX);
P1.y := Random(MaxY);
P2.y := Random(MaxY);

end;

begin
FreeOnTerminate := True;
// thread runs until it or the application is terminated
while not (Terminated or Application.Terminated) do
begin
GetRandCoords; // initialize P1 and P2
with FForm.Canvas do
begin
Lock; // lock canvas
// only one thread at a time can execute the following code:
Pen.Color := FColor; // set pen color
MoveTo(P1.X, P1.Y); // move to canvas position P1
LineTo(P2.X, P2.Y); // draw a line to position P2
// after the next line executes, another thread will be allowed
// to enter the above code block
Unlock; // unlock canvas

end;
end;

end;

{ TMainForm }

procedure TMainForm.FormCreate(Sender: TObject);
begin
ThreadList := TList.Create;

end;

procedure TMainForm.FormDestroy(Sender: TObject);
begin
RemoveAllClick(nil);
ThreadList.Free;

end;

procedure TMainForm.AddThreadClick(Sender: TObject);
begin
// add a new thread to the list... allow user to choose color

Advanced Techniques

PART II
332

14.65227_Ch11x 11/30/99 5:54 PM Page 332

if ColorDialog1.Execute then
ThreadList.Add(TDrawThread.Create(Self, ColorDialog1.Color));

end;

procedure TMainForm.RemoveThreadClick(Sender: TObject);
begin
// terminate the last thread in the list and remove it from list
TDrawThread(ThreadList[ThreadList.Count - 1]).Terminate;
ThreadList.Delete(ThreadList.Count - 1);

end;

procedure TMainForm.Add10Click(Sender: TObject);
var
i: Integer;

begin
// create 10 threads, each with a random color
for i := 1 to 10 do
ThreadList.Add(TDrawThread.Create(Self, Random(MaxInt)));

end;

procedure TMainForm.RemoveAllClick(Sender: TObject);
var
i: Integer;

begin
Cursor := crHourGlass;
try
for i := ThreadList.Count - 1 downto 0 do
begin
TDrawThread(ThreadList[i]).Terminate; // terminate thread
TDrawThread(ThreadList[i]).WaitFor; // make sure thread terminates

end;
ThreadList.Clear;

finally
Cursor:= crDefault;

end;
end;

initialization
Randomize; // seed random number generator

end.

This application has a main menu containing four items, as shown in Figure 11.10. The first
item, Add thread, creates a new TDrawThread instance, which paints random lines on the main
form. This option can be selected repeatedly in order to throw more and more threads into the
mix of threads accessing the main form. The next item, Remove thread, removes the last thread

Writing Multithreaded Applications

CHAPTER 11
333

11

W
R

ITIN
G

M
U

LTITH
R

EA
D

ED
A

PPLIC
A

TIO
N

S

14.65227_Ch11x 11/30/99 5:54 PM Page 333

added. The third item, Add 10, creates 10 new TDrawThread instances. Finally, the fourth item,
Remove all, terminates and destroys all TDrawThread instances. Figure 11.10 also shows the
results of 10 threads simultaneously drawing to the form’s canvas.

Canvas-locking rules dictate that as long as every user of a canvas locks it before drawing and
unlocks it afterwards, multiple threads using that canvas will not interfere with each other.
Note that all OnPaint events and Paint() method calls initiated by VCL automatically lock
and unlock the canvas for you; therefore, existing, normal Delphi code can coexist with new
background thread graphics operations.

Using this application as an example, examine the consequences or symptoms of thread colli-
sions if you fail to properly perform canvas locking. If thread one sets a canvas’s pen color to
red and then draws a line, and thread two sets the pen color to blue and draws a circle, and
these threads do not lock the canvas before starting these operations, the following thread colli-
sion scenario is possible: Thread one sets the pen color to red. The OS scheduler switches exe-
cution to thread two. Thread two sets the pen color to blue and draws a circle. Execution
switches to thread one. Thread one draws a line. However, the line is not red, it is blue,
because thread two had the opportunity to slip in between the operations of thread one.

Note also that it only takes one errant thread to cause problems. If thread one locks the canvas
and thread two does not, the scenario just described is unchanged. Both threads must lock the
canvas around their canvas operations to prevent that thread collision scenario.

Advanced Techniques

PART II
334

FIGURE 11.10
The MTGraph main form.

14.65227_Ch11x 11/30/99 5:54 PM Page 334

Summary
By now you’ve had a thorough introduction to threads and how to use them properly in the
Delphi environment. You’ve learned several techniques for synchronizing multiple threads, and
you’ve learned how to communicate between secondary threads and a Delphi application’s pri-
mary thread. Additionally, you’ve seen examples of using threads within the context of a real-
world file-search application, you’ve gotten the lowdown on how to leverage threads in
database applications, and you’ve learned about drawing to a TCanvas with multiple threads. In
the next chapter, “Working with Files,” you’ll learn a multitude of techniques for working with
different types of files in Delphi.

Writing Multithreaded Applications

CHAPTER 11
335

11

W
R

ITIN
G

M
U

LTITH
R

EA
D

ED
A

PPLIC
A

TIO
N

S

14.65227_Ch11x 11/30/99 5:54 PM Page 335

14.65227_Ch11x 11/30/99 5:54 PM Page 336

CHAPTER

12
Working with Files

IN THIS CHAPTER
• Dealing with File I/O 338

• The TTextRec and TFileRec Record
Structures 360

• Working with Memory-
Mapped Files 361

• Directories and Drives 380

• Using the SHFileOperation()
Function 380

• Summary 406

15.65227_Ch12 11/30/99 5:55 PM Page 337

Working with files, directories, and drives is a common programming task that you’ll undoubt-
edly have to do at some time. This chapter illustrates how to work with the different file types:
text files, typed files, and untyped files. The chapter covers how to use a TFileStream to
encapsulate file I/O and how to take advantage of one of Win32’s nicest features: memory-
mapped files. You’ll create a TMemoryMappedFile class that you can use, which encapsulates
some of the memory-mapped functionality, and you’ll learn how to use this class to perform
text searches in text files. This chapter also demonstrates some useful routines to determine
available drives, walk directory trees to search for files, and obtain version information on files.
By the end of this chapter, you’ll have a strong feel for working with files, directories, and
drives.

Dealing with File I/O
You will probably need to deal with three types of files. These file types are text files, typed
files, and binary files. The next few sections cover file I/O with these types of files. Text files
are exactly what the name implies. They contain ASCII text that can be read by any text editor.
Typed files are files that contain programmer-defined data types. Binary files cover just about
anything else. This is a general name that covers any file that can contain data in any given for-
mat or no format at all.

Working with Text Files
This section shows you how to manipulate text files using the procedures and functions built
into Object Pascal’s Runtime Library. Before you can do anything with a text file, you must
open it. First, you must declare a variable of type TextFile:

var
MyTextFile: TextFile;

You can now use this variable to refer to a text file.

You need to know about two procedures in order to open the file. The first procedure is
AssignFile(). AssignFile() associates a filename with the file variable:

AssignFile(MyTextFile, ‘MyTextFile.txt’);

After you’ve associated the file variable with a filename, you can open the file. You can open a
text file in three ways. First, you can create and open a file using the Rewrite() procedure. If
you use Rewrite() on an existing file, it will be overwritten and a new one will be created
with the same name. You can also open a file for read-only access by using the Reset() proce-
dure. You can append to an existing file by using the Append() procedure.

Advanced Techniques

PART II
338

15.65227_Ch12 11/30/99 5:55 PM Page 338

To close a file after you’ve opened it, you use the CloseFile() procedure. Take a look at the
following examples, which illustrate each procedure.

To open for read-only access, use this procedure:

var
MyTextFile: TextFile;

begin
AssignFile(MyTextFile, ‘MyTextFile.txt’);
Reset(MyTextFile);
try
{manipulate the file }

finally
CloseFile(MyTextFile);

end;
end;

To create a new file, do the following:

var
MyTextFile: TextFile;

begin
AssignFile(MyTextFile, ‘MyTextFile.txt’);
Rewrite(MyTextFile);
try
{manipulate the file }

finally
CloseFile(MyTextFile);

end;
end;

To append to an existing file, use this procedure:

var
MyTextFile: TextFile;

begin
AssignFile(MyTextFile, ‘MyTextFile.txt’);
Append(MyTextFile);
try
{manipulate the file }

finally

Working with Files

CHAPTER 12
339

12

W
O

R
K

IN
G

W
ITH

F
ILES

NOTE

Reset() opens typed and untyped files with read-write access.

15.65227_Ch12 11/30/99 5:55 PM Page 339

CloseFile(MyTextFile);
end;

end;

Listing 12.1 shows how you would use Rewrite() to create a file and add five lines of text to it.

LISTING 12.1 Creating a Text File

var
MyTextFile: TextFile;
S: String;
i: integer;

begin
AssignFile(MyTextFile, ‘MyTextFile.txt’);
Rewrite(MyTextFile);
try
for i := 1 to 5 do
begin
S := ‘This is line # ‘;
Writeln(MyTextFile, S, i);

end;
finally
CloseFile(MyTextFile);

end;
end;

This file would now contain the following text:

This is line # 1
This is line # 2
This is line # 3
This is line # 4
This is line # 5

Listing 12.2 illustrates how you would add five more lines to that same file.

LISTING 12.2 Appending to a Text File

var
MyTextFile: TextFile;
S: String;
i: integer;

begin
AssignFile(MyTextFile, ‘MyTextFile.txt’);
Append(MyTextFile);
try
for i := 6 to 10 do

Advanced Techniques

PART II
340

15.65227_Ch12 11/30/99 5:55 PM Page 340

begin
S := ‘This is line # ‘;
Writeln(MyTextFile, S, i);

end;
finally
CloseFile(MyTextFile);

end;
end;

This file’s contents are shown here:

This is line # 1
This is line # 2
This is line # 3
This is line # 4
This is line # 5
This is line # 6
This is line # 7
This is line # 8
This is line # 9
This is line # 10

Notice that in both listings, you were able to write both a string and an integer to the file. The
same is true for all numeric types in Object Pascal. To read from this same text file, you would
do as shown in Listing 12.3.

LISTING 12.3 Reading from a Text File

var
MyTextFile: TextFile;
S: String[15];
i: integer;
j: integer;

begin
AssignFile(MyTextFile, ‘MyTextFile.txt’);
Reset(MyTextFile);
try
while not Eof(MyTextFile) do
begin
Readln(MyTextFile, S, j);
Memo1.Lines.Add(S+IntToStr(j));

end;
finally
CloseFile(MyTextFile);

end;
end;

Working with Files

CHAPTER 12
341

12

W
O

R
K

IN
G

W
ITH

F
ILES

15.65227_Ch12 11/30/99 5:55 PM Page 341

In Listing 12.3, you’ll notice that the string variable S is declared as String[15]. This was
required to prevent reading the entire line from the file into the variable, S. Not doing so would
have caused an error when attempting to read a value into the integer variable J. This illustrates
another important feature of text file I/O: You can write columns to text files. You can then read
these columns into strings of a specific length. It’s important that each column is set to a spe-
cific length even though the actual strings stored there might be of a different length. Also,
notice the use of the Eof() function. This function performs a test to determine whether the
file pointer is at the end of the file. If it is, you must break out of the loop because there’s no
more text to read.

To illustrate reading a columnar-formatted text file, we’ve created a text file named
USCaps.txt, which contains a list of U.S. capitals in a columnar arrangement. A portion of this
file is shown here:

Alabama Montgomery
Alaska Juneau
Arizona Phoenix
Arkansas Little Rock
California Sacramento
Colorado Denver
Connecticut Hartford
Delaware Dover

The state name column has exactly 20 characters. This way, the capitals line up vertically.
We’ve created a project that reads this file and stores the states into a Paradox table. You’ll find
this project on the CD as Capitals.dpr. Its source is shown in Listing 12.4.

Advanced Techniques

PART II
342

NOTE

Before you can run this demo, you will need to create the BDE alias, DDGData.
Otherwise, the program will fail. If you installed the software from this book’s CD,
this alias has already been created for you.

LISTING 12.4 Source Code for the Capitals Project

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Grids, DBGrids, DB, DBTables;

15.65227_Ch12 11/30/99 5:55 PM Page 342

type

TMainForm = class(TForm)
btnReadCapitals: TButton;
tblCapitals: TTable;
dsCapitals: TDataSource;
dbgCapitals: TDBGrid;
procedure btnReadCapitalsClick(Sender: TObject);
procedure FormCreate(Sender: TObject);

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

procedure TMainForm.btnReadCapitalsClick(Sender: TObject);
var
F: TextFile;
StateName: String[20];
CapitalName: String[20];

begin
tblCapitals.Open;
// Assign the file to the columnar text file.
AssignFile(F, ‘USCAPS.TXT’);
// Open the file for read access.
Reset(F);
try
while not Eof(F) do
begin
{ Read a line of the file into the two strings each of whose length
matches the number of characters that make up the column. }

Readln(F, StateName, CapitalName);
// Now store both strings into separate columns in a Paradox table
tblCapitals.Insert;
tblCapitals[‘State_Name’] := StateName;
tblCapitals[‘State_Capital’] := CapitalName;
tblCapitals.Post;

end;
finally
CloseFile(F); // Close the file when finished.

end;
end;

Working with Files

CHAPTER 12
343

12

W
O

R
K

IN
G

W
ITH

F
ILES

continues

15.65227_Ch12 11/30/99 5:55 PM Page 343

LISTING 12.4 Continued

procedure TMainForm.FormCreate(Sender: TObject);
begin
// Empty the table when project starts.
tblCapitals.EmptyTable;

end;

end.

Although this book hasn’t covered Delphi database programming yet, the preceding code is
straightforward. The point we’re trying to make here is that often, text file processing might
serve a very useful purpose. This text file just as well might have been a file containing bank
account information downloaded from a bank’s online banking service, for example.

Working with Typed Files (Files of Record)
You can store Object Pascal data structures in disk files. You can then read data from these files
directly into your data structures. This enables you to use typed files for storing and retrieving
information as though the data were records in a table. Files that store Pascal data structures
are referred to as files of record. To illustrate the use of such files, look at the record structure
defined here:

TPersonRec = packed record
FirstName: String[20];
LastName: String[20];
MI: String[1];
BirthDay: TDateTime;
Age: Integer;

end;

Advanced Techniques

PART II
344

NOTE

Records that contain ANSI strings, variants, class instances, interfaces, or dynamic
arrays may not be written to a file.

Now suppose you wanted to store one or more such records in a file. You’ve already seen how
you might do this using a text file in the previous section. However, you can also do this using
a file of record defined like this:

DataFile: File of TPersonRec;

To read a single record of the type TPersonRec, you would do the following:

15.65227_Ch12 11/30/99 5:55 PM Page 344

var
PersonRec: TPersonRec;
DataFile: File of TPersonRec;

begin
AssignFile(DataFile, ‘PersonFile.dat’);
Reset(DataFile);
try
if not Eof(DataFile) then
read(DataFile, PersonRec);

finally
CloseFile(DataFile);

end;
end;

The following code illustrates how you would append a single record to a file:

var
PersonRec: TPersonRec;
DataFile: File of TPersonRec;

begin
AssignFile(DataFile, ‘PersonFile.dat’);
Reset(DataFile);
Seek(DataFile, FileSize(DataFile));
try
write(DataFile, PersonRec);

finally
CloseFile(DataFile);

end;
end;

Note the use of the Seek() procedure to move the file position to the end of the file before
writing the record to the file. This function usage is well documented in Delphi’s online help,
so we won’t go into detail on it here.

To illustrate the use of typed files, we’ve created a small application that stores information on
persons in an Object Pascal format. This application allows you to browse, add, and edit these
records. We also illustrate the use of a TFileStream descendant, which we use to encapsulate
the file I/O for such records.

Defining a TFileStream Descendant for Typed File I/O
TFileStream is a streaming class that can be used to store items that aren’t objects. Record
structures don’t have methods with which they can store themselves to disk or memory. One
solution would be to make the record an object instead. Then, you could attach the storage
functionality to that object. Another solution is to use storage functionality of a TFileStream to
store the records. Listing 12.5 shows a unit that defines a TPersonRec record and a
TRecordStream, a descendant of TFileStream, which handles the file I/O for storing and
retrieving records.

Working with Files

CHAPTER 12
345

12

W
O

R
K

IN
G

W
ITH

F
ILES

15.65227_Ch12 11/30/99 5:55 PM Page 345

LISTING 12.5 The Source Code for PersRec.PAS: TRecordStream, a TFileStream
Descendant

unit persrec;

interface
uses Classes, dialogs, sysutils;

type

// Define the record that will hold the person’s information.
TPersonRec = packed record
FirstName: String[20];
LastName: String[20];
MI: String[1];
BirthDay: TDateTime;
Age: Integer;

end;

// Create a descendant TFileStream which knows about the TPersonRec

TRecordStream = class(TFileStream)
private
function GetNumRecs: Longint;
function GetCurRec: Longint;
procedure SetCurRec(RecNo: Longint);

protected
function GetRecSize: Longint; virtual;

public
function SeekRec(RecNo: Longint; Origin: Word): Longint;
function WriteRec(const Rec): Longint;
function AppendRec(const Rec): Longint;
function ReadRec(var Rec): Longint;
procedure First;
procedure Last;
procedure NextRec;
procedure PreviousRec;
// NumRecs shows the number of records in the stream
property NumRecs: Longint read GetNumRecs;

Advanced Techniques

PART II
346

NOTE

Streaming is a topic that we cover in greater depth in Chapter 22, “Advanced
Component Techniques.”

15.65227_Ch12 11/30/99 5:55 PM Page 346

// CurRec reflects the current record in the stream
property CurRec: Longint read GetCurRec write SetCurRec;

end;

implementation

function TRecordStream.GetRecSize:Longint;
begin
{ This function returns the size of the record that this stream
knows about (TPersonRec) }

Result := SizeOf(TPersonRec);
end;

function TRecordStream.GetNumRecs: Longint;
begin
// This function returns the number of records in the stream
Result := Size div GetRecSize;

end;

function TRecordStream.GetCurRec: Longint;
begin
{ This function returns the position of the current record. We must
add one to this value because the file pointer is always at the
beginning of the record which is not reflected in the equation:
Position div GetRecSize }
Result := (Position div GetRecSize) + 1;

end;

procedure TRecordStream.SetCurRec(RecNo: Longint);
begin
{ This procedure sets the position to the record in the stream
specified by RecNo. }

if RecNo > 0 then
Position := (RecNo - 1) * GetRecSize

else
Raise Exception.Create(‘Cannot go beyond beginning of file.’);

end;

function TRecordStream.SeekRec(RecNo: Longint; Origin: Word): Longint;
begin
{ This function positions the file pointer to a location
specified by RecNo }

{ NOTE: This method does not contain error handling to determine if this
operation will exceed beyond the beginning/ending of the streamed
file }

Working with Files

CHAPTER 12
347

12

W
O

R
K

IN
G

W
ITH

F
ILES

continues

15.65227_Ch12 11/30/99 5:55 PM Page 347

LISTING 12.5 Continued

Result := Seek(RecNo * GetRecSize, Origin);
end;

function TRecordStream.WriteRec(Const Rec): Longint;
begin
// This function writes the record Rec to the stream
Result := Write(Rec, GetRecSize);

end;

function TRecordStream.AppendRec(Const Rec): Longint;
begin
// This function writes the record Rec to the stream
Seek(0, 2);
Result := Write(Rec, GetRecSize);

end;

function TRecordStream.ReadRec(var Rec): Longint;
begin
{ This function reads the record Rec from the stream and
positions the pointer back to the beginning of the record }

Result := Read(Rec, GetRecSize);
Seek(-GetRecSize, 1);

end;

procedure TRecordStream.First;
begin
{ This function positions the file pointer to the beginning

of the stream }
Seek(0, 0);

end;

procedure TRecordStream.Last;
begin
// This procedure positions the file pointer to the end of the stream
Seek(0, 2);
Seek(-GetRecSize, 1);

end;

procedure TRecordStream.NextRec;
begin
{ This procedure positions the file pointer at the next record
location }

{ Go to the next record as long as it doesn’t extend beyond the

Advanced Techniques

PART II
348

15.65227_Ch12 11/30/99 5:55 PM Page 348

end of the file. }
if ((Position + GetRecSize) div GetRecSize) = GetNumRecs then
raise Exception.Create(‘Cannot read beyond end of file’)

else
Seek(GetRecSize, 1);

end;

procedure TRecordStream.PreviousRec;
begin
{ This procedure positions the file pointer to the previous record
in the stream }

{ Call this function as long as we don’t extend beyond the
beginning of the file }

if (Position - GetRecSize >= 0) then
Seek(-GetRecSize, 1)

else
Raise Exception.Create(‘Cannot read beyond beginning of the file.’);

end;

end.

In this unit, you first declare the record that you want to store, TPersonRec. TRecordStream is
the TFileStream descendant you use to perform the file I/O for TPersonRec. TRecordStream
has two properties: NumRecs, which indicates the number of records in the stream, and CurRec,
which indicates the current record that the stream is viewing.

The GetNumRecs() method, which is the access method for the NumRecs property, determines
how many records exist in the stream. It does this by dividing the total size of the stream in
bytes, as determined from the TStream.Size property, by the size of the TPersonRec record.
Therefore, given that the TPersonRec record is 56 bytes, if the Size property has the value of
162, there would be four records in the stream. Note, however, that the record is guaranteed to
be 56 bytes only if it’s packed. The reason behind this is that structured types, such as records
and arrays, are aligned on word or double-word boundaries to allow for faster access. This can
mean that the record consumes more space than it actually needs. By using the reserved word
packed before the record declaration, you can ensure compressed and accurate data storage.
Not using the packed keyword might cause inaccurate results from the GetNumRecs() method.

The GetCurRec() method determines which record is the current record. You do this by divid-
ing the TStream.Position property by the size of the TPersonRec property and adding 1 to the
value. The SetCurRec() method places the file pointer at the position in the stream at the
beginning of the record specified by the RecNo property.

Working with Files

CHAPTER 12
349

12

W
O

R
K

IN
G

W
ITH

F
ILES

15.65227_Ch12 11/30/99 5:55 PM Page 349

The SeekRec() method allows the caller to place the file pointer at a position determined by
the RecNo and Origin parameters. This method moves the file pointer forward or backward in
the stream from the beginning, ending, or current position of the file pointer, as specified by
the value of the Origin property. This is done by using the Seek() method of the TStream
object. The use of the TStream.Seek() method is explained in the online “Component Writers
Guide” help file.

The WriteRec() method writes the contents of the TPersonRec parameter to the file at the cur-
rent position, which will be the position of an existing record, so that it will overwrite that
record.

The AppendRec() method adds a new record to the end of the file.

The ReadRec() method reads the data from the stream into the TPersonRec parameter. It then
repositions the file pointer at the beginning of the record by using the Seek() method. The rea-
son for this is that in order to use the TRecordStream object in a database manner, the file
pointer must always be at the beginning of the current record (that is, the record being viewed).

The First() and Last() methods place the file pointer at the beginning and ending of the file,
respectively.

The NextRec() method places the file pointer at the beginning of the next record provided that
it’s not already sitting at the last record in the file.

The PreviousRec() method places the file pointer at the beginning of the preview record pro-
vided that the file pointer is not already at the first record in the file.

Using a TFileStream Descendant for File I/O
Listing 12.6 is the source code for the main form of an application that uses the
TRecordStream object. This project is FileOfRec.dpr on the CD.

LISTING 21.6 The Source Code for the Main Form of the FileOfRec.dpr Project

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, Mask, Persrec, ComCtrls;

const
// Declare the file name as a constant
FName = ‘PERSONS.DAT’;

type

Advanced Techniques

PART II
350

15.65227_Ch12 11/30/99 5:55 PM Page 350

TMainForm = class(TForm)
edtFirstName: TEdit;
edtLastName: TEdit;
edtMI: TEdit;
meAge: TMaskEdit;
lblFirstName: TLabel;
lblLastName: TLabel;
lblMI: TLabel;
lblBirthDate: TLabel;
lblAge: TLabel;
btnFirst: TButton;
btnNext: TButton;
btnPrev: TButton;
btnLast: TButton;
btnAppend: TButton;
btnUpdate: TButton;
btnClear: TButton;
lblRecNoCap: TLabel;
lblRecNo: TLabel;
lblNumRecsCap: TLabel;
lblNoRecs: TLabel;
dtpBirthDay: TDateTimePicker;
procedure FormCreate(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure FormShow(Sender: TObject);
procedure btnAppendClick(Sender: TObject);
procedure btnUpdateClick(Sender: TObject);
procedure btnFirstClick(Sender: TObject);
procedure btnNextClick(Sender: TObject);
procedure btnLastClick(Sender: TObject);
procedure btnPrevClick(Sender: TObject);
procedure btnClearClick(Sender: TObject);

public
PersonRec: TPersonRec;
RecordStream: TRecordStream;
procedure ShowCurrentRecord;

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

procedure TMainForm.FormCreate(Sender: TObject);

Working with Files

CHAPTER 12
351

12

W
O

R
K

IN
G

W
ITH

F
ILES

continues

15.65227_Ch12 11/30/99 5:55 PM Page 351

LISTING 21.6 Continued

begin
{ If the file does not exist, then create it, otherwise, open it for
both read and write access. This is done by instantiating
a TRecordStream }

if FileExists(FName) then
RecordStream := TRecordStream.Create(FName, fmOpenReadWrite)

else
RecordStream := TRecordStream.Create(FName, fmCreate);

end;

procedure TMainForm.FormDestroy(Sender: TObject);
begin
RecordStream.Free; // Free the TRecordStream instance

end;

procedure TMainForm.ShowCurrentRecord;
begin
// Read the current record.
RecordStream.ReadRec(PersonRec);
// Copy the data from the PersonRec to the form’s controls
with PersonRec do
begin
edtFirstName.Text := FirstName;
edtLastName.Text := LastName;
edtMI.Text := MI;
dtpBirthDay.Date := BirthDay;
meAge.Text := IntToStr(Age);

end;
// Show the record number and total records on the main form.
lblRecNo.Caption := IntToStr(RecordStream.CurRec);
lblNoRecs.Caption := IntToStr(RecordStream.NumRecs);

end;

procedure TMainForm.FormShow(Sender: TObject);
begin
// Display the current record only if one exists.
if RecordStream.NumRecs <> 0 then

ShowCurrentRecord;
end;

procedure TMainForm.btnAppendClick(Sender: TObject);
begin
// Copy the contents of the form controls to the PersonRec record
with PersonRec do

Advanced Techniques

PART II
352

15.65227_Ch12 11/30/99 5:55 PM Page 352

begin
FirstName := edtFirstName.Text;
LastName := edtLastName.Text;
MI := edtMI.Text;
BirthDay := dtpBirthDay.Date;
Age := StrToInt(meAge.Text);

end;
// Write the new record to the stream
RecordStream.AppendRec(PersonRec);
// Display the current record.
ShowCurrentRecord;

end;

procedure TMainForm.btnUpdateClick(Sender: TObject);
begin
{ Copy the contents of the form controls to the PersonRec and write
it to the stream }

with PersonRec do
begin
FirstName := edtFirstName.Text;
LastName := edtLastName.Text;
MI := edtMI.Text;
BirthDay := dtpBirthDay.Date;
Age := StrToInt(meAge.Text);

end;
RecordStream.WriteRec(PersonRec);

end;

procedure TMainForm.btnFirstClick(Sender: TObject);
begin
{ Go to the first record in the stream and display it as long as
there are records that exist in the stream }

if RecordStream.NumRecs <> 0 then
begin
RecordStream.First;
ShowCurrentRecord;

end;
end;

procedure TMainForm.btnNextClick(Sender: TObject);
begin
// Go to the next record as long as records exist in the stream
if RecordStream.NumRecs <> 0 then
begin
RecordStream.NextRec;
ShowCurrentRecord;

Working with Files

CHAPTER 12
353

12

W
O

R
K

IN
G

W
ITH

F
ILES

continues

15.65227_Ch12 11/30/99 5:55 PM Page 353

LISTING 21.6 Continued

end;
end;

procedure TMainForm.btnLastClick(Sender: TObject);
begin
{ Go to the last record in the stream as long as there are records
in the stream }

if RecordStream.NumRecs <> 0 then
begin
RecordStream.Last;
ShowCurrentRecord;

end;
end;

procedure TMainForm.btnPrevClick(Sender: TObject);
begin
{ Go to the previous record in the stream as long as there are records
in the stream }

if RecordStream.NumRecs <> 0 then
begin
RecordStream.PreviousRec;
ShowCurrentRecord;

end;
end;

procedure TMainForm.btnClearClick(Sender: TObject);
begin
// Clear all controls on the form
edtFirstName.Text := ‘’;
edtLastName.Text := ‘’;
edtMI.Text := ‘’;
meAge.Text := ‘’;

end;

end.

Figure 12.1 shows the main form for this sample project.

The main form contains both a TPersonRec field and a TRecordStream class. The TPersonRec
field holds the contents of the current record. The TRecordStream instance is created in the
form’s OnCreate event handler. If the file does not exist, it is created. Otherwise, it is opened.

Advanced Techniques

PART II
354

15.65227_Ch12 11/30/99 5:55 PM Page 354

FIGURE 12.1
The main form for the TRecordStream example.

The ShowCurrentRecord() method is used to extract the current record from the stream by
calling the RecordStream.ReadRec() method. Recall that the RecordStream.ReadRec()
method first reads the record, which positions the file pointer to the end of the record after it’s
read. It then repositions the file pointer at the beginning of the record.

Most of the functionality of this application is discussed in the source commentary. We’ll
briefly discuss the important points here.

The btnAppendClick() adds a new record to the file.

The btnUpdateClick() method writes the contents of the form’s controls to the file at the
position of the current record, thus modifying the contents at that position.

The remaining methods reposition the file pointer to the next, previous, first, and last records
in the file, thus enabling you to browse the records in the file.

This example illustrates how you can use typed files to perform simple database operations
using standard file I/O. It also illustrates how to make use of the TFileStream object to wrap
the I/O functionality of the records in the file.

Working with Untyped Files
Up to this point, you’ve seen how to manipulate both text and typed files. Text files are used to
store ASCII character sequences. Typed files store data where each element of that data follows
the defined format of a Pascal record structure. In both cases, each file stores a number of
bytes that can be interpreted accordingly by applications.

Many files don’t follow an ordered format. For example, RTF files, although they do contain
text, also contain information about the various attributes of the text within that file. You can-
not load these files into any text editor to view them. You must use a view that’s capable of
interpreting rich text–formatted data.

The next few paragraphs illustrate how to manipulate untyped files.

Working with Files

CHAPTER 12
355

12

W
O

R
K

IN
G

W
ITH

F
ILES

15.65227_Ch12 11/30/99 5:55 PM Page 355

The following line declares an untyped file:

var
UntypedFile: File;

This declares a file consisting of a sequence of blocks, each having 128 bytes of data.

To read data from an untyped file, you would use the BlockRead() procedure. To write data to
an untyped file, you use the BlockWrite() procedure. These procedures are declared as follows:

procedure BlockRead(var F: File; var Buf;
➥Count: Integer [; var Result: Integer]);

procedure BlockWrite(var f: File; var Buf;
➥Count: Integer [; var Result: Integer]);

Both BlockRead() and BlockWrite() take three parameters. The first parameter is an untyped
file variable, F. The second parameter is a variable buffer, Buf, which holds the data read from
or written to the file. The parameter Count contains the number of records to read from the file.
The optional parameter Result contains the number of records read from the file in a read
operation. In a write operation, Result contains the number of complete records written. If this
value does not equal Count, it’s possible that the disk has run out of space.

We’ll explain what we’re referring to when we say that these procedures read or write Count
records. When you declare an untyped file as follows, by default, this defines a file whose
records each consist of 128 bytes of data:

UntypedFile: File;

This has nothing to do with any particular record structure. It just specifies the size of the
block of data that’s read in for a single record. Listing 12.7 illustrates how to read one record
of 128 bytes from a file:

LISTING 12.7 Reading from an Untyped File

var
UnTypedFile: File;
Buffer: array[0..128] of byte;
NumRecsRead: Integer;

begin
AssignFile(UnTypedFile, ‘SOMEFILE.DAT’);
Reset(UnTypedFile);
try
BlockRead(UnTypedFile, Buffer, 1, NumRecsRead);

finally
CloseFile(UnTypedFile);

end;
end;

Advanced Techniques

PART II
356

15.65227_Ch12 11/30/99 5:55 PM Page 356

Here, you open the file SOMEFILE.DAT and read 128 bytes of data (one record or block) into
the buffer appropriately named Buffer. To write 128 bytes of data to a file, take a look at
Listing 12.8.

LISTING 12.8 Writing Data to an Untyped File

var
UnTypedFile: File;
Buffer: array[0..128] of byte;
NumRecsWritten: Integer;

begin
AssignFile(UnTypedFile, ‘SOMEFILE.DAT’);
// If file doesn’t exist, create it. Otherwise,
// just open it for read/write access
if FileExists(‘SOMEFILE.DAT’) then
Reset(UnTypedFile)

else
Rewrite(UnTypedFile);

try
// Position the file pointer to the end of the file
Seek(UnTypedFile, FileSize(UnTypedFile));
FillChar(Buffer, SizeOf(Buffer), ‘Y’);
BlockWrite(UnTypedFile, Buffer, 1, NumRecsWritten);

finally
CloseFile(UnTypedFile);

end;
end;

A problem in using the default block size of 128 bytes when reading from a file is that its size
must be a multiple of 128 to avoid reading beyond the end of the file. You can get around this
by specifying a record size of one byte with the Reset() procedure. If you pass a record size
of one byte, reading blocks of any size will always be a multiple of one byte. As an example,
Listing 12.9 illustrates a simple file-copy routine using the Blockread() and BlockWrite()
procedures.

LISTING 12.9 A File-Copy Demo

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, ComCtrls, Gauges;

Working with Files

CHAPTER 12
357

12

W
O

R
K

IN
G

W
ITH

F
ILES

continues

15.65227_Ch12 11/30/99 5:55 PM Page 357

LISTING 12.9 Continued

type
TMainForm = class(TForm)
prbCopy: TProgressBar;
btnCopy: TButton;
procedure btnCopyClick(Sender: TObject);

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

procedure TMainForm.btnCopyClick(Sender: TObject);
var
SrcFile, DestFile: File;
BytesRead, BytesWritten, TotalRead: Integer;
Buffer: array[1..500] of byte;
FSize: Integer;

begin
{ Assign both the source and destination files to their
respective file variables }

AssignFile(SrcFile, ‘srcfile.tst’);
AssignFile(DestFile, ‘destfile.tst’);
// Open the source file for read access.
Reset(SrcFile, 1);
try
// Open destination file for write access.
Rewrite(DestFile, 1);
try
{ Encapsulate this into a try..except so that we can erase the file if
an error occurs. }

try
// Initialize total bytes read to zero.
TotalRead := 0;
// Obtain the filesize of the source file
FSize := FileSize(SrcFile);
{ Read SizeOf(Buffer) bytes from the source file
and add these bytes to the destination file. Repeat this
process until all bytes have been read from the source
file. A progress bar is provided to show the progress of the
copy operation. }

repeat
BlockRead(SrcFile, Buffer, SizeOf(Buffer), BytesRead);

Advanced Techniques

PART II
358

15.65227_Ch12 11/30/99 5:55 PM Page 358

if BytesRead > 0 then
begin
BlockWrite(DestFile, Buffer, BytesRead, BytesWritten);
if BytesRead <> BytesWritten then
raise Exception.Create(‘Error copying file’)

else begin
TotalRead := TotalRead + BytesRead;
prbCopy.Position := Trunc(TotalRead / Fsize) * 100;
prbCopy.Update;

end;
end

until BytesRead = 0;
except
{ On an exception, erase the destination file as it may be
corrupt. Then re-raise the exception. }

Erase(DestFile);
raise;

end;
finally
CloseFile(DestFile); // Close the destination file.

end;
finally
CloseFile(SrcFile); // Close the source file.

end;
end;

end.

Working with Files

CHAPTER 12
359

12

W
O

R
K

IN
G

W
ITH

F
ILES

NOTE

One of the demos that ships with Delphi 5 comes with several useful file-handling
functions, including a function to copy a file. This demo is in the \DEMOS\DOC\FIL-
MANEX\ directory. Here are the functions contained in the FmxUtils.PAS file:

procedure CopyFile(const FileName, DestName: string);
procedure MoveFile(const FileName, DestName: string);
function GetFileSize(const FileName: string): LongInt;
function FileDateTime(const FileName: string): TDateTime;
function HasAttr(const FileName: string; Attr: Word): Boolean;
function ExecuteFile(const FileName, Params,
DefaultDir: string; ShowCmd: Integer): THandle;

Also, later in this chapter we show you how to copy files and entire directories using
the ShFileOperation() function.

15.65227_Ch12 11/30/99 5:55 PM Page 359

First, the demo opens a source file for input and creates a destination file to which the source
file’s data will be copied. The variables TotalRead and FSize are used in updating a
TProgressBar component to indicate the status of the copy operation. Inside the repeat loop
is where the copy operation is actually performed. First, SizeOf(Buffer) bytes are read from
the source file. The variable BytesRead determines the actual number of bytes read. Then, an
attempt is made to copy BytesRead to the destination file. The number of actual bytes written
is stored in the variable BytesWritten. At this point, if no error has occurred, BytesRead and
BytesWritten will have the same values. This process is continued until all bytes of the file
have been copied. If an error occurs, an exception is raised and the destination file is erased
from the disk.

A sample application illustrating the preceding code exists on the CD as FileCopy.dpr.

The TTextRec and TFileRec Record Structures
Most file-management functions are really operating system functions or interrupts that have
been wrapped up in Object Pascal routines. The Reset() function, for example, is really a
Pascal wrapper to CreateFileA(), a Win32 function of the KERNEL32 dynamic link library.
By wrapping up these Win32 functions into Object Pascal functions, you do not have to worry
about the implementation details of these file operations. However, it also obscures how to
access certain file details when needed (such as the file handle) because these are hidden for
Object Pascal’s usage.

When using nonnative Object Pascal functions that require a file handle, such as LZCopy(),
you can get the file handle by typecasting your text file and binary file variables as TTextRec
and TFileRec, respectively. These record types contain the file handle as well as other file
details. Other than the file handle, you rarely will (and probably shouldn’t) access the other
data fields. The correct procedure for getting to the handle follows:

TFileRec(MyFileVar).Handle

The definition of the TTextRec record is shown here:

PTextBuf = ^TTextBuf;
TTextBuf = array[0..127] of Char; // Buffer definition for first 127

// characters in the file.
TTextRec = record

Handle: Integer; // File handle
Mode: Integer; // File mode
BufSize: Cardinal; // The following 4 parameters are
BufPos: Cardinal; // used for memory buffering.
BufEnd: Cardinal;
BufPtr: PChar;
OpenFunc: Pointer; // The XXXXFunc are points to file

Advanced Techniques

PART II
360

15.65227_Ch12 11/30/99 5:55 PM Page 360

InOutFunc: Pointer; // access functions. They can be
FlushFunc: Pointer; // modified when writing certain
CloseFunc: Pointer; // file device drivers.
UserData: array[1..32] of Byte; // Not used.
Name: array[0..259] of Char; // File’s full path name
Buffer: TTextBuf; // Buffer containing the

➥first 127 characters of the file
end;

Here’s the definition of the TFileRec record structure:

TFileRec = record
Handle: Integer; // File Handle
Mode: Integer; // File mode
RecSize: Cardinal; // Size of each file record
Private: array[1..28] of Byte; // Used internally by Object Pascal
UserData: array[1..32] of Byte; // Not used.
Name: array[0..259] of Char; // File’s full path name

end;

Working with Memory-Mapped Files
Probably one of the most convenient features of the Win32 environment is the ability to access
files on disk as if you were accessing the file’s contents in memory. This capability is provided
through memory-mapped files.

Memory-mapped files enable you to avoid having to perform all the I/O operations on the file.
Instead, you reserve a range of virtual address space and commit the physical storage of the
file on disk to the address of this reserved memory space. You then reference the contents of
the file through a pointer into this reserved region. Shortly, we’ll show you how you can use
this capability to create a useful text-searching utility for text files, made simple through the
use of memory-mapped files.

Purposes for Memory-Mapped Files
Typically, there are three uses for memory-mapped files:

• The Win32 system loads and executes EXE and DLL files by using memory-mapped
files. This conserves paging file space and therefore decreases the load time for such
files.

• Memory-mapped files can be used to access data residing in the mapped file through a
pointer to the mapped memory region. This not only simplifies data access, but also
relieves you from having to code various file-buffering schemes.

• Memory-mapped files can be used to provide the ability to share data among different
processes running on the same machine.

Working with Files

CHAPTER 12
361

12

W
O

R
K

IN
G

W
ITH

F
ILES

15.65227_Ch12 11/30/99 5:55 PM Page 361

We won’t discuss the first purpose for memory-mapped files because this really applies to the
system behavior. In this chapter, we discuss the second purpose of memory-mapped files
because this is a use that you, as a developer, will most likely need at some point. Chapter 9,
“Dynamic Link Libraries,” shows you how to share data with other processes by using mem-
ory-mapped files. You might want to look back at this example after reading this section so that
you fully understand what we showed you.

Using Memory-Mapped Files
When you create a memory-mapped file, you’re essentially associating the file to an area in the
process’s virtual memory address space. To create this association, you must create a file-map-
ping object. To view/edit the contents of a file, you must have a file view for the file-mapping
object. This enables you to access the contents of the file through a pointer as though you were
accessing an area of memory.

When you write to the file view, the system handles the caching, buffering, writing and loading
of the file’s data, as well as memory allocation and deallocation. As far as you’re concerned,
you’re editing data residing in an area of memory. The file I/O is handled entirely by the system.
This is the beauty of using memory-mapped files. Your task of file manipulation is greatly sim-
plified over the standard file I/O techniques discussed previously and is usually faster as well.

The following sections cover the steps required to create/open a memory-mapped file.

Creating/Opening the File
The first step in creating/opening a memory-mapped file is to obtain the file handle for the file
to be mapped. You can do this by using either the FileCreate() or FileOpen() functions.
FileCreate() is defined in the SysUtils.pas unit as follows:

function FileCreate(const FileName: string): Integer;

This function creates a new file with the filename specified by its FileName string parameter. If
the function is successful, a valid file handle is returned. Otherwise, the value defined by the
constant INVALID_HANDLE_VALUE is returned.

FileOpen() opens an existing file using a specified access mode. This function, when success-
ful, will return a valid file handle. Otherwise, it will return the value defined by the constant
INVALID_HANDLE_VALUE. FileOpen() is defined in the SysUtils.pas unit as follows:

function FileOpen(const FileName: string; Mode: Word): Integer;

The first parameter is the full path name of the file to which the mapping is to be applied. The
second parameter is one of the file-access modes described in Table 12.1.

Advanced Techniques

PART II
362

15.65227_Ch12 11/30/99 5:55 PM Page 362

TABLE 12.1 fmOpenXXXX File Access Modes

Access Mode Meaning

fmOpenRead Enables you to read only from the file

fmOpenWrite Enables you to write only to the file

fmOpenReadWrite Enables you to read from and write to the file

If you specify a value of 0 as the Mode parameter, you won’t be able to read from or write to
the specified file. You might use this when all you want is to obtain various file attributes. You
can specify how a file can be shared with different applications by applying the bitwise or
operation using the access modes specified in Table 12.1 with one of the fmShareXXXX modes.
The fmShareXXXX modes are listed in Table 12.2.

TABLE 12.2 fmShareXXXX File Share Modes

Share Mode Meaning

fmShareCompat The file-sharing mechanism is compatible with DOS 1.x and 2.x file
control blocks. This is used in conjunction with other FmShareXXXX
modes.

fmShareExclusive No sharing allowed.

fmShareDenyWrite Other attempts to open the file with fmOpenWrite access fail.

fmShareDenyRead Other attempts to open the file with fmOpenRead access fail.

fmShareDenyNone Other attempts to open the file with any mode succeed.

After a valid file handle is obtained, it’s possible to obtain a file-mapping object.

Creating the File-Mapping Object
To create named or unnamed file-mapping objects, you use the CreateFileMapping() func-
tion. This function is defined as follows:

function CreateFileMapping(
hFile: THandle;
lpFileMappingAttributes: PSecurityAttributes;
flProtect,
dwMaximumSizeHigh,
dwMaximumSizeLow: DWORD;
lpName: PChar) : THandle;

The parameters passed to CreateFileMapping() give the system the necessary information
required to create the file-mapping object. The first parameter, hFile, is the file handle

Working with Files

CHAPTER 12
363

12

W
O

R
K

IN
G

W
ITH

F
ILES

15.65227_Ch12 11/30/99 5:55 PM Page 363

obtained from the previous call to FileOpen() or FileCreate(). It’s important that the file be
opened with the protection flags compatible with the flProtect parameter, which we’ll dis-
cuss momentarily. Another method is to use CreateFileMapping() to create a file-mapping
object backed by the system paging file. This technique is used to enable the sharing of data
among separate processes that we illustrate in Chapter 9, “Dynamic Link Libraries.”

The lpFileMappingAttributes parameter is a PSecurityAttributes pointer, which refers to
the security attributes for the file-mapping object. This parameter will almost always be null.

The flProtect parameter specifies the type of protection applied to the file view. As we men-
tioned before, this value must be compatible with the attributes under which the file was
opened to obtain a file handle. Table 12.3 lists the various attributes that can be assigned to the
flProtect parameter.

TABLE 12.3 Protection Attributes

Protection Attribute Meaning

PAGE_READONLY You can read the file’s contents. The file must have been created with
the FileCreate() function or opened with FileOpen() and an
access mode of fmOpenRead.

PAGE_READWRITE You can read and write to the file. The file must have been opened
with the fmOpenReadWrite access mode.

PAGE_WRITECOPY You can read and write to the file. However, when you write to the
file, a private copy of the modified page is created. The significance
of this is that memory-mapped files that are shared between
processes do not consume twice the resources in system memory or
swap file usage. Only the memory required for the pages that are dif-
ferent is duplicated. The file must have been opened with the
fmOpenWrite or fmOpenReadWrite access.

You can also apply section attributes to the flProtect parameter by using the bitwise or oper-
ator. Table 12.4 explains the meaning of these attributes.

TABLE 12.4 Section Attributes

Section Attribute Meaning

SEC_COMMIT Allocates physical storage in memory or in the paging file for all
pages in a section. This is the default value.

SEC_IMAGE File-mapping information and attributes are taken from the file
image. This applies to executable image files only. (Note that this
attribute is ignored under Windows 95/98.)

Advanced Techniques

PART II
364

15.65227_Ch12 11/30/99 5:55 PM Page 364

Section Attribute Meaning

SEC_NOCACHE No memory-mapped pages are cached. Therefore, the system applies
all file writes directly to the file’s data on disk. This mainly applies to
device drivers and not to applications. (Note that this attribute is
ignored under Windows 95/98.)

SEC_RESERVE Reserves pages of a section without allocating physical storage.

The dwMaximumSizeHigh parameter specifies the high-order 32 bits of the file-mapping object’s
maximum size. Unless you’re accessing files larger than 4GB, this value will always be zero.

The dwMinimumSizeLow parameter specifies the low-order 32 bits of the file-mapping object’s
maximum size. A value of zero for this parameter would indicate a maximum size for the file-
mapping object equal to the size of the file being mapped.

The lpName parameter specifies the name of the file-mapping object. This value may contain
any character except a backslash character (\). If this parameter matches the name of an exist-
ing file-mapping object, this function requests access to that same file-mapping object using
the attributes specified by the flProtect parameter. It’s valid to pass nil as this parameter,
which creates a nameless file-mapping object.

If CreateFileMapping() is successful, it returns a valid handle to a file-mapping object. If this
file-mapping object happens to refer to an already existing file-mapping object, the value
ERROR_ALREADY_EXISTS will be returned from the GetLastError() function. If
CreateFileMapping() fails, it returns a nil value. You must call the GetLastError() function
to determine the reason for failure.

Working with Files

CHAPTER 12
365

12

W
O

R
K

IN
G

W
ITH

F
ILES

CAUTION

Under Windows 95/98, do not use file I/O functions on file handles that have been
used to create file mappings. The data in such files may not be coherent. It is there-
fore recommended that you open the file with exclusive access. See the section
“Memory-Mapped File Coherence.”

After you’ve obtained a valid file-mapping object, you can map the file’s data into the
process’s address space.

Mapping a View of the File into the Process’s Address Space
The MapViewOfFile() function maps a view of the file into the process’s address space. This
function is defined as follows:

15.65227_Ch12 11/30/99 5:55 PM Page 365

function MapViewOfFile(
hFileMappingObject: THandle;
dwDesiredAccess: DWORD;
dwFileOffsetHigh,
dwFileOffsetLow,
dwNumberOfBytesToMap: DWORD): Pointer;

hFileMappingObject is the handle to an open file-mapping object that was opened with a call
to either the CreateFileMapping() or OpenFileMapping() function.

The dwDesiredAccess parameter indicates how the file data is to be accessed and may be one
of the values specified in Table 12.5.

TABLE 12.5 Desired Access to File View

dwDesiredAccess Value Meaning

FILE_MAP_WRITE Allows read-write access to the file data. The PAGE_READ_WRITE
attribute must have been used with the CreateFileMapping()
function.

FILE_MAP_READ Allows read-only access to the file data. The PAGE_READ_WRITE or
PAGE_READ attribute must have been used with the
CreateFileMapping() function.

FILE_MAP_ALL_ACCESS Same access provided by using FILE_MAP_WRITE.

FILE_MAP_COPY Enables copy-on-write access. When you write to the file, a private
copy of the page written to is created. CreateFileMapping() must
have been used with the PAGE_READ_ONLY, PAGE_READ_WRITE, or
PAGE_WRITE_COPY attributes.

The dwFileOffsetHigh parameter specifies the high-order 32 bits of the file offset where the
file mapping begins.

The dwFileOffsetLow parameter specifies the lower-order 32 bits of the file offset where map-
ping begins.

The dwNumberOfBytesToMap parameter indicates how many bytes of the file to map. A zero
value indicates the entire file.

MapViewOfFile() returns the starting address of the mapped view. If it’s unsuccessful, nil is
returned and you must call the GetLastError() function to determine the cause of the error.

Unmapping the View of the File
The UnmapViewOfFile() function unmaps the view of the file from the calling process’s
address space. This function is defined as follows:

Advanced Techniques

PART II
366

15.65227_Ch12 11/30/99 5:55 PM Page 366

function UnmapViewOfFile(lpBaseAddress: Pointer): BOOL;

This function’s single parameter lpBaseAddress must point to the base address of the mapped
region. This is the same value returned from the MapViewOfFile() function.

You need to call UnmapViewOfFile() when you’ve finished working with the file; otherwise, the
mapped region of memory will not get released by the system until your process terminates.

Closing the File-Mapping and File Kernel Objects
The calls to FileOpen() and CreateFileMapping() are both open kernel objects that you’re
responsible for closing. This is done by using the CloseHandle() function. CloseHandle() is
defined as follows:

function CloseHandle(hObject: THandle): BOOL;

If the call to CloseHandle() is successful, it will return True. Otherwise, it will return False,
and you’ll have to examine the result of GetLastError() to determine the cause of the error.

A Simple Memory-Mapped File Example
To illustrate the use of the memory-mapped file functions, examine Listing 12.10. You can find
this project on the CD as TextUpper.dpr.

LISTING 12.10 A Simple Memory-Mapped File Example

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls;

const
FName = ‘test.txt’;

type

TMainForm = class(TForm)
btnUpperCase: TButton;
memTextContents: TMemo;
lblContents: TLabel;
btnLowerCase: TButton;
procedure btnUpperCaseClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure btnLowerCaseClick(Sender: TObject);

Working with Files

CHAPTER 12
367

12

W
O

R
K

IN
G

W
ITH

F
ILES

continues

15.65227_Ch12 11/30/99 5:55 PM Page 367

LISTING 12.10 Continued

public
UCase: Boolean;
procedure ChangeFileCase;

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

procedure TMainForm.btnUpperCaseClick(Sender: TObject);
begin
UCase := True;
ChangeFileCase;

end;

procedure TMainForm.btnLowerCaseClick(Sender: TObject);
begin
UCase := False;
ChangeFileCase;

end;

procedure TMainForm.FormCreate(Sender: TObject);
begin
memTextContents.Lines.LoadFromFile(FName);
// Change to upper case by default.
UCase := True;

end;

procedure TMainForm.ChangeFileCase;
var
FFileHandle: THandle; // Handle to the open file.
FMapHandle: THandle; // Handle to a file-mapping object
FFileSize: Integer; // Variable to hold the file size.
FData: PByte; // Pointer to the file’s data when mapped.
PData: PChar; // Pointer used to reference the file data.

begin

{ First obtain a file handle to the file to be mapped. This code
assumes the existence of the file. Otherwise, you can use the
FileCreate() function to create a new file. }

if not FileExists(FName) then

Advanced Techniques

PART II
368

15.65227_Ch12 11/30/99 5:55 PM Page 368

raise Exception.Create(‘File does not exist.’)
else
FFileHandle := FileOpen(FName, fmOpenReadWrite);

// If CreateFile() was not successful, raise an exception
if FFileHandle = INVALID_HANDLE_VALUE then
raise Exception.Create(‘Failed to open or create file’);

try
{ Now obtain the file size which we will pass to the other file-
mapping functions. We’ll make this size one byte larger as we
need to append a null-terminating character to the end of the
mapped-file’s data.}

FFileSize := GetFileSize(FFileHandle, Nil);

{ Obtain a file-mapping object handle. If this function is not
successful, then raise an exception. }

FMapHandle := CreateFileMapping(FFileHandle, nil,
PAGE_READWRITE, 0, FFileSize, nil);

if FMapHandle = 0 then
raise Exception.Create(‘Failed to create file mapping’);

finally
// Release the file handle
CloseHandle(FFileHandle);

end;

try
{ Map the file-mapping object to a view. This will return a pointer
to the file data. If this function is not successful, then raise
an exception. }

FData := MapViewOfFile(FMapHandle, FILE_MAP_ALL_ACCESS, 0, 0, FFileSize);

if FData = Nil then
raise Exception.Create(‘Failed to map view of file’);

finally
// Release the file-mapping object handle
CloseHandle(FMapHandle);

end;

try
{ !!! Here is where you would place the functions to work with
the mapped file’s data. For example, the following line forces
all characters in the file to uppercase }
PData := PChar(FData);

Working with Files

CHAPTER 12
369

12

W
O

R
K

IN
G

W
ITH

F
ILES

continues

15.65227_Ch12 11/30/99 5:55 PM Page 369

LISTING 12.10 Continued

// Position the pointer to the end of the file’s data
inc(PData, FFileSize);

// Append a null-terminating character to the end of the file’s data
PData^ := #0;

// Now set all characters in the file to upper-case
if UCase then
StrUpper(PChar(FData))

else
StrLower(PChar(FData));

finally
// Release the file mapping.
UnmapViewOfFile(FData);

end;
memTextContents.Lines.Clear;
memTextContents.Lines.LoadFromFile(FName);

end;

end.

You’ll see in Listing 12.10 that the first step is to obtain a handle to the file to be mapped to
the process’s region of memory. This is done by calling the FileOpen() function. You pass the
fmOpenReadWrite file-access mode to this function to give you read/write access to the file’s
contents.

Next, you obtain the size of the file and change the last character to a null terminator. This
should actually be the end-of-file marker, which is the same byte value as the null-terminator.
You do it here for clarity. The point is that because you’re manipulating the file’s data as a
null-terminating string, you need to ensure that a null-terminator is present.

The following step obtains the memory-mapping file object by calling CreateFileMapping().
If this function fails, you raise an exception. Otherwise, you go on to the next step to map the
file-mapping object to a view. Again, you raise an exception if this function fails.

You then change the case of the data in the file. If you were to view the file in a text editor
after executing this routine, you would see that the file’s characters have all been converted to
the selected case. Lastly, you unmap the view of the file by calling the UnMapViewOfFile()
function.

You might have noticed that in this code, you release both the file handle and the file-mapping
object’s handle before you even manipulate the file’s data after it has been mapped to a view.

Advanced Techniques

PART II
370

15.65227_Ch12 11/30/99 5:55 PM Page 370

This is possible because the system keeps a usage count on the file handle and file-mapping
object when the call to MapViewOfFile() is made. Therefore, you can close the object up front
by calling CloseHandle(), thus reducing the chances of causing a resource leak. Later, you’ll
see a more elaborate use of memory-mapped files as you build a TMemoryMapFile class and
use it to perform text searches through text files.

Memory-Mapped File Coherence
The Win32 system ensures that multiple views of a file remain coherent as long as they’re
mapped using the same file-mapping object. This means that if one view modifies the contents
of a file, a second view will realize those modifications. Keep in mind, however, that this is
only true when using the same file-mapping objects. When you’re using different file-mapping
objects, multiple views are not guaranteed to be coherent. This particular problem exists only
with files that are mapped for write access. Read-only files are always coherent. Also, files
shared over a network are not kept coherent in write-file mappings in different machines.

The Text-File Search Utility
To illustrate a practical use of memory-mapped files, we’ve created a project that performs a
text search on text files in the current directory. The filenames, along with the number of times
a string is found in the file, are added to a list box on the main form. The main form for this
project is shown in Figure 12.2. You can find this project on the CD as FileSrch.dpr.

Working with Files

CHAPTER 12
371

12

W
O

R
K

IN
G

W
ITH

F
ILES

FIGURE 12.2
The main form for the text search project.

This project also illustrates how to encapsulate the functionality of memory-mapped files into
an object. To show this, we’ve created the TMemMapFile class.

15.65227_Ch12 11/30/99 5:56 PM Page 371

The TMemMapFile Class
The unit containing the TMemMapFile class is shown in Listing 12.11.

LISTING 12.11 The Source Code for MemMap.pas, the Unit Defining the TMemMapFile Class

unit MemMap;

interface

uses Windows, SysUtils, Classes;

type
EMMFError = class(Exception);

TMemMapFile = class
private
FFileName: String; // File name of the mapped file.
FSize: Longint; // Size of the mapped view
FFileSize: Longint; // Actual File Size
FFileMode: Integer; // File access mode
FFileHandle: Integer; // File handle
FMapHandle: Integer; // Handle to the file mapping object.
FData: PByte; // Pointer to the file’s data
FMapNow: Boolean; // Determines whether or

// not to map view of immediately.
procedure AllocFileHandle;
{ Retrieves a handle to the disk file. }
procedure AllocFileMapping;
{ Retrieves a file-mapping object handle }
procedure AllocFileView;
{ Maps a view to the file }
function GetSize: Longint;
{ Returns the size of the mapped view }

public
constructor Create(FileName: String; FileMode: integer;

Size: integer; MapNow: Boolean); virtual;
destructor Destroy; override;
procedure FreeMapping;
property Data: PByte read FData;
property Size: Longint read GetSize;
property FileName: String read FFileName;
property FileHandle: Integer read FFileHandle;
property MapHandle: Integer read FMapHandle;

end;

implementation

Advanced Techniques

PART II
372

15.65227_Ch12 11/30/99 5:56 PM Page 372

constructor TMemMapFile.Create(FileName: String; FileMode: integer;
Size: integer; MapNow: Boolean);

{ Creates Memory Mapped view of FileName file.
FileName: Full pathname of file.
FileMode: Use fmXXX constants.
Size: size of memory map. Pass zero as the size to use the

file’s own size.
}
begin

{ Initialize private fields }
FMapNow := MapNow;
FFileName := FileName;
FFileMode := FileMode;

AllocFileHandle; // Obtain a file handle of the disk file.
{ Assume file is < 2 gig }

FFileSize := GetFileSize(FFileHandle, Nil);
FSize := Size;

try
AllocFileMapping; // Get the file mapping object handle.

except
on EMMFError do
begin
CloseHandle(FFileHandle); // close file handle on error
FFileHandle := 0; // set handle back to 0 for clean up
raise; // re-raise exception

end;
end;
if FMapNow then
AllocFileView; // Map the view of the file

end;

destructor TMemMapFile.Destroy;
begin

if FFileHandle <> 0 then
CloseHandle(FFileHandle); // Release file handle.

{ Release file mapping object handle }
if FMapHandle <> 0 then
CloseHandle(FMapHandle);

FreeMapping; { Unmap the file mapping view . }

Working with Files

CHAPTER 12
373

12

W
O

R
K

IN
G

W
ITH

F
ILES

continues

15.65227_Ch12 11/30/99 5:56 PM Page 373

LISTING 12.11 Continued

inherited Destroy;
end;

procedure TMemMapFile.FreeMapping;
{ This method unmaps the view of the file from this process’s address
space. }

begin
if FData <> Nil then
begin
UnmapViewOfFile(FData);
FData := Nil;

end;
end;

function TMemMapFile.GetSize: Longint;
begin
if FSize <> 0 then
Result := FSize

else
Result := FFileSize;

end;

procedure TMemMapFile.AllocFileHandle;
{ creates or opens disk file before creating memory mapped file }
begin
if FFileMode = fmCreate then
FFileHandle := FileCreate(FFileName)

else
FFileHandle := FileOpen(FFileName, FFileMode);

if FFileHandle < 0 then
raise EMMFError.Create(‘Failed to open or create file’);

end;

procedure TMemMapFile.AllocFileMapping;
var
ProtAttr: DWORD;

begin
if FFileMode = fmOpenRead then // obtain correct protection attribute
ProtAttr := Page_ReadOnly

else
ProtAttr := Page_ReadWrite;

{ attempt to create file mapping of disk file.
Raise exception on error. }

FMapHandle := CreateFileMapping(FFileHandle, Nil, ProtAttr,

Advanced Techniques

PART II
374

15.65227_Ch12 11/30/99 5:56 PM Page 374

0, FSize, Nil);
if FMapHandle = 0 then
raise EMMFError.Create(‘Failed to create file mapping’);

end;

procedure TMemMapFile.AllocFileView;
var
Access: Longint;

begin
if FFileMode = fmOpenRead then // obtain correct file mode
Access := File_Map_Read

else
Access := File_Map_All_Access;

FData := MapViewOfFile(FMapHandle, Access, 0, 0, FSize);
if FData = Nil then
raise EMMFError.Create(‘Failed to map view of file’);

end;

end.

The commentary lists the purpose of the various fields and methods for the TMemMapFile class.

The class contains the methods AllocFileHandle(), AllocFileMapping(), and
AllocFileView() to retrieve the file handle, file-mapping object handle, and a view to the
specified file, respectively.

The Create() constructor is where the fields get initialized and the methods to allocate the
various handles get called. Failure of any of those methods results in an exception being raised.
The Destroy() destructor ensures that the view gets unmapped by calling the
UnMapViewOfFile() method.

Using the TMemMapFile Class
The main form for the file-search project is shown in Listing 12.12.

LISTING 12.12 The Source Code for the Main Form for the File-Search Project

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Buttons, FileCtrl;

type

Working with Files

CHAPTER 12
375

12

W
O

R
K

IN
G

W
ITH

F
ILES

continues

15.65227_Ch12 11/30/99 5:56 PM Page 375

LISTING 12.12 Continued

TMainForm = class(TForm)
btnSearch: TButton;
lbFilesFound: TListBox;
edtSearchString: TEdit;
lblSearchString: TLabel;
lblFilesFound: TLabel;
memFileText: TMemo;
btnFindNext: TButton;
FindDialog: TFindDialog;
dcbDrives: TDriveComboBox;
dlbDirectories: TDirectoryListBox;
procedure btnSearchClick(Sender: TObject);
procedure lbFilesFoundClick(Sender: TObject);
procedure btnFindNextClick(Sender: TObject);
procedure FindDialogFind(Sender: TObject);
procedure edtSearchStringChange(Sender: TObject);
procedure memFileTextChange(Sender: TObject);

public
end;

var
MainForm: TMainForm;

implementation
uses MemMap, Search;

{$R *.DFM}

procedure TMainForm.btnSearchClick(Sender: TObject);
var
MemMapFile: TMemMapFile;
SearchRec: TSearchRec;
RetVal: Integer;
FoundStr: PChar;
FName: String;
FindString: String;
WordCount: Integer;

begin
memFileText.Lines.Clear;
btnFindNext.Enabled := False;
lbFilesFound.Items.Clear;

{ Retrieve each text file on which the text search is to be
performed. Use the FindFirst/FindeNext sequence on this search. }

RetVal := FindFirst(dlbDirectories.Directory+’*.txt’, faAnyFile, SearchRec);

Advanced Techniques

PART II
376

15.65227_Ch12 11/30/99 5:56 PM Page 376

try
while RetVal = 0 do
begin
FName := SearchRec.Name;

// Open the memory mapped file for read-only access.
MemMapFile := TMemMapFile.Create(FName, fmOpenRead, 0, True);
try

{ Use a temporary storage for the search string }
FindString := edtSearchString.Text;

WordCount := 0; // Initialize the WordCount to zero
{ Get the first occurrence of the search string }
FoundStr := StrPos(PChar(MemMapFile.Data), PChar(FindString));

if FoundStr <> nil then
begin
{ Continue to search through the remaining text of the file
for occurrences of the search string. On each find,
increment the WordCount variable }

repeat
inc(WordCount);
inc(FoundStr, Length(FoundStr));

{ Retrieve the next occurrence of the search string. }
FoundStr := StrPos(PChar(FoundStr), PChar(FindString));

until FoundStr = nil;
{ Add the file’s name to the list box }
lbFilesFound.Items.Add(SearchRec.Name +

‘ - ‘+IntToStr(WordCount));
end;
{ Retrieve the next file on which to perform the search }
RetVal := FindNext(SearchRec);

finally
MemMapFile.Free; { Free the memory mapped file instance }

end;
end;

finally
FindClose(SearchRec);

end;
end;

procedure TMainForm.lbFilesFoundClick(Sender: TObject);
var
FName: String;

Working with Files

CHAPTER 12
377

12

W
O

R
K

IN
G

W
ITH

F
ILES

continues

15.65227_Ch12 11/30/99 5:56 PM Page 377

LISTING 12.12 Continued

B: Byte;
begin
with lbFilesFound do
if ItemIndex <> -1 then
begin
B := Pos(‘ ‘, Items[ItemIndex]);
FName := Copy(Items[ItemIndex], 1, B);
memFileText.Clear;
memFileText.Lines.LoadFromFile(FName);

end;
end;

procedure TMainForm.btnFindNextClick(Sender: TObject);
begin
FindDialog.FindText := edtSearchString.Text;
FindDialog.Execute;
FindDialog.Top := Top+Height;
FindDialogFind(FindDialog);

end;

procedure TMainForm.FindDialogFind(Sender: TObject);
begin
with Sender as TFindDialog do
if not SearchMemo(memFileText, FindText, Options) then
ShowMessage(‘Cannot find “‘ + FindText + ‘“.’);

end;

procedure TMainForm.edtSearchStringChange(Sender: TObject);
begin
btnSearch.Enabled := edtSearchString.Text <> EmptyStr;

end;

procedure TMainForm.memFileTextChange(Sender: TObject);
begin
btnFindNext.Enabled := memFileText.Lines.Count > 0;

end;

end.

This project performs a case-sensitive search on text files in the current directory.

btnSearchClick() contains the code that performs the actual search, determines the number of
times the specified string is found in each file, and adds the files containing the search string to
lbFilesFound.

Advanced Techniques

PART II
378

15.65227_Ch12 11/30/99 5:56 PM Page 378

It first uses a FindFirst()/FindNext() sequence of calls to find each file with a .txt exten-
sion in the current directory. Both these functions are discussed later in this chapter. The
method then uses a TMemMapFile class on the temporary file to get access to the file’s data.
This file is opened with read-only access because you won’t be modifying it. The following
lines of code perform the logic required to obtain a count of the number of times the search
string occurs in the file:

if FoundStr <> nil then
begin
repeat
inc(WordCount);
inc(FoundStr, length(FoundStr));
FoundStr := StrPos(PChar(FoundStr), PChar(FindString))

until FoundStr = nil;

Both the filename and number of occurrences of the search string in the file are added to
lbFilesFound.

When the user double-clicks a TListBox item, the file is loaded into the TMemo control, where
the user can locate each occurrence of the search string by clicking the Find Next button.

The btnFindNext() event handler initializes the FindDialog.FindText property to the string
in edtSearchString. It then invokes FindDialog.

When the user clicks the Find Next button on FindDialog, its OnFind event handler gets
invoked. This event handler is FindDialogFind(). FindDialogFind() uses the function
SearchMemo(), which is defined in the unit Search.pas.

SearchMemo() scans the text of any TCustomEdit descendant and selects that text, which
brings it into view.

Working with Files

CHAPTER 12
379

12

W
O

R
K

IN
G

W
ITH

F
ILES

NOTE

The Search.pas unit is a file that ships with Borland Delphi 1.0 as one of its demos.
We obtained permission to include this file on the CD-ROM accompanying this book
from Borland. This unit does not make use of various string-handling features
because it was designed for Delphi 1.0. We did, however, make a minor change to
allow a TMemo control to bring the caret into view, which was done automatically in
Windows 3.1. In Win32, you must pass an EM_SCROLLCARET message to the TMemo con-
trol after setting its SelStart property. Read the comments in Search.pas for further
information.

15.65227_Ch12 11/30/99 5:56 PM Page 379

Directories and Drives
You can perform several tasks that you might find useful in your applications with the drives
installed on a system and the directories on those drives. The next several sections cover some
of these tasks.

Obtaining a List of Available Drives and Drive Types
To obtain a list of available drives on your system, you use the GetDriveType() Win32 API
function. This function takes a PChar parameter and returns an integer value representing one
of the drive types specified in Table 12.6.

TABLE 12.6 GetDriveType() Return Values

Return Value Meaning

0 Cannot determine the drive type.

1 Root directory does not exist.

DRIVE_REMOVABLE Drive is removable.

DRIVE_FIXED Drive is not removable.

DRIVE_REMOTE Drive is a remote (network) drive.

DRIVE_CDROM Drive is a CD-ROM drive.

DRIVE_RAMDISK Drive is a RAM disk.

Listing 12.13 illustrates how you would use the GetDriveType() function.

LISTING 12.13 Use of the GetDriveType() Function

procedure TMainForm.btnGetDriveTypesClick(Sender: TObject);
var
i: Integer;
C: String;
DType: Integer;
DriveString: String;

begin
{ Loop from A..Z to determine available drives }
for i := 65 to 90 do
begin
C := chr(i)+’:\’; // Format a string to represent the root directory.
{ Call the GetDriveType() function which returns an integer
value representing one of the types shown in the case statement
below }

DType := GetDriveType(PChar(C));

Advanced Techniques

PART II
380

15.65227_Ch12 11/30/99 5:56 PM Page 380

{ Based on the drive type returned, format a string to add to
the listbox displaying the various drive types. }

case DType of
0: DriveString := C+’ The drive type cannot be determined.’;
1: DriveString := C+’ The root directory does not exist.’;
DRIVE_REMOVABLE: DriveString :=

C+’ The drive can be removed from the drive.’;
DRIVE_FIXED: DriveString :=

C+’ The disk cannot be removed from the drive.’;
DRIVE_REMOTE: DriveString :=

C+’ The drive is a remote (network) drive.’;
DRIVE_CDROM: DriveString := C+’ The drive is a CD-ROM drive.’;
DRIVE_RAMDISK: DriveString := C+’ The drive is a RAM disk.’;

end;
{ Only add drive types that can be determined. }
if not ((DType = 0) or (DType = 1)) then
lbDrives.Items.AddObject(DriveString, Pointer(i));

end;

end;

Listing 12.13 is a simple routine that loops through all characters in the alphabet and passes
them to the GetDriveType() function as root directories to determine whether they are valid
drive types. If so, GetDriveType() will return which type of drive they are, which is deter-
mined by the case statement. A descriptive string is created and added to a list box along with
the number representing the drive letter in the list box’s Objects array. Only those drives that
are valid are added to the list box. By the way, Delphi 5 does come with a TDriveComboBox
component that enables you to select a drive. You’ll find this on the Win 3.1 page of the
Component Palette.

Obtaining Drive Information
In addition to determining the available drives and their types, you can obtain useful informa-
tion on a particular drive. This information includes the following:

• Sectors per cluster

• Bytes per sector

• Number of free clusters

• Total number of clusters

• Total bytes of free disk space

• Total bytes of disk size

Working with Files

CHAPTER 12
381

12

W
O

R
K

IN
G

W
ITH

F
ILES

15.65227_Ch12 11/30/99 5:56 PM Page 381

The first four items can be obtained by calling the GetDiskFreeSpace() Win32 API function.
The last two items can be calculated from the information provided by GetDiskFreeSpace().
Listing 12.14 illustrates how you would use GetDiskFreeSpace().

LISTING 12.14 Use of the GetDiskFreeSpace() Function

procedure TMainForm.lbDrivesClick(Sender: TObject);
var
RootPath: String; // Holds the drive root path
SectorsPerCluster: DWord; // Sectors per cluster
BytesPerSector: DWord; // Bytes per sector
NumFreeClusters: DWord; // Number of free clusters
TotalClusters: DWord; // Total clusters
DriveByte: Byte; // Drive byte value
FreeSpace: Int64; // Free space on drive
TotalSpace: Int64; // Total drive space.
DriveNum: Integer; // Drive number 1 = A, 2 = B, etc.

begin
with lbDrives do
begin
{ Convert the ascii value for the drive letter to a valid drive number:

1 = A, 2 = B, etc. by subtracting 64 from the ascii value. }
DriveByte := Integer(Items.Objects[ItemIndex])-64;
{ First create the root path string }
RootPath := chr(Integer(Items.Objects[ItemIndex]))+’:\’;
{ Call GetDiskFreeSpace to obtain the drive information }
if GetDiskFreeSpace(PChar(RootPath), SectorsPerCluster,
BytesPerSector, NumFreeClusters, TotalClusters) then

begin
{ If this function is successful, then update the labels to
display the disk information. }

lblSectPerCluster.Caption := Format(‘%.0n’, [SectorsPerCluster*1.0]);
lblBytesPerSector.Caption := Format(‘%.0n’, [BytesPerSector*1.0]);
lblNumFreeClust.Caption := Format(‘%.0n’, [NumFreeClusters*1.0]);
lblTotalClusters.Caption := Format(‘%.0n’, [TotalClusters*1.0]);
// Obtain the available disk space
FreeSpace := DiskFree(DriveByte);
TotalSpace := DiskSize(DriveByte);
lblFreeSpace.Caption := Format(‘%.0n’, [FreeSpace*1.0]);
{ Calculate the total disk space }
lblTotalDiskSpace.Caption := Format(‘%.0n’, [TotalSpace*1.0]);

end
else begin
{ Set labels to display nothing }

Advanced Techniques

PART II
382

15.65227_Ch12 11/30/99 5:56 PM Page 382

lblSectPerCluster.Caption := ‘X’;
lblBytesPerSector.Caption := ‘X’;
lblNumFreeClust.Caption := ‘X’;
lblTotalClusters.Caption := ‘X’;
lblFreeSpace.Caption := ‘X’;
lblTotalDiskSpace.Caption := ‘X’;
ShowMessage(‘Cannot get disk info’);

end;
end;

end;

Listing 12.14 is the OnClick event handler for a list box. In fact, a sample project illustrating
both the GetDriveType() and GetDiskFreeSpace() functions exists on the CD as
DrvInfo.dpr.

In Listing 12.14, when the user clicks one of the available items in lbDrives, a string repre-
senting the root directory for that drive is created and passed to the GetDiskFreeSpace() func-
tion. If the function is successful in determining the drive information, various labels on the
form are updated to reflect that information. An example of the form for the sample project
just mentioned is shown in Figure 12.3.

Note that you don’t use the values returned from GetDiskFreeSpace() to determine the drive’s
size or its free space. Instead, you use the DiskFree() and DiskSize() functions that are
defined in SysUtils.pas. The reason for this is that GetDiskFreeSpace() is flawed in
Windows 95 in that it does not report drive sizes larger then 2GB, and it reports altered sector
sizes for drives larger then 1GB. The DiskSize() and DiskFree() functions use a new Win32
API to obtain the information if it’s available from the operating system.

Working with Files

CHAPTER 12
383

12

W
O

R
K

IN
G

W
ITH

F
ILES

FIGURE 12.3
The main form showing drive information for available drives.

15.65227_Ch12 11/30/99 5:56 PM Page 383

Obtaining the Location of the Windows Directory
To obtain the location of the Windows directory, you must use the GetWindowsDirectory()
Win32 API function. This function is defined as follows:

function GetWindowsDirectory(lpBuffer: PChar; uSize: UINT): UINT;

The first parameter is a null-terminated string buffer that will hold the Windows directory loca-
tion. The second parameter indicates the size of the buffer. The following code fragment illus-
trates how you would use this function:

var
WDir: String;

begin
SetLength(WDir, 144);
if GetWindowsDirectory(PChar(WDir), 144) <> 0 then
begin
SetLength(WDir, StrLen(PChar(WDir)));
ShowMessage(WDir);

end
else
RaiseLastWin32Error;

end;

Notice that because we used a long-string variable, we were able to typecast it as a PChar type.
The GetWindowsDirectory() function returns an integer value representing the length of the
directory path. Otherwise, it returns zero, indicating that an error occurred, in which case you
must call RaiseLastWin32Error to determine the cause.

Advanced Techniques

PART II
384

NOTE

You’ll notice in the preceding code that we added the following line after the call to
GetWindowsDirectory():

SetLength(WDir, StrLen(PChar(WDir)));

Whenever you pass a long string to a function by first typecasting it as a PChar,
Delphi doesn’t know that the string has been manipulated and therefore cannot
update its length information. You must explicitly do this by using the technique
shown, which uses StrLen() to search for the null-terminator to determine the
string’s length. It then resizes the string through SetLength().

Obtaining the Location of the System Directory
You can also obtain the location of the system directory by calling the GetSystemDirectory()
Win32 API function. GetSystemDirectory() works just like GetWindowsDirectory() except

15.65227_Ch12 11/30/99 5:56 PM Page 384

that it returns the full path to the Windows system directory as opposed to the Windows direc-
tory. The following code fragment illustrates how you would use this function:

var
SDir: String;

begin
SetLength(SDir, 144);
if GetSystemDirectory(PChar(SDir), 144) <> 0 then
begin
SetLength(SDir, StrLen(PChar(SDir)));
ShowMessage(SDir);

end
else
RaiseLastWin32Error;

end;

The return value of this function represents the same values from the GetWindowsDirectory()
function.

Obtaining the Name of the Current Directory
Often, you need to obtain the current directory (that is, the directory from which your applica-
tion was executed). To do this, you call the GetCurrentDirectory() Win32 API function. If
you guess that the GetCurrentDirectory() operates just like the last two functions mentioned,
you’re absolutely right (well, sort of). There’s one slight catch—the parameters are reversed.
The following code fragment illustrates the use of this function:

var
CDir: String;

begin
SetLength(CDir, 144);
if GetCurrentDirectory(144, PChar(CDir)) <> 0 then
begin
SetLength(CDir, StrLen(PChar(CDir)));
ShowMessage(CDir);

end
else
RaiseLastWin32Error;

end;

Working with Files

CHAPTER 12
385

12

W
O

R
K

IN
G

W
ITH

F
ILES

NOTE

Delphi provides the functions CurDir() and ChDir() in the System unit as well as the
GetCurrentDir() and SetCurrentDir() functions in SysUtils.pas.

15.65227_Ch12 11/30/99 5:56 PM Page 385

TABLE 12.7 Delphi File/Directory Information Function

Function Result of Passing “C:\Delphi\Bin\Project.exe”

ExtractFileDir() C:\Delphi\Bin

ExtractFileDrive() C:

ExtractFileExt() .exe

ExtractFileName() Project1.exe

ExtractFilePath() C:\Delphi\Bin\

Searching for a File Across Directories
You might at some time need to search for or perform some process on files, given a file mask
across a directory and its subdirectories. Listing 12.15 illustrates how you can do this using a
procedure that gets called recursively so that the subdirectories can be searched as well as the
current directory. This demo exists on the CD as DirSrch.dpr.

Advanced Techniques

PART II
386

NOTE

Delphi comes with its own set of routines to obtain directory information on a given
file. For example, the TApplication.ExeName property holds the full path and file-
name for the running process. Assuming that this parameter holds the value
“C:\Delphi\Bin\Project.exe”, Table 12.7 shows the values returned from the vari-
ous Delphi functions when passing the TApplication.ExeName property.

NOTE

You can use the Win32 API function SearchPath() to search across a specified direc-
tory, the system directories, directories in the environment variable PATH, or a semi-
colon-delimited list of directories. This function doesn’t search across subdirectories
of a given directory, however.

LISTING 12.15 Example of Searching Across Directories to Perform a File Search

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,

15.65227_Ch12 11/30/99 5:56 PM Page 386

Forms, Dialogs, StdCtrls, FileCtrl, Grids, Outline, DirOutln;

type
TMainForm = class(TForm)
dcbDrives: TDriveComboBox;
edtFileMask: TEdit;
lblFileMask: TLabel;
btnSearchForFiles: TButton;
lbFiles: TListBox;
dolDirectories: TDirectoryOutline;
procedure btnSearchForFilesClick(Sender: TObject);
procedure dcbDrivesChange(Sender: TObject);

private
FFileName: String;
function GetDirectoryName(Dir: String): String;
procedure FindFiles(APath: String);

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

function TMainForm.GetDirectoryName(Dir: String): String;
{ This function formats the directory name so that it is a valid
directory containing the back-slash (\) as the last character. }

begin
if Dir[Length(Dir)]<> ‘\’ then
Result := Dir+’\’

else
Result := Dir;

end;

procedure TMainForm.FindFiles(APath: String);
{ This is a procedure which is called recursively so that it finds the
file with a specified mask through the current directory and its
sub-directories. }

var
FSearchRec,
DSearchRec: TSearchRec;
FindResult: integer;

function IsDirNotation(ADirName: String): Boolean;
begin

Working with Files

CHAPTER 12
387

12

W
O

R
K

IN
G

W
ITH

F
ILES

continues

15.65227_Ch12 11/30/99 5:56 PM Page 387

LISTING 12.15 Continued

Result := (ADirName = ‘.’) or (ADirName = ‘..’);
end;

begin
APath := GetDirectoryName(APath); // Obtain a valid directory name
{ Find the first occurrence of the specified file name }
FindResult := FindFirst(APath+FFileName,faAnyFile+faHidden+

faSysFile+faReadOnly,FSearchRec);
try
{ Continue to search for the files according to the specified
mask. If found, add the files and their paths to the listbox.}

while FindResult = 0 do
begin
lbFiles.Items.Add(LowerCase(APath+FSearchRec.Name));
FindResult := FindNext(FSearchRec);

end;

{ Now search the sub-directories of this current directory. Do this
by using FindFirst to loop through each subdirectory, then call
FindFiles (this function) again. This recursive process will
continue until all sub-directories have been searched. }

FindResult := FindFirst(APath+’*.*’, faDirectory, DSearchRec);

while FindResult = 0 do
begin
if ((DSearchRec.Attr and faDirectory) = faDirectory) and not
IsDirNotation(DSearchRec.Name) then
FindFiles(APath+DSearchRec.Name); // Recursion here

FindResult := FindNext(DSearchRec);
end;

finally
FindClose(FSearchRec);

end;
end;

procedure TMainForm.btnSearchForFilesClick(Sender: TObject);
{ This method starts the searching process. It first changes the cursor
to an hourglass since the process may take awhile. It then clears the
listbox and calls the FindFiles() function which will be called
recursively to search through sub-directories }

begin
Screen.Cursor := crHourGlass;
try
lbFiles.Items.Clear;
FFileName := edtFileMask.Text;
FindFiles(dolDirectories.Directory);

Advanced Techniques

PART II
388

15.65227_Ch12 11/30/99 5:56 PM Page 388

finally
Screen.Cursor := crDefault;

end;
end;

procedure TMainForm.dcbDrivesChange(Sender: TObject);
begin
dolDirectories.Drive := dcbDrives.Drive;

end;

end.

In the FindFiles() method, the first while..do construct searches for files in the current
directory specified by the APath parameter and then adds the files and their paths to lbFiles.
The second while..do construct finds the subdirectories in the current directory and appends
them to the APath variable. The FindFiles() method then passes APath, now with a subdirec-
tory name, to itself, resulting in a recursive call. This process continues until all subdirectories
have been searched through.

Figure 12.4 shows the results of a file search for all PAS files in the Delphi 5 Code directory.

Working with Files

CHAPTER 12
389

12

W
O

R
K

IN
G

W
ITH

F
ILES

FIGURE 12.4
The result of a file search across directories.

Two Object Pascal structures and two functions merit mention here. First, we’ll talk about the
TSearchRec structure and the FindFirst() and FindNext() functions. Then, we’ll discuss the
TWin32FindData structure.

Copying and Deleting a Directory Tree
Before Win32, you were required to parse a directory tree and use the
FindFirst()/FindNext() pairs to copy a directory to another location. Now you can use the

15.65227_Ch12 11/30/99 5:56 PM Page 389

ShFileOperation() Win32 function, which greatly simplifies the process. The following code
illustrates a function that uses the ShFileOperation() API to perform a directory copy opera-
tion. This function is well documented in the Win32 online help, so we won’t repeat that infor-
mation here. Instead, we suggest that you give it a readthrough. Note the inclusion of the
ShellAPI unit in the uses clause. Here’s the code:

uses
ShellAPI;

procedure CopyDirectoryTree(AHandle: THandle; AFromDir, AToDir: String);
var
SHFileOpStruct: TSHFileOpStruct;

Begin
with SHFileOpStruct do
begin
Wnd := AHandle;
wFunc := FO_COPY;
pFrom := PChar(AFromDir);
pTo := PChar(AToDir);
fFlags := FOF_NOCONFIRMATION or FOF_RENAMEONCOLLISION;
fAnyOperationsAborted := False;
hNameMappings := nil;
lpszProgressTitle := nil;

end;
ShFileOperation(SHFileOpStruct);

end;

The ShFileOperation() function can also be used to move a directory to the Recycle Bin, as
illustrated here:

uses ShellAPI;

procedure ToRecycle(AHandle: THandle; AFileName: STring);
var
SHFileOpStruct: TSHFileOpStruct;

begin
with SHFileOpStruct do
begin
Wnd := AHandle;
wFunc := FO_DELETE;
pFrom := PChar(AFileName);
fFlags := FOF_ALLOWUNDO;

end;
SHFileOperation(SHFileOpStruct);

end;

We will discuss the SHFileOperation() in greater detail later in this chapter.

Advanced Techniques

PART II
390

15.65227_Ch12 11/30/99 5:56 PM Page 390

The TSearchRec Record
The TSearchRec record defines data returned by the FindFirst() and FindNext() functions.
Object Pascal defines this record as the following:

TSearchRec = record
Time: Integer;
Size: Integer;
Attr: Integer;
Name: TFileName;
ExcludeAttr: Integer;
FindHandle: THandle;
FindData: TWin32FindData;

end;

TSearchRec’s fields are modified by the aforementioned functions when the file is found.

The Time field contains the file time of creation or modification. The Size field contains the
size of the file in bytes. The Name field holds the name of the file. The Attr field contains one
or more of the file attributes shown in Table 12.8.

TABLE 12.8 File Attributes

Attribute Value Description

faReadOnly $01 Read-only file

faHidden $02 Hidden file

faSysFile $04 System file

faVolumeID $08 Volume ID file

faDirectory $10 Directory

faArchive $20 Archive file

faAnyFile $3F Any file

The FindHandle and ExcludeAttr fields are used internally by FindFirst() and FindNext().
You need not concern yourself with these fields.

Both FindFirst() and FindNext() take a path as a parameter that can contain wildcard char-
acters—for example, C:\DELPHI 5\BIN*.EXE means all files with an .EXE extension in the
C:\DELPHI 5\BIN\ directory. The Attr parameter specifies the file attributes on which to
search. Suppose that you want to search on system files only; you would invoke FindFirst()
and/or FindNext(), as in this code:

FindFirst(Path, faSysFile, SearchRec);

Working with Files

CHAPTER 12
391

12

W
O

R
K

IN
G

W
ITH

F
ILES

15.65227_Ch12 11/30/99 5:56 PM Page 391

The TWin32FindData Record
The TWin32FindData record contains information about the found file or subdirectory. This
record is defined as follows:

TWin32FindData = record
dwFileAttributes: DWORD;
ftCreationTime: TFileTime;
ftLastAccessTime: TFileTime;
ftLastWriteTime: TFileTime;
nFileSizeHigh: DWORD;
nFileSizeLow: DWORD;
dwReserved0: DWORD;
dwReserved1: DWORD;
cFileName: array[0..MAX_PATH - 1] of AnsiChar;
cAlternateFileName: array[0..13] of AnsiChar;

end;

Table 12.9 shows the meaning of TWin32FindData’s fields.

TABLE 12.9 TWin32FindData Field Meanings

Field Meaning

dwFileAttributes The file attributes for the found file. See the online help under
WIN32_FIND_DATA for more information.

FtCreationTime The time the file was created.

FtLastAccessTime The time the file was last accessed.

FtLastWriteTime The time the file was last modified.

NFileSizeHigh The high-order DWORD of the file size in bytes. This value is zero
unless the file is larger than MAXDWORD.

NFileSizeLow The low-order DWORD of the file size in bytes.

DwReserved0 Not currently used (reserved).

DwReserved1 Not currently used (reserved).

CFileName Null-terminated filename.

CAlternateFileName An 8.3 formatted name, a truncation of the long filename.

Getting File Version Information
It’s possible to extract version information from EXE and DLL files that contain the version
information resource. In the following sections, you create a class that encapsulates the func-
tionality to extract the version information resource, and you use that class in a sample project.

Advanced Techniques

PART II
392

15.65227_Ch12 11/30/99 5:56 PM Page 392

Defining the TVerInfoRes Class
The TVerInfoRes class encapsulates three Win32 API functions for extracting version informa-
tion from files that contain version information. These functions are
GetFileVersionInfoSize(), GetFileVersionInfo() and VerQueryValue(). Version informa-
tion on a file may include data such as company name, file description, version, and comments,
just to name a few. The data that TVerInfoRes retrieves is as follows:

• Company name. The name of the company that created the file

• Comments. Any additional comments that may be attached to the file

• File description. A description of the file

• File version. A version number

• Internal name. An internal name as defined by the company generating the file

• Legal copyright. All copyright notices that apply to the file

• Legal trademarks. Legal trademarks that apply to the file

• Original filename. The original filename (if any)

The unit that defines the TVerInfoRes class, VERINFO.PAS, is shown in Listing 12.16.

LISTING 12.16 The Source Code for VERINFO.PAS, the TVerInfoRes Class Definition

unit VerInfo;

interface

uses SysUtils, WinTypes, Dialogs, Classes;

type
{ define a generic exception class for version info, and an exception
to indicate that no version info is available. }

EVerInfoError = class(Exception);
ENoVerInfoError = class(Exception);
eNoFixeVerInfo = class(Exception);

// define enum type representing different types of version info
TVerInfoType =
(viCompanyName,
viFileDescription,
viFileVersion,
viInternalName,
viLegalCopyright,
viLegalTrademarks,
viOriginalFilename,

Working with Files

CHAPTER 12
393

12

W
O

R
K

IN
G

W
ITH

F
ILES

continues

15.65227_Ch12 11/30/99 5:56 PM Page 393

LISTING 12.16 Continued

viProductName,
viProductVersion,
viComments);

const

// define an array constant of strings representing the pre-defined
// version information keys.
VerNameArray: array[viCompanyName..viComments] of String[20] =
(‘CompanyName’,
‘FileDescription’,
‘FileVersion’,
‘InternalName’,
‘LegalCopyright’,
‘LegalTrademarks’,
‘OriginalFilename’,
‘ProductName’,
‘ProductVersion’,
‘Comments’);

type

// Define the version info class
TVerInfoRes = class
private
Handle : DWord;
Size : Integer;
RezBuffer : String;
TransTable : PLongint;
FixedFileInfoBuf : PVSFixedFileInfo;
FFileFlags : TStringList;
FFileName : String;
procedure FillFixedFileInfoBuf;
procedure FillFileVersionInfo;
procedure FillFileMaskInfo;

protected
function GetFileVersion : String;
function GetProductVersion: String;
function GetFileOS : String;

public
constructor Create(AFileName: String);
destructor Destroy; override;
function GetPreDefKeyString(AVerKind: TVerInfoType): String;
function GetUserDefKeyString(AKey: String): String;
property FileVersion : String read GetFileVersion;

Advanced Techniques

PART II
394

15.65227_Ch12 11/30/99 5:56 PM Page 394

property ProductVersion : String read GetProductVersion;
property FileFlags : TStringList read FFileFlags;
property FileOS : String read GetFileOS;

end;

implementation

uses Windows;

const
// strings that must be fed to VerQueryValue() function
SFInfo = ‘\StringFileInfo\’;
VerTranslation: PChar = ‘\VarFileInfo\Translation’;
FormatStr = ‘%s%.4x%.4x\%s%s’;

constructor TVerInfoRes.Create(AFileName: String);
begin
FFileName := aFileName;
FFileFlags := TStringList.Create;
// Get the file version information
FillFileVersionInfo;
//Get the fixed file info
FillFixedFileInfoBuf;
// Get the file mask values
FillFileMaskInfo;

end;

destructor TVerInfoRes.Destroy;
begin
FFileFlags.Free;

end;

procedure TVerInfoRes.FillFileVersionInfo;
var
SBSize: UInt;

begin
// Determine size of version information
Size := GetFileVersionInfoSize(PChar(FFileName), Handle);
if Size <= 0 then { raise exception if size <= 0 }
raise ENoVerInfoError.Create(‘No Version Info Available.’);

// Set the length accordingly
SetLength(RezBuffer, Size);
// Fill the buffer with version information, raise exception on error

Working with Files

CHAPTER 12
395

12

W
O

R
K

IN
G

W
ITH

F
ILES

continues

15.65227_Ch12 11/30/99 5:56 PM Page 395

LISTING 12.16 Continued

if not GetFileVersionInfo(PChar(FFileName), Handle, Size,
➥PChar(RezBuffer)) then

raise EVerInfoError.Create(‘Cannot obtain version info.’);

// Get translation info, raise exception on error
if not VerQueryValue(PChar(RezBuffer), VerTranslation, pointer(TransTable),
SBSize) then
raise EVerInfoError.Create(‘No language info.’);

end;

procedure TVerInfoRes.FillFixedFileInfoBuf;
var
Size: Longint;

begin
if VerQueryValue(PChar(RezBuffer), ‘\’, pointer(FixedFileInfoBuf),

➥Size) then begin
if Size < SizeOf(TVSFixedFileInfo) then

raise eNoFixeVerInfo.Create(‘No fixed file info’);
end
else
raise eNoFixeVerInfo.Create(‘No fixed file info’)

end;

procedure TVerInfoRes.FillFileMaskInfo;
begin
with FixedFileInfoBuf^ do begin
if (dwFileFlagsMask and dwFileFlags and VS_FF_PRERELEASE) <> 0then
FFileFlags.Add(‘Pre-release’);

if (dwFileFlagsMask and dwFileFlags and VS_FF_PRIVATEBUILD) <> 0 then
FFileFlags.Add(‘Private build’);

if (dwFileFlagsMask and dwFileFlags and VS_FF_SPECIALBUILD) <> 0 then
FFileFlags.Add(‘Special build’);

if (dwFileFlagsMask and dwFileFlags and VS_FF_DEBUG) <> 0 then
FFileFlags.Add(‘Debug’);

end;
end;

function TVerInfoRes.GetPreDefKeyString(AVerKind: TVerInfoType): String;
var
P: PChar;
S: UInt;

begin
Result := Format(FormatStr, [SfInfo, LoWord(TransTable^),HiWord(TransTable^),
VerNameArray[aVerKind], #0]);

// get and return version query info, return empty string on error

Advanced Techniques

PART II
396

15.65227_Ch12 11/30/99 5:56 PM Page 396

if VerQueryValue(PChar(RezBuffer), @Result[1], Pointer(P), S) then
Result := StrPas(P)

else
Result := ‘’;

end;

function TVerInfoRes.GetUserDefKeyString(AKey: String): String;
var
P: Pchar;
S: UInt;

begin
Result := Format(FormatStr, [SfInfo, LoWord(TransTable^),HiWord(TransTable^),
aKey, #0]);

// get and return version query info, return empty string on error
if VerQueryValue(PChar(RezBuffer), @Result[1], Pointer(P), S) then
Result := StrPas(P)

else
Result := ‘’;

end;

function VersionString(Ms, Ls: Longint): String;
begin
Result := Format(‘%d.%d.%d.%d’, [HIWORD(Ms), LOWORD(Ms),

HIWORD(Ls), LOWORD(Ls)]);
end;

function TVerInfoRes.GetFileVersion: String;
begin
with FixedFileInfoBuf^ do
Result := VersionString(dwFileVersionMS, dwFileVersionLS);

end;

function TVerInfoRes.GetProductVersion: String;
begin
with FixedFileInfoBuf^ do
Result := VersionString(dwProductVersionMS, dwProductVersionLS);

end;

function TVerInfoRes.GetFileOS: String;
begin
with FixedFileInfoBuf^ do
case dwFileOS of
VOS_UNKNOWN: // Same as VOS__BASE
Result := ‘Unknown’;

VOS_DOS:

Working with Files

CHAPTER 12
397

12

W
O

R
K

IN
G

W
ITH

F
ILES

continues

15.65227_Ch12 11/30/99 5:56 PM Page 397

LISTING 12.16 Continued

Result := ‘Designed for MS-DOS’;
VOS_OS216:
Result := ‘Designed for 16-bit OS/2’;

VOS_OS232:
Result := ‘Designed for 32-bit OS/2’;

VOS_NT:
Result := ‘Designed for Windows NT’;

VOS__WINDOWS16:
Result := ‘Designed for 16-bit Windows’;

VOS__PM16:
Result := ‘Designed for 16-bit PM’;

VOS__PM32:
Result := ‘Designed for 32-bit PM’;

VOS__WINDOWS32:
Result := ‘Designed for 32-bit Windows’;

VOS_DOS_WINDOWS16:
Result := ‘Designed for 16-bit Windows, running on MS-DOS’;

VOS_DOS_WINDOWS32:
Result := ‘Designed for Win32 API, running on MS-DOS’;

VOS_OS216_PM16:
Result := ‘Designed for 16-bit PM, running on 16-bit OS/2’;

VOS_OS232_PM32:
Result := ‘Designed for 32-bit PM, running on 32-bit OS/2’;

VOS_NT_WINDOWS32:
Result := ‘Designed for Win32 API, running on Windows/NT’;

else
Result := ‘Unknown’;

end;
end;

end.

TVerInfoRes contains the required fields and encapsulates the appropriate Win32 API routines
to obtain version information from any file. The file from which the version information is to
be obtained is specified by passing the filename as AFileName to the TVerInfoRes.Create()
constructor. This filename is assigned to the field FFileName, which is used in another routine
to actually extract the version information. The constructor then calls three methods,
FillFileVersionInfo(), FillFixedFileInfoBuf(), and FillFileMaskInfo().

Advanced Techniques

PART II
398

15.65227_Ch12 11/30/99 5:56 PM Page 398

The FillFileVersionInfo() Method
The FillFileVersionInfo() method performs the initial work of loading the version informa-
tion before you can start to examine the version information specifics. This method first deter-
mines whether the file even has version information and, if so, its size. The size is necessary to
determine how much memory to allocate to hold this information when it’s retrieved. The
Win32 API function GetFileVersionInfoSize() determines the size of the version informa-
tion contained in a file. This function is declared as follows:

function GetFileVersionInfoSize(lptstrFilename: PChar;
var lpdwHandle: DWORD): DWORD; stdcall;

The lptstrFileName parameter refers to the file from which the version information is to be
obtained. The lpdwHandle parameter is a DWORD variable that’s set to zero when the function is
called. As far as we can determine, this variable serves no other purpose.

FillFileVersionInfo() passes FFileName to GetFileVersionInfoSize(); if the return value,
stored in the Size variable, is greater than zero, a buffer, RezBuffer, is allocated to store Size
bytes.

After memory for RezBuffer has been allocated, it’s passed to the function
GetFileVersionInfo(), which actually fills RezBuffer with the version information.
GetFileVersionInfo() is declared as follows:

function GetFileVersionInfo(lptstrFilename: PChar; dwHandle,
dwLen: DWORD; lpData: Pointer): BOOL; stdcall;

The lptstrFileName parameter takes the filename of the file, FFileName. DwHandle is ignored.
DwLen is the return value from GetFileVersionInfoSize(), which was stored in the variable
Size. LpData is a pointer to the buffer that holds the version information. If
GetFileVersionInfo() does not succeed in retrieving the version information, it returns
False; otherwise, True is returned.

Finally, the FillFileVersionInfo() method calls the API function VerQueryValue(), which
is used to return selected version information from the version information resource. In this
instance, VerQueryValue() is called to retrieve a pointer to the language and character set
identifier array. This array is used in subsequent calls to VerQueryValue() to access version
information in the language-specific StringTable in the version information resource.

VerQueryValue() is declared as follows:

function VerQueryValue(pBlock: Pointer; lpSubBlock: PChar;
var lplpBuffer: Pointer; var puLen: UINT): BOOL; stdcall;

The parameter pBlock refers to the lpData parameter, which was passed to
GetFileVersionInfo(). LpSubBlock is a null-terminated string that specifies which version

Working with Files

CHAPTER 12
399

12

W
O

R
K

IN
G

W
ITH

F
ILES

15.65227_Ch12 11/30/99 5:56 PM Page 399

information value to retrieve. You might take a look at the online help for VerQueryValue(),
which describes the various strings that can be passed to VerQueryValue(). In the case of the
preceding example, the string “\VarFileInfo\Translation” is passed as the lpSubBlock
parameter to retrieve the language and character set translation information. The lplpBuffer
parameter points to the buffer that holds the version information value. The puLen parameter
contains the length of the data retrieved.

The FillFixedFileInfoBuf() Method
The FillFixedFileInfoBuf() method illustrates how to use VerQueryValue() to obtain a
pointer to the VS_FIXEDFILEINFO structure, which contains the version information about the
file. This is done by passing the string “\” as the lpSubBlock parameter to the
VerQueryValue() function. This pointer is stored in the TVerInfoRes.FixedFileInfoBuf field.

The FillFileMaskInfo() Method
The FillFileMaskInfo() method illustrates how to obtain module attributes. This is handled
by performing the appropriate bitmask operation on the dwFileFlagsMask and dwFileFlags
fields of FixedFileInfoBuf as well as on the specific flag being evaluated. We won’t get into
the specifics as to the meaning of these flags. If you’re interested, the online help for the
Version Info page of the Project Options dialog box explains this in detail.

The GetPreDefKeyString() and GetUserDefKeyString() Methods
The GetPreDefKeyString() and GetUserDefKeyString() methods illustrate how to use the
VerQueryValue() function to retrieve the version information strings that are entered into the
Key table on the Version Info page of the Project Options dialog box. By default, the Win32
API provides 10 predefined strings that we’ve placed into the VerNameArray constant. To
retrieve a specific string, you must pass as the lpSubBlock parameter of VerQueryValue() the
string “\StringFileInfo\lang-charset\string-name”. The lang-charset string refers to
the language and character set identifier previously retrieved in the FillFileVersionInfo()
method and referred to by the TransTable field. The string-name string refers to one of the
predefined string constants in VerNameArray. GetPreDefKeyString() handles retrieving the
predefined version information strings.

GetUserDefKeyString() is similar in functionality to GetPreDefKeyString() except that the
key string must be passed in as a parameter. The value of the lpSubBlock string is constructed
in this method, using the AKey parameter as the key.

Getting the Version Numbers
The GetFileVersion() and GetProductVersion() methods illustrate how to obtain the file
and product version numbers for a file.

Advanced Techniques

PART II
400

15.65227_Ch12 11/30/99 5:56 PM Page 400

The FixedFileInfoBuf structure contains fields that refer to the version number of the file
itself as well as the version number of the product with which the file may be distributed.
These version numbers are stored in a 64-bit number. The most significant and least significant
32 bits are retrieved separately by using different fields.

The file’s binary version number is stored in the fields dwFileVersionMS and
dwFileVersionLS. The version number for the product with which a file is distributed is stored
in the dwProductVersionMS and dwProductVersionLS fields.

The GetFileVersion() and GetProductVersion() methods return a string representing the
version number for a given file. They both use a helper function, VersionString(), to properly
format the string.

Getting the Operating System Information
The GetFileOS() method illustrates how to determine for which operating system the file was
designed. This is accomplished by examining the dwFileOS field of the FixedFileInfoBuf
structure. For more information on the meaning of the various values that can be assigned to
dwFileOS, examine the online API help for VS_FIXEDFILEINFO.

Using the TVerInfoRes Class
We created the project VerInfo.dpr to illustrate the use of the TVerInfoRes class. Listing
12.17 shows the source for this project’s main form.

LISTING 12.17 The Source Code for the Version Information Demo Main Form

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, FileCtrl, StdCtrls, verinfo, Grids, Outline, DirOutln,
ComCtrls;

type
TMainForm = class(TForm)
lvVersionInfo: TListView;
btnClose: TButton;
procedure FormDestroy(Sender: TObject);
procedure FormShow(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure btnCloseClick(Sender: TObject);

Working with Files

CHAPTER 12
401

12

W
O

R
K

IN
G

W
ITH

F
ILES

continues

15.65227_Ch12 11/30/99 5:56 PM Page 401

LISTING 12.17 Continued

private
VerInfoRes: TVerInfoRes;

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

procedure AddListViewItem(const aCaption, aValue: String; aData: Pointer;
aLV: TListView);

// This method is used to add a TListItem to the TListView, aLV
var
NewItem: TListItem;

begin
NewItem := aLV.Items.Add;
NewItem.Caption := aCaption;
NewItem.Data := aData;
NewItem.SubItems.Add(aValue);

end;

procedure TMainForm.FormCreate(Sender: TObject);
begin
VerInfoRes := TVerInfoRes.Create(Application.ExeName);

end;

procedure TMainForm.FormDestroy(Sender: TObject);
begin
VerInfoRes.Free;

end;

procedure TMainForm.FormShow(Sender: TObject);
var
VerString: String;
i: integer;
sFFlags: String;

begin
for i := ord(viCompanyName) to ord(viComments) do begin
VerString := VerInfoRes.GetPreDefKeyString(TVerInfoType(i));
if VerString <> ‘’ then
AddListViewItem(VerNameArray[TVerInfoType(i)], VerString, nil,
lvVersionInfo);

Advanced Techniques

PART II
402

15.65227_Ch12 11/30/99 5:56 PM Page 402

end;
VerString := VerInfoRes.GetUserDefKeyString(‘Author’);
if VerString <> EmptyStr then

AddListViewItem(‘Author’, VerString, nil, lvVersionInfo);

AddListViewItem(‘File Version’, VerInfoRes.FileVersion, nil,
lvVersionInfo);

AddListViewItem(‘Product Version’, VerInfoRes.ProductVersion, nil,
lvVersionInfo);

for i := 0 to VerInfoRes.FileFlags.Count - 1 do begin
if i <> 0 then
sFFlags := SFFlags+’, ‘;

sFFlags := SFFlags+VerInfoRes.FileFlags[i];
end;
AddListViewItem(‘File Flags’,SFFlags, nil, lvVersionInfo);
AddListViewItem(‘Operating System’, VerINfoRes.FileOS, nil, lvVersionInfo);

end;

procedure TMainForm.btnCloseClick(Sender: TObject);
begin
Close;

end;

end.

The version information demo is straightforward. It simply displays the version information for
itself. Figure 12.5 shows the project running and displaying this information.

Working with Files

CHAPTER 12
403

12

W
O

R
K

IN
G

W
ITH

F
ILES

FIGURE 12.5
Version information for demo application.

15.65227_Ch12 11/30/99 5:56 PM Page 403

Using the SHFileOperation() Function
A very useful Windows API function is SHFileOperation(). This function uses a SHFILEOP-
STRUCT structure to perform copy, move, rename, or delete operations on any file system
object, such as files and directories. The Win32 API help file documents this structure well, so
we won’t repeat that information here. We will, however, show a few useful and frequently
requested techniques on using this function to copy an entire directory to another location and
to delete a file so that it’s placed into the Windows Recycle Bin.

Copying a Directory
Listing 12.18 is a procedure we wrote to copy a directory tree from one location to another.

LISTING 12.18 The CopyDirectoryTree() Procedure

procedure CopyDirectoryTree(AHandle: THandle;
const AFromDirectory, AToDirectory: String);

var
SHFileOpStruct: TSHFileOpStruct;
FromDir: PChar;
ToDir: PChar;

begin

GetMem(FromDir, Length(AFromDirectory)+2);
try
GetMem(ToDir, Length(AToDirectory)+2);
try

FillChar(FromDir^, Length(AFromDirectory)+2, 0);
FillChar(ToDir^, Length(AToDirectory)+2, 0);

StrCopy(FromDir, PChar(AFromDirectory));
StrCopy(ToDir, PChar(AToDirectory));

with SHFileOpStruct do
begin
Wnd := AHandle; // Assign the window handle
wFunc := FO_COPY; // Specify a file copy
pFrom := FromDir;
pTo := ToDir;
fFlags := FOF_NOCONFIRMATION or FOF_RENAMEONCOLLISION;
fAnyOperationsAborted := False;
hNameMappings := nil;
lpszProgressTitle := nil;
if SHFileOperation(SHFileOpStruct) <> 0 then
RaiseLastWin32Error;

Advanced Techniques

PART II
404

15.65227_Ch12 11/30/99 5:56 PM Page 404

end;
finally
FreeMem(ToDir, Length(AToDirectory)+2);

end;
finally
FreeMem(FromDir, Length(AFromDirectory)+2);

end;
end;

The CopyDirectoryTree() procedure takes three parameters. The first, AHandle, is the handle
of a dialog box owner that would display any status information about the file operation. The
remaining two parameters are the source and destination directory locations. Since Windows
API functions work with PChars, we simply copy these two locations into PChar variables after
we allocate memory for the PChars. Then, we assign these values to the pFrom and pTo mem-
bers of the SHFileOpStruct structure. Note the assignment to the wFunc member as FO_COPY.
This is what instructs SHFileOperation of the type of operation to perform. The remaining
members are explained in the online help. On the call to SHFileOperation(), the source direc-
tory would be moved to the destination specified by the AToDirectory parameter.

Moving Files and Directories to the Recycle Bin.
Listing 12.19 shows a similar technique to that preceding listing, except that this shows how
you might move a file to the Windows Recycle Bin.

LISTING 12.19 The ToRecycle() Procedure

procedure ToRecycle(AHandle: THandle; const ADirName: String);
var
SHFileOpStruct: TSHFileOpStruct;
DirName: PChar;
BufferSize: Cardinal;

begin
BufferSize := Length(ADirName) +1 +1;
GetMem(DirName, BufferSize);
try
FillChar(DirName^, BufferSize, 0);
StrCopy(DirName, PChar(ADirName));

with SHFileOpStruct do
begin
Wnd := AHandle;
wFunc := FO_DELETE;
pFrom := DirName;
pTo := nil;

Working with Files

CHAPTER 12
405

12

W
O

R
K

IN
G

W
ITH

F
ILES

continues

15.65227_Ch12 11/30/99 5:56 PM Page 405

LISTING 12.19 Continued

fFlags := FOF_ALLOWUNDO;

fAnyOperationsAborted := False;
hNameMappings := nil;
lpszProgressTitle := nil;

end;

if SHFileOperation(SHFileOpStruct) <> 0 then
RaiseLastWin32Error;

finally
FreeMem(DirName, BufferSize);

end;
end;

You’ll notice that there’s not much of a difference between this procedure and the previous
except that the wFunc member is assigned FO_DELETE and the pTo member is set to nil. The
pTo member is ignored by the SHFileOperation() function on a delete operation. Also,
because the FOF_ALLOWUNDO flag is added to the fFlags member, the function will move the
file to the Recycle Bin to allow for undoing the operation.

Examples of both of these operations are included on the CD in the SHFileOp.dpr project.

Summary
This chapter gave you a substantial amount of information on working with files, directories,
and drives. You learned how to manipulate different file types. The chapter illustrated the tech-
nique of descending from Delphi’s TFileStream class to encapsulate record-file I/O. It even
showed you how to use Win32’s memory-mapped files. You created a TMemMapFile class to
encapsulate the memory-mapped functionality. Finally, the chapter demonstrated how to
retrieve version information from a file containing such information.

Advanced Techniques

PART II
406

15.65227_Ch12 11/30/99 5:56 PM Page 406

CHAPTER

13
Hard-Core Techniques

IN THIS CHAPTER
• Advanced Application Message

Handling 408

• Preventing Multiple Application
Instances 416

• Using BASM with Delphi 421

• Using Windows Hooks 426

• Using C/C++ OBJ Files 443

• Using C++ Classes 452

• Thunking 457

• Obtaining Package Information 477

• Summary 481

16.65227_Ch13x 11/30/99 5:57 PM Page 407

There comes a time when you must step off the beaten path to accomplish a particular goal.
This chapter teaches you some advanced techniques you can use in your Delphi applications.
You get much closer to the Win32 API in this chapter than you do in most of the other chap-
ters, and you explore some things that aren’t obvious or aren’t provided under the Visual
Component Library (VCL). You learn about concepts such as window procedures, multiple
program instances, Windows hooks, and sharing Delphi and C++ code.

Advanced Application Message Handling
As discussed in Chapter 5, “Understanding Windows Messaging,” a window procedure is a
function that Windows calls whenever a particular window receives a message. Because the
Application object contains a window, it has a window procedure that’s called to receive all
the messages sent to your application. The TApplication class even comes equipped with an
OnMessage event that notifies you whenever one of these messages comes down the pike.

Well…not exactly.

TApplication.OnMessage fires only when a message is retrieved from the application’s mes-
sage queue (again, refer to Chapter 5, for a discussion of all this message terminology).
Messages found in the application queue are typically those dealing with window management
(WM_PAINT and WM_SIZE, for example) and those posted to the window by using an API func-
tion such as PostMessage(), PostAppMessage(), or BroadcastSystemMessage(). The problem
arises when other types of messages are sent directly to the window procedure by Windows or
by the SendMessage() function. When this occurs, the TApplication.OnMessage event never
happens, and there’s no way to know whether the message occurred based on this event.

Subclassing
To know when a message is sent to your application, you must replace the Application win-
dow’s procedure with your own. In your window procedure, you should do whatever process-
ing or message handling you need to do before passing the message to the original window
procedure. This process is known as subclassing a window.

You can use the SetWindowLong() Win32 API function with the GWL_WNDPROC constant to set a
new window procedure function for a window. The window procedure function itself can have
one of two formats: It can follow the API definition of a window procedure, or you can take
advantage of some Delphi helper functions and make the window procedure a special method
referred to as a window method.

Advanced Techniques

PART II
408

16.65227_Ch13x 11/30/99 5:57 PM Page 408

A Win32 API Window Procedure
An API window procedure must have the following declaration:

function AWndProc(Handle: hWnd; Msg, wParam, lParam: Longint):
Longint; stdcall;

The Handle parameter identifies the destination window, the Msg parameter is the window mes-
sage, and the wParam and lParam parameters contain additional message-specific information.
This function returns a value that depends on the message received. Note carefully that this
function must use the stdcall calling convention.

You can use the SetWindowLong() function to set the window procedure of Application’s
window, as shown here:

var
WProc: Pointer;

begin
WProc := Pointer(SetWindowLong(Application.Handle, GWL_WNDPROC,
Integer(@NewWndProc)));

After this call, WProc will hold a pointer to the old window procedure. It’s necessary to save
this value because you must pass on any messages you don’t handle yourself to the old win-
dow procedure using the CallWindowProc() API function. The following code gives you an
idea of the implementation of the window procedure:

function NewWndProc(Handle: hWnd; Msg, wParam, lParam: Longint):
Longint; stdcall;

begin
{ Check value of Msg, and perform whatever type of action you’d }
{ like depending on the value of the message. For messages you }
{don’t explicitly handle, you must pass the message information }
{on to the original window procedure as shown below: }
Result := CallWindowProc(WProc, Application.Handle, Msg, wParam,
lParam);

end;

Hard-Core Techniques

CHAPTER 13
409

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

CAUTION

A problem that can arise when you subclass the window procedure of a VCL window
is that the handle of the window can be re-created beneath you, thus causing your
application to fail. Beware of using this technique if there’s a chance the window
handle of the window you’re subclassing will be re-created. A safer technique is to
use Application.HookMainWindow(), which is shown later in this chapter.

16.65227_Ch13x 11/30/99 5:57 PM Page 409

Listing 13.1 shows the ScWndPrc.pas unit, which subclasses Application’s window procedure
to handle a user-defined message called DDGM_FOOMSG.

LISTING 13.1 ScWndPrc.pas

unit ScWndPrc;

interface

uses Forms, Messages;

const
DDGM_FOOMSG = WM_USER;

implementation

uses Windows, SysUtils, Dialogs;

var
WProc: Pointer;

function NewWndProc(Handle: hWnd; Msg, wParam, lParam: Longint): Longint;
stdcall;

{ This is a Win32 API-level window procedure. It handles the messages }
{ received by the Application window. }
begin
if Msg = DDGM_FOOMSG then
{ If it’s our user-defined message, then alert the user. }
ShowMessage(Format(‘Message seen by WndProc! Value is: $%x’, [Msg]));

{ Pass message on to old window procedure }
Result := CallWindowProc(WProc, Handle, Msg, wParam, lParam);

end;

initialization
{ Set window procedure of Application window. }
WProc := Pointer(SetWindowLong(Application.Handle, gwl_WndProc,
Integer(@NewWndProc)));

end.

Advanced Techniques

PART II
410

CAUTION

Be sure to save the old window procedure returned by GetWindowLong(). If you don’t
call the old window procedure inside your subclassed window procedure for mes-
sages that you don’t want to handle, you’re likely to crash your application, and you
might even crash the operating system.

16.65227_Ch13x 11/30/99 5:57 PM Page 410

A Delphi Window Method
Delphi provides a function called MakeObjectInstance() that bridges the gap between an API
window procedure and a Delphi method. MakeObjectInstance() enables you to create a
method of type TWndMethod to serve as the window procedure. MakeObjectInstance() is
declared in the Forms unit as follows:

function MakeObjectInstance(Method: TWndMethod): Pointer;

TWndMethod is defined in the Forms unit as follows:

type
TWndMethod = procedure(var Message: TMessage) of object;

The return value of MakeObjectInstance() is a Pointer to the address of the newly created
window procedure. This is the value you pass as the last parameter to SetWindowLong(). You
should free any window methods created with MakeObjectInstance() by using the
FreeObjectInstance() function.

As an illustration, the project called WinProc.dpr demonstrates both techniques for subclassing
the Application window procedure and its advantages over Application.OnMessage. The
main form for this project is shown in Figure 13.1.

Hard-Core Techniques

CHAPTER 13
411

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

FIGURE 13.1
WinProc’s main form.

Listing 13.2 shows the source code for Main.pas, the main unit for the WinProc project.

LISTING 13.2 The Source Code for Main.pas

unit Main;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls;

type
TMainForm = class(TForm)
SendBtn: TButton;
PostBtn: TButton;

continues

16.65227_Ch13x 11/30/99 5:57 PM Page 411

LISTING 13.2 Continued

procedure SendBtnClick(Sender: TObject);
procedure PostBtnClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure FormDestroy(Sender: TObject);

private
OldWndProc: Pointer;
WndProcPtr: Pointer;
procedure WndMethod(var Msg: TMessage);
procedure HandleAppMessage(var Msg: TMsg; var Handled: Boolean);

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

uses ScWndPrc;

procedure TMainForm.HandleAppMessage(var Msg: TMsg;
var Handled: Boolean);

{ OnMessage handler for Application object. }
begin
if Msg.Message = DDGM_FOOMSG then
{ if it’s the user-defined message, then alert the user. }
ShowMessage(Format(‘Message seen by OnMessage! Value is: $%x’,
[Msg.Message]));

end;

procedure TMainForm.WndMethod(var Msg: TMessage);
begin
if Msg.Msg = DDGM_FOOMSG then
{ if it’s the user-defined message, then alert the user. }
ShowMessage(Format(‘Message seen by WndMethod! Value is: $%x’,
[Msg.Msg]));

with Msg do
{ Pass message on to old window procedure. }
Result := CallWindowProc(OldWndProc, Application.Handle, Msg, wParam,
lParam);

end;

procedure TMainForm.SendBtnClick(Sender: TObject);
begin
SendMessage(Application.Handle, DDGM_FOOMSG, 0, 0);

Advanced Techniques

PART II
412

16.65227_Ch13x 11/30/99 5:57 PM Page 412

end;

procedure TMainForm.PostBtnClick(Sender: TObject);
begin
PostMessage(Application.Handle, DDGM_FOOMSG, 0, 0);

end;

procedure TMainForm.FormCreate(Sender: TObject);
begin
Application.OnMessage := HandleAppMessage; // set OnMessage handler
WndProcPtr := MakeObjectInstance(WndMethod); // make window proc
{ Set window procedure of application window. }
OldWndProc := Pointer(SetWindowLong(Application.Handle, GWL_WNDPROC,
Integer(WndProcPtr)));

end;

procedure TMainForm.FormDestroy(Sender: TObject);
begin
{ Restore old window procedure for Application window }
SetWindowLong(Application.Handle, GWL_WNDPROC, Longint(OldWndProc));
{ Free our user-created window procedure }
FreeObjectInstance(WndProcPtr);

end;

end.

When SendBtn is clicked, the SendMessage() API function is used to send the message
DDGM_FOOMSG to Application’s window handle. When PostBtn is clicked, the same message is
posted to Application using the PostMessage() API function.

The HandleAppMessage() is assigned to handle the Application.OnMessage event. This pro-
cedure simply uses ShowMessage() to invoke a dialog box indicating that it sees a message.
The OnMessage event is assigned in the OnCreate event handler for the main form.

Notice that the OnDestroy handler for the main form resets Application’s window procedure
to the original value (OldWndProc) before calling FreeObjectInstance() to free the procedure
created with MakeProcInstance(). If the old window procedure isn’t first reinstated, the effect
would be that of “unplugging” the window procedure from an active window—effectively
removing the window’s capability to handle messages. That’s bad news because doing so could
potentially crash the application or the OS.

Just for kicks, the ScWndPrc unit, shown earlier in this chapter, is included in Main. This means
that the Application window will be subclassed twice: once by ScWndPrc using the API tech-
nique and once by Main using the window method technique. There’s absolutely no danger in
doing this as long as you remember to use CallWindowProc() in the window procedure and
method to pass messages down to the old window procedures.

Hard-Core Techniques

CHAPTER 13
413

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

16.65227_Ch13x 11/30/99 5:57 PM Page 413

When you run this application, you’ll be able to see that the ShowMessage() dialog box is
shown from both the window procedure and method no matter which button is pushed. What’s
more, you’ll see that Application.OnMessage sees only the messages posted to the window.

HookMainWindow()
Another perhaps more VCL-friendly technique for intercepting messages meant for the
Application window is TApplication’s HookMainWindow() method. This method allows you
to insert your own message handler at the top of TApplication’s WndProc() method to per-
form special message processing or prevent TApplication from processing certain messages.
HookMainWindow() is defined as follows:

procedure HookMainWindow(Hook: TWindowHook);

The parameter for this method is of type TWindowHook, which is defined as this:

type
TWindowHook = function (var Message: TMessage): Boolean of object;

There isn’t much to using this method; just call HookMainWindow(), passing your own method
in the Hook parameter. This adds your method to a list of window hook methods that will be
called prior to the normal message processing that occurs in TApplication.WndProc(). If a
window hook method returns True, the message is considered handled, and the WndProc()
method will immediately exit.

When you’re through processing messages, call the UnhookMainWindow() method to remove
your method from the window hook method list. This method is similarly defined as follows:

procedure UnhookMainWindow(Hook: TWindowHook);

Listing 13.3 shows the main form for a simple one-form VCL project that employs this tech-
nique, and Figure 13.2 shows this application in action.

Advanced Techniques

PART II
414

FIGURE 13.2
Spying on the Application with the HookWnd project.

16.65227_Ch13x 11/30/99 5:57 PM Page 414

LISTING 13.3 Main.pas for the HookWnd Project

unit HookMain;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, ExtCtrls;

type
THookForm = class(TForm)
SendBtn: TButton;
GroupBox1: TGroupBox;
LogList: TListBox;
DoLog: TCheckBox;
ExitBtn: TButton;
procedure SendBtnClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure ExitBtnClick(Sender: TObject);

private
function AppWindowHook(var Message: TMessage): Boolean;

end;

var
HookForm: THookForm;

implementation

{$R *.DFM}

procedure THookForm.FormCreate(Sender: TObject);
begin
Application.HookMainWindow(AppWindowHook);

end;

procedure THookForm.FormDestroy(Sender: TObject);
begin
Application.UnhookMainWindow(AppWindowHook);

end;

function THookForm.AppWindowHook(var Message: TMessage): Boolean;
const
LogStr = ‘Message ID: $%x, WParam: $%x, LParam: $%x’;

begin

Hard-Core Techniques

CHAPTER 13
415

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

continues

16.65227_Ch13x 11/30/99 5:57 PM Page 415

LISTING 13.3 Continued

Result := True;
if DoLog.Checked then
with Message do
LogList.Items.Add(Format(LogStr, [Msg, WParam, LParam]));

end;

procedure THookForm.SendBtnClick(Sender: TObject);
begin
SendMessage(Application.Handle, WM_NULL, 0, 0);

end;

procedure THookForm.ExitBtnClick(Sender: TObject);
begin
Close;

end;

end.

Preventing Multiple Application Instances
Multiple instances means running more than one copy of your program simultaneously. The
capability to run multiple instances of an application independently from one another is a fea-
ture provided by the Win32 operating system. While this feature is great, there are cases that
arise when we only wish for the end user to be able to run one copy of a given application at a
time. An example of this type of application might be one that controls a unique resource on
the machine, such as a modem or the parellel port. In such cases, it becomes necessary to write
some code into your application to solve this problem by allowing only one copy of an appli-
cation to run at any given time.

This was a fairly simple task in the 16-bit Windows world: The hPrevInst system variable can
be used to determine whether multiple copies of an application are running simultaneously. If
the value of hPrevInst is nonzero, another instance of the application is active. However, as
explained in Chapter 3, “The Win32 API,” Win32 provides a thick layer of R32 insulation
between each process, which isolates each from the other. Because of this, the value for
hPrevInst is always zero for Win32 applications.

Another technique that works for both 16-bit and 32-bit Windows is to use the FindWindow()
API function to search for an already-active Application window. This solution has two dis-
advantages, however. First, FindWindow() allows you to search for a window based only on its
class name or caption. Depending on the class name isn’t a particularly robust solution because
there’s no guarantee that the class name of your form is unique throughout the system.

Advanced Techniques

PART II
416

16.65227_Ch13x 11/30/99 5:57 PM Page 416

Searching based on the form caption has obvious drawbacks in that the solution breaks down if
you attempt to change the caption of the form while it runs (as do applications such as Delphi
and Microsoft Word). The second drawback to FindWindow() is that it tends to be slow
because it must iterate over all top-level windows.

The optimal solution for Win32, then, is to use some type of API object that’s persistent across
processes. As explained in Chapter 11, “Writing Multithreaded Applications,” several of the
thread-synchronization objects are persistent across multiple processes. Because of their sim-
plicity of use, mutexes provide an ideal solution to this problem.

The first time an application is run, a mutex is created using the CreateMutex() API function.
The lpName parameter of this function holds a unique string identifier. Subsequent instances of
this application should try to open the mutex by name using the OpenMutex() function.
OpenMutex() will succeed only when a mutex has already been created using the
CreateMutex() function.

Additionally, when you attempt to run a second instance of these applications, the first instance
of the application should come into focus. The most elegant approach to focusing the main
form of the previous instance is to use a registered window message obtained by the
RegisterWindowMessage() function to create a message identifier unique to your application.
You then can have the initial instance of your application respond to this message by returning
its main window handle, which can then be focused by the second instance. This approach is
illustrated in Listing 13.4, which shows the source for the MultInst.pas unit, and Listing 13.5,
OIMain.pas, which is the main unit of the OneInst project. The application is shown in all its
glory in Figure 13.3.

Hard-Core Techniques

CHAPTER 13
417

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

FIGURE 13.3
The main form for the OneInst project.

LISTING 13.4 The MultInst.pas Unit, Which Permits Only One Application Instance

unit MultInst;

interface

const
MI_QUERYWINDOWHANDLE = 1;

continues

16.65227_Ch13x 11/30/99 5:57 PM Page 417

LISTING 13.4 Continued

MI_RESPONDWINDOWHANDLE = 2;

MI_ERROR_NONE = 0;
MI_ERROR_FAILSUBCLASS = 1;
MI_ERROR_CREATINGMUTEX = 2;

// Call this function to determine if error occurred in startup.
// Value will be one or more of the MI_ERROR_* error flags.
function GetMIError: Integer;

implementation

uses Forms, Windows, SysUtils;

const
UniqueAppStr = ‘DDG.I_am_the_Eggman!’;

var
MessageId: Integer;
WProc: TFNWndProc;
MutHandle: THandle;
MIError: Integer;

function GetMIError: Integer;
begin
Result := MIError;

end;

function NewWndProc(Handle: HWND; Msg: Integer; wParam, lParam: Longint):
Longint; stdcall;

begin
Result := 0;
// If this is the registered message...
if Msg = MessageID then
begin
case wParam of
MI_QUERYWINDOWHANDLE:
// A new instance is asking for main window handle in order
// to focus the main window, so normalize app and send back
// message with main window handle.
begin
if IsIconic(Application.Handle) then
begin
Application.MainForm.WindowState := wsNormal;
Application.Restore;

Advanced Techniques

PART II
418

16.65227_Ch13x 11/30/99 5:57 PM Page 418

end;
PostMessage(HWND(lParam), MessageID, MI_RESPONDWINDOWHANDLE,
Application.MainForm.Handle);

end;
MI_RESPONDWINDOWHANDLE:
// The running instance has returned its main window handle,
// so we need to focus it and go away.
begin
SetForegroundWindow(HWND(lParam));
Application.Terminate;

end;
end;

end
// Otherwise, pass message on to old window proc
else
Result := CallWindowProc(WProc, Handle, Msg, wParam, lParam);

end;

procedure SubClassApplication;
begin
// We subclass Application window procedure so that
// Application.OnMessage remains available for user.
WProc := TFNWndProc(SetWindowLong(Application.Handle, GWL_WNDPROC,
Longint(@NewWndProc)));

// Set appropriate error flag if error condition occurred
if WProc = nil then
MIError := MIError or MI_ERROR_FAILSUBCLASS;

end;

procedure DoFirstInstance;
// This is called only for the first instance of the application
begin
// Create the mutex with the (hopefully) unique string
MutHandle := CreateMutex(nil, False, UniqueAppStr);
if MutHandle = 0 then
MIError := MIError or MI_ERROR_CREATINGMUTEX;

end;

procedure BroadcastFocusMessage;
// This is called when there is already an instance running.
var
BSMRecipients: DWORD;

begin
// Prevent main form from flashing
Application.ShowMainForm := False;
// Post message to try to establish a dialogue with previous instance

Hard-Core Techniques

CHAPTER 13
419

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

continues

16.65227_Ch13x 11/30/99 5:57 PM Page 419

LISTING 13.4 Continued

BSMRecipients := BSM_APPLICATIONS;
BroadCastSystemMessage(BSF_IGNORECURRENTTASK or BSF_POSTMESSAGE,
@BSMRecipients, MessageID, MI_QUERYWINDOWHANDLE,
Application.Handle);

end;

procedure InitInstance;
begin
SubClassApplication; // hook application message loop
MutHandle := OpenMutex(MUTEX_ALL_ACCESS, False, UniqueAppStr);
if MutHandle = 0 then
// Mutex object has not yet been created, meaning that no previous
// instance has been created.
DoFirstInstance

else
BroadcastFocusMessage;

end;

initialization
MessageID := RegisterWindowMessage(UniqueAppStr);
InitInstance;

finalization
// Restore old application window procedure
if WProc <> Nil then
SetWindowLong(Application.Handle, GWL_WNDPROC, LongInt(WProc));

if MutHandle <> 0 then CloseHandle(MutHandle); // Free mutex
end.

LISTING 13.5 OIMain.pas

unit OIMain;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls;

type
TMainForm = class(TForm)
Label1: TLabel;
CloseBtn: TButton;
procedure CloseBtnClick(Sender: TObject);

Advanced Techniques

PART II
420

16.65227_Ch13x 11/30/99 5:57 PM Page 420

private
{ Private declarations }

public
{ Public declarations }

end;

var
MainForm: TMainForm;

implementation

uses MultInst;

{$R *.DFM}

procedure TMainForm.CloseBtnClick(Sender: TObject);
begin
Close;

end;

end.

Using BASM with Delphi
Because Delphi is based on a true compiler, one benefit you receive is the capacity to write
assembly code right in the middle of your Object Pascal procedures and functions. This capa-
bility is facilitated through Delphi’s built-in assembler (BASM). Before you learn about
BASM, you should learn when to use assembly language in your Delphi programs. It’s great to
have such a powerful tool at your disposal, but, like any good thing, BASM can be overdone. If
you follow these simple BASM rules, you can help yourself write better, cleaner, and more
portable code:

• Never use assembly language for something that can be done in Object Pascal. For
example, you wouldn’t write assembly language routines to communicate through the
serial ports because the Win32 API provides built-in functions for serial communications.

• Don’t over-optimize your programs with assembly language. Hand-optimized assembly
might run faster than Object Pascal code—but at the price of readability and maintain-
ability. Object Pascal is a language that communicates algorithms so naturally that it’s
a shame to have that communication muddled by a bunch of low-level register opera-
tions. In addition, after all your assembler toils, you might be surprised to find out that
Delphi’s optimizing compiler often compiles code that executes faster than handwritten
assembly code.

Hard-Core Techniques

CHAPTER 13
421

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

16.65227_Ch13x 11/30/99 5:57 PM Page 421

• Always comment your assembly code thoroughly. Your code will probably be read in the
future by another programmer—or even by you—and lack of comments can make it dif-
ficult to understand.

• Don’t use BASM to access machine hardware. Although Windows 95/98 will let you get
away with this in most cases, Windows NT/2000 won’t.

• Where possible, wrap your assembly language code in procedures or functions callable
from Object Pascal. This will make your code not only easier to maintain but also easier
to port to other platforms when the time comes.

Advanced Techniques

PART II
422

NOTE

This section doesn’t teach you assembler programming, but it shows you the Delphi
spin on assembler if you’re already familiar with the language.

Also, if you programmed in BASM with Delphi 1, bear in mind that in 32-bit Delphi,
BASM is a whole new ballgame. Because you must now write 32-bit assembly lan-
guage, almost all your 16-bit BASM code will have to be rewritten for the new plat-
form. The fact that BASM code can require so much care to maintain is yet another
reason to minimize your use of BASM in applications.

How Does BASM Work?
Using assembly code in your Delphi applications is easier than you might think. In fact, it’s so
simple that it’s scary. Just use the asm keyword followed by your assembly code and then an
end. The following code fragment demonstrates how to use assembly code inline:

var
i: integer;

begin
i := 0;
asm
mov eax, i
inc eax
mov i, eax

end;
{ i has incremented by one }

This snippet declares a variable i and initializes it to 0. It then moves the value of i into the
eax register, increments the register by one, and moves the value of the eax register back into
i. This illustrates not only how easy it is to use BASM, but, as the usage of the variable i
shows, how easily you can access your Pascal variables from BASM.

16.65227_Ch13x 11/30/99 5:57 PM Page 422

Easy Parameter Access
Not only is it easy to access variables declared globally or locally to a procedure, it’s just as
easy to access variables passed into procedures, as the following code illustrates:

procedure Foo(I: integer);
begin
{ some code }
asm
mov eax, I
inc eax
mov I, eax

end;
{ I has incremented by one }
{ some more code }

end;

The capability to access parameters by name is important because you don’t have to reference
variables passed into a procedure through the stack base pointer (ebp) register as you would in
a normal assembly program. In a regular assembly language procedure, you would have to
refer to the variable I as [ebp+4] (its offset from the stack’s base pointer).

Hard-Core Techniques

CHAPTER 13
423

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

NOTE

When you use BASM to reference parameters passed into a procedure, remember
that you can access those parameters by name, and you don’t have to access them by
their offset from the ebp register. Accessing by offset from ebp makes your code more
difficult to maintain.

var Parameters
Remember that when a parameter is declared as var in a function or procedure’s parameter list,
a pointer to that variable is passed instead of the value. This means that when you reference
var parameters within a BASM block, you must take into account that the parameter is a 32-bit
pointer to a variable and not a variable instance. To expand on the earlier sample snippet, the
following example shows how you would increment the variable I if it were passed in as a var
parameter:

procedure Foo(var I: integer);
begin
{ some code }
asm
mov eax, I
inc dword ptr [eax]

16.65227_Ch13x 11/30/99 5:57 PM Page 423

end;
{ I has now been incremented by one }
{ some more code }

end;

Register Calling Convention
Remember that the default calling convention for Object Pascal functions and procedures is
register. Taking advantage of this method of parameter passing can help you to optimize
your code. The register calling convention dictates that the first three 32-bit parameters are
passed in the eax, edx, and ecx registers. This means that for the function declaration

function BlahBlah(I1, I2, I3: Integer): Integer;

you can count on the fact that the value of I1 is stored in eax, I2 in edx, and I3 in ecx.
Consider the following method as another example:

procedure TSomeObject.SomeProc(S1, S2: PChar);

Here, the value of S1 will be passed in ecx, S2 in edx, and the implicit Self parameter will be
passed in eax.

All-Assembly Procedures
Object Pascal enables you to write procedures and functions entirely in assembly language
simply by beginning the function or procedure with the word asm, rather than begin, as shown
here:

function IncAnInt(I: Integer): Integer;
asm
mov eax, I
inc eax

end;

Advanced Techniques

PART II
424

NOTE

If you’re poring over 16-bit code, you should know that it’s no longer necessary to
use the assembler directive from Delphi 1 days. That directive is simply ignored by
the 32-bit Delphi compiler.

The preceding procedure accepts an integer variable I and increments it. Because the variable
value is placed in the eax register, that’s the value returned by the function. Table 13.1 shows
how different types of data are returned from a function in Delphi.

16.65227_Ch13x 11/30/99 5:57 PM Page 424

TABLE 13.1 How Values Are Returned from Delphi Functions

Return Type Return Method

Char, Byte al register.

SmallInt, Word ax register.

Integer, LongWord, AnsiString, eax register.
Pointer, class

Real48 eax contains a pointer to data on the stack.

Int64 edx:eax register pair.

Single, Double, Extended, Comp ST(0) on 8087’s register stack.

Hard-Core Techniques

CHAPTER 13
425

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

NOTE

A ShortString type is returned as a pointer to a temporary instance of a string on
the stack.

Records
BASM provides a slick shortcut for accessing the fields of a record. You can access the fields
of any record in a BASM block using the syntax Register.Type.Field. For example, consider
a record defined as follows:

type
TDumbRec = record
i: integer;
c: char;

end;

Also, consider a function that accepts a TDumbRec as a reference parameter, as shown here:

procedure ManipulateRec(var DR: TDumbRec);
asm
mov [eax].TDumbRec.i, 24
mov [eax].TDumbRec.c, ‘s’

end;

Notice the shortcut syntax for accessing the fields of a record. The alternative would be to
manually calculate the proper offset into the record to get or set the appropriate value. Use this
technique wherever you use records in BASM to make your BASM more resilient to potential
changes to data types.

16.65227_Ch13x 11/30/99 5:57 PM Page 425

Using Windows Hooks
Windows hooks give programmers the means to control the occurrence and handling of system
events. A hook offers perhaps the ultimate degree of power for an applications programmer
because it enables the programmer to preview and modify system events and messages as well
as to prevent system events and messages from occurring systemwide.

Setting the Hook
A Windows hook is set using the SetWindowsHookEx() API function:

function SetWindowsHookEx(idHook: Integer; lpfn: TFNHookProc; hmod: HINST;
dwThreadID: DWORD): HHOOK; stdcall;

Advanced Techniques

PART II
426

CAUTION

Use only the SetWindowsHookEx() function—not the SetWindowsHook() function—in
your applications. SetWindowsHook(), which existed in Windows 3.x, is not imple-
mented in the Win32 API.

The idHook parameter describes the type of hook to be installed. This can be any one of the
predefined hook constants shown in Table 13.2.

TABLE 13.2 Windows Hook Constants

Hook Constant Description

WH_CALLWNDPROC A window procedure filter. The hook procedure is called whenever a
message is sent to a window procedure.

WH_CALLWNDPROCRET* Installs a hook procedure that monitors messages after they’ve been
processed by the destination window procedure.

WH_CBT A computer-based training filter. The hook procedure is called before
processing most window-management, mouse, and keyboard
messages.

WH_DEBUG A debugging filter. The hook function is called before any other
Windows hook.

WH_GETMESSAGE A message filter. The hook function is called whenever a message is
retrieved from the application queue.

WH_HARDWARE A hardware message filter. The hook function is called whenever a
hardware message is retrieved from the application queue.

16.65227_Ch13x 11/30/99 5:57 PM Page 426

Hook Constant Description

WH_JOURNALPLAYBACK The hook function is called whenever a message is retrieved from the
system queue. Typically used to insert system events into the queue.

WH_JOURNALRECORD The hook function is called whenever an event is requested from the
system queue. Typically used to “record” system events.

WH_KEYBOARD A keyboard filter. The hook function is called whenever a WM_KEY-
DOWN or WM_KEYUP message is retrieved from the application queue.

WH_KEYBOARD_LL* A low-level keyboard filter.

WH_MOUSE A mouse message filter. The hook function is called whenever a
mouse message is retrieved from the application queue.

WH_MOUSE_LL* A low-level mouse message filter.

WH_MSGFILTER A special message filter. The hook function is called whenever an
application’s dialog box, menu, or message box is about to process a
message.

WH_SHELL A shell application filter. The hook function is called when top-level
windows are created and destroyed as well as when the shell applica-
tion needs to become active.

* = available only on Windows NT 4.0 and Windows 2000

The lpfn parameter is the address of the callback function to act as the Windows hook func-
tion. This function is of type TFNHookProc, which is defined as follows:

TFNHookProc = function (code: Integer; wparam: WPARAM; lparam: LPARAM):
LRESULT stdcall;

The contents of each of the hook function’s parameters vary according to the type of hook
installed; the parameters are documented in the Win32 API help.

The hMod parameter should be the value of hInstance in the EXE or DLL containing the hook
callback.

The dwThreadID parameter identifies the thread with which the hook is to be associated. If this
parameter is zero, the hook will be associated with all threads.

The return value is a hook handle that you must save in a global variable for later use.

Windows can have multiple hooks installed at one time, and it can even have the same type of
hook installed multiple times.

Note also that some hooks operate with the restriction that they must be implemented from a
DLL. Check the Win32 API documentation for details on each specific hook.

Hard-Core Techniques

CHAPTER 13
427

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

16.65227_Ch13x 11/30/99 5:57 PM Page 427

Using the Hook Function
The values of the hook function’s Code, wParam, and lParam parameters vary depending on the
type of hook installed, and they’re documented in the Windows API help. These parameters all
have one thing in common: Depending on the value of Code, you’re responsible for calling the
next hook in the chain.

To call the next hook, use the CallNextHookEx() API function:

Result := CallNextHookEx(HookHandle, Code, wParam, lParam);

Advanced Techniques

PART II
428

CAUTION

One serious limitation for system hooks is that new instances of the hook DLL are
loaded into each process address space separately. Because of this, the hook DLL
cannot communicate directly with the host application that set the hook. You have
to go through messages or shared memory areas (such as the memory mapped files
described in Chapter 12, “Working with Files”) to communicate with the host
application.

CAUTION

When calling the next hook in the chain, don’t call DefHookProc(). This is another
unimplemented Windows 3.x function.

Using the Unhook Function
When you want to release the Windows hook, you just need to call the
UnhookWindowsHookEx() API function, passing it the hook handle as a parameter. Again, be
careful not to call UnhookWindowsHook() here because it’s another old-style function:

UnhookWindowsHookEx(HookHandle);

Using SendKeys: A JournalPlayback Hook
If you come to Delphi from an environment such as Visual Basic or Paradox for Windows, you
might be familiar with a function called SendKeys(). SendKeys() enables you to pass it a
string of characters that it then plays back as if they were typed from the keyboard, and all the
keystrokes are sent to the active window. Because Delphi doesn’t have a function like this built
in, creating one proves a great opportunity to add a powerful feature to Delphi as well as to
demonstrate how to implement a wh_JournalPlayback hook from within Delphi.

16.65227_Ch13x 11/30/99 5:57 PM Page 428

Deciding Whether to Use a JournalPlayback Hook
There are a number of reasons why a hook is the best way to send keystrokes to your applica-
tion or another application. You might wonder, “Why not just post wm_KeyDown and wm_KeyUp
messages?” The primary reason is that you might not know the handle of the window to which
you want to post messages, or that the handle for that window might periodically change. And,
of course, if you don’t know the window handle, you can’t send a message. Also, some appli-
cations call API functions to check the state of the keyboard in addition to looking at messages
to obtain information on keystrokes.

Understanding How SendKeys Works
The declaration of the SendKeys() function looks like this:

function SendKeys(S: String): TSendKeyError; export;

The TSendKeyError return type is an enumerated type that indicates the error condition. It can
be any one of the values shown in Table 13.3.

TABLE 13.3 Sendkey Error Codes

Value Meaning

sk_None The function was successful.

sk_FailSetHook The Windows hook couldn’t be set.

sk_InvalidToken An invalid token was detected in the string.

sk_UnknownError Some other unknown but fatal error occurred.

sk_AlreadyPlaying The hook is currently active, and keystrokes are already being played
back.

S can include any alphanumeric character or @ for the Alt key, ^ for the Ctrl key, or ~ for the
Shift key. SendKeys() also enables you to specify special keyboard keys in curly braces, as
depicted in the KeyDefs.pas unit in Listing 13.6.

LISTING 13.6 KeyDefs.pas: Special Key Definitions for SendKeys()

unit KeyDefs;

interface

uses Windows;

const
MaxKeys = 24;

Hard-Core Techniques

CHAPTER 13
429

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

continues

16.65227_Ch13x 11/30/99 5:57 PM Page 429

LISTING 13.6 Continued

ControlKey = ‘^’;
AltKey = ‘@’;
ShiftKey = ‘~’;
KeyGroupOpen = ‘{‘;
KeyGroupClose = ‘}’;

type
TKeyString = String[7];

TKeyDef = record
Key: TKeyString;
vkCode: Byte;

end;

const
KeyDefArray : array[1..MaxKeys] of TKeyDef = (
(Key: ‘F1’; vkCode: vk_F1),
(Key: ‘F2’; vkCode: vk_F2),
(Key: ‘F3’; vkCode: vk_F3),
(Key: ‘F4’; vkCode: vk_F4),
(Key: ‘F5’; vkCode: vk_F5),
(Key: ‘F6’; vkCode: vk_F6),
(Key: ‘F7’; vkCode: vk_F7),
(Key: ‘F8’; vkCode: vk_F8),
(Key: ‘F9’; vkCode: vk_F9),
(Key: ‘F10’; vkCode: vk_F10),
(Key: ‘F11’; vkCode: vk_F11),
(Key: ‘F12’; vkCode: vk_F12),
(Key: ‘INSERT’; vkCode: vk_Insert),
(Key: ‘DELETE’; vkCode: vk_Delete),
(Key: ‘HOME’; vkCode: vk_Home),
(Key: ‘END’; vkCode: vk_End),
(Key: ‘PGUP’; vkCode: vk_Prior),
(Key: ‘PGDN’; vkCode: vk_Next),
(Key: ‘TAB’; vkCode: vk_Tab),
(Key: ‘ENTER’; vkCode: vk_Return),
(Key: ‘BKSP’; vkCode: vk_Back),
(Key: ‘PRTSC’; vkCode: vk_SnapShot),
(Key: ‘SHIFT’; vkCode: vk_Shift),
(Key: ‘ESCAPE’; vkCode: vk_Escape));

function FindKeyInArray(Key: TKeyString; var Code: Byte): Boolean;

implementation

Advanced Techniques

PART II
430

16.65227_Ch13x 11/30/99 5:57 PM Page 430

uses SysUtils;

function FindKeyInArray(Key: TKeyString; var Code: Byte): Boolean;
{ function searches array for token passed in Key, and returns the }
{ virtual key code in Code. }
var
i: word;

begin
Result := False;
for i := Low(KeyDefArray) to High(KeyDefArray) do
if UpperCase(Key) = KeyDefArray[i].Key then begin
Code := KeyDefArray[i].vkCode;
Result := True;
Break;

end;
end;

end.

After receiving the string, SendKeys() parses the individual key presses out of the string and
adds each of the key presses to a list in the form of message records containing wm_KeyUp and
wm_KeyDown messages. These messages then are played back to Windows through a
wh_JournalPlayback hook.

Creating Key Presses
After each key press is parsed out of the string, the virtual key code and message (the message
can be wm_KeyUp, wm_KeyDown, wm_SysKeyUp, or wm_SysKeyDown) are passed to a procedure
called MakeMessage(). MakeMessage() creates a new message record for the key press and
adds it to a list of messages called MessageList. The message record used here isn’t the stan-
dard TMessage that you’re familiar with, or even the TMsg record discussed in Chapter 5. This
record is called a TEvent message, and it represents a system queue message. The definition
is as follows:

type
{ Message Structure used in Journaling }
PEventMsg = ^TEventMsg;
TEventMsg = packed record
message: UINT;
paramL: UINT;
paramH: UINT;
time: DWORD;
hwnd: HWND;

end;

Hard-Core Techniques

CHAPTER 13
431

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

16.65227_Ch13x 11/30/99 5:57 PM Page 431

Table 13.4 shows the values for TEventMsg’s fields.

TABLE 13.4 Values for TEventMsg Fields

Field Value

message The message constant. Can be wm_(Sys)KeyUp or wm_SysKeyDown for a key-
board message. Can be wm_XButtonUp, wm_XButtonDown, or wm_MouseMove
for a mouse message.

paramL If message is a keyboard message, this field holds the virtual key code. If
message is a mouse message, wParam contains the x coordinate of the mouse
cursor (in screen units).

paramH If message is a keyboard message, this field holds the scan code of the key. If
it’s a mouse message, lParam contains the y coordinate of the mouse cursor.

time The time, in system ticks, that the message occurred.

hwnd Identifies the window to which the message is posted. This parameter isn’t
used for wh_JournalPlayback hooks.

Because the table in the KeyDefs unit maps only to the virtual key code, you must find a way
to determine the scan code of the key given the virtual key code. Luckily, the Windows API
provides a function called MapVirtualKey() that does just that. The following code shows the
source for the MakeMessage() procedure:

procedure MakeMessage(vKey: byte; M: Cardinal);
{ procedure builds a TEventMsg record that emulates a keystroke and }
{ adds it to message list }
var
E: PEventMsg;

begin
New(E); // allocate a message record
with E^ do begin
message := M; // set message field
paramL := vKey; // vk code in ParamL
paramH := MapVirtualKey(vKey, 0); // scan code in ParamH
time := GetTickCount; // set time
hwnd := 0; // ignored

end;
MessageList.Add(E);

end;

After the entire message list is created, the hook can be set to play back the key sequence. You
do this through a procedure called StartPlayback(). StartPlayback primes the pump by
placing the first message from the list into a global buffer. It also initializes a global buffer that
keeps track of how many messages have been played and the flags that indicate the state of the

Advanced Techniques

PART II
432

16.65227_Ch13x 11/30/99 5:57 PM Page 432

Ctrl, Alt, and Shift keys. This procedure then sets the hook. StartPlayBack() is shown in the
following code:

procedure StartPlayback;
{ Initializes globals and sets the hook }
begin
{ grab first message from list and place in buffer in case we }
{ get an hc_GetNext before an hc_Skip }

MessageBuffer := TEventMsg(MessageList.Items[0]^);
{ initialize message count and play indicator }
MsgCount := 0;
{ initialize Alt, Control, and Shift key flags }
AltPressed := False;
ControlPressed := False;
ShiftPressed := False;
{ set the hook! }
HookHandle := SetWindowsHookEx(wh_JournalPlayback, Play, hInstance, 0);
if HookHandle = 0 then
raise ESKSetHookError.Create(‘Couldn’’t set hook’)

else
Playing := True;

end;

As you might notice from the SetWindowsHookEx() call, Play is the name of the hook func-
tion. The declaration for Play is as follows:

function Play(Code: integer; wParam, lParam: Longint): Longint; stdcall;

Table 13.5 shows its parameters.

TABLE 13.5 Parameters for Play(), the Windows Hook Function

Value Meaning

Code A value of hc_GetNext indicates that you should prepare the next message in
the list for processing. You do this by copying the next message from the list
into your global buffer. A value of hc_Skip means that a pointer to the next
message should be placed into the lParam parameter for processing. Any other
value means that you should call CallNextHookEx() and pass on the parame-
ters to the next hook in the chain.

wParam Unused.

lParam If Code is hc_Skip, you should place a pointer to the next TEventMsg record
in the lParam parameter.

Return value Returns zero if Code is hc_GetNext. If Code is hc_Skip, returns the amount
of time (in ticks) before this message should be processed. If zero is returned,
the message is processed. Otherwise, the return value should be the return
value of CallNextHookEx().

Hard-Core Techniques

CHAPTER 13
433

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

16.65227_Ch13x 11/30/99 5:57 PM Page 433

Listing 13.7 shows the complete source code to the SendKey.pas unit.

LISTING 13.7 The SendKey.pas Unit

unit SendKey;

interface

uses
SysUtils, Windows, Messages, Classes, KeyDefs;

type
{ Error codes }
TSendKeyError = (sk_None, sk_FailSetHook, sk_InvalidToken,
sk_UnknownError, sk_AlreadyPlaying);

{ first vk code to last vk code }
TvkKeySet = set of vk_LButton..vk_Scroll;

{ exceptions }
ESendKeyError = class(Exception);
ESKSetHookError = class(ESendKeyError);
ESKInvalidToken = class(ESendKeyError);
ESKAlreadyPlaying = class(ESendKeyError);

function SendKeys(S: String): TSendKeyError;
procedure WaitForHook;
procedure StopPlayback;

var
Playing: Boolean;

implementation

uses Forms;

type
{ a TList descendant that know how to dispose of its contents }
TMessageList = class(TList)
public
destructor Destroy; override;

end;

const
{ valid “sys” keys }
vkKeySet: TvkKeySet = [Ord(‘A’)..Ord(‘Z’), vk_Menu, vk_F1..vk_F12];

destructor TMessageList.Destroy;

Advanced Techniques

PART II
434

16.65227_Ch13x 11/30/99 5:57 PM Page 434

var
i: longint;

begin
{ deallocate all the message records before discarding the list }
for i := 0 to Count - 1 do
Dispose(PEventMsg(Items[i]));

inherited Destroy;
end;

var
{ variables global to the DLL }
MsgCount: word = 0;
MessageBuffer: TEventMsg;
HookHandle: hHook = 0;
MessageList: TMessageList = Nil;
AltPressed, ControlPressed, ShiftPressed: Boolean;

procedure StopPlayback;
{ Unhook the hook, and clean up }
begin
{ if Hook is currently active, then unplug it }
if Playing then
UnhookWindowsHookEx(HookHandle);

MessageList.Free;
Playing := False;

end;

function Play(Code: integer; wParam, lParam: Longint): Longint; stdcall;
{ This is the JournalPlayback callback function. It is called by }
{ Windows when Windows polls for hardware events. The code parameter }
{ indicates what to do. }
begin
case Code of
HC_SKIP:
{ HC_SKIP means to pull the next message out of our list. If we }
{ are at the end of the list, it’s okay to unhook the }
{ JournalPlayback hook from here. }
begin
{ increment message counter }
inc(MsgCount);
{ check to see if all messages have been played }
if MsgCount >= MessageList.Count then StopPlayback
{ otherwise copy next message from list into buffer }
else MessageBuffer := TEventMsg(MessageList.Items[MsgCount]^);
Result := 0;

end;

Hard-Core Techniques

CHAPTER 13
435

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

continues

16.65227_Ch13x 11/30/99 5:57 PM Page 435

LISTING 13.7 Continued

HC_GETNEXT:
{ HC_GETNEXT means to fill the wParam and lParam with the proper }
{ values so that the message can be played back. DO NOT unhook }
{ hook from within here. Return value indicates how much time }
{ until Windows should playback message. We’ll return 0 so that }
{ it is processed right away. }
begin
{ move message in buffer to message queue }
PEventMsg(lParam)^ := MessageBuffer;
Result := 0 { process immediately }

end
else
{ if Code isn’t HC_SKIP or HC_GETNEXT, call next hook in chain }
Result := CallNextHookEx(HookHandle, Code, wParam, lParam);

end;
end;

procedure StartPlayback;
{ Initializes globals and sets the hook }
begin
{ grab first message from list and place in buffer in case we }
{ get a hc_GetNext before and hc_Skip }
MessageBuffer := TEventMsg(MessageList.Items[0]^);
{ initialize message count and play indicator }
MsgCount := 0;
{ initialize Alt, Control, and Shift key flags }
AltPressed := False;
ControlPressed := False;
ShiftPressed := False;
{ set the hook! }
HookHandle := SetWindowsHookEx(wh_JournalPlayback, Play, hInstance, 0);
if HookHandle = 0 then
raise ESKSetHookError.Create(‘Failed to set hook’);

Playing := True;
end;

procedure MakeMessage(vKey: byte; M: Cardinal);
{ procedure builds a TEventMsg record that emulates a keystroke and }
{ adds it to message list }
var
E: PEventMsg;

begin
New(E); // allocate a message record
with E^ do

Advanced Techniques

PART II
436

16.65227_Ch13x 11/30/99 5:57 PM Page 436

begin
message := M; // set message field
paramL := vKey; // vk code in ParamL
paramH := MapVirtualKey(vKey, 0); // scan code in ParamH
time := GetTickCount; // set time
hwnd := 0; // ignored

end;
MessageList.Add(E);

end;

procedure KeyDown(vKey: byte);
{ Generates KeyDownMessage }
begin
{ don’t generate a “sys” key if the control key is pressed }
{ (This is a Windows quirk) }
if AltPressed and (not ControlPressed) and (vKey in vkKeySet) then
MakeMessage(vKey, wm_SysKeyDown)

else
MakeMessage(vKey, wm_KeyDown);

end;

procedure KeyUp(vKey: byte);
{ Generates KeyUp message }
begin
{ don’t generate a “sys” key if the control key is pressed }
{ (This is a Windows quirk) }
if AltPressed and (not ControlPressed) and (vKey in vkKeySet) then
MakeMessage(vKey, wm_SysKeyUp)

else
MakeMessage(vKey, wm_KeyUp);

end;

procedure SimKeyPresses(VKeyCode: Word);
{ This function simulates keypresses for the given key, taking into }
{ account the current state of Alt, Control, and Shift keys }
begin
{ press Alt key if flag has been set }
if AltPressed then
KeyDown(vk_Menu);

{ press Control key if flag has been set }
if ControlPressed then
KeyDown(vk_Control);

{ if shift is pressed, or shifted key and control is not pressed... }
if (((Hi(VKeyCode) and 1) <> 0) and (not ControlPressed)) or
ShiftPressed then
KeyDown(vk_Shift); { ...press shift }

Hard-Core Techniques

CHAPTER 13
437

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

continues

16.65227_Ch13x 11/30/99 5:57 PM Page 437

LISTING 13.7 Continued

KeyDown(Lo(VKeyCode)); { press key down }
KeyUp(Lo(VKeyCode)); { release key }
{ if shift is pressed, or shifted key and control is not pressed... }
if (((Hi(VKeyCode) and 1) <> 0) and (not ControlPressed)) or
ShiftPressed then
KeyUp(vk_Shift); { ...release shift }

{ if shift flag is set, reset flag }
if ShiftPressed then begin
ShiftPressed := False;

end;
{ Release Control key if flag has been set, reset flag }
if ControlPressed then begin
KeyUp(vk_Control);
ControlPressed := False;

end;
{ Release Alt key if flag has been set, reset flag }
if AltPressed then begin
KeyUp(vk_Menu);
AltPressed := False;

end;
end;

procedure ProcessKey(S: String);
{ This function parses each character in the string to create the }
{ message list }
var
KeyCode: word;
Key: byte;
index: integer;
Token: TKeyString;

begin
index := 1;
repeat
case S[index] of
KeyGroupOpen:
{ It’s the beginning of a special token! }
begin
Token := ‘’;
inc(index);
while S[index] <> KeyGroupClose do begin
{ add to Token until the end token symbol is encountered }
Token := Token + S[index];
inc(index);
{ check to make sure the token’s not too long }

Advanced Techniques

PART II
438

16.65227_Ch13x 11/30/99 5:57 PM Page 438

if (Length(Token) = 7) and (S[index] <> KeyGroupClose) then
raise ESKInvalidToken.Create(‘No closing brace’);

end;
{ look for token in array, Key parameter will }
{ contain vk code if successful }
if not FindKeyInArray(Token, Key) then
raise ESKInvalidToken.Create(‘Invalid token’);

{ simulate keypress sequence }
SimKeyPresses(MakeWord(Key, 0));

end;
AltKey: AltPressed := True; // set Alt flag
ControlKey: ControlPressed := True; // set Control flag
ShiftKey: ShiftPressed := True; // set Shift flag
else begin
{ A normal character was pressed }
{ convert character into a word where the high byte contains }
{ the shift state and the low byte contains the vk code }
KeyCode := vkKeyScan(S[index]);
{ simulate keypress sequence }
SimKeyPresses(KeyCode);

end;
end;
Inc(index);

until index > Length(S);
end;

procedure WaitForHook;
begin
repeat Application.ProcessMessages until not Playing;

end;

function SendKeys(S: String): TSendKeyError;
{ This is the one entry point. Based on the string passed in the S }
{ parameter, this function creates a list of keyup/keydown messages, }
{ sets a JournalPlayback hook, and replays the keystroke messages. }
begin
Result := sk_None; // assume success
try
if Playing then raise ESKAlreadyPlaying.Create(‘’);
MessageList := TMessageList.Create; // create list of messages
ProcessKey(S); // create messages from string
StartPlayback; // set hook and play back messages

except
{ if an exception occurs, return an error code, and clean up }
on E:ESendKeyError do
begin

Hard-Core Techniques

CHAPTER 13
439

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

continues

16.65227_Ch13x 11/30/99 5:57 PM Page 439

LISTING 13.7 Continued

MessageList.Free;
if E is ESKSetHookError then
Result := sk_FailSetHook

else if E is ESKInvalidToken then
Result := sk_InvalidToken

else if E is ESKAlreadyPlaying then
Result := sk_AlreadyPlaying;

end
else
Result := sk_UnknownError; // Catch-all exception handler

end;
end;

end.

Using SendKeys()
In this section, you’ll create a small project that demonstrates the SendKeys() function. Start
with a form that contains two TEdit components and several TButton components, as shown in
Figure 13.4. This project is called TestSend.dpr.

Advanced Techniques

PART II
440

FIGURE 13.4
The TestSend main form.

Listing 13.8 shows the source code for TestSend’s main unit, Main.pas. This unit includes
event handlers for the button-click events.

LISTING 13.8 The Source Code for Main.pas

unit Main;

interface

uses

16.65227_Ch13x 11/30/99 5:57 PM Page 440

SysUtils, Windows, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, Menus;

type
TForm1 = class(TForm)
Edit1: TEdit;
Edit2: TEdit;
Button1: TButton;
Button2: TButton;
MainMenu1: TMainMenu;
File1: TMenuItem;
Open1: TMenuItem;
Exit1: TMenuItem;
Button4: TButton;
Button3: TButton;
procedure Button1Click(Sender: TObject);
procedure Button2Click(Sender: TObject);
procedure Open1Click(Sender: TObject);
procedure Exit1Click(Sender: TObject);
procedure Button4Click(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure Button3Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form1: TForm1;

implementation

{$R *.DFM}

uses SendKey, KeyDefs;

procedure TForm1.Button1Click(Sender: TObject);
begin
Edit1.SetFocus; // focus Edit1
SendKeys(‘^{DELETE}I love...’); // send keys to Edit1
WaitForHook; // let keys playback
Perform(WM_NEXTDLGCTL, 0, 0); // move to Edit2
SendKeys(‘~delphi ~developer’’s ~guide!’); // send keys to Edit2

end;

Hard-Core Techniques

CHAPTER 13
441

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

continues

16.65227_Ch13x 11/30/99 5:57 PM Page 441

LISTING 13.8 Continued

procedure TForm1.Button2Click(Sender: TObject);
var
H: hWnd;
PI: TProcessInformation;
SI: TStartupInfo;

begin
FillChar(SI, SizeOf(SI), 0);
SI.cb := SizeOf(SI);
{ Invoke notepad }
if CreateProcess(nil, ‘notepad’, nil, nil, False, 0, nil, nil, SI,
PI) then

begin
{ wait until notepad is ready to receive keystrokes }
WaitForInputIdle(PI.hProcess, INFINITE);
{ find new notepad window }
H := FindWindow(‘Notepad’, ‘Untitled - Notepad’);
if SetForegroundWindow(H) then // bring it to front
SendKeys(‘Hello from the Delphi Developer’’s Guide SendKeys ‘ +
‘example!{ENTER}’); // send keys!

end
else
MessageDlg(Format(‘Failed to invoke Notepad. Error code %d’,
[GetLastError]), mtError, [mbOk], 0);

end;

procedure TForm1.Open1Click(Sender: TObject);
begin
ShowMessage(‘Open’);

end;

procedure TForm1.Exit1Click(Sender: TObject);
begin
Close;

end;

procedure TForm1.Button4Click(Sender: TObject);
begin
WaitForInputIdle(GetCurrentProcess, INFINITE);
SendKeys(‘@fx’);

end;

procedure TForm1.FormDestroy(Sender: TObject);
begin
WaitForHook;

end;

Advanced Techniques

PART II
442

16.65227_Ch13x 11/30/99 5:57 PM Page 442

procedure TForm1.Button3Click(Sender: TObject);
begin
WaitForInputIdle(GetCurrentProcess, INFINITE);
SendKeys(‘@fo’);

end;

end.

After you click Button1, SendKeys() is called, and the following key presses are sent:
Shift+Del deletes the contents of Edit1; “I love...” then is typed into Edit1; a tab character
is sent, which moves the focus to Edit2, where Shift+D, “elphi “, Shift+D, “evelopers “,
Shift+G, “uide!” is sent.

The OnClick handler for Button2 is also interesting. This method uses the CreateProcess()
API function to invoke an instance of Notepad. It then uses the WaitForInputIdle() API
function to pause until Notepad’s process is ready for input. Finally, it types a message in the
Notepad window.

Using C/C++ OBJ Files
Delphi provides you with the capability for linking object (OBJ) files created using another
compiler directly into your Delphi programs. You can link an object file into your Object
Pascal code by using the $L or $LINK directives. The syntax for this is as follows:

{$L filename.obj}

After the object file is linked, you must define each function you want to call out of the object
file in your Object Pascal code. Use the external directive to indicate that the Pascal compiler
should wait until link time to attempt to resolve the function name. For example, the following
line of code defines an external function called Foo that neither takes nor returns any parameters:

procedure Foo; external;

Although this capability might seem powerful on the surface, it comes with a number of limita-
tions that make this feature difficult to implement in many cases:

• Object Pascal can directly access only code, not data, contained in object files (although
there is a trick to getting at data in an OBJ, which you’ll see later). However, Pascal data
can be accessed from object files.

• Object Pascal can’t link with LIB (static library) files.

• Object files containing C++ classes will not link due to the implicit references to C++
RTL. Although it might be possible to resolve these references by pulling apart the C++
RTL into OBJs, it’s generally more trouble than it’s worth.

Hard-Core Techniques

CHAPTER 13
443

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

16.65227_Ch13x 11/30/99 5:57 PM Page 443

• Object files must be in the Intel OMF format. This is the output format of the Borland
C++ compilers, but not the Microsoft C++ compilers, which produce COFF-format OBJ
files.

Advanced Techniques

PART II
444

NOTE

One previously stifling limitation that has recently been addressed by the Delphi com-
piler is the capability to resolve OBJ-to-OBJ references. In earlier versions of Delphi,
object files couldn’t contain references to code or data stored in other object files.

Calling a Function
Suppose you had a C++ object file called ccode.obj that includes a function with the follow-
ing prototype:

int __fastcall SAYHELLO(char * hellostr)

To call this function from a Delphi application, you must first link the object file into the EXE
using either the $L or $LINK directive:

{$L ccode.obj}

After that, you must create an Object Pascal definition for the function, as shown here:

function SayHello(Text: PChar): integer; external;

CAUTION

Notice the use of the __fastcall directive in C++, which serves to ensure that the
calling conventions used in the C++ and Object Pascal code are the same. Heinous
crash errors can occur if you don’t correctly match calling conventions between the
C++ prototype and the Object Pascal declaration, and calling convention problems
are the most common obstacle for developers trying to share code between the two
languages. To help clear things up, the following table shows the correspondence
between Object Pascal and C++ calling convention directives.

Object Pascal C++

register* __fastcall

pascal __pascal

cdecl __cdecl*

stdcall __stdcall

*Indicates the default calling convention for the language.

16.65227_Ch13x 11/30/99 5:57 PM Page 444

Name Mangling
By default, the C++ compiler will mangle the names of functions not explicitly declared using
the extern “C” modifier. The Object Pascal compiler, of course, doesn’t mangle the names of
functions. For example, Delphi’s TDUMP utility reveals the exported symbol name of the SAY-
HELLO function shown earlier in ccode.obj as @SAYHELLO$qqrpc, whereas the name of the
imported function according to Object Pascal is SAYHELLO (Object Pascal forces symbols to
uppercase).

On the surface, this would seem to be a problem: How can the Delphi linker resolve the exter-
nal if the function name isn’t even the same? The answer is that the Delphi linker simply
ignores the mangled portion (the @ and everything after the $) of the symbol, but this can have
some pretty nasty side effects.

The whole reason C++ mangles names is to allow function overloading (functions having the
same names and different parameter lists). If you have a function that has several overloaded
definitions and Delphi ignores the mangling portion of the symbol, you’ll never know for sure
whether Delphi is calling the overloaded function you want to call. Because of these complexi-
ties, we recommend that you don’t attempt to call overloaded functions through object files.

Hard-Core Techniques

CHAPTER 13
445

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

NOTE

Functions in a C++ source file (.CPP) will always be mangled unless the prototypes
are combined with the extern “C” modifier or the proper command-line switch is
used on the C++ compiler to suppress name mangling.

Sharing Data
As mentioned earlier, it’s possible to access Delphi data from the object file. The first step is to
declare a global variable in your Object Pascal source similar to the variable shown here (note
the underscore):

var
_GLOBALVAR: PChar = ‘This is a Delphi String’;

Note that although the variable is initialized, this isn’t a requirement.

In the C++ module, declare a variable of the same name using the external modifier, as shown
here:

extern char * GLOBALVAR;

16.65227_Ch13x 11/30/99 5:57 PM Page 445

Although it’s not possible to directly share data declared in an OBJ file with Object Pascal
code, it is possible to trick Object Pascal into accessing OBJ-based data. The first step is to
declare the data you want to export in your C++ code using the __export directive. For exam-
ple, you would make a char array available for export like this:

char __export C_VAR[128];

Next (here comes part one of the trick), you declare this data as an external procedure in your
Object Pascal code as follows (note, again, the underscore):

procedure _C_VAR; external; // trick to import OBJ data

This will allow the linker to resolve references to _C_VAR in your Pascal code. Finally (here’s
the second part of the trick), you can use _C_VAR in your Pascal code as a pointer to the data.
For example, the following code can be used to get the value of the array:

type
PCharArray = ^TCharArray;
TCharArray = array[0..127] of char;

function GetCArray: string;
var
A: PCharArray;

begin
A := PCharArray(@_C_VAR);
Result := A^;

end;

And the following code can be used to set the value of the array:

procedure SetCArray(const S: string);
var
A: PCharArray;

begin

Advanced Techniques

PART II
446

CAUTION

The default behavior of the Borland C++ compiler is to prepend external variables
with an underscore when generating the external symbol (that is, GLOBALVAR
becomes _GLOBALVAR). You can get around this in one of two ways:

• Use the command-line switch to disable the addition of the underscore (-u- with
Borland C++ compilers).

• Place an underscore in front of the variable name in the Object Pascal code.

16.65227_Ch13x 11/30/99 5:57 PM Page 446

A := PCharArray(@_C_VAR);
StrLCopy(A^, PChar(S), SizeOf(TCharArray));

end;

Using the Delphi RTL
It can be difficult to link an object file to your Delphi application if the object file contains ref-
erences to the C++ RTL. This is because the C++ RTL generally lives in LIB files, and Delphi
doesn’t have the capability to link with LIB files.

How do you get around this problem? One way is to cut the definitions of the external func-
tions you use out of the C++ RTL source code and place it in your object file. However, unless
you’re calling only one or two external functions, this type of solution will get mighty com-
plex—not to mention the fact that your object file will become huge.

A more elegant solution to this problem is to create one or more header files that redeclare all
the RTL functions you call using the external modifier and actually implement these func-
tions inside your Object Pascal code. For example, let’s say you want to call the MessageBox()
API function from your C++ code. Normally, this would require you to use the #include pre-
processor directive to include windows.h and link with the necessary Win32 libraries.
However, redefining MessageBox() in your C++ code like this

extern int __stdcall MessageBox(long, char *, char *, long);

will cause the Object Pascal linker to search for a function of its own called MessageBox when
it builds the executable. Of course, there’s a function of that name defined in the Windows unit.
Now your application will happily compile and link without a hitch.

Listing 13.9 shows a complete example of everything we’ve talked about so far. It’s a fairly
simple C module called ccode.c.

LISTING 13.9 A Simple C++ Module: ccode.c

#include “PasStng.h”

// globals
extern char * GLOBALVAR;

// exported data
char __export C_VAR[128];

#ifdef __cplusplus
extern “C” {
#endif

Hard-Core Techniques

CHAPTER 13
447

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

continues

16.65227_Ch13x 11/30/99 5:57 PM Page 447

LISTING 13.9 Continued

//externals
extern int __stdcall MessageBox(long, char *, char *, long);

//functions
int __export __cdecl SAYHELLO(char * hellostr)
{
char a[64];
memset(a, 64, 0);
strcat(a, hellostr);
strcat(a, “ from Borland C++Builder”);
MessageBox(0, a, GLOBALVAR, 0);
return 0;

}

#ifdef __cplusplus
} // end of extern “C”
#endif

In addition to MessageBox(), notice the calls that this module makes to the memset() and str-
cat() C++ RTL functions. These functions are handled similarly in the PasStng.h header file,
which contains some of the more common functions from the string.h header. This file is
shown in Listing 13.10.

LISTING 13.10 PasStng.h, C++ string.h Emulation for Pascal

// PasStng.h
// This module externalizes a portion of the string.h C++ RTL header so
// that the Object Pascal RTL can instead handle the calls.

#ifndef PASSTNG_H
#define PASSTNG_H

#ifndef _SIZE_T
#define _SIZE_T
typedef unsigned size_t;
#endif

#ifdef __cplusplus
extern “C” {
#endif

extern char * __cdecl strcat(char *dest, const char *src);
extern int __cdecl stricmp(const char *s1, const char *s2);
extern size_t __cdecl strlen(const char *s);

Advanced Techniques

PART II
448

16.65227_Ch13x 11/30/99 5:57 PM Page 448

extern char * __cdecl strlwr(char *s);
extern char * __cdecl strncat(char *dest, const char *src,
size_t maxlen);

extern void * __cdecl memcpy(void *dest, const void *src, size_t n);
extern int __cdecl strncmp(const char *s1, const char *s2,
size_t maxlen);

extern int __cdecl strncmpi(const char *s1, const char *s2, size_t n);
extern void * __cdecl memmove(void *dest, const void *src, size_t n);
extern char * __cdecl strncpy(char *dest, const char *src,
size_t maxlen);

extern void * __cdecl memset(void *s, int c, size_t n);
extern int __cdecl strnicmp(const char *s1, const char *s2,
size_t maxlen);

extern void __cdecl movmem(const void *src, void *dest, unsigned length);
extern void __cdecl setmem(void *dest, unsigned length, char value);
extern char * __cdecl stpcpy(char *dest, const char *src);
extern int __cdecl strcmp(const char *s1, const char *s2);
extern char * __cdecl strstr(char *s1, const char *s2);
extern int __cdecl strcmpi(const char *s1, const char *s2);
extern char * __cdecl strupr(char *s);
extern char * __cdecl strcpy(char *dest, const char *src);

#ifdef __cplusplus
} // end of extern “C”
#endif

#endif // PASSTNG_H

Because these functions don’t exist in the Object Pascal RTL, we can work around the problem
by creating an Object Pascal unit to include in our project that maps these functions to their
Object Pascal counterparts. This unit, PasStrng.pas, is shown in Listing 13.11.

LISTING 13.11 PasStrng.pas, an Implementation of string.h Emulation Functions

unit PasStrng;

interface

uses Windows;

function _strcat(Dest, Source: PChar): PChar; cdecl;
procedure _memset(P: Pointer; Count: Integer; value: DWORD); cdecl;
function _stricmp(P1, P2: PChar): Integer; cdecl;
function _strlen(P1: PChar): Integer; cdecl;
function _strlwr(P1: PChar): PChar; cdecl;

Hard-Core Techniques

CHAPTER 13
449

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

continues

16.65227_Ch13x 11/30/99 5:57 PM Page 449

LISTING 13.11 Continued

function _strncat(Dest, Source: PChar; MaxLen: Integer): PChar; cdecl;
function _memcpy(Dest, Source: Pointer; Len: Integer): Pointer;
function _strncmp(P1, P2: PChar; MaxLen: Integer): Integer; cdecl;
function _strncmpi(P1, P2: PChar; MaxLen: Integer): Integer; cdecl;
function _memmove(Dest, Source: Pointer; Len: Integer): Pointer;
function _strncpy(Dest, Source: PChar; MaxLen: Integer): PChar; cdecl;
function _strnicmp(P1, P2: PChar; MaxLen: Integer): Integer; cdecl;
procedure _movmem(Source, Dest: Pointer; MaxLen: Integer); cdecl;
procedure _setmem(Dest: Pointer; Len: Integer; Value: Char); cdecl;
function _stpcpy(Dest, Source: PChar): PChar; cdecl;
function _strcmp(P1, P2: PChar): Integer; cdecl;
function _strstr(P1, P2: PChar): PChar; cdecl;
function _strcmpi(P1, P2: PChar): Integer; cdecl;
function _strupr(P: PChar): PChar; cdecl;
function _strcpy(Dest, Source: PChar): PChar; cdecl;

implementation

uses SysUtils;

function _strcat(Dest, Source: PChar): PChar;
begin
Result := SysUtils.StrCat(Dest, Source);

end;

function _stricmp(P1, P2: PChar): Integer;
begin
Result := StrIComp(P1, P2);

end;

function _strlen(P1: PChar): Integer;
begin
Result := SysUtils.StrLen(P1);

end;

function _strlwr(P1: PChar): PChar;
begin
Result := StrLower(P1);

end;

function _strncat(Dest, Source: PChar; MaxLen: Integer): PChar;
begin
Result := StrLCat(Dest, Source, MaxLen);

end;

Advanced Techniques

PART II
450

16.65227_Ch13x 11/30/99 5:57 PM Page 450

function _memcpy(Dest, Source: Pointer; Len: Integer): Pointer;
begin
Move(Source^, Dest^, Len);
Result := Dest;

end;

function _strncmp(P1, P2: PChar; MaxLen: Integer): Integer;
begin
Result := StrLComp(P1, P2, MaxLen);

end;

function _strncmpi(P1, P2: PChar; MaxLen: Integer): Integer;
begin
Result := StrLIComp(P1, P2, MaxLen);

end;

function _memmove(Dest, Source: Pointer; Len: Integer): Pointer;
begin
Move(Source^, Dest^, Len);
Result := Dest;

end;

function _strncpy(Dest, Source: PChar; MaxLen: Integer): PChar;
begin
Result := StrLCopy(Dest, Source, MaxLen);

end;

procedure _memset(P: Pointer; Count: Integer; Value: DWORD);
begin
FillChar(P^, Count, Value);

end;

function _strnicmp(P1, P2: PChar; MaxLen: Integer): Integer;
begin
Result := StrLIComp(P1, P2, MaxLen);

end;

procedure _movmem(Source, Dest: Pointer; MaxLen: Integer);
begin
Move(Source^, Dest^, MaxLen);

end;

procedure _setmem(Dest: Pointer; Len: Integer; Value: Char);
begin
FillChar(Dest^, Len, Value);

end;

Hard-Core Techniques

CHAPTER 13
451

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

continues

16.65227_Ch13x 11/30/99 5:57 PM Page 451

LISTING 13.11 Continued

function _stpcpy(Dest, Source: PChar): PChar;
begin
Result := StrCopy(Dest, Source);

end;

function _strcmp(P1, P2: PChar): Integer;
begin
Result := StrComp(P1, P2);

end;

function _strstr(P1, P2: PChar): PChar;
begin
Result := StrPos(P1, P2);

end;

function _strcmpi(P1, P2: PChar): Integer;
begin
Result := StrIComp(P1, P2);

end;

function _strupr(P: PChar): PChar;
begin
Result := StrUpper(P);

end;

function _strcpy(Dest, Source: PChar): PChar;
begin
Result := StrCopy(Dest, Source);

end;

end.

Advanced Techniques

PART II
452

TIP

Using the technique shown here, you could externalize more of the C++ RTL and
Win32 API into header files that map to Object Pascal units.

Using C++ Classes
Although it’s impossible to use C++ classes contained in an object file, it’s possible to get
some limited use from C++ classes contained in DLLs. By “limited use,” we mean that you’ll
be able to call the virtual functions exposed by the C++ class only from the Delphi side. This

16.65227_Ch13x 11/30/99 5:57 PM Page 452

is possible because both Object Pascal and C++ follow the COM standard for virtual interfaces
(see Chapter 23, “COM and ActiveX”).

Listing 13.12 shows the source code for cdll.cpp, a C++ module that contains a class defini-
tion. Notice in particular the standalone functions—one of which creates and returns a refer-
ence to a new object, and another of which frees a given reference. These functions are the
conduits through which we’ll share the object between the languages.

LISTING 13.12 cdll.cpp: A C++ Module That Contains a Class Definition

#include <windows.h>

// objects
class TFoo
{
virtual int function1(char *);
virtual int function2(int);

};

//member functions
int TFoo::function1(char * str1)
{
MessageBox(NULL, str1, “Hello from C++ DLL”, MB_OK);
return 0;

}

int TFoo::function2(int i)
{
return i * i;

}

#ifdef __cplusplus
extern “C” {
#endif

//prototypes
TFoo * __declspec(dllexport) ClassFactory(void);
void __declspec(dllexport) ClassKill(TFoo *);

TFoo * __declspec(dllexport) CLASSFACTORY(void)
{
TFoo * Foo;
Foo = new TFoo;
return Foo;

}

Hard-Core Techniques

CHAPTER 13
453

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

continues

16.65227_Ch13x 11/30/99 5:57 PM Page 453

LISTING 13.12 Continued

void __declspec(dllexport) CLASSKILL(TFoo * Foo)
{
delete Foo;

}

int WINAPI DllEntryPoint(HINSTANCE hinst, unsigned long reason, void*)
{

return 1;
}

#ifdef __cplusplus
}
#endif

To use this object from a Delphi application, you must do two things. First, you must import
the functions that create and destroy class instances. Second, you must define a virtual abstract
Object Pascal class definition that wraps the C++ class. Here’s how to do that:

type
TFoo = class
function Function1(Str1: PChar): integer; virtual; cdecl; abstract;
function Function2(i: integer): integer; virtual; cdecl; abstract;

end;

function ClassFactory: TFoo; cdecl; external ‘cdll.dll’
name ‘_CLASSFACTORY’;

procedure ClassKill(Foo: TFoo); cdecl; external ‘cdll.dll’ name
‘_CLASSKILL’;

Advanced Techniques

PART II
454

NOTE

When defining the Object Pascal wrapper for a C++ class, you don’t need to worry
about the names of the functions because they’re unimportant in determining how
the function is called internally. Because all calls will be dispatched through the Virtual
Method Table, the order in which the functions are declared is key. Make sure that
the order of the functions is the same in both the C++ and Object Pascal definitions.

Listing 13.13 shows Main.pas, the main unit for the CallC.dpr project, which demonstrates all
the C++ techniques shown so far in this chapter. The main form for this project is shown in
Figure 13.5.

16.65227_Ch13x 11/30/99 5:57 PM Page 454

FIGURE 13.5
The main form for the CallC project.

LISTING 13.13 Main.pas, the Main Unit for the CallC Project

unit Main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, ExtCtrls;

type
TMainForm = class(TForm)
Button1: TButton;
Button2: TButton;
FooData: TEdit;
Button3: TButton;
Button4: TButton;
SetCVarData: TEdit;
GetCVarData: TEdit;
procedure Button1Click(Sender: TObject);
procedure Button2Click(Sender: TObject);
procedure Button3Click(Sender: TObject);
procedure Button4Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
MainForm: TMainForm;
_GlobalVar: PChar = ‘This is a Delphi String’;

implementation

Hard-Core Techniques

CHAPTER 13
455

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

continues

16.65227_Ch13x 11/30/99 5:57 PM Page 455

LISTING 13.13 Continued

uses PasStrng;

{$R *.DFM}

{$L ccode.obj}

type
TFoo = class
function Function1(Str1: PChar): integer; virtual; cdecl; abstract;
function Function2(i: integer): integer; virtual; cdecl; abstract;

end;

PCharArray = ^TCharArray;
TCharArray = array[0..127] of char;

// import from OBJ file:
function _SAYHELLO(Text: PChar): Integer; cdecl; external;
procedure _C_VAR; external; // trick to import OBJ data

// imports from DLL file:
function ClassFactory: TFoo; cdecl; external ‘cdll.dll’
name ‘_CLASSFACTORY’;

procedure ClassKill(Foo: TFoo); cdecl; external ‘cdll.dll’
name ‘_CLASSKILL’;

procedure TMainForm.Button1Click(Sender: TObject);
begin
_SayHello(‘hello world’);

end;

procedure TMainForm.Button2Click(Sender: TObject);
var
Foo: TFoo;

begin
Foo := ClassFactory;
Foo.Function1(‘huh huh, cool.’);
FooData.Text := IntToStr(Foo.Function2(10));
ClassKill(Foo);

end;

function GetCArray: string;
var
A: PCharArray;

begin

Advanced Techniques

PART II
456

16.65227_Ch13x 11/30/99 5:57 PM Page 456

A := PCharArray(@_C_VAR);
Result := A^;

end;

procedure SetCArray(const S: string);
var
A: PCharArray;

begin
A := PCharArray(@_C_VAR);
StrLCopy(A^, PChar(S), SizeOf(TCharArray));

end;

procedure TMainForm.Button3Click(Sender: TObject);
begin
SetCArray(SetCVarData.Text);

end;

procedure TMainForm.Button4Click(Sender: TObject);
begin
GetCVarData.Text := GetCArray;

end;

end.

Hard-Core Techniques

CHAPTER 13
457

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

TIP

Although the technique demonstrated here does allow a limited means for commu-
nicating with C++ classes from Object Pascal, if you want to do this type of thing on
a large scale, we recommend you use COM objects to communicate between lan-
guages, as described in Chapter 23.

Thunking
At some point in your development of Windows and Win32 applications, you’ll need to call
16-bit code from a 32-bit application or even 32-bit code from a 16-bit application. This
process is known as thunking. Although the different varieties of Win32 provide various facili-
ties to make this possible, it remains one of the more difficult tasks to accomplish when devel-
oping Windows applications.

16.65227_Ch13x 11/30/99 5:57 PM Page 457

Win32 provides three different types of thunking: universal, generic, and flat. Each of these
techniques has its advantages and drawbacks:

• Universal thunking is available only under the Win32s platform (Win32s is the Win32
API subset available under 16-bit Windows). It allows 16-bit applications to load and call
Win32 DLLs. Because this variety of thunking is supported only for Win32s, a platform
not officially supported by Delphi, we won’t devote any more discussion to this topic.

• Generic thunking enables 16-bit Windows applications to call Win32 DLLs under
Windows 95, 98, NT, and 2000. This is the most flexible type of thunking because it’s
available on all major Win32 platforms and is API-based. We’ll discuss this option in
detail shortly.

• Flat thunking allows Win32 applications to call 16-bit DLLs and 16-bit applications to
call Win32 DLLs. Unfortunately, this type of thunking is available only under Windows
95/98; it also requires the use of a thunk compiler to create object files, which must be
linked to both the 32-bit and 16-bit sides. Because of the lack of portability and require-
ment for additional tools, we won’t cover flat thunking here.

In addition, there’s a way to share data between 32-bit and 16-bit processes by using the
WM_COPYDATA Windows message. In particular, WM_COPYDATA provides a straightforward means
for accessing 16-bit code from Windows NT/2000 (where thunking can be a headache), so
we’ll also cover that in this section.

Generic Thunking
Generic thunking is facilitated through a set of APIs that sit on both the 16-bit and 32-bit sides.
These APIs are known as WOW16 and WOW32, respectively. From 16-bit land, WOW16 provides
functions that allow you to load the Win32 DLL, get the address of functions in the DLL, and
call those functions. The source code for the WOW16.pas unit is shown in Listing 13.14.

LISTING 13.14 WOW16.pas, Functions to Load a 32-bit DLL from a 16-bit Application

unit WOW16;
// Unit which provides an interface to the 16-bit Windows on Win32 (WOW)
// API from a 16-bit application running under Win32.

Advanced Techniques

PART II
458

TIP

Aside from thunking, you should know that Automation (described in Chapter 23)
provides a reasonable alternative for crossing 16/32-bit boundaries. This capability is
built into Automation’s IDispatch interface.

16.65227_Ch13x 11/30/99 5:57 PM Page 458

// These functions allow 16-bit applications to call 32-bit DLLs.
// Copyright (c) 1996, 1999 Steve Teixeira and Xavier Pacheco

interface

uses WinTypes;

type
THandle32 = Longint;
DWORD = Longint;

{ Win32 module management.}

{ The following routines accept parameters that correspond directly }
{ to the respective Win32 API function calls that they invoke. Refer }
{ to the Win32 reference documentation for more detail. }
function LoadLibraryEx32W(LibFileName: PChar; hFile, dwFlags: DWORD):
THandle32;

function FreeLibrary32W(LibModule: THandle32): BOOL;
function GetProcAddress32W(Module: THandle32; ProcName: PChar): TFarProc;

{ GetVDMPointer32W converts a 16-bit (16:16) pointer into a }
{ 32-bit flat (0:32) pointer. The value of FMode should be 1 if }
{ the 16-bit pointer is a protected mode address (the normal }
{ situation in Windows 3.x) or 0 if the 16-bit pointer is real }
{ mode. }
{ NOTE: Limit checking is not performed in the retail build }
{ of Windows NT. It is performed in the checked (debug) build }
{ of WOW32.DLL, which will cause 0 to be returned when the }
{ limit is exceeded by the supplied offset. }
function GetVDMPointer32W(Address: Pointer; fProtectedMode: WordBool):
DWORD;

{ CallProc32W calls a proc whose address was retrieved by }
{ GetProcAddress32W. The true definition of this function }
{ actually allows for multiple DWORD parameters to be passed }
{ prior to the ProcAddress parameter, and the nParams parameter }
{ should reveal the number of params passed prior to ProcAddress. }
{ The AddressConvert parameter is a bitmask which indicates which }
{ of the params are 16-bit pointers in need of conversion before }
{ the 32-bit function is called. Since this function doesn’t lend }
{ itself to being defined in Object Pascal, you may want to use }
{ the simplified Call32BitProc function instead. }
function CallProc32W(Params: DWORD; ProcAddress, AddressConvert,

nParams: DWORD): DWORD;

Hard-Core Techniques

CHAPTER 13
459

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

continues

16.65227_Ch13x 11/30/99 5:57 PM Page 459

LISTING 13.14 Continued

{ Call32BitProc accepts a constant array of Longints as the parameter }
{ list for the function given by ProcAddress. This procedure is }
{ responsible for packaging the parameters into the correct format }
{ and calling the CallProc32W WOW function. }
function Call32BitProc(ProcAddress: DWORD; Params: array of Longint;

AddressConvert: Longint): DWORD;

{ Converts a 16-bit window handle to 32-bit for use by Windows NT. }
function HWnd16To32(Handle: hWnd): THandle32;

{ Converts a 32-bit window handle to 16-bit. }
function HWnd32To16(Handle: THandle32): hWnd;

implementation

uses WinProcs;

function HWnd16To32(Handle: hWnd): THandle32;
begin
Result := Handle or $FFFF0000;

end;

function HWnd32To16(Handle: THandle32): hWnd;
begin
Result := LoWord(Handle);

end;

function BitIsSet(Value: Longint; Bit: Byte): Boolean;
begin
Result := Value and (1 shl Bit) <> 0;

end;

procedure FixParams(var Params: array of Longint; AddConv: Longint);
var
i: integer;

begin
for i := Low(Params) to High(Params) do
if BitIsSet(AddConv, i) then
Params[i] := GetVDMPointer32W(Pointer(Params[i]), True);

end;

function Call32BitProc(ProcAddress: DWORD; Params: array of Longint;
AddressConvert: Longint): DWORD;

Advanced Techniques

PART II
460

16.65227_Ch13x 11/30/99 5:57 PM Page 460

var
NumParams: word;

begin
FixParams(Params, AddressConvert);
NumParams := High(Params) + 1;
asm
les di, Params { es:di -> Params }
mov cx, NumParams { loop counter = num params }

@@1:
push es:word ptr [di + 2] { push hiword of param x }
push es:word ptr [di] { push loword of param x }
add di, 4 { skip to next param }
loop @@1 { iterate over all params }
mov cx, ProcAddress.Word[2] { cx = hiword of ProcAddress }
mov dx, ProcAddress.Word[0] { dx = loword of ProcAddress }
push cx { push hi ProcAddress }
push dx { push lo ProcAddress }
mov ax, 0
push ax { push dummy hi AddressConvert }
push ax { push dummy lo AddressConvert }
push ax { push hi NumParams }
mov cx, NumParams
push cx { push lo Number of Params }
call CallProc32W { call function }
mov Result.Word[0], ax
mov Result.Word[2], dx { store return value }

end
end;

{ 16-bit WOW functions }
function LoadLibraryEx32W; external ‘KERNEL’ index 513;
function FreeLibrary32W; external ‘KERNEL’ index 514;
function GetProcAddress32W; external ‘KERNEL’ index 515;
function GetVDMPointer32W; external ‘KERNEL’ index 516;
function CallProc32W; external ‘KERNEL’ index 517;

end.

All the functions in this unit are simply exports from the 16-bit kernel except for the
Call32BitProc() function, which employs some assembly code to allow the user to pass a
variable number of parameters in an array of Longint.

The WOW32 functions make up the WOW32.pas unit, which is shown in Listing 13.15.

Hard-Core Techniques

CHAPTER 13
461

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

16.65227_Ch13x 11/30/99 5:57 PM Page 461

LISTING 13.15 WOW32.pas, Interface for WOW32.dll, Which Provides Access to 16-bit
code from Win32 Applications

unit WOW32;
// Import of WOW32.DLL, which provides utilities for accessing
// 16-bit code from Win32.
// Copyright (c) 1996, 1999 Steve Teixeira and Xavier Pacheco

interface

uses Windows;

//
// 16:16 -> 0:32 Pointer translation.
//
// WOWGetVDMPointer will convert the passed in 16-bit address
// to the equivalent 32-bit flat pointer. If fProtectedMode
// is TRUE, the function treats the upper 16 bits as a selector
// in the local descriptor table. If fProtectedMode is FALSE,
// the upper 16 bits are treated as a real-mode segment value.
// In either case the lower 16 bits are treated as the offset.
//
// The return value is 0 if the selector is invalid.
//
// NOTE: Limit checking is not performed in the retail build
// of Windows NT. It is performed in the checked (debug) build
// of WOW32.DLL, which will cause 0 to be returned when the
// limit is exceeded by the supplied offset.
//
function WOWGetVDMPointer(vp, dwBytes: DWORD; fProtectedMode: BOOL):
Pointer; stdcall;

//
// The following two functions are here for compatibility with
// Windows 95. On Win95, the global heap can be rearranged,
// invalidating flat pointers returned by WOWGetVDMPointer, while
// a thunk is executing. On Windows NT, the 16-bit VDM is completely
// halted while a thunk executes, so the only way the heap will
// be rearranged is if a callback is made to Win16 code.
//
// The Win95 versions of these functions call GlobalFix to
// lock down a segment’s flat address, and GlobalUnfix to
// release the segment.
//
// The Windows NT implementations of these functions do *not*
// call GlobalFix/GlobalUnfix on the segment, because there
// will not be any heap motion unless a callback occurs.

Advanced Techniques

PART II
462

16.65227_Ch13x 11/30/99 5:57 PM Page 462

// If your thunk does callback to the 16-bit side, be sure
// to discard flat pointers and call WOWGetVDMPointer again
// to be sure the flat address is correct.
//
function WOWGetVDMPointerFix(vp, dwBytes: DWORD; fProtectedMode: BOOL):
Pointer; stdcall;

procedure WOWGetVDMPointerUnfix(vp: DWORD); stdcall;

//
// Win16 memory management.
//
// These functions can be used to manage memory in the Win16
// heap. The following four functions are identical to their
// Win16 counterparts, except that they are called from Win32
// code.
//
function WOWGlobalAlloc16(wFlags: word; cb: DWORD): word; stdcall;
function WOWGlobalFree16(hMem: word): word; stdcall;
function WOWGlobalLock16(hMem: word): DWORD; stdcall;
function WOWGlobalUnlock16(hMem: word): BOOL; stdcall;

//
// The following three functions combine two common operations in
// one switch to 16-bit mode.
//
function WOWGlobalAllocLock16(wFlags: word; cb: DWORD; phMem: PWord):
DWORD; stdcall;

function WOWGlobalLockSize16(hMem: word; pcb: PDWORD): DWORD; stdcall;
function WOWGlobalUnlockFree16(vpMem: DWORD): word; stdcall;

//
// Yielding the Win16 nonpreemptive scheduler
//
// The following two functions are provided for Win32 code called
// via Generic Thunks which needs to yield the Win16 scheduler so
// that tasks in that VDM can execute while the thunk waits for
// something to complete. These two functions are functionally
// identical to calling back to 16-bit code which calls Yield or
// DirectedYield.
//
procedure WOWYield16;
procedure WOWDirectedYield16(htask16: word);

//
// Generic Callbacks.
//

Hard-Core Techniques

CHAPTER 13
463

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

continues

16.65227_Ch13x 11/30/99 5:57 PM Page 463

LISTING 13.15 Continued

// WOWCallback16 can be used in Win32 code called
// from 16-bit (such as by using Generic Thunks) to call back to
// the 16-bit side. The function called must be declared similarly
// to the following:
//
// function CallbackRoutine(dwParam: Longint): Longint; export;
//
// If you are passing a pointer, declare the parameter as such:
//
// function CallbackRoutine(vp: Pointer): Longint; export;
//
// NOTE: If you are passing a pointer, you’ll need to get the
// pointer using WOWGlobalAlloc16 or WOWGlobalAllocLock16
//
// If the function called returns a word instead of a Longint, the
// upper 16 bits of the return value is undefined. Similarly, if
// the function called has no return value, the entire return value
// is undefined.
//
// WOWCallback16Ex allows any combination of arguments up to
// WCB16_MAX_CBARGS bytes total to be passed to the 16-bit routine.
// cbArgs is used to properly clean up the 16-bit stack after calling
// the routine. Regardless of the value of cbArgs, WCB16_MAX_CBARGS
// bytes will always be copied from pArgs to the 16-bit stack. If
// pArgs is less than WCB16_MAX_CBARGS bytes from the end of a page,
// and the next page is inaccessible, WOWCallback16Ex will incur an
// access violation.
//
// If cbArgs is larger than the WCB16_MAX_ARGS which the running
// system supports, the function returns FALSE and GetLastError
// returns ERROR_INVALID_PARAMETER. Otherwise the function
// returns TRUE and the DWORD pointed to by pdwRetCode contains
// the return code from the callback routine. If the callback
// routine returns a WORD, the HIWORD of the return code is
// undefined and should be ignored using LOWORD(dwRetCode).
//
// WOWCallback16Ex can call routines using the PASCAL and CDECL
// calling conventions. The default is to use the PASCAL
// calling convention. To use CDECL, pass WCB16_CDECL in the
// dwFlags parameter.
//
// The arguments pointed to by pArgs must be in the correct
// order for the callback routine’s calling convention.
// To call the routine SetWindowText,
//

Advanced Techniques

PART II
464

16.65227_Ch13x 11/30/99 5:57 PM Page 464

// SetWindowText(Handle: hWnd; lpsz: PChar): Longint;
//
// pArgs would point to an array of words:
//
// SetWindowTextArgs: array[0..2] of word =
// (LoWord(Longint(lpsz)), HiWord(Longint(lpsz)), Handle);
//
// In other words, the arguments are placed in the array in reverse
// order with the least significant word first for DWORDs and offset
// first for FAR pointers. Further, the arguments are placed in the
// array in the order listed in the function prototype with the least
// significant word first for DWORDs and offset first for FAR pointers.
//
function WOWCallback16(vpfn16, dwParam: DWORD): DWORD; stdcall;

const
WCB16_MAX_CBARGS = 16;
WCB16_PASCAL = $0;
WCB16_CDECL = $1;

function WOWCallback16Ex(vpfn16, dwFlags, cbArgs: DWORD; pArgs: Pointer;
pdwRetCode: PDWORD): BOOL; stdcall;

//
// 16 <—> 32 Handle mapping functions.
//
type
TWOWHandleType = (
WOW_TYPE_HWND,
WOW_TYPE_HMENU,
WOW_TYPE_HDWP,
WOW_TYPE_HDROP,
WOW_TYPE_HDC,
WOW_TYPE_HFONT,
WOW_TYPE_HMETAFILE,
WOW_TYPE_HRGN,
WOW_TYPE_HBITMAP,
WOW_TYPE_HBRUSH,
WOW_TYPE_HPALETTE,
WOW_TYPE_HPEN,
WOW_TYPE_HACCEL,
WOW_TYPE_HTASK,
WOW_TYPE_FULLHWND);

function WOWHandle16(Handle32: THandle; HandType: TWOWHandleType): Word;
stdcall;

Hard-Core Techniques

CHAPTER 13
465

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

continues

16.65227_Ch13x 11/30/99 5:57 PM Page 465

LISTING 13.15 Continued

function WOWHandle32(Handle16: word; HandleType: TWOWHandleType):
THandle; stdcall;

implementation

const
WOW32DLL = ‘WOW32.DLL’;

function WOWCallback16;
external WOW32DLL name ‘WOWCallback16’;

function WOWCallback16Ex;
external WOW32DLL name ‘WOWCallback16Ex’;

function WOWGetVDMPointer;
external WOW32DLL name ‘WOWGetVDMPointer’;

function WOWGetVDMPointerFix;
external WOW32DLL name ‘WOWGetVDMPointerFix’;

procedure WOWGetVDMPointerUnfix;
external WOW32DLL name ‘WOWGetVDMPointerUnfix’

function WOWGlobalAlloc16;
external WOW32DLL name ‘WOWGlobalAlloc16’

function WOWGlobalAllocLock16;
external WOW32DLL name ‘WOWGlobalAllocLock16’;

function WOWGlobalFree16;
external WOW32DLL name ‘WOWGlobalFree16’;

function WOWGlobalLock16;
external WOW32DLL name ‘WOWGlobalLock16’;

function WOWGlobalLockSize16;
external WOW32DLL name ‘WOWGlobalLockSize16’;

function WOWGlobalUnlock16;
external WOW32DLL name ‘WOWGlobalUnlock16’;

function WOWGlobalUnlockFree16;
external WOW32DLL name ‘WOWGlobalUnlockFree16’;

function WOWHandle16;
external WOW32DLL name ‘WOWHandle16’;

function WOWHandle32;
external WOW32DLL name ‘WOWHandle32’;

procedure WOWYield16;
external WOW32DLL name ‘WOWYield16’;

procedure WOWDirectedYield16;
external WOW32DLL name ‘WOWDirectedYield16’;

end.

To illustrate generic thunking, we’ll create a small 32-bit DLL that will be called from a 16-bit
executable. The 32-bit DLL project, TestDLL.dpr, is shown in Listing 13.16.

Advanced Techniques

PART II
466

16.65227_Ch13x 11/30/99 5:57 PM Page 466

LISTING 13.16 TestDLL.dpr, DLL Project for Testing Generic Thunking. -s

library TestDLL;

uses
SysUtils, Dialogs, Windows, WOW32;

const
DLLStr = ‘I am in the 32-bit DLL. The string you sent is: “%s”’;

function DLLFunc32(P: PChar; CallBackFunc: DWORD): Integer; stdcall;
const
MemSize = 256;

var
Mem16: DWORD;
Mem32: PChar;
Hand16: word;

begin
{ Show string P }
ShowMessage(Format(DLLStr, [P]));
{ Allocate some 16-bit memory }
Hand16 := WOWGlobalAlloc16(GMem_Share or GMem_Fixed or GMem_ZeroInit,

MemSize);
{ Lock the 16-bit memory }
Mem16 := WOWGlobalLock16(Hand16);
{ Convert 16-bit pointer to 32-bit pointer. Now they point to the }
{ same place. }
Mem32 := PChar(WOWGetVDMPointer(Mem16, MemSize, True));
{ Copy string into 32-bit pointer }
StrPCopy(Mem32, ‘I REALLY love DDG!!’);
{ Call back into the 16-bit app, passing 16-bit pointer }
Result := WOWCallback16(CallBackFunc, Mem16);
{ clean up allocated 16-bit memory }
WOWGlobalUnlockFree16(Mem16);

end;

exports
DLLFunc32 name ‘DLLFunc32’ resident;

begin
end.

This DLL exports one function that takes a PChar and a callback function as parameters. The
PChar is immediately displayed in a ShowMessage(). The callback function allows the function
to call back into the 16-bit process, passing some specially allocated 16-bit memory.

Hard-Core Techniques

CHAPTER 13
467

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

16.65227_Ch13x 11/30/99 5:57 PM Page 467

The code for the 16-bit application, Call32.dpr, is shown in Listing 13.17. The main form is
shown in Figure 13.6.

Advanced Techniques

PART II
468

FIGURE 13.6
The Call32 main form.

LISTING 13.17 Main.pas, the Main Unit for the 16-bit Portion of the Generic Thunking
Test Application

unit Main;
{$C FIXED DEMANDLOAD PERMANENT}

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls;

type
TMainForm = class(TForm)
CallBtn: TButton;
Edit1: TEdit;
Label1: TLabel;
procedure CallBtnClick(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

16.65227_Ch13x 11/30/99 5:57 PM Page 468

uses WOW16;

const
ExeStr = ‘The 32-bit DLL has called back into the 16-bit EXE. ‘ +

‘The string to the EXE is: “%s”’;

function CallBackFunc(P: PChar): Longint; export;
begin
ShowMessage(Format(ExeStr, [StrPas(P)]));
Result := StrLen(P);

end;

procedure TMainForm.CallBtnClick(Sender: TObject);
var
H: THandle32;
R, P: Longint;
AStr: PChar;

begin
{ load 32-bit DLL }
H := LoadLibraryEx32W(‘TestDLL.dll’, 0, 0);
AStr := StrNew(‘I love DDG.’);
try
if H > 0 then
begin
{ Retrieve address of proc from 32-bit DLL }
TFarProc(P) := GetProcAddress32W(H, ‘DLLFunc32’);
if P > 0 then
begin
{ Call proc in 32-bit DLL }
R := Call32BitProc(P, [Longint(AStr), Longint(@CallBackFunc)],
1);

Edit1.Text := IntToStr(R);
end;

end;
finally
StrDispose(AStr);
if H > 0 then FreeLibrary32W(H);

end;
end;

end.

This application passes a 16-bit PChar and function address to the 32-bit DLL.
CallBackFunc() is eventually called by the 32-bit DLL. In fact, if you look closely, the return
value of DLLFunc32() is the value returned by CallBackFunc().

Hard-Core Techniques

CHAPTER 13
469

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

16.65227_Ch13x 11/30/99 5:57 PM Page 469

WM_COPYDATA
Windows 95/98 supports flat thunks to call 16-bit DLLs from Win32 applications. Windows
NT/2000 doesn’t provide a means to directly call 16-bit code from a Win32 application. Given
this limitation, the question that follows is, what’s the best way to communicate data between
32-bit and 16-bit processes on NT? What’s more, that leads us to another question: Is there an
easy way to share data in such a way that it runs under all the major Win32 platforms,
Windows 95, 98, NT, and 2000?

The answer to both questions is WM_COPYDATA. The WM_COPYDATA Windows message provides a
means for transferring binary data between processes—whether 32-bit or 16-bit processes.
When a WM_COPYDATA message is sent to a window, the wParam of this message identifies the
window passing the data, and the lParam holds a pointer to a TCopyDataStruct record. This
record is defined as follows:

type
PCopyDataStruct = ^TCopyDataStruct;
TCopyDataStruct = packed record
dwData: DWORD;
cbData: DWORD;
lpData: Pointer;

end;

The dwData field holds 32 bits of user-defined information. cbData contains the size of the
buffer pointed to by lpData. lpData is a pointer to a buffer of information you want to pass
between applications. If you send this message between a 32-bit and a 16-bit application,
Windows will automatically convert the lpData pointer from a 0:32 pointer to a 16:16 pointer,
or vice versa. Additionally, Windows will ensure that the data pointed to by lpData is mapped
into the receiving process’s address space.

Advanced Techniques

PART II
470

NOTE

WM_COPYDATA works great for relatively small amounts of information, but if you have
a lot of information that you must communicate across the 16/32-bit boundary, you
may wish to do so using Automation, which has the built-in ability to marshal across
process boundaries. Automation is described in Chapter 23.

TIP

It should be clear that, although NT doesn’t support direct usage of 16-bit DLLs from
Win32 applications, you can create a 16-bit executable that encapsulates the DLL and
can communicate with that executable by using WM_COPYDATA.

16.65227_Ch13x 11/30/99 5:57 PM Page 470

To show how WM_COPYDATA works, we’ll create two projects, the first being a 32-bit applica-
tion. This application will have a memo control into which you can type some text.
Additionally, this application will provide a means for communicating with the second project,
a 16-bit application, to transfer memo text. To provide a means whereby the two applications
can begin communication, take the following steps:

1. Register a window message to obtain a unique message ID for interapplication communi-
cation.

2. Broadcast the message system-wide from the Win32 application. In the wParam of this
message, store the handle to the main window of the Win32 application.

3. When the 16-bit application receives the broadcast message, it will answer by sending
the registered message back to the sending application and pass its own main form’s win-
dow handle as the wParam.

4. After receiving the response, the 32-bit application now has the handle to the main form
of the 16-bit application. The 32-bit application can now send a WM_COPYDATA message to
the 16-bit application so that the sharing can begin.

The code for the RegMsg.pas unit, which is shared by the two projects, is shown in Listing
13.18.

LISTING 13.18 RegMsg.pas, the Unit Which Registers the Handshaking Message

unit RegMsg;

interface

var
DDGM_HandshakeMessage: Cardinal;

implementation

uses WinProcs;

const
HandshakeMessageStr: PChar = ‘DDG.CopyData.Handshake’;

initialization
DDGM_HandshakeMessage := RegisterWindowMessage(HandshakeMessageStr);

end.

The source code for CopyMain.pas, the main unit of the 32-bit CopyData.dpr project, is shown
in Listing 13.19. This is the unit that establishes the conversation and sends the data.

Hard-Core Techniques

CHAPTER 13
471

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

16.65227_Ch13x 11/30/99 5:57 PM Page 471

LISTING 13.19 CopyMain.pas, the Main Unit for the 32-bit Portion of the WM_COPYDATA
Demonstration

unit CopyMain;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, ExtCtrls, Menus;

type
TMainForm = class(TForm)
DataMemo: TMemo;
BottomPnl: TPanel;
BtnPnl: TPanel;
CloseBtn: TButton;
CopyBtn: TButton;
MainMenu1: TMainMenu;
File1: TMenuItem;
CopyData1: TMenuItem;
N1: TMenuItem;
Exit1: TMenuItem;
Help1: TMenuItem;
About1: TMenuItem;
procedure CloseBtnClick(Sender: TObject);
procedure FormResize(Sender: TObject);
procedure About1Click(Sender: TObject);
procedure CopyBtnClick(Sender: TObject);

private
{ Private declarations }

protected
procedure WndProc(var Message: TMessage); override;

public
{ Public declarations }

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

uses AboutU, RegMsg;

// The following declaration is necessary because of an error in
// the declaration of BroadcastSystemMessage() in the Windows unit

Advanced Techniques

PART II
472

16.65227_Ch13x 11/30/99 5:57 PM Page 472

function BroadcastSystemMessage(Flags: DWORD; Recipients: PDWORD;
uiMessage: UINT; wParam: WPARAM; lParam: LPARAM): Longint; stdcall;
external ‘user32.dll’;

var
Recipients: DWORD = BSM_APPLICATIONS;

procedure TMainForm.WndProc(var Message: TMessage);
var
DataBuffer: TCopyDataStruct;
Buf: PChar;
BufSize: Integer;

begin
if Message.Msg = DDGM_HandshakeMessage then begin
{ Allocate buffer }
BufSize := DataMemo.GetTextLen + (1 * SizeOf(Char));
Buf := AllocMem(BufSize);
{ Copy memo to buffer }
DataMemo.GetTextBuf(Buf, BufSize);
try
with DataBuffer do begin
{ Fill dwData with registered message as safety check }
dwData := DDGM_HandshakeMessage;
cbData := BufSize;
lpData := Buf;

end;
{ NOTE: WM_COPYDATA message must be *sent* }
SendMessage(Message.wParam, WM_COPYDATA, Handle,
Longint(@DataBuffer));

finally
FreeMem(Buf, BufSize);

end;
end
else
inherited WndProc(Message);

end;

procedure TMainForm.CloseBtnClick(Sender: TObject);
begin
Close;

end;

procedure TMainForm.FormResize(Sender: TObject);
begin
BtnPnl.Left := BottomPnl.Width div 2 - BtnPnl.Width div 2;

end;

Hard-Core Techniques

CHAPTER 13
473

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

continues

16.65227_Ch13x 11/30/99 5:57 PM Page 473

LISTING 13.19 Continued

procedure TMainForm.About1Click(Sender: TObject);
begin
AboutBox;

end;

procedure TMainForm.CopyBtnClick(Sender: TObject);
begin
{ Call for any listening apps }
BroadcastSystemMessage(BSF_IGNORECURRENTTASK or BSF_POSTMESSAGE,
@Recipients, DDGM_HandshakeMessage, Handle, 0);

end;

end.

The source for ReadMain.pas, the main unit for the 16-bit ReadData.dpr project, is shown in
Listing 13.20. This is the unit that communicates with the CopyData project and receives the
data buffer.

LISTING 13.20 ReadMain.pas, the Main Unit for the 16-bit Portion of the WM_COPYDATA
Demonstration

unit Readmain;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, Menus, StdCtrls;

{ The WM_COPYDATA Windows message is not defined in the 16-bit Messages }
{ unit, although it is available to 16-bit applications running under }
{ Windows 95 or NT. This message is discussed in the Win32 API online }
{ help. }
const
WM_COPYDATA = $004A;

type
TMainForm = class(TForm)
ReadMemo: TMemo;
MainMenu1: TMainMenu;
File1: TMenuItem;
Exit1: TMenuItem;
Help1: TMenuItem;
About1: TMenuItem;

Advanced Techniques

PART II
474

16.65227_Ch13x 11/30/99 5:57 PM Page 474

procedure Exit1Click(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure About1Click(Sender: TObject);

private
procedure OnAppMessage(var M: TMsg; var Handled: Boolean);
procedure WMCopyData(var M: TMessage); message WM_COPYDATA;

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

uses RegMsg, AboutU;

type
{ The TCopyDataStruct record type is not defined in WinTypes unit, }
{ although it is available in the 16-bit Windows API when running }
{ under Windows 95 and NT. The lParam of the WM_COPYDATA message }
{ points to one of these. }
PCopyDataStruct = ^TCopyDataStruct;
TCopyDataStruct = record
dwData: DWORD;
cbData: DWORD;
lpData: Pointer;

end;

procedure TMainForm.OnAppMessage(var M: TMsg; var Handled: Boolean);
{ OnMessage handler for Application object. }
begin
{ The DDGM_HandshakeMessage message is received as a broadcast to }
{ all applications. The wParam of this message contains the handle }
{ of the window which broadcasted the message. We respond by posting }
{ the same message back to the sender, with our handle in the wParam. }
if M.Message = DDGM_HandshakeMessage then begin
PostMessage(M.wParam, DDGM_HandshakeMessage, Handle, 0);
Handled := True;

end;
end;

procedure TMainForm.WMCopyData(var M: TMessage);
{ Handler for WM_COPYDATA message }
begin
{ Check wParam to ensure we know WHO sent us the WM_COPYDATA message }

Hard-Core Techniques

CHAPTER 13
475

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

continues

16.65227_Ch13x 11/30/99 5:57 PM Page 475

LISTING 13.20 Continued

if PCopyDataStruct(M.lParam)^.dwData = DDGM_HandshakeMessage then
{ When WM_COPYDATA message is received, the lParam points to}
ReadMemo.SetTextBuf(PChar(PCopyDataStruct(M.lParam)^.lpData));

end;

procedure TMainForm.Exit1Click(Sender: TObject);
begin
Close;

end;

procedure TMainForm.FormCreate(Sender: TObject);
begin
Application.OnMessage := OnAppMessage;

end;

procedure TMainForm.About1Click(Sender: TObject);
begin
AboutBox;

end;

end.

Figure 13.7 shows the two applications working in harmony.

Advanced Techniques

PART II
476

FIGURE 13.7
Communicating with WM_COPYDATA.

16.65227_Ch13x 11/30/99 5:57 PM Page 476

Obtaining Package Information
Packages are great. They provide a convenient means to logically and physically divide your
application into separate modules. Packages are compiled binary modules consisting of one or
more units, and they can reference units contained in other compiled packages. Of course, if
you have the source code for a particular package, it’s very easy to figure out what units are
contained in that package and what other packages it requires. But what happens when you
need to obtain that information for a package for which you have no source code? Fortunately,
this is not terribly difficult if you don’t mind writing a few lines of code. In fact, you can
obtain this information with a call to only one procedure: GetPackageInfo(), which is con-
tained in the SysUtils unit. GetPackageInfo() is declared as follows:

procedure GetPackageInfo(Module: HMODULE; Param: Pointer; var Flags: Integer;
InfoProc: TPackageInfoProc);

Module is the Win32 API module handle of the package file, such as the handle returned by the
LoadLibrary() API function.

Param is user-defined data that will be passed to the procedure specified by the InfoProc para-
meter.

Upon return, the Flags parameter will hold information about the package. This will become a
combination of the flags shown in Table 13.6.

TABLE 13.6 GetPackageInfo() Flags

Flag Value Meaning

pfNeverBuild $00000001 This is a “never build” package.

pfDesignOnly $00000002 This is a design package.

pfRunOnly $00000004 This is a run package.

pfIgnoreDupUnits $00000008 Ignores multiple instances of the same unit in
this package.

pfModuleTypeMask $C0000000 The mask used to identify the module type.

pfExeModule $00000000 The package module is an EXE (not used).

pfPackageModule $40000000 The package module is a package file.

pfProducerMask $0C000000 The mask used to identify the product that
created this package.

pfV3Produced $00000000 The package produced by Delphi 3 or BCB 3.

pfProducerUndefined $04000000 The producer of this package is not defined.

pfBCB4Produced $08000000 The packages were produced by BCB 4.

pfDelphi4Produced $0C000000 The package was produced by Delphi 4.

pfLibraryModule $80000000 The package module is a DLL.

Hard-Core Techniques

CHAPTER 13
477

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

16.65227_Ch13x 11/30/99 5:57 PM Page 477

The InfoProc parameter identifies a callback method that will be called once for each package
this package requires and for each unit contained in this package. This parameter is of type
TPackageInfoProc, which is defined as follows:

type
TNameType = (ntContainsUnit, ntRequiresPackage);
TPackageInfoProc = procedure (const Name: string; NameType: TNameType;
Flags: Byte; Param: Pointer);

In this method type, Name identifies the name of the package or unit, NameType indicates
whether this file is a package or a unit, Flags provides some additional information for the file,
and Param contains the user-defined data originally passed to GetPackageInfo().

To demonstrate the GetPackageInfo() procedure, what follows is a sample application used to
obtain information for any package. This project is called PackInfo, and the project file is
shown in Listing 13.21.

LISTING 13.21 PackInfo.dpr, the Project File for the Application

program PkgInfo;

uses
Forms,
Dialogs,
SysUtils,
PkgMain in ‘PkgMain.pas’ {PackInfoForm};

{$R *.RES}

var
OpenDialog: TOpenDialog;

begin
if (ParamCount > 0) and FileExists(ParamStr(1)) then
PkgName := ParamStr(1)

else begin
OpenDialog := TOpenDialog.Create(Application);
OpenDialog.DefaultExt := ‘*.bpl’;
OpenDialog.Filter := ‘Packages (*.bpl)|*.bpl|Delphi 3 Packages ‘ +
‘(*.dpl)|*.dpl’;

if OpenDialog.Execute then PkgName := OpenDialog.FileName;
end;
if PkgName <> ‘’ then
begin
Application.Initialize;
Application.CreateForm(TPackInfoForm, PackInfoForm);
Application.Run;

end;
end.

Advanced Techniques

PART II
478

16.65227_Ch13x 11/30/99 5:57 PM Page 478

If no command-line parameters are passed to this application, it immediately presents the user
with a File Open dialog box in which the user can select a package file. If a package file is
passed on the command line or if a file is selected in the dialog box, that filename is assigned
to PkgName, and the application then runs normally.

The main unit for this application is shown in Listing 13.22. This is the unit that performs the
call to GetPackageInfo().

LISTING 13.22 PkgMain.pas, Obtaining Package Information

unit PkgMain;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, ExtCtrls;

type
TPackInfoForm = class(TForm)
GroupBox1: TGroupBox;
DsgnPkg: TCheckBox;
RunPkg: TCheckBox;
BuildCtl: TRadioGroup;
GroupBox2: TGroupBox;
GroupBox3: TGroupBox;
Button1: TButton;
Label1: TLabel;
DescEd: TEdit;
memContains: TMemo;
memRequires: TMemo;
procedure FormCreate(Sender: TObject);
procedure Button1Click(Sender: TObject);

end;

var
PackInfoForm: TPackInfoForm;
PkgName: string; // This is assigned in project file

implementation

{$R *.DFM}

procedure PackageInfoCallback(const Name: string; NameType: TNameType;
Flags: Byte; Param: Pointer);

var

Hard-Core Techniques

CHAPTER 13
479

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

continues

16.65227_Ch13x 11/30/99 5:57 PM Page 479

LISTING 13.22 Continued

AddName: string;
Memo: TMemo;

begin
Assert(Param <> nil);
AddName := Name;
case NameType of
ntContainsUnit: Memo := TPackInfoForm(Param).memContains;
ntRequiresPackage: Memo := TPackInfoForm(Param).memRequires;

else
Memo := nil;

end;
if Memo <> nil then
begin
if Memo.Text <> ‘’ then AddName := ‘, ‘ + AddName;
Memo.Text := Memo.Text + AddName;

end;
end;

procedure TPackInfoForm.FormCreate(Sender: TObject);
var
PackMod: HMODULE;
Flags: Integer;

begin
// Since we only need to get into the package’s resources,
// LoadLibraryEx with LOAD_LIBRARY_AS_DATAFILE provides a speed-
// efficient means for loading the package.
PackMod := LoadLibraryEx(PChar(PkgName), 0, LOAD_LIBRARY_AS_DATAFILE);
if PackMod = 0 then Exit;
try
GetPackageInfo(PackMod, Pointer(Self), Flags, PackageInfoCallback);

finally
FreeLibrary(PackMod);

end;
Caption := ‘Package Info: ‘ + ExtractFileName(PkgName);
DsgnPkg.Checked := Flags and pfDesignOnly <> 0;
RunPkg.Checked := Flags and pfRunOnly <> 0;
if Flags and pfNeverBuild <> 0 then
BuildCtl.ItemIndex := 1;

DescEd.Text := GetPackageDescription(PChar(PkgName));
end;

procedure TPackInfoForm.Button1Click(Sender: TObject);

Advanced Techniques

PART II
480

16.65227_Ch13x 11/30/99 5:57 PM Page 480

begin
Close;

end;

end.

It seems as though there’s a disproportionately small amount of code for this unit, considering
the low-level information it obtains. When the form is created, the package is loaded,
GetPackageInfo() is called, and some UI is updated. The PackageInfoCallback() method is
passed in the InfoProc parameter of GetPackageInfo(). PackageInfoCallback() adds the
package or unit name to the appropriate TMemo control. Figure 13.8 shows the PackInfo appli-
cation displaying information for one of the Delphi packages.

Hard-Core Techniques

CHAPTER 13
481

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

FIGURE 13.8
Viewing package information with PackInfo.

Summary
Whew, this was an in-depth chapter! Step back for a moment and take a look at all you
learned: subclassing window procedures, preventing multiple instances, windows hooks,
BASM programming, using C++ object files, using C++ classes, thunking, WM_COPYDATA, and
getting information for compiled packages. I don’t know about you, but we’ve covered so
much hacker stuff in this chapter that I’m hungry for Cheetos and Jolt Cola! Since we’re on a
roll with low-level programming, the next chapter, “Snooping System Information,” details
how to get inside the OS to obtain information about processes, threads, and modules.

16.65227_Ch13x 11/30/99 5:57 PM Page 481

16.65227_Ch13x 11/30/99 5:57 PM Page 482

CHAPTER

14
Snooping System Information

IN THIS CHAPTER
• InfoForm: Obtaining General

Information 484

• Platform-Neutral Design 500

• Windows 95/98: Using ToolHelp32 501

• Windows NT/2000: PSAPI 527

• Summary 541

17.65227_Ch14x 11/30/99 5:58 PM Page 483

In this chapter, you’ll learn how to create a full-featured utility, called SysInfo, that’s designed
to browse the vital parameters of your system. Through the course of developing this applica-
tion, you’ll learn how to employ lesser-known APIs to gain access to low-level, systemwide
information on processes, threads, modules, heaps, drivers, and pages. This chapter also covers
how Windows 95/98 and Windows NT obtain this information differently. Additionally,
SysInfo provides you with techniques for obtaining information on free memory resources,
Windows version information, environment variable settings, and a list of loaded modules. Not
only do you learn to use these nuts-and-bolts API functions, but you also learn how to integrate
this information into a functional and aesthetically pleasing user interface. Additionally, you
learn which of the Windows 3.x API functions the Win32 functions in this chapter are designed
to replace.

You’d want to get such information from Windows for several reasons. Of course, the hacker in
each of us would argue that being able to snoop around the operating system’s backyard like
some kind of cyber-voyeur is its own reward. Perhaps you’re writing a program that needs to
access environment variables in order to find certain files. Maybe you need to determine which
modules are loaded in order to remove modules from memory manually. Possibly you need to
come up with a killer chapter for a book you’re writing. See, lots of valid reasons exist!

InfoForm: Obtaining General Information
To warm up, this section shows you how to obtain system information in an API that’s consis-
tent across Win32 versions. The code for this application will make a bit more sense if you
learn about its user interface first. You’ll learn about the user interface of this application a lit-
tle bit backward, though, because we’re going to explain one of the application’s child forms
first. This form, shown in Figure 14.1, is called InfoForm, and it’s used to display various sys-
tem and process settings, such as memory and hardware information, operating system (OS)
version and directory information, and environment variables.

Advanced Techniques

PART II
484

FIGURE 14.1
The InfoForm child form.

The contents of the form are quite simple. The form contains a THeaderListbox (a custom
component covered in Chapter 21, “Writing Delphi Custom Components”) and a TButton. To
refresh your memory, the THeaderListbox control is a combination of a THeader control and a
TListBox control. When the sections of the header are sized, the list box contents will also size

17.65227_Ch14x 11/30/99 5:58 PM Page 484

appropriately. The TheaderListbox control, called InfoLB, displays the information mentioned
earlier. The button dismisses the form.

Formatting the Strings
This application makes extensive use of the Format() function to format predefined strings
with data retrieved from the OS at runtime. The strings that will be used are defined in a const
section in the main unit:

const

{ Memory status strings }

SMemUse = ‘Memory in useq%d%%’;

STotMem = ‘Total physical memoryq$%.8x bytes’;

SFreeMem = ‘Free physical memoryq$%.8x bytes’;

STotPage = ‘Total page file memoryq$%.8x bytes’;

SFreePage = ‘Free page file memoryq$%.8x bytes’;

STotVirt = ‘Total virtual memoryq$%.8x bytes’;

SFreeVirt = ‘Free virtual memoryq$%.8x bytes’;

{ OS version info strings }

SOSVer = ‘OS Versionq%d.%d’;

SBuildNo = ‘Build Numberq%d’;

SOSPlat = ‘Platformq%s’;

SOSWin32s = ‘Windows 3.1x running Win32s’;

SOSWin95 = ‘Windows 95/98’;

SOSWinNT = ‘Windows NT/2000’;

{ System info strings }

SProc = ‘Processor Arhitectureq%s’;

SPIntel = ‘Intel’;

SPageSize = ‘Page Sizeq$%.8x bytes’;

SMinAddr = ‘Minimum Application Addressq$%p’;

SMaxAddr = ‘Maximum Application Addressq$%p’;

SNumProcs = ‘Number of Processorsq%d’;

SAllocGra = ‘Allocation Granularityq$%.8x bytes’;

SProcLevl = ‘Processor Levelq%s’;

SIntel3 = ‘80386’;

SIntel4 = ‘80486’;

SIntel5 = ‘Pentium’;

SIntel6 = ‘Pentium Pro’;

SProcRev = ‘Processor Revisionq%.4x’;

{ Directory strings }

SWinDir = ‘Windows directoryq%s’;

SSysDir = ‘Windows system directoryq%s’;

SCurDir = ‘Current directoryq%s’;

Snooping System Information

CHAPTER 14
485

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

17.65227_Ch14x 11/30/99 5:58 PM Page 485

You’re probably wondering about the conspicuous “q” in the middle of each of the strings.
When displaying these strings, the DelimChar property of InfoLB is set to q, which means that
the InfoLB component assumes that the character q defines the delimiter between each column
in the list box.

There are three primary reasons for using Format() with predefined strings rather than individ-
ually formatting string literals:

• Because Format() accepts various types as parameters, you don’t have to cloud your
code with a bunch of varied calls to functions (such as IntToStr() and IntToHex()),
which format different parameter types for display.

• Format() easily handles multiple data types. In this case, we use the %s and %d format
strings to format string and numeric data so that it’s more flexible.

• Keeping the strings in a separate location makes it easier to find, add, and change strings,
if necessary. It’s also more maintainable.

Advanced Techniques

PART II
486

NOTE

Use a double percent sign (%%) to display a single percent symbol in a formatted
string.

Obtaining Memory Status
The first bit of system information you can obtain to place in InfoLB is the memory status
obtained by the GlobalMemoryStatus() API call. GlobalMemoryStatus() is a procedure that
accepts one var parameter of type TMemoryStatus, which is defined as follows:

type

TMemoryStatus = record

dwLength: DWORD;

dwMemoryLoad: DWORD;

dwTotalPhys: DWORD;

dwAvailPhys: DWORD;

dwTotalPageFile: DWORD;

dwAvailPageFile: DWORD;

dwTotalVirtual: DWORD;

dwAvailVirtual: DWORD;

end;

• The first field in this record, dwLength, describes the length of the TMemoryStatus
record. You should initialize this value to SizeOf(TMemoryStatus) prior to calling

17.65227_Ch14x 11/30/99 5:58 PM Page 486

GlobalMemoryStatus(). Doing this allows Windows to change the size of this record in
future versions because it will be able to differentiate versions based on the value of the
first field.

• dwMemoryLoad provides a number from 0 to 100 that’s intended to give a general idea of
memory usage. 0 means that no memory is being used, and 100 means that all memory is
in use.

• dwTotalPhys indicates the total number of bytes of physical memory (the amount of
RAM installed on the computer), and dwAvailPhys indicates how much of that total is
currently unused.

• dwTotalPageFile indicates the total number of bytes that can be stored to hard disk page
file(s). This number is not the same as the size of a page file on disk. dwAvailPageFile
indicates how much of that total is available.

• dwTotalVirtual indicates the total number of bytes of usable virtual memory in the call-
ing process. dwAvailVirtual indicates how much of this memory is available to the call-
ing process.

The following code obtains the memory status and fills the list box with the status information:

procedure TInfoForm.ShowMemStatus;

var

MS: TMemoryStatus;

begin

InfoLB.DelimChar := ‘q’;

MS.dwLength := SizeOf(MS);

GlobalMemoryStatus(MS);

with InfoLB.Items, MS do

begin

Clear;

Add(Format(SMemUse, [dwMemoryLoad]));

Add(Format(STotMem, [dwTotalPhys]));

Add(Format(SFreeMem, [dwAvailPhys]));

Add(Format(STotPage, [dwTotalPageFile]));

Add(Format(SFreePage, [dwAvailPageFile]));

Add(Format(STotVirt, [dwTotalVirtual]));

Add(Format(SFreeVirt, [dwAvailVirtual]));

end;

InfoLB.Sections[0].Text := ‘Resource’;

InfoLB.Sections[1].Text := ‘Amount’;

Caption:= ‘Memory Status’;

end;

Snooping System Information

CHAPTER 14
487

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

17.65227_Ch14x 11/30/99 5:58 PM Page 487

Figure 14.2 shows InfoForm displaying memory status information at runtime.

Advanced Techniques

PART II
488

CAUTION

Don’t forget to initialize the dwLength field of the TMemoryStatus structure before
calling GlobalMemoryStatus().

FIGURE 14.2
Viewing memory status information.

Getting the OS Version
You can find out what version of Windows and the Win32 OS you’re running by making a call
to the GetVersionEx() API function. GetVersionEx() accepts as its only parameter a
TOSVersionInfo record, by reference. This record is defined as follows:

type

TOSVersionInfo = record

dwOSVersionInfoSize: DWORD;

dwMajorVersion: DWORD;

dwMinorVersion: DWORD;

dwBuildNumber: DWORD;

dwPlatformId: DWORD;

szCSDVersion: array[0..126] of AnsiChar; {Maintenance string for PSS usage}

end;

• The dwOSVersionInfoSize field should be initialized to SizeOf(TOSVersionInfo) prior
to calling GetVersionEx().

• dwMajorVersion indicates the major release number of the OS. In other words, if the OS
version number is 4.0, the value of this field will be 4.

• dwMinorVersion indicates the minor release number of the OS. In other words, if the OS
version number is 4.0, the value of this field will be 0.

• dwBuildNumber holds the build number of the OS in its low-order word.

17.65227_Ch14x 11/30/99 5:58 PM Page 488

• dwPlatformId describes the current Win32 platform. This parameter can have any one of
the values in the following table:

Value Platform

VER_PLATFORM_WIN32s Win32s on Windows 3.1

VER_PLATFORM_WIN32_WINDOWS Win32 on Windows 95 or Windows 98

VER_PLATFORM_WIN32_NT Windows NT or Windows 2000

• szCSDVersion contains additional arbitrary OS information. This value is often an empty
string.

The following procedure populates InfoLB with OS version information:

procedure TInfoForm.GetOSVerInfo;

var

VI: TOSVersionInfo;

begin

VI.dwOSVersionInfoSize := SizeOf(VI);

GetVersionEx(VI);

with InfoLB.Items, VI do

begin

Clear;

Add(Format(SOSVer, [dwMajorVersion, dwMinorVersion]));

Add(Format(SBuildNo, [LoWord(dwBuildNumber)]));

case dwPlatformID of

VER_PLATFORM_WIN32S: Add(Format(SOSPlat, [SOSWin32s]));

VER_PLATFORM_WIN32_WINDOWS: Add(Format(SOSPlat, [SOSWin95]));

VER_PLATFORM_WIN32_NT: Add(Format(SOSPlat, [SOSWinNT]));

end;

end;

end;

Snooping System Information

CHAPTER 14
489

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

NOTE

In Windows 3.x, the GetVersion() function obtained similar version information.
Because you’re now in Win32 land, you should use the GetVersionEx() function; it
provides more detailed information than GetVersion().

Obtaining Directory Information
The OS uses the Windows and System directories extensively to store shared DLLs, drivers,
applications, and INI files. Additionally, Win32 also maintains a current directory for each
process. Throughout the course of writing Win32 applications, it’s likely that you’ll encounter

17.65227_Ch14x 11/30/99 5:58 PM Page 489

a situation where you need to obtain the location of one of these directories. When this hap-
pens, you’ll be in luck because three functions in the Win32 API enable you to obtain that
directory information.

The functions—GetWindowsDirectory(), GetSystemDirectory(), and
GetCurrentDirectory()—are pretty straightforward. Each takes a pointer to a buffer where
the directory string is copied as the first parameter and the buffer size is copied as the second
parameter. The function copies into the buffer a null-terminated string containing the path.
Hopefully, you can tell which directory each function returns by the name of the function. If
not, well, let’s just say we hope you don’t rely on programming to eat.

This method uses a temporary array of char into which the directory information is stored.
From there, the string is added to InfoLB, as you can see for yourself in the following code:

procedure TInfoForm.GetDirInfo;

var

S: array[0..MAX_PATH] of char;

begin

{ Get Windows directory }

GetWindowsDirectory(S, SizeOf(S));

InfoLB.Items.Add(Format(SWinDir, [S]));

{ Get Windows system directory }

GetSystemDirectory(S, SizeOf(S));

InfoLB.Items.Add(Format(SSysDir, [S]));

{ Get Current directory for current process }

GetCurrentDirectory(SizeOf(S), S);

InfoLB.Items.Add(Format(SCurDir, [S]));

end;

Advanced Techniques

PART II
490

NOTE

The GetWindowsDir() and GetSystemDir() functions from the Windows 3.x API are
unavailable under Win32.

Getting System Information
The Win32 API provides a procedure called GetSystemInfo() that, in turn, provides some
very low-level details on the operating system. This procedure accepts one parameter of type
TSystemInfo by reference, and it fills the record with the proper values. The TSystemInfo
record is defined as follows:

type

PSystemInfo = ^TSystemInfo;

17.65227_Ch14x 11/30/99 5:58 PM Page 490

TSystemInfo = record

case Integer of

0: (

dwOemId: DWORD);

1: (

wProcessorArchitecture: Word;

wReserved: Word;

dwPageSize: DWORD;

lpMinimumApplicationAddress: Pointer;

lpMaximumApplicationAddress: Pointer;

dwActiveProcessorMask: DWORD;

dwNumberOfProcessors: DWORD;

dwProcessorType: DWORD;

dwAllocationGranularity: DWORD;

wProcessorLevel: Word;

wProcessorRevision: Word);

end;

• The dwOemId field is used for Windows 95. This value is always set to 0 or
PROCESSOR_ARCHITECTURE_INTEL.

• Under NT, the wProcessorArchitecture portion of the variant record is used. This field
describes the type of processor architecture under which you’re currently running.
Because Delphi is designed for Intel only, however, it’s the only type that matters at this
point. For the sake of completeness, this field can have any one of the following values:

PROCESSOR_ARCHITECTURE_INTEL

PROCESSOR_ARCHITECTURE_MIPS

PROCESSOR_ARCHITECTURE_ALPHA

PROCESSOR_ARCHITECTURE_PPC

• The wReserved field is unused at this time.

• The dwPageSize field holds the page size in kilobytes (KB) and specifies the granularity
of page protection and commitment. On Intel x86 machines, this value is 4KB.

• lpMinimumApplicationAddress returns the lowest memory address accessible to appli-
cations and DLLs. Attempts to access a memory address below this value is likely to
result in an access violation. lpMaximumApplicationAddress returns the highest memory
address accessible to applications and DLLs. Attempts to access a memory address above
this value are likely to result in an access violation.

• dwActiveProcessorMask returns a mask representing the set of processors configured
into the system. Bit 0 represents the first processor, and bit 31 represents the 32nd
processor. Wouldn’t having 32 processors be cool? Because Windows 95/98 supports
only one processor, only bit 0 will be set under that implementation of Win32.

Snooping System Information

CHAPTER 14
491

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

17.65227_Ch14x 11/30/99 5:58 PM Page 491

• dwNumberOfProcessors also returns the number of processors in the system. We’re not
sure why Microsoft bothered to put both this and the preceding field in the TSystemInfo
record, but here they are.

• The dwProcessorType field is no longer relevant. It was retained for backward compati-
bility. This field can have any one of the following values:

PROCESSOR_INTEL_386

PROCESSOR_INTEL_486

PROCESSOR_INTEL_PENTIUM

PROCESSOR_MIPS_R4000

PROCESSOR_ALPHA_21064

Of course, under Windows 95/98, only the PROCESSOR_INTEL_x values are possible,
whereas all are valid under Windows NT.

• dwAllocationGranularity returns the allocation granularity upon which memory will
be allocated. In previous implementations of Win32, this value was hard-coded as 64KB.
It’s possible, however, that other hardware architectures may require different values.

• The wProcessorLevel field specifies the system’s architecture-dependent processor level.
This field can hold a variety of values for different processors. For Intel processors, this
parameter can have any of the values in the following table:

Value Meaning

3 Processor is an 80386

4 Processor is an 80486

5 Processor is a Pentium

6 Processor is a Pentium Pro or higher

• wProcessorRevision specifies an architecture-dependent processor revision. Like
wProcessorLevel, this field can hold a variety of values for different processors. For
Intel architectures, this field holds a number in the format xxyy. For Intel 386 and 486
chips, xx + $0A is the stepping level and yy is the stepping (for example, 0300 is a D0
chip). For Intel Pentium or Cyrex/NextGen 486 chips, xx is the model number, and yy is
the stepping (for example, 0201 is Model 2, Stepping 1).

The procedure used to obtain and add the formatted system information strings to InfoLB is as
follows (note that this code is purposely slanted to display only Intel architecture information):

procedure TInfoForm.GetSysInfo;

var

SI: TSystemInfo;

begin

GetSystemInfo(SI);

Advanced Techniques

PART II
492

17.65227_Ch14x 11/30/99 5:58 PM Page 492

with InfoLB.Items, SI do

begin

Add(Format(SProc, [SPIntel]));

Add(Format(SPageSize, [dwPageSize]));

Add(Format(SMinAddr, [lpMinimumApplicationAddress]));

Add(Format(SMaxAddr, [lpMaximumApplicationAddress]));

Add(Format(SNumProcs, [dwNumberOfProcessors]));

Add(Format(SAllocGra, [dwAllocationGranularity]));

case wProcessorLevel of

3: Add(Format(SProcLevl, [SIntel3]));

4: Add(Format(SProcLevl, [SIntel4]));

5: Add(Format(SProcLevl, [SIntel5]));

6: Add(Format(SProcLevl, [SIntel6]));

else Add(Format(SProcLevl, [IntToStr(wProcessorLevel)]));

end;

end;

end;

Snooping System Information

CHAPTER 14
493

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

NOTE

The GetSystemInfo() function effectively replaces the GetWinFlags() function from
the Windows 3.x API.

Figure 14.3 shows InfoForm displaying system information, including OS version and direc-
tory information, at runtime.

FIGURE 14.3
Viewing system information.

17.65227_Ch14x 11/30/99 5:58 PM Page 493

Checking Out the Environment
Obtaining the list of environment variables—things such as sets, path, and prompt—for the
current process is an easy task, thanks to the GetEnvironmentStrings() API function. This
function takes no parameters and returns a null-separated list of environment strings. The for-
mat of this list is a string, followed by a null, followed by a string, followed by a null, and so
on until the entire string is terminated with a double null (#0#0). The following function is
used in the SysInfo application to retrieve the output from the GetEnvironmentStrings()
function and place it into InfoLB:

procedure TInfoForm.ShowEnvironment;

var

EnvPtr, SavePtr: PChar;

begin

InfoLB.DelimChar := ‘=’;

EnvPtr := GetEnvironmentStrings;

SavePtr := EnvPtr;

InfoLB.Items.Clear;

repeat

InfoLB.Items.Add(StrPas(EnvPtr));

inc(EnvPtr, StrLen(EnvPtr) + 1);

until EnvPtr^ = #0;

FreeEnvironmentStrings(SavePtr);

InfoLB.Sections[0].Text := ‘Environment Variable’;

InfoLB.Sections[1].Text := ‘Value’;

Caption:= ‘Current Environment’;

end;

Advanced Techniques

PART II
494

NOTE

The ShowEnvironment() method takes advantage of Object Pascal’s capability to per-
form pointer arithmetic on PChar-type strings. Notice how few lines of code are
required to traverse the list of environment strings.

A couple of comments on this method are in order. First, notice that the DelimChar property of
InfoLB is initially set to ‘=’. Because each of the environment variable and value pairs are
already separated by that character, it’s very easy to display them properly in InfoLB. Also,
when you’re finished using the environment strings, you should call the
FreeEnvironmentStrings() function to free the allocated block.

17.65227_Ch14x 11/30/99 5:58 PM Page 494

Figure 14.4 shows the InfoForm environment strings at runtime.

Snooping System Information

CHAPTER 14
495

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

TIP

You can’t obtain or set individual environment variables with the
GetEnvironmentStrings() function. For getting and setting individual environment
variables, see the GetEnvironmentVariable() and SetEnvironmentVariable() func-
tions in the Win32 API help.

FIGURE 14.4
Viewing environment strings.

Listing 14.1 shows the entire source code for the InfoU.pas unit.

LISTING 14.1 The Source Code for the InfoU.pas Unit

unit InfoU;

interface

uses

Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,

HeadList, StdCtrls, ExtCtrls, SysMain;

type

TInfoVariety = (ivMemory, ivSystem, ivEnvironment);

TInfoForm = class(TForm)

InfoLB: THeaderListbox;

Panel1: TPanel;

continues

17.65227_Ch14x 11/30/99 5:58 PM Page 495

LISTING 14.1 Continued

OkBtn: TButton;

private

procedure GetOSVerInfo;

procedure GetSysInfo;

procedure GetDirInfo;

public

procedure ShowMemStatus;

procedure ShowSysInfo;

procedure ShowEnvironment;

end;

procedure ShowInformation(Variety: TInfoVariety);

implementation

{$R *.DFM}

procedure ShowInformation(Variety: TInfoVariety);

begin

with TInfoForm.Create(Application) do

try

Font := MainForm.Font;

case Variety of

ivMemory: ShowMemStatus;

ivSystem: ShowSysInfo;

ivEnvironment: ShowEnvironment;

end;

ShowModal;

finally

Free;

end;

end;

const

{ Memory status strings }

SMemUse = ‘Memory in useq%d%%’;

STotMem = ‘Total physical memoryq$%.8x bytes’;

SFreeMem = ‘Free physical memoryq$%.8x bytes’;

STotPage = ‘Total page file memoryq$%.8x bytes’;

SFreePage = ‘Free page file memoryq$%.8x bytes’;

STotVirt = ‘Total virtual memoryq$%.8x bytes’;

Advanced Techniques

PART II
496

17.65227_Ch14x 11/30/99 5:58 PM Page 496

SFreeVirt = ‘Free virtual memoryq$%.8x bytes’;

{ OS version info strings }

SOSVer = ‘OS Versionq%d.%d’;

SBuildNo = ‘Build Numberq%d’;

SOSPlat = ‘Platformq%s’;

SOSWin32s = ‘Windows 3.1x running Win32s’;

SOSWin95 = ‘Windows 95/98’;

SOSWinNT = ‘Windows NT/2000’;

{ System info strings }

SProc = ‘Processor Arhitectureq%s’;

SPIntel = ‘Intel’;

SPageSize = ‘Page Sizeq$%.8x bytes’;

SMinAddr = ‘Minimum Application Addressq$%p’;

SMaxAddr = ‘Maximum Application Addressq$%p’;

SNumProcs = ‘Number of Processorsq%d’;

SAllocGra = ‘Allocation Granularityq$%.8x bytes’;

SProcLevl = ‘Processor Levelq%s’;

SIntel3 = ‘80386’;

SIntel4 = ‘80486’;

SIntel5 = ‘Pentium’;

SIntel6 = ‘Pentium Pro’;

SProcRev = ‘Processor Revisionq%.4x’;

{ Directory strings }

SWinDir = ‘Windows directoryq%s’;

SSysDir = ‘Windows system directoryq%s’;

SCurDir = ‘Current directoryq%s’;

procedure TInfoForm.ShowMemStatus;

var

MS: TMemoryStatus;

begin

InfoLB.DelimChar := ‘q’;

MS.dwLength := SizeOf(MS);

GlobalMemoryStatus(MS);

with InfoLB.Items, MS do

begin

Clear;

Add(Format(SMemUse, [dwMemoryLoad]));

Add(Format(STotMem, [dwTotalPhys]));

Snooping System Information

CHAPTER 14
497

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

continues

17.65227_Ch14x 11/30/99 5:58 PM Page 497

LISTING 14.1 Continued

Add(Format(SFreeMem, [dwAvailPhys]));

Add(Format(STotPage, [dwTotalPageFile]));

Add(Format(SFreePage, [dwAvailPageFile]));

Add(Format(STotVirt, [dwTotalVirtual]));

Add(Format(SFreeVirt, [dwAvailVirtual]));

end;

InfoLB.Sections[0].Text := ‘Resource’;

InfoLB.Sections[1].Text := ‘Amount’;

Caption:= ‘Memory Status’;

end;

procedure TInfoForm.GetOSVerInfo;

var

VI: TOSVersionInfo;

begin

VI.dwOSVersionInfoSize := SizeOf(VI);

GetVersionEx(VI);

with InfoLB.Items, VI do

begin

Clear;

Add(Format(SOSVer, [dwMajorVersion, dwMinorVersion]));

Add(Format(SBuildNo, [LoWord(dwBuildNumber)]));

case dwPlatformID of

VER_PLATFORM_WIN32S: Add(Format(SOSPlat, [SOSWin32s]));

VER_PLATFORM_WIN32_WINDOWS: Add(Format(SOSPlat, [SOSWin95]));

VER_PLATFORM_WIN32_NT: Add(Format(SOSPlat, [SOSWinNT]));

end;

end;

end;

procedure TInfoForm.GetSysInfo;

var

SI: TSystemInfo;

begin

GetSystemInfo(SI);

with InfoLB.Items, SI do

begin

Add(Format(SProc, [SPIntel]));

Add(Format(SPageSize, [dwPageSize]));

Add(Format(SMinAddr, [lpMinimumApplicationAddress]));

Advanced Techniques

PART II
498

17.65227_Ch14x 11/30/99 5:58 PM Page 498

Add(Format(SMaxAddr, [lpMaximumApplicationAddress]));

Add(Format(SNumProcs, [dwNumberOfProcessors]));

Add(Format(SAllocGra, [dwAllocationGranularity]));

case wProcessorLevel of

3: Add(Format(SProcLevl, [SIntel3]));

4: Add(Format(SProcLevl, [SIntel4]));

5: Add(Format(SProcLevl, [SIntel5]));

6: Add(Format(SProcLevl, [SIntel6]));

else Add(Format(SProcLevl, [IntToStr(wProcessorLevel)]));

end;

end;

end;

procedure TInfoForm.GetDirInfo;

var

S: array[0..MAX_PATH] of char;

begin

{ Get Windows directory }

GetWindowsDirectory(S, SizeOf(S));

InfoLB.Items.Add(Format(SWinDir, [S]));

{ Get Windows system directory }

GetSystemDirectory(S, SizeOf(S));

InfoLB.Items.Add(Format(SSysDir, [S]));

{ Get Current directory for current process }

GetCurrentDirectory(SizeOf(S), S);

InfoLB.Items.Add(Format(SCurDir, [S]));

end;

procedure TInfoForm.ShowSysInfo;

begin

InfoLB.DelimChar := ‘q’;

GetOSVerInfo;

GetSysInfo;

GetDirInfo;

InfoLB.Sections[0].Text := ‘Item’;

InfoLB.Sections[1].Text := ‘Value’;

Caption:= ‘System Information’;

end;

procedure TInfoForm.ShowEnvironment;

var

EnvPtr, SavePtr: PChar;

Snooping System Information

CHAPTER 14
499

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

continues

17.65227_Ch14x 11/30/99 5:58 PM Page 499

LISTING 14.1 Continued

begin

InfoLB.DelimChar := ‘=’;

EnvPtr := GetEnvironmentStrings;

SavePtr := EnvPtr;

InfoLB.Items.Clear;

repeat

InfoLB.Items.Add(StrPas(EnvPtr));

inc(EnvPtr, StrLen(EnvPtr) + 1);

until EnvPtr^ = #0;

FreeEnvironmentStrings(SavePtr);

InfoLB.Sections[0].Text := ‘Environment Variable’;

InfoLB.Sections[1].Text := ‘Value’;

Caption:= ‘Current Environment’;

end;

end.

Platform-Neutral Design
SysInfo is designed to function under both Windows 95/98 and Windows NT, even though the
different versions of Win32 have very different ways of accessing low-level information such
as processes and memory. The approach we took to enable platform-neutrality is to define an
interface that contains methods that can obtain system information. This interface is then
implemented for the two different operating systems. The interface is called IWin32Info; it’s
pretty simple and is shown here:

type

IWin32Info = interface

procedure FillProcessInfoList(ListView: TListView; ImageList: TImageList);

procedure ShowProcessProperties(Cookie: Pointer);

end;

• FillProcessInfoList() is responsible for filling a TListView and TImageList compo-
nent with a list of running processes and their associated icons, if any.

• ShowProcessProperties() is called to obtain more information for a particular process
selected in TListView.

In the SysInfo project, you’ll find a unit called W95Info that contains a TWin95Info class that
implements IWin32Info for Windows 95/98 using the ToolHelp32 API. Likewise, the project
contains a WNTInfo unit with a TWinNTInfo class that takes advantage of PSAPI to implement
IWin32Info. The following code segment, SysMain (which was taken from the project’s main
unit), shows how the proper class is created depending on the operating system:

Advanced Techniques

PART II
500

17.65227_Ch14x 11/30/99 5:58 PM Page 500

if Win32Platform = VER_PLATFORM_WIN32_WINDOWS then

FWinInfo := TWin95Info.Create

else if Win32Platform = VER_PLATFORM_WIN32_NT then

FWinInfo := TWinNTInfo.Create

else

raise Exception.Create(‘This application must be run on Win32’);

Windows 95/98: Using ToolHelp32
ToolHelp32 is a collection of functions and procedures, part of the Win32 API, which enables
you to see the status of some of the operating system’s low-level operations. In particular,
functions enable you to obtain information on all processes currently executing in the system
and the threads, modules, and heaps that go with each of the processes. As you might guess,
most of the information obtainable from ToolHelp32 is primarily used by applications that
must look “inside” the OS, such as debuggers, although going through these functions gives
even the average developer a better idea of how Win32 is put together.

Snooping System Information

CHAPTER 14
501

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

NOTE

The ToolHelp32 API is available only under the Windows 95/98 implementation of
Win32. This type of functionality would violate NT’s robust process-protection and
security features. Therefore, applications that use ToolHelp32 functions will function
only under Windows 95/98 and not under Windows NT.

We say ToolHelp32 to differentiate it from the 16-bit version of ToolHelp that was included in
Windows 3.1x. Most of the functions in the previous version of ToolHelp no longer apply to
Win32 and are therefore no longer supported. Also, under Windows 3.1x, the ToolHelp func-
tions were physically located in a DLL called TOOLHELP.DLL, whereas ToolHelp32 functions
reside in the kernel under Win32.

ToolHelp32 types and function definitions are located in the TlHelp32 unit, so be sure to have
that in your uses clause when working with these functions. To ensure that you receive a solid
overview, the application you build in this chapter uses every function defined in the TlHelp32
unit.

Figure 14.5 shows the main form for SysInfo. The user interface consists primarily of
TheaderListbox, a custom control explained in detail in Chapter 11, “Writing Multithreaded
Applications.” The list contains important information for a given process. By double-clicking
a process in the list, you can obtain more detailed information about it. This detail is shown in
a child form similar to the main form.

17.65227_Ch14x 11/30/99 5:58 PM Page 501

FIGURE 14.5
SysInfo’s main form, TMainForm.

Snapshots
Due to the multitasking nature of the Win32 environment, objects such as processes, threads,
modules, and heaps are constantly being created, destroyed, and modified. Because the status
of the machine is constantly in a state of flux, system information that might be meaningful
now may have no meaning a second from now. For example, suppose you want to write a pro-
gram to enumerate through all the modules loaded systemwide. Because the operating system
might preempt the thread executing your program at any time in order to provide time slices to
other threads in the system, modules theoretically can be created and destroyed even as you
enumerate through them.

In this dynamic environment, it would make more sense if you could freeze the system in time
for a moment in order to obtain such system information. Although ToolHelp32 doesn’t pro-
vide a means for freezing the system in time, it does provide a function that enables you to
take a snapshot of the system at a particular moment. CreateToolhelp32Snapshot() is that
function and is declared as follows:

function CreateToolhelp32Snapshot(dwFlags, th32ProcessID: DWORD): THandle;

stdcall;

• The dwFlags parameter indicates what type of information should be included in the
snapshot. This parameter can have any one of the values shown in the following table:

Value Meaning

TH32CS_INHERIT Indicates that the snapshot handle will be inheritable

TH32CS_SNAPALL Equivalent to specifying the TH32CS_SNAPHEAPLIST,
TH32CS_SNAPMODULE, TH32CS_SNAPPROCESS, and
TH32CS_SNAPTHREAD values

TH32CS_SNAPHEAPLIST Includes the heap list of the specified Win32 process in the
snapshot

Advanced Techniques

PART II
502

17.65227_Ch14x 11/30/99 5:58 PM Page 502

TH32CS_SNAPMODULE Includes the module list of the specified Win32 process in
the snapshot

TH32CS_SNAPPROCESS Includes the Win32 process list in the snapshot

TH32CS_SNAPTHREAD Includes the Win32 thread list in the snapshot

• The th32ProcessID parameter identifies the process for which you want to obtain infor-
mation. Pass 0 in this parameter to indicate the current process. This parameter affects
only module and heap lists because they are process-specific. The process and thread
lists provided by ToolHelp32 are systemwide.

• The CreateToolhelp32Snapshot() function returns the handle to a snapshot or -1 in
case of an error. The handle returned works just as other Win32 handles do regarding the
processes and threads for which they’re valid.

The following code creates a snapshot handle that contains information on all processes cur-
rently loaded systemwide (EToolHelpError is a programmer-defined exception):

var

Snap: THandle;

begin

Snap := CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0);

if Snap = -1 then

raise EToolHelpError.Create(‘CreateToolHelp32Snapshot failed’);

end;

Snooping System Information

CHAPTER 14
503

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

NOTE

When you’re done using the handle, use the Win32 API CloseHandle() function to
free resources associated with a handle created by CreateToolHelp32Snapshot().

Process Walking
Given a snapshot handle that includes process information, ToolHelp32 defines two functions
that provide you with the capability of enumerating over (walking) processes. The functions,
Process32First() and Process32Next(), are declared as follows:

function Process32First(hSnapshot: THandle;

var lppe: TProcessEntry32): BOOL; stdcall;

function Process32Next(hSnapshot: THandle;

var lppe: TProcessEntry32): BOOL; stdcall;

The first parameter to these functions, hSnapshot, is the snapshot handle returned by
CreateToolHelp32Snapshot().

17.65227_Ch14x 11/30/99 5:58 PM Page 503

The second parameter, lppe, is a TProcessEntry32 record that’s passed by reference. As you
go through the enumeration, the functions will fill this record with information on the next
process. The TProcessEntry32 record is defined as follows:

type

TProcessEntry32 = record

dwSize: DWORD;

cntUsage: DWORD;

th32ProcessID: DWORD;

th32DefaultHeapID: DWORD;

th32ModuleID: DWORD;

cntThreads: DWORD;

th32ParentProcessID: DWORD;

pcPriClassBase: Longint;

dwFlags: DWORD;

szExeFile: array[0..MAX_PATH - 1] of Char;

end;

• The dwSize field holds the size of the TProcessEntry32 record. This should be initial-
ized to SizeOf(TProcessEntry32) prior to using the record.

• The cntUsage field indicates the reference count of the process. When the reference
count is zero, the operating system will unload the process.

• The th32ProcessID field contains the identification number of the process.

• The th32DefaultHeapID field contains an identifier for the process’s default heap. The ID
has meaning only within ToolHelp32, and it can’t be used with other Win32 functions.

• The thModuleID field identifies the module associated with the process. This field has
meaning only within ToolHelp32 functions.

• The cntThreads field indicates how many threads of execution the process has started.

• The th32ParentProcessID identifies the parent process to this process.

• The pcPriClassBase field holds the base priority of the process. The operating system
uses this value to manage thread scheduling.

• The dwFlags field is reserved; don’t use it.

• The szExeFile field is a null-terminated string that contains the pathname and filename
of the EXE or driver associated with the process.

Once a snapshot containing process information has been taken, iterating over all processes is a
matter of calling Process32First() and then calling Process32Next() until it returns False.

The process-walking code is encapsulated in the TWin95Info class, which implements the
IWin32Info interface. The following code shows the private Refresh() method of the
TWin95Info class, which iterates over the system processes and adds each to a list:

Advanced Techniques

PART II
504

17.65227_Ch14x 11/30/99 5:58 PM Page 504

procedure TWin95Info.Refresh;

var

PE: TProcessEntry32;

PPE: PProcessEntry32;

begin

FProcList.Clear;

if FSnap > 0 then CloseHandle(FSnap);

FSnap := CreateToolHelp32Snapshot(TH32CS_SNAPPROCESS, 0);

if FSnap = -1 then

raise Exception.Create(‘CreateToolHelp32Snapshot failed’);

PE.dwSize := SizeOf(PE);

if Process32First(FSnap, PE) then // get process

repeat

New(PPE); // create new PPE

PPE^ := PE; // fill it

FProcList.Add(PPE); // add it to list

until not Process32Next(FSnap, PE); // get next process

end;

The Refresh() method is called by the FillProcessInfoList() method. As explained earlier,
this method fills a TListView and TImageList component with information on all the running
processes. It’s shown here:

procedure TWin95Info.FillProcessInfoList(ListView: TListView;

ImageList: TImageList);

var

I: Integer;

ExeFile: string;

PE: TProcessEntry32;

HAppIcon: HIcon;

begin

Refresh;

ListView.Columns.Clear;

ListView.Items.Clear;

for I := Low(ProcessInfoCaptions) to High(ProcessInfoCaptions) do

with ListView.Columns.Add do

begin

if I = 0 then Width := 285

else Width := 75;

Caption := ProcessInfoCaptions[I];

end;

for I := 0 to FProcList.Count - 1 do

begin

Snooping System Information

CHAPTER 14
505

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

17.65227_Ch14x 11/30/99 5:58 PM Page 505

PE := PProcessEntry32(FProcList.Items[I])^;

HAppIcon := ExtractIcon(HInstance, PE.szExeFile, 0);

try

if HAppIcon = 0 then HAppIcon := FWinIcon;

ExeFile := PE.szExeFile;

if ListView.ViewStyle = vsList then

ExeFile := ExtractFileName(ExeFile);

// insert new item, set its caption, add subitems

with ListView.Items.Add, SubItems do

begin

Caption := ExeFile;

Data := FProcList.Items[I];

Add(IntToStr(PE.cntThreads));

Add(IntToHex(PE.th32ProcessID, 8));

Add(IntToHex(PE.th32ParentProcessID, 8));

if ImageList <> nil then

ImageIndex := ImageList_AddIcon(ImageList.Handle, HAppIcon);

end;

finally

if HAppIcon <> FWinIcon then DestroyIcon(HAppIcon);

end;

end;

end;

Figure 14.6 shows this code in action, displaying process information on a Windows 98 machine.

Advanced Techniques

PART II
506

FIGURE 14.6
Viewing processes under Windows 98.

17.65227_Ch14x 11/30/99 5:58 PM Page 506

Not to be ignored is the code that obtains an icon for each process. Displaying the icon along
with the application name gives the application a more professional appearance and a more
native Windows feel. The ExtractIcon() API function from the ShellAPI unit attempts to
extract the icon from the application file. If ExtractIcon() fails, HWinIcon is used instead.
HWinIcon is the standard Windows icon, and it has been preloaded in the OnCreate event han-
dler for this form using the LoadImage() API function:

FWinIcon := LoadImage(0, IDI_WINLOGO, IMAGE_ICON, LR_DEFAULTSIZE,

LR_DEFAULTSIZE, LR_DEFAULTSIZE or LR_DEFAULTCOLOR or LR_SHARED);

When the user double-clicks one of the processes in the main form (refer to Figure 14.6), the
ShowProcessProperties() method of IWin32Info is called, and the implementation of this
method passes the parameter on to a method in the Detail9x unit called
ShowProcessDetails():

procedure TWin95Info.ShowProcessProperties(Cookie: Pointer);

begin

ShowProcessDetails(PProcessEntry32(Cookie));

end;

ShowProcessDetails() must take another snapshot with CreateToolHelp32Snapshot() in
order to obtain a snapshot of information for the selected process. This is done by passing the
Cookie parameter, which holds the process (ID in this case) to the chosen process as the
th32ProcessID field for CreateToolHelp32Snapshot(). The TH32CS_SNAPALL flag is passed as
the dwFlags parameter to put all the information into the snapshot, as shown in the following
snippet:

{ Create a snapshot for the current process }

FCurSnap := CreateToolhelp32Snapshot(TH32CS_SNAPALL, P^.th32ProcessID);

if FCurSnap = -1 then

raise EToolHelpError.Create(‘CreateToolHelp32Snapshot failed’);

The TDetailForm object displays only one list at a time. An enumerated type keeps track of
which list is which:

type

TListType = (ltThread, ltModule, ltHeap);

TDetailForm also maintains three separate TStringList components for each of the threads,
modules, and heaps. These lists are defined as part of an array called DetailLists:

DetailLists: array[TListType] of TStringList;

Thread Walking
To walk a process’s thread list, ToolHelp32 provides two functions similar to those for process
walking: Thread32First() and Thread32Next(). These functions are declared as follows:

Snooping System Information

CHAPTER 14
507

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

17.65227_Ch14x 11/30/99 5:58 PM Page 507

function Thread32First(hSnapshot: THandle;

var lpte: TThreadEntry32): BOOL; stdcall;

function Thread32Next(hSnapshot: THandle;

var lpte: TThreadENtry32): BOOL; stdcall;

In addition to the usual hSnapshot parameter, these functions also accept a parameter by refer-
ence of type TThreadEntry32. As for the process functions, the calling function fills in this
record. The TThreadEntry32 record is defined as follows:

type

TThreadEntry32 = record

dwSize: DWORD;

cntUsage: DWORD;

th32ThreadID: DWORD;

th32OwnerProcessID: DWORD;

tpBasePri: Longint;

tpDeltaPri: Longint;

dwFlags: DWORD;

end;

• dwSize is the size of the record, and it should be initialized to SizeOf(TThreadEntry32)
prior to using the record.

• cntUsage is the reference count of the thread. When this value reaches zero, the thread is
unloaded by the operating system.

• th32ThreadID is the identification number of the thread. This value has meaning only
within the ToolHelp32 functions.

• th32OwnerProcessID is the identifier of the process that owns this thread. This ID can be
used with other Win32 functions.

• tpBasePri is the base priority class of the thread. This value is the same for all threads
of a given process. The possible values for this field are usually in the range of 4 through
24. The following table lists the meaning of each value:

Value Meaning

4 Idle

8 Normal

13 High

24 Real time

• tpDeltaPri is the delta (change in) priority from tpBasePri. It’s a signed number that,
when combined with the base priority class, reveals the overall priority of the thread. The
following table shows the constants defined for each possible value:

Advanced Techniques

PART II
508

17.65227_Ch14x 11/30/99 5:58 PM Page 508

Constant Value

THREAD_PRIORITY_IDLE -15

THREAD_PRIORITY_LOWEST -2

THREAD_PRIORITY_BELOW_NORMAL -1

THREAD_PRIORITY_NORMAL 0

THREAD_PRIORITY_ABOVE_NORMAL 1

THREAD_PRIORITY_HIGHEST 2

THREAD_PRIORITY_TIME_CRITICAL 15

• dwFlags is currently reserved and shouldn’t be used.

The WalkThreads() method of TDetailForm is used to walk the thread list. As the thread list is
traversed, important information about the thread is added to the thread element of the
DetailLists array. Here’s the code for this method:

procedure TWin95DetailForm.WalkThreads;

{ Uses ToolHelp32 functions to walk list of threads }

var

T: TThreadEntry32;

begin

DetailLists[ltThread].Clear;

T.dwSize := SizeOf(T);

if Thread32First(FCurSnap, T) then

repeat

{ Make sure thread is for current process }

if T.th32OwnerProcessID = FCurProc.th32ProcessID then

DetailLists[ltThread].Add(Format(SThreadStr, [T.th32ThreadID,

GetClassPriorityString(T.tpBasePri),

GetThreadPriorityString(T.tpDeltaPri), T.cntUsage]));

until not Thread32Next(FCurSnap, T);

end;

Snooping System Information

CHAPTER 14
509

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
NNOTE

The following line of code in the WalkThreads() method is important because
ToolHelp32 thread lists are not process-specific:

if T.th32OwnerProcessID = FCurProc.th32ProcessID then

You must therefore do a manual comparison as you iterate through the threads to
determine which threads are associated with the process in question.

17.65227_Ch14x 11/30/99 5:58 PM Page 509

Figure 14.7 shows the detail form with the thread list visible.

Advanced Techniques

PART II
510

FIGURE 14.7
Viewing threads in the detail form under Windows 98.

Module Walking
Module walking works much the same as process and thread walking. ToolHelp32 provides
two functions that do the work: Module32First() and Module32Next(). These functions are
declared as follows:

function Module32First(hSnapshot: THandle;

var lpme: TModuleEntry32): BOOL; stdcall;

function Module32Next(hSnapshot: THandle;

var lpme: TModuleEntry32): BOOL; stdcall;

Again, the snapshot handle is the first parameter to the functions. The second var parameter,
lpme, is a TModuleEntry32 record. This record is defined as follows:

type

TModuleEntry32 = record

dwSize: DWORD;

th32ModuleID: DWORD;

th32ProcessID: DWORD;

GlblcntUsage: DWORD;

ProccntUsage: DWORD;

modBaseAddr: PBYTE;

modBaseSize: DWORD;

hModule: HMODULE;

17.65227_Ch14x 11/30/99 5:58 PM Page 510

szModule: array[0..MAX_MODULE_NAME32 + 1] of Char;

szExePath: array[0..MAX_PATH - 1] of Char;

end;

• dwSize is the size of the record, and it should be initialized to SizeOf(TModuleEntry32)
prior to using the record.

• th32ModuleID is the identifier of the module. This value has meaning only with
ToolHelp32 functions.

• th32ProcessID is the identifier of the process being examined. This value can be used
with other Win32 functions.

• GlblcntUsage is the global reference count of the module.

• ProccntUsage is the reference count of the module within the context of the owning
process.

• modBaseAddr is the base address of the module in memory. This value is valid only
within the context of th32ProcessID’s context.

• modBaseSize is the size in bytes of the module in memory.

• hModule is the module handle. This value is valid only within th32ProcessID’s context.

• szModule is a null-terminated string containing the module name.

• szExepath is a null-terminated string containing the full path of the module.

The WalkModules() method of TDetailForm is very similar to its WalkThreads() method. As
shown in the following code, this method traverses the module list and adds it to the module
list portion of the DetailLists array:

procedure TWin95DetailForm.WalkModules;

{ Uses ToolHelp32 functions to walk list of modules }

var

M: TModuleEntry32;

begin

DetailLists[ltModule].Clear;

M.dwSize := SizeOf(M);

if Module32First(FCurSnap, M) then

repeat

DetailLists[ltModule].Add(Format(SModuleStr, [M.szModule, M.ModBaseAddr,

M.ModBaseSize, M.ProcCntUsage]));

until not Module32Next(FCurSnap, M);

end;

Figure 14.8 shows the detail form with the module list visible.

Snooping System Information

CHAPTER 14
511

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

17.65227_Ch14x 11/30/99 5:58 PM Page 511

FIGURE 14.8
Viewing modules in the detail form under Windows 98.

Heap Walking
Heap walking is slightly more complicated than the other types of enumeration you’ve learned
about in this chapter. ToolHelp32 provides four functions that enable heap walking. The first
two functions, Heap32ListFirst() and Heap32ListNext(), enable you to iterate over each of
a process’s heaps. The other two functions, Heap32First() and Heap32Next(), enable you to
obtain more detailed information on all the blocks within an individual heap.

Heap32ListFirst() and Heap32ListNext() are defined as follows:

function Heap32ListFirst(hSnapshot: THandle;

var lphl: THeapList32): BOOL; stdcall;

function Heap32ListNext(hSnapshot: THandle;

var lphl: THeapList32): BOOL; stdcall;

Again, the first parameter is the customary snapshot handle. The second parameter, lphl, is a
THeapList32 record that’s passed by reference. This record is defined as follows:

type

THeapList32 = record

dwSize: DWORD;

th32ProcessID: DWORD;

th32HeapID: DWORD;

dwFlags: DWORD;

end;

• dwSize is the size of the record, and it should be initialized to SizeOf(THeapList32)
prior to using the record.

Advanced Techniques

PART II
512

17.65227_Ch14x 11/30/99 5:58 PM Page 512

• th32ProcessID is the identifier of the owning process.

• th32HeapID is the identifier of the heap. This value has meaning only for the specified
process and within ToolHelp32.

• dwFlags holds a flag that determines the heap type. The value of this field can be either
HF32_DEFAULT, which means that the current heap is the process’s default heap, or
HF32_SHARED, which means that the current heap is a normal shared heap.

The Heap32First() and Heap32Next() functions are defined as follows:

function Heap32First(var lphe: THeapEntry32; th32ProcessID,

th32HeapID: DWORD): BOOL; stdcall;

function Heap32Next(var lphe: THeapEntry32): BOOL; stdcall;

Notice that the parameter lists of these functions are a bit of a departure from the process,
thread, module, and heap list enumeration functions that you’ve learned about in this chapter.
These functions are designed to enumerate the blocks of a given heap in a given process rather
than enumerating over some properties of just a process. When calling Heap32First(), the
th32ProcessID and th32HeapID parameters should be set to the values of the field of the same
name of the THeapList32 record filled by Heap32ListFirst() or Heap32ListNext(). The
lphe var parameter of Heap32First() and Heap32Next() is of type THeapEntry32. This
record contains descriptive information pertaining to the heap block and is defined as follows:

type

THeapEntry32 = record

dwSize: DWORD;

hHandle: THandle; // Handle of this heap block

dwAddress: DWORD; // Linear address of start of block

dwBlockSize: DWORD; // Size of block in bytes

dwFlags: DWORD;

dwLockCount: DWORD;

dwResvd: DWORD;

th32ProcessID: DWORD; // owning process

th32HeapID: DWORD; // heap block is in

end;

• dwSize is the size of the record, and it should be initialized to SizeOf(THeapEntry32)
prior to using the record.

• hHandle is the handle of the heap block.

• dwAddress is the linear address of the start of the heap block.

• dwBlockSize is the size, in bytes, of this heap block.

• dwFlags describes the type of heap block. This field can have any of the values shown in
the following table:

Snooping System Information

CHAPTER 14
513

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

17.65227_Ch14x 11/30/99 5:58 PM Page 513

Value Meaning

LF32_FIXED The memory block has a fixed (unmovable) location.

LF32_FREE The memory block is not used.

LF32_MOVEABLE The memory block location can be moved.

• dwLockCount is the lock count of the memory block. This value is increased by one every
time the process calls GlobalLock() or LocalLock() on this block.

• dwResvd is reserved at this time and shouldn’t be used.

• th32ProcessID is the identifier of the owning process.

• th32HeapID is the identifier of the heap to which the block belongs.

Because you must first walk the list of heap lists before you can walk the heap block list, the
code for heap block walking is a bit—but not much—more complex than what you’ve seen so
far. As you see in the TDetailForm.WalkHeaps() method that follows, the trick is to nest the
Heap32First()/Heap32Next() loop within the Heap32ListFirst()/Heap32ListNext() loop.
The method adds an additional level of complexity by adding a PHeapEntry32 record pointer
to the objects in the heap list portion of the DetailLists array. This is done so that informa-
tion on the heap is available later when viewing heap contents:

procedure TWin95DetailForm.WalkHeaps;

{ Uses ToolHelp32 functions to walk list of heaps }

var

HL: THeapList32;

HE: THeapEntry32;

PHE: PHeapEntry32;

begin

DetailLists[ltHeap].Clear;

HL.dwSize := SizeOf(HL);

HE.dwSize := SizeOf(HE);

if Heap32ListFirst(FCurSnap, HL) then

repeat

if Heap32First(HE, HL.th32ProcessID, HL.th32HeapID) then

repeat

New(PHE); // need to make copy of THeapList32 record so we

PHE^ := HE; // have enough info to view heap later

DetailLists[ltHeap].AddObject(Format(SHeapStr, [HL.th32HeapID,

Pointer(HE.dwAddress), HE.dwBlockSize,

GetHeapFlagString(HE.dwFlags)]), TObject(PHE));

until not Heap32Next(HE);

until not Heap32ListNext(FCurSnap, HL);

HeapListAlloc := True;

end;

Advanced Techniques

PART II
514

17.65227_Ch14x 11/30/99 5:58 PM Page 514

FIGURE 14.9
Viewing Windows heap blocks in the detail form under Windows 98.

Heap Viewing
Up to this point, you’ve learned about every function in the ToolHelp32 API except for one:
ToolHelp32ReadProcessMemory(). To make sure you finish this chapter with a warm, fuzzy
feeling, you’ll also learn about this function.

ToolHelp32ReadProcessMemory() is declared this way:

function Toolhelp32ReadProcessMemory(th32ProcessID: DWORD;

lpBaseAddress: Pointer; var lpBuffer; cbRead: DWORD;

var lpNumberOfBytesRead: DWORD): BOOL; stdcall;

This function is arguably the most powerful and definitely the most fun in ToolHelp32 because
it actually allows you to peek into the memory space of another process. The parameters for
this function are as follows:

• th32ProcessID is the identifier of the process whose memory you want to read. You can
obtain this value by any of the ToolHelp32 enumeration functions. You can pass zero in
this parameter to indicate the current process.

• lpBaseAddress is the linear address of the first byte of memory you want to read in
process th32ProcessID. You need to use the right process with the right address because
any given linear address is meaningful only to a particular process.

• lpBuffer is the buffer to which you want to copy process th32ProcessID’s memory. You
must ensure that memory is allocated for this buffer.

• cbRead is the number of bytes to read from process th32ProcessID, starting at
lpBaseAddress.

• lpNumberOfBytesRead is filled in by the function before it returns. This is the number of
bytes actually read from process th32ProcessID.

Snooping System Information

CHAPTER 14
515

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

Figure 14.9 shows the detail form with the heap block list visible.

17.65227_Ch14x 11/30/99 5:58 PM Page 515

Once the memory of a particular process is copied to a local buffer using this function, SysInfo
shows another modal form, HeapViewForm, which formats the memory dump for viewing. To
handle the formatting, HeapViewForm makes use of a custom component called TMemView for
viewing a memory dump. Because discussing the internals of the TMemView control is beyond
the focus of this chapter (and because the control isn’t terribly complex), you can browse the
source code for the control on this book’s CD-ROM. The following method of TDetailForm,
DetailLBDblClick(), is called when the user double-clicks in the THeaderListbox compo-
nent’s DetailLB:

procedure TWin95DetailForm.DetailLBDblClick(Sender: TObject);

{ This procedure is called when the user double clicks on an item }

{ in DetailLB. If the current tab page is heaps, a heap view }

{ form is presented to the user. }

var

NumRead: DWORD;

HE: THeapEntry32;

MemSize: integer;

begin

inherited;

if DetailTabs.TabIndex = 2 then

begin

HE := PHeapEntry32(DetailLB.Items.Objects[DetailLB.ItemIndex])^;

MemSize := HE.dwBlockSize; // get heap size

{ if heap is too big, use ProcMemMaxSize }

if MemSize > ProcMemMaxSize then MemSize := ProcMemMaxSize;

ProcMem := AllocMem(MemSize); // allocate a temp buffer

Screen.Cursor := crHourGlass;

try

{ Copy heap into temp buffer }

if Toolhelp32ReadProcessMemory(FCurProc.th32ProcessID,

Pointer(HE.dwAddress), ProcMem^, MemSize, NumRead) then

{ point HeapView control at temp buffer }

ShowHeapView(ProcMem, MemSize)

else

MessageDlg(SHeapReadErr, mtInformation, [mbOk], 0);

finally

Screen.Cursor := crDefault;

FreeMem(ProcMem, MemSize);

end;

end;

end;

This method first checks to see whether the current tab page is the heap list page. If so, it allo-
cates a temporary buffer and passes it to the ToolHelp32ReadProcessMemory() function to be

Advanced Techniques

PART II
516

17.65227_Ch14x 11/30/99 5:58 PM Page 516

filled. Once the buffer is filled, it’s displayed in the TMemView control HeapView, and
HeapViewForm is shown modally. When the form returns from the ShowModal() call, the buffer
is freed. Figure 14.10 shows a heap view in action.

Snooping System Information

CHAPTER 14
517

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

FIGURE 14.10
Viewing the heap of another Windows 98 process.

The Source
Listings 14.2 and 14.3 show the complete source for the W9xInfo.pas and Detail9x.pas units,
respectively.

LISTING 14.2 W9xInfo.pas, Obtaining Process Information Under Windows 95/98

unit W9xInfo;

interface

uses Windows, InfoInt, Classes, TlHelp32, Controls, ComCtrls;

type
TWin9xInfo = class(TInterfacedObject, IWin32Info)
private
FProcList: TList;
FWinIcon: HICON;
FSnap: THandle;
procedure Refresh;

public
constructor Create;
destructor Destroy; override;
procedure FillProcessInfoList(ListView: TListView; ImageList: TImageList);

continues

17.65227_Ch14x 11/30/99 5:58 PM Page 517

LISTING 14.2 Continued

procedure ShowProcessProperties(Cookie: Pointer);
end;

implementation

uses ShellAPI, CommCtrl, SysUtils, Detail9x;

const
ProcessInfoCaptions: array[0..3] of string = (
‘ProcessName’, ‘Threads’, ‘ID’, ‘ParentID’);

{ TProcList }

type
TProcList = class(TList)
procedure Clear; override;

end;

procedure TProcList.Clear;
var
I: Integer;

begin
for I := 0 to Count - 1 do Dispose(PProcessEntry32(Items[I]));
inherited Clear;

end;

{ TWin95Info }

constructor TWin9xInfo.Create;
begin
FProcList := TProcList.Create;
FWinIcon := LoadImage(0, IDI_WINLOGO, IMAGE_ICON, LR_DEFAULTSIZE,
LR_DEFAULTSIZE, LR_DEFAULTSIZE or LR_DEFAULTCOLOR or LR_SHARED);

end;

destructor TWin9xInfo.Destroy;
begin
DestroyIcon(FWinIcon);
if FSnap > 0 then CloseHandle(FSnap);
FProcList.Free;
inherited Destroy;

end;

procedure TWin9xInfo.FillProcessInfoList(ListView: TListView;
ImageList: TImageList);

Advanced Techniques

PART II
518

17.65227_Ch14x 11/30/99 5:58 PM Page 518

var
I: Integer;
ExeFile: string;
PE: TProcessEntry32;
HAppIcon: HIcon;

begin
Refresh;
ListView.Columns.Clear;
ListView.Items.Clear;
for I := Low(ProcessInfoCaptions) to High(ProcessInfoCaptions) do
with ListView.Columns.Add do
begin
if I = 0 then Width := 285
else Width := 75;
Caption := ProcessInfoCaptions[I];

end;
for I := 0 to FProcList.Count - 1 do
begin
PE := PProcessEntry32(FProcList.Items[I])^;
HAppIcon := ExtractIcon(HInstance, PE.szExeFile, 0);
try
if HAppIcon = 0 then HAppIcon := FWinIcon;
ExeFile := PE.szExeFile;
if ListView.ViewStyle = vsList then
ExeFile := ExtractFileName(ExeFile);

// insert new item, set its caption, add subitems
with ListView.Items.Add, SubItems do
begin
Caption := ExeFile;
Data := FProcList.Items[I];
Add(IntToStr(PE.cntThreads));
Add(IntToHex(PE.th32ProcessID, 8));
Add(IntToHex(PE.th32ParentProcessID, 8));
if ImageList <> nil then
ImageIndex := ImageList_AddIcon(ImageList.Handle, HAppIcon);

end;
finally
if HAppIcon <> FWinIcon then DestroyIcon(HAppIcon);

end;
end;

end;

procedure TWin9xInfo.Refresh;
var
PE: TProcessEntry32;
PPE: PProcessEntry32;

Snooping System Information

CHAPTER 14
519

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

continues

17.65227_Ch14x 11/30/99 5:58 PM Page 519

LISTING 14.2 Continued

begin
FProcList.Clear;
if FSnap > 0 then CloseHandle(FSnap);
FSnap := CreateToolHelp32Snapshot(TH32CS_SNAPPROCESS, 0);
if FSnap = INVALID_HANDLE_VALUE then
raise Exception.Create(‘CreateToolHelp32Snapshot failed’);

PE.dwSize := SizeOf(PE);
if Process32First(FSnap, PE) then // get process
repeat
New(PPE); // create new PPE
PPE^ := PE; // fill it
FProcList.Add(PPE); // add it to list

until not Process32Next(FSnap, PE); // get next process
end;

procedure TWin9xInfo.ShowProcessProperties(Cookie: Pointer);
begin
ShowProcessDetails(PProcessEntry32(Cookie));

end;

end.

LISTING 14.3 Detail9x.pas, Obtaining Process Details Under Windows 95/98

unit Detail9x;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ComCtrls, HeadList, TlHelp32, Menus, SysMain, DetBase;

type
TListType = (ltThread, ltModule, ltHeap);

TWin9xDetailForm = class(TBaseDetailForm)
procedure DetailTabsChange(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure DetailLBDblClick(Sender: TObject);

private
FCurSnap: THandle;
FCurProc: TProcessEntry32;
DetailLists: array[TListType] of TStringList;

Advanced Techniques

PART II
520

17.65227_Ch14x 11/30/99 5:58 PM Page 520

ProcMem: PByte;
HeapListAlloc: Boolean;
procedure FreeHeapList;
procedure ShowList(ListType: TListType);
procedure WalkThreads;
procedure WalkHeaps;
procedure WalkModules;

public
procedure NewProcess(P: PProcessEntry32);

end;

procedure ShowProcessDetails(P: PProcessEntry32);

implementation

{$R *.DFM}

uses ProcMem;

const
{ Array of strings which goes into the header of each respective list. }
HeaderStrs: array[TListType] of TDetailStrings = (

(‘Thread ID’, ‘Base Priority’, ‘Delta Priority’, ‘Usage Count’),
(‘Module’, ‘Base Addr’, ‘Size’, ‘Usage Count’),
(‘Heap ID’, ‘Base Addr’, ‘Size’, ‘Flags’));

{ Array of strings which goes into the footer of each list. }
ACountStrs: array[TListType] of string[31] = (

‘Total Threads: %d’, ‘Total Modules: %d’, ‘Total Heaps: %d’);

TabStrs: array[TListType] of string[7] = (‘Threads’, ‘Modules’, ‘Heaps’);

SCaptionStr = ‘Details for %s’; // form caption
SThreadStr = ‘%x’#1’%s’#1’%s’#1’%d’; // id, base pri, delta pri, usage
SModuleStr = ‘%s’#1’$%p’#1’%d bytes’#1’%d’; // name, addr, size, usage
SHeapStr = ‘%x’#1’$%p’#1’%d bytes’#1’%s’; // ID, addr, size, flags
SHeapReadErr = ‘This heap is not accessible for read access.’;

ProcMemMaxSize = $7FFE; // max size of heap view

procedure ShowProcessDetails(P: PProcessEntry32);
var
I: TListType;

begin
with TWin9xDetailForm.Create(Application) do
try

Snooping System Information

CHAPTER 14
521

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

continues

17.65227_Ch14x 11/30/99 5:58 PM Page 521

LISTING 14.3 Continued

for I := Low(TabStrs) to High(TabStrs) do
DetailTabs.Tabs.Add(TabStrs[I]);

NewProcess(P);
Font := MainForm.Font;
ShowModal;

finally
Free;

end;
end;

function GetThreadPriorityString(Priority: Integer): string;
{ Returns string describing thread priority }
begin
case Priority of
THREAD_PRIORITY_IDLE: Result := ‘%d (Idle)’;
THREAD_PRIORITY_LOWEST: Result := ‘%d (Lowest)’;
THREAD_PRIORITY_BELOW_NORMAL: Result := ‘%d (Below Normal)’;
THREAD_PRIORITY_NORMAL: Result := ‘%d (Normal)’;
THREAD_PRIORITY_ABOVE_NORMAL: Result := ‘%d (Above Normal)’;
THREAD_PRIORITY_HIGHEST: Result := ‘%d (Highest)’;
THREAD_PRIORITY_TIME_CRITICAL: Result := ‘%d (Time critical)’;

else
Result := ‘%d (unknown)’;

end;
Result := Format(Result, [Priority]);

end;

function GetClassPriorityString(Priority: DWORD): String;
{ returns string describing process priority class }
begin
case Priority of
4: Result := ‘%d (Idle)’;
8: Result := ‘%d (Normal)’;
13: Result := ‘%d (High)’;
24: Result := ‘%d (Real time)’;

else
Result := ‘%d (non-standard)’;

end;
Result := Format(Result, [Priority]);

end;

function GetHeapFlagString(Flag: DWORD): String;
{ Returns a string describing a heap flag }
begin
case Flag of

Advanced Techniques

PART II
522

17.65227_Ch14x 11/30/99 5:58 PM Page 522

LF32_FIXED: Result := ‘Fixed’;
LF32_FREE: Result := ‘Free’;
LF32_MOVEABLE: Result := ‘Moveable’;

end;
end;

procedure TWin9xDetailForm.ShowList(ListType: TListType);
{ Shows appropriate thread, heap, or module list in DetailLB }
var
i: Integer;

begin
Screen.Cursor := crHourGlass;
try
with DetailLB do
begin
for i := 0 to 3 do
Sections[i].Text := HeaderStrs[ListType, i];

Items.Clear;
Items.Assign(DetailLists[ListType]);

end;
DetailSB.Panels[0].Text := Format(ACountStrs[ListType],
[DetailLists[ListType].Count]);

if ListType = ltHeap then
DetailSB.Panels[1].Text := ‘Double-click to view heap’

else
DetailSB.Panels[1].Text := ‘’;

finally
Screen.Cursor := crDefault;

end;
end;

procedure TWin9xDetailForm.WalkThreads;
{ Uses ToolHelp32 functions to walk list of threads }
var
T: TThreadEntry32;

begin
DetailLists[ltThread].Clear;
T.dwSize := SizeOf(T);
if Thread32First(FCurSnap, T) then
repeat
{ Make sure thread is for current process }
if T.th32OwnerProcessID = FCurProc.th32ProcessID then
DetailLists[ltThread].Add(Format(SThreadStr, [T.th32ThreadID,
GetClassPriorityString(T.tpBasePri),
GetThreadPriorityString(T.tpDeltaPri), T.cntUsage]));

until not Thread32Next(FCurSnap, T);

Snooping System Information

CHAPTER 14
523

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

continues

17.65227_Ch14x 11/30/99 5:58 PM Page 523

LISTING 14.3 Continued

end;

procedure TWin9xDetailForm.WalkModules;
{ Uses ToolHelp32 functions to walk list of modules }
var
M: TModuleEntry32;

begin
DetailLists[ltModule].Clear;
M.dwSize := SizeOf(M);
if Module32First(FCurSnap, M) then
repeat
DetailLists[ltModule].Add(Format(SModuleStr, [M.szModule, M.ModBaseAddr,
M.ModBaseSize, M.ProcCntUsage]));

until not Module32Next(FCurSnap, M);
end;

procedure TWin9xDetailForm.WalkHeaps;
{ Uses ToolHelp32 functions to walk list of heaps }
var
HL: THeapList32;
HE: THeapEntry32;
PHE: PHeapEntry32;

begin
DetailLists[ltHeap].Clear;
HL.dwSize := SizeOf(HL);
HE.dwSize := SizeOf(HE);
if Heap32ListFirst(FCurSnap, HL) then
repeat
if Heap32First(HE, HL.th32ProcessID, HL.th32HeapID) then
repeat
New(PHE); // need to make copy of THeapList32 record so we
PHE^ := HE; // have enough info to view heap later
DetailLists[ltHeap].AddObject(Format(SHeapStr, [HL.th32HeapID,
Pointer(HE.dwAddress), HE.dwBlockSize,
GetHeapFlagString(HE.dwFlags)]), TObject(PHE));

until not Heap32Next(HE);
until not Heap32ListNext(FCurSnap, HL);

HeapListAlloc := True;
end;

procedure TWin9xDetailForm.FreeHeapList;
{ Since special allocation of PHeapList32 objects are added to the list, }
{ these must be freed. }
var
i: integer;

Advanced Techniques

PART II
524

17.65227_Ch14x 11/30/99 5:58 PM Page 524

begin
for i := 0 to DetailLists[ltHeap].Count - 1 do
Dispose(PHeapEntry32(DetailLists[ltHeap].Objects[i]));

end;

procedure TWin9xDetailForm.NewProcess(P: PProcessEntry32);
{ This procedure is called from the main form to show the detail }
{ form for a particular process. }
begin
{ Create a snapshot for the current process }
FCurSnap := CreateToolhelp32Snapshot(TH32CS_SNAPALL, P^.th32ProcessID);
if FCurSnap = INVALID_HANDLE_VALUE then
raise Exception.Create(‘CreateToolHelp32Snapshot failed’);

HeapListAlloc := False;
Screen.Cursor := crHourGlass;
try
FCurProc := P^;
{ Include module name in detail form caption }
Caption := Format(SCaptionStr, [ExtractFileName(FCurProc.szExeFile)]);
WalkThreads; // walk ToolHelp32 lists
WalkModules;
WalkHeaps;
DetailTabs.TabIndex := 0; // 0 = thread tab
ShowList(ltThread); // show thread page first

finally
Screen.Cursor := crDefault;
if HeapListAlloc then FreeHeapList;
CloseHandle(FCurSnap); // close snapshot handle

end;
end;

procedure TWin9xDetailForm.DetailTabsChange(Sender: TObject);
{ OnChange event handler for tab set. Sets visible list to jive with tabs. }
begin
inherited;
ShowList(TListType(DetailTabs.TabIndex));

end;

procedure TWin9xDetailForm.FormCreate(Sender: TObject);
var
LT: TListType;

begin
inherited;
{ Dispose of lists }
for LT := Low(TListType) to High(TListType) do
DetailLists[LT] := TStringList.Create;

Snooping System Information

CHAPTER 14
525

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

continues

17.65227_Ch14x 11/30/99 5:58 PM Page 525

LISTING 14.3 Continued

end;

procedure TWin9xDetailForm.FormDestroy(Sender: TObject);
var
LT: TListType;

begin
inherited;
{ Dispose of lists }
for LT := Low(TListType) to High(TListType) do
DetailLists[LT].Free;

end;

procedure TWin9xDetailForm.DetailLBDblClick(Sender: TObject);
{ This procedure is called when the user double clicks on an item }
{ in DetailLB. If the current tab page is heaps, a heap view }
{ form is presented to the user. }
var
NumRead: DWORD;
HE: THeapEntry32;
MemSize: integer;

begin
inherited;
if DetailTabs.TabIndex = 2 then
begin
HE := PHeapEntry32(DetailLB.Items.Objects[DetailLB.ItemIndex])^;
MemSize := HE.dwBlockSize; // get heap size
{ if heap is too big, use ProcMemMaxSize }
if MemSize > ProcMemMaxSize then MemSize := ProcMemMaxSize;
ProcMem := AllocMem(MemSize); // allocate a temp buffer
Screen.Cursor := crHourGlass;
try
{ Copy heap into temp buffer }
if Toolhelp32ReadProcessMemory(FCurProc.th32ProcessID,
Pointer(HE.dwAddress), ProcMem^, MemSize, NumRead) then
{ point HeapView control at temp buffer }
ShowHeapView(ProcMem, MemSize)

else
MessageDlg(SHeapReadErr, mtInformation, [mbOk], 0);

finally
Screen.Cursor := crDefault;
FreeMem(ProcMem, MemSize);

end;
end;

end;

end.

Advanced Techniques

PART II
526

17.65227_Ch14x 11/30/99 5:58 PM Page 526

Windows NT/2000: PSAPI
As we mentioned earlier, the ToolHelp32 API does not exist under Windows NT/2000. The
Windows Platform SDK, however, provides a DLL called PSAPI.DLL from which you can
obtain the same types of information as with ToolHelp32 under Windows NT/2000, including

• Running processes

• Modules loaded per process

• Loaded device drivers

• Process memory information

• Files memory mapped per process

Later versions of Windows NT and all versions of Windows 2000 include PSAPI.DLL, although
you can redistribute this file if you wish to deploy it to the users of your applications. Delphi
provides an interface unit for this DLL called PSAPI.pas, which loads all its functions dynami-
cally. Therefore, applications that use this unit will run on machines with or without PSAPI.DLL
(of course, the functions won’t work without PSAPI.DLL installed, but the application will run).

The first step in obtaining process information using PSAPI is to call EnumProcesses(), which
is defined as follows:

function EnumProcesses(lpidProcess: LPDWORD; cb: DWORD;

var cbNeeded: DWORD): BOOL;

• lpidProcess is a pointer to an array of DWORDs that will be filled in with process IDs
by the function.

• cb contains the number of DWORDs in the array passed in lpidProcess.

• Upon return, cbNeeded will hold the number of bytes copied into lpidProcess. The
expression cbNeeded div SizeOf(DWORD) will provide the number of elements copied
into the array and therefore the number of running processes.

After calling this function, the array passed in lpidProcess will contain a bunch of process
IDs. Process IDs aren’t particularly useful on their own, but you can pass a process ID to the
OpenProcess() API function in order to obtain a process handle. Once you have a process han-
dle, you can call other PSAPI functions or even other Win32 API functions that call for process
handles.

PSAPI provides a similar function for obtaining information on loaded device drivers called—
we’ll give you one guess—EnumDeviceDrivers(). This method is defined as follows:

function EnumDeviceDrivers(lpImageBase: PPointer; cb: DWORD;

var lpcbNeeded: DWORD): BOOL;

• lpImageBase is a pointer to an array of Pointers that will be filled with the base address
of each device driver.

Snooping System Information

CHAPTER 14
527

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

17.65227_Ch14x 11/30/99 5:58 PM Page 527

• cb contains the number of Pointers in the array passed in lpImageBase.

• Upon return, lpcbNeeded will hold the number of bytes copied to lpImageBase.

In the SysInfo project ID is a unit called WNTInfo.pas, which contains a class called
TWinNTInfo that implements IWin32Info. This class contains a private method called
Refresh(), which obtains process and device driver information:

procedure TWinNTInfo.Refresh;

var

Count: DWORD;

BigArray: array[0..$3FFF - 1] of DWORD;

begin

// Get array of process IDs

if not EnumProcesses(@BigArray, SizeOf(BigArray), Count) then

raise Exception.Create(SFailMessage);

SetLength(FProcList, Count div SizeOf(DWORD));

Move(BigArray, FProcList[0], Count);

// Get array of Driver addresses

if not EnumDeviceDrivers(@BigArray, SizeOf(BigArray), Count) then

raise Exception.Create(SFailMessage);

SetLength(FDrvList, Count div SizeOf(DWORD));

Move(BigArray, FDrvList[0], Count);

end;

This method initially passes a local called BigArray to EnumProcesses() and
EnumDeviceDrivers() and then moves the data from BigArray into dynamic arrays called
FProcList and FDrvList. The reason for this ungainly implementation of these functions is
that neither EnumProcesses() nor EnumDeviceDrivers() provide a means for determining how
many elements will be returned before allocating an array. We are therefore stuck passing a
large array (that we hope is large enough) to the methods and copying the result to an appro-
priately sized dynamic array.

The FillProcessInfoList() method for TWinNTInfo calls two helper methods—
FillProcesses() and FillDrivers()—to fill the contents of the TListView on the main
form. FillProcesses() is shown here:

procedure TWinNTInfo.FillProcesses(ListView: TListView;

ImageList: TImageList);

var

I: Integer;

Count: DWORD;

ProcHand: THandle;

ModHand: HMODULE;

Advanced Techniques

PART II
528

17.65227_Ch14x 11/30/99 5:58 PM Page 528

HAppIcon: HICON;

ModName: array[0..MAX_PATH] of char;

begin

for I := Low(FProcList) to High(FProcList) do

begin

ProcHand := OpenProcess(PROCESS_QUERY_INFORMATION or PROCESS_VM_READ,

False, FProcList[I]);

if ProcHand > 0 then

try

EnumProcessModules(Prochand, @ModHand, 1, Count);

if GetModuleFileNameEx(Prochand, ModHand, ModName,

SizeOf(ModName)) > 0 then

begin

HAppIcon := ExtractIcon(HInstance, ModName, 0);

try

if HAppIcon = 0 then HAppIcon := FWinIcon;

with ListView.Items.Add, SubItems do

begin

Caption := ModName; // file name

Data := Pointer(FProcList[I]); // save ID

Add(SProcName); // “process”

Add(IntToStr(FProcList[I])); // process ID

Add(‘$’ + IntToHex(ProcHand, 8)); // process handle

// priority class

Add(GetPriorityClassString(GetPriorityClass(ProcHand)));

// icon

if ImageList <> nil then

ImageIndex := ImageList_AddIcon(ImageList.Handle,

HAppIcon);

end;

finally

if HAppIcon <> FWinIcon then DestroyIcon(HAppIcon);

end;

end;

finally

CloseHandle(ProcHand);

end;

end;
end;

This method uses OpenProcess() to convert each process ID into a process handle. Several
flags can be passed to this method in the first parameter, but for purposes of querying informa-
tion with PSAPI, PROCESS_QUERY_INFORMATION and PROCESS_VM_READ together work best.

Snooping System Information

CHAPTER 14
529

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

17.65227_Ch14x 11/30/99 5:58 PM Page 529

Given a process handle, the code then calls EnumProcessModules() to obtain the filename for
the process. This method is defined as follows:

function EnumProcessModules(hProcess: THandle; lphModule: LPDWORD;

cb: DWORD; var lpcbNeeded: DWORD): BOOL;

This method works in a manner similar to the other PSAPI functions: hProcess is a process
handle, lphModule is a pointer to an array of module handles, cb indicates the number of ele-
ments in the array, and the final parameter returns the number of bytes copied to lphModule.

Because we’re only interested in the primary module for this process right now, we only pass
an array of one element. The first module returned by EnumProcessModules() is the primary
module for the process. All the process information is then added to the TListView component
in a manner similar to that shown in TWin9xInfo.

FillDrivers() functions in a like manner, except that it uses the
GetDeviceDriverFileName() method shown here:

function GetDeviceDriverFileName(ImageBase: Pointer; lpFileName: PChar;

nSize: DWORD): DWORD;

This method takes the image base of the device driver as the first parameter, a pointer to a
string buffer as the second parameter, and the size of the buffer in the last parameter. Upon
successful return, lpFileName will contain the filename of the device driver. Our use of this
method is shown in the following code:

procedure TWinNTInfo.FillDrivers(ListView: TListView;

ImageList: TImageList);

var

I: Integer;

DrvName: array[0..MAX_PATH] of char;

begin

for I := Low(FDrvList) to High(FDrvList) do

if GetDeviceDriverFileName(FDrvList[I], DrvName, SizeOf(DrvName)) > 0 then

with ListView.Items.Add do

begin

Caption := DrvName;

SubItems.Add(SDrvName);

SubItems.Add(‘$’ + IntToHex(Integer(FDrvList[I]), 8));

end;

end;

Figure 14.11 shows the SysInfo application running on a Windows NT 4.0 machine.

Advanced Techniques

PART II
530

17.65227_Ch14x 11/30/99 5:58 PM Page 530

FIGURE 14.11
Browsing Windows NT processes and drivers.

Like TWin95Info’s implementation of ShowProcessProperties(), TWinNTInfo calls out to
another unit to display a form containing more process information. In particular, the addi-
tional information pertains to process modules and memory usage. The method that does the
work of obtaining this information resides in the TWinNTDetailForm class in the DetailNT unit,
and it’s shown in the following code:

procedure TWinNTDetailForm.NewProcess(ProcessID: DWORD);

const

AddrMask = DWORD($FFFFF000);

var

I, Count: Integer;

ProcHand: THandle;

WSPtr: Pointer;

ModHandles: array[0..$3FFF - 1] of DWORD;

WorkingSet: array[0..$3FFF - 1] of DWORD;

ModInfo: TModuleInfo;

ModName, MapFileName: array[0..MAX_PATH] of char;

begin

ProcHand := OpenProcess(PROCESS_QUERY_INFORMATION or PROCESS_VM_READ, False,

ProcessID);

Snooping System Information

CHAPTER 14
531

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

17.65227_Ch14x 11/30/99 5:59 PM Page 531

if ProcHand = 0 then

raise Exception.Create(‘No information available for this process/driver’);

try

EnumProcessModules(ProcHand, @ModHandles, SizeOf(ModHandles), Count);

for I := 0 to (Count div SizeOf(DWORD)) - 1 do

if (GetModuleFileNameEx(ProcHand, ModHandles[I], ModName,

SizeOf(ModName)) > 0) and GetModuleInformation(ProcHand,

ModHandles[I], @ModInfo, SizeOf(ModInfo)) then

with ModInfo do

DetailLists[ltModules].Add(Format(SModuleStr, [ModName, lpBaseOfDll,

SizeOfImage, EntryPoint]));

if QueryWorkingSet(ProcHand, @WorkingSet, SizeOf(WorkingSet)) then

for I := 1 to WorkingSet[0] do

begin

WSPtr := Pointer(WorkingSet[I] and AddrMask);

GetMappedFileName(ProcHand, WSPtr, MapFileName, SizeOf(MapFileName));

DetailLists[ltMemory].Add(Format(SMemoryStr, [WSPtr,

MemoryTypeToString(WorkingSet[I]), MapFileName]));

end;

finally

CloseHandle(ProcHand);

end;

end;

As you can see, this method makes calls to OpenProcess() and EnumProcessModules(), about
which you’ve already learned. This method also calls a PSAPI function called
QueryWorkingSet(), however, to obtain memory information for a process. This function is
defined as follows:

function QueryWorkingSet(hProcess: THandle; pv: Pointer; cb: DWORD): BOOL;

hProcess is the process handle. pv is a pointer to an array of DWORDs, and cb holds the num-
ber of elements in the array. Upon return, pv will point to an array of DWORDs. The upper 20
bits of this DWORD hold the base address of a memory page, and the lower 12 bits of each
DWORD hold flags that indicate whether the page is readable, writable, executable, and so on.

Figures 14.12 and 14.13 show module and memory details under Windows NT. Listings 14.4
and 14.5 show the WNTInfo.pas and DetailNT.pas units, respectively.

Advanced Techniques

PART II
532

17.65227_Ch14x 11/30/99 5:59 PM Page 532

FIGURE 14.12
Viewing Windows NT process modules.

Snooping System Information

CHAPTER 14
533

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

FIGURE 14.13
Viewing Windows NT process memory details.

LISTING 14.4 WNTInfo.pas, Obtaining Process Information Under Windows NT/2000

unit WNTInfo;

interface

uses InfoInt, Windows, Classes, ComCtrls, Controls;

type

TWinNTInfo = class(TInterfacedObject, IWin32Info)

private

continues

17.65227_Ch14x 11/30/99 5:59 PM Page 533

LISTING 14.4 Continued

FProcList: array of DWORD;

FDrvlist: array of Pointer;

FWinIcon: HICON;

procedure FillProcesses(ListView: TListView; ImageList: TImageList);

procedure FillDrivers(ListView: TListView; ImageList: TImageList);

procedure Refresh;

public

constructor Create;

destructor Destroy; override;

procedure FillProcessInfoList(ListView: TListView;

ImageList: TImageList);

procedure ShowProcessProperties(Cookie: Pointer);

end;

implementation

uses SysUtils, PSAPI, ShellAPI, CommCtrl, DetailNT;

const

SFailMessage = ‘Failed to enumerate processes or drivers. Make sure ‘+

‘PSAPI.DLL is installed on your system.’;

SDrvName = ‘driver’;

SProcname = ‘process’;

ProcessInfoCaptions: array[0..4] of string = (

‘Name’, ‘Type’, ‘ID’, ‘Handle’, ‘Priority’);

function GetPriorityClassString(PriorityClass: Integer): string;

begin

case PriorityClass of

HIGH_PRIORITY_CLASS: Result := ‘High’;

IDLE_PRIORITY_CLASS: Result := ‘Idle’;

NORMAL_PRIORITY_CLASS: Result := ‘Normal’;

REALTIME_PRIORITY_CLASS: Result := ‘Realtime’;

else

Result := Format(‘Unknown ($%x)’, [PriorityClass]);

end;

end;

{ TWinNTInfo }

constructor TWinNTInfo.Create;

Advanced Techniques

PART II
534

17.65227_Ch14x 11/30/99 5:59 PM Page 534

begin

FWinIcon := LoadImage(0, IDI_WINLOGO, IMAGE_ICON, LR_DEFAULTSIZE,

LR_DEFAULTSIZE, LR_DEFAULTSIZE or LR_DEFAULTCOLOR or LR_SHARED);

end;

destructor TWinNTInfo.Destroy;

begin

DestroyIcon(FWinIcon);

inherited Destroy;

end;

procedure TWinNTInfo.FillDrivers(ListView: TListView;

ImageList: TImageList);

var

I: Integer;

DrvName: array[0..MAX_PATH] of char;

begin

for I := Low(FDrvList) to High(FDrvList) do

if GetDeviceDriverFileName(FDrvList[I], DrvName,

SizeOf(DrvName)) > 0 then

with ListView.Items.Add do

begin

Caption := DrvName;

SubItems.Add(SDrvName);

SubItems.Add(‘$’ + IntToHex(Integer(FDrvList[I]), 8));

end;

end;

procedure TWinNTInfo.FillProcesses(ListView: TListView;

ImageList: TImageList);

var

I: Integer;

Count: DWORD;

ProcHand: THandle;

ModHand: HMODULE;

HAppIcon: HICON;

ModName: array[0..MAX_PATH] of char;

begin

for I := Low(FProcList) to High(FProcList) do

begin

ProcHand := OpenProcess(PROCESS_QUERY_INFORMATION or PROCESS_VM_READ,

False, FProcList[I]);

Snooping System Information

CHAPTER 14
535

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

continues

17.65227_Ch14x 11/30/99 5:59 PM Page 535

LISTING 14.4 Continued

if ProcHand > 0 then

try

EnumProcessModules(Prochand, @ModHand, 1, Count);

if GetModuleFileNameEx(Prochand, ModHand, ModName,

SizeOf(ModName)) > 0 then

begin

HAppIcon := ExtractIcon(HInstance, ModName, 0);

try

if HAppIcon = 0 then HAppIcon := FWinIcon;

with ListView.Items.Add, SubItems do

begin

Caption := ModName; // file name

Data := Pointer(FProcList[I]); // save ID

Add(SProcName); // “process”

Add(IntToStr(FProcList[I])); // process ID

Add(‘$’ + IntToHex(ProcHand, 8)); // process handle

// priority class

Add(GetPriorityClassString(GetPriorityClass(ProcHand)));

// icon

if ImageList <> nil then

ImageIndex := ImageList_AddIcon(ImageList.Handle,

HAppIcon);

end;

finally

if HAppIcon <> FWinIcon then DestroyIcon(HAppIcon);

end;

end;

finally

CloseHandle(ProcHand);

end;

end;

end;

procedure TWinNTInfo.FillProcessInfoList(ListView: TListView;

ImageList: TImageList);

var

I: Integer;

begin

Refresh;

ListView.Columns.Clear;

ListView.Items.Clear;

for I := Low(ProcessInfoCaptions) to High(ProcessInfoCaptions) do

Advanced Techniques

PART II
536

17.65227_Ch14x 11/30/99 5:59 PM Page 536

with ListView.Columns.Add do

begin

if I = 0 then Width := 285

else Width := 75;

Caption := ProcessInfoCaptions[I];

end;

FillProcesses(ListView, ImageList); // Add processes to listview

FillDrivers(ListView, ImageList); // Add device drivers to listview

end;

procedure TWinNTInfo.Refresh;

var

Count: DWORD;

BigArray: array[0..$3FFF - 1] of DWORD;

begin

// Get array of process IDs

if not EnumProcesses(@BigArray, SizeOf(BigArray), Count) then

raise Exception.Create(SFailMessage);

SetLength(FProcList, Count div SizeOf(DWORD));

Move(BigArray, FProcList[0], Count);

// Get array of Driver addresses

if not EnumDeviceDrivers(@BigArray, SizeOf(BigArray), Count) then

raise Exception.Create(SFailMessage);

SetLength(FDrvList, Count div SizeOf(DWORD));

Move(BigArray, FDrvList[0], Count);

end;

procedure TWinNTInfo.ShowProcessProperties(Cookie: Pointer);

begin

ShowProcessDetails(DWORD(Cookie));

end;

end.

LISTING 14.5 DetailNT.pas, Obtaining Process Details Under Windows NT/2000

unit DetailNT;

interface

uses

Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,

Snooping System Information

CHAPTER 14
537

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

continues

17.65227_Ch14x 11/30/99 5:59 PM Page 537

LISTING 14.5 Continued

DetBase, ComCtrls, HeadList;

type

TListType = (ltModules, ltMemory);

TWinNTDetailForm = class(TBaseDetailForm)

procedure FormCreate(Sender: TObject);

procedure FormDestroy(Sender: TObject);

procedure DetailTabsChange(Sender: TObject);

private

FProcHand: THandle;

DetailLists: array[TListType] of TStringList;

procedure ShowList(ListType: TListType);

public

procedure NewProcess(ProcessID: DWORD);

end;

procedure ShowProcessDetails(ProcessID: DWORD);

implementation

uses PSAPI;

{$R *.DFM}

const

TabStrs: array[0..1] of string[7] = (‘Modules’, ‘Memory’);

{ Array of strings that goes into the footer of each list. }

ACountStrs: array[TListType] of string[31] = (

‘Total Modules: %d’, ‘Total Pages: %d’);

{ Array of strings that goes into the header of each respective list. }

HeaderStrs: array[TListType] of TDetailStrings = (

(‘Module’, ‘Base Addr’, ‘Size’, ‘Entry Point’),

(‘Page Addr’, ‘Type’, ‘Mem Map File’, ‘’));

SCaptionStr = ‘Details for %s’; // form caption

SModuleStr = ‘%s’#1’$%p’#1’%d bytes’#1’$%p’; // name, addr, size, entry pt

SMemoryStr = ‘$%p’#1’%s’#1’%s’; // addr, type, mem map file

procedure ShowProcessDetails(ProcessID: DWORD);

Advanced Techniques

PART II
538

17.65227_Ch14x 11/30/99 5:59 PM Page 538

var

I: Integer;

begin

with TWinNTDetailForm.Create(Application) do

try

for I := Low(TabStrs) to High(TabStrs) do

DetailTabs.Tabs.Add(TabStrs[I]);

NewProcess(ProcessID);

ShowList(ltModules);

ShowModal;

finally

Free;

end;

end;

function MemoryTypeToString(Value: DWORD): string;

const

TypeMask = DWORD($0000000F);

begin

Result := ‘’;

case Value and TypeMask of

1: Result := ‘Read-only’;

2: Result := ‘Executable’;

4: Result := ‘Read/write’;

5: Result := ‘Copy on write’;

else

Result := ‘Unknown’;

end;

if Value and $100 <> 0 then

Result := Result + ‘, Shareable’;

end;

procedure TWinNTDetailForm.FormCreate(Sender: TObject);

var

LT: TListType;

begin

inherited;

{ Dispose of lists }

for LT := Low(TListType) to High(TListType) do

DetailLists[LT] := TStringList.Create;

end;

procedure TWinNTDetailForm.FormDestroy(Sender: TObject);

Snooping System Information

CHAPTER 14
539

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

continues

17.65227_Ch14x 11/30/99 5:59 PM Page 539

LISTING 14.5 Continued

var

LT: TListType;

begin

inherited;

{ Dispose of lists }

for LT := Low(TListType) to High(TListType) do

DetailLists[LT].Free;

end;

procedure TWinNTDetailForm.NewProcess(ProcessID: DWORD);

const

AddrMask = DWORD($FFFFF000);

var

I, Count: Integer;

ProcHand: THandle;

WSPtr: Pointer;

ModHandles: array[0..$3FFF - 1] of DWORD;

WorkingSet: array[0..$3FFF - 1] of DWORD;

ModInfo: TModuleInfo;

ModName, MapFileName: array[0..MAX_PATH] of char;

begin

ProcHand := OpenProcess(PROCESS_QUERY_INFORMATION or PROCESS_VM_READ, False,

ProcessID);

if ProcHand = 0 then

raise Exception.Create(‘No information available for this process/driver’);

try

EnumProcessModules(ProcHand, @ModHandles, SizeOf(ModHandles), Count);

for I := 0 to (Count div SizeOf(DWORD)) - 1 do

if (GetModuleFileNameEx(ProcHand, ModHandles[I], ModName,

SizeOf(ModName)) > 0) and GetModuleInformation(ProcHand,

ModHandles[I], @ModInfo, SizeOf(ModInfo)) then

with ModInfo do

DetailLists[ltModules].Add(Format(SModuleStr, [ModName, lpBaseOfDll,

SizeOfImage, EntryPoint]));

if QueryWorkingSet(ProcHand, @WorkingSet, SizeOf(WorkingSet)) then

for I := 1 to WorkingSet[0] do

begin

WSPtr := Pointer(WorkingSet[I] and AddrMask);

GetMappedFileName(ProcHand, WSPtr, MapFileName, SizeOf(MapFileName));

DetailLists[ltMemory].Add(Format(SMemoryStr, [WSPtr,

MemoryTypeToString(WorkingSet[I]), MapFileName]));

end;

Advanced Techniques

PART II
540

17.65227_Ch14x 11/30/99 5:59 PM Page 540

finally

CloseHandle(ProcHand);

end;

end;

procedure TWinNTDetailForm.ShowList(ListType: TListType);

var

I: Integer;

begin

Screen.Cursor := crHourGlass;

try

with DetailLB do

begin

for I := 0 to 3 do

Sections[I].Text := HeaderStrs[ListType, i];

Items.Clear;

Items.Assign(DetailLists[ListType]);

end;

DetailSB.Panels[0].Text := Format(ACountStrs[ListType],

[DetailLists[ListType].Count]);

finally

Screen.Cursor := crDefault;

end;

end;

procedure TWinNTDetailForm.DetailTabsChange(Sender: TObject);

begin

inherited;

ShowList(TListType(DetailTabs.TabIndex));

end;

end.

Summary
This chapter demonstrated techniques for accessing system information from within your
Delphi programs. It focused on the proper usage of the ToolHelp32 functions provided by
Windows 95/98 and the PSAPI functions found on Windows NT. You learned how to use a few
Win32 API functions to obtain other types of system information, including memory informa-
tion, environment variables, and version information. Additionally, you learned how to incor-
porate the TListView, TImageList, THeaderListbox, and TMemView custom components into
your applications. The next chapter, “Porting to Delphi 5,” discusses migrating your applica-
tions from previous versions of Delphi.

Snooping System Information

CHAPTER 14
541

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

17.65227_Ch14x 11/30/99 5:59 PM Page 541

17.65227_Ch14x 11/30/99 5:59 PM Page 542

CHAPTER

15
Porting to Delphi 5

IN THIS CHAPTER
• New to Delphi 5 210

• Migrating from Delphi 4 212

• Migrating from Delphi 3 214

• Migrating from Delphi 2 216

• Migrating from Delphi 1 219

• Summary 238

The complete text for this chapter appears on
the CD-ROM.

18.65227_Ch15x 11/30/99 5:59 PM Page 543

If you’re upgrading to Delphi 5 from a previous version, this chapter is written for you. The
first section of this chapter discusses the issues involved in moving from any version of Delphi
to Delphi 5. In the second, third, and fourth sections, you learn about the often subtle differ-
ences between the various 32-bit versions of Delphi and how to take these differences into
account as you migrate applications to Delphi 5. The fourth section of this chapter is intended
to help those migrating 16-bit Delphi 1.0 applications to the 32-bit world of Delphi 5.
Although Borland makes a concerted effort to ensure that your code is compatible between
versions, it’s understandable that some changes have to be made in the name of progress, and
certain situations require code changes if applications are to compile and run properly under
the latest version of Delphi.

Advanced Techniques

PART II
544

18.65227_Ch15x 11/30/99 5:59 PM Page 544

CHAPTER

16
MDI Applications

IN THIS CHAPTER
• Creating the MDI Application 240

• Working with Menus 272

• Miscellaneous MDI Techniques 273

• Summary 287

The complete text for this chapter appears on
the CD-ROM.

19.65227_Ch16x 11/30/99 6:00 PM Page 545

The Multiple Document Interface, otherwise known as MDI, was introduced to Windows 2.0 in
the Microsoft Excel spreadsheet program. MDI gave Excel users the ability to work on more
than one spreadsheet at a time. Other uses of MDI included the Windows 3.1 Program
Manager and File Manager programs. Borland Pascal for Windows is another MDI application.

During the development of Windows 95, many developers were under the impression that
Microsoft was going to eliminate MDI capabilities. Much to their surprise, Microsoft kept
MDI as part of Windows 95 and there has been no further word about Microsoft’s intention to
get rid of it.

Advanced Techniques

PART II
546

CAUTION

Microsoft has acknowledged that the Windows MDI implementation is flawed. It
advised developers against continuing to build apps in the MDI model. Since then,
Microsoft has returned to building MS apps in the MDI model but does so without
using the Windows MDI implementation. You can still use MDI, but be forewarned
that the Windows MDI implementation is still flawed, and Microsoft has no plans to
fix those problems. What we present in this chapter is a safe implementation of the
MDI model.

Handling events simultaneously between multiple forms might seem difficult. In traditional
Windows programming, you had to have knowledge of the Windows class MDICLIENT, MDI
data structures, and the additional functions and messages specific to MDI. With Delphi 5, cre-
ating MDI applications is greatly simplified. When you finish this chapter, you’ll have a solid
foundation for building MDI applications, which you can easily expand to include more
advanced techniques.

19.65227_Ch16x 11/30/99 6:00 PM Page 546

CHAPTER

17
Sharing Information with the
Clipboard

IN THIS CHAPTER
• In the Beginning, There Was the

Clipboard 548

• Creating Your Own Clipboard
Format 551

• Summary 560

20.65227_Ch17x 11/30/99 6:00 PM Page 547

Once upon a time, humankind struggled just to survive. People lived in dark caves, hunted for
food with spears and rocks, and communicated with grunt-like sounds and hand motions. They
worshipped fire because it gave them light under which they worked on their very slow com-
puters. Computers back then could run only one application at a time due to hardware and soft-
ware limitations. The only way to share information was to save it on disk and to pass the disk
along for others to copy to their machines.

Nowadays, at least the equipment and software have improved. With operating systems such as
Windows 95/98 and Windows NT/2000, multiple applications can be run simultaneously,
which makes life much easier and more productive for the computer user. One of the advan-
tages gained from Windows is that information can be shared between applications on the
same machine. Two of the earlier technologies for sharing information are the Win32
Clipboard and Dynamic Data Exchange (DDE). You can make it possible for your users to
copy information from one application to another with little effort using either
of these.

This chapter shows you how to use Delphi’s encapsulation of the Win32 Clipboard. Previous
editions of this book covered DDE as well. However, with powerful interprocess communica-
tion technologies such as COM, we can’t, in all good conscience, refer you back to a dead
technology. Later, in Chapter 23, “COM and ActiveX,” we’ll discuss COM in greater depth.
For simple implementations of sharing information between applications, the Clipboard is still
a very solid solution.

In the Beginning, There Was the Clipboard
If you’re an experienced Windows programmer, you might already be familiar with the Win32
Clipboard—at least in functionality. If you’re new to Windows programming but have been
using Windows, you’ve probably been using the Clipboard all along but never really under-
stood how it’s implemented.

Almost any application that has an Edit menu makes use of the Clipboard. So what exactly is
the Clipboard? It’s simply an area of memory and a set of Win32 API functions that enable
applications to store and retrieve information to and from that area in memory. You can copy a
portion of your source code from the Delphi editor, for example, and paste that same code into
the Windows Notepad or any other editor.

Why does Win32 require a special set of functions and messages in order to use the Clipboard?
Copying data to the Clipboard is more than just allocating an area of memory and placing data
in that area. Other applications have to know how to retrieve that data and whether the data is
in a format that the application supports. Win32 takes care of the memory management and
enables you to copy, paste, and query about the information on the Clipboard.

Advanced Techniques

PART II
548

20.65227_Ch17x 11/30/99 6:00 PM Page 548

Before Delphi, you had to call various Clipboard functions directly and were responsible for
ensuring that your application didn’t do anything ill-advised with the Clipboard’s contents.
With Delphi, you just use the global variable Clipboard. Clipboard is a Delphi class that
encapsulates the Win32 Clipboard.

Using the Clipboard with Text
We already showed you how to use the Clipboard with text in Chapter 16, “MDI Applications.”
Specifically, this had to do with the text editor in the MDI application. We created menu items
for cutting, copying, pasting, deleting, and selecting text.

In the MDI application, the editor, a TMemo component, covers the client area of the form. The
TMemo component has its own functions that interact with the global Clipboard object. These
functions are CutToClipBoard(), CopyToClipBoard(), and PasteFromClipBoard(). The meth-
ods ClearSelection() and SelectAll() aren’t necessarily Clipboard interface routines, but
they enable you to select the text you want to copy to the Clipboard. Listing 17.1 shows the
event handlers for the Edit menu items.

LISTING 17.1 Clipboard Operations on Text

procedure TMdiEditForm.mmiCutClick(Sender: TObject);
begin
inherited;
memMainMemo.CutToClipBoard;

end;

Sharing Information with the Clipboard

CHAPTER 17
549

17

S
H

A
R

IN
G

IN
FO

R
M

A
TIO

N

Clipboard Formats
Win32 supports 25 predefined formats that applications can copy to or paste from
the Clipboard. The most common formats are as follows:

CF_BITMAP Specifies bitmap data.

CF_DIB Specifies bitmap data along with the bitmap’s palette infor-
mation.

CF_PALETTE Specifies a color palette.

CF_TEXT Specifies a character array where each line ends with a car-
riage return/linefeed. This is the most commonly used format.

You can refer to the Win32 API online help under “SetClipboardData” if you’re curi-
ous about less-common formats. Additionally, Win32 enables you to define your own
private Clipboard formats, as illustrated later in this chapter.

continues

20.65227_Ch17x 11/30/99 6:00 PM Page 549

LISTING 17.1 Continued

procedure TMdiEditForm.mmiCopyClick(Sender: TObject);
begin
inherited;
memMainMemo.CopyToClipBoard;

end;

procedure TMdiEditForm.mmiPasteClick(Sender: TObject);
begin
inherited;
memMainMemo.PasteFromClipBoard;

end;

As illustrated in Listing 17.1, you need only call the TMemo methods to perform the Clipboard
functions. You also can place text on the Clipboard manually by using the Clipboard.AsText
property. Back in the 16-bit environment, the AsText property was limited to 255 characters
and you had to use the SetTextBuf() and GetTextBuf() methods to copy larger strings to the
Clipboard. This is no longer the case in 32-bit Delphi because the AsText property’s string
type now means long strings. You’ll notice that SetTextBuf() and GetTextBuf() are still sup-
ported as well.

Clipboard.AsText := ‘Delphi Rules’;

Advanced Techniques

PART II
550

NOTE

The Clipboard function’s GetTextBuf() and SetTextBuf() methods use
Pascal PChar types as buffers to pass and retrieve data from the Clipboard.
When using such methods, you can typecast long strings as PChar types so
that you don’t have to do any converting of String types to PChar types.

Using the Clipboard with Images
The Clipboard can also copy and paste images. You saw how this can be done in the same
MDI sample program. The event handlers that performed the Clipboard operations are shown
in Listing 17.2.

LISTING 17.2 Clipboard Operations on a Bitmap

procedure TMdiBMPForm.mmiCopyClick(Sender: TObject);
begin
inherited;
ClipBoard.Assign(imgMain.Picture);

end;

20.65227_Ch17x 11/30/99 6:00 PM Page 550

procedure TMdiBMPForm.mmiPasteClick(Sender: TObject);
{ This method copies the contents from the clipboard into imgMain }
begin
inherited;
// Copy clipboard content to imgMain
imgMain.Picture.Assign(ClipBoard);
ClientWidth := imgMain.Picture.Width;
{ Adjust clientwidth to adjust the scollbars }
VertScrollBar.Range := imgMain.Picture.Height;
HorzScrollBar.Range := imgMain.Picture.Width;

end;

Sharing Information with the Clipboard

CHAPTER 17
551

17

S
H

A
R

IN
G

IN
FO

R
M

A
TIO

N

TIP

In order to access the Clipboard global variable, you must include ClipBrd in the
uses clause of the unit that will be using Clipboard.

In Listing 17.2, the mmiCopyClick() event handler uses the Clipboard.Assign() method to
copy the image to the Clipboard. Using this approach, you can paste the image into another
Win32 application that supports the CF_BITMAP format, such as Windows Paint (PBrush.EXE).

mmiPasteClick() uses the Image.Assign() method to copy the image from the Clipboard and
readjusts the scrollbars accordingly.

NOTE

CF_PICTURE is not a standard Win32 Clipboard format. Instead, it’s a private format
used by Delphi applications to determine whether the Clipboard data is in a TPicture-
compatible format, such as bitmaps and metafiles. If you were to register your own
graphic format, TPicture will support that format as well. Look up TPicture in
Delphi’s online help for further information on TPicture-compatible formats.

Creating Your Own Clipboard Format
Imagine working with an address entry program. Suppose that you’re entering a record that
differs only slightly from the record previously entered. It would be convenient if you could
copy the contents from the previous record and paste them to the current record, instead of
having to enter each field again. You might want to use the same information in other applica-
tions as well, perhaps as the address in a letter. The next example shows you how to create an
object that knows about the Win32 Clipboard and can save its special formatted data to the

20.65227_Ch17x 11/30/99 6:00 PM Page 551

Clipboard. You also learn how to store your information as CF_TEXT format so that you can
retrieve the same data in other applications that support the CF_TEXT format.

Creating a Clipboard-Aware Object
You might be thinking that one way to define custom Clipboard formats would be to create a
descendant TClipboard class that knows about the newly defined format. This special
TClipboard class could contain the specialized methods for dealing with the custom format.
Although such a class would suffice in an isolated case, it would become tedious to maintain
as you continue to need additional formats or as you need to redefine your data. If 70 different
vendors came up with their own TClipboard descendant classes for their custom Clipboard
formats, you’d have a major problem trying to use just two of the formats. The TClipboard
descendants would conflict with each other.

A better approach would be to define an object around your data and then make the object
aware of the TClipboard object, rather than the reverse. This singleton pattern to the Clipboard
is the approach that Borland uses with its Delphi components. A TMemo component knows how
to place its data on the Clipboard, just as a TImage component knows how to place its data on
the Clipboard. All components use the same TClipboard object, so there’s no conflict. This is
the approach we’ll show you in this section to define a custom Clipboard format, which is
basically a record with a person’s name, age, and birth date information. The unit for defining
the data, along with the Clipboard methods to copy and paste the data to and from the
Clipboard, is shown in Listing 17.3.

LISTING 17.3 A Unit That Defines Custom Clipboard Data

unit cbdata;
interface
uses
SysUtils, Windows, clipbrd;

const

DDGData = ‘CF_DDG’; // constant for registering the clipboard format.
type

// Record data to be stored to the clipboard
TDataRec = packed record
LName: string[10];
FName: string[10];
MI: string[2];
Age: Integer;
BirthDate: TDateTime;

end;

Advanced Techniques

PART II
552

20.65227_Ch17x 11/30/99 6:00 PM Page 552

{ Define an object around the TDataRec that contains the methods
for copying and pasting the data to and from the clipboard }

TData = class
public
Rec: TDataRec;
procedure CopyToClipBoard;
procedure GetFromClipBoard;

end;

var
CF_DDGDATA: word; // Receives the return value of RegisterClipboardFormat().

implementation

procedure TData.CopyToClipBoard;
{ This function copies the contents of the TDataRec field, Rec, to the
clipboard as both binary data, as text. Both formats will be
available from the clipboard }

const
CRLF = #13#10;

var
Data: THandle;
DataPtr: Pointer;
TempStr: String[50];

begin
// Allocate SizeOf(TDataRec) bytes from the heap
Data := GlobalAlloc(GMEM_MOVEABLE, SizeOf(TDataRec));
try
// Obtain a pointer to the first byte of the allocated memory
DataPtr := GlobalLock(Data);
try
// Move the data in Rec to the memory block
Move(Rec, DataPtr^, SizeOf(TDataRec));
{ Clipboard.Open must be called if multiple clipboard formats are
being copied to the clipboard at once. Otherwise, if only one
format is being copied the call isn’t necessary }

ClipBoard.Open;
// First copy the data as its custom format
ClipBoard.SetAsHandle(CF_DDGDATA, Data);
// Now copy the data as text format
with Rec do
TempStr := FName+CRLF+LName+CRLF+MI+CRLF+IntToStr(Age)+CRLF+

DateTimeToStr(BirthDate);
ClipBoard.AsText := TempStr;
{ If a call to Clipboard.Open is made you must match it
with a call to Clipboard.Close }

Sharing Information with the Clipboard

CHAPTER 17
553

17

S
H

A
R

IN
G

IN
FO

R
M

A
TIO

N

continues

20.65227_Ch17x 11/30/99 6:00 PM Page 553

LISTING 17.3 Continued

Clipboard.Close
finally
// Unlock the globally allocated memory
GlobalUnlock(Data);

end;
except
{ A call to GlobalFree is required only if an exception occurs.
Otherwise, the clipboard takes over managing any allocated
memory to it.}

GlobalFree(Data);
raise;

end;
end;

procedure TData.GetFromClipBoard;
{ This method pastes memory saved in the clipboard if it is of the
format CF_DDGDATA. This data is stored in the TDataRec field of
this object. }

var
Data: THandle;
DataPtr: Pointer;
Size: Integer;

begin
// Obtain a handle to the clipboard
Data := ClipBoard.GetAsHandle(CF_DDGDATA);
if Data = 0 then Exit;
// Obtain a pointer to the memory block referred to by Data
DataPtr := GlobalLock(Data);
try
// Obtain the size of the data to retrieve
if SizeOf(TDataRec) > GlobalSize(Data) then
Size := GlobalSize(Data)

else
Size := SizeOf(TDataRec);

// Copy the data to the TDataRec field
Move(DataPtr^, Rec, Size)

finally
// Free the pointer to the memory block.
GlobalUnlock(Data);

end;
end;

initialization
// Register the custom clipboard format
CF_DDGDATA := RegisterClipBoardFormat(DDGData);

end.

Advanced Techniques

PART II
554

20.65227_Ch17x 11/30/99 6:00 PM Page 554

This unit performs several tasks. First, it registers the new format with the Win32 Clipboard by
calling the RegisterClipboardFormat() function. This function returns a value that identifies
this new format. Any application that registers this same format, as specified by the string para-
meter, will obtain the same value when calling this function. The new format is also available
on the ClipBoard’s list of formats, which can be accessed by the Clipboard.Formats property.

The unit also defines the record containing the data to be placed onto the Clipboard and the
object that encapsulates this record. The record, TDataRec, has string fields to hold a person’s
name, an integer field to hold the person’s age, and a TDataTime field to hold the person’s birth
date.

The object encapsulating TDataRec, TData, defines the methods CopyToClipboard() and
GetFromClipboard().

TData.CopyToClipboard() places the contents of the field TData.Rec onto the Clipboard as
two formats: CF_DDGDATA and CF_TEXT. CF_TEXT, which, as you know, is an already-defined
Clipboard format. The text version of TData.Rec’s contents are placed on the Clipboard by
concatenating its fields as strings separated by carriage return/line feed characters. The non-
string fields are converted to strings before formulating the final string that gets saved to the
Clipboard. ClipBoard.SetAsHandle() first places a given handle onto the Clipboard in the for-
mat specified by its parameter. In this case, the parameter is the newly defined Clipboard for-
mat CF_DDGDATA.

Before calling Clipboard.SetAsHandle(), however, the method prepares a valid THandle that
it must pass to SetAsHandle(). This handle represents the block of memory that contains the
data being sent to the Clipboard. See the sidebar titled “Working with THandles.” The follow-
ing line tells the Win32 system to allocate Sizeof(TDataRec) bytes of memory that may be
moved, if necessary, and to return a handle to that memory to the variable Data:

Data := GlobalAlloc(GMEM_MOVEABLE, SizeOf(TDataRec));

A pointer to the memory is obtained with the following statement:

DataPtr := GlobalLock(Data);

The data is then moved to the memory block with the Move() function. In the remaining lines
of code, the ClipBoard.Open() method opens the Clipboard to prevent other applications from
using it while it’s being given data:

ClipBoard.Open;
try
ClipBoard.SetAsHandle(CF_DDGDATA, Data);
with Rec do
TempStr := FName+CRLF+LName+CRLF+MI+CRLF+IntToStr(Age)+CRLF+
DateTimeToStr(BirthDate);

ClipBoard.AsText := TempStr;

Sharing Information with the Clipboard

CHAPTER 17
555

17

S
H

A
R

IN
G

IN
FO

R
M

A
TIO

N

20.65227_Ch17x 11/30/99 6:01 PM Page 555

finally
Clipboard.Close

End;

Typically, it’s not necessary to call Open() unless you’re sending multiple formats to the
Clipboard, as you’re doing here. This is because each assignment to the Clipboard using one of
its methods (such as ClipBoard.SetTextBuf()) or properties (such as ClipBoard.AsText)
causes the Clipboard to erase its previous contents because they, too, call Open() and Close()
internally. By calling ClipBoard.Open() first, you prevent this from happening and therefore
can assign multiple formats simultaneously. Had you not called the Open() method, only the
CF_TEXT format would be available on the Clipboard after executing this method. The lines
after the call to Open() simply assign the data to the Clipboard and then call the
ClipBoard.Close() method accordingly.

At this point, the Win32 system is responsible for managing memory allocated for the
Clipboard with the GlobalAlloc() function. A call to GlobalFree() would be necessary only
if an exception occurred during the copy process. Don’t call GlobalFree() otherwise because
Win32 has taken over that memory management for the Clipboard.

With both CF_DDGDATA and CF_TEXT formats available on the Clipboard, you can paste the data
back into either this sample program or other applications, as we’ll illustrate momentarily.

TData.GetFromClipboard() does just the opposite—it retrieves data from the Clipboard in the
CF_DDGDATA format and places that data in the TData.Rec field. The commentary in the listing
explains how this method operates. The sample application that we’ll show next illustrates how
to use this unit. Notice that this Clipboard object can be easily modified to store any type of
record you might define.

Advanced Techniques

PART II
556

NOTE

Do not free the handle returned from GetAsHandle(); it doesn’t belong to your
application—it belongs to the Clipboard. Therefore, the data that the handle refer-
ences should be copied.

Working with THandles
A THandle is nothing more than a 32-bit variable that represents an index of a table
where the Win32 system maintains information about a memory block. There are
many types of THandles, and Delphi encapsulates most of them with TIcons,
TBitmaps, TCanvas, and so on.

20.65227_Ch17x 11/30/99 6:01 PM Page 556

Certain Win32 functions, like the various Clipboard functions, use the heap to manip-
ulate Clipboard data. To get access to heap memory, you make use of the memory
allocation function shown in the following list:

GlobalAlloc() Allocates a number of bytes specified from the heap and
returns a THandle to that memory object

GlobalFree() Frees the memory allocated with GlobalAlloc()

GlobalLock() Returns a pointer to a global memory object received
from GlobalAlloc()

GlobalUnlock() Unlocks memory previously locked with GlobalLock()

Sharing Information with the Clipboard

CHAPTER 17
557

17

S
H

A
R

IN
G

IN
FO

R
M

A
TIO

N

Using the Custom Clipboard Format
The main form for the project that illustrates the use of the custom Clipboard format is shown
in Figure 17.1.

FIGURE 17.1
The main form for the custom Clipboard format example.

As shown, this form contains the controls required to fill the TDataRec field of the TData
object. Listing 17.4 shows the source code for this form. The project resides on the CD as
Ddgcbp.dpr.

LISTING 17.4 Source Code for the Custom Clipboard Format Example

unit MainFrm;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, clipbrd, Mask, ComCtrls;

type

continues

20.65227_Ch17x 11/30/99 6:01 PM Page 557

LISTING 17.4 Continued

TMainForm = class(TForm)
edtFirstName: TEdit;
edtLastName: TEdit;
edtMI: TEdit;
btnCopy: TButton;
btnPaste: TButton;
meAge: TMaskEdit;
btnClear: TButton;
lblFirstName: TLabel;
lblLastName: TLabel;
lblMI: TLabel;
lblAge: TLabel;
lblBirthDate: TLabel;
memAsText: TMemo;
lblCustom: TLabel;
lblText: TLabel;
dtpBirthDate: TDateTimePicker;
procedure btnCopyClick(Sender: TObject);
procedure btnPasteClick(Sender: TObject);
procedure btnClearClick(Sender: TObject);

end;

var
MainForm: TMainForm;

implementation
uses cbdata;

{$R *.DFM}

procedure TMainForm.btnCopyClick(Sender: TObject);
// This method copies the data in the form’s controls onto the clipboard
var
DataObj: TData;

begin
DataObj := TData.Create;
try
with DataObj.Rec do
begin
FName := edtFirstName.Text;
LName := edtLastName.Text;
MI := edtMI.Text;
Age := StrToInt(meAge.Text);
BirthDate := dtpBirthDate.Date;
DataObj.CopyToClipBoard;

end;

Advanced Techniques

PART II
558

20.65227_Ch17x 11/30/99 6:01 PM Page 558

finally
DataObj.Free;

end;
end;

procedure TMainForm.btnPasteClick(Sender: TObject);
{ This method pastes CF_DDGDATA formatted data from the clipboard to
the form’s controls. The text version of this data is copied to the
form’s TMemo component. }

var
DataObj: TData;

begin
btnClearClick(nil);
DataObj := TData.Create;
try
// Check if the CF_DDGDATA format is available
if ClipBoard.HasFormat(CF_DDGDATA) then
// Copy the CF_DDGDATA formatted data to the form’s controls
with DataObj.Rec do
begin
DataObj.GetFromClipBoard;
edtFirstName.Text := FName;
edtLastName.Text := LName;
edtMI.Text := MI;
meAge.Text := IntToStr(Age);
dtpBirthDate.Date := BirthDate;

end;
finally
DataObj.Free;

end;
// Now copy the text version of the data to form’s TMemo component.
if ClipBoard.HasFormat(CF_TEXT) then
memAsText.PasteFromClipBoard;

end;

procedure TMainForm.btnClearClick(Sender: TObject);
var
i: integer;

begin
// Clear the contents of all controls on the form
for i := 0 to ComponentCount - 1 do
if Components[i] is TCustomEdit then
TCustomEdit(Components[i]).Text := ‘’;

end;

end.

Sharing Information with the Clipboard

CHAPTER 17
559

17

S
H

A
R

IN
G

IN
FO

R
M

A
TIO

N

20.65227_Ch17x 11/30/99 6:01 PM Page 559

When the user clicks the Copy button, it copies the data contained in the TEdit,
TDateTimePicker, and TMaskEdit controls to the TDataRec field of a TData object. It then
invokes the TData.CopyToClipboard() method, which places the data onto the Clipboard.

When the Paste button is clicked, the opposite happens. First, if the data in the Clipboard is of
the type CF_DDGDATA, it’s copied from the Clipboard and placed into the edit controls on the
form. The text representation of the data is also copied and placed into the main form’s TMemo
component. The result of a paste operation is shown in Figure 17.2. You can also paste the text
representation of the data into another Windows application, such as Notepad.

Advanced Techniques

PART II
560

FIGURE 17.2
Pasted data on the main form.

The Clear button empties the contents of all controls on the main form.

Summary
Sharing data with other applications is an extremely useful technique. By enabling your appli-
cations to share data with other applications, you make it more usable and your users more
productive. This chapter shows you how to use the Clipboard’s built-in functions to work with
Delphi controls. It also demonstrates how to create your own custom Clipboard formats.
Another even more powerful method of interprocess communication is COM, which we’ll
cover in depth in later chapters.

20.65227_Ch17x 11/30/99 6:01 PM Page 560

CHAPTER

18
Multimedia Programming
with Delphi

IN THIS CHAPTER
• Creating a Simple Media Player 290

• Using WAV Files in Your
Applications 291

• Playing Video 293

• Device Support 298

• Creating an Audio CD Player 299

• Summary 314

The complete text for this chapter appears on
the CD-ROM.

21.65227_Ch18x 11/30/99 6:01 PM Page 561

Delphi’s TMediaPlayer component is proof that good things come in small packages. In the
guise of this little component, Delphi encapsulates a great deal of the functionality of the
Windows Media Control Interface (MCI)—the portion of the Windows API that provides con-
trol for multimedia devices.

Delphi makes multimedia programming so easy that the traditional and boring “Hello World”
program may be a thing of the past. Why write Hello World to the screen when it’s almost as
easy to play a sound or video file that offers its greetings?

In this chapter, you learn how to write a simple yet powerful media player, and you even con-
struct a fully functional audio CD player. This chapter explains the uses and nuances of the
TMediaPlayer component. Of course, your computer must be equipped with multimedia
devices, such as a sound card and CD-ROM, for this chapter to be of real use to you.

Advanced Techniques

PART II
562

21.65227_Ch18x 11/30/99 6:01 PM Page 562

CHAPTER

19
Testing and Debugging

IN THIS CHAPTER
• Common Program Bugs 317

• Using the Integrated Debugger 321

• Summary 332

The complete text for this chapter appears on
the CD-ROM.

22.65227_Ch19x 11/30/99 6:02 PM Page 563

Some programmers in the industry believe that the knowledge and application of good pro-
gramming practice make the need for debugging expertise unnecessary. In reality, however, the
two complement each other, and whoever masters both will reap the greatest benefits. This is
especially true when multiple programmers are working on different parts of the same pro-
gram. It’s simply impossible to completely remove the possibility of human error.

A surprising number of people say, “My code compiles all right, so I don’t have any bugs,
right?” Wrong. There’s no correlation between whether a program compiles and whether it has
bugs; there’s a big difference between code that’s syntactically correct and code that’s logically
correct and bug-free. Also, don’t assume that because a particular piece of code worked yester-
day or on another system that it’s bug-free. When it comes to hunting software bugs, every-
thing should be presumed guilty until proven innocent.

During the development of any application, you should allow the compiler to help you as much
as possible. You can do this in Delphi by enabling all the runtime error-checking options in
Project, Options, Compiler, as shown in Figure 19.1, or by enabling the necessary directives in
your code. Additionally, you should have the Show Hints and Show Warnings options enabled
in that same dialog box in order to receive more information on your code. It’s common for a
developer to spend needless hours trying to track down “that impossible bug,” when he or she
could have found the error immediately by simply employing these effective compiler-aided
tools. (Of course, the authors would never be guilty of failing to remember to use these aids.
You believe us, right?)

Advanced Techniques

PART II
564

22.65227_Ch19x 11/30/99 6:02 PM Page 564

IN THIS PART
20 Key Elements of the VCL and Runtime Type

Information 567

21 Writing Delphi Custom Components 613

22 Advanced Component Design Techniques 691

23 COM-Based Technologies 773

24 Extending the Windows Shell 901

25 Creating ActiveX Controls 981

26 Using Delphi's Open Tools API 1055

27 CORBA Development with Delphi 1095

Component-Based
Development

PART

III

23.65227_Part III 11/30/99 6:02 PM Page 565

23.65227_Part III 11/30/99 6:02 PM Page 566

CHAPTER

20
Key Elements of the VCL and
Runtime Type Information

IN THIS CHAPTER
• What Is a Component? 569

• Component Types 569

• The Component Structure 571

• The Visual Component Hierarchy 578

• Runtime Type Information 587

• Summary 612

24.65227_Ch20x 11/30/99 6:03 PM Page 567

When Borland first introduced the Object Windows Library (OWL) with Turbo Pascal for
Windows, it ushered in a drastic simplification over traditional Windows programming. OWL
objects automated and streamlined many tedious tasks you otherwise were required to code
yourself. No longer did you have to write huge case statements to capture messages or big
chunks of code to manage Windows classes; OWL did this for you. On the other hand, you had
to learn a new programming methodology—object-oriented programming.

The Visual Component Library (VCL), introduced in Delphi 1, was OWL’s successor. It was
based on an object model similar to OWL’s in principle but radically different in implementa-
tion. The VCL in Delphi 5 is the same as its predecessors in Delphi 1, 2, 3, and 4, with quite a
few enhancements and additions.

The VCL is designed specifically to work within Delphi’s visual environment. Instead of creat-
ing a window or dialog box and adding its behavior in code, you modify the behavioral and
visual characteristics of components as you design your program visually.

The level of knowledge required about the VCL really depends on how you use it. First, you
must realize that there are two types of Delphi developers: applications developers and visual
component writers. Applications developers create complete applications by interacting with
the Delphi visual environment (a concept nonexistent in many other frameworks). These people
use the VCL to create their user interface and other elements of their application such as data-
base connectivity. Component writers, on the other hand, expand the existing VCL by develop-
ing more components. Such components are made available through third-party companies.

Whether you plan to create applications with Delphi or to create Delphi components, under-
standing the Visual Component Library is essential. An applications developer should know
which properties, events, and methods are available for each component. Additionally, it’s
advantageous to fully understand the object model inherent in a Delphi application that’s pro-
vided by the VCL. A common problem we see with Delphi developers is that they tend to fight
the tool—a symptom of not understanding it completely. Component writers take this knowl-
edge one step further to determine whether to write a new component or to extend an existing
one by knowing how VCL handles window messages, internal notifications, component owner-
ship, parenting/ownership issues, property editors, and so on.

This chapter introduces you to the Visual Component Library. It discusses the component hier-
archy and explains the purpose of the key levels within the hierarchy. It also discusses the pur-
poses of the common properties, methods, and events that appear at the different component
levels. Finally, we complete this chapter by covering Runtime Type Information (RTTI).

Component-Based Development

PART III
568

24.65227_Ch20x 11/30/99 6:03 PM Page 568

What Is a Component?
Components are the building blocks developers use to design the user interface and provide
some nonvisual capability to their applications. As far as applications developers are con-
cerned, a component is something developers get from the Component Palette and place on
their forms. From there, they can manipulate the various properties and add event handlers to
give the component a specific appearance or behavior. From the perspective of a component
writer, components are objects in Object Pascal code. These objects can encapsulate the behav-
ior of elements provided by the system (such as the standard Windows 95/98 controls). Other
objects can introduce entirely new visual or nonvisual elements, in which case a component’s
code makes up the entire behavior of the component.

The complexity of components varies widely. Some components are simple; others encapsulate
elaborate tasks. There’s no limit to what a component can do or be made up of. You can have a
simple component such as a TLabel, or you can have a much more complex component that
encapsulates the complete functionality of a spreadsheet.

The key to understanding the VCL is to know what types of components exist. You should
understand the common elements of components. You should also understand the component
hierarchy and the purpose of each level within the hierarchy. The following sections provide
this information.

Component Types
There are four basic types of components you use and/or create in Delphi: standard controls,
custom controls, graphical controls, and nonvisual components.

Key Elements of the VCL and Runtime Type Information

CHAPTER 20
569

20

K
EY

E
LEM

EN
TS

O
F

TH
E

V
C

L A
N

D
R

U
N

TIM
E

T
Y

PE

NOTE

You’ll often see the terms component and control used interchangeably, although
they’re not always the same. A control refers to a visual user-interface element. In
Delphi, controls are always components because they descend from the TComponent
class. Components are the objects whose basic behavior allows them to appear on
the Component Palette and be manipulated in the form designer. Components are of
the type TComponent and are not always controls—that is, they aren’t always visual
user-interface elements.

Standard Components
Delphi provides standard components that encapsulate the behavior of Windows 95/98 con-
trols, such as TRichEdit, TTrackBar, and TListView (to name a few). These components exist

24.65227_Ch20x 11/30/99 6:03 PM Page 569

on the Win95 page of the Component Palette. These components are actually Object Pascal
wrappers around the Windows 95/98 common controls. If you’re an owner of the VCL source
code, you can view Borland’s method for wrapping these controls in the file ComCtrls.pas.

Component-Based Development

PART III
570

TIP

Having the source code to the VCL is essential to understanding the VCL, especially if
you plan to write components. There probably is no better way to learn how to write
components than to see how Borland has done it. If you don’t have the Runtime
Library (RTL), it’s strongly recommended that you obtain it from Borland.

Custom Components
Custom components is a general term that refers to components that aren’t part of the standard
Delphi component library. In other words, these are components that either you or other pro-
grammers write and add to the existing set of components. We’ll get more into designing cus-
tom components later in this chapter.

Graphical Components
Graphical components let you have or create visual controls that don’t receive the input focus
from the user. These components are useful when you want to display something to the user
but don’t want the component to use up Windows resources, as standard and custom compo-
nents do. Graphical components don’t use Windows resources because they require no window
handle, which is also the reason they can’t get the focus. Examples of graphical components
are TLabel and TShape. Such components can’t serve as container components either; that is,
they can’t own other components placed on top of them. Other examples of graphical compo-
nents are TImage, TBevel, and TPaintBox.

Handles
Handles are 32-bit numbers issued by Win32 that refer to certain object instances.
The term objects here refers to Win32 objects, not Delphi objects. There are different
types of objects under Win32: kernel objects, user objects, and GDI objects. Kernel
objects apply to items such as events, file-mapping objects, and processes. User
objects refer to window objects such as edit controls, list boxes, and buttons. GDI
objects refer to bitmaps, brushes, fonts, and so on.

In the Win32 environment, every window has a unique handle. Many Windows API
functions require a handle so that they know the window on which they are to per-
form the operation. Delphi encapsulates much of the Win32 API and performs handle

24.65227_Ch20x 11/30/99 6:03 PM Page 570

Nonvisual Components
As the name implies, nonvisual components don’t have a visual characteristic. Such compo-
nents give you the capability to encapsulate the functionality of an entity within an object and
allow you to modify certain characteristics of that component through the Object Inspector at
design time by modifying its properties and providing event handlers for its events. Examples
of such components are TOpenDialog, TTable, and TTimer.

The Component Structure
As mentioned earlier, components are Object Pascal classes that encapsulate the functionality
and behavior of elements that developers use to add visual and behavioral characteristics to
their programs. All components have a certain structure. The following sections discuss the
makeup of Delphi components.

Key Elements of the VCL and Runtime Type Information

CHAPTER 20
571

20

K
EY

E
LEM

EN
TS

O
F

TH
E

V
C

L A
N

D
R

U
N

TIM
E

T
Y

PE

management. If you want to use a Windows API function that requires a window
handle, you must use descendants of TWinControl and TCustomControl, which both
have a Handle property.

NOTE

Understand the distinction between a component and a class. A component is a class
that can be manipulated within the Delphi environment. A class is an Object Pascal
structure, as explained in Chapter 2, “The Object Pascal Language.”

Properties
Chapter 2 introduced you to properties. Properties give the user an interface to a component’s
internal storage fields. Using properties, the component user can modify or read storage field
values. Typically, the user doesn’t have direct access to component storage fields because
they’re declared in the private section of a component’s class definition.

Properties: Storage Field Accessors
Properties provide access to storage fields by either accessing the storage fields directly or
through access methods. Take a look at the following property definition:

TCustomEdit = class(TWinControl)
private
FMaxLength: Integer;

24.65227_Ch20x 11/30/99 6:03 PM Page 571

protected
procedure SetMaxLength(Value: Integer);

...
published
property MaxLength: Integer read FMaxLength write SetMaxLength default 0;

...
end;

The property MaxLength is the access to the storage field FMaxLength. The parts of a property
definition consist of the property name, the property type, a read declaration, a write declara-
tion, and an optional default value. The read declaration specifies how the component’s stor-
age fields are read. The MaxLength property directly reads the value from the FMaxLength
storage field. The write declaration specifies the method by which the storage fields are
assigned values. For the property MaxLength, the writer access method SetMaxLength() is used
to assign the value to the storage field FMaxLength. A property may also contain a reader
access method, in which case the MaxLength property would be declared as this:

property MaxLength: Integer read GetMaxLength write SetMaxLength default 0;

The reader access method GetMaxLength() would be declared as follows:

function GetMaxLength: Integer;

Property Access Methods
Access methods take a single parameter of the same type as the property. The purpose of the
writer access method is to assign the value of the parameter to the internal storage field to
which the property refers. The reason for using the method layer to assign values is to protect
the storage field from receiving erroneous data as well as to perform various side effects, if
required. For example, examine the implementation of the following SetMaxLength() method:

procedure TCustomEdit.SetMaxLength(Value: Integer);
begin
if FMaxLength <> Value then
begin
FMaxLength := Value;
if HandleAllocated then SendMessage(Handle, EM_LIMITTEXT, Value, 0);

end;
end;

This method first checks to verify that the component user isn’t attempting to assign the same
value that the property already holds. If not, it makes the assignment to the internal storage
field FMaxLength and then calls the SendMessage() function to pass the EM_LIMITTEXT
Windows message to the window that the TCustomEdit encapsulates. This message limits the
amount of text that a user can enter into an edit control. Calling SendMessage() in the prop-
erty’s writer access method is known as a side effect when assigning property values.

Component-Based Development

PART III
572

24.65227_Ch20x 11/30/99 6:03 PM Page 572

Side effects are any actions affected by the assignment of a value to a property. In assigning a
value to the MaxLength property of TCustomEdit, the side effect is that the encapsulated edit
control is given an entry limit. Side effects can be much more sophisticated than this.

One key advantage to providing access to a component’s internal storage fields through proper-
ties is that the component writer can change the implementation of the field access without
affecting the behavior for the component user.

A reader access method, for example, can change the type of the returned value to something
different from the type of the storage field to which the property refers.

Another fundamental reason for the use of properties is to make modifications available to
them during design time. When a property appears in the published section of a component’s
declaration, it also appears in the Object Inspector so that the component user can make modi-
fications to this property.

You learn much more about properties and how to create them and their access methods in
Chapter 21, “Writing Delphi Custom Components.”

Types of Properties
The standard rules that apply to Object Pascal data types apply to properties as well. The
important point about properties is that their types also determine how they’re edited in the
Object Inspector. Properties can be of the types shown in Table 20.1. For more detailed infor-
mation, look up “properties” in the online help.

TABLE 20.1 Property Types

Property Type Object Inspector Treatment

Simple Numeric, character, and string properties appear in the Object Inspector as
numbers, characters, and strings, respectively. The user can type and edit the
value of the property directly.

Enumerated Properties of enumerated types (including Boolean) display the value as
defined in the source code. The user can cycle through the possible values by
double-clicking the Value column. There’s also a drop-down list that shows all
possible values of the enumerated type.

Set Properties of set types appear in the Object Inspector grouped as a set. By
expanding the set, the user can treat each element of the set as a Boolean value:
True if the element is included in the set and False if it’s not included.

Object Properties that are themselves objects often have their own property editors.
However, if the object that’s a property also has published properties, the
Object Inspector allows the user to expand the list of object properties and edit
them individually. Object properties must descend from TPersistent.

Key Elements of the VCL and Runtime Type Information

CHAPTER 20
573

20

K
EY

E
LEM

EN
TS

O
F

TH
E

V
C

L A
N

D
R

U
N

TIM
E

T
Y

PE

24.65227_Ch20x 11/30/99 6:03 PM Page 573

TABLE 20.1 Continued

Property Type Object Inspector Treatment

Array Array properties must have their own property editors. The Object Inspector
has no built-in support for editing array properties.

Methods
Because components are objects, they can therefore have methods. You’ve already seen infor-
mation on object methods in Chapter 2 (that information is not repeated here). The later sec-
tion “The Visual Component Hierarchy” describes some of the key methods of the different
component levels in the component hierarchy.

Events
Events are occurrences of an action, typically a system action such as a button control click or
a keypress on a keyboard. Components contain special properties called events; component
users can plug code into the event that executes when the event occurs.

Plugging Code into Events at Design Time
If you look at the events page of a TEdit component, you’ll find events such as OnChange,
OnClick, and OnDblClick. To component writers, events are really pointers to methods. When
users of a component assign code to an event, they create an event handler. For example, when
you double-click an event in the Object Inspector’s events page for a component, Delphi gener-
ates a method to which you add your code, such as the following code for the OnClick event of
a TButton component:

TForm1 = class(TForm)
Button1: Tbutton;
procedure Button1Click(Sender: TObject);

end;
...
procedure TForm1.Button1Click(Sender: TObject);
begin
{ Event code goes here }

end;

This code is generated by Delphi.

Plugging Code into Events at Runtime
It becomes clear how events are method pointers when you assign an event handler to an event
programmatically. For example, to link your own event handler to an OnClick event of a

Component-Based Development

PART III
574

24.65227_Ch20x 11/30/99 6:03 PM Page 574

TButton component, you first declare and define the method you intend to assign to the button’s
OnClick event. This method might belong to the form that owns the TButton component, as
shown here:

TForm1 = class(TForm)
Button1: TButton;

...
private
MyOnClickEvent(Sender: TObject); // Your method declaration

end;
...
{ Your method definition below }
procedure TForm1.MyOnClickEvent(Sender: TObject);
begin
{ Your code goes here }

end;

The preceding example shows a user-defined method called MyOnClickEvent() that serves as
the event handler for Button1.OnClick. The following line shows how you assign this method
to the Button1.OnClick event in code, which is usually done in the form’s OnCreate event
handler:

procedure TForm1.FormCreate(Sender: TObject);
begin
Button1.OnClick := MyOnClickEvent;

end;

This technique can be used to add different event handlers to events, based on various condi-
tions in your code. Additionally, you can disable an event handler from an event by assigning
nil to the event, as shown here:

Button1.OnClick := nil;

Assigning event handlers at runtime is essentially what happens when you create an event han-
dler through Delphi’s Object Inspector—except that Delphi generates the method declaration.
You can’t just assign any method to a particular event handler. Because event properties are
method pointers, they have specific method signatures, depending on the type of event. For
example, an OnMouseDown method is of the type TMouseEvent, a procedure definition shown
here:

TMouseEvent = procedure (Sender: TObject; Button: TMouseButton; Shift:
TShiftState; X, Y: Integer) of object;

Therefore, the methods that become event handlers for certain events must follow the same sig-
nature as the event types. They must contain the same type, number, and order of parameters.

Key Elements of the VCL and Runtime Type Information

CHAPTER 20
575

20

K
EY

E
LEM

EN
TS

O
F

TH
E

V
C

L A
N

D
R

U
N

TIM
E

T
Y

PE

24.65227_Ch20x 11/30/99 6:03 PM Page 575

Earlier, we said that events are properties. Like data properties, events refer to private data
fields of a component. This data field is of the procedure type, such as TMouseEvent. Examine
this code:

TControl = class(TComponent)
private
FOnMouseDown: TMouseEvent;

protected
property OnMouseDown: TMouseEvent read FOnMouseDown write FOnMouseDown;

public
end;

Recall the discussion of properties and how they refer to private data fields of a component. You
can see how events, being properties, refer to private method pointer fields of a component.

You learn much more about creating events and event handlers in Chapter 21.

Streamability
One characteristic of components is that they must have the capability to be streamed.
Streaming is a way to store a component and information regarding its properties’ values to a
file. Delphi’s streaming capabilities take care of all this for you. In fact, the DFM file created
by Delphi is nothing more than a resource file containing the streamed information on the form
and its components as an RCDATA resource. As a component writer, however, you must some-
times go beyond what Delphi can do automatically. The streaming mechanism of Delphi is
explained in greater depth in Chapter 22, “Advanced Component Techniques.”

Ownership
Components have the capability of owning other components. A component’s owner is speci-
fied by its Owner property. When a component owns other components, it’s responsible for
freeing the components it owns when it’s destroyed. Typically, the form owns all components
that appear on it. When you place a component on a form in the form designer, the form auto-
matically becomes the component’s owner. When you create a component at runtime, you must
pass the ownership of the component to the component’s Create constructor; it’s assigned to
the new component’s Owner property. The following line shows how to pass the form’s implicit
Self variable to a TButton.Create() constructor, thus making the form the owner of the
newly created component:

MyButton := TButton.Create(self);

When the form is destroyed, the TButton instance to which MyButton refers is also destroyed.
This is handled internally in the VCL. Essentially, the form iterates through the components
referred to by its Components array property (explained in more detail shortly) and destroys
them.

Component-Based Development

PART III
576

24.65227_Ch20x 11/30/99 6:03 PM Page 576

It’s possible to create a component without an owner by passing nil to the component’s
Create() method. However, when this is done, it’s your responsibility to destroy the compo-
nent programmatically. The following code shows this technique:

MyTable := TTable.Create(nil)
try
{ Do stuff with MyTable }

finally
MyTable.Free;

end;

When using this technique, you should use a try..finally block to ensure that you free up
any allocated resources if an exception is raised. You wouldn’t use this technique except in spe-
cific circumstances when it’s impossible to pass an owner to the component.

Another property associated with ownership is the Components property. The Components
property is an array property that maintains a list of all components belonging to a component.
For example, to loop through all the components on a form to show their class names, execute
the following code:

var
i: integer;

begin
for i := 0 to ComponentCount - 1 do

ShowMessage(Components[i].ClassName);
end;

Obviously, you’ll probably perform a more meaningful operation on these components. The
preceding code merely illustrates the technique.

Parenthood
Not to be confused with ownership is the concept of parenthood. Components can be parents
to other components. Only windowed components such as TWinControl descendants can serve
as parents to other components. Parent components are responsible for calling the child com-
ponent methods to force them to draw themselves. Parent components are responsible for the
proper painting of child components. A component’s parent is specified through its Parent
property.

A component’s parent doesn’t necessarily have to be its owner. It’s perfectly legal for a compo-
nent to have different parents and owners.

Key Elements of the VCL and Runtime Type Information

CHAPTER 20
577

20

K
EY

E
LEM

EN
TS

O
F

TH
E

V
C

L A
N

D
R

U
N

TIM
E

T
Y

PE

24.65227_Ch20x 11/30/99 6:03 PM Page 577

The Visual Component Hierarchy
Remember from Chapter 2 that the abstract class TObject is the base class from which all
classes descend.

Figure 20.1 shows a skeleton hierarchy of the VCL from the Delphi help file.

Component-Based Development

PART III
578

TObject

Exception TStream TPersistent TPrinter TList

TGraphicsObject TGraphic TComponent TCanvas TPicture TStrings

TTimer Tscreen TMenuItem TMenu TControl TCommonDialog TGlobalComponent

TApplication

TGraphicControl TWinControl

TCustomComboBox

TCustomControl

TCustomEdit

TCustomListBox

TButtonControl

TScrollBar

TScrollingWinControl

TForm

FIGURE 20.1
The hierarchy of the Visual Component Library.

As a component writer, you don’t descend your components directly from TObject. The VCL
already has TObject class descendants from which your new components can be derived.
These existing classes provide much of the functionality you require for your own components.
Only when you create noncomponent classes do your classes descend from TObject.

TObject’s Create() and Destroy() methods are responsible for allocating and deallocating
memory for an object instance. In fact, the TObject.Create() constructor returns a reference
to the object being created. TObject has several functions that return useful information about
a specific object.

The VCL uses most of TObject’s methods internally. You can obtain useful information about
an instance of a TObject or TObject descendant such as the instance’s class type, class name,
and ancestor classes.

24.65227_Ch20x 11/30/99 6:03 PM Page 578

The TPersistent Class
The TPersistent class descends directly from TObject. The special characteristic of
TPersistent is that objects descending from it can read and write their properties from and to
a stream after they’re created. Because all components are descendants of TPersistent, they
are all streamable. TPersistent defines no special properties or events, although it does define
some methods that are useful to both the component user and writer.

TPersistent Methods
Table 20.2 lists some methods of interest defined by the TPersistent class.

TABLE 20.2 Methods of the TPersistent Class

Method Purpose

Assign() This public method allows a component to assign to itself the data asso-
ciated with another component.

AssignTo() This protected method is where TPersistent descendants must imple-
ment the VCL definition for AssignTo(). TPersistent, itself, raises
an exception when this method is called. AssignTo() is where a com-
ponent can assign its data values to another instance or class—the
reverse of Assign().

DefineProperties() This protected method allows component writers to define how the com-
ponent stores extra or unpublished properties. This method is typically
used to provide a way for a component to store data that’s not a simple
data type, such as binary data.

The streamability of components is described in greater depth in Chapter 12, “Working with
Files.” For now, it’s enough to know that components can be stored and retrieved from a disk
file by means of streaming.

Key Elements of the VCL and Runtime Type Information

CHAPTER 20
579

20

K
EY

E
LEM

EN
TS

O
F

TH
E

V
C

L A
N

D
R

U
N

TIM
E

T
Y

PE

CAUTION

Use TObject.Free instead of TObject.Destroy. The free method calls destroy for
you but first checks to see whether the object is nil before calling destroy. This
method ensures that you won’t generate an exception by attempting to destroy an
invalid object.

24.65227_Ch20x 11/30/99 6:03 PM Page 579

The TComponent Class
The TComponent class descends directly from TPersistent. TComponent’s special characteris-
tics are that its properties can be manipulated at design time through the Object Inspector and
that it can own other components.

Nonvisual components also descend from TComponent so that they inherit the capability to be
manipulated at design time. A good example of a nonvisual TComponent descendant is the
TTimer component. TTimer components are not visual controls but are still available on the
Component Palette.

TComponent defines several properties and methods of interest, as described in the following
sections.

TComponent Properties
The properties defined by TComponent and their purposes are shown in Table 20.3.

TABLE 20.3 The Special Properties of TComponent

Property Name Purpose

Owner Points to the component’s owner.

ComponentCount Holds the number of components that the component owns.

ComponentIndex The position of this component in its owner’s list of components. The
first component in this list has the value 0.

Components A property array containing a list of components owned by this compo-
nent. The first component in this list has the value 0.

ComponentState This property holds the current state of a component of the type
TComponentState. Additional information about TComponentState
can be found in the online help and in Chapter 21.

ComponentStyle Governs various behavioral characteristics of the component.
csInheritable and csCheckPropAvail are two values that can be
assigned to this property, both of which are explained in the online help.

Name Holds the name of a component.

Tag An integer property that has no defined meaning. This property should
not be used by component writers—it’s intended to be used by applica-
tion writers. Because this value is an integer type, pointers to data struc-
tures—or even object instances—can be referred to by this property.

DesignInfo Used by the form designer. Do not access this property.

Component-Based Development

PART III
580

24.65227_Ch20x 11/30/99 6:03 PM Page 580

TComponent Methods
TComponent defines several methods having to do with its capacity to own other components
and to be manipulated on the form designer.

TComponent defines the component’s Create() constructor, which was discussed earlier in this
chapter. This constructor is responsible for creating an instance of the component and giving it
an owner based on the parameter passed to it. Unlike TObject.Create(),
TComponent.Create() is virtual. TComponent descendants that implement a constructor must
declare the Create() constructor with the override directive. Although you can declare other
constructors on a component class, TComponent.Create() is the only constructor VCL will use
to create an instance of the class at design time and at runtime when loading the component
from a stream.

The TComponent.Destroy() destructor is responsible for freeing the component and any
resources allocated by the component.

The TComponent.Destroying() method is responsible for setting a component and its owned
components to a state indicating that they are being destroyed; the
TComponent.DestroyComponents() method is responsible for destroying the components. You
probably won’t have to deal with these methods.

The TComponent.FindComponent() method is handy when you want to refer to a component
for which you know only the name. Suppose you know that the main form has a TEdit compo-
nent named Edit1. When you don’t have a reference to this component, you can retrieve a
pointer to its instance by executing the following code:

EditInstance := FindComponent.(‘Edit1’);

In this example, EditInstance is a TEdit type. FindComponent() will return nil if the name
does not exist.

The TComponent.GetParentComponent() method retrieves an instance to the component’s par-
ent component. This method can return nil if there is no parent to a component.

The TComponent.HasParent() method returns a Boolean value indicating whether the compo-
nent has a parent component. Note that this method doesn’t refer to whether this component
has an owner.

The TComponent.InsertComponent() method adds a component so that it’s owned by the call-
ing component; TComponent.RemoveComponent() removes an owned component from the call-
ing component. You wouldn’t normally use these methods because they’re called automatically
by the component’s Create() constructor and Destroy() destructor.

Key Elements of the VCL and Runtime Type Information

CHAPTER 20
581

20

K
EY

E
LEM

EN
TS

O
F

TH
E

V
C

L A
N

D
R

U
N

TIM
E

T
Y

PE

24.65227_Ch20x 11/30/99 6:03 PM Page 581

The TControl Class
The TControl class defines many properties, methods, and events commonly used by visual
components. For example, TControl introduces the capability for a control to display itself.
The TControl class includes position properties such as Top and Left as well as size properties
such as Width and Height, which hold the horizontal and vertical sizes. Other properties
include ClientRect, ClientWidth, and ClientHeight.

TControl also introduces properties regarding appearances and accessibility, such as Visible,
Enabled, and Color. You can even specify a font for the text of a TControl through its Font
property. This text is provided through the TControl properties Text and Caption.

TControl also introduces some standard events, such as the mouse events OnClick,
OnDblClick, OnMouseDown, OnMouseMove, and OnMouseUp. It also introduces drag events such
as OnDragOver, OnDragDrop, and OnEndDrag.

TControl itself isn’t very useful at the TControl level. You’ll never create descendants of
TControl.

Another concept introduced by TControl is that it may have a parent component. Although
TControl may have a parent, its parent must be a TWinControl (parent controls must be win-
dowed controls). The TControl introduces the Parent property.

Most of Delphi’s controls are derived from TControl’s descendants: TWinControl and
TGraphicControl.

The TWinControl Class
Standard Windows controls descend from the class TWinControl. Standard controls are the
user-interface objects you see in most Windows applications. Items such as edit controls, list
boxes, combo boxes, and buttons are examples of these controls. Because Delphi encapsulates
the behavior of standard controls instead of using Windows API functions to manipulate them,
you use the properties provided by each of the various control components.

The three basic characteristics of TWinControl objects are that they have a Windows handle,
can receive input focus, and can be parents to other controls. You’ll find that the properties,
methods, and events belonging to TWinControl support focus changing, keyboard events, the
drawing of controls, and other functions required of TWinControl.

An applications developer primarily uses TWinControl descendants. A component writer must
understand the TCustomControl descendant of TWinControl.

TWinControl Properties
TWinControl defines several properties applicable to changing the focus and appearance of the
control.

Component-Based Development

PART III
582

24.65227_Ch20x 11/30/99 6:03 PM Page 582

The TWinControl.Brush property is used to draw the patterns and shapes of the control. We
discussed this property in Chapter 8, “Graphics Programming.”

The TWinControl.Controls property is an array property that maintains a list of all controls to
which the calling TWinControl is a parent.

The TWinControl.ControlCount property holds the count of controls to which it is a parent.

TWinControl.Ctl3D is a property that specifies whether to draw the control using a three-
dimensional appearance.

The TWinControl.Handle property corresponds to the handle of the Windows object that the
TWinControl encapsulates. This is the handle you would pass to Win32 API functions requir-
ing a window handle parameter.

TWinControl.HelpContext holds a help context number that corresponds to a help screen in a
help file. This is used to provide context-sensitive help for individual controls.

TWinControl.Showing indicates whether a control is visible.

The TWinControl.TabStop property holds a Boolean value to determine whether a user can tab
to the said control. The TWinControl.TabOrder property specifies where in the parent’s list of
tabbed controls the control exists.

TWinControl Methods
The TWinControl component also offers several methods that have to do with window cre-
ation, focus control, event dispatching, and positioning. There are too many methods to discuss
in depth in this chapter; however, they’re all documented in Delphi’s online help. We’ll list
only those methods of particular interest in the following paragraphs.

Methods that relate to window creation, re-creation, and destruction apply mainly to compo-
nent writers and are discussed in Chapter 21, “Writing Delphi Custom Components.” These
methods are CreateParams(), CreateWnd(), CreateWindowHandle(), DestroyWnd(),
DestroyWindowHandle(), and RecreateWnd().

Methods having to do with window focusing, positioning, and alignment are CanFocus(),
Focused(), AlignControls(), EnableAlign(), DisableAlign(), and ReAlign().

TWinControl Events
TWinControl introduces events for keyboard interaction and focus change. Keyboard events are
OnKeyDown, OnKeyPress, and OnKeyUp. Focus-change events are OnEnter and OnExit. All these
events are documented in Delphi’s online help.

Key Elements of the VCL and Runtime Type Information

CHAPTER 20
583

20

K
EY

E
LEM

EN
TS

O
F

TH
E

V
C

L A
N

D
R

U
N

TIM
E

T
Y

PE

24.65227_Ch20x 11/30/99 6:03 PM Page 583

The TGraphicControl Class
TGraphicControls, unlike TWinControls, don’t have a window handle and therefore can’t
receive input focus. They also can’t be parents to other controls. TGraphicControls are used
when you want to display something to the user on the form, but you don’t want this control to
function as a regular user-input control. The advantage of TGraphicControls is that they don’t
request a handle from Windows that uses up system resources. Additionally, not having a win-
dow handle means that TGraphicControls don’t have to go through the convoluted Windows
paint process. This makes drawing with TGraphicControls much faster than using the
TWinControl equivalents.

TGraphicControls can respond to mouse events. Actually, the TGraphicControl parent
processes the mouse message and sends it to its child controls.

TGraphicControl allows you to paint the control and therefore provides the property Canvas,
which is of the type TCanvas. TGraphicControl also provides a Paint() method that its
descendants must override.

The TCustomControl Class
You might have noticed that the names of some TWinControl descendants begin with TCustom,
such as TCustomComboBox, TCustomControl, TCustomEdit, and TCustomListBox.

Custom controls have the same functionality as other TWinControl descendants, except that
with specialized visual and interactive characteristics, custom controls provide you with a base
from which you can derive and create your own customized components. You provide the func-
tionality for the custom control to draw itself if you’re a component writer.

Other Classes
Several classes aren’t components but serve as supporting classes to the existing component.
These classes are typically properties of other components and descend directly from
TPersistent. Some of these classes are of the type TStrings, TCanvas, and TCollection.

The TStrings and TStringLists Classes
The TStrings abstract class gives you the capability to manipulate lists of strings that belong
to a component such as a TListBox. TStrings doesn’t actually maintain the memory for the
strings (that’s done by the native control that owns the TStrings class). Instead, TStrings
defines the methods and properties to access and manipulate the control’s strings without hav-
ing to use the control’s set of Win32 API functions and messages.

Notice that we said TStrings is an abstract class. This means that TStrings doesn’t really imple-
ment the code required to manipulate the strings—it just defines the methods that must be there.
It’s up to the descendant components to implement the actual string-manipulation methods.

Component-Based Development

PART III
584

24.65227_Ch20x 11/30/99 6:03 PM Page 584

To explain this point further, some examples of components and their TStrings properties are
TListBox.Items, TMemo.Lines, and TComboBox.Items. Each of these properties is of the type
TStrings. You might wonder, if their properties are TStrings, how you can call methods of
these properties when these methods have yet to be implemented in code? Good question. The
answer is that, even though each of these properties is defined as TStrings, the variable to
which the property refers (TListBox.FItems, for example) was instantiated as a descendant
class. To clarify this, FItems is the private storage field for the Items property of TListBox:

TCustomListBox = class(TWinControl)
private
FItems: TStrings;

Key Elements of the VCL and Runtime Type Information

CHAPTER 20
585

20

K
EY

E
LEM

EN
TS

O
F

TH
E

V
C

L A
N

D
R

U
N

TIM
E

T
Y

PE

NOTE

Although the class type shown in the preceding code snippet is a TCustomListBox,
the TListBox descends directly from TCustomListBox in the same unit and therefore
has access to its private fields.

The unit StdCtrls.pas, which is part of the Delphi VCL, defines a descendant class
TListBoxStrings, which is a descendant of TStrings. Listing 20.1 shows its definition.

LISTING 20.1 The Declaration of the TListBoxStrings Class

TListBoxStrings = class(TStrings)
private
ListBox: TCustomListBox;

protected
procedure Put(Index: Integer; const S: string); override;
function Get(Index: Integer): string; override;
function GetCount: Integer; override;
function GetObject(Index: Integer): TObject; override;
procedure PutObject(Index: Integer; AObject: TObject); override;
procedure SetUpdateState(Updating: Boolean); override;

public
function Add(const S: string): Integer; override;
procedure Clear; override;
procedure Delete(Index: Integer); override;
procedure Exchange(Index1, Index2: Integer); override;
function IndexOf(const S: string): Integer; override;
procedure Insert(Index: Integer; const S: string); override;
procedure Move(CurIndex, NewIndex: Integer); override;

end;

24.65227_Ch20x 11/30/99 6:03 PM Page 585

StdCtrls.pas then defines the implementation of each method of this descendant class. When
TListBox creates its class instances for its FItems variable, it actually creates an instance of
this descendant class and refers to it with the FItems property:

constructor TCustomListBox.Create(AOwner: TComponent);
begin
inherited Create(AOwner);
...
// An instance of TListBoxStrings is created
FItems := TListBoxStrings.Create;
...

end;

We want to make it clear that although the TStrings class defines its methods, it doesn’t
implement these methods to manipulate strings. The TStrings descendant class does the
implementation of these methods. This is important if you’re a component writer because you
must know how to perform this technique as the Delphi components did it. It’s always good to
refer to the VCL source code to see how Borland performs these techniques when you’re
unsure.

If you’re not a component writer but want to manipulate a list of strings, you can use the
TStringList class, another descendant of TStrings, with which you can instantiate a com-
pletely self-contained class. TStringList maintains a list of strings external to components.
The best part is that TStringList is totally compatible with TStrings. This means that you
can directly assign a TStringList instance to a control’s TStrings property. The following
code shows how you can create an instance of TStringList:

var
MyStringList: TStringList;

begin
MyStringList := TStringList.Create;

To add strings to this TStringList instance, do the following:

MyStringList.Add(‘Red’);
MyStringList.Add(‘White’);
MyStringList.Add(‘Blue’);

If you want to add these same strings to both a TMemo component and a TListBox component,
all you have to do is take advantage of the compatibility between the different components’
TStrings properties and make the assignments in one line of code each:

Memo1.Lines.Assign(MyStringList);
ListBox1.Items.Assign(MyStringList);

You use the Assign() method to copy TStrings instances instead of making a direct assign-
ment such as Memo1.Lines := MyStringList.

Component-Based Development

PART III
586

24.65227_Ch20x 11/30/99 6:03 PM Page 586

Table 20.4 shows some common methods of TStrings classes.

TABLE 20.4 Some Common TStrings Methods

TStrings Method Description

Add(const S: String): Integer Adds the string S to the string’s list and returns the
string’s position in the list.

AddObject(const S: string; Appends both a string and an object to a string or
AObject: TObject): Integer string list object.

AddStrings(Strings: TStrings) Copies strings from one TStrings to the end of its
existing list of strings.

Assign(Source: TPersistent) Replaces the existing strings with those specified by
the Source parameter.

Clear Removes all strings from the list.

Delete(Index: Integer) Removes the string at the location specified by
Index.

Exchange(Index1, Index2: Integer) Switches the location of the two strings specified by
the two index values.

IndexOf(const S: String): Integer Returns the position of the string S on the list.

Insert(Index: Integer; Inserts the string S into the position in the list
const S: String) specified by Index.

Move(CurIndex, NewIndex: Integer) Moves the string at the position CurIndex to the
position NewIndex.

LoadFromFile(const FileName: Reads the text file, FileName, and places its lines
String) into the string list.

SaveToFile(const FileName: string) Saves the string list to the text file, FileName.

The TCanvas Class
The Canvas property, of type TCanvas, is provided for windowed controls and represents the
drawing surface of the control. TCanvas encapsulates what’s called the device context of a win-
dow. It provides many of the functions and objects required for drawing to the window’s sur-
face. Chapter 8 went into detail about the TCanvas class.

Runtime Type Information
Back in Chapter 2 you were introduced to RTTI. This chapter delves much deeper into the
RTTI innards that will allow you to take advantage of RTTI beyond what you get in the normal
usage of the Object Pascal language. In other words, we’re going to show you how to obtain

Key Elements of the VCL and Runtime Type Information

CHAPTER 20
587

20

K
EY

E
LEM

EN
TS

O
F

TH
E

V
C

L A
N

D
R

U
N

TIM
E

T
Y

PE

24.65227_Ch20x 11/30/99 6:03 PM Page 587

type information on objects and data types much like the way the Delphi IDE obtains the same
information.

So how does RTTI manifest itself? You’ll see RTTI at work in at least two areas with which
you normally work. The first place is right in the Delphi IDE, as stated earlier. Through RTTI,
the IDE magically knows everything about the object and components with which you work
(see the Object Inspector). Actually, there’s more to it than just RTTI, but for the sake of this
discussion, we’re covering only the RTTI aspect. The second area is in the runtime code that
you write. Already, in Chapter 2, you read about the is and as operators.

Let’s examine the is operator to illustrate typical usage of RTTI.

Suppose you need to make all TEdit components read-only on a given form. This is simple
enough—just loop through all components, use the is operator to determine whether the com-
ponent is a TEdit class, and then set the ReadOnly property accordingly. Here’s an example:

for i := 0 to ComponentCount - 1 do
if Components[i] is TEdit then
TEdit(Components[i]).ReadOnly := True;

A typical usage for the as operator would be to perform an action on the Sender parameter of
an event handler, where the handler is attached to several different components. Assuming that
you know that all components are derived from a common ancestor whose property you want
to access, the event handler can use the as operator to safely typecast Sender as the desired
descendant, thus surfacing the wanted property. Here’s an example:

procedure TForm1.ControlOnClickEvent(Sender: TObject);
var
i: integer;

begin
(Sender as TControl).Enabled := False;
end;

These examples of typesafe programming illustrate enhancements to the Object Pascal language
that indirectly use RTTI. Now let’s look at a problem that would call for direct usage of RTTI.

Suppose you have a form containing components that are data-aware and components that are
not data-aware. However, you need to perform some action on the data-aware components
only. Certainly, you could loop through the Components array for the form and test for each
data-aware component type. However, this could get messy to maintain because you would
have to test against every type of data-aware component. Also, you don’t have a base class to
test against that’s common to only data-aware components. For instance, something like
TDataAwareControl would have been nice, but it doesn’t exist.

A clean way to determine whether a component is data-aware is to test for the existence of a
DataSource property. To do this, however, you need to use RTTI directly.

Component-Based Development

PART III
588

24.65227_Ch20x 11/30/99 6:03 PM Page 588

The following sections discuss RTTI in more depth to give you the background knowledge
needed to solve problems such as the one mentioned earlier.

The TypInfo.pas Unit: Definer of Runtime Type Information
Type information exists for any object (a descendant of TObject). This information exists in
memory and is queried by the IDE and the Runtime Library to obtain information about
objects. The TypInfo.pas unit defines the structures that allow you to query for type informa-
tion. The TObject methods shown in Table 20.5 are repeated from Chapter 2.

TABLE 20.5 TObject Methods

Function Return Type Returns

ClassName() string The name of the object’s class

ClassType() TClass The object’s type

InheritsFrom() Boolean A Boolean to indicate whether the class descends
from a given class

ClassParent() TClass The object ancestor’s type

InstanceSize() word The size, in bytes, of an instance

ClassInfo() Pointer A pointer to the object’s in-memory RTTI

For now, we want to focus on the ClassInfo() function, which is defined as follows:

class function ClassInfo: Pointer;

This function returns a pointer to the RTTI for the calling class. The structure to which this
pointer refers is of the type PTypeInfo. This type is defined in the TypInfo.pas unit as a
pointer to a TTypeInfo structure. Both definitions are given in the following code as they
appear in TypInfo.pas:

PPTypeInfo = ^PTypeInfo;
PTypeInfo = ^TTypeInfo;
TTypeInfo = record
Kind: TTypeKind;
Name: ShortString;
{TypeData: TTypeData}
end;

The commented field, TypeData, represents the actual reference to the type information for the
given class. The type to which it actually refers depends on the value of the Kind field. Kind
can be any of the enumerated values defined in the TTypeKind:

TTypeKind = (tkUnknown, tkInteger, tkChar, tkEnumeration, tkFloat,
tkString, tkSet, tkClass, tkMethod, tkWChar, tkLString, tkWString,
tkVariant, tkArray, tkRecord, tkInterface);

Key Elements of the VCL and Runtime Type Information

CHAPTER 20
589

20

K
EY

E
LEM

EN
TS

O
F

TH
E

V
C

L A
N

D
R

U
N

TIM
E

T
Y

PE

24.65227_Ch20x 11/30/99 6:03 PM Page 589

Take a look at the TypInfo.pas unit at this time to examine the subtypes of some of the pre-
ceding enumerated values to get yourself familiar with them. For example, the tkFloat value
can be further broken down into one of the following:

TFloatType = (ftSingle, ftDouble, ftExtended, ftComp, ftCurr);

Now you know that Kind determines to which type TypeData refers. The TTypeData structure
is defined in TypInfo.pas, as shown in Listing 20.2.

LISTING 20.2 The TTypeData Structure

PTypeData = ^TTypeData;
TTypeData = packed record
case TTypeKind of
tkUnknown, tkLString, tkWString, tkVariant: ();
tkInteger, tkChar, tkEnumeration, tkSet, tkWChar: (

OrdType: TOrdType;
case TTypeKind of
tkInteger, tkChar, tkEnumeration, tkWChar: (
MinValue: Longint;
MaxValue: Longint;
case TTypeKind of
tkInteger, tkChar, tkWChar: ();
tkEnumeration: (
BaseType: PPTypeInfo;
NameList: ShortStringBase));

tkSet: (
CompType: PPTypeInfo));

tkFloat: (FloatType: TFloatType);
tkString: (MaxLength: Byte);
tkClass: (

ClassType: TClass;
ParentInfo: PPTypeInfo;
PropCount: SmallInt;
UnitName: ShortStringBase;
{PropData: TPropData});

tkMethod: (
MethodKind: TMethodKind;
ParamCount: Byte;
ParamList: array[0..1023] of Char
{ParamList: array[1..ParamCount] of
record
Flags: TParamFlags;
ParamName: ShortString;
TypeName: ShortString;

end;

Component-Based Development

PART III
590

24.65227_Ch20x 11/30/99 6:03 PM Page 590

ResultType: ShortString});
tkInterface: (

IntfParent : PPTypeInfo; { ancestor }
IntfFlags : TIntfFlagsBase;
Guid : TGUID;
IntfUnit : ShortStringBase;
{PropData: TPropData});

tkInt64: (
MinInt64Value, MaxInt64Value: Int64);

end;

As you can see, the TTypeData structure is really just a big variant record. If you’re familiar
with working with variant records and pointers, you’ll see that dealing with RTTI is really sim-
ple. It just seems complex because it’s an undocumented feature.

Key Elements of the VCL and Runtime Type Information

CHAPTER 20
591

20

K
EY

E
LEM

EN
TS

O
F

TH
E

V
C

L A
N

D
R

U
N

TIM
E

T
Y

PE

NOTE

Often, Borland doesn’t document a feature because it might change between ver-
sions. When using features such as the undocumented RTTI, realize that your code
might not be fully portable between versions of Delphi.

At this point, we’re ready to demonstrate how to use these structures of RTTI to obtain type
information.

Obtaining Type Information
To demonstrate how to obtain RTTI on an object, we’ve created a project whose main form is
defined in Listing 20.3.

LISTING 20.3 Main Form for ClassInfo.dpr

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ExtCtrls, DBClient, MidasCon, MConnect;

type

TMainForm = class(TForm)

continues

24.65227_Ch20x 11/30/99 6:03 PM Page 591

LISTING 20.3 Continued

pnlTop: TPanel;
pnlLeft: TPanel;
lbBaseClassInfo: TListBox;
spSplit: TSplitter;
lblBaseClassInfo: TLabel;
pnlRight: TPanel;
lblClassProperties: TLabel;
lbPropList: TListBox;
lbSampClasses: TListBox;
procedure FormCreate(Sender: TObject);
procedure lbSampClassesClick(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
MainForm: TMainForm;

implementation
uses TypInfo;

{$R *.DFM}

function CreateAClass(const AClassName: string): TObject;
{ This method illustrates how you can create a class from the class name. Note
that this requires that you register the class using RegisterClasses() as
shown in the initialization method of this unit. }

var
C : TFormClass;
SomeObject: TObject;

begin
C := TFormClass(FindClass(AClassName));
SomeObject := C.Create(nil);
Result := SomeObject;

end;

procedure GetBaseClassInfo(AClass: TObject; AStrings: TStrings);
{ This method obtains some basic RTTI data from the given object and adds that
information to the AStrings parameter. }

var
ClassTypeInfo: PTypeInfo;
ClassTypeData: PTypeData;
EnumName: String;

Component-Based Development

PART III
592

24.65227_Ch20x 11/30/99 6:03 PM Page 592

begin
ClassTypeInfo := AClass.ClassInfo;
ClassTypeData := GetTypeData(ClassTypeInfo);
with AStrings do
begin
Add(Format(‘Class Name: %s’, [ClassTypeInfo.Name]));
EnumName := GetEnumName(TypeInfo(TTypeKind), Integer(ClassTypeInfo.Kind));
Add(Format(‘Kind: %s’, [EnumName]));
Add(Format(‘Size: %d’, [AClass.InstanceSize]));
Add(Format(‘Defined in: %s.pas’, [ClassTypeData.UnitName]));
Add(Format(‘Num Properties: %d’,[ClassTypeData.PropCount]));

end;
end;

procedure GetClassAncestry(AClass: TObject; AStrings: TStrings);
{ This method retrieves the ancestry of a given object and adds the
class names of the ancestry to the AStrings parameter. }

var
AncestorClass: TClass;

begin
AncestorClass := AClass.ClassParent;
{ Iterate through the Parent classes starting with Sender’s
Parent until the end of the ancestry is reached. }

AStrings.Add(‘Class Ancestry’);
while AncestorClass <> nil do
begin
AStrings.Add(Format(‘ %s’,[AncestorClass.ClassName]));
AncestorClass := AncestorClass.ClassParent;

end;
end;

procedure GetClassProperties(AClass: TObject; AStrings: TStrings);
{ This method retrieves the property names and types for the given object
and adds that information to the AStrings parameter. }

var
PropList: PPropList;
ClassTypeInfo: PTypeInfo;
ClassTypeData: PTypeData;
i: integer;
NumProps: Integer;

begin

ClassTypeInfo := AClass.ClassInfo;
ClassTypeData := GetTypeData(ClassTypeInfo);

Key Elements of the VCL and Runtime Type Information

CHAPTER 20
593

20

K
EY

E
LEM

EN
TS

O
F

TH
E

V
C

L A
N

D
R

U
N

TIM
E

T
Y

PE

continues

24.65227_Ch20x 11/30/99 6:03 PM Page 593

LISTING 20.3 Continued

if ClassTypeData.PropCount <> 0 then
begin
// allocate the memory needed to hold the references to the TPropInfo
// structures on the number of properties.
GetMem(PropList, SizeOf(PPropInfo) * ClassTypeData.PropCount);
try
// fill PropList with the pointer references to the TPropInfo structures
GetPropInfos(AClass.ClassInfo, PropList);
for i := 0 to ClassTypeData.PropCount - 1 do
// filter out properties that are events (method pointer properties)
if not (PropList[i]^.PropType^.Kind = tkMethod) then
AStrings.Add(Format(‘%s: %s’, [PropList[i]^.Name,
PropList[i]^.PropType^.Name]));

// Now get properties that are events (method pointer properties)
NumProps := GetPropList(AClass.ClassInfo, [tkMethod], PropList);
if NumProps <> 0 then begin
AStrings.Add(‘’);
AStrings.Add(‘ EVENTS ================ ‘);
AStrings.Add(‘’);

end;
// Fill the AStrings with the events.
for i := 0 to NumProps - 1 do

AStrings.Add(Format(‘%s: %s’, [PropList[i]^.Name,
PropList[i]^.PropType^.Name]));

finally
FreeMem(PropList, SizeOf(PPropInfo) * ClassTypeData.PropCount);

end;
end;

end;

procedure TMainForm.FormCreate(Sender: TObject);
begin
// Add some example classes to the list box.
lbSampClasses.Items.Add(‘TApplication’);
lbSampClasses.Items.Add(‘TButton’);
lbSampClasses.Items.Add(‘TForm’);
lbSampClasses.Items.Add(‘TListBox’);
lbSampClasses.Items.Add(‘TPaintBox’);
lbSampClasses.Items.Add(‘TMidasConnection’);
lbSampClasses.Items.Add(‘TFindDialog’);
lbSampClasses.Items.Add(‘TOpenDialog’);
lbSampClasses.Items.Add(‘TTimer’);

Component-Based Development

PART III
594

24.65227_Ch20x 11/30/99 6:03 PM Page 594

lbSampClasses.Items.Add(‘TComponent’);
lbSampClasses.Items.Add(‘TGraphicControl’);

end;

procedure TMainForm.lbSampClassesClick(Sender: TObject);
var
SomeComp: TObject;

begin
lbBaseClassInfo.Items.Clear;
lbPropList.Items.Clear;

// Create an instance of the selected class.
SomeComp := CreateAClass(lbSampClasses.Items[lbSampClasses.ItemIndex]);
try
GetBaseClassInfo(SomeComp, lbBaseClassInfo.Items);
GetClassAncestry(SomeComp, lbBaseClassInfo.Items);
GetClassProperties(SomeComp, lbPropList.Items);

finally
SomeComp.Free;

end;
end;

initialization
begin
RegisterClasses([TApplication, TButton, TForm, TListBox, TPaintBox,
TMidasConnection, TFindDialog, TOpenDialog, TTimer, TComponent,
TGraphicControl]);

end;

end.

This main form contains three list boxes. lbSampClasses contains class names for a few sam-
ple objects whose type information we’ll retrieve. On selecting an object from lbSampClasses,
lbBaseClassInfo will be populated with basic information about the selected object, such as
its size and ancestry. lbPropList will display the properties belonging to the selected object
from lbSampClasses.

Three helper procedures are used to obtain class information:

• GetBaseClassInfo() populates a string list with basic information about an object, such
as its type, size, defining unit, and number of properties.

• GetClassAncestry() populates a string list with the object names of a given object’s
ancestry.

• GetClassProperties() populates a string list with the properties and their types for a
given class.

Key Elements of the VCL and Runtime Type Information

CHAPTER 20
595

20

K
EY

E
LEM

EN
TS

O
F

TH
E

V
C

L A
N

D
R

U
N

TIM
E

T
Y

PE

24.65227_Ch20x 11/30/99 6:03 PM Page 595

Each procedure takes an object instance and a string list as parameters.

As the user selects one of the classes from lbSampClasses, its OnClick event,
lbSampClassesClick(), calls a helper function, CreateAClass(), which creates an instance of
a class given the name of the class type. It then passes the object instance and the appropriate
TListBox.Items property to be populated.

Component-Based Development

PART III
596

TIP

The CreateAClass() function can be used to create any class by its name. However,
as demonstrated, you must make sure that any classes passed to it have been regis-
tered by calling the RegisterClasses() procedure.

Obtaining Runtime Type Information for Objects
GetBaseClassInfo() passes the return value from TObject.ClassInfo() to the function
GetTypeData(). GetTypeData() is defined in TypInfo.pas. Its purpose is to return a pointer to
the TTypeData structure based on the class whose PTypeInfo structure was passed to it (see
Listing 20.2). GetBaseClassInfo() simply refers to the various fields of both the TTypeInfo
and TTypeData structures to populate the AStrings string list. Note the use of the function
GetEnumName() to return the string for an enumerated type. This is also a function of RTTI
defined in TypInfo.pas. Type information on enumerated types is discussed in a later section.

TIP

Use the GetTypeData() function defined in TypInfo.pas to return a pointer to the
TTypeInfo structure for a given class. You must pass the result of
TObject.ClassInfo() to GetTypeData().

TIP

You can use the GetEnumName() function to obtain the name of an enumeration
value as a string. GetEnumValue() returns the enumeration value, given its name.

Obtaining the Ancestry for an Object
The GetClassAncestry() procedure populates a string list with the class names of the given
object’s ancestry. This is a simple operation that uses the ClassParent() class procedure on
the given object. ClassParent() will return a TClass reference to the given class’s parent or

24.65227_Ch20x 11/30/99 6:03 PM Page 596

nil if the top of the ancestry is reached. GetClassAncestry() simply walks up the ancestry
and adds each class name to the string list until the top is reached.

Obtaining Type Information on Object Properties
If an object has properties, its TTypeData.PropCount value will contain the number of proper-
ties it has. There are several approaches you can use to obtain the property information for a
given class—we demonstrate two.

The GetClassProperties() procedure begins much like the previous two methods in that it
passes the ClassInfo() result to GetTypeData() to obtain the reference to the TTypeData
structure for the class. It then allocates memory for the PropList variable based on the value
of ClassTypeData.PropCount. PropList is defined as the type PPropList. PPropList is
defined in TypInfo.pas as follows:

type
PPropList = ^TPropList;
TPropList = array[0..16379] of PPropInfo;

The TPropList array stores pointers to the TPropInfo data for each property. TPropInfo is
defined in TypInfo.pas as follows:

PPropInfo = ^TPropInfo;
TPropInfo = packed record
PropType: PPTypeInfo;
GetProc: Pointer;
SetProc: Pointer;
StoredProc: Pointer;
Index: Integer;
Default: Longint;
NameIndex: SmallInt;
Name: ShortString;

end;

TPropInfo is the RTTI for a property.

GetClassProperties() uses the GetPropInfos() function to fill this array with pointers to the
RTTI information for all properties for the given object. It then loops through the array and
writes out the name and type of the property by accessing that property’s type information.
Note the following line:

if not (PropList[i]^.PropType^.Kind = tkMethod) then

This is used to filter out properties that are events (method pointers). We populate these proper-
ties last, which allows us to demonstrate an alternative method for retrieving property RTTI. In
the final part of the GetClassProperties() method, we use the GetPropList() function to
return the TPropList for properties of a specific type. In this case, we want only properties of

Key Elements of the VCL and Runtime Type Information

CHAPTER 20
597

20

K
EY

E
LEM

EN
TS

O
F

TH
E

V
C

L A
N

D
R

U
N

TIM
E

T
Y

PE

24.65227_Ch20x 11/30/99 6:03 PM Page 597

the type tkMethod. GetPropList() is also defined in TypInfo.pas. Refer to the source com-
mentary for additional information.

Component-Based Development

PART III
598

TIP

Use GetPropInfos() when you want to retrieve a pointer to the property RTTI for all
properties of a given object. Use GetPropList() if you want to retrieve the same
information, except for properties of a specific type.

Figure 20.2 shows the output of the main form with RTTI for a selected class.

FIGURE 20.2
Output of a class’s RTTI.

Checking for the Existence of a Property for an Object
Earlier we presented the problem of needing to check for the existence of a property for a
given object. Specifically, we were referring to the DataSource property. Using functions
defined in TypInfo.pas, we could write the following function to determine whether a control
is data-aware:

function IsDataAware(AComponent: TComponent): Boolean;
var
PropInfo: PPropInfo;

begin
// Find the property named datasource.
PropInfo := GetPropInfo(AComponent.ClassInfo, ‘DataSource’);

24.65227_Ch20x 11/30/99 6:03 PM Page 598

Result := PropInfo <> nil;

// Double check, make sure it descends from TDataSource
if Result then
if not ((PropInfo^.Proptype^.Kind = tkClass) and

(GetTypeData(PropInfo^.PropType^).ClassType.InheritsFrom(TDataSource)))
then

Result := False;
end;

Here, we’re using the GetPropInfo() function to return the TPropInfo pointer on a given
property. This function returns nil if the property does not exist. As an additional check, we
make sure that the property named DataSource is actually a descendant of TDataSource.

We also could have written this function more generically to check for the existence of any
property by its name, like this:

function HasProperty(AComponent: TComponent; APropertyName: String): Boolean;
var
PropInfo: PPropInfo;

begin
PropInfo := GetPropInfo(AComponent.ClassInfo, APropertyName);
Result := PropInfo <> nil;

end;

Note, however, that this works only on properties that are published. RTTI does not exist for
unpublished properties.

Obtaining Type Information on Method Pointers
RTTI can be obtained on method pointers. For example, you can determine the type of method
(procedure, function, and so on) and its parameters. Listing 20.4 demonstrates how to obtain
RTTI for a selected group of methods.

LISTING 20.4 Obtaining RTTI for Methods

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ExtCtrls, DBClient, MidasCon, MConnect;

type

Key Elements of the VCL and Runtime Type Information

CHAPTER 20
599

20

K
EY

E
LEM

EN
TS

O
F

TH
E

V
C

L A
N

D
R

U
N

TIM
E

T
Y

PE

continues

24.65227_Ch20x 11/30/99 6:03 PM Page 599

LISTING 20.4 Continued

TMainForm = class(TForm)
lbSampMethods: TListBox;
lbMethodInfo: TMemo;
lblBasicMethodInfo: TLabel;
procedure FormCreate(Sender: TObject);
procedure lbSampMethodsClick(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
MainForm: TMainForm;

implementation
uses TypInfo, DBTables, Provider;

{$R *.DFM}

type
// It is necessary to redefine this record as it is commented out in
// typinfo.pas.

PParamRecord = ^TParamRecord;
TParamRecord = record
Flags: TParamFlags;
ParamName: ShortString;
TypeName: ShortString;

end;

procedure GetBaseMethodInfo(ATypeInfo: PTypeInfo; AStrings: TStrings);
{ This method obtains some basic RTTI data from the TTypeInfo and adds that
information to the AStrings parameter. }

var
MethodTypeData: PTypeData;
EnumName: String;

begin
MethodTypeData := GetTypeData(ATypeInfo);
with AStrings do
begin
Add(Format(‘Class Name: %s’, [ATypeInfo^.Name]));
EnumName := GetEnumName(TypeInfo(TTypeKind), Integer(ATypeInfo^.Kind));
Add(Format(‘Kind: %s’, [EnumName]));
Add(Format(‘Num Parameters: %d’,[MethodTypeData.ParamCount]));

Component-Based Development

PART III
600

24.65227_Ch20x 11/30/99 6:03 PM Page 600

end;
end;

procedure GetMethodDefinition(ATypeInfo: PTypeInfo; AStrings: TStrings);
{ This method retrieves the property info on a method pointer. We use this
information to reconstruct the method definition. }

var
MethodTypeData: PTypeData;
MethodDefine: String;
ParamRecord: PParamRecord;
TypeStr: ^ShortString;
ReturnStr: ^ShortString;
i: integer;

begin
MethodTypeData := GetTypeData(ATypeInfo);

// Determine the type of method
case MethodTypeData.MethodKind of
mkProcedure: MethodDefine := ‘procedure ‘;
mkFunction: MethodDefine := ‘function ‘;
mkConstructor: MethodDefine := ‘constructor ‘;
mkDestructor: MethodDefine := ‘destructor ‘;
mkClassProcedure: MethodDefine := ‘class procedure ‘;
mkClassFunction: MethodDefine := ‘class function ‘;

end;

// point to the first parameter
ParamRecord := @MethodTypeData.ParamList;
i := 1; // first parameter

// loop through the method’s parameters and add them to the string list as
// they would be normally defined.
while i <= MethodTypeData.ParamCount do
begin
if i = 1 then
MethodDefine := MethodDefine+’(‘;

if pfVar in ParamRecord.Flags then
MethodDefine := MethodDefine+(‘var ‘);

if pfconst in ParamRecord.Flags then
MethodDefine := MethodDefine+(‘const ‘);

if pfArray in ParamRecord.Flags then
MethodDefine := MethodDefine+(‘array of ‘);

// we won’t do anything for the pfAddress but know that the Self parameter
// gets passed with this flag set.
{

Key Elements of the VCL and Runtime Type Information

CHAPTER 20
601

20

K
EY

E
LEM

EN
TS

O
F

TH
E

V
C

L A
N

D
R

U
N

TIM
E

T
Y

PE

continues

24.65227_Ch20x 11/30/99 6:03 PM Page 601

LISTING 20.4 Continued

if pfAddress in ParamRecord.Flags then
MethodDefine := MethodDefine+(‘*address* ‘);

}
if pfout in ParamRecord.Flags then
MethodDefine := MethodDefine+(‘out ‘);

// Use pointer arithmetic to get the type string for the parameter.
TypeStr := Pointer(Integer(@ParamRecord^.ParamName) +
Length(ParamRecord^.ParamName)+1);

MethodDefine := Format(‘%s%s: %s’, [MethodDefine, ParamRecord^.ParamName,
TypeStr^]);

inc(i); // Increment the counter.

// Go the next parameter. Notice that use of pointer arithmetic to
// get to the appropriate location of the next parameter.
ParamRecord := PParamRecord(Integer(ParamRecord) + SizeOf(TParamFlags) +
(Length(ParamRecord^.ParamName) + 1) + (Length(TypeStr^)+1));

// if there are still parameters then setup
if i <= MethodTypeData.ParamCount then
begin
MethodDefine := MethodDefine + ‘; ‘;

end
else
MethodDefine := MethodDefine + ‘)’;

end;

// If the method type is a function, it has a return value. This is also
// placed in the method definition string. The return value will be at the
// location following the last parameter.
if MethodTypeData.MethodKind = mkFunction then
begin
ReturnStr := Pointer(ParamRecord);
MethodDefine := Format(‘%s: %s;’, [MethodDefine, ReturnStr^])

end
else
MethodDefine := MethodDefine+’;’;

// finally, add the string to the listbox.
with AStrings do

Component-Based Development

PART III
602

24.65227_Ch20x 11/30/99 6:03 PM Page 602

begin
Add(MethodDefine)

end;
end;

procedure TMainForm.FormCreate(Sender: TObject);
begin
{ Add some method types to the list box. Also, store the pointer to the RTTI
data in listbox’s Objects array }

with lbSampMethods.Items do
begin
AddObject(‘TNotifyEvent’, TypeInfo(TNotifyEvent));
AddObject(‘TMouseEvent’, TypeInfo(TMouseEvent));
AddObject(‘TBDECallBackEvent’, TypeInfo(TBDECallBackEvent));
AddObject(‘TDataRequestEvent’, TypeInfo(TDataRequestEvent));
AddObject(‘TGetModuleProc’, TypeInfo(TGetModuleProc));
AddObject(‘TReaderError’, TypeInfo(TReaderError));

end;
end;

procedure TMainForm.lbSampMethodsClick(Sender: TObject);
begin
lbMethodInfo.Lines.Clear;
with lbSampMethods do
begin
GetBaseMethodInfo(PTypeInfo(Items.Objects[ItemIndex]), lbMethodInfo.Lines);
GetMethodDefinition(PTypeInfo(Items.Objects[ItemIndex]),
lbMethodInfo.Lines);

end;
end;

end.

In Listing 20.4, we populate a list box, lbSampMethods, with some sample method names. We
also store the references to those methods’ RTTI data in the Objects array of the list box. We
do this by using the TypeInfo() function, which is a special function that can retrieve a pointer
to RTTI for a given type identifier. When the user selects one of these methods, we use that
RTTI data from the Objects array to retrieve and reconstruct the method definition from the
information we have about the method and its parameters in the RTTI data. Refer to the list-
ing’s commentary for further information. Figure 20.3 shows this form’s output when a method
is selected.

Key Elements of the VCL and Runtime Type Information

CHAPTER 20
603

20

K
EY

E
LEM

EN
TS

O
F

TH
E

V
C

L A
N

D
R

U
N

TIM
E

T
Y

PE

24.65227_Ch20x 11/30/99 6:03 PM Page 603

Component-Based Development

PART III
604

FIGURE 20.3
Output of a method’s RTTI.

TIP

Use the TypeInfo() function to retrieve a pointer to the compiler-generated RTTI for
a given type identifier. For example, the following line retrieves a pointer to the RTTI
for the TButton type:

TypeInfoPointer := TypeInfo(TButton);

Obtaining Type Information for Ordinal Types
We’ve already covered the more difficult pieces of RTTI. However, you can also obtain RTTI
for ordinal types. The following sections illustrate how to obtain RTTI data on integer, enumer-
ated, and set types.

Type Information for Integer Types
Obtaining type information for integer types is simple. Listing 20.5 illustrates this process.

LISTING 20.5 Obtaining RTTI for Integers

procedure TMainForm.lbSampsClick(Sender: TObject);
var
OrdTypeInfo: PTypeInfo;
OrdTypeData: PTypeData;

TypeNameStr: String;

24.65227_Ch20x 11/30/99 6:03 PM Page 604

TypeKindStr: String;
MinVal, MaxVal: Integer;

begin
memInfo.Lines.Clear;
with lbSamps do
begin

// Get the TTypeInfo pointer
OrdTypeInfo := PTypeInfo(Items.Objects[ItemIndex]);
// Get the TTypeData pointer
OrdTypeData := GetTypeData(OrdTypeInfo);

// Get the type name string
TypeNameStr := OrdTypeInfo.Name;
// Get the type kind string
TypeKindStr := GetEnumName(TypeInfo(TTypeKind),

➥Integer(OrdTypeInfo^.Kind));

// Get the minimum and maximum values for the type
MinVal := OrdTypeData^.MinValue;
MaxVal := OrdTypeData^.MaxValue;

// Add the information to the memo
with memInfo.Lines do
begin
Add(‘Type Name: ‘+TypeNameStr);
Add(‘Type Kind: ‘+TypeKindStr);

Add(‘Min Val: ‘+IntToStr(MinVal));
Add(‘Max Val: ‘+IntToStr(MaxVal));

end;
end;

end;

Here, we use the TypeInfo() function to obtain a pointer to the TTypeInfo structure for the
Integer data type. We then pass that reference to the GetTypeData() function to obtain a
pointer to the TTypeData structure. We use both these structures to populate a list box with the
integer’s RTTI. See the demo named IntegerRTTI.dpr in the directory for this chapter on the
CD-ROM accompanying this book for a more detailed demonstration.

Type Information for Enumerated Types
Obtaining RTTI for enumerated types is just as easy as it is for integers. In fact, you’ll see that
Listing 20.6 is almost identical to Listing 20.5, with the exception of the additional for loop to
show the values of the enumeration type.

Key Elements of the VCL and Runtime Type Information

CHAPTER 20
605

20

K
EY

E
LEM

EN
TS

O
F

TH
E

V
C

L A
N

D
R

U
N

TIM
E

T
Y

PE

24.65227_Ch20x 11/30/99 6:03 PM Page 605

LISTING 20.6 Obtaining RTTI for an Enumerated Type

procedure TMainForm.lbSampsClick(Sender: TObject);
var
OrdTypeInfo: PTypeInfo;
OrdTypeData: PTypeData;

TypeNameStr: String;
TypeKindStr: String;
MinVal, MaxVal: Integer;
i: integer;

begin
memInfo.Lines.Clear;
with lbSamps do
begin

// Get the TTypeInfo pointer
OrdTypeInfo := PTypeInfo(Items.Objects[ItemIndex]);
// Get the TTypeData pointer
OrdTypeData := GetTypeData(OrdTypeInfo);

// Get the type name string
TypeNameStr := OrdTypeInfo.Name;
// Get the type kind string
TypeKindStr := GetEnumName(TypeInfo(TTypeKind),
➥Integer(OrdTypeInfo^.Kind));

// Get the minimum and maximum values for the type
MinVal := OrdTypeData^.MinValue;
MaxVal := OrdTypeData^.MaxValue;

// Add the information to the memo
with memInfo.Lines do
begin
Add(‘Type Name: ‘+TypeNameStr);
Add(‘Type Kind: ‘+TypeKindStr);

Add(‘Min Val: ‘+IntToStr(MinVal));
Add(‘Max Val: ‘+IntToStr(MaxVal));

// Show the values and names of the enumerated types
if OrdTypeInfo^.Kind = tkEnumeration then
for i := MinVal to MaxVal do
Add(Format(‘ Value: %d Name: %s’, [i,
GetEnumName(OrdTypeInfo, i)]));

Component-Based Development

PART III
606

24.65227_Ch20x 11/30/99 6:03 PM Page 606

end;
end;

end;

You’ll find a more detailed demo named EnumRTTI.dpr on the CD-ROM in the directory for
this chapter.

Type Information for Set Types
Obtaining RTTI for set types is only slightly more complex than the two previous techniques.
Listing 20.7 is the main form for the project SetRTTI.dpr, which you’ll find on the CD-ROM
in the directory for this chapter.

LISTING 20.7 Obtaining RTTI for Set Types

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, Grids;

type
TMainForm = class(TForm)
lbSamps: TListBox;
memInfo: TMemo;
procedure FormCreate(Sender: TObject);
procedure lbSampsClick(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
MainForm: TMainForm;

implementation
uses TypInfo, Buttons;

{$R *.DFM}

procedure TMainForm.FormCreate(Sender: TObject);

Key Elements of the VCL and Runtime Type Information

CHAPTER 20
607

20

K
EY

E
LEM

EN
TS

O
F

TH
E

V
C

L A
N

D
R

U
N

TIM
E

T
Y

PEcontinues

24.65227_Ch20x 11/30/99 6:03 PM Page 607

LISTING 20.7 Continued

begin
// Add some example enumerated types
with lbSamps.Items do
begin
AddObject(‘TBorderIcons’, TypeInfo(TBorderIcons));
AddObject(‘TGridOptions’, TypeInfo(TGridOptions));

end;
end;

procedure GetTypeInfoForOrdinal(AOrdTypeInfo: PTypeInfo; AStrings: TStrings);
var
// OrdTypeInfo: PTypeInfo;
OrdTypeData: PTypeData;

TypeNameStr: String;
TypeKindStr: String;
MinVal, MaxVal: Integer;
i: integer;

begin

// Get the TTypeData pointer
OrdTypeData := GetTypeData(AOrdTypeInfo);

// Get the type name string
TypeNameStr := AOrdTypeInfo.Name;
// Get the type kind string
TypeKindStr := GetEnumName(TypeInfo(TTypeKind), Integer(AOrdTypeInfo^.Kind));

// Get the minimum and maximum values for the type
MinVal := OrdTypeData^.MinValue;
MaxVal := OrdTypeData^.MaxValue;

// Add the information to the memo
with AStrings do
begin
Add(‘Type Name: ‘+TypeNameStr);
Add(‘Type Kind: ‘+TypeKindStr);

// Call this function recursively to show the enumeration
// values for this set type.
if AOrdTypeInfo^.Kind = tkSet then
begin
Add(‘==========’);
Add(‘’);

Component-Based Development

PART III
608

24.65227_Ch20x 11/30/99 6:03 PM Page 608

GetTypeInfoForOrdinal(OrdTypeData^.CompType^, AStrings);
end;

// Show the values and names of the enumerated types belonging to the
// set.
if AOrdTypeInfo^.Kind = tkEnumeration then
begin
Add(‘Min Val: ‘+IntToStr(MinVal));
Add(‘Max Val: ‘+IntToStr(MaxVal));

for i := MinVal to MaxVal do
Add(Format(‘ Value: %d Name: %s’, [i,
GetEnumName(AOrdTypeInfo, i)]));

end;
end;

end;

procedure TMainForm.lbSampsClick(Sender: TObject);
begin
memInfo.Lines.Clear;
with lbSamps do
GetTypeInfoForOrdinal(PTypeInfo(Items.Objects[ItemIndex]), memInfo.Lines);

end;
end.

In this demo, we set up two set types in a list box. We add the pointer to the TTypeInfo struc-
tures for these two types to the Objects array of the list box by using the TypeInfo() function.
When the user selects one of the items in the list box, the GetTypeInfoForOrdinal() proce-
dure is called, passing both the PTypeInfo pointer and the memInfo.Lines property that’s pop-
ulated with the RTTI data.

The GetTypeInfoForOrdinal() procedure goes through the same steps you’ve already seen for
getting the pointer to the type’s TTypeData structure. This initial type information is stored to
the TStrings parameter and then the GetTypeInfoForOrdinal() is called recursively, passing
OrdTypeData^.CompType^, which refers to the enumerated data type for the set. This RTTI
data is also added to the same TStrings property.

Assigning Values to Properties Through RTTI
Now that we’ve shown you how to find and determine which published properties exist for
components, we ought to show you how to assign values to properties through RTTI. This task
is simple. The TypInfo.pas unit contains many helper routines to allow you to interrogate and
manipulate component-published properties. These are the same helper routines used by the
Delphi IDE (Object Inspector). It would be a good idea to open TypInfo.pas and to familiar-
ize yourself with these routines. We’ll demonstrate a few of them here.

Key Elements of the VCL and Runtime Type Information

CHAPTER 20
609

20

K
EY

E
LEM

EN
TS

O
F

TH
E

V
C

L A
N

D
R

U
N

TIM
E

T
Y

PE

24.65227_Ch20x 11/30/99 6:03 PM Page 609

Suppose you want to assign an integer value to a property for a given component. Also suppose
that you do not know whether this property exists on that component. Here’s a procedure that
assigns an integer value to a property for a given component, but only if that property exists:

procedure SetIntegerPropertyIfExists(AComp: TComponent; APropName: String;
AValue: Integer);

var
PropInfo: PPropInfo;

begin
PropInfo := GetPropInfo(AComp.ClassInfo, APropName);
if PropInfo <> nil then
begin
if PropInfo^.PropType^.Kind = tkInteger then
SetOrdProp(AComp, PropInfo, Integer(AValue));

end;
end;

This procedure takes three parameters. The first, AComp, is the component whose property you
want to modify. The second parameter, APropName, is the name of the property to which you
want to assign the value of the third parameter, AValue. This procedure uses the
GetPropInfo() function to retrieve the TPropInfo pointer on the specified property.
GetPropInfo() will return nil if the property does not exist. If the property does exist, the
second if clause determines whether the property is of the correct type. The property type
tkInteger is defined in the TypInfo.pas unit along with other possible property types, as
shown here:

TTypeKind = (tkUnknown, tkInteger, tkChar, tkEnumeration, tkFloat,
tkString, tkSet, tkClass, tkMethod, tkWChar, tkLString, tkWString,
tkVariant, tkArray, tkRecord, tkInterface, tkInt64, tkDynArray);

Finally, the assignment is made to the property using the SetOrdProp() procedure, another
helper routine from TypInfo.pas used to set values to ordinal-type properties. The call to this
procedure might look something like the following:

SetIntegerPropertyIfExists(Button2, ‘Width’, 50);

SetOrdProp() is referred to as a “setter” method, a method used to set a value to a property.
There is also a “getter” method, which retrieves the property value. There are several of these
SetXXXProp() helper routines in the TypInfo.pas unit for the possible property types, as
shown in Table 20.6.

TABLE 20.6 Getter and Setter methods.

Property Type Setter Method Getter Method

Ordinal SetOrdProp() GetOrdProp()

Enumerated SetEnumProp() GetEnumProp()

Component-Based Development

PART III
610

24.65227_Ch20x 11/30/99 6:03 PM Page 610

Property Type Setter Method Getter Method

Objects SetObjectProp() GetObjectProp()

String SetStrProp() GetStrProp()

Floating Point SetFloatProp() GetFloatProp()

Variant SetVariantProp() GetVariantProp()

Methods (Events) SetMethodProp() GetMethodProp()

Int64 SetInt64Prop() GetInt64Prop()

Again, there are many other helper routines you’ll find useful in TypInfo.pas.

The following code shows how to assign an object property:

procedure SetObjectPropertyIfExists(AComponent: TComponent; APropName: String;
AValue: TObject);

var
PropInfo: PPropInfo;

begin
PropInfo := GetPropInfo(AComponent.ClassInfo, APropName);
if PropInfo <> nil then
begin
if PropInfo^.PropType^.Kind = tkClass then
SetObjectProp(AComponent, PropInfo, AValue);

end;
end;

This method might be called as follows:

var
F: TFont;

begin
F := TFont.Create;
F.Name := ‘Arial’;
F.Size := 24;
F.Color := clRed;
SetObjectPropertyIfExists(Panel1, ‘Font’, F);

end;

The following code shows how to assign a method property:

procedure SetMethodPropertyIfExists(AComp: TComponent; APropName: String;
AMethod: TMethod);

var
PropInfo: PPropInfo;

begin
PropInfo := GetPropInfo(AComp.ClassInfo, APropName);
if PropInfo <> nil then

Key Elements of the VCL and Runtime Type Information

CHAPTER 20
611

20

K
EY

E
LEM

EN
TS

O
F

TH
E

V
C

L A
N

D
R

U
N

TIM
E

T
Y

PE

24.65227_Ch20x 11/30/99 6:03 PM Page 611

begin
if PropInfo^.PropType^.Kind = tkMethod then
SetMethodProp(AComp, PropInfo, AMethod);

end;
end;

This method requires the use of the TMethod type, which is defined in the SysUtils.pas unit.
To call this method to assign an event handler from one component to another, you can use
GetMethodProp to retrieve the TMethod value from the source component, as shown here:

SetMethodPropertyIfExists(Button5, ‘OnClick’,
GetMethodProp(Panel1, ‘OnClick’));

The accompanying CD-ROM has a project, SetProperties.dpr, that demonstrates these
routines.

Summary
This chapter introduced you to the Visual Component Library. We discussed the VCL hierarchy
and the special characteristics of components at different levels in the hierarchy. We also
covered RTTI in depth. This chapter prepared you for the following chapters, which cover
component writing.

Component-Based Development

PART III
612

24.65227_Ch20x 11/30/99 6:03 PM Page 612

CHAPTER

21
Writing Delphi Custom
Components

IN THIS CHAPTER
• Component Building Basics 614

• Sample Components 642

• TddgButtonEdit—
Container Components 660

• Component Packages 671

• Add-In Packages 682

• Summary 689

25.65227_Ch21x 11/30/99 6:05 PM Page 613

The ability to easily write custom components in Delphi 5 is a chief productivity advantage
that you wield over other programmers. In most other environments, folks are stuck using the
standard controls available through Windows or else have to use an entirely different set of
complex controls that were developed by somebody else. Being able to incorporate your cus-
tom components into your Delphi applications means that you have complete control over the
application’s user interface. Custom controls give you the final say in your application’s look
and feel.

If your forte is component design, you will appreciate all the information this chapter has to
offer. You will learn about all aspects of component design from concept to integration into the
Delphi environment. You will also learn about the pitfalls of component design, as well as
some tips and tricks to developing highly functional and extensible components.

Even if your primary interest is application development and not component design, you will
get a great deal out of this chapter. Incorporating a custom component or two into your pro-
grams is an ideal way to spice up and enhance the productivity of your applications. Invariably,
you will get caught in a situation while writing your application where, of all the components
at your disposal, none is quite right for some particular task. That’s where component design
comes in. You will be able to tailor a component to meet your exact needs, and hopefully
design it smart enough to use again and again in subsequent applications.

Component Building Basics
The following sections teach you the basic skills required to get you started in writing compo-
nents. Then, we show you how to apply those skills by demonstrating how we designed some
useful components.

Deciding Whether to Write a Component
Why go through the trouble of writing a custom control in the first place when it’s probably
less work to make do with an existing component or hack together something quick and dirty
that “will do”? There are a number of reasons to write your own custom control:

• You want to design a new user-interface element that can be used in more than one appli-
cation.

• You want to make your application more robust by separating its elements into logical
object-oriented classes.

• You cannot find an existing Delphi component or ActiveX control that suits your needs
for a particular situation.

• You recognize a market for a particular component, and you want to create a component
to share with other Delphi developers for fun or profit.

• You want to increase your knowledge of Delphi, VCL internals, and the Win32 API.

Component-Based Development

PART III
614

25.65227_Ch21x 11/30/99 6:05 PM Page 614

One of the best ways to learn how to create custom components is from the people who
invented them. Delphi’s VCL source code is an invaluable resource for component writers, and
it is highly recommended for anyone who is serious about creating custom components. The
VCL source code is included in the Client Server and Professional versions of Delphi.

Writing custom components can seem like a pretty daunting task, but don’t believe the hype.
Writing a custom component is only as hard or as easy as you make it. Components can be
tough to write, of course, but you also can create very useful components fairly easily.

Component Writing Steps
Assuming that you have already defined a problem and have a component-based solution, here
are the important points in creating a component—from concept to deployment.

• First, you need an idea for a useful and hopefully unique component.

• Next, sit down and map out the algorithm for how the component will work.

• Start with the preliminaries—don’t jump right into the component. Ask yourself, “What
do I need up front to make this component work?”

• Try to break up the construction of your component into logical portions. This will not
only modularize and simplify the creation of the component, but it also will help you to
write cleaner, more organized code. Design your component with the thought that some-
one else might try to create a descendant component.

• Test your component in a test project first. You will be sorry if you immediately add it to
the Component Palette.

• Finally, add the component and an optional bitmap to the Component Palette. After a lit-
tle fine-tuning, it will be ready for you to drop into your Delphi applications.

There are six basic steps to writing your Delphi component.

1. Deciding on an ancestor class.

2. Creating the Component Unit.

3. Adding properties, methods, and events to your new component.

4. Testing your component.

5. Registering your component with the Delphi environment.

6. Creating a help file for your component.

In this chapter, we will discuss the first five steps; however, it is beyond the scope of this chap-
ter to get into the topic of writing help files. However, this does not mean that this step is any
less important than the others. We recommend that you look into some of the third-party tools
available that simplify writing help files. Also, Borland provides information on how to do this

Writing Delphi Custom Components

CHAPTER 21
615

21

W
R

ITIN
G

D
ELPH

I
C

U
STO

M
C

O
M

PO
N

EN
TS

25.65227_Ch21x 11/30/99 6:05 PM Page 615

in their online help. Look up “Providing Help for Your Component” in the online help for more
information.

Deciding on an Ancestor Class
In Chapter 20, “Key Elements of the Visual Component Library,” we discussed the VCL hier-
archy and the special purposes of the different classes at the different hierarchical levels. We
wrote about four basic components from which your components will descend: standard con-
trols, custom controls, graphical controls, and non-visual components. For instance, if you
need to simply extend the behavior of an existing Win32 control such as TMemo, you’ll be
extending a standard control. If you need to define an entirely new component class, you’ll be
dealing with a custom control. Graphical controls let you create components that have a visual
effect, but don’t take up Win32 resources. Finally, if you want to create a component that can
be edited from Delphi’s Object Inspector but doesn’t necessarily have a visual characteristic,
you’ll be creating a non-visual component. Different VCL classes represent these different
types of components. You might want to review Chapter 20 unless you’re quite comfortable
with these concepts. Table 21.1 gives you a quick reference.

Table 21.1 VCL Classes as Component-Based Classes

VCL Class Types of Custom Controls

TObject Although classes descending directly from TObject are not compo-
nents, strictly speaking, they do merit mention. You will use TObject as
a base class for many things that you don’t need to work with at design
time. A good example is the TIniFile object.

TComponent A starting point for many non-visual components. Its forte is that it
offers built-in streaming capability to load and save itself in the IDE at
design time.

TGraphicControl Use this class when you want to create a custom component that has no
window handle. TGraphicControl descendants are drawn on their par-
ent’s client surface, so they are easier on resources.

TWinControl This is the base class for all components that require a window handle.
It provides you with common properties and events specific to win-
dowed controls.

TCustomControl This class descends from TWinControl. It introduces the concepts of a
canvas and a Paint() method to give you greater control over the com-
ponent’s appearance. Use this class for most of your window-handled
custom component needs.

Component-Based Development

PART III
616

25.65227_Ch21x 11/30/99 6:05 PM Page 616

VCL Class Types of Custom Controls

TCustomClassName The VCL contains several classes that do not publish all their properties;
they leave it up to descendant classes to do. This allows component
developers to create “custom” components from the same base class and
to publish only the predefined properties required for each customized
class.

TComponentName An existing class such as TEdit, TPanel, or TScrollBox. Use an
already established component as a base class for your class (such as
TEdit) and custom components when you want to extend the behavior
of a control rather than create a new one from scratch. Many of your
custom components will fall into this category.

It is extremely important that you understand these various classes and also the capabilities of
the existing components. The majority of the time, you’ll find that an existing component
already provides most of the functionality you require of your new component. Only by know-
ing the capabilities of existing components will you be able to decide from which component
to derive your new component. We can’t inject this knowledge into your brain from this book.
What we can do is to tell you that you must make every effort to learn about each component
and class within Delphi’s VCL, and the only way to do that is to use it, even if only experi-
mentally.

Creating a Component Unit
When you have decided on a component from which your new component will descend, you
can go ahead and create a unit for your new component. We’re going to go through the steps of
designing a new component in the next several sections. Because we want to focus on the
steps, and not on component functionality, this component will do nothing other than to illus-
trate these necessary steps.

The component is appropriately named TddgWorthless. TddgWorthless will descend from
TCustomControl and will therefore have both a window handle and the capability to paint
itself. This component will also inherit several properties, methods, and events already belong-
ing to TCustomControl.

The easiest way to get started is to use the Component Expert, shown in Figure 21.1, to create
a component unit.

Writing Delphi Custom Components

CHAPTER 21
617

21

W
R

ITIN
G

D
ELPH

I
C

U
STO

M
C

O
M

PO
N

EN
TS

25.65227_Ch21x 11/30/99 6:05 PM Page 617

FIGURE 21.1
The Component Expert.

You invoke the Component Expert by selecting Component, New Component. In the
Component Expert, you enter the component’s ancestor class name, the component’s class
name, the palette page on which you want the component to appear, and the unit name for the
component. When you select OK, Delphi automatically creates the component unit that has the
component’s type declaration and a register procedure. Listing 21.1 shows the unit created by
Delphi.

LISTING 21.1 Worthless.pas, a Sample Delphi Component

unit Worthless;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs;

type
TddgWorthless = class(TCustomControl)
private
{ Private declarations }

protected
{ Protected declarations }

public
{ Public declarations }

published
{ Published declarations }

end;
procedure Register;
implementation
procedure Register;
begin
RegisterComponents(‘DDG’, [TddgWorthless]);

end;
end.

Component-Based Development

PART III
618

25.65227_Ch21x 11/30/99 6:05 PM Page 618

You can see that at this point TddgWorthless is nothing more than a skeleton component. In
the following sections, you’ll add properties, methods, and events to TddgWorthless.

Creating Properties
Chapter 20 discusses the use and advantages of using properties with your components. This
section shows you how to add the various types of properties to your components.

Types of Properties
Table 20.1 in Chapter 20 lists the various property types. We’re going to add properties of each
of these types to the TddgWorthless component to illustrate the differences between each type.
Each different type of property is edited a bit differently from the Object Inspector. You will
examine each of these types and how they are edited.

Adding Simple Properties to Components
Simple properties refer to numbers, strings, and characters. They can be edited directly by the
user from within the Object Inspector and require no special access method. Listing 21.2
shows the TddgWorthless component with three simple properties.

LISTING 21.2 Simple Properties

TddgWorthless = class(TCustomControl)
private
// Internal Data Storage
FIntegerProp: Integer;
FStringProp: String;
FCharProp: Char;

published
// Simple property types
property IntegerProp: Integer read FIntegerProp write FIntegerProp;
property StringProp: String read FStringProp write FStringProp;
property CharProp: Char read FCharProp write FCharProp;

end;

You should already be familiar with the syntax used here because it was discussed previously
in Chapter 20. Here, you have your internal data storage for the component declared in the
private section. The properties that refer to these storage fields are declared in the published
section, meaning that when you install the component in Delphi, you can edit the properties in
the Object Inspector.

Writing Delphi Custom Components

CHAPTER 21
619

21

W
R

ITIN
G

D
ELPH

I
C

U
STO

M
C

O
M

PO
N

EN
TS

25.65227_Ch21x 11/30/99 6:05 PM Page 619

Adding Enumerated Properties to Components
You can edit user-defined enumerated properties and Boolean properties in the Object
Inspector by double-clicking in the Value section or by selecting the property value from a
drop-down list. An example of such a property is the Align property that exists on most visual
components. To create an enumerated property, you must first define the enumerated type as
follows:

TEnumProp = (epZero, epOne, epTwo, epThree);

You then define the internal storage field to hold the value specified by the user. Listing 21.3
shows two enumerated property types for the TddgWorthless component:

LISTING 21.3 Enumerated Properties

TddgWorthless = class(TCustomControl)
private
// Enumerated data types
FEnumProp: TEnumProp;
FBooleanProp: Boolean;

published
property EnumProp: TEnumProp read FEnumProp write FEnumProp;
property BooleanProp: Boolean read FBooleanProp write FBooleanProp;

end;

We’ve excluded the other properties for illustrative purposes. If you were to install this compo-
nent, its enumerated properties would appear in the Object Inspector, as shown in Figure 21.2.

Adding Set Properties to Components
Set properties, when edited in the Object Inspector, appear as a set in Pascal syntax. An easier
way to edit them is to expand the properties in the Object Inspector. Each set item then works
in the Object Inspector like a Boolean property. To create a set property for the TddgWorthless
component, we must first define a set type as follows:

TSetPropOption = (poOne, poTwo, poThree, poFour, poFive);
TSetPropOptions = set of TSetPropOption;

Component-Based Development

PART III
620

NOTE

When writing components, the convention is to make private field names begin with
the letter F. For components and types in general, give the object or type a name
starting with the letter T. Your code will be much more clear if you follow these sim-
ple conventions.

25.65227_Ch21x 11/30/99 6:05 PM Page 620

FIGURE 21.2
The Object Inspector showing enumerated properties for TddgWorthless.

Here, you first define a range for the set by defining an enumerated type, TSetPropOption.
Then you define the set TSetPropOptions.

You can now add a property of TSetPropOptions to the TddgWorthless component as follows:

TddgWorthless = class(TCustomControl)
private
FOptions: TSetPropOptions;

published
property Options: TSetPropOptions read FOptions write FOptions;

end;

Figure 21.3 shows how this property looks when expanded in the Object Inspector.

Writing Delphi Custom Components

CHAPTER 21
621

21

W
R

ITIN
G

D
ELPH

I
C

U
STO

M
C

O
M

PO
N

EN
TS

FIGURE 21.3
The set property in the Object Inspector.

Adding Object Properties to Components
Properties can also be objects or other components. For example, the TBrush and TPen proper-
ties of a TShape component are also objects. When a property is an object, it can be expanded
in the Object Inspector so its own properties can also be modified. Properties that are objects

25.65227_Ch21x 11/30/99 6:05 PM Page 621

must be descendants of TPersistent so that their published properties can be streamed and
displayed in the Object Inspector.

To define an object property for the TddgWorthless component, you must first define an object
that will serve as this property’s type. This object is shown in Listing 21.4.

LISTING 21.4 TSomeObject Definition

TSomeObject = class(TPersistent)
private
FProp1: Integer;
FProp2: String;

public
procedure Assign(Source: TPersistent)

published
property Prop1: Integer read FProp1 write FProp1;
property Prop2: String read FProp2 write FProp2;

end;

The TSomeObject class descends directly from TPersistent, although it does not have to. As
long as the object from which the new class descends is a descendant of TPersistent, it can
be used as another object’s property.

We’ve given this class two properties of its own: Prop1 and Prop2, which are both simple
property types. We’ve also added a procedure, Assign(), to TSomeObject, which we’ll discuss
momentarily.

Now you can add a field of the type TSomeObject to the TddgWorthless component. However,
because this property is an object, it must be created. Otherwise, when the user places a
TddgWorthless component on the form, there won’t be an instance of TSomeObject that the
user can edit. Therefore, it is necessary to override the Create() constructor for
TddgWorthless to create an instance of TSomeObject. Listing 21.5 shows the declaration of
TddgWorthless with its new object property.

LISTING 21.5 Adding Object Properties

TddgWorthless = class(TCustomControl)
private
FSomeObject: TSomeObject;
procedure SetSomeObject(Value: TSomeObject);

public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;

published

Component-Based Development

PART III
622

25.65227_Ch21x 11/30/99 6:05 PM Page 622

property SomeObject: TSomeObject read FSomeObject write SetSomeObject;
end;

Notice that we’ve included the overridden Create() constructor and Destroy() destructor.
Also, notice that we’ve declared a write access method, SetSomeObject(), for the SomeObject
property. A write access method is often referred to as a writer method or setter method. Read
access methods are called reader or getter methods. If you recall from Chapter 20, writer
methods must have one parameter of the same type as the property to which they belong. By
convention, the name of the writer method usually begins with Set.

We’ve defined the TddgWorthless.Create() constructor as follows:

constructor TddgWorthless.Create(AOwner: TComponent);
begin
inherited Create(AOwner);
FSomeObject := TSomeObject.Create;

end;

Here, we first call the inherited Create() constructor and then create the instance of the
TSomeObject class. Because Create() is called both when the user drops the component on
the form at design time and when the application is run, you can be assured that FSomeObject
will always be valid.

You must also override the Destroy() destructor to free the object before you free the
TddgWorthless component. The code to do this follows.

destructor TddgWorthless.Destroy;
begin
FSomeObject.Free;
inherited Destroy;

end;

Now that we’ve shown how to create the instance of TSomeObject, consider what would hap-
pen if at runtime the user executes the following code:

var
MySomeObject: TSomeObject;

begin
MySomeObject := TSomeObject.Create;
ddgWorthless.SomeObjectj := MySomeObject;

end;

If the TddgWorthless.SomeObject property were defined without a writer method like the fol-
lowing, when the user assigns their own object to the SomeObject field, the previous instance
that FSomeObject referred to would be lost:

property SomeObject: TSomeObject read FSomeObject write FSomeObject;

Writing Delphi Custom Components

CHAPTER 21
623

21

W
R

ITIN
G

D
ELPH

I
C

U
STO

M
C

O
M

PO
N

EN
TS

25.65227_Ch21x 11/30/99 6:05 PM Page 623

If you recall from Chapter 2, “The Object Pascal Language,” object instances are really pointer
references to the actual object. When you make an assignment, as shown in the preceding
example, you refer the pointer to another object instance while the previous object instance still
hangs around. When designing components, you want to avoid having to place conditions on
your users when accessing properties. To prevent this pitfall, you foolproof your component by
creating access methods for properties that are objects. These access methods can then ensure
that no resources get lost when the user assigns new values to these properties. The access
method for SomeObject does just that and is shown here:

procedure TddgWorthLess.SetSomeObject(Value: TSomeObject);
begin
if Assigned(Value) then
FSomeObject.Assign(Value);

end;

The SetSomeObject() method calls the FSomeObject.Assign(), passing it the new
TSomeObject reference. TSomeObject.Assign() is implemented as follows:

procedure TSomeObject.Assign(Source: TPersistent);
begin
if Source is TSomeObject then
begin
FProp1 := TSomeObject(Source).Prop1;
FProp2 := TSomeObject(Source).Prop2;
inherited Assign(Source);

end;
end;

In TSomeObject.Assign(), you first ensure that the user has passed in a valid TSomeObject
instance. If so, you then copy the property values from Source accordingly. This illustrates
another technique you’ll see throughout the VCL for assigning objects to other objects. If you
have the VCL source code, you might take a look at the various Assign() methods such as
TBrush and TShape to see how they are implemented. This would give you some ideas on how
to implement them in your components.

Component-Based Development

PART III
624

CAUTION

Never make an assignment to a property in a property’s writer method. For example,
examine the following property declaration:

property SomeProp: integer read FSomeProp write SetSomeProp;
....
procedure SetSomeProp(Value:integer);
begin
SomeProp := Value; // This causes infinite recursion }

end;

25.65227_Ch21x 11/30/99 6:05 PM Page 624

Adding Array Properties to Components
Some properties lend themselves to being accessed as though they were arrays. That is, they
contain a list of items that can be referenced with an index value. The actual items referenced
can be of any object type. Examples of such properties are TScreen.Fonts, TMemo.Lines, and
TDBGrid.Columns. Such properties require their own property editors. We will get into creating
property editors later in the next chapter. Therefore, we will not go into detail on creating array
properties that have a list of different object types until later. For now, we’ll show a simple
method for defining a property that can be indexed as though it were an array of items, yet
contains no list at all.

We’re going to put aside the TddgWorthless component for a moment and instead look at the
TddgPlanets component. TddgPlanets contains two properties: PlanetName and
PlanetPosition. PlanetName will be an array property that returns the name of the planet
based on the value of an integer index. PlanetPosition won’t use an integer index, but rather
a string index. If this string is one of the planet names, the result will be the planet’s position in
the solar system.

For example, the following statement will display the string “Neptune” by using the
TddgPlanets.PlanetName property:

ShowMessage(ddgPlanets.PlanetName[8]);

Compare the difference when the sentence From the sun, Neptune is planet number: 8 is
generated from the following statement:

ShowMessage(‘From the sun, Neptune is planet number: ‘+
IntToStr(ddgPlanets.PlanetPosition[‘Neptune’]));

Before we show you this component, we list some key characteristics of array properties that
differ from the other properties we’ve mentioned.

• Array properties are declared with one or more index parameters. These indexes can be
of any simple type. For example, the index may be an integer or a string, but not a record
or a class.

• Both the read and write property access directives must be methods. They cannot be
one of the component’s fields.

Writing Delphi Custom Components

CHAPTER 21
625

21

W
R

ITIN
G

D
ELPH

I
C

U
STO

M
C

O
M

PO
N

EN
TS

Because you are accessing the property itself (not the internal storage field), you
cause the SetSomeProp() method to be called again, which results in a recursive loop.
Eventually, the program will crash with a stack overflow. Always access the internal
storage field in the writer method of a property.

25.65227_Ch21x 11/30/99 6:05 PM Page 625

• If the array property is indexed by multiple index values, that is, the property represents a
multidimensional array, the access method must include parameters for each index in the
same order as defined by the property.

Now we’ll get to the actual component shown in Listing 21.6.

LISTING 21.6 Using TddgPlanets to Illustrate Array Properties

unit planets;

interface

uses
Classes, SysUtils;

type

TddgPlanets = class(TComponent)
private
// Array property access methods
function GetPlanetName(const AIndex: Integer): String;
function GetPlanetPosition(const APlanetName: String): Integer;

public
{ Array property indexed by an integer value. This will be the default
array property. }

property PlanetName[const AIndex: Integer]: String
read GetPlanetName; default;

// Array property index by a string value
property PlanetPosition[const APlanetName: String]: Integer

read GetPlanetPosition;
end;

implementation

const
// Declare a constant array containing planet names
PlanetNames: array[1..9] of String[7] =
(‘Mercury’, ‘Venus’, ‘Earth’, ‘Mars’, ‘Jupiter’, ‘Saturn’,
‘Uranus’, ‘Neptune’, ‘Pluto’);

function TddgPlanets.GetPlanetName(const AIndex: Integer): String;
begin
{ Return the name of the planet specified by Index. If Index is
out of the range, then raise an exception }

if (AIndex < 0) or (AIndex > 9) then
raise Exception.Create(‘Wrong Planet number, enter a number 1-9’)

Component-Based Development

PART III
626

25.65227_Ch21x 11/30/99 6:05 PM Page 626

else
Result := PlanetNames[AIndex];

end;

function TddgPlanets.GetPlanetPosition(const APlanetName: String): Integer;
var
i: integer;

begin
Result := 0;
i := 0;
{ Compare PName to each planet name and return the index of the
appropriate position where PName appears in the constant array.
Otherwise return zero. }

repeat
inc(i);

until (i = 10) or (CompareStr(UpperCase(APlanetName),
UpperCase(PlanetNames[i])) = 0);

if i <> 10 then // A Planet name was found
Result := i;

end;

end.

This component gives you an idea of how you would create an array property with both an
integer and a string being used as an index. Notice how the value returned from reading the
property’s value is based on the function return value and not a value from a storage field, as is
the case with the other properties. You can refer to the code’s comments for additional explana-
tion on this component.

Default Values
You can give a property a default value by assigning a value to the property in the component’s
constructor. Therefore, if we added the following statement to the constructor of the
TddgWorthless component, its FIntegerProp property would always default to 100 when the
component is first placed onto the form:

FIntegerProp := 100;

This is probably the best place to mention the Default and NoDefault directives for property
declarations. If you’ve looked at Delphi’s VCL source code, you’ve probably noticed that some
property declarations contain the Default directive, as is the case with the TComponent.FTag
property:

property Tag: Longint read FTag write FTag default 0;

Writing Delphi Custom Components

CHAPTER 21
627

21

W
R

ITIN
G

D
ELPH

I
C

U
STO

M
C

O
M

PO
N

EN
TS

25.65227_Ch21x 11/30/99 6:05 PM Page 627

Don’t confuse this statement with the default value specified in the component’s constructor
that actually sets the property value. For example, change the declaration of the IntegerProp
property for the TddgWorthless component to read as follows:

property IntegerProp: Integer read FIntegerProp write FIntegerProp default 100;

This statement does not set the value of the property to 100. This only affects whether or not
the property value is saved when you save a form containing the TddgWorthless component. If
IntegerProp’s value is not 100, the value will be saved to the DFM file. Otherwise, it does not
get saved (because 100 is what the property value will be in a newly constructed object prior to
reading its properties from the stream). It is recommended that you use the Default directive
whenever possible because it may speed up the load time of your forms. It is important that
you realize that the Default directive does not set the value of the property. You must do that
in the component’s constructor, as was shown previously.

The NoDefault directive is used to re-declare a property that specifies a default value, so that it
will always be written to the stream regardless of its value. For example, you can re-declare
your component to not specify a default value for the Tag property:

TSample = class(TComponent)
published
property Tag NoDefault;

Note that you should never declare anything NoDefault unless you have a specific reason. An
example of such a property is TForm.PixelsPerInch, which must always be stored so that
scaling will work right at runtime. Also, string, floating point, and int64 type properties can-
not declare default values.

To change a property’s default value, you re-declare it by using the new default value (but no
reader or writer methods).

Default Array Properties
You can declare an array property so that it is the default property for the component to which
it belongs. This allows the component user to use the object instance as though it were an array
variable. For example, using the TddgPlanets component, we declared the
TddgPlanets.PlanetName property with the default keyword. By doing this, the component
user is not required to use the property name, PlanetName, in order to retrieve a value. One
simply has to place the index next to the object identifier. Therefore, the following two lines of
code will produce the same result:

ShowMessage(ddgPlanets.PlanetName[8]);
ShowMessage(ddgPlanets[8]);

Component-Based Development

PART III
628

25.65227_Ch21x 11/30/99 6:05 PM Page 628

Only one default array property can be declared for an object, and it cannot be overridden in
descendants.

Creating Events
In Chapter 20, we introduced events and told you that events were special properties linked to
code that gets executed whenever a particular action occurs. In this section, we’re going to dis-
cuss events in more detail. We’ll show you how events are generated and how you can define
your own event properties for your custom components.

Where Do Events Come From?
The general definition of an event is basically any type of occurrence that might result from
user interaction, the system, or from code logic. The event is linked to some code that responds
to that occurrence. The linkage of the event to code that responds to an event is called an event
property and is provided in the form of a method pointer. The method to which an event prop-
erty points is called an event handler.

For example, when the user clicks the mouse button, a WM_MOUSEDOWN message is sent to the
Win32 system. Win32 passes that message to the control for which the message was intended.
This control can then respond to the message. The control can respond to this event by first
checking to see whether there is any code to execute. It does this by checking to see whether
the event property points to any code. If so, it executes that code, or rather, the event handler.

The OnClick event is just one of the standard event properties defined by Delphi. OnClick and
other event properties each have a corresponding event-dispatching method. This method is
typically a protected method of the component to which it belongs. This method performs the
logic to determine whether the event property refers to any code provided by the user of the
component. For the OnClick property, this would be the Click() method. Both the OnClick
property and the Click() method are defined by TControl as follows:

TControl = class(TComponent)
private
FOnClick: TNotifyEvent;

protected
procedure Click; dynamic;
property OnClick: TNotifyEvent read FOnClick write FOnClick;

end;

Here is the TControl.Click() method:

procedure TControl.Click;
begin
if Assigned(FOnClick) then FOnClick(Self);

end;

Writing Delphi Custom Components

CHAPTER 21
629

21

W
R

ITIN
G

D
ELPH

I
C

U
STO

M
C

O
M

PO
N

EN
TS

25.65227_Ch21x 11/30/99 6:05 PM Page 629

One bit of essential information that you must understand is that event properties are nothing
more than method pointers. Notice that the FOnClick property is defined to be a
TNotifyEvent. TNotifyEvent is defined as follows:

TNotifyEvent = procedure(Sender: TObject) of object;

This says that TNotifyEvent is a procedure that takes one parameter, Sender, which is of the
type TObject. The directive, of object, is what makes this procedure become a method. This
means that an additional implicit parameter that you do not see in the parameter list also gets
passed to this procedure. This is the Self parameter that refers to the object to which this
method belongs. When the Click() method of a component is called, it checks to see if
FOnClick actually points to a method and, if so, calls that method.

As a component writer, you write all the code that defines your event, your event property, and
your dispatching methods. The component user will provide the event handler when they use
your component. Your event-dispatching method will check to see whether the user has
assigned any code to your event property and then execute it when code exists.

In Chapter 20, we discussed how event handlers are assigned to event properties either at run-
time or at design time. In the following section, we show you how to create your own events,
event properties, and dispatching methods.

Defining Event Properties
Before you define an event property, you need to determine whether you need a special event
type. It helps to be familiar with the common event properties that exist in the Delphi VCL.
Most of the time, you’ll be able to have your component descend from one of the existing
components and just use its event properties, or you might have to surface a protected event
property. If you determine that none of the existing events meet your needs, you can define
your own.

As an example, consider the following scenario. Suppose you want a component that contains
an event that gets called every half-minute based on the system clock. That is, it gets invoked
on the minute and on the half-minute. Well, you can certainly use a TTimer component to
check the system time and then perform some action whenever the time is at the minute or
half-minute. However, you might want to incorporate this code into your own component and
then make that component available to your users so that all they have to do is add code to
your OnHalfMinute event.

The TddgHalfMinute component shown in Listing 21.7 illustrates how you would design such a
component. More importantly, it shows how you would go about creating your own event type.

Component-Based Development

PART III
630

25.65227_Ch21x 11/30/99 6:05 PM Page 630

LISTING 21.7 TddgHalfMinute Event Creation

unit halfmin;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, ExtCtrls;

type
{ Define a procedure for the event handler. The event property will
be of this procedure type. This type will take two parameters, the
object that invoked the event and a TDateTime value to represent
the time that the event occurred. For our component this will be
every half-minute. }

TTimeEvent = procedure(Sender: TObject; TheTime: TDateTime) of object;

TddgHalfMinute = class(TComponent)
private
FTimer: TTimer;
{ Define a storage field to point to the user’s event handler.
The user’s event handler must be of the procedural type
TTimeEvent. }

FOnHalfMinute: TTimeEvent;
FOldSecond, FSecond: Word; // Variables used in the code
{ Define a procedure, FTimerTimer that will be assigned to
FTimer.OnClick. This procedure must be of the type TNotifyEvent
which is the type of TTimer.OnClick. }

procedure FTimerTimer(Sender: TObject);
protected
{ Define the dispatching method for the OnHalfMinute event. }
procedure DoHalfMinute(TheTime: TDateTime); dynamic;

public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;

published
// Define the actual property that will show in the Object Inspector
property OnHalfMinute: TTimeEvent read FOnHalfMinute write FOnHalfMinute;

end;

implementation

constructor TddgHalfMinute.Create(AOwner: TComponent);
{ The Create constructor, creates the TTimer instanced for FTimer. It
then sets up the various properties of FTimer, including its OnTimer

Writing Delphi Custom Components

CHAPTER 21
631

21

W
R

ITIN
G

D
ELPH

I
C

U
STO

M
C

O
M

PO
N

EN
TS

continues

25.65227_Ch21x 11/30/99 6:05 PM Page 631

LISTING 21.7 Continued

event handler which is TddgHalfMinute’s FTimerTimer() method. Notice
that FTimer.Enabled is set to true only if the component is running
and not while the component is in design mode. }

begin
inherited Create(AOwner);
// If the component is in design mode, do not enable FTimer.
if not (csDesigning in ComponentState) then
begin
FTimer := TTimer.Create(self);
FTimer.Enabled := True;
// Set up the other properties, including the FTimer.OnTimer event handler
FTimer.Interval := 500;
FTimer.OnTimer := FTimerTimer;
end;

end;

destructor TddgHalfMinute.Destroy;
begin
FTimer.Free;
inherited Destroy;

end;

procedure TddgHalfMinute.FTimerTimer(Sender: TObject);
{ This method serves as the FTimer.OnTimer event handler and is assigned
to FTimer.OnTimer at run-time in TddgHalfMinute’s constructor.

This method gets the system time, and then determines whether or not
the time is on the minute, or on the half-minute. If either of these
conditions are true, it calls the OnHalfMinute dispatching method,
DoHalfMinute. }

var
DT: TDateTime;
Temp: Word;

begin
DT := Now; // Get the system time.
FOldSecond := FSecond; // Save the old second.
// Get the time values, needed is the second value
DecodeTime(DT, Temp, Temp, FSecond, Temp);

{ If not the same second when this method was last called, and if
it is a half minute, call DoOnHalfMinute. }

if FSecond <> FOldSecond then
if ((FSecond = 30) or (FSecond = 0)) then
DoHalfMinute(DT)

Component-Based Development

PART III
632

25.65227_Ch21x 11/30/99 6:05 PM Page 632

end;

procedure TddgHalfMinute.DoHalfMinute(TheTime: TDateTime);
{ This method is the dispatching method for the OnHalfMinute event.
it checks to see if the user of the component has attached an
event handler to OnHalfMinute and if so, calls that code. }

begin
if Assigned(FOnHalfMinute) then
FOnHalfMinute(Self, TheTime);

end;

end.

When creating your own events, you must determine what information you want to provide to
users of your component as a parameter in the event handler. For example, when you create an
event handler for the TEdit.OnKeyPress event, your event handler looks like the following
code:

procedure TForm1.Edit1KeyPress(Sender: TObject; var Key: Char);
begin
end;

Not only do you get a reference to the object that caused the event, but you also get a Char
parameter specifying the key that was pressed. Deep in the Delphi VCL, this event occurred as
a result of a WM_CHAR Win32 message that drags along some additional information relating to
the key pressed. Delphi takes care of extracting the necessary data and making it available to
component users as event handler parameters. One of the nice things about the whole scheme
is that it enables component writers to take information that might be somewhat complex to
understand and make it available to component users in a much more understandable and easy-
to-use format.

Notice the var parameter in the preceding Edit1KeyPress() method. You might be wondering
why this method was not declared as a function that returns a Char type instead of a procedure.
Although method types can be functions, you should not declare events as functions because it
will introduce ambiguity; when you refer to a method pointer that is a function, you can’t
know whether you’re referring to the function result or to the function pointer value itself. By
the way, there is one function event in the VCL that slipped past the developers from the
Delphi 1 days and now it must remain. This event is the TApplication.OnHelp event.

Looking at Listing 21.7, you’ll see that we’ve defined the procedure type TOnHalfMinute
as this:

TTimeEvent = procedure(Sender: TObject; TheTime: TDateTime) of object;

Writing Delphi Custom Components

CHAPTER 21
633

21

W
R

ITIN
G

D
ELPH

I
C

U
STO

M
C

O
M

PO
N

EN
TS

25.65227_Ch21x 11/30/99 6:05 PM Page 633

This procedure type defines the procedure type for the OnHalfMinute event handler. Here, we
decided that we want the user to have a reference to the object causing the event to occur and
the TDateTime value of when the event occurred.

The FOnHalfMinute storage field is the reference to the user’s event handler and is surfaced to
the Object Inspector at design time through the OnHalfMinute property.

The basic functionality of the component uses a TTimer object to check the seconds value
every half second. If the seconds value is 0 or 30, it invokes the DoHalfMinute() method,
which is responsible for checking for the existence of an event handler and then calling it.
Much of this is explained in the code’s comments, which you should read over.

After installing this component to Delphi’s Component Palette, you can place the component
on the form and add the following event handler to the OnHalfMinute event:

procedure TForm1.ddgHalfMinuteHalfMinute(Sender: TObject; TheTime: TDateTime);
begin
ShowMessage(‘The Time is ‘+TimeToStr(TheTime));

end;

This should illustrate how your newly defined event type becomes an event handler.

Creating Methods
Adding methods to components is no different than adding methods to other objects. However,
there are a few guidelines that you should always take into account when designing compo-
nents.

No Interdependencies!
One of the key goals behind creating components is to simplify the use of the component for
the end user. Therefore, you will want to avoid any method interdependencies as much as pos-
sible. For example, you never want to force the user to have to call a particular method in order
to use the component, and methods should not have to be called in any particular order. Also,
methods called by the user should not place the component in a state that makes other events
or methods invalid. Finally, you will want to give your methods meaningful names so that the
user does not have to try to guess what a method does.

Method Exposure
Part of designing a component is to know what methods to make private, public, or protected.
You must take into account not only users of your component, but also those who might use
your component as an ancestor for yet another custom component. Table 21.2 will help you
decide what goes where in your custom component.

Component-Based Development

PART III
634

25.65227_Ch21x 11/30/99 6:05 PM Page 634

Table 21.2 Private, Protected, Public, or Published?

Directive What Goes There?

Private Instance variables and methods that you do not want the descendant type to be
able to access or modify. Typically, you will give access to some private instance
variables through properties that have read and write directives set in such a
way as to help prevent the users from shooting themselves in the foot. Therefore,
you want to avoid giving access to any methods that are property-implementation
methods.

Protected Instance variables, methods, and properties that you want descendant classes to be
able to access and modify—but not users of your class. It is a common practice to
place properties in the protected section of a base class for descendant classes to
publish at their discretion.

Public Methods and properties that you want to have accessible to any user of your class.
If you have properties that you want to be accessible at runtime, but not at design
time, this is the place to put them.

Published Properties that you want to be placed on the Object Inspector at design time.
Runtime Type Information (RTTI) is generated for all properties in this section.

Constructors and Destructors
When creating a new component, you have the option of overriding the ancestor component’s
constructor and defining your own. You should keep a few precautions in mind when doing so.

Overriding Constructors
Always make sure to include the override directive when declaring a constructor on a
TComponent descendant class. Here’s an example:

TSomeComponent = class(TComponent)
private
{ Private declarations }

protected
{ Protected declarations }

public
constructor Create(AOwner: TComponent); override;

published
{ Published declarations }

end;

Writing Delphi Custom Components

CHAPTER 21
635

21

W
R

ITIN
G

D
ELPH

I
C

U
STO

M
C

O
M

PO
N

EN
TS

25.65227_Ch21x 11/30/99 6:05 PM Page 635

Although not adding the override directive is syntactically legal, it can cause problems when
using your component. This is because when you use the component (both at design time and
at runtime), the non-virtual constructor won’t be called by code that creates the component
through a class reference (such as the streaming system).

Also, be sure that you call the inherited constructor inside your constructor’s code:

constructor TSomeComponent.Create(AOwner: TComponent);
begin
inherited Create(AOwner);
// Place your code here.

end;

Design-Time Behavior
Remember that your component’s constructor is called whenever the component is created.
This includes the component’s design-time creation—when you place it on the form. You
might want to prevent certain actions from occurring when the component is being designed.
For example, in the TddgHalfMinute component, you created a TTimer component inside the
component’s constructor. Although it doesn’t hurt to do this, it can be avoided by making sure
that the TTimer is only created at runtime.

You can check the ComponentState property of a component to determine its current state.
Table 21.3 lists the various component states, as shown in Delphi 5’s online help.

Table 21.3 Component State Values

Flag Component State

csAncestor Set if the component was introduced in an ancestor form. Only set if
csDesigning is also set.

csDesigning Design mode, meaning it is in a form being manipulated by a form
designer.

csDestroying The component is about to be destroyed.

Component-Based Development

PART III
636

NOTE

The Create() constructor is made virtual at the TComponent level. Non-component
classes have static constructors that are invoked from within the constructor of
TComponent classes. Therefore, if you are creating a non-component, descendant class
such as the following, the constructor cannot be overridden because it is not virtual:

TMyObject = class(TPersistent)

You simply re-declare the constructor in this instance.

25.65227_Ch21x 11/30/99 6:05 PM Page 636

Flag Component State

csFixups Set if the component is linked to a component in another form that has not
yet been loaded. This flag is cleared when all pending fixups are resolved.

csLoading Loading from a filer object.

csReading Reading its property values from a stream.

csUpdating The component is being updated to reflect changes in an ancestor form.
Only set if csAncestor is also set.

csWriting Writing its property values to a stream.

You will mostly use the csDesigning state to determine whether your component is in design
mode. You can do this with the following statement:

inherited Create(AOwner);
if csDesigning in ComponentState then
{ Do your stuff }

You should note that the csDesigning state is uncertain until after the inherited constructor has
been called and the component is being created with an owner. This is almost always the case
in the IDE form designer.

Overriding Destructors
The general guideline to follow when overriding destructors is to make sure you call the inher-
ited destructor only after you free up resources allocated by your component, not before. The
following code illustrates this:

destructor TMyComponent.Destroy;
begin
FTimer.Free;
MyStrings.Free;
inherited Destroy;

end;

Writing Delphi Custom Components

CHAPTER 21
637

21

W
R

ITIN
G

D
ELPH

I
C

U
STO

M
C

O
M

PO
N

EN
TS

TIP

As a rule of thumb, when you override constructors, you usually call the inherited
constructor first, and when you override destructors, you usually call the inherited
destructor last. This ensures that the class has been set up before you modify it and
that all dependent resources have been cleaned up before you dispose of a class.

There are exceptions to this rule, but you generally should stick with it unless you
have good reason not to.

25.65227_Ch21x 11/30/99 6:05 PM Page 637

Registering Your Component
Registering the component tells Delphi which component to place on the Component Palette.
If you used the Component Expert to design your component, you don’t have to do anything
here because Delphi has already generated the code for you. However, if you are creating your
component manually, you’ll need to add the Register() procedure to your component’s unit.

All you have to do is add the procedure Register() to the interface section of the compo-
nent’s unit.

The Register procedure simply calls the RegisterComponents() procedure for every compo-
nent that you are registering in Delphi. The RegisterComponents() procedure takes two para-
meters: the name of the page on which to place the components, and an array of component
types. Listing 21.8 shows how to do this.

LISTING 21.8 Registering Components

Unit MyComp;
interface
type
TMyComp = class(TComponent)
...
end;
TOtherComp = class(TComponent)
...
end;

procedure Register;
implementation
{ TMyComp methods }
{ TOtherCompMethods }
procedure Register;
begin
RegisterComponents(‘DDG’, [TMyComp, TOtherComp]);

end;
end.

The preceding code registers the components TMyComp and TOtherComp and places them on
Delphi’s Component Palette on a page labeled DDG.

Component-Based Development

PART III
638

The Component Palette
In Delphi 1 and 2, Delphi maintained a single component library file that stored all
components, icons, and editors for design-time usage. Although it was sometimes
convenient to have everything dealing with design in one file, it could easily get

25.65227_Ch21x 11/30/99 6:05 PM Page 638

Testing the Component
Although it’s very exciting when you finally write a component and are in the testing stages,
don’t get carried away by trying to add your component to the Component Palette before it has
been debugged sufficiently. You should do all preliminary testing with your component by cre-
ating a project that creates and uses a dynamic instance of the component. The reason for this
is that your component lives inside the IDE when it is used at design time. If your component
contains a bug that corrupts memory, for example, it might crash the IDE as well. Listing 21.9
depicts a unit for testing the TddgExtendedMemo component that will be created later in this
chapter. This project can be found on the CD in the project TestEMem.dpr.

LISTING 21.9 Testing the TddgExtendedMemo Component

unit MainFrm;

interface

uses

Writing Delphi Custom Components

CHAPTER 21
639

21

W
R

ITIN
G

D
ELPH

I
C

U
STO

M
C

O
M

PO
N

EN
TS

unwieldy when many components were placed in the component library.
Additionally, the more components you added to the palette, the longer it would
take to rebuild the component library when adding new components.

Thanks to packages, introduced with Delphi 3, you can split up your components into
several design packages. Although it’s slightly more complex to deal with multiple
files, this solution is significantly more configurable, and the time required to rebuild
a package after adding a component is a fraction of the time it took to rebuild the
component library.

By default, new components are added to a package called DCLUSR50, but you can
create and install new design packages using the File, New, Package menu item. The
CD accompanying this book contains a prebuilt design package called DdgDsgn50.dpk
which includes the components from this book. The runtime package is named
DdgStd50.dpk.

If your design-time support involves anything more than a call to
RegisterComponents() (like property editors or component editors or expert registra-
tions), you should move the Register() procedure and the stuff it registers into a
separate unit from your component. The reason for this is that if you compile your
all-in-one unit into a runtime package, and your all-in-one unit’s Register procedure
refers to classes or procedures that exist only in design-time IDE packages, your run-
time package is unusable. Design-time support should be packaged separately from
runtime material.

continues

25.65227_Ch21x 11/30/99 6:05 PM Page 639

LISTING 21.9 Continued

Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, exmemo, ExtCtrls;

type

TMainForm = class(TForm)
btnCreateMemo: TButton;
btnGetRowCol: TButton;
btnSetRowCol: TButton;
edtColumn: TEdit;
edtRow: TEdit;
Panel1: TPanel;
procedure btnCreateMemoClick(Sender: TObject);
procedure btnGetRowColClick(Sender: TObject);
procedure btnSetRowColClick(Sender: TObject);

public
EMemo: TddgExtendedMemo; // Declare the component.
procedure OnScroll(Sender: TObject);

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

procedure TMainForm.btnCreateMemoClick(Sender: TObject);
begin
{ Dynamically create the component. Make sure to make the appropriate
property assignments so that the component can be used normally.
These assignments depend on the component being tested }

if not Assigned(EMemo) then
begin
EMemo := TddgExtendedMemo.Create(self);
EMemo.Parent := Panel1;
EMemo.ScrollBars := ssBoth;
EMemo.WordWrap := True;
EMemo.Align := alClient;
// Assign event handlers to untested events.
EMemo.OnVScroll := OnScroll;
EMemo.OnHScroll := OnScroll;

end;
end;

Component-Based Development

PART III
640

25.65227_Ch21x 11/30/99 6:05 PM Page 640

{ Write whatever methods are required to test the run-time behavior
of the component. This includes methods to access each of the
new properties and methods belonging to the component.

Also, create event handlers for user-defined events so that you can
test them. Since you’re creating the component at run-time, you
have to manually assign the event handlers as was done in the
above Create() constructor.

}
procedure TMainForm.btnGetRowColClick(Sender: TObject);
begin
if Assigned(EMemo) then
ShowMessage(Format(‘Row: %d Column: %d’, [EMemo.Row, EMemo.Column]));

EMemo.SetFocus;
end;

procedure TMainForm.btnSetRowColClick(Sender: TObject);
begin
if Assigned(EMemo) then
begin
EMemo.Row := StrToInt(edtRow.Text);
EMemo.Column := StrToInt(edtColumn.Text);
EMemo.SetFocus;

end;
end;

procedure TMainForm.OnScroll(Sender: TObject);
begin
MessageBeep(0);

end;

end.

Keep in mind that even testing the component at design time doesn’t mean that your compo-
nent is foolproof. Some design-time behavior can still raise havoc with the Delphi IDE, such as
not calling the inherited Create() constructor.

Writing Delphi Custom Components

CHAPTER 21
641

21

W
R

ITIN
G

D
ELPH

I
C

U
STO

M
C

O
M

PO
N

EN
TS

NOTE

You cannot assume that your component has been created and set up by the design-
time environment. Your component must be fully usable after only the Create() con-
structor has executed. Therefore, you should not treat the Loaded() method as part
of the component construction process. The Loaded() method is called only when the

continues

25.65227_Ch21x 11/30/99 6:05 PM Page 641

Providing a Component Icon
No custom component would be complete without its own icon for the Component Palette. To
create one of these icons, use Delphi’s Image Editor (or your favorite bitmap editor) to create a
24×24 bitmap on which you will draw the component’s icon. This bitmap must be stored
within a DCR file. A file with a .dcr extension is nothing more than a renamed RES file.
Therefore, if you store your icon in a RES file, you can simply rename it to a DCR file.

Component-Based Development

PART III
642

component is loaded from a stream—such as when it is placed in a form built at
design time. Loaded() marks the end of the streaming process. If your component
was simply created (not streamed), Loaded() is not called.

TIP

Even if you have a 256 or higher color driver, save your Component Palette icon as a
16-color bitmap if you plan on releasing the component to others. Your 256-color
bitmaps most likely will look awful on machines running 16-color drivers.

After you create the bitmap in the DCR file, give the bitmap the same name as the class name
of your component—in ALL CAPS. Save the resource file as the same name as your compo-
nent’s unit with a .dcr extension. Therefore, if your component is named TXYZComponent, the
bitmap name is TXYZCOMPONENT. If the component’s unit name is XYZCOMP.PAS, name the
resource file XYZCOMP.DCR. Place this file in the same directory as the unit, and when you
recompile the unit, the bitmap automatically is linked into the component library.

Sample Components
The remaining sections of this chapter give some real examples of component creation. The
components created here serve two primary purposes. First, they illustrate the techniques
explained in the first part of this chapter. Secondly, you can actually use these components in
your applications. You might even decide to extend their functionality to meet your needs.

Extending Win32 Component Wrapper Capabilities
In some cases, you might want to extend the functionality of existing components, especially
those components that wrap the Win32 control classes. We’re going to show you how to do this
by creating two components that extend the behavior of the TMemo control and the TListBox
control.

25.65227_Ch21x 11/30/99 6:05 PM Page 642

TddgExtendedMemo: Extending the TMemo Component
Although the TMemo component is quite robust, there are a few features it doesn’t make avail-
able that would be useful. For starters, it’s not capable of providing the caret position in terms
of the row and column on which the caret sits. We’ll extend the TMemo component to provide
these as public properties.

Additionally, it is sometimes convenient to perform some action whenever the user touches the
TMemo’s scrollbars. You’ll create events to which the user can attach code whenever these
scrolling events occur.

The source code for the TddgExtendedMemo component is shown in Listing 21.10.

LISTING 21.10 ExtMemo.pas: The Source for the TddgExtendedMemo Component

unit ExMemo;

interface

uses
Windows, Messages, Classes, StdCtrls;

type

TddgExtendedMemo = class(TMemo)
private
FRow: Longint;
FColumn: Longint;
FOnHScroll: TNotifyEvent;
FOnVScroll: TNotifyEvent;
procedure WMHScroll(var Msg: TWMHScroll); message WM_HSCROLL;
procedure WMVScroll(var Msg: TWMVScroll); message WM_VSCROLL;
procedure SetRow(Value: Longint);
procedure SetColumn(Value: Longint);
function GetRow: Longint;
function GetColumn: Longint;

protected
// Event dispatching methods
procedure HScroll; dynamic;
procedure VScroll; dynamic;

public
property Row: Longint read GetRow write SetRow;
property Column: Longint read GetColumn write SetColumn;

published
property OnHScroll: TNotifyEvent read FOnHScroll write FOnHScroll;
property OnVScroll: TNotifyEvent read FOnVScroll write FOnVScroll;

Writing Delphi Custom Components

CHAPTER 21
643

21

W
R

ITIN
G

D
ELPH

I
C

U
STO

M
C

O
M

PO
N

EN
TS

25.65227_Ch21x 11/30/99 6:05 PM Page 643

LISTING 21.10 Continued

end;

implementation

procedure TddgExtendedMemo.WMHScroll(var Msg: TWMHScroll);
begin
inherited;
HScroll;

end;

procedure TddgExtendedMemo.WMVScroll(var Msg: TWMVScroll);
begin
inherited;
VScroll;

end;

procedure TddgExtendedMemo.HScroll;
{ This is the OnHScroll event dispatch method. It checks to see
if OnHScroll points to an event handler and calls it if it does. }

begin
if Assigned(FOnHScroll) then
FOnHScroll(self);

end;

procedure TddgExtendedMemo.VScroll;
{ This is the OnVScroll event dispatch method. It checks to see
if OnVScroll points to an event handler and calls it if it does. }

begin
if Assigned(FOnVScroll) then
FOnVScroll(self);

end;

procedure TddgExtendedMemo.SetRow(Value: Longint);
{ The EM_LINEINDEX returns the character position of the first
character in the line specified by wParam. The Value is used for
wParam in this instance. Setting SelStart to this return value
positions the caret on the line specified by Value. }

begin
SelStart := Perform(EM_LINEINDEX, Value, 0);
FRow := SelStart;

end;

function TddgExtendedMemo.GetRow: Longint;
{ The EM_LINEFROMCHAR returns the line in which the character specified

Component-Based Development

PART III
644

25.65227_Ch21x 11/30/99 6:05 PM Page 644

by wParam sits. If -1 is passed as wParam, the line number at which
the caret sits is returned. }

begin
Result := Perform(EM_LINEFROMCHAR, -1, 0);

end;

procedure TddgExtendedMemo.SetColumn(Value: Longint);
begin
{ Get the length of the current line using the EM_LINELENGTH
message. This message takes a character position as WParam.
The length of the line in which that character sits is returned. }

FColumn := Perform(EM_LINELENGTH, Perform(EM_LINEINDEX, GetRow, 0), 0);
{ If the FColumn is greater than the value passed in, then set
FColumn to the value passed in }

if FColumn > Value then
FColumn := Value;

// Now set SelStart to the newly specified position
SelStart := Perform(EM_LINEINDEX, GetRow, 0) + FColumn;

end;

function TddgExtendedMemo.GetColumn: Longint;
begin
{ The EM_LINEINDEX message returns the line index of a specified
character passed in as wParam. When wParam is -1 then it
returns the index of the current line. Subtracting SelStart from this
value returns the column position }

Result := SelStart - Perform(EM_LINEINDEX, -1, 0);
end;

end.

First, we’ll discuss adding the capability to provide row and column information to
TddgExtendedMemo. Notice that we’ve added two private fields to the component, FRow and
FColumn. These fields will hold the row and column of the TddgExtendedMemo’s caret position.
Notice that we’ve also provided the Row and Column public properties. These properties are
made public because there’s really no use for them at design time. The Row and Column proper-
ties have both reader and writer access methods. For the Row property, these access methods are
GetRow() and SetRow(). The Column access methods are GetColumn() and SetColumn(). For
all practical purposes, you probably could do away with the FRow and FColumn storage fields
because the values for Row and Column are provided through access methods. However, we’ve
left them here because they offer the opportunity to extend this component.

The four access methods make use of various EM_XXXX messages. The code comments explain
what is going on in each method and how these messages are used to provide Row and Column
information for the component.

Writing Delphi Custom Components

CHAPTER 21
645

21

W
R

ITIN
G

D
ELPH

I
C

U
STO

M
C

O
M

PO
N

EN
TS

25.65227_Ch21x 11/30/99 6:05 PM Page 645

The TddgExtendedMemo component also provides two new events: OnHScroll and OnVScroll.
The OnHScroll event occurs whenever the user clicks the horizontal scrollbar of the control.
Likewise, the OnVScroll occurs when the user clicks the vertical scrollbar. To surface such
events, you have to capture the WM_HSCROLL and WM_VSCROLL Win32 messages that are passed
to the control whenever the user clicks either scrollbar. Thus, you’ve created the two message
handlers: WMHScroll() and WMVScroll(). These two message handlers call the event-dispatch-
ing methods HScroll() and VScroll(). These methods are responsible for checking whether
the component user has provided event handlers for the OnHScroll and OnVScroll events and
then calling those event handlers. If you’re wondering why we didn’t just perform this check in
the message handler methods, it’s because you'll often want to be able to invoke an event han-
dler as a result of a different action, such as when the user changes the caret position.

You can install and use the TddgExtendedMemo with your applications. You might even con-
sider extending this component; for example, whenever the user changes the caret position, a
WM_COMMAND message is sent to the control’s owner. The HiWord(wParam) carries a notification
code indicating the action that occurred. This code would have the value of EN_CHANGE, which
stands for edit-notification message change. It is possible to have your component subclass its
parent and capture this message in the parent’s window procedure. It can then automatically
update the FRow and FColumn fields. Subclassing is an altogether different and advanced topic
that is discussed later.

TddgTabbedListBox: Extending the TListBox Component
VCL’s TListbox component is merely an Object Pascal wrapper around the standard Win32
API LISTBOX control. Although it does do a fair job encapsulating most of that functionality,
there is a little bit of room for improvement. This section takes you through the steps in creat-
ing a custom component based on TListbox.

The Idea
The idea for this component, like most, was born out of necessity. A list box was needed with
the capability to use tab stops (which is supported in the Win32 API, but not in a TListbox),
and a horizontal scrollbar was needed to view strings that were longer than the list box width
(also supported by the API but not a TListbox). This component will be called a
TddgTabListbox.

The plan for the TddgTabListbox component isn’t terribly complex; we did this by creating a
TListbox descendant component containing the correct field properties, overridden methods,
and new methods to achieve the desired behavior.

The Code
The first step in creating a scrollable list box with tab stops is to include those window styles
in the TddgTabListbox’s style when the listbox window is created. The window styles needed

Component-Based Development

PART III
646

25.65227_Ch21x 11/30/99 6:05 PM Page 646

are lbs_UseTabStops for tabs and ws_HScroll to allow a horizontal scrollbar. Whenever you
add window styles to a descendant of TWinControl, do so by overriding the CreateParams()
method, as shown in the following code:

procedure TddgTabListbox.CreateParams(var Params: TCreateParams);
begin
inherited CreateParams(Params);
Params.Style := Params.Style or lbs_UseTabStops or ws_HScroll;

end;

Writing Delphi Custom Components

CHAPTER 21
647

21

W
R

ITIN
G

D
ELPH

I
C

U
STO

M
C

O
M

PO
N

EN
TS

CreateParams()
Whenever you need to modify any of the parameters—such as the style or window
class—that are passed to the CreateWindowEx() API function, you should do so in the
CreateParams() method. CreateWindowEx() is the function used to create the win-
dow handle associated with a TWinControl descendant. By overriding
CreateParams(), you can control the creation of a window on the API level.

CreateParams accepts one parameter of type TCreateParams, which follows:

TCreateParams = record
Caption: PChar;
Style: Longint;
ExStyle: Longint;
X, Y: Integer;
Width, Height: Integer;
WndParent: HWnd;
Param: Pointer;
WindowClass: TWndClass;
WinClassName: array[0..63] of Char;

end;

As a component writer, you will override CreateParams() frequently—whenever you
need to control the creation of a component on the API level. Make sure that you call
the inherited CreateParams() first in order to fill up the Params record for you.

To set the tab stops, the TddgTabListbox performs an lb_SetTabStops message, passing the
number of tab stops and a pointer to an array of tabs as the wParam and lParam (these two vari-
ables will be stored in the class as FNumTabStops and FTabStops). The only catch is that list-
box tab stops are handled in a unit of measure called dialog box units. Because dialog box
units don’t make sense for the Delphi programmer, you will surface tabs only in pixels. With
the help of the PixDlg.pas unit shown in Listing 21.11, you can convert back and forth
between dialog box units and screen pixels in both the X and Y planes.

25.65227_Ch21x 11/30/99 6:05 PM Page 647

LISTING 21.11 The Source Code for PixDlg.pas

unit Pixdlg;

interface

function DialogUnitsToPixelsX(DlgUnits: word): word;
function DialogUnitsToPixelsY(DlgUnits: word): word;
function PixelsToDialogUnitsX(PixUnits: word): word;
function PixelsToDialogUnitsY(PixUnits: word): word;

implementation
uses WinProcs;

function DialogUnitsToPixelsX(DlgUnits: word): word;
begin
Result := (DlgUnits * LoWord(GetDialogBaseUnits)) div 4;

end;

function DialogUnitsToPixelsY(DlgUnits: word): word;
begin
Result := (DlgUnits * HiWord(GetDialogBaseUnits)) div 8;

end;

function PixelsToDialogUnitsX(PixUnits: word): word;
begin
Result := PixUnits * 4 div LoWord(GetDialogBaseUnits);

end;

function PixelsToDialogUnitsY(PixUnits: word): word;
begin
Result := PixUnits * 8 div HiWord(GetDialogBaseUnits);

end;

end.

When you know the tab stops, you can calculate the extent of the horizontal scrollbar. The
scrollbar should extend at least to the end of the longest string in the listbox. Luckily, the
Win32 API provides a function called GetTabbedTextExtent() that retrieves just the informa-
tion you need. When you know the length of the longest string, you can set the scrollbar range
by performing the lb_SetHorizontalExtent message, passing the desired extent as the
wParam.

You also need to write message handlers for some special Win32 messages. In particular, you
need to handle the messages that control inserting and deleting, because you need to be able to

Component-Based Development

PART III
648

25.65227_Ch21x 11/30/99 6:05 PM Page 648

measure the length of any new string or know when a long string has been deleted. The mes-
sages you’re concerned with are lb_AddString, lb_InsertString, and lb_DeleteString.
Listing 21.12 contains the source code for the LbTab.pas unit, which contains the
TddgTabListbox component.

LISTING 21.12 LbTab.pas, the TddgTabListBox

unit Lbtab;

interface

uses
SysUtils, Windows, Messages, Classes, Controls, StdCtrls;

type

EddgTabListboxError = class(Exception);

TddgTabListBox = class(TListBox)
private
FLongestString: Word;
FNumTabStops: Word;
FTabStops: PWord;
FSizeAfterDel: Boolean;
function GetLBStringLength(S: String): word;
procedure FindLongestString;
procedure SetScrollLength(S: String);
procedure LBAddString(var Msg: TMessage); message lb_AddString;
procedure LBInsertString(var Msg: TMessage); message lb_InsertString;
procedure LBDeleteString(var Msg: TMessage); message lb_DeleteString;

protected
procedure CreateParams(var Params: TCreateParams); override;

public
constructor Create(AOwner: TComponent); override;
procedure SetTabStops(A: array of word);

published
property SizeAfterDel: Boolean read FSizeAfterDel write FSizeAfterDel

➥default True;
end;

implementation

uses PixDlg;

constructor TddgTabListBox.Create(AOwner: TComponent);

Writing Delphi Custom Components

CHAPTER 21
649

21

W
R

ITIN
G

D
ELPH

I
C

U
STO

M
C

O
M

PO
N

EN
TS

continues

25.65227_Ch21x 11/30/99 6:05 PM Page 649

LISTING 21.12 Continued

begin
inherited Create(AOwner);
FSizeAfterDel := True;
{ set tab stops to Windows defaults... }
FNumTabStops := 1;
GetMem(FTabStops, SizeOf(Word) * FNumTabStops);
FTabStops^ := DialogUnitsToPixelsX(32);

end;

procedure TddgTabListBox.SetTabStops(A: array of word);
{ This procedure sets the listbox’s tabstops to those specified
in the open array of word, A. New tabstops are in pixels, and must
be in ascending order. An exception will be raised if new tabs
fail to set. }

var
i: word;
TempTab: word;
TempBuf: PWord;

begin
{ Store new values in temps in case exception occurs in setting tabs }
TempTab := High(A) + 1; // Figure number of tabstops
GetMem(TempBuf, SizeOf(A)); // Allocate new tabstops
Move(A, TempBuf^, SizeOf(A));// copy new tabstops }
{ convert from pixels to dialog units, and... }
for i := 0 to TempTab - 1 do
A[i] := PixelsToDialogUnitsX(A[i]);

{ Send new tabstops to listbox. Note that we must use dialog units. }
if Perform(lb_SetTabStops, TempTab, Longint(@A)) = 0 then
begin
{ if zero, then failed to set new tabstops, free temp
tabstop buffer and raise an exception }

FreeMem(TempBuf, SizeOf(Word) * TempTab);
raise EddgTabListboxError.Create(‘Failed to set tabs.’)

end
else begin
{ if nonzero, then new tabstops set okay, so
Free previous tabstops }

FreeMem(FTabStops, SizeOf(Word) * FNumTabStops);
{ copy values from temps... }
FNumTabStops := TempTab; // set number of tabstops
FTabStops := TempBuf; // set tabstop buffer
FindLongestString; // reset scrollbar
Invalidate; // repaint

end;

Component-Based Development

PART III
650

25.65227_Ch21x 11/30/99 6:05 PM Page 650

end;

procedure TddgTabListBox.CreateParams(var Params: TCreateParams);
{ We must OR in the styles necessary for tabs and horizontal scrolling
These styles will be used by the API CreateWindowEx() function. }

begin
inherited CreateParams(Params);
{ lbs_UseTabStops style allows tabs in listbox
ws_HScroll style allows horizontal scrollbar in listbox }

Params.Style := Params.Style or lbs_UseTabStops or ws_HScroll;
end;

function TddgTabListBox.GetLBStringLength(S: String): word;
{ This function returns the length of the listbox string S in pixels }
var
Size: Integer;

begin
// Get the length of the text string
Canvas.Font := Font;
Result := LoWord(GetTabbedTextExtent(Canvas.Handle, PChar(S),

StrLen(PChar(S)), FNumTabStops, FTabStops^));
// Add a little bit of space to the end of the scrollbar extent for looks
Size := Canvas.TextWidth(‘X’);
Inc(Result, Size);

end;

procedure TddgTabListBox.SetScrollLength(S: String);
{ This procedure resets the scrollbar extent if S is longer than the }
{ previous longest string }
var
Extent: Word;

begin
Extent := GetLBStringLength(S);
// If this turns out to be the longest string...
if Extent > FLongestString then
begin
// reset longest string
FLongestString := Extent;
//reset scrollbar extent
Perform(lb_SetHorizontalExtent, Extent, 0);

end;
end;

procedure TddgTabListBox.LBInsertString(var Msg: TMessage);
{ This procedure is called in response to a lb_InsertString message.
This message is sent to the listbox every time a string is inserted.

Writing Delphi Custom Components

CHAPTER 21
651

21

W
R

ITIN
G

D
ELPH

I
C

U
STO

M
C

O
M

PO
N

EN
TS

continues

25.65227_Ch21x 11/30/99 6:05 PM Page 651

LISTING 21.12 Continued

Msg.lParam holds a pointer to the null-terminated string being
inserted. This will cause the scrollbar length to be adjusted if
the new string is longer than any of the existing strings. }

begin
inherited;
SetScrollLength(PChar(Msg.lParam));

end;

procedure TddgTabListBox.LBAddString(var Msg: TMessage);
{ This procedure is called in response to a lb_AddString message.
This message is sent to the listbox every time a string is added.
Msg.lParam holds a pointer to the null-terminated string being
added. This Will cause the scrollbar length to be adjusted if the
new string is longer than any of the existing strings.}

begin
inherited;
SetScrollLength(PChar(Msg.lParam));

end;

procedure TddgTabListBox.FindLongestString;
var
i: word;
Strg: String;

begin
FLongestString := 0;
{ iterate through strings and look for new longest string }
for i := 0 to Items.Count - 1 do
begin
Strg := Items[i];
SetScrollLength(Strg);

end;
end;

procedure TddgTabListBox.LBDeleteString(var Msg: TMessage);
{ This procedure is called in response to a lb_DeleteString message.
This message is sent to the listbox everytime a string is deleted.
Msg.wParam holds the index of the item being deleted. Note that
by setting the SizeAfterDel property to False, you can cause the
scrollbar update to not occur. This will improve performance
if you’re deleting often. }

var
Str: String;

begin
if FSizeAfterDel then

Component-Based Development

PART III
652

25.65227_Ch21x 11/30/99 6:05 PM Page 652

begin
Str := Items[Msg.wParam]; // Get string to be deleted
inherited; // Delete string
{ Is deleted string the longest? }
if GetLBStringLength(Str) = FLongestString then
FindLongestString;

end
else
inherited;

end;

end.

One particular point of interest in this component is the SetTabStops() method, which accepts
an open array of word as a parameter. This enables users to pass in as many tab stops as they
want. Here is an example:

ddgTabListboxInstance.SetTabStops([50, 75, 150, 300]);

If the text in the listbox extends beyond the viewable window, the horizontal scrollbar will
appear automatically.

TddgRunButton: Creating Properties
If you wanted to run another executable program in 16-bit Windows, you could use the
WinExec() API function. Although these functions still work in Win32, it is not the recom-
mended approach. Now you should use the CreateProcess() or ShellExecute() functions to
launch another application. CreateProcess() can be a somewhat daunting task when needed
just for that purpose. Therefore, we’ve provided the ProcessExecute() method, which we’ll
show in a moment.

To illustrate the use of ProcessExecute(), we’ve created the component TddgRunButton. All
that is required of the user is to click the button and the application executes.

The TddgRunButton component is an ideal example of creating properties, validating property
values, and encapsulating complex operations. Additionally, we’ll show you how to grab the
application icon from an executable file and how to display it in the TddgRunButton at design
time. One other thing; TddgRunButton descends from TSpeedButton. Because TSpeedButton
contains certain properties that you don’t want accessible at design time through the Object
Inspector, we’ll show you how you can hide (sort of) existing properties from the component
user. Admittedly, this technique is not exactly the cleanest approach to use. Typically, you
would create a component of your own if you want to take the purist approach—of which the
authors are advocates. However, this is one of those instances where Borland, in all its infinite

Writing Delphi Custom Components

CHAPTER 21
653

21

W
R

ITIN
G

D
ELPH

I
C

U
STO

M
C

O
M

PO
N

EN
TS

25.65227_Ch21x 11/30/99 6:05 PM Page 653

wisdom, did not provide an intermediate component in between TSpeedButton and
TCustomControl (from which TSpeedButton descends), as Borland did with its other compo-
nents. Therefore, the choice was either to roll our own component that pretty much duplicates
the functionality you get from TSpeedButton, or borrow from TSpeedButton’s functionality
and hide a few properties that aren’t applicable for your needs. We opted for the latter, but only
out of necessity. However, this should clue you in to practice careful forethought as to how
component writers might want to extend your own components.

The code to TddgRunButton is shown in Listing 21.13.

LISTING 21.13 RunBtn.pas, the Source to the TddgRunButton Component

{
Copyright © 1999 by Delphi 5 Developer’s Guide - Xavier Pacheco and Steve
Teixeira
}

unit RunBtn;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, Buttons;

type

TCommandLine = type string;

TddgRunButton = class(TSpeedButton)
private
FCommandLine: TCommandLine;
// Hiding Properties from the Object Inspector
FCaption: TCaption;
FAllowAllUp: Boolean;
FFont: TFont;
FGroupIndex: Integer;
FLayOut: TButtonLayout;
procedure SetCommandLine(Value: TCommandLine);

public
constructor Create(AOwner: TComponent); override;
procedure Click; override;

published
property CommandLine: TCommandLine read FCommandLine write SetCommandLine;
// Read only properties are hidden

Component-Based Development

PART III
654

25.65227_Ch21x 11/30/99 6:05 PM Page 654

property Caption: TCaption read FCaption;
property AllowAllUp: Boolean read FAllowAllUp;
property Font: TFont read FFont;
property GroupIndex: Integer read FGroupIndex;
property LayOut: TButtonLayOut read FLayOut;

end;

implementation

uses ShellAPI;

const
EXEExtension = ‘.EXE’;

function ProcessExecute(CommandLine: TCommandLine; cShow: Word): Integer;
{ This method encapsulates the call to CreateProcess() which creates
a new process and its primary thread. This is the method used in
Win32 to execute another application, This method requires the use
of the TStartInfo and TProcessInformation structures. These structures
are not documented as part of the Delphi 5 online help but rather
the Win32 help as STARTUPINFO and PROCESS_INFORMATION.

The CommandLine parameter specifies the pathname of the file to
execute.

The cShow parameter specifies one of the SW_XXXX constants which
specifies how to display the window. This value is assigned to the
sShowWindow field of the TStartupInfo structure. }

var
Rslt: LongBool;
StartUpInfo: TStartUpInfo; // documented as STARTUPINFO
ProcessInfo: TProcessInformation; // documented as PROCESS_INFORMATION

begin
{ Clear the StartupInfo structure }
FillChar(StartupInfo, SizeOf(TStartupInfo), 0);
{ Initialize the StartupInfo structure with required data.
Here, we assign the SW_XXXX constant to the wShowWindow field
of StartupInfo. When specifying a value to this field the
STARTF_USESSHOWWINDOW flag must be set in the dwFlags field.
Additional information on the TStartupInfo is provided in the Win32
online help under STARTUPINFO. }

with StartupInfo do
begin
cb := SizeOf(TStartupInfo); // Specify size of structure
dwFlags := STARTF_USESHOWWINDOW or STARTF_FORCEONFEEDBACK;
wShowWindow := cShow

Writing Delphi Custom Components

CHAPTER 21
655

21

W
R

ITIN
G

D
ELPH

I
C

U
STO

M
C

O
M

PO
N

EN
TS

continues

25.65227_Ch21x 11/30/99 6:05 PM Page 655

LISTING 21.13 Continued

end;

{ Create the process by calling CreateProcess(). This function
fills the ProcessInfo structure with information about the new
process and its primary thread. Detailed information is provided
in the Win32 online help for the TProcessInfo structure under
PROCESS_INFORMATION. }

Rslt := CreateProcess(PChar(CommandLine), nil, nil, nil, False,
NORMAL_PRIORITY_CLASS, nil, nil, StartupInfo, ProcessInfo);

{ If Rslt is true, then the CreateProcess call was successful.
Otherwise, GetLastError will return an error code representing the
error which occurred. }

if Rslt then
with ProcessInfo do
begin
{ Wait until the process is in idle. }
WaitForInputIdle(hProcess, INFINITE);
CloseHandle(hThread); // Free the hThread handle
CloseHandle(hProcess);// Free the hProcess handle
Result := 0; // Set Result to 0, meaning successful

end
else Result := GetLastError; // Set result to the error code.

end;

function IsExecutableFile(Value: TCommandLine): Boolean;
{ This method returns whether or not the Value represents a valid
executable file by ensuring that its file extension is ‘EXE’ }

var
Ext: String[4];

begin
Ext := ExtractFileExt(Value);
Result := (UpperCase(Ext) = EXEExtension);

end;

constructor TddgRunButton.Create(AOwner: TComponent);
{ The constructor sets the default height and width properties
to 45x45 }

begin
inherited Create(AOwner);
Height := 45;
Width := 45;

end;

procedure TddgRunButton.SetCommandLine(Value: TCommandLine);

Component-Based Development

PART III
656

25.65227_Ch21x 11/30/99 6:05 PM Page 656

{ This write access method sets the FCommandLine field to Value, but
only if Value represents a valid executable file name. It also
set the icon for the TddgRunButton to the application icon of the
file specified by Value. }

var
Icon: TIcon;

begin
{ First check to see that Value *is* an executable file and that
it actually exists where specified. }

if not IsExecutableFile(Value) then
Raise Exception.Create(Value+’ is not an executable file.’);

if not FileExists(Value) then
Raise Exception.Create(‘The file: ‘+Value+’ cannot be found.’);

FCommandLine := Value; // Store the Value in FCommandLine

{ Now draw the application icon for the file specified by Value
on the TddgRunButton icon. This requires us to create a TIcon
instance to which to load the icon. It is then copied from this
TIcon instance to the TddgRunButton’s Canvas.

We must use the Win32 API function ExtractIcon() to retrieve the
icon for the application. }

Icon := TIcon.Create; // Create the TIcon instance
try
{ Retrieve the icon from the application’s file }
Icon.Handle := ExtractIcon(hInstance, PChar(FCommandLine), 0);
with Glyph do
begin
{ Set the TddgRunButton properties so that the icon held by Icon
can be copied onto it. }

{ First, clear the canvas. This is required in case another
icon was previously drawn on the canvas }

Canvas.Brush.Style := bsSolid;
Canvas.FillRect(Canvas.ClipRect);
{ Set the Icon’s width and height }
Width := Icon.Width;
Height := Icon.Height;
Canvas.Draw(0, 0, Icon); // Draw the icon to TddgRunButton’s Canvas

end;
finally
Icon.Free; // Free the TIcon instance.

end;
end;

procedure TddgRunButton.Click;

Writing Delphi Custom Components

CHAPTER 21
657

21

W
R

ITIN
G

D
ELPH

I
C

U
STO

M
C

O
M

PO
N

EN
TS

continues

25.65227_Ch21x 11/30/99 6:05 PM Page 657

LISTING 21.13 Continued

var
WERetVal: Word;

begin
inherited Click; // Call the inherited Click method
{ Execute the ProcessExecute method and check it’s return value.
if the return value is <> 0 then raise an exception because
an error occurred. The error code is shown in the exception }

WERetVal := ProcessExecute(FCommandLine, sw_ShowNormal);
if WERetVal <> 0 then begin
raise Exception.Create(‘Error executing program. Error Code:; ‘+

IntToStr(WERetVal));
end;

end;

end.

TddgRunButton has one property, CommandLine, which is defined to be of the type String. The
private storage field for CommandLine is FCommandLine.

Component-Based Development

PART III
658

TIP

It is worth discussing the special definition of TCommandLine. Here is the syntax used:

TCommandLine = type string;

By defining TCommandLine as such, you tell the compiler to treat TCommandLine as a
unique type that is still compatible with other string types. The new type will get its
own runtime type information and therefore can have its own property editor. This
same technique can be used with other types as well. Here is an example:

TMySpecialInt = type Integer;

We will show you how we use this to create a property editor for the CommandLine
property in the next chapter. We do not show you this technique in this chapter
because creating property editors is an advanced topic that we want to talk about in
more depth.

The write access method for CommandLine is SetCommandLine(). We’ve provided two helper
functions: IsExecutableFile() and ProcessExecute().

IsExecutableFile() is a function that determines whether a filename passed to it is an exe-
cutable file based on the file’s extension.

25.65227_Ch21x 11/30/99 6:05 PM Page 658

Creating and Executing a Process
ProcessExecute() is a function that encapsulates the CreateProcess() Win32 API function
that enables you to launch another application. The application to launch is specified by the
CommandLine parameter, which holds the filename path. The second parameter contains one of
the SW_XXXX constants that indicates how the process’s main windows are to be displayed. Table
21.4 lists the various SW_XXXX constants and their meanings, as explained in the online help.

Table 21.4 SW_XXXX Constants

SW_XXXX Constant Meaning

SW_HIDE Hides the window. Another window will become active.

SW_MAXIMIZE Displays the window as maximized.

SW_MINIMIZE Minimizes the window.

SW_RESTORE Displays a window at its size before it was maximized/minimized.

SW_SHOW Displays a window at its current size/position.

SW_SHOWDEFAULT Shows a window at the state specified by the TStartupInfo structure
passed to CreateProcess().

SW_SHOWMAXIMIZED Activates/displays the window as maximized.

SW_SHOWMINIMIZED Activates/displays the window as minimized.

SW_SHOWMINNOACTIVE Displays the window as minimized but the currently active window
remains active.

SW_SHOWNA Display the window at its current state. The currently active window
remains active.

SW_SHOWNOACTIVATE Displays the window at the most recent size/position. The currently
active window remains active.

SW_SHOWNORMAL Activates/displays the window at its more recent size/position. This posi-
tion is restored if the window was previously maximized/minimized.

ProcessExecute() is a handy utility function that you might want to keep around in a separate
unit that may be shared by other applications.

TddgRunButton Methods
The TddgRunButton.Create() constructor simply sets a default size for itself after calling the
inherited constructor.

The SetCommandLine() method, which is the writer access method for the CommandLine para-
meter, performs several tasks. First, it determines whether the value being assigned to
CommandLine is a valid executable filename. If not, it raises an exception.

Writing Delphi Custom Components

CHAPTER 21
659

21

W
R

ITIN
G

D
ELPH

I
C

U
STO

M
C

O
M

PO
N

EN
TS

25.65227_Ch21x 11/30/99 6:05 PM Page 659

If the entry is valid, it is assigned to the FCommandLine field. SetCommandLine() then extracts
the icon from the application file and draws it to TddgRunButton’s canvas. The Win32 API
function ExtractIcon() is used to do this. The technique used is explained in the commentary.

TddgRunButton.Click() is the event-dispatching method for the TSpeedButton.OnClick
event. It is necessary to call the inherited Click() method that will invoke the OnClick event
handler if assigned. After calling the inherited Click(), you call ProcessExecute() and exam-
ine its result value to determine whether the call was successful. If not, an exception is raised.

TddgButtonEdit—Container Components
Occasionally you might like to create a component that is composed of one or more other com-
ponents. Delphi’s TDBNavigator is a good example of such a component, as it consists of a
TPanel and a number of TSpeedButton components. Specifically, this section illustrates this
concept by creating a component that is a combination of a TEdit and a TSpeedButton compo-
nent. We will call this component TddgButtonEdit.

Design Decisions
Considering that Object Pascal is based upon a single-inheritance object model,
TddgButtonEdit will need to be a component in its own right, which must contain both a
TEditl and a TSpeedButton. Furthermore, because it’s necessary that this component contain
windowed controls, it will need to be a windowed control itself. For these reasons, we chose to
descend TddgButtonEdit from TWinControl. We created both the TEdit and TSpeedButton in
TddgButtonEdit’s constructor using the following code:

constructor TddgButtonEdit.Create(AOwner: TComponent);
begin
inherited Create(AOwner);
FEdit := TEdit.Create(Self);
FEdit.Parent := self;
FEdit.Height := 21;

FSpeedButton := TSpeedButton.Create(Self);
FSpeedButton.Left := FEdit.Width;
FSpeedButton.Height := 19; // two less then TEdit’s Height
FSpeedButton.Width := 19;
FSpeedButton.Caption := ‘...’;
FSpeedButton.Parent := Self;

Width := FEdit.Width+FSpeedButton.Width;
Height := FEdit.Height;

end;

Component-Based Development

PART III
660

25.65227_Ch21x 11/30/99 6:05 PM Page 660

The challenge when creating a component that contains other components is surfacing the
properties of the “inner” components from the container component. For example, the
TddgButtonEdit will need a Text property. You also might want to be able to change the font
for the text in the control; therefore, a Font property is needed. Finally, there needs to be an
OnClick event for the button in the control. You wouldn’t want to attempt to implement this
yourself in the container component when it is already available from the inner components.
The goal, then, is to surface the appropriate properties of the inner controls without rewriting
the interfaces to these controls.

Surfacing Properties
This usually boils down to the simple but time-consuming task of writing reader and writer
methods for each of the inner component properties you want to resurface through the con-
tainer component. In the case of the Text property, for example, you might give the
TddgButtonEdit a Text property with read and write methods:

TddgButtonEdit = class(TWinControl)
private
FEdit: TEdit;
protected
procedure SetText(Value: String);
function GetText: String;

published
property Text: String read GetText write SetText;

end;

The SetText() and GetText() methods directly access the Text property of the contained
TEdit control, as shown here:

function TddgButtonEdit.GetText: String;
begin
Result := FEdit.Text;

end;

procedure TddgButtonEdit.SetText(Value: String);
begin
FEdit.Text := Value;

end;

Surfacing Events
In addition to properties, it’s also quite likely that you might want to resurface events that exist
in the inner components. For example, when the user clicks on the TSpeedButton control, you
would want to surface its OnClick event. Resurfacing events is just as straightforward as resur-
facing properties—after all, events are properties.

Writing Delphi Custom Components

CHAPTER 21
661

21

W
R

ITIN
G

D
ELPH

I
C

U
STO

M
C

O
M

PO
N

EN
TS

25.65227_Ch21x 11/30/99 6:05 PM Page 661

You need to first give the TddgButtonEdit its own OnClick event. For clarity, we named this
event OnButtonClick. The read and write methods for this event simply redirect the assign-
ment to the OnClick event of the internal TSpeedButton.

Listing 21.14 shows the TddgButtonEdit container component.

LISTING 21.14 TddgButtonEdit, a Container Component

unit ButtonEdit;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, Buttons;

type
TddgButtonEdit = class(TWinControl)
private
FSpeedButton: TSpeedButton;
FEdit: TEdit;

protected
procedure WMSize(var Message: TWMSize); message WM_SIZE;
procedure SetText(Value: String);
function GetText: String;
function GetFont: TFont;
procedure SetFont(Value: TFont);
function GetOnButtonClick: TNotifyEvent;
procedure SetOnButtonClick(Value: TNotifyEvent);

public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;

published
property Text: String read GetText write SetText;
property Font: TFont read GetFont write SetFont;
property OnButtonClick: TNotifyEvent read GetOnButtonClick

write SetOnButtonClick;
end;

implementation

procedure TddgButtonEdit.WMSize(var Message: TWMSize);
begin
inherited;
FEdit.Width := Message.Width-FSpeedButton.Width;
FSpeedButton.Left := FEdit.Width;

Component-Based Development

PART III
662

25.65227_Ch21x 11/30/99 6:05 PM Page 662

end;

constructor TddgButtonEdit.Create(AOwner: TComponent);
begin
inherited Create(AOwner);
FEdit := TEdit.Create(Self);
FEdit.Parent := self;
FEdit.Height := 21;

FSpeedButton := TSpeedButton.Create(Self);
FSpeedButton.Left := FEdit.Width;
FSpeedButton.Height := 19; // two less than TEdit’s Height
FSpeedButton.Width := 19;
FSpeedButton.Caption := ‘...’;
FSpeedButton.Parent := Self;

Width := FEdit.Width+FSpeedButton.Width;
Height := FEdit.Height;

end;

destructor TddgButtonEdit.Destroy;
begin
FSpeedButton.Free;
FEdit.Free;
inherited Destroy;

end;

function TddgButtonEdit.GetText: String;
begin
Result := FEdit.Text;

end;

procedure TddgButtonEdit.SetText(Value: String);
begin
FEdit.Text := Value;

end;

function TddgButtonEdit.GetFont: TFont;
begin
Result := FEdit.Font;

end;

procedure TddgButtonEdit.SetFont(Value: TFont);
begin
if Assigned(FEdit.Font) then
FEdit.Font.Assign(Value);

Writing Delphi Custom Components

CHAPTER 21
663

21

W
R

ITIN
G

D
ELPH

I
C

U
STO

M
C

O
M

PO
N

EN
TS

continues

25.65227_Ch21x 11/30/99 6:05 PM Page 663

LISTING 21.14 Continued

end;

function TddgButtonEdit.GetOnButtonClick: TNotifyEvent;
begin
Result := FSpeedButton.OnClick;

end;

procedure TddgButtonEdit.SetOnButtonClick(Value: TNotifyEvent);
begin
FSpeedButton.OnClick := Value;

end;

end.

TddgDigitalClock—Creating Component Events
TddgDigitalClock illustrates the process of creating and making available user-defined events.
We will use the same technique discussed earlier when we discussed creating events with the
TddgHalfMinute component.

TddgDigitalClock descends from TPanel. We decided that TPanel was an ideal component
from which TddgDigitalClock could descend because TPanel has the BevelXXXX properties.
This enables you to give the TddgDigitalClock a pleasing visual appearance. Also, you can
use the TPanel.Caption property to display the system time.

TddgDigitalClock contains the following events to which the user can assign code:

OnHour Occurs on the hour, every hour.

OnHalfPast Occurs on the half-hour.

OnMinute Occurs on the minute.

OnHalfMinute Occurs every 30 seconds: on the minute and on the half minute.

OnSecond Occurs on the second.

TddgDigitalClock uses a TTimer component internally. Its OnTimer event handler performs
the logic to display the time information and to invoke the event-dispatching methods for the
previously listed events accordingly. Listing 21.15 shows the source code for DdgClock.pas.

LISTING 21.15 DdgClock.pas: Source for the TddgDigitalClock Component

{
Copyright © 1999 by Delphi 5 Developer’s Guide - Xavier Pacheco and Steve
Teixeira
}

Component-Based Development

PART III
664

25.65227_Ch21x 11/30/99 6:05 PM Page 664

{$IFDEF VER110}
{$OBJEXPORTALL ON}
{$ENDIF}

unit DDGClock;

interface

uses
Windows, Messages, Controls, Forms, SysUtils, Classes, ExtCtrls;

type

{ Declare an event type which takes the sender of the event, and
a TDateTime variable as parameters }

TTimeEvent = procedure(Sender: TObject; DDGTime: TDateTime) of object;

TddgDigitalClock = class(TPanel)
private
{ Data fields }
FHour,
FMinute,
FSecond: Word;
FDateTime: TDateTime;
FOldMinute,
FOldSecond: Word;
FTimer: TTimer;
{ Event handlers }
FOnHour: TTimeEvent; // Occurs on the hour
FOnHalfPast: TTimeEvent; // Occurs every half-hour
FOnMinute: TTimeEvent; // Occurs on the minute
FOnSecond: TTimeEvent; // Occurs every second
FOnHalfMinute: TTimeEvent; // Occurs every 30 seconds
{ Define OnTimer event handler for internal TTimer, FTimer }
procedure TimerProc(Sender: TObject);

protected
{ Override the Paint methods }
procedure Paint; override;

{ Define the various event dispatching methods }
procedure DoHour(Tm: TDateTime); dynamic;
procedure DoHalfPast(Tm: TDateTime); dynamic;
procedure DoMinute(Tm: TDateTime); dynamic;
procedure DoHalfMinute(Tm: TDateTime); dynamic;
procedure DoSecond(Tm: TDateTime); dynamic;

Writing Delphi Custom Components

CHAPTER 21
665

21

W
R

ITIN
G

D
ELPH

I
C

U
STO

M
C

O
M

PO
N

EN
TS

continues

25.65227_Ch21x 11/30/99 6:05 PM Page 665

LISTING 21.15 Continued

public
{ Override the Create constructor and Destroy destructor }
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;

published
{ Define event properties }
property OnHour: TTimeEvent read FOnHour write FOnHour;
property OnHalfPast: TTimeEvent read FOnHalfPast write FOnHalfPast;
property OnMinute: TTimeEvent read FOnMinute write FOnMinute;
property OnHalfMinute: TTimeEvent read FOnHalfMinute

write FOnHalfMinute;
property OnSecond: TTimeEvent read FOnSecond write FOnSecond;

end;

implementation

constructor TddgDigitalClock.Create(AOwner: TComponent);
begin
inherited Create(AOwner); // Call the inherited constructor
Height := 25; // Set default width and height properties
Width := 120;
BevelInner := bvLowered; // Set Default bevel properties
BevelOuter := bvLowered;
{ Set the inherited Caption property to an empty string }
inherited Caption := ‘’;
{ Create the TTimer instance and set both its Interval property and
OnTime event handler. }

FTimer:= TTimer.Create(self);
FTimer.interval:= 200;
FTimer.OnTimer:= TimerProc;

end;

destructor TddgDigitalClock.Destroy;
begin
FTimer.Free; // Free the TTimer instance.
inherited Destroy; // Call inherited Destroy method

end;

procedure TddgDigitalClock.Paint;
begin
inherited Paint; // Call the inherited Paint method
{ Now set the inherited Caption property to current time. }
inherited Caption := TimeToStr(FDateTime);

Component-Based Development

PART III
666

25.65227_Ch21x 11/30/99 6:05 PM Page 666

end;

procedure TddgDigitalClock.TimerProc(Sender: TObject);
var
HSec: Word;

begin
{ Save the old minute and second for later use }
FOldMinute := FMinute;
FOldSecond := FSecond;
FDateTime := Now; // Get the current time.
{ Extract the individual time elements }
DecodeTime(FDateTime, FHour, FMinute, FSecond, Hsec);

refresh; // Redraw the component so that the new time is displayed.

{ Now call the event handlers depending on the time }
if FMinute = 0 then
DoHour(FDateTime);

if FMinute = 30 then
DoHalfPast(FDateTime);

if (FMinute <> FOldMinute) then
DoMinute(FDateTime);

if FSecond <> FOldSecond then
if ((FSecond = 30) or (FSecond = 0)) then
DoHalfMinute(FDateTime)

else
DoSecond(FDateTime);

end;

{ The event dispatching methods below determine if component user has
attached event handlers to the various clock events and calls them
if they exist }

procedure TddgDigitalClock.DoHour(Tm: TDateTime);
begin
if Assigned(FOnHour) then
TTimeEvent(FOnHour)(Self, Tm);

end;

procedure TddgDigitalClock.DoHalfPast(Tm: TDateTime);
begin
if Assigned(FOnHalfPast) then
TTimeEvent(FOnHalfPast)(Self, Tm);

end;

procedure TddgDigitalClock.DoMinute(Tm: TDateTime);

Writing Delphi Custom Components

CHAPTER 21
667

21

W
R

ITIN
G

D
ELPH

I
C

U
STO

M
C

O
M

PO
N

EN
TS

continues

25.65227_Ch21x 11/30/99 6:05 PM Page 667

LISTING 21.15 Continued

begin
if Assigned(FOnMinute) then
TTimeEvent(FOnMinute)(Self, Tm);

end;

procedure TddgDigitalClock.DoHalfMinute(Tm: TDateTime);
begin
if Assigned(FOnHalfMinute) then
TTimeEvent(FOnHalfMinute)(Self, Tm);

end;

procedure TddgDigitalClock.DoSecond(Tm: TDateTime);
begin
if Assigned(FOnSecond) then
TTimeEvent(FOnSecond)(Self, Tm);

end;

end.

The logic behind this component is explained in the source commentary. The methods used are
no different than those that were previously explained when we discussed creating events.
TddgDigitalClock only adds more events and contains logic to determine when each event is
invoked.

Adding Forms to the Component Palette
Adding forms to the Object Repository is a convenient way to give forms a starting point. But
what if you develop a form that you reuse often that does not need to be inherited and does not
require added functionality? Delphi 5 provides a way you can reuse your forms as components
on the Component Palette. In fact, the TFontDialog and TOpenDialog components are exam-
ples of forms that are accessible from the Component Palette. Actually, these dialogs are not
Delphi forms; these are dialogs provided by the CommDlg.dll. Nevertheless, the concept is the
same.

To add forms to the Component Palette, you must wrap your form with a component to make it
a separate, installable component. The process as described here uses a simple password dialog
whose functionality will verify your password automatically. Although this is a very simple
project, the purpose of this discussion is not to show you how to install a complex dialog as a
component, but rather to show you the general method for adding dialog boxes to the
Component Palette. The same method applies to dialog boxes of any complexity.

Component-Based Development

PART III
668

25.65227_Ch21x 11/30/99 6:05 PM Page 668

First, you must create the form that is going to be wrapped by the component. The form we
used is defined in the file PwDlg.pas. This unit also shows a component wrapper for this form.

Listing 21.16 shows the unit defining the TPasswordDlg form and its wrapper component,
TddgPasswordDialog.

LISTING 21.16 PwDlg.pas—TPasswordDlg Form and Its Component Wrapper
TddgPasswordDialog

unit PwDlg;

interface

uses Windows, SysUtils, Classes, Graphics, Forms, Controls, StdCtrls,
Buttons;

type

TPasswordDlg = class(TForm)
Label1: TLabel;
Password: TEdit;
OKBtn: TButton;
CancelBtn: TButton;

end;

{ Now declare the wrapper component. }
TddgPasswordDialog = class(TComponent)
private
PassWordDlg: TPasswordDlg; // TPassWordDlg instance
FPassWord: String; // Place holder for the password

public
function Execute: Boolean; // Function to launch the dialog

published
property PassWord: String read FPassword write FPassword;

end;

implementation
{$R *.DFM}

function TddgPasswordDialog.Execute: Boolean;
begin
{ Create a TPasswordDlg instance }
PasswordDlg := TPasswordDlg.Create(Application);
try
Result := False; // Initialize the result to false

Writing Delphi Custom Components

CHAPTER 21
669

21

W
R

ITIN
G

D
ELPH

I
C

U
STO

M
C

O
M

PO
N

EN
TS

continues

25.65227_Ch21x 11/30/99 6:05 PM Page 669

LISTING 21.16 Continued

{ Show the dialog and return true if the password
is correct. }

if PasswordDlg.ShowModal = mrOk then
Result := PasswordDlg.Password.Text = FPassword;

finally
PasswordDlg.Free; // Free instance of PasswordDlg

end;
end;

end.

The TddgPasswordDialog is called a wrapper component because it wraps the form with a
component that can be installed into Delphi 5’s Component Palette.

TddgPasswordDialog descends directly from TComponent. You might recall from the last chap-
ter that TComponent is the lowest-level class that can be manipulated by the Form Designer in
the IDE. This class has two private variables: PasswordDlg of type TPasswordDlg and
FPassWord of type string. PasswordDlg is the TPasswordDlg instance that this wrapper com-
ponent displays. FPassWord is an internal storage field that holds a password string.

FPassWord gets its data through the property PassWord. Thus, PassWord doesn’t actually store
data; rather, it serves as an interface to the storage variable FPassWord.

TddgPassWordDialog’s Execute() function creates a TPasswordDlg instance and displays it as
a modal dialog box. When the dialog box terminates, the string entered in the password TEdit
control is compared against the string stored in FPassword.

The code here is contained within a try..finally construct. The finally portion ensures that
the TPasswordDlg component is disposed of, regardless of any error that might occur.

After you have added TddgPasswordDialog to the Component Palette, you can create a project
that uses it. As with any other component, you select TddgPasswordDialog from the
Component Palette and place it on your form. The project created in the preceding section con-
tains a TddgPasswordDialog and one button whose OnClick event handler does the following:

procedure TForm1.Button1Click(Sender: TObject);
begin
if ddgPasswordDialog.Execute then // Launch the PasswordDialog
ShowMessage(‘You got it!’) // Correct password

else
ShowMessage(‘Sorry, wrong answer!’); // Incorrect password

end;

Component-Based Development

PART III
670

25.65227_Ch21x 11/30/99 6:05 PM Page 670

The Object Inspector contains three properties for the TddgPasswordDialog component: Name,
Password, and Tag. To use the component, you must set the Password property to some string
value. When you run the project, TddgPasswordDialog prompts the user for a password and
compares it against the password you entered for the Password property.

Component Packages
Delphi 3 introduced packages, which enable you to place portions of your application into sep-
arate modules that can be shared across multiple applications. Packages are similar to dynamic
link libraries (DLLs) but differ in their usage. Packages are primarily used to store collections
of components in a separate, shareable module (a Borland Package Library, or .bpl file). As
you or other developers create Delphi applications, the packages you create can be used by the
application at runtime instead of being directly linked at compile/link time. Because the code
for these units resides in the .bpl file, rather than in your .exe or .dll, the size of your .exe
or .dll can become very small.

Packages differ from DLLs in that they are specific to Delphi VCL; that is, applications written
in other languages can’t use packages created by Delphi (with the exception of CBuilder). One
of the reasons behind packages is to get around a limitation of Delphi 1 and 2. In these prior
versions of Delphi, the VCL added a minimum of 150KB to 200KB of code to every exe-
cutable. Therefore, even if you were to separate a piece of your application into a DLL, both
the DLL and the application would contain redundant code. This is especially a problem if you
are providing a suite of applications on one machine. Packages enable you to reduce the foot-
print of your applications and provide a convenient way for you to distribute your component
collections.

Why Use Packages?
There are several reasons why you might want to use packages. Three are discussed in the fol-
lowing sections.

Code Reduction
A primary reason behind using packages is to reduce the size of your applications and DLLs.
Delphi already ships with several predefined packages that break up the VCL into logical
groupings. In fact, you can choose to compile your application so that it assumes the existence
of many of these Delphi packages.

A Smaller Distribution of Applications—Application Partitioning
You’ll find that many applications are available over the Internet as full-blown applications,
downloadable demos, or updates to existing applications. Consider the benefit of giving users

Writing Delphi Custom Components

CHAPTER 21
671

21

W
R

ITIN
G

D
ELPH

I
C

U
STO

M
C

O
M

PO
N

EN
TS

25.65227_Ch21x 11/30/99 6:05 PM Page 671

the option of downloading smaller versions of the application when pieces of the application
might already exist on their system, such as when they have a prior installation.

By partitioning your applications using packages, you also allow your users to obtain updates
to only those parts of the application that they need. Note, however, that there are some ver-
sioning issues that you’ll have to take into account. We’ll cover versioning issues momentarily.

Component Containment
Probably one of the most common reasons for using packages is the distribution of third-party
components. If you are a component vendor, you must know how to create packages. The rea-
son for this is that certain design-time elements—such as component and property editors, wiz-
ards, and experts—are all provided by packages.

Why Not to Use Packages
You shouldn’t use runtime packages unless you are sure that other applications will be using
these packages. Otherwise, these packages will end up using more disk space than if you were
just compiling the source code into your final executable. Why is this so? If you create a pack-
aged application resulting in a code reduction from 200KB to roughly 30KB, it might seem
like you’ve saved quite a bit of space. However, you still have to distribute your packages and
possibly even the Vcl50.dcp package, which is roughly 2MB in size. You can see that this isn’t
quite the saving you had hoped for. Our point is that you should use packages to share code
when that code will be used by multiple executables. Note that this only applies to runtime
packages. If you are a component writer, you must provide a design package that contains the
component you want to make available to the Delphi IDE.

Types of Packages
There are four types of packages available for you to create and use:

• Runtime package. Runtime packages contain code, components, and so on needed by an
application at runtime. If you write an application that depends on a particular runtime
package, the application won’t run in the absence of that package.

• Design package. Design packages contain components, property/component editors,
experts, and so on necessary for application design in the Delphi IDE. This type of pack-
age is used only by Delphi and is never distributed with your applications.

• Runtime and design package. A package that is both design- and runtime-enabled is typi-
cally used when there are no design-specific elements such as property/component edi-
tors and experts. You can create this type of package to simplify application development
and deployment. However, if this package does contain design elements, its runtime use
will carry the extra baggage of the design support in your deployed applications. We

Component-Based Development

PART III
672

25.65227_Ch21x 11/30/99 6:05 PM Page 672

recommend creating both a design and runtime package to separate design-specific ele-
ments when they are present.

• Neither runtime nor design package. This rare breed of package is intended to be used
only by other packages and is not intended to be referenced directly by an application or
used in the design environment. This implies that packages can use or include other
packages.

Package Files
Table 21.5 lists and describes the package-specific files based on their file extensions.

Table 21.5 Package Files

File Extension File Type Description

.dpk Package source file This file is created when you invoke the Package Editor.
You can think of this as you might think of the .dpr
file for a Delphi project.

.dcp Runtime/design This is the compiled version of the package that
package symbol contains the symbol information for the package and
file its units. Additionally, there is header information

required by the Delphi IDE.

.dcu Compiled unit A compiled version of a unit contained in a package.
One .dcu file will be created for each unit contained in
the package.

.bpl Runtime/design This is the runtime or design package, equivalent to a
package library Windows DLL. If this is a runtime package, you will

distribute the file along with your applications (if they
are enabled for runtime packages). If this file represents
a design package, you will distribute it along with its
runtime partner to programmers that will use it to write
programs. Note that if you aren’t distributing source
code, you must distribute the corresponding .dcp files.

Package-Enable Your Delphi 5 Applications
Package-enabling your Delphi applications is easy. Simply check the Build with Runtime
Packages check box found in the Project, Options dialog on the Packages page. The next time
you build your application after this option is selected, your application will be linked dynami-
cally to runtime packages, instead of having units linked statically into your .exe or .dll. The

Writing Delphi Custom Components

CHAPTER 21
673

21

W
R

ITIN
G

D
ELPH

I
C

U
STO

M
C

O
M

PO
N

EN
TS

25.65227_Ch21x 11/30/99 6:05 PM Page 673

result will be a much more svelte application (although bear in mind that you will have to
deploy the necessary packages with your application).

Installing Packages into Delphi’s IDE
Installing packages into the Delphi IDE is simple. You might need to do this if you obtain a
third-party set of components. First, however, you need to place the package files in their
appropriate location. Table 21.6 shows where package files are typically located.

Table 21.6 Package File Locations

Package File Location

Runtime packages (*.bpl) Runtime package files should be placed in the
\Windows\System\ directory (Windows 95/98) or
\WinNT\System32\ directory (Windows NT).

Design packages (*.bpl) Because it is possible that you will obtain several packages from
various vendors, design packages should be placed in a common
directory where they can be properly managed. For example, cre-
ate a \PKG directory off your \Delphi 5\ directory and place
design packages in that location.

Package symbol files (*.dcp) You can place package symbol files in the same location as design
package files (*.bpl).

Compiled units (*.dcu) You must distribute compiled units if you are distributing design
packages. We recommend keeping DCUs from third-party ven-
dors in a directory similar to the \Delphi 5\Lib directory. For
example, you can create the directory \Delphi 5\3PrtyLib in
which third-party components’ *.dcus will reside. Your search
path will have to point to this directory.

To install a package, you simply invoke the Packages page of the Project Options dialog by
selecting Component, Install Packages from the Delphi 5 menu.

By selecting the Add button, you can select the specific .bpl file. Upon doing so, this file will
become the selected file on the Project page. When you click OK, the new package is installed
into the Delphi IDE. If this package contains components, you will see the new Component
page on the Component Palette along with any newly installed components.

Designing Your Own Packages
Before creating a new package, you’ll need to decide on a few things. First, you need to know
what type of package you’re going to create (runtime, design, and so on). This will be based on

Component-Based Development

PART III
674

25.65227_Ch21x 11/30/99 6:05 PM Page 674

one or more of the scenarios that we present momentarily. Second, you need to know what you
intend on naming your newly created package and where you want to store the package pro-
ject. Keep in mind that the directory where your deployed package exists will probably not be
the same as where you create your package. Finally, you need to know which units your pack-
age will contain and which other packages your new package will require.

The Package Editor
Packages are most commonly created using the Package Editor, which you invoke by selecting
the Packages icon from the New Items dialog. (Select File, New from the Delphi main menu.)
You’ll notice that the Package Editor contains two folders: Contains and Requires.

The Contains Folder
In the Contains folder, you specify units that need to be compiled into your new package.
There are a few rules for placing units into the Contains page of a package:

• The package must not be listed in the contains clause of another package or in the uses
clause of a unit within another package.

• The units listed in the contains clause of a package, either directly or indirectly (they
exist in uses clauses of units listed in the package’s contains clause), cannot be listed in
the package’s requires clause. This is because these units are already bound to the pack-
age when it is compiled.

• You cannot list a unit in a package’s contains clause if it is already listed in the con-
tains clause of another package used by the same application.

The Requires Page
In the Requires page, you specify other packages that are required by the new package. This is
similar to the uses clause of a Delphi unit. In most cases, any packages you create will have
VCL50—the package that hosts Delphi’s standard VCL components—in its requires clause.
The typical arrangement here, for example, is that you place all your components into a run-
time package. Then you create a design package that includes the runtime package in its
requires clause. There are a few rules for placing packages on the Requires page of another
package:

• Avoid circular references: Package1 cannot have Package1 in its requires clause, nor
can it contain another package that has Package1 in its requires clause.

• The chain of references must not refer back to a package previously referenced in the
chain.

The Package Editor has a toolbar and context-sensitive menus. Refer to the Delphi 5 online
help under “Package Editor” for an explanation of what these buttons do. We won’t repeat that
information here.

Writing Delphi Custom Components

CHAPTER 21
675

21

W
R

ITIN
G

D
ELPH

I
C

U
STO

M
C

O
M

PO
N

EN
TS

25.65227_Ch21x 11/30/99 6:05 PM Page 675

Package Design Scenarios
Earlier we said that you must know what type of package you want to create based on a partic-
ular scenario. In this section, we’re going to present three possible scenarios in which you
would use design and/or runtime packages.

Scenario 1—Design and Runtime Packages for Components
The design and runtime packages for components scenario is the case if you are a component
writer and one or both of the following conditions apply:

• You want Delphi programmers to be able to compile/link your components right into
their applications or to distribute them separately along with their applications.

• You have a component package, and you don’t want to force your users to have to com-
pile design features (component/property editors and so on) into their application code.

Given this scenario, you would create both a design and runtime package. Figure 21.4 depicts
this arrangement. As the figure illustrates, the design package (DDGDsgn50.dpk) encompasses
both the design features (property and component editors) and the runtime package
(DDGStd50.dpk). The runtime package (DDGStd50.dpk) includes only your components. This
arrangement is accomplished by listing the runtime package in the requires section of the
design package, as shown in Figure 21.4.

Component-Based Development

PART III
676

DDGDsgn50.dpk
DdgReg.pas
Component editors
Property editors

DDGDsgn50.dpk
TddgButtonEdit
TddgDigitalClock
TddgLaunchPad
TddgRunButton

FIGURE 21.4
Design packages host design elements and runtime packages.

You must also apply the appropriate usage options for each package before compiling that
package. You do this from the Package Options dialog. (You access the Package Options dia-
log by right-clicking within the Package Editor to invoke the local menu. Select Options to get

25.65227_Ch21x 11/30/99 6:05 PM Page 676

to the dialog.) For the runtime package, DDGStd50.dpk, the usage option should be set to
Runtime Only. This ensures that the package cannot be installed in the IDE as a design pack-
age (see the sidebar “Component Security” later in this chapter). For the design package,
DDGDsgn50.dpk, the usage option Design Time Only should be selected. This enables users to
install the package into the Delphi IDE, yet prevents them from using the package as a runtime
package.

Adding the runtime package to the design package doesn’t make the components contained in
the runtime package available to the Delphi IDE yet. You must still register your components
with the IDE. As you already know, whenever you create a component, Delphi automatically
inserts a Register() procedure into the component unit, which in turn calls the
RegisterComponents() procedure. RegisterComponents() is the procedure that actually reg-
isters your component with the Delphi IDE when you install the component. When working
with packages, the recommended approach is to move the Register() procedure from the
component unit into a separate registration unit. This registration unit registers all your compo-
nents by calling RegisterComponents(). This not only makes it easier for you to manage the
registration of your components, but it also prevents anyone from being able to install and use
your runtime package illegally because the components won’t be available to the Delphi IDE.

As an example, the components used in this book are hosted by the runtime package
DDGStd50.dpk. The property editors, component editors, and registration unit (DdgReg.pas) for
our components exist in the design package DDGDsgn50.dpk. DDGDsgn50.dpk also includes
DDGStd50.dpk in its requires clause. Listing 21.17 shows what our registration unit looks like.

LISTING 21.17 Registration Unit for Delphi 5 Developer’s Guide Components

unit DDGReg;

interface

procedure Register;

implementation

uses Classes, ExptIntf, DsgnIntf, TrayIcon, AppBars, ABExpt, Worthless,
RunBtn, PwDlg, Planets, LbTab, HalfMin, DDGClock, ExMemo, MemView,
Marquee, PlanetPE, RunBtnPE, CompEdit, DefProp, Wavez,
WavezEd, LnchPad, LPadPE, Cards, ButtonEdit, Planet, DrwPnel;

procedure Register;
begin

// Register the components.

Writing Delphi Custom Components

CHAPTER 21
677

21

W
R

ITIN
G

D
ELPH

I
C

U
STO

M
C

O
M

PO
N

EN
TS

continues

25.65227_Ch21x 11/30/99 6:05 PM Page 677

LISTING 21.17 Continued

RegisterComponents(‘DDG’,
[TddgTrayNotifyIcon, TddgDigitalClock, TddgHalfMinute, tddgButtonEdit,
TddgExtendedMemo, TddgTabListbox, TddgRunButton, TddgLaunchPad,
TddgMemView, TddgMarquee, TddgWaveFile, TddgCard, TddgPasswordDialog,
TddgPlanet, TddgPlanets, TddgWorthLess, TddgDrawPanel,
TComponentEditorSample, TDefinePropTest]);

// Register any property editors.
RegisterPropertyEditor(TypeInfo(TRunButtons), TddgLaunchPad, ‘’,
TRunButtonsProperty);

RegisterPropertyEditor(TypeInfo(TWaveFileString), TddgWaveFile, ‘WaveName’,
TWaveFileStringProperty);

RegisterComponentEditor(TddgWaveFile, TWaveEditor);
RegisterComponentEditor(TComponentEditorSample, TSampleEditor);
RegisterPropertyEditor(TypeInfo(TPlanetName), TddgPlanet,
‘PlanetName’, TPlanetNameProperty);
RegisterPropertyEditor(TypeInfo(TCommandLine), TddgRunButton, ‘’,
TCommandLineProperty);

// Register any custom modules, library experts.
RegisterCustomModule(TAppBar, TCustomModule);
RegisterLibraryExpert(TAppBarExpert.Create);

end;

end.

Component-Based Development

PART III
678

Component Security
It is possible for someone to register your components, even though he has only your
runtime package. He would do this by creating his own registration unit in which he
would register your components. He would then add this unit to a separate package
that would also have your runtime package in the requires clause. After he installs
this new package into the Delphi IDE, your components will appear on the
Component Palette. However, it is still not possible to compile any applications using
your components because the required *.dcu files for your component units will be
missing.

Package Distribution
When distributing your packages to component writers without the source code, you must dis-
tribute both compiled packages, DDGDsgn50.bpl and DDGStd50.bpl, both *.dcp files, and any

25.65227_Ch21x 11/30/99 6:05 PM Page 678

compiled units (*.dcu) necessary to compile your components. Programmers using your com-
ponents who want their applications’ runtime packages enabled must distribute the
DDGStd50.bpl package along with their applications and any other runtime package that they
might be using.

Scenario 2—Design Package Only for Components
The design package only for components scenario is when you want to distribute components
that you don’t want to be distributed in runtime packages. In this case, you will include the
components, component editors, property editors, component registration unit, and so on in one
package file.

Package Distribution
When distributing your package to component writers without the source code, you must dis-
tribute the compiled package, DDGDsgn50.bpl, the DDGDsgn50.dcp file, and any compiled units
(*.dcu) necessary to compile your components. Programmers using your components must
compile your components into their applications. They will not be distributing any of your
components as runtime packages.

Scenario 3—Design Features Only (No Components) IDE Enhancements
The design features only (no components) IDE enhancements scenario is the case if you are
providing enhancements to the Delphi IDE, such as experts. For this scenario, you will register
your expert with the IDE in your registration unit. The distribution for this scenario is simple;
you only have to distribute the compiled *.bpl file.

Scenario 4—Application Partitioning
The application partitioning scenario is the case if you want to partition your application into
logical pieces, each of which can be distributed separately. There are several reasons why you
might want to do this:

• This scenario is easier to maintain.

• Users can purchase only the needed functionality when they need it. Later, when they
need added functionality, they can download the necessary package only, which will be
much smaller than downloading the entire application.

• You can provide fixes (patches) to parts of the application more easily without requiring
users to obtain a new version of the application altogether.

In this scenario, you will provide only the *.bpl files required by your application. This sce-
nario is similar to the last with the difference being that instead of providing a package for the
Delphi IDE, you will be providing a package for your own application. When partitioning your
applications as such, you must pay attention to the issues regarding package versioning that we
discuss in the next section.

Writing Delphi Custom Components

CHAPTER 21
679

21

W
R

ITIN
G

D
ELPH

I
C

U
STO

M
C

O
M

PO
N

EN
TS

25.65227_Ch21x 11/30/99 6:05 PM Page 679

Package Versioning
Package versioning is a topic that is not well understood. You can think of package versioning
in much the same way as you think of unit versioning. That is, any package that you provide
for your application must be compiled using the same Delphi version used to compile the
application. Therefore, you cannot provide a package written in Delphi 5 to be used by an
application written in Delphi 4. The Inprise developers refer to the version of a package as a
code base. So a package written in Delphi 5 has a code base of 5.0. This concept should influ-
ence the naming convention that you use for your package files.

Package Compiler Directives
There are some specific compiler directives that you can insert into the source code of your
packages. Some of these directives are specific to units that are being packaged; others are spe-
cific to the package file. These directives are listed and described in Tables 21.7 and 21.8.

Table 21.7 Compiler Directives for Units Being Packaged

Directive Meaning

{$G} or {IMPORTEDDATA OFF} Use this when you want to prevent the unit from being pack-
aged—when you want it to be linked directly to the applica-
tion. Contrast this to the {$WEAKPACKAGEUNIT} directive,
which allows a unit to be included in a package but whose
code gets statically linked to the application.

{$DENYPACKAGEUNIT} Same as {$G}.

{$WEAKPACKAGEUNIT} See the section “More on the {$WEAKPACKAGEUNIT}
Directive.”

Table 21.8 Compiler Directives for the Package .dpk File

Directive Meaning

{$DESIGNONLY ON} Compiles package as a design-time only package.

{$RUNONLY ON} Compiles package as a runtime only package.

{$IMPLICITBUILD OFF} Prevents the package from being rebuilt later. Use this option
when the package is not changed frequently.

More on the {$WEAKPACKAGEUNIT} Directive
The concept of a weak package is simple. Basically, it is used where your package may be ref-
erencing libraries (DLLs) that may not be present. For example, Vcl40 makes calls to the core

Component-Based Development

PART III
680

25.65227_Ch21x 11/30/99 6:05 PM Page 680

Win32 API included with the Windows operating system. Many of these calls exist in DLLs
that aren’t present on every machine. These calls are exposed by units that contain the {$WEAK-
PACKAGEUNIT} directive. By including this directive, you keep the unit’s source code in the
package but place it into the DCP file, rather than in the BPL file (think of a DCP as a DCU
and a BPL as a DLL). Therefore, any references to functions of these weakly packaged units
get statically linked to the application, rather than dynamically referenced through the package.

The {$WEAKPACKAGEUNIT} directive is one that you will rarely use, if at all. It was created out
of necessity by the Delphi developers to handle a specific situation. The problem exists if there
are two components, each in a separate package that reference the same interface unit of a
DLL. When an application uses both of the components, this causes two instances of the DLL
to be loaded, which raises havoc with initialization and global variable referencing. The solu-
tion is to include the interface unit in one of the standard Delphi packages, such as Vcl50.bpl.
However, this raises the other problem for specialized DLLs that may not be present, such as
PENWIN.DLL. If Vcl50.bpl contains the interface unit for a DLL that isn’t present, it will render
Vcl50.bpl, and Delphi for that matter, unusable. The Delphi developers addressed this by
allowing Vcl50.bpl to contain the interface unit in a single package, but to make it statically
linked when used and not dynamically loaded whenever Vcl50 is used with the Delphi IDE.

As stated, you’ll most likely never have to use this directive, unless you anticipate a similar
scenario that the Delphi developers faced or if you want to make certain that a particular unit is
included with a package but statically linked to the using application. A reason for the latter
might be for optimization purposes. Note that any units that are weakly packaged cannot have
global variables or code in their initialization/finalization sections. You must also distribute any
*.dcu files for weakly packaged units along with your packages.

Package-Naming Conventions
Earlier we said that the package-versioning issue should influence how you name your pack-
ages. There isn’t a set rule as to how you name your packages, but we suggest using a naming
convention that incorporates the code base into the package’s name. For example, the compo-
nents for this book are contained in a runtime package whose name contains the 50 qualifier
for Delphi 5 (DDGStd50.dpk). The same goes for the design package (DDGDsgn50.dpk). A pre-
vious version of the package would be DdgStd40.dpk. By using such a convention, you will
prevent any confusion for your package users as to which version of the package they have and
as to which version of the Delphi compiler applies to them. Note that our package name starts
with a three-character author/company identifier, followed by Std to indicate a runtime pack-
age and Dsgn to signify a design package. You can follow whatever naming convention you
like. Just be consistent and use the recommended inclusion of the Delphi version into your
package name.

Writing Delphi Custom Components

CHAPTER 21
681

21

W
R

ITIN
G

D
ELPH

I
C

U
STO

M
C

O
M

PO
N

EN
TS

25.65227_Ch21x 11/30/99 6:05 PM Page 681

Add-In Packages
Add-in packages allow you to partition your applications into pieces or modules and to distrib-
ute those modules separately from the main application. This scheme is especially attractive
because it allows you to extend the functionality of your application without having to recom-
pile/redesign the entire application. This requires careful architectural design planning, how-
ever. It is beyond the scope of this book to go into such design issues. For a more detailed
discussion of add-in packages and how they relate to application frameworks and design pat-
terns, you will find articles at http://www.xapware.com.

Our example is a simple illustration of this technique. We will show how to add a form to an
application without having to rewrite the application entirely. You can obtain a more elaborate
example from the URL mentioned in the preceding paragraph.

Generating Add-In Forms
In Chapter 4, “Application Frameworks and Design Concepts,” you learned about application
frameworks. We developed an application whose forms were descendants of a base class
(TChildForm). We’ll use this same application to illustrate how you can create a shell applica-
tion that knows only of the TChildForm class but can work with any descendent of that class.
The descendants will be provided in thorough add-in packages.

Component-Based Development

PART III
682

NOTE

If you installed the forms used in the application framework demo from Chapter 4 to
your Object Repository, you will have to remove them from the Repository before
loading the project from this application.

The application is partitioned into three logical pieces: the main application (ChildTest.exe),
the TChildForm package (AIChildForm50.bpl), and the concrete TChildForm descendant
classes, each residing in its own package.

The main application is basically the same as that from Chapter 4 with some modification. The
package AIChildForm50.bpl contains the abstract TChildForm class. The other packages con-
tain descendant TChildForm classes or concrete TChildForms. We will refer to these packages
as the abstract package and concrete packages, respectively.

The main application uses the abstract package (AIChildForm50.bpl). Each concrete package
also uses the abstract package. For this to work properly, the main application must be com-
piled with runtime packages, including the AIChildForm50.dcp package. Likewise, each con-
crete package must require the AIChildForm50.dcp package. We will not list the TChildForm

25.65227_Ch21x 11/30/99 6:05 PM Page 682

source or the concrete descendants to TChildForm, because they are not much different from
those shown in Chapter 4. The only difference is that each TChildForm descendant unit must
include initialization and finalization blocks that look like this:

initialization
RegisterClass(TCF2Form);

finalization
UnRegisterClass(TCF2Form);

The call to RegisterClass() is necessary to make the TChildForm descendant class available
to the main application’s streaming system when the main application loads its package. This
is similar to how RegisterComponents() makes components available to the Delphi IDE.
When the package is unloaded, the call to UnRegisterClass() is required to remove the regis-
tered class. Note that RegisterClass() only makes the class available to the main application,
however. The main application still does not know of the class name. So how does the main
application create an instance of a class whose class name is unknown? Isn’t the intent of this
exercise to make these forms available to the main application without having to hard code
their class names into the main application’s source? Listing 21.18 shows the source code to
the main application’s main form where we will highlight how we accomplish add-in forms
with add-in packages.

LISTING 21.18 The Main Form of the Main Application Using Add-In Packages

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ExtCtrls, ChildFrm, Menus;

const
{ Child form registration location in the Windows Registry. }
cCFRegLocation = ‘Software\Delphi 5 Developer’’s Guide’;
cCFRegSection = ‘ChildForms’; // Module initialization data section

FMainCaption = ‘Delphi 5 Developer’’s Guide Child Form Demo’;

type

TChildFormClass = class of TChildForm;

TMainForm = class(TForm)
pnlMain: TPanel;

Writing Delphi Custom Components

CHAPTER 21
683

21

W
R

ITIN
G

D
ELPH

I
C

U
STO

M
C

O
M

PO
N

EN
TS

continues

25.65227_Ch21x 11/30/99 6:05 PM Page 683

LISTING 21.18 Continued

Splitter1: TSplitter;
pnlParent: TPanel;
mmMain: TMainMenu;
mmiFile: TMenuItem;
mmiExit: TMenuItem;
mmiHelp: TMenuItem;
mmiForms: TMenuItem;
procedure mmiExitClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure FormDestroy(Sender: TObject);

private
// reference to the child form.
FChildForm: TChildForm;
// a list of available child forms used to build a menu.
FChildFormList: TStringList;
// Index to the Close Form menu which shifts position.
FCloseFormIndex: Integer;
// Handle to the currently loaded package.
FCurrentModuleHandle: HModule;
// method to create menus for available child forms.
procedure CreateChildFormMenus;
// Handler to load a child form and its package.
procedure LoadChildFormOnClick(Sender: TObject);
// Handler to unload a child form and its package.
procedure CloseFormOnClick(Sender: TObject);
// Method to retrieve the classname for a TChildForm descendant
function GetChildFormClassName(const AModuleName: String): String;

public
{ Public declarations }

end;

var
MainForm: TMainForm;

implementation
uses Registry;

{$R *.DFM}

function RemoveExt(const AFileName: String): String;
{ Helper function to remove the extension from a filename. }
begin
if Pos(‘.’, AFileName) <> 0 then
Result := Copy(AFileName, 1, Pos(‘.’, AFileName)-1)

Component-Based Development

PART III
684

25.65227_Ch21x 11/30/99 6:05 PM Page 684

else
Result := AFileName;

end;

procedure TMainForm.mmiExitClick(Sender: TObject);
begin
Close;

end;

procedure TMainForm.FormCreate(Sender: TObject);
begin
FChildFormList := TStringList.Create;
CreateChildFormMenus;

end;

procedure TMainForm.FormDestroy(Sender: TObject);
begin
FChildFormList.Free;
// Unload any loaded child forms.
if FCurrentModuleHandle <> 0 then
CloseFormOnClick(nil);

end;

procedure TMainForm.CreateChildFormMenus;
{ All available child forms are registered in the Windows Registry.
Here, we use this information to create menu items for loading each of the
child forms. }

var
IniFile: TRegIniFile;
MenuItem: TMenuItem;
i: integer;

begin
inherited;

{ Retrieve a list of all child forms and build a menu based on the
entries in the registry. }

IniFile := TRegIniFile.Create(cCFRegLocation);
try
IniFile.ReadSectionValues(cCFRegSection, FChildFormList);

finally
IniFile.Free;

end;

{ Add Menu items for each module. NOTE THE mmMain.AutoHotKeys property must
be set to maAutomatic }

Writing Delphi Custom Components

CHAPTER 21
685

21

W
R

ITIN
G

D
ELPH

I
C

U
STO

M
C

O
M

PO
N

EN
TS

continues

25.65227_Ch21x 11/30/99 6:05 PM Page 685

LISTING 21.18 Continued

for i := 0 to FChildFormList.Count - 1 do
begin
MenuItem := TMenuItem.Create(mmMain);
MenuItem.Caption := FChildFormList.Names[i];
MenuItem.OnClick := LoadChildFormOnClick;
mmiForms.Add(MenuItem);

end;

// Create Separator
MenuItem := TMenuItem.Create(mmMain);
MenuItem.Caption := ‘-’;
mmiForms.Add(MenuItem);

// Create Close Module menu item
MenuItem := TMenuItem.Create(mmMain);
MenuItem.Caption := ‘&Close Form’;
MenuItem.OnClick := CloseFormOnClick;
MenuItem.Enabled := False;
mmiForms.Add(MenuItem);

{ Save a reference to the index of the menu item required to
close a child form. This will be referred to in another method. }

FCloseFormIndex := MenuItem.MenuIndex;
end;

procedure TMainForm.LoadChildFormOnClick(Sender: TObject);
var
ChildFormClassName: String;
ChildFormClass: TChildFormClass;
ChildFormName: String;
ChildFormPackage: String;

begin

// The menu caption represents the module name.
ChildFormName := (Sender as TMenuItem).Caption;
// Get the actual Package filename.
ChildFormPackage := FChildFormList.Values[ChildFormName];

// Unload any previously loaded packages.
if FCurrentModuleHandle <> 0 then
CloseFormOnClick(nil);

try
// Load the specified package

Component-Based Development

PART III
686

25.65227_Ch21x 11/30/99 6:05 PM Page 686

FCurrentModuleHandle := LoadPackage(ChildFormPackage);

// Return the classname that needs to be created
ChildFormClassName := GetChildFormClassName(ChildFormPackage);

{ Create an instance of the class using the FindClass() procedure. Note,
this requires that the class already be registered with the streaming
system using RegisterClass(). This is done in the child form
initialization section for each child form package. }

ChildFormClass := TChildFormClass(FindClass(ChildFormClassName));
FChildForm := ChildFormClass.Create(self, pnlParent);
Caption := FChildForm.GetCaption;
FChildForm.Show;

mmiForms[FCloseFormIndex].Enabled := True;
except
on E: Exception do
begin
CloseFormOnClick(nil);
raise;

end;
end;

end;

function TMainForm.GetChildFormClassName(const AModuleName: String): String;
{ The Actual class name of the TChildForm implementation resides in the
registry. This method retrieves that class name. }

var
IniFile: TRegIniFile;

begin
IniFile := TRegIniFile.Create(cCFRegLocation);
try
Result := IniFile.ReadString(RemoveExt(AModuleName), ‘ClassName’,
EmptyStr);

finally
IniFile.Free;

end;
end;

procedure TMainForm.CloseFormOnClick(Sender: TObject);
begin
if FCurrentModuleHandle <> 0 then
begin
if FChildForm <> nil then
begin
FChildForm.Free;

Writing Delphi Custom Components

CHAPTER 21
687

21

W
R

ITIN
G

D
ELPH

I
C

U
STO

M
C

O
M

PO
N

EN
TS

continues

25.65227_Ch21x 11/30/99 6:05 PM Page 687

LISTING 21.18 Continued

FChildForm := nil;
end;

// Unregister any classes provided by the module
UnRegisterModuleClasses(FCurrentModuleHandle);
// Unload the child form package
UnloadPackage(FCurrentModuleHandle);

FCurrentModuleHandle := 0;
mmiForms[FCloseFormIndex].Enabled := False;
Caption := FMainCaption;

end;
end;

end.

The application’s logic is actually very simple. It uses the system registry to determine which
packages are available, the menu captions to use when building menus for loading each pack-
age, and the class name of the form contained in each package.

Component-Based Development

PART III
688

NOTE

We’ve included a file called D5DG.Reg on which you can double-click in Windows
Explorer. This imports the registry settings in order for the add-in package demo to
run properly.

The LoadChildFormOnClick() event handler is where most of the work is performed. After
determining the package filename, the method loads the package using the LoadPackage()
function. The LoadPackage() function is basically the same thing as LoadLibrary() for DLLs.
The method then determines the class name for the form contained in the loaded package.

To create a class, you need a class reference such as TButton or TForm1. However, this main
application does not have the hard-coded class name of the concrete TChildForms. This is why
we retrieve the class name from the system registry. The main application can pass this class
name to the FindClass() function to return a class reference for the specified class that
already has been registered with the streaming system. Remember that we did this in the ini-
tialization section of the concrete form’s unit, which is called when the package is loaded. We
then create the class with these lines:

ChildFormClass := TChildFormClass(FindClass(ChildFormClassName));
FChildForm := ChildFormClass.Create(self, pnlParent);

25.65227_Ch21x 11/30/99 6:05 PM Page 688

The variable ChildFormClass is a predeclared class reference to TChildForm and can refer to a
class reference for a TChildForm descendant.

The CloseFormOnClick() event handler simply closes the child form and unloads its package.
The rest of the code basically is set up to create the package menus and to read the information
from the system registry.

Further study on this technique will enable you to create very extensible and loosely coupled
application frameworks.

Summary
Knowing how components work is fundamental to understanding Delphi, and you will work
with many more custom components later in the book. Now that you can see what happens
behind the scenes, components will no longer be such a mystery. The next chapter goes beyond
component creation into more advanced component-building techniques.

Writing Delphi Custom Components

CHAPTER 21
689

21

W
R

ITIN
G

D
ELPH

I
C

U
STO

M
C

O
M

PO
N

EN
TS

25.65227_Ch21x 11/30/99 6:05 PM Page 689

25.65227_Ch21x 11/30/99 6:05 PM Page 690

CHAPTER

22
Advanced Component Design
Techniques

IN THIS CHAPTER
• Pseudo-Visual Components 692

• Animated Components 696

• Writing Property Editors 713

• Component Editors 724

• Streaming Nonpublished
Component Data 730

• Property Categories 742

• Lists of Components: TCollection and
TCollectionItem 748

• Summary 772

26.65227_Ch22x 11/30/99 6:06 PM Page 691

The last chapter broke into writing Delphi custom components, and it gave you a solid intro-
duction to the basics. In this chapter, you’ll learn how to take component writing to the next
level by incorporating advanced design techniques into your Delphi custom components. This
chapter provides examples of advanced techniques such as pseudo-visual components, detailed
property editors, component editors, and collections.

Pseudo-Visual Components
You’ve learned about visual components such as TButton and TEdit, and you’ve learned about
nonvisual components such as TTable and TTimer. In this section, you’ll also learn about a
type of component that kind of falls in between visual and nonvisual components—we’ll call
these components pseudo-visual components.

Extending Hints
Specifically, the pseudo-visual component shown in this section is an extension of a Delphi
pop-up hint window. We call this a pseudo-visual component because it’s not a component
that’s used visually from the Component Palette at design time, but it does represent itself visu-
ally at runtime in the body of pop-up hints.

Replacing the default style hint window in a Delphi application requires that you complete the
following four steps:

1. Create a descendant of THintWindow.

2. Destroy the old hint window class.

3. Assign the new hint window class.

4. Create the new hint window class.

Creating a THintWindow Descendant
Before you write the code for a THintWindow descendant, you must first decide how you want
your new hint window class to behave differently than the default one. In this case, you’ll cre-
ate an elliptical hint window rather than the default square one. This actually demonstrates
another cool technique: creating nonrectangular windows! Listing 22.1 shows the RndHint.pas
unit, which contains the THintWindow descendant TDDGHintWindow.

LISTING 22.1 RndHint.pas—Illustrates an Elliptical Hint

unit RndHint;

interface

uses Windows, Classes, Controls, Forms, Messages, Graphics;

Component-Based Development

PART III
692

26.65227_Ch22x 11/30/99 6:06 PM Page 692

type

TDDGHintWindow = class(THintWindow)

private

FRegion: THandle;

procedure FreeCurrentRegion;

public

destructor Destroy; override;

procedure ActivateHint(Rect: TRect; const AHint: string); override;

procedure Paint; override;

procedure CreateParams(var Params: TCreateParams); override;

end;

implementation

destructor TDDGHintWindow.Destroy;

begin

FreeCurrentRegion;

inherited Destroy;

end;

procedure TDDGHintWindow.FreeCurrentRegion;

{ Regions, like other API objects, should be freed when you are }

{ through using them. Note, however, that you cannot delete a }

{ region which is currently set in a window, so this method sets }

{ the window region to 0 before deleting the region object. }

begin

if FRegion <> 0 then begin // if Region is alive...

SetWindowRgn(Handle, 0, True); // set win region to 0

DeleteObject(FRegion); // kill the region

FRegion := 0; // zero out field

end;

end;

procedure TDDGHintWindow.ActivateHint(Rect: TRect; const AHint: string);

{ Called when the hint is activated by putting the mouse pointer }

{ above a control. }

begin

with Rect do

Right := Right + Canvas.TextWidth(‘WWWW’); // add some slop

BoundsRect := Rect;

FreeCurrentRegion;

with BoundsRect do

Advanced Component Design Techniques

CHAPTER 22
693

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

continues

26.65227_Ch22x 11/30/99 6:06 PM Page 693

LISTING 22.1 Continued

{ Create a round rectangular region to display the hint window }

FRegion := CreateRoundRectRgn(0, 0, Width, Height, Width, Height);

if FRegion <> 0 then

SetWindowRgn(Handle, FRegion, True); // set win region

inherited ActivateHint(Rect, AHint); // call inherited

end;

procedure TDDGHintWindow.CreateParams(var Params: TCreateParams);

{ We need to remove the border created on the Windows API-level }

{ when the window is created. }

begin

inherited CreateParams(Params);

Params.Style := Params.Style and not ws_Border; // remove border

end;

procedure TDDGHintWindow.Paint;

{ This method gets called by the WM_PAINT handler. It is }

{ responsible for painting the hint window. }

var

R: TRect;

begin

R := ClientRect; // get bounding rectangle

Inc(R.Left, 1); // move left side slightly

Canvas.Font.Color := clInfoText; // set to proper color

{ paint string in the center of the round rect }

DrawText(Canvas.Handle, PChar(Caption), Length(Caption), R,

DT_NOPREFIX or DT_WORDBREAK or DT_CENTER or DT_VCENTER);

end;

initialization

Application.ShowHint := False; // destroy old hint window

HintWindowClass := TDDGHintWindow; // assign new hint window

Application.ShowHint := True; // create new hint window

end.

The overridden CreateParams() and Paint() methods are fairly straightforward.
CreateParams() provides an opportunity to adjust the structure of the window styles before
the hint window is created on an API level. In this method, the WS_BORDER style is removed
from the window class in order to prevent a rectangular border from being drawn around the
window. The Paint() method is responsible for rendering the window. In this case, the method
must paint the hint’s Caption property into the center of the caption window. The color of the
text is set to clInfoText, which is the system-defined color of hint text.

Component-Based Development

PART III
694

26.65227_Ch22x 11/30/99 6:06 PM Page 694

An Elliptical Window
The ActivateHint() method contains the magic for creating the nonrectangular hint window.
Well, it’s not really magic. Actually, two API calls make it happen: CreateRoundRectRgn()
and SetWindowRgn().

CreateRoundRectRgn() defines a rounded rectangular region within a particular window. A
region is a special API object that allows you to perform special painting, hit testing, filling,
and clipping in one area. In addition to CreateRoundRectRgn(), a number of other Win32 API
functions create different types of regions, including the following:

• CreateEllipticRgn()

• CreateEllipticRgnIndirect()

• CreatePolygonRgn()

• CreatePolyPolygonRgn()

• CreateRectRgn()

• CreateRectRgnIndirect()

• CreateRoundRectRgn()

• ExtCreateRegion()

Additionally, the CombineRgn() function can be used to combine multiple regions into one
complex region. All these functions are described in detail in the Win32 API online help.

SetWindowRgn() is then called, passing the recently created region handle as a parameter. This
function causes the operating system to take ownership of the region, and all subsequent draw-
ing in the specified window will occur only within the region. Therefore, if the region defined
is a rounded rectangle, painting will occur only within that rounded rectangular region.

Advanced Component Design Techniques

CHAPTER 22
695

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

CAUTION

You need to be aware of two side effects when using SetWindowRgn(). First, because
only the portion of the window within the region is painted, your window probably
won’t have a frame or title bar. You must be prepared to provide the user with an
alternative way to move, size, and close the window without the aid of a frame or
title bar. Second, because the operating system takes ownership of the region speci-
fied in SetWindowRgn(), you must be careful not to manipulate or delete the region
while it’s in use. The TDDGHintWindow component handles this by calling its
FreeCurrentRegion() method before the window is destroyed or a new window is
created.

26.65227_Ch22x 11/30/99 6:06 PM Page 695

Enabling the THintWindow Descendant
The initialization code for the RndHint unit does the work of making the TDDGHintWindow
component the application-wide active hint window. Setting Application.ShowHint to False
causes the old hint window to be destroyed. At that point, you must assign your THintWindow
descendant class to the HintWindowClass global variable. Then, setting
Application.ShowHint back to True causes a new hint window to be created—this time it will
be an instance of your descendant class.

Figure 22.1 shows the TDDGHintWindow component in action.

Component-Based Development

PART III
696

FIGURE 22.1
Looking at a TDDGHintWindow hint.

Deploying TDDGHintWindow
Deploying this pseudo-visual component is different from normal visual and nonvisual compo-
nents. Because all the work for instantiating the component is performed in the initializa-
tion part of its unit, the unit should not be added to a design package for use on the
Component Palette but merely added to the uses clause of one of the source files in your pro-
ject.

Animated Components
Once upon a time while writing a Delphi application, we thought to ourselves, “This is a really
cool application, but our About dialog is kind of boring. We need something to spice it up a lit-
tle.” Suddenly, a light bulb came on and an idea for a new component was born: We would cre-
ate a scrolling credits marquee window to incorporate into our About dialogs.

The Marquee Component
Let’s take a moment to analyze how the marquee component works. The marquee control is able
to take a bunch of strings and scroll them across the component on command, like a real-life
marquee. You’ll use TCustomPanel as the base class for this TddgMarquee component because it
already has the basic built-in functionality you need, including a pretty 3D beveled border.

TddgMarquee paints some text strings to a bitmap residing in memory and then copies portions
of the memory bitmap to its own canvas to simulate a scrolling effect. It does this using the

26.65227_Ch22x 11/30/99 6:06 PM Page 696

BitBlt() API function to copy a component-sized portion of the memory canvas to the com-
ponent, starting at the top. Then, it moves down a couple pixels on the memory canvas and
copies that image to the control. It moves down again, copies again, and repeats the process
over and over so that the entire contents of the memory canvas appear to scroll through the
component.

Now is the time to identify any additional classes you might need to integrate into the
TddgMarquee component in order to bring it to life. There are really only two such classes.
First, you need the TStringList class to hold all the strings you want to scroll. Second, you
must have a memory bitmap on which you can render all the text strings. VCL’s own TBitmap
component will work nicely for this purpose.

Writing the Component
As with the previous components in this chapter, the code for TddgMarquee should be
approached with a logical plan of attack. In this case, we break up the code work into reason-
able parts. The TddgMarquee component can be divided into five major parts:

• The mechanism that renders the text onto the memory canvas

• The mechanism that copies the text from the memory canvas to the marquee window

• The timer that keeps track of when and how to scroll the window to perform the anima-
tion

• The class constructor, destructor, and associated methods

• The finishing touches, such as various helper properties and methods

Drawing on an Offscreen Bitmap
When creating an instance of TBitmap, you need to know how big it must be to hold the entire
list of strings in memory. You do this by first figuring out how high each line of text will be
and then multiplying by the number of lines. To find the height and spacing of a line of text in
a particular font, use the GetTextMetrics() API function by passing it the canvas’s handle. A
TTextMetric record to be filled in by the function:

var

Metrics: TTextMetric;

begin

GetTextMetrics(Canvas.Handle, Metrics);

Advanced Component Design Techniques

CHAPTER 22
697

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

NOTE

The GetTextMetrics() API function modifies a TTextMetric record that contains a
great deal of quantitative information about a device context’s currently selected

continues

26.65227_Ch22x 11/30/99 6:06 PM Page 697

The height of a character cell in the canvas’s current font is given by the tmHeight field of the
Metrics record. If you add to that value the tmInternalLeading field—to allow for some
space between lines—you get the height for each line of text to be drawn on the memory
canvas:

LineHi := Metrics.tmHeight + Metrics.tmInternalLeading;

The height necessary for the memory canvas then can be determined by multiplying LineHi by
the number of lines of text and adding that value to two times the height of the TddgMarquee
control (to create the blank space at the beginning and end of the marquee). Suppose that the
TStringList in which all the strings live is called FItems; now place the memory canvas
dimensions in a TRect structure:

var

VRect: TRect;

begin

{ VRect rectangle represents entire memory bitmap }

VRect := Rect(0, 0, Width, LineHi * FItems.Count + Height * 2);

end;

After being instantiated and sized, the memory bitmap is initialized further by setting the font
to match the Font property of TddgMarquee, filling the background with a color determined by
the Color property of TddgMarquee, and setting the Style property of Brush to bsClear.

Component-Based Development

PART III
698

font. This function gives you information not only on font height and width but also
on whether the font is boldfaced, italicized, struck out, or even what the character
set name is.

The TextHeight() method of TCanvas won’t work here. That method only determines
the height of a specific line of text rather than the spacing for the font in general.

TIP

When you render text on TCanvas, the text background is filled with the current
color of TCanvas.Brush. To cause the text background to be invisible, set
TCanvas.Brush.Style to bsClear.

Most of the preliminary work is now in place, so it’s time to render the text on the memory
bitmap. As discussed in Chapter 8, “Graphics Programming with GDI and Fonts,” there are a
couple of ways to output text onto a canvas. The most straightforward way is to use the
TextOut() method of TCanvas; however, you have more control over the formatting of the text

26.65227_Ch22x 11/30/99 6:06 PM Page 698

when you use the more complex DrawText() API function. Because it requires control over
justification, TddgMarquee will use the DrawText() function. An enumerated type is ideal to
represent the text justification:

type

TJustification = (tjCenter, tjLeft, tjRight);

The following code shows the PaintLine() method for TddgMarquee, which makes use of
DrawText() to render text onto the memory bitmap. In this method, FJust represents an
instance variable of type TJustification. Here’s the code:

procedure TddgMarquee.PaintLine(R: TRect; LineNum: Integer);

{ this method is called to paint each line of text onto MemBitmap }

const

Flags: array[TJustification] of DWORD = (DT_CENTER, DT_LEFT, DT_RIGHT);

var

S: string;

begin

{ Copy next line to local variable for clarity }

S := FItems.Strings[LineNum];

{ Draw line of text onto memory bitmap }

DrawText(MemBitmap.Canvas.Handle, PChar(S), Length(S), R,

Flags[FJust] or DT_SINGLELINE or DT_TOP);

end;

Painting the Component
Now that you know how to create the memory bitmap and paint text onto it, the next step is
learning how to copy that text to the TddgMarquee canvas.

The Paint() method of a component is invoked in response to a Windows WM_PAINT message.
The Paint() method is what gives your component life; you use the Paint() method to paint,
draw, and fill to determine the graphical appearance of your components.

The job of TddgMarquee.Paint() is to copy the strings from the memory canvas to the canvas
of TddgMarquee. This feat is accomplished by the BitBlt() API function, which copies the
bits from one device context to another.

To determine whether TddgMarquee is currently running, the component will maintain a
Boolean instance variable called FActive that reveals whether the marquee’s scrolling capabil-
ity has been activated. Therefore, the Paint() method paints differently depending on whether
the component is active:

procedure TddgMarquee.Paint;

{ this virtual method is called in response to a }

{ Windows paint message }

Advanced Component Design Techniques

CHAPTER 22
699

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

26.65227_Ch22x 11/30/99 6:06 PM Page 699

begin

if FActive then

{ Copy from memory bitmap to screen }

BitBlt(Canvas.Handle, 0, 0, InsideRect.Right, InsideRect.Bottom,

MemBitmap.Canvas.Handle, 0, CurrLine, srcCopy)

else

inherited Paint;

end;

If the marquee is active, the component uses the BitBlt() function to paint a portion of the
memory canvas onto the TddgMarquee canvas. Notice the CurrLine variable, which is passed
as the next-to-last parameter to BitBlt(). The value of this parameter determines which por-
tion of the memory canvas to transfer onto the screen. By continuously incrementing or decre-
menting the value of CurrLine, you can give TddgMarquee the appearance that the text is
scrolling up or down.

Animating the Marquee
The visual aspects of the TddgMarquee component are now in place. The rest of the work
involved in getting the component working is just hooking up the plumbing, so to speak. At
this point, TddgMarquee requires some mechanism to change the value of CurrLine every so
often and to repaint the component. This trick can be accomplished fairly easily using Delphi’s
TTimer component.

Before you can use TTimer, of course, you must create and initialize the class instance.
TddgMarquee will have a TTimer instance called FTimer, and you’ll initialize it in a procedure
called DoTimer:

procedure DoTimer;

{ procedure sets up TddgMarquee’s timer }

begin

FTimer := TTimer.Create(Self);

with FTimer do

begin

Enabled := False;

Interval := TimerInterval;

OnTimer := DoTimerOnTimer;

end;

end;

In this procedure, FTimer is created, and it’s disabled initially. Its Interval property then is
assigned to the value of a constant called TimerInterval. Finally, the OnTimer event for
FTimer is assigned to a method of TddgMarquee called DoTimerOnTimer. This is the method
that will be called when an OnTimer event occurs.

Component-Based Development

PART III
700

26.65227_Ch22x 11/30/99 6:06 PM Page 700

The DoTimerOnTimer() method is defined as follows:

procedure TddgMarquee.DoTimerOnTimer(Sender: TObject);

{ This method is executed in response to a timer event }

begin

IncLine;

{ only repaint within borders }

InvalidateRect(Handle, @InsideRect, False);

end;

In this method, a procedure named IncLine() is called; this procedure increments or decre-
ments the value of CurrLine as necessary. Then the InvalidateRect() API function is called
to “invalidate” (or repaint) the interior portion of the component. We chose to use
InvalidateRect() rather than the Invalidate() method of TCanvas because Invalidate()
causes the entire canvas to be repainted rather than just the portion within a defined rectangle,
as is the case with InvalidateRect(). This method, because it doesn’t continuously repaint
the entire component, eliminates much of the flicker that would otherwise occur. Remember:
Flicker is bad.

The IncLine() method, which updates the value of CurrLine and detects whether scrolling
has completed, is defined as follows:

procedure TddgMarquee.IncLine;

{ this method is called to increment a line }

begin

if not FScrollDown then // if Marquee is scrolling upward

begin

{ Check to see if marquee has scrolled to end yet }

if FItems.Count * LineHi + ClientRect.Bottom -

ScrollPixels >= CurrLine then

{ not at end, so increment current line }

Inc(CurrLine, ScrollPixels)

Advanced Component Design Techniques

CHAPTER 22
701

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

NOTE

When assigning values to events in your code, you need to follow two rules:

• The procedure you assign to the event must be a method of some object instance.
It can’t be a standalone procedure or function.

• The method you assign to the event must accept the same parameter list as the
event type. For example, the OnTimer event for TTimer is of type TNotifyEvent.
Because TNotifyEvent accepts one parameter, Sender, of type TObject, any
method you assign to OnTimer must also take one parameter of type TObject.

26.65227_Ch22x 11/30/99 6:06 PM Page 701

else SetActive(False);

end

else begin // if Marquee is scrolling downward

{ Check to see if marquee has scrolled to end yet }

if CurrLine >= ScrollPixels then

{ not at end, so decrement current line }

Dec(CurrLine, ScrollPixels)

else SetActive(False);

end;

end;

The constructor for TddgMarquee is actually quite simple. It calls the inherited Create()
method, creates a TStringList instance, sets up FTimer, and then sets all the default values for
the instance variables. Once again, you must remember to call the inherited Create() method
in your components. Failure to do so means your components will miss out on important and
useful functionality, such as handle and canvas creation, streaming, and Windows message
response. The following code shows the TddgMarquee constructor, Create():

constructor TddgMarquee.Create(AOwner: TComponent);

{ constructor for TddgMarquee class }

procedure DoTimer;

{ procedure sets up TddgMarquee’s timer }

begin

FTimer := TTimer.Create(Self);

with FTimer do

begin

Enabled := False;

Interval := TimerInterval;

OnTimer := DoTimerOnTimer;

end;

end;

begin

inherited Create(AOwner);

FItems := TStringList.Create; { instantiate string list }

DoTimer; { set up timer }

{ set instance variable default values }

Width := 100;

Height := 75;

FActive := False;

FScrollDown := False;

FJust := tjCenter;

Component-Based Development

PART III
702

26.65227_Ch22x 11/30/99 6:06 PM Page 702

BevelWidth := 3;

end;

The TddgMarquee destructor is even simpler: The method deactivates the component by pass-
ing False to the SetActive() method, frees the timer and the string list, and then calls the
inherited Destroy() method:

destructor TddgMarquee.Destroy;

{ destructor for TddgMarquee class }

begin

SetActive(False);

FTimer.Free; // free allocated objects

FItems.Free;

inherited Destroy;

end;

Advanced Component Design Techniques

CHAPTER 22
703

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

TIP

As a rule of thumb, when you override constructors, you usually call inherited first,
and when you override destructors, you usually call inherited last. This ensures that
the class has been set up before you modify it and that all dependent resources have
been cleaned up before you dispose of the class.

Exceptions to this rule exist; however, you should generally stick to it unless you have
good reason not to.

The SetActive() method, which is called by both the IncLine() method and the destructor
(in addition to serving as the writer for the Active property), serves as a vehicle that starts and
stops the marquee scrolling up the canvas:

procedure TddgMarquee.SetActive(Value: Boolean);

{ called to activate/deactivate the marquee }

begin

if Value and (not FActive) and (FItems.Count > 0) then

begin

FActive := True; // set active flag

MemBitmap := TBitmap.Create;

FillBitmap; // Paint Image on bitmap

FTimer.Enabled := True; // start timer

end

else if (not Value) and FActive then

begin

FTimer.Enabled := False; // disable timer,

26.65227_Ch22x 11/30/99 6:06 PM Page 703

if Assigned(FOnDone) // fire OnDone event,

then FOnDone(Self);

FActive := False; // set FActive to False

MemBitmap.Free; // free memory bitmap

Invalidate; // clear control window

end;

end;

An important feature of TddgMarquee that’s lacking thus far is an event that tells the user when
scrolling is complete. Never fear—this feature is very straightforward to add by way of an
event: FOnDone. The first step to adding an event to your component is to declare an instance
variable of some event type in the private portion of the class definition. You’ll use the
TNotifyEvent type for the FOnDone event:

FOnDone: TNotifyEvent;

The event should then be declared in the published part of the class as a property:

property OnDone: TNotifyEvent read FOnDone write FOnDone;

Recall that the read and write directives specify from which function or variable a given prop-
erty should get or set its value.

Taking just these two small steps will cause an entry for OnDone to be displayed in the Events
page of the Object Inspector at design time. The only other thing that needs to be done is to
call the user’s handler for OnDone (if a method is assigned to OnDone), as demonstrated by
TddgMarquee with this line of code in the Deactivate() method:

if Assigned(FOnDone) then FOnDone(Self); // fire OnDone event

This line basically reads, “If the component user has assigned a method to the OnDone event,
call that method and pass the TddgMarquee class instance (Self) as a parameter.”

Listing 22.2 shows the completed source code for the Marquee unit. Notice that because the
component descends from a TCustomXXX class, you need to publish many of the properties pro-
vided by TCustomPanel.

LISTING 22.2 Marquee.pas—Illustrates the TddgMarquee Component

unit Marquee;

interface

uses
SysUtils, Windows, Classes, Forms, Controls, Graphics,
Messages, ExtCtrls, Dialogs;

const

Component-Based Development

PART III
704

26.65227_Ch22x 11/30/99 6:06 PM Page 704

ScrollPixels = 3; // num of pixels for each scroll
TimerInterval = 50; // time between scrolls in ms

type
TJustification = (tjCenter, tjLeft, tjRight);

EMarqueeError = class(Exception);

TddgMarquee = class(TCustomPanel)
private
MemBitmap: TBitmap;
InsideRect: TRect;
FItems: TStringList;
FJust: TJustification;
FScrollDown: Boolean;
LineHi : Integer;
CurrLine : Integer;
VRect: TRect;
FTimer: TTimer;
FActive: Boolean;
FOnDone: TNotifyEvent;
procedure SetItems(Value: TStringList);
procedure DoTimerOnTimer(Sender: TObject);
procedure PaintLine(R: TRect; LineNum: Integer);
procedure SetLineHeight;
procedure SetStartLine;
procedure IncLine;
procedure SetActive(Value: Boolean);

protected
procedure Paint; override;
procedure FillBitmap; virtual;

public
property Active: Boolean read FActive write SetActive;
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;

published
property ScrollDown: Boolean read FScrollDown write FScrollDown;
property Justify: TJustification read FJust write FJust default tjCenter;
property Items: TStringList read FItems write SetItems;
property OnDone: TNotifyEvent read FOnDone write FOnDone;
{ Publish inherited properties: }
property Align;
property Alignment;
property BevelInner;
property BevelOuter;
property BevelWidth;

Advanced Component Design Techniques

CHAPTER 22
705

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

continues

26.65227_Ch22x 11/30/99 6:06 PM Page 705

LISTING 22.2 Continued

property BorderWidth;
property BorderStyle;
property Color;
property Ctl3D;
property Font;
property Locked;
property ParentColor;
property ParentCtl3D;
property ParentFont;
property Visible;
property OnClick;
property OnDblClick;
property OnMouseDown;
property OnMouseMove;
property OnMouseUp;
property OnResize;

end;

implementation

constructor TddgMarquee.Create(AOwner: TComponent);
{ constructor for TddgMarquee class }

procedure DoTimer;
{ procedure sets up TddgMarquee’s timer }
begin
FTimer := TTimer.Create(Self);
with FTimer do
begin
Enabled := False;
Interval := TimerInterval;
OnTimer := DoTimerOnTimer;

end;
end;

begin
inherited Create(AOwner);
FItems := TStringList.Create; { instantiate string list }
DoTimer; { set up timer }
{ set instance variable default values }
Width := 100;
Height := 75;
FActive := False;
FScrollDown := False;

Component-Based Development

PART III
706

26.65227_Ch22x 11/30/99 6:06 PM Page 706

FJust := tjCenter;
BevelWidth := 3;

end;

destructor TddgMarquee.Destroy;
{ destructor for TddgMarquee class }
begin
SetActive(False);
FTimer.Free; // free allocated objects
FItems.Free;
inherited Destroy;

end;

procedure TddgMarquee.DoTimerOnTimer(Sender: TObject);
{ This method is executed in response to a timer event }
begin
IncLine;
{ only repaint within borders }
InvalidateRect(Handle, @InsideRect, False);

end;

procedure TddgMarquee.IncLine;
{ this method is called to increment a line }
begin
if not FScrollDown then // if Marquee is scrolling upward
begin
{ Check to see if marquee has scrolled to end yet }
if FItems.Count * LineHi + ClientRect.Bottom -
ScrollPixels >= CurrLine then
{ not at end, so increment current line }
Inc(CurrLine, ScrollPixels)

else SetActive(False);
end
else begin // if Marquee is scrolling downward
{ Check to see if marquee has scrolled to end yet }
if CurrLine >= ScrollPixels then
{ not at end, so decrement current line }
Dec(CurrLine, ScrollPixels)

else SetActive(False);
end;

end;

procedure TddgMarquee.SetItems(Value: TStringList);
begin
if FItems <> Value then
FItems.Assign(Value);

Advanced Component Design Techniques

CHAPTER 22
707

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

continues

26.65227_Ch22x 11/30/99 6:06 PM Page 707

LISTING 22.2 Continued

end;

procedure TddgMarquee.SetLineHeight;
{ this virtual method sets the LineHi instance variable }
var
Metrics : TTextMetric;

begin
{ get metric info for font }
GetTextMetrics(Canvas.Handle, Metrics);
{ adjust line height }
LineHi := Metrics.tmHeight + Metrics.tmInternalLeading;

end;

procedure TddgMarquee.SetStartLine;
{ this virtual method initializes the CurrLine instance variable }
begin
// initialize current line to top if scrolling up, or...
if not FScrollDown then CurrLine := 0
// bottom if scrolling down
else CurrLine := VRect.Bottom - Height;

end;

procedure TddgMarquee.PaintLine(R: TRect; LineNum: Integer);
{ this method is called to paint each line of text onto MemBitmap }
const
Flags: array[TJustification] of DWORD = (DT_CENTER, DT_LEFT, DT_RIGHT);

var
S: string;

begin
{ Copy next line to local variable for clarity }
S := FItems.Strings[LineNum];
{ Draw line of text onto memory bitmap }
DrawText(MemBitmap.Canvas.Handle, PChar(S), Length(S), R,
Flags[FJust] or DT_SINGLELINE or DT_TOP);

end;

procedure TddgMarquee.FillBitmap;
var
y, i : Integer;
R: TRect;

begin
SetLineHeight; // set height of each line
{ VRect rectangle represents entire memory bitmap }
VRect := Rect(0, 0, Width, LineHi * FItems.Count + Height * 2);

Component-Based Development

PART III
708

26.65227_Ch22x 11/30/99 6:06 PM Page 708

{ InsideRect rectangle represents interior of beveled border }
InsideRect := Rect(BevelWidth, BevelWidth, Width - (2 * BevelWidth),
Height - (2 * BevelWidth));

R := Rect(InsideRect.Left, 0, InsideRect.Right, VRect.Bottom);
SetStartLine;
MemBitmap.Width := Width; // initialize memory bitmap
with MemBitmap do
begin
Height := VRect.Bottom;
with Canvas do
begin
Font := Self.Font;
Brush.Color := Color;
FillRect(VRect);
Brush.Style := bsClear;

end;
end;
y := Height;
i := 0;
repeat
R.Top := y;
PaintLine(R, i);
{ increment y by the height (in pixels) of a line }
inc(y, LineHi);
inc(i);

until i >= FItems.Count; // repeat for all lines
end;

procedure TddgMarquee.Paint;
{ this virtual method is called in response to a }
{ Windows paint message }
begin
if FActive then
{ Copy from memory bitmap to screen }
BitBlt(Canvas.Handle, 0, 0, InsideRect.Right, InsideRect.Bottom,
MemBitmap.Canvas.Handle, 0, CurrLine, srcCopy)

else
inherited Paint;

end;

procedure TddgMarquee.SetActive(Value: Boolean);
{ called to activate/deactivate the marquee }
begin
if Value and (not FActive) and (FItems.Count > 0) then
begin
FActive := True; // set active flag

Advanced Component Design Techniques

CHAPTER 22
709

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

continues

26.65227_Ch22x 11/30/99 6:06 PM Page 709

LISTING 22.2 Continued

MemBitmap := TBitmap.Create;
FillBitmap; // Paint Image on bitmap
FTimer.Enabled := True; // start timer

end
else if (not Value) and FActive then
begin
FTimer.Enabled := False; // disable timer,
if Assigned(FOnDone) // fire OnDone event,
then FOnDone(Self);

FActive := False; // set FActive to False
MemBitmap.Free; // free memory bitmap
Invalidate; // clear control window

end;
end;

end.

Component-Based Development

PART III
710

TIP

Notice the default directive and value used with the Justify property of
TddgMarquee. This use of default optimizes streaming of the component, which
improves the component’s design-time performance. You can give default values to
properties of any ordinal type (Integer, Word, Longint, as well as enumerated types,
for example), but you can’t give them to nonordinal property types such as strings,
floating-point numbers, arrays, records, and classes.

You also need to initialize the default values for the properties in your constructor.
Failure to do so will cause streaming problems.

Testing TddgMarquee
Although it’s very exciting to finally have this component written and in the testing stages,
don’t get carried away by trying to add it to the Component Palette just yet. It has to be
debugged first. You should do all preliminary testing with the component by creating a project
that creates and uses a dynamic instance of the component. Listing 22.3 depicts the main unit
for a project called TestMarq, which is used to test the TddgMarquee component. This simple
project consists of a form that contains two buttons.

LISTING 22.3 TestU.pas—Tests the TddgMarquee Component

unit Testu;

interface

26.65227_Ch22x 11/30/99 6:06 PM Page 710

uses

SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,

Forms, Dialogs, Marquee, StdCtrls, ExtCtrls;

type

TForm1 = class(TForm)

Button1: TButton;

Button2: TButton;

procedure FormCreate(Sender: TObject);

procedure Button1Click(Sender: TObject);

procedure Button2Click(Sender: TObject);

private

Marquee1: TddgMarquee;

procedure MDone(Sender: TObject);

public

{ Public declarations }

end;

var

Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.MDone(Sender: TObject);

begin

Beep;

end;

procedure TForm1.FormCreate(Sender: TObject);

begin

Marquee1 := TddgMarquee.Create(Self);

with Marquee1 do

begin

Parent := Self;

Top := 10;

Left := 10;

Height := 200;

Width := 150;

OnDone := MDone;

Show;

Advanced Component Design Techniques

CHAPTER 22
711

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

continues

26.65227_Ch22x 11/30/99 6:06 PM Page 711

LISTING 22.3 Continued

with Items do

begin

Add(‘Greg’);

Add(‘Peter’);

Add(‘Bobby’);

Add(‘Marsha’);

Add(‘Jan’);

Add(‘Cindy’);

end;

end;

end;

procedure TForm1.Button1Click(Sender: TObject);

begin

Marquee1.Active := True;

end;

procedure TForm1.Button2Click(Sender: TObject);

begin

Marquee1.Active := False;

end;

end.

Component-Based Development

PART III
712

TIP

Always create a test project for your new components. Never try to do initial testing
on a component by adding it to the Component Palette. By trying to debug a com-
ponent that resides on the palette, not only will you waste time with a lot of gratu-
itous package rebuilding, but it’s possible to crash the IDE as a result of a bug in your
component.

Figure 22.2 shows the TestMarq project in action.

After you squash all the bugs you find in this program, it’s time to add it to the Component
Palette. As you may recall, doing so is easy: Simply choose Component, Install Component
from the main menu and then fill in the unit filename and package name in the Install
Component dialog. Choose OK and Delphi will rebuild the package to which the component
was added and update the Component Palette. Of course, your component will need to expose

26.65227_Ch22x 11/30/99 6:06 PM Page 712

a Register() procedure in order to be placed on the Component Palette. The TddgMarquee
component is registered in the DDGReg.pas unit of the DDGDsgn package on the CD-ROM
accompanying this book.

Advanced Component Design Techniques

CHAPTER 22
713

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

FIGURE 22.2
Testing the TddgMarquee component.

Writing Property Editors
Chapter 21, “Writing Delphi Custom Components,” shows how properties are edited in the
Object Inspector for most of the common property types. The means by which a property is
edited is determined by its property editor. Several predefined property editors are used for the
existing properties. However, there may be a situation in which none of the predefined editors
meet your needs, such as when you’ve created a custom property. Given this situation, you’ll
need to create your own editor for that property.

You can edit properties in the Object Inspector in two ways. One is to allow the user to edit the
value as a text string. The other is to use a dialog that performs the editing of the property. In
some cases, you’ll want to allow both editing capabilities for a single property.

Here are the steps required for writing a property editor:

1. Create a descendant property editor object.

2. Edit the property as text.

3. Edit the property as a whole with a dialog (optional).

4. Specify the property editor’s attributes.

5. Register the property editor.

The following sections cover each of these steps.

26.65227_Ch22x 11/30/99 6:06 PM Page 713

Creating a Descendant Property Editor Object
Delphi defines several property editors in the unit DsgnIntf.pas, all of which descend from
the base class TPropertyEditor. When you create a property editor, your property editor must
descend from TPropertyEditor or one of its descendants. Table 22.1 shows the
TPropertyEditor descendants that are used with the existing properties.

TABLE 22.1 Property Editors Defined in DsgnIntf.pas

Property Editor Description

TOrdinalProperty The base class for all ordinal property editors, such as
TIntegerProperty, TEnumProperty, TCharProperty, and so on.

TIntegerProperty The default property editor for integer properties of all sizes.

TCharProperty The property editor for properties that are a char type and a subrange
of char; that is, ‘A’..’Z’.

TEnumProperty The default property for all user-defined enumerated types.

TFloatProperty The default property editor for floating-point numeric properties.

TStringProperty The default property editor for string type properties.

TSetElementProperty The default property editor for individual set elements. Each element
in the set is displayed as an individual Boolean option.

TSetProperty The default property editor for set properties. The set expands into
separate set elements for each element in the set.

TClassProperty The default property editor for properties that are, themselves, objects.

TMethodProperty The default property editor for properties that are method pointers—
that is, events.

TComponentProperty The default property editor for properties that refer to a component.
This isn’t the same as the TClassProperty editor. Instead, this editor
allows the user to specify a component to which the property refers—
that is, ActiveControl.

TColorProperty The default property editor for properties of the type TColor.

TFontNameProperty The default property editor for font names. This editor displays a drop-
down list of fonts available on the system.

TFontProperty The default property editor for properties of type TFont, which allows
the editing of subproperties. TFontProperty allows the editing of
subproperties because it derives from TClassProperty.

The property editor from which your property editor must descend depends on how the prop-
erty is going to behave when it’s edited. In some cases, for example, your property might
require the same functionality as TIntegerProperty, but it might also require additional logic

Component-Based Development

PART III
714

26.65227_Ch22x 11/30/99 6:06 PM Page 714

in the editing process. Therefore, it would be logical that your property editor descend from
TIntegerProperty.

Advanced Component Design Techniques

CHAPTER 22
715

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

TIP

Bear in mind that there are cases when you don’t need to create a property editor
that depends on your property type. For example, subrange types are checked auto-
matically (for example, 1..10 is checked for by TIntegerProperty), enumerated types
get drop-down lists automatically, and so on. You should try to use type definitions
instead of custom property editors because they’re enforced by the language at com-
pile time as well as by the default property editors.

Editing the Property as Text
The property editor has two basic purposes: One is to provide a means for the user to edit the
property; this is obvious. The other not-so-obvious purpose is to provide the string representa-
tion of the property value to the Object Inspector so that it can be displayed accordingly.

When you create a descendant property editor class, you must override the GetValue() and
SetValue() methods. GetValue() returns the string representation of the property value for the
Object Inspector to display. SetValue() sets the value based on its string representation as it’s
entered in the Object Inspector.

As an example, examine the definition of the TIntegerProperty class type as it’s defined in
DSGNINTF.PAS:

TIntegerProperty = class(TOrdinalProperty)

public

function GetValue: string; override;

procedure SetValue(const Value: string); override;

end;

Here, you see that the GetValue() and SetValue() methods have been overridden. The
GetValue() implementation is as follows:

function TIntegerProperty.GetValue: string;

begin

Result := IntToStr(GetOrdValue);

end;

Here’s the SetValue() implementation:

procedure TIntegerProperty.SetValue(const Value: String);

var

26.65227_Ch22x 11/30/99 6:06 PM Page 715

L: Longint;

begin

L := StrToInt(Value);

with GetTypeData(GetPropType)^ do

if (L < MinValue) or (L > MaxValue) then

raise EPropertyError.CreateResFmt(SOutOfRange, [MinValue, MaxValue]);

SetOrdValue(L);

end;

GetValue() returns the string representation of an integer property. The Object Inspector uses
this value to display the property’s value. GetOrdValue() is a method defined by
TPropertyEditor and is used to retrieve the value of the property referenced by the property
editor.

SetValue() takes the string value entered by the user and assigns it to the property in the cor-
rect format. SetValue() also performs some error checking to ensure that the value is within a
specified range of values. This illustrates how you might perform error checking with your
descendant property editors. The SetOrdValue() method assigns the value to the property ref-
erenced by the property editor.

TPropertyEditor defines several methods similar to GetOrdValue() for getting the string rep-
resentation of various types. Additionally, TPropertyEditor contains the equivalent “set”
methods for setting the values in their respective format. TPropertyEditor descendants inherit
these methods. These methods are used for getting and setting the values of the properties that
the property editor references. Table 22.2 shows these methods.

TABLE 22.2 Read/Write Property Methods for TPropertyEditor

Property Type “Get” Method “Set” Method

Floating point GetFloatValue() SetFloatValue()

Event GetMethodValue() SetMethodValue()

Ordinal GetOrdValue() SetOrdValue()

String GetStrValue() SetStrValue()

Variant GetVarValue() SetVarValue(), SetVarValueAt()

To illustrate creating a new property editor, we’ll have some more fun with the solar system
example introduced in the last chapter. This time, we’ve created a simple component, TPlanet,
to represent a single planet. TPlanet contains the property PlanetName. Internal storage for
PlanetName is going to be of type integer and will hold the planet’s position in the solar sys-
tem. However, it will be displayed in the Object Inspector as the name of the planet.

So far this sounds easy, but here’s the catch: We want to enable the user to type two values to
represent the planet. The user should be able to type the planet name as a string, such as Venus,

Component-Based Development

PART III
716

26.65227_Ch22x 11/30/99 6:06 PM Page 716

VENUS, or VeNuS. He or she should also be able to type the position of the planet in the solar
system. Therefore, for the planet Venus, the user would type the numeric value 2.

The component TPlanet is as follows:

type

TPlanetName = type Integer;

TPlanet = class(TComponent)

private

FPlanetName: TPlanetName;

published

property PlanetName: TPlanetName read FPlanetName write FPlanetName;

end;

As you can see, there’s not much to this component. It has only one property: PlanetName of
the type TPlanetName. Here, the special definition of TPlanetName is used so that it’s given its
own runtime type information, yet it’s still treated like an integer type.

This functionality doesn’t come from the TPlanet component; rather, it comes from the prop-
erty editor for the TPlanetName property type. This property editor is shown in Listing 22.4.

LISTING 22.4 PlanetPE.PAS—The Source Code for TPlanetNameProperty

unit PlanetPE;

interface

uses

Windows, SysUtils, DsgnIntF;

type

TPlanetNameProperty = class(TIntegerProperty)

public

function GetValue: string; override;

procedure SetValue(const Value: string); override;

end;

implementation

const

{ Declare a constant array containing planet names }

PlanetNames: array[1..9] of String[7] =

(‘Mercury’, ‘Venus’, ‘Earth’, ‘Mars’, ‘Jupiter’, ‘Saturn’,

Advanced Component Design Techniques

CHAPTER 22
717

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

continues

26.65227_Ch22x 11/30/99 6:06 PM Page 717

LISTING 22.4 Continued

‘Uranus’, ‘Neptune’, ‘Pluto’);

function TPlanetNameProperty.GetValue: string;
begin
Result := PlanetNames[GetOrdValue];

end;

procedure TPlanetNameProperty.SetValue(const Value: String);
var
PName: string[7];
i, ValErr: Integer;

begin
PName := UpperCase(Value);
i := 1;
{ Compare the Value with each of the planet names in the PlanetNames
array. If a match is found, the variable i will be less than 10 }

while (PName <> UpperCase(PlanetNames[i])) and (i < 10) do
inc(i);

{ If i is less than 10, a valid planet name was entered. Set the value
and exit this procedure. }

if i < 10 then // A valid planet name was entered.
begin
SetOrdValue(i);
Exit;

end
{ If i was greater than 10, the user might have typed in a planet number, or
an invalid planet name. Use the Val function to test if the user typed in
a number, if an ValErr is non-zero, an invalid name was entered,
otherwise, test the range of the number entered for (0 < i < 10). }

else begin
Val(Value, i, ValErr);
if ValErr <> 0 then
raise Exception.Create(Format(‘Sorry, Never heard of the planet %s.’,
[Value]));

if (i <= 0) or (i >= 10) then
raise Exception.Create(‘Sorry, that planet is not in OUR solar

system.’);
SetOrdValue(i);

end;
end;

end.

Component-Based Development

PART III
718

26.65227_Ch22x 11/30/99 6:06 PM Page 718

First, we create our property editor, TPlanetNameProperty, which descends from
TIntegerProperty. By the way, it’s necessary to include the DsgnIntf unit in the uses clause
of this unit.

We’ve defined an array of string constants to represent the planets in the solar system by their
position from the sun. These strings will be used to display the string representation of the
planet in the Object Inspector.

As stated earlier, we have to override the GetValue() and SetValue() methods. In the
GetValue() method, we just return the string from the PlanetNames array, which is indexed by
the property value. Of course, this value must be within the range of 1–9. We handle this by
not allowing the user to enter a number out of that range in the SetValue() method.

SetValue() gets a string as it’s entered from the Object Inspector. This string can either be a
planet name or a number representing a planet’s position. If a valid planet name or planet num-
ber is entered, as determined by the code logic, the value assigned to the property is specified
by the SetOrdValue() method. If the user enters an invalid planet name or planet position, the
code raises the appropriate exception.

That’s all there is to defining a property editor. Well, not quite; it must still be registered before
it becomes known to the property to which you want to attach it.

Registering the New Property Editor
You register a property editor by using the appropriately named procedure
RegisterPropertyEditor(). This method is declared as follows:

procedure RegisterPropertyEditor(PropertyType: PTypeInfo;

ComponentClass: TClass; const PropertyName: string;
EditorClass: TPropertyEditorClass);

The first parameter, PropertyType, is a pointer to the Runtime Type Information of the prop-
erty being edited. This information is obtained by using the TypeInfo() function.
ComponentClass is used to specify to which class this property editor will apply.
PropertyName specifies the property name on the component, and the EditorClass parameter
specifies the type of property editor to use. For the TPlanet.PlanetName property, the function
looks like this:

RegisterPropertyEditor(TypeInfo(TPlanetName), TPlanet, ‘PlanetName’,

TPlanetNameProperty);

Advanced Component Design Techniques

CHAPTER 22
719

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

TIP

Although, for the purpose of illustration, this particular property editor is registered
for use only with the TPlanet component and ‘PlanetName’ property name, you

continues

26.65227_Ch22x 11/30/99 6:06 PM Page 719

You can register the property editor along with the registration of the component in the compo-
nent’s unit, as shown in Listing 22.5.

LISTING 22.5 Planet.pas: The TPlanet Component

unit Planet;

interface

uses

Classes, SysUtils;

type

TPlanetName = type Integer;

TddgPlanet = class(TComponent)

private

FPlanetName: TPlanetName;

published

property PlanetName: TPlanetName read FPlanetName write FPlanetName;

end;

implementation

end.

Component-Based Development

PART III
720

might choose to be less restrictive in registering your custom property editors. By set-
ting the ComponentClass parameter to nil and the PropertyName parameter to ‘’,
your property editor will work for any component’s property of type TPlanetName.

TIP

Placing the property editor registration in the Register() procedure of the compo-
nent’s unit will force all the property editor code to be linked in with your compo-
nent when it’s put into a package. For complex components, the design-time tools
may take up more code space than the components themselves. Although code size
isn’t much of an issue for a small component such as this, keep in mind that every-
thing that’s listed in the interface section of your component’s unit (such as the
Register() procedure) as well as everything it touches (such as the property editor

26.65227_Ch22x 11/30/99 6:06 PM Page 720

Editing the Property as a Whole with a Dialog
Sometimes it’s necessary to provide more editing capability than the in-place editing of the
Object Inspector. This is when it becomes necessary to use a dialog as a property editor. An
example of this would be the Font property for most Delphi components. Certainly, the makers
of Delphi could have forced the user to type the font name and other font-related information.
However, it would be unreasonable to expect the user to know this information. It’s far easier
to provide the user with a dialog where he or she can set these various attributes related to the
font and see an example before selecting it.

To illustrate using a dialog to edit a property, we’re going to extend the functionality of the
TddgRunButton component created in Chapter 21, “Writing Delphi Custom Components.”
Now the user will be able to click an ellipsis button in the Object Inspector for the
CommandLine property, which will invoke an Open File dialog from which the user can select a
file for TddgRunButton to represent.

Sample Dialog Property Editor: Extending TddgRunButton
The TddgRunButton component is shown in Listing 21.13 in Chapter 21, “Writing Delphi
Custom Components.” We won’t show it again here, but there are a few things we want to
point out. The TddgRunButton.CommandLine property is of type TCommandLine, which is
defined as follows:

TCommandLine = type string;

Again, this is a special declaration that attaches unique Runtime Type Information to this spe-
cial type. This allows you to define a property editor specific to the TCommandLine type.
Additionally, because TCommandLine is treated as a string, the property editor for editing string
properties still applies to the TCommandLine type as well.

Also, as we illustrate the property editor for the TCommandLine type, keep in mind that
TddgRunButton already has included the necessary error checking of property assignments in
the properties’ access methods. Therefore, it isn’t necessary to repeat this error checking in the
property editor’s logic.

Listing 22.6 shows the definition of the TCommandLineProperty property editor.

Advanced Component Design Techniques

CHAPTER 22
721

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

class type) will tag along with your component when it’s compiled into a package. For
this reason, you might want to perform registration of your property editor in a sepa-
rate unit. Furthermore, some component writers choose to create both design-time
and runtime packages for their components, whereas the property editors and other
design-time tools reside only in the design-time package. You’ll note that the pack-
ages containing this book’s code do this using the DdgStd5 runtime package and the
DdgDsgn5 design package.

26.65227_Ch22x 11/30/99 6:06 PM Page 721

LISTING 22.6 RunBtnPE.pas: The Unit Containing TCommandLineProperty

unit runbtnpe;

interface

uses

Windows, Messages, SysUtils, Classes, Graphics, Controls,

Forms, Dialogs, StdCtrls, Buttons, DsgnIntF, TypInfo;

type

{ Descend from the TStringProperty class so that this editor

inherits the string property editing capabilities }

TCommandLineProperty = class(TStringProperty)

function GetAttributes: TPropertyAttributes; override;

procedure Edit; override;

end;

implementation

function TCommandLineProperty.GetAttributes: TPropertyAttributes;

begin

Result := [paDialog]; // Display a dialog in the Edit method

end;

procedure TCommandLineProperty.Edit;

{ The Edit method displays a TOpenDialog from which the user obtains

an executable file name that gets assigned to the property }

var

OpenDialog: TOpenDialog;

begin

{ Create the TOpenDialog }

OpenDialog := TOpenDialog.Create(Application);

try

{ Show only executable files }

OpenDialog.Filter := ‘Executable Files|*.EXE’;

{ If the user selects a file, then assign it to the property. }

if OpenDialog.Execute then

SetStrValue(OpenDialog.FileName);

finally

OpenDialog.Free // Free the TOpenDialog instance.

end;

Component-Based Development

PART III
722

26.65227_Ch22x 11/30/99 6:06 PM Page 722

end;

end.

Examination of TCommandLineProperty shows that the property editor, itself, is very simple.
First, notice that it descends from TStringProperty so that the string-editing capabilities are
maintained. Therefore, in the Object Inspector, it isn’t necessary to invoke the dialog. The user
can just type the command line directly. Also, we didn’t override the SetValue() and
GetValue() methods, because TStringProperty already handles this correctly. However, it
was necessary to override the GetAttributes() method in order for the Object Inspector to
know that this property is capable of being edited with a dialog. GetAttributes() merits fur-
ther discussion.

Specifying the Property Editor’s Attributes
Every property editor must tell the Object Inspector how a property is to be edited and what
special attributes (if any) must be used when editing a property. Most of the time, the inherited
attributes from a descendant property editor will suffice. In certain circumstances, however,
you must override the GetAttributes() method of TPropertyEditor, which returns a set of
property attribute flags (TPropertyAttribute flags) that indicate special property-editing
attributes. The various TPropertyAttribute flags are shown in Table 22.3.

TABLE 22.3 TPropertyAttribute Flags

Attribute How the Property Editor Works with the Object Inspector

paValueList Returns an enumerated list of values for the property. The GetValues()
method populates the list. A drop-down arrow button appears to the right of
the property value. This applies to enumerated properties such as
TForm.BorderStyle and integer const groups such as TColor and
TCharSet.

paSubProperties Subproperties are displayed indented below the current property in outline
format. paValueList must also be set. This applies to set properties and
class properties such as TOpenDialog.Options and TForm.Font.

paDialog An ellipsis button is displayed to the right of the property in the Object
Inspector, which, when pressed, causes the property editor’s Edit()
method to invoke a dialog. This applies to properties such as TForm.Font.

paMultiSelect Properties are displayed when more than one component is selected on the
Form Designer, allowing the user to change the property values for multiple
components at once. Some properties aren’t appropriate for this capability,
such as the Name property.

Advanced Component Design Techniques

CHAPTER 22
723

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

continues

26.65227_Ch22x 11/30/99 6:06 PM Page 723

TABLE 22.3 Continued

paAutoUpdate SetValue() is called on each change made to the property. If this flag
isn’t set, SetValue() is called when the user presses Enter or moves off
the property in the Object Inspector. This applies to properties such as
TForm.Caption.

paFullWidthName Tells the Object Inspector that the value doesn’t need to be rendered, and as
such, the name should be rendered the full width of the inspector.

paSortList The Object Inspector sorts the list returned by GetValues().

paReadOnly The property value can’t be changed.

paRevertable The property can be reverted to its original value. Some properties, such as
nested properties, shouldn’t be reverted. TFont is an example of this.

Component-Based Development

PART III
724

NOTE

You should take a look at DsgnIntf.pas and examine which TPropertyAttribute
flags are set for various property editors.

Setting the paDialog Attribute for TCommandLineProperty
Because TCommandLineProperty is to display a dialog, you must tell the Object Inspector to
use this capability by setting the paDialog attribute in the TCommandLineProperty.
GetAttributes() method. This will place an ellipsis button to the right of the CommandLine
property value in the Object Inspector. When the user presses this button, the
TCommandLineProperty.Edit() method will be called.

Registering the TCommandLineProperty
The final step required for implementing the TCommandLineProperty property editor is to reg-
ister it using the RegisterPropertyEditor() procedure discussed earlier in this chapter. This
procedure was added to the Register() procedure in DDGReg.pas in the DDGDsgn package:

RegisterComponents(‘DDG’, [TddgRunButton]);

RegisterPropertyEditor(TypeInfo(TCommandLine), TddgRunButton,

‘’, TCommandLineProperty);

Also, note that the units DsgnIntf and RunBtnPE had to be added to the uses clause.

Component Editors
Component editors extend the design-time behavior of your components by allowing you to
add items to the local menu associated with a particular component and by allowing you to
change the default action when a component is double-clicked in the Form Designer. You
might already be familiar with component editors without knowing it if you’ve ever used the
fields editor provided with the TTable, TQuery, and TStoredProc components.

26.65227_Ch22x 11/30/99 6:06 PM Page 724

TComponentEditor
You might not be aware of this, but a different component editor is created for each component
that’s selected in the Form Designer. The type of component editor created depends on the
component’s type, although all component editors descend from TComponentEditor. This class
is defined in the DsgnIntf unit as follows:

type

TComponentEditor = class(TInterfacedObject, IComponentEditor)

private

FComponent: TComponent;

FDesigner: IFormDesigner;

public

constructor Create(AComponent: TComponent; ADesigner: IFormDesigner);

virtual;

procedure Edit; virtual;

procedure ExecuteVerb(Index: Integer); virtual;

function GetIComponent: IComponent;

function GetDesigner: IFormDesigner;

function GetVerb(Index: Integer): string; virtual;

function GetVerbCount: Integer; virtual;

procedure Copy; virtual;

property Component: TComponent read FComponent;

property Designer: IFormDesigner read GetDesigner;

end;

Properties
The Component property of TComponentEditor is the instance of the component you’re in the
process of editing. Because this property is of the generic TComponent type, you must typecast
the property in order to access fields introduced by descendant classes.

The Designer property is the instance of TFormDesigner that’s currently hosting the applica-
tion at design time. You’ll find the complete definition for this class in the DsgnIntf.pas unit.

Methods
The Edit() method is called when the user double-clicks the component at design time. Often,
this method will invoke some sort of design dialog. The default behavior for this method is to
call ExecuteVerb(0) if GetVerbCount() returns a value of 1 or greater. You must call
Designer.Modified() if you modify the component from this (or any) method.

The GetVerbCount() method is called to retrieve the number of items that are to be added to
the local menu.

GetVerb() accepts an integer, Index, and returns a string containing the text that should appear
on the local menu in the position corresponding to Index.

Advanced Component Design Techniques

CHAPTER 22
725

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

26.65227_Ch22x 11/30/99 6:06 PM Page 725

When an item is chosen from the local menu, the ExecuteVerb() method is called. This
method receives the zero-based index of the item selected from the local menu in the Index
parameter. You should respond by performing whatever action is necessary based on the verb
the user selected from the local menu.

The Paste() method is called whenever the component is pasted to the Clipboard. Delphi
places the component’s filed stream image on the Clipboard, but you can use this method to
paste data on the Clipboard in a different type of format.

TDefaultEditor
If a custom component editor isn’t registered for a particular component, that component will
use the default component editor, TDefaultEditor. TDefaultEditor overrides the behavior of
the Edit() method so that it searches the properties of the component and generates (or navi-
gates to) the OnCreate, OnChanged, or OnClick event (whichever it finds first).

A Simple Component
Consider the following simple custom component:

type

TComponentEditorSample = class(TComponent)

protected

procedure SayHello; virtual;

procedure SayGoodbye; virtual;

end;

procedure TComponentEditorSample.SayHello;

begin

MessageDlg(‘Hello, there!’, mtInformation, [mbOk], 0);

end;

procedure TComponentEditorSample.SayGoodbye;

begin

MessageDlg(‘See ya!’, mtInformation, [mbOk], 0);

end;

As you can see, this little guy doesn’t do much: It’s a nonvisual component that descends
directly from TComponent, and it contains two methods, SayHello() and SayGoodbye(), that
simply display message dialogs.

A Simple Component Editor
To make the component a bit more exiting, you’ll create a component editor that calls into the
component and executes its methods at design time. The minimum TComponentEditor methods

Component-Based Development

PART III
726

26.65227_Ch22x 11/30/99 6:06 PM Page 726

that must be overridden are ExecuteVerb(), GetVerb(), and GetVerbCount(). The code for
this component editor is as follows:

type

TSampleEditor = class(TComponentEditor)

private

procedure ExecuteVerb(Index: Integer); override;

function GetVerb(Index: Integer): string; override;

function GetVerbCount: Integer; override;

end;

procedure TSampleEditor.ExecuteVerb(Index: Integer);

begin

case Index of

0: TComponentEditorSample(Component).SayHello; // call function

1: TComponentEditorSample(Component).SayGoodbye; // call function

end;

end;

function TSampleEditor.GetVerb(Index: Integer): string;

begin

case Index of

0: Result := ‘Hello’; // return hello string

1: Result := ‘Goodbye’; // return goodbye string

end;

end;

function TSampleEditor.GetVerbCount: Integer;

begin

Result := 2; // two possible verbs

end;

The GetVerbCount() method returns 2, indicating that there are two different verbs the compo-
nent editor is prepared to execute. GetVerb() returns a string for each of these verbs to appear
on the local menu. The ExecuteVerb() method calls the appropriate method inside the compo-
nent, based on the verb index it receives as a parameter.

Registering a Component Editor
Like components and property editors, component editors must also be registered with the IDE
within a unit’s Register() method. To register a component editor, call the aptly named
RegisterComponentEditor() procedure, which is defined as follows:

procedure RegisterComponentEditor(ComponentClass: TComponentClass;

ComponentEditor: TComponentEditorClass);

Advanced Component Design Techniques

CHAPTER 22
727

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

26.65227_Ch22x 11/30/99 6:06 PM Page 727

The first parameter to this function is the component type for which you want to register a
component editor, and the second parameter is the component editor itself.

Listing 22.7 shows the CompEdit.pas unit, which includes the component, component editor,
and registration calls. Figure 22.3 shows the local menu associated with the
TComponentEditorSample component, and Figure 22.4 displays the result of selecting one of
the verbs from the local menu.

LISTING 22.7 CompEdit.pas—Illustrates a Component Editor

unit CompEdit;

interface

uses

SysUtils, Windows, Messages, Classes, Graphics, Controls, Forms, Dialogs,

DsgnIntf;

type

TComponentEditorSample = class(TComponent)

protected

procedure SayHello; virtual;

procedure SayGoodbye; virtual;

end;

TSampleEditor = class(TComponentEditor)

private

procedure ExecuteVerb(Index: Integer); override;

function GetVerb(Index: Integer): string; override;

function GetVerbCount: Integer; override;

end;

implementation

{ TComponentEditorSample }

procedure TComponentEditorSample.SayHello;

begin

MessageDlg(‘Hello, there!’, mtInformation, [mbOk], 0);

Component-Based Development

PART III
728

26.65227_Ch22x 11/30/99 6:06 PM Page 728

end;

procedure TComponentEditorSample.SayGoodbye;

begin

MessageDlg(‘See ya!’, mtInformation, [mbOk], 0);

end;

{ TSampleEditor }

const

vHello = ‘Hello’;

vGoodbye = ‘Goodbye’;

procedure TSampleEditor.ExecuteVerb(Index: Integer);

begin

case Index of

0: TComponentEditorSample(Component).SayHello; // call function

1: TComponentEditorSample(Component).SayGoodbye; // call function

end;

end;

function TSampleEditor.GetVerb(Index: Integer): string;

begin

case Index of

0: Result := vHello; // return hello string

1: Result := vGoodbye; // return goodbye string

end;

end;

function TSampleEditor.GetVerbCount: Integer;

begin

Result := 2; // two possible verbs

end;

end.

Advanced Component Design Techniques

CHAPTER 22
729

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

26.65227_Ch22x 11/30/99 6:06 PM Page 729

FIGURE 22.3
The local menu of TComponentEditorSample.

Component-Based Development

PART III
730

FIGURE 22.4
The result of selecting a verb.

Streaming Nonpublished Component Data
Chapter 21 indicates that the Delphi IDE automatically knows how to stream the published
properties of a component to and from a DFM file. What happens, however, when you have
nonpublished data that you want to be persistent by keeping it in the DFM file? Fortunately,
Delphi components provide a mechanism for writing and reading programmer-defined data to
and from the DFM file.

26.65227_Ch22x 11/30/99 6:06 PM Page 730

Defining Properties
The first step in defining persistent nonpublished “properties” is to override a component’s
DefineProperties() method. This method is inherited from TPersistent, and it’s defined as
follows:

procedure DefineProperties(Filer: TFiler); virtual;

By default, this method handles reading and writing published properties to and from the DFM
file. You can override this method, and, after calling inherited, you can call the TFiler
method DefineProperty() or DefineBinaryProperty() once for each piece of data you want
to become part of the DFM file. These methods are defined, respectively, as follows:

procedure DefineProperty(const Name: string; ReadData: TReaderProc;

WriteData: TWriterProc; HasData: Boolean); virtual;

procedure DefineBinaryProperty(const Name: string; ReadData,

WriteData: TStreamProc; HasData: Boolean); virtual;

DefineProperty() is used to make persistent standard data types such as strings, integers,
Booleans, chars, floats, and enumerated types. DefineBinaryProperty() is used to provide
access to raw binary data, such as a graphic or sound, written to the DFM file.

For both of these functions, the Name parameter identifies the property name that should be
written to the DFM file. This doesn’t have to be the same as the internal name of the data field
you’re accessing. The ReadData and WriteData parameters differ in type between
DefineProperty() and DefineBinaryProperty(), but they serve the same purpose: These
methods are called in order to write or read data to or from the DFM file. (We’ll discuss these
in more detail in just a moment.) The HasData parameter indicates whether the “property” has
data that it needs to store.

The ReadData and WriteData parameters of DefineProperty() are of type TReaderProc and
TWriterProc, respectively. These types are defined as follows:

type

TReaderProc = procedure(Reader: TReader) of object;

TWriterProc = procedure(Writer: TWriter) of object;

TReader and TWriter are specialized descendants of TFiler that have additional methods for
reading and writing native types. Methods of these types provide the conduit between pub-
lished component data and the DFM file.

The ReadData and WriteData parameters of DefineBinaryProperty() are of type
TStreamProc, which is defined as follows:

type

TStreamProc = procedure(Stream: TStream) of object;

Advanced Component Design Techniques

CHAPTER 22
731

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

26.65227_Ch22x 11/30/99 6:06 PM Page 731

Because TStreamProc-type methods receive only TStream as a parameter, this allows you to
read and write binary data very easily to and from the stream. Like the other method types
described earlier, methods of this type provide the conduit between nonstandard data and the
DFM file.

An Example of DefineProperty()
In order to bring all this rather technical information together, Listing 22.8 shows the
DefProp.pas unit. This unit illustrates the use of DefineProperty() by providing storage for
two private data fields: a string and an integer.

LISTING 22.8 DefProp.pas—Illustrates Using the DefineProperty() Function

unit DefProp;

interface

uses

Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs;

type

TDefinePropTest = class(TComponent)

private

FString: String;

FInteger: Integer;

procedure ReadStrData(Reader: TReader);

procedure WriteStrData(Writer: TWriter);

procedure ReadIntData(Reader: TReader);

procedure WriteIntData(Writer: TWriter);

protected

procedure DefineProperties(Filer: TFiler); override;

public

constructor Create(AOwner: TComponent); override;

end;

implementation

constructor TDefinePropTest.Create(AOwner: TComponent);

begin

inherited Create(AOwner);

{ Put data in private fields }

FString := ‘The following number is the answer...’;

FInteger := 42;

end;

Component-Based Development

PART III
732

26.65227_Ch22x 11/30/99 6:06 PM Page 732

procedure TDefinePropTest.DefineProperties(Filer: TFiler);

begin

inherited DefineProperties(Filer);

{ Define new properties and reader/writer methods }

Filer.DefineProperty(‘StringProp’, ReadStrData, WriteStrData,

FString <> ‘’);

Filer.DefineProperty(‘IntProp’, ReadIntData, WriteIntData, True);

end;

procedure TDefinePropTest.ReadStrData(Reader: TReader);

begin

FString := Reader.ReadString;

end;

procedure TDefinePropTest.WriteStrData(Writer: TWriter);

begin

Writer.WriteString(FString);

end;

procedure TDefinePropTest.ReadIntData(Reader: TReader);

begin

FInteger := Reader.ReadInteger;

end;

procedure TDefinePropTest.WriteIntData(Writer: TWriter);

begin

Writer.WriteInteger(FInteger);

end;

end.

Advanced Component Design Techniques

CHAPTER 22
733

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

CAUTION

Always use the ReadString() and WriteString() methods of TReader and TWriter
to read and write string data. Never use the similar-looking ReadStr() and
WriteStr() methods because they’ll corrupt your DFM file.

To demonstrate that the proof is in the pudding, Figure 22.5 shows a form containing a
TDefinePropTest component, as text, in the Delphi Code Editor. Notice that the new proper-
ties have been written to the file.

26.65227_Ch22x 11/30/99 6:06 PM Page 733

FIGURE 22.5
Viewing a form as text to see the properties.

TddgWaveFile: An Example of DefineBinaryProperty()
We mentioned earlier that a good time to use DefineBinaryProperty() is when you need to
store graphic or sound information along with a component. In fact, VCL uses this technique
for storing images associated with components—the Glyph of a TBitBtn, for example, or the
Icon of a TForm. In this section, you’ll learn how to use this technique when storing the sound
associated with the TddgWaveFile component.

Component-Based Development

PART III
734

NOTE

TddgWaveFile is quite a full-featured component, complete with a custom property,
property editor, and component editor to allow you to play sounds at design time.
You’ll be able to pick through the code for all this a little later in the chapter, but for
now we’re going to focus the discussion on the mechanism for storing the binary
property.

The DefineProperties() method for TddgWaveFile is as follows:

procedure TddgWaveFile.DefineProperties(Filer: TFiler);

{ Defines binary property called “Data” for FData field. }

{ This allows FData to be read from and written to DFM file. }

function DoWrite: Boolean;

begin

26.65227_Ch22x 11/30/99 6:06 PM Page 734

if Filer.Ancestor <> nil then

Result := not (Filer.Ancestor is TddgWaveFile) or

not Equal(TddgWaveFile(Filer.Ancestor))

else

Result := not Empty;

end;

begin

inherited DefineProperties(Filer);

Filer.DefineBinaryProperty(‘Data’, ReadData, WriteData, DoWrite);

end;

This method defines a binary property called Data, which is read and written using the compo-
nent’s ReadData() and WriteData() methods. Additionally, data is written only if the return
value of DoWrite() is True. (You’ll learn more about DoWrite() in just moment.)

The ReadData() and WriteData() methods are defined as follows:

procedure TddgWaveFile.ReadData(Stream: TStream);

{ Reads WAV data from DFM stream. }

begin

LoadFromStream(Stream);

end;

procedure TddgWaveFile.WriteData(Stream: TStream);

{ Writes WAV data to DFM stream }

begin

SaveToStream(Stream);

end;

As you can see, there isn’t much to these methods; they simply call the LoadFromStream() and
SaveToStream() methods, which are also defined by the TddgWaveFile component. The
LoadFromStream() method is as follows:

procedure TddgWaveFile.LoadFromStream(S: TStream);

{ Loads WAV data from stream S. This procedure will free }

{ any memory previously allocated for FData. }

begin

if not Empty then

FreeMem(FData, FDataSize);

FDataSize := 0;

FData := AllocMem(S.Size);

FDataSize := S.Size;

S.Read(FData^, FDataSize);

end;

Advanced Component Design Techniques

CHAPTER 22
735

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

26.65227_Ch22x 11/30/99 6:06 PM Page 735

This method first checks to see whether memory has been previously allocated by testing the
value of the FDataSize field. If it’s greater than zero, the memory pointed to by the FData field
is freed. At that point, a new block of memory is allocated for FData, and FDataSize is set to
the size of the incoming data stream. The contents of the stream are then read into the FData
pointer.

The SaveToStream() method is much simpler; it’s defined as follows:

procedure TddgWaveFile.SaveToStream(S: TStream);

{ Saves WAV data to stream S. }

begin

if FDataSize > 0 then

S.Write(FData^, FDataSize);

end;

This method writes the data pointed to by pointer FData to TStream S.

The local DoWrite() function inside the DefineProperties() method determines whether the
Data property needs to be streamed. Of course, if FData is empty, there’s no need to stream
data. Additionally, you must take extra measures to ensure that your component works cor-
rectly with form inheritance: You must check to see whether the Ancestor property for Filer
is non-nil. If it is and it points to an ancestor version of the current component, you must
check to see whether the data you’re about to write is different than the ancestor. If you don’t
perform these additional tests, a copy of the data (the wave file, in this case) will be written in
each of the descendant forms, and changes to the ancestor’s wave file won’t be copied to the
descendant forms.

Component-Based Development

PART III
736

CAUTION

For the reasons just explained, DefineProperties() is one area where you’ll find a
distinct difference between 16- and 32-bit Delphi. For the most part, Borland tried to
make form inheritance transparent to the component writer. This is one place where
it couldn’t be hidden. Although Delphi 1.0 components will function in 32-bit Delphi,
they won’t be able to propagate updates in form inheritance without modification.

Figure 22.6 shows a view of the Delphi Code Editor displaying, as text, a form containing
TddgWaveFile.

Listing 22.9 shows Wavez.pas, which includes the complete source code for the component.

26.65227_Ch22x 11/30/99 6:06 PM Page 736

FIGURE 22.6
Viewing the Data property in the Code Editor.

LISTING 22.9 Wavez.pas—Illustrates a Component Encapsulating a Wave File

unit Wavez;

interface

uses

SysUtils, Classes;

type

{ Special string “descendant” used to make a property editor. }

TWaveFileString = type string;

EWaveError = class(Exception);

TWavePause = (wpAsync, wpsSync);

TWaveLoop = (wlNoLoop, wlLoop);

TddgWaveFile = class(TComponent)

private

FData: Pointer;

FDataSize: Integer;

FWaveName: TWaveFileString;

Advanced Component Design Techniques

CHAPTER 22
737

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

continues

26.65227_Ch22x 11/30/99 6:06 PM Page 737

LISTING 22.9 Continued

FWavePause: TWavePause;

FWaveLoop: TWaveLoop;

FOnPlay: TNotifyEvent;

FOnStop: TNotifyEvent;

procedure SetWaveName(const Value: TWaveFileString);

procedure WriteData(Stream: TStream);

procedure ReadData(Stream: TStream);

protected

procedure DefineProperties(Filer: TFiler); override;

public

destructor Destroy; override;

function Empty: Boolean;

function Equal(Wav: TddgWaveFile): Boolean;

procedure LoadFromFile(const FileName: String);

procedure LoadFromStream(S: TStream);

procedure Play;

procedure SaveToFile(const FileName: String);

procedure SaveToStream(S: TStream);

procedure Stop;

published

property WaveLoop: TWaveLoop read FWaveLoop write FWaveLoop;

property WaveName: TWaveFileString read FWaveName write SetWaveName;

property WavePause: TWavePause read FWavePause write FWavePause;

property OnPlay: TNotifyEvent read FOnPlay write FOnPlay;

property OnStop: TNotifyEvent read FOnStop write FOnStop;

end;

implementation

uses MMSystem, Windows;

{ TddgWaveFile }

destructor TddgWaveFile.Destroy;

{ Ensures that any allocated memory is freed }

begin

if not Empty then

FreeMem(FData, FDataSize);

inherited Destroy;

end;

Component-Based Development

PART III
738

26.65227_Ch22x 11/30/99 6:06 PM Page 738

function StreamsEqual(S1, S2: TMemoryStream): Boolean;

begin

Result := (S1.Size = S2.Size) and CompareMem(S1.Memory, S2.Memory, S1.Size);

end;

procedure TddgWaveFile.DefineProperties(Filer: TFiler);

{ Defines binary property called “Data” for FData field. }

{ This allows FData to be read from and written to DFM file. }

function DoWrite: Boolean;

begin

if Filer.Ancestor <> nil then

Result := not (Filer.Ancestor is TddgWaveFile) or

not Equal(TddgWaveFile(Filer.Ancestor))

else

Result := not Empty;

end;

begin

inherited DefineProperties(Filer);

Filer.DefineBinaryProperty(‘Data’, ReadData, WriteData, DoWrite);

end;

function TddgWaveFile.Empty: Boolean;

begin

Result := FDataSize = 0;

end;

function TddgWaveFile.Equal(Wav: TddgWaveFile): Boolean;

var

MyImage, WavImage: TMemoryStream;

begin

Result := (Wav <> nil) and (ClassType = Wav.ClassType);

if Empty or Wav.Empty then

begin

Result := Empty and Wav.Empty;

Exit;

end;

if Result then

begin

MyImage := TMemoryStream.Create;

try

Advanced Component Design Techniques

CHAPTER 22
739

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

continues

26.65227_Ch22x 11/30/99 6:06 PM Page 739

LISTING 22.9 Continued

SaveToStream(MyImage);

WavImage := TMemoryStream.Create;

try

Wav.SaveToStream(WavImage);

Result := StreamsEqual(MyImage, WavImage);

finally

WavImage.Free;

end;

finally

MyImage.Free;

end;

end;

end;

procedure TddgWaveFile.LoadFromFile(const FileName: String);

{ Loads WAV data from FileName. Note that this procedure does }

{ not set the WaveName property. }

var

F: TFileStream;

begin

F := TFileStream.Create(FileName, fmOpenRead);

try

LoadFromStream(F);

finally

F.Free;

end;

end;

procedure TddgWaveFile.LoadFromStream(S: TStream);

{ Loads WAV data from stream S. This procedure will free }

{ any memory previously allocated for FData. }

begin

if not Empty then

FreeMem(FData, FDataSize);

FDataSize := 0;

FData := AllocMem(S.Size);

FDataSize := S.Size;

S.Read(FData^, FDataSize);

end;

procedure TddgWaveFile.Play;

Component-Based Development

PART III
740

26.65227_Ch22x 11/30/99 6:06 PM Page 740

{ Plays the WAV sound in FData using the parameters found in }

{ FWaveLoop and FWavePause. }

const

LoopArray: array[TWaveLoop] of DWORD = (0, SND_LOOP);

PauseArray: array[TWavePause] of DWORD = (SND_ASYNC, SND_SYNC);

begin

{ Make sure component contains data }

if Empty then

raise EWaveError.Create(‘No wave data’);

if Assigned(FOnPlay) then FOnPlay(Self); // fire event

{ attempt to play wave sound }

if not PlaySound(FData, 0, SND_MEMORY or PauseArray[FWavePause] or

LoopArray[FWaveLoop]) then

raise EWaveError.Create(‘Error playing sound’);

end;

procedure TddgWaveFile.ReadData(Stream: TStream);

{ Reads WAV data from DFM stream. }

begin

LoadFromStream(Stream);

end;

procedure TddgWaveFile.SaveToFile(const FileName: String);

{ Saves WAV data to file FileName. }

var

F: TFileStream;

begin

F := TFileStream.Create(FileName, fmCreate);

try

SaveToStream(F);

finally

F.Free;

end;

end;

procedure TddgWaveFile.SaveToStream(S: TStream);

{ Saves WAV data to stream S. }

begin

if not Empty then

S.Write(FData^, FDataSize);

end;

Advanced Component Design Techniques

CHAPTER 22
741

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

continues

26.65227_Ch22x 11/30/99 6:06 PM Page 741

LISTING 22.9 Continued

procedure TddgWaveFile.SetWaveName(const Value: TWaveFileString);

{ Write method for WaveName property. This method is in charge of }

{ setting WaveName property and loading WAV data from file Value. }

begin

if Value <> ‘’ then begin

FWaveName := ExtractFileName(Value);

{ don’t load from file when loading from DFM stream }

{ because DFM stream will already contain data. }

if (not (csLoading in ComponentState)) and FileExists(Value) then

LoadFromFile(Value);

end

else begin

{ if Value is an empty string, that is the signal to free }

{ memory allocated for WAV data. }

FWaveName := ‘’;

if not Empty then

FreeMem(FData, FDataSize);

FDataSize := 0;

end;

end;

procedure TddgWaveFile.Stop;

{ Stops currently playing WAV sound }

begin

if Assigned(FOnStop) then FOnStop(Self); // fire event

PlaySound(Nil, 0, SND_PURGE);

end;

procedure TddgWaveFile.WriteData(Stream: TStream);

{ Writes WAV data to DFM stream }

begin

SaveToStream(Stream);

end;

end.

Property Categories
As you learned back in Chapter 1, “Windows Programming in Delphi 5,” a feature new to
Delphi 5 is property categories. This feature provides a means for the properties of VCL com-
ponents to be specified as belonging to particular categories and for the Object Inspector to be

Component-Based Development

PART III
742

26.65227_Ch22x 11/30/99 6:06 PM Page 742

sorted by these categories. Properties can be registered as belonging to a particular category
using the RegisterPropertyInCategory() and RegisterPropertiesInCategory() functions
declared in the DsgnIntf unit. The former enables you to register a single property for a cate-
gory, whereas the latter allows you to register multiple properties with one call.

RegisterPropertyInCategory() is overloaded in order to provide four different versions of
this function to suit your exact needs. All the versions of this function take a
TPropertyCategoryClass as the first parameter, describing the category. From there, each of
these versions takes a different combination of property name, property type, and component
class to enable you to choose the best method for registering your properties. The various ver-
sions of RegisterPropertyInCategory() are shown here:

function RegisterPropertyInCategory(ACategoryClass: TPropertyCategoryClass;
const APropertyName: string): TPropertyFilter; overload;

function RegisterPropertyInCategory(ACategoryClass: TPropertyCategoryClass;
AComponentClass: TClass; const APropertyName: string): TPropertyFilter
overload;

function RegisterPropertyInCategory(ACategoryClass: TPropertyCategoryClass;
APropertyType: PTypeInfo; const APropertyName: string): TPropertyFilter;
overload;

function RegisterPropertyInCategory(ACategoryClass: TPropertyCategoryClass;
APropertyType: PTypeInfo): TPropertyFilter; overload;

These functions are also smart enough to understand wildcard symbols, so you can, for exam-
ple, add all properties that match ‘Data*’ to a particular category. Refer to the online help for
the TMask class for a complete list of supported wildcard characters and their behavior.

RegisterPropertiesInCategory() comes in three overloaded variations:

function RegisterPropertiesInCategory(ACategoryClass: TPropertyCategoryClass;
const AFilters: array of const): TPropertyCategory; overload;

function RegisterPropertiesInCategory(ACategoryClass: TPropertyCategoryClass;
AComponentClass: TClass; const AFilters: array of string): TPropertyCategory;
overload;

function RegisterPropertiesInCategory(ACategoryClass: TPropertyCategoryClass;
APropertyType: PTypeInfo; const AFilters: array of string):

TPropertyCategory;
overload;

Category Classes
The TPropertyCategoryClass type is a class reference for a TPropertyCategory.
TPropertyCategory is the base class for all standard property categories in VCL. There are 12
standard property categories, and these classes are described in Table 22.4.

Advanced Component Design Techniques

CHAPTER 22
743

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

26.65227_Ch22x 11/30/99 6:06 PM Page 743

TABLE 22.4 Standard Property Category Classes

Class Name Description

TactionCategory Properties related to runtime actions. The Enabled and Hint proper-
ties of TControl are in this category.

TDatabaseCategory Properties related to database operations. The DatabaseName and
SQL properties of TQuery are in this category.

TDragNDropCategory Properties related to drag-and-drop and docking operations. The
DragCursor and DragKind properties of TControl are in this
category.

THelpCategory Properties related to using online help and hints. The HelpContext
and Hint properties of TWinControl are in this category.

TLayoutCategory Properties related to the visual display of a control at design time.
The Top and Left properties of TControl are in this category.

TLegacyCategory Properties related to obsolete operations. The Ctl3D and
ParentCtl3D properties of TWinControl are in this category.

TLinkageCategory Properties related to associating or linking one component to another.
The DataSet property of TDataSource is in this category.

TLocaleCategory Properties related to international locales. The BiDiMode and
ParentBiDiMode properties of TControl are in this category.

TLocalizableCategory Properties related to database operations. The DatabaseName and
SQL properties of TQuery are in this category.

TMiscellaneousCategory Properties that either do not fit a category, do not need to be catego-
rized, or are not explicitly registered to a specific category. The
AllowAllUp and Name properties of TSpeedButton are in this
category.

TVisualCategory Properties related to the visual display of a control at runtime; the
Align and Visible properties of TControl are in this category.

TInputCategory Properties related to the input of data (they need not be related to
database operations). The Enabled and ReadOnly properties of
TEdit are in this category.

As an example, let’s say you’ve written a component called TNeato with a property called
Keen, and you wish to register the Keen property as a member of the Action category repre-
sented by TActionCategory. You could do this by adding a call to
RegisterPropertyInCategory() to the Register() procedure for your control, as shown
here:

RegisterPropertyInCategory(TActionCategory, TNeato, ‘Keen’);

Component-Based Development

PART III
744

26.65227_Ch22x 11/30/99 6:06 PM Page 744

Custom Categories
As you’ve already learned, a property category is represented in code as a class that descends
from TPropertyCategory. How difficult is it, then, to create your own property categories in
this way? Quite easy, actually. In most cases, all you need to do is override the Name() and
Description() virtual class functions of TPropertyCategory to return information specific to
your category.

As an illustration, we’ll create a new Sound category that will be used to categorize some of
the properties of the TddgWaveFile component, which you learned about earlier in this chapter.
This new category class, called TSoundCategory, is shown in Listing 22.10. This listing con-
tains WavezEd.pas, which is a file that contains the component’s category, property editor, and
component editor.

LISTING 22.10 WavezEd.pas—Illustrates a Property Editor for the Wave File Component

unit WavezEd;

interface

uses DsgnIntf;

type
{ Category for some of TddgWaveFile’s properties }
TSoundCategory = class(TPropertyCategory)
public
class function Name: string; override;
class function Description: string; override;

end;

{ Property editor for TddgWaveFile’s WaveName property }
TWaveFileStringProperty = class(TStringProperty)
public
procedure Edit; override;
function GetAttributes: TPropertyAttributes; override;

end;

{ Component editor for TddgWaveFile. Allows user to play and stop }
{ WAV sounds from local menu in IDE. }
TWaveEditor = class(TComponentEditor)
private
procedure EditProp(PropertyEditor: TPropertyEditor);

public
procedure Edit; override;
procedure ExecuteVerb(Index: Integer); override;
function GetVerb(Index: Integer): string; override;

Advanced Component Design Techniques

CHAPTER 22
745

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

continues

26.65227_Ch22x 11/30/99 6:06 PM Page 745

LISTING 22.10 Continued

function GetVerbCount: Integer; override;
end;

implementation

uses TypInfo, Wavez, Classes, Controls, Dialogs;

{ TSoundCategory }

class function TSoundCategory.Name: string;
begin
Result := ‘Sound’;

end;

class function TSoundCategory.Description: string;
begin
Result := ‘Properties dealing with the playing of sounds’

end;

{ TWaveFileStringProperty }

procedure TWaveFileStringProperty.Edit;
{ Executed when user clicks the ellipses button on the WavName }
{ property in the Object Inspector. This method allows the user }
{ to pick a file from an OpenDialog and sets the property value. }
begin
with TOpenDialog.Create(nil) do
try
{ Set up properties for dialog }
Filter := ‘Wav files|*.wav|All files|*.*’;
DefaultExt := ‘*.wav’;
{ Put current value in the FileName property of dialog }
FileName := GetStrValue;
{ Execute dialog and set property value if dialog is OK }
if Execute then
SetStrValue(FileName);

finally
Free;

end;
end;

function TWaveFileStringProperty.GetAttributes: TPropertyAttributes;
{ Indicates the property editor will invoke a dialog. }
begin
Result := [paDialog];

end;

Component-Based Development

PART III
746

26.65227_Ch22x 11/30/99 6:06 PM Page 746

{ TWaveEditor }

const
VerbCount = 2;
VerbArray: array[0..VerbCount - 1] of string[7] = (‘Play’, ‘Stop’);

procedure TWaveEditor.Edit;
{ Called when user double-clicks on the component at design time. }
{ This method calls the GetComponentProperties method in order to }
{ invoke the Edit method of the WaveName property editor. }
var
Components: TDesignerSelectionList;

begin
Components := TDesignerSelectionList.Create;
try
Components.Add(Component);
GetComponentProperties(Components, tkAny, Designer, EditProp);

finally
Components.Free;

end;
end;

procedure TWaveEditor.EditProp(PropertyEditor: TPropertyEditor);
{ Called once per property in response to GetComponentProperties }
{ call. This method looks for the WaveName property editor and }
{ calls its Edit method. }
begin
if PropertyEditor is TWaveFileStringProperty then begin
TWaveFileStringProperty(PropertyEditor).Edit;
Designer.Modified; // alert Designer to modification

end;
end;

procedure TWaveEditor.ExecuteVerb(Index: Integer);
begin
case Index of
0: TddgWaveFile(Component).Play;
1: TddgWaveFile(Component).Stop;

end;
end;

function TWaveEditor.GetVerb(Index: Integer): string;
begin
Result := VerbArray[Index];

end;

Advanced Component Design Techniques

CHAPTER 22
747

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

continues

26.65227_Ch22x 11/30/99 6:06 PM Page 747

LISTING 22.10 Continued

function TWaveEditor.GetVerbCount: Integer;
begin
Result := VerbCount;

end;

end.

With the category class defined, all that needs to be done is register the properties for the cate-
gory using one of the registration functions. This is done in the Register() procedure for
TddgWaveFile using the following line of code:

RegisterPropertiesInCategory(TSoundCategory, TddgWaveFile,
[‘WaveLoop’, ‘WaveName’, ‘WavePause’]);

Figure 22.7 shows the Object Inspector view of the categorized properties of a TddgWaveFile
component.

Component-Based Development

PART III
748

FIGURE 22.7
Viewing the categorized properties of TddgWaveFile.

Lists of Components: TCollection and
TCollectionItem
It’s common for components to maintain or own a list of items such as data types, records,
objects, or even other components. In some cases, it’s suitable to encapsulate this list within its
own object and then make this object a property of the owner component. An example of this
arrangement is the Lines property of a TMemo component. Lines is a TStrings object type that
encapsulates a list of strings. With this arrangement, the TStrings object is responsible for the
streaming mechanism used to store its lines to the form file when the user saves the form.

26.65227_Ch22x 11/30/99 6:06 PM Page 748

What if you wanted to save a list of items such as components or objects that weren’t already
encapsulated by an existing class such as TStrings? Well, you could create a class that per-
forms the streaming of the listed items and then make that a property of the owner component.
Alternatively, you could override the default streaming mechanism of the owner component so
that it knows how to stream its list of items. However, a better solution would be to take advan-
tage of the TCollection and TCollectionItem classes.

The TCollection class is an object used to store a list of TCollectionItem objects.
TCollection, itself, isn’t a component but rather a descendant of TPersistent. Typically,
TCollection is associated with an existing component.

To use TCollection to store a list of items, you would derive a descendant class from
TCollection, which you could call TNewCollection. TNewCollection will serve as a property
type for a component. Then, you must derive a class from the TCollectionItem class, which
you could call TNewCollectionItem. TNewCollection will maintain a list of
TNewCollectionItem objects. The beauty of this is that data belonging to TNewCollectionItem
that needs to be streamed only needs to be published by TNewCollectionItem. Delphi already
knows how to stream published properties.

An example of where TCollection is used is with the TStatusBar component. TStatusBar is
a TWinControl descendant. One of its properties is Panels. TStatusBar.Panels is of type
TStatusPanels, which is a TCollection descendant and defined as follows:

type

TStatusPanels = class(TCollection)

private

FStatusBar: TStatusBar;

function GetItem(Index: Integer): TStatusPanel;

procedure SetItem(Index: Integer; Value: TStatusPanel);

protected

procedure Update(Item: TCollectionItem); override;

public

constructor Create(StatusBar: TStatusBar);

function Add: TStatusPanel;

property Items[Index: Integer]: TStatusPanel read GetItem write SetItem;

default;

end;

TStatusPanels stores a list of TCollectionItem descendants, TStatusPanel, as defined here:

type

TStatusPanel = class(TCollectionItem)

private

FText: string;

FWidth: Integer;

Advanced Component Design Techniques

CHAPTER 22
749

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

26.65227_Ch22x 11/30/99 6:06 PM Page 749

FAlignment: TAlignment;

FBevel: TStatusPanelBevel;

FStyle: TStatusPanelStyle;

procedure SetAlignment(Value: TAlignment);

procedure SetBevel(Value: TStatusPanelBevel);

procedure SetStyle(Value: TStatusPanelStyle);

procedure SetText(const Value: string);

procedure SetWidth(Value: Integer);

public

constructor Create(Collection: TCollection); override;

procedure Assign(Source: TPersistent); override;

published

property Alignment: TAlignment read FAlignment

write SetAlignment default taLeftJustify;

property Bevel: TStatusPanelBevel read FBevel

write SetBevel default pbLowered;

property Style: TStatusPanelStyle read FStyle write SetStyle

default psText;

property Text: string read FText write SetText;

property Width: Integer read FWidth write SetWidth;

end;

The TStatusPanel properties in the published section of the class declaration will automati-
cally be streamed by Delphi. TStatusPanel takes a TCollection parameter in its Create()
constructor, and it associates itself with that TCollection. Likewise, TStatusPanels takes the
TStatusBar component in its constructor to which it associates itself. The TCollection engine
knows how to deal with the streaming of TCollectionItem components and also defines some
methods and properties for manipulating the items maintained in TCollection. You can look
these up in the online help.

To illustrate how you might use these two new classes, we’ve created the TddgLaunchPad com-
ponent. TddgLaunchPad will enable the user to store a list of TddgRunButton components,
which we created in Chapter 21.

TddgLaunchPad is a descendant of the TScrollBox component. One of the properties of
TddgLaunchPad is RunButtons, a TCollection descendant. RunButtons maintains a list of
TRunBtnItem components. TRunBtnItem is a TCollectionItem descendant whose properties
are used to create a TddgRunButton component, which is placed on TddgLaunchPad. In the
following sections, we’ll discuss how we created this component.

Defining the TCollectionItem Class: TRunBtnItem
The first step is to define the item to be maintained in a list. For TddgLaunchPad, this would be
a TddgRunButton component. Therefore, each TRunBtnItem instance must associate itself with

Component-Based Development

PART III
750

26.65227_Ch22x 11/30/99 6:06 PM Page 750

a TddgRunButton component. The following code shows a partial definition of the
TRunBtnItem class:

type

TRunBtnItem = class(TCollectionItem)

private

FCommandLine: String; // Store the command line

FLeft: Integer; // Store the positional properties for the

FTop: Integer; // TddgRunButton.

FRunButton: TddgRunButton; // Reference to a TddgRunButton

·

public

constructor Create(Collection: TCollection); override;

published

{ The published properties will be streamed }

property CommandLine: String read FCommandLine write SetCommandLine;

property Left: Integer read FLeft write SetLeft;

property Top: Integer read FTop write SetTop;

end;

Notice that TRunBtnItem keeps a reference to a TddgRunButton component, yet it only streams
the properties required to build a TddgRunButton. At first you might think that because
TRunBtnItem associates itself with a TddgRunButton, it could just publish the component and
let the streaming engine do the rest. Well, this poses some problems with the streaming engine
and how it handles the streaming of TComponent classes differently from TPersistent classes.
The fundamental rule here is that the streaming system is responsible for creating new
instances for every TComponent-derived class name it finds in a stream, whereas it assumes
TPersistent instances already exist does not attempt to instantiate new ones. Following this
rule, we stream the information required of the TddgRunButton and then we create the
TddgRunButton in the TRunBtnItem constructor, which we’ll illustrate shortly.

Defining the TCollection Class: TRunButtons
The next step is to define the object that will maintain this list of TRunBtnItem components.
We already said that this object must be a TCollection descendant. We call this class
TRunButtons; its definition is as follows:

type

TRunButtons = class(TCollection)

private

FLaunchPad: TddgLaunchPad; // Keep a reference to the TddgLaunchPad

function GetItem(Index: Integer): TRunBtnItem;

procedure SetItem(Index: Integer; Value: TRunBtnItem);

protected

Advanced Component Design Techniques

CHAPTER 22
751

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

26.65227_Ch22x 11/30/99 6:06 PM Page 751

procedure Update(Item: TCollectionItem); override;

public

constructor Create(LaunchPad: TddgLaunchPad);

function Add: TRunBtnItem;

procedure UpdateRunButtons;

property Items[Index: Integer]: TRunBtnItem read GetItem

write SetItem; default;

end;

TRunButtons associates itself with a TddgLaunchPad component that we’ll show a bit later. It
does this in its Create() constructor, which, as you can see, takes a TddgLaunchPad compo-
nent as its parameter. Notice the various properties and methods that have been added to allow
the user to manipulate the individual TRunBtnItem classes. In particular, the Items property is
an array to the TRunBtnItem list.

The use of the TRunBtnItem and TRunButtons classes will become clearer as we discuss the
implementation of the TddgLaunchPad component.

Implementing the TddgLaunchPad, TRunBtnItem,
and TRunButtons Objects
The TddgLaunchPad component has a property of the type TRunButtons. Its implementation, as
well as the implementation of TRunBtnItem and TRunButtons, is shown in Listing 22.11.

LISTING 22.11 LnchPad.pas—Illustrates the TddgLaunchPad Implementation

unit LnchPad;

interface

uses

Windows, Messages, SysUtils, Classes, Graphics, Controls,

Forms, Dialogs, RunBtn, ExtCtrls;

type

TddgLaunchPad = class;

TRunBtnItem = class(TCollectionItem)

private

FCommandLine: string; // Store the command line

FLeft: Integer; // Store the positional properties for the

FTop: Integer; // TddgRunButton.

FRunButton: TddgRunButton; // Reference to a TddgRunButton

FWidth: Integer; // Keep track of the width and height

Component-Based Development

PART III
752

26.65227_Ch22x 11/30/99 6:06 PM Page 752

FHeight: Integer;

procedure SetCommandLine(const Value: string);

procedure SetLeft(Value: Integer);

procedure SetTop(Value: Integer);

public

constructor Create(Collection: TCollection); override;

destructor Destroy; override;

procedure Assign(Source: TPersistent); override;

property Width: Integer read FWidth;

property Height: Integer read FHeight;

published

{ The published properties will be streamed }

property CommandLine: String read FCommandLine

write SetCommandLine;

property Left: Integer read FLeft write SetLeft;

property Top: Integer read FTop write SetTop;

end;

TRunButtons = class(TCollection)

private

FLaunchPad: TddgLaunchPad; // Keep a reference to the TddgLaunchPad

function GetItem(Index: Integer): TRunBtnItem;

procedure SetItem(Index: Integer; Value: TRunBtnItem);

protected

procedure Update(Item: TCollectionItem); override;

public

constructor Create(LaunchPad: TddgLaunchPad);

function Add: TRunBtnItem;

procedure UpdateRunButtons;

property Items[Index: Integer]: TRunBtnItem read

GetItem write SetItem; default;

end;

TddgLaunchPad = class(TScrollBox)

private

FRunButtons: TRunButtons;

TopAlign: Integer;

LeftAlign: Integer;

procedure SeTRunButtons(Value: TRunButtons);

procedure UpdateRunButton(Index: Integer);

public

constructor Create(AOwner: TComponent); override;

Advanced Component Design Techniques

CHAPTER 22
753

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

continues

26.65227_Ch22x 11/30/99 6:06 PM Page 753

LISTING 22.11 Continued

destructor Destroy; override;

procedure GetChildren(Proc: TGetChildProc; Root: TComponent); override;

published

property RunButtons: TRunButtons read FRunButtons write SeTRunButtons;

end;

implementation

{ TRunBtnItem }

constructor TRunBtnItem.Create(Collection: TCollection);

{ This constructor gets the TCollection that owns this TRunBtnItem. }

begin

inherited Create(Collection);

{ Create an FRunButton instance. Make the launch pad the owner

and parent. Then initialize its various properties. }

FRunButton := TddgRunButton.Create(TRunButtons(Collection).FLaunchPad);

FRunButton.Parent := TRunButtons(Collection).FLaunchPad;

FWidth := FRunButton.Width; // Keep track of the width and the

FHeight := FRunButton.Height; // height.

end;

destructor TRunBtnItem.Destroy;

begin

FRunButton.Free; // Destroy the TddgRunButton instance.

inherited Destroy; // Call the inherited Destroy destructor.

end;

procedure TRunBtnItem.Assign(Source: TPersistent);

{ It is necessary to override the TCollectionItem.Assign method so that

it knows how to copy from one TRunBtnItem to another. If this is done,

then don’t call the inherited Assign(). }

begin

if Source is TRunBtnItem then

begin

{ Instead of assigning the command line to the FCommandLine storage

field, make the assignment to the property so that the accessor

method will be called. The accessor method as some side-effects

that we want to occur. }

CommandLine := TRunBtnItem(Source).CommandLine;

{ Copy values to the remaining fields. Then exit the procedure. }

FLeft := TRunBtnItem(Source).Left;

Component-Based Development

PART III
754

26.65227_Ch22x 11/30/99 6:06 PM Page 754

FTop := TRunBtnItem(Source).Top;

Exit;

end;

inherited Assign(Source);

end;

procedure TRunBtnItem.SetCommandLine(const Value: string);

{ This is the write accessor method for TRunBtnItem.CommandLine. It

ensures that the private TddgRunButton instance, FRunButton, gets

assigned the specified string from Value }

begin

if FRunButton <> nil then

begin

FCommandLine := Value;

FRunButton.CommandLine := FCommandLine;

{ This will cause the TRunButtons.Update method to be called

for each TRunBtnItem }

Changed(False);

end;

end;

procedure TRunBtnItem.SetLeft(Value: Integer);

{ Access method for the TRunBtnItem.Left property. }

begin

if FRunButton <> nil then

begin

FLeft := Value;

FRunButton.Left := FLeft;

end;

end;

procedure TRunBtnItem.SetTop(Value: Integer);

{ Access method for the TRunBtnItem.Top property }

begin

if FRunButton <> nil then

begin

FTop := Value;

FRunButton.Top := FTop;

end;

end;

{ TRunButtons }

Advanced Component Design Techniques

CHAPTER 22
755

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

continues

26.65227_Ch22x 11/30/99 6:06 PM Page 755

LISTING 22.11 Continued

constructor TRunButtons.Create(LaunchPad: TddgLaunchPad);

{ The constructor points FLaunchPad to the TddgLaunchPad parameter.

LaunchPad is the owner of this collection. It is necessary to keep

a reference to LauchPad as it will be accessed internally. }

begin

inherited Create(TRunBtnItem);

FLaunchPad := LaunchPad;

end;

function TRunButtons.GetItem(Index: Integer): TRunBtnItem;

{ Access method for TRunButtons.Items which returns the TRunBtnItem

instance. }

begin

Result := TRunBtnItem(inherited GetItem(Index));

end;

procedure TRunButtons.SetItem(Index: Integer; Value: TRunBtnItem);

{ Access method for TddgRunButton.Items which makes the assignment to

the specified indexed item. }

begin

inherited SetItem(Index, Value)

end;

procedure TRunButtons.Update(Item: TCollectionItem);

{ TCollection.Update is called by TCollectionItems

whenever a change is made to any of the collection items. This is

initially an abstract method. It must be overridden to contain

whatever logic is necessary when a TCollectionItem has changed.

We use it to redraw the item by calling TddgLaunchPad.UpdateRunButton.}

begin

if Item <> nil then

FLaunchPad.UpdateRunButton(Item.Index);

end;

procedure TRunButtons.UpdateRunButtons;

{ UpdateRunButtons is a public procedure that we made available so that

users of TRunButtons can force all run-buttons to be re-drawn. This

method calls TddgLaunchPad.UpdateRunButton for each TRunBtnItem

instance. }

var

i: integer;

Component-Based Development

PART III
756

26.65227_Ch22x 11/30/99 6:06 PM Page 756

begin

for i := 0 to Count - 1 do

FLaunchPad.UpdateRunButton(i);

end;

function TRunButtons.Add: TRunBtnItem;

{ This method must be overridden to return the TRunBtnItem instance when

the inherited Add method is called. This is done by typecasting the

original result }

begin

Result := TRunBtnItem(inherited Add);

end;

{ TddgLaunchPad }

constructor TddgLaunchPad.Create(AOwner: TComponent);

{ Initializes the TRunButtons instance and internal variables

used for positioning of the TRunBtnItem as they are drawn }

begin

inherited Create(AOwner);

FRunButtons := TRunButtons.Create(Self);

TopAlign := 0;

LeftAlign := 0;

end;

destructor TddgLaunchPad.Destroy;

begin

FRunButtons.Free; // Free the TRunButtons instance.

inherited Destroy; // Call the inherited destroy method.

end;

procedure TddgLaunchPad.GetChildren(Proc: TGetChildProc; Root: TComponent);

{ Override GetChildren to cause TddgLaunchPad to ignore any TRunButtons

that it owns since they do not need to be streamed in the context

TddgLaunchPad. The information necessary for creating the TddgRunButton

instances is already streamed as published properties of the

TCollectionItem descendant, TRunBtnItem. This method prevents the

TddgRunButton’s from being streamed twice. }

var

I: Integer;

begin

for I := 0 to ControlCount - 1 do

Advanced Component Design Techniques

CHAPTER 22
757

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

continues

26.65227_Ch22x 11/30/99 6:06 PM Page 757

LISTING 22.11 Continued

{ Ignore the run buttons and the scrollbox }

if not (Controls[i] is TddgRunButton) then

Proc(TComponent(Controls[I]));

end;

procedure TddgLaunchPad.SeTRunButtons(Value: TRunButtons);

{ Access method for the RunButtons property }

begin

FRunButtons.Assign(Value);

end;

procedure TddgLaunchPad.UpdateRunButton(Index: Integer);

{ This method is responsible for drawing the TRunBtnItem instances.

It ensures that the TRunBtnItem’s do not extend beyond the width

of the TddgLaunchPad. If so, it creates rows. This is only in effect

as the user is adding/removing TRunBtnItems. The user can still

resize the TddgLaunchPad so that it is smaller than the width of a

TRunBtnItem }

begin

{ If the first item being drawn, set both positions to zero. }

if Index = 0 then

begin

TopAlign := 0;

LeftAlign := 0;

end;

{ If the width of the current row of TRunBtnItems is more than

the width of the TddgLaunchPad, then start a new row of TRunBtnItems. }

if (LeftAlign + FRunButtons[Index].Width) > Width then

begin

TopAlign := TopAlign + FRunButtons[Index].Height;

LeftAlign := 0;

end;

FRunButtons[Index].Left := LeftAlign;

FRunButtons[Index].Top := TopAlign;

LeftAlign := LeftAlign + FRunButtons[Index].Width;

end;

end.

Component-Based Development

PART III
758

26.65227_Ch22x 11/30/99 6:06 PM Page 758

Implementing TRunBtnItem
The TRunBtnItem.Create() constructor creates an instance of TddgRunButton. Each
TRunBtnItem in the collection will maintain its own TddgRunButton instance. The following
two lines in TRunBtnItem.Create() require further explanation:

FRunButton := TddgRunButton.Create(TRunButtons(Collection).FLaunchPad);

FRunButton.Parent := TRunButtons(Collection).FLaunchPad;

The first line creates a TddgRunButton instance, FRunButton. The owner of FRunButton is
FLaunchPad, which is a TddgLaunchPad component and a field of the TCollection object
passed in as a parameter. It’s necessary to use the FLaunchPad as the owner of FRunButton
because neither a TRunBtnItem instance nor a TRunButtons object can be owners because they
descend from TPersistent. Remember, an owner must be a TComponent.

We want to point out a problem that arises by making FLaunchPad the owner of FRunButton.
By doing this, we effectively make FLaunchPad the owner of FRunButton at design time. The
normal behavior of the streaming engine will cause Delphi to stream FRunButton as a compo-
nent owned by the FLaunchPad instance when the user saves the form. This is not a desired
behavior because FRunButton is already being created in the constructor of TRunBtnItem,
based on the information that’s also streamed in the context of TRunBtnItem. This is a vital tid-
bit of information. Later, you’ll see how we prevent TddgRunButton components from being
streamed by TddgLaunchPad in order to remedy this undesired behavior.

The second line assigns FLaunchPad as the parent to FRunButton so that FLaunchPad can take
care of drawing FRunButton.

The TRunBtnItem.Destroy() destructor frees FRunButton before calling its inherited destructor.

Under certain circumstances, it becomes necessary to override the TRunBtnItem.Assign()
method that’s called. One such instance is when the application is first run and the form is read
from the stream. It’s in the Assign() method that we tell the TRunBtnItem instance to assign
the streamed values of its properties to the properties of the component (in this case
TddgRunButton) that it encompasses.

The other methods are simply access methods for the various properties of TRunBtnItem; they
are explained in the code’s comments.

Implementing TRunButtons
TRunButtons.Create() simply points FLaunchPad to the TddgLaunchPad parameter passed to
it so that LaunchPad can be referred to later.

TRunButtons.Update() is a method that’s invoked whenever a change has been made to any of
the TRunBtnItem instances. This method contains logic that should occur due to that change.
We use it to call the method of TddgLaunchPad that redraws the TRunBtnItem instances. We’ve
also added a public method, UpdateRunButtons(), to allow the user to force a redraw.

The remaining methods of TRunButtons are property access methods, which are explained in
the code’s comments in Listing 22.11.

Advanced Component Design Techniques

CHAPTER 22
759

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

26.65227_Ch22x 11/30/99 6:06 PM Page 759

Implementing TddgLaunchPad
The constructor and destructor for TddgLaunchPad are simple. TddgLaunchPad.Create() cre-
ates an instance of the TRunButtons object and passes itself as a parameter.
TddgLaunchPad.Destroy() frees the TRunButtons instance.

The overriding of the TddgLaunchPad.GetChildren() method is important to note here. This is
where we prevent the TddgRunButton instances stored by the collection from being streamed
as owned components of TddgLaunchPad. Remember that this is necessary because they
shouldn’t be created in the context of the TddgLaunchPad object but rather in the context of the
TRunBtnItem instances. Because no TddgRunButton components are passed to the Proc proce-
dure, they won’t be streamed or read from a stream.

The TddgLaunchPad.UpdateRunButton() method is where the TddgRunButton instances main-
tained by the collection are drawn. The logic in this code ensures that they never extend
beyond the width of TddgLaunchPad. Because TddgLaunchPad is a descendant of TScrollBox,
scrolling will occur vertically.

The other methods are simply property-access methods and are commented in the code in
Listing 22.11.

Finally, we register the property editor for the TRunButtons collection class in this unit’s
Register() procedure. The next section discusses this property editor and illustrates how to
edit a list of components from a dialog property editor.

Editing the List of TCollectionItem Components
with a Dialog Property Editor
Now that we’ve defined the TddgLaunchPad component, the TRunButtons collection class, and
the TRunBtnItem collection class, we must provide a way for the user to add TddgRunButton
components to the TRunButtons collection. The best way to do this is through a property editor
that manipulates the list maintained by the TRunButtons collection.

The property editor that we’ll use is a dialog, as shown in Figure 22.8.

Component-Based Development

PART III
760

FIGURE 22.8
The TddgLaunchPad - RunButtons editor.

26.65227_Ch22x 11/30/99 6:06 PM Page 760

This dialog directly manipulates the TRunBtnItem components maintained by the RunButtons
collection of TddgLaunchPad. The various CommandLine strings for each TddgRunButton
enclosed in TRunBtnItem are displayed in PathListBox. A TddgRunButton component reflects
the currently selected item in the list box to allow the user to test the selection. The dialog also
contains buttons to allow the user to add or remove an item, accept the changes, and cancel the
operation. As the user makes changes in the dialog, the changes are reflected on the
TddgLaunchPad.

Advanced Component Design Techniques

CHAPTER 22
761

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

TIP

A convention for property editors is to include an Apply button to invoke changes on
the form. We didn’t show this here, but you might consider adding such a button to
the RunButtons property editor as an exercise. To see how an Apply button works,
take a look at the property editor for the Panels property of the TStatusBar compo-
nent from the Win32 page of the Component Palette.

Figure 22.9 illustrates the TddgLaunchPad - RunButtons property editor with some items. It
also shows the form’s TddgLaunchPad component with the TddgRunButton components listed
in the property editor.

FIGURE 22.9
The TddgLaunchPad - RunButtons property editor with TRunBtnItem components.

Listing 22.12 shows the source code for the TddgLaunchPad - RunButtons property editor and
its dialog.

26.65227_Ch22x 11/30/99 6:06 PM Page 761

LISTING 22.12 LPadPE.pas: the TRunButtons Property Editor

unit LPadPE;

interface

uses

Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,

Dialogs, Buttons, RunBtn, StdCtrls, LnchPad, DsgnIntF, TypInfo, ExtCtrls;

type

{ First declare the editor dialog }

TLaunchPadEditor = class(TForm)

PathListBox: TListBox;

AddBtn: TButton;

RemoveBtn: TButton;

CancelBtn: TButton;

OkBtn: TButton;

Label1: TLabel;

pnlRBtn: TPanel;

procedure PathListBoxClick(Sender: TObject);

procedure AddBtnClick(Sender: TObject);

procedure RemoveBtnClick(Sender: TObject);

procedure FormCreate(Sender: TObject);

procedure FormDestroy(Sender: TObject);

procedure CancelBtnClick(Sender: TObject);

private

TestRunBtn: TddgRunButton;

FLaunchPad: TddgLaunchPad; // To be used as a backup

FRunButtons: TRunButtons; // Will refer to the actual TRunButtons

Modified: Boolean;

procedure UpdatePathListBox;

end;

{ Now declare the TPropertyEditor descendant and override the

required methods }

TRunButtonsProperty = class(TPropertyEditor)

function GetAttributes: TPropertyAttributes; override;

function GetValue: string; override;

procedure Edit; override;

end;

Component-Based Development

PART III
762

26.65227_Ch22x 11/30/99 6:06 PM Page 762

{ This function will be called by the property editor. }

function EditRunButtons(RunButtons: TRunButtons): Boolean;

implementation

{$R *.DFM}

function EditRunButtons(RunButtons: TRunButtons): Boolean;

{ Instantiates the TLaunchPadEditor dialog which directly modifies

the TRunButtons collection. }

begin

with TLaunchPadEditor.Create(Application) do

try

FRunButtons := RunButtons; // Point to the actual TRunButtons

{ Copy the TRunBtnItems to the backup FLaunchPad which will be

used as a backup in case the user cancels the operation }

FLaunchPad.RunButtons.Assign(RunButtons);

{ Draw the listbox with the list of TRunBtnItems. }

UpdatePathListBox;

ShowModal; // Display the form.

Result := Modified;

finally

Free;

end;

end;

{ TLaunchPadEditor }

procedure TLaunchPadEditor.FormCreate(Sender: TObject);

begin

{ Created the backup instances of TLaunchPad to be used if the user

cancels editing the TRunBtnItems }

FLaunchPad := TddgLaunchPad.Create(Self);

// Create the TddgRunButton instance and align it to the

// enclosing panel.

TestRunBtn := TddgRunButton.Create(Self);

TestRunBtn.Parent := pnlRBtn;

TestRunBtn.Width := pnlRBtn.Width;

TestRunBtn.Height := pnlRBtn.Height;

end;

Advanced Component Design Techniques

CHAPTER 22
763

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

continues

26.65227_Ch22x 11/30/99 6:06 PM Page 763

LISTING 22.12 Continued

procedure TLaunchPadEditor.FormDestroy(Sender: TObject);

begin

TestRunBtn.Free;

FLaunchPad.Free; // Free the TLaunchPad instance.

end;

procedure TLaunchPadEditor.PathListBoxClick(Sender: TObject);

{ When the user clicks on an item in the list of TRunBtnItems, make

the test TRunButton reflect the currently selected item }

begin

if PathListBox.ItemIndex > -1 then

TestRunBtn.CommandLine := PathListBox.Items[PathListBox.ItemIndex];

end;

procedure TLaunchPadEditor.UpdatePathListBox;

{ Re-initializes the PathListBox so that it reflects the list of

TRunBtnItems }

var

i: integer;

begin

PathListBox.Clear; // First clear the list box.

for i := 0 to FRunButtons.Count - 1 do

PathListBox.Items.Add(FRunButtons[i].CommandLine);

end;

procedure TLaunchPadEditor.AddBtnClick(Sender: TObject);

{ When the add button is clicked, launch a TOpenDialog to retrieve

an executable filename and path. Then add this file to the

PathListBox. Also, add a new FRunBtnItem. }

var

OpenDialog: TOpenDialog;

begin

OpenDialog := TOpenDialog.Create(Application);

try

OpenDialog.Filter := ‘Executable Files|*.EXE’;

if OpenDialog.Execute then

begin

{ add to the PathListBox. }

PathListBox.Items.Add(OpenDialog.FileName);

FRunButtons.Add; // Create a new TRunBtnItem instance.

{ Set focus to the new item in PathListBox }

Component-Based Development

PART III
764

26.65227_Ch22x 11/30/99 6:06 PM Page 764

PathListBox.ItemIndex := FRunButtons.Count - 1;

{ Set the command line for the new TRunBtnItem to that of the

file name gotten as specified by PathListBox.ItemIndex }

FRunButtons[PathListBox.ItemIndex].CommandLine :=

PathListBox.Items[PathListBox.ItemIndex];

{ Invoke the PathListBoxClick event handler so that the test

TRunButton will reflect the newly added item }

PathListBoxClick(nil);

Modified := True;

end;

finally

OpenDialog.Free

end;

end;

procedure TLaunchPadEditor.RemoveBtnClick(Sender: TObject);

{ Remove the selected path/filename from PathListBox as well as the

corresponding TRunBtnItem from FRunButtons }

var

i: integer;

begin

i := PathListBox.ItemIndex;

if i >= 0 then

begin

PathListBox.Items.Delete(i); // Remove the item from the listbox

FRunButtons[i].Free; // Remove the item from the collection

TestRunBtn.CommandLine := ‘’; // Erase the test run button

Modified := True;

end;

end;

procedure TLaunchPadEditor.CancelBtnClick(Sender: TObject);

{ When the user cancels the operation, copy the backup LaunchPad

TRunBtnItems back to the original TLaunchPad instance. Then,

close the form by setting ModalResult to mrCancel. }

begin

FRunButtons.Assign(FLaunchPad.RunButtons);

Modified := False;

ModalResult := mrCancel;

end;

{ TRunButtonsProperty }

Advanced Component Design Techniques

CHAPTER 22
765

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

continues

26.65227_Ch22x 11/30/99 6:06 PM Page 765

LISTING 22.12 Continued

function TRunButtonsProperty.GetAttributes: TPropertyAttributes;

{ Tell the Object Inspector that the property editor will use a

dialog. This will cause the Edit method to be invoked when the user

clicks the ellipsis button in the Object Inspector. }

begin

Result := [paDialog];

end;

procedure TRunButtonsProperty.Edit;

{ Invoke the EditRunButton() method and pass in the reference to the

TRunButton’s instance being edited. This reference can be obtained by

using the GetOrdValue method. Then redraw the LaunchDialog by calling

the TRunButtons.UpdateRunButtons method. }

begin

if EditRunButtons(TRunButtons(GetOrdValue)) then

Modified;

TRunButtons(GetOrdValue).UpdateRunButtons;

end;

function TRunButtonsProperty.GetValue: string;

{ Override the GetValue method so that the class type of the property

being edited is displayed in the Object Inspector. }

begin

Result := Format(‘(%s)’, [GetPropType^.Name]);

end;

end.

TddgLaunchPadEditor = class(TForm)

PathListBox: TListBox;

AddBtn: TButton;

RemoveBtn: TButton;

TestRunBtn: TddgRunButton;

CancelBtn: TButton;

OkBtn: TButton;

Label1: TLabel;

procedure PathListBoxClick(Sender: TObject);

procedure AddBtnClick(Sender: TObject);

procedure RemoveBtnClick(Sender: TObject);

procedure FormCreate(Sender: TObject);

procedure FormDestroy(Sender: TObject);

procedure CancelBtnClick(Sender: TObject);

Component-Based Development

PART III
766

26.65227_Ch22x 11/30/99 6:06 PM Page 766

private

FLaunchPad: TddgLaunchPad; // To be used as a backup

FRunButtons: TRunButtons; // Will refer to the actual TRunButtons

Modified: Boolean;

procedure UpdatePathListBox;

end;

{ Now declare the TPropertyEditor descendant and override the

required methods }

TRunButtonsProperty = class(TPropertyEditor)

function GetAttributes: TPropertyAttributes; override;

function GetValue: string; override;

procedure Edit; override;

end;

{ This function will be called by the property editor. }

function EdiTRunButtons(RunButtons: TRunButtons): Boolean;

implementation

{$R *.DFM}

function EdiTRunButtons(RunButtons: TRunButtons): Boolean;

{ Instantiates the TddgLaunchPadEditor dialog which directly modifies

the TRunButtons collection. }

begin

with TddgLaunchPadEditor.Create(Application) do

try

FRunButtons := RunButtons; // Point to the actual TRunButtons

{ Copy the TRunBtnItems to the backup FLaunchPad which will be

used as a backup in case the user cancels the operation }

FLaunchPad.RunButtons.Assign(RunButtons);

{ Draw the listbox with the list of TRunBtnItems. }

UpdatePathListBox;

ShowModal; // Display the form.

Result := Modified;

finally

Free;

end;

end;

{ TddgLaunchPadEditor }

Advanced Component Design Techniques

CHAPTER 22
767

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

continues

26.65227_Ch22x 11/30/99 6:06 PM Page 767

LISTING 22.12 Continued

procedure TddgLaunchPadEditor.FormCreate(Sender: TObject);

begin

{ Created the backup instances of TddgLaunchPad to be used if the user

cancels editing the TRunBtnItems }

FLaunchPad := TddgLaunchPad.Create(Self);
// Create the TddgRunButton instance and align it to the
// enclosing panel.
TestRunBtn := TddgRunButton.Create(Self);
TestRunBtn.Parent := pnlRBtn;

TestRunBtn.Width := pnlRBtn.Width;

TestRunBtn.Height := pnlRBtn.Height;

end;

procedure TddgLaunchPadEditor.FormDestroy(Sender: TObject);

begin

TestRunBtn.Free;

FLaunchPad.Free; // Free the TddgLaunchPad instance.

end;

procedure TddgLaunchPadEditor.PathListBoxClick(Sender: TObject);

{ When the user clicks on an item in the list of TRunBtnItems, make

the test TddgRunButton reflect the currently selected item }

begin

if PathListBox.ItemIndex > -1 then

TestRunBtn.CommandLine := PathListBox.Items[PathListBox.ItemIndex];

end;

procedure TddgLaunchPadEditor.UpdatePathListBox;

{ Re-initializes the PathListBox so that it reflects the list of

TRunBtnItems }

var

i: integer;

begin

PathListBox.Clear; // First clear the list box.

for i := 0 to FRunButtons.Count - 1 do

PathListBox.Items.Add(FRunButtons[i].CommandLine);

end;

procedure TddgLaunchPadEditor.AddBtnClick(Sender: TObject);

{ When the add button is clicked, launch a TOpenDialog to retrieve

an executable filename and path. Then add this file to the

Component-Based Development

PART III
768

26.65227_Ch22x 11/30/99 6:06 PM Page 768

PathListBox. Also, add a new FRunBtnItem. }

var

OpenDialog: TOpenDialog;

begin

OpenDialog := TOpenDialog.Create(Application);

try

OpenDialog.Filter := ‘Executable Files|*.EXE’;

if OpenDialog.Execute then

begin

{ add to the PathListBox. }

PathListBox.Items.Add(OpenDialog.FileName);

FRunButtons.Add; // Create a new TRunBtnItem instance.

{ Set focus to the new item in PathListBox }

PathListBox.ItemIndex := FRunButtons.Count - 1;

{ Set the command line for the new TRunBtnItem to that of the

filename gotten as specified by PathListBox.ItemIndex }

FRunButtons[PathListBox.ItemIndex].CommandLine :=

PathListBox.Items[PathListBox.ItemIndex];

{ Invoke the PathListBoxClick event handler so that the test

TddgRunButton will reflect the newly added item }

PathListBoxClick(nil);

Modified := True;

end;

finally

OpenDialog.Free

end;

end;

procedure TddgLaunchPadEditor.RemoveBtnClick(Sender: TObject);

{ Remove the selected path/filename from PathListBox as well as the

corresponding TRunBtnItem from FRunButtons }

var

i: integer;

begin

i := PathListBox.ItemIndex;

if i >= 0 then

begin

PathListBox.Items.Delete(i); // Remove the item from the listbox

FRunButtons[i].Free; // Remove the item from the collection

TestRunBtn.CommandLine := ‘’; // Erase the test run button

Modified := True;

end;

Advanced Component Design Techniques

CHAPTER 22
769

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

continues

26.65227_Ch22x 11/30/99 6:06 PM Page 769

LISTING 22.12 Continued

end;

procedure TddgLaunchPadEditor.CancelBtnClick(Sender: TObject);

{ When the user cancels the operation, copy the backup LaunchPad

TRunBtnItems back to the original TddgLaunchPad instance. Then,

close the form by setting ModalResult to mrCancel. }

begin

FRunButtons.Assign(FLaunchPad.RunButtons);

Modified := False;

ModalResult := mrCancel;

end;

{ TRunButtonsProperty }

function TRunButtonsProperty.GetAttributes: TPropertyAttributes;

{ Tell the Object Inspector that the property editor will use a

dialog. This will cause the Edit method to be invoked when the user

clicks the ellipsis button in the Object Inspector. }

begin

Result := [paDialog];

end;

procedure TRunButtonsProperty.Edit;

{ Invoke the EdiTddgRunButton() method and pass in the reference to the

TddgRunButton’s instance being edited. This reference can be obtained by

using the GetOrdValue method. Then redraw the LaunchDialog by calling

the TRunButtons.UpdateRunButtons method. }

begin

if EdiTRunButtons(TRunButtons(GetOrdValue)) then

Modified;

TRunButtons(GetOrdValue).UpdateRunButtons;

end;

function TRunButtonsProperty.GetValue: string;

{ Override the GetValue method so that the class type of the property

being edited is displayed in the Object Inspector. }

begin

Result := Format(‘(%s)’, [GetPropType^.Name]);

end;

end.

Component-Based Development

PART III
770

26.65227_Ch22x 11/30/99 6:06 PM Page 770

This unit first defines the TddgLaunchPadEditor dialog and then the TRunButtonsProperty
property editor. We’re going to discuss the property editor first because it’s the property editor
that invokes the dialog.

The TRunButtonsProperty property editor is not much different than the dialog property editor
we showed earlier. Here, we override the GetAttributes(), Edit(), and GetValue() methods.

GetAttributes() simply sets the TPropertyAttributes return value to specify that this editor
invokes a dialog. Again, this will place an ellipsis button on the Object Inspector.

The GetValue() method uses the GetPropType() function to return a pointer to the Runtime
Type Information for the property being edited. It returns the name field of this information
that represents the property’s type string. The string is displayed in the Object Inspector inside
parentheses, which is a convention used by Delphi.

Finally, the Edit() method calls a function defined in this unit, EdiTRunButtons(). As a para-
meter, it passes the reference to the TRunButtons property by using the GetOrdValue function.
When the function returns, the method UpdateRunButton() is invoked to cause RunButtons to
be redrawn to reflect any changes.

The EditRunButtons() function creates the TddgLaunchPadEditor instance and points its
FRunButtons field to the TRunButtons parameter passed to it. It uses this reference internally
to make changes to the TRunButtons collection. The function then copies the TRunButtons col-
lection of the property to an internal TddgLaunchPad component, FLaunchPad. It uses this
instance as a backup in case the user cancels the edit operation.

Earlier we talked about the possibility of adding an Apply button to this dialog. To do so, you
can edit the FLaunchPad component’s RunButtons collection instance instead of directly modi-
fying the actual collection. This way, if the user cancels the operation, nothing happens; if the
user presses Apply or OK, the changes are invoked.

The form’s Create() constructor creates the internal TddgLaunchPad instance. The Destroy()
destructor ensures that it’s freed when the form is destroyed.

PathListBoxClick() is the OnClick event handler for PathListBox. This method makes
TestRunBtn (the test TddgRunButton) reflect the currently selected item in PathListBox,
which displays a path to the executable file. The user can press this TddgRunButton instance to
launch the application.

UpdatePathListBox() initializes PathListBox with the items in the collection.

AddButtonClick() is the OnClick event handler for the Add button. This event handler invokes
a File Open dialog to retrieve an executable filename from the user and adds the path of this
filename to PathListBox. It also creates a TRunBtnItem instance in the collection and assigns
the path to its CommandLine property, which in turn does the same for the TddgRunButton com-
ponent it encloses.

Advanced Component Design Techniques

CHAPTER 22
771

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

26.65227_Ch22x 11/30/99 6:06 PM Page 771

RemoveBtnClick() is the OnClick event handler for the Remove button. It removes the
selected item from PathListBox as well as the TRunBtnItem instance from the collection.

CancelBtnClick() is the OnClick event handler for the Cancel button. It copies the backup
collection from FLaunchPad to the actual TRunButtons collection and closes the form.

The TCollection and TCollectionItems objects are extremely useful and offer themselves to
being used for a variety of purposes. Get to know them well, and next time you need to store a
list of components, you’ll already have a solution.

Summary
This chapter let you in on some of the more advanced tricks and techniques for Delphi compo-
nent design. Among other things, you learned about extending hints and animating components
as well as component editors, property editors, and component collections. Armed with this
information, as well as the more conventional information you learned in the preceding chap-
ter, you should be able to write a component to suit just about any of your programming needs.
In the next chapter, “COM and ActiveX,” we’ll go even deeper into the world of component-
based development.

Component-Based Development

PART III
772

26.65227_Ch22x 11/30/99 6:06 PM Page 772

CHAPTER

23
COM-Based Technologies

IN THIS CHAPTER
• COM Basics 774

• COM Meets Object Pascal 778

• COM Objects and Class Factories 786

• Aggregation 792

• Distributed COM 792

• Automation 793

• Advanced Automation Techniques 825

• Microsoft Transaction Server (MTS) 857

• TOleContainer 885

• Summary 899

27.65227_Ch23x 11/30/99 6:08 PM Page 773

Robust support for COM-based technologies is one of the marquee features of Delphi. The
term COM-based technologies refers to a number of sundry technologies that rely on COM as
their foundation. These technologies include COM servers and clients, ActiveX controls,
Object Linking and Embedding (OLE), Automation, and Microsoft Transaction Server (MTS).
However, all this new technology at your fingertips can be a bit perplexing, if not daunting.
This chapter is designed to give you a complete overview of the technologies that make up
COM, ActiveX, and OLE and help you leverage these technologies in your own applications.
In earlier days, this topic referred primarily to OLE, which provides a method for sharing data
among different applications, dealing primarily with linking or embedding data associated with
one type of application to data associated with another application (such as embedding a
spreadsheet into a word processor document). However, there is a lot more to COM than just
OLE-based word processor tricks!

In this chapter, you will first get a solid background in the basics of COM-based technologies
in general and extensions to Object Pascal and VCL added to support COM. You will learn
how to apply this knowledge in order to control Automation servers from your Delphi applica-
tions and write Automation servers of your own. You will also learn about more sophisticated
COM topics, such as advanced Automation techniques and MTS. Finally, this chapter covers
VCL’s TOleContainer class, which encapsulates ActiveX containers. This chapter does not
teach you everything there is to know about OLE and ActiveX—that could take volumes—but
it does cover all the important features of OLE and ActiveX, particularly as they apply to
Delphi.

COM Basics
First things first. Before we jump into the topic at hand, it is important that you understand the
basic concepts and terminology associated with the technology. This section introduces you to
basic ideas and terms behind the COM-based technologies.

COM: The Component Object Model
The Component Object Model (COM) forms the foundation upon which OLE and ActiveX
technology is built. COM defines an API and a binary standard for communication between
objects that is independent of any particular programming language or (in theory) platform.
COM objects are similar to the VCL objects you are familiar with—except they have only
methods and properties associated with them, not data fields.

A COM object consists of one or more interfaces (described in detail later in this chapter),
which are essentially tables of functions associated with that object. You can call an interface’s
methods just like the methods of a Delphi object.

The component objects you use can be implemented from any EXE or DLL, although the
implementation is transparent to you as a user of the object because of a service provided by

Component-Based Development

PART III
774

27.65227_Ch23x 11/30/99 6:08 PM Page 774

COM called marshaling. The COM marshaling mechanism handles all the intricacies of call-
ing functions across process—and even machine—boundaries, which makes it possible to use a
32-bit object from a 16-bit application or access an object located on machine A from an appli-
cation running on machine B. This intermachine communication is known as Distributed COM
(DCOM) and is described in greater detail later in this chapter.

COM Versus ActiveX Versus OLE
“So, what’s the difference between COM, OLE, and ActiveX, anyway?” That’s one of the most
common (and reasonable) questions developers ask as they get into this technology. It’s a rea-
sonable question because it seems that the purveyor of this technology, Microsoft, does little to
clarify the matter. You’ve already learned that COM is the API and binary standard that forms
the building blocks of the other technologies. In the old days (like 1995), OLE was the blanket
term used to describe the entire suite of technologies built on the COM architecture. These
days, OLE refers only to those technologies associated specifically with linking and embed-
ding, such as containers, servers, in-place activation, drag-and-drop, and menu merging. In
1996, Microsoft embarked on an aggressive marketing campaign in an attempt to create brand
recognition for the term ActiveX, which became the blanket term used to describe non-OLE
technologies built on top of COM. ActiveX technologies include Automation (formerly called
OLE Automation) controls, documents, containers, scripting, and several Internet technologies.
Because of the confusion created by using the term ActiveX to describe everything short of the
family pet, Microsoft has backed off a bit and now sometimes refers to non-OLE COM tech-
nologies simply as COM-based technologies.

Those with a more cynical view of the industry might say that the term OLE became associ-
ated with adjectives such as “slow” and “bloated,” and marketing-savvy Microsoft needed a
new term for those APIs on which it planned to base its future operating system and Internet
technologies. Also amusing is the fact that Microsoft now claims OLE no longer stands for
Object Linking and Embedding—it’s just a word that is pronounced Oh-lay.

Terminology
COM technologies bring with them a great deal of new terminology, so some terms are pre-
sented here before going any deeper into the guts of ActiveX and OLE.

Although an instance of a COM object is usually referred to simply as an object, the type that
identifies that object is usually referred to as a component class or coclass. Therefore, to create
an instance of a COM object, you must pass the CLSID of the COM class you want to create.

The chunk of data that is shared between applications is referred to as an OLE object.
Applications that have the capability to contain OLE objects are referred to as OLE containers.
Applications that have the capability to have their data contained within an OLE container are
called OLE servers.

COM-Based Technologies

CHAPTER 23
775

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

27.65227_Ch23x 11/30/99 6:08 PM Page 775

A document that contains one or more OLE objects is usually referred to as a compound docu-
ment. Although OLE objects can be contained within a particular document, full-scale applica-
tions that can be hosted within the context of another document are known as ActiveX
documents.

As the name implies, an OLE object can be linked or embedded into a compound document.
Linked objects are stored in a file on disk. With object linking, multiple containers—or even
the server application—can link to the same OLE object on disk. When one application modi-
fies the linked object, the modification is reflected in all the other applications maintaining a
link to that object. Embedded objects are stored by the OLE container application. Only the
container application is able to edit the OLE object. Embedding prevents other applications
from accessing (and therefore modifying or corrupting) your data, but it does put the burden of
managing the data on the container.

Another facet of ActiveX that you’ll learn more about in this chapter is Automation, which is a
means to allow applications (called Automation controllers) to manipulate objects associated
with other applications or libraries (called an Automation server). Automation enables you to
manipulate objects in another application and, conversely, to expose elements of your applica-
tion to other developers.

What’s So Great About ActiveX?
The coolest thing about ActiveX is that it enables you to easily build the capability to manipu-
late many types of data into your applications. You might snicker at the word easily, but it’s
true. It is much easier, for example, to give your application the capability to contain ActiveX
objects than it is to build word processing, spreadsheet, or graphics-manipulation capabilities
into your application.

ActiveX fits very well with Delphi’s tradition of maximum code reuse. You don’t have to write
code to manipulate a particular kind of data if you already have an OLE server application that
does the job. As complicated as OLE can be, it often makes more sense than the alternatives.

It also is no secret that Microsoft has a large investment in ActiveX technology, and serious
developers for Windows 95, NT, and other upcoming operating systems will have to become
familiar with using ActiveX in their applications. So, like it or not, COM is here for a while,
and it behooves you, as a developer, to become comfortable with it.

OLE 1 Versus OLE 2
One of the primary differences between OLE objects associated with 16-bit OLE version 1
servers and those associated with OLE version 2 servers is in how they activate themselves.
When you activate an object created with an OLE 1 server, the server application starts up and
receives focus, and then the OLE object appears in the server application, ready for editing.

Component-Based Development

PART III
776

27.65227_Ch23x 11/30/99 6:08 PM Page 776

When you activate an OLE 2 object, the OLE 2 server application becomes active “inside”
your container application. This is known as in-place activation or visual editing.

When an OLE 2 object is activated, the menus and toolbars of the server application replace or
merge with those of the client application, and a portion of the client application’s window
essentially becomes the window of the server application. This process is demonstrated in the
sample application shown later in this chapter.

Structured Storage
OLE 2 defines a system for storing information on disk known as structured storage. This sys-
tem basically does on a file level what DOS does on a disk level. A storage object is one physi-
cal file on a disk, but it equates with the DOS concept of a directory, and it is made up of
multiple storages and streams. A storage equates to a subdirectory, and a stream equates to a
DOS file. You will often hear this implementation referred to as compound files.

Uniform Data Transfer
OLE 2 also has the concept of a data object, which is the basic object used to exchange data
under the rules of uniform data transfer. Uniform data transfer (UDT) governs data transfers
through the Clipboard, drag-and-drop, DDE, and OLE. Data objects allow for a greater degree
of description about the kind of data they contain than previously was practical given the limi-
tations of those transfer media. In fact, UDT is destined to replace DDE. A data object can be
aware of its important properties, such as size, color, and even what device it is designed to be
rendered on. Try doing that on the Windows Clipboard!

Threading Models
Every COM object operates in a particular threading model that dictates how an object can be
manipulated in a multithreaded environment. When a COM server is registered, each of the
COM objects contained in that server should register the threading model they support. For
COM objects written in Delphi, the threading model chosen in the Automation, ActiveX con-
trol, or COM object wizards dictates how a control is registered. The COM threading models
include the following:

• Single. The entire COM server runs on a single thread.

• Apartment. Also known as single-threaded apartment (STA). Each COM object executes
within the context of its own thread, and multiple instances of the same type of COM
object can execute within separate threads. Because of this, any data that is shared
between object instances (such as global variables) must be protected by thread synchro-
nization objects when appropriate.

COM-Based Technologies

CHAPTER 23
777

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

27.65227_Ch23x 11/30/99 6:08 PM Page 777

• Free. Also known as multithreaded apartment (MTA). A client can call a method of an
object on any thread at any time. This means that the COM object must protect even its
own instance data from simultaneous access by multiple threads.

• Both. Both the apartment and free threading models are supported.

Keep in mind that merely selecting the desired threading model in the wizard doesn’t guaran-
tee that your COM object will be safe for that threading model. You must write the code to
ensure that your COM servers operate correctly for the threading model you wish to support.
This most often includes using thread synchronization objects to protect access to global or
instance data in your COM objects. For more information on multithreaded development in
Delphi, see Chapter 11, “Writing Multithreaded Applications.”

COM+
As a part of the Windows 2000 release, Microsoft has provided the most significant update to
COM in recent memory with the release of a new iteration called COM+. The goal of COM+
is the simplification of the COM development process through the integration of several satel-
lite technologies, most notably MTS (described later in this chapter) and Microsoft Message
Queue (MSMQ). The integration of these technologies into the standard COM+ runtime means
that all COM+ developers will be able to take advantage of features such as transaction con-
trol, security, administration, queued components, and publish and subscribe event services.
Because COM+ consists mostly of off-the-shelf parts, this means complete backward compati-
bility, such that all existing COM and MTS applications automatically become COM+ applica-
tions.

COM Meets Object Pascal
Now that you understand the basic concepts and terms behind COM, ActiveX, and OLE, it’s
time to discuss how the concepts are implemented in Delphi. This section goes into more detail
on COM and gives you a look at how it fits into the Object Pascal language and VCL.

Interfaces
COM defines a standard map for how an object’s functions are laid out in memory. Functions
are arranged in virtual tables (called vtables)—tables of function addresses identical to Delphi
class virtual method tables (VMTs). The programming language description of each vtable is
referred to as an interface.

Think of an interface as a facet of a particular class. Each facet represents a specific set of
functions or procedures that you can use to manipulate the class. For example, a COM object
that represents a bitmap image might support two interfaces: one containing methods that

Component-Based Development

PART III
778

27.65227_Ch23x 11/30/99 6:08 PM Page 778

enable the bitmap to render itself to the screen or printer and another interface to manage stor-
ing and retrieving the bitmap to and from a file on disk.

An interface really has two parts: The first part is the interface definition, which consists of a
collection of one or more function declarations in a specific order. The interface definition is
shared between the object and the user of the object. The second part is the interface imple-
mentation, which is the actual implementation of the functions described in the interface decla-
ration. The interface definition is like a contract between the COM object and a client of that
object—a guarantee to the client that the object will implement specific methods in a specific
order.

Introduced in Delphi 3, the interface keyword in Object Pascal enables you to easily define
COM interfaces. An interface declaration is semantically similar to a class declaration, with a
few exceptions. Interfaces can consist only of properties and methods—no data. Because inter-
faces cannot contain data, their properties must write and read to and from methods. Most
important, interfaces have no implementation because they only define a contract.

IUnknown
Just as all Object Pascal classes implicitly descend from TObject, all COM interfaces (and
therefore all Object Pascal interfaces) implicitly derive from IUnknown, which is defined in the
System unit as follows:

type
IUnknown = interface
[‘{00000000-0000-0000-C000-000000000046}’]
function QueryInterface(const IID: TGUID; out Obj): Integer; stdcall;
function _AddRef: Integer; stdcall;
function _Release: Integer; stdcall;

end;

Aside from the use of the interface keyword, another obvious difference between an interface
and class declaration that you will notice from the preceding code is the presence of a globally
unique identifier (GUID).

COM-Based Technologies

CHAPTER 23
779

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

Globally Unique Identifiers (GUIDs)
A GUID (pronounced goo-id) is a 128-bit integer used in COM to uniquely identify an
interface, coclass, or other entity. Because of their large size and the hairy algorithm
used to generate these numbers, GUIDs are almost guaranteed to be globally unique
(hence the name). GUIDs are generated using the CoCreateGUID() API function, and
the algorithm employed by this function to generate new GUIDs combines informa-
tion such as the current date and time, CPU clock sequence, network card number,

continues

27.65227_Ch23x 11/30/99 6:08 PM Page 779

Component-Based Development

PART III
780

and the balance of Bill Gates’s bank accounts (okay, so we made up the last one). If
you have a network card installed on a particular machine, a GUID generated on that
machine is guaranteed to be unique because every network card has an internal ID
that is globally unique. If you don’t have a network card, it will synthesize a close
approximation using other hardware information.

Because there is no language type that holds something as large as 128 bits in size,
GUIDs are represented by the TGUID record, which is defined as follows in the System
unit:

type
PGUID = ^TGUID;
TGUID = record
D1: LongWord;
D2: Word;
D3: Word;
D4: array[0..7] of Byte;

end;

Because it can be a pain to assign GUID values to variables and constants in this
record format, Object Pascal also allows a TGUID to be represented as a string with
the following format:

‘{xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx}’

Thanks to this, the following declarations are equivalent as far as the Delphi compiler
is concerned:

MyGuid: TGUID = (
D1:$12345678;D2:$1234;D3:$1234;D4:($01,$02,$03,$04,$05,$06,$07,$08));

MyGuid: TGUID = ‘{12345678-1234-1234-12345678}’;

In COM, every interface or class has an accompanying GUID that uniquely defines that
interface. In this way, two interfaces or classes having the same name defined by two
different people will never conflict because their respective GUIDs will be different.
When used to represent an interface, a GUID is normally referred to as an interface ID
(IID). When used to represent a class, a GUID is referred to as a class ID (CLSID).

TIP

You can generate a new GUID in the Delphi IDE using the Ctrl+Shift+G keystroke in
the Code Editor.

27.65227_Ch23x 11/30/99 6:08 PM Page 780

In addition to its IID, IUnknown declares three methods: QueryInterface(), _AddRef(), and
_Release(). Because IUnknown is the base interface for COM, all interfaces must implement
IUnknown and its methods. The _AddRef() method should be called when a client obtains and
wants to use a pointer to a given interface, and a call to _AddRef() must have an accompany-
ing call to _Release() when the client is finished using the interface. In this way, the object
that implements the interfaces can maintain a count of clients that are keeping a reference to
the object, or reference count. When the reference count reaches zero, the object should free
itself from memory. The QueryInterface() function is used to query whether an object sup-
ports a given interface and, if so, to return a pointer to that interface. For example, suppose that
object O supports two interfaces, I1 and I2, and you have a pointer to O’s I1 interface. To
obtain a pointer to O’s I2 interface, you would call I1.QueryInterface().

COM-Based Technologies

CHAPTER 23
781

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

NOTE

If you’re an experienced COM developer, you may have noticed that the underscore
in front of the _AddRef() and _Release() methods is not consistent with other COM
programming languages or even with Microsoft’s COM documentation. Because
Object Pascal is “IUnknown aware,” you won’t normally call these methods directly
(more on this in a moment), so the underscores exist primarily to make you think
before calling these methods.

Because every interface in Delphi implicitly descends from IUnknown, every Delphi class that
implements interfaces must also implement the three IUnknown methods. You can do this your-
self manually, or you can let VCL do the dirty work for you by descending your class from
TInterfacedObject, which implements IUnknown for you.

Using Interfaces
Chapter 2, “The Object Pascal Language,” and Delphi’s own “Object Pascal Language Guide”
documentation cover the semantics of using interface instances, so we won’t rehash that mater-
ial here. Instead, we’ll discuss how IUnknown is seamlessly integrated into the rules of Object
Pascal.

When an interface variable is assigned a value, the compiler automatically generates a call to
the interface’s _AddRef() method so that the reference count of the object is incremented.
When an interface variable falls out of scope or is assigned the value nil, the compiler auto-
matically generates a call to the interface’s _Release() method. Consider the following piece
of code:

var
I: ISomeInteface;

begin

27.65227_Ch23x 11/30/99 6:08 PM Page 781

I := FunctionThatReturnsAnInterface;
I.SomeMethod;

end;

Now take a look at the following code snippet, which shows the code you would type (in bold)
and an approximate Pascal version of the code the compiler generates (in normal font):

var
I: ISomeInterface;

begin
// interface is automatically initialized to nil
I := nil;
try
// your code goes here
I := FunctionThatReturnsAnInterface;
// _AddRef() is called implicitly when I is assigned
I._AddRef;
I.SomeMethod;

finally
// implicit finally block ensures that the reference to the
// interface is released
if I <> nil I._Release;

end;
end;

The Delphi compiler is also smart enough to know when to call _AddRef() and _Release() as
interfaces are reassigned to other interface instances or assigned the value nil. For example,
consider the following code block:

var
I: ISomeInteface;

begin
// assign I
I := FunctionThatReturnsAnInterface;
I.SomeMethod;
// reassign I
I := OtherFunctionThatReturnsAnInterface;
I.OtherMethod;
// set I to nil
I := nil;

end;

Again, here is a composite of the user-written (bold) code and the approximate compiler-
generated (normal) code:

var
I: ISomeInterface;

begin
// interface is automatically initialized to nil

Component-Based Development

PART III
782

27.65227_Ch23x 11/30/99 6:08 PM Page 782

I := nil;
try
// your code goes here
// assign I
I := FunctionThatReturnsAnInterface;
// _AddRef() is called implicitly when I is assigned
I._AddRef;
I.SomeMethod;
// reassign I
I._Release;
I := OtherFunctionThatReturnsAnInterface;
I._AddRef;
I.OtherMethod;
// set I to nil
I._Release;
I := nil;

finally
// implicit finally block ensures that the reference to the
// interface is released
if I <> nil I._Release;

end;
end;

The preceding code example also helps to illustrate why Delphi prepends the underscore to the
_AddRef() and _Release() methods. Forgetting to increment or decrement the reference of an
interface was one of the classic COM programming bugs in the pre-interface days. Delphi’s
interface support is designed to alleviate these problems by handling the housekeeping details
for you, so there’s rarely ever a reason to call these methods directly.

Because the compiler knows how to generate calls to _AddRef() and _Release(), wouldn’t it
make sense if the compiler had some inherent knowledge of the third IUnknown method,
QueryInterface()? It would, and it does. Given an interface pointer for an object, you can use
the as operator to “typecast” the interface to another interface supported by the COM object.
We say typecast because this application of the as operator isn’t really a typecast in the strict
sense but rather an internal call to the QueryInterface() method. The following sample code
demonstrates this:

var
I1: ISomeInterface;
I2: ISomeOtherInterface;

begin
// assign to I1
I1 := FunctionThatReturnsAnInterface;
// QueryInterface I1 for an I2 interface
I2 := I1 as ISomeOtherInterface;

end;

COM-Based Technologies

CHAPTER 23
783

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

27.65227_Ch23x 11/30/99 6:08 PM Page 783

In the preceding example, if the object referenced by I1 doesn’t support the
ISomeOtherInterface interface, an exception will be raised by the as operator.

One additional language rule pertaining to interfaces is that an interface variable is assignment
compatible with an Object Pascal class that implements that interface. For example, consider
the following interface and class declarations:

type
IFoo = interface
// definition of IFoo

end;

IBar = interface(IFoo)
// definition of IBar

end;

TBarClass = class(TObject, IBar)
// definition of TBarClass

end;

Given the preceding declarations, the following code is correct:

var
IB: IBar;
TB: TBarClass;

begin
TB := TBarClass.Create;
try
// obtain TB’s IBar interface pointer:
IB := TB;
// use TB and IB

finally
IB := nil; // explicitly release IB
TB.Free;

end;
end;

Although this feature seems to violate traditional Pascal assignment-compatibility rules, it does
make interfaces feel more natural and easier to work with.

An important but nonobvious corollary to this rule is that interfaces are only assignment com-
patible with classes that explicitly support the interface. For example, the TBarClass class
defined earlier declares explicit support for the IBar interface. Because IBar descends from
IFoo, conventional wisdom might indicate that TBarClass also directly supports IFoo. This is
not the case, however, as the following sample code illustrates:

var
IF: IFoo;

Component-Based Development

PART III
784

27.65227_Ch23x 11/30/99 6:08 PM Page 784

TB: TBarClass;
begin
TB := TBarClass.Create;
try
// compiler error raised on the next line because TBarClass
// doesn’t explicitly support IFoo.
IF := TB;
// use TB and IF

finally
IF := nil; // expicitly release IF
TB.Free;

end;
end;

Interfaces and IIDs
Because the interface ID is declared as a part of an interface declaration, the Object Pascal
compiler knows how to obtain the IID from an interface. Therefore, you can pass an interface
type to a procedure or function that requires a TIID or TGUID as a parameter. For example, sup-
pose you have a function like this:

procedure TakesIID(const IID: TIID);

The following code is syntactically correct:

TakesIID(IUnknown);

This capability obviates the need for IID_InterfaceType constants defined for each interface
type that you might be familiar with if you’ve done COM development in C++.

Method Aliasing
A problem that occasionally arises when you implement multiple interfaces in a single class is
that there can be a collision of method names in two or more interfaces. For example, consider
the following interfaces:

type
IIntf1 = interface
procedure AProc;

end;

IIntf2 = interface
procedure AProc;

end;

Given that each of the interfaces contains a method called AProc(), how can you declare a
class that implements both interfaces? The answer is method aliasing. Method aliasing enables
you to map a particular interface method to a method of a different name in a class. The fol-
lowing code example demonstrates how to declare a class that implements IIntf1 and IIntf2:

COM-Based Technologies

CHAPTER 23
785

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

27.65227_Ch23x 11/30/99 6:08 PM Page 785

type
TNewClass = class(TInterfacedObject, IIntf1, IIntf2)
protected
procedure IIntf2.AProc = AProc2;
procedure AProc; // binds to IIntf1.AProc
procedure AProc2; // binds to IIntf2.AProc

end;

In this declaration, the AProc() method of IIntf2 is mapped to a method with the name
AProc(). Creating aliases in this way enables you to implement any interface on any class
without fear of method name collisions.

The HResult Return Type
You might notice that the QueryInterface() method of IUnknown returns a result of type
HResult. HResult is a very common return type for many ActiveX and OLE interface methods
and COM API functions. HResult is defined in the System unit as a type LongWord. Possible
HResult values are listed in the Windows unit (if you have the VCL source code, you can find
them under the heading { HRESULT value definitions }). An HResult value of S_OK or
NOERROR (0) indicates success, whereas if the high bit of the HResult value is set, it indicates
failure or some type of error condition. Two functions in the Windows unit, Succeeded() and
Failed(), take an HResult as a parameter and return a BOOL, indicating success or failure.
Here’s the syntax for calling these methods:

if Succeeded(FunctionThatReturnsHResult) then
\\ continue as normal

if Failed(FunctionThatReturnsHResult) then
\\ error condition code

Of course, checking the return value of every single function call can become tedious. Also,
dealing with errors returned by functions undermines Delphi’s exception-handling methods for
error detection and recovery. For these reasons, the ComObj unit defines a procedure called
OleCheck() that converts HResult errors to exceptions. The syntax for calling this method is

OleCheck(FunctionThatReturnsHResult);

This procedure can be quite handy, and it will clean up your ActiveX code considerably.

COM Objects and Class Factories
In addition to supporting one or more interfaces that descend from IUnknown and implementing
reference counting for lifetime management, COM objects also have another special feature:
They are created through special objects called class factories. Each COM class has an associ-
ated class factory responsible for creating instances of that COM class. Class factories are

Component-Based Development

PART III
786

27.65227_Ch23x 11/30/99 6:08 PM Page 786

special COM objects that support the IClassFactory interface. This interface is defined in the
ActiveX unit as follows:

type
IClassFactory = interface(IUnknown)
[‘{00000001-0000-0000-C000-000000000046}’]
function CreateInstance(const unkOuter: IUnknown; const iid: TIID;
out obj): HResult; stdcall;

function LockServer(fLock: BOOL): HResult; stdcall;
end;

The CreateInstance() method is called to create an instance of the class factory’s associated
COM object. The unkOuter parameter of this method references the controlling IUnknown if
the object is being created as a part of an aggregate (aggregation is explained a bit later). The
iid parameter contains the IID of the interface by which you want to manipulate the object.
Upon return, the obj parameter will hold a pointer to the interface indicated by iid.

The LockServer() method is called to keep a COM server in memory, even though no clients
may be referencing the server. The fLock parameter, when True, should increment the server’s
lock count. When False, fLock should decrement the server’s lock count. When the server’s
lock count is 0 and there are no clients referencing the server, COM will unload the server.

TComObject and TComObjectFactory
Delphi provides two classes that encapsulate COM objects and class factories: TComObject and
TComObjectFactory, respectively. TComObject contains the necessary infrastructure for sup-
porting IUnknown and creation via TComObjectFactory. Likewise, TComObjectFactory sup-
ports IClassFactory and has the capability to create TComObject objects. You can easily
generate a COM object using the COM Object Wizard found on the ActiveX page of the New
Items dialog. Listing 23.1 shows pseudocode for the unit generated by this wizard, which illus-
trates the relationship between these classes.

LISTING 23.1 COM Server Unit Pseudocode

unit ComDemo;

interface

uses ComObj;

type
TSomeComObject = class(TComObject, interfaces supported)
class and interface methods declared here

end;

COM-Based Technologies

CHAPTER 23
787

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

continues

27.65227_Ch23x 11/30/99 6:08 PM Page 787

LISTING 23.1 Continued

implementation

uses ComServ;

TSomeComObject implementation here

initialization
TComObjectFactory.Create(ComServer, TSomeComObject,
CLSID_TSomeComObject, ‘ClassName’, ‘Description’);

end;

The TComServer descendant is declared and implemented like most VCL classes. What binds it
to its corresponding TComObjectFactory object is the parameters passed to
TComObjectFactory’s constructor Create(). The first constructor parameter is a TComServer
object. You almost always will pass the global ComServer object declared in the ComServ unit
in this parameter. The second parameter is the TComObject class you want to bind to the class
factory. The third parameter is the CLSID of the TComObject’s COM class. The fourth and fifth
parameters are the class name and description strings used to describe the COM class in the
System Registry.

The TComObjectFactory instance is created in the initialization of the unit in order to ensure
that the class factory will be available to create instances of the COM object as soon as the
COM server is loaded. Exactly how the COM server is loaded depends on whether the COM
server is an in-process server (a DLL) or an out-of-process server (an application).

In-Process COM Servers
In-process (or in-proc, for short) COM servers are DLLs that can create COM objects for use
by the host application. This type of COM server is called in process because, as a DLL, it
resides in the same process as the calling application. An in-proc server must export four stan-
dard entry-point functions:

function DllRegisterServer: HResult; stdcall;
function DllUnregisterServer: HResult; stdcall;
function DllGetClassObject (const CLSID, IID: TGUID; var Obj): HResult;
stdcall;

function DllCanUnloadNow: HResult; stdcall;

Each of these functions is already implemented by the ComServ unit, so the only work to be
done for your Delphi COM servers is to ensure that these functions are added to an exports
clause in your project.

Component-Based Development

PART III
788

27.65227_Ch23x 11/30/99 6:08 PM Page 788

DllRegisterServer()
The DllRegisterServer() function is called to register a COM server DLL with the System
Registry. If you simply export this method from your Delphi application, as described earlier,
VCL will iterate over all the COM objects in your application and register them with the
System Registry. When a COM server is registered, it will make a key entry in the System
Registry under

HKEY_CLASSES_ROOT\CLSID\{xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxx}

for each COM class, where the X’s denote the CLSID of the COM class. For in-proc servers,
an additional entry is created as a subkey of the preceding key called InProcServer32. The
default value for this key is the full path to the in-proc server DLL. Figure 23.1 shows a COM
server registered with the System Registry.

COM-Based Technologies

CHAPTER 23
789

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

NOTE

A good example of a real-world application of in-process COM servers can be found
in Chapter 24, “Extending the Windows Shell,” which demonstrates how to create
shell extensions.

FIGURE 23.1
A COM server as shown in the Registry Editor.

DllUnregisterServer()
The DllUnregisterServer() function’s job is simply to undo what is done by the
DllRegisterServer() function. When called, it should remove all the entries in the System
Registry made by DllRegisterServer().

27.65227_Ch23x 11/30/99 6:08 PM Page 789

DllGetClassObject()
DllGetClassObject() is called by the COM engine in order to retrieve a class factory for a
particular COM class. The CLSID parameter of this method is the CLSID of the type of COM
class you want to create. The IID parameter holds the IID of the interface instance pointer you
want to obtain for the class factory object (usually, IClassFactory’s interface ID is passed
here). Upon successful return, the Obj parameter contains a pointer to the class factory interface
denoted by IID that is capable of creating COM objects of the class type denoted by CLSID.

DllCanUnloadNow()
DllCanUnloadNow() is called by the COM engine to determine whether the COM server DLL
is capable of being unloaded from memory. If there are references to any COM object within
the DLL, this function should return S_FALSE, indicating that the DLL should not be unloaded.
If none of the DLL’s COM objects are in use, this method should return S_TRUE.

Component-Based Development

PART III
790

TIP

Even after all references to an in-proc server’s COM objects have been freed, COM
may not necessarily call DllCanUnloadNow() to begin the process of releasing the in-
proc server DLL from memory. If you want to ensure that all unused COM server DLLs
have been released from memory, call the CoFreeUnusedLibraries() API function,
which is defined in the ActiveX units as follows:

procedure CoFreeUnusedLibraries; stdcall;

Creating an Instance of an In-Proc COM Server
To create an instance of a COM server in Delphi, use the CreateComObject() function, which
is defined in the ComObj unit as follows:

function CreateComObject(const ClassID: TGUID): IUnknown;

The ClassID parameter holds the CLSID, which identifies the type of COM object you want to
create. The return value of this function is the IUnknown interface of the requested COM
object, or the function raises an exception if the COM object cannot be created.

CreateComObject() is a wrapper around the CoCreateInstance() COM API function.
Internally, CoCreateInstance() calls the CoGetClassObject() API function to obtain an
IClassFactory for the specified COM object. CoCreateInstance() does this by looking in
the Registry for the COM class’s InProcServer32 entry in order to find the path to the in-proc
server DLL, calling LoadLibrary() on the in-proc server DLL, and then calling the DLL’s
DllGetClassObject() function. After obtaining the IClassFactory interface pointer,
CoCreateInstance() calls IClassFactory.CreateInstance() to create an instance of the
specified COM class.

27.65227_Ch23x 11/30/99 6:08 PM Page 790

Out-of-Process COM Servers
Out-of-process servers are executables that can create COM objects for use by other applica-
tions. The name comes from the fact that they do not execute from within the same process of
the client but instead are executables that operate within the context of their own processes.

Registration
Like their in-proc cousins, out-of-process servers must also be registered with the System
Registry. Out-of-process servers must make an entry under

HKEY_CLASSES_ROOT\CLSID\{xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxx}

called LocalServer32, which identifies the full pathname of the out-of-process server executable.

Delphi applications’ COM servers are registered in the Application.Initialize() method,
which is usually the first line of code in an application’s project file. If the /regserver
command-line switch is passed to your application, Application.Initialize() will register

COM-Based Technologies

CHAPTER 23
791

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

TIP

CreateComObject() can be inefficient if you need to create multiple objects from a
class factory because it disposes of the IClassFactory interface pointer obtained by
CoGetClassObject() after creating the requested COM object. In cases where you
need to create multiple instances of the same COM object, you should call
CoGetClassObject() directly and use IClassFactory.CreateInstance() to create
multiple instances of the COM object.

NOTE

Before you can use any COM or OLE API functions, you must initialize the COM
library using the CoInitialize() function. The single parameter to this function
must be nil. To properly shut down the COM library, you should call the
CoUninitialize() function as the last call to the OLE library. Calls are cumulative, so
each call to CoInitialize() in your application must have a corresponding call to
CoUninitialize().

For applications, CoInitialize() is called automatically from
Application.Initialize(), and CoUninitialize() is called automatically from the
finalization of ComObj.

It’s not necessary to call these functions from in-process libraries because their client
applications are required to perform the initialization and uninitialization for the
process.

27.65227_Ch23x 11/30/99 6:08 PM Page 791

the COM classes with the System Registry and immediately terminate the application.
Likewise, if the /unregserver command-line switch is passed, Application.Initialize()
will unregister the COM classes with the System Registry and immediately terminate the appli-
cation. If neither of these switches are passed, Application.Initialize() will register the
COM classes with the System Registry and continue to run the application normally.

Creating an Instance of an Out-of-Process COM Server
On the surface, the method for creating instances of COM objects from out-of-process servers
is the same as for in-proc servers: Just call ComObj’s CreateComObject() function. Behind the
scenes, however, the process is quite different. In this case, CoGetClassObject() looks for the
LocalServer32 entry in the System Registry and invokes the associated application using the
CreateProcess() API function. When the out-of-proc server application is invoked, the server
must register its class factories using the CoRegisterClassObject() COM API function. This
function adds an IClassFactory pointer to COM’s internal table of active registered class
objects. CoGetClassObject() can then obtain the requested COM class’s IClassFactory
pointer from this table to create an instance of the COM object.

Aggregation
You know now that interfaces are the basic building blocks of COM as well as that inheritance
is possible with interfaces, but interfaces are entities without implementation. What happens,
then, when you want to recycle the implementation of one COM object within another?
COM’s answer to this question is a concept called aggregation. Aggregation means that the
containing (outer) object creates the contained (inner) object as part of its creation process, and
the interfaces of the inner object are exposed by the outer. An object has to allow itself to oper-
ate as an aggregate by providing a means to forward all calls to its IUnknown methods to the
containing object. For an example of aggregation within the context of VCL COM objects, you
should take a look at the TAggregatedObject class in the AxCtrls unit.

Distributed COM
Introduced with Windows NT 4, Distributed COM (or DCOM) provides a means for accessing
COM objects located on other machines on a network. In addition to remote object creation,
DCOM also provides security facilities that allow servers to specify which clients have rights
to create instances of which servers and what operations they may perform. Windows NT 4
and Windows 98 have built-in DCOM capability, but Windows 95 requires an add-on available
on Microsoft’s Web site (http://www.microsoft.com) to serve as a DCOM client.

You can create remote COM objects using the CreateRemoteComObject() function, which is
declared in the ComObj unit as follows:

Component-Based Development

PART III
792

27.65227_Ch23x 11/30/99 6:08 PM Page 792

function CreateRemoteComObject(const MachineName: WideString;
const ClassID: TGUID): IUnknown;

The first parameter, MachineName, to this function is a string representing the network name of
the machine containing the COM class. The ClassID parameter specifies the CLSID of the
COM class to be created. The return value for this function is the IUnknown interface pointer for
the COM object specified in CLSID. An exception will be raised if the object cannot be created.

CreateRemoteComObject() is a wrapper around the CoCreateInstanceEx() COM API func-
tion, which is an extended version of CoCreateInstance() that knows how to create objects
remotely.

Automation
Automation (formerly known as OLE Automation) provides a means for applications or DLLs
to expose programmable objects for use by other applications. Applications or DLLs that
expose programmable objects are referred to as Automation servers. Applications that access
and manipulate the programmable objects contained within Automation servers are known as
Automation controllers. Automation controllers are able to program the Automation server
using a macro-like language exposed by the server.

Among the chief advantages to using Automation in your applications is its language-
independent nature. An Automation controller is able to manipulate a server regardless of the
programming language used to develop either component. Additionally, because Automation is
supported at the operating system level, the theory is that you’ll be able to leverage future
advancements in this technology by using Automation today. If these things sound good to
you, then read on. What follows is information on creating Automation servers and controllers
in Delphi.

COM-Based Technologies

CHAPTER 23
793

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

CAUTION

If you have an Automation project from Delphi 2 that you want to migrate to the
current version of Delphi, you should be forewarned that the techniques for
Automation changed drastically starting with Delphi 3. In general, you shouldn’t mix
Delphi 2’s Automation unit, OleAuto, with the newer ComObj or ComServ units. If you
want to compile a Delphi 2 Automation project in Delphi 5, the OleAuto unit remains
in the \Delphi5\lib\Delphi2 subdirectory for backward compatibility.

27.65227_Ch23x 11/30/99 6:08 PM Page 793

IDispatch
Automation objects are essentially COM objects that implement the IDispatch interface.
IDispatch is defined in the System unit as shown here:

type
IDispatch = interface(IUnknown)
[‘{00020400-0000-0000-C000-000000000046}’]
function GetTypeInfoCount(out Count: Integer): Integer; stdcall;
function GetTypeInfo(Index, LocaleID: Integer; out TypeInfo):
Integer; stdcall;
function GetIDsOfNames(const IID: TGUID; Names: Pointer;
NameCount, LocaleID: Integer; DispIDs: Pointer): Integer; stdcall;

function Invoke(DispID: Integer; const IID: TGUID; LocaleID: Integer;
Flags: Word; var Params; VarResult, ExcepInfo, ArgErr: Pointer): Integer;

end;

The first thing you should know is that you don’t have to understand the ins and outs of the
IDispatch interface to take advantage of Automation in Delphi, so don’t let this complicated
interface alarm you. You generally don’t have to interact with this interface directly because
Delphi provides an elegant encapsulation of Automation, but the description of IDispatch in
this section should provide you with a good foundation for understanding Automation.

Central to the function of IDispatch is the Invoke() method, so we’ll start there. When a
client obtains an IDispatch pointer for an Automation server, it can call the Invoke() method
to execute a particular method on the server. The DispID parameter of this method holds a
number, called a dispatch ID, that indicates which method on the server should be invoked.
The IID parameter is unused. The LocaleID parameter contains language information. The
Flags parameter describes what kind of method is to be invoked and whether it’s a normal
method or a put or get method for a property. The Params property contains a pointer to an
array of TDispParams, which holds the parameters passed to the method. The VarResult para-
meter is a pointer to an OleVariant, which will hold the return value of the method that is
invoked. ExcepInfo is a pointer to a TExcepInfo record that will contain error information if
Invoke() returns DISP_E_EXCEPTION. Finally, if Invoke() returns DISP_E_TYPEMISMATCH or
DISP_E_PARAMNOTFOUND, the ArgError parameter is a pointer to an integer that will contain the
index of the offending parameter in the Params array.

The GetIDsOfName() method of IDispatch is called to obtain the dispatch ID of one or more
method names given strings identifying those methods. The IID parameter of this method is
unused. The Names parameter points to an array of PWideChar method names. The NameCount
parameter holds the number of strings in the Names array. LocaleID contains language informa-
tion. The last parameter, DispIDs, is a pointer to an array of NameCount integers, which
GetIDsOfName() will fill in with the dispatch IDs for the methods listed in the Names parameter.

Component-Based Development

PART III
794

27.65227_Ch23x 11/30/99 6:08 PM Page 794

GetTypeInfo() retrieves the type information (type information is described next) for the
Automation object. The Index parameter represents the type of information to obtain and
should normally be 0. The LCID parameter holds language information. Upon successful return,
the TypeInfo parameter will hold an ITypeInfo pointer for the Automation object’s type infor-
mation.

The GetTypeInfoCount() method retrieves the number of type information interfaces sup-
ported by the Automation object in the Count parameter. Currently, Count will only contain
two possible values: 0, meaning the Automation object doesn’t support type information, and
1, meaning the Automation object does support type information.

Type Information
After you have spent a great deal of time carefully crafting an Automation server, it would be a
shame if potential users of your server couldn’t exploit its capabilities to the fullest because of
lack of documentation on the methods and properties provided. Fortunately, Automation pro-
vides a means for helping avoid this problem by allowing developers to associate type informa-
tion with Automation objects. This type information is stored in something called a type
library, and an Automation server’s type library can be linked to the server application or
library as a resource or stored in an external file. Type libraries contain information about
classes, interfaces, types, and other entities in a server. This information provides clients of the
Automation server with the information needed to create instances of each of its classes and
properly call methods on each interface.

Delphi generates type libraries for you when you add Automation objects to applications and
libraries. Additionally, Delphi knows how to translate type library information into Object
Pascal so that you can easily control Automation servers from your Delphi applications.

Late Versus Early Binding
The elements of Automation that you’ve learned about so far in this chapter deal with what’s
called late binding. Late binding is a fancy way to say that a method is called through
IDispatch’s Invoke() method. It’s called late binding because the method call isn’t resolved
until runtime. At compile time, an Automation method call resolves into a call to
IDispatch.Invoke() with the proper parameters, and at runtime, Invoke() executes the
Automation method. When you call an Automation method via a Delphi Variant or
OleVariant type, you’re using late binding because Delphi must call
IDispatch.GetIDsOfNames() to convert the method name into a DispID, and then it can
invoke the method by calling IDispatch.Invoke() with the DispID.

A common optimization of early binding is to resolve the DispIDs of methods at compile time
and therefore avoid the runtime calls to GetIDsOfNames() in order to invoke a method. This

COM-Based Technologies

CHAPTER 23
795

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

27.65227_Ch23x 11/30/99 6:08 PM Page 795

optimization is often referred to as ID binding, and it is the convention used when you invoke
methods via a Delphi dispinterface type.

Early binding occurs when the Automation object exposes methods by means of a custom
interface descending from IDispatch. This way, controllers can call Automation objects
directly through the vtable without going through IDispatch.Invoke(). Because the call is
direct, a call to such as method will generally occur faster than a call through late binding.
Early binding is used you when call a method using a Delphi interface type.

An Automation object that allows methods to be called both from Invoke() and directly from
an IDispatch descendant interface is said to support a dual interface. Delphi-generated
Automation objects always support a dual interface, and Delphi controllers allow methods to
be called both through Invoke() and directly through an interface.

Registration
Automation objects must make all the same Registry entries as regular COM objects, but
Automation servers typically also make an additional entry under

HKEY_CLASSES_ROOT\CLSID\{xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxx}

called ProgID, which provides a string identifier for the Automation class. Yet another Registry
entry under HKEY_CLASSES_ROOT\(ProgID string) is made, which contains the CLSID of the
Automation class in order to cross-reference back to the first Registry entry under CLSID.

Creating Automation Servers
Delphi makes it a fairly simple chore to create both out-of-process and in-process Automation
servers. The process for creating an Automation server can be boiled down into four steps:

1. Create the application or DLL you want to automate. You can even use one of your exist-
ing applications as a starting point in order to spice it up with some automation. This is
the only step where you’ll see a real difference between creating in-process and out-of-
process servers.

2. Create the Automation object and add it to your project. Delphi provides an Automation
Object Expert to help this step go smoothly.

3. Add properties and methods to the Automation object by means of the type library.
These are the properties and methods that will be exposed to Automation controllers.

4. Implement the methods generated by Delphi from your type library in your source code.

Creating an Out-of-Process Automation Server
This section walks you through the creation of a simple out-of-process Automation server.
Start by creating a new project and placing a TShape and a TEdit component on the main
form, as shown in Figure 23.2. Save this project as Srv.dpr.

Component-Based Development

PART III
796

27.65227_Ch23x 11/30/99 6:08 PM Page 796

FIGURE 23.2
The main form of the Srv project.

Now add an Automation object to the project by selecting File, New from the main menu and
choosing Automation Object from the ActiveX page of the New Items dialog, as shown in
Figure 23.3. This will invoke the Automation Object Wizard shown in Figure 23.4.

COM-Based Technologies

CHAPTER 23
797

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

FIGURE 23.3
Adding a new Automation object.

FIGURE 23.4
The Automation Object Wizard.

27.65227_Ch23x 11/30/99 6:08 PM Page 797

In the Class Name field of the Automation Object Wizard dialog, you should enter the name
you want to give the COM class for this Automation object. The wizard will automatically
prepend a T to the class name when creating the Object Pascal class for the Automation object
and an I to the class name when creating the primary interface for the Automation object. The
Instancing combo box in the wizard can hold any one of these three values:

Value Description

Internal This OLE object will be used internal to the application only,
and it will not be registered with the System Registry.
External processes cannot access internal instanced
Automation servers.

Single Instance Each instance of the server can export only one instance of the
OLE object. If a controller application requests another
instance of the OLE object, Windows will start a new instance
of the server application.

Multiple Instance Each server instance can create and export multiple instances
of the OLE object. In-process servers are always multiple
instance.

When you complete the wizard’s dialog, Delphi will create a new type library for your project
(if one doesn’t already exist) and add an interface and a coclass to the type library.
Additionally, the wizard will generate a new unit in your project that contains the implementa-
tion of the Automation interface added to the type library. Figure 23.5 shows the type library
editor immediately after the wizard’s dialog is dismissed, and Listing 23.2 shows the imple-
mentation unit for the Automation object.

Component-Based Development

PART III
798

FIGURE 23.5
A new Automation project as shown in the type library editor.

27.65227_Ch23x 11/30/99 6:08 PM Page 798

LISTING 23.2 Automation Object Implementation Unit

unit TestImpl;

interface

uses
ComObj, ActiveX, Srv_TLB;

type
TAutoTest = class(TAutoObject, IAutoTest)
protected
{ Protected declarations }

end;

implementation

uses ComServ;

initialization
TAutoObjectFactory.Create(ComServer, TAutoTest, Class_AutoTest,
ciMultiInstance, tmApartment);

end.

The Automation object, TAutoTest, is a class that descends from TAutoObject. TAutoObject is
the base class for all Automation servers. As you add methods to your interface by using the
type library editor, new method skeletons will be generated in this unit that you will imple-
ment, thus forming the innards of your Automation object.

COM-Based Technologies

CHAPTER 23
799

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

CAUTION

Again, be careful not to confuse Delphi 2’s TAutoObject (from the OleAuto unit) with
Delphi 5’s TAutoObject (from the ComObj unit). The two are not compatible.

Similarly, the automated visibility specifier introduced in Delphi 2 is now mostly
obsolete.

When the Automation object has been added to the project, you must add one or more proper-
ties or methods to the primary interface using the type library editor. For this project, the type
library will contain properties to get and set the shape, color, and type as well as the edit con-
trol’s text. For good measure, you’ll also add a method that displays the current status of these
properties in a dialog. Figure 23.6 shows the completed type library for the Srv project. Note
especially the enumeration added to the type library (whose values are shown in the right pane)
to support the ShapeType property.

27.65227_Ch23x 11/30/99 6:08 PM Page 799

FIGURE 23.6
The completed type library.

When the type library has been completed, all that is left to do is fill in the implementation for
each of the method stubs created by the type library editor. This unit is shown in Listing 23.3.

LISTING 23.3 The Completed Implementation Unit

unit TestImpl;

interface

uses
ComObj, ActiveX, Srv_TLB;

type
TAutoTest = class(TAutoObject, IAutoTest)
protected
function Get_EditText: WideString; safecall;

Component-Based Development

PART III
800

NOTE

As you add properties and methods to Automation objects in the type library,
keep in mind that the parameters and return values used for these properties and
methods must be of Automation-compatible types. Types compatible with
Automation include Byte, SmallInt, Integer, Single, Double, Currency,
TDateTime, WideString, WordBool, PSafeArray, TDecimal, OleVariant, IUnknown,
and IDispatch.

27.65227_Ch23x 11/30/99 6:08 PM Page 800

function Get_ShapeColor: OLE_COLOR; safecall;
procedure Set_EditText(const Value: WideString); safecall;
procedure Set_ShapeColor(Value: OLE_COLOR); safecall;
function Get_ShapeType: TxShapeType; safecall;
procedure Set_ShapeType(Value: TxShapeType); safecall;
procedure ShowInfo; safecall;

end;

implementation

uses ComServ, SrvMain, TypInfo, ExtCtrls, Dialogs, SysUtils, Graphics;

function TAutoTest.Get_EditText: WideString;
begin
Result := FrmAutoTest.Edit.Text;

end;

function TAutoTest.Get_ShapeColor: OLE_COLOR;
begin
Result := ColorToRGB(FrmAutoTest.Shape.Brush.Color);

end;

procedure TAutoTest.Set_EditText(const Value: WideString);
begin
FrmAutoTest.Edit.Text := Value;

end;

procedure TAutoTest.Set_ShapeColor(Value: OLE_COLOR);
begin
FrmAutoTest.Shape.Brush.Color := Value;

end;

function TAutoTest.Get_ShapeType: TxShapeType;
begin
Result := TxShapeType(FrmAutoTest.Shape.Shape);

end;

procedure TAutoTest.Set_ShapeType(Value: TxShapeType);
begin
FrmAutoTest.Shape.Shape := TShapeType(Value);

end;

procedure TAutoTest.ShowInfo;
const
SInfoStr = ‘The Shape’s color is %s, and it’s shape is %s.’#13#10 +
‘The Edit’s text is “%s.”’;

COM-Based Technologies

CHAPTER 23
801

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

continues

27.65227_Ch23x 11/30/99 6:08 PM Page 801

LISTING 23.3 Continued

begin
with FrmAutoTest do
ShowMessage(Format(SInfoStr, [ColorToString(Shape.Brush.Color),
GetEnumName(TypeInfo(TShapeType), Ord(Shape.Shape)), Edit.Text]));

end;

initialization
TAutoObjectFactory.Create(ComServer, TAutoTest, Class_AutoTest,
ciMultiInstance, tmApartment);

end.

The uses clause for this unit contains a unit called Srv_TLB. This unit is the Object Pascal
translation of the project type library, and it is shown in Listing 23.4.

LISTING 23.4 Srv_TLB: The Type Library File

unit Srv_TLB;

// ** //
// WARNING
// -------
// The types declared in this file were generated from data read from a
// Type Library. If this type library is explicitly or indirectly (via
// another type library referring to this type library) re-imported, or
// the ‘Refresh’ command of the Type Library Editor activated while
// editing the Type Library, the contents of this file will be regenerated
// and all manual modifications will be lost.
// ** //

// PASTLWTR : $Revision: 1.88 $
// File generated on 10/28/99 1:55:17 PM from Type Library described below

// ** //
// NOTE:
// Items guarded by $IFDEF_LIVE_SERVER_AT_DESIGN_TIME are used by
// properties which return objects that may need to be explicitly created
// via a function call prior to any access via the property. These items
// have been disabled in order to prevent accidental use from within the
// object inspector. You may enable them by defining
// LIVE_SERVER_AT_DESIGN_TIME or by selectively removing them from the
// $IFDEF blocks. However, such items must still be programmatically
// created via a method of the appropriate CoClass before they can be used
// ** //
// Type Lib: C:\work\d5dg\code\Ch23\Automate\Srv.tlb (1)

Component-Based Development

PART III
802

27.65227_Ch23x 11/30/99 6:08 PM Page 802

// IID\LCID: {B43DD7DB-21F8-4244-A494-C4793366691B}\0
// Helpfile:
// DepndLst:
// (1) v2.0 stdole, (C:\WINDOWS\SYSTEM\STDOLE2.TLB)
// (2) v4.0 StdVCL, (C:\WINDOWS\SYSTEM\STDVCL40.DLL)
// ** //
{$TYPEDADDRESS OFF} // Unit must be compiled without type-checked pointers
interface

uses Windows, ActiveX, Classes, Graphics, OleServer, OleCtrls, StdVCL;

// ***//
// GUIDS declared in the TypeLibrary. Following prefixes are used:
// Type Libraries : LIBID_xxxx
// CoClasses : CLASS_xxxx
// DISPInterfaces : DIID_xxxx
// Non-DISP interfaces: IID_xxxx
// ***//
const
// TypeLibrary Major and minor versions
SrvMajorVersion = 1;
SrvMinorVersion = 0;

LIBID_Srv: TGUID = ‘{B43DD7DB-21F8-4244-A494-C4793366691B}’;

IID_IAutoTest: TGUID = ‘{C16B6A4C-842C-417F-8BF2-2F306F6C6B59}’;
CLASS_AutoTest: TGUID = ‘{64C576F0-C9A7-420A-9EAB-0BE98264BC9D}’;

// ***//
// Declaration of Enumerations defined in Type Library
// ***//
// Constants for enum TxShapeType
type
TxShapeType = TOleEnum;

const
stRectangle = $00000000;
stSquare = $00000001;
stRoundRect = $00000002;
stRoundSquare = $00000003;
stEllipse = $00000004;
stCircle = $00000005;

type

// ***//
// Forward declaration of types defined in TypeLibrary

COM-Based Technologies

CHAPTER 23
803

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

continues

27.65227_Ch23x 11/30/99 6:08 PM Page 803

LISTING 23.4 Continued

// ***//
IAutoTest = interface;
IAutoTestDisp = dispinterface;

// ***//
// Declaration of CoClasses defined in Type Library
// (NOTE: Here we map each CoClass to its Default Interface)
// ***//
AutoTest = IAutoTest;

// ***//
// Interface: IAutoTest
// Flags: (4416) Dual OleAutomation Dispatchable
// GUID: {C16B6A4C-842C-417F-8BF2-2F306F6C6B59}
// ***//
IAutoTest = interface(IDispatch)
[‘{C16B6A4C-842C-417F-8BF2-2F306F6C6B59}’]
function Get_EditText: WideString; safecall;
procedure Set_EditText(const Value: WideString); safecall;
function Get_ShapeColor: OLE_COLOR; safecall;
procedure Set_ShapeColor(Value: OLE_COLOR); safecall;
function Get_ShapeType: TxShapeType; safecall;
procedure Set_ShapeType(Value: TxShapeType); safecall;
procedure ShowInfo; safecall;
property EditText: WideString read Get_EditText write Set_EditText;
property ShapeColor: OLE_COLOR read Get_ShapeColor write
Set_ShapeColor;

property ShapeType: TxShapeType read Get_ShapeType write
Set_ShapeType;

end;

// ***//
// DispIntf: IAutoTestDisp
// Flags: (4416) Dual OleAutomation Dispatchable
// GUID: {C16B6A4C-842C-417F-8BF2-2F306F6C6B59}
// ***//
IAutoTestDisp = dispinterface
[‘{C16B6A4C-842C-417F-8BF2-2F306F6C6B59}’]
property EditText: WideString dispid 1;
property ShapeColor: OLE_COLOR dispid 2;
property ShapeType: TxShapeType dispid 3;
procedure ShowInfo; dispid 4;

end;

Component-Based Development

PART III
804

27.65227_Ch23x 11/30/99 6:08 PM Page 804

// ***//
// The Class CoAutoTest provides a Create and CreateRemote method to
// create instances of the default interface IAutoTest exposed by
// the CoClass AutoTest. The functions are intended to be used by
// clients wishing to automate the CoClass objects exposed by the
// server of this typelibrary.
// ***//
CoAutoTest = class
class function Create: IAutoTest;
class function CreateRemote(const MachineName: string): IAutoTest;

end;

// ***//
// OLE Server Proxy class declaration
// Server Object : TAutoTest
// Help String : AutoTest Object
// Default Interface: IAutoTest
// Def. Intf. DISP? : No
// Event Interface:
// TypeFlags : (2) CanCreate
// ***//
{$IFDEF LIVE_SERVER_AT_DESIGN_TIME}
TAutoTestProperties= class;

{$ENDIF}
TAutoTest = class(TOleServer)
private
FIntf: IAutoTest;

{$IFDEF LIVE_SERVER_AT_DESIGN_TIME}
FProps: TAutoTestProperties;
function GetServerProperties: TAutoTestProperties;

{$ENDIF}
function GetDefaultInterface: IAutoTest;

protected
procedure InitServerData; override;
function Get_EditText: WideString;
procedure Set_EditText(const Value: WideString);
function Get_ShapeColor: OLE_COLOR;
procedure Set_ShapeColor(Value: OLE_COLOR);
function Get_ShapeType: TxShapeType;
procedure Set_ShapeType(Value: TxShapeType);

public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;
procedure Connect; override;
procedure ConnectTo(svrIntf: IAutoTest);

COM-Based Technologies

CHAPTER 23
805

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

continues

27.65227_Ch23x 11/30/99 6:08 PM Page 805

LISTING 23.4 Continued

procedure Disconnect; override;
procedure ShowInfo;
property DefaultInterface: IAutoTest read GetDefaultInterface;
property EditText: WideString read Get_EditText write Set_EditText;
property ShapeColor: OLE_COLOR read Get_ShapeColor write
Set_ShapeColor;

property ShapeType: TxShapeType read Get_ShapeType write
Set_ShapeType;

published
{$IFDEF LIVE_SERVER_AT_DESIGN_TIME}

property Server: TAutoTestProperties read GetServerProperties;
{$ENDIF}
end;

{$IFDEF LIVE_SERVER_AT_DESIGN_TIME}
// ***//
// OLE Server Properties Proxy Class
// Server Object : TAutoTest
// (This object is used by the IDE’s Property Inspector to allow editing
// of the properties of this server)
// ***//
TAutoTestProperties = class(TPersistent)
private
FServer: TAutoTest;
function GetDefaultInterface: IAutoTest;
constructor Create(AServer: TAutoTest);

protected
function Get_EditText: WideString;
procedure Set_EditText(const Value: WideString);
function Get_ShapeColor: OLE_COLOR;
procedure Set_ShapeColor(Value: OLE_COLOR);
function Get_ShapeType: TxShapeType;
procedure Set_ShapeType(Value: TxShapeType);

public
property DefaultInterface: IAutoTest read GetDefaultInterface;

published
property EditText: WideString read Get_EditText write Set_EditText;
property ShapeColor: OLE_COLOR read Get_ShapeColor write
Set_ShapeColor;

property ShapeType: TxShapeType read Get_ShapeType write
Set_ShapeType;

end;
{$ENDIF}

procedure Register;

Component-Based Development

PART III
806

27.65227_Ch23x 11/30/99 6:08 PM Page 806

implementation

uses ComObj;

class function CoAutoTest.Create: IAutoTest;
begin
Result := CreateComObject(CLASS_AutoTest) as IAutoTest;

end;

class function CoAutoTest.CreateRemote(const MachineName: string):
IAutoTest;

begin
Result := CreateRemoteComObject(MachineName, CLASS_AutoTest) as IAutoTest;
end;

procedure TAutoTest.InitServerData;
const
CServerData: TServerData = (
ClassID: ‘{64C576F0-C9A7-420A-9EAB-0BE98264BC9D}’;
IntfIID: ‘{C16B6A4C-842C-417F-8BF2-2F306F6C6B59}’;
EventIID: ‘’;
LicenseKey: nil;
Version: 500);

begin
ServerData := @CServerData;

end;

procedure TAutoTest.Connect;
var
punk: IUnknown;

begin
if FIntf = nil then
begin
punk := GetServer;
Fintf:= punk as IAutoTest;

end;
end;

procedure TAutoTest.ConnectTo(svrIntf: IAutoTest);
begin
Disconnect;
FIntf := svrIntf;

end;

procedure TAutoTest.DisConnect;
begin

COM-Based Technologies

CHAPTER 23
807

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

continues

27.65227_Ch23x 11/30/99 6:08 PM Page 807

LISTING 23.4 Continued

if Fintf <> nil then
begin
FIntf := nil;

end;
end;

function TAutoTest.GetDefaultInterface: IAutoTest;
const
ErrStr = ‘DefaultInterface is NULL. Component is not connected to ‘ +
‘Server. You must call ‘’Connect’’ or ‘’ConnectTo’’ before this ‘ +
‘operation’;

begin
if FIntf = nil then
Connect;

Assert(FIntf <> nil, ErrStr);
Result := FIntf;

end;

constructor TAutoTest.Create(AOwner: TComponent);
begin
inherited Create(AOwner);

{$IFDEF LIVE_SERVER_AT_DESIGN_TIME}
FProps := TAutoTestProperties.Create(Self);

{$ENDIF}
end;

destructor TAutoTest.Destroy;
begin
{$IFDEF LIVE_SERVER_AT_DESIGN_TIME}
FProps.Free;

{$ENDIF}
inherited Destroy;

end;

{$IFDEF LIVE_SERVER_AT_DESIGN_TIME}
function TAutoTest.GetServerProperties: TAutoTestProperties;
begin
Result := FProps;

end;
{$ENDIF}

function TAutoTest.Get_EditText: WideString;
begin
Result := DefaultInterface.Get_EditText;

end;

Component-Based Development

PART III
808

27.65227_Ch23x 11/30/99 6:08 PM Page 808

procedure TAutoTest.Set_EditText(const Value: WideString);
begin
DefaultInterface.Set_EditText(Value);

end;

function TAutoTest.Get_ShapeColor: OLE_COLOR;
begin
Result := DefaultInterface.Get_ShapeColor;

end;

procedure TAutoTest.Set_ShapeColor(Value: OLE_COLOR);
begin
DefaultInterface.Set_ShapeColor(Value);

end;

function TAutoTest.Get_ShapeType: TxShapeType;
begin
Result := DefaultInterface.Get_ShapeType;

end;

procedure TAutoTest.Set_ShapeType(Value: TxShapeType);
begin
DefaultInterface.Set_ShapeType(Value);

end;

procedure TAutoTest.ShowInfo;
begin
DefaultInterface.ShowInfo;

end;

{$IFDEF LIVE_SERVER_AT_DESIGN_TIME}
constructor TAutoTestProperties.Create(AServer: TAutoTest);
begin
inherited Create;
FServer := AServer;

end;

function TAutoTestProperties.GetDefaultInterface: IAutoTest;
begin
Result := FServer.DefaultInterface;

end;

function TAutoTestProperties.Get_EditText: WideString;
begin
Result := DefaultInterface.Get_EditText;

end;

COM-Based Technologies

CHAPTER 23
809

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

continues

27.65227_Ch23x 11/30/99 6:08 PM Page 809

LISTING 23.4 Continued

procedure TAutoTestProperties.Set_EditText(const Value: WideString);
begin
DefaultInterface.Set_EditText(Value);

end;

function TAutoTestProperties.Get_ShapeColor: OLE_COLOR;
begin
Result := DefaultInterface.Get_ShapeColor;

end;

procedure TAutoTestProperties.Set_ShapeColor(Value: OLE_COLOR);
begin
DefaultInterface.Set_ShapeColor(Value);

end;

function TAutoTestProperties.Get_ShapeType: TxShapeType;
begin
Result := DefaultInterface.Get_ShapeType;

end;

procedure TAutoTestProperties.Set_ShapeType(Value: TxShapeType);
begin
DefaultInterface.Set_ShapeType(Value);

end;

{$ENDIF}

procedure Register;
begin
RegisterComponents(‘Servers’,[TAutoTest]);

end;

end.

Looking at this unit from the top down, you will notice that the type library version is specified
first and then the GUID for the type library, LIBID_Srv, is declared. This GUID will be used
when the type library is registered with the System Registry. Next, the values for the
TxShapeType enumeration are listed. What’s interesting about the enumeration is that the val-
ues are declared as constants rather than as an Object Pascal enumerated type. This is because
type library enums are like C/C++ enums (and unlike Object Pascal) in that they don’t have to
start at the ordinal value zero or be sequential in value.

Component-Based Development

PART III
810

27.65227_Ch23x 11/30/99 6:08 PM Page 810

Next, in the Srv_TLB unit the IAutoTest interface is declared. In this interface declaration
you’ll see the properties and methods you created in the type library editor. Additionally, you’ll
see the Get_XXX and Set_XXX methods generated as the read and write methods for each of
the properties.

COM-Based Technologies

CHAPTER 23
811

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

Safecall
Safecall is the default calling convention for methods entered into the type library
editor, as you can see from the IAutoTest declaration earlier. Safecall is actually
more than a calling convention because it implies two things: First, it means that the
method will be called using the safecall calling convention. Second, it means that
the method will be encapsulated so that it returns an HResult value to the caller. For
example, suppose you have a method that looks like this in Object Pascal:

function Foo(W: WideString): Integer; safecall;

This method actually compiles to code that looks something like this:

function Foo(W: WideString; out RetVal: Integer): HResult; stdcall;

The advantage of safecall is that it catches all exceptions before they flow back into
the caller. When an unhandled exception is raised in a safecall method, the excep-
tion is handled by the implicit wrapper and converted into an HResult, which is
returned to the caller.

Next in Srv_TLB is the dispinterface declaration for the Automation object: IAutoTestDisp.
A dispinterface signals to the caller that Automation methods may be executed by Invoke()
but does not imply a custom interface through which methods can be executed. Although the
IAutoTest interface can be used by development tools that support early-binding Automation,
IAutoTestDisp’s dispinterface can be used by tools that support late binding.

The Srv_TLB unit then declares a class called CoAutoTest, which makes creation of the
Automation object easy; just call CoAutoTest.Create() to create an instance of the
Automation object.

Finally, Srv_TLB creates a class called TAutoTest that wraps the server into a component that
can be placed on the palette. This feature, new to Delphi 5, is targeted more toward
Automation servers that you import rather than new Automation servers that you create.

As mentioned earlier, you must run this application once to register it with the System
Registry. Later in this chapter, you’ll learn about the controller application used to manipulate
this server.

27.65227_Ch23x 11/30/99 6:08 PM Page 811

Creating an In-Process Automation Server
Just as out-of-process servers start out as applications, in-process servers start out as DLLs.
You can begin with an existing DLL or with a new DLL, which you can create by selecting
DLL from the New Items dialog found under the File, New menu.

Component-Based Development

PART III
812

NOTE

If you’re not familiar with DLLs, they are covered in depth in Chapter 9, “Dynamic
Link Libraries.” This chapter assumes that you have some knowledge of DLL pro-
gramming.

As mentioned earlier, in order to serve as an in-process Automation server, a DLL must export
four functions that are defined in the ComServ unit: DllGetClassObject(),
DllCanUnloadNow(), DllRegisterServer(), and DllUnregisterServer(). Do this by adding
these functions to the exports clause in your project file, as shown in the project file IPS.dpr
in Listing 23.5.

LISTING 23.5 IPS.dpr—The Project File for an In-Process Server

library IPS;

uses
ComServ;

exports
DllRegisterServer,
DllUnregisterServer,
DllGetClassObject,
DllCanUnloadNow;

begin

end.

The Automation object is added to the DLL project in the same manner as an executable pro-
ject: through the Automation Object Wizard. For this project, you will add only one property
and one method, as shown in the type library editor in Figure 23.7. The Object Pascal version
of the type library, IPS_TLB, is shown in Listing 23.6.

27.65227_Ch23x 11/30/99 6:08 PM Page 812

FIGURE 23.7
The IPS project in the type library editor.

LISTING 23.6 IPS_TLB.pas—The Type Library Import File for the In-Process Server Project

unit IPS_TLB;

// ** //
// WARNING
// -------
// The types declared in this file were generated from data read from a
// Type Library. If this type library is explicitly or indirectly (via
// another type library referring to this type library) re-imported, or the
// ‘Refresh’ command of the Type Library Editor activated while editing the
// Type Library, the contents of this file will be regenerated and all
// manual modifications will be lost.
// ** //

// PASTLWTR : $Revision: 1.79 $
// File generated on 8/14/99 11:37:16 PM from Type Library described below.

// ** //
// Type Lib: C:\work\d5dg\code\Ch23\Automate\IPS.tlb (1)
// IID\LCID: {17A05B88-0094-11D1-A9BF-F15F8BE883D4}\0
// Helpfile:
// DepndLst:
// (1) v1.0 stdole, (C:\WINDOWS\SYSTEM\stdole32.tlb)
// (2) v2.0 StdType, (c:\WINDOWS\SYSTEM\OLEPRO32.DLL)
// (3) v1.0 StdVCL, (C:\WINDOWS\SYSTEM\STDVCL32.DLL)
// ** //
interface

COM-Based Technologies

CHAPTER 23
813

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

continues

27.65227_Ch23x 11/30/99 6:08 PM Page 813

LISTING 23.6 Continued

uses Windows, ActiveX, Classes, Graphics, OleServer, OleCtrls, StdVCL;

// ***//
// GUIDS declared in the TypeLibrary. Following prefixes are used:
// Type Libraries : LIBID_xxxx
// CoClasses : CLASS_xxxx
// DISPInterfaces : DIID_xxxx
// Non-DISP interfaces: IID_xxxx
// ***//
const
// TypeLibrary Major and minor versions
IPSMajorVersion = 1;
IPSMinorVersion = 0;

LIBID_IPS: TGUID = ‘{17A05B88-0094-11D1-A9BF-F15F8BE883D4}’;

IID_IIPTest: TGUID = ‘{17A05B89-0094-11D1-A9BF-F15F8BE883D4}’;
CLASS_IPTest: TGUID = ‘{17A05B8A-0094-11D1-A9BF-F15F8BE883D4}’;

type

// ***//
// Forward declaration of types defined in TypeLibrary
// ***//
IIPTest = interface;
IIPTestDisp = dispinterface;

// ***//
// Declaration of CoClasses defined in Type Library
// (NOTE: Here we map each CoClass to its Default Interface)
// ***//
IPTest = IIPTest;

// ***//
// Interface: IIPTest
// Flags: (4432) Hidden Dual OleAutomation Dispatchable
// GUID: {17A05B89-0094-11D1-A9BF-F15F8BE883D4}
// ***//
IIPTest = interface(IDispatch)
[‘{17A05B89-0094-11D1-A9BF-F15F8BE883D4}’]
function Get_MessageStr: WideString; safecall;
procedure Set_MessageStr(const Value: WideString); safecall;
function ShowMessageStr: Integer; safecall;
property MessageStr: WideString read Get_MessageStr write Set_MessageStr;

Component-Based Development

PART III
814

27.65227_Ch23x 11/30/99 6:08 PM Page 814

end;

// ***//
// DispIntf: IIPTestDisp
// Flags: (4432) Hidden Dual OleAutomation Dispatchable
// GUID: {17A05B89-0094-11D1-A9BF-F15F8BE883D4}
// ***//
IIPTestDisp = dispinterface
[‘{17A05B89-0094-11D1-A9BF-F15F8BE883D4}’]
property MessageStr: WideString dispid 1;
function ShowMessageStr: Integer; dispid 2;

end;

// ***//
// The Class CoIPTest provides a Create and CreateRemote method to
// create instances of the default interface IIPTest exposed by
// the CoClass IPTest. The functions are intended to be used by
// clients wishing to automate the CoClass objects exposed by the
// server of this typelibrary.
// ***//
CoIPTest = class
class function Create: IIPTest;
class function CreateRemote(const MachineName: string): IIPTest;

end;

implementation

uses ComObj;

class function CoIPTest.Create: IIPTest;
begin
Result := CreateComObject(CLASS_IPTest) as IIPTest;

end;

class function CoIPTest.CreateRemote(const MachineName: string): IIPTest;
begin
Result := CreateRemoteComObject(MachineName, CLASS_IPTest) as IIPTest;

end;

end.

Clearly, this is a pretty simple Automation server, but it serves to illustrate the point. The
MessageStr property can be set to a value and then shown with the ShowMessageStr() func-
tion. The implementation of the IIPTest interface resides in the unit IPSMain.pas, which is
shown in Listing 23.7.

COM-Based Technologies

CHAPTER 23
815

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

27.65227_Ch23x 11/30/99 6:08 PM Page 815

LISTING 23.7 IPSMain.pas—The Main Unit for the In-Process Server Project

unit IPSMain;

interface

uses
ComObj, IPS_TLB;

type
TIPTest = class(TAutoObject, IIPTest)
private
MessageStr: string;

protected
function Get_MessageStr: WideString; safecall;
procedure Set_MessageStr(const Value: WideString); safecall;
function ShowMessageStr: Integer; safecall;

end;

implementation

uses Windows, ComServ;

function TIPTest.Get_MessageStr: WideString;
begin
Result := MessageStr;

end;

function TIPTest.ShowMessageStr: Integer;
begin
MessageBox(0, PChar(MessageStr), ‘Your string is...’, MB_OK);
Result := Length(MessageStr);

end;

procedure TIPTest.Set_MessageStr(const Value: WideString);
begin
MessageStr := Value;

end;

initialization
TAutoObjectFactory.Create(ComServer, TIPTest, Class_IPTest, ciMultiInstance,
tmApartment);

end.

As you learned earlier in this chapter, in-process servers are registered differently than out-of-
process servers; an in-process server’s DllRegisterServer() function is called to register it

Component-Based Development

PART III
816

27.65227_Ch23x 11/30/99 6:08 PM Page 816

with the System Registry. The Delphi IDE makes this very easy: Select Run, Register ActiveX
server from the main menu.

Creating Automation Controllers
Delphi makes it extremely easy to control Automation servers in your applications. Delphi also
gives you a great amount of flexibility in how you want to control Automation servers, with
options for early binding using interfaces or late binding using dispinterfaces or variants.

Controlling Out-of-Process Servers
The Control project is an Automation controller that demonstrates all three types of
Automation (interfaces, dispinterface, and variants). Control is the controller for the Srv
Automation server application from earlier in this chapter. The main form for this project is
shown in Figure 23.8.

COM-Based Technologies

CHAPTER 23
817

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

FIGURE 23.8
The main form for the Control project.

When the Connect button is clicked, the Control application connects to the server in several
different ways with the following code:

FIntf := CoAutoTest.Create;
FDispintf := CreateComObject(Class_AutoTest) as IAutoTestDisp;
FVar := CreateOleObject(‘Srv.AutoTest’);

This code shows interface, dispinterface, and OleVariant variables, each creating an
instance of the Automation server in different ways. What’s interesting about these different
techniques is that they’re almost totally interchangeable. For example, the following code is
also correct:

27.65227_Ch23x 11/30/99 6:08 PM Page 817

FIntf := CreateComObject(Class_AutoTest) as IAutoTest;
FDispintf := CreateOleObject(‘Srv.AutoTest’) as IAutoTestDisp;
FVar := CoAutoTest.Create;

Listing 23.8 shows the Ctrl unit, which contains the rest of the source code for the
Automation controller. Notice that the application allows you to manipulate the server using
either the interface, dispinterface, or OleVariant.

LISTING 23.8 Ctrl.pas—The Main Unit for the Controller Project for the Out-of-Process
Server Project

unit Ctrl;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ColorGrd, ExtCtrls, Srv_TLB, Buttons;

type
TControlForm = class(TForm)
CallViaRG: TRadioGroup;
ShapeTypeRG: TRadioGroup;
GroupBox1: TGroupBox;
GroupBox2: TGroupBox;
Edit: TEdit;
GroupBox3: TGroupBox;
ConBtn: TButton;
DisBtn: TButton;
InfoBtn: TButton;
ColorBtn: TButton;
ColorDialog: TColorDialog;
ColorShape: TShape;
ExitBtn: TButton;
TextBtn: TButton;
procedure ConBtnClick(Sender: TObject);
procedure DisBtnClick(Sender: TObject);
procedure ColorBtnClick(Sender: TObject);
procedure ExitBtnClick(Sender: TObject);
procedure TextBtnClick(Sender: TObject);
procedure InfoBtnClick(Sender: TObject);
procedure ShapeTypeRGClick(Sender: TObject);

private
{ Private declarations }
FIntf: IAutoTest;
FDispintf: IAutoTestDisp;
FVar: OleVariant;

Component-Based Development

PART III
818

27.65227_Ch23x 11/30/99 6:08 PM Page 818

procedure SetControls;
procedure EnableControls(DoEnable: Boolean);

public
{ Public declarations }

end;

var
ControlForm: TControlForm;

implementation

{$R *.DFM}

uses ComObj;

procedure TControlForm.SetControls;
// Initializes the controls to the current server values
begin
case CallViaRG.ItemIndex of
0:
begin
ColorShape.Brush.Color := FIntf.ShapeColor;
ShapeTypeRG.ItemIndex := FIntf.ShapeType;
Edit.Text := FIntf.EditText;

end;
1:
begin
ColorShape.Brush.Color := FDispintf.ShapeColor;
ShapeTypeRG.ItemIndex := FDispintf.ShapeType;
Edit.Text := FDispintf.EditText;

end;
2:
begin
ColorShape.Brush.Color := FVar.ShapeColor;
ShapeTypeRG.ItemIndex := FVar.ShapeType;
Edit.Text := FVar.EditText;

end;
end;

end;

procedure TControlForm.EnableControls(DoEnable: Boolean);
begin
DisBtn.Enabled := DoEnable;
InfoBtn.Enabled := DoEnable;
ColorBtn.Enabled := DoEnable;
ShapeTypeRG.Enabled := DoEnable;

COM-Based Technologies

CHAPTER 23
819

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

continues

27.65227_Ch23x 11/30/99 6:08 PM Page 819

LISTING 23.8 Continued

Edit.Enabled := DoEnable;
TextBtn.Enabled := DoEnable;

end;

procedure TControlForm.ConBtnClick(Sender: TObject);
begin
FIntf := CoAutoTest.Create;
FDispintf := CreateComObject(Class_AutoTest) as IAutoTestDisp;
FVar := CreateOleObject(‘Srv.AutoTest’);
EnableControls(True);
SetControls;

end;

procedure TControlForm.DisBtnClick(Sender: TObject);
begin
FIntf := nil;
FDispintf := nil;
FVar := Unassigned;
EnableControls(False);

end;

procedure TControlForm.ColorBtnClick(Sender: TObject);
var
NewColor: TColor;

begin
if ColorDialog.Execute then
begin
NewColor := ColorDialog.Color;
case CallViaRG.ItemIndex of
0: FIntf.ShapeColor := NewColor;
1: FDispintf.ShapeColor := NewColor;
2: FVar.ShapeColor := NewColor;

end;
ColorShape.Brush.Color := NewColor;

end;
end;

procedure TControlForm.ExitBtnClick(Sender: TObject);
begin
Close;

end;

procedure TControlForm.TextBtnClick(Sender: TObject);
begin
case CallViaRG.ItemIndex of

Component-Based Development

PART III
820

27.65227_Ch23x 11/30/99 6:08 PM Page 820

0: FIntf.EditText := Edit.Text;
1: FDispintf.EditText := Edit.Text;
2: FVar.EditText := Edit.Text;

end;
end;

procedure TControlForm.InfoBtnClick(Sender: TObject);
begin
case CallViaRG.ItemIndex of
0: FIntf.ShowInfo;
1: FDispintf.ShowInfo;
2: FVar.ShowInfo;

end;
end;

procedure TControlForm.ShapeTypeRGClick(Sender: TObject);
begin
case CallViaRG.ItemIndex of
0: FIntf.ShapeType := ShapeTypeRG.ItemIndex;
1: FDispintf.ShapeType := ShapeTypeRG.ItemIndex;
2: FVar.ShapeType := ShapeTypeRG.ItemIndex;

end;
end;

end.

Another interesting thing this code illustrates is how easy it is to disconnect from an
Automation server: Interfaces and dispinterfaces can be set to nil, and variants can be set to
Unassigned. Of course, the Automation server will also be released when the Control applica-
tion is closed, as a part of the normal finalization of these lifetime-managed types.

COM-Based Technologies

CHAPTER 23
821

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

TIP

Interfaces will almost always perform better than dispinterfaces and variants, so you
should always use interfaces to control Automation servers when available.

Variants rank last in terms of performance because, at runtime, an Automation call
through a variant must call GetIDsOfNames() to convert a method name into a dis-
patch ID before it can execute the method with a call to Invoke().

The performance of dispinterfaces is in between that of an interface and that of a
variant. “But why,” you might ask, “is the performance different if variants and
dispinterfaces both use late binding?” The reason for this is that dispinterfaces take
advantage of an optimization called ID binding, which means that the dispatch IDs of

continues

27.65227_Ch23x 11/30/99 6:08 PM Page 821

Figure 23.9 shows the Control application controlling the Srv server.

Component-Based Development

PART III
822

methods are known at compile time, so the compiler doesn’t need to generate a run-
time call to GetIDsOfName() prior to calling Invoke(). Another, perhaps more obvi-
ous, advantage of dispinterfaces over variants is that dispinterfaces allow for the use
of CodeInsight for easier coding, whereas this is not possible using variants.

FIGURE 23.9
Automation controller and server.

Controlling In-Process Servers
The technique for controlling an in-process server is no different than that for controlling its
out-of-process counterpart. Just keep in mind that the Automation controller is now executing
within your own process space. This means performance will be a bit better than with out-of-
process servers, but it also means that a crash in the Automation server can take down your
application.

Now you’ll look at a controller application for the in-process Automation server created earlier
in this chapter. In this case, we’ll use only the interface for controlling the server. This is a
pretty simple application, and Figure 23.10 shows the main form for the IPCtrl project. The
code in Listing 23.9 is IPCMain.pas, the main unit for the IPCtrl project.

27.65227_Ch23x 11/30/99 6:08 PM Page 822

FIGURE 23.10
The IPCtrl project’s main form.

LISTING 23.9 IPCMain.pas—The Main Unit for the Controller Project for the In-Process
Server Project

unit IPCMain;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ExtCtrls, IPS_TLB;

type
TIPCForm = class(TForm)
ExitBtn: TButton;
Panel1: TPanel;
ConBtn: TButton;
DisBtn: TButton;
Edit: TEdit;
SetBtn: TButton;
ShowBtn: TButton;
procedure ConBtnClick(Sender: TObject);
procedure DisBtnClick(Sender: TObject);
procedure SetBtnClick(Sender: TObject);
procedure ShowBtnClick(Sender: TObject);
procedure ExitBtnClick(Sender: TObject);

private
{ Private declarations }
IPTest: IIPTest;
procedure EnableControls(DoEnable: Boolean);

public
{ Public declarations }

end;

var
IPCForm: TIPCForm;

COM-Based Technologies

CHAPTER 23
823

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

continues

27.65227_Ch23x 11/30/99 6:08 PM Page 823

LISTING 23.9 Continued

implementation

uses ComObj;

{$R *.DFM}

procedure TIPCForm.EnableControls(DoEnable: Boolean);
begin
DisBtn.Enabled := DoEnable;
Edit.Enabled := DoEnable;
SetBtn.Enabled := DoEnable;
ShowBtn.Enabled := DoEnable;

end;

procedure TIPCForm.ConBtnClick(Sender: TObject);
begin
IPTest := CreateComObject(CLASS_IPTest) as IIPTest;
EnableControls(True);

end;

procedure TIPCForm.DisBtnClick(Sender: TObject);
begin
IPTest := nil;
EnableControls(False);

end;

procedure TIPCForm.SetBtnClick(Sender: TObject);
begin
IPTest.MessageStr := Edit.Text;

end;

procedure TIPCForm.ShowBtnClick(Sender: TObject);
begin
IPTest.ShowMessageStr;

end;

procedure TIPCForm.ExitBtnClick(Sender: TObject);
begin
Close;

end;

end.

Remember to ensure that the server has been registered prior to attempting to run IPCtrl. You
can do this in several ways: Using Run, Register ActiveX Server from the main menu while the

Component-Based Development

PART III
824

27.65227_Ch23x 11/30/99 6:08 PM Page 824

IPS project is loaded, using the Windows RegSvr32.exe utility, and using the TRegSvr.exe
tool that comes with Delphi. Figure 23.11 shows this project in action controlling the IPS
server.

COM-Based Technologies

CHAPTER 23
825

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

FIGURE 23.11
IPCtrl controlling the IPS server.

Advanced Automation Techniques
In this section, our goal is to get you up to speed on some of the more advanced features of
Automation that the wizards never told you about. Topics such as Automation events, collec-
tions, type library gotchas, and low-level language support for COM are all covered. Rather
than devote more time to talking about this stuff, let’s jump right in and do it!

Automation Events
We Delphi programmers have long taken events for granted. You drop a button, you double-
click OnClick in the Object Inspector, and you write some code. No big deal. Even from the
control writer’s point of view, events are a snap. You create a new method type, add a field and
published property to your control, and you’re good to go. For Delphi COM developers, how-
ever, events can be scary. Many Delphi COM developers avoid events altogether simply
because they “don’t have time to learn all that mumbo jumbo.” If you fall into that group,
you’ll be happy to know that working with events is actually not very difficult thanks to some
nice built-in support provided by Delphi. Although all the new terms associated with
Automation events can add an air of complexity, in this section I hope to demystify events to
the point where you think, “Oh, is that all they are?”

What Are Events?
Put simply, events provide a means for a server to call back into a client to provide some infor-
mation. Under a traditional client/server model, the client calls the server to perform an action
or obtain some data, the server executes the action or obtains the data, and control returns to
the client. This model works fine for most things, but it breaks down when the event in which
the client is interested is asynchronous in nature or is driven by a user interface entry. For exam-
ple, if the client sends the server a request to download a file, the client probably doesn’t want
to sit around and wait for the thing to download before it can continue processing (especially

27.65227_Ch23x 11/30/99 6:08 PM Page 825

over a high-latency connection such as a modem). A better model would be for the client to
issue the instruction to the server and continue to go about its business until the server notifies
the client about the completion of the file download. Similarly, a user interface entry, such as a
button click, is a good example of when the server needs to notify the client using an event
mechanism. The client obviously can’t call a method on the server that waits around until some
button is clicked.

Generally speaking, the server is responsible for defining and firing events, whereas the client
is normally responsible for connecting itself to and implementing events. Of course, given such
a loose definition, there is room to haggle, and consequently Delphi and Automation provide
two very different approaches to the idea of events. Drilling down into each of these models
will help put things into perspective.

Events in Delphi
Delphi follows the KISS (keep it simple, stupid!) methodology when it comes to events.
Events are implemented as method pointers—these pointers can be assigned to some method in
the application and are executed when such a method is called via the method pointer. As an
illustration, consider the everyday application-development scenario of an application that
needs to handle an event on a component. If you look at the situation abstractly, the “server” in
this case would be a component, which defines and fires the event. The “client” is the applica-
tion that employs the component, because it connects to the event by assigning some specific
method name to the event method pointer.

Although this simple event model is one of the things that make Delphi elegant and easy to
use, it definitely sacrifices some power for the sake of usability. For example, there is no built-
in way to allow multiple clients to listen for the same event (this is called multicasting). Also,
there is no way to dynamically obtain a type description for an event without writing some
RTTI code (which you probably shouldn’t be using in an application anyway due to its
version-specific nature).

Events in Automation
Whereas the Delphi event model is simple yet limited, the Automation event model is powerful
but more complex. As a COM programmer, you may have guessed that events are implemented
in Automation using interfaces. Rather than existing on a per-method basis, events exist only as
part of an interface. This interface is often called an events interface or an outgoing interface.
It’s called outgoing because it is not implemented by the server like other interfaces but is
instead implemented by clients of the server, and methods of the interface will be called out-
ward from the server to the client. Like all interfaces, event interfaces have associated with
them corresponding interface identifications (IIDs) that uniquely identify them. Also, the
description of the events interface is found in the type library of an Automation object, tied to
the Automation object’s coclass like other interfaces.

Component-Based Development

PART III
826

27.65227_Ch23x 11/30/99 6:08 PM Page 826

Servers needing to surface event interfaces to clients must implement the
IConnectionPointContainer interface. This interface is defined in the ActiveX unit as follows:

type
IConnectionPointContainer = interface
[‘{B196B284-BAB4-101A-B69C-00AA00341D07}’]
function EnumConnectionPoints(out Enum: IEnumConnectionPoints):
HResult; stdcall;

function FindConnectionPoint(const iid: TIID;
out cp: IConnectionPoint): HResult; stdcall;

end;

In COM parlance, a connection point describes the entity that provides programmatic access to
an outgoing interface. If a client needs to determine whether a server supports events, all it has
to do is QueryInterface for the IConnectionPointContainer interface. If this interface is
present, the server is capable of surfacing events. The EnumConnectionPoints() method of
IConnectionPointContainer enables clients to iterate over all the outgoing interfaces sup-
ported by the server. Clients may use the FindConnectionPoint() method to obtain a specific
outgoing interface.

You’ll notice that FindConnectionPoint() provides an IConnectionPoint that represents an
outbound interface. IConnectionPoint is also defined in the ActiveX unit, and it looks like
this:

type
IConnectionPoint = interface
[‘{B196B286-BAB4-101A-B69C-00AA00341D07}’]
function GetConnectionInterface(out iid: TIID): HResult; stdcall;
function GetConnectionPointContainer(
out cpc: IConnectionPointContainer): HResult; stdcall;

function Advise(const unkSink: IUnknown; out dwCookie: Longint):
HResult; stdcall;

function Unadvise(dwCookie: Longint): HResult; stdcall;
function EnumConnections(out Enum: IEnumConnections): HResult;
stdcall;

end;

The GetConnectionInterface() method of IConnectionPoint provides the IID of the outgo-
ing interface supported by this connection point. The GetConnectionPointContainer()
method provides the IConnectionPointContainer (described earlier), which manages this
connection point. The Advise method is the interesting one. Advise() is the method that actu-
ally does the magic of hooking up the outgoing events on the server to the events interface
implemented by the client. The first parameter to this method is the client’s implementation of
the events interface, and the second parameter will receive a cookie that identifies this particu-
lar connection. Unadvise() simply disconnects the client/server relationship established by

COM-Based Technologies

CHAPTER 23
827

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

27.65227_Ch23x 11/30/99 6:08 PM Page 827

Advise(). EnumConnections enables the client to iterate over all currently active connec-
tions—that is, all connections that have called Advise().

Because of the obvious confusion that can arise if we describe the participants in this relation-
ship as simply client and server, Automation defines some different nomenclature that enables
us to unambiguously describe who is who. The implementation of the outgoing interface con-
tained within the client is called a sink, and the server object that fires events to the client is
referred to as the source.

What is hopefully clear in all this is that Automation events have a couple of advantages over
Delphi events. Namely, they can be multicast, because IConnectionPoint.Advise() can be
called more than once. Also, Automation events are self-describing (via the type library and the
enumeration methods), so they can be manipulated dynamically.

Automation Events in Delphi
Okay, all this technical stuff is well and good, but how do we actually make Automation events
work in Delphi? Glad you asked. At this point, we will create an Automation server application
that exposes an outgoing interface and a client that implements a sink for the interface. Bear in
mind, too, that you don’t need to be an expert in connection points, sinks, sources, and whatnot
in order to get Delphi to do what you want. However, it does help you in the long run when
you understand what goes on behind the wizard’s curtain.

The Server
The first step in creating the server is to create a new application. For purposes of this demo,
we will create a new application containing one form with a client-aligned TMemo, as shown in
Figure 23.12.

Component-Based Development

PART III
828

FIGURE 23.12
Automation Server with the Events main form.

Next, we will add an Automation object to this application by selecting File, New, ActiveX,
Automation Object from the main menu. This invokes the Automation Object Wizard (refer to
Figure 23.4).

27.65227_Ch23x 11/30/99 6:08 PM Page 828

Note the Generate Event Support Code option on the Automation Object Wizard. This box
must be selected because it will generate the code necessary to expose an outgoing interface on
the Automation object. It will also create the outgoing interface in the type library. After select-
ing OK in this dialog, we are presented with the Type Library Editor window. Both the
Automation interface and the outgoing interface are already present in the type library (named
IServerWithEvents and IServerWithEventsEvents, respectively). AddText() and Clear()
methods have been added to the IServerWithEvents interface, and OnTextChanged() and
OnClear() methods have been added to the IServerWithEventsEvents interface.

As you might guess, Clear() will clear the contents of the memo, and AddText() will add
another line of text to the memo. The OnTextChanged() event will fire when the contents of
the memo change, and the OnClear() event will fire when the memo is cleared. Notice also
that AddText() and OnTextChanged() each have one parameter of type WideString.

The first thing to do is implement the AddText() and Clear() methods. The implementation
for these methods is shown here:

procedure TServerWithEvents.AddText(const NewText: WideString);
begin
MainForm.Memo.Lines.Add(NewText);

end;

procedure TServerWithEvents.Clear;
begin
MainForm.Memo.Lines.Clear;
if FEvents <> nil then FEvents.OnClear;

end;

You should be familiar with all this code except perhaps the last line of Clear(). This code
ensures that there is a client sink advised on the event by checking for nil; then it first fires the
event simply by calling OnClear().

To set up the OnTextChanged() event, we first have to handle the OnChange event of the memo.
We will do this by inserting a line of code into the Initialized() method of
TServerWithEvents that points the event to the method in TServerWithEvents:

MainForm.Memo.OnChange := MemoChange;

The MemoChange() method is implemented as follows:

procedure TServerWithEvents.MemoChange(Sender: TObject);
begin
if FEvents <> nil then FEvents.OnTextChanged((Sender as TMemo).Text);

end;

This code also checks to ensure a client is listening; then it fires the event, passing the memo’s
text as the parameter.

COM-Based Technologies

CHAPTER 23
829

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

27.65227_Ch23x 11/30/99 6:08 PM Page 829

Believe it or not, that sums up the implementation of the server! Now on to the client.

The Client
The client is an application with one form that contains a TEdit, TMemo, and three TButton
components, as shown in Figure 23.13.

Component-Based Development

PART III
830

FIGURE 23.13
The Automation Client main form.

In the main unit for the client application, the Server_TLB unit has been added to the uses
clause so that we have access to the types and methods contained within that unit. The main
form object, TMainForm, of the client application will contain a field that references the server
called FServer of type IServerWithEvents. We will create an instance of the server in
TMainForm’s constructor using the helper class found in Server_TLB, like this:

FServer := CoServerWithEvents.Create;

The next step is to implement the event sink class. Because this class will be called by the
server via Automation, it must implement IDispatch (and therefore IUnknown). The type dec-
laration for this class is shown here:

type
TEventSink = class(TObject, IUnknown, IDispatch)
private
FController: TMainForm;
{ IUnknown }
function QueryInterface(const IID: TGUID; out Obj): HResult; stdcall;
function _AddRef: Integer; stdcall;
function _Release: Integer; stdcall;
{ IDispatch }
function GetTypeInfoCount(out Count: Integer): HResult; stdcall;
function GetTypeInfo(Index, LocaleID: Integer; out TypeInfo):
HResult; stdcall;

function GetIDsOfNames(const IID: TGUID; Names: Pointer;
NameCount, LocaleID: Integer; DispIDs: Pointer): HResult; stdcall;

function Invoke(DispID: Integer; const IID: TGUID; LocaleID: Integer;
Flags: Word; var Params; VarResult, ExcepInfo, ArgErr: Pointer):

27.65227_Ch23x 11/30/99 6:08 PM Page 830

HResult; stdcall;
public

constructor Create(Controller: TMainForm);
end;

Most of the methods of IUnknown and IDispatch are not implemented, with the notable excep-
tions of IUnknown.QueryInterface() and IDispatch.Invoke(). These will be discussed in
turn.

The QueryInterface() method for TEventSink is implemented as shown here:

function TEventSink.QueryInterface(const IID: TGUID; out Obj): HResult;
begin
// First look for my own implementation of an interface
// (I implement IUnknown and IDispatch).
if GetInterface(IID, Obj) then
Result := S_OK

// Next, if they are looking for outgoing interface, recurse to return
// our IDispatch pointer.
else if IsEqualIID(IID, IServerWithEventsEvents) then
Result := QueryInterface(IDispatch, Obj)

// For everything else, return an error.
else
Result := E_NOINTERFACE;

end;

Essentially, this method returns an instance only when the requested interface is IUnknown,
IDispatch, or IServerWithEventsEvents.

Here’s the Invoke method for TEventSink:

function TEventSink.Invoke(DispID: Integer; const IID: TGUID;
LocaleID: Integer; Flags: Word; var Params; VarResult, ExcepInfo,
ArgErr: Pointer): HResult;

var
V: OleVariant;

begin
Result := S_OK;
case DispID of
1:
begin
// First parameter is new string
V := OleVariant(TDispParams(Params).rgvarg^[0]);
FController.OnServerMemoChanged(V);

end;
2: FController.OnClear;

end;
end;

COM-Based Technologies

CHAPTER 23
831

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

27.65227_Ch23x 11/30/99 6:08 PM Page 831

TEventSink.Invoke() is hard-coded for methods having DispID 1 or DispID 2, which happen
to be the DispIDs chosen for OnTextChanged() and OnClear(), respectively, in the server
application. OnClear() has the most straightforward implementation: It simply calls the client
main form’s OnClear() method in response to the event. The OnTextChanged() event is a little
trickier: This code pulls the parameter out of the Params.rgvarg array, which is passed in as a
parameter to this method, and passes it through to the client main form’s
OnServerMemoChanged() method. Note that because the number and type of parameters are
known, we are able to make simplifying assumptions in the source code. If you’re clever, it is
possible to implement Invoke() in a generic manner such that it figures out the number and
types of parameters and pushes them onto the stack or into registers prior to calling the appro-
priate function. If you’d like to see an example of this, take a look at the
TOleControl.InvokeEvent() method in the OleCtrls unit. This method represents the event-
sinking logic for the ActiveX control container.

The implementation for OnClear() and OnServerMemoChanged() manipulate the contents of
the client’s memo. They are shown here:

procedure TMainForm.OnServerMemoChanged(const NewText: string);
begin
Memo.Text := NewText;

end;

procedure TMainForm.OnClear;
begin
Memo.Clear;

end;

The final piece of the puzzle is to connect the event sink to the server’s source interface. This
is easily accomplished using the InterfaceConnect() function found in the ComObj unit,
which we will call from the main form’s constructor, like so:

InterfaceConnect(FServer, IServerWithEventsEvents, FEventSink, FCookie);

The first parameter to this function is a reference to the source object. The second parameter is
the IID of the outgoing interface. The third parameter holds the event sink interface. The fourth
and final parameter is the cookie, and it is a reference parameter that will be filled in by the
callee.

To be a good citizen, you should also clean up properly by calling InterfaceDisconnect()
when you are finished playing with events. This is done in the main form’s destructor:

InterfaceDisconnect(FEventSink, IServerWithEventsEvents, FCookie);

Component-Based Development

PART III
832

27.65227_Ch23x 11/30/99 6:08 PM Page 832

The Demo
Now that the client and server are written, we can see them in action. Be sure to run and close
the server once (or run it with the /regserver switch) to ensure it is registered before attempt-
ing to run the client. Figure 23.14 shows the interactions between client, server, source, and
sink.

COM-Based Technologies

CHAPTER 23
833

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

FIGURE 23.14
The Automation client manipulating the server and receiving events.

Events with Multiple Sinks
Although the technique just described works great for firing events back to a single client, it
doesn’t work so well when multiple clients are involved. You will often find yourself in situa-
tions where there are multiple clients connecting to your server, and you need to fire events
back to all clients. Fortunately, you need just a little bit more code to add this type of function-
ality. In order to fire events back to multiple clients, you must write code that enumerates over
each advised connection and calls the appropriate method on the sink. This can be done by
making several modifications to the previous example.

First things first. In order to support multiple client connections on a connection point, we
must pass ckMulti in the Kind parameter of TConnectionPoints.CreateConnectionPoint().
This method is called from the Automation object’s Initialize() method, as shown here:

FConnectionPoints.CreateConnectionPoint(AutoFactory.EventIID, ckMulti,
EventConnect);

Before connections can be enumerated, we need to obtain a reference to
IConnectionPointContainer. From IConnectionPointContainer, we can obtain the
IConnectionPoint representing the outgoing interface, and using the

27.65227_Ch23x 11/30/99 6:08 PM Page 833

IConnectionPoint.EnumConnections() method, we can obtain an IEnumConnections inter-
face that can be used to enumerate the connections. All this logic is encapsulated into the fol-
lowing method:

function TServerWithEvents.GetConnectionEnumerator: IEnumConnections;
var
Container: IConnectionPointContainer;
CP: IConnectionPoint;

begin
Result := nil;
OleCheck(QueryInterface(IConnectionPointContainer, Container));
OleCheck(Container.FindConnectionPoint(AutoFactory.EventIID, CP));
CP.EnumConnections(Result);

end;

After the enumerator interface has been obtained, calling the sink for each client is just a mat-
ter of iterating over each connection. This logic is demonstrated in the following code, which
fires the OnTextChanged() event:

procedure TServerWithEvents.MemoChange(Sender: TObject);
var
EC: IEnumConnections;
ConnectData: TConnectData;
Fetched: Cardinal;

begin
EC := GetConnectionEnumerator;
if EC <> nil then
begin
while EC.Next(1, ConnectData, @Fetched) = S_OK do
if ConnectData.pUnk <> nil then
(ConnectData.pUnk as IServerWithEventsEvents).OnTextChanged(

➥(Sender as TMemo).Text);
end;
end;

Finally, in order to enable clients to connect to a single active instance of the Automation
object, we must call the RegisterActiveObject() COM API function. This function accepts
as parameters an IUnknown for the object, the CLSID of the object, a flag indicating whether
the registration is strong (the server should be AddRef-ed) or weak (do not AddRef the server),
and a handle that is returned by reference:

RegisterActiveObject(Self as IUnknown, Class_ServerWithEvents,
ACTIVEOBJECT_WEAK, FObjRegHandle);

Listing 23.10 shows the complete source code for the ServAuto unit, which ties all these tidbits
together.

Component-Based Development

PART III
834

27.65227_Ch23x 11/30/99 6:08 PM Page 834

LISTING 23.10 ServAuto.pas

unit ServAuto;

interface

uses
ComObj, ActiveX, AxCtrls, Server_TLB;

type
TServerWithEvents = class(TAutoObject, IConnectionPointContainer,
IServerWithEvents)

private
{ Private declarations }
FConnectionPoints: TConnectionPoints;
FObjRegHandle: Integer;
procedure MemoChange(Sender: TObject);

protected
{ Protected declarations }
procedure AddText(const NewText: WideString); safecall;
procedure Clear; safecall;
function GetConnectionEnumerator: IEnumConnections;
property ConnectionPoints: TConnectionPoints read FConnectionPoints
implements IConnectionPointContainer;

public
destructor Destroy; override;
procedure Initialize; override;

end;

implementation

uses Windows, ComServ, ServMain, SysUtils, StdCtrls;

destructor TServerWithEvents.Destroy;
begin
inherited Destroy;
RevokeActiveObject(FObjRegHandle, nil); // Make sure I’m removed from ROT

end;

procedure TServerWithEvents.Initialize;
begin
inherited Initialize;
FConnectionPoints := TConnectionPoints.Create(Self);
if AutoFactory.EventTypeInfo <> nil then
FConnectionPoints.CreateConnectionPoint(AutoFactory.EventIID, ckMulti,
EventConnect);

COM-Based Technologies

CHAPTER 23
835

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

continues

27.65227_Ch23x 11/30/99 6:08 PM Page 835

LISTING 23.10 Continued

// Route main form memo’s OnChange event to MemoChange method:
MainForm.Memo.OnChange := MemoChange;
// Register this object with COM’s Running Object Table (ROT) so other
// clients can connect to this instance.
RegisterActiveObject(Self as IUnknown, Class_ServerWithEvents,
ACTIVEOBJECT_WEAK, FObjRegHandle);

end;

procedure TServerWithEvents.Clear;
var
EC: IEnumConnections;
ConnectData: TConnectData;
Fetched: Cardinal;

begin
MainForm.Memo.Lines.Clear;
EC := GetConnectionEnumerator;
if EC <> nil then
begin
while EC.Next(1, ConnectData, @Fetched) = S_OK do
if ConnectData.pUnk <> nil then
(ConnectData.pUnk as IServerWithEventsEvents).OnClear;

end;
end;

procedure TServerWithEvents.AddText(const NewText: WideString);
begin
MainForm.Memo.Lines.Add(NewText);

end;

procedure TServerWithEvents.MemoChange(Sender: TObject);
var
EC: IEnumConnections;
ConnectData: TConnectData;
Fetched: Cardinal;

begin
EC := GetConnectionEnumerator;
if EC <> nil then
begin
while EC.Next(1, ConnectData, @Fetched) = S_OK do
if ConnectData.pUnk <> nil then
(ConnectData.pUnk as IServerWithEventsEvents).OnTextChanged(

(➥(Sender as TMemo).Text);
end;
end;

Component-Based Development

PART III
836

27.65227_Ch23x 11/30/99 6:08 PM Page 836

function TServerWithEvents.GetConnectionEnumerator: IEnumConnections;
var
Container: IConnectionPointContainer;
CP: IConnectionPoint;

begin
Result := nil;
OleCheck(QueryInterface(IConnectionPointContainer, Container));
OleCheck(Container.FindConnectionPoint(AutoFactory.EventIID, CP));
CP.EnumConnections(Result);

end;

initialization
TAutoObjectFactory.Create(ComServer, TServerWithEvents,
Class_ServerWithEvents, ciMultiInstance, tmApartment);

end.

On the client side, a small adjustment needs to be made in order enable clients to connect to an
active instance if it is already running. This is accomplished using the GetActiveObject COM
API function, as shown here:

procedure TMainForm.FormCreate(Sender: TObject);
var
ActiveObj: IUnknown;

begin
// Get active object if it’s available, or create anew if not
GetActiveObject(Class_ServerWithEvents, nil, ActiveObj);
if ActiveObj <> nil then FServer := ActiveObj as IServerWithEvents
else FServer := CoServerWithEvents.Create;
FEventSink := TEventSink.Create(Self);
InterfaceConnect(FServer, IServerWithEventsEvents, FEventSink, FCookie);

end;

Figure 23.15 shows several clients receiving events from a single server.

Automation Collections
Let’s face it: We programmers are obsessed with bits of software code that serve as containers
for other bits of software code. Think about it—whether it’s an array, a TList, a TCollection,
a template container class for you C++ folks, or a Java vector, it seems that we’re always in
search of the proverbial better mousetrap for software objects that hold other software objects.
If you consider the time invested over the years in this pursuit for the perfect container class, it
is clear that this is an important problem in the minds of developers. And why not? This logical
separation of container and contained entities helps us better organize our algorithms and maps
to the real world rather nicely (a basket can contain eggs, a pocket can contain coins, a parking
lot can contain autos, and so on). Whenever you learn a new language or development model,

COM-Based Technologies

CHAPTER 23
837

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

27.65227_Ch23x 11/30/99 6:08 PM Page 837

FIGURE 23.15
Several clients manipulating the same server and receiving events.

When we work with the IDispatch interface, COM specifies two primary methods by which
we represent the notion of containership: arrays and collections. If you’ve done a bit of
Automation or ActiveX control work in Delphi, you will probably already be familiar with
arrays. You can easily create automation arrays in Delphi by adding an array property to your
IDispatch descendant interface or dispinterface, as shown in the following example:

type
IMyDisp = interface(IDispatch)
function GetProp(Index: Integer): Integer; safecall;
procedure SetProp(Index, Value: Integer); safecall;
property Prop[Index: Integer]: Integer read GetProp write SetProp;

end;

Arrays are useful in many circumstances, but they pose some limitations. For example, arrays
make sense when you have data that can be accessed in a logical, fixed-index manner, such as
the strings in an IStrings. However, if the nature of the data is such that individual items are
frequently deleted, added, or moved, an array is a poor container solution. The classic example
is a group of active windows. Because windows are constantly being created, destroyed, and
changing z-order, there is no solid criteria for determining the order in which the windows
should appear in the array.

Component-Based Development

PART III
838

you have to learn “their way” of managing groups of entities. This leads to my point: Like any
other software development model, COM also has its ways for managing these kinds of groups
of entities, and to be an effective COM developer, we must learn how to master these things.

27.65227_Ch23x 11/30/99 6:08 PM Page 838

Collections are designed to solve this problem by allowing you to manipulate a series of ele-
ments in a manner that doesn’t imply any particular order or number of items. Collections are
unusual because there isn’t really a collection object or interface, but a collection is instead
represented as a custom IDispatch that follows a number of rules and guidelines. The follow-
ing rules must be adhered to in order for an IDispatch to qualify as a collection:

• Collections must contain a _NewEnum property that returns the IUnknown for an object
that supports the IEnumVARIANT interface, which will be used to enumerate the items in
the collection. Note that the name of this property must be preceded with an underscore,
and this property must be marked as restricted in the type library. The DispID for the
_NewEnum property must be DISPID_NEWENUM (-4), and it will be defined as follows in the
Delphi type library editor:

function _NewEnum: IUnknown [propget, dispid $FFFFFFFC, restricted];

safecall;

• Languages such as Visual Basic that support the For Each construct will use this method
to obtain the IEnumVARIANT interface needed to enumerate collection items. More on this
later.

• Collections must contain an Item() method that returns an element from the collection
based on the index. The DispID for this method must be 0, and it should be marked with
the default collection element flag. If we were to implement a collection of IFoo inter-
face pointers, the definition for this method in the type library editor might look some-
thing like this:

function Item(Index: Integer): IFoo [propget, dispid $00000000,
defaultcollelem]; safecall;

Note that it is also acceptable for the Index parameter to be an OleVariant so that an
Integer, WideString, or some other type of value can index the item in question.

• Collections must contain a Count property that returns the number of items in the collec-
tion. This method would typically be defined in the type library editor as this:

function Count: Integer [propget, dispid $00000001]; safecall;

In addition to the aforementioned rules, you should also follow these guidelines when creating
your own collection objects:

• The property or method that returns a collection should be named with the plural of the
name of the items in the collection. For example, if you had a property that returned a
collection of listview items, the property name would probably be Items, whereas the
name of the item in the collection would be Item. Likewise, an item called Foot would
be contained in a collection property called Feet. In the rare case that the plural and sin-
gular of a word are the same (a collection of fish or deer, for example), the collection
property name should be the name of the item with “Collection” tacked on the end
(FishCollection or DeerCollection).

COM-Based Technologies

CHAPTER 23
839

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

27.65227_Ch23x 11/30/99 6:08 PM Page 839

• Collections that support adding of items should do so using a method called Add(). The
parameters for this method vary depending on the implementation, but you may want to
pass parameters that indicate the initial position of the new item within the collection.
The Add() method normally returns a reference to the item added to the collection.

• Collections that support deleting of items should do so using a method called Remove().
This method should take one parameter that identifies the index of the item being
deleted, and this index should behave semantically in the same manner as the Item()
method.

A Delphi Implementation
If you’ve ever created ActiveX controls in Delphi, you may have noticed that there are fewer
controls listed in the combo box in the ActiveX Control Wizard than there are on the IDE’s com-
ponent palette. This is because Inprise prevents some controls showing in the list using the
RegisterNonActiveX() function. One such control that is available on the palette but not in the
wizard is the TListView control found on the Win32 page of the palette. The reason the
TListView control isn’t shown in the wizard is because the wizard doesn’t know what to do with
its Items property, which is of type TListItems. Because the wizard doesn’t know how to wrap
this property type in an ActiveX control, the control is simply excluded from the wizard’s list
rather than allowing the user to create an utterly useless ActiveX control wrapper of a control.

However, in the case of TListView, RegisterNonActiveX() is called with the
axrComponentOnly flag, which means that a descendent of TListView will show up in the
ActiveX Control Wizard’s list. By taking the minor detour of creating a do-nothing descendent
of TListView called TListView2 and adding it to the palette, we can then create an ActiveX
control that encapsulates the listview control. Of course, then we are faced with the same prob-
lem of the wizard not generating wrappers for the Items property and having a useless ActiveX
control. Fortunately, ActiveX control writing doesn’t have to stop at the wizard-generated code,
and we are free to wrap the Items property ourselves at this point in order to make the control
useful. As you might be beginning to suspect, a collection is the perfect way to encapsulate the
Items property of the TListView.

In order to implement this collection of listview items, we must create new objects represent-
ing the item and the collection and add a new property to the ActiveX control default interface
that returns a collection. We will begin by defining the object representing an item, which we
will call ListItem. The first step to creating the ListItem object is to create a new Automation
object using the icon found on the ActiveX page of the New Items dialog. After creating the
object, we can fill out the properties and methods for this object in the type library editor. For
the purposes of this demonstration, we will add properties for the Caption, Index, Checked,
and SubItems properties of a listview item. Similarly, we will create yet another new
Automation object for the collection itself. This Automation object is called ListItems, and it
is provided with the _NewEnum, Item(), Count(), Add(), and Remove() methods mentioned

Component-Based Development

PART III
840

27.65227_Ch23x 11/30/99 6:08 PM Page 840

earlier. Finally, we will add a new property to the default interface of the ActiveX control
called Items that returns a collection.

After the interfaces for IListItem and IListItems are completely defined in the type library
editor, a little manual tweaking should be done in the implementation files generated for these
objects. Specifically, the default parent class for a new automation object is TAutoObject; how-
ever, these objects will only be created internally (that is, not from a factory), so we will manu-
ally change the ancestor to TAutoInfObject, which is more appropriate for internally created
automation objects. Also, because these objects won’t be created from a factory, we will
remove from the units the initialization code that creates the factories because it is not needed.

Now that the entire infrastructure is properly set up, it is time to implement the ListItem and
ListItems objects. The ListItem object is the most straightforward because it is a pretty sim-
ple wrapper around a listview item. The code for the unit containing this object is shown in
Listing 23.11.

LISTING 23.11 The Listview Item Wrapper

unit LVItem;

interface

uses
ComObj, ActiveX, ComCtrls, LVCtrl_TLB, StdVcl, AxCtrls;

type
TListItem = class(TAutoIntfObject, IListItem)
private
FListItem: ComCtrls.TListItem;

protected
function Get_Caption: WideString; safecall;
function Get_Index: Integer; safecall;
function Get_SubItems: IStrings; safecall;
procedure Set_Caption(const Value: WideString); safecall;
procedure Set_SubItems(const Value: IStrings); safecall;
function Get_Checked: WordBool; safecall;
procedure Set_Checked(Value: WordBool); safecall;

public
constructor Create(AOwner: ComCtrls.TListItem);

end;

implementation

uses ComServ;

COM-Based Technologies

CHAPTER 23
841

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

continues

27.65227_Ch23x 11/30/99 6:08 PM Page 841

LISTING 23.11 Continued

constructor TListItem.Create(AOwner: ComCtrls.TListItem);
begin
inherited Create(ComServer.TypeLib, IListItem);
FListItem := AOwner;

end;

function TListItem.Get_Caption: WideString;
begin
Result := FListItem.Caption;

end;

function TListItem.Get_Index: Integer;
begin
Result := FListItem.Index;

end;

function TListItem.Get_SubItems: IStrings;
begin
GetOleStrings(FListItem.SubItems, Result);

end;

procedure TListItem.Set_Caption(const Value: WideString);
begin
FListItem.Caption := Value;

end;

procedure TListItem.Set_SubItems(const Value: IStrings);
begin
SetOleStrings(FListItem.SubItems, Value);

end;

function TListItem.Get_Checked: WordBool;
begin
Result := FListItem.Checked;

end;

procedure TListItem.Set_Checked(Value: WordBool);
begin
FListItem.Checked := Value;

end;

end.

Note that ComCtrls.TListItem() is being passed into the constructor to serve as the listview
item to be manipulated by this Automation object.

Component-Based Development

PART III
842

27.65227_Ch23x 11/30/99 6:08 PM Page 842

The implementation for the ListItems collection object is just a bit more complex. First,
because the object must be able to provide an object supporting IEnumVARIANT in order to
implement the _NewEnum property, IEnumVARIANT is supported directly in this object. Therefore,
the TListItems class supports both IListItems and IEnumVARIANT. IEnumVARIANT contains
four methods, which are described in Table 23.1.

TABLE 23.1 IEnumVARIANT Methods

Method Purpose

Next Retrieves the next n number of items in the collection

Skip Skips over n items in the collection

Reset Resets current item back to the first item in the collection.

Clone Creates a copy of this IEnumVARIANT

The source code for the unit containing the ListItems object is shown in Listing 23.12.

LISTING 23.12 The Listview Items Wrapper

unit LVItems;

interface

uses
ComObj, Windows, ActiveX, ComCtrls, LVCtrl_TLB;

type
TListItems = class(TAutoIntfObject, IListItems, IEnumVARIANT)
private
FListItems: ComCtrls.TListItems;
FEnumPos: Integer;

protected
{ IListItems methods }
function Add: IListItem; safecall;
function Get_Count: Integer; safecall;
function Get_Item(Index: Integer): IListItem; safecall;
procedure Remove(Index: Integer); safecall;
function Get__NewEnum: IUnknown; safecall;
{ IEnumVariant methods }
function Next(celt: Longint; out elt; pceltFetched: PLongint): HResult;
stdcall;

function Skip(celt: Longint): HResult; stdcall;
function Reset: HResult; stdcall;
function Clone(out Enum: IEnumVariant): HResult; stdcall;

COM-Based Technologies

CHAPTER 23
843

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

continues

27.65227_Ch23x 11/30/99 6:08 PM Page 843

LISTING 23.12 Continued

public
constructor Create(AOwner: ComCtrls.TListItems);

end;

implementation

uses ComServ, LVItem;

{ TListItems }

constructor TListItems.Create(AOwner: ComCtrls.TListItems);
begin
inherited Create(ComServer.TypeLib, IListItems);
FListItems := AOwner;

end;

{ TListItems.IListItems }

function TListItems.Add: IListItem;
begin
Result := LVItem.TListItem.Create(FListItems.Add);

end;

function TListItems.Get__NewEnum: IUnknown;
begin
Result := Self;

end;

function TListItems.Get_Count: Integer;
begin
Result := FListItems.Count;

end;

function TListItems.Get_Item(Index: Integer): IListItem;
begin
Result := LVItem.TListItem.Create(FListItems[Index]);

end;

procedure TListItems.Remove(Index: Integer);
begin
FListItems.Delete(Index);

end;

{ TListItems.IEnumVariant }

Component-Based Development

PART III
844

27.65227_Ch23x 11/30/99 6:08 PM Page 844

function TListItems.Clone(out Enum: IEnumVariant): HResult;
begin
Enum := nil;
Result := S_OK;
try
Enum := TListItems.Create(FListItems);

except
Result := E_OUTOFMEMORY;

end;
end;

function TListItems.Next(celt: Integer; out elt; pceltFetched: PLongint):
HResult;

var
V: OleVariant;
I: Integer;

begin
Result := S_FALSE;
try
if pceltFetched <> nil then pceltFetched^ := 0;
for I := 0 to celt - 1 do
begin
if FEnumPos >= FListItems.Count then Exit;
V := Get_Item(FEnumPos);
TVariantArgList(elt)[I] := TVariantArg(V);
// trick to prevent variant from being garbage collected, since it needs
// to stay alive because it is party of the elt array
TVarData(V).VType := varEmpty;
TVarData(V).VInteger := 0;
Inc(FEnumPos);
if pceltFetched <> nil then Inc(pceltFetched^);

end;
except
end;
if (pceltFetched = nil) or ((pceltFetched <> nil) and
(pceltFetched^ = celt)) then

Result := S_OK;
end;

function TListItems.Reset: HResult;
begin
FEnumPos := 0;
Result := S_OK;

end;

function TListItems.Skip(celt: Integer): HResult;

COM-Based Technologies

CHAPTER 23
845

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

continues

27.65227_Ch23x 11/30/99 6:08 PM Page 845

LISTING 23.12 Continued

begin
Inc(FEnumPos, celt);
Result := S_OK;

end;

end.

The only method in this unit with a nontrivial implementation is the Next() method. The celt
parameter of the Next() method indicates how many items should be retrieved. The elt para-
meter contains an array of TVarArgs with at least elt elements. Upon return, pceltFetched (if
not nil) should hold the actual number of items fetched. This method returns S_OK when the
number of items returned is the same as the number requested; it returns S_FALSE otherwise.
The logic for this method iterates over the array in elt and assigns a TVarArg representing a
collection item to an element of the array. Note the little trick we are performing to clear out
the OleVariant after assigning it to the array. This ensures that the array will not be garbage
collected. Were we not to do this, the contents of elt could potentially become stale if the
objects referenced by V are freed when the OleVariant is finalized.

Similar to TListItem, the constructor for TListItems takes ComCtrls.TListItems as a para-
meter and manipulates that object in the implementation of its methods.

Finally, we complete the implementation of the ActiveX control by adding the logic to manage
the Items property. First, we must add a field to the object to hold the collection:

type
TListViewX = class(TActiveXControl, IListViewX)
private
...
FItems: IListItems;
...

end;

Next, we assign FItems to a new TListItems instance in the InitializeControl() method:

FItems := LVItems.TListItems.Create(FDelphiControl.Items);

Lastly, the Get_Items() method can be implemented to simply return FItems:

function TListViewX.Get_Items: IListItems;
begin
Result := FItems;

end;

The real test to see whether this collection works is to load the control in Visual Basic 6 and
try to use the For Each construct with the collection. Figure 23.16 shows a simple VB test
application running.

Component-Based Development

PART III
846

27.65227_Ch23x 11/30/99 6:08 PM Page 846

FIGURE 23.16
A Visual Basic application to test our collection.

Of the two command buttons you see in Figure 23.16, Command1 adds items to the listview,
whereas Command2 iterates over all the items in the listview using For Each and adds exclama-
tion points to each caption. The code for these methods is shown here:

Private Sub Command1_Click()
ListViewX1.Items.Add.Caption = “Delphi”

End Sub

Private Sub Command2_Click()
Dim Item As ListItem
Set Items = ListViewX1.Items
For Each Item In Items
Item.Caption = Item.Caption + “ Rules!!”
Next

End Sub

Despite the feelings some of the Delphi faithful have toward VB, we must remember that VB
is the primary consumer of ActiveX controls, and it’s very important to ensure that our controls
function properly in that environment.

Collections provide powerful functionality that can enable your controls and Automation
servers to function more smoothly in the world of COM. Because collections are terribly diffi-
cult to implement, it’s worth your while to get in the habit of using them when appropriate.
Unfortunately, once you become comfortable with collections, it’s very likely that someone
will soon come along and create yet a newer and better container object for COM.

New Interface Types in the Type Library
As every well-behaved Delphi developer should, we have used the type library editor to define
new interfaces for our Automation objects. However, it is not unusual to occasionally run into a
situation where one of the methods for a new interface includes a parameter of a COM inter-
face type that isn’t supported by default in the type library editor. Because the type library edi-
tor does not let you work with types that it doesn’t know about, how do you complete such a
method definition?

COM-Based Technologies

CHAPTER 23
847

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

27.65227_Ch23x 11/30/99 6:08 PM Page 847

Before this is explained, it’s important that you understand why the type library editor behaves
the way it does. If you create a new method in the type library editor and take a look at the
types available in the Type column of the Parameters page, you will see a number of interfaces,
including IDataBroker, IDispatch, IEnumVARIANT, IFont, IPicture, IProvider, IStrings,
and IUnknown. Why are these the only interfaces available? What makes them so special?
They’re not special, really—they just happen to be types that are defined in type libraries that
are used by this type library. By default, a Delphi type library automatically uses the Borland
Standard VCL type library and the OLE Automation type library. You can configure which
type libraries are used by your type library by selecting the root node in the tree view in the
left pane of the type library editor and choosing the Uses tab in the page control in the right
pane. The types contained in the type libraries used by your type library will automatically
become available in the drop-down list shown in the type library editor.

Armed with this knowledge, you’ve probably already figured out that if the interface you want
to use as the method parameter in question is defined in a type library, you can simply use that
type library, and the problem is solved. But what if the interface isn’t defined in a type library?
There are certainly quite a few COM interfaces that are defined only by SDK in header or IDL
files and are not found in type libraries. If this is the case, the best course is to define the
method parameter as being of type IUnknown. This IUnknown can be QueryInterfaced in your
method implementation for the specific interface type you want to work with. You should also
be sure to document this method parameter as an IUnknown that must support the appropriate
interface. The following code shows an example of how such a method could be implemented:

procedure TSomeClass.SomeMethod(SomeParam: IUnknown);
var
Intf: ISomeComInterface;

begin
Intf := SomeParam as ISomeComInterface;
// remainder of method implementation

end;

You should also be aware of the fact that the interface to which you cast the IUnknown must be
an interface that COM knows how to marshal. This means that it must either be defined in a
type library somewhere, must be a type compatible with the standard Automation marshaler,
or the COM server in question must provide a proxy/stub DLL capable of marshalling the
interface.

Exchanging Binary Data
Occasionally you may want to exchange a block of binary data between an Automation client
and server. Because COM doesn’t support the exchange of raw pointers, you can’t simply pass
pointers around. However, the solution isn’t much more difficult than that. The easiest way to
exchange binary data between Automation clients and servers is to use safearrays of bytes.

Component-Based Development

PART III
848

27.65227_Ch23x 11/30/99 6:08 PM Page 848

Delphi encapsulates safearrays nicely in OleVariants. The admittedly contrived example
shown in Listings 23.13 and 23.14 depict client and server units that use memo text to demon-
strate how to transfer binary data using safearrays of bytes.

LISTING 23.13 The Server Unit

unit ServObj;

interface

uses
ComObj, ActiveX, Server_TLB;

type
TBinaryData = class(TAutoObject, IBinaryData)
protected
function Get_Data: OleVariant; safecall;
procedure Set_Data(Value: OleVariant); safecall;

end;

implementation

uses ComServ, ServMain;

function TBinaryData.Get_Data: OleVariant;
var
P: Pointer;
L: Integer;

begin
// Move data from memo into array
L := Length(MainForm.Memo.Text);
Result := VarArrayCreate([0, L - 1], varByte);
P := VarArrayLock(Result);
try
Move(MainForm.Memo.Text[1], P^, L);

finally
VarArrayUnlock(Result);

end;
end;

procedure TBinaryData.Set_Data(Value: OleVariant);
var
P: Pointer;
L: Integer;
S: string;

COM-Based Technologies

CHAPTER 23
849

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

continues

27.65227_Ch23x 11/30/99 6:08 PM Page 849

LISTING 23.13 Continued

begin
// Move data from array into memo
L := VarArrayHighBound(Value, 1) - VarArrayLowBound(Value, 1) + 1;
SetLength(S, L);
P := VarArrayLock(Value);
try
Move(P^, S[1], L);

finally
VarArrayUnlock(Value);

end;
MainForm.Memo.Text := S;

end;

initialization
TAutoObjectFactory.Create(ComServer, TBinaryData, Class_BinaryData,
ciSingleInstance, tmApartment);

end.

LISTING 23.14 The Client Unit

unit CliMain;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ExtCtrls, Server_TLB;

type
TMainForm = class(TForm)
Memo: TMemo;
Panel1: TPanel;
SetButton: TButton;
GetButton: TButton;
OpenButton: TButton;
OpenDialog: TOpenDialog;
procedure OpenButtonClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure SetButtonClick(Sender: TObject);
procedure GetButtonClick(Sender: TObject);

private
FServer: IBinaryData;

end;

Component-Based Development

PART III
850

27.65227_Ch23x 11/30/99 6:08 PM Page 850

var
MainForm: TMainForm;

implementation

{$R *.DFM}

procedure TMainForm.FormCreate(Sender: TObject);
begin
FServer := CoBinaryData.Create;

end;

procedure TMainForm.OpenButtonClick(Sender: TObject);
begin
if OpenDialog.Execute then
Memo.Lines.LoadFromFile(OpenDialog.FileName);

end;

procedure TMainForm.SetButtonClick(Sender: TObject);
var
P: Pointer;
L: Integer;
V: OleVariant;

begin
// Send memo data to server
L := Length(Memo.Text);
V := VarArrayCreate([0, L - 1], varByte);
P := VarArrayLock(V);
try
Move(Memo.Text[1], P^, L);

finally
VarArrayUnlock(V);

end;
FServer.Data := V;

end;

procedure TMainForm.GetButtonClick(Sender: TObject);
var
P: Pointer;
L: Integer;
S: string;
V: OleVariant;

begin
// Get server’s memo data
V := FServer.Data;
L := VarArrayHighBound(V, 1) - VarArrayLowBound(V, 1) + 1;

COM-Based Technologies

CHAPTER 23
851

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

continues

27.65227_Ch23x 11/30/99 6:08 PM Page 851

LISTING 23.14 Continued

SetLength(S, L);
P := VarArrayLock(V);
try
Move(P^, S[1], L);

finally
VarArrayUnlock(V);

end;
Memo.Text := S;

end;

end.

Behind the Scenes: Language Support for COM
One thing often heard when folks talk about COM development in Delphi is what great lan-
guage support Object Pascal provides for COM. (You won’t get any static from us on that
point.) With features such as interfaces, variants, and wide strings built right into the language,
it’s hardly a point to be argued. However, what does it mean to have these things built into the
language? How do these features work, and what is the nature of their dependence on the
COM APIs? In this section, we will take a low-level look at how all the pieces fit together to
form Object Pascal’s COM support and dig into some of the implementation details of the lan-
guage features.

As I mentioned, Object Pascal’s COM language features can basically be summed up into
three categories:

• Variant and OleVariant, which encapsulate COM’s variant record, safearrays, and late-
bound Automation.

• WideString, which encapsulates COM’s BSTR.

• Interface and dispinterface, which encapsulate COM interfaces and early- and
ID-bound Automation.

You crusty old OLE developers from the Delphi 2 days might have noticed that the automated
reserved word, through which late-bound Automation servers could be created, is conveniently
ignored. Because this feature was superceded by the “real” Automation support first introduced
in Delphi 3 and remains only for backward compatibility, it is not discussed here.

Variants
Variants are the oldest form of COM support in Delphi, dating back to Delphi 2. As you likely
already know, a Variant is really just a big record that is used to pass around some bit of data
that can be any one of a number of types. If you’re interested in what this record looks like, it’s
defined in the System unit as TVarData:

Component-Based Development

PART III
852

27.65227_Ch23x 11/30/99 6:08 PM Page 852

type
PVarData = ^TVarData;
TVarData = record
VType: Word;
Reserved1, Reserved2, Reserved3: Word;
case Integer of
varSmallint: (VSmallint: Smallint);
varInteger: (VInteger: Integer);
varSingle: (VSingle: Single);
varDouble: (VDouble: Double);
varCurrency: (VCurrency: Currency);
varDate: (VDate: Double);
varOleStr: (VOleStr: PWideChar);
varDispatch: (VDispatch: Pointer);
varError: (VError: LongWord);
varBoolean: (VBoolean: WordBool);
varUnknown: (VUnknown: Pointer);
varByte: (VByte: Byte);
varString: (VString: Pointer);
varAny: (VAny: Pointer);
varArray: (VArray: PVarArray);
varByRef: (VPointer: Pointer);

end;

The value of the VType field of this record indicates the type of data contained in the Variant,
and it can be any of the variant type codes found at the top of the System unit and listed in the
variant portion of this record (within the case statement). The only different between
Variant and OleVariant is that Variant supports all the type codes, whereas OleVariant only
supports those types compatible in Automation. For example, an attempt to assign a Pascal
string (varString) to a Variant is an acceptable practice, but assigning the same string to an
OleVariant will cause it to be converted to an Automation-compatible WideString
(varOleStr).

When you work with the Variant and OleVariant types, what the compiler is really manipu-
lating and passing around is instances of this TVarData record. In fact, you can safely typecast
a Variant or OleVariant to a TVarData if you for some reason need to manipulate the innards
of the record (although we don’t recommend this practice unless you really know what you’re
doing).

In the harsh world of COM programming in C and C++ (without a class framework), variants
are represented with the VARIANT struct defined in oaidl.h. When working with variants in this
environment, you have to manually initialize and manage them using VariantXXX() API func-
tions found in oleaut32.dll, such as VariantInit(), VariantCopy(), VariantClear(), and
so on. This makes working with variants in straight C and C++ a high-maintenance task.

COM-Based Technologies

CHAPTER 23
853

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

27.65227_Ch23x 11/30/99 6:08 PM Page 853

With support for variants built into Object Pascal, the compiler generates the necessary calls to
the API’s variant-support routines automatically as you use instances of the Variant and
OleVariant types. This nicety in the language does saddle you with one bit of baggage you
should know about, however. If you inspect the import table of a “do-nothing” Delphi EXE
using a tool such as Borland’s TDUMP.EXE or Microsoft’s DUMPBIN.EXE, you will notice a few
suspicious imports from oleaut32.dll: VariantChangeTypeEx(), VariantCopyInd(), and
VariantClear(). What this means is that even in an application in which you do not explicitly
employ Variant or OleVariant types, your Delphi EXE still has a dependence on these COM
API functions in oleaut32.dll.

Variant Arrays
Variant arrays in Delphi are designed to encapsulate COM safearrays, which are a type of
record used to encapsulate an array of data in Automation. They are called safe because they
are self-describing; in addition to array data, the record contains information regarding the
number of dimensions, the size of an element, and the number of elements in the array. Variant
arrays are created and managed in Delphi using the VarArrayXXX() functions and procedures
found in the System unit and documented in the online help. These functions and procedures
are essentially wrappers around the API’s SafeArrayXXX() functions. Once a Variant contains
a variant array, standard array subscript syntax is used to access array elements. Once again,
comparing this to manually coding safearrays as you would in C and C++, Object Pascal’s lan-
guage encapsulation is clean and much less cumbersome and error prone.

Late-Binding Automation
As you learned earlier in this chapter, Variant and OleVariant types enable to write late-
binding Automation clients (late-binding means that functions are called at runtime using the
Invoke method of the IDispatch interface). That’s all pretty easy to take at face value, but the
question is “Where is the magic connection between calling a method of an Automation server
from a Variant and IDispatch.Invoke() somehow getting called with the right parameters?”
The answer is more low-tech than you might expect.

When a method call is made on a Variant or OleVariant containing an IDispatch, the com-
piler simply generates a call to the _DispInvoke helper function declared in the System unit,
which jumps to a function pointer called VarDispProc. By default, the VarDispProc pointer is
assigned to a method that simply returns an error when it is called. However, if you include the
ComObj unit in your uses clause, the initialization section for the ComObj unit redirects
VarDispProc to another method with a line of code that looks like this:

VarDispProc := @VarDispInvoke;

VarDispInvoke is a procedure in the ComObj unit with the following declaration:

procedure VarDispInvoke(Result: PVariant; const Instance: Variant;
CallDesc: PCallDesc; Params: Pointer); cdecl;

Component-Based Development

PART III
854

27.65227_Ch23x 11/30/99 6:08 PM Page 854

The implementation of the procedure handles the complexity of calling
IDispatch.GetIDsOfNames() to obtain a DispID from the method name, setting up the para-
meters correctly, and making the call to IDispatch.Invoke(). What’s interesting about this is
that the compiler in this instance doesn’t have any inherent knowledge of IDispatch or how
the Invoke() call is made; it simply passes a bunch of stuff through a function pointer. Also
interesting is the fact that because of this architecture, you could reroute this function pointer
to your own procedure if you wanted to handle all Automation calls through Variant and
OleVariant types yourself. You would only have to ensure that your function declaration
matched that of VarDispInvoke. Certainly, this would be a task reserved for experts, but it’s
interesting to know that the flexibility is there when you need it.

WideString
The WideString data type was added in Delphi 3 to serve the dual purpose of providing a
native double-byte, Unicode character string and a character string compatible with the COM
BSTR string. The WideString type differs from its cousin AnsiString in a few key respects:

• The characters comprising a WideString string are all two bytes in size.

• WideString types are always allocated using SysAllocStringLen() and therefore are
fully compatible with BSTRs.

• WideString types are never reference counted and therefore are always copied on
assignment.

Like variants, BSTRs can be cumbersome to work with using standard API functions, so the
native Object Pascal support via WideString is certainly a welcome language addition.
However, because they consume twice the memory and are not reference counted, they are
much more inefficient than AnsiStrings, and you should therefore be judicious about their use.

Like the Pascal Variant, WideString causes a number of functions to be imported from
oleaut32.dll, even if you don’t employ this type yourself. Inspecting the import table of a
“do-nothing” Delphi application reveals that SysStringLen(), SysFreeString(),
SysReAllocStringLen(), and SysAllocStringLen() are all pulled in by the Delphi RTL in
order to provide WideString support.

Interfaces
Perhaps the most important big-ticket COM feature in the Object Pascal language is the native
support for interfaces. Somewhat ironically, although arguably smaller features such as
Variants and WideStrings pull in functions from the COM API for implementation, Object
Pascal’s implementation of interfaces doesn’t require COM at all. That is, Object Pascal pro-
vides a completely self-contained implementation of interfaces that adheres to the COM speci-
fication, but it doesn’t necessarily require any COM API functions.

COM-Based Technologies

CHAPTER 23
855

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

27.65227_Ch23x 11/30/99 6:08 PM Page 855

As a part of adhering to the COM spec, all interfaces in Delphi implicitly descend from
IUnknown. As you may know, IUnknown provides the identity and reference counting support
that is the root of COM. This means that knowledge of IUnknown is built into the compiler, and
IUnknown is defined in the System unit. By making IUnknown a first-class citizen in the lan-
guage, Delphi is able to provide the automatic reference counting by having the compiler gen-
erate the calls to IUnknown.AddRef() and IUnknown.Release() at the appropriate times.
Additionally, the as operator can be used as a shortcut for interface identity normally obtained
via QueryInterface(). The root support for IUnknown, however, is almost incidental when you
consider the low-level support that the language and compiler provide for interfaces in general.

Figure 23.17 shows a simplified diagram of how classes internally support interfaces. A Delphi
object is really a reference that points to the physical instance. The first four bytes of an object
instance are a pointer the object’s virtual method table (VMT). At a positive offset from the
VMT are all the object’s virtual methods. At a negative offset are pointers to methods and data
that are important to the internal function of the object. In particular, offset –72 from the VMT
contains a pointer to the object’s interface table. The interface table is a list of
PInterfaceEntry records (defined in the System unit) that essentially contain the IID and
information on where to find the vtable pointer for that IID.

Component-Based Development

PART III
856

Object

VMT

Instance
Data

Object
Instance

Interface
Table

GUID

GUID

GUID

GUID

GUID

VTable

VTable

VTable

VTable

VTable

Intf Table

Virtual
Methods

Internal
Methods
& Data

Virtual
Method
Table

0

–72

Via
implements

Gets
VTable
from

Method
or Field

VTable

FIGURE 23.17
How interfaces are supported internally in Object Pascal.

After you have a moment to reflect on the diagram in Figure 23.17 and understand how things
are put together, the details surrounding the implementation of interfaces just kind of fall into
place. For example, QueryInterface() is normally implemented on Object Pascal objects by
calling TObject.GetInterface(). GetInterface() walks the interface table looking for the
IID in question and returns the vtable pointer for that interface. This also illustrates why new
interface types must be defined with a GUID; otherwise, there would be no way for

27.65227_Ch23x 11/30/99 6:08 PM Page 856

GetInterface() to walk the interface table, and therefore there would be no identity
via QueryInterface(). Typecasting of interfaces using the as operator simply generates a
call to QueryInterface(), so the same rules apply there.

The last entry in the interface table in Figure 23.17 illustrates how an interface is implemented
internally using the implements directive. Rather than providing a direct pointer for the vtable,
the interface table entry provides the address of a little compiler-generated getter function that
gets the interface vtable from the property upon which the implements directive was used.

Dispinterfaces
A dispinterface provides an encapsulation of a non–dual IDispatch. That is, an IDispatch in
which methods can be called via Invoke() but not via a vtable. In this respect, a dispinterface
is similar to Automation with variants. However, dispinterfaces are slightly more efficient than
variants because dispinterface declarations contain the DispID for each of the properties or
methods supported. This means that IDispatch.Invoke() can be called directly without first
calling IDispatch.GetIDsOfNames(), as must be done with a variant. The mechanism behind
dispinterfaces is similar to that of variants: When you call a method via a dispinterface, the
compiler generates a call to _IntfDispCall in the System unit. This method jumps through the
DispCallByIDProc pointer, which by default only returns an error. However, when the ComObj
unit is included, DispCallByIDProc is routed to the DispCallByID() procedure, which is
declared in ComObj as follows:

procedure DispCallByID(Result: Pointer; const Dispatch: IDispatch;
DispDesc: PDispDesc; Params: Pointer); cdecl;

Microsoft Transaction Server (MTS)
The COM development community has been making a lot of noise of late about Microsoft
Transaction Server (MTS), and not without good reason. MTS represents a new paradigm for
COM developers. COM developers have long enjoyed the advantages of language-independent
interfaces, location transparency, and automatic activation and deactivation. However, thanks to
MTS, COM developers can now take advantage of powerful runtime services, such as lifetime
management, security, resource pooling, and transaction management. Although MTS brings a
lot of useful features to the table, it also requires some changes in system design that in some
cases contradict ideas COM has pounded into our skulls over the years. In this section, we will
discuss MTS technology, and in the following section, we will talk more specifically about
MTS and Delphi, Delphi’s MTS framework and IDE support, and walk through some sample
MTS components and applications.

Before we leap into the technical details, you should know up front that transaction handling
is only a small part of the MTS big picture, and the fact that transaction appears in the name
of this technology is quite unfortunate. It’s sort of like calling your new home entertainment

COM-Based Technologies

CHAPTER 23
857

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

27.65227_Ch23x 11/30/99 6:08 PM Page 857

system a soap opera viewer. Yeah, it does that, but it’s so much more. To their credit, when
we’ve spoken with folks at Microsoft close to the technology, they generally hate the name.
Fortunately, the name MTS won’t be with us much longer; as mentioned earlier in this chapter,
MTS will be folded into the operating system as a part of the upcoming enhancements to COM
known as COM+.

Why MTS?
The magic word of system design these days is scalability. With the hypergrowth of the
Internet and intranets, the consolidation of corporate data into centrally located data stores, and
the need for everyone and their cousin to get at the data, it’s absolutely crucial that a system be
able to scale to ever-larger numbers of concurrent users. It’s definitely a challenge, especially
considering the rather unforgiving limitations we must deal with, such as finite database con-
nections, network bandwidth, server load, and so on. In the good old days of the early 90s,
client/server computing was all the rage and considered The Way to write scalable applications.
However, as databases were bogged down with triggers and stored procedures and clients were
complicated with various bits of code here and there in an effort to implement business rules, it
shortly became obvious that such systems would never scale to a large number of users. The
multitier architecture soon became popular as a way to scale a system to a greater number of
users. By placing application logic and sharing database connections in the middle tier, data-
base and client logic could be simplified and resource usage optimized for an overall higher-
bandwidth system.

As a side note, it is interesting that the added infrastructure introduced in a multitier environ-
ment tends to increase latency as it increases bandwidth. In other words, you may very well
need to sacrifice the performance of the system in order to improve scalability.

Microsoft extended to COM developers the ability to build applications that are distributed
across multiple machines with the introduction of DCOM several years ago. DCOM was a step
in the right direction. It provided the means by which things COM may communicate with one
another over the wire, but it did not make many significant steps toward solving the real-world
problems encountered by developers of distributed applications. Issues such as lifetime opti-
mization, thread management, flexible security, and transaction support were still left to indi-
vidual developers. Enter MTS.

What Is MTS?
MTS is a COM-based programming model and collection of runtime services for developing
scalable or transactional COM-based applications. The programming model part of MTS isn’t
much different than what you are familiar with already as a COM developer. There are a few
wrinkles that you will learn about shortly, but for the most part, any in-process (DLL) COM
object with a type library can be an MTS object. However, it’s not recommended that you run

Component-Based Development

PART III
858

27.65227_Ch23x 11/30/99 6:08 PM Page 858

non-MTS-aware COM components within MTS. MTS runtime services mean that MTS serves
as the caregiver for your COM components. MTS can host them, manage their lifetime, pro-
vide security for them, and so on. This means that rather than running within the context of
your application, MTS COM objects run within the context of the MTS runtime. All this adds
up to a bunch of new features that you can take advantage of with little or no coding changes
in your client or COM object code.

It’s interesting to note that because MTS objects do not run directly within the context of a
client like other COM objects, clients never really obtain interface pointers directly to an object
instance. Instead, MTS inserts a proxy between the client and the MTS object such that the
proxy is identical to the object from the client’s point of view. However, because MTS has
complete control over the proxy, it can control access to interface methods of the object for
purposes such as lifetime management and security, as you will soon learn.

Stateful Versus Stateless
The number one topic of conversation among folks looking at, playing with, and working on
MTS technology seems to be the discussion of stateful versus stateless objects. Although COM
itself doesn’t give a whit as to the state of an object, in practice most traditional COM objects
are stateful. That is, they continuously maintain state information from the time they’re created,
while they’re being used, and up until the time they’re destroyed. The problem with stateful
objects is that they aren’t particularly scalable, because state information would have to be
maintained for every object being accessed by every client. A stateless object is one that gener-
ally does not maintain state information between method calls. Stateless objects are preferred
because they enable MTS to play some optimization tricks. If an object doesn’t maintain any
state between method calls, MTS can theoretically make the object go away between calls
without causing any harm. Furthermore, because the client maintains pointers only to MTS’s
internal proxy for the object, MTS could do so without the client being any the wiser. It’s more
than a theory; this is actually how MTS works. MTS will destroy the instances of the object
between calls in order to free up resources associated with the object. When the client makes
another call to that object, the MTS proxy will intercept it and a new instance of the object will
be created automatically. This helps the system scale to a larger number of users, because there
will likely be comparatively few active instances of a class at any given time.

Writing interfaces to behave in a stateless manner will probably require a slight departure from
your usual way of thinking for interface design. For example, consider the following classic
COM-style interface:

ICheckbook = interface
[‘{2CCF0409-EE29-11D2-AF31-0000861EF0BB}’]
procedure SetAccount(AccountNum: WideString); safecall;
procedure AddActivity(Amount: Integer); safecall;

end;

COM-Based Technologies

CHAPTER 23
859

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

27.65227_Ch23x 11/30/99 6:08 PM Page 859

As you might imagine, you would use this interface in a manner something like this:

var
CB: ICheckbook;

begin
CB := SomehowGetInstance;
CB.SetAccount(‘12345ABCDE’); // open my checking account
CB.AddActivity(-100); // add a debit for $100
...

end;

The problem with this style is that the object is not stateless between method calls because
state information regarding the account number must be maintained across the call. A better
approach to this interface for use in MTS would be to pass all the necessary information to the
AddActivity() method so that the object could behave in a stateless manner, as shown here:

procedure AddActivity(AccountNum: WideString; Amount: Integer); safecall;

The particular state of an active object is also referred to as a context. MTS maintains a context
for each active object that tracks things such as security and transaction information for the
object. An object can at any time call GetObjectContext() to obtain an IObjectContext inter-
face pointer for the object’s context. IObjectContext is defined in the Mtx unit as follows:

IObjectContext = interface(IUnknown)
[‘{51372AE0-CAE7-11CF-BE81-00AA00A2FA25}’]
function CreateInstance(const cid, rid: TGUID; out pv): HResult; stdcall;
procedure SetComplete; safecall;
procedure SetAbort; safecall;
procedure EnableCommit; safecall;
procedure DisableCommit; safecall;
function IsInTransaction: Bool; stdcall;
function IsSecurityEnabled: Bool; stdcall;
function IsCallerInRole(const bstrRole: WideString): Bool; safecall;

end;

The two most important methods in this interface are SetComplete() and SetAbort(). If either
of these methods are called, the object is telling MTS that it no longer has any state to main-
tain. MTS will therefore destroy the object (unbeknownst to the client, of course), thereby free-
ing up resources for other instances. If the object is participating in a transaction,
SetComplete() and SetAbort() also have the effect of a commit and rollback for the transac-
tion, respectively.

Lifetime Management
From the time we were itty-bitty COM programmers, we were taught to hold onto interface
pointers only for as long as necessary and to release them as soon as they were unneeded. In
traditional COM, this makes a lot of sense because we don’t want to occupy the system with

Component-Based Development

PART III
860

27.65227_Ch23x 11/30/99 6:08 PM Page 860

maintaining resources that aren’t being used. However, because MTS will automatically free
up stateless objects after they call SetComplete() or SetAbort(), there is no expense associ-
ated with holding a reference to such an object indefinitely. Furthermore, because the client
never knows that the object instance may have been deleted under the sheets, clients do not
have to be rewritten to take advantage of this feature.

Packages
The word package is already overloaded enough—Delphi packages, C++Builder packages, and
Oracle packages are all examples of the overuse of this word. MTS also has a notion of pack-
ages that no doubt differs from those other varieties. An MTS package is more logical than
physical, because it represents a programmer-defined collection of MTS objects with like activa-
tion, security, and transaction attributes. The physical part of a package is a file that contains ref-
erences to the COM server DLLs and MTS objects within those servers that make up the
package. The package file also contains information on the attributes of the MTS objects within.

MTS will run all components within a package in the same process. This enables you to con-
figure your well-behaved and error-free packages so that they are insulated from the potential
problems that could be caused by faults or errors in other packages. It is also interesting to
note that the physical location of components has no bearing on eligibility for package inclu-
sion: A single COM server can contain several COM objects, each in a separate package.

Packages are created and manipulated using either the Run, Install MTS Objects menu in
Delphi or the Transaction Server Explorer that is installed with MTS and shown in Figure 23.18.

COM-Based Technologies

CHAPTER 23
861

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

FIGURE 23.18
The Windows 98 Transaction Server Explorer.

Security
MTS provides a roll-based security system that is much more flexible than the standard
Windows NT security normally used with DCOM. A roll is a category of user (for example, in

27.65227_Ch23x 11/30/99 6:08 PM Page 861

a banking system typical rolls might be teller, supervisor, and manager). MTS allows you to
specify the degree to which any particular roll can manipulate an object on a per-interface
basis. For example, you can specify that the manager roll has access to the ICreateHomeLoan
interface, but the teller roll does not. If you need to get more granular than access to entire
interfaces, you can determine the roll of the user in the current context by calling the
IsCallerInRole() method of IObjectContext. Using this, for example, you could enforce a
business rule that stipulates that tellers can approve normal account closures, but only supervi-
sors can approve an account closure when the account balance is over $100,000. Security rolls
can be configured in the Transaction Server Explorer.

Oh, It Also Does Transactions
Of course, as the name implies, MTS also does transactions. You might be thinking to yourself,
“Big deal, my database server already supports transactions. Why do I need my components to
support them as well?” This is a fair question, and luckily there’s a good answer. Transaction
support in MTS can enable you to perform transactions across multiple databases or can even
make a single atomic action out of some set of operations having nothing to do with databases.
In order to support transactions on your MTS objects, you must set the correct transaction flag
on your object’s coclass in the type library either during development (this is what the Delphi
MTS Wizard does) or after deployment in the Transaction Server Explorer.

When should you use transactions in your objects? That’s easy: You should use transactions
whenever you have a process involving multiple steps that you want to make into a single,
atomic transaction. In doing so, the entire process can be either committed or rolled back, but
you will never leave your logic or data in an incorrect or indeterminate state somewhere in
between. For example, if you are writing software for a bank and you want to handle the case
where a client bounces a check, there would likely be several steps involved in handling that,
including debiting account for the amount of the check, debiting the account for the bounced
check service charge, and sending a letter to the client.

In order to properly process the bounced check, each of these things must happen. Therefore,
wrapping them in a single transaction would ensure that all will occur (if no errors are encoun-
tered) or all will roll back to their original pretransaction state if an error occurs.

Resources
With objects being created and destroyed all the time and transactions happening everywhere,
it’s important for MTS to provide a means for sharing certain finite or expensive resources
(such as database connections) across multiple objects. MTS does this using resource managers
and resource dispensers. A resource manager is a service that manages some type of durable
data, such as account balances or inventory. Microsoft provides a resource manager in MS
SQL Server. A resource dispenser manages nondurable resources, such as database connec-
tions. Microsoft provides a resource dispenser for ODBC database connections, and Borland
provides a resource dispenser for BDE database connections.

Component-Based Development

PART III
862

27.65227_Ch23x 11/30/99 6:08 PM Page 862

When a transaction makes use of some type of resource, it enlists the resource to become a
part of the transaction so that all changes made to the resource during the transaction will par-
ticipate in the commit or rollback operation of the transaction.

MTS in Delphi
Now that you’ve got the “what” and “why” down, it’s time to talk about the “how.” In particu-
lar, we will focus on Delphi’s support of MTS and how to build MTS solutions in Delphi.
Before we jump right in, however, you should first know that MTS support is built only into
the Enterprise version of Delphi. Although it’s technically possible to create MTS components
using the facilities available in the Standard and Professional versions, it is not the most pro-
ductive use of your time. Therefore, this section will help you leverage the features of Delphi
Enterprise.

MTS Wizards
Delphi provides two wizards for building MTS components that are both found on the
Multitier tab of the New Items dialog: the MTS Remote Data Module Wizard and the MTS
Object Wizard. The MTS Remote Data Module Wizard enables you to build MIDAS servers
that operate in the MTS environment. The MTS Object Wizard will serve as the starting point
for your MTS objects, and it will be the focus of this discussion. Upon invoking this wizard,
you will be presented with the dialog shown in Figure 23.19.

COM-Based Technologies

CHAPTER 23
863

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

FIGURE 23.19
The New MTS Object Wizard.

The dialog in Figure 23.19 is similar to the Automation Object Wizard discussed earlier in this
chapter. The obvious difference is the facility provided by this wizard to select the transaction
model supported by your MTS component. The available transaction models are as follows:

• Requires a transaction. The component will always be created within the context of a
transaction. It will inherit the transaction of its creator if one exists; otherwise, it will cre-
ate a new one.

27.65227_Ch23x 11/30/99 6:08 PM Page 863

• Requires a new transaction. A new transaction will always be created for the component
to execute within.

• Supports transactions. The component will inherit the transaction of its creator if one
exists; otherwise, it will execute without a transaction.

• Does not support transactions. The component will never be created within a transaction.

The transaction model information is stored as an attribute along with the component’s coclass
in the type library.

After you click OK to dismiss the dialog, the wizard will generate an empty definition for a
class that descends from TMtsAutoObject, and it will leave you off in the Type Library Editor
in order to define your MTS components by adding properties, methods, interfaces, and so on.
This should be familiar territory because the workflow is identical at this point to developing
Automation objects in Delphi. It’s interesting to note that although the Delphi wizard–created
MTS objects are Automation objects (that is, COM objects that implement IDispatch), MTS
doesn’t technically require this. However, because COM inherently knows how to marshal
IDispatch interfaces accompanied by type libraries, employing this type of object in MTS
enables you to concentrate more on your components’ functionality and less on how they inte-
grate with MTS. You should also be aware that MTS components must reside in in-process
COM servers (DLLs); MTS components are not supported in out-of-process servers (EXEs).

MTS Framework
The aforementioned TMtsAutoObject class, which is the base class for all Delphi wizard–
created MTS objects, is defined in the MtsObj unit. TMtsAutoObject is a relatively straightfor-
ward class that is defined as follows:

type
TMtsAutoObject = class(TAutoObject, IObjectControl)
private
FObjectContext: IObjectContext;

protected
{ IObjectControl }
procedure Activate; safecall;
procedure Deactivate; stdcall;
function CanBePooled: Bool; stdcall;

procedure OnActivate; virtual;
procedure OnDeactivate; virtual;
property ObjectContext: IObjectContext read FObjectContext;

public
procedure SetComplete;
procedure SetAbort;
procedure EnableCommit;
procedure DisableCommit;

Component-Based Development

PART III
864

27.65227_Ch23x 11/30/99 6:08 PM Page 864

function IsInTransaction: Bool;
function IsSecurityEnabled: Bool;
function IsCallerInRole(const Role: WideString): Bool;

end;

TMtsAutoObject is essentially a TAutoObject that adds two important bits of functionality:

• TMtsAutoObject implements the IObjectControl interface, which manages initialization
and cleanup of MTS components. Here are the methods of this interface:

Method Name Description

Activate Allows an object to perform context-specific initialization
when activated. This method will be called by MTS prior to
any custom methods on your MTS component.

Deactivate Enables you to perform context-specific cleanup when an
object is deactivated.

CanBePooled This method is currently unused because MTS does not yet
support object pooling.

TMtsAutoObject provides virtual OnActivate() and OnDeactivate() methods, which
are fired from the private Activate() and Deactivate() methods. Simply override these
to create special context-specific activation or deactivation logic.

• TMtsAutoObject also maintains a pointer to MTS’s IObjectContext interface in the
form of the ObjectContext property. As previously explained, IObjectContext is the
interface provided by MTS that provides a component the ability to manipulate its cur-
rent context. As a shortcut for users of this class, TMtsAutoObject also surfaces each of
IObjectContext’s methods, which are implemented to simply call into ObjectContext.
For example, the implementation of the TMtsAutoObject.SetComplete() method simply
checks FObjectContext for nil and then calls FObjectContext.SetComplete(). Here’s
a list of IObjectContext’s methods and a brief explanation of each:

Method Name Description

CreateInstance Creates an instance of another MTS object. You can think of
this method as performing the same task for MTS objects as
IClassFactory.CreateInstance does for normal COM
objects.

SetComplete Signals to MTS that the component has completed whatever
work it needs to do and no longer has any internal state to
maintain. If the component is transactional, it also indicates
that the current transactions can be committed. After the
method calling this function returns, MTS may deactivate the
object, thereby freeing up resources for greater scalability.

COM-Based Technologies

CHAPTER 23
865

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

27.65227_Ch23x 11/30/99 6:08 PM Page 865

Method Name Description

SetAbort Similar to SetComplete(), this method signals to MTS that
the component has completed work and no longer has state
information to maintain. However, calling this method also
means that the component is in an error or indeterminate state
and any pending transactions must be aborted.

EnableCommit Indicates that the component is in a “committable” state, such
that transactions can be committed when the component calls
SetComplete. This is the default state of a component.

DisableCommit Indicates that the component is in an inconsistent state, and
further method invocations are necessary before the compo-
nent will be prepared to commit transactions.

IsInTransaction Enables the component to determine whether it is executing
within the context of a transaction.

IsSecurityEnabled Allows a component to determine whether MTS security is
enabled. This method always returns True unless the compo-
nent is executing in the client’s process space.

IsCallerInRole Provides a means by which a component can determine
whether the user serving as the client for the component is a
member of a specific MTS role. This method is the heart of
MTS’s easy-to-use, role-based security system. (More on roles
later in this chapter.)

The Mtx unit contains the core MTS support. It is the Pascal translation of the mtx.h header
file, and it contains the types (such as IObjectControl and IObjectContext) and functions
that make up the MTS API.

Tic-Tac-Toe: A Sample Application
Enough theory. Now it’s time to write some code and see how all this MTS stuff performs on
the open road. MTS ships with a sample tic-tac-toe application that’s a bit on the ugly side, so
it inspired us to implement the classic game from the ground up in Delphi. To start, we use the
MTS Object Wizard to create a new object called GameServer. Using the Type Library Editor,
we add to the default interface for this object, IGameServer, three methods: NewGame(),
ComputerMove(), and PlayerMove(). Additionally, we add two new enums, SkillLevels and
GameResults, which are used by these methods. Figure 23.20 shows all of these items dis-
played in the type library editor.

The logic behind the three methods of this interface is simple, and these methods make up the
requirements to support a game of human versus computer tic-tac-toe. NewGame() initializes a
new game for the client. ComputerMove() analyzes the available moves and makes a move for
the computer. PlayerMove() enables the client to let the computer know how he or she has
chosen to move. Earlier in this chapter we mentioned that MTS component development

Component-Based Development

PART III
866

27.65227_Ch23x 11/30/99 6:08 PM Page 866

requires a different frame of mind than development of standard COM components. This com-
ponent offers a nice opportunity to illustrate this fact.

COM-Based Technologies

CHAPTER 23
867

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

FIGURE 23.20
The tic-tac-toe server, as shown in the type library editor.

If this were your average, everyday, run-of-the-mill COM component, you might approach
design of the object by initializing some data structure to maintain game state in the NewGame()
method. That data structure would probably be an instance field of the object, which the other
methods would access and manipulate throughout the life of the object.

What’s the problem with this approach for an MTS component? One word: state. As you
learned earlier, objects must be stateless in order to realize the full benefit of MTS. However, a
component architecture that depends on instance data to be maintained across method calls is
far from stateless. A better design for MTS would be to return a “handle” identifying a game
from the NewGame() method and using that handle to maintain per-game data structures in
some type of shared resource facility. This shared resource facility would need to be main-
tained outside the context of a specific object instance, because MTS may activate and deacti-
vate object instances with each method call. Each of the other methods of the component could
accept this handle as a parameter, enabling it to retrieve game data from the shared resource
facility. This is a stateless design because it doesn’t require the object to remain activated
between method calls, because each method is a self-contained operation that gets all the data
it needs from parameters and a shared data facility.

This shared data facility that we are speaking abstractly about is known as a resource dispenser
in MTS. Specifically, the Shared Property Manager is the MTS resource dispenser that is used
to maintain component-defined, process-wide shared data. The Shared Property Manager is

27.65227_Ch23x 11/30/99 6:08 PM Page 867

represented by the ISharedPropertyGroupManager interface. The Shared Property Manager is
the top level of a hierarchical storage system, maintaining any number of shared property
groups, which are represented by the ISharedPropertyGroup interface. In turn, each shared
property group may contain any number of shared properties, represented by the
ISharedProperty interface. Shared properties are convenient because they exists within MTS,
outside the context of any specific object instance, and access to them is controlled by locks
and semaphores managed by the Shared Property Manager.

With all that in mind, the implementation of the NewGame() method is shown in the following
code:

procedure TGameServer.NewGame(out GameID: Integer);
var
SPG: ISharedPropertyGroup;
SProp: ISharedProperty;
Exists: WordBool;
GameData: OleVariant;

begin
// Use caller’s role to validate security
CheckCallerSecurity;
// Get shared property group for this object
SPG := GetSharedPropertyGroup;
// Create or retrieve NextGameID shared property
SProp := SPG.CreateProperty(‘NextGameID’, Exists);
if Exists then GameID := SProp.Value
else GameID := 0;
// Increment and store NextGameID shared property
SProp.Value := GameID + 1;
// Create game data array
GameData := VarArrayCreate([1, 3, 1, 3], varByte);
SProp := SPG.CreateProperty(Format(GameDataStr, [GameID]), Exists);
SProp.Value := GameData;
SetComplete;

end;

This method first checks to ensure the caller is in the proper role to invoke this method (more
on this in a moment). It then uses a shared property to obtain an ID number for the next game.
Next, this method creates a variant array into which to store game data and saves that data as a
shared property. Finally, this method calls SetComplete() so that MTS knows its okay to deac-
tivate this instance after the method returns.

This leads to the number one rule of MTS development: Call SetComplete() or SetAbort() as
often as possible. Ideally, you will call SetComplete() or SetAbort() in every method so that
MTS can reclaim resources previously consumed by your component instance after the method
returns. A corollary to this rule is that object activation and deactivation should not be expen-
sive, because that code is likely to be called quite frequently.

Component-Based Development

PART III
868

27.65227_Ch23x 11/30/99 6:08 PM Page 868

The implementation of the CheckCallerSecurity() method illustrates how easy it is to take
advantage of role-based security in MTS:

procedure TGameServer.CheckCallerSecurity;
begin
// Just for fun, only allow those in the “TTT” role to play the game.
if IsSecurityEnabled and not IsCallerInRole(‘TTT’) then
raise Exception.Create(‘Only those in the TTT role can play tic-tac-toe’);

end;

This code begs the obvious question, “How does one establish the TTT role and determine
what users belong to that role?” Although it’s possible to define roles programmatically, the
most straightforward way to add and configure roles is using the Windows NT Transaction
Server Explorer. After the component is installed (you’ll learn how to install the component
shortly), you can set up roles using the “Roles” node found under each package node in the
Explorer. It’s important to note that roles-based security is supported only for components run-
ning on Windows NT. For components running on Windows 9x, IsCallerInRole() will
always return True.

The ComputerMove() and PlayerMove() methods are shown in the following code:

procedure TGameServer.ComputerMove(GameID: Integer;
SkillLevel: SkillLevels; out X, Y: Integer; out GameRez: GameResults);

var
Exists: WordBool;
PropVal: OleVariant;
GameData: PGameData;
SProp: ISharedProperty;

begin
// Get game data shared property
SProp := GetSharedPropertyGroup.CreateProperty(Format(GameDataStr, [GameID]),
Exists);

// Get game data array and lock it for more efficient access
PropVal := SProp.Value;
GameData := PGameData(VarArrayLock(PropVal));
try
// If game isn’t over, then let computer make a move
GameRez := CalcGameStatus(GameData);
if GameRez = grInProgress then
begin
CalcComputerMove(GameData, SkillLevel, X, Y);
// Save away new game data array
SProp.Value := PropVal;
// Check for end of game
GameRez := CalcGameStatus(GameData);

end;

COM-Based Technologies

CHAPTER 23
869

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

27.65227_Ch23x 11/30/99 6:08 PM Page 869

finally
VarArrayUnlock(PropVal);

end;
SetComplete;

end;

procedure TGameServer.PlayerMove(GameID, X, Y: Integer;
out GameRez: GameResults);

var
Exists: WordBool;
PropVal: OleVariant;
GameData: PGameData;
SProp: ISharedProperty;

begin
// Get game data shared property
SProp := GetSharedPropertyGroup.CreateProperty(Format(GameDataStr, [GameID]),
Exists);

// Get game data array and lock it for more efficient access
PropVal := SProp.Value;
GameData := PGameData(VarArrayLock(PropVal));
try
// Make sure game isn’t over
GameRez := CalcGameStatus(GameData);
if GameRez = grInProgress then
begin
// If spot isn’t empty, raise exception
if GameData[X, Y] <> EmptySpot then
raise Exception.Create(‘Spot is occupied!’);

// Allow move
GameData[X, Y] := PlayerSpot;
// Save away new game data array
SProp.Value := PropVal;
// Check for end of game
GameRez := CalcGameStatus(GameData);

end;
finally
VarArrayUnlock(PropVal);

end;
SetComplete;

end;

These methods are similar in that they both obtain the game data from the shared property
based on the GameID parameter, manipulate the data to reflect the current move, save the data
away again, and check to see whether the game is over. The ComputerMove() method also calls
CalcComputerMove() to analyze the game and make a move. If you’re interested in seeing this
and the other logic of this MTS component, take a look at Listing 23.15, which contains the
entire source code for the ServMain unit.

Component-Based Development

PART III
870

27.65227_Ch23x 11/30/99 6:08 PM Page 870

LISTING 23.15 ServMain.pas: Containing TGameServer

unit ServMain;

interface

uses
ActiveX, MtsObj, Mtx, ComObj, TTTServer_TLB;

type
PGameData = ^TGameData;
TGameData = array[1..3, 1..3] of Byte;

TGameServer = class(TMtsAutoObject, IGameServer)
private
procedure CalcComputerMove(GameData: PGameData; Skill: SkillLevels;
var X, Y: Integer);

function CalcGameStatus(GameData: PGameData): GameResults;
function GetSharedPropertyGroup: ISharedPropertyGroup;
procedure CheckCallerSecurity;

protected
procedure NewGame(out GameID: Integer); safecall;
procedure ComputerMove(GameID: Integer; SkillLevel: SkillLevels; out X,
Y: Integer; out GameRez: GameResults); safecall;

procedure PlayerMove(GameID, X, Y: Integer; out GameRez: GameResults);
safecall;

end;

implementation

uses ComServ, Windows, SysUtils;

const
GameDataStr = ‘TTTGameData%d’;
EmptySpot = 0;
PlayerSpot = $1;
ComputerSpot = $2;

function TGameServer.GetSharedPropertyGroup: ISharedPropertyGroup;
var
SPGMgr: ISharedPropertyGroupManager;
LockMode, RelMode: Integer;
Exists: WordBool;

begin
if ObjectContext = nil then
raise Exception.Create(‘Failed to obtain object context’);

COM-Based Technologies

CHAPTER 23
871

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

continues

27.65227_Ch23x 11/30/99 6:08 PM Page 871

LISTING 23.15 Continued

// Create shared property group for this object
OleCheck(ObjectContext.CreateInstance(CLASS_SharedPropertyGroupManager,
ISharedPropertyGroupManager, SPGMgr));

LockMode := LockSetGet;
RelMode := Process;
Result := SPGMgr.CreatePropertyGroup(‘DelphiTTT’, LockMode, RelMode, Exists);
if Result = nil then
raise Exception.Create(‘Failed to obtain property group’);

end;

procedure TGameServer.NewGame(out GameID: Integer);
var
SPG: ISharedPropertyGroup;
SProp: ISharedProperty;
Exists: WordBool;
GameData: OleVariant;

begin
// Use caller’s role to validate security
CheckCallerSecurity;
// Get shared property group for this object
SPG := GetSharedPropertyGroup;
// Create or retrieve NextGameID shared property
SProp := SPG.CreateProperty(‘NextGameID’, Exists);
if Exists then GameID := SProp.Value
else GameID := 0;
// Increment and store NextGameID shared property
SProp.Value := GameID + 1;
// Create game data array
GameData := VarArrayCreate([1, 3, 1, 3], varByte);
SProp := SPG.CreateProperty(Format(GameDataStr, [GameID]), Exists);
SProp.Value := GameData;
SetComplete;

end;

procedure TGameServer.ComputerMove(GameID: Integer;
SkillLevel: SkillLevels; out X, Y: Integer; out GameRez: GameResults);

var
Exists: WordBool;
PropVal: OleVariant;
GameData: PGameData;
SProp: ISharedProperty;

begin
// Get game data shared property
SProp := GetSharedPropertyGroup.CreateProperty(Format(GameDataStr, [GameID]),
Exists);

Component-Based Development

PART III
872

27.65227_Ch23x 11/30/99 6:08 PM Page 872

// Get game data array and lock it for more efficient access
PropVal := SProp.Value;
GameData := PGameData(VarArrayLock(PropVal));
try
// If game isn’t over, then let computer make a move
GameRez := CalcGameStatus(GameData);
if GameRez = grInProgress then
begin
CalcComputerMove(GameData, SkillLevel, X, Y);
// Save away new game data array
SProp.Value := PropVal;
// Check for end of game
GameRez := CalcGameStatus(GameData);

end;
finally
VarArrayUnlock(PropVal);

end;
SetComplete;

end;

procedure TGameServer.PlayerMove(GameID, X, Y: Integer;
out GameRez: GameResults);

var
Exists: WordBool;
PropVal: OleVariant;
GameData: PGameData;
SProp: ISharedProperty;

begin
// Get game data shared property
SProp := GetSharedPropertyGroup.CreateProperty(Format(GameDataStr, [GameID]),
Exists);

// Get game data array and lock it for more efficient access
PropVal := SProp.Value;
GameData := PGameData(VarArrayLock(PropVal));
try
// Make sure game isn’t over
GameRez := CalcGameStatus(GameData);
if GameRez = grInProgress then
begin
// If spot isn’t empty, raise exception
if GameData[X, Y] <> EmptySpot then
raise Exception.Create(‘Spot is occupied!’);

// Allow move
GameData[X, Y] := PlayerSpot;
// Save away new game data array
SProp.Value := PropVal;

COM-Based Technologies

CHAPTER 23
873

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

continues

27.65227_Ch23x 11/30/99 6:08 PM Page 873

LISTING 23.15 Continued

// Check for end of game
GameRez := CalcGameStatus(GameData);

end;
finally
VarArrayUnlock(PropVal);

end;
SetComplete;

end;

function TGameServer.CalcGameStatus(GameData: PGameData): GameResults;
var
I, J: Integer;

begin
// First check for a winner
if GameData[1, 1] <> EmptySpot then
begin
// Check top row, left column, and top left to bottom right diagonal for
win
if ((GameData[1, 1] = GameData[1, 2]) and (GameData[1, 1] = GameData[1,
3])) or((GameData[1, 1] = GameData[2, 1]) and (GameData[1, 1] = GameData[3,
1])) or ((GameData[1, 1] = GameData[2, 2]) and (GameData[1, 1] =

GameData[3, 3])) then
begin

Result := GameData[1, 1] + 1; // Game result is spot ID + 1
Exit;

end;
end;
if GameData[3, 3] <> EmptySpot then
begin
// Check bottom row and right column for win
if ((GameData[3, 3] = GameData[3, 2]) and (GameData[3, 3] =
GameData[3, 1])) or
((GameData[3, 3] = GameData[2, 3]) and (GameData[3, 3] =
GameData[1, 3])) then

begin
Result := GameData[3, 3] + 1; // Game result is spot ID + 1
Exit;

end;
end;
if GameData[2, 2] <> EmptySpot then
begin
// Check middle row, middle column, and bottom left to top right diagonal
for win
if ((GameData[2, 2] = GameData[2, 1]) and (GameData[2, 2] =
GameData[2, 3])) or

Component-Based Development

PART III
874

27.65227_Ch23x 11/30/99 6:08 PM Page 874

((GameData[2, 2] = GameData[1, 2]) and (GameData[2, 2] =
GameData[3, 2])) or
((GameData[2, 2] = GameData[3, 1]) and (GameData[2, 2] =
GameData[1, 3])) then

begin
Result := GameData[2, 2] + 1; // Game result is spot ID + 1
Exit;

end;
end;
// Finally, check for game still in progress
for I := 1 to 3 do
for J := 1 to 3 do
if GameData[I, J] = 0 then
begin
Result := grInProgress;
Exit;

end;
// If we get here, then we’ve tied
Result := grTie;

end;

procedure TGameServer.CalcComputerMove(GameData: PGameData;
Skill: SkillLevels; var X, Y: Integer);

type
// Used to scan for possible moves by either row, column, or diagonal line
TCalcType = (ctRow, ctColumn, ctDiagonal);
// mtWin = one move away from win, mtBlock = opponent is one move away from
// win, mtOne = I occupy one other spot in this line, mtNew = I occupy no
// spots on this line
TMoveType = (mtWin, mtBlock, mtOne, mtNew);

var
CurrentMoveType: TMoveType;

function DoCalcMove(CalcType: TCalcType; Position: Integer): Boolean;
var
RowData, I, J, CheckTotal: Integer;
PosVal, Mask: Byte;

begin
Result := False;
RowData := 0;
X := 0;
Y := 0;
if CalcType = ctRow then
begin
I := Position;
J := 1;

COM-Based Technologies

CHAPTER 23
875

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

continues

27.65227_Ch23x 11/30/99 6:08 PM Page 875

LISTING 23.15 Continued

end
else if CalcType = ctColumn then
begin
I := 1;
J := Position;

end
else begin
I := 1;
case Position of
1: J := 1; // scanning from top left to bottom right
2: J := 3; // scanning from top right to bottom left

else
Exit; // bail; only 2 diagonal scans

end;
end;
// Mask masks off Player or Computer bit, depending on whether we’re
// thinking

// offensively or defensively. Checktotal determines whether that is a row
// we need to move into.
case CurrentMoveType of
mtWin:
begin
Mask := PlayerSpot;
CheckTotal := 4;

end;
mtNew:
begin
Mask := PlayerSpot;
CheckTotal := 0;

end;
mtBlock:
begin
Mask := ComputerSpot;
CheckTotal := 2;

end;
else
begin
Mask := 0;
CheckTotal := 2;

end;
end;
// loop through all lines in current CalcType
repeat
// Get status of current spot (X, O, or empty)
PosVal := GameData[I, J];

Component-Based Development

PART III
876

27.65227_Ch23x 11/30/99 6:08 PM Page 876

// Save away last empty spot in case we decide to move here
if PosVal = 0 then
begin
X := I;
Y := J;

end
else
// If spot isn’t empty, then add masked value to RowData
Inc(RowData, (PosVal and not Mask));

if (CalcType = ctDiagonal) and (Position = 2) then
begin
Inc(I);
Dec(J);

end
else begin
if CalcType in [ctRow, ctDiagonal] then Inc(J);
if CalcType in [ctColumn, ctDiagonal] then Inc(I);

end;
until (I > 3) or (J > 3);
// If RowData adds up, then we must block or win, depending on
// whether we’re thinking offensively or defensively.
Result := (X <> 0) and (RowData = CheckTotal);
if Result then
begin
GameData[X, Y] := ComputerSpot;
Exit;

end;
end;

var
A, B, C: Integer;

begin
if Skill = slAwake then
begin
// First look to win the game, next look to block a win
for A := Ord(mtWin) to Ord(mtBlock) do
begin
CurrentMoveType := TMoveType(A);
for B := Ord(ctRow) to Ord(ctDiagonal) do
for C := 1 to 3 do
if DoCalcMove(TCalcType(B), C) then Exit;

end;
// Next look to take the center of the board
if GameData[2, 2] = 0 then
begin
GameData[2, 2] := ComputerSpot;

COM-Based Technologies

CHAPTER 23
877

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

continues

27.65227_Ch23x 11/30/99 6:08 PM Page 877

LISTING 23.15 Continued

X := 2;
Y := 2;
Exit;

end;
// Next look for the most advantageous position on a line
for A := Ord(mtOne) to Ord(mtNew) do
begin
CurrentMoveType := TMoveType(A);
for B := Ord(ctRow) to Ord(ctDiagonal) do
for C := 1 to 3 do
if DoCalcMove(TCalcType(B), C) then Exit;

end;
end;
// Finally (or if skill level is unconscious), just find the first open place
for A := 1 to 3 do
for B := 1 to 3 do
if GameData[A, B] = 0 then
begin
GameData[A, B] := ComputerSpot;
X := A;
Y := B;
Exit;

end;
end;

procedure TGameServer.CheckCallerSecurity;
begin
// Just for fun, only allow those in the “TTT” role to play the game.
if IsSecurityEnabled and not IsCallerInRole(‘TTT’) then
raise Exception.Create(‘Only those in the TTT role can play tic-tac-toe’);

end;

initialization
TAutoObjectFactory.Create(ComServer, TGameServer, Class_GameServer,
ciMultiInstance, tmApartment);

end.

Installing the Server
Once the server has been written and you’re ready to install it into MTS, Delphi makes your
life very easy. Simple select Run, Install MTS Objects from the main menu, and you will
invoke the Install MTS Objects dialog. This dialog enables you to install your object(s) into a
new or existing package, and it is shown in Figure 23.21.

Component-Based Development

PART III
878

27.65227_Ch23x 11/30/99 6:08 PM Page 878

FIGURE 23.21
Installing an MTS object via the Delphi IDE.

Select the component(s) to be installed, specify whether the package is new or existing, click
OK, and that’s it; the component is installed. Alternatively, you can also install MTS compo-
nents via the Transaction Server Explorer application. Note that this installation procedure is
markedly different than that of standard COM objects, which typically involves using the
RegSvr32 tool from the command line to register a COM server. Transaction Server Explorer
also makes it similarly easy to set up MTS components on remote machines, providing a wel-
come alternative to the configuration hell experienced by many of those trying to configure
DCOM connectivity.

The Client Application
Listing 23.16 shows the source code for the client application for this MTS component. Its pur-
pose is to essentially map the engine provided by the MTS component to a tic-tac-toe–looking
user interface.

LISTING 23.16 UiMain.pas: The Main Unit for the Client Application

unit UiMain;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
Buttons, ExtCtrls, Menus, TTTServer_TLB, ComCtrls;

type
TRecord = record
Wins, Loses, Ties: Integer;

end;

COM-Based Technologies

CHAPTER 23
879

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

continues

27.65227_Ch23x 11/30/99 6:08 PM Page 879

LISTING 23.16 Continued

TFrmMain = class(TForm)
SbTL: TSpeedButton;
SbTM: TSpeedButton;
SbTR: TSpeedButton;
SbMM: TSpeedButton;
SbBL: TSpeedButton;
SbBR: TSpeedButton;
SbMR: TSpeedButton;
SbBM: TSpeedButton;
SbML: TSpeedButton;
Bevel1: TBevel;
Bevel2: TBevel;
Bevel3: TBevel;
Bevel4: TBevel;
MainMenu1: TMainMenu;
FileItem: TMenuItem;
HelpItem: TMenuItem;
ExitItem: TMenuItem;
AboutItem: TMenuItem;
SkillItem: TMenuItem;
UnconItem: TMenuItem;
AwakeItem: TMenuItem;
NewGameItem: TMenuItem;
N1: TMenuItem;
StatusBar: TStatusBar;
procedure FormCreate(Sender: TObject);
procedure ExitItemClick(Sender: TObject);
procedure SkillItemClick(Sender: TObject);
procedure AboutItemClick(Sender: TObject);
procedure SBClick(Sender: TObject);
procedure NewGameItemClick(Sender: TObject);

private
FXImage: TBitmap;
FOImage: TBitmap;
FCurrentSkill: Integer;
FGameID: Integer;
FGameServer: IGameServer;
FRec: TRecord;
procedure TagToCoord(ATag: Integer; var Coords: TPoint);
function CoordToCtl(const Coords: TPoint): TSpeedButton;
procedure DoGameResult(GameRez: GameResults);

end;

var
FrmMain: TFrmMain;

Component-Based Development

PART III
880

27.65227_Ch23x 11/30/99 6:08 PM Page 880

implementation

uses UiAbout;

{$R *.DFM}

{$R xo.res}

const
RecStr = ‘Wins: %d, Loses: %d, Ties: %d’;

procedure TFrmMain.FormCreate(Sender: TObject);
begin
// load “X” and “O” images from resource into TBitmaps
FXImage := TBitmap.Create;
FXImage.LoadFromResourceName(MainInstance, ‘x_img’);
FOImage := TBitmap.Create;
FOImage.LoadFromResourceName(MainInstance, ‘o_img’);
// set default skill
FCurrentSkill := slAwake;
// init record UI
with FRec do
StatusBar.SimpleText := Format(RecStr, [Wins, Loses, Ties]);
// Get server instance
FGameServer := CoGameServer.Create;
// Start a new game
FGameServer.NewGame(FGameID);

end;

procedure TFrmMain.ExitItemClick(Sender: TObject);
begin
Close;

end;

procedure TFrmMain.SkillItemClick(Sender: TObject);
begin
with Sender as TMenuItem do
begin
Checked := True;
FCurrentSkill := Tag;

end;
end;

procedure TFrmMain.AboutItemClick(Sender: TObject);
begin
// Show About box

COM-Based Technologies

CHAPTER 23
881

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

continues

27.65227_Ch23x 11/30/99 6:08 PM Page 881

LISTING 23.16 Continued

with TFrmAbout.Create(Application) do
try
ShowModal;

finally
Free;

end;
end;

procedure TFrmMain.TagToCoord(ATag: Integer; var Coords: TPoint);
begin
case ATag of
0: Coords := Point(1, 1);
1: Coords := Point(1, 2);
2: Coords := Point(1, 3);
3: Coords := Point(2, 1);
4: Coords := Point(2, 2);
5: Coords := Point(2, 3);
6: Coords := Point(3, 1);
7: Coords := Point(3, 2);

else
Coords := Point(3, 3);

end;
end;

function TFrmMain.CoordToCtl(const Coords: TPoint): TSpeedButton;
begin
Result := nil;
with Coords do
case X of
1:
case Y of
1: Result := SbTL;
2: Result := SbTM;
3: Result := SbTR;

end;
2:
case Y of
1: Result := SbML;
2: Result := SbMM;
3: Result := SbMR;

end;
3:
case Y of
1: Result := SbBL;
2: Result := SbBM;

Component-Based Development

PART III
882

27.65227_Ch23x 11/30/99 6:08 PM Page 882

3: Result := SbBR;
end;

end;
end;

procedure TFrmMain.SBClick(Sender: TObject);
var
Coords: TPoint;
GameRez: GameResults;
SB: TSpeedButton;

begin
if Sender is TSpeedButton then
begin
SB := TSpeedButton(Sender);
if SB.Glyph.Empty then
begin
with SB do
begin
TagToCoord(Tag, Coords);
FGameServer.PlayerMove(FGameID, Coords.X, Coords.Y, GameRez);
Glyph.Assign(FXImage);

end;
if GameRez = grInProgress then
begin
FGameServer.ComputerMove(FGameID, FCurrentSkill, Coords.X,
Coords.Y, GameRez);

CoordToCtl(Coords).Glyph.Assign(FOImage);
end;
DoGameResult(GameRez);

end;
end;

end;

procedure TFrmMain.NewGameItemClick(Sender: TObject);
var
I: Integer;

begin
FGameServer.NewGame(FGameID);
for I := 0 to ControlCount - 1 do
if Controls[I] is TSpeedButton then
TSpeedButton(Controls[I]).Glyph := nil;

end;

procedure TFrmMain.DoGameResult(GameRez: GameResults);
const
EndMsg: array[grTie..grComputerWin] of string = (

COM-Based Technologies

CHAPTER 23
883

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

continues

27.65227_Ch23x 11/30/99 6:08 PM Page 883

LISTING 23.16 Continued

‘Tie game’, ‘You win’, ‘Computer wins’);
begin
if GameRez <> grInProgress then
begin
case GameRez of
grComputerWin: Inc(FRec.Loses);
grPlayerWin: Inc(FRec.Wins);
grTie: Inc(FRec.Ties);

end;
with FRec do
StatusBar.SimpleText := Format(RecStr, [Wins, Loses, Ties]);
if MessageDlg(Format(‘%s! Play again?’, [EndMsg[GameRez]]), mtConfirmation,
[mbYes, mbNo], 0) = mrYes then
NewGameItemClick(nil);

end;
end;

end.

Figure 23.22 shows this application in action. The user is X, and the computer is O.

Component-Based Development

PART III
884

FIGURE 23.22
Playing tic-tac-toe.

Debugging MTS Applications
Because MTS components run within MTS’s process space rather than the client’s, you might
think that they would be difficult to debug. However, MTS provides a side door for debugging
purposes that makes debugging a snap. Just load the server project and use the Run Parameters
dialog to specify mtx.exe as the host application. As a parameter to mtx.exe, you must pass

27.65227_Ch23x 11/30/99 6:08 PM Page 884

/p:{package guid}, where “package guid” is the GUID of the package as shown in the
Transaction Server Explorer. This dialog is shown in Figure 23.23. Next, set your desired
breakpoints and run the application. You won’t see anything happen initially because the client
application is not yet running. Now you can run the client from Windows Explorer or a com-
mand prompt, and you will be off and debugging.

COM-Based Technologies

CHAPTER 23
885

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

FIGURE 23.23
Using the Run Parameters dialog to set up an MTS debug session.

MTS is a powerful addition to the COM family of technologies. By adding services such as
lifetime management, transaction support, security, and transactions to COM objects without
requiring significant changes to existing source code, Microsoft has leveraged COM into a
more scalable technology, suitable for large-scale distributed development. This section took
you through a tour of the basics of MTS and on to the specifics of Delphi’s support for MTS
and how to create MTS applications in Delphi. What’s more, you’ve hopefully caught a few
tips and tricks along the way for developing optimized and well-behaved MTS components.
MTS packs a wallop out of the box by providing services such as lifetime management, trans-
action support, and security, all in a familiar framework. MTS and Delphi combine to provide
you with a great way to leverage your COM experience into creating scalable multitier applica-
tions. Just don’t forget those differences in design nuances between normal COM components
and MTS components!

TOleContainer
Now that you have some ActiveX OLE background under your belt, take a look at Delphi’s
TOleContainer class. TOleContainer is located in the OleCntrs unit, and it encapsulates the
complexities of an OLE Document and ActiveX Document container into an easily digestible
VCL component.

27.65227_Ch23x 11/30/99 6:08 PM Page 885

A Small Sample Application
Now let’s jump right in and create an OLE container application. Create a new project and
drop a TOleContainer object (found on the System page of the Component Palette) on the
form. Right-click the object in the Form Designer and select Insert Object from the local menu.
This invokes the Insert Object dialog, as shown in Figure 23.24.

Component-Based Development

PART III
886

NOTE

If you were familiar with using Delphi 1.0’s TOleContainer component, you can
pretty much throw that knowledge out the window. The 32-bit version of this com-
ponent was redesigned from the ground up (as they say in the car commercials), so
any knowledge you have of the 16-bit version of this component may not be applica-
ble to the 32-bit version. Don’t let that scare you, though; the 32-bit version of this
component is of a much cleaner design, and you’ll find that the code you must write
to support the object is perhaps a quarter of what it used to be.

FIGURE 23.24
The Insert Object dialog.

Embedding a New OLE Object
By default, the Insert Object dialog contains the names of OLE server applications registered
with Windows. To embed a new OLE object, you can select a server application from the
Object Type list box. This causes the OLE server to execute in order to create a new OLE
object to be inserted into TOleContainer. When you close the server application, the
TOleContainer object is updated with the embedded object. For this example, we will create a
new MS Word 2000 document, as shown in Figure 23.25.

27.65227_Ch23x 11/30/99 6:08 PM Page 886

If you want to invoke the Insert Object dialog at runtime, you can call the
InsertObjectDialog() method of TOleContainer, which is defined as follows:

function InsertObjectDialog: Boolean;

This function returns True if a new type of OLE object was successfully chosen from the dialog.

Embedding or Linking an Existing OLE File
To embed an existing OLE file into the TOleContainer, select the Create From File radio but-
ton on the Insert Object dialog. This enables you to pick an existing file, as shown in Figure
23.26. After you choose the file, it behaves much the same as a new OLE object.

To embed a file at runtime, call the CreateObjectFromFile() method of TOleContainer,
which is defined as follows:

procedure CreateObjectFromFile(const FileName: string; Iconic: Boolean);

To link (rather than embed) the OLE object, simply check the Link check box in the Insert
Object dialog shown in Figure 23.26. As described earlier, this creates a link from your appli-
cation to the OLE file so that you can edit and view the same linked object from multiple
applications.

COM-Based Technologies

CHAPTER 23
887

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

NOTE

An OLE object will not activate in place at design time. You will only be able to take
advantage of the in-place activation capability of TOleContainer at runtime.

FIGURE 23.25
An embedded MS Word 2000 document.

27.65227_Ch23x 11/30/99 6:08 PM Page 887

FIGURE 23.26
Inserting an object from a file.

To link to a file at runtime, call the CreateLinkToFile() method of TOleContainer, which is
defined as follows:

procedure CreateLinkToFile(const FileName: string; Iconic: Boolean);

A Bigger Sample Application
Now that you have the basics of OLE and the TOleContainer class behind you, we will create
a more sizable application that truly reflects the usage of OLE in realistic applications.

Start by creating a new project based on the MDI application template. The main form makes
only a few modifications to the standard MDI template, and it is shown in Figure 23.27.

Component-Based Development

PART III
888

FIGURE 23.27
The MDI OLE Demo main window.

The MDI child form is shown in Figure 23.28. It is simply an fsMDIChild-style form with a
TOleContainer component aligned to alClient.

Listing 23.17 shows ChildWin.pas, the source code unit for the MDI child form. Note that this
unit is fairly standard except for the addition of the OLEFileName property and the associated
method and private instance variable. This property stores the path and filename of the OLE
file, and the property accessor sets the child form’s caption to the filename.

27.65227_Ch23x 11/30/99 6:08 PM Page 888

FIGURE 23.28
The MDI OLE Demo child window.

LISTING 23.17 The Source Code for ChildWin.pas

unit Childwin;

interface

uses WinTypes, WinProcs, Classes, Graphics, Forms, Controls, OleCtnrs;

type
TMDIChild = class(TForm)
OleContainer: TOleContainer;
procedure FormClose(Sender: TObject; var Action: TCloseAction);

private
FOLEFilename: String;
procedure SetOLEFileName(const Value: String);

public
property OLEFileName: String read FOLEFileName write SetOLEFileName;

end;

implementation

{$R *.DFM}

uses Main, SysUtils;

procedure TMDIChild.SetOLEFileName(const Value: String);
begin
if Value <> FOLEFileName then begin
FOLEFileName := Value;
Caption := ExtractFileName(FOLEFileName);

end;
end;

procedure TMDIChild.FormClose(Sender: TObject; var Action: TCloseAction);

COM-Based Technologies

CHAPTER 23
889

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

continues

27.65227_Ch23x 11/30/99 6:08 PM Page 889

LISTING 23.17 Continued

begin
Action := caFree;

end;

end.

Creating a Child Form
When a new MDI child form is created from the File, New menu of the MDI OLE Demo
application, the Insert Object dialog is invoked using the InsertObjectDialog() method men-
tioned earlier. Additionally, a caption is assigned to the MDI child form using a global variable
called NumChildren to provide a unique number. The following code shows the main form’s
CreateMDIChild() method:

procedure TMainForm.FileNewItemClick(Sender: TObject);
begin
inc(NumChildren);
{ create a new MDI child window }
with TMDIChild.Create(Application) do
begin
Caption := ‘Untitled’ + IntToStr(NumChildren);
{ bring up insert OLE object dialog and insert into child }
OleContainer.InsertObjectDialog;

end;
end;

Saving to and Reading from Files
As discussed earlier in this chapter, OLE objects lend themselves to the capability of being
written to and read from streams and, therefore, files. The TOleContainer component has the
methods SaveToStream(), LoadFromStream(), SaveToFile(), and LoadFromFile(), which
make saving an OLE object out to a file or stream very easy.

The MDIOLE application’s main form contains methods for saving and opening OLE object
files. The following code shows the FileOpenItemClick() method, which is called in response
to choosing File, Open from the main form. In addition to loading a saved OLE object from a
file specified by OpenDialog, this method also assigns the OleFileName field of the TMDIChild
instance to the filename provided by OpenDialog. If an error occurs loading the file, the form
instance is freed. Here’s the code:

procedure TMainForm.FileOpenItemClick(Sender: TObject);
begin
if OpenDialog.Execute then
with TMDIChild.Create(Application) do
begin

Component-Based Development

PART III
890

27.65227_Ch23x 11/30/99 6:08 PM Page 890

try
OleFileName := OpenDialog.FileName;
OleContainer.LoadFromFile(OleFileName);
Show;

except
Release; // free form on error
raise; // reraise exception

end;
end;

end;

The following code handles the File, Save As and File, Save menu items. Note that the
FileSaveItemClick() method invokes FileSaveAsItemClick() when the active MDI child
does not have a name specified. Here’s the code:

procedure TMainForm.FileSaveAsItemClick(Sender: TObject);
begin
if (ActiveMDIChild <> Nil) and (SaveDialog.Execute) then
with TMDIChild(ActiveMDIChild) do
begin
OleFileName := SaveDialog.FileName;
OleContainer.SaveToFile(OleFileName);

end;
end;

procedure TMainForm.FileSaveItemClick(Sender: TObject);
begin
if ActiveMDIChild <> Nil then
{ if no name is assigned, then do a “save as” }
if TMDIChild(ActiveMDIChild).OLEFileName = ‘’ then
FileSaveAsItemClick(Sender)

else
{ otherwise save under current name }
with TMDIChild(ActiveMDIChild) do
OleContainer.SaveToFile(OLEFileName);

end;

Using the Clipboard to Copy and Paste
Thanks to the universal data-transfer mechanism described earlier, it also is possible to use the
Windows Clipboard to transfer OLE objects. Again, the TOleContainer component automates
these tasks to a great degree.

Copying an OLE object from a TOleContainer to the Clipboard, in particular, is a trivial task.
Simply call the Copy() method:

procedure TMainForm.CopyItemClick(Sender: TObject);
begin
if ActiveMDIChild <> Nil then

COM-Based Technologies

CHAPTER 23
891

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

27.65227_Ch23x 11/30/99 6:08 PM Page 891

TMDIChild(ActiveMDIChild).OleContainer.Copy;
end;

After you think you have an OLE object on the Clipboard, only one additional step is required
to properly read it out into a TOleContainer component. Prior to attempting to paste the con-
tents of the Clipboard into a TOleContainer, you should first check the value of the CanPaste
property to ensure that the data on the Clipboard is a suitable OLE object. After that, you can
invoke the Paste Special dialog to paste the object into the TOleContainer by calling its
PasteSpecialDialog() method, as shown in the following code (the Paste Special dialog is
shown in Figure 23.29):

procedure TMainForm.PasteItemClick(Sender: TObject);
begin
if ActiveMDIChild <> nil then
with TMDIChild(ActiveMDIChild).OleContainer do
{ Before invoking dialog, check to be sure that there }
{ are valid OLE objects on the clipboard. }
if CanPaste then PasteSpecialDialog;

end;

Component-Based Development

PART III
892

FIGURE 23.29
The Paste Special dialog box.

When the application is run, the server controlling the OLE object in the active MDI child
merges with or takes control of the application’s menu and toolbar. Figures 23.30 and 23.31
show OLE’s in-place activation feature—the MDI OLE application is controlled by two differ-
ent OLE servers.

27.65227_Ch23x 11/30/99 6:08 PM Page 892

FIGURE 23.31
Editing an embedded Paint graphic.

The complete listing for Main.pas, the MDI OLE application’s main unit, is shown in Listing
23.18.

COM-Based Technologies

CHAPTER 23
893

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

FIGURE 23.30
Editing an embedded Word 2000 document.

27.65227_Ch23x 11/30/99 6:08 PM Page 893

LISTING 23.18 The source code for Main.pas

unit Main;

interface

uses WinTypes, WinProcs, SysUtils, Classes, Graphics, Forms, Controls, Menus,
StdCtrls, Dialogs, Buttons, Messages, ExtCtrls, ChildWin, ComCtrls,
ToolWin;

type
TMainForm = class(TForm)
MainMenu1: TMainMenu;
File1: TMenuItem;
FileNewItem: TMenuItem;
FileOpenItem: TMenuItem;
FileCloseItem: TMenuItem;
Window1: TMenuItem;
Help1: TMenuItem;
N1: TMenuItem;
FileExitItem: TMenuItem;
WindowCascadeItem: TMenuItem;
WindowTileItem: TMenuItem;
WindowArrangeItem: TMenuItem;
HelpAboutItem: TMenuItem;
OpenDialog: TOpenDialog;
FileSaveItem: TMenuItem;
FileSaveAsItem: TMenuItem;
Edit1: TMenuItem;
PasteItem: TMenuItem;
WindowMinimizeItem: TMenuItem;
SaveDialog: TSaveDialog;
CopyItem: TMenuItem;
CloseAll1: TMenuItem;
StatusBar: TStatusBar;
CoolBar1: TCoolBar;
ToolBar1: TToolBar;
OpenBtn: TToolButton;
SaveBtn: TToolButton;
ToolButton3: TToolButton;
CopyBtn: TToolButton;
PasteBtn: TToolButton;
ToolButton6: TToolButton;
ExitBtn: TToolButton;
ImageList1: TImageList;
procedure FormCreate(Sender: TObject);
procedure FileNewItemClick(Sender: TObject);

Component-Based Development

PART III
894

27.65227_Ch23x 11/30/99 6:08 PM Page 894

procedure WindowCascadeItemClick(Sender: TObject);
procedure UpdateMenuItems(Sender: TObject);
procedure WindowTileItemClick(Sender: TObject);
procedure WindowArrangeItemClick(Sender: TObject);
procedure FileCloseItemClick(Sender: TObject);
procedure FileOpenItemClick(Sender: TObject);
procedure FileExitItemClick(Sender: TObject);
procedure FileSaveItemClick(Sender: TObject);
procedure FileSaveAsItemClick(Sender: TObject);
procedure PasteItemClick(Sender: TObject);
procedure WindowMinimizeItemClick(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure HelpAboutItemClick(Sender: TObject);
procedure CopyItemClick(Sender: TObject);
procedure CloseAll1Click(Sender: TObject);

private
procedure ShowHint(Sender: TObject);

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

uses About;

var
NumChildren: Cardinal = 0;

procedure TMainForm.FormCreate(Sender: TObject);
begin
Application.OnHint := ShowHint;
Screen.OnActiveFormChange := UpdateMenuItems;

end;

procedure TMainForm.ShowHint(Sender: TObject);
begin
{ Show hints on status bar }
StatusBar.Panels[0].Text := Application.Hint;

end;

procedure TMainForm.FileNewItemClick(Sender: TObject);
begin
inc(NumChildren);

COM-Based Technologies

CHAPTER 23
895

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

continues

27.65227_Ch23x 11/30/99 6:08 PM Page 895

LISTING 23.18 Continued

{ create a new MDI child window }
with TMDIChild.Create(Application) do
begin
Caption := ‘Untitled’ + IntToStr(NumChildren);
{ bring up insert OLE object dialog and insert into child }
OleContainer.InsertObjectDialog;

end;
end;

procedure TMainForm.FileOpenItemClick(Sender: TObject);
begin
if OpenDialog.Execute then
with TMDIChild.Create(Application) do
begin
try
OleFileName := OpenDialog.FileName;
OleContainer.LoadFromFile(OleFileName);
Show;

except
Release; // free form on error
raise; // reraise exception

end;
end;

end;

procedure TMainForm.FileCloseItemClick(Sender: TObject);
begin
if ActiveMDIChild <> nil then
ActiveMDIChild.Close;

end;

procedure TMainForm.FileSaveAsItemClick(Sender: TObject);
begin
if (ActiveMDIChild <> nil) and (SaveDialog.Execute) then
with TMDIChild(ActiveMDIChild) do
begin
OleFileName := SaveDialog.FileName;
OleContainer.SaveToFile(OleFileName);

end;
end;

procedure TMainForm.FileSaveItemClick(Sender: TObject);
begin
if ActiveMDIChild <> nil then
{ if no name is assigned, then do a “save as” }

Component-Based Development

PART III
896

27.65227_Ch23x 11/30/99 6:08 PM Page 896

if TMDIChild(ActiveMDIChild).OLEFileName = ‘’ then
FileSaveAsItemClick(Sender)

else
{ otherwise save under current name }
with TMDIChild(ActiveMDIChild) do
OleContainer.SaveToFile(OLEFileName);

end;

procedure TMainForm.FileExitItemClick(Sender: TObject);
begin
Close;

end;

procedure TMainForm.PasteItemClick(Sender: TObject);
begin
if ActiveMDIChild <> nil then
with TMDIChild(ActiveMDIChild).OleContainer do
{ Before invoking dialog, check to be sure that there }
{ are valid OLE objects on the clipboard. }
if CanPaste then PasteSpecialDialog;

end;

procedure TMainForm.WindowCascadeItemClick(Sender: TObject);
begin
Cascade;

end;

procedure TMainForm.WindowTileItemClick(Sender: TObject);
begin
Tile;

end;

procedure TMainForm.WindowArrangeItemClick(Sender: TObject);
begin
ArrangeIcons;

end;

procedure TMainForm.WindowMinimizeItemClick(Sender: TObject);
var
I: Integer;

begin
{ Must be done backwards through the MDIChildren array }
for I := MDIChildCount - 1 downto 0 do
MDIChildren[I].WindowState := wsMinimized;

end;

COM-Based Technologies

CHAPTER 23
897

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

continues

27.65227_Ch23x 11/30/99 6:08 PM Page 897

LISTING 23.18 Continued

procedure TMainForm.UpdateMenuItems(Sender: TObject);
var
DoIt: Boolean;

begin
DoIt := MDIChildCount > 0;
{ only enable options if there are active children }
FileCloseItem.Enabled := DoIt;
FileSaveItem.Enabled := DoIt;
CloseAll1.Enabled := DoIt;
FileSaveAsItem.Enabled := DoIt;
CopyItem.Enabled := DoIt;
PasteItem.Enabled := DoIt;
CopyBtn.Enabled := DoIt;
SaveBtn.Enabled := DoIt;
PasteBtn.Enabled := DoIt;
WindowCascadeItem.Enabled := DoIt;
WindowTileItem.Enabled := DoIt;
WindowArrangeItem.Enabled := DoIt;
WindowMinimizeItem.Enabled := DoIt;

end;

procedure TMainForm.FormDestroy(Sender: TObject);
begin
Screen.OnActiveFormChange := nil;

end;

procedure TMainForm.HelpAboutItemClick(Sender: TObject);
begin
with TAboutBox.Create(Self) do
begin
ShowModal;
Free;

end;
end;

procedure TMainForm.CopyItemClick(Sender: TObject);
begin
if ActiveMDIChild <> nil then
TMDIChild(ActiveMDIChild).OleContainer.Copy;

end;

procedure TMainForm.CloseAll1Click(Sender: TObject);
begin
while ActiveMDIChild <> nil do

Component-Based Development

PART III
898

27.65227_Ch23x 11/30/99 6:08 PM Page 898

begin
ActiveMDIChild.Release; // use Release, not Free!
Application.ProcessMessages; // let Windows take care of business

end;
end;

end.

Summary
That wraps up this chapter on COM, OLE, and ActiveX. This chapter covered an enormous
amount of information! First, you received a solid foundation in COM-based technologies,
which should help you understand what goes on behind the scenes. Next, you got some insight
and information on various types of COM clients and servers. Following that, you were
immersed in various advanced techniques for Automation in Delphi. With all that under your
belt, the chapter led you through the theory and practice of MTS. In addition to in-depth cover-
age of COM, Automation, and MTS, you should be familiar with the workings of VCL’s
TOleContainer component.

If you’d like to know more about COM, you’ll find more information on the COM and
ActiveX technologies in other areas of this book. Chapter 24, “Extending the Windows Shell,”
shows real-world examples of COM server creation, and Chapter 25, “Creating ActiveX
Controls,” discusses ActiveX control creation in Delphi.

COM-Based Technologies

CHAPTER 23
899

23

C
O

M
-B

A
SED

T
EC

H
N

O
LO

G
IES

27.65227_Ch23x 11/30/99 6:08 PM Page 899

27.65227_Ch23x 11/30/99 6:08 PM Page 900

CHAPTER

24
Extending the Windows Shell

IN THIS CHAPTER
• A Tray-Notification Icon

Component 902

• Application Desktop Toolbars 918

• Shell Links 932

• Shell Extensions 952

• Summary 979

28.65227_Ch24x 11/30/99 6:09 PM Page 901

First introduced in Windows 95, the Windows shell is also supported on Windows NT 3.51
(and higher), Windows 98, and Windows 2000. A far cry from Program Manager, the Windows
shell includes some great features for extending the shell to meet your needs. Problem is, many
of these nifty extensible features are some of the most poorly documented subjects of Win32
development. This chapter is intended to give you the information and examples you need to
tap into shell features such as tray-notification icons, application desktop toolbars, shell links,
and shell extensions.

A Tray-Notification Icon Component
This section illustrates a technique for encapsulating the Windows shell tray-notification icon
cleanly into a Delphi component. As you build the component—called TTrayNotifyIcon—
you’ll learn about the API requirements for creating a tray-notification icon as well as how to
tackle some of the hairy problems you’ll come across as you work to embed all the icon’s func-
tionality within the component. If you’re unfamiliar with what a tray-notification icon is, it’s
one of those little icons that appear in the bottom-right corner of the Windows system taskbar
(assuming your taskbar is aligned to the bottom of your screen), as shown in Figure 24.1.

Component-Based Development

PART III
902

FIGURE 24.1
Tray-notification icons.

The API
Believe it or not, only one API call is involved in creating, modifying, and removing tray-
notification icons from the notification tray. The function is called Shell_NotifyIcon(). This
and other functions dealing with the Windows shell are contained in the ShellAPI unit.
Shell_NotifyIcon() is defined as follows:

function Shell_NotifyIcon(dwMessage: DWORD; lpData:
PNotifyIconData): BOOL; stdcall;

The dwMessage parameter describes the action to be taken for the icon. This can be any one of
the values shown in Table 24.1.

Tray-notification icons

28.65227_Ch24x 11/30/99 6:09 PM Page 902

TABLE 24.1 Values for the dwMessage Parameter

Constant Value Meaning

NIM_ADD 0 Add an icon to the notification tray.

NIM_MODIFY 1 Modify the properties of an existing icon.

NIM_DELETE 2 Remove an icon from the notification tray.

The lpData parameter is a pointer to a TNotifyIconData record. This record is defined as
follows:

type
TNotifyIconData = record
cbSize: DWORD;
Wnd: HWND;
uID: UINT;
uFlags: UINT;
uCallbackMessage: UINT;
hIcon: HICON;
szTip: array [0..63] of AnsiChar;

end;

The cbSize field holds the size of the record, and it should be initialized to
SizeOf(TNotifyIconData).

Wnd is the handle of the window to which tray-notification “callback” messages should be sent
(callback is in quotes here because it’s not really a callback in the strict sense; however, the
Win32 documentation uses this terminology for messages sent to a window on behalf of a tray-
notification icon).

uID is a programmer-defined unique ID number. If you have an application with several icons,
you’ll need to identify each one by a placing a different number in this field.

uFlags describes which of the fields of the TNotifyIconData record should be considered live
by the Shell_NotifyIcon() function, and, therefore, which of the icon properties are to be
affected by the action specified by the dwMessage parameter. This parameter can be any combi-
nation of the flags (using or to join them) shown in Table 24.2.

TABLE 24.2 Possible Flags to be Included in uFlags

Constant Value Meaning

NIF_MESSAGE 0 The uCallbackMessage field is live.

NIF_ICON 2 The hIcon field is live.

NIF_TIP 4 The szTip filed is live.

Extending the Windows Shell

CHAPTER 24
903

24

E
X

TEN
D

IN
G

TH
E

W
IN

D
O

W
S

S
H

ELL

28.65227_Ch24x 11/30/99 6:09 PM Page 903

uCallbackMessage contains the value of the Windows message to be sent to the window iden-
tified by the Wnd field. Generally, the value of this field is obtained by calling
RegisterWindowMessage() or by using an offset from WM_USER. The lParam of this message
will be the same value as the uID field, and the wParam will hold the mouse message generated
over the notification icon.

hIcon identifies the handle to the icon that will be placed in the notification tray.

szTip holds a null-terminated string that will appear in the hint window displayed when the
mouse pointer is held above the notification icon.

The TTrayNotifyIcon component encapsulates the Shell_NotifyIcon() into a method called
SendTrayMessage(), which is shown here:

procedure TTrayNotifyIcon.SendTrayMessage(Msg: DWORD; Flags: UINT);
{ This method wraps up the call to the API’s Shell_NotifyIcon }
begin
{ Fill up record with appropriate values }
with Tnd do
begin
cbSize := SizeOf(Tnd);
StrPLCopy(szTip, PChar(FHint), SizeOf(szTip));
uFlags := Flags;
uID := UINT(Self);
Wnd := IconMgr.HWindow;
uCallbackMessage := Tray_Callback;
hIcon := ActiveIconHandle;

end;
Shell_NotifyIcon(Msg, @Tnd);

end;

In this method, szTip is copied from a private string field called FHint.

uID is used to hold a reference to Self. Because this data will be included in subsequent notifi-
cation tray messages, correlating notification tray messages for multiple icons to individual
components will be easy.

Wnd is assigned the value of IconMgr.HWindow. IconMgr is a global variable of type TIconMgr.
You’ll see the implementation of this object in a moment, but for now you only need know that
it’s through this component that all notification tray messages will be sent.

uCallbackMessage is assigned from DDGM_TRAYICON. DDGM_TRAYICON obtains its value from the
RegisterWindowMessage() API function. This ensures that DDGM_TRAYICON is a system-wide
unique message ID. The following code accomplishes this task:

const
{ String to identify registered window message }
TrayMsgStr = ‘DDG.TrayNotifyIconMsg’;

Component-Based Development

PART III
904

28.65227_Ch24x 11/30/99 6:09 PM Page 904

initialization
{ Get a unique windows message ID for tray callback }
DDGM_TRAYICON := RegisterWindowMessage(TrayMsgStr);

hIcon takes on the return value provided by the ActiveIconHandle() method. This method
returns the handle for the icon currently selected in the component’s Icon property.

Handling Messages
We mentioned earlier that all notification tray messages are sent to a window maintained by
the global IconMgr object. This object is constructed and freed in the initialization and
finalization sections of the component’s unit, as shown here:

initialization
{ Get a unique windows message ID for tray callback }
DDGM_TRAYICON := RegisterWindowMessage(TrayMsgStr);
IconMgr := TIconManager.Create;

finalization
IconMgr.Free;

This object is fairly small. Here’s its definition:

type
TIconManager = class
private
FHWindow: HWnd;
procedure TrayWndProc(var Message: TMessage);

public
constructor Create;
destructor Destroy; override;
property HWindow: HWnd read FHWindow write FHWindow;

end;

The window to which notification tray messages will be sent is created in the constructor for
this object using the AllocateHWnd() function:

constructor TIconManager.Create;
begin
FHWindow := AllocateHWnd(TrayWndProc);

end;

The TrayWndProc() method serves as the window procedure for the window created in the
constructor. More about this method in a moment.

Icons and Hints
The most straightforward way to surface icons and hints for the component’s end user is
through properties. Additionally, creating an Icon property of type TIcon means that it can
automatically take advantage of Delphi’s property editor for icons, which is a nice touch.

Extending the Windows Shell

CHAPTER 24
905

24

E
X

TEN
D

IN
G

TH
E

W
IN

D
O

W
S

S
H

ELL

28.65227_Ch24x 11/30/99 6:09 PM Page 905

Because the tray icon is visible even at design time, you need to ensure that the icon and tip
can change dynamically. Doing this really isn’t a lot of extra work; it’s just a matter of making
sure the SendTrayMessage() method is called (using the NIM_MODIFY message) in the write
method of the Hint and Icon properties.

Here are the write methods for those properties:

procedure TTrayNotifyIcon.SetIcon(Value: TIcon);
{ Write method for Icon property. }
begin
FIcon.Assign(Value); // set new icon
if FIconVisible then
{ Change icon on notification tray }
SendTrayMessage(NIM_MODIFY, NIF_ICON);

end;

procedure TTrayNotifyIcon.SetHint(Value: String);
{ Set method for Hint property }
begin
if FHint <> Value then
begin
FHint := Value;
if FIconVisible then
{ Change hint on icon on notification tray }
SendTrayMessage(NIM_MODIFY, NIF_TIP);

end;
end;

Mouse Clicks
One of the most challenging parts of this component is ensuring that the mouse clicks are han-
dled properly. You may have noticed that many tray-notification icons perform three different
actions due to mouse clicks:

• Bring up a window on a single-click

• Bring up a different window (usually a properties sheet) on a double-click

• Invoke a local menu with a right-click

The challenge comes in creating an event that represents the double-click without also firing
the single-click event.

In Windows message terms, when the user double-clicks the left mouse button, the window
with focus will receive both the WM_LBUTTONDOWN message and the WM_LBUTTONDBLCLK mes-
sage. In order to allow a double-click message to be processed independently of a single-click,
some mechanism is required to delay the handling of the single-click message long enough to
ensure that a double-click message isn’t forthcoming.

Component-Based Development

PART III
906

28.65227_Ch24x 11/30/99 6:09 PM Page 906

The amount of time to wait before you can be sure that a WM_LBUTTONDBLCLK message is not
following a WM_LBUTTONDOWN message is actually pretty easy to determine. The API function
GetDoubleClickTime(), which takes no parameters, returns the maximum amount of time (in
milliseconds) that the Control Panel will allow between the two clicks of a double-click. The
obvious choice for a mechanism to allow you to wait the number of milliseconds specified by
GetDoubleClickTime() to ensure that a double-click is not following a click is the TTimer
component. Therefore, a TTimer component is created and initialized in the TTrayNotifyIcon
component’s constructor with the following code:

FTimer := TTimer.Create(Self);
with FTimer do
begin
Enabled := False;
Interval := GetDoubleClickTime;
OnTimer := OnButtonTimer;

end;

OnButtonTimer() is a method that will be called when the timer interval expires. We’ll show
you this method in just a moment.

Earlier, we mentioned that notification tray messages are filtered through the TrayWndProc()
method of the IconMgr. Now it’s time to spring this method on you, so here it is:

procedure TIconManager.TrayWndProc(var Message: TMessage);
{ This allows us to handle all tray callback messages }
{ from within the context of the component. }
var
Pt: TPoint;
TheIcon: TTrayNotifyIcon;

begin
with Message do
begin

{ if it’s the tray callback message }
if (Msg = DDGM_TRAYICON) then
begin
TheIcon := TTrayNotifyIcon(WParam);
case lParam of
{ enable timer on first mouse down. }
{ OnClick will be fired by OnTimer method, provided }
{ double click has not occurred. }
WM_LBUTTONDOWN: TheIcon.FTimer.Enabled := True;
{ Set no click flag on double click. This will suppress }
{ the single click. }
WM_LBUTTONDBLCLK:
begin
TheIcon.FNoShowClick := True;

Extending the Windows Shell

CHAPTER 24
907

24

E
X

TEN
D

IN
G

TH
E

W
IN

D
O

W
S

S
H

ELL

28.65227_Ch24x 11/30/99 6:09 PM Page 907

if Assigned(TheIcon.FOnDblClick) then TheIcon.FOnDblClick(Self);
end;

WM_RBUTTONDOWN:
begin
if Assigned(TheIcon.FPopupMenu) then
begin
{ Call to SetForegroundWindow is required by API }
SetForegroundWindow(IconMgr.HWindow);
{ Popup local menu at the cursor position. }
GetCursorPos(Pt);
TheIcon.FPopupMenu.Popup(Pt.X, Pt.Y);
{ Message post required by API to force task switch }
PostMessage(IconMgr.HWindow, WM_USER, 0, 0);

end;
end;

end;
end
else
{ If it isn’t a tray callback message, then call DefWindowProc }
Result := DefWindowProc(FHWindow, Msg, wParam, lParam);

end;
end;

What makes this all work is that the single-click message merely enables the timer, whereas
the double-click message sets a flag to indicate that the double-click has occurred before firing
its OnDblClick event. The right-click, incidentally, invokes the pop-up menu given by the com-
ponent’s PopupMenu property. Now take a look at the OnButtonTimer() method:

procedure TTrayNotifyIcon.OnButtonTimer(Sender: TObject);
begin
{ Disable timer because we only want it to fire once. }
FTimer.Enabled := False;
{ if double click has not occurred, then fire single click. }
if (not FNoShowClick) and Assigned(FOnClick) then
FOnClick(Self);

FNoShowClick := False; // reset flag
end;

This method first disables the timer to ensure that the event fires only once per mouse click.
The method then checks the status of the FNoShowClick flag. Remember that this flag will be
set by the double-click message in the OwnerWndProc() method. Therefore, the OnClick event
will be fired only when OnDblClk is not.

Hiding the Application
Another aspect of tray-notification applications is that they do not appear as buttons in the sys-
tem taskbar. To provide this functionality, the TTrayNotifyIcon component surfaces a

Component-Based Development

PART III
908

28.65227_Ch24x 11/30/99 6:10 PM Page 908

HideTask property that allows the user to decide whether the application should be visible in
the taskbar. The write method for this property is shown in the following code. The line of
code that does the work is the call to the ShowWindow() API procedure, which passes the
Handle property of Application and a constant to indicate whether the application is to be
shown normally or hidden. Here’s the code:

procedure TTrayNotifyIcon.SetHideTask(Value: Boolean);
{ Write method for HideTask property }
const
{ Flags to show application normally or hide it }
ShowArray: array[Boolean] of integer = (sw_ShowNormal, sw_Hide);

begin
if FHideTask <> Value then begin
FHideTask := Value;
{ Don’t do anything in design mode }
if not (csDesigning in ComponentState) then
ShowWindow(Application.Handle, ShowArray[FHideTask]);

end;
end;

Listing 24.1 shows the TrayIcon.pas unit, which contains the complete source code for the
TTrayNotifyIcon component.

LISTING 24.1 TrayIcon.pas: Source Code for the TTrayNotifyIcon Component

unit TrayIcon;

interface

uses Windows, SysUtils, Messages, ShellAPI, Classes, Graphics, Forms, Menus,
StdCtrls, ExtCtrls;

type
ENotifyIconError = class(Exception);

TTrayNotifyIcon = class(TComponent)
private
FDefaultIcon: THandle;
FIcon: TIcon;
FHideTask: Boolean;
FHint: string;
FIconVisible: Boolean;
FPopupMenu: TPopupMenu;
FOnClick: TNotifyEvent;
FOnDblClick: TNotifyEvent;
FNoShowClick: Boolean;

Extending the Windows Shell

CHAPTER 24
909

24

E
X

TEN
D

IN
G

TH
E

W
IN

D
O

W
S

S
H

ELL

continues

28.65227_Ch24x 11/30/99 6:10 PM Page 909

LISTING 24.1 Continued

FTimer: TTimer;
Tnd: TNotifyIconData;
procedure SetIcon(Value: TIcon);
procedure SetHideTask(Value: Boolean);
procedure SetHint(Value: string);
procedure SetIconVisible(Value: Boolean);
procedure SetPopupMenu(Value: TPopupMenu);
procedure SendTrayMessage(Msg: DWORD; Flags: UINT);
function ActiveIconHandle: THandle;
procedure OnButtonTimer(Sender: TObject);

protected
procedure Loaded; override;
procedure LoadDefaultIcon; virtual;
procedure Notification(AComponent: TComponent;
Operation: TOperation); override;

public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;

published
property Icon: TIcon read FIcon write SetIcon;
property HideTask: Boolean read FHideTask write SetHideTask default False;
property Hint: String read FHint write SetHint;
property IconVisible: Boolean read FIconVisible write SetIconVisible
default False;

property PopupMenu: TPopupMenu read FPopupMenu write SetPopupMenu;
property OnClick: TNotifyEvent read FOnClick write FOnClick;
property OnDblClick: TNotifyEvent read FOnDblClick write FOnDblClick;

end;

implementation

{ TIconManager }
{ This class creates a hidden window which handles and routes }
{ tray icon messages }
type
TIconManager = class
private
FHWindow: HWnd;
procedure TrayWndProc(var Message: TMessage);

public
constructor Create;
destructor Destroy; override;
property HWindow: HWnd read FHWindow write FHWindow;

end;

var

Component-Based Development

PART III
910

28.65227_Ch24x 11/30/99 6:10 PM Page 910

IconMgr: TIconManager;
DDGM_TRAYICON: Integer;

constructor TIconManager.Create;
begin
FHWindow := AllocateHWnd(TrayWndProc);

end;

destructor TIconManager.Destroy;
begin
if FHWindow <> 0 then DeallocateHWnd(FHWindow);
inherited Destroy;

end;

procedure TIconManager.TrayWndProc(var Message: TMessage);
{ This allows us to handle all tray callback messages }
{ from within the context of the component. }
var
Pt: TPoint;
TheIcon: TTrayNotifyIcon;

begin
with Message do
begin
{ if it’s the tray callback message }
if (Msg = DDGM_TRAYICON) then
begin
TheIcon := TTrayNotifyIcon(WParam);
case lParam of
{ enable timer on first mouse down. }
{ OnClick will be fired by OnTimer method, provided }
{ double click has not occurred. }
WM_LBUTTONDOWN: TheIcon.FTimer.Enabled := True;
{ Set no click flag on double click. This will suppress }
{ the single click. }
WM_LBUTTONDBLCLK:
begin
TheIcon.FNoShowClick := True;
if Assigned(TheIcon.FOnDblClick) then TheIcon.FOnDblClick(Self);

end;
WM_RBUTTONDOWN:
begin
if Assigned(TheIcon.FPopupMenu) then
begin
{ Call to SetForegroundWindow is required by API }
SetForegroundWindow(IconMgr.HWindow);
{ Popup local menu at the cursor position. }

Extending the Windows Shell

CHAPTER 24
911

24

E
X

TEN
D

IN
G

TH
E

W
IN

D
O

W
S

S
H

ELL

continues

28.65227_Ch24x 11/30/99 6:10 PM Page 911

LISTING 24.1 Continued

GetCursorPos(Pt);
TheIcon.FPopupMenu.Popup(Pt.X, Pt.Y);
{ Message post required by API to force task switch }
PostMessage(IconMgr.HWindow, WM_USER, 0, 0);

end;
end;

end;
end
else
{ If it isn’t a tray callback message, then call DefWindowProc }
Result := DefWindowProc(FHWindow, Msg, wParam, lParam);

end;
end;

{ TTrayNotifyIcon }

constructor TTrayNotifyIcon.Create(AOwner: TComponent);
begin
inherited Create(AOwner);
FIcon := TIcon.Create;
FTimer := TTimer.Create(Self);
with FTimer do
begin
Enabled := False;
Interval := GetDoubleClickTime;
OnTimer := OnButtonTimer;

end;
{ Keep default windows icon handy... }
LoadDefaultIcon;

end;

destructor TTrayNotifyIcon.Destroy;
begin
if FIconVisible then SetIconVisible(False); // destroy icon
FIcon.Free; // free stuff
FTimer.Free;
inherited Destroy;

end;

function TTrayNotifyIcon.ActiveIconHandle: THandle;
{ Returns handle of active icon }
begin
{ If no icon is loaded, then return default icon }
if (FIcon.Handle <> 0) then
Result := FIcon.Handle

Component-Based Development

PART III
912

28.65227_Ch24x 11/30/99 6:10 PM Page 912

else
Result := FDefaultIcon;

end;

procedure TTrayNotifyIcon.LoadDefaultIcon;
{ Loads default window icon to keep it handy. }
{ This will allow the component to use the windows logo }
{ icon as the default when no icon is selected in the }
{ Icon property. }
begin
FDefaultIcon := LoadIcon(0, IDI_WINLOGO);

end;

procedure TTrayNotifyIcon.Loaded;
{ Called after component is loaded from stream }
begin
inherited Loaded;
{ if icon is supposed to be visible, create it. }
if FIconVisible then
SendTrayMessage(NIM_ADD, NIF_MESSAGE or NIF_ICON or NIF_TIP);

end;

procedure TTrayNotifyIcon.Notification(AComponent: TComponent;
Operation: TOperation);

begin
inherited Notification(AComponent, Operation);
if (Operation = opRemove) and (AComponent = PopupMenu) then
PopupMenu := nil;

end;

procedure TTrayNotifyIcon.OnButtonTimer(Sender: TObject);
{ Timer used to keep track of time between two clicks of a }
{ double click. This delays the first click long enough to }
{ ensure that a double click hasn’t occurred. The whole }
{ point of these gymnastics is to allow the component to }
{ receive OnClicks and OnDblClicks independently. }
begin
{ Disable timer because we only want it to fire once. }
FTimer.Enabled := False;
{ if double click has not occurred, then fire single click. }
if (not FNoShowClick) and Assigned(FOnClick) then
FOnClick(Self);

FNoShowClick := False; // reset flag
end;

procedure TTrayNotifyIcon.SendTrayMessage(Msg: DWORD; Flags: UINT);

Extending the Windows Shell

CHAPTER 24
913

24

E
X

TEN
D

IN
G

TH
E

W
IN

D
O

W
S

S
H

ELL

continues

28.65227_Ch24x 11/30/99 6:10 PM Page 913

LISTING 24.1 Continued

{ This method wraps up the call to the API’s Shell_NotifyIcon }
begin
{ Fill up record with appropriate values }
with Tnd do
begin
cbSize := SizeOf(Tnd);
StrPLCopy(szTip, PChar(FHint), SizeOf(szTip));
uFlags := Flags;
uID := UINT(Self);
Wnd := IconMgr.HWindow;
uCallbackMessage := DDGM_TRAYICON;
hIcon := ActiveIconHandle;

end;
Shell_NotifyIcon(Msg, @Tnd);

end;

procedure TTrayNotifyIcon.SetHideTask(Value: Boolean);
{ Write method for HideTask property }
const
{ Flags to show application normally or hide it }
ShowArray: array[Boolean] of integer = (sw_ShowNormal, sw_Hide);

begin
if FHideTask <> Value then
begin
FHideTask := Value;
{ Don’t do anything in design mode }
if not (csDesigning in ComponentState) then
ShowWindow(Application.Handle, ShowArray[FHideTask]);

end;
end;

procedure TTrayNotifyIcon.SetHint(Value: string);
{ Set method for Hint property }
begin
if FHint <> Value then
begin
FHint := Value;
if FIconVisible then
{ Change hint on icon on notification tray }
SendTrayMessage(NIM_MODIFY, NIF_TIP);

end;
end;

Component-Based Development

PART III
914

28.65227_Ch24x 11/30/99 6:10 PM Page 914

procedure TTrayNotifyIcon.SetIcon(Value: TIcon);
{ Write method for Icon property. }
begin
FIcon.Assign(Value); // set new icon
{ Change icon on notification tray }
if FIconVisible then SendTrayMessage(NIM_MODIFY, NIF_ICON);

end;

procedure TTrayNotifyIcon.SetIconVisible(Value: Boolean);
{ Write method for IconVisible property }
const
{ Flags to add or delete a tray-notification icon }
MsgArray: array[Boolean] of DWORD = (NIM_DELETE, NIM_ADD);

begin
if FIconVisible <> Value then
begin
FIconVisible := Value;
{ Set icon as appropriate }
SendTrayMessage(MsgArray[Value], NIF_MESSAGE or NIF_ICON or NIF_TIP);

end;
end;

procedure TTrayNotifyIcon.SetPopupMenu(Value: TPopupMenu);
{ Write method for PopupMenu property }
begin
FPopupMenu := Value;
if Value <> nil then Value.FreeNotification(Self);

end;

const
{ String to identify registered window message }
TrayMsgStr = ‘DDG.TrayNotifyIconMsg’;

initialization
{ Get a unique windows message ID for tray callback }
DDGM_TRAYICON := RegisterWindowMessage(TrayMsgStr);
IconMgr := TIconManager.Create;

finalization
IconMgr.Free;

end.

Figure 24.2 shows a picture of the icon generated by TTrayNotifyIcon in the notification tray.

Extending the Windows Shell

CHAPTER 24
915

24

E
X

TEN
D

IN
G

TH
E

W
IN

D
O

W
S

S
H

ELL

28.65227_Ch24x 11/30/99 6:10 PM Page 915

FIGURE 24.2
The TTrayNotifyIcon component in action.

By the way, because the tray icon is initialized inside the component’s constructor and because
constructors are executed at design time, this component displays the tray-notification icon
even at design time!

Sample Tray Application
In order to provide you with a better overall feel for how the TTrayNotifyIcon component
works within the context of an application, Figure 24.3 shows the main window of this applica-
tion, and Listing 24.2 shows the fairly minimal code for the main unit for this application.

Component-Based Development

PART III
916

FIGURE 24.3
Notification icon application.

LISTING 24.2 Main.pas, the Main Unit for the Notification Icon Demo Application

unit main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ShellAPI, TrayIcon, Menus, ComCtrls;

type
TMainForm = class(TForm)
pmiPopup: TPopupMenu;
pgclPageCtl: TPageControl;
TabSheet1: TTabSheet;
btnClose: TButton;
btnTerm: TButton;
Terminate1: TMenuItem;

28.65227_Ch24x 11/30/99 6:10 PM Page 916

Label1: TLabel;
N1: TMenuItem;
Propeties1: TMenuItem;
TrayNotifyIcon1: TTrayNotifyIcon;
procedure NotifyIcon1Click(Sender: TObject);
procedure NotifyIcon1DblClick(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure btnTermClick(Sender: TObject);
procedure btnCloseClick(Sender: TObject);
procedure FormCreate(Sender: TObject);

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

procedure TMainForm.NotifyIcon1Click(Sender: TObject);
begin
ShowMessage(‘Single click’);

end;

procedure TMainForm.NotifyIcon1DblClick(Sender: TObject);
begin
Show;

end;

procedure TMainForm.FormClose(Sender: TObject; var Action: TCloseAction);
begin
Action := caNone;
Hide;

end;

procedure TMainForm.btnTermClick(Sender: TObject);
begin
Application.Terminate;

end;

procedure TMainForm.btnCloseClick(Sender: TObject);
begin
Hide;

end;

Extending the Windows Shell

CHAPTER 24
917

24

E
X

TEN
D

IN
G

TH
E

W
IN

D
O

W
S

S
H

ELL

continues

28.65227_Ch24x 11/30/99 6:10 PM Page 917

LISTING 24.2 Continued

procedure TMainForm.FormCreate(Sender: TObject);
begin
TrayNotifyIcon1.IconVisible := True;

end;

end.

Application Desktop Toolbars
Application desktop toolbars, also known as AppBars, are windows that can dock to one of the
edges of your screen. You’re already familiar with AppBars, even though you might not know
it; the shell’s taskbar, which you probably work with every day, is an example of an AppBar.
As shown in Figure 24.4, the taskbar is really little more than an AppBar window containing a
Start button, notification tray, and other controls.

Component-Based Development

PART III
918

FIGURE 24.4
The shell’s taskbar.

Apart from docking to screen edges, AppBars can, optionally, employ taskbar-like features,
such as auto-hide and drag-and-drop functionality. What you might find surprising, however, is
how small the API is (just one function). As its small size might imply, the API doesn’t provide
a whole lot. The role of the API is more advisory than functional. That is, rather than control-
ling the AppBar with “do this, do that” commands types, you interrogate the AppBar with “can
I do this, can I do that?” commands types.

The API
Just like tray-notification icons, AppBars have only one API function that you’ll work with—
SHAppBarMessage(), in this case. Here’s how SHAppBarMessage() is defined in the ShellAPI
unit:

function SHAppBarMessage(dwMessage: DWORD; var pData: TAppBarData): UINT;
stdcall;

The first parameter to this function, dwMessage, can contain any one of the values described in
Table 24.3.

28.65227_Ch24x 11/30/99 6:10 PM Page 918

Extending the Windows Shell

CHAPTER 24
919

24

E
X

TEN
D

IN
G

TH
E

W
IN

D
O

W
S

S
H

ELL

TABLE 24.3 AppBar Messages

Constant Value Meaning

ABM_NEW $0 Registers a new AppBar and specifies a new callback
message

ABM_REMOVE $1 Unregisters an existing AppBar

ABM_QUERYPOS $2 Requests a new position and size for an AppBar

ABM_SETPOS $3 Sets a new position and size of an AppBar

ABM_GETSTATE $4 Gets the auto-hide and always-on-top states of the shell
taskbar

ABM_GETTASKBARPOS $5 Gets the position of the shell taskbar

ABM_ACTIVATE $6 Notifies the shell that a new AppBar has been created

ABM_GETAUTOHIDEBAR $7 Gets the handle of an auto-hide AppBar docked to a partic-
ular edge of the screen

ABM_SETAUTOHIDEBAR $8 Registers an auto-hide AppBar for a particular screen edge

ABM_WINDOWPOSCHANGED $9 Notifies the shell that the position of an AppBar has
changed

The pData parameter of SHAppBarMessage() is a record of type TAppBarData, which is defined
in ShellAPI as follows:

type
PAppBarData = ^TAppBarData;
TAppBarData = record
cbSize: DWORD;
hWnd: HWND;
uCallbackMessage: UINT;
uEdge: UINT;
rc: TRect;
lParam: LPARAM; { message specific }

end;

In this record, the cbSize field holds the size of the record, the hWnd field holds the window
handle of the specified AppBar, uCallbackMessage holds the message value that will be sent to
the AppBar window along with notification messages, rc holds the bounding rectangle of the
AppBar in question, and lParam holds some additional message-specific information.

TIP

You’ll find more information on the SHAppBarMessage() API function and the
TAppBarData type in the Win32 online help.

28.65227_Ch24x 11/30/99 6:10 PM Page 919

TAppBar: The AppBar Form
Given this fairly small API, it’s not terribly difficult to encapsulate an AppBar in a VCL form.
This section will explain the techniques used to wrap the AppBar API into a control descend-
ing from TCustomForm. Because TCustomForm is a form, you’ll interact with the control as a
top-level form in the Form Designer rather than as a component on a form.

Most of the work in an AppBar is done by sending a TAppBarData record to the shell using the
SHAppBarMessage() API function. The TAppBar component maintains an internal TAppBarData
record called FABD. FABD is set up for the call to SendAppBarMsg() in the constructor and the
CreateWnd() methods in order to create the AppBar. In particular, the cbSize field is initial-
ized, the uCallbackMessage field is set to a value obtained from the
RegisterWindowMessage() API function, and the hWnd field is set to the current window han-
dle of the form. SendAppBarMessage() is a simple wrapper for SHAppBarMessage() and is
defined as follows:

function TAppBar.SendAppBarMsg(Msg: DWORD): UINT;
begin
Result := SHAppBarMessage(Msg, FABD);

end;

If the AppBar is created successfully, the SetAppBarEdge() method is called to set the AppBar
to its initial position. This method, in turn, calls the SetAppBarPos() method, passing the
appropriate API-defined flag that indicates the requested screen edge. As you would expect, the
ABE_TOP, ABE_BOTTOM, ABE_LEFT, and ABE_RIGHT flags represent each of the screen edges. This
is shown in the following code snippet:

procedure TAppBar.SetAppBarPos(Edge: UINT);
begin
if csDesigning in ComponentState then Exit;
FABD.uEdge := Edge; // set edge
with FABD.rc do
begin
// set coordinates to full-screen
Top := 0;
Left := 0;
Right := Screen.Width;
Bottom := Screen.Height;
// Send ABM_QUERYPOS to obtain proper rect on edge
SendAppBarMsg(ABM_QUERYPOS);
// re-adjust rect based on that modified by ABM_QUERYPOS
case Edge of
ABE_LEFT: Right := Left + FDockedWidth;
ABE_RIGHT: Left := Right - FDockedWidth;
ABE_TOP: Bottom := Top + FDockedHeight;

Component-Based Development

PART III
920

28.65227_Ch24x 11/30/99 6:10 PM Page 920

ABE_BOTTOM: Top := Bottom - FDockedHeight;
end;
// Set the app bar position.
SendAppBarMsg(ABM_SETPOS);

end;
// Set the BoundsRect property so that it conforms to the
// bounding rectangle passed to the system.
BoundsRect := FABD.rc;

end;

This method first sets the uEdge field of FABD to the value passed via the Edge parameter. It
then sets the rc field to the full-screen coordinates and sends the ABM_QUERYPOS message. This
message resets the rc field so that it contains the correct bounding rectangle for the edge indi-
cated by uEdge. Once the proper bounding rectangle has been obtained, rc is again adjusted so
that it’s a reasonable height or width. At this point, rc holds the final bounding rectangle for
the AppBar. The ABM_SETPOS message is then sent to inform the shell of the new rectangle, and
the rectangle is set using the control’s BoundsRect property.

We mentioned earlier that AppBar notification messages will be sent to the window indicated
by FABD.hWnd using the message identifier held in FABD.uCallbackMessage. These notification
messages are handled in the WndProc() method shown here:

procedure TAppBar.WndProc(var M: TMessage);
var
State: UINT;
WndPos: HWnd;

begin
if M.Msg = AppBarMsg then
begin
case M.WParam of
// Sent when always on top or auto-hide state has changed.
ABN_STATECHANGE:
begin
// Check to see whether the access bar is still ABS_ALWAYSONTOP.
State := SendAppBarMsg(ABM_GETSTATE);
if ABS_ALWAYSONTOP and State = 0 then
SetTopMost(False)

else
SetTopMost(True);

end;
// A full screen application has started, or the last
// full-screen application has closed.
ABN_FULLSCREENAPP:
begin
// Set the access bar’s z-order appropriately.
State := SendAppBarMsg(ABM_GETSTATE);

Extending the Windows Shell

CHAPTER 24
921

24

E
X

TEN
D

IN
G

TH
E

W
IN

D
O

W
S

S
H

ELL

28.65227_Ch24x 11/30/99 6:10 PM Page 921

if M.lParam <> 0 then begin
if ABS_ALWAYSONTOP and State = 0 then
SetTopMost(False)

else
SetTopMost(True);

end
else
if State and ABS_ALWAYSONTOP <> 0 then
SetTopMost(True);

end;
// Sent when something happened which may effect the AppBar position.
ABN_POSCHANGED:
begin
// The taskbar or another access bar
// has changed its size or position.
SetAppBarPos(FABD.uEdge);

end;
end;

end
else
inherited WndProc(M);

end;

This method handles some notification messages that permit the AppBar to respond to changes
that may occur in the shell while the application is running. The remainder of the AppBar com-
ponent code is shown in Listing 24.3.

LISTING 24.3 AppBars.pas, the Unit Containing the Base Class for AppBar Support

unit AppBars;

interface

uses Windows, Messages, SysUtils, Forms, ShellAPI, Classes, Controls;

type
TAppBarEdge = (abeTop, abeBottom, abeLeft, abeRight);

EAppBarError = class(Exception);

TAppBar = class(TCustomForm)
private
FABD: TAppBarData;
FDockedHeight: Integer;
FDockedWidth: Integer;
FEdge: TAppBarEdge;
FOnEdgeChanged: TNotifyEvent;

Component-Based Development

PART III
922

28.65227_Ch24x 11/30/99 6:10 PM Page 922

FTopMost: Boolean;
procedure WMActivate(var M: TMessage); message WM_ACTIVATE;
procedure WMWindowPosChanged(var M: TMessage); message WM_WINDOWPOSCHANGED;
function SendAppBarMsg(Msg: DWORD): UINT;
procedure SetAppBarEdge(Value: TAppBarEdge);
procedure SetAppBarPos(Edge: UINT);
procedure SetTopMost(Value: Boolean);
procedure SetDockedHeight(const Value: Integer);
procedure SetDockedWidth(const Value: Integer);

protected
procedure CreateParams(var Params: TCreateParams); override;
procedure CreateWnd; override;
procedure DestroyWnd; override;
procedure WndProc(var M: TMessage); override;

public
constructor CreateNew(AOwner: TComponent; Dummy: Integer = 0); override;
property DockManager;

published
property Action;
property ActiveControl;
property AutoScroll;
property AutoSize;
property BiDiMode;
property BorderWidth;
property Color;
property Ctl3D;
property DockedHeight: Integer read FDockedHeight write SetDockedHeight
default 35;

property DockedWidth: Integer read FDockedWidth write SetDockedWidth
default 40;

property UseDockManager;
property DockSite;
property DragKind;
property DragMode;
property Edge: TAppBarEdge read FEdge write SetAppBarEdge default abeTop;
property Enabled;
property ParentFont default False;
property Font;
property HelpFile;
property HorzScrollBar;
property Icon;
property KeyPreview;
property ObjectMenuItem;
property ParentBiDiMode;
property PixelsPerInch;
property PopupMenu;

Extending the Windows Shell

CHAPTER 24
923

24

E
X

TEN
D

IN
G

TH
E

W
IN

D
O

W
S

S
H

ELL

continues

28.65227_Ch24x 11/30/99 6:10 PM Page 923

LISTING 24.3 Continued

property PrintScale;
property Scaled;
property ShowHint;
property TopMost: Boolean read FTopMost write SetTopMost default False;
property VertScrollBar;
property Visible;
property OnActivate;
property OnCanResize;
property OnClick;
property OnClose;
property OnCloseQuery;
property OnConstrainedResize;
property OnCreate;
property OnDblClick;
property OnDestroy;
property OnDeactivate;
property OnDockDrop;
property OnDockOver;
property OnDragDrop;
property OnDragOver;
property OnEdgeChanged: TNotifyEvent read FOnEdgeChanged
write FOnEdgeChanged;

property OnEndDock;
property OnGetSiteInfo;
property OnHide;
property OnHelp;
property OnKeyDown;
property OnKeyPress;
property OnKeyUp;
property OnMouseDown;
property OnMouseMove;
property OnMouseUp;
property OnMouseWheel;
property OnMouseWheelDown;
property OnMouseWheelUp;
property OnPaint;
property OnResize;
property OnShortCut;
property OnShow;
property OnStartDock;
property OnUnDock;

end;

implementation

Component-Based Development

PART III
924

28.65227_Ch24x 11/30/99 6:10 PM Page 924

var
AppBarMsg: UINT;

constructor TAppBar.CreateNew(AOwner: TComponent; Dummy: Integer);
begin
FDockedHeight := 35;
FDockedWidth := 40;
inherited CreateNew(AOwner, Dummy);
ClientHeight := 35;
Width := 100;
BorderStyle := bsNone;
BorderIcons := [];
// set up the TAppBarData record
FABD.cbSize := SizeOf(FABD);
FABD.uCallbackMessage := AppBarMsg;

end;

procedure TAppBar.WMWindowPosChanged(var M: TMessage);
begin
inherited;
// Must inform shell that the AppBar position has changed
SendAppBarMsg(ABM_WINDOWPOSCHANGED);

end;

procedure TAppBar.WMActivate(var M: TMessage);
begin
inherited;
// Must inform shell that the AppBar window was activated
SendAppBarMsg(ABM_ACTIVATE);

end;

procedure TAppBar.WndProc(var M: TMessage);
var
State: UINT;

begin
if M.Msg = AppBarMsg then
begin
case M.WParam of
// Sent when always on top or auto-hide state has changed.
ABN_STATECHANGE:
begin
// Check to see whether the access bar is still ABS_ALWAYSONTOP.
State := SendAppBarMsg(ABM_GETSTATE);
if ABS_ALWAYSONTOP and State = 0 then
SetTopMost(False)

else

Extending the Windows Shell

CHAPTER 24
925

24

E
X

TEN
D

IN
G

TH
E

W
IN

D
O

W
S

S
H

ELL

continues

28.65227_Ch24x 11/30/99 6:10 PM Page 925

LISTING 24.3 Continued

SetTopMost(True);
end;

// A full screen application has started, or the last
// full-screen application has closed.
ABN_FULLSCREENAPP:
begin
// Set the access bar’s z-order appropriately.
State := SendAppBarMsg(ABM_GETSTATE);
if M.lParam <> 0 then begin
if ABS_ALWAYSONTOP and State = 0 then
SetTopMost(False)

else
SetTopMost(True);

end
else
if State and ABS_ALWAYSONTOP <> 0 then
SetTopMost(True);

end;
// Sent when something happened which may effect the AppBar position.
ABN_POSCHANGED:
// The taskbar or another access bar
// has changed its size or position.
SetAppBarPos(FABD.uEdge);

end;
end
else
inherited WndProc(M);

end;

function TAppBar.SendAppBarMsg(Msg: DWORD): UINT;
begin
// Don’t do AppBar stuff at design time... too funky
if csDesigning in ComponentState then Result := 0
else Result := SHAppBarMessage(Msg, FABD);

end;

procedure TAppBar.SetAppBarPos(Edge: UINT);
begin
if csDesigning in ComponentState then Exit;
FABD.uEdge := Edge; // set edge
with FABD.rc do
begin
// set coordinates to full-screen
Top := 0;
Left := 0;
Right := Screen.Width;

Component-Based Development

PART III
926

28.65227_Ch24x 11/30/99 6:10 PM Page 926

Bottom := Screen.Height;
// Send ABM_QUERYPOS to obtain proper rect on edge
SendAppBarMsg(ABM_QUERYPOS);
// re-adjust rect based on that modified by ABM_QUERYPOS
case Edge of
ABE_LEFT: Right := Left + FDockedWidth;
ABE_RIGHT: Left := Right - FDockedWidth;
ABE_TOP: Bottom := Top + FDockedHeight;
ABE_BOTTOM: Top := Bottom - FDockedHeight;

end;
// Set the app bar position.
SendAppBarMsg(ABM_SETPOS);

end;
// Set the BoundsRect property so that it conforms to the
// bounding rectangle passed to the system.
BoundsRect := FABD.rc;

end;

procedure TAppBar.SetTopMost(Value: Boolean);
const
WndPosArray: array[Boolean] of HWND = (HWND_BOTTOM, HWND_TOPMOST);

begin
if FTopMost <> Value then
begin
FTopMost := Value;
if not (csDesigning in ComponentState) then
SetWindowPos(Handle, WndPosArray[Value], 0, 0, 0, 0, SWP_NOMOVE or
SWP_NOSIZE or SWP_NOACTIVATE);

end;
end;

procedure TAppBar.CreateParams(var Params: TCreateParams);
begin
inherited CreateParams(Params);
if not (csDesigning in ComponentState) then
begin
Params.ExStyle := Params.ExStyle or WS_EX_TOPMOST or WS_EX_WINDOWEDGE;
Params.Style := Params.Style or WS_DLGFRAME;

end;
end;

procedure TAppBar.CreateWnd;
begin
inherited CreateWnd;
FABD.hWnd := Handle;
if not (csDesigning in ComponentState) then

Extending the Windows Shell

CHAPTER 24
927

24

E
X

TEN
D

IN
G

TH
E

W
IN

D
O

W
S

S
H

ELL

continues

28.65227_Ch24x 11/30/99 6:10 PM Page 927

LISTING 24.3 Continued

begin
if SendAppBarMsg(ABM_NEW) = 0 then
raise EAppBarError.Create(‘Failed to create AppBar’);

// Initialize the position
SetAppBarEdge(FEdge);

end;
end;

procedure TAppBar.DestroyWnd;
begin
// Must inform shell that the AppBar is going away
SendAppBarMsg(ABM_REMOVE);
inherited DestroyWnd;

end;

procedure TAppBar.SetAppBarEdge(Value: TAppBarEdge);
const
EdgeArray: array[TAppBarEdge] of UINT =
(ABE_TOP, ABE_BOTTOM, ABE_LEFT, ABE_RIGHT);

begin
SetAppBarPos(EdgeArray[Value]);
FEdge := Value;
if Assigned(FOnEdgeChanged) then FOnEdgeChanged(Self);

end;

procedure TAppBar.SetDockedHeight(const Value: Integer);
begin
if FDockedHeight <> Value then
begin
FDockedHeight := Value;
SetAppBarEdge(FEdge);

end;
end;

procedure TAppBar.SetDockedWidth(const Value: Integer);
begin
if FDockedWidth <> Value then
begin
FDockedWidth := Value;
SetAppBarEdge(FEdge);

end;
end;

initialization
AppBarMsg := RegisterWindowMessage(‘DDG AppBar Message’);

end.

Component-Based Development

PART III
928

28.65227_Ch24x 11/30/99 6:10 PM Page 928

Using TAppBar
If you installed the software found on the CD-ROM accompanying this book, using a TAppBar
should be a snap: just select the AppBar option from the DDG page of the File, New dialog.
This invokes a wizard that will generate a unit containing a TAppBar component.

Extending the Windows Shell

CHAPTER 24
929

24

E
X

TEN
D

IN
G

TH
E

W
IN

D
O

W
S

S
H

ELL

continues

NOTE

Chapter 26, “Using Delphi’s Open Tools API,” demonstrates how to create a wizard
that automatically generates a TAppBar. For the purposes of this chapter, you can
ignore the wizard implementation for the time being. Just understand that some
work is being done behind the scenes to generate the AppBar’s form and unit for you.

In this small sample application, TAppBar is used to create an application toolbar that contains
buttons for various editing commands: Open, Save, Cut, Copy, and Paste. The buttons will
manipulate a TMemo component found on the main form. The source code for this unit is shown
in Listing 24.4, and Figure 24.5 shows the application in action with the AppBar control
docked at the top of the screen.

LISTING 24.4 ApBarFrm.pas, Main Unit for the AppBar Demo Application

unit ApBarFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
AppBars, Menus, Buttons;

type
TAppBarForm = class(TAppBar)
sbOpen: TSpeedButton;
sbSave: TSpeedButton;
sbCut: TSpeedButton;
sbCopy: TSpeedButton;
sbPaste: TSpeedButton;
OpenDialog: TOpenDialog;
pmPopup: TPopupMenu;
Top1: TMenuItem;
Bottom1: TMenuItem;
Left1: TMenuItem;

28.65227_Ch24x 11/30/99 6:10 PM Page 929

LISTING 24.4 Continued

Right1: TMenuItem;
N1: TMenuItem;
Exit1: TMenuItem;
procedure Right1Click(Sender: TObject);
procedure sbOpenClick(Sender: TObject);
procedure sbSaveClick(Sender: TObject);
procedure sbCutClick(Sender: TObject);
procedure sbCopyClick(Sender: TObject);
procedure sbPasteClick(Sender: TObject);
procedure Exit1Click(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure FormEdgeChanged(Sender: TObject);

private
FLastChecked: TMenuItem;
procedure MoveButtons;

end;

var
AppBarForm: TAppBarForm;

implementation

uses Main;

{$R *.DFM}

{ TAppBarForm }

procedure TAppBarForm.MoveButtons;
// This method looks complicated, but it really just arranges the buttons
// properly depending on what side the AppBar is docked.
var
DeltaCenter, NewPos: Integer;

begin
if Edge in [abeTop, abeBottom] then
begin
DeltaCenter := (ClientHeight - sbOpen.Height) div 2;
sbOpen.SetBounds(10, DeltaCenter, sbOpen.Width, sbOpen.Height);
NewPos := sbOpen.Width + 20;
sbSave.SetBounds(NewPos, DeltaCenter, sbOpen.Width, sbOpen.Height);
NewPos := NewPos + sbOpen.Width + 10;
sbCut.SetBounds(NewPos, DeltaCenter, sbOpen.Width, sbOpen.Height);
NewPos := NewPos + sbOpen.Width + 10;
sbCopy.SetBounds(NewPos, DeltaCenter, sbOpen.Width, sbOpen.Height);
NewPos := NewPos + sbOpen.Width + 10;

Component-Based Development

PART III
930

28.65227_Ch24x 11/30/99 6:10 PM Page 930

sbPaste.SetBounds(NewPos, DeltaCenter, sbOpen.Width, sbOpen.Height);
end
else
begin
DeltaCenter := (ClientWidth - sbOpen.Width) div 2;
sbOpen.SetBounds(DeltaCenter, 10, sbOpen.Width, sbOpen.Height);
NewPos := sbOpen.Height + 20;
sbSave.SetBounds(DeltaCenter, NewPos, sbOpen.Width, sbOpen.Height);
NewPos := NewPos + sbOpen.Height + 10;
sbCut.SetBounds(DeltaCenter, NewPos, sbOpen.Width, sbOpen.Height);
NewPos := NewPos + sbOpen.Height + 10;
sbCopy.SetBounds(DeltaCenter, NewPos, sbOpen.Width, sbOpen.Height);
NewPos := NewPos + sbOpen.Height + 10;
sbPaste.SetBounds(DeltaCenter, NewPos, sbOpen.Width, sbOpen.Height);

end;
end;

procedure TAppBarForm.Right1Click(Sender: TObject);
begin
FLastChecked.Checked := False;
(Sender as TMenuItem).Checked := True;
case TMenuItem(Sender).Caption[2] of
‘T’: Edge := abeTop;
‘B’: Edge := abeBottom;
‘L’: Edge := abeLeft;
‘R’: Edge := abeRight;

end;
FLastChecked := TMenuItem(Sender);

end;

procedure TAppBarForm.sbOpenClick(Sender: TObject);
begin
if OpenDialog.Execute then
MainForm.FileName := OpenDialog.FileName;

end;

procedure TAppBarForm.sbSaveClick(Sender: TObject);
begin
MainForm.memEditor.Lines.SaveToFile(MainForm.FileName);

end;

procedure TAppBarForm.sbCutClick(Sender: TObject);
begin
MainForm.memEditor.CutToClipboard;

end;

Extending the Windows Shell

CHAPTER 24
931

24

E
X

TEN
D

IN
G

TH
E

W
IN

D
O

W
S

S
H

ELL

continues

28.65227_Ch24x 11/30/99 6:10 PM Page 931

LISTING 24.4 Continued

procedure TAppBarForm.sbCopyClick(Sender: TObject);
begin
MainForm.memEditor.CopyToClipboard;

end;

procedure TAppBarForm.sbPasteClick(Sender: TObject);
begin
MainForm.memEditor.PasteFromClipboard;

end;

procedure TAppBarForm.Exit1Click(Sender: TObject);
begin
Application.Terminate;

end;

procedure TAppBarForm.FormCreate(Sender: TObject);
begin
FLastChecked := Top1;

end;

procedure TAppBarForm.FormEdgeChanged(Sender: TObject);
begin
MoveButtons;

end;

end.

Component-Based Development

PART III
932

FIGURE 24.5
TAppBar in action.

Shell Links
The Windows shell exposes a series of interfaces that can be employed to manipulate different
aspects of the shell. These interfaces are defined in the ShlObj unit. Discussing in-depth all the

28.65227_Ch24x 11/30/99 6:10 PM Page 932

objects in that unit could take a book in its own right, so for now we’ll focus on one of the
most useful (and most used) interfaces: IShellLink.

IShellLink is an interface that permits the creating and manipulating of shell links in your
applications. In case you’re unsure, most of the icons on your desktop are probably shell links.
Additionally, each item in the shell’s local Send To menu or the Documents menu (off of the
Start menu) are all shell links. The IShellLink interface is defined as follows:

const

type
IShellLink = interface(IUnknown)
[‘{000214EE-0000-0000-C000-000000000046}’]
function GetPath(pszFile: PAnsiChar; cchMaxPath: Integer;
var pfd: TWin32FindData; fFlags: DWORD): HResult; stdcall;

function GetIDList(var ppidl: PItemIDList): HResult; stdcall;
function SetIDList(pidl: PItemIDList): HResult; stdcall;
function GetDescription(pszName: PAnsiChar; cchMaxName: Integer): HResult;
stdcall;

function SetDescription(pszName: PAnsiChar): HResult; stdcall;
function GetWorkingDirectory(pszDir: PAnsiChar; cchMaxPath: Integer):
HResult;
stdcall;

function SetWorkingDirectory(pszDir: PAnsiChar): HResult; stdcall;
function GetArguments(pszArgs: PAnsiChar; cchMaxPath: Integer): HResult;
stdcall;

function SetArguments(pszArgs: PAnsiChar): HResult; stdcall;
function GetHotkey(var pwHotkey: Word): HResult; stdcall;
function SetHotkey(wHotkey: Word): HResult; stdcall;
function GetShowCmd(out piShowCmd: Integer): HResult; stdcall;
function SetShowCmd(iShowCmd: Integer): HResult; stdcall;
function GetIconLocation(pszIconPath: PAnsiChar; cchIconPath: Integer;
out piIcon: Integer): HResult; stdcall;

function SetIconLocation(pszIconPath: PAnsiChar; iIcon: Integer): HResult;
stdcall;

function SetRelativePath(pszPathRel: PAnsiChar; dwReserved: DWORD):
HResult;
stdcall;

function Resolve(Wnd: HWND; fFlags: DWORD): HResult; stdcall;
function SetPath(pszFile: PAnsiChar): HResult; stdcall;

end;

Extending the Windows Shell

CHAPTER 24
933

24

E
X

TEN
D

IN
G

TH
E

W
IN

D
O

W
S

S
H

ELL

NOTE

IShellLink and all its methods are described in detail in the Win32 online help, so
we won’t cover them here.

28.65227_Ch24x 11/30/99 6:10 PM Page 933

Obtaining an IShellLink Instance
Unlike working with shell extensions, which you’ll learn about later in this chapter, you don’t
implement the IShellLink interface. Instead, this interface is implemented by the Windows
shell, and you use the CoCreateInstance() COM function to create an instance. Here’s an
example:

var
SL: IShellLink;

begin
OleCheck(CoCreateInstance(CLSID_ShellLink, nil, CLSCTX_INPROC_SERVER,
IShellLink, SL));

// use SL here
end;

Component-Based Development

PART III
934

Using IShellLink
Shell links seem kind of magical: you right-click on the desktop, create a new shortcut, and
something happens that causes an icon to appear on the desktop. That something is actually a
pretty mundane occurrence once you know what’s going on. A shell link is actually just a file
with an .LNK extension that lives in some particular directory. When Windows starts up, it
looks in certain directories for LNK files, which represent links residing in different shell fold-
ers. These shell folders, or special folders, include items such as Network Neighborhood, Send
To, Startup, the Desktop, and so on. The shell stores the link/folder correspondence in the
System Registry—they’re found mostly under the following key if you’re interested in looking:

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer
➥\Shell Folders

Creating a shell link in a special folder, then, is just a matter of placing a link file in a particu-
lar directory. Rather than spelunking through the Registry, you can use the
SHGetSpecialFolderPath() to obtain the directory path for the various special folders. This
method is defined as follows:

NOTE

Don’t forget that before you can use any OLE functions, you must initialize the COM
library using the CoInitialize() function. When you’re through using COM, you
must clean up by calling CoUninitialize(). These functions will be called for you by
Delphi in an application that uses ComObj and contains a call to Application.
Initialize(). Otherwise, you’ll have to call these functions yourself.

28.65227_Ch24x 11/30/99 6:10 PM Page 934

function SHGetSpecialFolderPath(hwndOwner: HWND; lpszPath: PChar;
nFolder: Integer; fCreate: BOOL): BOOL; stdcall;

hwndOwner contains the handle of a window that will serve as the owner to any dialogs the
function may invoke.

lpszPath is a pointer to a buffer to receive the path. This buffer must be at least MAX_PATH
characters in length.

nFolder identifies the special folder for which you want to obtain the path. Table 24.4 shows
the possible values for this parameter and a description for each.

fCreate indicates whether a folder should be created if it does not exist.

TABLE 24.4 Possible Values for nFolder

Flag Description

CSIDL_ALTSTARTUP The directory that corresponds to the user’s nonlocalized
Startup program group.

CSIDL_APPDATA The directory that serves as a common repository for
application-specific data.

CSIDL_BITBUCKET The directory containing file objects in the user’s Recycle
Bin. The location of this directory is not in the Registry;
it’s marked with the hidden and system attributes to prevent
the user from moving or deleting it.

CSIDL_COMMON_ALTSTARTUP The directory that corresponds to the nonlocalized Startup
program group for all users.

CSIDL_COMMON_DESKTOPDIRECTORY The directory that contains files and folders that appear on
the desktop for all users.

CSIDL_COMMON_FAVORITES The directory that serves as a common repository for all
users’ favorite items.

CSIDL_COMMON_PROGRAMS The directory that contains the directories for the common
program groups that appear on the Start menu for all users.

CSIDL_COMMON_STARTMENU The directory that contains the programs and folders that
appear on the Start menu for all users.

CSIDL_COMMON_STARTUP The directory that contains the programs that appear in the
Startup folder for all users.

CSIDL_CONTROLS A virtual folder containing icons for the Control Panel
applications.

CSIDL_COOKIES The directory that serves as a common repository for
Internet cookies.

Extending the Windows Shell

CHAPTER 24
935

24

E
X

TEN
D

IN
G

TH
E

W
IN

D
O

W
S

S
H

ELL

continues

28.65227_Ch24x 11/30/99 6:10 PM Page 935

TABLE 24.4 Continued

CSIDL_DESKTOP The Windows Desktop virtual folder at the root of the
namespace.

CSIDL_DESKTOPDIRECTORY The directory used to physically store file objects on the
desktop (not to be confused with the Desktop folder, itself).

CSIDL_DRIVES The My Computer virtual folder containing everything on
the local computer: storage devices, printers, and the
Control Panel. The folder may also contain mapped
network drives.

CSIDL_FAVORITES The directory that serves as a common repository for the
user’s favorite items.

CSIDL_FONTS A virtual folder containing fonts.

CSIDL_HISTORY The directory that serves as a common repository for
Internet history items.

CSIDL_INTERNET A virtual folder representing the Internet.

CSIDL_INTERNET_CACHE The directory that serves as a common repository for
temporary Internet files.

CSIDL_NETHOOD The directory that contains objects that appear in the
Network Neighborhood.

CSIDL_NETWORK The Network Neighborhood virtual folder representing the
top level of the network hierarchy.

CSIDL_PERSONAL The directory that serves as a common repository for
documents.

CSIDL_PRINTERS A virtual folder containing installed printers.

CSIDL_PRINTHOOD The directory that serves as a common repository for
printer links.

CSIDL_PROGRAMS The directory that contains the user’s program groups
(which are also directories).

CSIDL_RECENT The directory that contains the user’s most recently used
documents.

CSIDL_SENDTO The directory that contains Send To menu items.

CSIDL_STARTMENU The directory that contains Start menu items.

CSIDL_STARTUP The directory that corresponds to the user’s Startup program
group. The system starts these programs whenever any user
logs onto Windows NT or starts Windows 95 or 98.

CSIDL_TEMPLATES The directory that serves as a common repository for
document templates.

Component-Based Development

PART III
936

28.65227_Ch24x 11/30/99 6:10 PM Page 936

Creating a Shell Link
The IShellLink interface is an encapsulation of a shell link object, but it has no concept of
how to read or write itself to a file on disk. However, implementers of the IShellLink inter-
face are also required to support the IPersistFile interface in order to provide file access.
IPersistFile is an interface that provides methods for reading and writing to and from disk,
and it’s defined as follows:

type
IPersistFile = interface(IPersist)
[‘{0000010B-0000-0000-C000-000000000046}’]
function IsDirty: HResult; stdcall;
function Load(pszFileName: POleStr; dwMode: Longint): HResult;
stdcall;

function Save(pszFileName: POleStr; fRemember: BOOL): HResult;
stdcall;

function SaveCompleted(pszFileName: POleStr): HResult;
stdcall;

function GetCurFile(out pszFileName: POleStr): HResult;
stdcall;

end;

Extending the Windows Shell

CHAPTER 24
937

24

E
X

TEN
D

IN
G

TH
E

W
IN

D
O

W
S

S
H

ELL

NOTE

You’ll find a complete description of IPersistFile and its methods in the Win32
online help.

Because the class that implements IShellLink is also required to implement IPeristFile, you
can QueryInterface the IShellLink instance for an IPersistFile instance using the as oper-
ator, as shown here:

var
SL: IShellLink;
PF: IPersistFile;

begin
OleCheck(CoCreateInstance(CLSID_ShellLink, nil, CLSCTX_INPROC_SERVER,
IShellLink, SL));

PF := SL as IPersistFile;
// use PF and SL

end;

As mentioned earlier, using COM interface objects works the same as using normal Object
Pascal objects. The following code, for example, creates a desktop shell link to the Notepad
application:

28.65227_Ch24x 11/30/99 6:10 PM Page 937

procedure MakeNotepad;
const
// NOTE: Assumed location for Notepad:
AppName = ‘c:\windows\notepad.exe’;

var
SL: IShellLink;
PF: IPersistFile;
LnkName: WideString;

begin
OleCheck(CoCreateInstance(CLSID_ShellLink, nil, CLSCTX_INPROC_SERVER,
IShellLink, SL));

{ IShellLink implementers are required to implement IPersistFile }
PF := SL as IPersistFile;
OleCheck(SL.SetPath(PChar(AppName))); // set link path to proper file
{ create a path location and filename for link file }
LnkName := GetFolderLocation(‘Desktop’) + ‘\’ +
ChangeFileExt(ExtractFileName(AppName), ‘.lnk’);

PF.Save(PWideChar(LnkName), True); // save link file
end;

In this procedure, the SetPath() method of IShellLink is used to point the link to an exe-
cutable file or document (Notepad in this case). Then, a path and filename for the link is cre-
ated using the path returned by GetFolderLocation(‘Desktop’) (described earlier in this
section) and by using the ChangeFileExt() function to change the extension of Notepad from
.EXE to .LNK. This new filename is stored in LnkName. After that, the Save() method saves the
link to a disk file. As you’ve learned, when the procedure terminates and the SL and PF inter-
face instances fall out of scope, their respective references will be released.

Getting and Setting Link Information
As you can see from the definition of the IShellLink interface, it contains a number of
GetXXX() and SetXXX() methods that allow you to get and set different aspects of the shell
link. Consider the following record declaration, which contains fields for each of the possible
values that can be set or retrieved:

type
TShellLinkInfo = record
PathName: string;
Arguments: string;
Description: string;
WorkingDirectory: string;
IconLocation: string;
IconIndex: Integer;
ShowCmd: Integer;
HotKey: Word;

end;

Component-Based Development

PART III
938

28.65227_Ch24x 11/30/99 6:10 PM Page 938

Given this record, you can create functions that retrieve the settings of a given shell link to the
record or that set a link’s values to those indicated by the record’s contents. Such functions are
shown in Listing 24.5; WinShell.pas is a unit that contains the complete source for these func-
tions.

LISTING 24.5 WinShell.pas, the Unit Containing Functions that Operate on Shell Links

unit WinShell;

interface

uses SysUtils, Windows, Registry, ActiveX, ShlObj;

type
EShellOleError = class(Exception);

TShellLinkInfo = record
PathName: string;
Arguments: string;
Description: string;
WorkingDirectory: string;
IconLocation: string;
IconIndex: integer;
ShowCmd: integer;
HotKey: word;

end;

TSpecialFolderInfo = record
Name: string;
ID: Integer;

end;

const
SpecialFolders: array[0..29] of TSpecialFolderInfo = (
(Name: ‘Alt Startup’; ID: CSIDL_ALTSTARTUP),
(Name: ‘Application Data’; ID: CSIDL_APPDATA),
(Name: ‘Recycle Bin’; ID: CSIDL_BITBUCKET),
(Name: ‘Common Alt Startup’; ID: CSIDL_COMMON_ALTSTARTUP),
(Name: ‘Common Desktop’; ID: CSIDL_COMMON_DESKTOPDIRECTORY),
(Name: ‘Common Favorites’; ID: CSIDL_COMMON_FAVORITES),
(Name: ‘Common Programs’; ID: CSIDL_COMMON_PROGRAMS),
(Name: ‘Common Start Menu’; ID: CSIDL_COMMON_STARTMENU),
(Name: ‘Common Startup’; ID: CSIDL_COMMON_STARTUP),
(Name: ‘Controls’; ID: CSIDL_CONTROLS),
(Name: ‘Cookies’; ID: CSIDL_COOKIES),

Extending the Windows Shell

CHAPTER 24
939

24

E
X

TEN
D

IN
G

TH
E

W
IN

D
O

W
S

S
H

ELL

continues

28.65227_Ch24x 11/30/99 6:10 PM Page 939

LISTING 24.5 Continued

(Name: ‘Desktop’; ID: CSIDL_DESKTOP),
(Name: ‘Desktop Directory’; ID: CSIDL_DESKTOPDIRECTORY),
(Name: ‘Drives’; ID: CSIDL_DRIVES),
(Name: ‘Favorites’; ID: CSIDL_FAVORITES),
(Name: ‘Fonts’; ID: CSIDL_FONTS),
(Name: ‘History’; ID: CSIDL_HISTORY),
(Name: ‘Internet’; ID: CSIDL_INTERNET),
(Name: ‘Internet Cache’; ID: CSIDL_INTERNET_CACHE),
(Name: ‘Network Neighborhood’; ID: CSIDL_NETHOOD),
(Name: ‘Network Top’; ID: CSIDL_NETWORK),
(Name: ‘Personal’; ID: CSIDL_PERSONAL),
(Name: ‘Printers’; ID: CSIDL_PRINTERS),
(Name: ‘Printer Links’; ID: CSIDL_PRINTHOOD),
(Name: ‘Programs’; ID: CSIDL_PROGRAMS),
(Name: ‘Recent Documents’; ID: CSIDL_RECENT),
(Name: ‘Send To’; ID: CSIDL_SENDTO),
(Name: ‘Start Menu’; ID: CSIDL_STARTMENU),
(Name: ‘Startup’; ID: CSIDL_STARTUP),
(Name: ‘Templates’; ID: CSIDL_TEMPLATES));

function CreateShellLink(const AppName, Desc: string; Dest: Integer): string;
function GetSpecialFolderPath(Folder: Integer; CanCreate: Boolean): string;
procedure GetShellLinkInfo(const LinkFile: WideString;
var SLI: TShellLinkInfo);

procedure SetShellLinkInfo(const LinkFile: WideString;
const SLI: TShellLinkInfo);

implementation

uses ComObj;

function GetSpecialFolderPath(Folder: Integer; CanCreate: Boolean): string;
var
FilePath: array[0..MAX_PATH] of char;

begin
{ Get path of selected location }
SHGetSpecialFolderPathW(0, FilePath, Folder, CanCreate);
Result := FilePath;

end;

function CreateShellLink(const AppName, Desc: string; Dest: Integer): string;
{ Creates a shell link for application or document specified in }
{ AppName with description Desc. Link will be located in folder }
{ specified by Dest, which is one of the string constants shown }

Component-Based Development

PART III
940

28.65227_Ch24x 11/30/99 6:10 PM Page 940

{ at the top of this unit. Returns the full path name of the }
{ link file. }
var
SL: IShellLink;
PF: IPersistFile;
LnkName: WideString;

begin
OleCheck(CoCreateInstance(CLSID_ShellLink, nil, CLSCTX_INPROC_SERVER,
IShellLink, SL));

{ The IShellLink implementer must also support the IPersistFile }
{ interface. Get an interface pointer to it. }
PF := SL as IPersistFile;
OleCheck(SL.SetPath(PChar(AppName))); // set link path to proper file
if Desc <> ‘’ then
OleCheck(SL.SetDescription(PChar(Desc))); // set description

{ create a path location and filename for link file }
LnkName := GetSpecialFolderPath(Dest, True) + ‘\’ +

ChangeFileExt(AppName, ‘lnk’);
PF.Save(PWideChar(LnkName), True); // save link file
Result := LnkName;

end;

procedure GetShellLinkInfo(const LinkFile: WideString;
var SLI: TShellLinkInfo);

{ Retrieves information on an existing shell link }
var
SL: IShellLink;
PF: IPersistFile;
FindData: TWin32FindData;
AStr: array[0..MAX_PATH] of char;

begin
OleCheck(CoCreateInstance(CLSID_ShellLink, nil, CLSCTX_INPROC_SERVER,
IShellLink, SL));

{ The IShellLink implementer must also support the IPersistFile }
{ interface. Get an interface pointer to it. }
PF := SL as IPersistFile;
{ Load file into IPersistFile object }
OleCheck(PF.Load(PWideChar(LinkFile), STGM_READ));
{ Resolve the link by calling the Resolve interface function. }
OleCheck(SL.Resolve(0, SLR_ANY_MATCH or SLR_NO_UI));
{ Get all the info! }
with SLI do
begin
OleCheck(SL.GetPath(AStr, MAX_PATH, FindData, SLGP_SHORTPATH));
PathName := AStr;
OleCheck(SL.GetArguments(AStr, MAX_PATH));

Extending the Windows Shell

CHAPTER 24
941

24

E
X

TEN
D

IN
G

TH
E

W
IN

D
O

W
S

S
H

ELL

continues

28.65227_Ch24x 11/30/99 6:10 PM Page 941

LISTING 24.5 Continued

Arguments := AStr;
OleCheck(SL.GetDescription(AStr, MAX_PATH));
Description := AStr;
OleCheck(SL.GetWorkingDirectory(AStr, MAX_PATH));
WorkingDirectory := AStr;
OleCheck(SL.GetIconLocation(AStr, MAX_PATH, IconIndex));
IconLocation := AStr;
OleCheck(SL.GetShowCmd(ShowCmd));
OleCheck(SL.GetHotKey(HotKey));

end;
end;

procedure SetShellLinkInfo(const LinkFile: WideString;
const SLI: TShellLinkInfo);

{ Sets information for an existing shell link }
var
SL: IShellLink;
PF: IPersistFile;

begin
OleCheck(CoCreateInstance(CLSID_ShellLink, nil, CLSCTX_INPROC_SERVER,
IShellLink, SL));

{ The IShellLink implementer must also support the IPersistFile }
{ interface. Get an interface pointer to it. }
PF := SL as IPersistFile;
{ Load file into IPersistFile object }
OleCheck(PF.Load(PWideChar(LinkFile), STGM_SHARE_DENY_WRITE));
{ Resolve the link by calling the Resolve interface function. }
OleCheck(SL.Resolve(0, SLR_ANY_MATCH or SLR_UPDATE or SLR_NO_UI));
{ Set all the info! }
with SLI, SL do
begin
OleCheck(SetPath(PChar(PathName)));
OleCheck(SetArguments(PChar(Arguments)));
OleCheck(SetDescription(PChar(Description)));
OleCheck(SetWorkingDirectory(PChar(WorkingDirectory)));
OleCheck(SetIconLocation(PChar(IconLocation), IconIndex));
OleCheck(SetShowCmd(ShowCmd));
OleCheck(SetHotKey(HotKey));

end;
PF.Save(PWideChar(LinkFile), True); // save file

end;

end.

Component-Based Development

PART III
942

28.65227_Ch24x 11/30/99 6:10 PM Page 942

One method of IShellLink that has yet to be explained is the Resolve() method. Resolve()
should be called after the IPersistFile interface of IShellLink is used to load a link file. This
searches the specified link file and fills the IShellLink object with values specified in the file.

Extending the Windows Shell

CHAPTER 24
943

24

E
X

TEN
D

IN
G

TH
E

W
IN

D
O

W
S

S
H

ELL

TIP

In the GetShellLinkInfo() function shown in Listing 24.5, notice the use of the AStr
local array into which values are retrieved. This technique is used rather than using
the SetLength() to allocate space for the strings—using SetLength() on so many
strings would cause fragmentation of the application’s heap. Using AStr as an inter-
mediate prevents this from occurring. Additionally, because the length of the strings
needs to be set only once, using AStr ends up being slightly faster.

A Sample Application
These functions and interfaces might be fun and all, but they’re nothing without a nifty appli-
cation in which to show them off. The Shell Link project allows you to do just that. The main
form of this project is shown in Figure 24.6.

Listing 24.6 shows the main unit for this project, Main.pas. Listings 24.7 and 24.8 show
NewLinkU.pas and PickU.pas, two supporting units for the project.

FIGURE 24.6
The Shell Link main form, showing one of the desktop links.

LISTING 24.6 Main.pas, Main Code for Shell Link Project

unit Main;

interface

continues

28.65227_Ch24x 11/30/99 6:10 PM Page 943

LISTING 24.6 Continued

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ComCtrls, ExtCtrls, Spin, WinShell, Menus;

type
TMainForm = class(TForm)
Panel1: TPanel;
btnOpen: TButton;
edLink: TEdit;
btnNew: TButton;
btnSave: TButton;
Label3: TLabel;
Panel2: TPanel;
Label1: TLabel;
Label2: TLabel;
Label4: TLabel;
Label5: TLabel;
Label6: TLabel;
Label7: TLabel;
Label8: TLabel;
Label9: TLabel;
edIcon: TEdit;
edDesc: TEdit;
edWorkDir: TEdit;
edArg: TEdit;
cbShowCmd: TComboBox;
hkHotKey: THotKey;
speIcnIdx: TSpinEdit;
pnlIconPanel: TPanel;
imgIconImage: TImage;
btnExit: TButton;
MainMenu1: TMainMenu;
File1: TMenuItem;
Open1: TMenuItem;
Save1: TMenuItem;
NewLInk1: TMenuItem;
N1: TMenuItem;
Exit1: TMenuItem;
Help1: TMenuItem;
About1: TMenuItem;
edPath: TEdit;
procedure btnOpenClick(Sender: TObject);
procedure btnNewClick(Sender: TObject);
procedure edIconChange(Sender: TObject);
procedure btnSaveClick(Sender: TObject);
procedure btnExitClick(Sender: TObject);

Component-Based Development

PART III
944

28.65227_Ch24x 11/30/99 6:10 PM Page 944

procedure About1Click(Sender: TObject);
private
procedure GetControls(var SLI: TShellLinkInfo);
procedure SetControls(const SLI: TShellLinkInfo);
procedure ShowIcon;
procedure OpenLinkFile(const LinkFileName: String);

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

uses PickU, NewLinkU, AboutU, CommCtrl, ShellAPI;

type
THotKeyRec = record
Char, ModCode: Byte;

end;

procedure TMainForm.SetControls(const SLI: TShellLinkInfo);
{ Sets values of UI controls based on contents of SLI }
var
Mods: THKModifiers;

begin
with SLI do
begin
edPath.Text := PathName;
edIcon.Text := IconLocation;
{ if icon name is blank and link is to exe, use exe name for icon }
{ path. This is done because the icon index is ignored if the }
{ icon path is blank, but an exe may contain more than one icon. }
if (IconLocation = ‘’) and
(CompareText(ExtractFileExt(PathName), ‘EXE’) = 0) then
edIcon.Text := PathName;

edWorkDir.Text := WorkingDirectory;
edArg.Text := Arguments;
speIcnIdx.Value := IconIndex;
edDesc.Text := Description;
{ SW_* constants start at 1 }
cbShowCmd.ItemIndex := ShowCmd - 1;
{ Hot key char in low byte }
hkHotKey.HotKey := Lo(HotKey);
{ Figure out which modifier flags are in high byte }

Extending the Windows Shell

CHAPTER 24
945

24

E
X

TEN
D

IN
G

TH
E

W
IN

D
O

W
S

S
H

ELL

continues

28.65227_Ch24x 11/30/99 6:10 PM Page 945

LISTING 24.6 Continued

Mods := [];
if (HOTKEYF_ALT and Hi(HotKey)) <> 0 then include(Mods, hkAlt);
if (HOTKEYF_CONTROL and Hi(HotKey)) <> 0 then include(Mods, hkCtrl);
if (HOTKEYF_EXT and Hi(HotKey)) <> 0 then include(Mods, hkExt);
if (HOTKEYF_SHIFT and Hi(HotKey)) <> 0 then include(Mods, hkShift);
{ Set modifiers set }
hkHotKey.Modifiers := Mods;

end;
ShowIcon;

end;

procedure TMainForm.GetControls(var SLI: TShellLinkInfo);
{ Gets values of UI controls and uses them to set values of SLI }
var
CtlMods: THKModifiers;
HR: THotKeyRec;

begin
with SLI do
begin
PathName := edPath.Text;
IconLocation := edIcon.Text;
WorkingDirectory := edWorkDir.Text;
Arguments := edArg.Text;
IconIndex := speIcnIdx.Value;
Description := edDesc.Text;
{ SW_* constants start at 1 }
ShowCmd := cbShowCmd.ItemIndex + 1;
{ Get hot key character }
word(HR) := hkHotKey.HotKey;
{ Figure out which modifier keys are being used }
CtlMods := hkHotKey.Modifiers;
with HR do begin
ModCode := 0;
if (hkAlt in CtlMods) then ModCode := ModCode or HOTKEYF_ALT;
if (hkCtrl in CtlMods) then ModCode := ModCode or HOTKEYF_CONTROL;
if (hkExt in CtlMods) then ModCode := ModCode or HOTKEYF_EXT;
if (hkShift in CtlMods) then ModCode := ModCode or HOTKEYF_SHIFT;

end;
HotKey := word(HR);

end;
end;

procedure TMainForm.ShowIcon;
{ Retrieves icon from appropriate file and shows in IconImage }
var

Component-Based Development

PART III
946

28.65227_Ch24x 11/30/99 6:10 PM Page 946

HI: THandle;
IcnFile: string;
IconIndex: word;

begin
{ Get name of icon file }
IcnFile := edIcon.Text;
{ If blank, use the exe name }
if IcnFile = ‘’ then
IcnFile := edPath.Text;

{ Make sure file exists }
if FileExists(IcnFile) then
begin
IconIndex := speIcnIdx.Value;
{ Extract icon from file }
HI := ExtractAssociatedIcon(hInstance, PChar(IcnFile), IconIndex);
{ Assign icon handle to IconImage }
imgIconImage.Picture.Icon.Handle := HI;

end;
end;

procedure TMainForm.OpenLinkFile(const LinkFileName: string);
{ Opens a link file, get info, and displays info in UI }
var
SLI: TShellLinkInfo;

begin
edLink.Text := LinkFileName;
try
GetShellLinkInfo(LinkFileName, SLI);

except
on EShellOleError do
MessageDlg(‘Error occurred while opening link’, mtError, [mbOk], 0);

end;
SetControls(SLI);

end;

procedure TMainForm.btnOpenClick(Sender: TObject);
{ OnClick handler for OpenBtn }
var
LinkFile: String;

begin
if GetLinkFile(LinkFile) then
OpenLinkFile(LinkFile);

end;

procedure TMainForm.btnNewClick(Sender: TObject);
{ OnClick handler for NewBtn }

Extending the Windows Shell

CHAPTER 24
947

24

E
X

TEN
D

IN
G

TH
E

W
IN

D
O

W
S

S
H

ELL

continues

28.65227_Ch24x 11/30/99 6:10 PM Page 947

LISTING 24.6 Continued

var
FileName: string;
Dest: Integer;

begin
if GetNewLinkName(FileName, Dest) then
OpenLinkFile(CreateShellLink(FileName, ‘’, Dest));

end;

procedure TMainForm.edIconChange(Sender: TObject);
{ OnChange handler for IconEd and IcnIdxEd }
begin
ShowIcon;

end;

procedure TMainForm.btnSaveClick(Sender: TObject);
{ OnClick handler for SaveBtn }
var
SLI: TShellLinkInfo;

begin
GetControls(SLI);
try
SetShellLinkInfo(edLink.Text, SLI);

except
on EShellOleError do
MessageDlg(‘Error occurred while setting info’, mtError, [mbOk], 0);

end;
end;

procedure TMainForm.btnExitClick(Sender: TObject);
{ OnClick handler for ExitBtn }
begin
Close;

end;

procedure TMainForm.About1Click(Sender: TObject);
{ OnClick handler for Help|About menu item }
begin
AboutBox;

end;

end.

Component-Based Development

PART III
948

28.65227_Ch24x 11/30/99 6:10 PM Page 948

LISTING 24.7 NewLinkU.pas, the Unit with Form that Helps Create New Link

unit NewLinkU;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
Buttons, StdCtrls;

type
TNewLinkForm = class(TForm)
Label1: TLabel;
Label2: TLabel;
edLinkTo: TEdit;
btnOk: TButton;
btnCancel: TButton;
cbLocation: TComboBox;
sbOpen: TSpeedButton;
OpenDialog: TOpenDialog;
procedure sbOpenClick(Sender: TObject);
procedure FormCreate(Sender: TObject);

end;

function GetNewLinkName(var LinkTo: string; var Dest: Integer): Boolean;

implementation

uses WinShell;

{$R *.DFM}

function GetNewLinkName(var LinkTo: string; var Dest: Integer): Boolean;
{ Gets file name and destination folder for a new shell link. }
{ Only modifies params if Result = True. }
begin
with TNewLinkForm.Create(Application) do
try
cbLocation.ItemIndex := 0;
Result := ShowModal = mrOk;
if Result then
begin
LinkTo := edLinkTo.Text;
Dest := cbLocation.ItemIndex;

end;
finally

Extending the Windows Shell

CHAPTER 24
949

24

E
X

TEN
D

IN
G

TH
E

W
IN

D
O

W
S

S
H

ELL

continues

28.65227_Ch24x 11/30/99 6:10 PM Page 949

LISTING 24.7 Continued

Free;
end;

end;

procedure TNewLinkForm.sbOpenClick(Sender: TObject);
begin
if OpenDialog.Execute then
edLinkTo.Text := OpenDialog.FileName;

end;

procedure TNewLinkForm.FormCreate(Sender: TObject);
var
I: Integer;

begin
for I := Low(SpecialFolders) to High(SpecialFolders) do
cbLocation.Items.Add(SpecialFolders[I].Name);

end;

end.

LISTING 24.8 PickU.pas, the Unit with Form that Enables the User to Choose Link
Location

unit PickU;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, FileCtrl;

type
TLinkForm = class(TForm)
lbLinkFiles: TFileListBox;
btnOk: TButton;
btnCancel: TButton;
cbLocation: TComboBox;
Label1: TLabel;
procedure lbLinkFilesDblClick(Sender: TObject);
procedure cbLocationChange(Sender: TObject);
procedure FormCreate(Sender: TObject);

end;

function GetLinkFile(var S: String): Boolean;

Component-Based Development

PART III
950

28.65227_Ch24x 11/30/99 6:10 PM Page 950

implementation

{$R *.DFM}

uses WinShell, ShlObj;

function GetLinkFile(var S: String): Boolean;
{ Returns link file name in S. }
{ Only modifies S when Result is True. }
begin
with TLinkForm.Create(Application) do
try
{ Make sure location is selected }
cbLocation.ItemIndex := 0;
{ Get path of selected location }
cbLocationChange(nil);
Result := ShowModal = mrOk;
{ Return full pathname for link file }
if Result then
S := lbLinkFiles.Directory + ‘\’ +
lbLinkFiles.Items[lbLinkFiles.ItemIndex];

finally
Free;

end;
end;

procedure TLinkForm.lbLinkFilesDblClick(Sender: TObject);
begin
ModalResult := mrOk;

end;

procedure TLinkForm.cbLocationChange(Sender: TObject);
var
Folder: Integer;

begin
{ Get path of selected location }
Folder := SpecialFolders[cbLocation.ItemIndex].ID;
lbLinkFiles.Directory := GetSpecialFolderPath(Folder, False);

end;

procedure TLinkForm.FormCreate(Sender: TObject);
var
I: Integer;

begin
for I := Low(SpecialFolders) to High(SpecialFolders) do

Extending the Windows Shell

CHAPTER 24
951

24

E
X

TEN
D

IN
G

TH
E

W
IN

D
O

W
S

S
H

ELL

continues

28.65227_Ch24x 11/30/99 6:10 PM Page 951

LISTING 24.8 Continued

cbLocation.Items.Add(SpecialFolders[I].Name);
end;

end.

Shell Extensions
For the ultimate in extensibility, the Windows shell provides a means for you to develop code
that executes from within the shell’s own process and namespace. Shell extensions are imple-
mented as in-process COM servers that are created and used by the shell.

Component-Based Development

PART III
952

NOTE

Because shell extensions are COM servers at heart, understanding them requires a
basic understand of COM. If you’re COM knowledge needs brushing up, Chapter 23,
“COM and ActiveX,” provides this foundation.

Several types of shell extensions are available to deal with a variety of the shell’s aspects. Also
known as a handler, a shell extension must implement one or more COM interfaces. The shell
supports the following types of shell extensions:

• Copy hook handlers implement the ICopyHook interface. These shell extensions allow
you to receive notifications whenever a folder is copied, deleted, moved, or renamed and
to optionally prevent the operation from occurring.

• Context menu handlers implement the IContextMenu and IShellExtInit interfaces.
These shell extensions enable you to add items to the context menu of a particular file
object in the shell.

• Drag-and-drop handlers also implement the IContextMenu and IShellExtInit inter-
faces. These shell extensions are almost identical in implementation to context menu
handlers, except that they’re invoked when a user drags an object and drops it to a new
location.

• Icon handlers implement the IExtractIcon and IPersistFile interfaces. Icon handlers
allow you to provide different icons for multiple instances of the same type of file object.

• Property sheet handlers implement the IShellPropSheetExt and IShellExtInit inter-
faces, and they allow you to add pages to the properties dialog associated with a file type.

28.65227_Ch24x 11/30/99 6:10 PM Page 952

Extending the Windows Shell

CHAPTER 24
953

24

E
X

TEN
D

IN
G

TH
E

W
IN

D
O

W
S

S
H

ELL

• Drop target handlers implement the IDropTarget and IPersistFile interfaces. These
shell extensions allow you to control what happens when you drop one shell object on
another.

• Data object handlers implement the IDataObject and IPersistFile interfaces, and they
supply the data object used when files are being dragged and dropped or copied and
pasted.

Debugging Shell Extensions
Before we get into the subject of actually writing shell extensions, consider the ques-
tion of debugging shell extensions. Because shell extensions execute from within the
shell’s own process, how is it possible to “hook into” the shell in order to debug your
shell extension?

The solution to the problem is based on the fact that the shell is an executable (not
very different than any other application) called explorer.exe. Explorer.exe has a
property, however, that is kind of unique: The first instance of explorer.exe will
invoke the shell. Subsequent instances will simply invoke additional “Explorer” win-
dows in the shell.

Using a little-known trick in the shell, it’s possible to close the shell without closing
Windows. Follow these steps to debug your shell extensions in Delphi:

1. Make explorer.exe the host application for your shell extension in the Run,
Parameters dialog. Be sure to include the full path (that is, c:\windows\
explorer.exe).

2. From the shell’s Start menu, select Shut Down. This will invoke the Shut Down
Windows dialog.

3. In the Shut Down Windows dialog, hold down Ctrl+Alt+Shift and click the No
button. This will close the shell without closing Windows.

4. Using Alt+Tab, switch back to Delphi and run the shell extension. This will
invoke a new copy of the shell running under the Delphi debugger. You can
now set breakpoints in your code and debug as usual.

5. When you’re ready to close Windows, you can still do so properly without the
use of the shell: Use Ctrl+Esc to invoke the Tasks window and then select
Windows, Shutdown Windows to close Windows.

The remainder of this chapter is dedicated to showing a cross section of the shell extensions just
described. You’ll learn about copy hook handlers, context menu handlers, and icon handlers.

28.65227_Ch24x 11/30/99 6:10 PM Page 953

The COM Object Wizard
Before discussing each of the shell extension DLLs, we should first mention a bit about how
they’re created. Because shell extensions are in-process COM servers, you can let the Delphi
IDE do most of the grunt work in creating the source code for you. Work begins for all the
shell extensions with the same two steps:

1. Select ActiveX Library from the ActiveX page of the New Items dialog. This will create
a new COM server DLL into which you can insert COM objects.

2. Select COM Object from the ActiveX page of the New Items dialogs. This will invoke
the COM Server Wizard. In the wizard’s dialog, enter a name and description for your
shell extension and select the Apartment threading model. Click OK, and a new unit con-
taining the code for your COM object will be generated.

Copy Hook Handlers
As mentioned earlier, copy hook shell extensions allow you to install a handler that receives
notifications whenever a folder is copied, deleted, moved, or renamed. After receiving this noti-
fication, the handler can optionally prevent the operation from occurring. Note that the handler
is only called for folder and printer objects; it’s not called for files and other objects.

The first step in creating a copy hook handler is to create an object that descends from
TComObject and implements the ICopyHook interface. This interface is defined in the ShlObj
unit as follows:

type

ICopyHook = interface(IUnknown)

[‘{000214EF-0000-0000-C000-000000000046}’]

function CopyCallback(Wnd: HWND; wFunc, wFlags: UINT;

pszSrcFile: PAnsiChar; dwSrcAttribs: DWORD; pszDestFile: PAnsiChar;

dwDestAttribs: DWORD): UINT; stdcall;
end;

The CopyCallback() Method
As you can see, ICopyHook is a pretty simple interface, and it implements only one function:
CopyCallback(). This function will be called whenever a shell folder is manipulated. The fol-
lowing paragraphs describe the parameters for this function.

Wnd is the handle of the window the copy hook handler should use as the parent for any win-
dows it displays. wFunc indicates the operation being performed. This can be any one of the
values shown in Table 24.5.

Component-Based Development

PART III
954

28.65227_Ch24x 11/30/99 6:10 PM Page 954

TABLE 24.5 The wFunc Values for CopyCallback()

Constant Value Meaning

FO_COPY $2 Copies the file specified by pszSrcFile to the location
specified by pszDestFile.

FO_DELETE $3 Deletes the file specified by pszSrcFile.

FO_MOVE $1 Moves the file specified by pszSrcFile to the location
specified by pszDestFile.

FO_RENAME $4 Renames the file specified by pszSrcFile.

PO_DELETE $13 Deletes the printer specified by pszSrcFile.

PO_PORTCHANGE $20 Changes the printer port. The pszSrcFile and pszDestFile
parameters contain double null-terminated lists of strings. Each
list contains the printer name followed by the port name. The
port name in pszSrcFile is the current printer port, and the
port name in pszDestFile is the new printer port.

PO_RENAME $14 Renames the printer specified by pszSrcFile.

PO_REN_PORT $34 A combination of PO_RENAME and PO_PORTCHANGE.

wFlags holds the flags that control the operation. This parameter can be a combination of the
values shown in Table 24.6.

TABLE 24.6 The wFlags Values for CopyCallback()

Constant Value Meaning

FOF_ALLOWUNDO $40 Preserves undo information (when possible).

FOF_MULTIDESTFILES $1 The SHFileOperation() function specifies multiple
destination files (one for each source file) rather than one
directory where all the source files are to be deposited. A
copy hook handler typically ignores this value.

FOF_NOCONFIRMATION $10 Responds with “Yes to All” for any dialog that’s displayed.

FOF_NOCONFIRMMKDIR $200 Does not confirm the creation of any needed directories if
the operation requires a new directory to be created.

FOF_RENAMEONCOLLISION $8 Gives the file being operated on a new name (such as
“Copy #1 of…”) in a copy, move, or rename operation
when a file with the target name already exists.

FOF_SILENT $4 Does not displays a progress dialog.

FOF_SIMPLEPROGRESS $100 Displays a progress dialog, but the dialog doesn’t show
the names of the files.

Extending the Windows Shell

CHAPTER 24
955

24

E
X

TEN
D

IN
G

TH
E

W
IN

D
O

W
S

S
H

ELL

28.65227_Ch24x 11/30/99 6:10 PM Page 955

pszSourceFile is the name of the source folder, dwSrcAttribs holds the attributes of the
source folder, pszDestFile is the name of the destination folder, and dwDestAttribs holds the
attributes of the destination folder.

Unlike most methods, this interface does not return an OLE result code. Instead, it must return
one of the values listed in Table 24.7, as defined in the Windows unit.

TABLE 24.7 The wFlags Values for CopyCallback()

Constant Value Meaning

IDYES 6 Allows the operation

IDNO 7 Prevents the operation on this file but continues with any other opera-
tions (for example, a batch copy operation)

IDCANCEL 2 Prevents the current operation and cancels any pending operations

TCopyHook Implementation
Being an object that implements one interface with one method, there isn’t much to
TCopyHook:

type
TCopyHook = class(TComObject, ICopyHook)
protected
function CopyCallback(Wnd: HWND; wFunc, wFlags: UINT;
pszSrcFile: PAnsiChar;
dwSrcAttribs: DWORD; pszDestFile: PAnsiChar; dwDestAttribs: DWORD): UINT;
stdcall;

end;

The implementation of the CopyCallback() method is also small. The MessageBox() API
function is called to confirm whatever operation is being attempted. Conveniently, the return
value for MessageBox() will be the same as the return value for this method:

function TCopyHook.CopyCallback(Wnd: HWND; wFunc, wFlags: UINT;
pszSrcFile: PAnsiChar; dwSrcAttribs: DWORD; pszDestFile: PAnsiChar;
dwDestAttribs: DWORD): UINT;

const
MyMessage: string = ‘Are you sure you want to mess with “%s”?’;

begin
// confirm operation
Result := MessageBox(Wnd, PChar(Format(MyMessage, [pszSrcFile])),
‘D4DG Shell Extension’, MB_YESNO);

end;

Component-Based Development

PART III
956

28.65227_Ch24x 11/30/99 6:10 PM Page 956

Believe it or not, that’s all there is to the TCopyHook object itself. However, there’s still one
major detail to work through before calling it a day: The shell extension must be registered
with the System Registry before it will function.

Registration
In addition to the normal registration required of any COM server, a copy hook handler must
have an additional Registry entry under

HKEY_CLASSES_ROOT\directory\shellex\CopyHookHandlers

Furthermore, Windows NT requires that all shell extensions be registered as approved shell
extensions under

HKEY_LOCAL_MACHINE\ SOFTWARE\Microsoft\Windows\CurrentVersion
➥\Shell Extensions\Approved

You can take several approaches to registering shell extensions: They can be registered via a
REG file or through an installation program. The shell extension DLL, itself, can be self-
registering. Although it might be just a bit more work, the best solution is to make each shell
extension DLL self-registering. This is cleaner, because it makes your shell extension a one-
file, self-contained package.

As you learned in the last chapter, “COM and ActiveX,” COM objects are always created from
class factories. Within the VCL framework, class factory objects are also responsible for regis-
tering the COM object they will create. If a COM object requires custom Registry entries (as is
the case with a shell extension), setting these entries up is just a matter of overriding the class
factory’s UpdateRegistry() method. Listing 24.9 shows the completed CopyMain unit, which
includes a specialized class factory used to perform custom registration.

LISTING 24.9 CopyMain.pas, Main Unit for Copy Hook Implementation

unit CopyMain;

interface

Extending the Windows Shell

CHAPTER 24
957

24

E
X

TEN
D

IN
G

TH
E

W
IN

D
O

W
S

S
H

ELL

TIP

You might wonder why the MessageBox() API function is used to display a message
rather than using a Delphi function such as MessageDlg() or ShowMessage(). The rea-
son is simple: size and efficiency. Calling any function out of the Dialogs or Forms
unit would cause a great deal of VCL to be linked into the DLL. By keeping these
units out of the uses clause, the shell extension DLL weighs in at svelte 70KB.

continues

28.65227_Ch24x 11/30/99 6:10 PM Page 957

LISTING 24.9 Continued

uses Windows, ComObj, ShlObj;

type
TCopyHook = class(TComObject, ICopyHook)
protected
function CopyCallback(Wnd: HWND; wFunc, wFlags: UINT;
pszSrcFile: PAnsiChar; dwSrcAttribs: DWORD;
pszDestFile: PAnsiChar; dwDestAttribs: DWORD): UINT; stdcall;

end;

TCopyHookFactory = class(TComObjectFactory)
protected
function GetProgID: string; override;
procedure ApproveShellExtension(Register: Boolean; const ClsID: string);
virtual;

public
procedure UpdateRegistry(Register: Boolean); override;

end;

implementation

uses ComServ, SysUtils, Registry;

{ TCopyHook }

// This is the method which is called by the shell for folder operations
function TCopyHook.CopyCallback(Wnd: HWND; wFunc, wFlags: UINT;
pszSrcFile: PAnsiChar; dwSrcAttribs: DWORD; pszDestFile: PAnsiChar;
dwDestAttribs: DWORD): UINT;

const
MyMessage: string = ‘Are you sure you want to mess with “%s”?’;

begin
// confirm operation
Result := MessageBox(Wnd, PChar(Format(MyMessage, [pszSrcFile])),
‘D4DG Shell Extension’, MB_YESNO);

end;

{ TCopyHookFactory }

function TCopyHookFactory.GetProgID: string;
begin
// ProgID not needed for shell extension
Result := ‘’;

end;

procedure TCopyHookFactory.UpdateRegistry(Register: Boolean);

Component-Based Development

PART III
958

28.65227_Ch24x 11/30/99 6:10 PM Page 958

var
ClsID: string;

begin
ClsID := GUIDToString(ClassID);
inherited UpdateRegistry(Register);
ApproveShellExtension(Register, ClsID);
if Register then
// add shell extension clsid to CopyHookHandlers Reg entry
CreateRegKey(‘directory\shellex\CopyHookHandlers\’ + ClassName, ‘’,
ClsID)

else
DeleteRegKey(‘directory\shellex\CopyHookHandlers\’ + ClassName);

end;

procedure TCopyHookFactory.ApproveShellExtension(Register: Boolean;
const ClsID: string);

// This registry entry is required in order for the extension to
// operate correctly under Windows NT.
const
SApproveKey = ‘SOFTWARE\Microsoft\Windows\CurrentVersion\Shell

➥Extensions\Approved’;
begin
with TRegistry.Create do
try
RootKey := HKEY_LOCAL_MACHINE;
if not OpenKey(SApproveKey, True) then Exit;
if Register then WriteString(ClsID, Description)
else DeleteValue(ClsID);

finally
Free;

end;
end;

const
CLSID_CopyHook: TGUID = ‘{66CD5F60-A044-11D0-A9BF-00A024E3867F}’;

initialization
TCopyHookFactory.Create(ComServer, TCopyHook, CLSID_CopyHook,
‘D4DG_CopyHook’, ‘D4DG Copy Hook Shell Extension Example’,
ciMultiInstance, tmApartment);

end.

What makes the TCopyHookFactory class factory work is the fact that an instance of it, rather
than the usual TComObjectFactory, is being created in the initialization part of the unit.
Figure 24.7 shows what happens when you try to rename a folder in the shell after the copy
hook shell extension DLL is installed.

Extending the Windows Shell

CHAPTER 24
959

24

E
X

TEN
D

IN
G

TH
E

W
IN

D
O

W
S

S
H

ELL

28.65227_Ch24x 11/30/99 6:10 PM Page 959

FIGURE 24.7
The copy hook handler in action.

Context Menu Handlers
Context menu handlers enable you to add items to the local menu that are associated with file
objects in the shell. A sample local menu for an EXE file is shown in Figure 24.8.

Component-Based Development

PART III
960

FIGURE 24.8
The shell local menu for an EXE file.

Context menu shell extensions work by implementing the IShellExtInit and IContextMenu
interfaces. In this case, we’ll implement these interfaces to create a context menu handler for
Borland Package Library (BPL) files; the local menu for package files in the shell will provide
an option for obtaining package information. This context menu handler object will be called
TContextMenu, and, like the copy hook handler, TContextMenu will descend from TComObject.

IShellExtInit
The IShellExtInit interface is used to initialize a shell extension. This interface is defined in
the ShlObj unit as follows:

type
IShellExtInit = interface(IUnknown)
[‘{000214E8-0000-0000-C000-000000000046}’]
function Initialize(pidlFolder: PItemIDList; lpdobj: IDataObject;

28.65227_Ch24x 11/30/99 6:10 PM Page 960

hKeyProgID: HKEY): HResult; stdcall;
end;

Initialize(), being the only method of this interface, is called to initialize the context menu
handler. The following paragraphs describe the parameters for this method.

pidlFolder is a pointer to a PItemIDList (item identifier list) structure for the folder that con-
tains the item whose context menu is being displayed. lpdobj holds the IDataObject interface
object used to retrieve the objects being acted upon. hkeyProgID contains the Registry key for
the file object or folder type.

The implementation for this method is shown in the following code. Upon first glance, the
code might look complex, but it really boils down to three things: a call to lpobj.GetData() to
obtain data from IDataObject and two calls to DragQueryFile() (one call to obtain the num-
ber of files and the other to obtain the filename). The filename is stored in the object’s
FFileName field. Here’s the code:

function TContextMenu.Initialize(pidlFolder: PItemIDList; lpdobj: IDataObject;
hKeyProgID: HKEY): HResult;

var
Medium: TStgMedium;
FE: TFormatEtc;

begin
try
// Fail the call if lpdobj is nil.
if lpdobj = nil then
begin
Result := E_FAIL;
Exit;

end;
with FE do
begin
cfFormat := CF_HDROP;
ptd := nil;
dwAspect := DVASPECT_CONTENT;
lindex := -1;
tymed := TYMED_HGLOBAL;

end;
// Render the data referenced by the IDataObject pointer to an HGLOBAL
// storage medium in CF_HDROP format.
Result := lpdobj.GetData(FE, Medium);
if Failed(Result) then Exit;
try
// If only one file is selected, retrieve the file name and store it in
// szFile. Otherwise fail the call.

Extending the Windows Shell

CHAPTER 24
961

24

E
X

TEN
D

IN
G

TH
E

W
IN

D
O

W
S

S
H

ELL

28.65227_Ch24x 11/30/99 6:10 PM Page 961

if DragQueryFile(Medium.hGlobal, $FFFFFFFF, nil, 0) = 1 then
begin
DragQueryFile(Medium.hGlobal, 0, FFileName, SizeOf(FFileName));
Result := NOERROR;

end
else
Result := E_FAIL;

finally
ReleaseStgMedium(medium);

end;
except
Result := E_UNEXPECTED;

end;
end;

IContextMenu
The IContextMenu interface is used to manipulate the pop-up menu associated with a file in
the shell. This interface is defined in the ShlObj unit as follows:

type
IContextMenu = interface(IUnknown)
[‘{000214E4-0000-0000-C000-000000000046}’]
function QueryContextMenu(Menu: HMENU;
indexMenu, idCmdFirst, idCmdLast, uFlags: UINT): HResult; stdcall;

function InvokeCommand(var lpici: TCMInvokeCommandInfo): HResult; stdcall;
function GetCommandString(idCmd, uType: UINT; pwReserved: PUINT;
pszName: LPSTR; cchMax: UINT): HResult; stdcall;

end;

After the handler has been initialized through the IShellExtInit interface, the next method to
be called is IContextMenu.QueryContextMenu(). The parameters passed to this method
include a menu handle, the index at which to insert the first menu item, the minimum and max-
imum values for menu item IDs, and flags that indicate menu attributes. The following
TContextMenu implementation of this method adds a menu item with the text “Package
Info…” to the menu handle passed in the Menu parameter (note that the return value for
QueryContextMenu() is the index of the last menu item inserted plus one):

function TContextMenu.QueryContextMenu(Menu: HMENU; indexMenu, idCmdFirst,
idCmdLast, uFlags: UINT): HResult;

begin
FMenuIdx := indexMenu;
// Add one menu item to context menu
InsertMenu (Menu, FMenuIdx, MF_STRING or MF_BYPOSITION, idCmdFirst,
‘Package Info...’);

Component-Based Development

PART III
962

28.65227_Ch24x 11/30/99 6:10 PM Page 962

// Return index of last inserted item + 1
Result := FMenuIdx + 1;

end;

The next method called by the shell is GetCommandString(). This method is intended to
retrieve the language-independent command string or help string for a particular menu item.
The parameters for this method include the menu item offset, flags indicating the type of infor-
mation to receive, a reserved parameter, and a string buffer and buffer size. The following
TContextMenu implementation of this method only needs to deal with providing the help string
for the menu item:

function TContextMenu.GetCommandString(idCmd, uType: UINT; pwReserved: PUINT;
pszName: LPSTR; cchMax: UINT): HRESULT;

begin
Result := S_OK;
try
// make sure menu index is correct, and shell is asking for help string
if (idCmd = FMenuIdx) and ((uType and GCS_HELPTEXT) <> 0) then
// return help string for menu item
StrLCopy(pszName, ‘Get information for the selected package.’, cchMax)

else
Result := E_INVALIDARG;

except
Result := E_UNEXPECTED;

end;
end;

When you click the new item in the context menu, the shell will call the InvokeCommand()
method. The method accepts a TCMInvokeCommandInfo record as a parameter. This record is
defined in the ShlObj unit as follows:

type
PCMInvokeCommandInfo = ^TCMInvokeCommandInfo;
TCMInvokeCommandInfo = packed record
cbSize: DWORD; { must be SizeOf(TCMInvokeCommandInfo) }
fMask: DWORD; { any combination of CMIC_MASK_* }
hwnd: HWND; { might be NULL (indicating no owner window) }
lpVerb: LPCSTR; { either a string of MAKEINTRESOURCE(idOffset) }
lpParameters: LPCSTR; { might be NULL (indicating no parameter) }
lpDirectory: LPCSTR; { might be NULL (indicating no specific directory) }
nShow: Integer; { one of SW_ values for ShowWindow() API }
dwHotKey: DWORD;
hIcon: THandle;

end;

Extending the Windows Shell

CHAPTER 24
963

24

E
X

TEN
D

IN
G

TH
E

W
IN

D
O

W
S

S
H

ELL

28.65227_Ch24x 11/30/99 6:10 PM Page 963

The low word or the lpVerb field will contain the index of the menu item selected. Here’s the
implementation of this method:

function TContextMenu.InvokeCommand(var lpici: TCMInvokeCommandInfo): HResult;
begin
Result := S_OK;
try
// Make sure we are not being called by an application
if HiWord(Integer(lpici.lpVerb)) <> 0 then
begin
Result := E_FAIL;
Exit;

end;
// Execute the command specified by lpici.lpVerb.
// Return E_INVALIDARG if we are passed an invalid argument number.
if LoWord(lpici.lpVerb) = FMenuIdx then
ExecutePackInfoApp(FFileName, lpici.hwnd)

else
Result := E_INVALIDARG;

except
MessageBox(lpici.hwnd, ‘Error obtaining package information.’, ‘Error’,
MB_OK or MB_ICONERROR);

Result := E_FAIL;
end;

end;

If all goes well, the ExecutePackInfoApp() function is called to invoke the PackInfo.exe
application, which displays various information about a package. We won’t go into the particu-
lars of that application right now; however, it’s discussed in detail in Chapter 13, “Hard-Core
Techniques.”

Registration
Context menu handlers must be registered under

HKEY_CLASSES_ROOT\<file type>\shellex\ContextMenuHandlers

in the System Registry. Following the model of the copy hook extension, registration capability
is added to the DLL by creating a specialized TComObject descendant. The object is shown in
Listing 24.10 along with the complete source code for the unit containing TContextMenu.
Figure 24.9 shows the local menu for the BPL file with the new item, and Figure 24.10 shows
the PackInfo.exe window as invoked by the context menu handler.

Component-Based Development

PART III
964

28.65227_Ch24x 11/30/99 6:10 PM Page 964

FIGURE 24.10
Obtaining package information from the context menu handler.

Extending the Windows Shell

CHAPTER 24
965

24

E
X

TEN
D

IN
G

TH
E

W
IN

D
O

W
S

S
H

ELL

FIGURE 24.9
The context menu handler in action.

28.65227_Ch24x 11/30/99 6:10 PM Page 965

LISTING 24.10 ContMain.pas, Main Unit for Context Menu Handler Implementation

unit ContMain;

interface

uses Windows, ComObj, ShlObj, ActiveX;

type
TContextMenu = class(TComObject, IContextMenu, IShellExtInit)
private
FFileName: array[0..MAX_PATH] of char;
FMenuIdx: UINT;

protected
// IContextMenu methods
function QueryContextMenu(Menu: HMENU; indexMenu, idCmdFirst, idCmdLast,
uFlags: UINT): HResult; stdcall;

function InvokeCommand(var lpici: TCMInvokeCommandInfo): HResult; stdcall;
function GetCommandString(idCmd, uType: UINT; pwReserved: PUINT;
pszName: LPSTR; cchMax: UINT): HResult; stdcall;

// IShellExtInit method
function Initialize(pidlFolder: PItemIDList; lpdobj: IDataObject;
hKeyProgID: HKEY): HResult; reintroduce; stdcall;

end;

TContextMenuFactory = class(TComObjectFactory)
protected
function GetProgID: string; override;
procedure ApproveShellExtension(Register: Boolean; const ClsID: string);
virtual;

public
procedure UpdateRegistry(Register: Boolean); override;

end;

implementation

uses ComServ, SysUtils, ShellAPI, Registry;

procedure ExecutePackInfoApp(const FileName: string; ParentWnd: HWND);
const
SPackInfoApp = ‘%sPackInfo.exe’;
SCmdLine = ‘“%s” %s’;
SErrorStr = ‘Failed to execute PackInfo:’#13#10#13#10;

var
PI: TProcessInformation;
SI: TStartupInfo;
ExeName, ExeCmdLine: string;

Component-Based Development

PART III
966

28.65227_Ch24x 11/30/99 6:10 PM Page 966

Buffer: array[0..MAX_PATH] of char;
begin
// Get directory of this DLL. Assume EXE being executed is in same dir.
GetModuleFileName(HInstance, Buffer, SizeOf(Buffer));
ExeName := Format(SPackInfoApp, [ExtractFilePath(Buffer)]);
ExeCmdLine := Format(SCmdLine, [ExeName, FileName]);
FillChar(SI, SizeOf(SI), 0);
SI.cb := SizeOf(SI);
if not CreateProcess(PChar(ExeName), PChar(ExeCmdLine), nil, nil, False,
0, nil, nil, SI, PI) then
MessageBox(ParentWnd, PChar(SErrorStr + SysErrorMessage(GetLastError)),
‘Error’, MB_OK or MB_ICONERROR);

end;

{ TContextMenu }

{ TContextMenu.IContextMenu }

function TContextMenu.QueryContextMenu(Menu: HMENU; indexMenu, idCmdFirst,
idCmdLast, uFlags: UINT): HResult;

begin
FMenuIdx := indexMenu;
// Add one menu item to context menu
InsertMenu (Menu, FMenuIdx, MF_STRING or MF_BYPOSITION, idCmdFirst,
‘Package Info...’);

// Return index of last inserted item + 1
Result := FMenuIdx + 1;

end;

function TContextMenu.InvokeCommand(var lpici: TCMInvokeCommandInfo): HResult;
begin
Result := S_OK;
try
// Make sure we are not being called by an application
if HiWord(Integer(lpici.lpVerb)) <> 0 then
begin
Result := E_FAIL;
Exit;

end;
// Execute the command specified by lpici.lpVerb.
// Return E_INVALIDARG if we are passed an invalid argument number.
if LoWord(lpici.lpVerb) = FMenuIdx then
ExecutePackInfoApp(FFileName, lpici.hwnd)

else
Result := E_INVALIDARG;

except

Extending the Windows Shell

CHAPTER 24
967

24

E
X

TEN
D

IN
G

TH
E

W
IN

D
O

W
S

S
H

ELL

continues

28.65227_Ch24x 11/30/99 6:10 PM Page 967

LISTING 24.10 Continued

MessageBox(lpici.hwnd, ‘Error obtaining package information.’, ‘Error’,
MB_OK or MB_ICONERROR);

Result := E_FAIL;
end;

end;

function TContextMenu.GetCommandString(idCmd, uType: UINT; pwReserved: PUINT;
pszName: LPSTR; cchMax: UINT): HRESULT;

begin
Result := S_OK;
try
// make sure menu index is correct, and shell is asking for help string
if (idCmd = FMenuIdx) and ((uType and GCS_HELPTEXT) <> 0) then
// return help string for menu item
StrLCopy(pszName, ‘Get information for the selected package.’, cchMax)

else
Result := E_INVALIDARG;

except
Result := E_UNEXPECTED;

end;
end;

{ TContextMenu.IShellExtInit }

function TContextMenu.Initialize(pidlFolder: PItemIDList; lpdobj: IDataObject;
hKeyProgID: HKEY): HResult;

var
Medium: TStgMedium;
FE: TFormatEtc;

begin
try
// Fail the call if lpdobj is nil.
if lpdobj = nil then
begin
Result := E_FAIL;
Exit;

end;
with FE do
begin
cfFormat := CF_HDROP;
ptd := nil;
dwAspect := DVASPECT_CONTENT;
lindex := -1;
tymed := TYMED_HGLOBAL;

end;

Component-Based Development

PART III
968

28.65227_Ch24x 11/30/99 6:10 PM Page 968

// Render the data referenced by the IDataObject pointer to an HGLOBAL
// storage medium in CF_HDROP format.
Result := lpdobj.GetData(FE, Medium);
if Failed(Result) then Exit;
try
// If only one file is selected, retrieve the file name and store it in
// szFile. Otherwise fail the call.
if DragQueryFile(Medium.hGlobal, $FFFFFFFF, nil, 0) = 1 then
begin
DragQueryFile(Medium.hGlobal, 0, FFileName, SizeOf(FFileName));
Result := NOERROR;

end
else
Result := E_FAIL;

finally
ReleaseStgMedium(medium);

end;
except
Result := E_UNEXPECTED;

end;
end;

{ TContextMenuFactory }

function TContextMenuFactory.GetProgID: string;
begin
// ProgID not required for context menu shell extension
Result := ‘’;

end;

procedure TContextMenuFactory.UpdateRegistry(Register: Boolean);
var
ClsID: string;

begin
ClsID := GUIDToString(ClassID);
inherited UpdateRegistry(Register);
ApproveShellExtension(Register, ClsID);
if Register then
begin
// must register .bpl as a file type
CreateRegKey(‘.bpl’, ‘’, ‘DelphiPackageLibrary’);
// register this DLL as a context menu handler for .bpl files
CreateRegKey(‘BorlandPackageLibrary\shellex\ContextMenuHandlers\’ +
ClassName, ‘’, ClsID);

end

Extending the Windows Shell

CHAPTER 24
969

24

E
X

TEN
D

IN
G

TH
E

W
IN

D
O

W
S

S
H

ELL

continues

28.65227_Ch24x 11/30/99 6:10 PM Page 969

LISTING 24.10 Continued

else begin
DeleteRegKey(‘.bpl’);
DeleteRegKey(‘BorlandPackageLibrary\shellex\ContextMenuHandlers\’ +
ClassName);

end;
end;

procedure TContextMenuFactory.ApproveShellExtension(Register: Boolean;
const ClsID: string);

// This registry entry is required in order for the extension to
// operate correctly under Windows NT.
const
SApproveKey = ‘SOFTWARE\Microsoft\Windows\CurrentVersion\

➥Shell Extensions\Approved’;
begin
with TRegistry.Create do
try
RootKey := HKEY_LOCAL_MACHINE;
if not OpenKey(SApproveKey, True) then Exit;
if Register then WriteString(ClsID, Description)
else DeleteValue(ClsID);

finally
Free;

end;
end;

const
CLSID_CopyHook: TGUID = ‘{7C5E74A0-D5E0-11D0-A9BF-E886A83B9BE5}’;

initialization
TContextMenuFactory.Create(ComServer, TContextMenu, CLSID_CopyHook,
‘D4DG_ContextMenu’, ‘D4DG Context Menu Shell Extension Example’,
ciMultiInstance, tmApartment);

end.

Icon Handlers
Icon handlers enable you to cause different icons to be used for multiple instance of the same
type of file. In this example, the TIconHandler icon handler object provides different icons for
different types of Borland Package (BPL) files. Depending on whether a package is runtime,
design time, both, or none, a different icon will be displayed in a shell folder.

Component-Based Development

PART III
970

28.65227_Ch24x 11/30/99 6:10 PM Page 970

Package Flags
Before getting into the implementations of the interfaces necessary for this shell extension,
take a moment to examine the method that determines the type of a particular package file. The
method returns TPackType, which is define as follows:

TPackType = (ptDesign, ptDesignRun, ptNone, ptRun);

Now here’s the method:

function TIconHandler.GetPackageType: TPackType;
var
PackMod: HMODULE;
PackFlags: Integer;

begin
// Since we only need to get into the package’s resources,
// LoadLibraryEx with LOAD_LIBRARY_AS_DATAFILE provides a speed-
// efficient means for loading the package.
PackMod := LoadLibraryEx(PChar(FFileName), 0, LOAD_LIBRARY_AS_DATAFILE);
if PackMod = 0 then
begin
Result := ptNone;
Exit;

end;
try
GetPackageInfo(PackMod, nil, PackFlags, PackInfoProc);

finally
FreeLibrary(PackMod);

end;
// mask off all but design and run flags, and return result
case PackFlags and (pfDesignOnly or pfRunOnly) of
pfDesignOnly: Result := ptDesign;
pfRunOnly: Result := ptRun;
pfDesignOnly or pfRunOnly: Result := ptDesignRun;

else
Result := ptNone;

end;
end;

This method works by calling the GetPackageInfo() method from the SysUtils unit to obtain
the package flags. An interesting point to note concerning performance optimization is that the
LoadLibraryEx() API function is called rather than Delphi’s LoadPackage() procedure to load
the package library. Internally, the LoadPackage() procedure calls the LoadLibrary() API to
load the BPL and then calls InitializePackage() to execute the initialization code for each
of the units in the package. Because all we want to do is get the package flags, and because the
package flags reside in a resource linked to the BPL, we can safely load the package with
LoadLibraryEx() using the LOAD_LIBRARY_AS_DATAFILE flag.

Extending the Windows Shell

CHAPTER 24
971

24

E
X

TEN
D

IN
G

TH
E

W
IN

D
O

W
S

S
H

ELL

28.65227_Ch24x 11/30/99 6:10 PM Page 971

Icon Handler Interfaces
As mentioned earlier, icon handlers must support both the IExtractIcon (defined in ShlObj)
and IPersistFile (defined in the ActiveX unit) interfaces. These interfaces are shown here:

type
IExtractIcon = interface(IUnknown)
[‘{000214EB-0000-0000-C000-000000000046}’]
function GetIconLocation(uFlags: UINT; szIconFile: PAnsiChar; cchMax: UINT;
out piIndex: Integer; out pwFlags: UINT): HResult; stdcall;

function Extract(pszFile: PAnsiChar; nIconIndex: UINT;
out phiconLarge, phiconSmall: HICON; nIconSize: UINT): HResult; stdcall;

end;

IPersistFile = interface(IPersist)
[‘{0000010B-0000-0000-C000-000000000046}’]
function IsDirty: HResult; stdcall;
function Load(pszFileName: POleStr; dwMode: Longint): HResult; stdcall;
function Save(pszFileName: POleStr; fRemember: BOOL): HResult; stdcall;
function SaveCompleted(pszFileName: POleStr): HResult; stdcall;
function GetCurFile(out pszFileName: POleStr): HResult; stdcall;

end;

Although this might look like a lot of work, it’s really not; only two of these methods actually
have to be implemented. The first file that must be implemented is IPersistFile.Load(). This
is the method that’s called to initialize the shell extension, and in it, you must save the filename
passed via the pszFileName parameter. Here’s the TExtractIcon implementation of this
method:

function TIconHandler.Load(pszFileName: POleStr; dwMode: Longint): HResult;
begin
// this method is called to initialized the icon handler shell
// extension. We must save the file name which is passed in pszFileName
FFileName := pszFileName;
Result := S_OK;

end;

The other method that must be implemented is IExtractIcon.GetIconLocation(). The para-
meters for this method are discussed in the following paragraphs.

uFlags indicates the type of icon to be displayed. This parameter can be 0, GIL_FORSHELL, or
GIL_OPENICON. GIL_FORSHELL means the icon is to be displayed in a shell folder. GIL_OPENI-
CON means the icon should be in the “open” state if images for both the open and closed states
are available. If this flag is not specified, the icon should be in the normal, or “closed,” state.
This flag is typically used for folder objects.

Component-Based Development

PART III
972

28.65227_Ch24x 11/30/99 6:10 PM Page 972

szIconFile is the buffer to receive the icon location, and cchMax is the size of the buffer.
piIndex is an integer that receives the icon index, which further describes the icon location.
pwFlags receives zero or more of the values shown in Table 24.8.

TABLE 24.8 The pwFlags Values for GetIconLocation()

Flag Meaning

GIL_DONTCACHE The physical image bits for this icon should not be cached by the caller.
This distinction is important to consider because a
GIL_DONTCACHELOCATION flag may be introduced in future versions
of the shell.

GIL_NOTFILENAME The location is not a filename/index pair. Callers that decide to extract the
icon from the location must call this object’s IExtractIcon.Extract()
method to obtain the desired icon images.

GIL_PERCLASS All objects of this class have the same icon. This flag is used internally by
the shell. Typical implementations of IExtractIcon do not require this
flag because it implies that an icon handler is not required to resolve the
icon on a per-object basis. The recommended method for implementing
per-class icons is to register a default icon for the class.

GIL_PERINSTANCE Each object of this class has its own icon. This flag is used internally by
the shell to handle cases such as setup.exe, where more than one object
with identical names might be known to the shell and use different icons.
Typical implementations of IExtractIcon do not require this flag.

GIL_SIMULATEDOC The caller should create a document icon using the specified icon.

The TIconHandler implementation of GetIconLocation() is shown here:

function TIconHandler.GetIconLocation(uFlags: UINT; szIconFile: PAnsiChar;
cchMax: UINT; out piIndex: Integer; out pwFlags: UINT): HResult;

begin
Result := S_OK;
try
// return this DLL for name of module to find icon
GetModuleFileName(HInstance, szIconFile, cchMax);
// tell shell not to cache image bits, in case icon changes
// and that each instance may have its own icon
pwFlags := GIL_DONTCACHE or GIL_PERINSTANCE;
// icon index coincides with TPackType
piIndex := Ord(GetPackageType);

except
// if there’s an error, use the default package icon
piIndex := Ord(ptNone);

end;
end;

Extending the Windows Shell

CHAPTER 24
973

24

E
X

TEN
D

IN
G

TH
E

W
IN

D
O

W
S

S
H

ELL

continues

28.65227_Ch24x 11/30/99 6:10 PM Page 973

The icons are linked into the shell extension DLL as a resource file, so the name of the current
file, as returned by GetModuleFileName(), is written to the szIconFile buffer. Also, the icons
are arranged in such a way that the index of an icon for a package type corresponds to the
package type’s index into the TPackType enumeration, so the return value of
GetPackageType() is assigned to piIndex.

Registration
Icon handlers must be registered under the

HKEY_CLASSES_ROOT\<file type>\shellex\IconHandler

key in the Registry. Again, a descendant of TComObjectFactory is created to deal with the reg-
istration of this shell extension. This is shown in Listing 24.11 along with the rest of the source
code for the icon handler.

Figure 24.11 shows a shell folder containing packages of different types. Notice the different
icons for different types of packages.

Component-Based Development

PART III
974

FIGURE 24.11
The result of using the icon handler.

LISTING 24.11 IconMain.pas, the Main Unit for Icon Handler Implementation

unit IconMain;

interface

28.65227_Ch24x 11/30/99 6:10 PM Page 974

uses Windows, ActiveX, ComObj, ShlObj;

type
TPackType = (ptDesign, ptDesignRun, ptNone, ptRun);

TIconHandler = class(TComObject, IExtractIcon, IPersistFile)
private
FFileName: string;
function GetPackageType: TPackType;

protected
// IExtractIcon methods
function GetIconLocation(uFlags: UINT; szIconFile: PAnsiChar; cchMax: UINT;
out piIndex: Integer; out pwFlags: UINT): HResult; stdcall;

function Extract(pszFile: PAnsiChar; nIconIndex: UINT;
out phiconLarge, phiconSmall: HICON; nIconSize: UINT): HResult; stdcall;

// IPersist method
function GetClassID(out classID: TCLSID): HResult; stdcall;
// IPersistFile methods
function IsDirty: HResult; stdcall;
function Load(pszFileName: POleStr; dwMode: Longint): HResult; stdcall;
function Save(pszFileName: POleStr; fRemember: BOOL): HResult; stdcall;
function SaveCompleted(pszFileName: POleStr): HResult; stdcall;
function GetCurFile(out pszFileName: POleStr): HResult; stdcall;

end;

TIconHandlerFactory = class(TComObjectFactory)
protected
function GetProgID: string; override;
procedure ApproveShellExtension(Register: Boolean; const ClsID: string);
virtual;

public
procedure UpdateRegistry(Register: Boolean); override;

end;

implementation

uses SysUtils, ComServ, Registry;

{ TIconHandler }

procedure PackInfoProc(const Name: string; NameType: TNameType; Flags: Byte;
Param: Pointer);

begin
// we don’t need to implement this procedure because we are only
// interested in package flags, not contained units and required pkgs.

end;

Extending the Windows Shell

CHAPTER 24
975

24

E
X

TEN
D

IN
G

TH
E

W
IN

D
O

W
S

S
H

ELL

continues

28.65227_Ch24x 11/30/99 6:10 PM Page 975

LISTING 24.11 Continued

function TIconHandler.GetPackageType: TPackType;
var
PackMod: HMODULE;
PackFlags: Integer;

begin
// Since we only need to get into the package’s resources,
// LoadLibraryEx with LOAD_LIBRARY_AS_DATAFILE provides a speed-
// efficient means for loading the package.
PackMod := LoadLibraryEx(PChar(FFileName), 0, LOAD_LIBRARY_AS_DATAFILE);
if PackMod = 0 then
begin
Result := ptNone;
Exit;

end;
try
GetPackageInfo(PackMod, nil, PackFlags, PackInfoProc);

finally
FreeLibrary(PackMod);

end;
// mask off all but design and run flags, and return result
case PackFlags and (pfDesignOnly or pfRunOnly) of
pfDesignOnly: Result := ptDesign;
pfRunOnly: Result := ptRun;
pfDesignOnly or pfRunOnly: Result := ptDesignRun;

else
Result := ptNone;

end;
end;

{ TIconHandler.IExtractIcon }

function TIconHandler.GetIconLocation(uFlags: UINT; szIconFile: PAnsiChar;
cchMax: UINT; out piIndex: Integer; out pwFlags: UINT): HResult;

begin
Result := S_OK;
try
// return this DLL for name of module to find icon
GetModuleFileName(HInstance, szIconFile, cchMax);
// tell shell not to cache image bits, in case icon changes
// and that each instance may have its own icon
pwFlags := GIL_DONTCACHE or GIL_PERINSTANCE;
// icon index coincides with TPackType
piIndex := Ord(GetPackageType);

except

Component-Based Development

PART III
976

28.65227_Ch24x 11/30/99 6:10 PM Page 976

// if there’s an error, use the default package icon
piIndex := Ord(ptNone);

end;
end;

function TIconHandler.Extract(pszFile: PAnsiChar; nIconIndex: UINT;
out phiconLarge, phiconSmall: HICON; nIconSize: UINT): HResult;

begin
// This method only needs to be implemented if the icon is stored in
// some type of user-defined data format. Since our icon is in a
// plain old DLL, we just return S_FALSE.
Result := S_FALSE;

end;

{ TIconHandler.IPersist }

function TIconHandler.GetClassID(out classID: TCLSID): HResult;
begin
// this method is not called for icon handlers
Result := E_NOTIMPL;

end;

{ TIconHandler.IPersistFile }

function TIconHandler.IsDirty: HResult;
begin
// this method is not called for icon handlers
Result := S_FALSE;

end;

function TIconHandler.Load(pszFileName: POleStr; dwMode: Longint): HResult;
begin
// this method is called to initialized the icon handler shell
// extension. We must save the file name which is passed in pszFileName
FFileName := pszFileName;
Result := S_OK;

end;

function TIconHandler.Save(pszFileName: POleStr; fRemember: BOOL): HResult;
begin
// this method is not called for icon handlers
Result := E_NOTIMPL;

end;

function TIconHandler.SaveCompleted(pszFileName: POleStr): HResult;
begin

Extending the Windows Shell

CHAPTER 24
977

24

E
X

TEN
D

IN
G

TH
E

W
IN

D
O

W
S

S
H

ELL

continues

28.65227_Ch24x 11/30/99 6:10 PM Page 977

LISTING 24.11 Continued

// this method is not called for icon handlers
Result := E_NOTIMPL;

end;

function TIconHandler.GetCurFile(out pszFileName: POleStr): HResult;
begin
// this method is not called for icon handlers
Result := E_NOTIMPL;

end;

{ TIconHandlerFactory }

function TIconHandlerFactory.GetProgID: string;
begin
// ProgID not required for context menu shell extension
Result := ‘’;

end;

procedure TIconHandlerFactory.UpdateRegistry(Register: Boolean);
var
ClsID: string;

begin
ClsID := GUIDToString(ClassID);
inherited UpdateRegistry(Register);
ApproveShellExtension(Register, ClsID);
if Register then
begin
// must register .bpl as a file type
CreateRegKey(‘.bpl’, ‘’, ‘BorlandPackageLibrary’);
// register this DLL as an icon handler for .bpl files
CreateRegKey(‘BorlandPackageLibrary\shellex\IconHandler’, ‘’, ClsID);

end
else begin
DeleteRegKey(‘.bpl’);
DeleteRegKey(‘BorlandPackageLibrary\shellex\IconHandler’);

end;
end;

procedure TIconHandlerFactory.ApproveShellExtension(Register: Boolean;
const ClsID: string);

// This registry entry is required in order for the extension to
// operate correctly under Windows NT.
const
SApproveKey = ‘SOFTWARE\Microsoft\Windows\CurrentVersion\

➥Shell Extensions\Approved’;

Component-Based Development

PART III
978

28.65227_Ch24x 11/30/99 6:10 PM Page 978

begin
with TRegistry.Create do
try
RootKey := HKEY_LOCAL_MACHINE;
if not OpenKey(SApproveKey, True) then Exit;
if Register then WriteString(ClsID, Description)
else DeleteValue(ClsID);

finally
Free;

end;
end;

const
CLSID_IconHandler: TGUID = ‘{ED6D2F60-DA7C-11D0-A9BF-90D146FC32B3}’;

initialization
TIconHandlerFactory.Create(ComServer, TIconHandler, CLSID_IconHandler,
‘D4DG_IconHandler’, ‘D4DG Icon Handler Shell Extension Example’,
ciMultiInstance, tmApartment);

end.

Summary
This chapter covered all the different aspects of extending the Windows shell: tray-notification
icons, AppBars, shell links, and a variety of shell extensions. It built upon some of the knowl-
edge you obtained in the last chapter when working with COM and ActiveX. In the next chap-
ter, “Creating ActiveX Controls,” you’ll take this knowledge even further as you learn to
develop ActiveX controls.

Extending the Windows Shell

CHAPTER 24
979

24

E
X

TEN
D

IN
G

TH
E

W
IN

D
O

W
S

S
H

ELL

28.65227_Ch24x 11/30/99 6:10 PM Page 979

28.65227_Ch24x 11/30/99 6:10 PM Page 980

CHAPTER

25
Creating ActiveX Controls

IN THIS CHAPTER
• Why Create ActiveX Controls? 982

• Creating an ActiveX Control 982

• ActiveForms 1030

• Adding Properties to ActiveForms 1030

• ActiveX on the Web 1039

• Summary 1053

29.65227_Ch25x 11/30/99 6:11 PM Page 981

For many developers, the ability to easily create ActiveX controls is one of the most com-
pelling features Delphi brings to the table. ActiveX is a standard for programming language-
independent controls that can function in a variety of environments, including Delphi,
C++Builder, Visual Basic, and Internet Explorer. These controls can be as simple as a static
text control or as complex as a fully functional spreadsheet or word processor. Traditionally,
ActiveX controls are quite complicated and difficult to write, but Delphi brings ActiveX con-
trol creation to the masses by allowing you to convert a relatively easy-to-create VCL compo-
nent or form into an ActiveX control.

This chapter will not teach you everything there is to know about ActiveX controls—that
would take a thick book in its own right. What this chapter will demonstrate is how ActiveX
control creation works in Delphi and how to use the Delphi wizards and framework to make
Delphi-created ActiveX controls work for you.

Component-Based Development

PART III
982

NOTE

The capability to create ActiveX controls is provided only with the Professional and
Enterprise editions of Delphi.

Why Create ActiveX Controls?
As a Delphi developer, you may be completely happy with the capabilities of native VCL com-
ponents and forms, and you might be wondering why you should even bother creating ActiveX
controls. There are several reasons. First, if you are a professional component developer, the
payoff can be huge; by converting your VCL controls into ActiveX controls, your potential
market is not merely fellow Delphi and C++Builder developers but also users of practically
any Win32 development tool. Second, even if you are not a component vendor, you can take
advantage of ActiveX controls to add content and functionality to World Wide Web pages.

Creating an ActiveX Control
Delphi’s one-step wizards make creating an ActiveX control a simple process. However, as you
will soon learn, the wizard is just the beginning if you want your controls to really shine.

To help you become familiar with Delphi’s ActiveX capabilities, Figure 25.1 shows the
ActiveX page of the New Items dialog, which appears when you select File, New from the
main menu. Many of the items shown here will be described as this chapter progresses.

29.65227_Ch25x 11/30/99 6:11 PM Page 982

FIGURE 25.1
The ActiveX page of the New Items dialog.

The first icon in this dialog represents an ActiveForm (described later in this chapter), and you
can click it to invoke a wizard that aids you in creating an ActiveForm. Note that ActiveForms
are only slightly different from regular ActiveX controls, so we will refer to both generically as
ActiveX controls throughout this chapter.

Next, you see the icon representing an ActiveX control. Clicking here will invoke the ActiveX
Control Wizard, which we will describe in the next section.

The third icon represents an ActiveX library. Click this icon to create a new library project that
exports the four ActiveX server functions described in Chapter 23, “COM-Based Technologies.”
This can be used as a starting point before adding an ActiveX control to the project.

The Automation Object Wizard, represented by the next icon, is described in Chapter 23.

The next icon is the COM Object Wizard. The wizard invoked by clicking this icon enables
you to create a plain COM object. You learned about this wizard in the previous chapter when
you created shell extensions.

Clicking the icon at the far right enables you to add a property page to the current project.
Property pages allow visual editing of ActiveX controls, and you will see an example of creat-
ing a property page and integrating it into your ActiveX control project later in this chapter.

The final icon represents a type library; you can click it when you wish to add a type library to
your project. Because the wizards for ActiveX controls and ActiveForms (as well as Automation
objects) automatically add a type library to the project, you will rarely use this option.

The ActiveX Control Wizard
Clicking the ActiveX Control icon on the ActiveX page of the New Items dialog will invoke
the ActiveX Control Wizard, which is shown in Figure 25.2.

Creating ActiveX Controls

CHAPTER 25
983

25

C
R

EA
TIN

G
A

C
TIV

EX
C

O
N

TR
O

LS

29.65227_Ch25x 11/30/99 6:11 PM Page 983

FIGURE 25.2
The ActiveX Control Wizard.

This wizard allows you to choose a VCL control class to encapsulate as an ActiveX control.
Additionally, it allows you to specify the name of the ActiveX control class, the name of the
file that will contain the implementation of the new ActiveX control, and the name of the pro-
ject in which the ActiveX control will reside.

Component-Based Development

PART III
984

VCL Controls in the ActiveX Control Wizard
If you examine the list of VCL controls in the drop-down combo box in the ActiveX
Control Wizard, you will notice that not all VCL components are found in the list. A
VCL control must meet three criteria in order to be listed in the wizard:

• The VCL control must reside in a currently installed design package (that is, it must
be on the Component Palette).

• The VCL control must descend from TWinControl. Currently, nonwindowed controls
cannot be encapsulated as ActiveX controls.

• The VCL control must not have been excluded from the list with the
RegisterNonActiveX() procedure. RegisterNonActiveX() is described in detail in
the Delphi online help.

Many standard VCL components are excluded from the list because they either do not
make sense as ActiveX controls or would require significant work beyond the wizard’s
scope in order to function as ActiveX controls. TDBGrid is a good example of a VCL
control that does not make sense as an ActiveX control; it requires another VCL class
(TDataSource) as a property in order to function, and this is not possible using
ActiveX. TTreeView is an example of a control that would require significant work
beyond the wizard to encapsulate as an ActiveX control, because the TTreeView
nodes would be difficult to represent in ActiveX.

29.65227_Ch25x 11/30/99 6:11 PM Page 984

ActiveX Control Options
The lower portion of the ActiveX Control Wizard dialog allows you to set certain options that
will become a part of the ActiveX control. These options consist of three check boxes:

• Make Control Licensed. When this option is selected, a license (LIC) file will be gener-
ated along with the control project. In order for other developers to use the generated
ActiveX control in a development environment, they will need to have the LIC file in
addition to the ActiveX control (OCX) file.

• Include Version Information. When selected, this option will cause a VersionInfo
resource to be linked into the OCX file. In addition, the string file information in the
VersionInfo resource includes a value called OleSelfRegister, which is set to 1. This
setting is required for some older ActiveX control hosts, such as Visual Basic 4.0. You
can edit a project’s VersionInfo data in the VersionInfo page of the Project Options dia-
log.

• Include About Box. Select this option in order to include an “About box” dialog with
your ActiveX control. The About box is usually available in ActiveX container applica-
tions by selecting an option from a local right-click menu on the ActiveX control. The
About box generated is a regular Delphi form that you can edit to your liking.

How VCL Controls Are Encapsulated
After you finish describing your control in the ActiveX Control Wizard and click the OK but-
ton, the wizard goes about the task of writing the wrapper to encapsulate the selected VCL
control as an ActiveX control. The end result is an ActiveX library project that includes a
working ActiveX control, but a lot of interesting stuff is going on behind the scenes. Here is a
description of the steps involved in encapsulating a VCL control as an ActiveX control:

1. The wizard determines which unit contains the VCL control. That unit is then handed to
the compiler, and the compiler generates special symbolic information for the VCL con-
trol’s properties, methods, and events.

2. A type library is created for the project. It contains an interface to hold properties and
methods, a dispinterface to hold events, and a coclass to represent the ActiveX control.

Creating ActiveX Controls

CHAPTER 25
985

25

C
R

EA
TIN

G
A

C
TIV

EX
C

O
N

TR
O

LS

NOTE

Although the ActiveX wizard does not allow you to automatically generate an
ActiveX control from a non-TWinControl control, it is possible to write such a control
by hand using the Delphi ActiveX (DAX) framework.

29.65227_Ch25x 11/30/99 6:11 PM Page 985

3. The wizard iterates over all the symbol information for the VCL control, adding qualified
properties and methods to the interface in the type library and qualified events to the
dispinterface.

Component-Based Development

PART III
986

NOTE

The description of step 3 begs the following question: What constitutes a qualified
property, method, or event for inclusion in the type library? In order to qualify for
inclusion in the type library, properties must be of an Automation-compatible type,
and the parameters and return values of the methods and events must also be of an
Automation-compatible type. Recall from Chapter 23, “COM-Based Technologies,”
that Automation-compatible types include Byte, SmallInt, Integer, Single, Double,
Currency, TDateTime, WideString, WordBool, PSafeArray, TDecimal, OleVariant,
IUnknown, IDispatch.

However, there are exceptions to this rule. In addition to Automation-compatible
types, parameters of type TStrings, TPicture, and TFont are also permitted. For
these types, the wizard will employ special adapter objects that allow them to be
wrapped with an ActiveX-compatible IDispatch or dispinterface.

4. Once all the qualifying properties, methods, and events have been added, the type library
editor generates a file that is an Object Pascal translation of the type library contents.

5. The wizard then generates the implementation file for the ActiveX control. This imple-
mentation file contains a TActiveXControl object that implements the interface
described in the type library. The wizard automatically writes forwarders for interface
properties and methods. These forwarder methods forward method calls from the
ActiveX control wrapper into the control, and they forward events from the VCL control
out to the ActiveX control.

To help illustrate what we are describing here, we have provided the following listings. They
belong to an ActiveX control project created from a TMemo VCL control. This project is saved
as Memo.dpr. Listing 25.1 shows the project file, Listing 25.2 shows the type library file, and
Listing 25.3 shows the implementation file generated for the control. Also, Figure 25.3 shows
the contents of the type library editor.

LISTING 25.1 The Project File: Memo.dpr

library Memo;

uses
ComServ,
Memo_TLB in ‘Memo_TLB.pas’,

29.65227_Ch25x 11/30/99 6:11 PM Page 986

MemoImpl in ‘MemoImpl.pas’ {MemoX: CoClass},
About in ‘About.pas’ {MemoXAbout};

{$E ocx}

exports
DllGetClassObject,
DllCanUnloadNow,
DllRegisterServer,
DllUnregisterServer;

{$R *.TLB}

{$R *.RES}

begin
end.

Creating ActiveX Controls

CHAPTER 25
987

25

C
R

EA
TIN

G
A

C
TIV

EX
C

O
N

TR
O

LS

FIGURE 25.3
Memo, as shown in the type library editor.

LISTING 25.2 The Type Library File: Memo_TLB.pas

unit Memo_TLB;

// ** //
// WARNING
// -------
// The types declared in this file were generated from data read from a

continues

29.65227_Ch25x 11/30/99 6:11 PM Page 987

LISTING 25.2 Continued

// Type Library. If this type library is explicitly or indirectly (via
// another type library referring to this type library) re-imported, or the
// ‘Refresh’ command of the Type Library Editor activated while editing the
// Type Library, the contents of this file will be regenerated and all
// manual modifications will be lost.
// ** //

// PASTLWTR : $Revision: 1.88 $
// File generated on 8/23/99 12:22:29 AM from Type Library described below.

// ***//
// NOTE:
// Items guarded by $IFDEF_LIVE_SERVER_AT_DESIGN_TIME are used by properties
// which return objects that may need to be explicitly created via a function
// call prior to any access via the property. These items have been disabled
// in order to prevent accidental use from within the object inspector. You
// may enable them by defining LIVE_SERVER_AT_DESIGN_TIME or by selectively
// removing them from the $IFDEF blocks. However, such items must still be
// programmatically created via a method of the appropriate CoClass before
// they can be used.
// ** //
// Type Lib: X:\work\d5dg\code\Ch25\Memo\Memo.tlb (1)
// IID\LCID: {0DB4686F-09C5-11D2-AE5C-00A024E3867F}\0
// Helpfile:
// DepndLst:
// (1) v2.0 stdole, (C:\WINDOWS\SYSTEM\STDOLE2.TLB)
// (2) v4.0 StdVCL, (C:\WINDOWS\SYSTEM\STDVCL40.DLL)
// ** //
{$TYPEDADDRESS OFF} // Unit must be compiled without type-checked pointers.
interface

uses Windows, ActiveX, Classes, Graphics, OleServer, OleCtrls, StdVCL;

// ***//
// GUIDS declared in the TypeLibrary. Following prefixes are used:
// Type Libraries : LIBID_xxxx
// CoClasses : CLASS_xxxx
// DISPInterfaces : DIID_xxxx
// Non-DISP interfaces: IID_xxxx
// ***//
const
// TypeLibrary Major and minor versions
MemoMajorVersion = 1;
MemoMinorVersion = 0;

Component-Based Development

PART III
988

29.65227_Ch25x 11/30/99 6:11 PM Page 988

LIBID_Memo: TGUID = ‘{0DB4686F-09C5-11D2-AE5C-00A024E3867F}’;

IID_IMemoX: TGUID = ‘{0DB46870-09C5-11D2-AE5C-00A024E3867F}’;
DIID_IMemoXEvents: TGUID = ‘{0DB46872-09C5-11D2-AE5C-00A024E3867F}’;
CLASS_MemoX: TGUID = ‘{0DB46874-09C5-11D2-AE5C-00A024E3867F}’;

// ***//
// Declaration of Enumerations defined in Type Library
// ***//
// Constants for enum TxAlignment
type
TxAlignment = TOleEnum;

const
taLeftJustify = $00000000;
taRightJustify = $00000001;
taCenter = $00000002;

// Constants for enum TxBiDiMode
type
TxBiDiMode = TOleEnum;

const
bdLeftToRight = $00000000;
bdRightToLeft = $00000001;
bdRightToLeftNoAlign = $00000002;
bdRightToLeftReadingOnly = $00000003;

// Constants for enum TxBorderStyle
type
TxBorderStyle = TOleEnum;

const
bsNone = $00000000;
bsSingle = $00000001;

// Constants for enum TxDragMode
type
TxDragMode = TOleEnum;

const
dmManual = $00000000;
dmAutomatic = $00000001;

// Constants for enum TxImeMode
type
TxImeMode = TOleEnum;

const
imDisable = $00000000;
imClose = $00000001;

Creating ActiveX Controls

CHAPTER 25
989

25

C
R

EA
TIN

G
A

C
TIV

EX
C

O
N

TR
O

LS

continues

29.65227_Ch25x 11/30/99 6:11 PM Page 989

LISTING 25.2 Continued

imOpen = $00000002;
imDontCare = $00000003;
imSAlpha = $00000004;
imAlpha = $00000005;
imHira = $00000006;
imSKata = $00000007;
imKata = $00000008;
imChinese = $00000009;
imSHanguel = $0000000A;
imHanguel = $0000000B;

// Constants for enum TxScrollStyle
type
TxScrollStyle = TOleEnum;

const
ssNone = $00000000;
ssHorizontal = $00000001;
ssVertical = $00000002;
ssBoth = $00000003;

// Constants for enum TxMouseButton
type
TxMouseButton = TOleEnum;

const
mbLeft = $00000000;
mbRight = $00000001;
mbMiddle = $00000002;

type

// ***//
// Forward declaration of types defined in TypeLibrary
// ***//
IMemoX = interface;
IMemoXDisp = dispinterface;
IMemoXEvents = dispinterface;

// ***//
// Declaration of CoClasses defined in Type Library
// (NOTE: Here we map each CoClass to its Default Interface)
// ***//
MemoX = IMemoX;

// ***//
// Interface: IMemoX

Component-Based Development

PART III
990

29.65227_Ch25x 11/30/99 6:11 PM Page 990

// Flags: (4416) Dual OleAutomation Dispatchable
// GUID: {0DB46870-09C5-11D2-AE5C-00A024E3867F}
// ***//
IMemoX = interface(IDispatch)
[‘{0DB46870-09C5-11D2-AE5C-00A024E3867F}’]
function Get_Alignment: TxAlignment; safecall;
procedure Set_Alignment(Value: TxAlignment); safecall;
function Get_BiDiMode: TxBiDiMode; safecall;
procedure Set_BiDiMode(Value: TxBiDiMode); safecall;
function Get_BorderStyle: TxBorderStyle; safecall;
procedure Set_BorderStyle(Value: TxBorderStyle); safecall;
function Get_Color: OLE_COLOR; safecall;
procedure Set_Color(Value: OLE_COLOR); safecall;
function Get_Ctl3D: WordBool; safecall;
procedure Set_Ctl3D(Value: WordBool); safecall;
function Get_DragCursor: Smallint; safecall;
procedure Set_DragCursor(Value: Smallint); safecall;
function Get_DragMode: TxDragMode; safecall;
procedure Set_DragMode(Value: TxDragMode); safecall;
function Get_Enabled: WordBool; safecall;
procedure Set_Enabled(Value: WordBool); safecall;
function Get_Font: IFontDisp; safecall;
procedure _Set_Font(const Value: IFontDisp); safecall;
procedure Set_Font(var Value: IFontDisp); safecall;
function Get_HideSelection: WordBool; safecall;
procedure Set_HideSelection(Value: WordBool); safecall;
function Get_ImeMode: TxImeMode; safecall;
procedure Set_ImeMode(Value: TxImeMode); safecall;
function Get_ImeName: WideString; safecall;
procedure Set_ImeName(const Value: WideString); safecall;
function Get_MaxLength: Integer; safecall;
procedure Set_MaxLength(Value: Integer); safecall;
function Get_OEMConvert: WordBool; safecall;
procedure Set_OEMConvert(Value: WordBool); safecall;
function Get_ParentColor: WordBool; safecall;
procedure Set_ParentColor(Value: WordBool); safecall;
function Get_ParentCtl3D: WordBool; safecall;
procedure Set_ParentCtl3D(Value: WordBool); safecall;
function Get_ParentFont: WordBool; safecall;
procedure Set_ParentFont(Value: WordBool); safecall;
function Get_ReadOnly: WordBool; safecall;
procedure Set_ReadOnly(Value: WordBool); safecall;
function Get_ScrollBars: TxScrollStyle; safecall;
procedure Set_ScrollBars(Value: TxScrollStyle); safecall;
function Get_Visible: WordBool; safecall;
procedure Set_Visible(Value: WordBool); safecall;

Creating ActiveX Controls

CHAPTER 25
991

25

C
R

EA
TIN

G
A

C
TIV

EX
C

O
N

TR
O

LS

continues

29.65227_Ch25x 11/30/99 6:11 PM Page 991

LISTING 25.2 Continued

function Get_WantReturns: WordBool; safecall;
procedure Set_WantReturns(Value: WordBool); safecall;
function Get_WantTabs: WordBool; safecall;
procedure Set_WantTabs(Value: WordBool); safecall;
function Get_WordWrap: WordBool; safecall;
procedure Set_WordWrap(Value: WordBool); safecall;
function GetControlsAlignment: TxAlignment; safecall;
procedure Clear; safecall;
procedure ClearSelection; safecall;
procedure CopyToClipboard; safecall;
procedure CutToClipboard; safecall;
procedure PasteFromClipboard; safecall;
procedure Undo; safecall;
procedure ClearUndo; safecall;
procedure SelectAll; safecall;
function Get_CanUndo: WordBool; safecall;
function Get_Modified: WordBool; safecall;
procedure Set_Modified(Value: WordBool); safecall;
function Get_SelLength: Integer; safecall;
procedure Set_SelLength(Value: Integer); safecall;
function Get_SelStart: Integer; safecall;
procedure Set_SelStart(Value: Integer); safecall;
function Get_SelText: WideString; safecall;
procedure Set_SelText(const Value: WideString); safecall;
function Get_Text: WideString; safecall;
procedure Set_Text(const Value: WideString); safecall;
function Get_DoubleBuffered: WordBool; safecall;
procedure Set_DoubleBuffered(Value: WordBool); safecall;
procedure FlipChildren(AllLevels: WordBool); safecall;
function DrawTextBiDiModeFlags(Flags: Integer): Integer; safecall;
function DrawTextBiDiModeFlagsReadingOnly: Integer; safecall;
procedure InitiateAction; safecall;
function IsRightToLeft: WordBool; safecall;
function UseRightToLeftAlignment: WordBool; safecall;
function UseRightToLeftReading: WordBool; safecall;
function UseRightToLeftScrollBar: WordBool; safecall;
function Get_Cursor: Smallint; safecall;
procedure Set_Cursor(Value: Smallint); safecall;
function ClassNameIs(const Name: WideString): WordBool; safecall;
procedure AboutBox; safecall;
property Alignment: TxAlignment read Get_Alignment write Set_Alignment;
property BiDiMode: TxBiDiMode read Get_BiDiMode write Set_BiDiMode;
property BorderStyle: TxBorderStyle read Get_BorderStyle write
Set_BorderStyle;

property Color: OLE_COLOR read Get_Color write Set_Color;

Component-Based Development

PART III
992

29.65227_Ch25x 11/30/99 6:11 PM Page 992

property Ctl3D: WordBool read Get_Ctl3D write Set_Ctl3D;
property DragCursor: Smallint read Get_DragCursor write Set_DragCursor;
property DragMode: TxDragMode read Get_DragMode write Set_DragMode;
property Enabled: WordBool read Get_Enabled write Set_Enabled;
property Font: IFontDisp read Get_Font write _Set_Font;
property HideSelection: WordBool read Get_HideSelection write
Set_HideSelection;

property ImeMode: TxImeMode read Get_ImeMode write Set_ImeMode;
property ImeName: WideString read Get_ImeName write Set_ImeName;
property MaxLength: Integer read Get_MaxLength write Set_MaxLength;
property OEMConvert: WordBool read Get_OEMConvert write Set_OEMConvert;
property ParentColor: WordBool read Get_ParentColor write Set_ParentColor;
property ParentCtl3D: WordBool read Get_ParentCtl3D write Set_ParentCtl3D;
property ParentFont: WordBool read Get_ParentFont write Set_ParentFont;
property ReadOnly: WordBool read Get_ReadOnly write Set_ReadOnly;
property ScrollBars: TxScrollStyle read Get_ScrollBars write

Set_ScrollBars;
property Visible: WordBool read Get_Visible write Set_Visible;
property WantReturns: WordBool read Get_WantReturns write Set_WantReturns;
property WantTabs: WordBool read Get_WantTabs write Set_WantTabs;
property WordWrap: WordBool read Get_WordWrap write Set_WordWrap;
property CanUndo: WordBool read Get_CanUndo;
property Modified: WordBool read Get_Modified write Set_Modified;
property SelLength: Integer read Get_SelLength write Set_SelLength;
property SelStart: Integer read Get_SelStart write Set_SelStart;
property SelText: WideString read Get_SelText write Set_SelText;
property Text: WideString read Get_Text write Set_Text;
property DoubleBuffered: WordBool read Get_DoubleBuffered write
Set_DoubleBuffered;

property Cursor: Smallint read Get_Cursor write Set_Cursor;
end;

// ***//
// DispIntf: IMemoXDisp
// Flags: (4416) Dual OleAutomation Dispatchable
// GUID: {0DB46870-09C5-11D2-AE5C-00A024E3867F}
// ***//
IMemoXDisp = dispinterface
[‘{0DB46870-09C5-11D2-AE5C-00A024E3867F}’]
property Alignment: TxAlignment dispid 1;
property BiDiMode: TxBiDiMode dispid 2;
property BorderStyle: TxBorderStyle dispid 3;
property Color: OLE_COLOR dispid -501;
property Ctl3D: WordBool dispid 4;
property DragCursor: Smallint dispid 5;
property DragMode: TxDragMode dispid 6;

Creating ActiveX Controls

CHAPTER 25
993

25

C
R

EA
TIN

G
A

C
TIV

EX
C

O
N

TR
O

LS

continues

29.65227_Ch25x 11/30/99 6:11 PM Page 993

LISTING 25.2 Continued

property Enabled: WordBool dispid -514;
property Font: IFontDisp dispid -512;
property HideSelection: WordBool dispid 7;
property ImeMode: TxImeMode dispid 8;
property ImeName: WideString dispid 9;
property MaxLength: Integer dispid 10;
property OEMConvert: WordBool dispid 11;
property ParentColor: WordBool dispid 12;
property ParentCtl3D: WordBool dispid 13;
property ParentFont: WordBool dispid 14;
property ReadOnly: WordBool dispid 15;
property ScrollBars: TxScrollStyle dispid 16;
property Visible: WordBool dispid 17;
property WantReturns: WordBool dispid 18;
property WantTabs: WordBool dispid 19;
property WordWrap: WordBool dispid 20;
function GetControlsAlignment: TxAlignment; dispid 21;
procedure Clear; dispid 22;
procedure ClearSelection; dispid 23;
procedure CopyToClipboard; dispid 24;
procedure CutToClipboard; dispid 25;
procedure PasteFromClipboard; dispid 27;
procedure Undo; dispid 28;
procedure ClearUndo; dispid 29;
procedure SelectAll; dispid 31;
property CanUndo: WordBool readonly dispid 33;
property Modified: WordBool dispid 34;
property SelLength: Integer dispid 35;
property SelStart: Integer dispid 36;
property SelText: WideString dispid 37;
property Text: WideString dispid -517;
property DoubleBuffered: WordBool dispid 39;
procedure FlipChildren(AllLevels: WordBool); dispid 40;
function DrawTextBiDiModeFlags(Flags: Integer): Integer; dispid 43;
function DrawTextBiDiModeFlagsReadingOnly: Integer; dispid 44;
procedure InitiateAction; dispid 46;
function IsRightToLeft: WordBool; dispid 47;
function UseRightToLeftAlignment: WordBool; dispid 52;
function UseRightToLeftReading: WordBool; dispid 53;
function UseRightToLeftScrollBar: WordBool; dispid 54;
property Cursor: Smallint dispid 55;
function ClassNameIs(const Name: WideString): WordBool; dispid 59;
procedure AboutBox; dispid -552;

end;

Component-Based Development

PART III
994

29.65227_Ch25x 11/30/99 6:11 PM Page 994

// ***//
// DispIntf: IMemoXEvents
// Flags: (4096) Dispatchable
// GUID: {0DB46872-09C5-11D2-AE5C-00A024E3867F}
// ***//
IMemoXEvents = dispinterface
[‘{0DB46872-09C5-11D2-AE5C-00A024E3867F}’]
procedure OnChange; dispid 1;
procedure OnClick; dispid 2;
procedure OnDblClick; dispid 3;
procedure OnKeyPress(var Key: Smallint); dispid 9;

end;

// ***//
// OLE Control Proxy class declaration
// Control Name : TMemoX
// Help String : MemoX Control
// Default Interface: IMemoX
// Def. Intf. DISP? : No
// Event Interface: IMemoXEvents
// TypeFlags : (34) CanCreate Control
// ***//
TMemoXOnKeyPress = procedure(Sender: TObject; var Key: Smallint) of object;

TMemoX = class(TOleControl)
private
FOnChange: TNotifyEvent;
FOnClick: TNotifyEvent;
FOnDblClick: TNotifyEvent;
FOnKeyPress: TMemoXOnKeyPress;
FIntf: IMemoX;
function GetControlInterface: IMemoX;

protected
procedure CreateControl;
procedure InitControlData; override;

public
function GetControlsAlignment: TxAlignment;
procedure Clear;
procedure ClearSelection;
procedure CopyToClipboard;
procedure CutToClipboard;
procedure PasteFromClipboard;
procedure Undo;
procedure ClearUndo;
procedure SelectAll;

Creating ActiveX Controls

CHAPTER 25
995

25

C
R

EA
TIN

G
A

C
TIV

EX
C

O
N

TR
O

LS

continues

29.65227_Ch25x 11/30/99 6:11 PM Page 995

LISTING 25.2 Continued

procedure FlipChildren(AllLevels: WordBool);
function DrawTextBiDiModeFlags(Flags: Integer): Integer;
function DrawTextBiDiModeFlagsReadingOnly: Integer;
procedure InitiateAction;
function IsRightToLeft: WordBool;
function UseRightToLeftAlignment: WordBool;
function UseRightToLeftReading: WordBool;
function UseRightToLeftScrollBar: WordBool;
function ClassNameIs(const Name: WideString): WordBool;
procedure AboutBox;
property ControlInterface: IMemoX read GetControlInterface;
property DefaultInterface: IMemoX read GetControlInterface;
property CanUndo: WordBool index 33 read GetWordBoolProp;
property Modified: WordBool index 34 read GetWordBoolProp write
SetWordBoolProp;

property SelLength: Integer index 35 read GetIntegerProp write
SetIntegerProp;

property SelStart: Integer index 36 read GetIntegerProp write
SetIntegerProp;

property SelText: WideString index 37 read GetWideStringProp write
SetWideStringProp;

property Text: WideString index -517 read GetWideStringProp write
SetWideStringProp;

property DoubleBuffered: WordBool index 39 read GetWordBoolProp write
SetWordBoolProp;

published
property Alignment: TOleEnum index 1 read GetTOleEnumProp write
SetTOleEnumProp stored False;

property BiDiMode: TOleEnum index 2 read GetTOleEnumProp write
SetTOleEnumProp stored False;

property BorderStyle: TOleEnum index 3 read GetTOleEnumProp write
SetTOleEnumProp stored False;

property Color: TColor index -501 read GetTColorProp write
SetTColorProp stored False;

property Ctl3D: WordBool index 4 read GetWordBoolProp write
SetWordBoolProp stored False;

property DragCursor: Smallint index 5 read GetSmallintProp write
SetSmallintProp stored False;

property DragMode: TOleEnum index 6 read GetTOleEnumProp write
SetTOleEnumProp stored False;

property Enabled: WordBool index -514 read GetWordBoolProp write
SetWordBoolProp stored False;

property Font: TFont index -512 read GetTFontProp write SetTFontProp
stored False;

property HideSelection: WordBool index 7 read GetWordBoolProp write

Component-Based Development

PART III
996

29.65227_Ch25x 11/30/99 6:11 PM Page 996

SetWordBoolProp stored False;
property ImeMode: TOleEnum index 8 read GetTOleEnumProp write
SetTOleEnumProp stored False;

property ImeName: WideString index 9 read GetWideStringProp write
SetWideStringProp stored False;

property MaxLength: Integer index 10 read GetIntegerProp write
SetIntegerProp stored False;

property OEMConvert: WordBool index 11 read GetWordBoolProp write
SetWordBoolProp stored False;

property ParentColor: WordBool index 12 read GetWordBoolProp write
SetWordBoolProp stored False;

property ParentCtl3D: WordBool index 13 read GetWordBoolProp write
SetWordBoolProp stored False;

property ParentFont: WordBool index 14 read GetWordBoolProp write
SetWordBoolProp stored False;

property ReadOnly: WordBool index 15 read GetWordBoolProp write
SetWordBoolProp stored False;

property ScrollBars: TOleEnum index 16 read GetTOleEnumProp write
SetTOleEnumProp stored False;

property Visible: WordBool index 17 read GetWordBoolProp write
SetWordBoolProp stored False;

property WantReturns: WordBool index 18 read GetWordBoolProp write
SetWordBoolProp stored False;

property WantTabs: WordBool index 19 read GetWordBoolProp write
SetWordBoolProp stored False;

property WordWrap: WordBool index 20 read GetWordBoolProp write
SetWordBoolProp stored False;

property Cursor: Smallint index 55 read GetSmallintProp write
SetSmallintProp stored False;

property OnChange: TNotifyEvent read FOnChange write FOnChange;
property OnClick: TNotifyEvent read FOnClick write FOnClick;
property OnDblClick: TNotifyEvent read FOnDblClick write FOnDblClick;
property OnKeyPress: TMemoXOnKeyPress read FOnKeyPress write FOnKeyPress;

end;

procedure Register;

implementation

uses ComObj;

procedure TMemoX.InitControlData;
const
CEventDispIDs: array [0..3] of DWORD = (
$00000001, $00000002, $00000003, $00000009);

CTFontIDs: array [0..0] of DWORD = (

Creating ActiveX Controls

CHAPTER 25
997

25

C
R

EA
TIN

G
A

C
TIV

EX
C

O
N

TR
O

LS

continues

29.65227_Ch25x 11/30/99 6:11 PM Page 997

LISTING 25.2 Continued

$FFFFFE00);
CControlData: TControlData2 = (
ClassID: ‘{0DB46874-09C5-11D2-AE5C-00A024E3867F}’;
EventIID: ‘{0DB46872-09C5-11D2-AE5C-00A024E3867F}’;
EventCount: 4;
EventDispIDs: @CEventDispIDs;
LicenseKey: nil (*HR:$80040154*);
Flags: $0000002D;
Version: 401;
FontCount: 1;
FontIDs: @CTFontIDs);

begin
ControlData := @CControlData;
TControlData2(CControlData).FirstEventOfs := Cardinal(@@FOnChange) –
Cardinal(Self);

end;

procedure TMemoX.CreateControl;

procedure DoCreate;
begin
FIntf := IUnknown(OleObject) as IMemoX;

end;

begin
if FIntf = nil then DoCreate;

end;

function TMemoX.GetControlInterface: IMemoX;
begin
CreateControl;
Result := FIntf;

end;

function TMemoX.GetControlsAlignment: TxAlignment;
begin
Result := DefaultInterface.GetControlsAlignment;

end;

procedure TMemoX.Clear;
begin
DefaultInterface.Clear;

end;

procedure TMemoX.ClearSelection;

Component-Based Development

PART III
998

29.65227_Ch25x 11/30/99 6:11 PM Page 998

begin
DefaultInterface.ClearSelection;

end;

procedure TMemoX.CopyToClipboard;
begin
DefaultInterface.CopyToClipboard;

end;

procedure TMemoX.CutToClipboard;
begin
DefaultInterface.CutToClipboard;

end;

procedure TMemoX.PasteFromClipboard;
begin
DefaultInterface.PasteFromClipboard;

end;

procedure TMemoX.Undo;
begin
DefaultInterface.Undo;

end;

procedure TMemoX.ClearUndo;
begin
DefaultInterface.ClearUndo;

end;

procedure TMemoX.SelectAll;
begin
DefaultInterface.SelectAll;

end;

procedure TMemoX.FlipChildren(AllLevels: WordBool);
begin
DefaultInterface.FlipChildren(AllLevels);

end;

function TMemoX.DrawTextBiDiModeFlags(Flags: Integer): Integer;
begin
Result := DefaultInterface.DrawTextBiDiModeFlags(Flags);

end;

function TMemoX.DrawTextBiDiModeFlagsReadingOnly: Integer;
begin

Creating ActiveX Controls

CHAPTER 25
999

25

C
R

EA
TIN

G
A

C
TIV

EX
C

O
N

TR
O

LS

continues

29.65227_Ch25x 11/30/99 6:11 PM Page 999

LISTING 25.2 Continued

Result := DefaultInterface.DrawTextBiDiModeFlagsReadingOnly;
end;

procedure TMemoX.InitiateAction;
begin
DefaultInterface.InitiateAction;

end;

function TMemoX.IsRightToLeft: WordBool;
begin
Result := DefaultInterface.IsRightToLeft;

end;

function TMemoX.UseRightToLeftAlignment: WordBool;
begin
Result := DefaultInterface.UseRightToLeftAlignment;

end;

function TMemoX.UseRightToLeftReading: WordBool;
begin
Result := DefaultInterface.UseRightToLeftReading;

end;

function TMemoX.UseRightToLeftScrollBar: WordBool;
begin
Result := DefaultInterface.UseRightToLeftScrollBar;

end;

function TMemoX.ClassNameIs(const Name: WideString): WordBool;
begin
Result := DefaultInterface.ClassNameIs(Name);

end;

procedure TMemoX.AboutBox;
begin
DefaultInterface.AboutBox;

end;

procedure Register;
begin
RegisterComponents(‘ActiveX’,[TMemoX]);

end;

end.

Component-Based Development

PART III
1000

29.65227_Ch25x 11/30/99 6:11 PM Page 1000

LISTING 25.3 The Implementation File: MemoImpl.pas

unit MemoImpl;

interface

uses
Windows, ActiveX, Classes, Controls, Graphics, Menus, Forms, StdCtrls,
ComServ, StdVCL, AXCtrls, Memo_TLB;

type
TMemoX = class(TActiveXControl, IMemoX)
private
{ Private declarations }
FDelphiControl: TMemo;
FEvents: IMemoXEvents;
procedure ChangeEvent(Sender: TObject);
procedure ClickEvent(Sender: TObject);
procedure DblClickEvent(Sender: TObject);
procedure KeyPressEvent(Sender: TObject; var Key: Char);

protected
{ Protected declarations }
procedure DefinePropertyPages(DefinePropertyPage: TDefinePropertyPage);
override;

procedure EventSinkChanged(const EventSink: IUnknown); override;
procedure InitializeControl; override;
function ClassNameIs(const Name: WideString): WordBool; safecall;
function DrawTextBiDiModeFlags(Flags: Integer): Integer; safecall;
function DrawTextBiDiModeFlagsReadingOnly: Integer; safecall;
function Get_Alignment: TxAlignment; safecall;
function Get_BiDiMode: TxBiDiMode; safecall;
function Get_BorderStyle: TxBorderStyle; safecall;
function Get_CanUndo: WordBool; safecall;
function Get_Color: OLE_COLOR; safecall;
function Get_Ctl3D: WordBool; safecall;

Creating ActiveX Controls

CHAPTER 25
1001

25

C
R

EA
TIN

G
A

C
TIV

EX
C

O
N

TR
O

LS

NOTE

If you examine the code in Listing 25.2 carefully, you will notice that, in addition to
type library information, Memo_TLB.pas also contains a class called TMemoX, which is
the TOleControl wrapper for the ActiveX control. This enables you to add a Delphi-
created ActiveX control to the palette simply by adding the generated xxx_TLB unit
to a design package.

continues

29.65227_Ch25x 11/30/99 6:11 PM Page 1001

LISTING 25.3 Continued

function Get_Cursor: Smallint; safecall;
function Get_DoubleBuffered: WordBool; safecall;
function Get_DragCursor: Smallint; safecall;
function Get_DragMode: TxDragMode; safecall;
function Get_Enabled: WordBool; safecall;
function Get_Font: IFontDisp; safecall;
function Get_HideSelection: WordBool; safecall;
function Get_ImeMode: TxImeMode; safecall;
function Get_ImeName: WideString; safecall;
function Get_MaxLength: Integer; safecall;
function Get_Modified: WordBool; safecall;
function Get_OEMConvert: WordBool; safecall;
function Get_ParentColor: WordBool; safecall;
function Get_ParentCtl3D: WordBool; safecall;
function Get_ParentFont: WordBool; safecall;
function Get_ReadOnly: WordBool; safecall;
function Get_ScrollBars: TxScrollStyle; safecall;
function Get_SelLength: Integer; safecall;
function Get_SelStart: Integer; safecall;
function Get_SelText: WideString; safecall;
function Get_Text: WideString; safecall;
function Get_Visible: WordBool; safecall;
function Get_WantReturns: WordBool; safecall;
function Get_WantTabs: WordBool; safecall;
function Get_WordWrap: WordBool; safecall;
function GetControlsAlignment: TxAlignment; safecall;
function IsRightToLeft: WordBool; safecall;
function UseRightToLeftAlignment: WordBool; safecall;
function UseRightToLeftReading: WordBool; safecall;
function UseRightToLeftScrollBar: WordBool; safecall;
procedure _Set_Font(const Value: IFontDisp); safecall;
procedure AboutBox; safecall;
procedure Clear; safecall;
procedure ClearSelection; safecall;
procedure ClearUndo; safecall;
procedure CopyToClipboard; safecall;
procedure CutToClipboard; safecall;
procedure FlipChildren(AllLevels: WordBool); safecall;
procedure InitiateAction; safecall;
procedure PasteFromClipboard; safecall;
procedure SelectAll; safecall;
procedure Set_Alignment(Value: TxAlignment); safecall;
procedure Set_BiDiMode(Value: TxBiDiMode); safecall;
procedure Set_BorderStyle(Value: TxBorderStyle); safecall;
procedure Set_Color(Value: OLE_COLOR); safecall;

Component-Based Development

PART III
1002

29.65227_Ch25x 11/30/99 6:11 PM Page 1002

procedure Set_Ctl3D(Value: WordBool); safecall;
procedure Set_Cursor(Value: Smallint); safecall;
procedure Set_DoubleBuffered(Value: WordBool); safecall;
procedure Set_DragCursor(Value: Smallint); safecall;
procedure Set_DragMode(Value: TxDragMode); safecall;
procedure Set_Enabled(Value: WordBool); safecall;
procedure Set_Font(var Value: IFontDisp); safecall;
procedure Set_HideSelection(Value: WordBool); safecall;
procedure Set_ImeMode(Value: TxImeMode); safecall;
procedure Set_ImeName(const Value: WideString); safecall;
procedure Set_MaxLength(Value: Integer); safecall;
procedure Set_Modified(Value: WordBool); safecall;
procedure Set_OEMConvert(Value: WordBool); safecall;
procedure Set_ParentColor(Value: WordBool); safecall;
procedure Set_ParentCtl3D(Value: WordBool); safecall;
procedure Set_ParentFont(Value: WordBool); safecall;
procedure Set_ReadOnly(Value: WordBool); safecall;
procedure Set_ScrollBars(Value: TxScrollStyle); safecall;
procedure Set_SelLength(Value: Integer); safecall;
procedure Set_SelStart(Value: Integer); safecall;
procedure Set_SelText(const Value: WideString); safecall;
procedure Set_Text(const Value: WideString); safecall;
procedure Set_Visible(Value: WordBool); safecall;
procedure Set_WantReturns(Value: WordBool); safecall;
procedure Set_WantTabs(Value: WordBool); safecall;
procedure Set_WordWrap(Value: WordBool); safecall;
procedure Undo; safecall;

end;

implementation

uses ComObj, About;

{ TMemoX }

procedure TMemoX.DefinePropertyPages(DefinePropertyPage: TDefinePropertyPage);
begin
{ Define property pages here. Property pages are defined by calling
DefinePropertyPage with the class id of the page. For example,
DefinePropertyPage(Class_MemoXPage); }

end;

procedure TMemoX.EventSinkChanged(const EventSink: IUnknown);
begin
FEvents := EventSink as IMemoXEvents;

end;

Creating ActiveX Controls

CHAPTER 25
1003

25

C
R

EA
TIN

G
A

C
TIV

EX
C

O
N

TR
O

LS

continues

29.65227_Ch25x 11/30/99 6:11 PM Page 1003

LISTING 25.3 Continued

procedure TMemoX.InitializeControl;
begin
FDelphiControl := Control as TMemo;
FDelphiControl.OnChange := ChangeEvent;
FDelphiControl.OnClick := ClickEvent;
FDelphiControl.OnDblClick := DblClickEvent;
FDelphiControl.OnKeyPress := KeyPressEvent;

end;

function TMemoX.ClassNameIs(const Name: WideString): WordBool;
begin
Result := FDelphiControl.ClassNameIs(Name);

end;

function TMemoX.DrawTextBiDiModeFlags(Flags: Integer): Integer;
begin
Result := FDelphiControl.DrawTextBiDiModeFlags(Flags);

end;

function TMemoX.DrawTextBiDiModeFlagsReadingOnly: Integer;
begin
Result := FDelphiControl.DrawTextBiDiModeFlagsReadingOnly;

end;

function TMemoX.Get_Alignment: TxAlignment;
begin
Result := Ord(FDelphiControl.Alignment);

end;

function TMemoX.Get_BiDiMode: TxBiDiMode;
begin
Result := Ord(FDelphiControl.BiDiMode);

end;

function TMemoX.Get_BorderStyle: TxBorderStyle;
begin
Result := Ord(FDelphiControl.BorderStyle);

end;

function TMemoX.Get_CanUndo: WordBool;
begin
Result := FDelphiControl.CanUndo;

end;

function TMemoX.Get_Color: OLE_COLOR;
begin

Component-Based Development

PART III
1004

29.65227_Ch25x 11/30/99 6:11 PM Page 1004

Result := OLE_COLOR(FDelphiControl.Color);
end;

function TMemoX.Get_Ctl3D: WordBool;
begin
Result := FDelphiControl.Ctl3D;

end;

function TMemoX.Get_Cursor: Smallint;
begin
Result := Smallint(FDelphiControl.Cursor);

end;

function TMemoX.Get_DoubleBuffered: WordBool;
begin
Result := FDelphiControl.DoubleBuffered;

end;

function TMemoX.Get_DragCursor: Smallint;
begin
Result := Smallint(FDelphiControl.DragCursor);

end;

function TMemoX.Get_DragMode: TxDragMode;
begin
Result := Ord(FDelphiControl.DragMode);

end;

function TMemoX.Get_Enabled: WordBool;
begin
Result := FDelphiControl.Enabled;

end;

function TMemoX.Get_Font: IFontDisp;
begin
GetOleFont(FDelphiControl.Font, Result);

end;

function TMemoX.Get_HideSelection: WordBool;
begin
Result := FDelphiControl.HideSelection;

end;

function TMemoX.Get_ImeMode: TxImeMode;
begin
Result := Ord(FDelphiControl.ImeMode);

Creating ActiveX Controls

CHAPTER 25
1005

25

C
R

EA
TIN

G
A

C
TIV

EX
C

O
N

TR
O

LS

continues

29.65227_Ch25x 11/30/99 6:11 PM Page 1005

LISTING 25.3 Continued

end;

function TMemoX.Get_ImeName: WideString;
begin
Result := WideString(FDelphiControl.ImeName);

end;

function TMemoX.Get_MaxLength: Integer;
begin
Result := FDelphiControl.MaxLength;

end;

function TMemoX.Get_Modified: WordBool;
begin
Result := FDelphiControl.Modified;

end;

function TMemoX.Get_OEMConvert: WordBool;
begin
Result := FDelphiControl.OEMConvert;

end;

function TMemoX.Get_ParentColor: WordBool;
begin
Result := FDelphiControl.ParentColor;

end;

function TMemoX.Get_ParentCtl3D: WordBool;
begin
Result := FDelphiControl.ParentCtl3D;

end;

function TMemoX.Get_ParentFont: WordBool;
begin
Result := FDelphiControl.ParentFont;

end;

function TMemoX.Get_ReadOnly: WordBool;
begin
Result := FDelphiControl.ReadOnly;

end;

function TMemoX.Get_ScrollBars: TxScrollStyle;
begin
Result := Ord(FDelphiControl.ScrollBars);

Component-Based Development

PART III
1006

29.65227_Ch25x 11/30/99 6:11 PM Page 1006

end;

function TMemoX.Get_SelLength: Integer;
begin
Result := FDelphiControl.SelLength;

end;

function TMemoX.Get_SelStart: Integer;
begin
Result := FDelphiControl.SelStart;

end;

function TMemoX.Get_SelText: WideString;
begin
Result := WideString(FDelphiControl.SelText);

end;

function TMemoX.Get_Text: WideString;
begin
Result := WideString(FDelphiControl.Text);

end;

function TMemoX.Get_Visible: WordBool;
begin
Result := FDelphiControl.Visible;

end;

function TMemoX.Get_WantReturns: WordBool;
begin
Result := FDelphiControl.WantReturns;

end;

function TMemoX.Get_WantTabs: WordBool;
begin
Result := FDelphiControl.WantTabs;

end;

function TMemoX.Get_WordWrap: WordBool;
begin
Result := FDelphiControl.WordWrap;

end;

function TMemoX.GetControlsAlignment: TxAlignment;
begin
Result := TxAlignment(FDelphiControl.GetControlsAlignment);
end;

Creating ActiveX Controls

CHAPTER 25
1007

25

C
R

EA
TIN

G
A

C
TIV

EX
C

O
N

TR
O

LS

continues

29.65227_Ch25x 11/30/99 6:11 PM Page 1007

LISTING 25.3 Continued

function TMemoX.IsRightToLeft: WordBool;
begin
Result := FDelphiControl.IsRightToLeft;

end;

function TMemoX.UseRightToLeftAlignment: WordBool;
begin
Result := FDelphiControl.UseRightToLeftAlignment;

end;

function TMemoX.UseRightToLeftReading: WordBool;
begin
Result := FDelphiControl.UseRightToLeftReading;

end;

function TMemoX.UseRightToLeftScrollBar: WordBool;
begin
Result := FDelphiControl.UseRightToLeftScrollBar;

end;

procedure TMemoX._Set_Font(const Value: IFontDisp);
begin
SetOleFont(FDelphiControl.Font, Value);

end;

procedure TMemoX.AboutBox;
begin
ShowMemoXAbout;

end;

procedure TMemoX.Clear;
begin
FDelphiControl.Clear;

end;

procedure TMemoX.ClearSelection;
begin
FDelphiControl.ClearSelection;

end;

procedure TMemoX.ClearUndo;
begin
FDelphiControl.ClearUndo;

end;

Component-Based Development

PART III
1008

29.65227_Ch25x 11/30/99 6:11 PM Page 1008

procedure TMemoX.CopyToClipboard;
begin
FDelphiControl.CopyToClipboard;

end;

procedure TMemoX.CutToClipboard;
begin
FDelphiControl.CutToClipboard;

end;

procedure TMemoX.FlipChildren(AllLevels: WordBool);
begin
FDelphiControl.FlipChildren(AllLevels);

end;

procedure TMemoX.InitiateAction;
begin
FDelphiControl.InitiateAction;

end;

procedure TMemoX.PasteFromClipboard;
begin
FDelphiControl.PasteFromClipboard;

end;

procedure TMemoX.SelectAll;
begin
FDelphiControl.SelectAll;

end;

procedure TMemoX.Set_Alignment(Value: TxAlignment);
begin
FDelphiControl.Alignment := TAlignment(Value);

end;

procedure TMemoX.Set_BiDiMode(Value: TxBiDiMode);
begin
FDelphiControl.BiDiMode := TBiDiMode(Value);

end;

procedure TMemoX.Set_BorderStyle(Value: TxBorderStyle);
begin
FDelphiControl.BorderStyle := TBorderStyle(Value);

end;

procedure TMemoX.Set_Color(Value: OLE_COLOR);

Creating ActiveX Controls

CHAPTER 25
1009

25

C
R

EA
TIN

G
A

C
TIV

EX
C

O
N

TR
O

LS

continues

29.65227_Ch25x 11/30/99 6:11 PM Page 1009

LISTING 25.3 Continued

begin
FDelphiControl.Color := TColor(Value);

end;

procedure TMemoX.Set_Ctl3D(Value: WordBool);
begin
FDelphiControl.Ctl3D := Value;

end;

procedure TMemoX.Set_Cursor(Value: Smallint);
begin
FDelphiControl.Cursor := TCursor(Value);

end;

procedure TMemoX.Set_DoubleBuffered(Value: WordBool);
begin
FDelphiControl.DoubleBuffered := Value;

end;

procedure TMemoX.Set_DragCursor(Value: Smallint);
begin
FDelphiControl.DragCursor := TCursor(Value);

end;

procedure TMemoX.Set_DragMode(Value: TxDragMode);
begin
FDelphiControl.DragMode := TDragMode(Value);

end;

procedure TMemoX.Set_Enabled(Value: WordBool);
begin
FDelphiControl.Enabled := Value;

end;

procedure TMemoX.Set_Font(var Value: IFontDisp);
begin
SetOleFont(FDelphiControl.Font, Value);

end;

procedure TMemoX.Set_HideSelection(Value: WordBool);
begin
FDelphiControl.HideSelection := Value;

end;

procedure TMemoX.Set_ImeMode(Value: TxImeMode);

Component-Based Development

PART III
1010

29.65227_Ch25x 11/30/99 6:11 PM Page 1010

begin
FDelphiControl.ImeMode := TImeMode(Value);

end;

procedure TMemoX.Set_ImeName(const Value: WideString);
begin
FDelphiControl.ImeName := TImeName(Value);

end;

procedure TMemoX.Set_MaxLength(Value: Integer);
begin
FDelphiControl.MaxLength := Value;

end;

procedure TMemoX.Set_Modified(Value: WordBool);
begin
FDelphiControl.Modified := Value;

end;

procedure TMemoX.Set_OEMConvert(Value: WordBool);
begin
FDelphiControl.OEMConvert := Value;

end;

procedure TMemoX.Set_ParentColor(Value: WordBool);
begin
FDelphiControl.ParentColor := Value;

end;

procedure TMemoX.Set_ParentCtl3D(Value: WordBool);
begin
FDelphiControl.ParentCtl3D := Value;

end;

procedure TMemoX.Set_ParentFont(Value: WordBool);
begin
FDelphiControl.ParentFont := Value;

end;

procedure TMemoX.Set_ReadOnly(Value: WordBool);
begin
FDelphiControl.ReadOnly := Value;

end;

procedure TMemoX.Set_ScrollBars(Value: TxScrollStyle);
begin

Creating ActiveX Controls

CHAPTER 25
1011

25

C
R

EA
TIN

G
A

C
TIV

EX
C

O
N

TR
O

LS

continues

29.65227_Ch25x 11/30/99 6:11 PM Page 1011

LISTING 25.3 Continued

FDelphiControl.ScrollBars := TScrollStyle(Value);
end;

procedure TMemoX.Set_SelLength(Value: Integer);
begin
FDelphiControl.SelLength := Value;

end;

procedure TMemoX.Set_SelStart(Value: Integer);
begin
FDelphiControl.SelStart := Value;

end;

procedure TMemoX.Set_SelText(const Value: WideString);
begin
FDelphiControl.SelText := String(Value);

end;

procedure TMemoX.Set_Text(const Value: WideString);
begin
FDelphiControl.Text := TCaption(Value);

end;

procedure TMemoX.Set_Visible(Value: WordBool);
begin
FDelphiControl.Visible := Value;

end;

procedure TMemoX.Set_WantReturns(Value: WordBool);
begin
FDelphiControl.WantReturns := Value;

end;

procedure TMemoX.Set_WantTabs(Value: WordBool);
begin
FDelphiControl.WantTabs := Value;

end;

procedure TMemoX.Set_WordWrap(Value: WordBool);
begin
FDelphiControl.WordWrap := Value;

end;

procedure TMemoX.Undo;

Component-Based Development

PART III
1012

29.65227_Ch25x 11/30/99 6:11 PM Page 1012

begin
FDelphiControl.Undo;

end;

procedure TMemoX.ChangeEvent(Sender: TObject);
begin
if FEvents <> nil then FEvents.OnChange;

end;

procedure TMemoX.ClickEvent(Sender: TObject);
begin
if FEvents <> nil then FEvents.OnClick;

end;

procedure TMemoX.DblClickEvent(Sender: TObject);
begin
if FEvents <> nil then FEvents.OnDblClick;

end;

procedure TMemoX.KeyPressEvent(Sender: TObject; var Key: Char);
var
TempKey: Smallint;

begin
TempKey := Smallint(Key);
if FEvents <> nil then FEvents.OnKeyPress(TempKey);
Key := Char(TempKey);

end;

initialization
TActiveXControlFactory.Create(ComServer, TMemoX, TMemo, Class_MemoX, 1, ‘’,
0, tmApartment);

end.

There is no doubt that Listings 25.1 through 25.3 contain a lot of code. Sometimes the sheer
volume of code can make something appear daunting and difficult; however, if you look
closely, you will see that no rocket science is involved in these files. What is pretty nifty is that
you now have a fully functional ActiveX control (including an interface, a type library, and
events) based on a memo control, and you have yet to write a line of code!

Note the helper functions that are used to convert back and forth between properties of
IStrings and IFont to the native Delphi TStrings and TFont types. Each of these routines
operates in a similar manner: They provide a bridge between an Object Pascal class and an
Automation-compatible dispatch interface. Table 25.1 shows a list of VCL classes and their
Automation interface equivalents.

Creating ActiveX Controls

CHAPTER 25
1013

25

C
R

EA
TIN

G
A

C
TIV

EX
C

O
N

TR
O

LS

29.65227_Ch25x 11/30/99 6:11 PM Page 1013

TABLE 25.1 VCL Classes and their Corresponding Automation Interfaces

VCL Class Automation Interface

TFont IFont

TPicture IPicture

TStrings IStrings

Component-Based Development

PART III
1014

NOTE

ActiveX defines the IFont and IPicture interfaces. However, the IStrings type is
defined in VCL. Delphi provides a redistributable file named StdVcl40.dll that con-
tains the type library that defines this interface. This library must be installed and
registered on client machines in order for applications using an ActiveX control with
IStrings properties to function properly.

The ActiveX Framework
The Delphi ActiveX framework (or DAX, for short) resides in the AxCtrls unit. An ActiveX
control could be described as an Automation object on steroids, because it must implement the
IDispatch interface (in addition to many others). Because of this fact, the DAX framework is
similar to that of Automation objects, which you learned about in Chapter 23.
TActiveXControl is a TAutoObject descendent that implements the interfaces required of an
ActiveX control. The DAX framework works as a dual-object framework, where the ActiveX
control portion contained in TActiveXControl communicates with a separate TWinControl
class that contains the VCL control.

Like all COM objects, ActiveX controls are created from factories. DAX’s
TActiveXControlFactory serves as the factory for the TActiveXControl object. An instance
of one of these factories is created in the initialization section of each control implementa-
tion file. The constructor for this class is defined as follows:

constructor TActiveXControlFactory.Create(ComServer: TComServerObject;
ActiveXControlClass: TActiveXControlClass;
WinControlClass: TWinControlClass; const ClassID: TGUID;
ToolboxBitmapID: Integer; const LicStr: string; MiscStatus: Integer;
ThreadingModel: TThreadingModel = tmSingle);

ComServer holds an instance of TComServer. Generally, the ComServer global declared in the
ComServ unit is passed in this parameter.

29.65227_Ch25x 11/30/99 6:11 PM Page 1014

ActiveXControlClass contains the name of the TActiveXControl descendant that is declared
in the implementation file.

WinControlClass contains the name of the VCL TWinControl descendent that you want to
encapsulate as an ActiveX control.

ClassID holds the CLSID of the control coclass as listed in the type library editor.

ToolboxBitmapID contains the resource identifier of the bitmap that should be used as the con-
trol’s representation on the Component Palette.

LicStr holds the string that should be used as the control’s license key string. If this is empty,
the control is not licensed.

MiscStatus holds the OLEMISC_XXX status flags for the control. These flags are defined in the
ActiveX unit. These OLEMISC flags are entered into the System Registry when the ActiveX con-
trol is registered. OLEMISC flags provide ActiveX control containers with information regarding
various attributes of the ActiveX control. For example, there are OLEMISC flags that indicate
how a control is painted and whether a control can contain other controls. These flags are fully
documented on the Microsoft Developer’s Network under the topic “OLEMISC.”

Finally, ThreadingModel identifies the threading model that this control will be registered as
supporting. It is important to note that setting this parameter to some particular threading
model does not guarantee that your control is safer for that particular model; it only affects
how the control is registered. Building in thread safety is up to you as the developer. See
Chapter 23 for a discussion of each of the threading models.

Simple Frame Controls
One of the OLEMISC_XXX flags is OLEMISC_SIMPLEFRAME, which will automatically be added if
csAcceptsControls is included in the VCL control’s ControlStyle set. This makes the
ActiveX control a simple frame control capable of containing other ActiveX controls in an
ActiveX container application. The TActiveXControl class contains the necessary message-
handling infrastructure to make simple frame controls work correctly. Occasionally, the wizard
will add this flag to a control that you do not want to serve as a simple frame; in this case, it is
okay to remove the flag from the class factory constructor call.

The Reflector Window
Some VCL controls require notification messages in order to properly function. For this pur-
pose, DAX will create a reflector window whose job is to receive messages and forward them
on to the VCL control. Standard VCL controls that require a reflector window will have the
csReflector member included in their ControlStyle set. If you have a custom TWinControl
that operates using notification messages, you should be sure to add this member to the
ControlStyle set in the control’s constructor.

Creating ActiveX Controls

CHAPTER 25
1015

25

C
R

EA
TIN

G
A

C
TIV

EX
C

O
N

TR
O

LS

29.65227_Ch25x 11/30/99 6:11 PM Page 1015

Design Time Versus Runtime
VCL provides a simple means for determining whether a control is currently in design mode or
run mode—by checking for the csDesigning member in the ComponentState set. Although
you can to make this distinction for ActiveX controls, it is not so straightforward. It involves
obtaining a pointer to the container’s IAmbientDispatch dispinterface and checking the
UserMode property on that dispinterface. You can use the following function for this purpose:

function IsControlRunning(Control: IUnknown): Boolean;
var
OleObj: IOleObject;
Site: IOleClientSite;

begin
Result := True;
// Get control’s IOleObject pointer. From that, get container’s
// IOleClientSite. From that, get IAmbientDispatch.
if (Control.QueryInterface(IOleObject, OleObj) = S_OK) and
(OleObj.GetClientSite(Site) = S_OK) and (Site <> nil) then
Result := (Site as IAmbientDispatch).UserMode;

end;

Control Licensing
We mentioned earlier in this chapter that the default DAX scheme for licensing involves an
LIC file that should accompany the ActiveX control OCX file on development machines. As
you saw earlier, the license string is one of the parameters to the ActiveX control’s class fac-
tory constructor. When Make Control Licensed is selected in the wizard, this option will gener-
ate a GUID string that will be inserted into both the constructor call and the LIC file (you are
free to modify the string later if you so choose). When the control is used at design time in a
development tool, DAX will attempt to match the license string in the class factory with a
string in the LIC file. If a match occurs, the control instance will be created. When an applica-
tion that includes the licensed ActiveX control is compiled, the license string is embedded in
the application, and the LIC file is not required to run the application.

The LIC file scheme for licensing is not the only one under the sun. For example, some devel-
opers find the use of an additional file cumbersome and prefer to store a license key in the
Registry. Fortunately, DAX makes it very easy to implement an alternative licensing scheme
such as this. The license check occurs in a TActiveXControlFactory method called
HasMachineLicense(). By default, this method attempts to look up the licensing string in the
LIC file, but you can have this method perform whatever check you want to determine licens-
ing. For example, Listing 25.4 shows a TActiveXControlFactory descendent that looks in the
Registry for the license key.

Component-Based Development

PART III
1016

29.65227_Ch25x 11/30/99 6:11 PM Page 1016

LISTING 25.4 An Alternative Scheme for Licensing

{ TRegLicAxControlFactory }

type
TRegLicActiveXControlFactory = class(TActiveXControlFactory)
protected
function HasMachineLicense: Boolean; override;

end;

function TRegLicActiveXControlFactory.HasMachineLicense: Boolean;
var
Reg: TRegistry;

begin
Result := True;
if not SupportsLicensing then Exit;
Reg := TRegistry.Create;
try
Reg.RootKey := HKEY_CLASSES_ROOT;
// control is licensed if key is in registry
Result := Reg.OpenKey(‘\Licenses\’ + LicString, False);

finally
Reg.Free;

end;
end;

A Registry file (REG) can be used to place the license key in the Registry on a licensed
machine. This is shown in Listing 25.5.

LISTING 25.5 The Licensing REG File

REGEDIT4

[HKEY_CLASSES_ROOT\Licenses\{C06EFEA0-06B2-11D1-A9BF-B18A9F703311}]
@= “Licensing info for DDG demo ActiveX control”

Property Pages
Property pages provide a means for modifying the properties of an ActiveX control through a
custom dialog. A control’s property pages are added as pages in a tabbed dialog that is created
by ActiveX. Property page dialogs are usually invoked from a local right-click menu provided
by the control’s host container.

Creating ActiveX Controls

CHAPTER 25
1017

25

C
R

EA
TIN

G
A

C
TIV

EX
C

O
N

TR
O

LS

29.65227_Ch25x 11/30/99 6:11 PM Page 1017

Standard Property Pages
DAX provides standard property pages for properties of type IStrings, IPicture, TColor, and
IFont. The CLSIDs for these property pages are found in the AxCtrls unit. They are declared
as follows:

const
{ Delphi property page CLSIDs }
Class_DColorPropPage: TGUID = ‘{5CFF5D59-5946-11D0-BDEF-00A024D1875C}’;
Class_DFontPropPage: TGUID = ‘{5CFF5D5B-5946-11D0-BDEF-00A024D1875C}’;
Class_DPicturePropPage: TGUID = ‘{5CFF5D5A-5946-11D0-BDEF-00A024D1875C}’;
Class_DStringPropPage: TGUID = ‘{F42D677E-754B-11D0-BDFB-00A024D1875C}’;

Using any of these property pages in your control is a simple matter: Just pass one of these
CLSIDs to the DefinePropertyPage() procedural parameter in the DefinePropertyPages()
method of your ActiveX control, as shown here:

procedure TMemoX.DefinePropertyPages(DefinePropertyPage: TDefinePropertyPage);
begin
DefinePropertyPage(Class_DColorPropPage);
DefinePropertyPage(Class_DFontPropPage);
DefinePropertyPage(Class_DStringPropPage);

end;

Figures 25.4 through 25.7 show each of the standard DAX property pages.

Component-Based Development

PART III
1018

FIGURE 25.4
DAX Colors property page.

FIGURE 25.5
DAX Fonts property page.

29.65227_Ch25x 11/30/99 6:11 PM Page 1018

FIGURE 25.6
DAX Strings property page.

Creating ActiveX Controls

CHAPTER 25
1019

25

C
R

EA
TIN

G
A

C
TIV

EX
C

O
N

TR
O

LS

FIGURE 25.7
DAX Pictures property page.

Each of these property pages operates similarly: The combo box contains the names of each of
the properties of the specified type. You just select the property name, set the value in the dia-
log, and then click OK to modify the selected property.

NOTE

If you want to use the standard DAX property pages, you must distribute
StdVcl40.dll along with your OCX file. As mentioned earlier in this chapter, this file
contains the definition for IStrings as well as the IProvider and IDataBroker inter-
faces. Additionally, StdVcl40.dll contains the implementation for each of the DAX
property pages. You must also ensure that both the OCX file and StdVcl40.dll have
been registered on the target machine.

Custom Property Pages
To help illustrate the creation of custom property pages, we will create a control that is more
interesting than the simple Memo control we have been working with so far. Listing 25.6 shows
the implementation file for the TCardX ActiveX control. This control is an encapsulation of the
playing card VCL control that comes from the Cards unit, which you will find in the
\Code\Comps subdirectory of the CD-ROM accompanying this book.

29.65227_Ch25x 11/30/99 6:11 PM Page 1019

LISTING 25.6 CardImpl.pas: Implementation File for the TCardX ActiveX Control

unit CardImpl;

interface

uses
Windows, ActiveX, Classes, Controls, Graphics, Menus, Forms, StdCtrls,
ComServ, StdVCL, AXCtrls, AxCard_TLB, Cards;

type
TCardX = class(TActiveXControl, ICardX)
private
{ Private declarations }
FDelphiControl: TCard;
FEvents: ICardXEvents;
procedure ClickEvent(Sender: TObject);
procedure DblClickEvent(Sender: TObject);
procedure KeyPressEvent(Sender: TObject; var Key: Char);

protected
{ Protected declarations }
procedure DefinePropertyPages(DefinePropertyPage: TDefinePropertyPage);
override;

procedure EventSinkChanged(const EventSink: IUnknown); override;
procedure InitializeControl; override;
function ClassNameIs(const Name: WideString): WordBool; safecall;
function DrawTextBiDiModeFlags(Flags: Integer): Integer; safecall;
function DrawTextBiDiModeFlagsReadingOnly: Integer; safecall;
function Get_BackColor: OLE_COLOR; safecall;
function Get_BiDiMode: TxBiDiMode; safecall;
function Get_Color: OLE_COLOR; safecall;
function Get_Cursor: Smallint; safecall;
function Get_DoubleBuffered: WordBool; safecall;
function Get_DragCursor: Smallint; safecall;
function Get_DragMode: TxDragMode; safecall;
function Get_Enabled: WordBool; safecall;
function Get_FaceUp: WordBool; safecall;
function Get_ParentColor: WordBool; safecall;
function Get_Suit: TxCardSuit; safecall;
function Get_Value: TxCardValue; safecall;
function Get_Visible: WordBool; safecall;
function GetControlsAlignment: TxAlignment; safecall;
function IsRightToLeft: WordBool; safecall;
function UseRightToLeftAlignment: WordBool; safecall;
function UseRightToLeftReading: WordBool; safecall;
function UseRightToLeftScrollBar: WordBool; safecall;
procedure FlipChildren(AllLevels: WordBool); safecall;

Component-Based Development

PART III
1020

29.65227_Ch25x 11/30/99 6:11 PM Page 1020

procedure InitiateAction; safecall;
procedure Set_BackColor(Value: OLE_COLOR); safecall;
procedure Set_BiDiMode(Value: TxBiDiMode); safecall;
procedure Set_Color(Value: OLE_COLOR); safecall;
procedure Set_Cursor(Value: Smallint); safecall;
procedure Set_DoubleBuffered(Value: WordBool); safecall;
procedure Set_DragCursor(Value: Smallint); safecall;
procedure Set_DragMode(Value: TxDragMode); safecall;
procedure Set_Enabled(Value: WordBool); safecall;
procedure Set_FaceUp(Value: WordBool); safecall;
procedure Set_ParentColor(Value: WordBool); safecall;
procedure Set_Suit(Value: TxCardSuit); safecall;
procedure Set_Value(Value: TxCardValue); safecall;
procedure Set_Visible(Value: WordBool); safecall;
procedure AboutBox; safecall;

end;

implementation

uses ComObj, About, CardPP;

{ TCardX }

procedure TCardX.DefinePropertyPages(DefinePropertyPage: TDefinePropertyPage);
begin
DefinePropertyPage(Class_DColorPropPage);
DefinePropertyPage(Class_CardPropPage);

end;

procedure TCardX.EventSinkChanged(const EventSink: IUnknown);
begin
FEvents := EventSink as ICardXEvents;

end;

procedure TCardX.InitializeControl;
begin
FDelphiControl := Control as TCard;
FDelphiControl.OnClick := ClickEvent;
FDelphiControl.OnDblClick := DblClickEvent;
FDelphiControl.OnKeyPress := KeyPressEvent;

end;

function TCardX.ClassNameIs(const Name: WideString): WordBool;
begin
Result := FDelphiControl.ClassNameIs(Name);

end;

Creating ActiveX Controls

CHAPTER 25
1021

25

C
R

EA
TIN

G
A

C
TIV

EX
C

O
N

TR
O

LS

continues

29.65227_Ch25x 11/30/99 6:11 PM Page 1021

LISTING 25.6 Continued

function TCardX.DrawTextBiDiModeFlags(Flags: Integer): Integer;
begin
Result := FDelphiControl.DrawTextBiDiModeFlags(Flags);

end;

function TCardX.DrawTextBiDiModeFlagsReadingOnly: Integer;
begin
Result := FDelphiControl.DrawTextBiDiModeFlagsReadingOnly;

end;

function TCardX.Get_BackColor: OLE_COLOR;
begin
Result := OLE_COLOR(FDelphiControl.BackColor);

end;

function TCardX.Get_BiDiMode: TxBiDiMode;
begin
Result := Ord(FDelphiControl.BiDiMode);

end;

function TCardX.Get_Color: OLE_COLOR;
begin
Result := OLE_COLOR(FDelphiControl.Color);

end;

function TCardX.Get_Cursor: Smallint;
begin
Result := Smallint(FDelphiControl.Cursor);

end;

function TCardX.Get_DoubleBuffered: WordBool;
begin
Result := FDelphiControl.DoubleBuffered;

end;

function TCardX.Get_DragCursor: Smallint;
begin
Result := Smallint(FDelphiControl.DragCursor);

end;

function TCardX.Get_DragMode: TxDragMode;
begin
Result := Ord(FDelphiControl.DragMode);

end;

Component-Based Development

PART III
1022

29.65227_Ch25x 11/30/99 6:11 PM Page 1022

function TCardX.Get_Enabled: WordBool;
begin
Result := FDelphiControl.Enabled;

end;

function TCardX.Get_FaceUp: WordBool;
begin
Result := FDelphiControl.FaceUp;

end;

function TCardX.Get_ParentColor: WordBool;
begin
Result := FDelphiControl.ParentColor;

end;

function TCardX.Get_Suit: TxCardSuit;
begin
Result := Ord(FDelphiControl.Suit);

end;

function TCardX.Get_Value: TxCardValue;
begin
Result := Ord(FDelphiControl.Value);

end;

function TCardX.Get_Visible: WordBool;
begin
Result := FDelphiControl.Visible;

end;

function TCardX.GetControlsAlignment: TxAlignment;
begin
Result := TxAlignment(FDelphiControl.GetControlsAlignment);
end;

function TCardX.IsRightToLeft: WordBool;
begin
Result := FDelphiControl.IsRightToLeft;

end;

function TCardX.UseRightToLeftAlignment: WordBool;
begin
Result := FDelphiControl.UseRightToLeftAlignment;

end;

function TCardX.UseRightToLeftReading: WordBool;

Creating ActiveX Controls

CHAPTER 25
1023

25

C
R

EA
TIN

G
A

C
TIV

EX
C

O
N

TR
O

LS

continues

29.65227_Ch25x 11/30/99 6:11 PM Page 1023

LISTING 25.6 Continued

begin
Result := FDelphiControl.UseRightToLeftReading;

end;

function TCardX.UseRightToLeftScrollBar: WordBool;
begin
Result := FDelphiControl.UseRightToLeftScrollBar;

end;

procedure TCardX.FlipChildren(AllLevels: WordBool);
begin
FDelphiControl.FlipChildren(AllLevels);

end;

procedure TCardX.InitiateAction;
begin
FDelphiControl.InitiateAction;

end;

procedure TCardX.Set_BackColor(Value: OLE_COLOR);
begin
FDelphiControl.BackColor := TColor(Value);

end;

procedure TCardX.Set_BiDiMode(Value: TxBiDiMode);
begin
FDelphiControl.BiDiMode := TBiDiMode(Value);

end;

procedure TCardX.Set_Color(Value: OLE_COLOR);
begin
FDelphiControl.Color := TColor(Value);

end;

procedure TCardX.Set_Cursor(Value: Smallint);
begin
FDelphiControl.Cursor := TCursor(Value);

end;

procedure TCardX.Set_DoubleBuffered(Value: WordBool);
begin
FDelphiControl.DoubleBuffered := Value;

end;

procedure TCardX.Set_DragCursor(Value: Smallint);

Component-Based Development

PART III
1024

29.65227_Ch25x 11/30/99 6:11 PM Page 1024

begin
FDelphiControl.DragCursor := TCursor(Value);

end;

procedure TCardX.Set_DragMode(Value: TxDragMode);
begin
FDelphiControl.DragMode := TDragMode(Value);

end;

procedure TCardX.Set_Enabled(Value: WordBool);
begin
FDelphiControl.Enabled := Value;

end;

procedure TCardX.Set_FaceUp(Value: WordBool);
begin
FDelphiControl.FaceUp := Value;

end;

procedure TCardX.Set_ParentColor(Value: WordBool);
begin
FDelphiControl.ParentColor := Value;

end;

procedure TCardX.Set_Suit(Value: TxCardSuit);
begin
FDelphiControl.Suit := TCardSuit(Value);

end;

procedure TCardX.Set_Value(Value: TxCardValue);
begin
FDelphiControl.Value := TCardValue(Value);

end;

procedure TCardX.Set_Visible(Value: WordBool);
begin
FDelphiControl.Visible := Value;

end;

procedure TCardX.ClickEvent(Sender: TObject);
begin
if FEvents <> nil then FEvents.OnClick;

end;

procedure TCardX.DblClickEvent(Sender: TObject);
begin

Creating ActiveX Controls

CHAPTER 25
1025

25

C
R

EA
TIN

G
A

C
TIV

EX
C

O
N

TR
O

LS

continues

29.65227_Ch25x 11/30/99 6:11 PM Page 1025

LISTING 25.6 Continued

if FEvents <> nil then FEvents.OnDblClick;
end;

procedure TCardX.KeyPressEvent(Sender: TObject; var Key: Char);
var
TempKey: Smallint;

begin
TempKey := Smallint(Key);
if FEvents <> nil then FEvents.OnKeyPress(TempKey);
Key := Char(TempKey);

end;

procedure TCardX.AboutBox;
begin
ShowCardXAbout;

end;

initialization
TActiveXControlFactory.Create(ComServer, TCardX, TCard, Class_CardX,
1, ‘’, 0, tmApartment);

end.

This unit is essentially what was generated by the wizard, except for the two lines of code
shown in the DefinePropertyPages() method. In this method, you can see that we employ the
standard VCL Color property page in addition to a custom property page whose CLSID is
defined as Class_CardPropPage. This property page was created by selecting the Property
Page item from the ActiveX page of the New Items dialog. Figure 25.8 shows this property
page in the Form Designer, and Listing 25.7 shows the source code for this property page.

Component-Based Development

PART III
1026

FIGURE 25.8
A property page in the Form Designer.

29.65227_Ch25x 11/30/99 6:11 PM Page 1026

LISTING 25.7 The Property Page Unit: CardPP.pas

unit CardPP;

interface

uses SysUtils, Windows, Messages, Classes, Graphics, Controls, StdCtrls,
ExtCtrls, Forms, ComServ, ComObj, StdVcl, AxCtrls, Buttons, Cards,
AxCard_TLB;

type
TCardPropPage = class(TPropertyPage)
Card1: TCard;
ValueGroup: TGroupBox;
SpeedButton1: TSpeedButton;
SpeedButton2: TSpeedButton;
SpeedButton3: TSpeedButton;
SpeedButton4: TSpeedButton;
SpeedButton5: TSpeedButton;
SpeedButton6: TSpeedButton;
SpeedButton7: TSpeedButton;
SpeedButton8: TSpeedButton;
SpeedButton9: TSpeedButton;
SpeedButton10: TSpeedButton;
SpeedButton11: TSpeedButton;
SpeedButton12: TSpeedButton;
SuitGroup: TGroupBox;
SpeedButton13: TSpeedButton;
SpeedButton14: TSpeedButton;
SpeedButton15: TSpeedButton;
SpeedButton16: TSpeedButton;
SpeedButton17: TSpeedButton;
procedure FormCreate(Sender: TObject);
procedure SpeedButton1Click(Sender: TObject);

protected
procedure UpdatePropertyPage; override;
procedure UpdateObject; override;

end;

const
Class_CardPropPage: TGUID = ‘{C06EFEA1-06B2-11D1-A9BF-B18A9F703311}’;

implementation

{$R *.DFM}

Creating ActiveX Controls

CHAPTER 25
1027

25

C
R

EA
TIN

G
A

C
TIV

EX
C

O
N

TR
O

LScontinues

29.65227_Ch25x 11/30/99 6:11 PM Page 1027

LISTING 25.7 Continued

procedure TCardPropPage.UpdatePropertyPage;
var
i: Integer;
AValue, ASuit: Integer;

begin
// get suit and value
AValue := OleObject.Value;
ASuit := OleObject.Suit;
// set card correctly
Card1.Value := TCardValue(AValue);
Card1.Suit := TCardSuit(ASuit);
// set correct value speedbutton
with ValueGroup do
for i := 0 to ControlCount - 1 do
if (Controls[i] is TSpeedButton) and
(TSpeedButton(Controls[i]).Tag = AValue) then
TSpeedButton(Controls[i]).Down := True;

// set correct suit speedbutton
with SuitGroup do
for i := 0 to ControlCount - 1 do
if (Controls[i] is TSpeedButton) and
(TSpeedButton(Controls[i]).Tag = ASuit) then
TSpeedButton(Controls[i]).Down := True;

end;

procedure TCardPropPage.UpdateObject;
var
i: Integer;

begin
// set correct value speedbutton
with ValueGroup do
for i := 0 to ControlCount - 1 do
if (Controls[i] is TSpeedButton) and TSpeedButton(Controls[i]).Down then
begin
OleObject.Value := TSpeedButton(Controls[i]).Tag;
Break;

end;
// set correct suit speedbutton
with SuitGroup do
for i := 0 to ControlCount - 1 do
if (Controls[i] is TSpeedButton) and TSpeedButton(Controls[i]).Down then
begin
OleObject.Suit := TSpeedButton(Controls[i]).Tag;
Break;

end;
end;

Component-Based Development

PART III
1028

29.65227_Ch25x 11/30/99 6:11 PM Page 1028

procedure TCardPropPage.FormCreate(Sender: TObject);
const
// ordinal values of “suit” characters in Symbol font:
SSuits: PChar = #167#168#169#170;

var
i: Integer;

begin
// set up captions of suit speedbuttons using high
// characters in Symbol font
with SuitGroup do
for i := 0 to ControlCount - 1 do
if Controls[i] is TSpeedButton then
TSpeedButton(Controls[i]).Caption := SSuits[i];

end;

procedure TCardPropPage.SpeedButton1Click(Sender: TObject);
begin
if Sender is TSpeedButton then
begin
with TSpeedButton(Sender) do
begin
if Parent = ValueGroup then
Card1.Value := TCardValue(Tag)

else if Parent = SuitGroup then
Card1.Suit := TCardSuit(Tag);

end;
Modified;

end;
end;

initialization
TActiveXPropertyPageFactory.Create(
ComServer,
TCardPropPage,
Class_CardPropPage);

end.

You must communicate with the ActiveX control from the property page using its OleObject
field. OleObject is a variant that holds a reference to the control’s IDispatch interface. The
UpdatePropertyPage() and UpdateObject() methods are generated by the wizard.
UpdatePropertyPage() is called when the property page is invoked. In this method, you must
set the contents of the page to match the current values of the ActiveX control as indicated in
the OleObject property. UpdateObject() will be called when the user clicks the OK or Apply
button in the Property Page dialog. In this method, you should use the OleObject property to
set the ActiveX control properties to those indicated by the property page.

Creating ActiveX Controls

CHAPTER 25
1029

25

C
R

EA
TIN

G
A

C
TIV

EX
C

O
N

TR
O

LS

29.65227_Ch25x 11/30/99 6:11 PM Page 1029

In this example, the property page allows you to edit the suit or value of the TCardX ActiveX
control. As you modify the suit or value using speedbuttons in the dialog, a TCard VCL control
residing on the property page is changed to reflect the current suit and value. Notice also that
when a speedbutton is clicked, the property page’s Modified() procedure is called to set the
modified flag of the Property Page dialog. This enables the Apply button on the dialog.

This property page is shown in action in Figure 25.9.

Component-Based Development

PART III
1030

FIGURE 25.9
The Card property page in action.

ActiveForms
Functionally, ActiveForms work very much the same as the ActiveX controls you learned
about earlier in this chapter. The primary difference is that the VCL control upon which you
base an ActiveX control does not really change after you run the wizard, whereas the whole
point of an ActiveForm is that it changes constantly as it is manipulated in the designer.
Because the ActiveForm’s wizard and framework are essentially the same as the ones for
ActiveX controls, we will not rehash that material. Instead, let’s focus on some interesting
things you can do with ActiveForms.

Adding Properties to ActiveForms
One problem with ActiveForms is that their representation in the type library consists of “flat”
interfaces rather than the nested components you are familiar with in VCL. This means that if
you have a form with several buttons, they cannot easily be addressed in the VCL manner of
ActiveForm.Button.ButtonProperty as an ActiveForm. Instead, the easiest way to accom-
plish this is to surface the button properties in question as properties of the ActiveForm itself.
The DAX framework makes adding properties to ActiveForms a pretty painless process; you
just need to follow a couple steps. Here is what’s required to publish the Caption property of a
button on an ActiveForm:

29.65227_Ch25x 11/30/99 6:11 PM Page 1030

1. Add a new published property to the ActiveForm declaration in the implementation file.
This property will be called ButtonCaption, and it will have reader and writer methods
that modify the Caption property of the button.

2. Add a new property of the same name to the ActiveForm’s interface in the type library.
Delphi will automatically write the skeletons for the reader and writer methods for this
property, and you must implement them by reading and writing the ActiveForm’s
ButtonCaption property.

The implementation file for this component is shown in Listing 25.8.

LISTING 25.8 Adding Properties to ActiveForms

unit AFImpl;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
ActiveX, AxCtrls, AFrm_TLB, StdCtrls;

type
TActiveFormX = class(TActiveForm, IActiveFormX)
Button1: TButton;

private
{ Private declarations }
FEvents: IActiveFormXEvents;
procedure ActivateEvent(Sender: TObject);
procedure ClickEvent(Sender: TObject);
procedure CreateEvent(Sender: TObject);
procedure DblClickEvent(Sender: TObject);
procedure DeactivateEvent(Sender: TObject);
procedure DestroyEvent(Sender: TObject);
procedure KeyPressEvent(Sender: TObject; var Key: Char);
procedure PaintEvent(Sender: TObject);
function GetButtonCaption: string;
procedure SetButtonCaption(const Value: string);

protected
{ Protected declarations }
procedure DefinePropertyPages(DefinePropertyPage: TDefinePropertyPage);
override;

procedure EventSinkChanged(const EventSink: IUnknown); override;
function Get_Active: WordBool; safecall;
function Get_AutoScroll: WordBool; safecall;
function Get_AutoSize: WordBool; safecall;
function Get_AxBorderStyle: TxActiveFormBorderStyle; safecall;

Creating ActiveX Controls

CHAPTER 25
1031

25

C
R

EA
TIN

G
A

C
TIV

EX
C

O
N

TR
O

LS

continues

29.65227_Ch25x 11/30/99 6:11 PM Page 1031

LISTING 25.8 Continued

function Get_BiDiMode: TxBiDiMode; safecall;
function Get_Caption: WideString; safecall;
function Get_Color: OLE_COLOR; safecall;
function Get_Cursor: Smallint; safecall;
function Get_DoubleBuffered: WordBool; safecall;
function Get_DropTarget: WordBool; safecall;
function Get_Enabled: WordBool; safecall;
function Get_Font: IFontDisp; safecall;
function Get_HelpFile: WideString; safecall;
function Get_KeyPreview: WordBool; safecall;
function Get_PixelsPerInch: Integer; safecall;
function Get_PrintScale: TxPrintScale; safecall;
function Get_Scaled: WordBool; safecall;
function Get_Visible: WordBool; safecall;
procedure _Set_Font(const Value: IFontDisp); safecall;
procedure AboutBox; safecall;
procedure Set_AutoScroll(Value: WordBool); safecall;
procedure Set_AutoSize(Value: WordBool); safecall;
procedure Set_AxBorderStyle(Value: TxActiveFormBorderStyle); safecall;
procedure Set_BiDiMode(Value: TxBiDiMode); safecall;
procedure Set_Caption(const Value: WideString); safecall;
procedure Set_Color(Value: OLE_COLOR); safecall;
procedure Set_Cursor(Value: Smallint); safecall;
procedure Set_DoubleBuffered(Value: WordBool); safecall;
procedure Set_DropTarget(Value: WordBool); safecall;
procedure Set_Enabled(Value: WordBool); safecall;
procedure Set_Font(var Value: IFontDisp); safecall;
procedure Set_HelpFile(const Value: WideString); safecall;
procedure Set_KeyPreview(Value: WordBool); safecall;
procedure Set_PixelsPerInch(Value: Integer); safecall;
procedure Set_PrintScale(Value: TxPrintScale); safecall;
procedure Set_Scaled(Value: WordBool); safecall;
procedure Set_Visible(Value: WordBool); safecall;
function Get_ButtonCaption: WideString; safecall;
procedure Set_ButtonCaption(const Value: WideString); safecall;

public
{ Public declarations }
procedure Initialize; override;

published
property ButtonCaption: string read GetButtonCaption
write SetButtonCaption;

end;

implementation

Component-Based Development

PART III
1032

29.65227_Ch25x 11/30/99 6:11 PM Page 1032

uses ComObj, ComServ, About1;

{$R *.DFM}

{ TActiveFormX }

procedure TActiveFormX.DefinePropertyPages(DefinePropertyPage:
TDefinePropertyPage);

begin
{ Define property pages here. Property pages are defined by calling
DefinePropertyPage with the class id of the page. For example,
DefinePropertyPage(Class_ActiveFormXPage); }

end;

procedure TActiveFormX.EventSinkChanged(const EventSink: IUnknown);
begin
FEvents := EventSink as IActiveFormXEvents;

end;

procedure TActiveFormX.Initialize;
begin
inherited Initialize;
OnActivate := ActivateEvent;
OnClick := ClickEvent;
OnCreate := CreateEvent;
OnDblClick := DblClickEvent;
OnDeactivate := DeactivateEvent;
OnDestroy := DestroyEvent;
OnKeyPress := KeyPressEvent;
OnPaint := PaintEvent;

end;

function TActiveFormX.Get_Active: WordBool;
begin
Result := Active;

end;

function TActiveFormX.Get_AutoScroll: WordBool;
begin
Result := AutoScroll;

end;

function TActiveFormX.Get_AutoSize: WordBool;
begin
Result := AutoSize;

end;

Creating ActiveX Controls

CHAPTER 25
1033

25

C
R

EA
TIN

G
A

C
TIV

EX
C

O
N

TR
O

LS

continues

29.65227_Ch25x 11/30/99 6:11 PM Page 1033

LISTING 25.8 Continued

function TActiveFormX.Get_AxBorderStyle: TxActiveFormBorderStyle;
begin
Result := Ord(AxBorderStyle);

end;

function TActiveFormX.Get_BiDiMode: TxBiDiMode;
begin
Result := Ord(BiDiMode);

end;

function TActiveFormX.Get_Caption: WideString;
begin
Result := WideString(Caption);

end;

function TActiveFormX.Get_Color: OLE_COLOR;
begin
Result := OLE_COLOR(Color);

end;

function TActiveFormX.Get_Cursor: Smallint;
begin
Result := Smallint(Cursor);

end;

function TActiveFormX.Get_DoubleBuffered: WordBool;
begin
Result := DoubleBuffered;

end;

function TActiveFormX.Get_DropTarget: WordBool;
begin
Result := DropTarget;

end;

function TActiveFormX.Get_Enabled: WordBool;
begin
Result := Enabled;

end;

function TActiveFormX.Get_Font: IFontDisp;
begin
GetOleFont(Font, Result);

end;

Component-Based Development

PART III
1034

29.65227_Ch25x 11/30/99 6:11 PM Page 1034

function TActiveFormX.Get_HelpFile: WideString;
begin
Result := WideString(HelpFile);

end;

function TActiveFormX.Get_KeyPreview: WordBool;
begin
Result := KeyPreview;

end;

function TActiveFormX.Get_PixelsPerInch: Integer;
begin
Result := PixelsPerInch;

end;

function TActiveFormX.Get_PrintScale: TxPrintScale;
begin
Result := Ord(PrintScale);

end;

function TActiveFormX.Get_Scaled: WordBool;
begin
Result := Scaled;

end;

function TActiveFormX.Get_Visible: WordBool;
begin
Result := Visible;

end;

procedure TActiveFormX._Set_Font(const Value: IFontDisp);
begin
SetOleFont(Font, Value);

end;

procedure TActiveFormX.AboutBox;
begin
ShowActiveFormXAbout;

end;

procedure TActiveFormX.Set_AutoScroll(Value: WordBool);
begin
AutoScroll := Value;

end;

procedure TActiveFormX.Set_AutoSize(Value: WordBool);

Creating ActiveX Controls

CHAPTER 25
1035

25

C
R

EA
TIN

G
A

C
TIV

EX
C

O
N

TR
O

LS

continues

29.65227_Ch25x 11/30/99 6:11 PM Page 1035

LISTING 25.8 Continued

begin
AutoSize := Value;

end;

procedure TActiveFormX.Set_AxBorderStyle(Value: TxActiveFormBorderStyle);
begin
AxBorderStyle := TActiveFormBorderStyle(Value);

end;

procedure TActiveFormX.Set_BiDiMode(Value: TxBiDiMode);
begin
BiDiMode := TBiDiMode(Value);

end;

procedure TActiveFormX.Set_Caption(const Value: WideString);
begin
Caption := TCaption(Value);

end;

procedure TActiveFormX.Set_Color(Value: OLE_COLOR);
begin
Color := TColor(Value);

end;

procedure TActiveFormX.Set_Cursor(Value: Smallint);
begin
Cursor := TCursor(Value);

end;

procedure TActiveFormX.Set_DoubleBuffered(Value: WordBool);
begin
DoubleBuffered := Value;

end;

procedure TActiveFormX.Set_DropTarget(Value: WordBool);
begin
DropTarget := Value;

end;

procedure TActiveFormX.Set_Enabled(Value: WordBool);
begin
Enabled := Value;

end;

procedure TActiveFormX.Set_Font(var Value: IFontDisp);

Component-Based Development

PART III
1036

29.65227_Ch25x 11/30/99 6:11 PM Page 1036

begin
SetOleFont(Font, Value);

end;

procedure TActiveFormX.Set_HelpFile(const Value: WideString);
begin
HelpFile := String(Value);

end;

procedure TActiveFormX.Set_KeyPreview(Value: WordBool);
begin
KeyPreview := Value;

end;

procedure TActiveFormX.Set_PixelsPerInch(Value: Integer);
begin
PixelsPerInch := Value;

end;

procedure TActiveFormX.Set_PrintScale(Value: TxPrintScale);
begin
PrintScale := TPrintScale(Value);

end;

procedure TActiveFormX.Set_Scaled(Value: WordBool);
begin
Scaled := Value;

end;

procedure TActiveFormX.Set_Visible(Value: WordBool);
begin
Visible := Value;

end;

procedure TActiveFormX.ActivateEvent(Sender: TObject);
begin
if FEvents <> nil then FEvents.OnActivate;

end;

procedure TActiveFormX.ClickEvent(Sender: TObject);
begin
if FEvents <> nil then FEvents.OnClick;

end;

procedure TActiveFormX.CreateEvent(Sender: TObject);
begin

Creating ActiveX Controls

CHAPTER 25
1037

25

C
R

EA
TIN

G
A

C
TIV

EX
C

O
N

TR
O

LS

continues

29.65227_Ch25x 11/30/99 6:11 PM Page 1037

LISTING 25.8 Continued

if FEvents <> nil then FEvents.OnCreate;
end;

procedure TActiveFormX.DblClickEvent(Sender: TObject);
begin
if FEvents <> nil then FEvents.OnDblClick;

end;

procedure TActiveFormX.DeactivateEvent(Sender: TObject);
begin
if FEvents <> nil then FEvents.OnDeactivate;

end;

procedure TActiveFormX.DestroyEvent(Sender: TObject);
begin
if FEvents <> nil then FEvents.OnDestroy;

end;

procedure TActiveFormX.KeyPressEvent(Sender: TObject; var Key: Char);
var
TempKey: Smallint;

begin
TempKey := Smallint(Key);
if FEvents <> nil then FEvents.OnKeyPress(TempKey);
Key := Char(TempKey);

end;

procedure TActiveFormX.PaintEvent(Sender: TObject);
begin
if FEvents <> nil then FEvents.OnPaint;

end;

function TActiveFormX.GetButtonCaption: string;
begin
Result := Button1.Caption;

end;

procedure TActiveFormX.SetButtonCaption(const Value: string);
begin
Button1.Caption := Value;

end;

function TActiveFormX.Get_ButtonCaption: WideString;
begin
Result := ButtonCaption;

Component-Based Development

PART III
1038

29.65227_Ch25x 11/30/99 6:11 PM Page 1038

end;

procedure TActiveFormX.Set_ButtonCaption(const Value: WideString);
begin
ButtonCaption := Value;

end;

initialization
TActiveFormFactory.Create(ComServer, TActiveFormControl, TActiveFormX,
Class_ActiveFormX, 1, ‘’, OLEMISC_SIMPLEFRAME or OLEMISC_ACTSLIKELABEL,
tmApartment);

end.

ActiveX on the Web
An ideal use for ActiveForms is as a vehicle for delivering small applications over the World
Wide Web. Smaller ActiveX controls are also useful for enhancing the appearance and useful-
ness of Web pages. However, in order to get the most out of Delphi-written ActiveX controls
on the Web, you need to know a few things about control streaming, safety, and communica-
tion with the browser.

Communicating with the Web Browser
Because ActiveX controls can run within the context of a Web browser, it makes sense that
Web browsers expose functions and interfaces that allow ActiveX controls to manipulate them.
Most of these functions and interfaces are located in the UrlMon unit (that’s Jamaican Web
talk). Among the simplest of these functions are the HlinkXXX() functions, which cause the
browser to hyperlink to different locations. For example, the HlinkGoForward() and
HlinkGoBack() functions cause the browser to travel forward or back in its location stack. The
HlinkNavigateString() function causes the browser to travel to a specified URL. These func-
tions are defined in UrlMon as follows:

function HlinkGoBack(pUnk: IUnknown): HResult; stdcall;
function HlinkGoForward(pUnk: IUnknown): HResult; stdcall;
function HlinkNavigateString(pUnk: IUnknown; szTarget: PWideChar): HResult;
stdcall;

The pUnk parameter for each of these functions is the IUnknown interface for the ActiveX con-
trol. In the case of ActiveX controls, you can pass Control as IUnknown in this parameter. In
the case of ActiveForms, you should pass IUnknown(VclComObject) in this parameter. The
szTarget parameter of HlinkNavigateString() represents the URL you want to use.

A more ambitious task would be to use the URLDownloadToFile() function to download a file
from the server to the local machine. This method is defined in UrlMon as follows:

Creating ActiveX Controls

CHAPTER 25
1039

25

C
R

EA
TIN

G
A

C
TIV

EX
C

O
N

TR
O

LS

29.65227_Ch25x 11/30/99 6:11 PM Page 1039

function URLDownloadToFile(p1: IUnknown; p2: PChar; p3: PChar; p4: DWORD;
p5: IBindStatusCallback): HResult; stdcall;

Helpful parameter names, eh? p1 represents the IUnknown interface for the ActiveX control,
similar to the pUnk parameter of the HlinkXXX() functions. p2 holds the URL of the file to be
downloaded. p3 is the name of the local file that will be filled with the data of the file specified
by p2. p4 must be set to 0, and p5 holds an optional IBindStatusCallback interface pointer.
This interface can be used to obtain incremental information on the file as it downloads.

Listing 25.9 shows the implementation file for an ActiveForm that implements these methods.
It also demonstrates a simple example of implementing the IBindStatusCallback interface.

LISTING 25.9 An ActiveForm that Uses UrlMon Functions

unit UrlTestMain;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
ActiveX, AxCtrls, UrlTest_TLB, UrlMon, StdCtrls, MPlayer, ExtCtrls,
ComCtrls;

type
TUrlTestForm = class(TActiveForm, IUrlTestForm, IBindStatusCallback)
GroupBox1: TGroupBox;
Label1: TLabel;
Label2: TLabel;
Label3: TLabel;
MediaPlayer1: TMediaPlayer;
Panel1: TPanel;
Button1: TButton;
StatusPanel: TPanel;
ProgressBar1: TProgressBar;
ServerName: TEdit;
StaticText1: TStaticText;
procedure Label1Click(Sender: TObject);
procedure Label2Click(Sender: TObject);
procedure Label3Click(Sender: TObject);
procedure Button1Click(Sender: TObject);

private
{ Private declarations }
FEvents: IUrlTestFormEvents;
procedure ActivateEvent(Sender: TObject);
procedure ClickEvent(Sender: TObject);
procedure CreateEvent(Sender: TObject);
procedure DblClickEvent(Sender: TObject);

Component-Based Development

PART III
1040

29.65227_Ch25x 11/30/99 6:11 PM Page 1040

procedure DeactivateEvent(Sender: TObject);
procedure DestroyEvent(Sender: TObject);
procedure KeyPressEvent(Sender: TObject; var Key: Char);
procedure PaintEvent(Sender: TObject);

protected
{ IBindStatusCallback }
function OnStartBinding(dwReserved: DWORD; pib: IBinding): HResult;
stdcall;

function GetPriority(out nPriority): HResult; stdcall;
function OnLowResource(reserved: DWORD): HResult; stdcall;
function OnProgress(ulProgress, ulProgressMax, ulStatusCode: ULONG;
szStatusText: LPCWSTR): HResult; stdcall;

function OnStopBinding(hRes: HResult; szError: PWideChar): HResult;
stdcall;

function GetBindInfo(out grfBINDF: DWORD; var bindinfo: TBindInfo):
HResult;
stdcall;

function OnDataAvailable(grfBSCF: DWORD; dwSize: DWORD;
formatetc: PFormatEtc; stgmed: PStgMedium): HResult; stdcall;

function OnObjectAvailable(const iid: TGUID; punk: IUnknown): HResult;
stdcall;

{ UrlTestForm }
procedure EventSinkChanged(const EventSink: IUnknown); override;
procedure Initialize; override;
function Get_Active: WordBool; safecall;
function Get_AutoScroll: WordBool; safecall;
function Get_AxBorderStyle: TxActiveFormBorderStyle; safecall;
function Get_Caption: WideString; safecall;
function Get_Color: OLE_COLOR; safecall;
function Get_Cursor: Smallint; safecall;
function Get_DropTarget: WordBool; safecall;
function Get_Enabled: WordBool; safecall;
function Get_Font: IFontDisp; safecall;
function Get_HelpFile: WideString; safecall;
function Get_KeyPreview: WordBool; safecall;
function Get_PixelsPerInch: Integer; safecall;
function Get_PrintScale: TxPrintScale; safecall;
function Get_Scaled: WordBool; safecall;
function Get_Visible: WordBool; safecall;
function Get_WindowState: TxWindowState; safecall;
procedure Set_AutoScroll(Value: WordBool); safecall;
procedure Set_AxBorderStyle(Value: TxActiveFormBorderStyle); safecall;
procedure Set_Caption(const Value: WideString); safecall;
procedure Set_Color(Color: OLE_COLOR); safecall;
procedure Set_Cursor(Value: Smallint); safecall;
procedure Set_DropTarget(Value: WordBool); safecall;

Creating ActiveX Controls

CHAPTER 25
1041

25

C
R

EA
TIN

G
A

C
TIV

EX
C

O
N

TR
O

LS

continues

29.65227_Ch25x 11/30/99 6:11 PM Page 1041

LISTING 25.9 Continued

procedure Set_Enabled(Value: WordBool); safecall;
procedure Set_Font(const Font: IFontDisp); safecall;
procedure Set_HelpFile(const Value: WideString); safecall;
procedure Set_KeyPreview(Value: WordBool); safecall;
procedure Set_PixelsPerInch(Value: Integer); safecall;
procedure Set_PrintScale(Value: TxPrintScale); safecall;
procedure Set_Scaled(Value: WordBool); safecall;
procedure Set_Visible(Value: WordBool); safecall;
procedure Set_WindowState(Value: TxWindowState); safecall;

public
{ Public declarations }

end;

implementation

uses ComObj, ComServ;

{$R *.DFM}

{ TUrlTestForm.IBindStatusCallback }

function TUrlTestForm.OnStartBinding(dwReserved: DWORD; pib: IBinding):
HResult;

begin
Result := S_OK;

end;

function TUrlTestForm.GetPriority(out nPriority): HResult;
begin
HRESULT(Result) := S_OK;

end;

function TUrlTestForm.OnLowResource(reserved: DWORD): HResult;
begin
Result := S_OK;

end;

function TUrlTestForm.OnProgress(ulProgress, ulProgressMax, ulStatusCode:
ULONG;
szStatusText: LPCWSTR): HResult; stdcall;

begin
Result := S_OK;
ProgressBar1.Max := ulProgressMax;
ProgressBar1.Position := ulProgress;
StatusPanel.Caption := szStatusText;

Component-Based Development

PART III
1042

29.65227_Ch25x 11/30/99 6:11 PM Page 1042

end;

function TUrlTestForm.OnStopBinding(hRes: HResult; szError: PWideChar):
HResult;

begin
Result := S_OK;
if hRes = S_OK then
begin
MediaPlayer1.FileName := ‘c:\temp\testavi.avi’;
MediaPlayer1.Open;
MediaPlayer1.Play;

end;
end;

function TUrlTestForm.GetBindInfo(out grfBINDF: DWORD; var bindinfo:
TBindInfo):
HResult; stdcall;

begin
Result := S_OK;

end;

function TUrlTestForm.OnDataAvailable(grfBSCF: DWORD; dwSize: DWORD;
formatetc: PFormatEtc; stgmed: PStgMedium): HResult; stdcall;

begin
Result := S_OK;

end;

function TUrlTestForm.OnObjectAvailable(const iid: TGUID; punk: IUnknown):
HResult; stdcall;

begin
Result := S_OK;

end;

{ TUrlTestForm }

procedure TUrlTestForm.EventSinkChanged(const EventSink: IUnknown);
begin
FEvents := EventSink as IUrlTestFormEvents;

end;

procedure TUrlTestForm.Initialize;
begin
OnActivate := ActivateEvent;
OnClick := ClickEvent;
OnCreate := CreateEvent;
OnDblClick := DblClickEvent;

Creating ActiveX Controls

CHAPTER 25
1043

25

C
R

EA
TIN

G
A

C
TIV

EX
C

O
N

TR
O

LS

continues

29.65227_Ch25x 11/30/99 6:11 PM Page 1043

LISTING 25.9 Continued

OnDeactivate := DeactivateEvent;
OnDestroy := DestroyEvent;
OnKeyPress := KeyPressEvent;
OnPaint := PaintEvent;

end;

function TUrlTestForm.Get_Active: WordBool;
begin
Result := Active;

end;

function TUrlTestForm.Get_AutoScroll: WordBool;
begin
Result := AutoScroll;

end;

function TUrlTestForm.Get_AxBorderStyle: TxActiveFormBorderStyle;
begin
Result := Ord(AxBorderStyle);

end;

function TUrlTestForm.Get_Caption: WideString;
begin
Result := WideString(Caption);

end;

function TUrlTestForm.Get_Color: OLE_COLOR;
begin
Result := Color;

end;

function TUrlTestForm.Get_Cursor: Smallint;
begin
Result := Smallint(Cursor);

end;

function TUrlTestForm.Get_DropTarget: WordBool;
begin
Result := DropTarget;

end;

function TUrlTestForm.Get_Enabled: WordBool;
begin
Result := Enabled;

end;

Component-Based Development

PART III
1044

29.65227_Ch25x 11/30/99 6:11 PM Page 1044

function TUrlTestForm.Get_Font: IFontDisp;
begin
GetOleFont(Font, Result);

end;

function TUrlTestForm.Get_HelpFile: WideString;
begin
Result := WideString(HelpFile);

end;

function TUrlTestForm.Get_KeyPreview: WordBool;
begin
Result := KeyPreview;

end;

function TUrlTestForm.Get_PixelsPerInch: Integer;
begin
Result := PixelsPerInch;

end;

function TUrlTestForm.Get_PrintScale: TxPrintScale;
begin
Result := Ord(PrintScale);

end;

function TUrlTestForm.Get_Scaled: WordBool;
begin
Result := Scaled;

end;

function TUrlTestForm.Get_Visible: WordBool;
begin
Result := Visible;

end;

function TUrlTestForm.Get_WindowState: TxWindowState;
begin
Result := Ord(WindowState);

end;

procedure TUrlTestForm.Set_AutoScroll(Value: WordBool);
begin
AutoScroll := Value;

end;

procedure TUrlTestForm.Set_AxBorderStyle(Value: TxActiveFormBorderStyle);

Creating ActiveX Controls

CHAPTER 25
1045

25

C
R

EA
TIN

G
A

C
TIV

EX
C

O
N

TR
O

LS

continues

29.65227_Ch25x 11/30/99 6:11 PM Page 1045

LISTING 25.9 Continued

begin
AxBorderStyle := TActiveFormBorderStyle(Value);

end;

procedure TUrlTestForm.Set_Caption(const Value: WideString);
begin
Caption := TCaption(Value);

end;

procedure TUrlTestForm.Set_Color(Color: OLE_COLOR);
begin
Self.Color := Color;

end;

procedure TUrlTestForm.Set_Cursor(Value: Smallint);
begin
Cursor := TCursor(Value);

end;

procedure TUrlTestForm.Set_DropTarget(Value: WordBool);
begin
DropTarget := Value;

end;

procedure TUrlTestForm.Set_Enabled(Value: WordBool);
begin
Enabled := Value;

end;

procedure TUrlTestForm.Set_Font(const Font: IFontDisp);
begin
SetOleFont(Self.Font, Font);

end;

procedure TUrlTestForm.Set_HelpFile(const Value: WideString);
begin
HelpFile := String(Value);

end;

procedure TUrlTestForm.Set_KeyPreview(Value: WordBool);
begin
KeyPreview := Value;

end;

procedure TUrlTestForm.Set_PixelsPerInch(Value: Integer);

Component-Based Development

PART III
1046

29.65227_Ch25x 11/30/99 6:11 PM Page 1046

begin
PixelsPerInch := Value;

end;

procedure TUrlTestForm.Set_PrintScale(Value: TxPrintScale);
begin
PrintScale := TPrintScale(Value);

end;

procedure TUrlTestForm.Set_Scaled(Value: WordBool);
begin
Scaled := Value;

end;

procedure TUrlTestForm.Set_Visible(Value: WordBool);
begin
Visible := Value;

end;

procedure TUrlTestForm.Set_WindowState(Value: TxWindowState);
begin
WindowState := TWindowState(Value);

end;

procedure TUrlTestForm.ActivateEvent(Sender: TObject);
begin
if FEvents <> nil then FEvents.OnActivate;

end;

procedure TUrlTestForm.ClickEvent(Sender: TObject);
begin
if FEvents <> nil then FEvents.OnClick;

end;

procedure TUrlTestForm.CreateEvent(Sender: TObject);
begin
if FEvents <> nil then FEvents.OnCreate;

end;

procedure TUrlTestForm.DblClickEvent(Sender: TObject);
begin
if FEvents <> nil then FEvents.OnDblClick;

end;

procedure TUrlTestForm.DeactivateEvent(Sender: TObject);
begin

Creating ActiveX Controls

CHAPTER 25
1047

25

C
R

EA
TIN

G
A

C
TIV

EX
C

O
N

TR
O

LS

continues

29.65227_Ch25x 11/30/99 6:11 PM Page 1047

LISTING 25.9 Continued

if FEvents <> nil then FEvents.OnDeactivate;
end;

procedure TUrlTestForm.DestroyEvent(Sender: TObject);
begin
if FEvents <> nil then FEvents.OnDestroy;

end;

procedure TUrlTestForm.KeyPressEvent(Sender: TObject; var Key: Char);
var
TempKey: Smallint;

begin
TempKey := Smallint(Key);
if FEvents <> nil then FEvents.OnKeyPress(TempKey);
Key := Char(TempKey);

end;

procedure TUrlTestForm.PaintEvent(Sender: TObject);
begin
if FEvents <> nil then FEvents.OnPaint;

end;

procedure TUrlTestForm.Label1Click(Sender: TObject);
begin
HLinkNavigateString(IUnknown(VCLComObject), ‘http://www.inprise.com’);

end;

procedure TUrlTestForm.Label2Click(Sender: TObject);
begin
HLinkGoForward(IUnknown(VCLComObject));

end;

procedure TUrlTestForm.Label3Click(Sender: TObject);
begin
HLinkGoBack(IUnknown(VCLComObject));

end;

procedure TUrlTestForm.Button1Click(Sender: TObject);
begin
// Note: you may have to change the name of the AVI file shown in the first
// parameter to Format to another AVI file which resides on your server.
URLDownloadToFile(IUnknown(VCLComObject),
PChar(Format(‘http://%s/delphi3.avi’, [ServerName.Text])),
‘c:\temp\testavi.avi’, 0, Self);

end;

Component-Based Development

PART III
1048

29.65227_Ch25x 11/30/99 6:11 PM Page 1048

initialization
TActiveFormFactory.Create(ComServer, TActiveFormControl, TUrlTestForm,
Class_UrlTestForm, 1, ‘’, OLEMISC_SIMPLEFRAME or OLEMISC_ACTSLIKELABEL,
tmApartment);

end.

The URLDownloadToFile() example downloads an AVI file from the server and plays it in a
TMediaPlayer. Note that this example expects to find a file called Speedis.avi in the root of
the server (you will find it in the \Runimage\Delphi50\Demos\Coolstuf directory of your
Delphi 5 CD), so you may need to change the code depending on what AVI files you have on
your machine. Figure 25.10 shows this ActiveForm in action inside of Internet Explorer.

Creating ActiveX Controls

CHAPTER 25
1049

25

C
R

EA
TIN

G
A

C
TIV

EX
C

O
N

TR
O

LS

FIGURE 25.10
The ActiveForm running in Internet Explorer.

Web Deployment
The Delphi IDE contains a very convenient feature that helps you deploy your ActiveX pro-
jects over the Web. This option is accessible when you are editing an ActiveX project from
Project, Web Deployment Options on the main menu. The main page of this dialog is shown in
Figure 25.11.

The Project Page
On this page, Target Dir represents the pathname to which you want to deploy the ActiveX
project. Note that this assumes you are able to map a drive to your Web server—the contents of

29.65227_Ch25x 11/30/99 6:11 PM Page 1049

the edit control must be a regular or UNC pathname. Note also that you should not type in a
filename, just a path.

Component-Based Development

PART III
1050

FIGURE 25.11
The Project page of the Web Deployment Options dialog.

Target URL is the URL that references the same directory specified in Target Dir. This must be
a valid URL that uses a standard URL prefix (http://, file://, ftp://, and so on). Again,
do not include a filename here, just a pathname URL.

HTML Dir is another pathname that dictates where the generated HTML file will be copied.
Typically, this is the same as Target Dir.

This dialog also enables you to choose several project deployment options:

• Use CAB file compression. Selecting this options will cause your OCX file to be com-
pressed using the Microsoft Cabinet (CAB) format. This is recommended for controls
you plan to deploy to clients who use low-bandwidth Web links.

• Include file version number. This option indicates whether to include a version number in
the generated HTML or INF file. Doing so is recommended, because it provides a means
by which users can avoid downloading the control if they already have the most recent
version.

• Autoincrement release number. When checked, this option causes the release number por-
tion of your VersionInfo resources to be automatically incremented after deployment.

NOTE

You must have Internet Explorer 3.02 or greater and Authenticode 2.0 in addition to
a certificate from a provider such as VeriSign in order to code-sign files.

29.65227_Ch25x 11/30/99 6:11 PM Page 1050

• Deploy required packages. If your project is built with packages, simply checking this
box will automatically include packages used by your project in the file deployment set.

• Deploy additional files. By checking this box, you can add files shown on the Additional
Files page to your file deployment set.

Packages and Additional Files
The Packages and Additional Files pages are shown in Figures 25.12 and 25.13. The only differ-
ence between the pages is that the Packages page is filled automatically based on the packages
used by the project, and files are added to and removed from the Additional Files page by you.

Creating ActiveX Controls

CHAPTER 25
1051

25

C
R

EA
TIN

G
A

C
TIV

EX
C

O
N

TR
O

LS

FIGURE 25.12
The Packages page.

FIGURE 25.13
The Additional Files page.

29.65227_Ch25x 11/30/99 6:11 PM Page 1051

When you choose to use CAB compression on the Project page, the CAB Options group of the
Packages and Additional Files pages enable you to select whether you want the file compressed
with the OCX or in a separate CAB file. It is generally more efficient to compress each file in
its own CAB, because then the user will not have to download files that they potentially already
have installed on their machines. Here are some other options you should be familiar with:

• If the Use File VersionInfo option is selected, the deployment engine will determine
whether the selected file has VersionInfo and, if so, will stamp the version number con-
tained in VersionInfo in the INF file.

• The Target URL edit box will default to the same location as the target URL from the
Project page. This is the URL from which the file can be downloaded. If you are assum-
ing that the client of your ActiveX control already has this file installed, leave this value
blank.

• The Target Directory edit box allows you to specify the directory to which the particular
file should be copied. Leave this blank if the file already exists on the server and should
not be recopied to the server.

Code Signing
The Code Signing page, shown in Figure 25.14, allows you to specify the location of the certifi-
cate file and private key file associated with your certificate. In addition, you can specify a title
for your application, a URL for your application or company, the type of encryption you want to
use, and whether to timestamp your certificate. It is recommended that you choose to timestamp
as you code-sign so that the signature will remain valid even after your certificate expires.

Component-Based Development

PART III
1052

FIGURE 25.14
The Code Signing page.

29.65227_Ch25x 11/30/99 6:11 PM Page 1052

General Tips
If you make an error on the Project page, your control will usually appear on the Web page as
a box with a red × in the upper-left corner. If this happens, you should check the generated
HTM file and the INF file (if you are deploying multiple files) for errors. The most common
problem is an incorrect URL specified for the control.

Summary
That about sums it up for the topic of creating ActiveX controls and ActiveForms in Delphi.
This chapter provided a lot of insight into the inner workings of the ActiveX wizards to help
you work within and extend the Delphi ActiveX framework for your benefit. This chapter also
built upon the COM and ActiveX knowledge you gained in the previous two chapters—you are
well on your way to becoming an expert ActiveX programmer. Now it’s time to change gears.
The next chapter, “Using Delphi’s Open Tools API,” focuses on using Delphi’s Open Tools API
to get inside the IDE.

Creating ActiveX Controls

CHAPTER 25
1053

25

C
R

EA
TIN

G
A

C
TIV

EX
C

O
N

TR
O

LS

29.65227_Ch25x 11/30/99 6:11 PM Page 1053

29.65227_Ch25x 11/30/99 6:11 PM Page 1054

CHAPTER

26
Using Delphi’s Open Tools API

IN THIS CHAPTER
• Open Tools Interfaces 1056

• Using the Open Tools API 1058

• Form Wizards 1086

• Summary 1094

30.65227_Ch26x 11/30/99 6:12 PM Page 1055

Have you ever thought to yourself, “Delphi is great, but why doesn’t the IDE perform this little
task that I’d like it to?” If you have, then have no fear. The Open Tools API is for you. The
Delphi Open Tools API provides you with the capability of creating your own tools that work
closely with Delphi’s IDE. In this chapter, you will learn about the different interfaces that
make up the Open Tools API, how to use the interfaces, and also how to leverage your newly
found expertise to write a fully featured wizard.

Open Tools Interfaces
The Open Tools API is composed of eight units, each containing one or more objects that pro-
vide interfaces to a variety of facilities in the IDE. Using these interfaces enables you to write
your own Delphi wizards, version control managers, and component and property editors. You
will also gain a window into Delphi’s IDE and editor through any of these add-ons.

With the exception of the interfaces designed for component and property editors, the Open
Tools interface objects provide an all-virtual interface to the outside world—meaning that
using these interface objects involves working only with the objects’ virtual functions. You can-
not access the objects’ data fields, properties, or static functions. Because of this, the Open
Tools interface objects follow the COM standard (see Chapter 23, “COM and ActiveX”). With
a little work on your part, these interfaces can be used by any programming language that sup-
ports COM. In this chapter, you will work only with Delphi, but you should know that the
capacity for using other languages is available (in case you just can’t get enough of C++).

Component-Based Development

PART III
1056

NOTE

The complete Open Tools API is available only with the Delphi Professional and
Client/Server Suite. Delphi Standard has the capability to use add-ons created with
the Open Tools API, but it cannot create add-ons because it contains only the units
for creating component and property editors. You can find the source code for the
Open Tools interfaces in the \Delphi 5\Source\ToolsAPI subdirectory.

Table 26.1 shows the units that make up the Open Tools API and the interfaces they provide.
The term interface is used loosely here because it does not refer to Delphi’s native interface
types. Because the Open Tools API predates Delphi’s native interface support, the Open Tools
API uses regular Delphi classes with virtual abstract methods as substitutes for true interfaces.
The use of true interfaces has been phased into the Open Tools API over the past few versions
of Delphi, and the current incarnation of the Open Tools API is primarily interface-based.

30.65227_Ch26x 11/30/99 6:12 PM Page 1056

TABLE 26.1 Units in the Open Tools API

Unit Name Purpose

ToolsAPI Contains the latest interface-based Open Tools API elements. The contents of
this unit essentially supersede the pre-Delphi 5 Open Tools API units that use
abstract classes to manipulate menus, notifications, the file system, the editor,
and wizard add-ins. It also contains new interfaces for manipulating the debug-
ger, IDE key mappings, projects, project groups, packages, and the To Do list.

VirtIntf* Defines the base TInterface class from which other interfaces are derived.
This unit also defines TIStream class, which is a wrapper around a VCL
TStream.

IStreams* Defines TIMemoryStream, TIFileStream, and TIVirtualStream classes,
which are descendants of TIStream. These interfaces can be used to hook into
the IDE’s own streaming mechanism.

ToolIntf* Defines TIMenuItemIntf and TIMainMenuIntf classes, which enable the
Open Tools developer to create and modify menus in the Delphi IDE. This unit
also defines the TIAddInNotifier class, which allows add-in tools to be noti-
fied of certain events within the IDE. Most importantly, this unit defines the
TIToolServices class, which provides an interface into various portions of
the Delphi IDE (such as the editor, component library, Code Editor, Form
Designer, and file system).

VCSIntf Defines the TIVCSClient class, which enables the Delphi IDE to communi-
cate with version-control software.

FileIntf* Defines the TIVirtualFileSystem class, which the Delphi IDE uses for fil-
ing. Wizards, version-control managers, and property and component editors
can use this interface to hook into Delphi’s own file system to perform special
file operations.

EditIntf* Defines classes necessary for manipulating the Delphi Code Editor and Form
Designer. The TIEditReader class provides read access to an editor buffer.
TIEditWriter provides write access to the same. TIEditView is defined as
an individual view of an edit buffer. TIEditInterface is the base interface to
the editor, which can be used to obtain the previously mentioned editor inter-
faces. The TIComponentInterface class is an interface to an individual
component sitting on a form at design time. TIFormInterface is the base
interface to a design-time form or data module. TIResourceEntry is an inter-
face for the raw data in a project’s resource (*.res) file. TIResourceFile is
a higher-level interface to the project resource file. TIModuleNotifier is a
class that provides notifications when various events occur for a particular
module. Finally, TIModuleInterface is the interface for any file or module
open in the IDE.

Using Delphi’s Open Tools API

CHAPTER 26
1057

26

U
SIN

G
D

ELPH
I’S

O
PEN

T
O

O
LS

A
PI

continues

30.65227_Ch26x 11/30/99 6:12 PM Page 1057

TABLE 26.1 Continued

Unit Name Purpose

ExptIntf* Defines the abstract TIExpert class from which all experts descend.

DsgnIntf Defines the IFormDesigner interface and the TPropertyEditor and
TComponentEditor classes, which are used to create custom property and
component editors.

*Functionality replaced by the ToolsAPI unit. Exists only for backward compatibility with versions prior
to Delphi 5.

Component-Based Development

PART III
1058

NOTE

You might wonder where all this wizard stuff is documented in Delphi. We assure
you that it is documented, but it isn’t easy to find. Each of these units contains com-
plete documentation for the interface, classes, methods, and procedures declared
within. We will not regurgitate the same information that these units contain, so we
urge you to take a look at the units for complete documentation.

Using the Open Tools API
Now that you know what’s what, it is time to get your hands dirty and look at some actual
code. This section focuses primarily on writing wizards by using the Open Tools API. We
will not discuss the building of version-control systems because the interest for such a topic is
arguably limited. For examples of component and property editors, you should look at Chapter
21, “Writing Delphi Custom Components,” and Chapter 22, “Advanced Component
Techniques.”

A Dumb Wizard
To start out, you will create a very simple wizard appropriately dubbed the Dumb wizard. The
minimum requirement in creating a wizard is to create a class that implements the IOTAWizard
interface. For reference, IOTAWizard is defined in the ToolsAPI unit as follows:

type
IOTAWizard = interface(IOTANotifier)
[‘{B75C0CE0-EEA6-11D1-9504-00608CCBF153}’]
{ Expert UI strings }
function GetIDString: string;
function GetName: string;
function GetState: TWizardState;
{ Launch the AddIn }

30.65227_Ch26x 11/30/99 6:12 PM Page 1058

procedure Execute;
end;

This interface mainly consists of some GetXXX() functions that are designed to be overridden
by the descendant classes in order to provide specific information for each wizard. The
Execute() method is the business end of IOTAWizard. Execute() is called by the IDE when
the user selects your wizard from the main menu or the New Items menu, and it is in this
method that the wizard should be created and invoked.

If you have a keen eye, you may have noticed that IOTAWizard descends from another inter-
face, called IOTANotifier. IOTANotifier is an interface defined in the ToolsAPI unit that con-
tains methods that can be called by the IDE to notify a wizard of various occurrences. This
interface is defined as the following:

type
IOTANotifier = interface(IUnknown)
[‘{F17A7BCF-E07D-11D1-AB0B-00C04FB16FB3}’]
{ This procedure is called immediately after the item is successfully

➥saved.
This is not called for IOTAWizards }

procedure AfterSave;
{ This function is called immediately before the item is saved. This is not
called for IOTAWizard }

procedure BeforeSave;
{ The associated item is being destroyed so all references should be

➥dropped.
Exceptions are ignored. }

procedure Destroyed;
{ This associated item was modified in some way. This is not called for
IOTAWizards }

procedure Modified;
end;

As the comments in the source code indicate, most of these methods are not called for simple
IOTAWizard wizards. Because of this, ToolsAPI provides a class called TNotifierObject that
provides empty implementations for IOTANotifier methods. You may choose to descend your
wizards from this class to take advantage of the convenience of having the IOTANotifier
methods implemented for you.

Wizards are not much use without a means to invoke them, and one of the simplest ways to do
that is through a menu pick. If you want to place your wizard on Delphi’s main menu, you just
need to implement the IOTAMenuWizard interface, which is defined in all its complexity in
ToolsAPI as the following:

type
IOTAMenuWizard = interface(IOTAWizard)
[‘{B75C0CE2-EEA6-11D1-9504-00608CCBF153}’]

Using Delphi’s Open Tools API

CHAPTER 26
1059

26

U
SIN

G
D

ELPH
I’S

O
PEN

T
O

O
LS

A
PI

30.65227_Ch26x 11/30/99 6:12 PM Page 1059

function GetMenuText: string;
end;

As you can see, this interface descends from IOTAWizard and adds only one additional method
to return the menu text string.

To jump right in and pull together your knowledge thus far, Listing 26.1 shows the
DumbWiz.pas unit, which contains the source code for TDumbWizard.

LISTING 26.1 DumbWiz.pas, a Simple Wizard Implementation

unit DumbWiz;

interface

uses
ShareMem, SysUtils, Windows, ToolsAPI;

type
TDumbWizard = class(TNotifierObject, IOTAWizard, IOTAMenuWizard)
// IOTAWizard methods
function GetIDString: string;
function GetName: string;
function GetState: TWizardState;
procedure Execute;
// IOTAMenuWizard method
function GetMenuText: string;

end;

procedure Register;

implementation

uses Dialogs;

function TDumbWizard.GetName: string;
begin
Result := ‘Dumb Wizard’;

end;

function TDumbWizard.GetState: TWizardState;
begin
Result := [wsEnabled];

end;

function TDumbWizard.GetIDString: String;
begin

Component-Based Development

PART III
1060

30.65227_Ch26x 11/30/99 6:12 PM Page 1060

Result := ‘DDG.DumbWizard’;
end;

procedure TDumbWizard.Execute;
begin
MessageDlg(‘This is a dumb wizard.’, mtInformation, [mbOk], 0);

end;

function TDumbWizard.GetMenuText: string;
begin
Result := ‘Dumb Wizard’;

end;

procedure Register;
begin
RegisterPackageWizard(TDumbWizard.Create);

end;

end.

The IOTAWizard.GetName() function should return a unique name for this wizard.

IOTAWizard.GetState() returns the state of a wsStandard wizard on the main menu. The
return value of this function is a set that can contain wsEnabled and/or wsChecked, depending
on how you want the menu item to appear in the IDE. This function is called every time the
wizard is shown in order to determine how to paint the menu.

IOTAWizard.GetIDString() should return a globally unique string identifier for the wizard.
Convention dictates that the return value of this string should be in the following format:

CompanyName.WizardName

IOTAWizard.Execute() invokes the wizard. As Listing 26.1 shows, the Execute() method for
TDumbWizard does not do much. Later in this chapter, however, you will see some wizards that
actually do perform tasks.

IOTAMenuWizard.GetMenuText() returns the text that should appear on the main menu. This
function is called every time the user pulls down the Help menu, so it is possible to dynami-
cally change the value of the menu text as your wizard runs.

Take a look at the call to RegisterPackageWizard() inside the Register() procedure. You
might notice that this is very similar to the syntax used for registering components, component
editors, and property editors for inclusion in the component library, as described in Chapter 21
and Chapter 22. The reason for this similarity is that this type of wizard is stored in a package
that is part of the component library, along with components and the like. You can also store
wizards in a standalone DLL, as you will see in the next example.

Using Delphi’s Open Tools API

CHAPTER 26
1061

26

U
SIN

G
D

ELPH
I’S

O
PEN

T
O

O
LS

A
PI

30.65227_Ch26x 11/30/99 6:12 PM Page 1061

This wizard is installed just like a component: Select the components, Install Component
option from the main menu, and add the unit to a new or existing package. Once this is
installed, the menu choice to invoke the wizard appears under the Help menu, as shown in
Figure 26.1. You can see the outstanding output of this wizard in Figure 26.2.

Component-Based Development

PART III
1062

FIGURE 26.1
The Dumb wizard on the main menu.

FIGURE 26.2
The Dumb wizard in action.

The Wizard Wizard
A little more work is involved in creating a DLL-based wizard (as opposed to a component
library–based wizard). In addition to demonstrating the creation of a DLL-based wizard, the
Wizard wizard example has a couple of ulterior motives, including illustrating how DLL wiz-
ards relate to the Registry and how to maintain one source code base that targets either an EXE
or a DLL wizard.

30.65227_Ch26x 11/30/1999 7:32 PM Page 1062

For Delphi to recognize a DLL wizard, it must have an entry in the system Registry under the
following key:

HKEY_CURRENT_USER\Software\Borland\Delphi\5.0\Experts

Figure 26.3 shows sample entries using the Windows RegEdit application.

Using Delphi’s Open Tools API

CHAPTER 26
1063

26

U
SIN

G
D

ELPH
I’S

O
PEN

T
O

O
LS

A
PI

NOTE

DLLs are discussed in greater detail in Chapter 9, “Dynamic Link Libraries.”

TIP

There is no hard-and-fast rule that dictates whether a wizard should reside in a pack-
age in the component library or a DLL. From a user’s perspective, the primary differ-
ence between the two is that component library wizards require a simple package
installation to be rebuilt, whereas DLL wizards require a Registry entry, and Delphi
must be exited and restarted for changes to take effect. However, as a developer,
package wizards are a bit easier to deal with for a number of reasons. Namely,
exceptions propagate between your wizard and the IDE automatically, you do not
have to use sharemem.dll for memory management, you do not have to do anything
special to initialize the DLL’s application variable, and pop-up hints and mouse
enter/exit messages will work properly.

With this in mind, you should consider using a DLL wizard when you want the wizard
to install with a minimum amount of work on the part of the end user.

FIGURE 26.3
Delphi wizard entries viewed with RegEdit.

30.65227_Ch26x 11/30/99 6:12 PM Page 1063

Wizard Interface
The purpose of the Wizard wizard is to provide an interface to add, modify, and delete DLL
wizard entries from the Registry without having to use the cumbersome RegEdit application.
First, let’s examine InitWiz.pas, the unit containing the wizard class (see Listing 26.2).

LISTING 26.2 InitWiz.pas, the Unit Containing the DLL Wizard Class

unit InitWiz;

interface

uses Windows, ToolsAPI;

type
TWizardWizard = class(TNotifierObject, IOTAWizard, IOTAMenuWizard)
// IOTAWizard methods
function GetIDString: string;
function GetName: string;
function GetState: TWizardState;
procedure Execute;
// IOTAMenuWizard method
function GetMenuText: string;

end;

function InitWizard(const BorlandIDEServices: IBorlandIDEServices;
RegisterProc: TWizardRegisterProc;
var Terminate: TWizardTerminateProc): Boolean stdcall;

var
{ Registry key where Delphi 5 wizards are kept. EXE version uses default, }
{ whereas DLL version gets key from ToolServices.GetBaseRegistryKey }
SDelphiKey: string = ‘\Software\Borland\Delphi\5.0\Experts’;

implementation

uses SysUtils, Forms, Controls, Main;

function TWizardWizard.GetName: string;
{ Return name of expert }
begin
Result := ‘WizardWizard’;

end;

function TWizardWizard.GetState: TWizardState;
{ This expert is always enabled }

Component-Based Development

PART III
1064

30.65227_Ch26x 11/30/99 6:12 PM Page 1064

begin
Result := [wsEnabled];

end;

function TWizardWizard.GetIDString: String;
{ “Vendor.AppName” ID string for expert }
begin
Result := ‘DDG.WizardWizard’;

end;

function TWizardWizard.GetMenuText: string;
{ Menu text for expert }
begin
Result := ‘Wizard Wizard’;

end;

procedure TWizardWizard.Execute;
{ Called when expert is chosen from the main menu. }
{ This procedure creates, shows, and frees the main form. }
begin
MainForm := TMainForm.Create(Application);
try
MainForm.ShowModal;

finally
MainForm.Free;

end;
end;

function InitWizard(const BorlandIDEServices: IBorlandIDEServices;
RegisterProc: TWizardRegisterProc;
var Terminate: TWizardTerminateProc): Boolean stdcall;

var
Svcs: IOTAServices;

begin
Result := BorlandIDEServices <> nil;
if Result then
begin
Svcs := BorlandIDEServices as IOTAServices;
ToolsAPI.BorlandIDEServices := BorlandIDEServices;
Application.Handle := Svcs.GetParentHandle;
SDelphiKey := Svcs.GetBaseRegistryKey + ‘\Experts’;
RegisterProc(TWizardWizard.Create);

end;
end;

end.

Using Delphi’s Open Tools API

CHAPTER 26
1065

26

U
SIN

G
D

ELPH
I’S

O
PEN

T
O

O
LS

A
PI

30.65227_Ch26x 11/30/99 6:12 PM Page 1065

You should notice a couple of differences between this unit and the one used to create the Dumb
wizard. Most important, an initialization function of type TWizardInitProc is required as an
entry point for the IDE into the wizard DLL. In this case, that function is called InitWizard().
This function performs a number of wizard initialization tasks, including the following:

• Obtaining a IOTAServices interface from the BorlandIDEServices parameter.

• Saving the BorlandIDEServices interface pointer for use at a later time.

• Setting the handle of the DLL’s Application variable to the value returned by
IOTAServices.GetParentHandle(). GetParentHandle() returns the window handle of
the window that must serve as the parent to all top-level windows created by the wizard.

• Passing the newly created instance of the wizard to the RegisterProc() procedure in
order to register the wizard with the IDE. RegisterProc() will be called once for each
wizard instance the DLL registers with the IDE.

• Optionally, InitWizard() can also assign a procedure of type TWizardTerminateProc to
the Terminate parameter to serve as an exit procedure for the wizard. This procedure
will be called immediately before the wizard is unloaded by the IDE, and in it you may
perform any necessary cleanup. This parameter is initially nil, so if you do not need to
perform any special cleanup, leave its value as nil.

Component-Based Development

PART III
1066

CAUTION

The wizard initialization method must use the stdcall calling convention.

CAUTION

Any DLL wizards that call Open Tools API functions that have string parameters must
have the ShareMem unit in their uses clause; otherwise, Delphi will raise an access vio-
lation when the wizard instance is freed.

The Wizard User Interface
The Execute() method is a bit more complex this time around. It creates an instance of the
wizard’s MainForm, shows it modally, and then frees the instance. Figure 26.4 shows a picture
of this form, and Listing 26.3 shows the Main.pas unit in which MainForm exists.

30.65227_Ch26x 11/30/99 6:12 PM Page 1066

FIGURE 26.4
MainForm in the Wizard wizard.

LISTING 26.3 Main.pas, the Main Unit of the Wizard Wizard

unit Main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ExtCtrls, Registry, AddModU, ComCtrls, Menus;

type
TMainForm = class(TForm)
TopPanel: TPanel;
Label1: TLabel;
BottomPanel: TPanel;
WizList: TListView;
PopupMenu1: TPopupMenu;
Add1: TMenuItem;
Remove1: TMenuItem;
Modify1: TMenuItem;
AddBtn: TButton;
RemoveBtn: TButton;
ModifyBtn: TButton;
CloseBtn: TButton;
procedure RemoveBtnClick(Sender: TObject);
procedure CloseBtnClick(Sender: TObject);
procedure AddBtnClick(Sender: TObject);
procedure ModifyBtnClick(Sender: TObject);

Using Delphi’s Open Tools API

CHAPTER 26
1067

26

U
SIN

G
D

ELPH
I’S

O
PEN

T
O

O
LS

A
PI

continues

30.65227_Ch26x 11/30/99 6:12 PM Page 1067

LISTING 26.3 Continued

procedure FormCreate(Sender: TObject);
private
procedure DoAddMod(Action: TAddModAction);
procedure RefreshReg;

end;

var
MainForm: TMainForm;

implementation

uses InitWiz;

{$R *.DFM}

var
DelReg: TRegistry;

procedure TMainForm.RemoveBtnClick(Sender: TObject);
{ Handler for Remove button click. Removes selected item from registry. }
var
Item: TListItem;

begin
Item := WizList.Selected;
if Item <> nil then
begin
if MessageDlg(Format(‘Remove item “%s”’, [Item.Caption]), mtConfirmation,
[mbYes, mbNo], 0) = mrYes then
DelReg.DeleteValue(Item.Caption);

RefreshReg;
end;

end;

procedure TMainForm.CloseBtnClick(Sender: TObject);
{ Handler for Close button click. Closes app. }
begin
Close;

end;

procedure TMainForm.DoAddMod(Action: TAddModAction);
{ Adds a new expert item to registry or modifies existing one. }
var
OrigName, ExpName, ExpPath: String;
Item: TListItem;

Component-Based Development

PART III
1068

30.65227_Ch26x 11/30/99 6:12 PM Page 1068

begin
if Action = amaModify then // if modify...
begin
Item := WizList.Selected;
if Item = nil then Exit; // make sure item is selected
ExpName := Item.Caption; // init variables
if Item.SubItems.Count > 0 then
ExpPath := Item.SubItems[0];

OrigName := ExpName; // save original name
end;
{ Invoke dialog which allows user to add or modify entry }
if AddModWiz(Action, ExpName, ExpPath) then
begin
{ if action is Modify, and the name was changed, handle it }
if (Action = amaModify) and (OrigName <> ExpName) then
DelReg.RenameValue(OrigName, ExpName);

DelReg.WriteString(ExpName, ExpPath); // write new value
end;
RefreshReg; // update listbox

end;

procedure TMainForm.AddBtnClick(Sender: TObject);
{ Handler for Add button click }
begin
DoAddMod(amaAdd);

end;

procedure TMainForm.ModifyBtnClick(Sender: TObject);
{ Handler for Modify button click }
begin
DoAddMod(amaModify);

end;

procedure TMainForm.RefreshReg;
{ Refreshes listbox with contents of registry }
var
i: integer;
TempList: TStringList;
Item: TListItem;

begin
WizList.Items.Clear;
TempList := TStringList.Create;
try
{ Get expert names from registry }
DelReg.GetValueNames(TempList);
{ Get path strings for each expert name }

Using Delphi’s Open Tools API

CHAPTER 26
1069

26

U
SIN

G
D

ELPH
I’S

O
PEN

T
O

O
LS

A
PI

continues

30.65227_Ch26x 11/30/99 6:12 PM Page 1069

LISTING 26.3 Continued

for i := 0 to TempList.Count - 1 do
begin
Item := WizList.Items.Add;
Item.Caption := TempList[i];
Item.SubItems.Add(DelReg.ReadString(TempList[i]));

end;
finally
TempList.Free;

end;
end;

procedure TMainForm.FormCreate(Sender: TObject);
begin
RefreshReg;

end;

initialization
DelReg := TRegistry.Create; // create registry object
DelReg.RootKey := HKEY_CURRENT_USER; // set root key
DelReg.OpenKey(SDelphiKey, True); // open/create Delphi expert key

finalization
Delreg.Free; // free registry object

end.

This is the unit responsible for providing the user interface for adding, removing, and modify-
ing DLL wizard entries in the Registry. In the initialization section of this unit, a
TRegistry object called DelReg is created. The RootKey property of DelReg is set to
HKEY_CURRENT_USER, and it opens the \Software\Borland\Delphi\5.0\Experts key—the key
used to keep track of DLL wizards—using its OpenKey() method.

When the wizard first comes up, a TListView component called ExptList is filled with the
items and values from the previously mentioned Registry key. This is accomplished by first
calling DelReg.GetValueNames() to retrieve the names of the items into a TStringList. A
TListItem component is added to ExptList for each element in the string list, and the
DelReg.ReadString() method is used to read the value for each item, which is placed in the
SubItems list of TListItem.

The Registry work is done in the RemoveBtnClick() and DoAddMod() methods.
RemoveBtnClick() is in charge of removing the currently selected wizard item from the
Registry. It first checks to ensure that an item is highlighted; then it throws up a confirmation
dialog. Finally, it does the deed by calling the DelReg.DeleteValue() method and passing
CurrentItem as the parameter.

Component-Based Development

PART III
1070

30.65227_Ch26x 11/30/99 6:12 PM Page 1070

DoAddMod() accepts a parameter of type TAddModAction. This type is defined as follows:

type

TAddModAction = (amaAdd, amaModify);

As the values of the type imply, this variable indicates whether a new item is to be added or an
existing item modified. This function first checks to see that there is a currently selected item
or, if there isn’t, that the Action parameter holds the value amaAdd. After that, if Action is
amaModify, the existing wizard item and value are copied to the local variables ExpName and
ExpPath. These values are then passed to a function called AddModExpert(), which is defined
in the AddModU unit shown in Listing 26.4. This function invokes a dialog in which the user can
enter new or modified name or path information for a wizard (see Figure 26.5). It returns True
when the user exits the dialog with the OK button. At that point, an existing item is modified
using DelReg.RenameValue(), and a new or modified value is written with
DelReg.WriteString().

Using Delphi’s Open Tools API

CHAPTER 26
1071

26

U
SIN

G
D

ELPH
I’S

O
PEN

T
O

O
LS

A
PI

FIGURE 26.5
AddModForm in the Wizard wizard.

LISTING 26.4 AddModU.pas, the Unit that Adds and Modifies Wizard Entries in the Registry

unit AddModU;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ExtCtrls;

type
TAddModAction = (amaAdd, amaModify);

TAddModForm = class(TForm)
OkBtn: TButton;
CancelBtn: TButton;

continues

30.65227_Ch26x 11/30/99 6:12 PM Page 1071

LISTING 26.4 Continued

OpenDialog: TOpenDialog;
Panel1: TPanel;
Label1: TLabel;
Label2: TLabel;
PathEd: TEdit;
NameEd: TEdit;
BrowseBtn: TButton;
procedure BrowseBtnClick(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

function AddModWiz(AAction: TAddModAction; var WizName, WizPath: String):
➥Boolean;

implementation

{$R *.DFM}

function AddModWiz(AAction: TAddModAction; var WizName, WizPath: String):
Boolean;
{ called to invoke dialog to add and modify registry entries }
const
CaptionArray: array[TAddModAction] of string[31] =
(‘Add new expert’, ‘Modify expert’);

begin
with TAddModForm.Create(Application) do // create dialog
begin
Caption := CaptionArray[AAction]; // set caption
if AAction = amaModify then // if modify...
begin
NameEd.Text := WizName; // init name and
PathEd.Text := WizPath; // path

end;
Result := ShowModal = mrOk; // show dialog
if Result then // if Ok...
begin
WizName := NameEd.Text; // set name and
WizPath := PathEd.Text; // path

end;
Free;

end;
end;

Component-Based Development

PART III
1072

30.65227_Ch26x 11/30/99 6:12 PM Page 1072

procedure TAddModForm.BrowseBtnClick(Sender: TObject);
begin
if OpenDialog.Execute then
PathEd.Text := OpenDialog.FileName;

end;

end.

Dual Targets: EXE and DLL
As mentioned earlier, it is possible to maintain one set of source code modules that target both a
DLL wizard and a standalone executable. This is possible through the use of compiler directives
in the project file. Listing 26.5 shows WizWiz.dpr, the project file source code for this project.

LISTING 26.5 WizWiz.dpr, Main Project File for the WizWiz Project

{$ifdef BUILD_EXE}
program WizWiz; // Build as EXE
{$else}
library WizWiz; // Build as DLL
{$endif}

uses
{$ifndef BUILD_EXE}
ShareMem, // ShareMem required for DLL
InitWiz in ‘InitWiz.pas’, // Wizard stuff

{$endif}
ToolsAPI,
Forms,
Main in ‘Main.pas’ {MainForm},
AddModU in ‘AddModU.pas’ {AddModForm};

{$ifdef BUILD_EXE}
{$R *.RES} // required for EXE
{$else}
exports // required for DLL
InitWizard name WizardEntryPoint; // required entry point

{$endif}

begin
{$ifdef BUILD_EXE} // required for EXE...
Application.Initialize;
Application.CreateForm(TMainForm, MainForm);
Application.Run;

{$endif}
end.

Using Delphi’s Open Tools API

CHAPTER 26
1073

26

U
SIN

G
D

ELPH
I’S

O
PEN

T
O

O
LS

A
PI

30.65227_Ch26x 11/30/99 6:12 PM Page 1073

As the code shows, this project will build an executable if the BUILD_EXE conditional is
defined. Otherwise, it will build a DLL-based wizard. You can define a conditional under
Conditional Defines in the Directories/Conditionals page of the Project, Options dialog, which
is shown in Figure 26.6.

Component-Based Development

PART III
1074

FIGURE 26.6
The Project Options dialog.

One final note concerning this project: Notice that the InitWizard() function from the
InitWiz unit is being exported in the exports clause of the project file. You must export this
function with the name WizardEntryPoint, which is defined in the ToolsAPI unit.

CAUTION

Borland does not provide a ToolsAPI.dcu file, meaning that EXEs or DLLs containing
a reference to ToolsAPI in a uses clause can be built only with packages. Currently, it
is not possible to build wizards without packages.

30.65227_Ch26x 11/30/99 6:12 PM Page 1074

DDG Search
Remember the nifty little Delphi Search program you developed back in Chapter 11, “Writing
Multithreaded Applications?” In this section, you will learn how you can turn that useful appli-
cation into an even more useful Delphi wizard with just a little bit of code. This wizard is
called DDG Search.

First, the unit that interfaces DDG Search to the IDE, InitWiz.pas, is shown in Listing 26.6.
You will notice that this unit is very similar to the unit of the same name in the previous exam-
ple. That’s on purpose. This unit is just a copy of the previous one with some necessary
changes involving the name of the wizard and the Execute() method. Copying and pasting is
what we call “old-fashioned inheritance.” After all, why do more typing than you have to?

LISTING 26.6 InitWiz.pas, the Unit Containing Wizard Logic for the DDGSrch Wizard

unit InitWiz;

interface

uses
Windows, ToolsAPI;

type
TSearchWizard = class(TNotifierObject, IOTAWizard, IOTAMenuWizard)
// IOTAWizard methods
function GetIDString: string;
function GetName: string;
function GetState: TWizardState;
procedure Execute;
// IOTAMenuWizard method
function GetMenuText: string;

end;

function InitWizard(const BorlandIDEServices: IBorlandIDEServices;
RegisterProc: TWizardRegisterProc;
var Terminate: TWizardTerminateProc): Boolean stdcall;

var
ActionSvc: IOTAActionServices;

implementation

uses SysUtils, Dialogs, Forms, Controls, Main, PriU;

function TSearchWizard.GetName: string;
{ Return name of expert }

Using Delphi’s Open Tools API

CHAPTER 26
1075

26

U
SIN

G
D

ELPH
I’S

O
PEN

T
O

O
LS

A
PI

continues

30.65227_Ch26x 11/30/99 6:12 PM Page 1075

LISTING 26.6 Continued

begin
Result := ‘DDG Search’;

end;

function TSearchWizard.GetState: TWizardState;
{ This expert is always enabled on the menu }
begin
Result := [wsEnabled];

end;

function TSearchWizard.GetIDString: String;
{ Return the unique Vendor.Product name of expert }
begin
Result := ‘DDG.DDGSearch’;

end;

function TSearchWizard.GetMenuText: string;
{ Return text for Help menu }
begin
Result := ‘DDG Search Expert’;

end;

procedure TSearchWizard.Execute;
{ Called when expert name is selected from Help menu of IDE. }
{ This function invokes the expert }
begin
// if not created, created it and show it
if MainForm = nil then
begin
MainForm := TMainForm.Create(Application);
ThreadPriWin := TThreadPriWin.Create(Application);
MainForm.Show;

end
else
// if created then restore window and show it
with MainForm do
begin
if not Visible then Show;
if WindowState = wsMinimized then WindowState := wsNormal;
SetFocus;

end;
end;

function InitWizard(const BorlandIDEServices: IBorlandIDEServices;
RegisterProc: TWizardRegisterProc;

Component-Based Development

PART III
1076

30.65227_Ch26x 11/30/99 6:12 PM Page 1076

var Terminate: TWizardTerminateProc): Boolean stdcall;
var
Svcs: IOTAServices;

begin
Result := BorlandIDEServices <> nil;
if Result then
begin
Svcs := BorlandIDEServices as IOTAServices;
ActionSvc := BorlandIDEServices as IOTAActionServices;
ToolsAPI.BorlandIDEServices := BorlandIDEServices;
Application.Handle := Svcs.GetParentHandle;
RegisterProc(TSearchWizard.Create);

end;
end;

end.

The Execute() function of this wizard shows you something a bit different than what you have
seen so far: The wizard’s main form, MainForm, is being shown modelessly rather than
modally. Of course, this requires a bit of extra housekeeping, because you have to know when
a form is created and when the form variable is invalid. This can be accomplished by making
sure the MainForm variable is set to nil when the wizard is inactive. More on this a bit later.

One other aspect of this project that has changed significantly since Chapter 11 is that the pro-
ject file is now called DDGSrch.dpr. This file is shown in Listing 26.7.

LISTING 26.7 DDGSrch.dpr, Project File for the DDGSrch Project

library DDGSrch;

uses
ShareMem,
ToolsAPI,
Main in ‘MAIN.PAS’ {MainForm},
SrchIni in ‘SrchIni.pas’,
SrchU in ‘SrchU.pas’,
PriU in ‘PriU.pas’ {ThreadPriWin},
InitWiz in ‘InitWiz.pas’,
MemMap in ‘..\..\Utils\MemMap.pas’,
StrUtils in ‘..\..\Utils\StrUtils.pas’;

{$R *.RES}

exports
{ Entry point which is called by Delphi IDE }

Using Delphi’s Open Tools API

CHAPTER 26
1077

26

U
SIN

G
D

ELPH
I’S

O
PEN

T
O

O
LS

A
PI

continues

30.65227_Ch26x 11/30/99 6:12 PM Page 1077

LISTING 26.7 Continued

InitWizard name WizardEntryPoint;

begin
end.

As you can see, this file is fairly small. The two important points are that it uses the library
header to indicate that it is a DLL, and it exports the InitWiz() function for initialization by
the Delphi IDE.

Only a couple of changes were made to the Main unit in this project. As mentioned earlier, the
MainForm variable must be set to nil when the wizard is not active. As you learned in Chapter
2, “The Object Pascal Language,” the MainForm instance variable will automatically have the
value nil upon application startup. Also, in the OnClose event handler for the form, the form
instance is released and the MainForm global is reset to nil. Here is the method:

procedure TMainForm.FormClose(Sender: TObject; var Action: TCloseAction);
begin
Action := caFree;
Application.OnShowHint := FOldShowHint;
MainForm := nil;

end;

The finishing touch for this wizard is to bring up files in the IDE’s Code Editor when they are
double-clicked in the list box in the main form. This logic is handled by a new
FileLBDblClick() method, as follows:

procedure TMainForm.FileLBDblClick(Sender: TObject);
{ Called when user double-clicks in listbox. Loads file into IDE }
var
FileName: string;
Len: Integer;

begin
FileName := FileLB.Items[FileLB.ItemIndex];
{ make sure user clicked on a file... }
if (FileName <> ‘’) and (Pos(‘File ‘, FileName) = 1) then
begin
{ Trim “File “ and “:” from string }
FileName := Copy(FileName, 6, Length(FileName));
Len := Length(FileName);
if FileName[Len] = ‘:’ then SetLength(FileName, Len - 1);
{ Open the project or file }
if CompareText(ExtractFileExt(FileName), ‘.DPR’) = 0 then
ActionSvc.OpenProject(FileName, True)

else

Component-Based Development

PART III
1078

30.65227_Ch26x 11/30/99 6:12 PM Page 1078

ActionSvc.OpenFile(FileName);
end;

end;

This method employs the OpenFile() and OpenProject() methods of the
IOTAActionServices in order to open a particular file.

Listing 26.8 shows the complete source code for the Main unit in the DDGSrch project, and
Figure 26.7 shows the DDG Search wizard doing its thing inside the IDE.

LISTING 26.8 Main.pas, the Main Unit for the DDGSrch Project

unit Main;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, Buttons, ExtCtrls, Menus, SrchIni,
SrchU, ComCtrls, InitWiz;

type
TMainForm = class(TForm)
FileLB: TListBox;
PopupMenu1: TPopupMenu;
Font1: TMenuItem;
N1: TMenuItem;
Exit1: TMenuItem;
FontDialog1: TFontDialog;
StatusBar: TStatusBar;
AlignPanel: TPanel;
ControlPanel: TPanel;
ParamsGB: TGroupBox;
LFileSpec: TLabel;
LToken: TLabel;
lPathName: TLabel;
EFileSpec: TEdit;
EToken: TEdit;
PathButton: TButton;
OptionsGB: TGroupBox;
cbCaseSensitive: TCheckBox;
cbFileNamesOnly: TCheckBox;
cbRecurse: TCheckBox;
SearchButton: TBitBtn;
CloseButton: TBitBtn;
PrintButton: TBitBtn;

Using Delphi’s Open Tools API

CHAPTER 26
1079

26

U
SIN

G
D

ELPH
I’S

O
PEN

T
O

O
LS

A
PI

continues

30.65227_Ch26x 11/30/99 6:12 PM Page 1079

LISTING 26.8 Continued

PriorityButton: TBitBtn;
View1: TMenuItem;
EPathName: TEdit;
procedure SearchButtonClick(Sender: TObject);
procedure PathButtonClick(Sender: TObject);
procedure FileLBDrawItem(Control: TWinControl; Index: Integer;
Rect: TRect; State: TOwnerDrawState);

procedure Font1Click(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure PrintButtonClick(Sender: TObject);
procedure CloseButtonClick(Sender: TObject);
procedure FileLBDblClick(Sender: TObject);
procedure FormResize(Sender: TObject);
procedure PriorityButtonClick(Sender: TObject);
procedure ETokenChange(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);

private
FOldShowHint: TShowHintEvent;
procedure ReadIni;
procedure WriteIni;
procedure DoShowHint(var HintStr: string; var CanShow: Boolean;
var HintInfo: THintInfo);

procedure WMGetMinMaxInfo(var M: TWMGetMinMaxInfo); message
➥WM_GETMINMAXINFO;
public
Running: Boolean;
SearchPri: integer;
SearchThread: TSearchThread;
procedure EnableSearchControls(Enable: Boolean);

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

uses Printers, ShellAPI, MemMap, FileCtrl, PriU;

procedure PrintStrings(Strings: TStrings);
{ This procedure prints all of the string in the Strings parameter }
var
Prn: TextFile;

Component-Based Development

PART III
1080

30.65227_Ch26x 11/30/99 6:12 PM Page 1080

i: word;
begin
if Strings.Count = 0 then // Are there strings?
begin
MessageDlg(‘No text to print!’, mtInformation, [mbOk], 0);
Exit;

end;
AssignPrn(Prn); // assign Prn to printer
try
Rewrite(Prn); // open printer
try
for i := 0 to Strings.Count - 1 do // iterate over all strings
writeln(Prn, Strings.Strings[i]); // write to printer

finally
CloseFile(Prn); // close printer

end;
except
on EInOutError do
MessageDlg(‘Error Printing text.’, mtError, [mbOk], 0);

end;
end;

procedure TMainForm.WMGetMinMaxInfo(var M: TWMGetMinMaxInfo);
begin
inherited;
// prevent user from sizing form too small
with M.MinMaxInfo^ do
begin
ptMinTrackSize.x := OptionsGB.Left + OptionsGB.Width - ParamsGB.Left + 10;
ptMinTrackSize.y := 200;

end;
end;

procedure TMainForm.EnableSearchControls(Enable: Boolean);
{ Enables or disables certain controls so options can’t be modified }
{ while search is executing. }
begin
SearchButton.Enabled := Enable; // enabled/disable proper controls
cbRecurse.Enabled := Enable;
cbFileNamesOnly.Enabled := Enable;
cbCaseSensitive.Enabled := Enable;
PathButton.Enabled := Enable;
EPathName.Enabled := Enable;
EFileSpec.Enabled := Enable;
EToken.Enabled := Enable;
Running := not Enable; // set Running flag

Using Delphi’s Open Tools API

CHAPTER 26
1081

26

U
SIN

G
D

ELPH
I’S

O
PEN

T
O

O
LS

A
PI

continues

30.65227_Ch26x 11/30/99 6:12 PM Page 1081

LISTING 26.8 Continued

ETokenChange(nil);
with CloseButton do
begin
if Enable then
begin // set props of Close/Stop button
Caption := ‘&Close’;
Hint := ‘Close Application’;

end
else begin
Caption := ‘&Stop’;
Hint := ‘Stop Searching’;

end;
end;

end;

procedure TMainForm.SearchButtonClick(Sender: TObject);
{ Called when Search button is clicked. Invokes search thread. }
begin
EnableSearchControls(False); // disable controls
FileLB.Clear; // clear listbox
{ start thread }
SearchThread := TSearchThread.Create(cbCaseSensitive.Checked,
cbFileNamesOnly.Checked, cbRecurse.Checked, EToken.Text,
EPathName.Text, EFileSpec.Text);

end;

procedure TMainForm.ETokenChange(Sender: TObject);
begin
SearchButton.Enabled := not Running and (EToken.Text <> ‘’);

end;

procedure TMainForm.PathButtonClick(Sender: TObject);
{ Called when Path button is clicked. Allows user to choose new path. }
var
ShowDir: string;

begin
ShowDir := EPathName.Text;
if SelectDirectory(ShowDir, [], 0) then
EPathName.Text := ShowDir;

end;

procedure TMainForm.FileLBDrawItem(Control: TWinControl;
Index: Integer; Rect: TRect; State: TOwnerDrawState);

{ Called in order to owner draw listbox. }
var

Component-Based Development

PART III
1082

30.65227_Ch26x 11/30/99 6:12 PM Page 1082

CurStr: string;
begin
with FileLB do
begin
CurStr := Items.Strings[Index];
Canvas.FillRect(Rect); // clear out rect
if not cbFileNamesOnly.Checked then // if not filename only...
{ if current line is file name... }
if (Pos(‘File ‘, CurStr) = 1) and
(CurStr[Length(CurStr)] = ‘:’) then

begin
Canvas.Font.Style := [fsUnderline]; // underline font
Canvas.Font.Color := clRed; // paint red

end
else
Rect.Left := Rect.Left + 15; // otherwise, indent

DrawText(Canvas.Handle, PChar(CurStr), Length(CurStr), Rect,
➥dt_SingleLine);
end;

end;

procedure TMainForm.Font1Click(Sender: TObject);
{ Allows user to pick new font for listbox }
begin
{ Pick new listbox font }
if FontDialog1.Execute then
FileLB.Font := FontDialog1.Font;

end;

procedure TMainForm.FormDestroy(Sender: TObject);
{ OnDestroy event handler for form }
begin
WriteIni;

end;

procedure TMainForm.FormCreate(Sender: TObject);
{ OnCreate event handler for form }
begin
Application.HintPause := 0; // don’t wait to show hints
FOldShowHint := Application.OnShowHint; // set up hints
Application.OnShowHint := DoShowHint;
ReadIni; // read reg INI file

end;

procedure TMainForm.DoShowHint(var HintStr: string; var CanShow: Boolean;

Using Delphi’s Open Tools API

CHAPTER 26
1083

26

U
SIN

G
D

ELPH
I’S

O
PEN

T
O

O
LS

A
PI

continues

30.65227_Ch26x 11/30/99 6:12 PM Page 1083

LISTING 26.8 Continued

var HintInfo: THintInfo);
{ OnHint event handler for Application }
begin
{ Display application hints on status bar }
StatusBar.Panels[0].Text := HintStr;
{ Don’t show tool tip if we’re over our own controls }
if (HintInfo.HintControl <> nil) and
(HintInfo.HintControl.Parent <> nil) and
((HintInfo.HintControl.Parent = ParamsGB) or
(HintInfo.HintControl.Parent = OptionsGB) or
(HintInfo.HintControl.Parent = ControlPanel)) then
CanShow := False;

FOldShowHint(HintStr, CanSHow, HintInfo);
end;

procedure TMainForm.PrintButtonClick(Sender: TObject);
{ Called when Print button is clicked. }
begin
if MessageDlg(‘Send search results to printer?’, mtConfirmation,
[mbYes, mbNo], 0) = mrYes then
PrintStrings(FileLB.Items);

end;

procedure TMainForm.CloseButtonClick(Sender: TObject);
{ Called to stop thread or close application }
begin
// if thread is running then terminate thread
if Running then SearchThread.Terminate
// otherwise close app
else Close;

end;

procedure TMainForm.FormResize(Sender: TObject);
{ OnResize event handler. Centers controls in form. }
begin
{ divide status bar into two panels with a 1/3 - 2/3 split }
with StatusBar do
begin
Panels[0].Width := Width div 3;
Panels[1].Width := Width * 2 div 3;

end;
{ center controls in the middle of the form }
ControlPanel.Left := (AlignPanel.Width div 2) - (ControlPanel.Width div 2);

Component-Based Development

PART III
1084

30.65227_Ch26x 11/30/99 6:12 PM Page 1084

end;

procedure TMainForm.PriorityButtonClick(Sender: TObject);
{ Show thread priority form }
begin
ThreadPriWin.Show;

end;

procedure TMainForm.ReadIni;
{ Reads default values from Registry }
begin
with SrchIniFile do
begin
EPathName.Text := ReadString(‘Defaults’, ‘LastPath’, ‘C:\’);
EFileSpec.Text := ReadString(‘Defaults’, ‘LastFileSpec’, ‘*.*’);
EToken.Text := ReadString(‘Defaults’, ‘LastToken’, ‘’);
cbFileNamesOnly.Checked := ReadBool(‘Defaults’, ‘FNamesOnly’, False);
cbCaseSensitive.Checked := ReadBool(‘Defaults’, ‘CaseSens’, False);
cbRecurse.Checked := ReadBool(‘Defaults’, ‘Recurse’, False);
Left := ReadInteger(‘Position’, ‘Left’, 100);
Top := ReadInteger(‘Position’, ‘Top’, 50);
Width := ReadInteger(‘Position’, ‘Width’, 510);
Height := ReadInteger(‘Position’, ‘Height’, 370);

end;
end;

procedure TMainForm.WriteIni;
{ writes current settings back to Registry }
begin
with SrchIniFile do
begin
WriteString(‘Defaults’, ‘LastPath’, EPathName.Text);
WriteString(‘Defaults’, ‘LastFileSpec’, EFileSpec.Text);
WriteString(‘Defaults’, ‘LastToken’, EToken.Text);
WriteBool(‘Defaults’, ‘CaseSens’, cbCaseSensitive.Checked);
WriteBool(‘Defaults’, ‘FNamesOnly’, cbFileNamesOnly.Checked);
WriteBool(‘Defaults’, ‘Recurse’, cbRecurse.Checked);
WriteInteger(‘Position’, ‘Left’, Left);
WriteInteger(‘Position’, ‘Top’, Top);
WriteInteger(‘Position’, ‘Width’, Width);
WriteInteger(‘Position’, ‘Height’, Height);

end;
end;

procedure TMainForm.FormClose(Sender: TObject; var Action: TCloseAction);
begin

Using Delphi’s Open Tools API

CHAPTER 26
1085

26

U
SIN

G
D

ELPH
I’S

O
PEN

T
O

O
LS

A
PI

continues

30.65227_Ch26x 11/30/99 6:12 PM Page 1085

LISTING 26.8 Continued

Action := caFree;
Application.OnShowHint := FOldShowHint;
MainForm := nil;

end;

end.

Component-Based Development

PART III
1086

FIGURE 26.7
The DDG Search wizard in action.

Form Wizards
Yet another type of wizard supported by the Open Tools API is the Form wizard. Once
installed, Form wizards are accessed from the New Items dialog; they generate new forms and
units for the user. Chapter 24, “Extending the Windows Shell,” employed this type of wizard to
generate new AppBar forms; however, you did not get to see the code that made the wizard tick.

Creating a Form wizard is fairly straightforward, although you must implement a good number
of interface methods. Creation of a Form wizard can be boiled down to five basic steps:

1. Create a class that descends from TCustomForm, TDataModule, or any TWinControl that
will be used as the base form class. This class typically will reside in a separate unit
from the wizard. In this case, TAppBar will serve as the base class.

30.65227_Ch26x 11/30/99 6:13 PM Page 1086

2. Create a TNotifierObject descendent that implements the following interfaces:
IOTAWizard, IOTARepositoryWizard, IOTAFormWizard, IOTACreator, and
IOTAModuleCreator.

3. In your IOTAWizard.Execute() method, you typically will call
IOTAModuleServices.GetNewModuleAndClassName() to obtain a new unit and class
name for your wizard and IOTAModuleServices.CreateModule() to instruct the IDE to
begin creation of the new module.

4. Many of the method implementations for the aforementioned interfaces are one-liners.
The nontrivial ones include IOTAModuleCreator’s NewFormFile() and NewImplFile()
methods, which will return the code for the form and unit, respectively. The
IOTACreator.GetOwner() method also can be a little tricky, but the following example
gives you a good technique for adding the unit to the current project (if any).

5. Complete the Register() procedure for the wizard by registering a handler for your
new form class using the RegisterCustomModule() procedure in the DsgnIntf unit and
creating your wizard by calling the RegisterPackageWizard() procedure in the
ToolsAPI unit.

Listing 26.9 shows the source code for ABWizard.pas, which is the AppBar wizard.

LISTING 26.9 ABWizard.pas, the Unit Containing the Implementation of the AppBar
Wizard

unit ABWizard;

interface

uses Windows, Classes, ToolsAPI;

type
TAppBarWizard = class(TNotifierObject, IOTAWizard, IOTARepositoryWizard,
IOTAFormWizard, IOTACreator, IOTAModuleCreator)

private
FUnitIdent: string;
FClassName: string;
FFileName: string;

protected
// IOTAWizard methods
function GetIDString: string;
function GetName: string;
function GetState: TWizardState;
procedure Execute;
// IOTARepositoryWizard / IOTAFormWizard methods
function GetAuthor: string;

Using Delphi’s Open Tools API

CHAPTER 26
1087

26

U
SIN

G
D

ELPH
I’S

O
PEN

T
O

O
LS

A
PI

continues

30.65227_Ch26x 11/30/99 6:13 PM Page 1087

LISTING 26.9 Continued

function GetComment: string;
function GetPage: string;
function GetGlyph: HICON;
// IOTACreator methods
function GetCreatorType: string;
function GetExisting: Boolean;
function GetFileSystem: string;
function GetOwner: IOTAModule;
function GetUnnamed: Boolean;
// IOTAModuleCreator methods
function GetAncestorName: string;
function GetImplFileName: string;
function GetIntfFileName: string;
function GetFormName: string;
function GetMainForm: Boolean;
function GetShowForm: Boolean;
function GetShowSource: Boolean;
function NewFormFile(const FormIdent, AncestorIdent: string): IOTAFile;
function NewImplSource(const ModuleIdent, FormIdent,
AncestorIdent: string): IOTAFile;

function NewIntfSource(const ModuleIdent, FormIdent,
AncestorIdent: string): IOTAFile;

procedure FormCreated(const FormEditor: IOTAFormEditor);
end;

implementation

uses Forms, AppBars, SysUtils, DsgnIntf;

{$R CodeGen.res}

type
TBaseFile = class(TInterfacedObject)
private
FModuleName: string;
FFormName: string;
FAncestorName: string;

public
constructor Create(const ModuleName, FormName, AncestorName: string);

end;

TUnitFile = class(TBaseFile, IOTAFile)
protected
function GetSource: string;
function GetAge: TDateTime;

Component-Based Development

PART III
1088

30.65227_Ch26x 11/30/99 6:13 PM Page 1088

end;

TFormFile = class(TBaseFile, IOTAFile)
protected
function GetSource: string;
function GetAge: TDateTime;

end;

{ TBaseFile }

constructor TBaseFile.Create(const ModuleName, FormName,
AncestorName: string);

begin
inherited Create;
FModuleName := ModuleName;
FFormName := FormName;
FAncestorName := AncestorName;

end;

{ TUnitFile }

function TUnitFile.GetSource: string;
var
Text: string;
ResInstance: THandle;
HRes: HRSRC;

begin
ResInstance := FindResourceHInstance(HInstance);
HRes := FindResource(ResInstance, ‘CODEGEN’, RT_RCDATA);
Text := PChar(LockResource(LoadResource(ResInstance, HRes)));
SetLength(Text, SizeOfResource(ResInstance, HRes));
Result := Format(Text, [FModuleName, FFormName, FAncestorName]);

end;

function TUnitFile.GetAge: TDateTime;
begin
Result := -1;

end;

{ TFormFile }

function TFormFile.GetSource: string;
const
FormText =
‘object %0:s: T%0:s’#13#10’end’;

begin

Using Delphi’s Open Tools API

CHAPTER 26
1089

26

U
SIN

G
D

ELPH
I’S

O
PEN

T
O

O
LS

A
PI

continues

30.65227_Ch26x 11/30/99 6:13 PM Page 1089

LISTING 26.9 Continued

Result := Format(FormText, [FFormName]);
end;

function TFormFile.GetAge: TDateTime;
begin
Result := -1;

end;

{ TAppBarWizard }

{ TAppBarWizard.IOTAWizard }

function TAppBarWizard.GetIDString: string;
begin
Result := ‘DDG.AppBarWizard’;

end;

function TAppBarWizard.GetName: string;
begin
Result := ‘DDG AppBar Wizard’;

end;

function TAppBarWizard.GetState: TWizardState;
begin
Result := [wsEnabled];

end;

procedure TAppBarWizard.Execute;
begin
(BorlandIDEServices as IOTAModuleServices).GetNewModuleAndClassName(
‘AppBar’, FUnitIdent, FClassName, FFileName);

(BorlandIDEServices as IOTAModuleServices).CreateModule(Self);
end;

{ TAppBarWizard.IOTARepositoryWizard / TAppBarWizard.IOTAFormWizard }

function TAppBarWizard.GetGlyph: HICON;
begin
Result := 0; // use standard icon

end;

function TAppBarWizard.GetPage: string;
begin
Result := ‘DDG’;

end;

Component-Based Development

PART III
1090

30.65227_Ch26x 11/30/99 6:13 PM Page 1090

function TAppBarWizard.GetAuthor: string;
begin
Result := ‘Delphi 5 Developer’’s Guide’;

end;

function TAppBarWizard.GetComment: string;
begin
Result := ‘Creates a new AppBar form.’

end;

{ TAppBarWizard.IOTACreator }

function TAppBarWizard.GetCreatorType: string;
begin
Result := ‘’;

end;

function TAppBarWizard.GetExisting: Boolean;
begin
Result := False;

end;

function TAppBarWizard.GetFileSystem: string;
begin
Result := ‘’;

end;

function TAppBarWizard.GetOwner: IOTAModule;
var
I: Integer;
ModServ: IOTAModuleServices;
Module: IOTAModule;
ProjGrp: IOTAProjectGroup;

begin
Result := nil;
ModServ := BorlandIDEServices as IOTAModuleServices;
for I := 0 to ModServ.ModuleCount - 1 do
begin
Module := ModSErv.Modules[I];
// find current project group
if CompareText(ExtractFileExt(Module.FileName), ‘.bpg’) = 0 then
if Module.QueryInterface(IOTAProjectGroup, ProjGrp) = S_OK then
begin
// return active project of group
Result := ProjGrp.GetActiveProject;
Exit;

Using Delphi’s Open Tools API

CHAPTER 26
1091

26

U
SIN

G
D

ELPH
I’S

O
PEN

T
O

O
LS

A
PI

continues

30.65227_Ch26x 11/30/99 6:13 PM Page 1091

LISTING 26.9 Continued

end;
end;

end;

function TAppBarWizard.GetUnnamed: Boolean;
begin
Result := True;

end;

{ TAppBarWizard.IOTAModuleCreator }

function TAppBarWizard.GetAncestorName: string;
begin
Result := ‘TAppBar’;

end;

function TAppBarWizard.GetImplFileName: string;
var
CurrDir: array[0..MAX_PATH] of char;

begin
// Note: full path name required!
GetCurrentDirectory(SizeOf(CurrDir), CurrDir);
Result := Format(‘%s\%s.pas’, [CurrDir, FUnitIdent, ‘.pas’]);

end;

function TAppBarWizard.GetIntfFileName: string;
begin
Result := ‘’;

end;

function TAppBarWizard.GetFormName: string;
begin
Result := FClassName;

end;

function TAppBarWizard.GetMainForm: Boolean;
begin
Result := False;

end;

function TAppBarWizard.GetShowForm: Boolean;
begin
Result := True;

end;

Component-Based Development

PART III
1092

30.65227_Ch26x 11/30/99 6:13 PM Page 1092

function TAppBarWizard.GetShowSource: Boolean;
begin
Result := True;

end;

function TAppBarWizard.NewFormFile(const FormIdent,
AncestorIdent: string): IOTAFile;

begin
Result := TFormFile.Create(‘’, FormIdent, AncestorIdent);

end;

function TAppBarWizard.NewImplSource(const ModuleIdent, FormIdent,
AncestorIdent: string): IOTAFile;

begin
Result := TUnitFile.Create(ModuleIdent, FormIdent, AncestorIdent);

end;

function TAppBarWizard.NewIntfSource(const ModuleIdent, FormIdent,
AncestorIdent: string): IOTAFile;

begin
Result := nil;

end;

procedure TAppBarWizard.FormCreated(const FormEditor: IOTAFormEditor);
begin
// do nothing

end;

end.

This unit employs an interesting trick for source code generation: The unformatted source code
is stored in an RES file that is linked with the $R directive. This is a very flexible way to store a
wizard’s source code so that it can be readily modified. The RES file is built by including a text
file and RCDATA resource in an RC file and then compiling that RC file with BRCC32. Listings
26.10 and 26.11 show the contents of CodeGen.txt and CodeGen.rc.

LISTING 26.10 CodeGen.txt, the Resource Template for the AppBar Wizard

unit %0:s;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, AppBars;

Using Delphi’s Open Tools API

CHAPTER 26
1093

26

U
SIN

G
D

ELPH
I’S

O
PEN

T
O

O
LS

A
PI

continues

30.65227_Ch26x 11/30/99 6:13 PM Page 1093

LISTING 26.10 Continued

type
T%1:s = class(%2:s)
private
{ Private declarations }

public
{ Public declarations }

end;

var
%1:s: T%1:s;

implementation

{$R *.DFM}

end.

LISTING 26.11 CODEGEN.RC

CODEGEN RCDATA CODEGEN.TXT

Registration of the custom module and wizard occurs inside a Register() procedure in the
design package containing the wizard using the following two lines:

RegisterCustomModule(TAppBar, TCustomModule);
RegisterPackageWizard(TAppBarWizard.Create);

Summary
After reading this chapter, you should have a greater understanding of the various units and
interfaces involved in the Delphi Open Tools API. In particular, you should know and under-
stand the issues involved in creating wizards that plug into the IDE. The next chapter,
“CORBA Development with Delphi,” completes this part of the book with a thorough discus-
sion of the CORBA technology and its implementation in Delphi.

Component-Based Development

PART III
1094

30.65227_Ch26x 11/30/99 6:13 PM Page 1094

CHAPTER

27
CORBA Development
with Delphi

IN THIS CHAPTER
• Object Request Brokers 1096

• Interfaces 1096

• Stubs and Skeletons 1097

• The VisiBroker ORB 1098

• Delphi CORBA Support 1099

• Creating CORBA Solutions with
Delphi 5 1111

• Deploying the VisiBroker ORB 1145

• Summary 1146

31.65227_Ch27 11/30/99 6:14 PM Page 1095

The acronym CORBA stands for Common Object Request Broker Architecture. CORBA is a
specification, developed by the Object Management Group (OMG), that defines a standards-
based architecture for building language- and platform-neutral object implementations. The
OMG is an independent consortium of companies and industry experts who adhere strictly to
the goal of developing standards for open, platform-neutral, distributed object architectures.
Unlike some competing standards (such as Microsoft’s COM/DCOM), the OMG does not offer
any implementations of the standards it defines.

Object Request Brokers
The workhorse of the CORBA architecture is the Object Request Broker (ORB). The ORB
provides the implementation of the CORBA specification and is the glue (or middleware) that
holds the entire solution together. If you’re familiar with Microsoft’s COM/DCOM technology,
you’ll notice that the ORB provides runtime, security, and transport layers similar to that of the
COM/DCOM library. All communication between client and server passes through the ORB so
that method calls and parameters can be resolved into the address space of the caller or callee
(marshaling). The ORB also provides many helper routines that can be called directly from a
client or server, similar to the functionality that oleaut32.dll provides for COM/DCOM. As
previously mentioned, the CORBA specification provides no default implementation of an
ORB library. Because building an ORB is no trivial task, CORBA developers are dependent on
third parties to supply CORBA-compliant ORB implementations. The good news is that ORB
implementations are currently available from many vendors and for all the major platforms
(such as Windows and UNIX) as well as some more obscure operating systems. Currently, the
two most widely recognized CORBA implementations are the Inprise VisiBroker ORB and the
IONA Orbix ORB.

Interfaces
A single CORBA solution can be comprised of various objects, developed in a heterogeneous
mix of development languages and executing on a variety of different platforms. Therefore,
there needs to be some standard way for the objects to represent themselves to other objects,
clients, and the ORB. This representation is accomplished using an interface. An interface
defines a list of available methods and their parameters but does not serve to implement any
functionality of these routines. When a CORBA object implements an interface, it’s guarantee-
ing that it implements all the methods defined by the interface. At its lowest level, an interface
is simply a function table or list of entry points into specific methods. Because this construct
can be represented on any hardware platform and by any serious development tool, interfaces
become the common tongue of the CORBA world. Because the syntax of development lan-
guages can differ widely, the OMG has defined the Interface Definition Language (IDL),

Component-Based Development

PART III
1096

31.65227_Ch27 11/30/99 6:14 PM Page 1096

which is used for defining CORBA interfaces. IDL is the standard language for defining
CORBA interfaces, and many development tools are able to translate IDL into their native syn-
tax in order to allow developers to easily construct CORBA-compliant interfaces. With Delphi,
we won’t need to manually write IDL; instead, the type library editor will allow us to visually
define our interfaces and optionally export the corresponding IDL code.

Stubs and Skeletons
The CORBA mechanism works using proxies. The use of proxies is currently the leading
design pattern for solving the complex problems associated with passing data between distrib-
uted objects. A proxy sits on both the client and server side and makes it appear to the client or
server that it is communicating with a local process. The ORB then handles all the messy
details that need to occur between the proxies (for example, marshaling, network communica-
tion, and so on). This architecture, as shown in Figure 27.1, affords the developers of a
CORBA client or server some protection from low-level transport details and allows them to
focus on correctly implementing their specific business solution. In CORBA terms, the proxy
that represents the server that a client communicates with is called a stub, and a proxy that rep-
resents a client on the server side is called a skeleton. When you’re creating a CORBA server
object using the Delphi wizard, a unit containing interface definitions for the stub and skeleton
will be automatically generated.

CORBA Development with Delphi

CHAPTER 27
1097

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

Object
Implementation

Interface

Interface

Skeleton

ORBORB

Stub

Server

Client

FIGURE 27.1
A simplified schematic of the CORBA architecture.

31.65227_Ch27 11/30/99 6:14 PM Page 1097

The VisiBroker ORB
As mentioned previously, CORBA is a standard that requires some third party to actually
implement the ORB services. The CORBA support offered in Delphi 4 and 5 uses the
VisiBroker ORB from Inprise to implement the CORBA specification. The VisiBroker product
provides full support for the CORBA specification as well as many VisiBroker extensions such
as naming and event services. Because full coverage of the VisiBroker product is outside the
scope of this chapter, we’ll focus on the parts of VisiBroker that are most pertinent to Delphi’s
CORBA implementation. More information on VisiBroker, including product documentation,
can be found at www.borland.com/visibroker.

VisiBroker Runtime Support Services
Included with the VisiBroker ORB libraries are various runtime support services that function
to hold the whole CORBA/VisiBroker distributed architecture together. We’ll discuss each of
these.

Smart Agent (osagent)
The VisiBroker Smart Agent provides object location services to CORBA applications. Use of
the Smart Agent provides the CORBA environment with location transparency. That is, clients
are not concerned with the location of the servers themselves; clients simply need to be able to
locate the Smart Agent and it will handle the details of finding an appropriate server. A Smart
Agent must be running somewhere on your local network. Multiple Smart Agents in a single
network can be configured to listen on different ports, in effect providing multiple ORB
domains. This might be useful for providing a production ORB environment and a develop-
ment ORB environment. Smart Agents can also be configured to communicate with Smart
Agents residing on different local networks, thus extending the range of your CORBA infra-
structure.

Object Activation Daemon
The VisiBroker Object Activation Daemon (OAD) provides services for dynamically launching
servers when their services are needed. The Smart Agent can only bind clients to implementa-
tions of objects that are already running. However, if a CORBA object implementation is regis-
tered with the Object Activation Daemon, the Smart Agent and the OAD can cooperate and
launch the server process if there isn’t one available.

The Interface Repository
The Interface Repository (IREP) is an online database of object type information. This reposi-
tory is necessary for clients who wish to dynamically bind (late-bind) to CORBA interfaces.
The ORB can use the type information in the interface repository for correctly marshaling late-
bound method invocations. In order for dynamic binding to be used, the Interface Repository

Component-Based Development

PART III
1098

31.65227_Ch27 11/30/99 6:14 PM Page 1098

must be running somewhere on the network that’s accessible to clients, and the interface to be
used must be registered with the repository.

VisiBroker Administration Tools
In order to configure and administer the aforementioned runtime support tools, the Delphi
VisiBroker package ships with an assortment of GUI and command-line administration utili-
ties. We list them in Table 27.1 for completeness but defer the details on their usage until
they’re needed later in this chapter.

TABLE 27.1 VisiBroker Administration Tools

Tool Purpose

osagent Used for administering the Smart Agent

osfind Enumerates object implementations available on the network

oad Used for administering the OAD

oadutil Used for registering, unregistering, and listing interfaces with the OAD

irep Used to administer the Interface Repository

idl2ir Utility for registering IDL with the Interface Repository

vregedit Allows for easy Registry (Windows) changes to Smart Agent defaults

vbver Reports version numbers of the VisiBroker services

Delphi CORBA Support
The CORBA support introduced in Delphi (starting with version 4) has been often criticized.
Although there are limitations, many of the rumors are exaggerated or simply wrong. To begin
with, the support in Delphi is indeed a “true” CORBA implementation. The VisiBroker ORB
for C++ (orb_br.dll) is used underneath and is wrapped by a dynamic link library
(orbpas50.dll) in order to allow Pascal and Delphi interface definitions and data types to
work with the VisiBroker ORB.

One area that usually causes CORBA purists to cringe is when they look at Delphi-generated
stub and skeleton code and see references to GUIDs and IUnknown and IDispatch interfaces.
These constructs reek of COM/DCOM, and most CORBA supporters wish to have them far
from their beloved CORBA implementations. Many myths have been circulated surrounding
the existence of these COM beasts, including that CORBA calls go through COM, or that para-
meters are marshaled twice (once through COM and once through CORBA). Before running
amok with all kinds of crazy assumptions, let’s examine why these COM definitions exist in a
Delphi-generated CORBA server:

CORBA Development with Delphi

CHAPTER 27
1099

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

31.65227_Ch27 11/30/99 6:14 PM Page 1099

• To begin with, when interfaces were added to Delphi, it was done with COM in mind.
All Delphi interfaces “inherit” from the base COM interface (IUnknown). This means that
when you define an interface in Delphi that’s to be used with CORBA, the three addi-
tional methods of IUnknown (QueryInterface, AddRef, and Release) must be imple-
mented. This is true even for a CORBA interface; the base implementation of the
TCorbaImplementation class implements these methods for the Delphi developer.

• Second, when creating a CORBA object using the Delphi wizard, you’ll notice that a
COM “dual” interface is created by default. By examining the generated stub and skele-
ton unit, you see that the CORBA interface inherits from IDispatch and defines a
dispinterface. Although this is unnecessary for CORBA (and you can alter the definition
to inherit from IUnknown), the object implementation must define the additional methods
of IDispatch in order for these objects to compile properly. The class declarations of
TCorbaDispatchStub and TCorbaImplementation implement the four additional meth-
ods of IDispatch. Careful inspection of this code will show that the implementations do
not really do anything; they are present so that the type library editor can be used with
CORBA objects.

• Finally, the interfaces that are generated by the wizard contain GUIDs (or IIDs). These
are unique identifiers that COM uses to identify interfaces. Although CORBA does not
use GUIDs itself in order to identify objects or interfaces, some internal VCL routines
use these GUIDs in order to uniquely identify the CORBA interfaces. For this reason,
GUIDs should not be removed from the interfaces generated by the CORBA Object
Wizard.

As you can see from this discussion, the COM entities that are generated by the Delphi
CORBA wizard may be less of a cost than some developers think. One beneficial side effect of
this—a feature that’s unique to Delphi—is that it becomes very easy to build classes that can
be exposed through both COM/DCOM and CORBA at the same time!

At the time of writing, the most glaring weakness of Delphi’s CORBA implementation is the
lack of a utility for converting IDL to Pascal (Idl2Pas), a tool that’s currently available from
Inprise for both Java and C++. It’s a common misconception that Delphi does not have the
ability to early-bind to a CORBA server written in a different language. A more correct state-
ment would be that a Delphi developer cannot easily early-bind to a CORBA server written in
another language. Delphi clients can perform static (early) binding or dynamic (late) binding to
CORBA servers written in Delphi or any other language. However, the inability of Delphi to
import an IDL file and generate Pascal code that the compiler can understand makes it much
more difficult to early-bind to CORBA servers that are written in other languages. Due to this,
a developer must manually code CORBA stub classes when desiring to early-bind a Delphi
client to a CORBA object implemented in C++ or Java. Inprise is currently working on an

Component-Based Development

PART III
1100

31.65227_Ch27 11/30/99 6:14 PM Page 1100

Idl2Pas converter that will simplify Delphi/CORBA development and should soon be avail-
able as an add-on to Delphi 5. Later in this chapter we will provide an introductory look at
this new technology.

CORBA Support Classes
The Delphi CORBA framework uses a mixture of interface and implementation inheritance in
order to enable developers to create CORBA clients and servers. CORBA work is accom-
plished primarily by implementing interfaces for objects, stubs, and skeletons. Because inter-
faces do not support the concept of inheriting implementation code, this task could become
quite tedious because all interfaces would need to reimplement common calls to the CORBA
ORB. To address this, Delphi provides a group of VCL base classes that implement the meth-
ods of the primary CORBA interfaces (for example, ICorbaObject, ISkeletonObject, and
IStubObject). The primary base classes are shown in Figure 27.2 and are described in the
following list.

CORBA Development with Delphi

CHAPTER 27
1101

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

TObject

TInterfacedObject TCorbaImplementation TCorbaListManager

TCorbaStub

TCorbaDispatchStub

TCorbaSkeleton

TCorbaFactory

TCorbaInterfaceIDManager

TCorbaStubManager

TCorbaSkeletonManager

TCorbaFactoryManager

TCorbaObjectFactory

TORB TBOA

FIGURE 27.2
The VCL’s CORBA support hierarchy.

• TCorbaImplementation. This class supports IUnknown (interfaces) and provides
interface-querying and reference-counting capabilities. The methods of IDispatch are
also stubbed out on this class so that dual interfaces added from the type library editor
are supported. Delphi CORBA objects will descend from this class.

• TCorbaStub. This class implements the ICorbaObject and IStubObject interfaces.
TCorbaStub is the base class for all stubs generated by the Delphi Type Library Editor.

31.65227_Ch27 11/30/99 6:14 PM Page 1101

A stub is used to marshal interface calls for a CORBA client. Developers wishing (or
having) to provide their own marshaling will create TCorbaStub descendants.

• TCorbaDispatchStub. This class inherits from TCorbaStub and implements (stubs out)
the methods of the COM interface IDispatch. This is so those interfaces that are created
with the Delphi Type Library Editor that inherit from IDispatch can be used with
CORBA.

• TCorbaSkeleton. This class implements the ISkeletonObject interface and is responsi-
ble for communicating with the ORB and passing calls on the server object. Unlike the
stub, the skeleton class does not actually implement the interface of the server. Instead,
the skeleton holds a reference to the server and invokes methods on this reference.

• TCorbaFactory and TCorbaObjectFactory. TCorbaFactory is the base class for objects
that can create CORBA object instances. TCorbaObjectFactory can instantiate any
descendants of TCorbaImplementation.

• TCorbaListManager (and subclasses). The Delphi CORBA framework must keep track
of various entities at runtime, such as skeletons, stubs, factories, and interface IDs.
TCorbaListManager is a base class that provides support for thread synchronization. This
allows the VCL to provide internal housekeeping in a thread-safe manner. Typically, a
developer will not need to do much with these list manager classes except for occasion-
ally registering a custom stub object.

• TBOA. This is the Delphi class that represents the Basic Object Adapter (BOA), a CORBA
mechanism for communication between the ORB and the skeleton. The TBOA class is a
“singleton” object and never needs to be instantiated directly.

• TORB. The TORB class is how the Delphi VCL communicates with the VisiBroker ORB.
Like the TBOA class, the TORB class is a “singleton” and should never be instantiated
directly. The implementations of many of TORB’s methods call functions in
orbpas50.dll, which in turn calls routines in the VisiBroker C++ ORB (orb_br.dll).

CORBA Object Wizard
The classes just listed are relatively straightforward and represent just about all the VCL
CORBA classes that a Delphi developer should have to deal with. However, you may be happy
to know that there’s a Delphi wizard that helps you properly implement your CORBA objects.
Use the File, New menu to invoke Delphi’s Object Repository, as shown in Figure 27.3, and
select the Multitier tab.

Component-Based Development

PART III
1102

31.65227_Ch27 11/30/99 6:14 PM Page 1102

FIGURE 27.3
The Delphi Object Repository/CORBA Wizard.

Now click CORBA Object and you’ll see the CORBA Object Wizard pictured in Figure 27.4.

CORBA Development with Delphi

CHAPTER 27
1103

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

FIGURE 27.4
The CORBA Object Wizard.

Fill in the class name with the desired name for your CORBA object and interface. Note that
you should probably not use the standard Delphi convention of starting your class name with a
T, because this will be automatically added for you. For example, if you enter MyObject, a
Delphi class named TMyObject will be generated that implements the interface IMyObject.

The Instancing option determines how object instances are handed out to clients. One of the
following two options may be chosen:

• Shared Instance. This model is normally used for CORBA development. Each client uses
a single shared instance of the object implementation. CORBA servers that use this
model should be built as “stateless” servers. Because many clients may be sharing a sin-
gle instance, any particular client is not guaranteed to find the server in the exact same
state that it was in after the last call.

• Instance-per-client. The instance-per-client model constructs a unique instance of an
object for each client that requests an object’s service. This model allows for the con-
struction of “state” objects that maintain a consistent state across client calls. However,

31.65227_Ch27 11/30/99 6:14 PM Page 1103

this model can be more resource-intensive because it requires servers to track the state of
connected clients so that objects can be freed when clients are finished with them.

The Threading Model option specifies how your CORBA objects will be called. Two options
are available here:

• Single-threaded. Each object instance will be called from a single thread; therefore, the
object itself does not need to be made thread-safe. Note that the CORBA server applica-
tion may contain multiple objects or instances; therefore, global or shared data must still
be made thread-safe.

• Multithreaded. Although each client connection will make calls on a dedicated client
thread, objects can receive concurrent calls from multiple threads. In this scenario, global
as well as object data must be made thread-safe. The most difficult scenario to imple-
ment (regarding threading concerns) is you’re when using a shared object instance with
the multithreaded model. The simplest would be the single-threaded, instance-per-client
model.

Keep in mind that simply selecting a threading option does not serve to implement your
servers or objects in a thread-safe manner. These options are purely for specifying the thread-
ing model your object supports. It remains your responsibility to implement your CORBA
servers in a thread-safe manner, based on the threading model desired.

After you’ve successfully completed the CORBA wizard, two Pascal code units will be gener-
ated. A stub/skeleton unit will be generated that follows the naming pattern
YourProject_TLB.pas. This file will contain the definition of the main interface of your
object, a stub and skeleton class, a CORBA class factory class, and code to register the stub,
skeleton, and interface with the appropriate Delphi mechanisms. Listing 27.1 shows the code
generated for a class named “MyFirstCORBAServer.”

LISTING 27.1 A Delphi-Generated Stub and Skeleton Unit

unit FirstCorbaServer_TLB;

// ** //
// WARNING
// -------
// The types declared in this file were generated from data read from a
// Type Library. If this type library is explicitly or indirectly (via
// another type library referring to this type library) re-imported, or the
// ‘Refresh’ command of the Type Library Editor activated while editing the
// Type Library, the contents of this file will be regenerated and all
// manual modifications will be lost.
// ** //

Component-Based Development

PART III
1104

31.65227_Ch27 11/30/99 6:14 PM Page 1104

// PASTLWTR : $Revision: 1.88 $
// File generated on 11/02/1999 4:01:10 PM from Type Library described below.

// ** //
// Type Lib: C:\ICON99\FirstCORBAServer\FirstCorbaServer.tlb (1)
// IID\LCID: {CE8DB340-913A-11D3-9706-0000861F6726}\0
// Helpfile:
// DepndLst:
// (1) v2.0 stdole, (C:\WINDOWS\SYSTEM\STDOLE2.TLB)
// (2) v4.0 StdVCL, (C:\WINDOWS\SYSTEM\STDVCL40.DLL)
// ** //
{$TYPEDADDRESS OFF} // Unit must be compiled without type-checked pointers.
interface

uses Windows, ActiveX, Classes, Graphics, OleServer, OleCtrls, StdVCL,
SysUtils, CORBAObj, OrbPas, CorbaStd;

// ***//
// GUIDS declared in the TypeLibrary. Following prefixes are used:
// Type Libraries : LIBID_xxxx
// CoClasses : CLASS_xxxx
// DISPInterfaces : DIID_xxxx
// Non-DISP interfaces: IID_xxxx
// ***//
const
// TypeLibrary Major and minor versions
FirstCorbaServerMajorVersion = 1;
FirstCorbaServerMinorVersion = 0;

LIBID_FirstCorbaServer: TGUID = ‘{CE8DB340-913A-11D3-9706-0000861F6726}’;

IID_IMyFirstCorbaServer: TGUID = ‘{CE8DB341-913A-11D3-9706-0000861F6726}’;
CLASS_MyFirstCorbaServer: TGUID = ‘{CE8DB343-913A-11D3-9706-0000861F6726}’;

type

// ***//
// Forward declaration of types defined in TypeLibrary
// ***//
IMyFirstCorbaServer = interface;
IMyFirstCorbaServerDisp = dispinterface;

// ***//
// Declaration of CoClasses defined in Type Library
// (NOTE: Here we map each CoClass to its Default Interface)
// ***//

CORBA Development with Delphi

CHAPTER 27
1105

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

continues

31.65227_Ch27 11/30/99 6:14 PM Page 1105

LISTING 27.1 Continued

MyFirstCorbaServer = IMyFirstCorbaServer;

// ***//
// Interface: IMyFirstCorbaServer
// Flags: (4416) Dual OleAutomation Dispatchable
// GUID: {CE8DB341-913A-11D3-9706-0000861F6726}
// ***//
IMyFirstCorbaServer = interface(IDispatch)
[‘{CE8DB341-913A-11D3-9706-0000861F6726}’]
procedure SayHelloWorld; safecall;

end;

// ***//
// DispIntf: IMyFirstCorbaServerDisp
// Flags: (4416) Dual OleAutomation Dispatchable
// GUID: {CE8DB341-913A-11D3-9706-0000861F6726}
// ***//
IMyFirstCorbaServerDisp = dispinterface
[‘{CE8DB341-913A-11D3-9706-0000861F6726}’]
procedure SayHelloWorld; dispid 1;

end;

TMyFirstCorbaServerStub = class(TCorbaDispatchStub, IMyFirstCorbaServer)
public
procedure SayHelloWorld; safecall;

end;

TMyFirstCorbaServerSkeleton = class(TCorbaSkeleton)
private
FIntf: IMyFirstCorbaServer;

public
constructor Create(const InstanceName: string; const Impl: IUnknown);
override;

procedure GetImplementation(out Impl: IUnknown); override; stdcall;
published
procedure SayHelloWorld(const InBuf: IMarshalInBuffer; Cookie: Pointer);

end;

// ***//
// The Class CoMyFirstCorbaServer provides a Create and CreateRemote method to
// create instances of the default interface IMyFirstCorbaServer exposed by
// the CoClass MyFirstCorbaServer. The functions are intended to be used by
// clients wishing to automate the CoClass objects exposed by the
// server of this typelibrary.

Component-Based Development

PART III
1106

31.65227_Ch27 11/30/99 6:14 PM Page 1106

// ***//
CoMyFirstCorbaServer = class
class function Create: IMyFirstCorbaServer;
class function CreateRemote(const MachineName: string):
➥IMyFirstCorbaServer;

end;

TMyFirstCorbaServerCorbaFactory = class
class function CreateInstance(const InstanceName: string):
IMyFirstCorbaServer;

end;

implementation

uses ComObj;

{ TMyFirstCorbaServerStub }

procedure TMyFirstCorbaServerStub.SayHelloWorld;
var
OutBuf: IMarshalOutBuffer;
InBuf: IMarshalInBuffer;

begin
FStub.CreateRequest(‘SayHelloWorld’, True, OutBuf);
FStub.Invoke(OutBuf, InBuf);

end;

{ TMyFirstCorbaServerSkeleton }

constructor TMyFirstCorbaServerSkeleton.Create(const InstanceName: string;
const Impl: IUnknown);

begin
inherited;
inherited InitSkeleton(‘MyFirstCorbaServer’, InstanceName,
‘IDL:FirstCorbaServer/IMyFirstCorbaServer:1.0’, tmMultiThreaded, True);

FIntf := Impl as IMyFirstCorbaServer;
end;

procedure TMyFirstCorbaServerSkeleton.GetImplementation(out Impl: IUnknown);
begin
Impl := FIntf;

end;

procedure TMyFirstCorbaServerSkeleton.SayHelloWorld(
const InBuf: IMarshalInBuffer; Cookie: Pointer);

var

CORBA Development with Delphi

CHAPTER 27
1107

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

continues

31.65227_Ch27 11/30/99 6:14 PM Page 1107

LISTING 27.1 Continued

OutBuf: IMarshalOutBuffer;
begin
FIntf.SayHelloWorld;
FSkeleton.GetReplyBuffer(Cookie, OutBuf);

end;

class function CoMyFirstCorbaServer.Create: IMyFirstCorbaServer;
begin
Result := CreateComObject(CLASS_MyFirstCorbaServer) as IMyFirstCorbaServer;

end;

class function CoMyFirstCorbaServer.CreateRemote(const MachineName: string):
IMyFirstCorbaServer;

begin
Result := CreateRemoteComObject(MachineName, CLASS_MyFirstCorbaServer) as
IMyFirstCorbaServer;

end;

class function TMyFirstCorbaServerCorbaFactory.CreateInstance(
const InstanceName: string): IMyFirstCorbaServer;

begin
Result := CorbaFactoryCreateStub(
‘IDL:FirstCorbaServer/MyFirstCorbaServerFactory:1.0’, ‘MyFirstCorbaServer’,
InstanceName, ‘’, IMyFirstCorbaServer) as IMyFirstCorbaServer;

end;

initialization
CorbaStubManager.RegisterStub(IMyFirstCorbaServer, TMyFirstCorbaServerStub);
CorbaInterfaceIDManager.RegisterInterface(IMyFirstCorbaServer,
‘IDL:FirstCorbaServer/IMyFirstCorbaServer:1.0’);

CorbaSkeletonManager.RegisterSkeleton(IMyFirstCorbaServer,
TMyFirstCorbaServerSkeleton);

end.

Upon examination of this stub and skeleton unit, one interesting point to note is that the skele-
ton class does not actually implement the IMyFirstCorbaServer interface. The skeleton will
have the same methods as the supported interface, but you’ll notice that the parameters are dif-
ferent. The methods of the skeleton will receive raw, marshaled information and must then
unmarshal the parameters and pass them to the appropriate interface. For this reason, the skele-
ton does not implement the interface directly. Instead, the skeleton will hold an internal refer-
ence to the supported interface and delegate its calls to this internal reference.

Component-Based Development

PART III
1108

31.65227_Ch27 11/30/99 6:14 PM Page 1108

The second unit generated will contain the framework for implementing your object. A Delphi
class that descends from TCorbaImplementation and implements your main interface will be
generated. This unit will also create an instance of the factory that’s responsible for creating
the CORBA object. A typical CORBA object implementation unit would look like the code
shown in Listing 27.2.

LISTING 27.2 A Delphi-Generated CORBA Object Implementation

unit uMyFirstCorbaServer;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, ComObj, StdVcl,
CorbaObj, FirstCorbaServer_TLB;

type

TMyFirstCorbaServer = class(TCorbaImplementation, IMyFirstCorbaServer)
private
{ Private declarations }

public
{ Public declarations }

protected
procedure SayHelloWorld; safecall;

end;

implementation

uses CorbInit;

procedure TMyFirstCorbaServer.SayHelloWorld;
begin
//Implement method here.

end;

initialization
TCorbaObjectFactory.Create(‘MyFirstCorbaServerFactory’, ‘MyFirstCorbaServer’,
‘IDL:FirstCorbaServer/MyFirstCorbaServerFactory:1.0’, IMyFirstCorbaServer,
TMyFirstCorbaServer, iMultiInstance, tmSingleThread);

end.

CORBA Development with Delphi

CHAPTER 27
1109

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

31.65227_Ch27 11/30/99 6:14 PM Page 1109

This unit will eventually contain the code that implements all the methods of the
IMyFirstCORBAServer interface as well as any internal functionality of the
TMyFirstCORBAServer class. By using classical implementation inheritance descending from
TCorbaImplementation, the implementation will automatically be able to become a CORBA
object. By supporting the IMyFirstCorbaServer interface, the object guarantees it will satisfy
the contract of this interface. In lieu of manually declaring the object’s interface and imple-
mentation, we’ll now turn to the Delphi Visual Type Library Editor.

The Delphi Type Library Editor
To fully implement this custom CORBA object, code must be added to both the stub and skele-
ton unit and the object implementation unit listed previously. Although at first this may appear
to be a somewhat daunting task, the Delphi Type Library Editor is available to help you with
the process. Proceed to the Delphi main menu and select View, Type Library. You’ll see the
window shown in Figure 27.5, which visually represents the interfaces and other entities
defined in the stub and skeleton unit.

Component-Based Development

PART III
1110

FIGURE 27.5
The Delphi Visual Type Library Editor.

At this point, you can select the IMyFirstCorbaServer interface in the editor and click the
speedbutton to add a new method. Once the method has been added, you can use the editor’s
visual interface to define parameters, return types, and so on. Note that not all the data types
shown as possible parameter types in the Type Library Editor are valid for CORBA objects.
Because the Type Library Editor currently is a dual-purpose tool for both COM and CORBA,
many of the data types are valid for COM/Automation objects only. Consult the Delphi help

31.65227_Ch27 11/30/99 6:14 PM Page 1110

files for exhaustive lists of valid CORBA (IDL) data types. Once you’ve used the Type Library
Editor to add the methods of your interface, clicking the Refresh speedbutton will regenerate
the code in your project. The stub and skeleton unit will be refreshed, and empty implementa-
tion methods will be added to your implementation unit. All that’s left for you to do is to fill in
the code and implement the empty methods that the Type Library Editor generates.

CORBA Development with Delphi

CHAPTER 27
1111

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

NOTE

Delphi 5 contains a new feature that will generate component wrappers for
CoClasses contained in a type library. Unfortunately, wrappers are generated whether
you are importing an existing type library or creating one of your own. These com-
ponent wrappers are not appropriate for a CORBA object, so you should perform the
following steps to prevent generation of this additional code. From the Delphi menu,
select Project, Import Type Library. When the dialog box appears, clear the “Generate
Component Wrapper” check box and close the dialog box by clicking Close in the
upper right corner. Finally, click the Refresh speedbutton in the Type Library Editor.
The extraneous code will be eliminated from your application.

Creating CORBA Solutions with Delphi 5
Now that we have discussed the basic CORBA framework and IDE tools in Delphi, we are
going to apply our knowledge by creating a CORBA server. Then we’ll finish by building a
client that will use our custom CORBA server.

Building a CORBA Server
Having examined the basics of creating a CORBA server, we’ll now go into detail and con-
struct a CORBA server from start to finish. Our objective is to create a middle-tier CORBA
object that can accept SQL queries from a client, query a database, and send results back to the
calling client. Our implementation will use the Borland Database Engine (BDE) in order to
easily retrieve data from a database server. Keep in mind that this dependency is only a consid-
eration from the standpoint of the server object. The client application needs no knowledge (or
deployment) of the BDE, and the server could easily be adapted to retrieve data using other
mechanisms such as Delphi 5’s new ADO datasets or even a custom TDataset.

Invoking the CORBA Object Wizard
Create a new Delphi application and then invoke the CORBA Object Wizard as described ear-
lier. The name of our object will be QueryServer; this will produce an interface named
IQueryServer and an implementation class with the name TQueryServer. Choose Instance-Per-
Client for the Instancing option because our object will support data navigation (for example,

31.65227_Ch27 11/30/99 6:14 PM Page 1111

First, Next, and so on) and therefore is not a stateless object. In order to avoid the complexities
of writing thread-safe code at this point, select Single-Threaded for the Threading Model
option. After you click OK, the stub and skeleton unit as well as the object’s implementation
unit will be added to the project.

You may notice that the default Delphi application contains a form by default. A Delphi GUI
application must have a form in order to remain in the main Windows message loop. Most
CORBA server applications have no need for a visual form; therefore, we could solve this by
entering

Application.ShowMainForm := False;

in the project file of the application. For this example, we would like to verify that the server is
running, so we’ll leave the form visible and provide a TLabel to inform us that our CORBA
server is active. This form is shown in Figure 27.6.

Component-Based Development

PART III
1112

FIGURE 27.6
Our CORBA server’s main form.

Be aware that this form should be considered global data. Even though we’ve created the
CORBA object with a single-threaded model, the CORBA server application could contain
other objects that are servicing calls on other threads. Therefore, accessing this form from the
code of the object would not be considered thread-safe.

Using the Type Library Editor
Now that we’ve generated the necessary code to implement our CORBA object, we’re going to
use the Type Library Editor to add support methods to our interface. We’re going to add func-
tionality to our IQueryServer interface to allow clients to log in to a database and send SQL
statements, navigate the data, and retrieve a row at a time of the result set. This is accom-
plished by selecting the IQueryServer interface and clicking the New Method speedbutton. As
each of our new methods are added, we can name them using the Name edit box on the
Attributes tab. For each new method, you may also need to use the grid on the Parameters tab
of the Type Library Editor in order to supply parameter types and return values. After adding
several methods to provide our desired functionality, the Type Library Editor will look like
Figure 27.7.

31.65227_Ch27 11/30/99 6:14 PM Page 1112

FIGURE 27.7
IQueryServer methods in the Type Library Editor.

Implementing the Methods of IQueryServer
Now that we’ve defined the interface of our CORBA object, what remains to be done is to
implement the code to make the exposed methods work. Our implementation class will encap-
sulate a TDatabase and a TQuery in order to provide access to the BDE and server data. The
remainder of the work is trivial—the interface methods will simply call the provided function-
ality of the TDatabase and TQuery VCL components.

The only method that will be a little more involved to implement is the Data method (func-
tion). This method will retrieve the entire row of data that’s currently positioned in the query
results. Because we’re returning multiple values, we need some type of structure to be returned
that represents these values appropriately. In IDL, this would usually involve the use of a
sequence, which is a varying array of some data type. The Type Library Editor does not cur-
rently allow us to define an IDL sequence, so we’ll make the return type of the Data method be
an OLEVariant. This OLEVariant will actually be an array that holds the column values for the
positioned row in each of its elements. We can use an OLEVariant for this task because IDL
has a similar construct called an Any that can hold any valid IDL data type. The IDL that
Delphi generates (shown later) will recognize an OLEVariant as an IDL Any, and the Delphi
CORBA framework will allow this value to be converted to an Any and correctly marshaled to
and from the ORB. In fact, there’s a type declared in the Delphi VCL called TAny that maps
directly to a Variant. All we’ll need to do is create an array of Variant types and pass this as
the return value of our Data function, as follows:

function TQueryServer.Data: OleVariant;
var
i : integer;

CORBA Development with Delphi

CHAPTER 27
1113

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

31.65227_Ch27 11/30/99 6:14 PM Page 1113

begin
//Pack and send data.
Result := VarArrayCreate([0,FQuery.FieldCount-1],varOLEStr);
for i := 0 to FQuery.FieldCount - 1 do
begin
Result[i] := FQuery.Fields[i].AsString;

end;
end;

Once we implement the remainder of our methods, we’ll have a stub and skeleton unit, as
shown in Listing 27.3.

LISTING 27.3 The Stub and Skeleton Unit for IQueryServer

unit SimpleCorbaServer_TLB;

// ** //
// WARNING
// -------
// The types declared in this file were generated from data read from a
// Type Library. If this type library is explicitly or indirectly (via
// another type library referring to this type library) re-imported, or the
// ‘Refresh’ command of the Type Library Editor activated while editing the
// Type Library, the contents of this file will be regenerated and all
// manual modifications will be lost.
// ** //

// PASTLWTR : $Revision: 1.88 $
// File generated on 11/02/1999 6:01:08 PM from Type Library described below.

// ** //
// Type Lib: C:\ICON99\CORBA Server\SimpleCorbaServer.tlb (1)
// IID\LCID: {B7D4ED80-27C2-11D3-9703-0000861F6726}\0
// Helpfile:
// DepndLst:
// (1) v2.0 stdole, (C:\WINDOWS\SYSTEM\STDOLE2.TLB)
// (2) v4.0 StdVCL, (C:\WINDOWS\SYSTEM\STDVCL40.DLL)
// ** //
{$TYPEDADDRESS OFF} // Unit must be compiled without type-checked pointers.
interface

uses Windows, ActiveX, Classes, Graphics, OleServer, OleCtrls, StdVCL,
SysUtils, CORBAObj, OrbPas, CorbaStd;

// ***//
// GUIDS declared in the TypeLibrary. Following prefixes are used:

Component-Based Development

PART III
1114

31.65227_Ch27 11/30/99 6:14 PM Page 1114

// Type Libraries : LIBID_xxxx
// CoClasses : CLASS_xxxx
// DISPInterfaces : DIID_xxxx
// Non-DISP interfaces: IID_xxxx
// ***//
const
// TypeLibrary Major and minor versions
SimpleCorbaServerMajorVersion = 1;
SimpleCorbaServerMinorVersion = 0;

LIBID_SimpleCorbaServer: TGUID = ‘{B7D4ED80-27C2-11D3-9703-0000861F6726}’;

IID_IQueryServer: TGUID = ‘{B7D4ED81-27C2-11D3-9703-0000861F6726}’;
CLASS_QueryServer: TGUID = ‘{B7D4ED83-27C2-11D3-9703-0000861F6726}’;

type

// ***//
// Forward declaration of types defined in TypeLibrary
// ***//
IQueryServer = interface;
IQueryServerDisp = dispinterface;

// ***//
// Declaration of CoClasses defined in Type Library
// (NOTE: Here we map each CoClass to its Default Interface)
// ***//
QueryServer = IQueryServer;

// ***//
// Interface: IQueryServer
// Flags: (4416) Dual OleAutomation Dispatchable
// GUID: {B7D4ED81-27C2-11D3-9703-0000861F6726}
// ***//
IQueryServer = interface(IDispatch)
[‘{B7D4ED81-27C2-11D3-9703-0000861F6726}’]
function Login(const Db: WideString; const User: WideString;
const Password: WideString): WordBool; safecall;

function Get_SQL: WideString; safecall;
procedure Set_SQL(const Value: WideString); safecall;
procedure Next; safecall;
procedure Prev; safecall;
procedure First; safecall;
procedure Last; safecall;
function Get_FieldCount: Integer; safecall;
function Data: OleVariant; safecall;

CORBA Development with Delphi

CHAPTER 27
1115

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

continues

31.65227_Ch27 11/30/99 6:14 PM Page 1115

LISTING 27.3 Continued

function Get_EOF: WordBool; safecall;
function Get_BOF: WordBool; safecall;
function Execute: WordBool; safecall;
property SQL: WideString read Get_SQL write Set_SQL;
property FieldCount: Integer read Get_FieldCount;
property EOF: WordBool read Get_EOF;
property BOF: WordBool read Get_BOF;

end;

// ***//
// DispIntf: IQueryServerDisp
// Flags: (4416) Dual OleAutomation Dispatchable
// GUID: {B7D4ED81-27C2-11D3-9703-0000861F6726}
// ***//
IQueryServerDisp = dispinterface
[‘{B7D4ED81-27C2-11D3-9703-0000861F6726}’]
function Login(const Db: WideString; const User: WideString;
const Password: WideString): WordBool; dispid 1;

property SQL: WideString dispid 2;
procedure Next; dispid 3;
procedure Prev; dispid 4;
procedure First; dispid 5;
procedure Last; dispid 6;
property FieldCount: Integer readonly dispid 7;
function Data: OleVariant; dispid 8;
property EOF: WordBool readonly dispid 9;
property BOF: WordBool readonly dispid 11;
function Execute: WordBool; dispid 12;

end;

TQueryServerStub = class(TCorbaDispatchStub, IQueryServer)
public
function Login(const Db: WideString; const User: WideString;
const Password: WideString): WordBool; safecall;

function Get_SQL: WideString; safecall;
procedure Set_SQL(const Value: WideString); safecall;
procedure Next; safecall;
procedure Prev; safecall;
procedure First; safecall;
procedure Last; safecall;
function Get_FieldCount: Integer; safecall;
function Data: OleVariant; safecall;
function Get_EOF: WordBool; safecall;
function Get_BOF: WordBool; safecall;
function Execute: WordBool; safecall;

Component-Based Development

PART III
1116

31.65227_Ch27 11/30/99 6:14 PM Page 1116

end;

TQueryServerSkeleton = class(TCorbaSkeleton)
private
FIntf: IQueryServer;

public
constructor Create(const InstanceName: string; const Impl: IUnknown);
override;

procedure GetImplementation(out Impl: IUnknown); override; stdcall;
published
procedure Login(const InBuf: IMarshalInBuffer; Cookie: Pointer);
procedure Get_SQL(const InBuf: IMarshalInBuffer; Cookie: Pointer);
procedure Set_SQL(const InBuf: IMarshalInBuffer; Cookie: Pointer);
procedure Next(const InBuf: IMarshalInBuffer; Cookie: Pointer);
procedure Prev(const InBuf: IMarshalInBuffer; Cookie: Pointer);
procedure First(const InBuf: IMarshalInBuffer; Cookie: Pointer);
procedure Last(const InBuf: IMarshalInBuffer; Cookie: Pointer);
procedure Get_FieldCount(const InBuf: IMarshalInBuffer; Cookie: Pointer);
procedure Data(const InBuf: IMarshalInBuffer; Cookie: Pointer);
procedure Get_EOF(const InBuf: IMarshalInBuffer; Cookie: Pointer);
procedure Get_BOF(const InBuf: IMarshalInBuffer; Cookie: Pointer);
procedure Execute(const InBuf: IMarshalInBuffer; Cookie: Pointer);

end;

// ***//
// The Class CoQueryServer provides a Create and CreateRemote method to
// create instances of the default interface IQueryServer exposed by
// the CoClass QueryServer. The functions are intended to be used by
// clients wishing to automate the CoClass objects exposed by the
// server of this typelibrary.
// ***//
CoQueryServer = class
class function Create: IQueryServer;
class function CreateRemote(const MachineName: string): IQueryServer;

end;

TQueryServerCorbaFactory = class
class function CreateInstance(const InstanceName: string): IQueryServer;

end;

implementation

uses ComObj;

{ TQueryServerStub }

CORBA Development with Delphi

CHAPTER 27
1117

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

continues

31.65227_Ch27 11/30/99 6:14 PM Page 1117

LISTING 27.3 Continued

function TQueryServerStub.Login(const Db: WideString; const User: WideString;
const Password: WideString): WordBool;

var
OutBuf: IMarshalOutBuffer;
InBuf: IMarshalInBuffer;

begin
FStub.CreateRequest(‘Login’, True, OutBuf);
OutBuf.PutWideText(PWideChar(Pointer(Db)));
OutBuf.PutWideText(PWideChar(Pointer(User)));
OutBuf.PutWideText(PWideChar(Pointer(Password)));
FStub.Invoke(OutBuf, InBuf);
Result := UnmarshalWordBool(InBuf);

end;

function TQueryServerStub.Get_SQL: WideString;
var
OutBuf: IMarshalOutBuffer;
InBuf: IMarshalInBuffer;

begin
FStub.CreateRequest(‘Get_SQL’, True, OutBuf);
FStub.Invoke(OutBuf, InBuf);
Result := UnmarshalWideText(InBuf);

end;

procedure TQueryServerStub.Set_SQL(const Value: WideString);
var
OutBuf: IMarshalOutBuffer;
InBuf: IMarshalInBuffer;

begin
FStub.CreateRequest(‘Set_SQL’, True, OutBuf);
OutBuf.PutWideText(PWideChar(Pointer(Value)));
FStub.Invoke(OutBuf, InBuf);

end;

procedure TQueryServerStub.Next;
var
OutBuf: IMarshalOutBuffer;
InBuf: IMarshalInBuffer;

begin
FStub.CreateRequest(‘Next’, True, OutBuf);
FStub.Invoke(OutBuf, InBuf);

end;

procedure TQueryServerStub.Prev;
var

Component-Based Development

PART III
1118

31.65227_Ch27 11/30/99 6:14 PM Page 1118

OutBuf: IMarshalOutBuffer;
InBuf: IMarshalInBuffer;

begin
FStub.CreateRequest(‘Prev’, True, OutBuf);
FStub.Invoke(OutBuf, InBuf);

end;

procedure TQueryServerStub.First;
var
OutBuf: IMarshalOutBuffer;
InBuf: IMarshalInBuffer;

begin
FStub.CreateRequest(‘First’, True, OutBuf);
FStub.Invoke(OutBuf, InBuf);

end;

procedure TQueryServerStub.Last;
var
OutBuf: IMarshalOutBuffer;
InBuf: IMarshalInBuffer;

begin
FStub.CreateRequest(‘Last’, True, OutBuf);
FStub.Invoke(OutBuf, InBuf);

end;

function TQueryServerStub.Get_FieldCount: Integer;
var
OutBuf: IMarshalOutBuffer;
InBuf: IMarshalInBuffer;

begin
FStub.CreateRequest(‘Get_FieldCount’, True, OutBuf);
FStub.Invoke(OutBuf, InBuf);
Result := InBuf.GetLong;

end;

function TQueryServerStub.Data: OleVariant;
var
OutBuf: IMarshalOutBuffer;
InBuf: IMarshalInBuffer;

begin
FStub.CreateRequest(‘Data’, True, OutBuf);
FStub.Invoke(OutBuf, InBuf);
Result := UnmarshalAny(InBuf);

end;

function TQueryServerStub.Get_EOF: WordBool;

CORBA Development with Delphi

CHAPTER 27
1119

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

continues

31.65227_Ch27 11/30/99 6:14 PM Page 1119

LISTING 27.3 Continued

var
OutBuf: IMarshalOutBuffer;
InBuf: IMarshalInBuffer;

begin
FStub.CreateRequest(‘Get_EOF’, True, OutBuf);
FStub.Invoke(OutBuf, InBuf);
Result := UnmarshalWordBool(InBuf);

end;

function TQueryServerStub.Get_BOF: WordBool;
var
OutBuf: IMarshalOutBuffer;
InBuf: IMarshalInBuffer;

begin
FStub.CreateRequest(‘Get_BOF’, True, OutBuf);
FStub.Invoke(OutBuf, InBuf);
Result := UnmarshalWordBool(InBuf);

end;

function TQueryServerStub.Execute: WordBool;
var
OutBuf: IMarshalOutBuffer;
InBuf: IMarshalInBuffer;

begin
FStub.CreateRequest(‘Execute’, True, OutBuf);
FStub.Invoke(OutBuf, InBuf);
Result := UnmarshalWordBool(InBuf);

end;

{ TQueryServerSkeleton }

constructor TQueryServerSkeleton.Create(const InstanceName: string;
const Impl: IUnknown);

begin
inherited;
inherited InitSkeleton(‘QueryServer’, InstanceName,
‘IDL:SimpleCorbaServer/IQueryServer:1.0’, tmMultiThreaded, True);

FIntf := Impl as IQueryServer;
end;

procedure TQueryServerSkeleton.GetImplementation(out Impl: IUnknown);
begin
Impl := FIntf;

end;

Component-Based Development

PART III
1120

31.65227_Ch27 11/30/99 6:14 PM Page 1120

procedure TQueryServerSkeleton.Login(const InBuf: IMarshalInBuffer;
Cookie: Pointer);

var
OutBuf: IMarshalOutBuffer;
Retval: WordBool;
Db: WideString;
User: WideString;
Password: WideString;

begin
Db := UnmarshalWideText(InBuf);
User := UnmarshalWideText(InBuf);
Password := UnmarshalWideText(InBuf);
Retval := FIntf.Login(Db, User, Password);
FSkeleton.GetReplyBuffer(Cookie, OutBuf);
MarshalWordBool(OutBuf, Retval);

end;

procedure TQueryServerSkeleton.Get_SQL(const InBuf: IMarshalInBuffer;
Cookie: Pointer);

var
OutBuf: IMarshalOutBuffer;
Retval: WideString;

begin
Retval := FIntf.Get_SQL;
FSkeleton.GetReplyBuffer(Cookie, OutBuf);
OutBuf.PutWideText(PWideChar(Pointer(Retval)));

end;

procedure TQueryServerSkeleton.Set_SQL(const InBuf: IMarshalInBuffer;
Cookie: Pointer);

var
OutBuf: IMarshalOutBuffer;
Value: WideString;

begin
Value := UnmarshalWideText(InBuf);
FIntf.Set_SQL(Value);
FSkeleton.GetReplyBuffer(Cookie, OutBuf);

end;

procedure TQueryServerSkeleton.Next(const InBuf: IMarshalInBuffer;
Cookie: Pointer);

var
OutBuf: IMarshalOutBuffer;

begin
FIntf.Next;
FSkeleton.GetReplyBuffer(Cookie, OutBuf);

CORBA Development with Delphi

CHAPTER 27
1121

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

continues

31.65227_Ch27 11/30/99 6:14 PM Page 1121

LISTING 27.3 Continued

end;

procedure TQueryServerSkeleton.Prev(const InBuf: IMarshalInBuffer;
Cookie: Pointer);

var
OutBuf: IMarshalOutBuffer;

begin
FIntf.Prev;
FSkeleton.GetReplyBuffer(Cookie, OutBuf);

end;

procedure TQueryServerSkeleton.First(const InBuf: IMarshalInBuffer;
Cookie: Pointer);

var
OutBuf: IMarshalOutBuffer;

begin
FIntf.First;
FSkeleton.GetReplyBuffer(Cookie, OutBuf);

end;

procedure TQueryServerSkeleton.Last(const InBuf: IMarshalInBuffer;
Cookie: Pointer);

var
OutBuf: IMarshalOutBuffer;

begin
FIntf.Last;
FSkeleton.GetReplyBuffer(Cookie, OutBuf);

end;

procedure TQueryServerSkeleton.Get_FieldCount(const InBuf: IMarshalInBuffer;
Cookie: Pointer);

var
OutBuf: IMarshalOutBuffer;
Retval: Integer;

begin
Retval := FIntf.Get_FieldCount;
FSkeleton.GetReplyBuffer(Cookie, OutBuf);
OutBuf.PutLong(Retval);

end;

procedure TQueryServerSkeleton.Data(const InBuf: IMarshalInBuffer;
Cookie: Pointer);

var
OutBuf: IMarshalOutBuffer;
Retval: OleVariant;

Component-Based Development

PART III
1122

31.65227_Ch27 11/30/99 6:14 PM Page 1122

begin
Retval := FIntf.Data;
FSkeleton.GetReplyBuffer(Cookie, OutBuf);
MarshalAny(OutBuf, Retval);

end;

procedure TQueryServerSkeleton.Get_EOF(const InBuf: IMarshalInBuffer;
Cookie: Pointer);

var
OutBuf: IMarshalOutBuffer;
Retval: WordBool;

begin
Retval := FIntf.Get_EOF;
FSkeleton.GetReplyBuffer(Cookie, OutBuf);
MarshalWordBool(OutBuf, Retval);

end;

procedure TQueryServerSkeleton.Get_BOF(const InBuf: IMarshalInBuffer;
Cookie: Pointer);

var
OutBuf: IMarshalOutBuffer;
Retval: WordBool;

begin
Retval := FIntf.Get_BOF;
FSkeleton.GetReplyBuffer(Cookie, OutBuf);
MarshalWordBool(OutBuf, Retval);

end;

procedure TQueryServerSkeleton.Execute(const InBuf: IMarshalInBuffer;
Cookie: Pointer);

var
OutBuf: IMarshalOutBuffer;
Retval: WordBool;

begin
Retval := FIntf.Execute;
FSkeleton.GetReplyBuffer(Cookie, OutBuf);
MarshalWordBool(OutBuf, Retval);

end;

class function CoQueryServer.Create: IQueryServer;
begin
Result := CreateComObject(CLASS_QueryServer) as IQueryServer;

end;

class function CoQueryServer.CreateRemote(const MachineName: string):
IQueryServer;

CORBA Development with Delphi

CHAPTER 27
1123

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

continues

31.65227_Ch27 11/30/99 6:14 PM Page 1123

LISTING 27.3 Continued

begin
Result := CreateRemoteComObject(MachineName, CLASS_QueryServer) as
IQueryServer;

end;

class function TQueryServerCorbaFactory.CreateInstance(
const InstanceName: string): IQueryServer;

begin
Result := CorbaFactoryCreateStub(
‘IDL:SimpleCorbaServer/QueryServerFactory:1.0’, ‘QueryServer’,
InstanceName, ‘’, IQueryServer) as IQueryServer;

end;

initialization
CorbaStubManager.RegisterStub(IQueryServer, TQueryServerStub);
CorbaInterfaceIDManager.RegisterInterface(IQueryServer,
‘IDL:SimpleCorbaServer/IQueryServer:1.0’);

CorbaSkeletonManager.RegisterSkeleton(IQueryServer, TQueryServerSkeleton);

end.

Notice that the Type Library Editor in conjunction with the Delphi wizards have generated all
the necessary code to correctly marshal parameters. Parameters are marshaled from the stub to
the ORB and are unmarshaled from the skeleton to the actual object implementation.

The only code we’ll have to write is shown in Listing 27.4. You can see we only have to deal
with correctly implementing our object’s behavior; we don’t have to get into the messy details
of CORBA and parameter marshaling.

LISTING 27.4 The Implementation Unit for TQueryServer

unit uQueryServer;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, ComObj, StdVcl,
CorbaObj, db, dbtables, orbpas, SimpleCorbaServer_TLB, frmqueryserver;

type

TQueryServer = class(TCorbaImplementation, IQueryServer)
private
{ Private declarations }

Component-Based Development

PART III
1124

31.65227_Ch27 11/30/99 6:14 PM Page 1124

FDatabase: TDatabase;
FQuery: TQuery;

public
{ Public declarations }
constructor Create(Controller: IObject; AFactory: TCorbaFactory); override;
destructor Destroy; override;

protected
function Data: OleVariant; safecall;
function Get_BOF: WordBool; safecall;
function Get_EOF: WordBool; safecall;
function Get_FieldCount: Integer; safecall;
function Get_SQL: WideString; safecall;
function Login(const Db, User, Password: WideString): WordBool; safecall;
procedure First; safecall;
procedure Last; safecall;
procedure Next; safecall;
procedure Prev; safecall;
procedure Set_SQL(const Value: WideString); safecall;
function Execute: WordBool; safecall;

end;

implementation

uses CorbInit;

function TQueryServer.Data: OleVariant;
var
i : integer;

begin
//Pack and send data.
Result := VarArrayCreate([0,FQuery.FieldCount-1],varOLEStr);
for i := 0 to FQuery.FieldCount - 1 do
begin
Result[i] := FQuery.Fields[i].AsString;

end;
end;

function TQueryServer.Get_BOF: WordBool;
begin
Result := FQuery.BOF;

end;

function TQueryServer.Get_EOF: WordBool;
begin
Result := FQuery.EOF;

end;

CORBA Development with Delphi

CHAPTER 27
1125

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

continues

31.65227_Ch27 11/30/99 6:14 PM Page 1125

LISTING 27.4 Continued

function TQueryServer.Get_FieldCount: Integer;
begin
Result := FQuery.FieldCount;

end;

function TQueryServer.Get_SQL: WideString;
begin
Result := FQuery.SQL.Text;

end;

function TQueryServer.Login(const Db, User,
Password: WideString): WordBool;

begin
if FDatabase.Connected then FDatabase.Close;
FDatabase.AliasName := Db;
FDatabase.Params.Clear;
FDatabase.Params.Add(‘USER NAME=’ + User);
FDatabase.Params.Add(‘PASSWORD=’ + Password);
FDatabase.Open;

end;

procedure TQueryServer.First;
begin
FQuery.First;

end;

procedure TQueryServer.Last;
begin
FQuery.Last;

end;

procedure TQueryServer.Next;
begin
FQuery.Next;

end;

procedure TQueryServer.Prev;
begin
FQuery.Prior;

end;

procedure TQueryServer.Set_SQL(const Value: WideString);
begin
FQuery.SQL.Clear;
FQuery.SQL.Add(Value);

Component-Based Development

PART III
1126

31.65227_Ch27 11/30/99 6:14 PM Page 1126

end;

constructor TQueryServer.Create(Controller: IObject;
AFactory: TCorbaFactory);

begin
inherited Create(Controller,AFactory);
FDatabase := TDatabase.Create(nil);
FDatabase.LoginPrompt := false;
FDatabase.DatabaseName := ‘CorbaDb’;
FDatabase.HandleShared := true;
FQuery := TQuery.Create(nil);
FQuery.DatabaseName := ‘CorbaDb’;

end;

destructor TQueryServer.Destroy;
begin
FQuery.Free;
FDatabase.Free;
inherited Destroy;

end;

function TQueryServer.Execute: WordBool;
begin
FQuery.Close;
FQuery.Open;

end;

initialization
TCorbaObjectFactory.Create(‘QueryServerFactory’, ‘QueryServer’,
‘IDL:SimpleCorbaServer/QueryServerFactory:1.0’, IQueryServer,
TQueryServer, iMultiInstance, tmSingleThread);

end.

One VCL detail you should note in the code in Listing 27.4 is the correct handling of the
TDatabase object. The BDE namespace only allows for one uniquely named database within
the same session. Because we could have multiple TQueryServer objects within this CORBA
server that are sharing a single TSession object, we must set the HandleShared property of the
TDatabase to True. If we don’t do this, the next client that causes a new TQueryServer to be
created will not be able to connect.

From the Type Library Editor, you can view the IDL that represents our interface. Click the
drop-down arrow on the Export to IDL speedbutton in the Type Library Editor and select
Export to CORBA IDL (note that this is similar but yet different from Microsoft IDL, or
MIDL). You’ll see the IDL code in the Delphi editor, as shown in Listing 27.5.

CORBA Development with Delphi

CHAPTER 27
1127

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

31.65227_Ch27 11/30/99 6:14 PM Page 1127

LISTING 27.5 The CORBA IDL for IQueryServer

module SimpleCorbaServer
{
interface IQueryServer;

interface IQueryServer
{
boolean Login(in wstring Db, in wstring User, in wstring Password);
wstring Get_SQL();
wstring Set_SQL(in wstring Value);
void Next();
void Prev();
void First();
void Last();
long Get_FieldCount();
any Data();
boolean Get_EOF();
boolean Get_BOF();
boolean Execute();

};

interface QueryServerFactory
{
IQueryServer CreateInstance(in string InstanceName);

};

};

Notice that the COM data types we selected in the Type Library Editor have all been properly
converted to their IDL equivalents. This IDL can be imported into any other tools that support
CORBA. Development tools such as CBuilder and JBuilder will generate wrapper classes so
that clients written in these languages can easily use the functionality of our Delphi CORBA
object.

Component-Based Development

PART III
1128

NOTE

The IDL generated by Delphi, shown in Listing 27.5, is actually slightly incorrect. The
Set_SQL function should not be returning a value. Although Delphi should correctly
handle this, the problem stems from the fact that we added a property (SQL) in the
Type Library Editor. Properties are recognized by COM but are not a construct nor-
mally found in CORBA. Delphi has created the read and write methods for the

31.65227_Ch27 11/30/99 6:14 PM Page 1128

Running the CORBA Server
The construction of our query server is finally complete. Now it’s time to run the CORBA
server application and let the VisiBroker ORB know that our object is available to clients. In
order for clients to locate and connect to CORBA object implementations using the VisiBroker
ORB, the VisiBroker Smart Agent must be running somewhere on your local network. The
agent does not have to be running on the same computer as the client or the server. The Smart
Agent can be launched from the command line (on Windows NT the Smart Agent can be run
as a service) by typing

OSAGENT [-options]

from the command prompt, where valid options are as follows:

• -p. Sets a port for the agent to listen on

• -v. Prints debugging information to osagent.log

• -?. Prints usage information to osagent.log

• -C. Runs osagent in console mode (only on NT; default for 95/98)

If you are manually starting the Smart Agent on Windows NT, it is important to launch
osagent using the –c switch. This will allow an osagent that has been installed as an NT ser-
vice to run as a console application. An example of starting the Smart Agent on Windows NT
as a console application to listen for requests on port 14005 would look as follows:

osagent -c -p 14005.

Once the Smart Agent is running on the network, you can run the project we’ve just built and it
will register itself with the Smart Agent and become available for client connections. Note that
at this point you must actually run the server application; there is no built-in facility for
launching a server (as in DCOM) unless you use the OAD.

Building an Early-Bound CORBA Client
Now that we have an available CORBA server serving objects, we can proceed to the next step
and create a CORBA client with Delphi. We’re going to build a simple client that uses the
IQueryServer interface prepared earlier to read data from the server and populate a string grid
with the retrieved data. It’s important to realize that we’re reaping the benefits of a multitier

CORBA Development with Delphi

CHAPTER 27
1129

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

property, but has not exported the write method to IDL correctly. This problem can
be avoided by only declaring methods on your CORBA interfaces, or by manually edit-
ing the generated IDL to correct the declaration as follows:

void Set_SQL(in wstring Value);

31.65227_Ch27 11/30/99 6:14 PM Page 1129

architecture here. Our client only needs access to the VisiBroker ORB software and does not
need any knowledge whatsoever of Delphi datasets or the Borland Database Engine (BDE).

A CORBA client can communicate via two ways with a CORBA object: early binding and late
binding. Early binding means that the compiler can compile direct calls to the v-table of the
stub. This not only offers performance benefits, but the compiler can provide type checking to
ensure that you’re passing correct parameter data types. In a late-binding scenario, all remote
calls are made through the Any data type. Calls are slower because parameter information must
be obtained from the VisiBroker Interface Repository and the incorrect parameter types are not
detected until runtime. In order for Delphi to early-bind to a stub, the compiler must be sup-
plied with some Pascal representation on the stub interface. With objects built in other lan-
guages, this becomes more difficult because Delphi 5 currently does not ship with a utility to
convert IDL files into Pascal. In our case, we’ve built the server in Delphi and the wizards have
generated a Pascal version of the stub interface. Therefore, we can early-bind to our server by
simply including the stub and skeleton unit from the preceding example in the uses clause of
our client.

Creating the CORBA Client
We’ll first create a simple Delphi GUI application that will serve to view the results we obtain
from the IQueryServer interface, as shown in Figure 27.8.

Component-Based Development

PART III
1130

FIGURE 27.8
Our CORBA client GUI.

Having done this, we’ll add the stub and skeleton unit from the server example to the uses
clause of our form’s unit (SimpleCorbaServer_TLB.pas).

31.65227_Ch27 11/30/99 6:14 PM Page 1130

Connecting to the CORBA Server
All that remains is to connect to our server and begin to make method calls against the remote
interface. The used stub and skeleton unit defines a class factory for IQueryServer (named
TQueryServerCorbaFactory). This class provides a class function (so we don’t need to create
an instance of TQueryServerCorbaFactory) named CreateInstance that will create the appro-
priate stub object and return the IQueryServer interface to us. We can then proceed to make
early-bound calls to the remote IQueryServer interface. The only other nontrivial work in this
client is to call the Data method of IQueryServer and unbundle the OLEVariant array in order
to populate our string grid. This is done in the ExecuteClick event of our client. The complete
implementation of our CORBA client is shown in Listing 27.6.

LISTING 27.6 The Implementation of SimpleCorbaClient

unit ufrmCorbaClient;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, SimpleCorbaServer_TLB, corbaObj, Grids;

type
TForm1 = class(TForm)
GroupBox1: TGroupBox;
Label2: TLabel;
edtDatabase: TEdit;
Label3: TLabel;
edtUserName: TEdit;
Label4: TLabel;
edtPassword: TEdit;
Button5: TButton;
GroupBox2: TGroupBox;
memoSQL: TMemo;
GroupBox3: TGroupBox;
Button6: TButton;
grdCorbaData: TStringGrid;
procedure ConnectClick(Sender: TObject);
procedure ExecuteClick(Sender: TObject);

private
{ Private declarations }
FQueryServer: IQueryServer;

public
{ Public declarations }

end;

CORBA Development with Delphi

CHAPTER 27
1131

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

continues

31.65227_Ch27 11/30/99 6:14 PM Page 1131

LISTING 27.6 Continued

var
Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.ConnectClick(Sender: TObject);
begin
if not(assigned(FQueryServer)) then
FQueryServer := TQueryServerCorbaFactory.CreateInstance(‘SimpleServer’);

FQueryServer.Login(edtDatabase.Text,edtUserName.Text,edtPassword.Text);
end;

procedure TForm1.ExecuteClick(Sender: TObject);
var
i,j: integer;
CorbaData : OLEVariant;

begin
FQueryServer.SQL := memoSQL.Text;
FQueryServer.Execute;

grdCorbaData.ColCount := FQueryServer.FieldCount;
grdCorbaData.RowCount := 0;
j := 0;

while not(FQueryServer.EOF) do
begin
inc(j);
grdCorbaData.RowCount := j;
CorbaData := (FQueryServer.Data);
for i := 0 to FQueryServer.FieldCount - 1 do
begin
grdCorbaData.Cells[i + 1,j-1] := CorbaData[i];

end;
FQueryServer.Next;

end;
end;

end.

Provided that you’ve launched the Smart Agent and the server is running where the Smart
Agent can see it, you can now run this application and retrieve data from our CORBA server!

Component-Based Development

PART III
1132

31.65227_Ch27 11/30/99 6:14 PM Page 1132

Building a Late-Bound CORBA Client
We’re now going to modify our CORBA client so that it uses late binding to communicate with
the remote interface. In CORBA we use what’s called the Dynamic Invocation Interface (DII).
Late binding is not necessary here because both the server and client were developed with
Delphi. However, it’s a useful technique to learn if you wish to easily use CORBA servers
developed in other languages.

First, we can remove the stub and skeleton unit from the uses clause of our form’s unit.
Remember that if the server had been written in Java (for example), this would not be available
for you to use anyway.

Second, our client now has no knowledge of the interface IQueryServer. Therefore, we’ll
change the data type of the encapsulated FQueryServer field from type IQueryServer to
type TAny.

Third, we need to acquire a generic CORBA stub in a different manner than before. We can
call the global Pascal CorbaBind method (from the CorbaObj unit) and pass the repository ID
of the factory we’re requesting. After we’ve acquired the factory, we can call the
CreateInstance method of the factory that will return a generic interface. We can keep this
interface in an Any and call late-bound methods from the reference. The complete source for
the late-bound client is shown in Listing 27.7.

LISTING 27.7 The Late-Bound Query Server Client

unit ufrmCorbaClientLate;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, corbaObj, Grids;

type
TForm1 = class(TForm)
GroupBox1: TGroupBox;
Label2: TLabel;
edtDatabase: TEdit;
Label3: TLabel;
edtUserName: TEdit;
Label4: TLabel;
edtPassword: TEdit;
Button5: TButton;
GroupBox2: TGroupBox;
memoSQL: TMemo;

CORBA Development with Delphi

CHAPTER 27
1133

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

continues

31.65227_Ch27 11/30/99 6:14 PM Page 1133

LISTING 27.7 Continued

GroupBox3: TGroupBox;
Button6: TButton;
grdCorbaData: TStringGrid;
procedure ConnectClick(Sender: TObject);
procedure ExecuteClick(Sender: TObject);

private
{ Private declarations }
FQueryServer: TAny;

public
{ Public declarations }

end;

var
Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.ConnectClick(Sender: TObject);
var
Factory: TAny;
User, Pass: WideString;

begin
Factory := CorbaBind(‘IDL:SimpleCorbaServer/QueryServerFactory:1.0’);
FQueryServer := Factory.CreateInstance(‘’);
User := WideString(edtUserName.Text);
Pass := WideString(edtPassword.Text);
FQueryServer.Login(WideString(edtDatabase.Text),User,Pass);

end;

procedure TForm1.ExecuteClick(Sender: TObject);
var
i,j: integer;
CorbaData : OLEVariant;

begin
FQueryServer.Set_SQL((memoSQL.Text));
FQueryServer.Execute;

grdCorbaData.ColCount := FQueryServer.Get_FieldCount;
grdCorbaData.RowCount := 0;
j := 0;

while not(FQueryServer.Get_EOF) do

Component-Based Development

PART III
1134

31.65227_Ch27 11/30/99 6:14 PM Page 1134

begin
inc(j);
grdCorbaData.RowCount := j;
CorbaData := FQueryServer.Data;
for i := 0 to FQueryServer.Get_FieldCount - 1 do
begin
grdCorbaData.Cells[i + 1,j-1] := CorbaData[i];

end;
FQueryServer.Next;

end;
end;

end.

You’ll notice a couple other changes in the source code for the late-bound client.

IDL does not support the notion of “properties” as in COM. When we use early binding, we
can get away with this because the compiler simply resolves to the address of the getter or set-
ter method for the property. When we use late binding, the DII does not know about a property
so we must call the getter or setter method explicitly. For example, instead of reading
FieldCount, we would call Get_FieldCount.

All DII parameters are passed as Any types that store the data type as well. Some values need
to be explicitly cast in order for the data type of the Any to be set correctly. For example, send-
ing a string value to the Login method’s Db parameter will cause the Any’s type to be set to
varString. This will result in a bad parameter error unless the string is cast to a WideString
so that the Any’s type is set to varOleStr (a WideString).

Finally, in addition to the Smart Agent, the VisiBroker Interface Repository must be running
somewhere on your network and the IQueryServer interface must be registered with the
Interface Repository. The Interface Repository is like an online database that allows the ORB
to look up interface information for use with DII. The VisiBroker Interface Repository can be
launched from the command line using the command

IREP [-console] IRname [file.idl]

The only required argument here is IRname. Because multiple Interface Repository instances
can be running, this one needs to be identified somehow. The –console argument specifies
whether the Interface Repository runs in console mode (the default is GUI mode), and the
file.idl argument can specify an initial IDL file to be loaded when the repository starts.
Additional IDL files can be loaded using the menu option (if running as GUI) or by running
the idl2ir utility.

CORBA Development with Delphi

CHAPTER 27
1135

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

31.65227_Ch27 11/30/99 6:14 PM Page 1135

Cross-Language CORBA
At the time of writing, an Inprise-supplied Idl2Pas compiler is still not present in Delphi;
however, a pre-release version of such a tool does currently exist. In this section, we will dis-
cuss the steps required to manually early-bind to a CORBA server written in another language
as well as take an introductory look at the forthcoming Idl2Pas compiler.

Hand-Marshaling a Java CORBA Server
The following example uses a very simple CORBA server constructed in Java (JBuilder) that’s
to be called from a Delphi application. The IDL for the CORBA server is shown in Listing 27.8.

LISTING 27.8 The IDL for a Simple Java Server

module CorbaServer {
interface SimpleText {
string setText(in string txt);

};
};

Provided the CORBA server has been registered with the Interface Repository, Delphi can eas-
ily access the server using DII (this code is shown in Listing 27.9 in the btnDelphiTextEarly
method).

In order to early-bind without an Idl2Pas compiler, we must hand-code our own stub class to
perform the marshaling code. Although this is not exactly rocket science, it can be quite
tedious and error-prone for a large number of methods. We must also register the stub class and
the interface for the stub class with the proper Delphi mechanisms. Listing 27.9 contains the
entire code.

LISTING 27.9 The Code for Accessing a Java Server from the Delphi Client (Early and Late
Bound)

unit uDelphiClient;

interface

uses
Windows, Messages, SysUtils, CorbInit, CorbaObj, orbpas, Classes,
Graphics, Controls, Forms, Dialogs, StdCtrls;

type

ISimpleText = interface
[‘{49F25940-3C3C-11D3-9703-0000861F6726}’]

Component-Based Development

PART III
1136

31.65227_Ch27 11/30/99 6:14 PM Page 1136

function SetText(const txt: String): String;
end;

TSimpleTextStub = class(TCorbaStub, ISimpleText)
public
function SetText(const txt: String): String;

end;

TForm1 = class(TForm)
edtDelphiText: TEdit;
btnDelphiTextLate: TButton;
btnDelphiTextEarlyClick: TButton;
edtResult: TEdit;
procedure btnDelphiTextLateClick(Sender: TObject);
procedure btnDelphiTextEarlyClickClick(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.btnDelphiTextLateClick(Sender: TObject);
var
JavaServer: TAny;

begin
JavaServer := ORB.Bind(‘IDL:CorbaServer/SimpleText:1.0’);
edtResult.Text := JavaServer.setText(edtDelphiText.text);

end;

{ TSimpleTextStub }

function TSimpleTextStub.SetText(const txt: String): String;
var
InBuf: IMarshalInBuffer;
OutBuf: IMarshalOutBuffer;

begin
FStub.CreateRequest(‘setText’,True,OutBuf);
OutBuf.PutText(pchar(txt));
FStub.Invoke(OutBuf, InBuf);

CORBA Development with Delphi

CHAPTER 27
1137

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

continues

31.65227_Ch27 11/30/99 6:14 PM Page 1137

LISTING 27.9 Continued

Result := UnmarshalText(InBuf);
end;

procedure TForm1.btnDelphiTextEarlyClickClick(Sender: TObject);
var
JavaServer: ISimpleText;

begin
JavaServer := CorbaBind(ISimpleText) as ISimpleText;
edtResult.Text := JavaServer.SetText(edtDelphiText.text);

end;

initialization
CorbaStubManager.RegisterStub(ISimpleText, TSimpleTextStub);
CorbaInterfaceIDManager.RegisterInterface(ISimpleText,
‘IDL:CorbaServer/SimpleText:1.0’);

end.

You will notice that the above code looks very similar to the code generated by the Type
Library Editor when we create a CORBA object within Delphi. We have added our own
descendant of TCorbaStub that will serve to provide client-side marshaling. Note that it is not
necessary to descend from TCorbaDispatchStub because the Type Library Editor is not
involved here. Next we implement our custom stub to marshal the parameters to and from the
CORBA marshaling buffer interfaces: IMarshalInBuffer and IMarshalOutBuffer. These
interfaces contain convenient methods for reading and writing various data types to the buffers.
Consult the Delphi 5 online help for more information on using these methods. Finally, we
need to register our custom stub and our interface with the Delphi CORBA framework. This
code is shown in the initialization part of our unit.

The Inprise Idl2Pas Compiler
As evident from the code in Listing 27.9, hand-marshaling a large CORBA object would
require a great deal of work. The solution to this problem lies in the availability of an Idl2Pas
compiler that can automatically generate the appropriate marshaling code for our stub. By the
time you read this chapter, such a tool should be available from Inprise. We will conclude this
section by taking a brief look at the current per-release version of Idl2Pas.

The Inprise Idl2Pas compiler is implemented in Java and therefore requires a Java VM to be
installed on your development machine. A suitable Java Runtime Environment (JRE) is pro-
vided when you install Delphi 5. The current pre-release Idl2Pas compiler is not yet integrated
into the Delphi IDE, so we must invoke the compiler from the command line using the sup-
plied Idl2Pas.bat batch file. The command necessary to invoke Idl2Pas on SimpleText.idl
and store the generated files in c:\idl would look as follows:

Component-Based Development

PART III
1138

31.65227_Ch27 11/30/99 6:14 PM Page 1138

IDL2PAS -root_dir c:\idl SimpleText.idl

The Idl2Pas compiler will generate two files in the specified directory, named after the mod-
ule name included in the idl file. For our example, CorbaServer_i.pas will contain the Pascal
declarations for the idl interfaces and is shown in Listing 27.10.

LISTING 27.10 Interface Definitions Generated from Idl2Pas

unit CorbaServer_i;

// This file was generated on 4 Nov 1999 17:58:12 GMT by version
// 01.09.00.A2.032c of the Inprise VisiBroker idl2pas CORBA IDL compiler.

//Delphi Pascal unit CorbaServer_i for the CorbaServer IDL module.
// The purpose of this file is to declare the interfaces and variables used in
// the associated client (CorbaServer_c)
// and/or server (CorbaServer_s) units.

//This unit contains the pascal interface code for IDL module CorbaServer.

(* IDL Source : “c:\icon99\MultiLanguage\MyProjects\CorbaServer\
SimpleText.idl”, line 1

** IDL Name : module
** Repository Id : IDL:CorbaServer:1.0
** IDL definition :
*)

interface

uses
CORBA;

type
//These forward references have been supplied to resolve dependencies between
//the following interfaces.
SimpleText = interface;
//These interface definitions were generated from the IDL from which this
//unit originated.

//Signature for the “CorbaServer_i.SimpleText” interface derived from the IDL
//interface “SimpleText”.

(* IDL Source : “c:\icon99\MultiLanguage\MyProjects\CorbaServer\
SimpleText.idl”, line 2

** IDL Name : interface

CORBA Development with Delphi

CHAPTER 27
1139

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

continues

31.65227_Ch27 11/30/99 6:14 PM Page 1139

LISTING 27.10 Continued

** Repository Id : IDL:CorbaServer/SimpleText:1.0
** IDL definition :
*)
SimpleText = interface
[‘{C8864064-C211-B145-29DB-CD5119D884CD}’]

//Interface methods representing IDL operations.

(* IDL Source : “c:\icon99\MultiLanguage\MyProjects\CorbaServer\
SimpleText.idl”, line 3

** IDL Name : operation
** Repository Id : IDL:CorbaServer/SimpleText/setText:1.0
** IDL definition :
*)
function setText (const txt : AnsiString): AnsiString;

end;

implementation

//The implementation code (if any) is located in the associated _C file.

initialization

end.

The second generated file, CorbaServer_c.pas, contains the implementation code for the stub
class as well as a helper object (TSimpleTextHelper) that facilitates the passing of non-simple
data type such as structs, unions, and user-defined data types. The generated implementation
code is shown in Listing 27.11.

LISTING 27.11 Stub and Helper Classes Generated from Idl2Pas

unit CorbaServer_c;

// c:\icon99\MultiLanguage\MyProjects\CorbaServer\SimpleText.idl.

//Delphi Pascal unit CorbaServer_i for the CorbaServer IDL module.
// The purpose of this file is to implement the client-side classes (stubs)
// required by the associated Interface unit (CorbaServer_i).
// This unit must be matched with it’s associated skeleton unit on the server
// side.

Component-Based Development

PART III
1140

31.65227_Ch27 11/30/99 6:14 PM Page 1140

//This unit contains the stub code for IDL module CorbaServer.

(* IDL Source : “c:\icon99\MultiLanguage\MyProjects\CorbaServer\
SimpleText.idl”, line 1

** IDL Name : module
** Repository Id : IDL:CorbaServer:1.0
** IDL definition :
*)

interface

uses
CORBA,
CorbaServer_i;

type
//These forward references have been supplied to resolve dependencies between
//the following interfaces.
TSimpleTextHelper = class;
TSimpleTextStub = class;
//These stub and helper interfaces were generated from the IDL from which
//this unit originated.

//Pascal helper class “CorbaServer_c.TSimpleTextHelper” for the Pascal
//interface “CorbaServer_i.SimpleText”.

(* IDL Source : “c:\icon99\MultiLanguage\MyProjects\CorbaServer\
SimpleText.idl”, line 2

** IDL Name : interface
** Repository Id : IDL:CorbaServer/SimpleText:1.0
** IDL definition :
*)

TSimpleTextHelper = class
class procedure Insert(const A: CORBA.Any;
const Value: CorbaServer_i.SimpleText);

class function Extract(const A: CORBA.Any): CorbaServer_i.SimpleText;
class function TypeCode: CORBA.TypeCode;
class function RepositoryId: string;
class function Read(const Input: CORBA.InputStream):
CorbaServer_i.SimpleText;

class procedure Write(const Output: CORBA.OutputStream;
const Value: CorbaServer_i.SimpleText);

class function Narrow(const Obj: CORBA.CORBAObject; IsA: Boolean = False):
CorbaServer_i.SimpleText;

class function Bind(const InstanceName: string = ‘’;

CORBA Development with Delphi

CHAPTER 27
1141

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

continues

31.65227_Ch27 11/30/99 6:14 PM Page 1141

LISTING 27.11 Continued

HostName : string = ‘’): CorbaServer_i.SimpleText; overload;
class function Bind(Options: BindOptions;
const InstanceName: string = ‘’; HostName: string = ‘’):
CorbaServer_i.SimpleText; overload;

end;

//Pascal stub class “CorbaServer_c.TSimpleTextStub supporting the Pascal
//interface “CorbaServer_i.SimpleText”.

(* IDL Source : “c:\icon99\MultiLanguage\MyProjects\CorbaServer\
SimpleText.idl”, line 2

** IDL Name : interface
** Repository Id : IDL:CorbaServer/SimpleText:1.0
** IDL definition :
*)

TSimpleTextStub = class(CORBA.TCORBAObject, CorbaServer_i.SimpleText)
public

(* IDL Source : “c:\icon99\MultiLanguage\MyProjects\CorbaServer\
SimpleText.idl”, line 3

** IDL Name : operation
** Repository Id : IDL:CorbaServer/SimpleText/setText:1.0
** IDL definition :
*)
function setText (const txt : AnsiString): AnsiString; virtual;

end;

implementation
//These stub and helper implementations were generated from the IDL from
//which this unit originated.

//Implementation of the Pascal helper class “CorbaServer_c.TSimpleTextHelper”
//supporting the Pascal interface “CorbaServer_i.SimpleText.

(* IDL Source : “c:\icon99\MultiLanguage\MyProjects\CorbaServer\
SimpleText.idl”, line 2

** IDL Name : interface
** Repository Id : IDL:CorbaServer/SimpleText:1.0
** IDL definition :
*)

class procedure TSimpleTextHelper.Insert(const A: CORBA.Any;
const Value: CorbaServer_i.SimpleText);

Component-Based Development

PART III
1142

31.65227_Ch27 11/30/99 6:14 PM Page 1142

begin
//TAnyHelper.InsertObject(Value);

end;

class function TSimpleTextHelper.Extract(const A: CORBA.Any):
CorbaServer_i.SimpleText;

begin
//TAnyHelper.ExtractObject as CorbaServer_i.SimpleText;

end;

class function TSimpleTextHelper.TypeCode: CORBA.TypeCode;
begin
Result := ORB.CreateInterfaceTC(RepositoryId, ‘CorbaServer_i.SimpleText’);

end;

class function TSimpleTextHelper.RepositoryId: string;
begin
Result := ‘IDL:CorbaServer/SimpleText:1.0’;

end;

class function TSimpleTextHelper.Read(const Input: CORBA.InputStream):
CorbaServer_i.SimpleText;

var
Obj: CORBA.CORBAObject;

begin
Input.ReadObject(Obj);
Result := Narrow(Obj, True)

end;

class procedure TSimpleTextHelper.Write(const Output: CORBA.OutputStream;
const Value: CorbaServer_i.SimpleText);

begin
Output.WriteObject(Value as CORBA.CORBAObject);

end;

class function TSimpleTextHelper.Narrow(const Obj: CORBA.CORBAObject;
IsA: Boolean): CorbaServer_i.SimpleText;

begin
Result := nil;
if (Obj = nil) or (Obj.QueryInterface(CorbaServer_i.SimpleText, Result) = 0)
then Exit;

if IsA and Obj._IsA(RepositoryId) then
Result := TSimpleTextStub.Create(Obj);

end;

CORBA Development with Delphi

CHAPTER 27
1143

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

continues

31.65227_Ch27 11/30/99 6:14 PM Page 1143

LISTING 27.11 Continued

class function TSimpleTextHelper.Bind(const InstanceName: string = ‘’;
HostName: string = ‘’): CorbaServer_i.SimpleText;

begin
Result := Narrow(ORB.bind(RepositoryId, InstanceName, HostName), True);

end;

class function TSimpleTextHelper.Bind(
Options: BindOPtions; const InstanceName: string = ‘’;
HostName: string = ‘’): CorbaServer_i.SimpleText;

begin
Result := Narrow(ORB.bind(RepositoryId, Options, InstanceName, HostName),
True);

end;
//Implementation of the Pascal stub class “CorbaServer_c.TSimpleTextStub”
//supporting the Pascal “CorbaServer_i.SimpleText” interface.

//Implementation of Interface methods representing IDL operations.

(* IDL Source : “c:\icon99\MultiLanguage\MyProjects\CorbaServer\
SimpleText.idl”, line 3

** IDL Name : operation
** Repository Id : IDL:CorbaServer/SimpleText/setText:1.0
** IDL definition :
*)
function TSimpleTextStub.setText (const txt : AnsiString): AnsiString;
var
Output: CORBA.OutputStream;
Input : CORBA.InputStream;

begin
inherited _CreateRequest(‘setText’,True, Output);
Output.WriteString(txt);
inherited _Invoke(Output, Input);
Input.ReadString(Result);

end;

initialization

//These stub and helper initialization calls were generated from the IDL from
//which this unit originated.

//Initialization of the Pascal helper class “CorbaServer_c.TSimpleTextStub”.

(* IDL Source : “c:\icon99\MultiLanguage\MyProjects\CorbaServer\
SimpleText.idl”, line 2

Component-Based Development

PART III
1144

31.65227_Ch27 11/30/99 6:14 PM Page 1144

** IDL Name : interface
** Repository Id : IDL:CorbaServer/SimpleText:1.0
** IDL definition :
*)
CORBA.InterfaceIDManager.RegisterInterface(CorbaServer_i.SimpleText,
CorbaServer_c.TSimpleTextHelper.RepositoryId);

//Initialization of the CorbaServer_c.TSimpleTextStub interface stub for the
//CorbaServer_i.SimpleTextInterface.

(* IDL Source : “c:\icon99\MultiLanguage\MyProjects\CorbaServer\
SimpleText.idl”, line 2

** IDL Name : interface
** Repository Id : IDL:CorbaServer/SimpleText:1.0
** IDL definition :
*)
CORBA.StubManager.RegisterStub(CorbaServer_i.SimpleText,
CorbaServer_c.TSimpleTextStub);

end.

You may notice that the marshaling code contained within the setText method of the gener-
ated code differs slightly from the code we wrote to hand-marshal this same interface. This is
because the Idl2Pas tool uses a different DLL to provide ORB/Pascal access (OrbPas33.dll)
and provides two new Pascal units that supplement the Delphi CORBA framework
(Corba.pas, OrbPas30.pas). These new additions will peacefully coexist and not replace the
units and libraries currently shipping with Delphi 5.

The release of the Inprise Idl2Pas compiler will help you to simplify some of the more diffi-
cult CORBA tasks such as calling servers written in other languages, marshaling non-simple
data types, and handling custom user exceptions.

Deploying the VisiBroker ORB
The VisiBroker ORB requires a runtime deployment license. Although Delphi 5 Enterprise
includes the VisiBroker services in the development environment, you should check with
Inprise before actually deploying your solutions.

ORB services will need to be deployed on server machines as well as client computers. As
mentioned previously, many of the other VisiBroker services (such as osagent, irep, and oad)
can be executing anywhere in your local network; therefore, deployment of these services may
not be necessary on all machines that are using ORB software. As mentioned, the primary C++
ORB used with Delphi is the dynamic link library orb_br.dll. A common problem reported

CORBA Development with Delphi

CHAPTER 27
1145

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

31.65227_Ch27 11/30/99 6:14 PM Page 1145

with Windows VisiBroker installations is that the DOS path is not correctly defined. This must
be done in order for the system to locate the ORB DLLs. Also, remember that Delphi uses a
special “thunking” layer (orbpas50.dll) in order to map IDL interfaces to Delphi interfaces
and provide other access to the C++ ORB. Orbpas50.dll must also be deployed for all Delphi
5 CORBA installations.

Summary
In this chapter we’ve examined the basics of CORBA development with Delphi 5. We’ve cre-
ated both CORBA clients and servers as well as experimented with both early and late binding.
We’ve also looked at what’s required in order to early-bind to a CORBA server written in
another language. Finally, we have taken a sneak peek at the Inprise Idl2Pas compiler and
demonstrated how the release of this tool will help simplify CORBA development with Delphi.

Component-Based Development

PART III
1146

31.65227_Ch27 11/30/99 6:14 PM Page 1146

IN THIS PART
28 Writing Desktop Database Applications 1149

29 Developing Client/Server Applications 1219

30 Extending Database VCL 1271

31 Internet-Enabling Your Applications with
WebBroker 1273

32 Midas Development 1309

Database Development
PART

IV

32.65227_Part IV 11/30/1999 6:01 PM Page 1147

32.65227_Part IV 11/30/1999 6:01 PM Page 1148

CHAPTER

28
Writing Desktop Database
Applications

IN THIS CHAPTER
• Working with Datasets 1150

• Using TTable 1181

• Data Modules 1188

• The Search, Range, and Filter
Demo 1189

• TQuery and TStoredProc: The Other
Datasets 1200

• Text File Tables 1201

• Connecting with ODBC 1206

• ActiveX Data Objects (ADO) 1211

• Summary 1218

33.65227_Ch28 11/30/1999 5:45 PM Page 1149

In this chapter, you’ll learn the art and science of accessing external database files from your
Delphi applications. If you’re new to database programming, we do assume a bit of database
knowledge, but this chapter will get you started on the road to creating high-quality database
applications. If database applications are “old hat” to you, you’ll benefit from the chapter’s
demonstration of Delphi’s spin on database programming. In this chapter, you first learn about
datasets and techniques for manipulating them, and later you learn how to work with tables and
queries specifically. Along the way, this chapter outlines the important points you need to know
to be a productive Delphi database developer.

Delphi 5 ships with version 5.0 of the Borland Database Engine (BDE), which offers you the
capability to communicate with Paradox, dBASE, Access, FoxPro, ODBC, ASCII text, and
SQL database servers all in much the same manner. Unlike previous versions, the Standard edi-
tion of Delphi 5 does not contain database connectivity. The Professional edition provides con-
nections to file-based Paradox, dBASE, Access, FoxPro, and ASCII text formats, in addition to
connectivity to Local InterBase and ODBC data sources. Delphi Enterprise builds upon Delphi
Professional, adding high-performance BDE SQL Links connections for InterBase, Microsoft
SQL Server, Oracle, Informix Dynamic Server, Sybase Adaptive Server, and DB2.
Additionally, Delphi Enterprise also provides ADOExpress components for native access to
Microsoft ActiveX Data Objects (ADO) data sources. The topics discussed pertain primarily to
using Delphi with file-based data, such as Paradox and dBASE tables, although the chapter
will also touch on data access via ODBC and ADO. This chapter also serves as a primer for the
next chapter, “Developing Client/Server Applications.”

Working with Datasets
A dataset is a collection of rows and columns of data. Each column is of some homogeneous
data type, and each row is made up of a collection of data of each column data type.
Additionally, a column is also known as a field, and a row is sometimes called a record. VCL
encapsulates a dataset into an abstract component called TDataSet. TDataSet introduces many
of the properties and methods necessary for manipulating and navigating a dataset.

To help keep the nomenclature clear and to cover some of the basics, the following list
explains some of the common database terms that are used in this and other database-oriented
chapters:

• A dataset is a collection of discrete data records. Each record is made up of multiple
fields. Each field can contain a different type of data (integer number, string, decimal
number, graphic, and so on). Datasets are represented by VCL’s abstract TDataset class.

• A table is a special type of dataset. A table is generally a file containing records that
are physically stored on a disk somewhere. VCL’s TTable class encapsulates this func-
tionality.

Database Development

PART IV
1150

33.65227_Ch28 11/30/1999 5:45 PM Page 1150

• A query is also a special type of dataset. Think of queries as “memory tables” that are
generated by special commands that manipulate some physical table or set of tables.
VCL has a TQuery class to handle queries.

• A database refers to a directory on a disk (when dealing with nonserver data such as
Paradox and dBASE files) or a SQL database (when dealing with SQL servers). A data-
base can contain multiple tables. As you may have guessed, VCL also has a TDatabase
class.

• An index defines rules by which a table is ordered. To have an index on a particular field
in a table means to sort its records based on the value that field holds for each record.
The TTable component contains properties and methods that help you manipulate
indexes.

Writing Desktop Database Applications

CHAPTER 28
1151

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

NOTE

We mentioned earlier that this chapter assumes a bit of database knowledge. This
chapter is not intended to be a primer on database programming, and we expect
that you’re already familiar with the items in this list. If terms such as database,
table, and index sound foreign to you, you might want to obtain an introductory
text on database concepts.

VCL Database Architecture
During the development of Delphi 3, VCL’s database architecture was significantly overhauled
in order to open the dataset architecture to allow non-BDE datasets to more easily be used
within Delphi. At the root of this architecture is the base TDataSet class. TDataSet is a compo-
nent that provides an abstract representation of dataset records and fields. A number of meth-
ods of TDataSet can be overridden in order to create a component that communicates with
some particular physical data format. Following this formula, VCL’s TBDEDataSet descends
from TDataSet and serves as the base class for data sources that communicate via the BDE. If
you’d like to learn how to create a TDataSet descendant to plug some type of custom data into
this architecture, you’ll find an example in Chapter 30, “Extending Database VCL.”

BDE Data-Access Components
The Data Access page of the Component Palette contains the VCL components you’ll use to
access and manage BDE datasets. These are shown in Figure 28.1. VCL represents datasets
with three components: TTable, TQuery, and TStoredProc. These components all descend
directly from the TDBDataSet component, which descends from TBDEDataSet (which, in turn,

33.65227_Ch28 11/30/1999 5:45 PM Page 1151

descends from TDataSet). As mentioned earlier, TDataSet is an abstract component that
encapsulates dataset management, navigation, and manipulation. TBDEDataSet is an abstract
component that represents a BDE-specific dataset. TDBDataSet introduces concepts such as
BDE databases and sessions (these are explained in detail in the next chapter). Throughout the
rest of this chapter, we’ll refer to this type of BDE-specific dataset simply as a dataset.

Database Development

PART IV
1152

FIGURE 28.1
The Data Access page of the Component Palette.

As their names imply, TTable is a component that represents the structure and data contained
within a database table, TQuery is a component representing the set of data returned from a
SQL query operation, and TStoredProc encapsulates a stored procedure on a SQL server. In
this chapter, for simplicity’s sake, we use the TTable component when discussing datasets.
Later, the TQuery component is covered in detail.

Opening a Dataset
Before you can do any nifty manipulation of your dataset, you must first open it. To open a
dataset, simply call its Open() method, as shown in this example:

Table1.Open;

This is equivalent, by the way, to setting a dataset’s Active property to True:

Table1.Active := True;

There’s slightly less overhead in the latter method, because the Open() method ends up setting
the Active property to True. However, the overhead is so minimal that it’s not worth worrying
about.

Once the dataset has been opened, you’re free to manipulate it, as you’ll see in just a moment.
When you finish using the dataset, you should close it by calling its Close() method, like this:

33.65227_Ch28 11/30/1999 5:45 PM Page 1152

Table1.Close;

Alternatively, you could close it by setting its Active property to False, like this:

Table1.Active := False;

Writing Desktop Database Applications

CHAPTER 28
1153

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

TIP

When you’re communicating with SQL servers, a connection to the database must be
established when you first open a dataset in that database. When you close the last
dataset in a database, your connection is terminated. Opening and closing these con-
nections involves a certain amount of overhead. Therefore, if you find that you open
and close the connection to the database often, use a TDatabase component instead
to maintain a connection to a SQL server’s database throughout many open and close
operations. The TDatabase component is explained in more detail in the next chapter.

Navigating Datasets
TDataSet provides some simple methods for basic record navigation. The First() and Last()
methods move you to the first and last records in the dataset, respectively, and the Next() and
Prior() methods move you either one record forward or back in the dataset. Additionally, the
MoveBy() method, which accepts an Integer parameter, moves you a specified number of
records forward or back.

NOTE

One of the big, but less obvious, benefits of using the BDE is that it allows navigable
SQL tables and queries. SQL data generally is not navigable—you can move forward
through the rows of a query but not backward. Unlike ODBC, BDE makes SQL data
navigable.

BOF, EOF, and Looping
BOF and EOF are Boolean properties of TDataSet that reveal whether the current record is the
first or last record in the dataset. For example, you might need to iterate through each record in
a dataset until reaching the last record. The easiest way to do so would be to employ a while
loop to keep iterating over records until the EOF property returns True, as shown here:

Table1.First; // go to beginning of data set
while not Table1.EOF do // iterate over table
begin

33.65227_Ch28 11/30/1999 5:45 PM Page 1153

// do some stuff with current record
Table1.Next; // move to next record

end;

Database Development

PART IV
1154

CAUTION

Be sure to call the Next() method inside your while-not-EOF loop; otherwise, your
application will get caught in an endless loop.

Avoid using a repeat..until loop to perform actions on a dataset. The following code may
look OK on the surface, but bad things may happen if you try to use it on an empty dataset,
because the DoSomeStuff() procedure will always execute at least once, regardless of whether
the dataset contains records:

repeat
DoSomeStuff;
Table1.Next;

until Table1.EOF;

Because the while-not-EOF loop performs the check up front, you won’t encounter such a
problem with this construct.

Bookmarks
Bookmarks enable you to save your place in a dataset so that you can come back to the same
spot at a later time. Bookmarks are very easy to use in Delphi because you only have one prop-
erty to remember.

Delphi represents a bookmark as type TBookmarkStr. TTable has a property of this type called
Bookmark. When you read from this property, you obtain a bookmark, and when you write to
this property, you go to a bookmark. When you find a particularly interesting place in a dataset
that you’d like to be able to get back to easily, here’s the syntax to use:

var
BM: TBookmarkStr;

begin
BM := Table1.Bookmark;

When you want to return to the place in the dataset you marked, just do the reverse—set the
Bookmark property to the value you obtained earlier by reading the Bookmark property:

Table1.Bookmark := BM;

33.65227_Ch28 11/30/1999 5:45 PM Page 1154

TBookmarkStr is defined as an AnsiString, so memory is automatically managed for book-
marks (you never have to free them). If you’d like to clear an existing bookmark, just set it to
an empty string:

BM := ‘’;

Note that TBookmarkStr is an AnsiString for storage convenience. You should consider it an
opaque data type and not depend on the implementation, because the bookmark data is com-
pletely determined by BDE and the underlying data layers.

Writing Desktop Database Applications

CHAPTER 28
1155

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

NOTE

Although 32-bit Delphi still supports GetBookmark(), GotoBookmark(), and
FreeBookmark() from Delphi 1.0, because the 32-bit Delphi technique is a bit cleaner
and less prone to error, you should use this newer technique unless you have to
maintain compatibility with 16-bit projects.

Navigational Example
You’ll now create a small project that incorporates the TDataSet navigational methods and
properties you just learned. This project will be called Navig8, and the main form for this pro-
ject is shown in Figure 28.2.

FIGURE 28.2
The Navig8 project’s main form.

To display the data contained in a TTable object, this project will employ the TDBGrid compo-
nent. The process of “wiring” a data-aware control such as the TDBGrid component to a dataset

33.65227_Ch28 11/30/1999 5:45 PM Page 1155

requires several steps. The following list covers the steps for displaying Table1’s data in
DBGrid1:

1. Set Table1’s DatabaseName property to an existing alias or directory. Use the DBDEMOS
alias if you installed Delphi’s sample programs.

2. Choose a table from the list presented in Table1’s TableName property.

3. Drop a TDataSource component on the form and wire it to TTable by setting
DataSource1’s dataset property to Table1. TDataSource serves as a conduit between
data sources and controls; it’s explained in more detail earlier in the chapter.

4. Wire the TDBGrid component to the TDataSource component by setting DBGrid1’s
DataSource property to DataSource1.

5. Open the table by setting Table1’s Active property to True.

6. Poof! You now have data in the grid control.

Database Development

PART IV
1156

TIP

A shortcut for picking components from the drop-down list provided for the DataSet
and DataSource properties is to double-click the area to the right of the property
name in the Object Inspector. This sets the property value to the first item in the
drop-down list.

The source code for main unit of Navig8, called Nav.pas, is shown in Listing 28.1.

LISTING 28.1 The Source Code for Nav.pas

unit Nav;

interface

uses
SysUtils, Windows, Messages, Classes, Controls, Forms, StdCtrls,
Grids, DBGrids, DB, DBTables, ExtCtrls;

type
TForm1 = class(TForm)
Table1: TTable;
DataSource1: TDataSource;
DBGrid1: TDBGrid;
GroupBox1: TGroupBox;
GetButton: TButton;
GotoButton: TButton;

33.65227_Ch28 11/30/1999 5:45 PM Page 1156

ClearButton: TButton;
GroupBox2: TGroupBox;
FirstButton: TButton;
LastButton: TButton;
NextButton: TButton;
PriorButton: TButton;
MoveByButton: TButton;
Edit1: TEdit;
Panel1: TPanel;
PosLbl: TLabel;
Label1: TLabel;
procedure FirstButtonClick(Sender: TObject);
procedure LastButtonClick(Sender: TObject);
procedure NextButtonClick(Sender: TObject);
procedure PriorButtonClick(Sender: TObject);
procedure MoveByButtonClick(Sender: TObject);
procedure DataSource1DataChange(Sender: TObject; Field: TField);
procedure GetButtonClick(Sender: TObject);
procedure GotoButtonClick(Sender: TObject);
procedure ClearButtonClick(Sender: TObject);

private
BM: TBookmarkStr;

public
{ Public declarations }

end;

var
Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.FirstButtonClick(Sender: TObject);
begin
Table1.First; // Go to first record in table

end;

procedure TForm1.LastButtonClick(Sender: TObject);
begin
Table1.Last; // Go to last record in table

end;

procedure TForm1.NextButtonClick(Sender: TObject);
begin
Table1.Next; // Go to next record in table

Writing Desktop Database Applications

CHAPTER 28
1157

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

continues

33.65227_Ch28 11/30/1999 5:45 PM Page 1157

LISTING 28.1 Continued

end;

procedure TForm1.PriorButtonClick(Sender: TObject);
begin
Table1.Prior; // Go to prior record in table

end;

procedure TForm1.MoveByButtonClick(Sender: TObject);
begin
// Move a specified number of record forward or back in the table
Table1.MoveBy(StrToInt(Edit1.Text));

end;

procedure TForm1.DataSource1DataChange(Sender: TObject; Field: TField);
begin
// Set caption appropriately, depending on state of Table1 BOF/EOF
if Table1.BOF then PosLbl.Caption := ‘Beginning’
else if Table1.EOF then PosLbl.Caption := ‘End’
else PosLbl.Caption := ‘Somewheres in between’;

end;

procedure TForm1.GetButtonClick(Sender: TObject);
begin
BM := Table1.Bookmark; // Get a bookmark
GotoButton.Enabled := True; // Enable/disable proper buttons
GetButton.Enabled := False;
ClearButton.Enabled := True;

end;

procedure TForm1.GotoButtonClick(Sender: TObject);
begin
Table1.Bookmark := BM; // Go to the bookmark position

end;

procedure TForm1.ClearButtonClick(Sender: TObject);
begin
BM := ‘’; // clear the bookmark
GotoButton.Enabled := False; // Enable/disable appropriate buttons
GetButton.Enabled := True;
ClearButton.Enabled := False;

end;

end.

Database Development

PART IV
1158

33.65227_Ch28 11/30/1999 5:45 PM Page 1158

This example illustrates quite well the fact that you can use Delphi’s database classes to do
quite a lot of database manipulation in your programs with very little code.

Note that you should initially set the Enabled properties of GotoButton and FreeButton to
False, because you can’t use them until a bookmark is allocated. The FreeButtonClick() and
GetButtonClick() methods ensure that the proper buttons are enabled, depending on whether
a bookmark has been set.

Most of the other procedures in this example are one-liners, although one method that does
require some explanation is TForm1.DataSource1DataChange(). This method is wired to
DataSource1’s OnDataChange event, which fires every time a field value changes (for example,
when you move from one record to another). This event checks to see whether you’re at the
beginning, in the middle, or at the end of a dataset; it then changes the label’s caption appropri-
ately. You’ll learn more about the TTable and TDataSource events a bit later in this chapter.

Writing Desktop Database Applications

CHAPTER 28
1159

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

BOF and EOF
You may notice that when you run the Navig8 project, PosLbl’s caption indicates that
you’re at the beginning of the dataset, which makes sense. However, if you move to
the next record and back again, PosLbl’s caption isn’t aware that you’re at the first
record. Notice, however, that PosLbl.Caption does indicate BOF if you click the Prior
button once more. Note that the same holds true for EOF if you try this at the end of
the dataset. Why?

The reason is that the BDE cannot be sure you’re at the beginning or end of the
dataset anymore, because another user of the table (if it’s a networked table) or even
another process within your program could have added a record to the beginning or
end of the table in the time it took you to move from the first to the second record
and then back again.

With that in mind, BOF can only be True under one of the following circumstances:

• You just opened the dataset.

• You just called the dataset’s First() method.

• A call to TDataSet.Prior() failed, indicating that there are no prior records.

Likewise, EOF can only be True under the following circumstances:

• You opened an empty dataset.

• You just called the dataset’s Last() method.

• A call to TDataSet.Next() failed, indicating that there are no more records.

A subtle but important piece of information that you can garner from this list is that
you know a dataset is empty when both BOF and EOF are True.

33.65227_Ch28 11/30/1999 5:45 PM Page 1159

TDataSource
A TDataSource component was used in that last example, so let’s digress for a moment to dis-
cuss this very important object. TDataSource is the conduit that enables data-access compo-
nents such as TTable components to connect to data controls such as TDBEdit and
TDBLookupCombo components. In addition to being the interface between datasets and data-
aware controls, TDataSource contains a couple of handy properties and events that make your
life easier when manipulating data.

The State property of TDataSource reveals the current state of the underlying dataset. The
value of State tells you whether the dataset is currently inactive or in Insert, Edit, SetKey, or
CalcFields mode, for example. The State property of TDataSet is explained in more detail later
in this chapter. The OnStateChange event fires whenever the value of this property changes.

The OnDataChange event of TDataset is executed whenever the dataset becomes active or a
data-aware control informs the dataset that something has changed.

The OnUpdateData event occurs whenever a record is posted or updated. This is the event that
causes data-aware controls to change their value based on the contents of the table. You can
respond to the event yourself to keep track of such changes within your application.

Working with Fields
Delphi enables you to access the fields of any dataset through the TField object and its
descendants. Not only can you get and set the value of a given field of the current record of a
dataset, but you can also change the behavior of a field by modifying its properties. You can
also modify the dataset, itself, by changing the visual order of fields, removing fields, or even
creating new calculated or lookup fields.

Field Values
It’s very easy to access field values from Delphi. TDataSet provides a default array property
called FieldValues[] that returns the value of a particular field as a Variant. Because
FieldValues[] is the default array property, you don’t need to specify the property name to
access the array. For example, the following piece of code assigns the value of Table1’s
CustName field to String S:

S := Table1[‘CustName’];

You could just as easily store the value of an integer field called CustNo in an integer variable
called I:

I := Table1[‘CustNo’];

Database Development

PART IV
1160

33.65227_Ch28 11/30/1999 5:45 PM Page 1160

A powerful corollary to this is the capability to store the values of several fields into a Variant
array. The only catches are that the Variant array index must be zero based and the Variant
array contents should be varVariant. The following code demonstrates this capability:

const
AStr = ‘The %s is of the %s category and its length is %f in.’;

var
VarArr: Variant;
F: Double;

begin
VarArr := VarArrayCreate([0, 2], varVariant);
{ Assume Table1 is attached to Biolife table }
VarArr := Table1[‘Common_Name;Category;Length_In’];
F := VarArr[2];
ShowMessage(Format(AStr, [VarArr[0], VarArr[1], F]));

end;

Delphi 1 programmers will note that the FieldValues[] technique is much easier than the pre-
vious technique for accessing field values. That technique (which still works in 32-bit Delphi
for backward compatibility) involves using TDataset’s Fields[] array property or
FieldsByName() function to access individual TField objects associated with the dataset. The
TField component provides information about a specific field.

Fields[] is a zero-based array of TField objects, so Fields[0] returns a TField representing
the first logical field in the record. FieldsByName() accepts a string parameter that corresponds
to a given field name in the table; therefore, FieldsByName(‘OrderNo’) would return a TField
component representing the OrderNo field in the current record of the dataset.

Given a TField object, you can retrieve or assign the field’s value using one of the TField
properties shown in Table 28.1.

TABLE 28.1 Properties to Access TField Values

Property Return Type

AsBoolean Boolean

AsFloat Double

AsInteger Longint

AsString String

AsDateTime TDateTime

Value Variant

Writing Desktop Database Applications

CHAPTER 28
1161

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

33.65227_Ch28 11/30/1999 5:45 PM Page 1161

If the first field in the current dataset is a string, you can store its value in the String variable
S, like this:

S := Table1.Fields[0].AsString;

The following code sets the integral variable I to contain the value of the ‘OrderNo’ field in
the current record of the table:

I := Table1.FieldsByName(‘OrderNo’).AsInteger;

Field Data Types
If you want to know the type of a field, look at TField’s DataType property, which indicates
the data type with respect to the database table (irrespective of a corresponding Object Pascal
type). The DataType property is of TFieldType, and TFieldType is defined as follows:

type
TFieldType = (ftUnknown, ftString, ftSmallint, ftInteger, ftWord,
ftBoolean, ftFloat, ftCurrency, ftBCD, ftDate, ftTime, ftDateTime,
ftBytes, ftVarBytes, ftAutoInc, ftBlob, ftMemo, ftGraphic, ftFmtMemo,
ftParadoxOle, ftDBaseOle, ftTypedBinary, ftCursor, ftFixedChar,
ftWideString, ftLargeint, ftADT, ftArray, ftReference, ftDataSet,
ftOraBlob, ftOraClob, ftVariant, ftInterface, ftIDispatch, ftGuid);

There are descendants of TField designed to work specifically with many of the preceding
data types. These are covered a bit later in this chapter.

Field Names and Numbers
To find the name of a specified field, use TField’s FieldName property. For example, the fol-
lowing code places the name of the first field in the current table in the String variable S:

var
S: String;

begin
S := Table1.Fields[0].FieldName;

end;

Likewise, you can obtain the number of a field you know only by name by using the FieldNo
property. The following code stores the number of the OrderNo field in the Integer variable I:

var
I: integer;

begin
I := Table1.FieldsByName(‘OrderNo’).FieldNo;

end;

Database Development

PART IV
1162

33.65227_Ch28 11/30/1999 5:45 PM Page 1162

Manipulating Field Data
Here’s a three-step process for editing one or more fields in the current record:

1. Call the dataset’s Edit() method to put the dataset into Edit mode.

2. Assign new values to the fields of your choice.

3. Post the changes to the dataset either by calling the Post() method or by moving to a
new record, which will automatically post the edit.

For instance, a typical record edit looks like this:

Table1.Edit;
Table1[‘Age’] := 23;
Table1.Post;

Writing Desktop Database Applications

CHAPTER 28
1163

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

NOTE

To determine how many fields a dataset contains, use TDataset’s FieldList property.
FieldList represents a flattened view of all the nested fields in a table containing
fields that are abstract data types (ADTs).

For backward compatibility, the FieldCount property still works, but it will skip over
any ADT fields.

TIP

Sometimes you work with datasets that contain read-only data. Examples of this
would include a table located on a CD-ROM drive or a query with a non-live result
set. Before attempting to edit data, you can determine whether the dataset contains
read-only data before you try to modify it by checking the value of the CanModify
property. If CanModify is True, you have the green light to edit the dataset.

Along the same lines as editing data, you can insert or append records to a dataset in much the
same way:

1. Call the dataset’s Insert() or Append() method to put the dataset into Insert or Append
mode.

2. Assign values to the dataset’s fields.

3. Post the new record to the dataset either by calling Post() or by moving to a new record,
which forces a post to occur.

33.65227_Ch28 11/30/1999 5:45 PM Page 1163

If at some point, before your additions or modifications to the dataset are posted, you want to
abandon your changes, you can do so by calling the Cancel() method. For instance, the fol-
lowing code cancels the edit before changes are posted to the table:

Table1.Edit;
Table1[‘Age’] := 23;
Table1.Cancel;

Cancel() undoes changes to the dataset, takes the dataset out of Edit, Append, or Insert mode,
and puts it back into Browse mode.

To round out the set of TDataSet’s record-manipulation methods, the Delete() method
removes the current record from the dataset. For example, the following code deletes the last
record in the table:

Table1.Last;
Table1.Delete;

The Fields Editor
Delphi gives you a great degree of control and flexibility when working with dataset fields
through the Fields Editor. You can view the Fields Editor for a particular dataset in the Form
Designer, either by double-clicking the TTable, TQuery, or TStoredProc or by selecting Fields
Editor from the dataset’s local menu. The Fields Editor window enables you to determine
which of a dataset’s fields you want to work with and create new calculated or lookup fields.
You can use a local menu to accomplish these tasks. The Fields Editor window with its local
menu deployed is shown in Figure 28.3.

To demonstrate the usage of the Fields Editor, open a new project and drop a TTable compo-
nent onto the main form. Set Table1’s DatabaseName property to DBDEMOS (this is the alias that
points to the Delphi sample tables) and set the TableName property to ORDERS.DB. To provide
some visual feedback, also drop a TDataSource and TDBGrid component on the form. Hook
DataSource1 to Table1 and then hook DBGrid1 to DataSource1. Now set Table1’s Active
property to True, and you’ll see Table1’s data in the grid.

Database Development

PART IV
1164

NOTE

When you’re in Edit, Insert, or Append mode, keep in mind that your changes will
always post when you move off the current record. Therefore, be careful when you
use the Next(), Prior(), First(), Last(), and MoveBy() methods while editing
records.

33.65227_Ch28 11/30/1999 5:45 PM Page 1164

FIGURE 28.3
The Fields Editor’s local menu.

Adding Fields
Invoke the Fields Editor by double-clicking Table1, and you’ll see the Fields Editor window,
as shown in Figure 28.3. Let’s say you want to limit your view of the table to only a few fields.
Select Add Fields from the Fields Editor local menu. This will invoke the Add Fields dialog.
Highlight the OrderNo, CustNo, and ItemsTotal fields in this dialog and click OK. The three
selected fields will now be visible in the Fields Editor and in the grid.

Delphi creates TField descendant objects, which map to the dataset fields you select in the
Fields Editor. For example, for the three fields mentioned in the preceding paragraph, Delphi
adds the following declarations of TField descendants to the source code for your form:

Table1OrderNo: TFloatField;
Table1CustNo: TFloatField;
Table1ItemsTotal: TCurrencyField;

Notice that the name of the field object is the concatenation of the TTable name and the field
name. Because these fields are created in code, you can also access TField descendant proper-
ties and methods in your code rather than solely at design time.

TField Descendants
Let’s digress for just a moment on the topic of TFields. There are one or more different
TField descendant objects for each field type (field types are described in the “Field Data

Writing Desktop Database Applications

CHAPTER 28
1165

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

33.65227_Ch28 11/30/1999 5:45 PM Page 1165

Types” section, earlier in this chapter). Many of these field types also map to Object Pascal
data types. Table 28.2 shows the various classes in the TField hierarchy, their ancestor classes,
their field types, and the Object Pascal types to which they equate.

TABLE 28.2 TField Descendants and their Field Types

Object
Field Field Pascal
Class Ancestor Type Type

TStringField TField ftString String

TWideStringField TStringField ftWideString WideString

TGuidField TStringField ftGuid TGUID

TNumericField TField * *

TIntegerField TNumericField ftInteger Integer

TSmallIntField TIntegerField ftSmallInt SmallInt

TLargeintField TNumericField ftLargeint Int64

TWordField TIntegerField ftWord Word

TAutoIncField TIntegerField ftAutoInc Integer

TFloatField TNumericField ftFloat Double

TCurrencyField TFloatField ftCurrency Currency

TBCDField TNumericField ftBCD Double

TBooleanField TField ftBoolean Boolean

TDateTimeField TField ftDateTime TDateTime

TDateField TDateTimeField ftDate TDateTime

TTimeField TDateTimeField ftTime TDateTime

TBinaryField TField * *

TBytesField TBinaryField ftBytes None

TVarBytesField TBytesField ftVarBytes None

TBlobField TField ftBlob None

TMemoField TBlobField ftMemo None

TGraphicField TBlobField ftGraphic None

TObjectField TField * *

TADTField TObjectField ftADT None

TArrayField TObjectField ftArray None

TDataSetField TObjectField ftDataSet TDataSet

TReferenceField TDataSetField ftReference

Database Development

PART IV
1166

33.65227_Ch28 11/30/1999 5:45 PM Page 1166

Object
Field Field Pascal
Class Ancestor Type Type

TVariantField TField ftVariant OleVariant

TInterfaceField TField ftInterface IUnknown

TIDispatchField TInterfaceField ftIDispatch IDispatch

TAggregateField TField None None

*Denotes an abstract base class in the TField hierarchy

As Table 28.2 shows, BLOB and Object field types are special in that they don’t map directly
to native Object Pascal types. BLOB fields are discussed in more detail later in this chapter.

Fields and the Object Inspector
When you select a field in the Fields Editor, you can access the properties and events associ-
ated with that TField descendant object in the Object Inspector. This feature enables you to
modify field properties such as minimum and maximum values, display formats, and whether
the field is required as well as whether it’s read-only. Some of these properties, such as
ReadOnly, are obvious in their purpose, but some aren’t quite as intuitive. Some of the less
intuitive properties are covered later in this chapter. Figure 28.4 shows the OrderNo field
focused in the Object Inspector.

Writing Desktop Database Applications

CHAPTER 28
1167

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

FIGURE 28.4
Editing a field’s properties.

Switch to the Events page of the Object Inspector and you’ll see that there are also events asso-
ciated with field objects. The events OnChange, OnGetText, OnSetText, and OnValidate are all
well-documented in the online help. Simply click to the left of the event in the Object

33.65227_Ch28 11/30/1999 5:45 PM Page 1167

Inspector and press F1. Of these, OnChange is probably the most common to use. It enables you
to perform some action whenever the contents of the field change (moving to another record or
adding a record, for example).

Calculated Fields
You can also add calculated fields to a dataset using the Fields Editor. Let’s say, for example,
you wanted to add a field that figures the wholesale total for each entry in the ORDERS table,
and the wholesale total was 32 percent of the normal total. Select New Field from the Fields
Editor local menu, and you’ll be presented with the New Field dialog, as shown in Figure 28.5.
Enter the name, WholesaleTotal, for the new field in the Name edit control. The type of this
field is Currency, so enter that in the Type edit control. Make sure the Calculated radio button
is selected in the Field Type group; then press OK. Now the new field will show up in the grid,
but it won’t yet contain any data.

Database Development

PART IV
1168

FIGURE 28.5
Adding a calculated field with the New Field dialog.

To cause the new field to become populated with data, you must assign a method to Table1’s
OnCalcFields event. The code for this event simply assigns the value of the WholesaleTotal
field to be 32 percent of the value of the existing SalesTotal field. This method, which han-
dles Table1.OnCalcFields, is shown here:

procedure TForm1.Table1CalcFields(DataSet: TDataSet);
begin
DataSet[‘WholesaleTotal’] := DataSet[‘ItemsTotal’] * 0.68;

end;

Figure 28.6 shows that the WholesaleTotal field in the grid now contains the correct data.

Lookup Fields
Lookup fields enable you to create fields in a dataset that actually look up their values from
another dataset. To illustrate this, you’ll add a lookup field to the current project. The CustNo
field of the ORDERS table doesn’t mean anything to someone who doesn’t have all the customer

33.65227_Ch28 11/30/1999 5:45 PM Page 1168

FIGURE 28.6
The calculated field has been added to the table.

First, you should drop in a second TTable object, setting its DatabaseName property to DBDEMOS
and its TableName property to CUSTOMER. This is Table2. Then you once again select New Field
from the Fields Editor local menu to invoke the New Field dialog. This time you’ll call the
field CustName, and the field type will be a String. The size of the string is 15 characters.
Don’t forget to select the Lookup button in the Field Type radio group. The Dataset control in
this dialog should be set to Table2—the dataset you want to look into. The Key Fields and
Lookup Keys controls should be set to CustNo—this is the common field upon which the
lookup will be performed. Finally, the Result field should be set to Contact—this is the field
you want displayed. Figure 28.7 shows the New Field dialog for the new lookup field. The new
field will now display the correct data, as shown in the completed project in Figure 28.8.

Writing Desktop Database Applications

CHAPTER 28
1169

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

FIGURE 28.7
Adding a lookup field with the New Field dialog.

numbers memorized. You can add a lookup field to Table1 that looks into the CUSTOMER table
and then, based on the customer number, retrieves the name of the current customer.

33.65227_Ch28 11/30/1999 5:45 PM Page 1169

FIGURE 28.8
Viewing the table containing a lookup field.

Drag-and-Drop Fields
Another less obvious feature of the Fields Editor is that it enables you to drag fields from its
Fields list box and drop them onto your forms. We can easily demonstrate this feature by start-
ing a new project that contains only a TTable on the main form. Assign Table1.DatabaseName
to DBDEMOS and assign Table1.TableName to BIOLIFE.DB. Invoke the Fields Editor for this
table and add all the fields in the table to the Fields Editor list box. You can now drag one or
more of the fields at a time from the Fields Editor window and drop them on your main form.

You’ll notice a couple of cool things happening here: First, Delphi senses what kind of field
you’re dropping onto your form and creates the appropriate data-aware control to display the
data (that is, a TDBEdit is created for a string field, whereas a TDBImage is created for a graphic
field). Second, Delphi checks to see if you have a TDataSource object connected to the dataset;
it hooks to an existing one if available or creates one if needed. Figure 28.9 shows the result of
dragging and dropping the fields of the BIOLIFE table onto a form.

Database Development

PART IV
1170

FIGURE 28.9
Dragging and dropping fields on a form.

33.65227_Ch28 11/30/1999 5:45 PM Page 1170

Working with BLOB Fields
A BLOB (Binary Large Object) field is a field that’s designed to contain an indeterminate
amount of data. A BLOB field in one record of a dataset may contain three bytes of data,
whereas the same field in another record of that dataset may contain 3K bytes. Blobs are most
useful for holding large amounts of text, graphic images, or raw data streams such as OLE
objects.

TBlobField and Field Types
As discussed earlier, VCL includes a TField descendant called TBlobField, which encapsu-
lates a BLOB field. TBlobField has a BlobType property of type TBlobType, which indicates
what type of data is stored in the BLOB field. TBlobType is defined in the DB unit as follows:

TBlobType = ftBlob..ftOraClob;

All these field types and the type of data associated with these field types are listed in Table 28.3.

TABLE 28.3 TBlobField Field Types

Field Type Type of Data

ftBlob Untyped or user-defined data

ftMemo Text

ftGraphic Windows bitmap

ftFmtMemo Paradox formatted memo

ftParadoxOle Paradox OLE object

ftDBaseOLE dBASE OLE object

ftTypedBinary Raw data representation of an existing type

ftCursor..ftDataSet Not valid BLOB types

ftOraBlob BLOB fields in Oracle8 tables

ftOraClob CLOB fields in Oracle8 tables

You’ll find that most of the work you need to do in getting data in and out of TBlobField com-
ponents can be accomplished by loading or saving the BLOB to a file or by using a
TBlobStream. TBlobStream is a specialized descendant of TStream that uses the BLOB field
inside the physical table as the stream location. To demonstrate these techniques for interacting
with TBlobField components, you’ll create a sample application.

Writing Desktop Database Applications

CHAPTER 28
1171

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

33.65227_Ch28 11/30/1999 5:45 PM Page 1171

BLOB Field Example
This project creates an application that enables the user to store WAV files in a database table
and play them directly from the table. Start the project by creating a main form with the com-
ponents shown in Figure 28.10. The TTable component can map to the Wavez table in the
DDGUtils alias or your own table of the same structure. The structure of the table is as follows:

Field Name Field Type Size

WaveTitle Character 25

FileName Character 25

Wave BLOB

Database Development

PART IV
1172

NOTE

If you ran the Setup program on the CD-ROM accompanying this book, it should
have set up a BDE alias that points to the \Data subdirectory of the directory in
which you installed the software. In this directory, you can find the tables used in the
applications throughout this book. Several of the examples on the CD-ROM expect
the DDGData alias.

FIGURE 28.10
Main form for Wavez, the BLOB field example.

The Add button is used to load a WAV file from disk and add it to the table. The method
assigned to the OnClick event of the Add button is shown here:

procedure TMainForm.sbAddClick(Sender: TObject);
begin
if OpenDialog.Execute then
begin
tblSounds.Append;
tblSounds[‘FileName’] := ExtractFileName(OpenDialog.FileName);
tblSoundsWave.LoadFromFile(OpenDialog.FileName);
edTitle.SetFocus;

end;
end;

33.65227_Ch28 11/30/1999 5:45 PM Page 1172

The code first attempts to execute OpenDialog. If it’s successful, tblSounds is put into Append
mode, the FileName field is assigned a value, and the Wave BLOB field is loaded from the file
specified by OpenDialog. Notice that TBlobField’s LoadFromFile method is very handy here,
and the code is very clean for loading a file into a BLOB field.

Similarly, the Save button saves the current WAV sound found in the Wave field to an external
file. The code for this button is as follows:

procedure TMainForm.sbSaveClick(Sender: TObject);
begin
with SaveDialog do
begin
FileName := tblSounds[‘FileName’]; // initialize file name
if Execute then // execute dialog
tblSoundsWave.SaveToFile(FileName); // save blob to file

end;
end;

There’s even less code here. SaveDialog is initialized with the value of the FileName field. If
SaveDialog’s execution is successful, tblSoundsWave’s SaveToFile method is called to save
the contents of the BLOB field to the file.

The handler for the Play button does the work of reading the WAV data from the BLOB field
and passing it to the PlaySound() API function to be played. The code for this handler, shown
next, is a bit more complex than the code shown thus far:

procedure TMainForm.sbPlayClick(Sender: TObject);
var
B: TBlobStream;
M: TMemoryStream;

begin
B := TBlobStream.Create(tblSoundsWave, bmRead); // create blob stream
Screen.Cursor := crHourGlass; // wait hourglass
try
M := TMemoryStream.Create; // create memory stream
try
M.CopyFrom(B, B.Size); // copy from blob to memory stream
// Attempt to play sound. Raise exception if something goes wrong
Win32Check(PlaySound(M.Memory, 0, SND_SYNC or SND_MEMORY));

finally
M.Free;

end;
finally
Screen.Cursor := crDefault;
B.Free; // clean up

end;
end;

Writing Desktop Database Applications

CHAPTER 28
1173

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

33.65227_Ch28 11/30/1999 5:45 PM Page 1173

The first thing this method does is to create an instance of TBlobStream, B, using the
tblSoundsWave BLOB field. The first parameter passed to TBlobStream.Create() is the
BLOB field object, and the second parameter indicates how you want to open the stream.
Typically, you’ll use bmRead for read-only access to the BLOB stream or bmReadWrite for
read/write access.

Database Development

PART IV
1174

TIP

The dataset must be in Edit, Insert, or Append mode to open a TBlobStream with
bmReadWrite privilege.

An instance of TMemoryStream, M, is then created. At this point, the cursor shape is changed to
an hourglass to let the user know that the operation may take a couple of seconds. The stream B
is then copied to the stream M. The function used to play a WAV sound, PlaySound(), requires
a filename or a memory pointer as its first parameter. TBlobStream doesn’t provide pointer
access to the stream data, but TMemoryStream does through its Memory property. Given that,
you can successfully call PlaySound() to play the data pointed at by M.Memory. Once the func-
tion is called, it cleans up by freeing the streams and restoring the cursor. The complete code
for the main unit of this project is shown in Listing 28.2.

LISTING 28.2 The Main Unit for the Wavez Project

unit Main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
ExtCtrls, DBCtrls, DB, DBTables, StdCtrls, Mask, Buttons, ComCtrls;

type
TMainForm = class(TForm)
tblSounds: TTable;
dsSounds: TDataSource;
tblSoundsWaveTitle: TStringField;
tblSoundsWave: TBlobField;
edTitle: TDBEdit;
edFileName: TDBEdit;
Label1: TLabel;
Label2: TLabel;
OpenDialog: TOpenDialog;
tblSoundsFileName: TStringField;

33.65227_Ch28 11/30/1999 5:45 PM Page 1174

SaveDialog: TSaveDialog;
pnlToobar: TPanel;
sbPlay: TSpeedButton;
sbAdd: TSpeedButton;
sbSave: TSpeedButton;
sbExit: TSpeedButton;
Bevel1: TBevel;
dbnNavigator: TDBNavigator;
stbStatus: TStatusBar;
procedure sbPlayClick(Sender: TObject);
procedure sbAddClick(Sender: TObject);
procedure sbSaveClick(Sender: TObject);
procedure sbExitClick(Sender: TObject);
procedure FormCreate(Sender: TObject);

private
procedure OnAppHint(Sender: TObject);

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

uses MMSystem;

procedure TMainForm.sbPlayClick(Sender: TObject);
var
B: TBlobStream;
M: TMemoryStream;

begin
B := TBlobStream.Create(tblSoundsWave, bmRead); // create blob stream
Screen.Cursor := crHourGlass; // wait hourglass
try
M := TMemoryStream.Create; // create memory stream
try
M.CopyFrom(B, B.Size); // copy from blob to memory stream
// Attempt to play sound. Show error box if something goes wrong
Win32Check(PlaySound(M.Memory, 0, SND_SYNC or SND_MEMORY));

finally
M.Free;

end;
finally
Screen.Cursor := crDefault;
B.Free; // clean up

Writing Desktop Database Applications

CHAPTER 28
1175

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

continues

33.65227_Ch28 11/30/1999 5:45 PM Page 1175

LISTING 28.2 Continued

end;
end;

procedure TMainForm.sbAddClick(Sender: TObject);
begin
if OpenDialog.Execute then
begin
tblSounds.Append;
tblSounds[‘FileName’] := ExtractFileName(OpenDialog.FileName);
tblSoundsWave.LoadFromFile(OpenDialog.FileName);
edTitle.SetFocus;

end;
end;

procedure TMainForm.sbSaveClick(Sender: TObject);
begin
with SaveDialog do
begin
FileName := tblSounds[‘FileName’]; // initialize file name
if Execute then // execute dialog
tblSoundsWave.SaveToFile(FileName); // save blob to file

end;
end;

procedure TMainForm.sbExitClick(Sender: TObject);
begin
Close;

end;

procedure TMainForm.FormCreate(Sender: TObject);
begin
Application.OnHint := OnAppHint;

end;

procedure TMainForm.OnAppHint(Sender: TObject);
begin
stbStatus.SimpleText := Application.Hint;

end;

end.

Refreshing the Dataset
If there’s one thing you can count on when you create database applications, it’s that data con-
tained in a dataset is in a constant state of flux. Records will constantly be added to, removed

Database Development

PART IV
1176

33.65227_Ch28 11/30/1999 5:45 PM Page 1176

from, and modified in your dataset, particularly in a networked environment. Because of this,
you may occasionally need to reread the dataset information from disk or memory to update
the contents of your dataset.

You can update your dataset using TDataset’s Refresh() method. It functionally does about
the same thing as using Close() and then Open() on the dataset, but Refresh() is a bit faster.
The Refresh() method works with all local tables; however, some restrictions apply when
using Refresh() with a database from a SQL database server.

TTable components connected to SQL databases must have a unique index before the BDE
will attempt a Refresh() operation. This is because Refresh() tries to preserve the current
record, if possible. This means that the BDE has to use Seek() to go to the current record at
some point, which is practical only on a SQL dataset if a unique index is available. Refresh()
does not work for TQuery components connected to SQL databases.

Writing Desktop Database Applications

CHAPTER 28
1177

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

CAUTION

When Refresh() is called, it can create some unexpected side effects for the users of
your program. For example, if user 1 is viewing a record on a networked table, and
that record has been deleted by user 2, a call to Refresh() will cause user 1 to see
the record disappear for no apparent reason. The fact that data could be changing
beneath the user is something you need to keep in mind when you call this function.

Altered States
At some point, you may need to know whether a table is in Edit mode or Append mode, or
even if it’s active. You can obtain this information by inspecting TDataset’s State property.
The State property is of type TDataSetState, and it can have any one of the values shown in
Table 28.4.

TABLE 28.4 Values for TDataSet.State

Value Meaning

dsBrowse The dataset is in Browse (normal) mode.

dsCalcFields The OnCalcFields event has been called, and a record value calculation is in
progress.

dsEdit The dataset is in Edit mode. This means the Edit() method has been called,
but the edited record has not yet been posted.

dsInactive The dataset is closed.

continues

33.65227_Ch28 11/30/1999 5:45 PM Page 1177

TABLE 28.4 Continued

Value Meaning

dsInsert The dataset is in Insert mode. This typically means that Insert() has been
called but changes haven’t been posted.

dsSetKey The dataset is in SetKey mode, meaning that SetKey() has been called but
GotoKey() hasn’t yet been called.

dsNewValue The dataset is in a temporary state where the NewValue property is being
accessed.

dsOldValue The dataset is in a temporary state where the OldValue property is being
accessed.

dsCurValue The dataset is in a temporary state where the OldValue property is being
accessed.

dsFilter The dataset is currently processing a record filter, lookup, or some other opera-
tion that requires a filter.

dsBlockRead Data is being buffered en masse, so data-aware controls are not updated and
events are not triggered when the cursor moves while this member is set.

dsInternalCalc A field value is currently being calculated for a field that has a FieldKind of
fkInternalCalc.

dsOpening DataSet is in the process of opening but has not finished. This state occurs
when the dataset is opened for asynchronous fetching.

Filters
Filters enable you to do simple dataset searching or filtering using only Object Pascal code.
The primary advantage of using filters is that they don’t require an index or any other prepara-
tion on the datasets with which they’re used. In many cases, filters can be a bit slower than
index-based searching (which is covered later in this chapter), but they’re still very usable in
almost any type of application.

Filtering a Dataset
One of the more common uses of Delphi’s filtering mechanism is to limit a view of a dataset to
some specific records only. This is a simple two-step process:

1. Assign a procedure to the dataset’s OnFilterRecord event. Inside of this procedure, you
should write code that accepts records based on the values of one or more fields.

2. Set the dataset’s Filtered property to True.

As an example, Figure 28.11 shows a form containing TDBGrid, which displays an unfiltered
view of Delphi’s CUSTOMER table.

Database Development

PART IV
1178

33.65227_Ch28 11/30/1999 5:45 PM Page 1178

FIGURE 28.11
An unfiltered view of the CUSTOMER table.

In step 1, you write a handler for the table’s OnFilterRecord event. In this case, we’ll accept
only records whose Company field starts with the letter S. The code for this procedure is shown
here:

procedure TForm1.Table1FilterRecord(DataSet: TDataSet;
var Accept: Boolean);

var
FieldVal: String;

begin
FieldVal := DataSet[‘Company’]; // Get the value of the Company field
Accept := FieldVal[1] = ‘S’; // Accept record if field starts with ‘S’

end;

After following step 2 and setting the table’s Filtered property to True, you can see in Figure
28.12 that the grid displays only those records that meet the filter criteria.

Writing Desktop Database Applications

CHAPTER 28
1179

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

FIGURE 28.12
A filtered view of the CUSTOMER table.

33.65227_Ch28 11/30/1999 5:45 PM Page 1179

FindFirst/FindNext
TDataSet also provides methods called FindFirst(), FindNext(), FindPrior(), and
FindLast() that employ filters to find records that match a particular search criteria. All these
functions work on unfiltered datasets by calling that dataset’s OnFilterRecord event handler.
Based on the search criteria in the event handler, these functions will find the first, next, previ-
ous, or last match, respectively. Each of these functions accepts no parameters and returns a
Boolean, which indicates whether a match was found.

Locating a Record
Not only are filters useful for defining a subset view of a particular dataset, but they can also
be used to search for records within a dataset based on the value of one or more fields. For this
purpose, TDataSet provides a method called Locate(). Once again, because Locate()
employs filters to do the searching, it will work irrespective of any index applied to the dataset.
The Locate() method is defined as follows:

function Locate(const KeyFields: string; const KeyValues: Variant;
Options: TLocateOptions): Boolean;

The first parameter, KeyFields, contains the name of the field(s) on which you want to search.
The second parameter, KeyValues, holds the field value(s) you want to locate. The third and
last parameter, Options, allows you to customize the type of search you want to perform. This
parameter is of type TLocateOptions, which is a set type defined in the DB unit as follows:

type
TLocateOption = (loCaseInsensitive, loPartialKey);
TLocateOptions = set of TLocateOption;

If the set includes the loCaseInsensitive member, a case-insensitive search of the data will
be performed. If the set includes the loPartialKey member, the values contained in KeyValues
will match even if they’re substrings of the field value.

Database Development

PART IV
1180

NOTE

The OnFilterRecord event should only be used in cases where the filter cannot be
expressed in the Filter property. The reason for this is that it can provide significant
performance benefits. On SQL databases, for example, the TTable component will
pass the contents of the FILTER property in a WHERE clause to the database, which is
generally much faster than the record-by-record search performed in
OnFilterRecord.

33.65227_Ch28 11/30/1999 5:45 PM Page 1180

Locate() will return True if it finds a match. For example, to search for the first occurrence of
the value 1356 in the CustNo field of Table1, use the following syntax:

Table1.Locate(‘CustNo’, 1356, []);

Writing Desktop Database Applications

CHAPTER 28
1181

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

TIP

You should use Locate() whenever possible to search for records, because it will
always attempt to use the fastest method possible to find the item, switching indexes
temporarily if necessary. This makes your code independent of indexes. Also, if you
determine that you no longer need an index on a particular field, or if adding one
will make your program faster, you can make that change on the data without hav-
ing to recode the application.

Using TTable
This section describes the common properties and methods of the TTable component and how
to use them. In particular, you learn how to search for records, filter records using ranges, and
create tables. This section also contains a discussion of TTable events.

Searching for Records
When you need to search for records in a table, VCL provides several methods to help you
out. When you’re working with dBASE and Paradox tables, Delphi assumes that the fields on
which you search are indexed. For SQL tables, the performance of your search will suffer if
you search on unindexed fields.

Say, for example, you have a table that’s keyed on field 1, which is numeric, and on field 2,
which is alphanumeric. You can search for a specific record based on those two criteria in one
of two ways: using the FindKey() technique or the SetKey()..GotoKey() technique.

FindKey()
TTable’s FindKey() method enables you to search for a record matching one or more keyed
fields in one function call. FindKey() accepts an array of const (the search criteria) as a
parameter and returns True when it’s successful. For example, the following code causes the
dataset to move to the record where the first field in the index has the value 123 and the second
field in the index contains the string Hello:

if not Table1.FindKey([123, ‘Hello’]) then MessageBeep(0);

If a match is not found, FindKey() returns False and the computer beeps.

33.65227_Ch28 11/30/1999 5:45 PM Page 1181

SetKey()..GotoKey()
Calling TTable’s SetKey() method puts the table in a mode that prepares its fields to be loaded
with values representing search criteria. Once the search criteria have been established, use the
GotoKey() method to do a top-down search for a matching record. The previous example can
be rewritten with SetKey()..GotoKey(), as follows:

with Table1 do begin
SetKey;
Fields[0].AsInteger := 123;
Fields[1].AsString := ‘Hello’;
if not GotoKey then MessageBeep(0);

end;

The Closest Match
Similarly, you can use FindNearest() or the SetKey..GotoNearest methods to search for a
value in the table that’s the closest match to the search criteria. To search for the first record
where the value of the first indexed field is closest to (greater than or equal to) 123, use the fol-
lowing code:

Table1.FindNearest([123]);

Once again, FindNearest() accepts an array of const as a parameter that contains the field
values for which you want to search.

To search using the longhand technique provided by SetKey()..GotoNearest(), you can use
this code:

with Table1 do begin
SetKey;
Fields[0].AsInteger := 123;
GotoNearest;

end;

If the search is successful and the table’s KeyExclusive property is set to False, the record
pointer will be on the first matching record. If KeyExclusive is True, the current record will be
the one immediately following the match.

Database Development

PART IV
1182

TIP

If you want to search on the indexed fields of a table, use FindKey() and
FindNearest()—rather than SetKey()..GotoX()—whenever possible because you
type less code and leave less room for human error.

33.65227_Ch28 11/30/1999 5:45 PM Page 1182

Which Index?
All these searching methods assume that you’re searching under the table’s primary index. If
you want to search using a secondary index, you need to set the table’s IndexName parameter
to the desired index. For instance, if your table had a secondary index on the Company field
called ByCompany, the following code would enable you to search for the company “Unisco”:

with Table1 do begin
IndexName := ‘ByCompany’;
SetKey;
FieldValues[‘Company’] := ‘Unisco’;
GotoKey;

end;

Writing Desktop Database Applications

CHAPTER 28
1183

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

NOTE

Keep in mind that some overhead is involved in switching indexes while a table is
opened. You should expect a delay of a second or more when you set the IndexName
property to a new value.

Ranges enable you to filter a table so that it contains only records with field values that fall
within a certain scope you define. Ranges work similar to key searches, and as with searches,
there are several ways to apply a range to a given table—either using the SetRange() method
or the manual SetRangeStart(), SetRangeEnd(), and ApplyRange() methods.

CAUTION

If you are working with dBASE or Paradox tables, ranges only work with indexed
fields. If you’re working with SQL data, performance will suffer greatly if you don’t
have an index on the ranged field.

SetRange()
Like FindKey() and FindNearest(), SetRange() enables you to perform a fairly complex
action on a table with one function call. SetRange() accepts two array of const variables as
parameters: The first represents the field values for the start of the range, and the second repre-
sents the field values for the end of the range. As an example, the following code filters
through only those records where the value of the first field is greater than or equal to 10 but
less than or equal to 15:

Table1.SetRange([10], [15]);

33.65227_Ch28 11/30/1999 5:45 PM Page 1183

ApplyRange()
To use the ApplyRange() method of setting a range, follow these steps:

1. Call the SetRangeStart() method and then modify the Fields[] array property of the
table to establish the starting value of the keyed field(s).

2. Call the SetRangeEnd() method and modify the Fields[] array property once again to
establish the ending value of the keyed field(s).

3. Call ApplyRange() to establish the new range filter.

The preceding range example could be rewritten using this technique:

with Table1 do begin
SetRangeStart;
Fields[0].AsInteger := 10; // range starts at 10
SetRangeEnd;
Fields[0].AsInteger := 15; // range ends at 15
ApplyRange;

end;

Database Development

PART IV
1184

TIP

Use SetRange() whenever possible to filter records—your code will be less prone to
error when doing so.

To remove a range filter from a table and restore the table to the state it was in before you
called ApplyRange() or SetRange(), just call TTable’s CancelRange() method.

Table1.CancelRange;

Master/Detail Tables
Very often, when programming databases, you’ll find situations where the data to be managed
lends itself to being broken up into multiple tables that relate to one another. The classic exam-
ple is a customer table with one record per customer information and an orders table with one
record per order. Because every order would have to be made by one of the customers, a nat-
ural relationship forms between the two collections of data. This is called a one-to-many rela-
tionship, because one customer may have many orders (the customer table being the master
and the orders table being the detail).

Delphi makes it easy to create these types of relationships between tables. In fact, it’s all han-
dled at design time through the Object Inspector; therefore, it’s not even necessary for you to
write any code. Start with an empty project and add two each of the TTable, TDataSource, and

33.65227_Ch28 11/30/1999 5:45 PM Page 1184

TDBGrid components. DBGrid1 will hook to Table1 via DataSource1, and DBGrid2 hooks to
Table2 via DataSource2. Using the DBDEMOS alias as the DatabaseName, Table1 hooks to the
CUSTOMER.DB table, and Table2 hooks to the ORDERS.DB table. Your form should look like the
one shown in Figure 28.13.

Writing Desktop Database Applications

CHAPTER 28
1185

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

FIGURE 28.13
The master/detail main form in progress.

You now have two unrelated tables sharing the same form. Once you’ve come this far, the only
thing left to do is to create the relationship between the tables using the MasterSource and
MasterFields properties of the detail table. Table2’s MasterSource property should be set to
DataSource1. When you attempt to edit the MasterFields property, you are presented with a
property editor called the Field Link Designer. This is shown in Figure 28.14.

FIGURE 28.14
The Field Link Designer.

In this dialog, you specify which common fields relate the two tables to one another. The field
the two tables have in common is CustNo—a numeric identifier that represents a customer.
Because the CustNo field is not a part of the ORDERS table’s primary index, you’ll need to
switch to a secondary index that does include the CustNo field. You can do that using the
Available Indexes drop-down list in the Field Link Designer. Once you’ve switched to the

33.65227_Ch28 11/30/1999 5:45 PM Page 1185

CustNo index, you can then select the CustNo field from both the Detail Fields and Master
Fields list boxes and click the Add button to create a link between the tables. Click OK to dis-
miss the Field Link Designer.

You’ll now notice that as you move through the records in Table1, the view of Table2 will be
limited to only those records that share the same value in the CustNo field as Table1. The
behavior is shown in the finished application in Figure 28.15.

Database Development

PART IV
1186

FIGURE 28.15
Master/detail demo program.

TTable Events
TTable provides you with events that occur before and after a record in the table is deleted,
edited, and inserted, whenever a modification is posted or canceled, and whenever the table is
opened or closed. This is so that you have full control of your database application. The
nomenclature for these events is BeforeXXX and AfterXXX, where XXX stands for Delete, Edit,
Insert, Open, and so on. These events are fairly self-explanatory, and you’ll use them in the
database applications in Parts II, “Advanced Techniques,” and III, “Component-Based
Development,” of this book.

TTable’s OnNewRecord event fires every time a new record is posted to the table. It’s ideal to
perform various housekeeping tasks in a handler for this event. An example of this would be to
keep a running total of records added to a table.

The OnCalcFields event occurs whenever the table cursor is moved off the current record or
the current record changes. Adding a handler for the OnCalcFields event enables you to keep a
calculated field current whenever the table is modified.

Creating a Table in Code
Instead of creating all your database tables up front (using the Database Desktop, for example)
and deploying them with your application, a time will come when you’ll need your program to

33.65227_Ch28 11/30/1999 5:45 PM Page 1186

have the capability to create local tables for you. When this need arises, once again VCL has
you covered. TTable contains the CreateTable() method, which enables you to create tables
on disk. Simply follow these steps to create a table:

1. Create an instance of TTable.

2. Set the DatabaseName property of the table to a directory or existing alias.

3. Give the table a unique name in the TableName property.

4. Set the TableType property to indicate what type of table you want to create. If you set
this property to ttDefault, the table type will correspond to the extension of the name
provided in the TableName property (for example, DB stands for Paradox, and DBF
stands for dBASE).

5. Use Add() method for TTable.FieldDefs to add fields to the table. The Add() method
takes four parameters:

• A string indicating the field name.

• A TFieldType variable indicating the field type.

• A word parameter that represents the size of the field. Note that this parameter is
only valid for types such as String and Memo, where the size may vary. Fields such
as Integer and Date are always the same size, so this parameter doesn’t apply to
them.

• A Boolean parameter that dictates whether this is a required field. All required
fields must have a value before a record can be posted to a table.

6. If you want the table to have an index, use the Add() method of TTable.IndexDefs to
add indexed fields. IndexDefs.Add() takes the following three parameters:

• A string that identifies the index.

• A string that matches the field name to be indexed. Composite key indexes
(indexes on multiple fields) can be specified as a semicolon-delimited list of field
names.

• A set of TIndexOptions that determines the index type.

7. Call TTable.CreateTable().

The following code creates a table with Integer, String, and Float fields with an index on
the Integer field. The table is called FOO.DB, and it will live in the C:\TEMP directory:

begin
with TTable.Create(Self) do begin // create TTable object
DatabaseName := ‘c:\temp’; // point to directory or alias
TableName := ‘FOO’; // give table a name
TableType := ttParadox; // make a Paradox table
with FieldDefs do begin

Writing Desktop Database Applications

CHAPTER 28
1187

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

33.65227_Ch28 11/30/1999 5:45 PM Page 1187

Add(‘Age’, ftInteger, 0, True); // add an integer field
Add(‘Name’, ftString, 25, False); // add a string field
Add(‘Weight’, ftFloat, 0, False); // add a floating-point field

end;
{ create a primary index on the Age field... }
IndexDefs.Add(‘’, ‘Age’, [ixPrimary, ixUnique]);
CreateTable; // create the table

end;
end;

Database Development

PART IV
1188

NOTE

As mentioned earlier, TTable.CreateTable() works only for local tables. For SQL
tables, you should use a technique that employs TQuery (this is shown in the next
chapter).

Data Modules
Data modules enable you to keep all your database rules and relationships in one central loca-
tion to be shared across projects, groups, or enterprises. Data modules are encapsulated by
VCL’s TDataModule component. Think of TDataModule as an invisible form on which you can
drop data-access components to be used throughout a project. Creating a TDataModule instance
is simple: Select File, New from the main menu and then select Data Module from the Object
Repository.

The simple justification for using TDataModule over just putting data-access components on a
form is that it’s easier to share the same data across multiple forms and units in your project. In
a more complex situation, you would have an arrangement of multiple TTable, TQuery, and/or
TStoredProc components. You might have relationships defined between the components and
perhaps rules enforced on the field level, such as minimum/maximum values or display for-
mats. Perhaps this assortment of data-access components models the business rules of your
enterprise. After taking great pains to set up something so impressive, you wouldn’t want to
have to do it again for another application, would you? Of course you wouldn’t. In such cases,
you would want to save your data module to the Object Repository for later use. If you work in
a team environment, you might even want to keep the Object Repository on a shared network
drive for the use of all the developers on your team.

In the example that follows, you’ll create a simple instance of a data module so that many
forms have access to the same data. In the database applications shown in several of the later
chapters, you’ll build more complex relationships into data modules.

33.65227_Ch28 11/30/1999 5:45 PM Page 1188

The Search, Range, and Filter Demo
Now it’s time to create a sample application to help drive home some of the key concepts that
were covered in this chapter. In particular, this application will demonstrate the proper use of
filters, key searches, and range filters in your applications. This project, called SRF, contains
multiple forms. The main form consists mainly of a grid for browsing a table, and other forms
demonstrate the different concepts mentioned earlier. Each of these forms will be explained
in turn.

The Data Module
Although we’re starting a bit out of order, the data module for this project will be covered first.
This data module, called DM, contains only a TTable and a TDataSource component. The
TTable, called Table1, is hooked to the CUSTOMERS.DB table in the DBDEMOS alias. The
TDataSource, DataSource1, is wired to Table1. All the data-aware controls in this project will
use DataSource1 as their DataSource. DM is contained in a unit called DataMod, and it’s shown
in its design-time state in Figure 28.16.

Writing Desktop Database Applications

CHAPTER 28
1189

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

FIGURE 28.16
DM, the data module.

33.65227_Ch28 11/30/1999 5:45 PM Page 1189

The Main Form
The main form for SRF, appropriately called MainForm, is shown in Figure 28.17. This form is
contained in a unit called Main. As you can see, it contains a TDBGrid control, DBGrid1, for
browsing a table, and it contains a radio button that enables you to switch between different
indexes on the table. DBGrid1, as explained earlier, is hooked to DM.DataSource1 as its data
source.

Database Development

PART IV
1190

NOTE

In order for DBGrid1 to be able to hook to DM.DataSource1 at design time, the
DataMod unit must be in the uses clause of the Main unit. The easiest way to do this is
to bring up the Main unit in the Code Editor and select File, Use Unit from the main
menu. You’ll then be presented with a list of units in your project from which you
can select DataMod. You must do this for each of the units from which you want to
access the data contained within DM.

FIGURE 28.17
MainForm in the SRF project.

The radio group, called RGKeyField, is used to determine which of the table’s two indexes is
currently active. The code attached to the OnClick event for RGKeyField is shown here:

procedure TMainForm.RGKeyFieldClick(Sender: TObject);
begin
case RGKeyField.ItemIndex of
0: DM.Table1.IndexName := ‘’; // primary index
1: DM.Table1.IndexName := ‘ByCompany’; // secondary, by company

end;
end;

MainForm also contains a TMainMenu component, MainMenu1, which enables you to open and
close each of the other forms. The items on this menu are Key Search, Range, Filter, and Exit.
The Main unit, in its entirety, is shown in Listing 28.3.

33.65227_Ch28 11/30/1999 5:45 PM Page 1190

LISTING 28.3 The Source Code for MAIN.PAS

unit Main;

interface

uses
SysUtils, Windows, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, ExtCtrls, Grids, DBGrids, DB, DBTables,
Buttons, Mask, DBCtrls, Menus;

type
TMainForm = class(TForm)
DBGrid1: TDBGrid;
RGKeyField: TRadioGroup;
MainMenu1: TMainMenu;
Forms1: TMenuItem;
KeySearch1: TMenuItem;
Range1: TMenuItem;
Filter1: TMenuItem;
N1: TMenuItem;
Exit1: TMenuItem;
procedure RGKeyFieldClick(Sender: TObject);
procedure KeySearch1Click(Sender: TObject);
procedure Range1Click(Sender: TObject);
procedure Filter1Click(Sender: TObject);
procedure Exit1Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
MainForm: TMainForm;

implementation

uses DataMod, KeySrch, Rng, Fltr;

{$R *.DFM}

procedure TMainForm.RGKeyFieldClick(Sender: TObject);
begin
case RGKeyField.ItemIndex of
0: DM.Table1.IndexName := ‘’; // primary index
1: DM.Table1.IndexName := ‘ByCompany’; // secondary, by company

Writing Desktop Database Applications

CHAPTER 28
1191

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

continues

33.65227_Ch28 11/30/1999 5:45 PM Page 1191

LISTING 28.3 Continued

end;
end;

procedure TMainForm.KeySearch1Click(Sender: TObject);
begin
KeySearch1.Checked := not KeySearch1.Checked;
KeySearchForm.Visible := KeySearch1.Checked;

end;

procedure TMainForm.Range1Click(Sender: TObject);
begin
Range1.Checked := not Range1.Checked;
RangeForm.Visible := Range1.Checked;

end;

procedure TMainForm.Filter1Click(Sender: TObject);
begin
Filter1.Checked := not Filter1.Checked;
FilterForm.Visible := Filter1.Checked;

end;

procedure TMainForm.Exit1Click(Sender: TObject);
begin
Close;

end;

end.

The Range Form
RangeForm is shown in Figure 28.18. RangeForm is located in a unit called Rng. This form
enables you to set a range on the data displayed in MainForm to limit the view of the table.
Depending on the active index, the items you specify in the Range Start and Range End edit
controls can be either numeric (the primary index) or text (the secondary index). Listing 28.4
shows the source code for RNG.PAS.

Database Development

PART IV
1192

FIGURE 28.18
The RangeForm form.

33.65227_Ch28 11/30/1999 5:45 PM Page 1192

LISTING 28.4 The Source Code for RNG.PAS

unit Rng;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ExtCtrls;

type
TRangeForm = class(TForm)
Panel1: TPanel;
Label2: TLabel;
StartEdit: TEdit;
Label1: TLabel;
EndEdit: TEdit;
Label7: TLabel;
ApplyButton: TButton;
CancelButton: TButton;
procedure ApplyButtonClick(Sender: TObject);
procedure CancelButtonClick(Sender: TObject);

private
{ Private declarations }
procedure ToggleRangeButtons;

public
{ Public declarations }

end;

var
RangeForm: TRangeForm;

implementation

uses DataMod;

{$R *.DFM}

procedure TRangeForm.ApplyButtonClick(Sender: TObject);
begin
{ Set range of records in dataset from StartEdit’s value to EndEdit’s }
{ value. Strings are again implicitly converted to numerics. }
DM.Table1.SetRange([StartEdit.Text], [EndEdit.Text]);
ToggleRangeButtons; // enable proper buttons

end;

procedure TRangeForm.CancelButtonClick(Sender: TObject);

Writing Desktop Database Applications

CHAPTER 28
1193

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

continues

33.65227_Ch28 11/30/1999 5:45 PM Page 1193

LISTING 28.4 Continued

begin
DM.Table1.CancelRange; // remove set range
ToggleRangeButtons; // enable proper buttons

end;

procedure TRangeForm.ToggleRangeButtons;
begin
{ Toggle the enabled property of the range buttons }
ApplyButton.Enabled := not ApplyButton.Enabled;
CancelButton.Enabled := not CancelButton.Enabled;

end;

end.

Database Development

PART IV
1194

NOTE

Pay close attention to the following line of code from the Rng unit:

DM.Table1.SetRange([StartEdit.Text], [EndEdit.Text]);

You might find it strange that although the keyed field can be of either a Numeric
type or Text type, you’re always passing strings to the SetRange() method. Delphi
allows this because SetRange(), FindKey(), and FindNearest() will perform the con-
version from String to Integer, and vice versa, automatically.

What this means to you is that you should not bother calling IntToStr() or
StrToInt() in these situations—it will be taken care of for you.

The Key Search Form
KeySearchForm, contained in the KeySrch unit, provides a means for the user of the application
to search for a particular key value in the table. The form enables the user to search for a value
in one of two ways. First, when the Normal radio button is selected, the user can search by typ-
ing text into the Search For edit control and pressing the Exact or Nearest button to find an
exact match or closest match in the table. Second, when the Incremental radio button is
selected, the user can perform an incremental search on the table every time he or she changes
the text in the Search For edit control. The form is shown in Figure 28.19. The code for the
KeySrch unit is shown in Listing 28.5.

33.65227_Ch28 11/30/1999 5:45 PM Page 1194

FIGURE 28.19
The KeySearchForm form.

LISTING 28.5 The Source Code for KeySrch.PAS

unit KeySrch;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ExtCtrls;

type
TKeySearchForm = class(TForm)
Panel1: TPanel;
Label3: TLabel;
SearchEdit: TEdit;
RBNormal: TRadioButton;
Incremental: TRadioButton;
Label6: TLabel;
ExactButton: TButton;
NearestButton: TButton;
procedure ExactButtonClick(Sender: TObject);
procedure NearestButtonClick(Sender: TObject);
procedure RBNormalClick(Sender: TObject);
procedure IncrementalClick(Sender: TObject);

private
procedure NewSearch(Sender: TObject);

end;

var
KeySearchForm: TKeySearchForm;

implementation

uses DataMod;

Writing Desktop Database Applications

CHAPTER 28
1195

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

continues

33.65227_Ch28 11/30/1999 5:45 PM Page 1195

LISTING 28.5 Continued

{$R *.DFM}

procedure TKeySearchForm.ExactButtonClick(Sender: TObject);
begin
{ Try to find record where key field matches SearchEdit’s Text value. }
{ Notice that Delphi handles the type conversion from the string }
{ edit control to the numeric key field value. }
if not DM.Table1.FindKey([SearchEdit.Text]) then
MessageDlg(Format(‘Match for “%s” not found.’, [SearchEdit.Text]),

mtInformation, [mbOk], 0);
end;

procedure TKeySearchForm.NearestButtonClick(Sender: TObject);
begin
{ Find closest match to SearchEdit’s Text value. Note again the }
{ implicit type conversion. }
DM.Table1.FindNearest([SearchEdit.Text]);

end;

procedure TKeySearchForm.NewSearch(Sender: TObject);
{ This is the method which is wired to the SearchEdit’s OnChange }
{ event whenever the Incremental radio is selected. }
begin
DM.Table1.FindNearest([SearchEdit.Text]); // search for text

end;

procedure TKeySearchForm.RBNormalClick(Sender: TObject);
begin

ExactButton.Enabled := True; // enable search buttons
NearestButton.Enabled := True;
SearchEdit.OnChange := Nil; // unhook the OnChange event

end;

procedure TKeySearchForm.IncrementalClick(Sender: TObject);
begin
ExactButton.Enabled := False; // disable search buttons
NearestButton.Enabled := False;
SearchEdit.OnChange := NewSearch; // hook the OnChange event
NewSearch(Sender); // search current text

end;

end.

The code for the KeySrch unit should be fairly straightforward to you. You might notice that,
once again, we can safely pass text strings to the FindKey() and FindNearest() methods with

Database Development

PART IV
1196

33.65227_Ch28 11/30/1999 5:45 PM Page 1196

the knowledge that they will do the right thing with regard to type conversion. You might also
appreciate the small trick that’s employed to switch to and from incremental searching on the
fly. This is accomplished by either assigning a method to or assigning Nil to the OnChange
event of the SearchEdit edit control. When assigned a handler method, the OnChange event
will fire whenever the text in the control is modified. By calling FindNearest() inside that
handler, an incremental search can be performed as the user types.

The Filter Form
The purpose of FilterForm, found in the Fltr unit, is two-fold. First, it enables the user to fil-
ter the view of the table to a set where the value of the State field matches that of the current
record. Second, this form enables the user to search for a record where the value of any field in
the table is equal to some value he or she has specified. This form is shown in Figure 28.20.

Writing Desktop Database Applications

CHAPTER 28
1197

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

FIGURE 28.20
The FilterForm form.

The record-filtering functionality actually involves very little code. First, the state of the check
box labeled Filter on this State (called cbFiltered) determines the setting of DM.Table1’s
Filtered property. This is accomplished with the following line of code attached to
cbFiltered.OnClick:

DM.Table1.Filtered := cbFiltered.Checked;

When DM.Table1.Filtered is True, Table1 filters records using the following
OnFilterRecord method, which is actually located in the DataMod unit:

procedure TDM.Table1FilterRecord(DataSet: TDataSet;
var Accept: Boolean);

begin
{ Accept record as a part of the filter if the value of the State }
{ field is the same as that of DBEdit1.Text. }
Accept := Table1State.Value = FilterForm.DBEdit1.Text;

end;

33.65227_Ch28 11/30/1999 5:45 PM Page 1197

To perform the filter-based search, the Locate() method of TTable is employed:

DM.Table1.Locate(CBField.Text, EValue.Text, LO);

The field name is taken from a combo box called CBField. The contents of this combo box are
generated in the OnCreate event of this form using the following code to iterate through the
fields of Table1:

procedure TFilterForm.FormCreate(Sender: TObject);
var
i: integer;

begin
with DM.Table1 do begin
for i := 0 to FieldCount - 1 do
CBField.Items.Add(Fields[i].FieldName);

end;
end;

Database Development

PART IV
1198

TIP

The preceding code will only work when DM is created prior to this form. Otherwise,
any attempts to access DM before it’s created will probably result in an Access
Violation error. To make sure that the data module, DM, is created prior to any of the
child forms, we manually adjusted the creation order of the forms in the Autocreate
Forms list on the Forms page of the Project Options dialog (found under Options,
Project on the main menu).

The main form must, of course, be the first one created, but other than that, this lit-
tle trick ensures that the data module gets created prior to any other form in the
application.

The complete code for the Fltr unit is shown in Listing 28.6.

LISTING 28.6 The Source Code for Fltr.pas

unit Fltr;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, Buttons, Mask, DBCtrls, ExtCtrls;

type
TFilterForm = class(TForm)
Panel1: TPanel;

33.65227_Ch28 11/30/1999 5:45 PM Page 1198

Label4: TLabel;
DBEdit1: TDBEdit;
cbFiltered: TCheckBox;
Label5: TLabel;
SpeedButton1: TSpeedButton;
SpeedButton2: TSpeedButton;
SpeedButton3: TSpeedButton;
SpeedButton4: TSpeedButton;
Panel2: TPanel;
EValue: TEdit;
LocateBtn: TButton;
Label1: TLabel;
Label2: TLabel;
CBField: TComboBox;
MatchGB: TGroupBox;
RBExact: TRadioButton;
RBClosest: TRadioButton;
CBCaseSens: TCheckBox;
procedure cbFilteredClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure LocateBtnClick(Sender: TObject);
procedure SpeedButton1Click(Sender: TObject);
procedure SpeedButton2Click(Sender: TObject);
procedure SpeedButton3Click(Sender: TObject);
procedure SpeedButton4Click(Sender: TObject);

end;

var
FilterForm: TFilterForm;

implementation

uses DataMod, DB;

{$R *.DFM}

procedure TFilterForm.cbFilteredClick(Sender: TObject);
begin
{ Filter table if checkbox is checked }
DM.Table1.Filtered := cbFiltered.Checked;

end;

procedure TFilterForm.FormCreate(Sender: TObject);
var
i: integer;

begin

Writing Desktop Database Applications

CHAPTER 28
1199

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

continues

33.65227_Ch28 11/30/1999 5:45 PM Page 1199

LISTING 28.6 Continued

with DM.Table1 do begin
for i := 0 to FieldCount - 1 do
CBField.Items.Add(Fields[i].FieldName);

end;
end;

procedure TFilterForm.LocateBtnClick(Sender: TObject);
var
LO: TLocateOptions;

begin
LO := [];
if not CBCaseSens.Checked then Include(LO, loCaseInsensitive);
if RBClosest.Checked then Include(LO, loPartialKey);
if not DM.Table1.Locate(CBField.Text, EValue.Text, LO) then
MessageDlg(‘Unable to locate match’, mtInformation, [mbOk], 0);

end;

procedure TFilterForm.SpeedButton1Click(Sender: TObject);
begin
DM.Table1.FindFirst;

end;

procedure TFilterForm.SpeedButton2Click(Sender: TObject);
begin
DM.Table1.FindNext;

end;

procedure TFilterForm.SpeedButton3Click(Sender: TObject);
begin
DM.Table1.FindPrior;

end;

procedure TFilterForm.SpeedButton4Click(Sender: TObject);
begin
DM.Table1.FindLast;

end;

end.

TQuery and TStoredProc: The Other Datasets
Although these components aren’t discussed in detail until the next chapter, this section is
intended to introduce you to the TQuery and TStoredProc components as TDataSet descen-
dants and siblings of TTable.

Database Development

PART IV
1200

33.65227_Ch28 11/30/1999 5:45 PM Page 1200

TQuery
The TQuery component enables you to use SQL to obtain specific datasets from one or more
tables. Delphi enables you to use the TQuery component with both file-oriented server data
(that is, Paradox and dBASE) and SQL server data. After assigning the DatabaseName property
of TQuery to an alias or directory, you can enter into the SQL property the lines of SQL code
you want to execute against the given database. For example, if Query1 were hooked to the
DBDEMOS alias, the following code would retrieve all records in the BIOLIFE table where the
Length (cm) field is greater than 100:

select * from BIOLIFE where BIOLIFE.”Length (cm)” > 100

Like other datasets, the query will execute when its Active property is set to True or when its
Open() method is called. If you want to perform a query that doesn’t return a result set (an
insert into query, for example), you should use ExecSQL() rather than Open() to invoke the
query.

Another important property of TQuery is RequestLive. The RequestLive property indicates
whether the result set returned is editable. Set this property to True when you want to edit the
data returned by a query.

Writing Desktop Database Applications

CHAPTER 28
1201

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

NOTE

Simply setting the RequestLive property doesn’t guarantee a live result set.
Depending on the structure of your query, the BDE may not be able to obtain a live
result set. For example, queries containing a HAVING clause, using the TO_DATE func-
tion, or containing abstract data type (ADT) fields are not editable (see the BDE doc-
umentation for a complete list of restrictions). To determine whether a query is live,
check the value of the CanModify property after opening the query.

In the next chapter, you’ll learn more about TQuery features such as parameterized queries and
SQL optimization.

TStoredProc
The TStoredProc component provides you with a means to execute stored procedures on a
SQL server. Because this is a server-specific feature—and certainly not for database begin-
ners—we’ll save the explanation of this component for the next chapter.

Text File Tables
Delphi provides limited support for using text file tables in your applications. Text tables must
consist of two files: a data file, which must end in a .TXT extension, and a schema file, which

33.65227_Ch28 11/30/1999 5:45 PM Page 1201

must end in an .SCH extension. Each file must have the same name (that is, FOO.TXT and
FOO.SCH). The data file can be of fixed length or delimited. The schema file tells the BDE how
to interpret the data file by providing information such as field names, sizes, and types.

The Schema File
The format of a schema file is similar to that of a Windows INI file. The section name is the
same as that of the table (minus the extension). Table 28.5 shows the items and possible item
values for a schema file.

TABLE 28.5 Schema File Items and Values

Item Possible Values Meaning

FILETYPE VARYING Each field in the file can occupy a variable amount of
space. Fields are separated with a special character, and
strings are delimited with a special character.

FIXED Each field can be found at a specific offset from the begin-
ning of the line.

CHARSET (many) Specifies which language driver to use. Most commonly,
this will be set to ASCII.

DELIMITER (any char) Specifies which character is to be used as a delimiter for
CHAR fields. Used for VARYING tables only.

SEPARATOR (any char) Specifies which character is to be used as a field separator.
Used for VARYING tables only.

Using the information shown in Table 28.5, the schema file must have an entry for each field in
the table. Each entry will be in the following form:

FieldX = Field Name, Field Type, Size, Decimal Places, Offset

The syntax in the preceding example is explained in the following list:

• X represents the field number, from 1 to the total number of fields.

• Field Name can be any string identifier. Do not use quotes or string delimiters.

• Field Type can be any one of the following values:

Type Meaning

CHAR A character or string field

BOOL A Boolean (T or F)

DATE A date in the format specified in the BDE Config Tool

FLOAT A 64-bit floating-point number

LONGINT A 32-bit integer

Database Development

PART IV
1202

33.65227_Ch28 11/30/1999 5:45 PM Page 1202

Type Meaning

NUMBER A 16-bit integer

TIME A time in the format specified in the BDE Config Tool

TIMESTAMP A date and time in the format specified in the BDE Config Tool

• Size refers to the total number of characters or units. This value must be less than or
equal to 20 for numeric fields.

• Decimal Places only has meaning for FLOAT fields. It specifies the number of digits
after the decimal.

• Offset is used only for FIXED tables. It specifies the character position where a particular
field begins.

Now, here’s a sample schema file for a fixed table called OPTeam:

[OPTEAM]
FILETYPE = FIXED
CHARSET = ascii
Field1 = EmpNo,LONGINT,04,00,00
Field2 = Name,CHAR,16,00,05
Field3 = OfficeNo,CHAR,05,00,21
Field4 = PhoneExt,LONGINT,04,00,27

Field5 = Height,FLOAT,05,02,32

Here’s a schema file for a VARYING version of a similar table called OPTeam2:

[OPTEAM2]
FILETYPE = VARYING
CHARSET = ascii
DELIMITER = “
SEPARATOR = ,
Field1 = EmpNo,LONGINT,04,00,00
Field2 = Name,CHAR,16,00,00
Field3 = OfficeNo,CHAR,05,00,00
Field4 = PhoneExt,LONGINT,04,00,00
Field5 = Height,FLOAT,05,02,00

Writing Desktop Database Applications

CHAPTER 28
1203

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

CAUTION

The BDE is very picky about the format of a schema file. If you have one misplaced
character or misspelled word, the BDE may not be able to recognize your data at all.
If you’re having problems getting at your data, scrutinize your schema file.

33.65227_Ch28 11/30/1999 5:45 PM Page 1203

The Data File
The data file should be a fixed-length (FIXED) or delimited (VARYING) file that contains one
record per line. A sample data file for OPTeam can be shown as this:

2093 Steve Teixeira C2121 1234 6.5
3265 Xavier Pacheco C0001 3456 5.6
2610 Lino Tadros E2126 5678 5.11
2900 Lance Bullock C2221 9012 6.5
0007 Greg de Vries F3169 7890 5.10
1001 Tillman Dickson C3456 0987 5.9
2611 Rory Bannon E2127 6543 6.0
6908 Karl Santos A1098 5893 5.6
0909 Mr. T B0087 1234 5.9

A similar data file for OPTeam2 would look like this:

2093,”Steve Teixeira”,”C2121”,1234,6.5
3265,”Xavier Pacheco”,”C0001”,3456,5.6
2610,”Lino Tadros”,”E2126”,5678,5.11
2900,”Lance Bullock”,”C2221”,9012,6.5
0007,”Greg de Vries”,”F3169”,7890,5.10
1001,”Tillman Dickson”,”C3456”,0987,5.9
2611,”Rory Bannon”,”E2127”,6543,6.0
6908,”Karl Santos”,”A1098”,5893,5.6
0909,”Mr. T”,”B0087”,1234,5.9

Using the Text Table
You can use text tables with TTable components much like any other database type. Set the
table’s DatabaseName property to the alias or directory containing the TXT and SCH files. Set
the TableType property to ttASCII. Now you should be able to view all available text tables
by clicking the drop-down button on the TableName property. Select one of the tables into the
property, and you’ll be able to view the fields by hooking up a TDataSource and a TDBGrid.
Figure 28.21 shows a form browsing the OPTeam table.

Database Development

PART IV
1204

NOTE

If all the fields in your text table appear to be cramped into one field, the BDE is hav-
ing problems reading your schema file.

Limitations
Borland never intended for text files to be used in lieu of proper database formats. Because of
the limitations inherent in text files, we (the authors) seriously advise against using text file

33.65227_Ch28 11/30/1999 5:45 PM Page 1204

tables for anything other than importing data to and exporting data from real database formats.
Here’s a list of limitations to keep in mind when working with text tables:

• Indexes are not supported, so you can’t use any TTable method that requires an index.

• You cannot use a TQuery component with a text table.

• Deleting records is not supported.

• Inserting records is not supported. Attempts to insert a record will cause the new record
to be appended to the end of the table.

• Referential integrity is not supported.

• BLOB data types are not supported.

• Editing is not supported on VARYING tables.

• Text tables are always opened with exclusive access. You should, therefore, open your
text tables in code rather than during design time.

Writing Desktop Database Applications

CHAPTER 28
1205

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

FIGURE 28.21
Browsing a text table.

Text Table Import
As mentioned earlier, about the only reasonable use for text tables is in converting them to a
real database format. With that in mind, what follows is a set of step-by-step instructions for
using a TBatchMove component to copy a table from text format to a Paradox table. Assume a
form containing two TTable objects and one TBatchMove component. The TTable object that
represents the text table is called TextTbl, and the TTable object that represents the target
Paradox table is called PDoxTbl. The TBatchMove component is called BM. Here are the steps:

33.65227_Ch28 11/30/1999 5:45 PM Page 1205

1. Hook TextTbl to the text table you want to import (as described earlier).

2. Set the DatabaseName property of PDoxTbl to the target alias or directory. Set the
TableName property to the desired table name. Set the TableType property to ttParadox.

3. Set the Source property of BM to TextTbl. Set the Destination property to PDoxTbl. Set
the Mode property to batCopy.

4. Right click BM and select Execute from the local menu.

5. Voilà! You have just copied your text table to a Paradox table.

Connecting with ODBC
It’s a given that the BDE can only provide native support for a limited subset of databases in
the world. What happens, then, when your situation requires that you connect to a database
type—such as Btrieve, for example—that’s not directly supported by the BDE? Can you still
use Delphi? Of course. The BDE provides an ODBC socket so that you can use an Open
Database Connectivity (ODBC) driver to access databases not directly supported by the BDE;
the capability to take advantage of this feature is built into the Professional and Client/Server
Suite editions of Delphi. ODBC is a standard developed by Microsoft for product-independent
database driver support.

Where to Find an ODBC Driver
The best place to obtain an ODBC driver is through the vendor who distributes the database
format you want to access. When you do venture out to obtain an ODBC driver, bear in mind
that there’s a difference between 16- and 32-bit ODBC drivers, and that Delphi requires the
32-bit drivers. In addition to the vendor of your particular database, there are a number of ven-
dors who produce ODBC drivers for many different types of databases. In particular, you can
obtain ODBC drivers for Access, Excel, SQL Server, and FoxPro from Microsoft. These dri-
vers are available either in the ODBC Driver Pack, or you can often find them on the MS
Developer Network CD-ROMs.

Database Development

PART IV
1206

CAUTION

Not all ODBC drivers are created equal! Many ODBC drivers are “brain deadened” to
work with only one particular software package or to have their functionality other-
wise limited. Examples of these types of drivers are ones that have shipped with past
versions of Microsoft Office products (which are intended to work only with MS
Office). Make sure that the ODBC driver you purchase is certified for application
development, not just to work with some existing package.

33.65227_Ch28 11/30/1999 5:45 PM Page 1206

An ODBC Example: Connecting to MS Access
Assuming you’ve obtained the necessary 32-bit ODBC driver from Microsoft or another ven-
dor, this section takes you step by step from configuring the driver to making it work with a
Delphi TTable object. Although Access is directly supported by the BDE, that’s beside the
point—this section is intended to serve as an example of using the BDE’s ODBC socket. This
demonstration assumes that you do not yet have an Access database on your hard disk, and it
takes you through the steps for creating one:

1. Install the driver using the vendor-provided disk. Once it’s installed, run the Windows
Control Panel, and you should see an icon for ODBC Data Sources (32bit), as shown in
Figure 28.22. Double-click the icon and you’ll be presented with the ODBC Data Source
Administrator dialog, as shown in Figure 28.23.

Writing Desktop Database Applications

CHAPTER 28
1207

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

FIGURE 28.22
The Windows Control Panel containing the ODBC Data Sources (32 bit) icon.

2. Click the Add button in the Data Source Administrator dialog, and you’ll be presented
with the Create New Data Source dialog, as shown in Figure 28.24. From this dialog,
select “Microsoft Access Driver (*.mdb)” and click Finish.

3. You’ll now be presented with a dialog similar to the ODBC Microsoft Access Setup dia-
log shown in Figure 28.25. You can give the data source any name and description you
choose. In this case, we’ll call it AccessDB, and the description will read DDG Test for
Access.

4. Click the Create button in the ODBC Microsoft Access Setup dialog, and you’ll be pre-
sented with the New Database dialog, where you can choose a name for your new data-
base and a directory in which to store the database file. Click the OK button after you

33.65227_Ch28 11/30/1999 5:46 PM Page 1207

FIGURE 28.23
The ODBC Data Source Administrator dialog.

Database Development

PART IV
1208

FIGURE 28.24
The Create New Data Source dialog.

5. Close all applications that use the BDE. Run the BDE Administrator tool that comes with
Delphi and change to the Configuration page on the left pane. Expand the Drivers branch
of the tree view, right-click ODBC, and select New from the local menu. This will
invoke the New ODBC Driver dialog. Driver Name can be anything you like. For the
sake of this example, we’ll use ODBC_Access. ODBC Driver Name will be “Microsoft
Access Driver (*.mdb)” (the same driver name as step 2). Default Data Source Name
should come up automatically as AccessDB (the same name as step 3). The completed

choose a file and path. Figure 28.25 shows a picture of the ODBC Microsoft Access
Setup dialog with steps 3 and 4 completed. Click OK to dismiss this dialog, and then
click Close to dismiss the Data Sources dialog. The data source is now configured, and
you’re ready to create a BDE alias that maps to this data source.

33.65227_Ch28 11/30/1999 5:46 PM Page 1208

FIGURE 28.25
The ODBC Microsoft Access Setup dialog.

Writing Desktop Database Applications

CHAPTER 28
1209

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

FIGURE 28.26
The completed New ODBC Driver dialog.

6. Change to the Databases page in the left pane of the BDE Administrator and select
Object, New from the main menu. This will invoke the New Database Alias dialog. In
this dialog, select ODBC_Access (from step 5) as the database driver name and click OK.
You can then give the alias any name you like—we’ll use Access in this case. The com-
pleted alias is shown in Figure 28.27. Select OK to dismiss the dialog and then select
Object, Apply from the BDE Administrator main window. The alias has now been cre-
ated, and you may now close the BDE Administrator tool. The next step is to create a
table for the database.

7. You’ll use the Database Desktop application that ships with Delphi to create tables for
your Access database. Select File, New, Table from the main menu, and you’ll be pre-
sented with the Create Table dialog. Choose ODBC_Access (same as steps 5 and 6) as the
table type, and the Create ODBC_Access Table dialog will come up.

dialog is shown in Figure 28.26. Select OK, and you’ll return to the BDE Administrator
main window.

33.65227_Ch28 11/30/1999 5:46 PM Page 1209

FIGURE 28.27
The new Access alias in BDE Administrator.

Database Development

PART IV
1210

FIGURE 28.28
The completed Create ODBC_Access Table dialog.

9. Click the Save As button, and you’ll be prompted with the Save Table As dialog. In this
dialog, first set Alias to Access (from step 6). At this point, you’ll be presented with a
database login dialog—just click OK to dismiss the dialog, because no user name or
password have been specified. Now give the table a name (do not use an extension) in
the File Name edit control. We’ll use TestTable in this case. Click OK, and the table
will be stored to the database. You’re now ready to access this database with Delphi.

8. Assuming you’re familiar with creating tables in Database Desktop (if you’re not, refer
to the Delphi documentation), the Create ODBC_Access Table dialog works the same as
the “create table” dialogs for other database types. For demonstration purposes, add one
field of type CHAR and one of type INTEGER. Figure 28.28 shows the completed dialog.

33.65227_Ch28 11/30/1999 5:46 PM Page 1210

10. Create a new project in Delphi. The main form should contain one each of the TTable,
TDataSource, and TDBGrid components. DBGrid1 hooks to Table1 via DataSource1.
Select Access (from steps 6 and 9) into Table1’s DatabaseName property. Click Table1’s
TableName property, and you’ll be presented with a login dialog. Simply click the OK
button (no password has been configured) and you can choose an available table from the
Access database. Because TestTable is the only table you created, choose that table.
Now set Table1’s Active property to True, and you’ll see the field names appear in
DBGrid1. Run the application, and you’ll be able to edit the table. Figure 28.29 shows the
completed application.

Writing Desktop Database Applications

CHAPTER 28
1211

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

NOTE

MS Access tables that comprise a database are stored in one MDB file. Although this
is in contrast to Paradox and dBASE, which store each table as a separate file, it is
similar to SQL server databases.

FIGURE 28.29
Browsing an ODBC table in Delphi.

ActiveX Data Objects (ADO)
One of the marquee new features added to Delphi 5 is the ability to access data directly
through Microsoft’s ADO. This is accomplished via a suite of new components in Delphi
Enterprise collectively known as ADOExpress and found on the ADO page of the Component
Palette. By leveraging the abstract TDataSet class mentioned earlier in this chapter, the
ADOExpress components are able to provide ADO connectivity directly, without having to go
through the BDE. This means simplified deployment, fewer dependencies on code you don’t
have control over, and improved performance.

33.65227_Ch28 11/30/1999 5:46 PM Page 1211

The Who’s Who of Microsoft Data Access
Microsoft has backed a number of data-access strategies over the years, so don’t feel bad if the
letters A, D, O tend to fall illegibly into an alphabet soup of other acronyms, such as ODBC,
DAO, RDS, and UDA. To help put things into perspective, it’s worth taking the time to review
this collection of terms and acronyms that deal with the various Microsoft data-access strate-
gies. In doing so, you’ll hopefully gain a little perspective on how ADO fits into the picture.

• UDA (Universal Data Access) is the umbrella term Microsoft gives to its whole data
access strategy, including ADO, OLE DB, and ODBC. It’s interesting to note that UDA
doesn’t refer strictly to databases but can be applicable to other data-store technologies,
such as directory services, Excel spreadsheet data, and Exchange server data.

• ODBC (Open Database Connectivity) is the most well-established Microsoft data-
connectivity technology. The ODBC architecture involves a generic SQL-based API,
upon which drivers can be developed to access specific databases. Because of the large
market presence and proven track record of ODBC, you can still find ODBC drivers for
nearly any database. Because of this, ODBC will continue to be used extensively for
some time to come, even if it is a bit long in the tooth.

• RDO (Remote Data Objects) provides a COM wrapper for ODBC. The goal of RDO is
to simplify ODBC development and open ODBC development to Visual Basic and VBA
programmers.

• Jet is the name of the database engine built into Microsoft Access. Jet supports both
Access’s native MDB databases and ODBC.

• DAO (Data Access Objects) is yet another COM-based API for data access. DAO pro-
vides encapsulations for both Jet and ODBC.

• ODBCDirect is the technology Microsoft added later to DAO to provide direct access to
ODBC, rather than supporting ODBC through Jet.

• OLE DB is a generic and simplified COM-based specification and API for data access.
OLE DB was designed to be independent of any particular database back end and is the
underlying architecture for Microsoft’s latest data-connectivity solutions. Drivers, known
as OLE DB providers, can be written to connect to virtually any data store through
OLE DB.

• ADO (ActiveX Data Objects) provides a more developer-friendly wrapper for OLE DB.

• RDS (Remote Data Services) is an ADO-based technology that enables remote access of
ADO data sources in order to build multitier systems. RDS was formerly known as ADC
(Advanced Data Connector).

• MDAC (Microsoft Data Access Components) is the practical implementation and file dis-
tribution for UDA. MDAC includes four distinct technologies: ODBC, OLE DB, ADO,
and RDS.

Database Development

PART IV
1212

33.65227_Ch28 11/30/1999 5:46 PM Page 1212

ADOExpress Components
Six components make up ADOExpress. Here, we categorize them into three groups: connectiv-
ity, ADO access, and compatibility.

Connectivity Components
The TADOConnection component is used to establish a connection with an ADO data store. You
can hook multiple ADO dataset and command components to a single TADOConnection com-
ponent in order to share the connection for the purposes of executing commands, retrieving
data, and operating on metadata. This component is similar to the TDataBase component for
BDE-based applications, and it’s not necessary for simple applications.

The TRDSConnection component encapsulates a remote RDS connection by exposing the func-
tionality of RDS’s DataSpace object. TRDSConnection is used by specifying the name of the
RDS server machine in the ComputerName parameter and the ProgID of the RDS server in the
ServerName property.

ADO Access Components
TADODataSet and TADOCommand make up the group of ADO access components. This group
gets its name because the components provide their data-manipulation capability using more of
an ADO style than the traditional BDE style with which Delphi developers are generally more
familiar.

The TADODataSet component is the primary component used to retrieve and operate on ADO
data. This component has the ability to manipulate tables and execute SQL queries and stored
procedures and can connect directly to a data store or connection through a TADOConnection
component. In VCL terms, TADODataSet encapsulates the functionality that the TTable,
TQuery, and TStoredProc components provide for BDE-based applications.

The TADOCommand component is used to execute SQL statements that do not return result sets,
much like TQuery.Execute() and TStoredProc.ExecProc() in BDE-based applications. Like
TADODataSet, this component can connect directly to a data store or connect through a
TADOConnection. TADOCommand can also be used to execute SQL that returns a result set, but
the result set must be manipulated using a TADODataSet component. The following line of code
shows how to pipe the result set of a TADOCommand query into a TADODataSet:

ADODataSet.RecordSet := ADOCommand.Execute;

Compatibility Components
We consider TADOTable, TADOQuery, TADOStoredProc to be compatibility components because
they provide developers with the separate table, query, and stored procedure components that
they may already be familiar with. Developers are free to use these or the ADO access compo-
nents described previously, although using these components may make it a bit easier to port

Writing Desktop Database Applications

CHAPTER 28
1213

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

33.65227_Ch28 11/30/1999 5:46 PM Page 1213

BDE-based applications to ADO. Like TADODataSet and TADOCommand, the compatibility com-
ponents have the ability to connect directly to a data store or connect through a
TADOConnection component.

As you might have guessed, TADOTable is used to retrieve and operate on a dataset produced by
a single table. TADOQuery can be used to retrieve and operate on a dataset produced by a SQL
statement or execute Data Definition Language (DDL) SQL statements, such as CREATE TABLE.
TADOStoredProc is used to execute stored procedures, whether or not they return result sets.

Connecting to an ADO Data Store
The TADOConnection component and each of the ADO access and compatibility components
contain a property called ConnectionString that specifies the connection to an ADO data store
and its attributes. The simplest way to provide a value for this property is by using the property
editor, which you can invoke by clicking the ellipses next to the property value in the Object
Inspector. You’ll then be presented with a property editor dialog like the one shown in
Figure 28.30.

Database Development

PART IV
1214

FIGURE 28.30
The ConnectString property editor.

In this dialog, you have the option of choosing a data link file or a connection string for the
property value. A data link file is a file on disk, typically with a .UDL extension, in which a
connection string is stored. Assuming you want to build a new connection string rather than
use a UDL file, you should select the Use Connection String radio button and click the Build
button. This will invoke the Data Link Properties window shown in Figure 28.31.

Building UDL Files
If you want to build UDL files in order to create connection strings that can be
reused many times, you can do so fairly easily in the Windows Explorer, as long as
MDAC has been installed on your machine (Delphi 5 installs MDAC). Just open an
Explorer window to the folder in which to want to create a new UDL file and then
right-click. Then select New, Microsoft Data Link from the local menu. This will create

33.65227_Ch28 11/30/1999 5:46 PM Page 1214

FIGURE 28.31
The Provider page of the Data Link Properties window.

The first page, Provider, of this dialog enables you to choose the OLE DB provider to which
you want to connect. For example, you may choose the Microsoft OLE DB provider for
ODBC drivers in order to connect to an ODBC driver via OLE DB.

After selecting the provider, you can click the Next button or the Connection tab in order to be
taken to the Connection page shown in Figure 28.32. On this page, you’ll configure the driver
to connect to a particular database. For this example, we want to connect to a dBASE table, so
select the dBASE ODBC data source from the Use Data Source Name drop-down list in part 1
of the page. You can skip part 2 of the page because the dBASE table is not password pro-
tected. In part 3 of the dialog, we need to set the initial catalog name to the directory contain-
ing the dBASE tables. For testing purposes, we set it to the directory containing the Borland
sample data.

To ensure that the connection is valid, click the Test Connection button, and you’ll receive a
confirmation of a valid connection or an error if the directory you entered was invalid.

The Advanced and All pages of the Data Link Properties window enable you to set various
properties on the connection, such as Connect Timeout, Access Permissions, Locale ID, and so
on. For our purposes, we don’t need to edit these pages and can use the defaults. Clicking OK

Writing Desktop Database Applications

CHAPTER 28
1215

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

a new UDL file, which you can name. Then right-click the icon for the UDL file and
select Properties from the local menu. You’ll then be presented with the Data Link
Properties window as described in this section.

33.65227_Ch28 11/30/1999 5:46 PM Page 1215

in this window and then again in the property editor dialog will cause the connection string to
be created and placed in the Object Inspector, as shown in Figure 28.33.

Database Development

PART IV
1216

FIGURE 28.32
The Connection page of the Data Link Properties window.

FIGURE 28.33
The completed ConnectString property in the Object Inspector.

Example: Connecting via ADO
Now that you know how to create a new connection string, you already know the hardest part
about accessing data via ADO. To take it to the next step in Delphi, you can view the data in
the connection you just created. To accomplish this, we’ll use only a TADODataSet component.
Follow the steps outlined previously for setting the ConnectString property of the

33.65227_Ch28 11/30/1999 5:46 PM Page 1216

TADODataSet. Then use the property editor for the CommandText property to create a SQL state-
ment that enables you to view the contents of a table, such as that shown in Figure 28.34. Then
click OK to close the dialog.

Writing Desktop Database Applications

CHAPTER 28
1217

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

FIGURE 28.34
Editing the CommandText property.

Once you’ve set the CommandText property, you can set the Active property of the
TADODataSet to True. The component is now actively viewing the data. In order to see it, you
can drop down a TDataSource component, which you’ll connect to the TADODataSet, and a
TDBGrid component, which you’ll connect to the TDataSource, as you learned earlier in this
chapter. The result is shown in Figure 28.35.

FIGURE 28.35
Accessing data using the TADODataSet component.

ADO Deployment
In order to deploy ADO-based solutions on Windows 95, 98, and NT, remember that the
MDAC must be installed on the target systems. You’ll find the redistributable files in the \MDAC
directory of the Delphi 5 CD-ROM. Windows 2000 includes MDAC, so redistribution of
MDAC isn’t necessary if your application will be running on a Windows 2000 machine.

33.65227_Ch28 11/30/1999 5:46 PM Page 1217

Summary
After reading this chapter, you should be ready for just about any type of non-SQL database
programming with Delphi. You learned the ins and outs of Delphi’s TDataSet component,
which is the ancestor of the TTable, TQuery, and TStoredProc components. You also learned
techniques for manipulating TTable objects, how to manage fields, and how to work with text
tables. Along with all this how-to information, you also learned about the various data-access
strategies, including BDE, ODBC, and ADO. As you’ve seen, VCL offers a pretty tight object-
oriented wrapper around the procedural BDE in addition to an extensible framework than can
accommodate other engines, such as ADO.

The next chapter, “Developing Client/Server Applications,” focuses a bit more on client/server
technology and using related VCL classes such as TQuery and TStoredProc components.

Database Development

PART IV
1218

33.65227_Ch28 11/30/1999 5:46 PM Page 1218

CHAPTER

29
Developing Client/Server
Applications

IN THIS CHAPTER
• Why Client/Server? 1220

• Client/Server Architecture 1221

• Client/Server Models 1225

• Client/Server Versus Desktop Database
Development 1227

• SQL: Its Role in Client/Server
Development 1230

• Delphi Client/Server Development 1231

• The Server: Designing the
Back End 1232

• The Client: Designing the
Front End 1245

• Summary 1269

34.65227_Ch29 11/30/1999 5:47 PM Page 1219

So what’s all this hoopla about “client/server”? It seems that everyone these days is either
using or developing some sort of client/server or enterprise system. Unless you’ve invested the
time to understand what client/server is all about, it’s easy to become confused over what
exactly client/server is and what it offers you that other technologies do not.

If you’re a Delphi developer, it wouldn’t be a surprise if you’ve been overwhelmed with all this
client/server rhetoric. Delphi 5 is, after all, a client/server development environment. However,
that doesn’t mean that everything you develop with Delphi is client/server. Nor does it mean
that just because an application accesses data from a client/server database, such as Oracle,
Microsoft SQL, or InterBase, that it’s a client/server application.

This chapter discusses the elements that make up a client/server system. It compares
client/server development to traditional desktop and mainframe database development. It also
illustrates reasons for using a client/server solution. It discusses how Delphi 5 provides the
capability to develop client/server (three-tier) applications. This chapter also points out some
pitfalls desktop database developers fall into when moving to client/server.

Why Client/Server?
A typical example of when you might consider a client/server solution would be the following:
Imagine that you’re responsible for a departmental-level application that accesses data residing
on a LAN or file server. Various people within your department may use this application. As
this data becomes of greater use to your department, other applications are created to make use
of this data.

Suppose this data becomes of interest to other departments within your company. Now, addi-
tional applications will have to be built for these departments. This may also require you to
move the data to a database server to make it more globally available. As the data becomes of
greater interest company-wide, decision-makers must be able to access it through a means that
not only gets them the data quickly but also presents the data such that it actually helps in the
decision-making process.

The global availability of this data creates several problems inherent in desktop database access
across network connections. Two of these problems may be excessive network traffic (creating
a bottleneck in data retrieval) and data security.

This is a simplified example, yet it does illustrate a situation in which you might consider the
need for a client/server solution. A client/server solution would provide the following features:

• Allow departmental access to the data, enabling departments to process only the part of
the business for which they’re responsible

• Provide data access to decision-makers efficiently in the way the data should be presented

• Enhance centralized control by MIS of maintaining data integrity while placing less
emphasis on centralized control of data analysis and use

Database Development

PART IV
1220

34.65227_Ch29 11/30/1999 5:47 PM Page 1220

• Enforce data integrity rules for the entire database

• Provide better division of labor between the client and the server (each performs the
tasks for which it’s best suited)

• Be able to use the advanced data integrity capabilities provided by most database servers

• Reduce network traffic because subsets of data are returned to the client, as opposed to
entire tables as is the case with desktop databases

Keep in mind that this list is not all-inclusive. As you get into the rest of the chapter, you’ll see
additional benefits to moving to a client/server-based system.

It’s also necessary to mention that making the move to client/server isn’t always the right thing
to do. As a developer, you must ensure that you’ve performed a thorough analysis of your user
requirements to determine whether client/server is what you need. One consideration you must
take into account is that client/server systems are costly. This cost includes network software,
the server OS, the database server, and hardware capable of housing such software.
Additionally, there will be a significant learning period if users are unfamiliar with the server
OS and database server software.

Client/Server Architecture
The typical client/server architecture is one in which the front end (or end user—the client)
accesses and processes data from a remote machine (the server). There is no “true” definition
of client/server. However, you can think of it as if the server provides a service and the client
requests a service from the server. There may be many clients that request such services from
the same server. It’s up to the server to decide how to process such requests. Also, there may
be more than just the client and server to a client/server system. We’ll discuss this further in
the section covering three-tier systems.

In a client/server environment, the server handles much more than just data distribution. In
fact, the server, more than likely, performs the bulk of the business logic. It also governs how
the data is to be accessed and manipulated by the client. The client applications really only
serve as a means to present data to or extract data from the end user. The following subsections
explain in more detail the responsibilities of the client and the server. Additionally, we’ll talk
about business rules, which are the governing rules for client access to server data.

The Client
The client can be either a GUI or non-GUI application. Delphi 5 allows you to develop both
the client and any middle-layer application servers in three-tier models. The database server is
most likely developed using an RDBMS such as Oracle or InterBase.

Developing Client/Server Applications

CHAPTER 29
1221

29

D
EV

ELO
PIN

G
C

LIEN
T/S

ER
V

ER
A

PPLIC
A

TIO
N

S

34.65227_Ch29 11/30/1999 5:47 PM Page 1221

Client applications provide the interface for users needing to manipulate data on the server end.
It’s through the client that services are requested of the server. A typical service might be, for
example, adding a customer, adding an order, or printing a report. Here, the client simply
makes the request and provides any necessary data. The server carries the responsibility of pro-
cessing the request. This doesn’t mean that the client is not capable of performing any of the
logic. It’s entirely possible that the client can carry out most, if not all, of the business logic in
the entire application. In this case, this is what we refer to as a fat client.

Database Development

PART IV
1222

Scalable Applications
You’ll often hear the term scalability in reference to client/server development with
Delphi. What exactly is scalability? Well, to some it means the ability to easily access
server databases using Delphi’s powerful database features. Also, it can mean to
rapidly increase the number of users and demands on a system with minimal or no
effect on performance. To others, it means magically turning a desktop application
into a client application by simply changing an alias in the application. Unfortunately,
the latter is not really true. Sure, you can change an Alias property and suddenly
access data from a server database. However, this doesn’t turn your application into a
client application nor does is scale your application. A key advantage to client/server
is that you can take advantage of the powerful features offered by the server. It
would be impossible to take advantages of these features if your application is
designed using desktop database methods.

The Server
The server provides the services to the client. It essentially waits for the client to make a
request and then processes that request. A server must be capable of processing multiple
requests from multiple clients and also must be capable of prioritizing these requests. More
than likely, the server will run continuously to allow constant access to its services.

NOTE

A client doesn’t necessarily have to reside on a different machine from the server.
Often, the background tasks performed on the data may well reside on the same
server machine.

Business Rules
What exactly are business rules? In short, business rules are the governing procedures that dic-
tate how clients access data on the server. These rules are implemented in programming code

34.65227_Ch29 11/30/1999 5:47 PM Page 1222

on the client, the server, or both. In Delphi 5, business rules are implemented in the form of
Object Pascal code. On the server side, business rules are implemented in the form of SQL
stored procedures, triggers, and other database objects native to server databases. In three-tier
models, business rules can be implemented in the middle tier. We’ll discuss these objects later
in the chapter.

It’s important that you understand that business rules define how the entire system will behave.
Without business rules, you have nothing more than data residing on one machine and a GUI
application on another and no method for connecting the two.

At some point in the design phase of developing your system, you must decide what processes
must exist in your system. Take an inventory system, for example. Here, typical processes
would be tasks such as placing an order, printing an invoice, adding a customer, ordering a
part, and so on. As stated earlier, these rules are implemented in Object Pascal code on the
client or on a middle tier. These rules may also be SQL code on the server or a combination of
all three. When the majority of rules are placed on the server, we refer to this as a fat server.
When most of the rules exist on the client, this is called a fat client. When the rules exist on the
middle tier, we can still refer to this as a fat server as well. How much and what type of control
is required over the data determine what side the business rules should exist on.

Developing Client/Server Applications

CHAPTER 29
1223

29

D
EV

ELO
PIN

G
C

LIEN
T/S

ER
V

ER
A

PPLIC
A

TIO
N

S

NOTE

You’ll often see three-tier referred to as n-tier or multitier. The terms n-tier and mul-
titier are each misnomers. In a three-tier model, you typically have one or more
clients, business logic, and the database server. The business logic may very well be
distributed into many pieces on several different machines or even application
servers. It starts to seem a bit absurd when you start to refer to this as a 10-, 15-, or
even 25-tier system. We prefer to think of the business logic (or middle) tier as a sin-
gle tier regardless of how many boxes and application servers it requires.

Fat Client, Fat Server, or Middle Tier: Where Do Business
Rules Belong?
The decision about where you want the business rules to exist, or how you want to separate
business rules between the server and clients, depends on several factors. Some of these factors
may include data security, data integrity, centralized control, and proper distribution of work.

Data Security Concerns
Security concerns come into play when you want to provide limited access to various parts
of the data or to various tasks that may be performed on the data. This is done through user-
access privileges to various database objects such as views and stored procedures. We’ll

34.65227_Ch29 11/30/1999 5:47 PM Page 1223

discuss these objects later in this chapter. By using access privileges to database objects, you
can restrict a user’s access to only those parts of the data that he or she needs. Privileges and
stored procedures exist on the server.

One very important concept to remember is that client/server databases are designed so that a
wide range of client applications and tools can access them. Although you may have limited
access to data as defined in the coding logic of your client application, nothing prevents a user
from using another tool to view or edit tables within your database. By making database access
accessible only through views and stored procedures, you can prevent unauthorized access to
your data. This also plays an important role in maintaining data integrity, as discussed in the
next section.

Data Integrity Concerns
Data integrity refers to the correctness and completeness of the data on the server. Unless you
take the necessary measures to protect the data, it’s possible that this data may get corrupted.
Examples of data corruption are placing an order on a nonexistent or depleted product, chang-
ing the quantity of a product on an order without adjusting the cost, or deleting a customer
with an outstanding balance.

So how do you protect data integrity? One way is to limit the type of operations that can be
performed on the data through stored procedures. Another way is by placing the bulk of the
business logic on the server or on the middle layer. For example, suppose that in an inventory
system, you have a client application that contains most of the business logic. In the client
application, the procedure to delete a customer might be smart enough to look at the server
data to determine whether a customer has an outstanding balance. This is fine for the client
application. However, because this logic exists only with the client and not with the server,
there’s nothing to prevent a user from loading Database Desktop or some other client tool and
deleting a customer directly from the table. To prevent this, you revoke access to the customer
table to all users. You then provide a stored procedure on the server that takes care of deleting
the user but only after making the necessary checks. Because nobody has access to the tables
directly, all users are forced to use the stored procedure.

This is only one way that a business rule existing on the server can protect data integrity. The
same thing can be accomplished by placing the necessary checks in triggers or by providing
views to only the data the users need access to. It’s important to remember that data on the
server is there so that many departments through different applications can access it. The more
business rules that exist on the server, the more control you have over protecting the data.

Centralized Control of Data
Another benefit to having the business logic on the server, or on another layer in a three-tier
setup, is that MIS can implement updates to this business logic without affecting the operation

Database Development

PART IV
1224

34.65227_Ch29 11/30/1999 5:47 PM Page 1224

of the client applications. That means that if additional code were to be added to any stored
procedures, this change is transparent to the clients as long as the client interfaces to the server
aren’t affected by the change. This makes life for MIS much easier and benefits the company
overall because MIS can do its job better.

Work Distribution
By placing business rules on the server, or by separating them on various middle tiers, MIS can
more easily perform the tasks of dividing up responsibilities to specific departments and still
maintain the integrity/security of the server data. This allows departments to share the same
data yet manipulate only that data necessary to accomplish their particular objectives. This dis-
tribution of work is accomplished by granting access to only those stored procedures and other
database objects necessary for a particular department.

As an example, we’ll use the inventory system again. To be more specific, let’s say this is an
inventory system for an automotive parts warehouse. Here, several people need to access the
same data but for different purposes. A cashier must be able to process invoices, add and
remove customers, and change customer information. Warehouse personnel must be able to
add new parts to the database as well as order new parts. Accounting personnel must be able to
perform their part of the system as well. It’s not likely that warehouse personnel will have to
run a monthly budget report. Nor is it likely that accounting personnel will have to change cus-
tomer address information. By creating these business rules on the server, it’s possible to grant
access based on the needs of a person and/or department. Here, cashier personnel will have
access to customer/invoice rules. Warehouse personnel will have access to business rules spe-
cific to their needs, whereas accounting personnel can access accounting-related data.

Distribution of work refers not only to dividing up work among various clients but also to
determining what work would best be performed on a client as opposed to the server or middle
layers. As a developer, you must evaluate various strategies that might allow you to assign
CPU-intensive operations to the fast client machines, thus relieving the server so that it can
perform less intensive operations. Of course, in deciding which strategies to employ, you must
also consider which business rules would be violated as well as whether this approach poses
any security risks.

Client/Server Models
You often hear of client/server systems falling under one of two models. These are the two-
tiered model and three-tiered model, as shown in Figures 29.1 and 29.2, respectively.

Developing Client/Server Applications

CHAPTER 29
1225

29

D
EV

ELO
PIN

G
C

LIEN
T/S

ER
V

ER
A

PPLIC
A

TIO
N

S

34.65227_Ch29 11/30/1999 5:47 PM Page 1225

FIGURE 29.1
The two-tiered client/server model.

The Two-Tiered Model
Figure 29.1 illustrates what’s referred to as a two-tiered client/server model. This model is
probably the most common because it follows the same schema as desktop database design.
Additionally, many client/server systems being built today have evolved out of existing desktop
database applications that stored their data on shared file servers. The migration of systems
built around network-shared Paradox or dBASE files up to SQL servers is based on the hope of
improved performance, security, and reliability.

Under this model, the data resides on the server, and client applications exist on the client
machine. The business logic, or business rules, exist on either the client or the server or both.

The Three-Tiered Model
Figure 29.2 shows the three-tiered client/server model. Here, the client is the user interface to
the data. The remote database server is where the data resides. The client application makes
requests to access or modify the data through an applications server or Remote Data Broker.
It’s typically the Remote Data Broker where the business rules exist.

By distributing the client, server, and business rules on separate machines, designers can more
effectively optimize data access and maintain data integrity for other applications in the entire
system. Delphi 5 adds powerful capabilities for developing three-tier architectures with the
MIDAS technology.

Database Development

PART IV
1226

Data

Business
Rules

Client 1 Client 2 Client 3

34.65227_Ch29 11/30/1999 5:47 PM Page 1226

FIGURE 29.2
The three-tiered client/server model.

Developing Client/Server Applications

CHAPTER 29
1227

29

D
EV

ELO
PIN

G
C

LIEN
T/S

ER
V

ER
A

PPLIC
A

TIO
N

S

Business
Rules

Client 1 Client 2 Client 3

Data

MIDAS: Multitier Distributed Application Services Suite
Borland’s MIDAS technology is included with the Delphi 5 Enterprise version only. This
technology is a suite of highly advanced components, servers, and core technologies
for your three-tier application development. Chapter 32, “MIDAS Development,” dis-
cusses this technology in more depth.

Client/Server Versus Desktop Database
Development
If you’re coming from a background of designing desktop databases, it’s important that you
understand the differences between desktop database and client/server database development.
This next section presents some of the key differences between the two.

34.65227_Ch29 11/30/1999 5:47 PM Page 1227

Set-Oriented Versus Record-Oriented Data Access
One of the most often misunderstood concepts in client/server development has to do with
client/server databases being set oriented versus record oriented. What this means is that client
applications do not work with tables directly as do desktop databases. Instead, client applica-
tions work with subsets of the data.

The way this works is that the client application requests rows from the server, which are made
up of fields from a table or a combination of several tables. These requests are made using
Structured Query Language (SQL).

By using SQL, clients are able to limit the number of records that may be returned from the
server. Clients use SQL statements to query the server for a result set, which may consist of a
subset of the data on a server. This is an important point to note because when you’re accessing
desktop databases over a network, the entire table is sent to the calling application across the
network. The larger the table, the more this weighs on network traffic. This differs from
client/server in that only the requested records are transferred across the network, thus placing
fewer requirements on the network.

This difference also affects the navigability of SQL data sets. Concepts such as first, last, next,
and previous record are foreign to SQL-based data sets. This is especially true when you think
that result sets may consist of rows made up of several tables. Many SQL servers provide
scrollable cursors, which are navigable pointers on a SQL result set. However, this is not the
same as the desktop navigability, which directly navigates through the actual table. You’ll see
later in the section titled “TTable or TQuery” how these concepts affect the way you design
your client applications with Delphi 5.

Data Security
SQL databases handle security issues differently than do desktop databases. They offer the
same password security measures on the overall database access, but they also offer a mecha-
nism to restrict user access to specific database objects such as views, tables, stored proce-
dures, and so on. We’ll discuss these objects more later in this chapter. What this means is that
user access can be defined on the server based on the user’s need to view the data.

Typically, SQL databases allow you to grant or revoke privileges to a user or a group of users.
Therefore, it’s possible to define a group of users in SQL databases. These privileges may refer
to any of the already mentioned database objects.

Record-Locking Methods
Locking is a mechanism used to allow concurrent SQL transactions for many users on the same
database. Several locking levels exist, and servers differ as to which level they use.

Database Development

PART IV
1228

34.65227_Ch29 11/30/1999 5:47 PM Page 1228

Table-level locking restricts you from modifying tables that may be involved in an ongoing
transaction. Although this method allows for parallel processing, it is slow because users typi-
cally need to share the same tables.

An improved locking technique is page-level locking. Here, the server locks certain blocks of
data on the disk. These are referred to as pages. As one transaction is performing an operation
on a given page, other transactions are restricted from updating data on that same page.
Typically, data is spread over several hundreds of pages, so multiple transactions occurring on
the same page are not common.

Some servers offer record-level locking, which imposes a lock on a specific row in a database
table. However, this results in large overhead in maintaining the locking information.

Desktop databases use what is referred to as pessimistic or deterministic locking. This means
that you’re restricted from making changes to table records that are currently being modified
by another user. When an attempt to access such a record is made, you’ll receive an error mes-
sage indicating that you cannot access that record until the previous user has freed it.

SQL databases operate on a concept known as optimistic locking. With this technique, you
aren’t restricted from accessing a record that was previously accessed by another user. You can
edit and then request the server to save this record. However, before a record is saved, it is
compared with the server copy, which may have been updated by another user in the time that
you were viewing/editing it on the client end. This will result in an error indicating that the
record was modified since you initially received it. As a developer, you must take this into
account when designing your client application. Client/server applications must be more reac-
tive to this type of occurrence, which is not the case with their desktop counterparts.

Data Integrity
With SQL databases, you have the opportunity to employ more robust integrity constraints
with your server data. Although desktop databases have data integrity constraints built into the
database, you must define any business rules in the context of the application’s code. In con-
trast, SQL databases allow you to define these rules on the server end. This gives you the bene-
fit of not only requiring all client applications to use the same set of business rules but also
centralizing the maintenance of these rules.

Integrity constraints are defined when you create the tables on the server. We’ll show you some
samples of this later in the chapter in the section “Creating the Table.” Such constraints include
validity, uniqueness, and referential constraints.

As stated earlier, integrity constraints can also be defined in the context of the SQL stored pro-
cedures. Here, for example, you can check to see if a customer has the proper credit limit
before processing an order. You can see how such rules enforce the integrity of the data.

Developing Client/Server Applications

CHAPTER 29
1229

29

D
EV

ELO
PIN

G
C

LIEN
T/S

ER
V

ER
A

PPLIC
A

TIO
N

S

34.65227_Ch29 11/30/1999 5:47 PM Page 1229

Transaction Orientation
SQL databases are transaction-oriented. This means that changes to data aren’t made directly
to the tables as they are in desktop databases. Instead, the client applications request that the
server make these changes, and the server implements this batch of operations in a single trans-
action.

In order for any changes to the data to be final, the transaction as a whole must be committed.
If any of the operations within the transaction fails, the entire transaction may be rolled back
(in other words, aborted).

Transactions preserve the consistency of the data on the server. Let’s go back to the inventory
example. When an order is made, an ORDER table must be updated to reflect the order.
Additionally, the PARTS table must reflect the reduced number of parts based on the order. If,
for some reason, the system fails in between the update to the ORDERS table and the update to
the PARTS table, the data would not correctly reflect the actual number of parts on hand. By
encapsulating this entire operation within a transaction, none of the tables affected within the
transaction would be updated until the entire transaction is committed.

Transactions can be controlled at the server level or at the client level within your Delphi 5
application. We’ll illustrate this later in the chapter in the section “Transaction Control.”

Database Development

PART IV
1230

NOTE

Some desktop databases, such as Paradox 9, do support transactions.

SQL: Its Role in Client/Server Development
SQL is an industry-standard database-manipulation command set that’s used with applications
programming environments such as Delphi. SQL is not a language in and of its own. That is,
you can’t go to the local software store and buy a box of SQL. Instead, SQL is part of the
server database.

SQL gained great acceptance as a database query language throughout the ‘80s and ‘90s, and
today it has become the standard for working with client/server databases across networked
environments. Delphi enables you to use SQL through its components. SQL gives you the
advantage of viewing your data in the way that only SQL commands will generate, which also
gives you much more flexibility than its record-oriented counterpart.

SQL allows you to control the server data by providing the following functionality:

34.65227_Ch29 11/30/1999 5:47 PM Page 1230

• Data definition. SQL lets you define the structures of your tables—the data types of the
fields within the tables as well as the referential relationships of certain fields to fields in
other tables.

• Data retrieval. Client applications use SQL to request from the server whatever data they
require. SQL also lets clients define what data to retrieve and how that data is to be
retrieved, such as the sorting order, as well as what fields are retrieved.

• Data integrity. SQL lets you protect the integrity of the data by using various integrity
constraints either defined as part of the table or separately from the table as stored proce-
dures or other database objects.

• Data processing. SQL allows clients to update, add, or delete data from the server. This
can be as part of a simple SQL statement passed to the server or as a stored procedure
that exists on the server.

• Security. SQL allows you to protect the data by letting you define user access privileges,
views, and restricted access to various database objects.

• Concurrent access. SQL manages the concurrent access of data such that users using the
system simultaneously don’t interfere with each other.

In short, SQL is the primary tool for the development and manipulation of client/server data.

Delphi Client/Server Development
So how does Delphi 5 fit into this client/server environment? Delphi 5 provides you with data-
base object components that encapsulate the functionality of the Borland Database Engine
(BDE). This allows you to build database applications without having to know all the functions
of the BDE. Additionally, data-aware components communicate with the database-access com-
ponents. This makes it easy to build user interfaces for database applications. The SQL Links
provide native drivers to servers such as Oracle, Sybase, Informix, Microsoft SQL Server,
DB2, and InterBase. You can also access data from other databases through ODBC and ADO.
In the sections to follow, we’ll use both a client/server database—InterBase—and Delphi 5
database components to illustrate various techniques in designing client/server applications.

Delphi 5 includes MIDAS. See the sidebar “MIDAS: Multitier Distributed Application
Services Suite” earlier in the chapter or refer to Chapter 34, “ Client Tracker: MIDAS
Development.” Finally, Delphi also gives you the ability to create distributed applications using
the Common Object Request Broker Architecture (CORBA). The CORBA specification was
adopted by the Object Management Group. This technology gives you the ability to create
object-oriented distributed applications. You’ll find information on how Delphi 5 handles
CORBA in the online help under “Writing CORBA Applications.” We simply don’t have
enough space in this book to provide an adequate discussion of the CORBA technology. This
is a topic that merits a book of its own.

Developing Client/Server Applications

CHAPTER 29
1231

29

D
EV

ELO
PIN

G
C

LIEN
T/S

ER
V

ER
A

PPLIC
A

TIO
N

S

34.65227_Ch29 11/30/1999 5:47 PM Page 1231

The Server: Designing the Back End
When you’re designing an application to be built around a client/server environment, quite a
bit of planning has to happen before you actually begin coding. Part of this planning process
involves defining the business rules for the application. That means deciding which tasks are to
be performed on the server and which on the client. Then, you have to decide on table struc-
tures and relationships between fields, data types, and user security. In order to accomplish all
of this, you should be thoroughly familiar with the database objects on the server end.

For illustration purposes, we’ll explain these concepts using InterBase. InterBase is a server
database that ships with Delphi. It allows you to create standalone client/server applications
that adhere to the ANSI entry-level SQL-92 standard. To use InterBase, you must be familiar
with the Windows ISQL program, which ships with Delphi.

Database Development

PART IV
1232

NOTE

It’s beyond the scope of this book to cover InterBase’s implementation of SQL, or any
aspect of InterBase for that matter. We’re merely using InterBase as a means to dis-
cuss client/server application development, which is convenient because the local ver-
sion of InterBase ships with Delphi 5. Much of what we discuss applies to other
implementations of SQL in other server databases, except when it relates to server-
specific features.

Database Objects
InterBase uses a Data Definition Language (DDL) to define the various database objects that
maintain information about the structure of the database and the data. These objects are also
referred to as metadata. In the following sections, we describe the various objects that make up
the metadata and show examples of how such metadata is defined. Keep in mind that most
SQL-based databases consist of similar database objects with which you store information
about data.

NOTE

Powerful data-modeling tools such as Erwin, xCase, and RoboCase allow you to
graphically design your databases using standard data-modeling methodologies. This
is something to consider before you start creating your 200-table system by hand.

34.65227_Ch29 11/30/1999 5:47 PM Page 1232

Defining Tables
As far as table structure and functionality are concerned, InterBase tables are much like the
tables described in Chapter 28, “Writing Desktop Database Applications.” That is, they contain
an unordered set of rows, each having a certain number of columns.

Data Types
Columns can be of any of the available data types, as shown in Table 29.1.

TABLE 29.1 InterBase Data Types

Name Size Range/Precision

BLOB Variable No limit, 64KB segment size

CHAR(n) n characters 1 to 32,767 bytes

DATE 64 bits Jan 1, 100—Dec 11, 5941

DECIMAL (precision, scale) Variable prec—1 to 15 scale—1 to 15

DOUBLE PRECISION 64 bits 1.7x10-308 to
(platform-dependent) 1.7x10308

FLOAT 32 bits 3.4x10-38 to 3.4x1038

INTEGER 32 bits -2,147,483,648 to 2,147,483,648

NUMERIC (precision, scale) Variable -32,768 to 32,767

SMALLINT 16 bits 1 to 32,767

VARCHAR(n) n characters 1 to 32,765

Field types may also be defined with domains in InterBase. We’ll discuss this shortly in the
section “Using Domains.”

Creating the Table
You use the CREATE TABLE statement to create the table, its columns, and whatever integrity
constraints you want applied to each column. Listing 29.1 shows how you would create an
InterBase table.

LISTING 29.1 Table Creation in InterBase

/* Domain definitions */
CREATE DOMAIN FIRSTNAME AS VARCHAR(15);
CREATE DOMAIN LASTNAME AS VARCHAR(20);
CREATE DOMAIN DEPTNO AS CHAR(3)

CHECK (VALUE = ‘000’ OR (VALUE > ‘0’ AND VALUE <= ‘999’)
OR VALUE IS NULL);

Developing Client/Server Applications

CHAPTER 29
1233

29

D
EV

ELO
PIN

G
C

LIEN
T/S

ER
V

ER
A

PPLIC
A

TIO
N

S

continues

34.65227_Ch29 11/30/1999 5:47 PM Page 1233

LISTING 29.1 Continued

CREATE DOMAIN JOBCODE AS VARCHAR(5)
CHECK (VALUE > ‘99999’);

CREATE DOMAIN JOBGRADE AS SMALLINT
CHECK (VALUE BETWEEN 0 AND 6);

CREATE DOMAIN SALARY AS NUMERIC(15, 2)
DEFAULT 0 CHECK (VALUE > 0);

/* Table: EMPLOYEE, Owner: SYSDBA */
CREATE TABLE EMPLOYEE (

EMP_NO EMPNO NOT NULL,
FIRST_NAME FIRSTNAME NOT NULL,
LAST_NAME LASTNAME NOT NULL,
PHONE_EXT VARCHAR(4),
HIRE_DATE DATE DEFAULT ‘NOW’ NOT NULL,
DEPT_NO DEPTNO NOT NULL,
JOB_CODE JOBCODE NOT NULL,
JOB_GRADE JOBGRADE NOT NULL,
JOB_COUNTRY COUNTRYNAME NOT NULL,
SALARY SALARY NOT NULL,
FULL_NAME COMPUTED BY (last_name || ‘, ‘ || first_name),

PRIMARY KEY (EMP_NO));

The first section of Listing 29.1 shows a series of CREATE DOMAIN statements, which we’ll
explain shortly. The second section of Listing 29.1 creates a table named EMPLOYEE with the
rows specified. Each row definition is followed by the row type and possibly the NOT NULL
clause. The NOT NULL clause indicates that a value is required for that row. You’ll also see that
we’ve specified a primary key on the EMP_NO field by using the PRIMARY KEY clause.
Specifying a primary key not only ensures the uniqueness of the field but also creates an index
on that field. Indexes speed up data retrieval.

Indexes
Indexes can also be created explicitly by using the CREATE INDEX statement. Indexes are based
on one or more columns of a table. For example, the following SQL statement would create an
index on the last and first names of an employee:

CREATE INDEX IDX_EMPNAME ON EMPLOYEE (LAST_NAME, FIRST_NAME);

Computed Columns
The FULL_NAME field is a computed field. Computed columns are based on a certain expression
in the COMPUTED BY clause. The example in Listing 29.1 uses the COMPUTED BY clause to con-
catenate the last name and first name, separated by a comma. You can create many variations
of computed columns to suit your needs. You should refer to your server documentation to see
what capabilities are available for computed columns.

Database Development

PART IV
1234

34.65227_Ch29 11/30/1999 5:47 PM Page 1234

Foreign Keys
You can also specify a foreign key constraint on certain fields. For example, the field DEPT_NO
is defined as

DEPT_NO DEPTNO NOT NULL

The type DEPT NO is defined by its domain. It’s okay if you don’t understand this for now. Just
assume that the field has been given a valid definition such as CHAR(3). To ensure that this
field references another field in another table, add the FOREIGN KEY clause to the table defini-
tion as shown here, with some of the fields excluded:

CREATE TABLE EMPLOYEE (
EMP_NO EMPNO NOT NULL,
DEPT_NO DEPTNO NOT NULL
FIRST_NAME FIRSTNAME NOT NULL,
LAST_NAME LASTNAME NOT NULL,

PRIMARY KEY (EMP_NO),
FOREIGN KEY (DEPT_NO) REFERENCES DEPARTMENT (DEPT_NO));

Here, the FOREIGN KEY clause ensures that the value in the DEPT_NO field of the table EMPLOYEE
is the same as a value in the DEPT_NO column in the table DEPARTMENT. Foreign keys also result
in an index being created for a column.

Default Values
You can use the DEFAULT clause to specify a default value for a certain field. For example,
notice the definition for HIRE_DATE, which uses the DEFAULT clause to specify a default value
for this field:

HIRE_DATE DATE DEFAULT ‘NOW’ NOT NULL,

Here, the default value to be assigned to this field comes from the result of the NOW function, an
InterBase function that returns the current date.

Using Domains
Notice the list of domain definitions that appears before the CREATE TABLE statement.
Domains are customized column definitions. By using domains, you can define table columns
with complex characteristics that can be used by other tables in the same database. For exam-
ple, Listing 29.1 shows the domain definition for FIRSTNAME as

CREATE DOMAIN FIRSTNAME VARCHAR(15);

Any other table that uses FIRSTNAME as one of its field definitions will inherit the same data
type, VARCHAR(15). If you find the need to redefine FIRSTNAME later on, any table defining a
field of this type inherits the new definition.

Developing Client/Server Applications

CHAPTER 29
1235

29

D
EV

ELO
PIN

G
C

LIEN
T/S

ER
V

ER
A

PPLIC
A

TIO
N

S

34.65227_Ch29 11/30/1999 5:47 PM Page 1235

You can add constraints to domain definitions as with column definitions. Take, for example,
the domain definition for JOBCODE, which ensures that its value is greater than 99999:

CREATE DOMAIN JOBCODE AS VARCHAR(5)
CHECK (VALUE > ‘99999’);

You’ll also see that the domain JOBGRADE ensures that the value is between 0 and 6:

CREATE DOMAIN JOBGRADE AS SMALLINT
CHECK (VALUE BETWEEN 0 AND 6);

The examples provided here are just a mere glimpse of what type of integrity constraints you
can place on table definitions. This also varies depending on which type of server you intend to
use. It would be to your advantage to be thoroughly familiar with the various techniques pro-
vided by your server.

Defining the Business Rules with Views, Stored
Procedures, and Triggers
Earlier in the chapter, we talked about business rules—the database logic that defines how data
is accessed and processed. Three database objects that allow you to define business rules are
views, stored procedures, and triggers, which we discuss in the following sections.

Defining Views
A view is a valuable database object that allows you to create a customized result set consisting
of clusters of columns from one or more tables in a database. This “virtual table” can have
operations performed on it as though it were a real table. This allows you to define the subset
of data that a particular user or group of users require in addition to restricting their access to
the rest of the data.

To create a view, you would use the CREATE VIEW statement. In InterBase, there are basically
three ways to construct a view:

• A horizontal subset of a single table’s rows. For example, the following view displays all
the fields of the EMPLOYEE table with the exception of the SALARY column, which may
apply only to management personnel:

CREATE VIEW EMPLOYEE_LIST AS
SELECT EMP_NO, FIRST_NAME, LAST_NAME, PHONE_EXT, FULL_NAME
FROM EMPLOYEE;

• A subset of rows and columns from a single table. The following example shows a view
of employees who are executives based on salaries above $100,000:

CREATE VIEW EXECUTIVE_LIST AS
SELECT EMP_NO, FIRST_NAME, LAST_NAME, PHONE_EXT, FULL_NAME
FROM EMPLOYEE WHERE SALARY >= 100,000;

Database Development

PART IV
1236

34.65227_Ch29 11/30/1999 5:47 PM Page 1236

• A subset of rows and columns from more than one table. The following view shows a
subset of the EMPLOYEE table along with two columns from the JOB table. As far as the
client application is concerned, the returned rows/columns belong to a single table:

CREATE VIEW ENTRY_LEVEL_EMPL AS
SELECT JOB_CODE, JOB_TITLE, FIRST_NAME, LAST_NAME.
FROM JOB, EMPLOYEE
WHERE JOB.JOB_CODE = EMPLOYEE.JOB_CODE AND SALARY < 15000;

Many operations can be applied to views. Some views are read-only, whereas others can be
updated. This depends on certain criteria specific to the server you are using.

Defining Stored Procedures
You can think of a stored procedure as a standalone routine that’s run on the server and
invoked from the client applications. Stored procedures are created with the CREATE PROCEDURE
statement. There are essentially two types of stored procedures:

• Select procedures return a result set of rows consisting of selected columns from one or
more tables or a view.

• Executable procedures don’t return a result set but perform some type of logic on the
server side against the server data.

The syntax for defining each type of procedure is the same and consists of a header and a
body.

The stored procedure header consists of a procedure name, an optional list of parameters, and
an optional list of output parameters. The body consists of an optional list of local variables
and the block of SQL statements that perform the actual logic. This block is enclosed within a
BEGIN..END block. The stored procedure can also nest blocks.

A SELECT Stored Procedure
Listing 29.2 illustrates a simple SELECT stored procedure.

LISTING 29.2 A SELECT Stored Procedure

CREATE PROCEDURE CUSTOMER_SELECT(
iCOUNTRY VARCHAR(15)
)
RETURNS(
CUST_NO INTEGER,
CUSTOMER VARCHAR(25),
STATE_PROVINCE VARCHAR(15),
COUNTRY VARCHAR(15),
POSTAL_CODE VARCHAR(12)
)

Developing Client/Server Applications

CHAPTER 29
1237

29

D
EV

ELO
PIN

G
C

LIEN
T/S

ER
V

ER
A

PPLIC
A

TIO
N

S

continues

34.65227_Ch29 11/30/1999 5:47 PM Page 1237

LISTING 29.2 Continued

AS
BEGIN
FOR SELECT
CUST_NO,
CUSTOMER,
STATE_PROVINCE,
COUNTRY,
POSTAL_CODE

FROM customer WHERE COUNTRY = :iCOUNTRY
INTO

:CUST_NO,
:CUSTOMER,
:STATE_PROVINCE,
:COUNTRY,
:POSTAL_CODE

DO
SUSPEND;

END
^

This procedure takes an iCOUNTRY string as a parameter and returns the specified rows of the
CUSTOMER table where the country matches that of the iCOUNTRY parameter. The code that
accomplishes this uses a FOR SELECT..DO statement that retrieves multiple rows. This state-
ment functions just like a regular SELECT statement except that it retrieves one row at a time
and places the specified column values into the variables specified with the INTO statement.
Therefore, to execute this statement from Windows ISQL, you would enter the following
statement:

SELECT * FROM CUSTOMER_SELECT(“USA”);

Later, we’ll show you how to execute this stored procedure from a Delphi 5 application.

An Executable Stored Procedure
Listing 29.3 illustrates a simple executable stored procedure.

LISTING 29.3 Executable Stored Procedure

CREATE PROCEDURE ADD_COUNTRY(
iCOUNTRY VARCHAR(15),
iCURRENCY VARCHAR(10)
)
AS
BEGIN
INSERT INTO COUNTRY(COUNTRY, CURRENCY)
VALUES (:iCOUNTRY, :iCURRENCY);

Database Development

PART IV
1238

34.65227_Ch29 11/30/1999 5:47 PM Page 1238

SUSPEND;
END
^

This procedure adds a new record to the COUNTRY table by issuing an INSERT statement with the
data passed into the procedure through parameters. This procedure does not return a result set
and would be executed by using the EXECUTE PROCEDURE statement in Windows ISQL as
shown here:

EXECUTE PROCEDURE ADD_COUNTRY(“Mexico”, “Peso”);

Enforcing Data Integrity Through Stored Procedures
Earlier we stated that stored procedures provide a way of enforcing data integrity on the server,
rather than the client. With the stored procedure logic, you can test for integrity rules and raise
an error if the client is requesting an illegal operation. As an example, Listing 29.4 performs a
“ship order” operation and performs the necessary checks to ensure that the operation is valid.
If not, the procedure aborts after raising an exception.

LISTING 29.4 A “Ship Order” Stored Procedure

CREATE EXCEPTION ORDER_ALREADY_SHIPPED “Order status is ‘shipped.’”;
CREATE EXCEPTION CUSTOMER_ON_HOLD “This customer is on hold.”;
CREATE EXCEPTION CUSTOMER_CHECK “Overdue balance -- can’t ship.”;

CREATE PROCEDURE SHIP_ORDER (PO_NUM CHAR(8))
AS

DECLARE VARIABLE ord_stat CHAR(7);
DECLARE VARIABLE hold_stat CHAR(1);
DECLARE VARIABLE cust_no INTEGER;
DECLARE VARIABLE any_po CHAR(8);
BEGIN
/* First retrieve the order status,

customer hold information and the customer no
which will be for tests later in the procedure.

These values are stored in the
local variables defined above. */

SELECT s.order_status, c.on_hold, c.cust_no
FROM sales s, customer c
WHERE po_number = :po_num
AND s.cust_no = c.cust_no
INTO :ord_stat, :hold_stat, :cust_no;

/* Check if the purchase order has been already shipped. If so, raise an

Developing Client/Server Applications

CHAPTER 29
1239

29

D
EV

ELO
PIN

G
C

LIEN
T/S

ER
V

ER
A

PPLIC
A

TIO
N

S

continues

34.65227_Ch29 11/30/1999 5:47 PM Page 1239

LISTING 29.4 Continued

exception and terminate the procedure */

IF (ord_stat = “shipped”) THEN
BEGIN
EXCEPTION order_already_shipped;
SUSPEND;
END

/* Check if the Customer is on hold. If so, raise an exception and terminate
the procedure */

ELSE IF (hold_stat = “*”) THEN
BEGIN
EXCEPTION customer_on_hold;
SUSPEND;
END

/* If there is an unpaid balance on orders shipped over 2 months ago,
put the customer on hold, raise an exception and terminate the procedure

*/

FOR SELECT po_number
FROM sales
WHERE cust_no = :cust_no
AND order_status = “shipped”
AND paid = “n”
AND ship_date < ‘NOW’ - 60
INTO :any_po
DO
BEGIN
EXCEPTION customer_check;

UPDATE customer
SET on_hold = “*”
WHERE cust_no = :cust_no;

SUSPEND;
END

/* If we’ve made it to this point, everything checks out so ship the order.*/
UPDATE sales
SET order_status = “shipped”, ship_date = ‘NOW’
WHERE po_number = :po_num;

SUSPEND;
END
^

Database Development

PART IV
1240

34.65227_Ch29 11/30/1999 5:47 PM Page 1240

You’ll notice in Listing 29.4 that the procedure illustrates another feature of InterBase’s
DDL—exceptions. Exceptions in InterBase are much like exceptions in Delphi 5. They are
named error messages that are raised from within the stored procedure when an error occurs.
When an exception is raised, it returns the error message to the calling application and termi-
nates the execution of the stored procedure. It is possible, however, to handle the exception
within the stored procedure and to allow the procedure to continue processing.

Exceptions are created with the CREATE EXCEPTION statement, as shown in Listing 29.4. To
raise an exception within a stored procedure, you would use the syntax shown in the example
and here:

EXCEPTION ExceptionName;

In Listing 29.4, we define three exceptions that are raised in the stored procedure under various
circumstances. The procedure’s commentary explains the process that occurs. The main thing
to keep in mind is that these checks are being performed within the stored procedure.
Therefore, any client application that executes this procedure would have the same integrity
constraints enforced.

Defining Triggers
Triggers are basically stored procedures, except they occur upon a certain event and are not
invoked directly from the client application or from within another stored procedure. A trigger
event occurs during a table update, insert, or delete operation.

Like stored procedures, triggers can make use of exceptions, thus allowing you to perform var-
ious data-integrity checks during any of the previously mentioned operations on a particular
table. Triggers offer you the following benefits:

• Data integrity enforcement. Only valid data can be inserted into a table.

• Improved maintenance. Any changes made to the trigger would be reflected by all appli-
cations using the table to which the trigger is applied.

• Automatic tracking of table modifications. The trigger can log various events that occur
on the tables.

• Automatic notification of table changes through event alerters.

Triggers consist of a header and a body, just as stored procedures do. The trigger header con-
tains the trigger name, the table name to which the trigger applies, and a statement indicating
when a trigger is invoked. The trigger body contains an optional list of local variables and the
block of SQL statements that perform the actual logic enclosed between a BEGIN..END block,
just like a stored procedure.

Triggers are created with the CREATE TRIGGER statement. Listing 29.5 illustrates a trigger in
InterBase that stores a history of salary changes for employees.

Developing Client/Server Applications

CHAPTER 29
1241

29

D
EV

ELO
PIN

G
C

LIEN
T/S

ER
V

ER
A

PPLIC
A

TIO
N

S

34.65227_Ch29 11/30/1999 5:47 PM Page 1241

LISTING 29.5 A Trigger Example

CREATE TRIGGER SALARY_CHANGE_HISTORY FOR EMPLOYEE
AFTER UPDATE AS
BEGIN
IF (old.SALARY <> new.SALARY) THEN
INSERT INTO SALARY_HISTORY (

EMP_NO,
CHANGE_DATE,
UPDATER_ID,
OLD_SALARY,
PERCENT_CHANGE)

VALUES
old.EMP_NO,
“now”,
USER,
old.SALARY,
(new.SALARY - old.SALARY) * 100 / old.SALARY);

END

Let’s examine this example more closely. The header contains the following statement:

CREATE TRIGGER SALARY_CHANGE_HISTORY FOR EMPLOYEE
AFTER UPDATE AS

First, the CREATE TRIGGER statement creates a trigger with the name SALARY_CHANGE_HISTORY.
Then, the statement FOR EMPLOYEE specifies to which table the trigger is to be applied; in this
case, this is the EMPLOYEE table. The AFTER UPDATE statement says that the trigger is to be fired
after updates to the EMPLOYEE table. This statement could have read BEFORE UPDATE, which
would specify to fire the trigger before changes are made to the table.

Triggers aren’t only for updating tables. The following portions of the trigger header can be
used in the definition of triggers:

• AFTER UPDATE. Fires the trigger after the table is updated

• AFTER INSERT. Fires the trigger after a record has been inserted into the table

• AFTER DELETE. Fires the trigger after a record is deleted from the table

• BEFORE UPDATE. Fires the trigger before updating a record in the table

• BEFORE INSERT. Fires the trigger before inserting a new record into the table

• BEFORE DELETE. Fires the trigger before deleting a record from the table

Following the AS clause in the trigger definition is the trigger body, which consists of SQL
statements that form the trigger logic. In the example in Listing 29.5, a comparison is done
between the old and new salary. If a difference exists, a record is added to the SALARY_HISTORY
table indicating the change.

Database Development

PART IV
1242

34.65227_Ch29 11/30/1999 5:47 PM Page 1242

You’ll notice that the example makes reference to the identifiers Old and New. These context
variables refer to the current and previous values of a row being updated. Old is not used dur-
ing a record insert, and New is not used during a record delete.

You’ll see triggers used more extensively in Chapter 32, “Inventory Manager: Client/Server
Development,” which covers an InterBase client/server application.

Privileges/Access Rights to Database Objects
In client/server databases, users are granted access to or are restricted from accessing data on
the server. These access privileges can be applied to tables, stored procedures, and views.
Privileges are granted by using the GRANT statement, which will be illustrated in a moment.
First, Table 29.2 illustrates the various SQL access privileges available to InterBase and most
SQL servers.

TABLE 29.2 SQL Access Privileges

Privilege Access

ALL The user can select, insert, update, and delete data; see other access rights. ALL
also grants execute rights on stored procedures.

SELECT The user can read data.

DELETE The user can delete data.

INSERT The user can write new data.

UPDATE The user can edit data.

EXECUTE The user can execute or call a stored procedure.

Granting Access to Tables
To grant user access to a table, you must use the GRANT statement, which must include the fol-
lowing information:

• The access privilege

• The table, stored procedure, or view name to which the privilege is applied

• The user’s name who is being granted this access

By default, in InterBase only the creator of a table has access to that table and has the ability to
grant access to other users. Some examples of granting access follow. You can refer to your
InterBase documentation for more information.

The following statement grants UPDATE access on the EMPLOYEE table to the user with the user
name JOHN:

GRANT UPDATE ON EMPLOYEE TO JOHN;

Developing Client/Server Applications

CHAPTER 29
1243

29

D
EV

ELO
PIN

G
C

LIEN
T/S

ER
V

ER
A

PPLIC
A

TIO
N

S

34.65227_Ch29 11/30/1999 5:47 PM Page 1243

The following statement grants read and edit access on the EMPLOYEE table to the users JOHN
and JANE:

GRANT SELECT, UPDATE on EMPLOYEE to JOHN, JANE;

You can see that you can grant access to a list of users as well. If you want to grant all privi-
leges to a user, use the ALL privilege in your GRANT statement:

GRANT ALL ON EMPLOYEE TO JANE;

Through the preceding statement, the user JANE will have SELECT, UPDATE, and DELETE access
on the table EMPLOYEE.

It’s also possible to grant privileges to specific columns in a table, as shown here:

GRANT SELECT, UPDATE (CONTACT, PHONE) ON CUSTOMERS TO PUBLIC;

This statement grants read and edit access on the fields CONTACT and PHONE in the CUSTOMERS
table to all users by using the PUBLIC keyword, which specifies all users.

You must also grant privileges to stored procedures that require access to certain tables. For
example, the following example grants read and update access on the customer’s table to the
stored procedure UPDATE_CUSTOMER:

GRANT SELECT, UPDATE ON CUSTOMERS TO PROCEDURE UPDATE_CUSTOMER;

The variations on the GRANT statement apply to stored procedures as well.

Granting Access to Views
For the most part, when GRANT is used against a view, SQL treats this just as it would when
using GRANT against a table. However, you must be sure that the user to whom you’re granting
UPDATE, INSERT, and/or DELETE privileges also has the same privileges on the underlying tables
to which the view refers. A WITH CHECK OPTION statement used when creating a view ensures
that the fields to be edited can be seen through the view before the operation is attempted. It’s
recommended that modifiable views be created with this option.

Granting Access to Stored Procedures
For users or stored procedures to execute other stored procedures, you must grant them EXE-
CUTE access to the stored procedure to be executed. The following example illustrates how you
would grant access to a list of users and stored procedures requiring EXECUTE access to another
stored procedure:

GRANT EXECUTE ON EDIT_CUSTOMER TO MIKE, KIM, SALLY, PROCEDURE ADD_CUSTOMER;

Here, the users MIKE, KIM, and SALLY as well as the stored procedure ADD_CUSTOMER can exe-
cute the stored procedure EDIT_CUSTOMER.

Database Development

PART IV
1244

34.65227_Ch29 11/30/1999 5:47 PM Page 1244

Revoking Access to Users
To revoke user access to a table or stored procedure, you must use the REVOKE statement, which
must include the following items:

• The access privilege to revoke

• The table name/stored procedure to which the revocation is applied

• The user’s name whose privilege is being revoked

REVOKE looks like the GRANT statement syntactically. The following example shows how you
would revoke access to a table:

REVOKE UPDATE, DELETE ON EMPLOYEE TO JANE, TOM;

The Client: Designing the Front End
In the following sections, we’ll discuss the Delphi 5 database components and how to use them
to access a client/server database. We’ll discuss various methods on how to perform common
tasks efficiently with these components.

Using the TDatabase Component
The TDatabase component gives you more control over your database connections. Here’s
what it includes:

• Creating a persistent database connection

• Overriding the default server logins

• Creating application-level BDE aliases

• Controlling transactions and specifying transaction isolation levels

Tables 29.3 and 29.4 are brief references to TDatabase’s properties and methods. For more
detailed descriptions, you’ll want to refer to the Delphi online help or documentation. We’ll
show you how to use some of these properties and methods in this and later chapters.

TABLE 29.3 TDatabase Properties

Property Purpose

AliasName An existing BDE alias defined with the BDE Configuration utility. This prop-
erty cannot be used in conjunction with the DriverName property.

Connected A Boolean property to determine whether the TDatabase component is linked
to a database.

Developing Client/Server Applications

CHAPTER 29
1245

29

D
EV

ELO
PIN

G
C

LIEN
T/S

ER
V

ER
A

PPLIC
A

TIO
N

S

continues

34.65227_Ch29 11/30/1999 5:47 PM Page 1245

TABLE 29.3 Continued

Property Purpose

DatabaseName Defines an application-specific alias. Other TDataset components (TTable,
TQuery, and TStoredProc) use this property’s value for their AliasName
property.

DatasetCount The number of TDataset components linked to the TDatabase component.

Datasets An array referring to all TDataset components linked to the TDatabase com-
ponent.

Directory Working directory for a Paradox of dBase database.

DriverName Name of a BDE driver such as Oracle, dBASE, InterBase, and so on. This
property cannot be used in conjunction with the AliasName property.

Exclusive Give an application sole access to the database.

Handle Used to make direct calls to the Borland Database Engine (BDE) API.

InTransaction Specifies if a transaction is in progress.

IsSQLBased A Boolean property to determine whether the connected database is SQL
based. This value is False if the Driver property holds STANDARD.

KeepConnection A Boolean property to determine whether the TDatabase maintains a connec-
tion to the database when no TDatasets are open. This property is used for
efficiency reasons because connecting to some SQL servers can take quite a
while.

Locale Identifies the language driver used with the TDatabase component. This is
used primarily for direct BDE calls.

LoginPrompt Determines how the TDatabase component handles user logins. If this prop-
erty is set to True, a default login dialog will be displayed. If this property is
set to False, the login parameters must be provided in code in the
TDataBase.OnLogin event.

Name The name of the component as referenced by other components.

Owner The owner of the TDatabase component.

Params Holds the parameters required to connect to the server database. Default para-
meters are set using the BDE configuration utility but may be customized here.

Session Points to the session component with which this database component is associ-
ated.

SessionAlias Specifies whether or not a database component is using a session alias.

Tag A longint property used to store any integer value.

Temporary A Boolean property indicating whether the TDatabase component was created
as a result of no TDatabase component being present when a TTable,
TQuery, or TStoredProc was opened.

Database Development

PART IV
1246

34.65227_Ch29 11/30/1999 5:47 PM Page 1246

Property Purpose

TraceFlags Specifies the database operations to track with the SQL Monitor at runtime.

TransIsolation Determines the transaction isolation level for the server.

Table 29.4 lists TDataBase’s methods.

TABLE 29.4 TDataBase Methods

Method Purpose

ApplyUpdates Posts pending cached updates for specified datasets to the database server.

Close Closes the TDatabase connection and all linked TDataset components.

CloseDatasets Closes all linked TDataset components linked to the TDatabase compo-
nent. This does not necessarily close the TDatabase connection.

Commit Commits all changes to the database within a transaction. The transaction
must have been established with a call to StartTransaction.

Create Allocates memory and creates an instances of a TDatabase component.

Destroy Deallocates memory and destroys the TDatabase instance.

Execute Executes an SQL statement without the overhead of a TQuery component.

FlushSchemaCache Flushes the cached schema information for a table.

Free Performs the same as Destroy except that it first determines whether the
TDatabase component is set to nil before calling destroy.

Open Connects the TDatabase component to the server database. Setting the
Connected property to True automatically calls this method.

RollBack Rolls back or cancels a transaction, thus canceling any changes made to the
server since the last call to StartTransaction.

StartTransaction Begins a transaction with the isolation level specified by the
TransIsolation property. Modifications made to the server are not com-
mitted until a call to the Commit method is made. To cancel changes, you
must call the RollBack method.

ValidateName Raises an exception if a specified database is already open in the active
session.

Application-Level Connections
One reason for using a TDatabase component with your project is to provide an application-
level alias for the entire project. This differs from a BDE-level alias in that the alias name pro-
vided by the TDatabase component is available only to your project. This application-level
alias may be shared among other projects by placing the TDatabase component on a sharable

Developing Client/Server Applications

CHAPTER 29
1247

29

D
EV

ELO
PIN

G
C

LIEN
T/S

ER
V

ER
A

PPLIC
A

TIO
N

S

34.65227_Ch29 11/30/1999 5:47 PM Page 1247

TDataModule. The TDataModule can be made sharable by placing it where other developers can
add it to their projects or by placing it into the Object Repository.

You specify the application-level alias by assigning a value to the TDataBase.DatabaseName
property. The BDE alias that specifies the server database to which the TDatabase component
is connected is specified by the TDatabase.AliasName property.

Security Control
The TDatabase component allows you to control user access to server data in how it handles
the login process. During the login process, a user must provide a valid user name and pass-
word to gain access to vital data. By default, a standard login dialog is invoked when the user
is connected to a server database.

There are several ways you might want to handle logins. One, you can override the login alto-
gether and allow users to gain access to data without having to log in at all. Second, you can
provide a different login dialog so that you can perform your own validity checks if necessary
before passing the user name and password to the server for normal checks. Finally, you might
want to allow users to log off and log in again without shutting down the application. The fol-
lowing sections illustrate all three techniques.

Automatic Login: Preventing the Login Dialog
To prevent the login dialog from displaying when launching an application, you must set the
following TDataBase properties:

Property Description

AliasName Set to an existing BDE alias that was defined with the BDE
Administrator. This is the same value typically used as the Alias
property value for TTable and TQuery components.

DatabaseName Set to an application-level alias that will be seen by TDataset
descendant components (TTable, TQuery, and TStoredProc)
within the current application. These components will use this
value as their Alias property value.

LoginPrompt Set to False. This causes the TDatabase component to look to its
Params property to find the user name and password.

Params Specify the user name and password here. To do this, you must
invoke the String List Editor for this property to set the values.

After you’ve set the TDatabase properties accordingly, you must link all TTable, TQuery, and
TStoredProc components to TDatabase by placing the TDatabase.DatabaseName property
value as their Alias property value. This value will appear in the drop-down list of aliases
when you select the drop-down list in the Object Inspector.

Database Development

PART IV
1248

34.65227_Ch29 11/30/1999 5:47 PM Page 1248

Now, when you set the TDatabase.Connected property to True, your application will connect
to the server without prompting the user for a user name and password because it will use those
values defined in the Params property. The same will be true when running the application.

You’ll find a small example called NoLogin.dpr illustrating this on the accompanying CD-ROM.

Providing a Customized Login Dialog
In certain cases, you might want to present your users with a more customized login dialog.
For example, you may want to prompt your users for additional information other than just
user name and password from the same dialog. Perhaps you just want a more appealing dialog
at program startup than that provided by the default login. Whatever the situation, the process
is fairly simple.

Basically, you can disable the default login dialog by setting the TDatabase.LoginPrompt
property to True. However, this time you won’t provide the user name and password through
the Params property. Instead, you create an event handler for the TDatabase.OnLogin event.
This event handler is called whenever the TDatabase.Connected property is set to True and
the TDatabase.LoginPrompt property is set to True.

The following function instantiates a custom login form and assigns the user’s user name and
password back to the calling application:

function GetLoginParams(ALoginParams: TStrings): word;
var
LoginForm: TLoginForm;

begin
LoginForm := TLoginForm.Create(Application);
try
Result := LoginForm.ShowModal;
if Result = mrOK then
begin
ALoginParams.Values[‘USER NAME’] := LoginForm.edtUserName.Text;
ALoginParams.Values[‘PASSWORD’] := LoginForm.edtPassWord.Text;

end;
finally
LoginForm.Free;

end;
end;

The TDataBase.OnLogin event handler would invoke the preceding procedure as illustrated
here (you’ll find this sample project on the accompanying CD-ROM as LOGIN.DPR):

procedure TMainForm.dbMainLogin(Database: TDatabase;
LoginParams: TStrings);

begin
GetLoginParams(LoginParams);

end;

Developing Client/Server Applications

CHAPTER 29
1249

29

D
EV

ELO
PIN

G
C

LIEN
T/S

ER
V

ER
A

PPLIC
A

TIO
N

S

34.65227_Ch29 11/30/1999 5:47 PM Page 1249

Logoff During a Current Session
You can also provide functionality for your users to be able to log off and log in again, perhaps
as different users, without having to shut down the application. To do this, again you set up the
TDatabase component so that it does not invoke the default login dialog. Therefore, you must
override its OnLogin event handler. Also, you must set TDataBase.LoginPrompt to True so that
the event handler will be invoked. The process requires the use of some variables to hold the
user name and password as well as a Boolean variable to indicate either a successful or unsuc-
cessful login attempt. Also, you must provide two methods—one to perform the login logic and
the other to perform the logoff logic. Listing 29.6 illustrates a project that performs this logic.

LISTING 29.6 Login/Logoff Logic Example

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, Grids, DBGrids, BDE, DB, DBTables;

type
TMainForm = class(TForm)
dbMain: TDatabase;
tblEmployee: TTable;
dsEmployee: TDataSource;
dgbEmployee: TDBGrid;
btnLogon: TButton;
btnLogOff: TButton;
procedure btnLogonClick(Sender: TObject);
procedure dbMainLogin(Database: TDatabase; LoginParams: TStrings);
procedure btnLogOffClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure FormDestroy(Sender: TObject);

public
TempLoginParams: TStringList;
LoginSuccess: Boolean;

end;

var
MainForm: TMainForm;

implementation
uses LoginFrm;

{$R *.DFM}

Database Development

PART IV
1250

34.65227_Ch29 11/30/1999 5:47 PM Page 1250

procedure TMainForm.btnLogonClick(Sender: TObject);
begin
// Get the new login params.
if GetLoginParams(TempLoginParams) = mrOk then
begin
// Disconnect the TDatabase component
dbMain.Connected := False;
try
{ Attempt to reconnect the TDatabase component. This will invoke
the DataBase1Login event handler which will set the LoginParams
with the current user name and password. }

dbMain.Connected := True;
tblEmployee.Active := True;
LoginSuccess := True;

except
on EDBEngineError do
begin
//If login failed, specify a failed login and reraise the exception
LoginSuccess := False;
Raise;

end;
end;

end;
end;

procedure TMainForm.dbMainLogin(Database: TDatabase;
LoginParams: TStrings);

begin
LoginParams.Assign(TempLoginParams);

end;

procedure TMainForm.btnLogOffClick(Sender: TObject);
begin
{ Disconnect the TDatabase component and set the UserName
and password variables to empty strings }

dbMain.Connected := False;
TempLoginParams.Clear;

end;

procedure TMainForm.FormCreate(Sender: TObject);
begin
TempLoginParams := TStringList.Create;

end;

procedure TMainForm.FormDestroy(Sender: TObject);
begin

Developing Client/Server Applications

CHAPTER 29
1251

29

D
EV

ELO
PIN

G
C

LIEN
T/S

ER
V

ER
A

PPLIC
A

TIO
N

S

continues

34.65227_Ch29 11/30/1999 5:47 PM Page 1251

LISTING 29.6 Login/Logoff Logic Example

TempLoginParams.Free;
end;

end.

In Listing 29.6, you see that the main form has two fields: TempLoginParams and
LoginSuccess. The TempLoginParams field holds the user’s user name and password. The
btnLogonClick() method is the logic for the login process, whereas the btnLogOffClick()
event handler is the logic for the logoff process. The dbMainLogin() method is the OnLogin
event handler for dbMain. The code logic is explained in the code commentary. You should also
notice that this project uses the same TLoginForm used in the previous example. You’ll find this
example in the project LogOnOff.dpr on the accompanying CD-ROM.

Transaction Control
Earlier in this chapter, we spoke of transactions. We mentioned how transactions allow a series
of changes to the database to be committed as a whole to ensure database consistency.

Transaction processing can be handled from Delphi 5 client applications by making use of the
TDatabase properties and methods specific to transactions. The following section explains how
to perform transaction processing from within your Delphi 5 application.

Implicit Versus Explicit Transaction Control
Delphi 5 handles transactions either implicitly or explicitly. By default, transactions are han-
dled implicitly.

Implicit transactions are transactions that are started and committed on a row-by-row basis.
This means whenever you call a Post method or when Post is called automatically in VCL
code. Because such transactions occur on a row-by-row basis, this increases network traffic,
which may lead to efficiency problems.

Explicit transactions are handled in one of two ways. The first method is whenever you call the
StartTransaction(), Commit(), or RollBack() method of TDataBase. The other method is by
using pass-through SQL statements within a TQuery component, which we explain momentar-
ily. Explicit transaction control is the recommended approach to use because it provides for
less network traffic and safer code.

Handling Transactions
Back in Table 29.4, you saw three methods of TDatabase that deal specifically with transac-
tions: StartTransaction(), Commit(), and RollBack().

Database Development

PART IV
1252

34.65227_Ch29 11/30/1999 5:47 PM Page 1252

StartTransaction() begins a transaction using the isolation level specified by the
TDatabase.TransIsolation property. Any changes made to the server after
StartTransaction() is called will fall within the current transaction.

If all changes to the server were successful, a call to TDatabase.Commit() is made in order to
finalize all changes at once. Otherwise, if an error occurs, TDatabase.RollBack() is invoked
to cancel any changes made.

The typical example of where transaction processing comes in handy has to do with the inven-
tory example. Given an ORDER table and an INVENTORY table, whenever an order is made, a new
record must be added to the ORDER table. Likewise, the INVENTORY table must be updated to
reflect the new item count on hand for the part or parts just ordered. Now suppose that a user
enters an order with a system in which transactions were not present. The ORDER table gets its
new record, but just before the INVENTORY table gets updated, a power failure occurs. The data-
base would be in an inconsistent state because the INVENTORY table would not accurately reflect
the items on hand. Transaction processing would circumvent this problem by ensuring that
both table modifications are successful before finalizing any changes to the database. Listing
29.7 illustrates how this might look in Delphi 5 code.

LISTING 29.7 Transaction Processing

dbMain.StartTransaction;
try

spAddOrder.ParamByName(‘ORDER_NO’).AsInteger := OrderNo;
{ Make other Parameter assignments and then execute the stored
procedure to add the new order record to the ORDER table.}

spAddOrder.ExecProc;
{ Iterate through all the parts ordered and update the
INVENTORY table to reflect the # of parts on hand }

for i := 0 to PartList.Count - 1 do
begin
spReduceParts.ParamByName(‘PART_NO’).AsInteger :=
PartRec(PartList.Objects[i]).PartNo;

spReduceParts.ParamByName(‘NUM_SOLD’).AsInteger :=
PartRec(PartList.Objects[i]).NumSold;

spReduceParts.ExecProc;
end;
// Commit the changes to both the ORDER and INVENTORY tables.
dbMain.Commit;

except
// If we get here, an error occurred. Cancel all changes.
dbMain.RollBack;
raise;

end;

Developing Client/Server Applications

CHAPTER 29
1253

29

D
EV

ELO
PIN

G
C

LIEN
T/S

ER
V

ER
A

PPLIC
A

TIO
N

S

34.65227_Ch29 11/30/1999 5:47 PM Page 1253

This code is a simplistic example of how to use transaction processing to ensure database con-
sistency. It uses two stored procedures—one to add the new order record and the other to
update the INVENTORY table with the new data. Keep in mind that this is just a code snippet to
illustrate transaction processing with Delphi. This logic could probably be handled better on
the server side.

In some cases, the type of transaction processing that must happen might depend on server-
specific features. Given this situation, you would have to use a TQuery component to pass the
server-specific SQL code, which requires that you set the SQL pass-through mode accordingly.

SQL Pass-through Mode
The SQL pass-through mode specifies how Delphi 5 database applications and the Borland
Database Engine (BDE) share connections to database servers. The BDE connections are those
used in Delphi methods that make BDI API calls. The pass-through mode is set in the BDE
Configuration utility. The three settings for the pass-through mode are as follows:

Setting Description

SHARED AUTOCOMMIT Transactions are handled on a row-by-row basis. This
method is more closely related to that of desktop databases.
In the client/server world, this causes heavy network traffic
and is not the recommended approach. However, this is the
default setting for Delphi 5 applications.

SHARED NOAUTOCOMMIT Delphi 5 applications must explicitly start, commit, and
cancel transactions using the TDatabase.
StartTransaction(), Commit(), and RollBack() methods.

NOT SHARED The BDE and TQuery components issuing pass-through
SQL statements do not share the same connections. This
means that the SQL code is not restricted to BDE capabili-
ties and may consist of server-specific features.

If you’re not using pass-through SQL but want more control over your transaction processing,
set the pass-through mode to SHARED NOAUTOCOMMIT and handle the transaction processing
yourself. In most cases, this should suit your needs. Just keep in mind that in multiuser envi-
ronments where the same rows get updated often, conflicts may occur.

Isolation Levels
Isolation levels determine how transactions see data that’s being accessed from other transac-
tions. The TDatabase.TransIsolation property determines what isolation level a particular
transaction will use. There are three isolation levels to which you can assign the
TransIsolation property:

Database Development

PART IV
1254

34.65227_Ch29 11/30/1999 5:47 PM Page 1254

Isolation Level Description

tiDirtyRead The lowest isolation level. Transactions using this isolation
level can read uncommitted changes from other transac-
tions.

tiReadCommitted The default isolation level. Transactions using this isolation
level can read only committed changes by other transac-
tions.

tiRepeatableRead This is the highest isolation level. Transactions using this
isolation level cannot read changes to previously read data
made by other transactions.

The support for the isolation levels listed here may vary on different servers. Delphi 5 will
always use the next highest isolation level if a specific isolation level is not supported.

TTable or TQuery
A common misunderstanding is the idea that developing front-end client applications is the
same as or similar to developing desktop database applications.

Where you’ll see this frame of thinking manifest itself is in how or when one uses TTable ver-
sus TQuery components for database access. In the following paragraphs, we’ll discuss some of
the merits and faults of using a TTable component, when it should be used, and when it should
not be used. You’ll also see why you’re most often better off using a TQuery component.

Can TTable Components Do SQL?
TTable components are great for accessing data in a desktop environment. They are designed
to perform the tasks that desktop databases require such as manipulation of the entire table,
navigation forward and backward through a table, and even going to a specific record in the
table. These concepts, however, are foreign to SQL database servers. Relational databases are
designed to be accessed in sets of data. SQL databases do not know the concepts of “next,”
“previous,” and “last” record—something that TTable is good at. Although some SQL data-
bases provide “scrollable cursors,” this is not a standard and typically applies only to the result
set. Additionally, some servers don’t provide bidirectional scrolling.

The key point to make when comparing TTable components against SQL databases is that,
ultimately, the commands issued through TTable must be converted to SQL code that the SQL
database can understand. Not only does this limit how you can access the server, but it also
weighs heavily on efficiency.

To demonstrate the inherent weakness of using TTable to access large datasets, consider the
process of opening a TTable just to retrieve a few records. The time it takes for a TTable to
open a SQL table is directly proportional to the number of fields and the amount of metadata

Developing Client/Server Applications

CHAPTER 29
1255

29

D
EV

ELO
PIN

G
C

LIEN
T/S

ER
V

ER
A

PPLIC
A

TIO
N

S

34.65227_Ch29 11/30/1999 5:48 PM Page 1255

(index definitions and so on) attached to the SQL table. When you issue a command such as
the following against a SQL table, the BDE sends a series of SQL commands to the server to
first retrieve information about the table’s columns, indexes, and so on:

Table1.Open;

Then it issues a SELECT statement to build a result set consisting of all the columns and rows
from the table. This is where the time it takes to open a table might also be proportional to the
size of the SQL table (the number of rows). Even though only the amount of rows necessary to
populate the data-aware components are returned to the client, an entire result set is being built
in response to the query. This process occurs whenever the TTable is opened. On extremely
large tables, typical with client/server databases, this single operation can take up to 20 sec-
onds. Keep in mind that some SQL servers such as Sybase and Microsoft SQL don’t allow a
client to abort the retrieval of a result set. This is where the table’s size affects the select dura-
tion. Oracle, InterBase, and Informix all enable you to abort a result set without this consider-
able penalty.

Despite the disadvantages to using TTables with a client application, they are typically fine for
accessing small tables on the server. You have to test your applications to determine whether
the performance hit is unacceptable.

Database Development

PART IV
1256

NOTE

MIDAS handles the returning of data packets a bit differently. You’ll want to read
about this in Chapter 34, “Client Tracker: MIDAS Development.”

Issuing FindKey and FindNearest Against SQL Databases
Although TTable is capable of looking up records using the FindKey() method, it has its limi-
tations when using this against a SQL database. First, TTable can only use FindKey against an
indexed field or fields if you’re performing a search based on values from multiple fields.
TQuery is not faced with this limitation because you perform the record search through SQL.
It’s true that TTable.FindKey results in a SELECT statement against the server table. However,
the result set will consist of all fields of the table even though you may have only selected cer-
tain fields from the TTable component’s Fields Editor.

To achieve the functionality of FindNearest() with SQL code is not as straightforward as
using a TTable, yet it’s not impossible. The following SQL statement almost accomplishes the
TTable.FindNearest() functionality:

SELECT * FROM EMPLOYEES
WHERE NAME >= “CL”
ORDER BY NOMENCLATURE

34.65227_Ch29 11/30/1999 5:48 PM Page 1256

Here, the result set returns the record either at the position searched for or directly after where
it should be. The problem here is that this result set returns all the records after the position
searched on. To be more accurate so that the result set will consist of only one record, you can
do the following:

SELECT * FROM EMPLOYEES
WHERE NAME = (SELECT MIN(NAME) FROM EMPLOYEES
WHERE NAME >= “CL”)

Here, you use a nested SELECT. In a nested SELECT statement, the inner statement returns its
result set to the outer SELECT. The outer SELECT then uses this result set to process its state-
ment. In the inner query in this example, you use the SQL aggregate function MIN() to return
the lowest value in the column NAME on the table EMPLOYEES. This single-row single-column
result set is then used in the outer query to retrieve the remaining rows.

The point is that you give yourself much more flexibility and efficiency by maximizing SQL
capabilities and using the TQuery component. By using TTable, you only limit what you’re
able to do against the server data.

Using the TQuery Component
In the previous chapter, you were introduced to the TQuery component and shown how you can
use it to retrieve result sets of rows in tables. We’re going to get a bit more into detail on
TQuery in the following sections. We’ll illustrate how to create dynamic SQL statements at
runtime, how to pass parameters to queries, and how to improve TQuery performance by set-
ting certain property values.

There are basically two types of queries for which you’ll use TQuery: those that return result
sets and those that don’t. For queries returning a result set, you use the TQuery.Open()
method. The TQuery.ExecSQL() method is used when a result set is not returned.

Dynamic SQL
Dynamic SQL means that you can modify your SQL statements at runtime based on various
conditions. When you invoke the String List Editor for the TQuery.SQL property and enter a
statement such as the following, you’re entering a static SQL statement:

SELECT * FROM EMPLOYEE WHERE COUNTRY = “USA”

This statement won’t vary unless you completely replace it at runtime.

To make this statement dynamic, you would enter the following into the SQL property:

SELECT * FROM CUSTOMER WHERE COUNTRY = :iCOUNTRY;

In this statement, instead of hard-coding the value on which to search, we’ve provided a place-
holder, a parameter whose value can be specified later. This variable is named iCountry and

Developing Client/Server Applications

CHAPTER 29
1257

29

D
EV

ELO
PIN

G
C

LIEN
T/S

ER
V

ER
A

PPLIC
A

TIO
N

S

34.65227_Ch29 11/30/1999 5:48 PM Page 1257

follows the colon in the SELECT statement. Its name was chosen at random. Now, you can
search on any country by providing the country string to search on.

There are several ways to provide values for a parameterized query. One way is to use the
property editor for the TQuery.Params property. Another is to provide that value at runtime.
You can also provide the value from another dataset through a TDataSource component.

Providing TQuery Parameters Through the Params Property Editor
When you invoke the TQuery.Params property editor, the Parameter Name list displays the
parameters for a given query. For each parameter listed, you must select a type from the Data
Type drop-down combo. The value field is where you can specify an initial value for the para-
meter if you like. You can also select the NULL check box to set the parameter’s value to null.
When you select OK, the query will prepare its parameters, which binds them to their types
(see the sidebar titled “Preparing Queries”). When you invoke TQuery.Open(), a result set will
be returned to the TQuery.

Database Development

PART IV
1258

Preparing Queries
When a SQL statement gets sent to the server, the server must parse, validate, com-
pile, and execute the statement. This happens every time you send a SQL statement
to the server. You can improve performance by allowing the server to perform the
preliminary steps of parsing, validating, and compiling by “preparing” the SQL state-
ment before having the server execute it. This is especially advantageous when using
a query repetitively in a loop, by calling TQuery.Prepare() before entering the loop
as shown in the following code:

Query1.Prepare; // First prepare the query.
try
{ Enter a loop to execute a query numerous times }
for i := 1 to 100 do begin
{ provide the parameters for the query }
Query1.ParamByName(‘SomeParam’).AsInteger := i;
Query1.ParamByName(‘SomeOtherParam’).AsString := SomeString;
Query1.Open; // Open the query.
try
{ Use the result set of Query1 here. }

finally
Query1.Close; // Close the query.

end;
end;
finally
Query1.Unprepare; // Call unprepare to free up resources

end;

34.65227_Ch29 11/30/1999 5:48 PM Page 1258

Providing TQuery Parameters Using the Params Property
The TQuery component has a zero-based array of TParam objects, each representing parameters
of the SQL statement in the TQuery.SQL property. For example, take a look at the following
SQL statement:

INSERT INTO COUNTRY (
NAME,
CAPITAL,
POPULATION)

VALUES(
:NAME,
:CAPITAL,
:POPULATION)

To use the Params property to provide values for the parameters :Name, :CAPITAL, and
:POPULATION, you would issue the following statement:

with Query1 do begin
Params[0].AsString := ‘Peru’;
Params[1].AsString := ‘Lima”
Params[2].AsInteger := 22,000,000;

end;

The values provided would be bound to the parameters in the SQL statement. Keep in mind
that the order of the parameters in the SQL statement dictates their position in the Params
property.

Providing TQuery Parameters Using the ParamByName Method
In addition to the Params property, the TQuery component has the ParamByName() method. The
ParamByName() method enables you to assign values to the SQL parameters by their name
rather than by their position in the SQL statement. This enhances code readability but isn’t as
efficient as the positional method because Delphi must resolve the parameters being references.

Developing Client/Server Applications

CHAPTER 29
1259

29

D
EV

ELO
PIN

G
C

LIEN
T/S

ER
V

ER
A

PPLIC
A

TIO
N

S

Prepare() only needs to be called once before its repetitive use. You can also change
the values of the query parameters after the first call to Prepare() without having to
call Prepare() again. However, if you change the SQL statement itself, you must call
Prepare() again before reusing it. A call to Prepare() must be matched with a call to
TQuery.UnPrepare() to release the resources allocated by Prepare().

Queries get prepared when you select the OK button on the Params property editor,
or when you call the TQuery.Prepare() method, as shown in the preceding code. It’s
also recommended that you call Prepare() once in the form’s OnCreate event handler
and UnPrepare() in the form’s OnDestroy event handler for those queries whose SQL
statements won’t change. It’s not necessary to prepare your SQL queries, but it’s cer-
tainly beneficial to do so.

34.65227_Ch29 11/30/1999 5:48 PM Page 1259

To use the ParamByName() method to provide value for the preceding INSERT query, you would
use the following code:

with Query1 do begin
ParamByName(‘COUNTRY’).AsString := ‘Peru’;
ParamByName(‘CAPITAL’).AsString := ‘Lima’;
ParamByName(‘POPULATION’).AsInteger := 22,000,000;

end;

You should see that this code is a bit clearer as to which parameters you’re providing values.

Providing TQuery Parameters Using Another Dataset
The parameters provided to a TQuery component can also be gotten from another TDataset
such as TQuery or TTable. This creates a master-detail relationship between the two datasets.
To do this, you must link a TDataSource component to the master dataset. The name of this
TDataSource is assigned to the DataSource property of the detail TQuery component. When
the query is executed, Delphi checks to see whether any value is assigned to the
TQuery.DataSource property. If so, it will look for column names of the DataSource that
match parameter names in the SQL statement and will then bind them.

As an example, consider the following SQL statement:

SELECT * FROM SALARY_HISTORY
WHERE EMP_NO = :EMP_NO

Here, you need a value for the parameter named EMP_NO. First, you assign the TDataSource
that refers to the master TTable component to the TQuery’s DataSource property. Delphi will
then search for a field named EMP_NO in the table to which the TTable refers and will bind the
value of that column to the TQuery’s parameter for the current row. This is illustrated in the
example found in the project LnkQuery.dpr on the accompanying CD-ROM.

Using the Format Function to Design Dynamic SQL Statements
Now that we’ve shown you how to use parameterized queries, it might seem reasonable that
either of the following SQL statements would be valid:

SELECT * FROM PART ORDER BY :ORDERVAL;
SELECT * FROM :TABLENAME

Unfortunately, you cannot replace certain words in a SQL statement such as column names and
table names. SQL servers just don’t support this capability. So how do you go about putting
this type of flexibility into your dynamic SQL statements? You do this by constructing your
SQL statements at design time by using the Format() function.

If you have any experience programming in C or C++, you’ll find that the Format() function
works much like C’s printf() function. See the sidebar on the Format() function.

Database Development

PART IV
1260

34.65227_Ch29 11/30/1999 5:48 PM Page 1260

Therefore, to construct SQL statements with the flexibility to modify field names or table
names, you can use the Format() function as illustrated in the following code examples.

Listing 29.8 illustrates how you would use the Format() function to allow the user to pick the
fields by which to sort the result set of a query. The list of fields exists in a list box, and the
code is actually the OnClick event of that list box. You’ll find this demo in the project
OrderBy.dpr on the accompanying CD-ROM.

LISTING 29.8 Using Format() to Specify Sorting Column

procedure TMainForm.lbFieldsClick(Sender: TObject);
{ Define a constant string from which the SQL string will be built }
const

SQLString = ‘SELECT * FROM PARTS ORDER BY %s’;
begin
with qryParts do
begin
Close; // Make sure the query is closed.

Developing Client/Server Applications

CHAPTER 29
1261

29

D
EV

ELO
PIN

G
C

LIEN
T/S

ER
V

ER
A

PPLIC
A

TIO
N

S

Using the Format() Function
Use the Format() function to customize strings that vary depending on values pro-
vided by format specifiers. Format specifiers are placeholders where strings of a speci-
fied type will be inserted into a given string. These specifiers consist of a percent
symbol (%) and a type specifier. The following list illustrates some type specifiers:

Specifier Description

c Specifies a char type

d Specifies an integer type

f Specifies a float type

p Specifies a pointer type

s Specifies a string type

For example, in the string “My name is %s and I’m %d years old.”, you see two
format specifiers. The %s specifier indicates that a string is to be inserted in its place.
The %d specifier indicates that an integer is to be inserted in its place. To construct the
string, here’s how to use the Format() function:

S := Format(‘My name is %s and I’m %d years old.”, [‘Xavier’, 32]);

The Format() function takes the source string and an open array of arguments to
replace the format specifiers. It returns the resulting string. You’ll find detailed infor-
mation on the Format() function in Delphi 5’s online help.

continues

34.65227_Ch29 11/30/1999 5:48 PM Page 1261

LISTING 29.8 Continued

SQL.Clear; // Clear any previous SQL statement.
{ Now add the new SQL statement constructed with the format
function }

SQL.Add(Format(SQLString, [lbFields.Items[lbFields.ItemIndex]]));
Open; { Now open Query1 with the new statement }

end;
end;

To populate the list box in Listing 29.8 with the field names in the parts table, we used the fol-
lowing code in the form’s OnCreate event handler:

tblParts.Open;
try
tblParts.GetFieldNames(lbFields.Items);

finally
tblParts.Close;

end;

tblParts is linked to the PARTS.DB table.

The next example in Listing 29.9 illustrates how to pick a table on which to perform a SELECT
statement. The code is practically the same as that presented in Listing 29.8, except that the
format string is different and the form’s OnCreate event handler retrieves a list of table names
in the given session rather than a list of fields for a single table.

First, a list of table names is obtained:

procedure TMainForm.FormCreate(Sender: TObject);
begin
{ First, get a list of table names for the user to select }
Session.GetTableNames(dbMain.DatabaseName, ‘’, False, False, lbTables.Items);

end;

Then, the lbTables.OnClick event handler is used to select the table on which to perform a
SELECT query, as shown in Listing 29.9.

LISTING 29.9 Using Format() to Specify a Table to Select

procedure TMainForm.lbTablesClick(Sender: TObject);
{ Define a constant string from which the SQL string will be built }
const

SQLString = ‘SELECT * FROM %s’;
begin
with qryMain do
begin
Close; // Make sure the query is closed.

Database Development

PART IV
1262

34.65227_Ch29 11/30/1999 5:48 PM Page 1262

SQL.Clear; // Clear any previous SQL statement.
{ Now add the new SQL statement constructed with the format
function }

SQL.Add(Format(SQLString, [lbTables.Items[lbTables.ItemIndex]]));
Open; { Now open Query1 with the new statement }

end;
end;

This demo is provided in the project SelTable.dpr on the accompanying CD-ROM.

Retrieving the Result Set Values of a Query Through TQuery
When a query operation returns a result set, you can access the values of the columns in that
result set by using the TQuery component as though it were an array whose field names are
indexes into this array. For example, suppose you have a TQuery whose SQL property contains
the following SQL statement:

SELECT * FROM CUSTOMER

You would retrieve the values of the columns as shown in Listing 29.10, which shows the code
for the project ResltSet.dpr on the accompanying CD-ROM.

LISTING 29.10 Retrieving the Fields of a TQuery Result Set

procedure TMainForm.dsCustomerDataChange(Sender: TObject; Field: TField);
begin
with lbCustomer.Items do
begin
Clear;
Add(VarToStr(qryCustomer[‘CustNo’]));
Add(VarToStr(qryCustomer[‘Company’]));
Add(VarToStr(qryCustomer[‘Addr1’]));
Add(VarToStr(qryCustomer[‘City’]));
Add(VarToStr(qryCustomer[‘State’]));
Add(VarToStr(qryCustomer[‘Zip’]));
Add(VarToStr(qryCustomer[‘Country’]));
Add(VarToStr(qryCustomer[‘Phone’]));
Add(VarToStr(qryCustomer[‘Contact’]));

end;
end;

In the preceding code, you use the default dataset method, FieldValues(), to access the field
values of qryCustomer. Because FieldValues() is the default dataset method, it’s not neces-
sary to specify the method name explicitly, as shown here:

Add(VarToStr(qryCustomer.FieldValues[‘Contact’]));

Developing Client/Server Applications

CHAPTER 29
1263

29

D
EV

ELO
PIN

G
C

LIEN
T/S

ER
V

ER
A

PPLIC
A

TIO
N

S

34.65227_Ch29 11/30/1999 5:48 PM Page 1263

You can also retrieve the field values from a TQuery using the TQuery.Fields property. The
Fields property is used in the same way as the TQuery.Params property, except it refers to the
columns in the result set. Similarly, TQuery has the FieldByName() method, which functions
like the ParamByName() method.

The UniDirectional Property
To optimize access to a database, the TQuery component has the UniDirectional property.
This applies to databases that support bidirectional cursors. Bidirectional cursors enable you to
move forward and backward through the query’s result set. By default, this property is False.
Therefore, when you have components such as the TDBGrid component linked to a database
that does not support bidirectional movement, Delphi emulates this movement by buffering
records on the client side. This can take up a lot of resources on the client end rather quickly.
Therefore, if you plan to only move forward through a result set, or if you plan to go through
the result set only once, set UniDirectional to True.

Live Result Sets
By default, TQuery returns read-only result sets. You can specify for TQuery to return a modifi-
able result set by changing the TQuery.RequestLive property to True. However, certain
restrictions apply to doing this, as shown in the following lists.

Database Development

PART IV
1264

CAUTION

The function FieldValues() returns a variant field type. If a field were to contain a
null value, an attempt to get the field’s value with FieldValue() would result in an
EVariantError exception. Therefore, Delphi provides the VarToStr() function, which
converts null string values to an empty string. Equivalent functions for other data
types are not provided. However, you can construct your own as shown here for inte-
ger types:

function VarToInt(const V: Variant): Integer;
begin
if TVarData(V).VType <> varNull then
Result := V

else
Result := 0;

end;

Be careful, however, when you resave the data. A null value in a SQL database is a
valid value. If you were to replace that value with an empty string, which is not the
same as null, you could destroy the integrity of the data. You’ll have to come up
with a runtime solution to this, such as testing for NULL and storing some predefined
string to represent the null value.

34.65227_Ch29 11/30/1999 5:48 PM Page 1264

For queries returning result sets from dBASE or Paradox tables, these restrictions apply:

• Uses local SQL Syntax (information provided in online help).

• Uses only a single table.

• SQL statement does not use an ORDER BY clause.

• SQL statement does not use aggregate functions such as SUM and AVG.

• SQL statement does not use calculated fields.

• Comparisons in the WHERE clause may consist only of column names to scalar types.

For queries using pass-through SQL from a server table, these restrictions apply:

• Uses a single table.

• SQL statement does not use an ORDER BY clause.

• SQL statement does not use aggregate functions such as SUM and AVG.

To determine whether a query can be modified, you can check the TQuery.CanModify property.

Cached Updates
TDataSets contain a CachedUpdate property, which allows you to turn any query or stored pro-
cedure into an updateable view. This means the changes to the data set are written to a tempo-
rary buffer on the client instead of these changes being written to the server. These changes can
then be sent to the server by calling the ApplyUpdates() method for the TQuery or
TStoredProc component. Cached updates allow optimization of the updates and remove much
of the lock contention on the server. You might refer to Chapter 13 of “Delphi 5 Database
Application Developer’s Guide,” of the Delphi 5 documentation which is dedicated to working
with cached updates.

Executing Stored Procedures
Delphi’s TStoredProc and TQuery components are both capable of executing stored procedures
on the server. The following sections explain how to use both components to perform stored
procedure execution.

Using the TStoredProc Component
The TStoredProc component enables you to execute stored procedures on the server.
Depending on the server, it can return either a singleton or multiple result set. TStoredProc
may also execute stored procedures that return no data at all. To execute server stored proce-
dures, the following TStoredProc properties must be set accordingly:

Developing Client/Server Applications

CHAPTER 29
1265

29

D
EV

ELO
PIN

G
C

LIEN
T/S

ER
V

ER
A

PPLIC
A

TIO
N

S

34.65227_Ch29 11/30/1999 5:48 PM Page 1265

Property Description

DataBaseName The name of the database that contains the stored proce-
dure. This is usually the DataBaseName property for the
TDatabase component referring to this server database.

StoredProcName The name of the stored procedure to execute.

Params This contains the input and output parameters defined by
the stored procedure. The order is also based on the defini-
tion of the stored procedure on the server.

TStoredProc Input and Output Parameters
You provide input and output parameters through the TStoredProc.Params property. Like
TQuery, the parameters must be prepared with default data types. This can be done either at
design time through the Parameters Editor or at runtime, as will be illustrated.

To prepare parameters using the Parameters Editor, you right-click the TStoredProc compo-
nent to invoke the Parameters Editor.

The Parameters Name list box shows a list of the input and output parameters for the stored
procedure. Note that you must have already selected a StoredProcName from the server for any
parameter to display. For each parameter, you specify a data type in the Data Type drop-down
combo box. You can also specify an initial value or a null value, as with the TQuery compo-
nent. When you select the OK button, the parameters will be prepared.

You can also prepare the TStoredProc’s parameters at runtime by executing the
TStoredProc.Prepare() method. This function is just like the Prepare() method for the
TQuery component discussed earlier.

Executing Non–Result Set Stored Procedures
To understand executing a stored procedure that does not return a result set, see Listing 29.11,
which shows an InterBase stored procedure that adds a record to a COUNTRY table.

LISTING 29.11 Insert COUNTRY Stored Procedure in InterBase

CREATE PROCEDURE ADD_COUNTRY(
iCOUNTRY VARCHAR(15),
iCURRENCY VARCHAR(10)
)
AS
BEGIN
INSERT INTO COUNTRY(COUNTRY, CURRENCY)
VALUES (:iCOUNTRY, :iCURRENCY);
SUSPEND;

END
^

Database Development

PART IV
1266

34.65227_Ch29 11/30/1999 5:48 PM Page 1266

To execute this stored procedure from Delphi, you would first set up the TStoredProc compo-
nent with the appropriate values for the properties specified earlier. This includes specifying
the parameter types from the Parameters Editor. The Delphi code to run this stored procedure
is presented in Listing 29.12.

LISTING 29.12 Executing a Stored Procedure Through TStoredProc

with spAddCountry do
begin
ParamByName(‘iCOUNTRY’).AsString := edtCountry.Text;
ParamByName(‘iCURRENCY’).AsString := edtCurrency.Text;
ExecProc;
edtCountry.Text := ‘’;
edtCurrency.Text := ‘’;
tblCountries.Refresh;

end;

Here, you first assign the values from two TEdits to the TStoredProc parameters through the
ParamByName() method. Then you call the TStoredProc.ExecProc() function, which executes
the stored procedure. You’ll find an example that illustrates this code in the project
AddCntry.dpr.

Developing Client/Server Applications

CHAPTER 29
1267

29

D
EV

ELO
PIN

G
C

LIEN
T/S

ER
V

ER
A

PPLIC
A

TIO
N

S

NOTE

To run the AddCntry.dpr project, you must use the BDEADMIN.EXE utility to set up a
new alias named “DB.” This alias must point to the file \CODE\DATA\DDGIB.GDB, which
can be found on the CD-ROM accompanying this book. Refer to the documentation
for the BDE Administrator utility for further information.

Getting a Stored Procedure Result Set from TQuery
It’s also possible to execute a stored procedure using a pass-through SQL statement with a
TQuery component. This is necessary in some cases, as with InterBase, which doesn’t support
stored procedures that must be called with a SELECT statement. For example, a stored proce-
dure that returns result sets can be called just as though it were a table. Take a look at Listing
29.13, which is an InterBase stored procedure that returns a list of employees from an
EMPLOYEE table belonging to a particular department. The department is specified by the input
parameter iDEPT_NO.

34.65227_Ch29 11/30/1999 5:48 PM Page 1267

LISTING 29.13 GET_EMPLOYEES_BY_DEPT Stored Procedure

CREATE PROCEDURE GET_EMPLOYEES_IN_DEPT (
iDEPT_NO CHAR(3))
RETURNS(
EMP_NO SMALLINT,
FIRST_NAME VARCHAR(15),
LAST_NAME VARCHAR(20),
DEPT_NO CHAR(3),
HIRE_DATE DATE)
AS
BEGIN
FOR SELECT
EMP_NO,
FIRST_NAME,
LAST_NAME,
DEPT_NO,
HIRE_DATE

FROM EMPLOYEE
WHERE DEPT_NO = :iDEPT_NO
INTO

:EMP_NO,
:FIRST_NAME,
:LAST_NAME,
:DEPT_NO,
:HIRE_DATE

DO
SUSPEND;

END ^

To execute this stored procedure from within Delphi 5, you need to use a TQuery component
with the following SQL property:

SELECT * FROM GET_EMPLOYEES_IN_DEPT(
:iDEPT_NO)

Notice that this statement uses the SELECT statement as though the procedure were a table. The
difference, as you can see, is that you must also provide the input parameter iDEPT_NO.

We’ve created a sample project, Emp_Dept.dpr, that illustrates executing the preceding stored
procedure.

qryGetEmployees is the TQuery component that executes the stored procedure shown in
Listing 29.13. It gets its parameter from qryDepartment, which performs a simple SELECT
statement on the DEPARTMENT table in the database. qryGetEmployees is linked to
dbgEmployees, which shows a scrollable list of departments. When the user scrolls through

Database Development

PART IV
1268

34.65227_Ch29 11/30/1999 5:48 PM Page 1268

dbgDepartment, this invokes dsDepartment’s OnDataChange event handler. We should mention
that dsDepartment is linked to qryDepartment. This event handler executes the code shown in
Listing 29.14, which sets the parameter for qryGetEmployees and retrieves its output result set.

LISTING 29.14 DataSource1’s OnChange Event Handler

procedure TMainForm.dsDepartmentDataChange(Sender: TObject; Field: TField);
begin
with qryGetEmployees do
begin
Close;
ParamByName(‘iDEPT_NO’).AsString := qryDepartment[‘DEPT_NO’];
Open;
end;

end;

So why would you want to retrieve this information through a stored procedure rather than a
simple statement on a table? Consider that there may be several people at different levels
within a department who need access to the information provided. If these people had direct
access to the table, they would be able to see sensitive information such as an employee’s
salary. By restricting access to a table but providing the “need to know” information through
stored procedures and views, you not only establish good security measures but also create a
more maintainable set of business rules for the database.

Summary
This chapter presented you with quite a bit of information about client/server development. We
first discussed the elements that make up a client/server system. We compared client/server
development to traditional desktop database development methodologies. We also introduced
you to various techniques using Delphi 5 and InterBase that should set you well on your way
to developing client/server projects.

Developing Client/Server Applications

CHAPTER 29
1269

29

D
EV

ELO
PIN

G
C

LIEN
T/S

ER
V

ER
A

PPLIC
A

TIO
N

S

34.65227_Ch29 11/30/1999 5:48 PM Page 1269

34.65227_Ch29 11/30/1999 5:48 PM Page 1270

CHAPTER

30
Extending Database VCL

IN THIS CHAPTER
• Using the BDE 334

• dBASE Tables 336

• Paradox Tables 341

• Extending TDataSet 359

• Summary 387

The complete text for this chapter appears on
the CD-ROM.

35.65227_Ch30x 11/30/1999 6:03 PM Page 1271

Out of the box, Visual Component Library’s (VCL’s) database architecture is equipped to com-
municate primarily by means of the Borland Database Engine (BDE)—feature-rich and reli-
able database middleware. What’s more, VCL serves as a kind of insulator between you and
your databases, allowing you to access different types of databases in much the same manner.
Although all this adds up to reliability, scalability, and ease of use, there is a downside: data-
base-specific features provided both within and outside the BDE are generally not provided for
in the VCL database framework. This chapter provides you with the insight you’ll need to
extend VCL by communicating directly with the BDE and other data sources to obtain data-
base functionality not otherwise available in Delphi.

Database Development

PART IV
1272

35.65227_Ch30x 11/30/1999 6:03 PM Page 1272

CHAPTER

31
Internet-Enabling Your
Applications with WebBroker
by Nick Hodges

IN THIS CHAPTER
• ISAPI, NSAPI, and CGI Web Server

Extensions 1275

• Creating Web Applications
with Delphi 1277

• Dynamic HTML Pages with HTML Content
Producers 1285

• Maintaining State with Cookies 1295

• Redirecting to a Different
Web Site 1300

• Retrieving Information from
HTML Forms 1301

• Data Streaming 1303

• Summary 1307

36.65227_Ch31 11/30/1999 5:49 PM Page 1273

The Internet’s popularity has exploded, and its use by computer owners has become almost a
given. The technology that makes the Internet work is deceptively simple, and as a result,
many business organizations are using the technology to create intranets—small Web networks
accessible only to those within a given organization. Intranets are proving to be an inexpensive
and highly effective way to leverage an organization’s information systems. As new technolo-
gies arrive, some intranets are even being expanded to extranets—networks that allow limited
access but are not limited to an organization’s boundaries.

All of this, of course, makes programming for the Internet/intranet a very important arrow in a
programmer’s quiver. As you might expect, Delphi makes programming for the
Internet/intranet a very straightforward task. Delphi lets you bring its full power to the Web in
the following ways:

• By encapsulating the Hypertext Transfer Protocol (HTTP) in easily accessible objects

• By providing an application framework around the application programming interfaces
(APIs) of the most popular and powerful Web servers

• By providing a Rapid Application Development (RAD) approach to building Web server
extensions

With Delphi and its WebBroker components, you can easily build Web server extensions that
provide customized, dynamic Hypertext Markup Language (HTML) pages that include access
to data from virtually any source.

Database Development

PART IV
1274

TIP

The WebBroker components are provided as a part of Delphi Enterprise. If you are a
Delphi Professional user, you can purchase the WebBroker components as a separate
add-on. Visit the Borland Web site (http://www.borland.com) for more information.

The basic technology that makes the Web possible is quite simple. The two agents in the
process—the Web client, or client, and the Web server—must establish a communications link
and pass information to and from each other. The client requests information and the server
provides it. Of course, the client and the server have to agree on how to communicate and what
form the information they share will take. They do this across the Web with nothing more than
an ASCII byte stream. The client sends a text request and gets a text answer back. The client
knows little about what takes place on the server. This simple process allows for cross-platform
communication, normally by means of the TCP/IP protocol.

The standard method of communicating used on the Web is the Hypertext Transfer Protocol
(HTTP). A protocol is simply an agreement about a way of doing business, and HTTP is a pro-
tocol designed to pass information from the client to the server in the form of a request, and

36.65227_Ch31 11/30/1999 5:49 PM Page 1274

from the server to the client in the form of a response. It does so by formatting information as
a byte stream of ASCII characters and sending this information between the two agents. The
HTTP protocol itself is both flexible and powerful. When used in concert with Hypertext
Markup Language (HTML), it can quickly and easily provide Web pages to a browser.

An HTTP request might look like this:

GET /mysite/webapp.dll/dataquery?name=CharlieTuna&company=Borland HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/3.0b4Gold (WinNT; I)
Host: www.mysite.com:1024
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*

HTTP is stateless, which means that the server has no knowledge of the state of the client and
that the communication between the server and the client ends when the request has been satis-
fied. This makes creating database applications using HTTP somewhat problematic because
many database applications rely on the client having access to a live dataset. State information
can be stored through the use of cookies—pieces of information that are stored on the client as
a result of the HTTP response. Cookies are discussed later in the chapter.

ISAPI, NSAPI, and CGI Web Server Extensions
Web servers are the engines that make the Web function. They provide all the content to Web
browsers, whether that content is HTML pages, Java applets, or ActiveX controls. Web servers
are the tools that provide responses to a client’s request. Many different Web servers are avail-
able for use on any of the different popular platforms.

The Common Gateway Interface
The first Web servers could merely retrieve and return an existing, static HTML page. Web site
managers could provide nothing more in a Web site than the pages that were present on the
server at the time of the request. Soon, however, it became clear that a higher level of interac-
tion between client and server was required, and the Common Gateway Interface (CGI) was
developed as a result. CGI allowed the Web server to launch a separate process based on input
from the user, work on that information, and return a dynamically created Web page to the
client. A CGI program could do any type of data manipulation that the programmer required,
and it could return any sort of page that HTML would allow.

Standard CGI applications work by reading from STDIN, writing to STDOUT, and reading envi-
ronmental variables. WinCGI works by storing the request parameters in a file, launching the
WinCGI application, reading and processing the data in the file, and then writing an HTML
file, which is then returned by the Web server. Suddenly, the Web took a large step forward,
because servers could now provide tailored, unique responses to users’ requests.

Internet-Enabling Your Applications with WebBroker

CHAPTER 31
1275

31

IN
TER

N
ET-E

N
A

B
LIN

G

Y
O

U
R

A
PPLIC

A
TIO

N
S

W
ITH

W
EBB

R
O

K
ER

36.65227_Ch31 11/30/1999 5:49 PM Page 1275

However, CGI and WinCGI applications have some drawbacks. Each request must launch its
own process on the server, so multiple requests can easily tie up even a moderately busy server.
The task of creating a file, launching a separate process, executing the process, and then writ-
ing and returning yet another file is relatively slow.

ISAPI and NSAPI
The major Web server vendors, Microsoft and Netscape, saw the weaknesses inherent in CGI
programming, but they also saw the advantages of dynamic Web creation. Therefore, instead of
using a separate process for each request, each company wrote APIs for its Web servers that
allowed Web server extensions to be run as dynamic link libraries (DLLs). DLLs can be loaded
once and then respond to any number of requests. They run as part of the Web server process,
executing their code in the same memory space as the Web server itself. Instead of having to
pass information back and forth as files, Web server extensions can simply pass the informa-
tion back and forth inside the same memory space. This allows for faster, more efficient, and
less resource-intensive Web applications.

Microsoft provides the rather simple and straightforward Internet Server Application
Programming Interface (ISAPI) with its Internet Information Server (IIS), and Netscape pro-
vides the more complex Netscape Application Programming Interface (NSAPI) with its family
of Web servers.

Delphi provides access to both APIs through the NSAPI.PAS and ISAPI.PAS units. To run the
applications in this chapter, you have to be running an IIS server, a Netscape server, or one of a
number of shareware or freeware servers that meet the ISAPI specification.

Database Development

PART IV
1276

TIP

If you do not currently have a Web server installed, you can download the Microsoft
Personal Web Server from Microsoft’s Web site (http://www.microsoft.com). It is
freeware and is ISAPI-compliant. It will run all the examples in this chapter.

Using Web Servers
Whichever Web server you are using, you should bear in mind several things when
running Web server applications. First of all, because the extensions are DLLs, they
will be loaded into memory and remain in memory while the Web server is running.
Therefore, if you are building and testing applications with Delphi, you may have to
shut down the Web server to recompile the application because Windows will not
allow you to rewrite a file that is being executed. This may vary between Web

36.65227_Ch31 11/30/1999 5:49 PM Page 1276

Creating Web Applications with Delphi
Delphi’s WebBroker components make developing Internet/intranet applications easy. The fol-
lowing sections discuss these components and how they allow you to focus on the content of
your Web servers without having to worry about the details of HTTP communications protocols.

TWebModule and TWebDispatcher
If you select File, New from the Delphi menu, the New Items dialog box appears. Select the
Web Server Application icon to open a wizard that will allow you to select the type of Web
server extension. The three choices are ISAPI/NSAPI, CGI, and WinCGI applications. This
chapter deals with the ISAPI/NSAPI application type. The construction of the CGI server
extensions is done in almost the same manner; however, the ISAPI applications are easier to
deal with and run.

Internet-Enabling Your Applications with WebBroker

CHAPTER 31
1277

31

IN
TER

N
ET-E

N
A

B
LIN

G

Y
O

U
R

A
PPLIC

A
TIO

N
S

W
ITH

W
EBB

R
O

K
ER

servers, but it is true for the Microsoft Personal Web Server. In addition, Web servers
generally require that you select a base directory on your system as the root directory
for all your HTML files. You can tell Delphi to send your Web applications directly to
that directory by entering the full path of the directory into the Project, Options,
Directories/Conditionals Output Directory combo box. Finally, you can even debug
your Web applications while they are running. Delphi’s documentation includes
instructions on how to do this. These instructions can be found in the online help
under ISAPI, Debugging. The Web server is used as the host application. Each of the
major Web servers is configured a bit differently, so check your server’s documenta-
tion and the Delphi documentation mentioned for further information.

NOTE

Delphi also includes a project, ISAPITER.DPR, that allows you to run ISAPI modules on
an NSAPI-based Web server. The online help has information on how to set up a
Netscape Web server to run the ISAPI DLLs created in this chapter.

After you select the application type, Delphi creates a project based on a TWebModule. The
main project itself is a DLL, and the main unit contains the TWebModule. TWebModule is a
descendant of TDataModule, and it contains all the logic needed to receive the HTTP request
and respond to it. A TWebModule can accept only nonvisual controls, just like its ancestor. You
can use all the database controls, as well as the controls on the Internet page of the Component

36.65227_Ch31 11/30/1999 5:49 PM Page 1277

Palette that produce HTML, to produce content in a TWebModule. This allows you to add busi-
ness rules for your Web-based application in the same manner as you can with TDataModule in
regular applications.

The TWebModule has an Actions property, which contains a collection of TWebActionItem
objects. A TWebActionItem allows you to execute code based on a given request. Each
TWebActionItem has its own name; when a client makes a request based on that name, your
code is executed and the appropriate response is given.

Database Development

PART IV
1278

NOTE

You can create a Web server application with one of your existing data modules. The
TWebModule has as one of its fields the TWebDispatcher class. This class is included on
the Component Palette as the TWebDispatcher component. If you replace the default
TWebModule in your Web server application with an existing data module by using the
Project Manager, you can drop a TWebDispatcher component on it and it will become
a Web server application. The TWebDispatcher component on the Internet page of
the Component Palette adds all the functionality encapsulated in the TWebModule. So
if you have all your business rules wrapped up in an existing TDataModule, making
those rules available to your Web applications is as easy as pointing and clicking. A
TDataModule with a TWebDispatcher component is functionally equivalent to a
TWebModule. The only difference is that you access the HTTP actions through the
TWebDispatcher component and not the TDataModule itself.

Select the TWebModule so that its properties are displayed in the Object Inspector. Select the
Actions property and either double-click it or select the property editor with the small ellipsis
(…) button. This will bring up the WebModule Actions dialog. Click the New button and select
the resulting WebActionItem in the property editor that appears. The Action item’s properties
will then be displayed in the Object Inspector. Go to the PathInfo property and enter /test.
Then go to the Events page in the Object Inspector and double-click the OnAction event to cre-
ate a new event handler. It will look like this:

procedure TWebModule1.WebModule1WebActionItem1Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

begin

end;

This event handler contains all the information about the request that generated this action and
the means to respond to it. The client’s request information is contained in the Request para-
meter, which is of type TWebRequest. The Response parameter is of type TWebResponse, and it

36.65227_Ch31 11/30/1999 5:49 PM Page 1278

is used to send the necessary information back to the client. Within this event handler, you can
write any code necessary to respond to the request, including file manipulation, database
actions, and anything else needed to send an HTML page back to the client.

Before we get into the depths of the TWebModule, a simple example will help demonstrate the
basics of how a Web server application works. The simplest way to create an HTML page that
responds to the client’s request is to build the HTML on the fly. You can do this easily by using
a TStringList. After the HTML is placed into the TStringList, it can easily be assigned to
the Content property of the Response parameter. Content is a string, and it is used to hold the
HTML to be returned to the client. This is the only property of Response that must be filled
because it contains the data to be displayed. If it is left blank, the client’s browser will report
that the requested document is empty. Listing 31.1 shows the code that you must add to the
/test action item event handler.

LISTING 31.1 The WebModule1WebActionItem1Action Event Handler

procedure TWebModule1.WebModule1WebActionItem1Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

var
Page: TStringList;

begin
Page := TStringList.Create;
try
with Page do
begin

Add(‘<HTML>’);
Add(‘<HEAD>’);

Add(‘<TITLE>Web Server Application -- Basic Sample</TITLE>’);
Add(‘</HEAD>’);
Add(‘<BODY>’);
Add(‘This page was created on the fly by Delphi<P>’);
Add(‘<HR>’);
Add(‘See how easy it was to create a page on the fly with Delphi’’s

➥Web Extensions?’);
Add(‘</BODY>’);
Add(‘</HTML>’);

end;
Response.Content := Page.Text;

finally
Page.Free;

end;
Handled := True;

end;

Internet-Enabling Your Applications with WebBroker

CHAPTER 31
1279

31

IN
TER

N
ET-E

N
A

B
LIN

G

Y
O

U
R

A
PPLIC

A
TIO

N
S

W
ITH

W
EBB

R
O

K
ER

36.65227_Ch31 11/30/1999 5:49 PM Page 1279

Save the project as SAMPLE1.DLL, compile it, and place the resulting file in the default directory
for your ISAPI- or NSAPI-capable Web server. Then, point your browser to the following
location:

<web server address>/sample1.dll/test

You should see the expected Web page in your browser, as shown in Figure 31.1.

Database Development

PART IV
1280

FIGURE 31.1
A sample Web page.

NOTE

If you take Listing 31.1’s code from the CD-ROM accompanying this book and place it
on your computer, maintaining the same directory structure as on the CD-ROM, you
can easily set your Web server up to access the HTML and the DLLs to run all the sam-
ple applications from this chapter. Simply create a virtual Web server directory for the
root directory and an ISAPI-capable directory that points to the \bin directory. Then,
you can open up the INDEX.HTM file in the root directory, giving you access to all the
sample code. Note that if you copy the files from the CD-ROM, they will have the
read-only flag set. You will have to remove that flag in Explorer if you want to edit
the files copied from the CD-ROM.

36.65227_Ch31 11/30/1999 5:49 PM Page 1280

Note that the result of the project’s compilation is a DLL that conforms to the ISAPI specifica-
tion. The project’s source code reveals the following:

library Sample1;
uses
WebBroker,
ISAPIApp,
Unit1 in ‘Unit1.pas’ {WebModule1: TWebModule};

{$R *.RES}
exports
GetExtensionVersion,
HttpExtensionProc,
TerminateExtension;

begin
Application.Initialize;
Application.CreateForm(TWebModule1, WebModule1);
Application.Run;

end.

Note the three exported routines. These three—GetExtensionVersion, HttpExtensionProc,
and TerminateExtension—are the only three procedures required by the ISAPI specification.

Internet-Enabling Your Applications with WebBroker

CHAPTER 31
1281

31

IN
TER

N
ET-E

N
A

B
LIN

G

Y
O

U
R

A
PPLIC

A
TIO

N
S

W
ITH

W
EBB

R
O

K
ER

CAUTION

Like a typical application, your ISAPI application uses a global Application object.
However, unlike a regular application, this project does not use the Forms unit.
Instead, the WebBroker unit contains an Application variable declared as type
TWebApplication. It handles all the special calls needed to be able to hook into an
ISAPI- or NSAPI-capable Web server. As a result, you should never try to add the
Forms unit to an ISAPI-based Web server extension because this may confuse the
compiler into using the wrong Application variable.

This simple project illustrates how easy it is to build a Web server application and provide a
response to a client’s request by using Delphi. This was a relatively simple example, creating
HTML dynamically in code. However, as you will soon see, Delphi provides the tools to
respond in much more complex and interesting ways. Before looking at what Delphi can do in
this regard, we will delve a little deeper into the workings of a WebBroker application in the
following section.

TWebRequest and TWebResponse
TWebRequest and TWebResponse are abstract classes that encapsulate the HTTP protocol.
TWebRequest provides access to all the information passed to the server by the client, and

36.65227_Ch31 11/30/1999 5:49 PM Page 1281

TWebResponse contains properties and methods that allow you to respond in any of the multi-
ple ways that the HTTP protocol allows. Both of these classes are declared in the HTTPAPP.pas
unit, which is used by the WebBroker.pas unit. ISAPI-based Web applications actually use
TISAPIResponse and TISAPIRequest, which are descendants of the abstract classes and are
declared in ISAPIAPP.PAS. The power of polymorphism allows Delphi to pass the TISAPIxxx
classes to the TWebxxx parameters of the OnAction event handler in TWebModule.

TISAPIRequest contains all the information passed by a client when making a request for a
Web page. You can gather information about the client from the request. Many of the proper-
ties may be blank for any given request, because not all fields are completed for every HTTP
request. The RemoteHost and RemoteAddr properties contain the IP address of the requesting
machine. The UserAgent property contains information about the browser that the client is
using. The Accept property includes a listing of the types of graphics that the user’s browser
can display. The Referer property contains the URL for the page that the user clicked to create
the request. If cookie information is present (cookies are discussed later in the chapter), it is
contained in the Cookie property. Multiple cookies can be more easily accessed by the
CookieFields array. If any parameters were passed with the request, they will all be contained
in a single string inside the Query property. They will also be broken out into an array in the
QueryFields property.

Database Development

PART IV
1282

NOTE

When you are passing parameters to a URL, they normally follow a question mark (?)
after the URL’s name. Multiple parameters are separated by ampersands (&), and if
the parameters contain spaces, a plus sign (+) is substituted for the spaces. Therefore,
a valid set of parameters might look like this inside an HTML page:

<A HREF=”http://www.someplace.com/ISAPIApp?Param1=This+
➥Parameter&Param2=That+Parameter”>Some Link

Most of the information for a TISAPIRequest is revealed in properties, but the class makes
public many of the functions used to fill those properties, thus allowing you to access the data
directly if you want. TISAPIRequest contains other properties than those discussed here, but
these are the main ones you should be interested in. All these properties can be used in your
OnAction event handler to determine the type of response your Web server application will pro-
vide. If you want to include information about the user’s IP address or vary the response based
on the type of browser the client is using, you can do that in your OnAction event handler.

You can see what a TISAPIRequest looks like by running the following project in your Web
server. Create a new Web server application, bring up the Actions property editor by double-
clicking the Actions property in the Object Inspector, and create a new TWebActionItem with

36.65227_Ch31 11/30/1999 5:49 PM Page 1282

the PathInfo set to http. Go to the Internet page on the Component Palette and drop a
TPageProducer (discussed later in this chapter) on the WebModule; then add the code shown in
Listing 31.2 to the OnAction event handler for /http.

LISTING 31.2 The OnAction Event Handler

procedure TWebModule1.WebModule1Actions0Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

var
Page: TStringList;

begin
Page := TStringList.Create;
try
with Page do
begin

Add(‘<HTML>’);
Add(‘<HEAD>’);

Add(‘<TITLE>Web Server Extensions THTTPRequest Demo</TITLE>’);
Add(‘</HEAD>’);
Add(‘<BODY>’);
Add(‘<H3><FONT=”RED”>This page displays the properties

➥of the HTTP request that asked for it.</H3>’);
Add(‘<P>’);

Add(‘Method = ‘ + Request.Method + ‘
’);
Add(‘ProtocolVersion = ‘ + Request.ProtocolVersion + ‘
’);
Add(‘URL = ‘ + Request.URL + ‘
’);
Add(‘Query = ‘ + Request.Query + ‘
’);
Add(‘PathInfo = ‘ + Request.PathInfo + ‘
’);
Add(‘PathTranslated = ‘ + Request.PathTranslated + ‘
’);
Add(‘Authorization = ‘ + Request.Authorization + ‘
’);
Add(‘CacheControl = ‘ + Request.CacheControl + ‘
’);
Add(‘Cookie = ‘ + Request.Cookie + ‘
’);
Add(‘Date = ‘ + FormatDateTime (‘mmm dd, yyyy hh:mm’,

ÂRequest.Date) + ‘
’);
Add(‘Accept = ‘ + Request.Accept + ‘
’);
Add(‘From = ‘ + Request.From + ‘
’);
Add(‘Host = ‘ + Request.Host + ‘
’);
Add(‘IfModifiedSince = ‘ + FormatDateTime (‘mmm dd, yyyy hh:mm’,

ÂRequest.IfModifiedSince) + ‘
’);
Add(‘Referer = ‘ + Request.Referer + ‘
’);
Add(‘UserAgent = ‘ + Request.UserAgent + ‘
’);
Add(‘ContentEncoding = ‘ + Request.ContentEncoding + ‘
’);
Add(‘ContentType = ‘ + Request.ContentType + ‘
’);
Add(‘ContentLength = ‘ + IntToStr(Request.ContentLength) + ‘
’);

Internet-Enabling Your Applications with WebBroker

CHAPTER 31
1283

31

IN
TER

N
ET-E

N
A

B
LIN

G

Y
O

U
R

A
PPLIC

A
TIO

N
S

W
ITH

W
EBB

R
O

K
ER

continues

36.65227_Ch31 11/30/1999 5:49 PM Page 1283

LISTING 31.2 Continued

Add(‘ContentVersion = ‘ + Request.ContentVersion + ‘
’);
Add(‘Content = ‘ + Request.Content + ‘
’);
Add(‘Connection = ‘ + Request.Connection + ‘
’);
Add(‘DerivedFrom = ‘ + Request.DerivedFrom + ‘
’);
Add(‘Expires = ‘ + FormatDateTime (‘mmm dd, yyyy hh:mm’,

➥ Request.Expires) + ‘
’);
Add(‘Title = ‘ + Request.Title + ‘
’);

Add(‘RemoteAddr = ‘ + Request.RemoteAddr + ‘
’);
Add(‘RemoteHost = ‘ + Request.RemoteHost + ‘
’);
Add(‘ScriptName = ‘ + Request.ScriptName + ‘
’);
Add(‘ServerPort = ‘ + IntToStr(Request.ServerPort) + ‘
’);

Add(‘</BODY>’);
Add(‘</HTML>’);

end;
PageProducer1.HTMLDoc := Page;
Response.Content := PageProducer1.Content;

finally
Page.Free;

end;
Handled := True;

end;

Build the project and copy the resulting Project1.dll file in the default directory for your
ISAPI- or NSAPI-capable Web server. Point your Web browser to http://<your
server>/project1.dll/http; when you view this application; it will show you all the values
of the HTTP fields passed to the server in the request from your browser.

Of course, every request should have a proper response; therefore, Delphi defines the
TISAPIResponse class to allow you to return information to the requesting client. The most
important property of TISAPIResponse is the Content property. This is the property that will
contain the HTML code that is to be displayed for the client.

TISAPIResponse contains a number of additional properties that can be set by your application.
You can pass version information in the Version property. You can tell the client when the
information being passed back was last modified with the LastModified property. You can
pass information about the content, itself, with the ContentEncoding, ContentType, and
ContentVersion properties. The StatusCode property allows you to return error codes and
other status codes to the client.

Database Development

PART IV
1284

36.65227_Ch31 11/30/1999 5:49 PM Page 1284

The real power of TISAPIResponse comes in its methods. Once you have properly formatted
your response, use the SendResponse method to force your Web application to send the
TWebResponse information back to the client. You can send any sort of data back to the client
using the SendStream method. Also, if your application decides to send the client somewhere
other than the response provided by the application itself, it can do so using the SendRedirect
method. SendRedirect is discussed later in the chapter.

Dynamic HTML Pages with HTML Content
Producers
Of course, building HTML code dynamically is not the most efficient way to provide Web
pages, so Delphi provides a number of tools to make building HTML pages much easier, more
efficient, and customizable. TCustomContentProducer is an abstract class that provides the
basic functionality for handling and manipulating HTML pages. TPageProducer,
TDataSetTableProducer, and TQueryTableProducer descend from it. When used together,
and with either existing or dynamically created HTML, these classes allow you to create a site
based on dynamic HTML pages, including data in tables, hyperlinks, and the full range of
HTML capabilities. These controls will not actually create HTML for you, but they make the
management of HTML and the dynamic creation of Web pages based on parameters and other
inputs quite simple.

TPageProducer
TPageProducer is used for the manipulation of straight HTML code. It uses customized
HTML tags, replacing them with the proper content. You create, either at design time or run-
time, an HTML template that contains special tags that are ignored by standard HTML. The
TPageProducer can then find these tags and replace them with the appropriate information.
The tags can contain parameters for passing information. You can even replace one custom tag
with text containing other custom tags, thus allowing you to link page producers together,
causing a “daisy chain” effect that enables you to define a dynamic Web page based on differ-
ing inputs.

Internet-Enabling Your Applications with WebBroker

CHAPTER 31
1285

31

IN
TER

N
ET-E

N
A

B
LIN

G

Y
O

U
R

A
PPLIC

A
TIO

N
S

W
ITH

W
EBB

R
O

K
ER

TIP

Most browsers react in specific ways to certain status codes. You can check the HTTP
specification at the Web site http://www.w3.org for the specific status codes.

36.65227_Ch31 11/30/1999 5:49 PM Page 1285

These dynamic tags look just like regular HTML tags, but because they are not standard
HTML tags, they are ignored by the client’s browser. Such a tag looks like this:

<#CustomTag Param1=SomeValue “Param2=Some Value with Spaces”>

The tag should be surrounded by the less-than (<) and greater-than (>) brackets, and the tag’s
name must begin with a pound sign (#). The tag name must be a valid Pascal identifier.
Parameters with spaces must be entirely surrounded by quotes. These custom tags can be
placed anywhere inside your HTML document, even inside other HTML tags.

Delphi provides a number of predefined tag names. None of the values have any special action
associated with them; rather, they are defined only for convenience and code clarity. For exam-
ple, you are not required to use the tgLink custom tag for a link, but it makes sense (and is
clearer in your HTML templates) if you do so. Note that you can define all your custom tags
as you want, and they will all become tgCustom values. Table 31.1 shows the predefined tag
values.

TABLE 31.1 Predefined Tag Values

Name Value Tag Conversion Value

Custom TgCustom A user-defined or unidentified tag. It can be converted to any
user-defined value.

Link TgLink This tag should be converted to an anchor value. This is nor-
mally a hypertext link or a bookmark value (<A>..).

Image TgImage This tag should be converted to an image tag ().

Table TgTable This tag should be replaced with an HTML table
(<TABLE>..</TABLE>).

ImageMap TgImageMap This tag should be replaced with an image map. An image
map defines links based on hot zones within an image
(<MAP>...</MAP>).

Object TgObject This tag should be replaced with code that calls an ActiveX
control.

Embed TgEmbed This tag should be converted to a tag that refers to a
Netscape-compliant add-in DLL.

Using the TPageProducer component is rather straightforward. You can assign HTML code to
the component in either the HTMLDoc or HTMLFile property. Whenever the Content property is
assigned to another variable (usually the TISAPIResponse.Content property), it scans the
given HTML, calling the OnHTMLTag event whenever a custom tag is found in the HTML. The
OnHTMLTag event handler looks like this:

Database Development

PART IV
1286

36.65227_Ch31 11/30/1999 5:49 PM Page 1286

procedure TWebModule1.PageProducer1HTMLTag(Sender: TObject; Tag: TTag;
const TagString: String; TagParams: TStrings; var ReplaceText: String);

begin

end;

The Tag parameter contains the type of tag found (refer to Table 31.1). The TagString parame-
ter holds the value of the whole tag itself. The TagParams parameter is an indexed list of each
parameter, including the parameter name, the equal sign (=), and the value itself. The
ReplaceText parameter is a string variable that you will fill with the new value that will
replace the tag. The entire tag, including the angle brackets (< and >), is replaced in the HTML
code with whatever value is passed back in this parameter.

You can assign an HTML template to the TPageProducer in one of two ways. You can create
the HTML at runtime as a string and pass it to the HTMLDoc property, or you can assign an
existing HTML file to the HTMLFile property. This allows you to build HTML on the fly or to
use existing templates that you have prepared ahead of time.

For example, suppose you have an HTML file called MYPAGE.HTM with the following HTML
code in it:

<HTML>
<HEAD>

<TITLE>My Cool Homepage</TITLE>
</HEAD>
<BODY>
Howdy <#Name>! Thanks for stopping by my web site!
</BODY>
</HTML>

You can then assign the following code to the PageProducer.OnHTMLTag event handler:

procedure TWebModule1.PageProducer1HTMLTag(Sender: TObject; Tag: TTag;
const TagString: String; TagParams: TStrings; var ReplaceText: String);

begin
case Tag of

tgCustom: if TagString = ‘Name’ then ReplaceText := ‘Partner’;
end;

end;

This results in the following HTML code:

<HTML>
<HEAD>

<TITLE>My Cool Homepage</TITLE>
</HEAD>
<BODY>

Internet-Enabling Your Applications with WebBroker

CHAPTER 31
1287

31

IN
TER

N
ET-E

N
A

B
LIN

G

Y
O

U
R

A
PPLIC

A
TIO

N
S

W
ITH

W
EBB

R
O

K
ER

36.65227_Ch31 11/30/1999 5:49 PM Page 1287

Howdy Partner! Thanks for stopping by my web site!
</BODY>
</HTML>

Suppose that you used this code with the OnAction event in a WebModule, like this:

procedure TWebModule1.WebModule1WebActionItem1Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

begin
PageProducer1.HTMLFile := ‘MYPAGE.HTM’;
Response.Content := PageProducer1.Content;

end;

The newly created page would be sent back to the client when requested. When the
PageProducer.Content property is called, it makes the given replacement of text for every tag
it finds, calling the OnHTMLTag event handler for each one. More complex pages might have
numerous entries in the case statement, replacing various different custom tags with large
chunks of HTML, links to other pages, graphics, tables, and so on.

TCustomPageProducer objects can also be linked together in a chain. You can use two of them
to produce a single page. For example, you might have a basic HTML template that holds stan-
dard header and footer code, along with custom tags that define some general values for the
page and the location of the main body of the page. You might pass this through one page pro-
ducer, replacing general data tags with information based on the user’s identity. Then, you
might replace the main body tag with customized code or more tags based on the information
requested by that user. The result could then be passed to yet another TPageProducer, which
would replace those specific tag values with the appropriate information.

TDataSetTableProducer and TQueryTableProducer
In addition to regular HTML documents, Delphi provides the TDataSetTableProducer to
allow you to easily and powerfully create HTML tables based on a given dataset.
TDataSetTableProducer allows you to fully customize all characteristics of the table, within
the limits set by HTML. This class can function to a large degree as a TDBGrid because you
can format individual cells, rows, and columns. You can access data from any dataset available
to your system, whether local or remote. This allows you to build enterprise-level Web sites
that access data from virtually any source.

TDataSetTableProducer behaves a bit differently than the other database controls in that it
accesses data directly from a TDataSet descendant rather than through a TDataSource. It has a
DataSet property that can be set at design time to any TDataSet descendant found in the same
TWebModule, or at runtime to any dynamically created value. After the DataSet property has
been set, you can access and configure the TDataSetTableProducer to display any of the
columns of the given dataset, as desired. The TableAttributes property allows you to set the
general characteristics of the table, again within the confines of the HTML specification.

Database Development

PART IV
1288

36.65227_Ch31 11/30/1999 5:49 PM Page 1288

The Header and Footer properties are of type TStrings and allow you to add HTML code
before and after the table itself. You can use these properties in conjunction with your own
dynamically created HTML or with HTML from a TPageProducer. For instance, if the main
feature of a page is the table, you might use the Header and Footer properties to fill in the
basic structure of the HTML page. If the table is not the main focus of the page, you might
choose to use a custom TTag in a TPageProducer to place the table in the appropriate place.
Either way, you can use the TDataSetTableProducer to create data-based Web pages.

The Columns, RowAttributes, and TableAttributes properties are where customizing is done
for the table to be produced. The Columns property hides a very powerful component editor
that you can use to set most of the component’s attributes.

Internet-Enabling Your Applications with WebBroker

CHAPTER 31
1289

31

IN
TER

N
ET-E

N
A

B
LIN

G

Y
O

U
R

A
PPLIC

A
TIO

N
S

W
ITH

W
EBB

R
O

K
ER

TIP

Double-click the component itself or the Columns property in the Object Inspector to
invoke the Columns property editor.

The Caption and CaptionAlign properties determine how the caption of the table will be
shown. The Caption is the text displayed either above or below the table, serving to explain
the table’s contents. The DataSet property (Query in the TQueryTableProducer) determines
the data to be used in the table.

Other than the way they access data, TDataSetTableProducer and TQueryTableProducer
function identically. They have the same properties and are configured the same way. Because
of this, you will create a table that is the result of a simple join and use TQueryTableProducer
in an example to see how they both work.

Start a new Web application and drop a TQueryTableProducer from the Internet page of the
Component Palette and a TQuery and a TSession from the Data Access Palette page onto the
TWebModule. Set the QueryTableProducer1.Query property to Query1 and the
Query1.DatabaseName property to DBDEMOS. Save the project as TABLEEX.DPR. Then set the
Query1.SQL property as follows:

SELECT CUSTNO, ORDERNO, COMPANY, AMOUNTPAID, ITEMSTOTAL FROM CUSTOMER,
➥ORDERS WHERE

CUSTOMER.CUSTNO = ORDERS.CUSTNO
AND
ORDERS.AMOUNTPAID <> ORDERS.ITEMSTOTAL

This will produce a small, joined table that has all the customers from the CUSTOMER.DB table
in the standard DBDemos alias who have not yet paid all their orders in full. You can then build a
table that shows this data and highlight the amount owed. Set Query1.Active to True so that
the data will be displayed in the Columns editor.

36.65227_Ch31 11/30/1999 5:49 PM Page 1289

Database Development

PART IV
1290

NOTE

All Web server applications that will be handling data and using Delphi’s data com-
ponents need to have a TSession included in the WebModule. Web server applications
can be accessed many times concurrently, and Delphi will run each ISAPI or NSAPI
server application in a separate thread for each request. As a result, your application
needs to have its own, unique session when talking to the BDE. A TSession with
the AutoSessionName property set to True in your application ensures that each
thread has its own session and does not conflict with other threads trying to access
the same data. All you need to do is make sure that there is a TSession present in
your project—Delphi takes care of the rest.

TIP

When you are building Web extension applications, the
TWebApplication.CacheConnections property can speed up your application. Each
time a client makes a request of your ISAPI or NSAPI application, a new thread is
spawned to handle your request, in the process creating a new instance of your
TWebModule. Normally, each thread is executed for a single connection, and the
TWebModule is destroyed when that connection is closed. If CacheConnections is set to
True, each thread is preserved and reused as needed. New threads are only created
when a cached thread is not available. This will speed performance by saving the
execution time for creating a TWebModule request every time. However, you have to
be really careful, because TWebModule.OnCreate is called only once for each cached
thread. When a cached thread is finished, it remains in the state it was at comple-
tion. This might cause problems the next time the thread is used, depending on what
happens in your OnCreate event. If you depend on OnCreate to initialize variables or
perform other initialization actions, you might not want to use cached connections.
Instead, you should use an additional method that initializes the data for your Web
application and then call that in the BeforeDispatch event handler. This way, each
time a request is made, the data for your Web module will be initialized.

You can check the current number of unused, cached connections with the
TWebApplication.InactiveCount property. TWebApplication.ActiveCount will tell
you the number of active connections. These two properties may help you determine
a good value for TWebApplication.MaxConnections, which limits the total number of
connections that the TWebModule can handle at once. An exception will be raised if
ActiveCount ever exceeds MaxConnections.

36.65227_Ch31 11/30/1999 5:49 PM Page 1290

Double-click QueryTableProducer1 to invoke the Columns component editor. In the upper-left
area of the component editor, you can set the general properties for the table as a whole. The
lower half of the editor contains an HTML control that will display the table as it is currently
configured. The upper-right area contains a collection of THTMLTableColumn items that can be
configured to determine which fields of the database will be included in the table and how
those fields will be displayed. Delphi will automatically import the fields from the TQuery and
add them to the fields editor. This application will not display the last field, so select the
ItemsTotal field and delete it. In addition, select the AMOUNTPAID field, and set the BgColor
property to Lime.

Internet-Enabling Your Applications with WebBroker

CHAPTER 31
1291

31

IN
TER

N
ET-E

N
A

B
LIN

G

Y
O

U
R

A
PPLIC

A
TIO

N
S

W
ITH

W
EBB

R
O

K
ER

TIP

It might be a good idea to resize the Columns property editor in order to accommo-
date your table, especially if it will contain a number of columns.

In the upper-left part of the window, set the Border value to 1 so that you will be able to see
the border of the table in the component editor as it is built. Set the CellPadding value to 2 to
provide a bit of spacing between the border and the text. If you want to add a little color to the
table, set the BgColor property to Aqua. This will cause the default background color of the
table to be aqua. Note that this is the default color—setting the background color for a row or a
column will override this value. In addition, Column color settings take precedence over Row
color settings.

When Delphi creates the field columns for the table, it gives the HTML columns headers the
names of the fields. However, database field names often do not make nice table column head-
ings, so you can change the default values using the Title property. Title is a compound
property, and one of its subproperties is Caption. Set the Title.Caption properties of the four
columns to Cust #, Order #, Company, and Amount Owed, respectively. Amount Owed is not
quite what the fourth column currently represents, but you will customize the output for this
column a little later. The Title property also allows you to customize the vertical and horizon-
tal alignment, as well as the color of the column header cell.

NOTE

TTHMLTableColumn, like other table-related classes, has a Custom property. This prop-
erty lets you enter a string value for the given item in the table. This value will be
entered directly in the HTML tag that defines the given table element. Custom items
might include HTML cell, row, or column modifiers not included in the properties of

continues

36.65227_Ch31 11/30/1999 5:49 PM Page 1291

That covers the basic properties for the table that you can set at design time. Now we will dis-
cuss the events associated with TQueryTableProducer that allow you to customize the table at
runtime. OnCreateContent occurs prior to any HTML being generated. It contains the
Continue parameter, a Boolean value that you can set. If your application determines that for
some reason the table should not be generated, you can set this parameter to False, and no
more processing will be done; a call to the Content property will return an empty string. It
might be used to do such things as prepare the query, set the TQueryTableProducer.MaxRows
property, or any other processing that you need to do before actually displaying the table.

For instance, in the current example, the application will need to step through each record in
the Query as the table is drawn. To ensure that as the table is built the query is pointing to the
proper record, the application has to manually increment the cursor in the query each time a
new row is started. To do that, the query has to start at the beginning, as does the
TQueryTableProducer. Therefore, a call to Query1.First in the OnCreateContent event han-
dler ensures that the query and the HTML table are in sync with each other. Therefore, add the
following code to the event handler for QueryTableProducer1.OnCreateContent:

procedure TWebModule1.QueryTableProducer1CreateContent(Sender: TObject;
var Continue: Boolean);

begin
QueryTableProducer1.MaxRows := Query1.RecordCount;
Query1.First;
Continue := True;

end;

The OnGetTableCaption event allows you to format the table’s caption however you want.
Double-clicking the event in the Object Inspector yields this event handler:

procedure TWebModule1.QueryTableProducer1GetTableCaption(Sender: TObject;
var Caption: String; var Alignment: THTMLCaptionAlignment);

begin

end;

The Caption parameter is a variable parameter that will hold the end result of your caption.
You can manipulate this parameter as you please, including adding HTML tags to size, color,
and format the font of the table’s caption. You can use the Alignment parameter to determine
whether the caption is aligned at the top or the bottom of the table.

Database Development

PART IV
1292

the class or proprietary HTML extensions. Microsoft Internet Explorer includes a num-
ber of table-formatting extensions that allow you to customize the frames of the
table. If you want to add these capabilities, make the entry in the Custom property in
the form of paramname=value. You can add multiple parameters separated by spaces.

36.65227_Ch31 11/30/1999 5:49 PM Page 1292

Create an OnGetTableCaption for the example that you have been working on by double-
clicking it in the Object Inspector. Enter the following code to format the table’s Caption in
order to make it stand out a bit more on the page (this change will not be reflected on the
HTML table shown in the Columns property editor):

procedure TWebModule1.QueryTableProducer1GetTableCaption(Sender: TObject;
var Caption: String; var Alignment: THTMLCaptionAlignment);

begin
Caption := ‘Delinquent Accounts’;
Alignment := caTop;

end;

The OnFormatCell event can be used to change the appearance of an individual cell. In this
example, you can add code to highlight the Amount Owed cell of any company that has not paid
its bill in full. This gets a little trickier than with the regular grids, because
TQueryTableProducer only provides you with string values. However, as mentioned earlier,
you can use the CellRow and CellColumn parameters to move the cursor of the TQuery along
as the table is built, gathering the proper data and making calculations as each row is
processed.

The OnFormatCell event handler passes you the information about the current cell being for-
matted in the CellRow and CellColumn parameters. These are both zero-based. The rest of the
parameters are variable parameters to which you can assign values, depending on your applica-
tion’s logic. You can adjust the horizontal and vertical alignment of the data in the cell with the
Align and VAlign parameters. You can pass additional Custom parameters for the cell in the
CustomAttrs parameter, and of course, you can alter the actual text of the cell with the
CellData parameter.

The CellData parameter is of type string, which limits your ability to process it in its native
format. If the data were actually stored in the database as an integer, you would have to call
StrtoInt to convert it back to a usable number. The following code illustrates how you might
gather the actual TField values for the given cell. Perhaps future versions of Delphi will pass
the TField value into the OnFormatCell event handler in addition to or in place of the string
value. Add the code in Listing 31.3 to the OnFormatCell event handler for
TQueryTableProducer.

LISTING 31.3 The OnFormatCell Event Handler

procedure TWebModule1.QueryTableProducer1FormatCell(Sender: TObject;
CellRow, CellColumn: Integer; var BgColor: THTMLBgColor;
var Align: THTMLAlign; var VAlign: THTMLVAlign; var CustomAttrs,
CellData: String);

Internet-Enabling Your Applications with WebBroker

CHAPTER 31
1293

31

IN
TER

N
ET-E

N
A

B
LIN

G

Y
O

U
R

A
PPLIC

A
TIO

N
S

W
ITH

W
EBB

R
O

K
ER

continues

36.65227_Ch31 11/30/1999 5:49 PM Page 1293

LISTING 31.3 Continued

Owed, Paid, Total: Currency;
begin

if CellRow = 0 then Exit; // Don’t process the header row
if CellColumn = 3 then //if the column is the Amount Owed Column
begin

//Calculate the amount that the company owes
Paid := Query1.FieldByName(‘AmountPaid’).AsCurrency;
Total := Query1.FieldByName(‘ItemsTotal’).AsCurrency;
Owed := Total - Paid;
//Set CellData to amount owed
CellData := FormatFloat(‘$0.00’, Owed);
//if it is greater than zero, then highlight the cell.
if Owed > 0 then
begin

BgColor := ‘RED’;
end;
Query1.Next; //Advance the query since we came to the end of a row

end;
end;

This code gathers the data for each unpaid account, subtracts the Amount Owed from the
Amount paid, and then highlights in red the accounts that owe money. It illustrates how you
can use the current cursor of the TQuery component to access the data being displayed in the
HTML table.

Next, add the following strings to the TQueryTableProducer.Header property:

<HTML>
<HEAD>

<TITLE>Delinquent Accounts</TITLE>
</HEAD>
<BODY>
<CENTER><H2>Big Shot Widgets</H2></CENTER>
<P>
The Accounts highlighted in red are late in paying:
<P>

Now add this to the TQueryTableProducer.Footer property:

<P>
<I>This information is to be kept in the strictest confidence</I><P>
<I>Copyright 1999 by BigShotWidgets</I><P>
</BODY>
</HTML>

Database Development

PART IV
1294

36.65227_Ch31 11/30/1999 5:49 PM Page 1294

This will cause the table to be placed between these two sets of HTML code, thus causing a
complete page to be created when the Content property of TQueryTableProducer is called in
the following code.

Finally, go back to the main TWebModule of your application and add a single Action, setting
its PathInfo to /TestTable. In its OnAction event handler, add the following code:

procedure TWebModule1.WebModule1WebActionItem1Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

begin
Response.Content := QueryTableProducer1.Content;

end;

Then compile the project and make sure that the resulting DLL is accessible by your Web
server. Now, if you call the URL http://<your server>/tableex.dll/TestTable, you will
see the table with the header and footer text as well as the positive amounts owed highlighted
in red, as shown in Figure 31.2.

Internet-Enabling Your Applications with WebBroker

CHAPTER 31
1295

31

IN
TER

N
ET-E

N
A

B
LIN

G

Y
O

U
R

A
PPLIC

A
TIO

N
S

W
ITH

W
EBB

R
O

K
ER

FIGURE 31.2
A table-based Web page.

Maintaining State with Cookies
The HTTP protocol is a powerful tool, but one of its weaknesses is that it is stateless. This
means that after an HTTP conversation has been completed, neither the client nor the server

36.65227_Ch31 11/30/1999 5:49 PM Page 1295

has any memory at all that the conversation even took place, much less what it was about. This
can present a number of problems for applications that run across the Web, because the server
is not able to remember important items such as passwords, data, record positions, and so on
that have been sent to the client. Database applications are particularly affected as they often
rely on the client knowing which record is the current record back on the server.

The HTTP protocol provides a basic method for writing information on the client’s machine to
allow the server to get information about the client from previous HTTP exchanges. Called by
the curious name cookies, they allow the server to write state information into a file on the
client’s hard drive and to recall that information at a subsequent HTTP request. This greatly
increases a server’s capabilities with respect to dynamic Web pages.

Cookies are no more than text values in the form of CookieName=CookieValue. A cookie
should not include semicolons or commas. The user can refuse to accept cookies, so no appli-
cation should ever assume that a cookie will be present. Cookies are becoming more and more
prevalent as Web sites get more and more sophisticated. If you are a Netscape user, you might
be surprised by what you find in your COOKIES.TXT file. Internet Explorer users might peek
into the \WINDOWS\COOKIES folder. If you want to track cookies as they are set on your
machine, both of these browsers allow you to approve individual cookie settings within their
security preference settings.

Managing cookies in Delphi is, pardon the pun, a piece of cake. The THTTPRequest and
THTTPResponse classes encapsulate the handling of cookies quite cleanly, allowing you to eas-
ily control how cookie values are set on a client’s machine as well as to read what cookies
have been previously set.

The work of setting a cookie is all done in the TWebResponse.SetCookieField method. Here,
you can pass a TStrings descendant full of cookie values, along with the restrictions placed on
the cookies.

The SetCookieField method is declared as follows in the HTTPAPP unit:

procedure SetCookieField(Values: TStrings; const ADomain, APath: string;
➥AExpires: TDateTime; ASecure: Boolean);

The Values parameter is a TStrings descendant (you will probably use a TStringList) that
holds the actual string values of the cookies. You can pass multiple cookies in the Values para-
meter.

The ADomain parameter allows you to define in which domain the given cookies are relevant. If
no domain value is passed, the cookie will be passed to every server to which a client makes a
request. Normally, a Web application will set its own domain here so that only the pertinent
cookies are returned. The client will examine the existing cookie values and return those cook-
ies that match the given criteria.

Database Development

PART IV
1296

36.65227_Ch31 11/30/1999 5:49 PM Page 1296

For example, if you pass widgets.com in the ADomain parameter, all future requests to a server
in the widgets.com domain will pass along the cookie value set with that domain value. The
cookie value will not be passed to other domains. If the client requests big.widgets.com or
small.widgets.com, the cookie will be passed. Only hosts within the domain can set cookie
values for that domain, thus avoiding all sorts of potential for mischief.

The APath parameter allows you to set a subset of URLs within the domain where the cookie
is valid. The APath parameter is a subset of the ADomain parameter. If the server domain
matches the ADomain parameter, the APath parameter is checked against the current path infor-
mation of the requested domain. If the APath parameter matches the pathname information in
the client request, the cookie is considered valid.

For example, following the preceding example, if APath contained the value /nuts, the cookie
would be valid for a request to widgets.com/nuts and any further paths, such as
widgets.com/nuts/andbolts.

The AExpires parameter determines how long a cookie should remain valid. You can pass any
TDateTime value in this parameter. Because the client could be anywhere in the world, this
value needs to be based on the GMT time zone. If you want a cookie to be valid for 10 days,
pass Now + 10 as a value.

If you want to delete a cookie, pass a date value that is in the past (that is, a negative value)
and that will invalidate the cookie. Note that a cookie may become invalid and not be passed,
but that does not necessarily mean that the cookie is actually removed from the client’s
machine.

The final parameter, ASecure, is a Boolean value that determines whether the cookie can be
passed over nonsecure channels. A True value means that the cookie can only be passed over
the HTTP-Secure protocol or a Secure Sockets Layer network. For normal use, this parameter
should be set to False.

Your Web server application receives cookies sent by the client in the TWebRequest.
CookieFields property. This parameter is a TStrings descendant that holds the values in an
indexed array. The strings are the complete cookie value in param=value form. They can be
accessed like any other TStrings value. The cookies are also passed as a single string in the
TWebRequest.Cookie property, but normally you would not want to manipulate them here. You
can assign the cookies directly to an existing TStrings object with the
TWebRequest.ExtractCookieFields method.

A simple example can illustrate the ease with which Delphi deals with cookies. First, create a
new Web Application and add the WebUtils unit to your uses clause. The WebUtils unit is
included on the CD-ROM accompanying this book. Then create a new Web server application

Internet-Enabling Your Applications with WebBroker

CHAPTER 31
1297

31

IN
TER

N
ET-E

N
A

B
LIN

G

Y
O

U
R

A
PPLIC

A
TIO

N
S

W
ITH

W
EBB

R
O

K
ER

36.65227_Ch31 11/30/1999 5:49 PM Page 1297

and give it two actions—one named SetCookie and the other GetCookie. Set the code in the
OnAction event for SetCookie to the following:

procedure TWebModule1.WebModule1WebActionItem1Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

var
List: TStringList;

begin
List := TStringList.Create;
try

List.Add(‘LastVisit=’ + FormatDateTime(‘mm/dd/yyyy hh:mm:ss’, Now));
Response.SetCookieField(List, ‘’, ‘’, Now + 10, False);
Response.Content := ‘Cookie set -- ‘ + Response.Cookies[0].Name;

finally
List.Free;

end;
Handled := True;

end;

The OnAction code for GetCookie should be as follows:

procedure TWebModule1.WebModule1WebActionItem2Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

var
Params: TParamsList;

begin
Params := TParamsList.Create;
try
Params.AddParameters(Request.CookieFields);
Response.Content := ‘You last set the cookie on ‘ + Params[‘LastVisit’];

finally
Params.Free;

end;
end;

Set up a Web page that calls the following two URLs:

http://<your server>/project1.dll/SetCookie
http://<your server>/project1.dll/GetCookie

Database Development

PART IV
1298

NOTE

The TParamsList class is part of the WebUtils unit included on the CD-ROM. It is a
class that automatically parses out parameters from a TStrings descendant and
allows you to index them by the parameter’s name. For instance, TWebResponse gath-
ers all the cookies passed in an HTTP response and places them in the CookieFields

36.65227_Ch31 11/30/1999 5:49 PM Page 1298

Set the cookie by calling for the first URL from a Web page in the same directory as the DLL.
This will set a cookie on the client machine that lasts for 10 days and contains the date and
time that the request was made in a cookie called LastVisit. If you have your Web browser
set to accept cookies, it should ask you to confirm the writing of the cookie. Then call the
GetCookie action to read the cookie, and you should see the date and time that you last called
the SetCookie action.

Cookies can contain any information that can be stored in a string. Cookies can be as big as
4KB, and a client can store as many as 300 cookies. Any individual server or domain is limited
to 20 cookies. Cookies are powerful but, as you can see, you should try to limit their use. They
certainly cannot be used to store large amounts of data on a client’s machine.

Very often, you will want to store more information about a user than can be stored in a
cookie. Sometimes you will want to keep track of a user’s preferences, address, personal infor-
mation, or even items in a “grocery cart” that are to be purchased from your e-commerce site.
This information can easily become rather voluminous. Rather than try to store all this infor-
mation in the cookie itself, it is often better to encode user information into a cookie rather
than storing the information as is. For instance, in order to store a collection of user prefer-
ences that are really Boolean values, you might store them in binary format inside the cookie.
Therefore, a cookie value of ‘1001’ might mean that the user does want further email updates,
does not want his or her email address given to other users, does not want to be added to your
list server, and does want to join your online discussion groups. You can use characters or
numbers to further encode even more data about a user in a cookie.

You can also store a user identification value in a cookie that uniquely identifies a user. You
can then retrieve that value from the cookie and use it to look up the user’s data in a database.
That way, you would be able to minimize the amount of data stored on the user’s computer and
maximize your control over the information that you maintain about a user.

Cookies can provide a powerful and easy way to maintain data about your users between indi-
vidual HTTP sessions.

Internet-Enabling Your Applications with WebBroker

CHAPTER 31
1299

31

IN
TER

N
ET-E

N
A

B
LIN

G

Y
O

U
R

A
PPLIC

A
TIO

N
S

W
ITH

W
EBB

R
O

K
ER

property, which is a TStrings descendant. The cookies are in the form
CookieName=CookieValue. TParamsList takes these values, parses them, and indexes
them by the parameter name. Therefore, the preceding parameter could be accessed
with MyParams[‘CookieName’], which would return CookieValue. You can use this
class, or you can use the Values property found in the TStrings class included in
the VCL.

36.65227_Ch31 11/30/1999 5:49 PM Page 1299

Redirecting to a Different Web Site
Often, a given URL may want to change the destination of a user’s request. A Web application
may want to process some data based on a request and then serve back a page that may vary
depending on the nature of the request or a database entry. Web advertising does this fre-
quently. Often an ad graphic will point to another URL within the domain where it appears, but
clicking it takes the user to the advertiser’s home page. Along the way, data is gathered about
the request and then the client is handed off to the advertiser’s page. Frequently, the HTML
code for the advertisement’s graphic will contain parameters that describe the ad to the server.
The server can log that information and then pass the client on to the proper page. This tech-
nique is called redirection, and it can be very useful for a number of tasks.

Delphi’s TWebResponse class includes a method called SendRedirect. It takes a single string as
a parameter that should contain the full address of the site to which the client should be redi-
rected. The method is declared as follows:

procedure SendRedirect(const URI: string); virtual; abstract;

SendRedirect is declared as an abstract method in HTTPAPP.PAS and defined in ISAPIAPP.PAS.

A Web server could easily process an HTTP request that includes parameters and then pass
that request to a site named by one of those parameters. For instance, if a cool GIF file is on a
page, and the whole graphic is wrapped up as a hyperlink, the URL assigned to it might look
something like this:

➥

Given that information, an OnAction event in a Web server application named /transfer
might resemble the following code fragment:

procedure TWebModule1.WebModule1WebActionItem3Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

begin
{Process Request.QueryFields[1] perhaps placing it in a database.
It holds the name of the GIF file that caused the user to click on it.
You might want to track the GIFs that are the most effective.
Then you can keep track of how many hits a particular company is
getting from your site by tracking the company name that is getting
requested in the Request.QueryFields[2] parameter}
//Then, you can call this to send the user on his merry way...
Response.SendRedirect(Request.QueryFields[0]);

end;

Database Development

PART IV
1300

36.65227_Ch31 11/30/1999 5:49 PM Page 1300

By using this technique, you can create a generic transfer application that processes every
advertisement on a site. Of course, there may be other reasons for calling SendRedirect than
just advertising. You can use SendRedirect whenever you want to keep track of specific URL
requests and any data that might be associated with a particular hyperlink. Simply gather the
data from the QueryFields property and then call SendRedirect as needed.

Retrieving Information from HTML Forms
HTML-based forms are growing in use with the growth of the Internet and intranets. It is not a
surprise that Delphi makes gathering information from forms easy. This chapter does not cover
the details of creating an HTML-based form and the controls that go with it, but rather it deals
with how Delphi handles the forms and their data.

On the CD-ROM in the back of this book is a straightforward guest book application that gath-
ers the input from an HTML form and makes entries into a database table. Opening the
INDEX.HTM file in your browser can access the application. The HTML form for the guest book,
GUEST.HTM, uses the following line to define the form and the action to take when the user
clicks the Submit button:

<form method=”post” action=”guestbk.dll/form”>

This code causes the form to “post” its data when asked to do so and to call the given DLL
OnAction event. The form allows the user to enter his or her name, email address, home town,
and comments. When the user clicks the Submit button, that information is gathered up and
passed to the Web application.

The action with the name /form then receives the data in the Request.ContentFields, in the
form of standard HTTP parameters. ContentFields is a TStrings descendant that holds the
contents of the submitted form. The application contains a TTable named GBTable that is refer-
enced by the GBDATA alias. You will need to create this alias and point it to the /GBDATA direc-
tory where the Paradox tables reside in order to run the guest book. Listing 31.4 shows the
code that receives the content of the form and enters it into the database.

LISTING 31.4 Code for Retrieving Content of a Form

var
MyPage: TStringList;
ParamsList: TParamsList;

begin
begin

ParamsList := TParamsList.Create;
try try
ParamsList.AddParameters(Request.ContentFields);

Internet-Enabling Your Applications with WebBroker

CHAPTER 31
1301

31

IN
TER

N
ET-E

N
A

B
LIN

G

Y
O

U
R

A
PPLIC

A
TIO

N
S

W
ITH

W
EBB

R
O

K
ER

continues

36.65227_Ch31 11/30/1999 5:49 PM Page 1301

LISTING 31.4 Continued

GBTable.Open;
GBTable.Append;
GBTable.FieldByName(‘Name’).Value := ParamsList[‘fullnameText’];
GBTable.FieldByName(‘EMail’).Value := ParamsList[‘emailText’];
GBTable.FieldByName(‘WhereFrom’).Value :=
➥ParamsList[‘wherefromText’];

GBTable.FieldByName(‘Comments’).Value := ParamsList[‘commentsTextArea’];
GBTable.FieldByName(‘FirstTime’).Value :=
➥(CompareStr(ParamsList[‘firstVisitCheck’], ‘on’) = 0);
GBTable.FieldByName(‘DateTime’).Value := Now;
GBTable.Post;

except
Response.Content := ‘An Error occurred in processing your data.’;
Handled := True;

end;
finally
ParamsList.Free;
GBTable.Close;

end;
end;

The code first inserts the ContentFields property into a TParamsList. It then opens the
GBTable and inserts the data from the form into the appropriate fields. The code in Listing 31.4
is relatively straightforward.

The next portion of the code, shown in Listing 31.5, creates an HTML response that thanks the
user for making an entry. It uses some of the data from the form to address the user by name,
and it also confirms the user’s email address.

LISTING 31.5 Code for Creating an HTML Response

MyPage := TStringList.Create;
ParamsList := TParamsList.Create;

try
with MyPage do
begin
Add(‘<HTML>’);
Add(‘<HEAD><TITLE>Guest Book Demo Page</TITLE></HEAD>’);
Add(‘<BODY>’);
Add(‘<H2>Delphi Guest Book Demo</H2><HR>’);
ParamsList.AddParameters(Request.ContentFields);
Add(‘<H3>Hello ’+ ParamsList[‘fullnameText’]

➥+’ from ‘+ParamsList[‘wherefromText’]+’!</H3><P>’);
Add(‘Thanks for visiting my homepage and making

Database Development

PART IV
1302

36.65227_Ch31 11/30/1999 5:49 PM Page 1302

➥an entry into my Guestbook.<P>’);
Add(‘If we need to e-mail you, we will use this address -- ’

➥+ParamsList[‘emailText’]+’’);
Add(‘<HR></BODY>’);
Add(‘</HTML>’);

end;
PageProducer1.HtmlDoc := MyPage;
finally
MyPage.Free;
ParamsList.Free;

end;
Response.Content := PageProducer1.Content;
Handled := True;

Finally, the application provides a summary of all guest book entries in the /entries action.

Data Streaming
Most of the data you will be providing to clients by HTTP requests will probably be HTML-
based pages. However, there may be a time when you want to send other types of data in
response to a user’s request. Sometimes you might want to provide different graphics or sounds
based upon a user’s input. You may have a special data format that you want to send down the
pipe to a user that can be specially handled by the client’s browser. For instance, Netscape pro-
vides a plug-in architecture that allows developers to write extensions to the Navigator browser
to handle any type of data. RealAudio, Shockwave, and other types of data streaming are
examples of Netscape plug-ins that can extend the power of the client’s browser.

Whatever the type of data you want to transmit, Delphi makes it easy to stream data back to a
client. The TWebResponse.SendStream method along with the TWebResponse.ContentStream
property enable you to send any type of data back to the client by loading it into a Delphi
stream class. Of course, you will need to let the client’s browser know what type of data is
being sent, so you will need to set the TWebResponse.ContentType property as well. Setting
this string value to an appropriate MIME type will allow the browser to properly handle the
incoming data. For instance, if you want to stream a Windows WAV file, you would set the
ContentType property to ‘audio/wav’.

Internet-Enabling Your Applications with WebBroker

CHAPTER 31
1303

31

IN
TER

N
ET-E

N
A

B
LIN

G

Y
O

U
R

A
PPLIC

A
TIO

N
S

W
ITH

W
EBB

R
O

K
ER

NOTE

MIME stands for Multipurpose Internet Mail Extensions. MIME extensions were devel-
oped to allow clients and servers to pass data by email that was more complex than
the standard text passed in most emails. Browsers and the HTTP protocol have

continues

36.65227_Ch31 11/30/1999 5:49 PM Page 1303

Using streams allows you to pass any type of data from virtually any source on your Web
server’s machine. You can pass data from files that reside on your server or anywhere on your
network, from Windows resources built into your ISAPI DLL or other DLLs available to your
ISAPI DLL, or you can even construct the data on the fly and send it to the client. There is
really no limit to how or what you can send, as long as your client’s browser knows what to do
with the data.

Now we will construct a simple Web application that illustrates what can be done. You will set
up a Web page that displays images from various sources. The application will process the
image data as needed and return it to the client as requested. This will be surprisingly easy,
because Delphi provides numerous different stream classes that make gathering data into a
stream very easy, and the ISAPI extension classes make sending that data a snap as well.

To build the data streaming example, select File, New from the main menu and choose Web
Server Application from the resulting dialog. This will give you a TWebModule. Go to the Web
module, select it, and then go to the Object Inspecto. Double-click the Actions property and
create three actions called /file, /bitmap, and /resource.

Select the /file action, go to the Object Inspector, and select the Events page. Create an
OnAction event and then add the following code to the event handler:

procedure TWebModule1.WebModule1WebActionItem2Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

var
FS: TFileStream;

begin
FS := TFileStream.Create(JPEGFilename, fmOpenRead);
try
Response.ContentType := ‘image/jpeg’;
Response.ContentStream := FS;
Response.SendResponse;
Handled := True;

finally
FS.Free;

end;
end;

Database Development

PART IV
1304

adapted MIME extensions to allow you to pass almost any sort of data from a Web
server to a Web browser. Your Web browser contains a rather large list of these
MIME types, and it associates a particular application or plug-in with each MIME type.
When the browser gets that type, it looks up which application should be used to
handle that particular MIME type and passes the data to it.

36.65227_Ch31 11/30/1999 5:49 PM Page 1304

The preceding code is pretty straightforward. If you set up the code from the CD-ROM on
your computer as described earlier, there should be a JPEG file called TESTIMG.JPG in the \bin
directory. The OnAction event handler creates a TFileStream that loads that file. It then sets
the proper MIME type to tell the client browser that a JPEG file is coming, and it then assigns
the TFileStream to the Response.ContentStream property. The data is then returned to the
client by calling the Response.SendResponse method. As a result, in the accompanying HTML
file, there should be a picture of a rose on the provided HTML page.

Internet-Enabling Your Applications with WebBroker

CHAPTER 31
1305

31

IN
TER

N
ET-E

N
A

B
LIN

G

Y
O

U
R

A
PPLIC

A
TIO

N
S

W
ITH

W
EBB

R
O

K
ER

NOTE

In the HTML that displays this JPEG file in your browser, you can simply place the ref-
erence to the Web application’s Action property directly in the IMG tag, like so:

The streaming examples can be displayed by means of the INDEX.HTM page in the
\STREAMS directory

The application is able to find the JPEG file because when it was created, it set the
JPEGFilename variable as follows:

procedure TWebModule1.WebModule1Create(Sender: TObject);
var
Path: array[0..MAX_PATH - 1] of Char;
PathStr: string;

begin
SetString(PathStr, Path, GetModuleFileName(HInstance, Path, SizeOf(Path)));
JPEGFilename := ExtractFilePath(PathStr) + ‘TESTIMG.JPG’;

end;

The /bitmap action will load a different image, but in a totally different way. The code for this
action is a bit more complicated. It looks like this:

procedure TWebModule1.WebModule1WebActionItem3Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

var
BM: TBitmap;
JPEGImage: TJPEGImage;

begin
BM := TBitmap.Create;
JPEGImage := TJPEGImage.Create;
try
BM.Handle := LoadBitmap(hInstance, ‘ATHENA’);
JPEGImage.Assign(BM);
Response.ContentStream := TMemoryStream.Create;

36.65227_Ch31 11/30/1999 5:49 PM Page 1305

JPEGImage.SaveToStream(Response.ContentStream);
Response.ContentStream.Position := 0;
Response.SendResponse;
Handled := True;

finally
BM.Free;
JPEGImage.Free;

end;
end;

It takes a bit more work to get a bitmap converted to a JPEG and streamed out to the client. A
TBitmap is used to grab the bitmap out of the resource file. A TJPEGImage from the JPEG unit is
created and will convert the bitmap to a JPEG file.

The TBitmap class is created and then the Windows API call LoadBitmap is used to grab the
bitmap from the resource named ‘ATHENA’. LoadBitmap returns the bitmap’s handle, which is
assigned to the Handle property. The bitmap itself then is assigned immediately to the
TJPEGImage. The Assign method is overloaded and contains the smarts to convert the bitmap
to a JPEG.

Next comes a nice example of polymorphism. Response.ContentStream is declared as a
TStream, an abstract class. Because of the power of polymorphism, you can create it as any
type of TStream descendant you like. In this case, it is created as a TMemoryStream and used to
hold the JPEG with the TJPEGImage.SaveToStream method. Now the JPEG is in a stream and
can be sent out. An important but easy-to-forget step is to return the position of the stream to
zero after saving the JPEG into it. If this is not done, the stream will be positioned at the end,
and no data will be streamed out to the client. After all that is completed, the
Response.SendResponse method is called to send out the data stored in the stream. The result
in this case is the bust of Athena from Delphi’s About box.

Another way to load a JPEG is by using a resource entry. You can load a JPEG into an RES
file using the following code in an RC file and then compiling it using BRCC32.EXE. If you load
it as RCDATA, you can use the TResourceStream class to easily load it and send it to the client
browser. TResourceStream is a very powerful class that will load a resource from either the
EXE file itself or a resource located in an external DLL file. The /resource action illustrates
how to do this by loading the JPEG from the resource named ‘JPEG’ that is compiled into
the EXE:

procedure TWebModule1.WebModule1WebActionItem4Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

begin
Response.ContentStream := TResourceStream.Create(hInstance,

➥’JPEG’, RT_RCDATA);
Response.ContentType := ‘image/jpeg’;

Database Development

PART IV
1306

36.65227_Ch31 11/30/1999 5:49 PM Page 1306

Response.SendResponse;
Handled := True;

end;

This code sends the data to the client a little differently. It is much more straightforward and is
again a nice example of polymorphism in action. A TResourceStream is created and assigned
to the ContentStream property. Because the TResourceStream’s constructor loads the resource
into the stream, no further action needs to be taken on the stream, and a simple call to
Response.SendResponse sends the data down the stream.

The final example streams out a WAV file that is stored as an RCDATA resource. This example
uses the Response.SendStream method to send out a stream created within the method. This
illustrates yet another way of sending stream data. You can create a stream, manipulate and
modify it as needed, and send it directly back to the client with the SendStream method. This
action should cause your browser to play a WAV file of a dog barking. Here is the code:

procedure TWebModule1.WebModule1WebActionItem1Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

var
RS: TResourceStream;

begin
RS := TResourceStream.Create(hInstance, ‘BARK’, RT_RCDATA);
try
Response.ContentType := ‘audio/wav’;
Response.SendStream(RS);
Handled := True;

finally
RS.Free;

end;
end;

Summary
This chapter shows you how to build Web server extensions using the ISAPI/NSAPI exten-
sions. This information is easily transferable to the CGI applications that Delphi produces. We
discussed the HTTP protocol and how Delphi encapsulates it in its TWebRequest and
TWebResponse classes. We showed you how to build applications using the TWebModule and its
OnAction events with dynamic HTML. We then illustrated custom HTML documents with the
TContentPageProducer descendants. We also discussed accessing data and building HTML
tables using the TQueryTableProducer. Then, we discussed how to handle cookies and the
content of HTML forms. Finally, we showed you how to stream custom content back to the
client. In the next chapter, “MIDAS Development,” we will get back to a database-centric way
of thinking as you learn about the MIDAS multitier technology.

Internet-Enabling Your Applications with WebBroker

CHAPTER 31
1307

31

IN
TER

N
ET-E

N
A

B
LIN

G

Y
O

U
R

A
PPLIC

A
TIO

N
S

W
ITH

W
EBB

R
O

K
ER

36.65227_Ch31 11/30/1999 5:49 PM Page 1307

36.65227_Ch31 11/30/1999 5:49 PM Page 1308

CHAPTER

32
Midas Development
By Dan Miser

IN THIS CHAPTER
• Mechanics of Creating a Multitier

Application 1310

• Benefits of the Multitier
Architecture 1311

• Typical MIDAS Architecture 1313

• Using MIDAS to Create an
Application 1319

• More Options to Make Your
Application Robust 1327

• Real-World Examples 1332

• More Client Dataset Features 1343

• Deploying MIDAS Applications 1353

• Summary 1358

37.65227_Ch32 11/30/1999 5:51 PM Page 1309

Multitier applications are being talked about as much as any topic in computer programming
today. This is happening for good reason. Multitier applications hold many advantages over the
more traditional client/server applications. Borland’s Multitier Distributed Application Services
Suite (MIDAS) is one way to help you create and deliver a multitier application using Delphi,
while building on techniques and skills you’ve accumulated when using Delphi. This chapter
will walk you through some general information about multitier application design, and show
you how to apply those principles to create solid MIDAS applications.

Mechanics of Creating a Multitier Application
Because we’ll be talking about a multitier application, it might be helpful to first provide a
frame of reference to what a tier really is. A tier, in this sense, is a layer of an application that
provides some specific set of functionality. Here are the three basic tiers used in database
applications:

• Data. The data tier is responsible for storing your data. Typically, this will be an
RDBMS such as Microsoft SQL Server, Oracle, or InterBase.

• Business. The business tier is responsible for retrieving data from the data tier in a format
appropriate for the application and performing final validation of the data (also known as
enforcing business rules). This is also the application server layer.

• Presentation. Also known as the GUI tier, this tier is responsible for displaying the data
in an appropriate format in the client application. The presentation tier always talks to
the business tier. It never talks directly to the data tier.

In traditional client/server applications, you have an architecture like that shown in Figure 32.1.
Notice that the client libraries for data access must be located on every single client machine.
This has historically been a trouble spot when deploying client/server applications due to
incompatible versions of DLLs. Also, because most of the business tier is located on each client,
you need to update all the clients every single time you need to update a business rule.

Database Development

PART IV
1310

BDE, ADO, et al.

Client
DBMS

FIGURE 32.1
The traditional client/server architecture.

37.65227_Ch32 11/30/1999 5:51 PM Page 1310

In multitier applications, the architecture looks more like that shown in Figure 32.2. Using this
architecture, you’ll find many benefits over the equivalent client/server application.

MIDAS Development

CHAPTER 32
1311

32

M
ID

A
S

D
EV

ELO
PM

EN
T

DBMS

IAppServer

Client

MIDAS.DLL

B
D

E
, A

D
O

, et al.IAppServer

Server

MIDAS.DLL

FIGURE 32.2
Multitier architecture.

Benefits of the Multitier Architecture
We list the major benefits of the multitier architecture in the next few sections.

Centralized Business Logic
In most client/server applications, each client application is required to keep track of the indi-
vidual business rules for a business solution. Not only does this increase the size of the exe-
cutable, but it also poses a challenge to the software developer to keep strict control over
version maintenance. If user A has an older version of the application than user B, the business
rules may not be performed consistently, thus resulting in logical data errors. Placing the busi-
ness rules on the application server requires only one copy of the business rules to be created
and maintained. Therefore, everyone using that application server will use the same copy of
those business rules. In client/server applications, the RDBMS could address some of the con-
cerns, but not all RDBMS systems provide the same set of features. Also, writing stored proce-
dures makes your application less portable. Using a multitier approach, your business rules are
hosted independent of your RDBMS, thus making database independence easier.

Thin-Client Architecture
In addition to the business rules mentioned, the typical client/server application also bears the
burden of the majority of the data-access layer. This produces a more sizable executable, more
commonly known as a fat client. For a Delphi database application accessing a SQL server
database, you would need to install the BDE, SQL Links and/or ODBC to access the database,

37.65227_Ch32 11/30/1999 5:51 PM Page 1311

and the client libraries necessary to talk to the SQL server. After installing these files, you
would then need to configure each piece appropriately. This increases the install footprint con-
siderably. Using MIDAS, the data access is controlled by the application server, whereas the
data is presented to the user by the client application. This means you only need to distribute
the client application and one DLL to help your client talk to your server. This is clearly a thin-
client architecture.

Automatic Error Reconciliation
Delphi comes with a built-in mechanism to help with error reconciliation. Error reconciliation
is necessary in a multitier application for the same reasons it would be necessary with cached
updates. The data is copied to the client machine, where changes are made. Multiple clients
can be working on the same record. Error reconciliation helps the user determine what to do
with records that have changed since the user last downloaded the record. In the true Delphi
spirit, if this dialog does not suit your needs, you can expand on it and create one that does.

Briefcase Model
The briefcase model is based on the metaphor of a physical briefcase. You place your impor-
tant papers in your briefcase and transport them back and forth, unpacking them when needed.
Delphi provides a way to pack up all your data and take it with you on the road without requir-
ing a live connection to the application server or the database server.

Fault Tolerance
If your server machine becomes unavailable due to unforeseen circumstances, it would be nice
to dynamically change to a backup server without recompiling your client or server applica-
tions. Delphi provides functionality for this out of the box.

Load Balancing
As you deploy your client application to more people, you’ll inevitably start to saturate your
server’s bandwidth. There are two ways to attempt to balance the network traffic: static and
dynamic load balancing. For static load balancing, you would add another server machine and
have half of your clients use server A, and the other half would access server B. However, what
if the clients who use server A put a greater strain on the server than those who use server B?
Using dynamic load balancing, you could address this issue by telling each client application

Database Development

PART IV
1312

37.65227_Ch32 11/30/1999 5:51 PM Page 1312

which server to access. There are many different dynamic load-balancing algorithms available,
such as random, sequential, least network users, and least network traffic. Delphi 4 and above
address this by providing you with a component to implement sequential load balancing.

Classic Mistakes
The most common mistake in creating a multitier application is introducing unnecessary
knowledge of the data tier into the presentation tier. Some validation is more suitable in the
presentation tier, but it’s how that validation is performed that determines its suitability in a
multitier application.

For example, if you’re passing dynamic SQL statements from the client to the server, this
introduces a dependency for the client application to always be synchronized with the data tier.
Doing things this way introduces more moving parts that need to be coordinated in the overall
multitier application. If you change one of the tables’ structures on the data tier, you must
update all the client applications that send dynamic SQL so that they can now send the proper
SQL statement. This clearly limits the benefit that a properly developed thin-client application
holds.

Another example is when the client application attempts to control the transaction lifetime, as
opposed to allowing the business tier to take care of this on the client’s behalf. Most of the
time, this is implemented by exposing three methods of the TDataBase instance on the
server—BeginTransaction(), Commit(), and Rollback()—and calling those methods from
the client. Doing things in this manner makes the client code much more complicated to main-
tain and violates the principle that the presentation tier should be the only tier responsible for
communication to the data tier. The presentation tier should never have to rely on such an
approach. Instead, you should send your updates to the business tier and let that tier deal with
updating the data in a transaction.

Typical MIDAS Architecture
Figure 32.3 shows how a typical MIDAS application looks after it’s created. At the heart of
this diagram is the Remote Data Module (RDM). The RDM is a descendant of the classic data
module available since Delphi 2. This data module is a special form that only allows nonvisual
components to be placed on it. The RDM is no different in this respect. In addition, the RDM
is actually a COM object—or to be more precise, an Automation object. Services that you
export from this RDM will be available for use on client machines.

MIDAS Development

CHAPTER 32
1313

32

M
ID

A
S

D
EV

ELO
PM

EN
T

37.65227_Ch32 11/30/1999 5:51 PM Page 1313

FIGURE 32.3
A typical MIDAS application.

Let’s look at some of the options available to you when creating an RDM. Figure 32.4 shows
the dialog that Delphi presents when you select File, New, Remote Data Module.

Database Development

PART IV
1314

TClientDataset

TDispatchConnection

Client

Form/DataModule

Server

Remote DataModule (RDM)

TDatasetProvider TDataset

FIGURE 32.4
New Remote Data Module dialog.

Server
Now that we’ve seen how a typical MIDAS application is put together, let’s see how to make
that happen in Delphi. We’ll begin with a look at some of the choices available when setting up
the server.

Instancing Choices
Specifying an instancing choice affects how many copies of the server process will be
launched. Figure 32.5 shows how the choices made here control how your server behaves.

37.65227_Ch32 11/30/1999 5:51 PM Page 1314

FIGURE 32.5
Server behavior based on instancing options.

Here are the different instancing choices available to a COM server:

• ciMultiInstance. Each client that accesses the COM server will use the same server
instance. By default, this implies that one client must wait for another before being
allowed to operate on the COM server. See the next section, “Threading Choices,” for
more detailed information on how the value specified for the Threading Model also
affects this behavior. This is equivalent to serial access for the clients. All clients must
share one database connection; therefore, the TDatabase.HandleShared property must be
True.

• ciSingleInstance. Each client that accesses the COM server will use a separate
instance. This implies that each client will consume server resources for each server
instance to be loaded. This is equivalent to parallel access for the clients. If you decide to
go with this choice, beware of BDE limits that could make this choice less attractive.
Specifically, BDE 5.01 has a 48-process limit per machine. Because each client spawns a
new server process, you can only have 48 clients connected at one time.

• ciInternal. The COM server cannot be created from external applications. This is use-
ful when you want to control access to a COM object through a proxy layer. One exam-
ple of using this instancing choice can be found in the <DELPHI>\DEMOS\MIDAS\POOLER
example.

Also note that the configuration of the DCOM object has a direct effect on the object-instancing
mode. See the “Deploying MIDAS Applications” section for more information on this topic.

MIDAS Development

CHAPTER 32
1315

32

M
ID

A
S

D
EV

ELO
PM

EN
T

Client1 Server1

Client2 Server2

Client3 Server3

Single Instance

Client1

Client2 Server

Client3

Multi Instance

Client1

Client2 Server

Client3

Thread1

Thread2

Thread3

Apartment Threading

37.65227_Ch32 11/30/1999 5:51 PM Page 1315

Threading Choices
The threading support in Delphi 5 saw a drastic change for the better. In Delphi 4, selecting the
threading model for an EXE server was meaningless. The flag merely marked the Registry to
tell COM that a DLL was capable of running under the selected threading model. With Delphi
5, the threading model choice now applies to EXE servers by allowing COM to thread the con-
nections without using any external code. The following is a summary of the threading choices
available for an RDM:

• Single. Selecting Single means that the server is only capable of handling one request at
a time. When using Single, you need not worry about threading issues because the server
runs in one thread and COM handles the details of synchronizing the messages for you.
However, this is the worst selection you can make if you plan on having a multiuser sys-
tem because client B would then need to wait for client A to finish its processing before
it could even start working. This is obviously not a good situation, because client A could
be doing an end-of-day summary report or some other similar time-intensive operation.

• Apartment. Selecting the Apartment threading model gives you the best of all possible
worlds when combined with ciMultiInstance instancing. In this scenario, all the clients
share one server process because of ciMultiInstance, but the work done on the server
from one client does not block another client from doing work due to the Apartment
threading choice. When using Apartment threading, you’re guaranteed that the instance
data of your RDM is safe, but you need to protect access to global variables using some
thread synchronization technique, such as PostMessage(), critical sections, mutexes,
semaphores, or the Delphi wrapper class TMultiReadExclusiveWriteSynchronizer.
This is the preferred threading model for BDE datasets. Note that if you do use this
threading model with BDE datasets, you need to place a TSession component on your
RDM and set the AutoSessionName property to True to help the BDE conform to its
internal requirements for threading.

• Free. This model provides even more flexibility in server processing by allowing multi-
ple calls to be made from the client to the server simultaneously. However, along with
that power comes responsibility. You must take care to protect all data from thread con-
flicts—both instance data and global variables. This is the preferred threading model
when using Microsoft Active Data Objects (ADO).

• Both. This setting is effectively the same as the Free setting, with one exception—call-
backs are serialized automatically.

Data-Access Choices
Delphi 5 client/server comes with many different data-access choices. The BDE continues to
be supported, thus allowing you to use TDBDataset components, such as TTable, TQuery, and

Database Development

PART IV
1316

37.65227_Ch32 11/30/1999 5:51 PM Page 1316

TStoredProc. In addition, you now have the choice of supporting ADO and direct InterBase
access through new TDataset components.

Advertising Services
The RDM is responsible for communicating which services will be available to clients. If the
RDM is going to make a TQuery available for use on the client, you need to place the TQuery
on the RDM along with a TDatasetProvider. The TDatasetProvider component is then tied
to the TQuery via the TDatasetProvider.Dataset property. Later, when a client comes along
and wants to use the data from the TQuery, it can do so by binding to the TDatasetProvider
you just created. You can control which providers are visible to the client by setting the
TDatasetProvider.Exported property to True or False.

If, on the other hand, you don’t need an entire dataset exposed from the server and just have a
need for the client to make a method call to the server, you can do that, too. Although the
RDM has focus, select the Edit, Add To Interface menu option and fill in the dialog with a
standard method prototype. After refreshing the type library, you can specify the implementa-
tion of this method in code as you always have.

Client
After building the server, we need to create a client to use the services provided by the server.
Let’s take a look at some of the options available when building your MIDAS client.

Connection Choices
Delphi’s architecture for connecting the client to the server starts with the
TDispatchConnection. This base object is the parent of all the connection types listed later.
When the connection type is irrelevant for a specific section, TDispatchConnection will be
used to denote that fact.

TDCOMConnection provides core security and authentication by using the standard Windows
implementation of these services. This connection type is especially useful if you’re using this
application in an intranet/extranet setup (that is, where the people using your application are
“known” from the domain’s perspective). You can use early binding when using DCOM, and
you can use callbacks and ConnectionPoints easily (you can use callbacks when using sock-
ets, too, but you’re limited to using late binding to do so). The drawbacks of using this connec-
tion are as follows:

• Difficult configuration in many cases

• Not a firewall-friendly connection type

• Requires installation of DCOM95 for Windows 95 machines

TSocketConnection is the easiest connection to configure. In addition, it only uses one port for

MIDAS Development

CHAPTER 32
1317

32

M
ID

A
S

D
EV

ELO
PM

EN
T

37.65227_Ch32 11/30/1999 5:51 PM Page 1317

MIDAS traffic, so your firewall administrators will be happier than if they had to make DCOM
work through the firewall. You must be running ScktSrvr (found in the <DELPHI>\BIN direc-
tory) to make this setup work, so there’s one extra file to deploy and run on the server. Delphi
4 also required you to have WinSock2 installed, which meant another installation for Windows
9x clients. However, if you’re using Delphi 5 and not using callbacks, you may want to con-
sider setting TSocketConnection.SupportCallbacks to False. This allows you to stick with
WinSock 1 on the client machines.

TOLEnterpriseConnection provides built-in fault tolerance and load balancing. It also makes
it easy to use a Windows 9x machine as a server. Delphi 4 introduced a component that allows
for fault tolerance and simple load balancing (TSimpleObjectBroker), and it’s now known how
to use Windows 9x as a server. In addition, the install footprint is quite high.

Starting with Delphi 4, you can also use TCORBAConnection. It’s the open-standard equivalent
of DCOM. You’ll end up using CORBA as you migrate your MIDAS applications to allow for
cross-platform connections. For example, the Java client for MIDAS (available separately from
Borland) allows you to have a JBuilder client talk to a MIDAS server—even if it was built with
Delphi.

New to Delphi 5 is the TWebConnection component. This connection component allows
MIDAS traffic to be transported over HTTP or HTTPS. Some limitations when using this con-
nection type are as follows:

• Callbacks of any type are not supported.

• The client must have WININET.DLL installed.

• The server machine must be running MS Internet Information Server (IIS) 4.0 or
Netscape 3.6 or greater.

However, these limitations seem well worth it when you have to deliver an application across
the Internet or through a firewall that’s not under your control.

Note that all these transports assume a valid installation of TCP/IP. The one exception to this is
if you’re using two Windows NT machines to communicate via DCOM. In that case, you can
specify which protocol DCOM will use by running DCOMCNFG and moving the desired pro-
tocol to the top of the list on the Default Protocols tab. DCOM for Windows 9x only supports
TCP/IP.

Connecting the Components
From the diagram in Figure 32.3, you can see how the MIDAS application communicates
across tiers. This section will point out the key properties and components that give the client
the ability to communicate with the server.

Database Development

PART IV
1318

37.65227_Ch32 11/30/1999 5:51 PM Page 1318

To communicate from the client to the server, you need to use one of the
TDispatchConnection components listed previously. Each component has properties specific
only to that connection type, but all of them allow you to specify where to find the application
server. The TDispatchConnection is analogous to the TDatabase component when used in
client/server applications.

Once you have a connection to the server, you need a way to use the services you exposed on
the server. This can be accomplished by dropping a TClientDataset on your client and hook-
ing it up to the TDispatchConnection. Once this connection is made, you can view a list of the
exported providers on the server by dropping down the list in the ProviderNames property.
You’ll see a list of exported providers that exist on the server. In this way, the TClientDataset
component is similar to a TTable in client/server applications.

You also have the ability to call custom methods that exist on the server by using the
TDispatchConnection.AppServer property. For example, the following line of code will call
the Login function on the server, passing two string parameters and returning a Boolean value:

LoginSucceeded := DCOMConnection1.AppServer.Login(UserName, Password);

Using MIDAS to Create an Application
Now that we’ve covered many of the options available when building MIDAS applications,
let’s use MIDAS to actually create an application to put that theory into practice.

Setting Up the Server
Let’s focus on the mechanics of building the application server first. After we have created the
server, we will explore how to build the client.

Remote Data Module (RDM)
The RDM is central to creating an application server. To create an RDM for a new application,
select the Remote Data Module icon from the Multitier tab of the Object Repository (available
by selecting File, New). A dialog will be displayed to allow for initial customization of some
options that pertain to the RDM.

The name for the RDM is important because the ProgID for this application server will be built
using the project name and RDM name. For example, if the project (DPR) is named AppServer
and the RDM name is MyRDM, the ProgID will be AppServer.MyRDM. Be sure to select the
appropriate instancing and threading options based on the preceding explanations and the
behavior desired for this application server.

One important change for Delphi 5 is the security model for connections made over TCP/IP
and HTTP. Because these protocols bypass Windows’s default authentication processing, it is

MIDAS Development

CHAPTER 32
1319

32

M
ID

A
S

D
EV

ELO
PM

EN
T

37.65227_Ch32 11/30/1999 5:51 PM Page 1319

imperative to be sure that the only objects that run on the server are the ones that you specify.
This is accomplished by marking the registry with certain values to let MIDAS know that you
intend to allow these objects to run. Fortunately, all that is required to do this is to override the
UpdateRegistry class method. See Listing 32.1 for the implementation provided by Delphi
automatically when you create a Remote DataModule.

LISTING 32.1 UpdateRegistry Class Method from a Remote DataModule

class procedure TDDGSimple.UpdateRegistry(Register: Boolean;
const ClassID, ProgID: string);
begin
if Register then
begin
inherited UpdateRegistry(Register, ClassID, ProgID);
EnableSocketTransport(ClassID);
EnableWebTransport(ClassID);

end else
begin
DisableSocketTransport(ClassID);
DisableWebTransport(ClassID);
inherited UpdateRegistry(Register, ClassID, ProgID);

end;
end;

This method gets called whenever the server gets registered or unregistered. In addition to the
COM-specific registry entries that get created in the inherited UpdateRegistry call, you can
call the EnableXXXTransport and DisableXXXTransport methods to mark this object as
secure.

Database Development

PART IV
1320

NOTE

The Delphi 5 version of the TSocketConnection component will only show registered,
secure objects in the ServerName property. If you do not want to enforce security at
all, uncheck the Connections, Registered Objects Only menu option in the SCKTSRVR.

Providers
Because the application server will be responsible for providing data to the client, you must
find a way to serve data from the server in a format that’s useable on the client. Fortunately,
MIDAS provides a TDatasetProvider component to make this step easy.

Start by dropping a TQuery on the RDM. If you’re using a RDBMS, you’ll inevitably need a
TDatabase component set up, too. For now, we’ll tie the TQuery to the TDatabase and specify

37.65227_Ch32 11/30/1999 5:51 PM Page 1320

a simple query in the SQL property, such as select * from customer. Lastly, drop a
TDatasetProvider component onto the RDM and tie it to the TQuery via the Dataset prop-
erty. The Exported property on the DatasetProvider determines whether this provider will be
visible to clients. This property provides the ability to easily control which providers are visi-
ble at runtime as well.

MIDAS Development

CHAPTER 32
1321

32

M
ID

A
S

D
EV

ELO
PM

EN
T

Registering the Server
Once the application server is built, it needs to be registered with COM to make it available for the
client applications that will connect with it. The Registry entries discussed Chapter 23, “COM and
ActiveX,” are also used for MIDAS servers. You just need to run the server application and the
Registry setting will be added. However, before registering the server, be sure to save the project
first. This ensures that the ProgID will be correct from this point forward.

If you would rather not run the application, you can pass the parameter /regserver on the
command line when running the application. This will just perform the registration process and
immediately terminate the application. To remove the Registry entries associated with this
application, you can use the /unregserver parameter.

Creating the Client
Now that we have a working application server, let’s look at how to perform some basic tasks
with the client. We will look at how to retrieve the data, how to edit the data, how to update the
database with changes made on the client, and how to handle errors during the database update
process.

Retrieving Data
Throughout the course of a database application, it’s necessary to bring data from the server to
the client to edit that data. By bringing the data to a local cache, you can reduce network traffic
and minimize transaction times. In previous versions of Delphi, you would use cached updates
to perform this task. However, the same general steps still apply to MIDAS applications.

The client talks to the server via a TDispatchConnection component. Providing the
TDispatchConnection the name of the computer where the application server lives accom-
plishes this task easily. If you use TDCOMConnection, you can specify the fully qualified

NOTE

Although the discussion in this section focuses on using the BDE-based TDBDataset,
the same principles apply if you want to use any other TDataset descendant for your
data access. Two such possibilities exist out of the box: ADO and InterBase Express.

37.65227_Ch32 11/30/1999 5:51 PM Page 1321

domain name (for example, nt.dmiser.com), the numeric IP address of the computer (for
example, 192.168.0.2), or the NetBIOS name of the computer (for example, nt). However,
due to a bug in DCOM, you cannot use the name localhost reliably in all cases. If you use
TSocketConnection, you specify numeric IP addresses in the Address property or the FQDN
in the Host property. We’ll take a look at the options for TWebConnection a little later.

Once you specify where the application server resides, you need to give the
TDispatchConnection a way to identify that application server. This is done via the
ServerName property. Assigning the ServerName property fills in the ServerGUID property for
you. The ServerGUID property is the most important part. As a matter of fact, if you want to
deploy your client application in the most generic manner possible, be sure to delete the
ServerName property and just use the ServerGUID.

Database Development

PART IV
1322

Note

If you use TDCOMConnection, the ServerName list will only display the list of servers
that are registered on the current machine. However, TSocketConnection is smart
enough to display the list of application servers registered on the remote machine.

At this point, setting TDispatchConnection.Connected to True will connect you to the appli-
cation server.

Now that you have the client talking to the server, you need a way to use the provider you cre-
ated on the server. Do this by using the TClientDataset component. A TClientDataSet is
used to link to a provider (and thus the TQuery that is linked to the provider) on the server.

First, you must tie the TClientDataSet to the TDispatchConnection by assigning the
RemoteServer property of the TClientDataSet. Once you’ve done that, you can get a list of
the available providers on that server by looking at the list in the ProviderName property.

At this point, everything is now set up properly to open a ClientDataset.

Because the TClientDataSet is a virtual TDataset descendant, you can build on many of the
techniques that you’ve already learned using the TDBDataset components in client/server appli-
cations. For example, setting Active to True opens the TClientDataSet and displays the data.
The difference between this and setting TTable.Active to True is that the TClientDataSet is
actually getting its data from the application server.

Editing Data on the Client
All the records that get passed from the server to the TClientDataSet get stored in the Data
property of the TClientDataSet. This property is a variant representation of the MIDAS data

37.65227_Ch32 11/30/1999 5:51 PM Page 1322

packet. The TClientDataset knows how to decode this data packet into a more useful format.
The reason the property is defined as a variant is due to the limited types available to the COM
subsystem when using type library marshaling.

As you manipulate the records in the TClientDataset, a copy of the inserted, modified, or
deleted records gets placed in the Delta property. This allows MIDAS to be extremely efficient
when it comes to applying updates back to the application server, and eventually the database.
Only the changed records need to be sent back to the application server.

The format of the Delta property is also very efficient. It stores one record for every insert or
delete, and it stores two records for every update. The updated records are stored in an efficient
manner as well. The unmodified record is provided in the first record, whereas the correspond-
ing modified record is stored next. However, only the changed fields are stored in the modified
record to save on storage.

One interesting aspect of the Delta property is that it’s compatible with the Data property. In
other words, it can be assigned directly to another ClientDataset component’s Data property.
This will allow you to investigate the current contents of the Delta property at any given time.

There are several methods available to deal with the editing of data on the TClientDataset.
We’ll refer to these methods as change control methods. The change control methods allow
you to modify the changes made to the TClientDataset in a variety of ways.

MIDAS Development

CHAPTER 32
1323

32

M
ID

A
S

D
EV

ELO
PM

EN
T

NOTE

TClientDataset has proven useful in more ways then originally intended. It also
serves as an excellent method for storing in-memory tables, which has nothing to do
with MIDAS specifically. Additionally, because of the way it exposes data through the
Data and Delphi properties, it has proven useful in a variety of OOP pattern imple-
mentations. It is beyond the scope of the chapter to discuss these techniques.
However, you will find white papers on these topics at http://www.xapware.com or
http://www.xapware.com/ddg.

Undoing Changes
Most users have used a word-processing application that permits the “Undo” operation. This
operation takes your most previous action and rolls it back to the state right before you started.
Using TClientDataset, you can call cdsCustomer.UndoLastChange() to simulate that behav-
ior. The undo stack is unlimited, allowing the user to continue to back up all the way to the
beginning of the editing session if so desired. The parameter you pass to this method specifies
whether the cursor is positioned to the record being affected.

37.65227_Ch32 11/30/1999 5:51 PM Page 1323

If the user wanted to get rid of all his updates in one fell swoop, there’s an easier way than
calling UndoLastChange() repeatedly. You can simply call cdsCustomer.CancelUpdates() to
cancel all changes that have been made in a single editing session.

Reverting to the Original Version
Another possibility is to allow the user to restore a specific record back to the state it was in
when the record was first retrieved. Do this by calling cdsCustomer.RevertRecord() while the
TClientDataset is positioned on the record you intend to restore.

Client-Side Transactions: SavePoint
Lastly, a property called SavePoint provides the ability to use client-side transactions. This
property is ideal for developing “what-if” scenarios for the user. The act of retrieving the value
of the SavePoint property will store a baseline of the data at that point in time. The user can
continue to edit as long as needed. If, at some point, the user decides that the baseline set of
data is actually what he or she wants, that saved variable can be assigned back to SavePoint
and the TClientDataset is rolled back to the same state it was at the time when the initial
snapshot was taken. It’s worth noting that you can have multiple levels of SavePoint for a
complex scenario as well.

Database Development

PART IV
1324

CAUTION

A word of caution about SavePoint is in order: You can invalidate a SavePoint by
calling UndoLastChange() past the point that’s currently saved. For example, assume
the user edits two records and issues a SavePoint. At this point, the user edits
another record. However, she uses UndoLastChange() to revert changes twice in a
row. Because the TClientDataset state is now in a state prior to the SavePoint, the
SavePoint is in an undefined state.

Reconciling Data
After you’ve finished making changes to the local copy of data in the TClientDataset, you’ll
need to signal your intent to apply these changes back to the database. This is done by calling
cdsCustomer.ApplyUpdates(). At this point, MIDAS will take the Delta from cdsCustomer
and pass it to the application server, where MIDAS will apply these changes to the database
server using the reconciliation mechanism that you chose for this dataset. All updates are per-
formed inside the context of a transaction. We’ll cover how errors are handled during this
process shortly.

The parameter you pass into ApplyUpdates() specifies the number of errors the update process
will allow before considering the update to be bad and subsequently rolls back all the changes
that have been made. The word errors here refers to key violation errors, referential integrity

37.65227_Ch32 11/30/1999 5:51 PM Page 1324

errors, or any other database errors. If you specify zero for this parameter, you’re telling
MIDAS that you won’t tolerate any errors. Therefore, if an error does occur, all the changes
you made will not be committed to the database. This is the setting that you’ll use most often,
because it most closely matches solid database guidelines and principles.

However, if you wish, you can specify that a certain number of errors can occur, while still
committing all the records that were successful. The ultimate extension of this concept is to
pass –1 as the parameter to ApplyUpdates(). This tells MIDAS that it should commit every
single record that it can, regardless of the number of errors encountered along the way. In other
words, the transaction will always commit when using this parameter.

If you want to take ultimate control over the update process—including changing the SQL that
will execute for an insert, update, or delete—you can do so in the
TDatasetProvider.BeforeUpdateRecord() event. For example, when a user wants to delete a
record, you might not want to actually perform a delete operation on the database. Instead, a
flag is set to tell applications that this record is not available. Later, an administrator can
review these deletions and commit the physical delete operation. The following example shows
how to do this:

procedure TDataModule1.Provider1BeforeUpdateRecord(Sender: TObject;
SourceDS: TDataset; DeltaDS: TClientDataset; UpdateKind: TUpdateKind;
var Applied: Boolean);

begin
if UpdateKind=ukDelete then
begin
Query1.SQL.Text:=’update CUSTOMER set STATUS=”DEL” where ID=:ID’;
Query1.Params[0].Value:=SourceDS.FieldByName(‘ID’).Value;
Query1.ExecSQL;
Applied:=true;

end;
end;

You can create as many queries as you’d like, controlling the flow and content of the update
process based on different factors, such as UpdateKind and values in the Dataset. When
inspecting or modifying records of the DeltaDS, be sure to use the OldValue and NewValue
properties of the appropriate TField. Using TField.Value or TField.AsXXX will yield unpre-
dictable results.

In addition, you can enforce business rules here or avoid posting a record to the database alto-
gether. Any exception you raise here will wind its way through MIDAS’s error-handling mech-
anism, which we’ll cover next.

Once the transaction is finished, you get an opportunity to deal with errors. The error stops at
events on both the server and the client, giving you a chance to take corrective action, log the
error, or do anything else you want to with it.

MIDAS Development

CHAPTER 32
1325

32

M
ID

A
S

D
EV

ELO
PM

EN
T

37.65227_Ch32 11/30/1999 5:51 PM Page 1325

The first stop for the error is the DatasetProvider.OnUpdateError event. This is a great place
to deal with errors that you’re expecting or can resolve without further intervention from the
client.

The final destination for the error is back on the client, where you can deal with the error by
letting the user help determine what to do with the record. You do this by assigning an event
handler to the TClientDataset.OnReconcileError event.

This is especially useful because MIDAS is based on an optimistic record-locking strategy.
This strategy allows multiple users to work on the same record at the same time. In general,
this will cause conflicts when MIDAS tries to reconcile the data back to the database because
the record has been modified since it was retrieved. We’ll deal with some alternatives to this
default identification process later on.

Using Borland’s Error-Reconciliation Dialog
Fortunately, Borland provides a standard error-reconciliation dialog that you can use to display
the error to the user. Figure 32.6 shows this dialog. The source code is also provided for this
unit, so you can modify it if it doesn’t suit your needs perfectly. To use this dialog, select File,
New in Delphi’s main menu and then select Reconcile Error Dialog from the Dialogs page.
Remember to remove this unit from the Autocreate Forms list; otherwise, you’ll receive com-
pile errors.

Database Development

PART IV
1326

FIGURE 32.6
The Reconcile Error dialog in action.

The main functionality of this unit is wrapped up in the function HandleReconcileError().
There is a high degree of correlation between the OnReconcileError event and the
HandleReconcileError function. As a matter of fact, the typical course of action in the
OnReconcileError event is to call the HandleReconcileError function. By doing this, the
application allows the end user on the client machine to interact with the error-reconciliation

37.65227_Ch32 11/30/1999 5:51 PM Page 1326

process on the server machine and specify how these errors should be handled. Here’s the
code:

procedure TMyForm.CDSReconcileError(Dataset: TClientDataset;
E: EReconcileError; UpdateKind: TUpdateKind;
var Action: TReconcileAction);

begin
Action:=HandleReconcileError(Dataset, UpdateKind, E);

end;

The value of the Action parameter determines what MIDAS will do with this record. We’ll
touch on some other factors that affect which actions are valid at this point a little later. The
following list shows the valid actions:

• raSkip. Do not update this specific database record. Leave the changed record in the
client cache.

• raMerge. Merge the fields from this record into the database record. This record will not
apply to records that were inserted.

• raCorrect. Update the database record with the values you specify. When selecting this
action in the Reconcile Error dialog, you can edit the values in the grid. You cannot use
this method if another user changed the database record.

• raCancel. Don’t update the database record. Remove the record from the client cache.

• raRefresh. Update the record in the client cache with the current record in the database.

• raAbort. Abort the entire update operation.

Not all these options make sense (and therefore will not be displayed) in all cases. One
requirement for having the raMerge and raRefresh actions available is that MIDAS identifies
the record via the primary key of the database. This is done automatically using InterBase, but
other RDBMSs will require you to manually set the TField.ProviderFlags.pfInKey property
to True on the TDataset component for all fields that are in your primary key.

More Options to Make Your Application Robust
After you master these basics, the inevitable question is “What next?” This section is provided
to give you some more insight into MIDAS and how you can use these features to make your
applications act as you want them to act.

Client Optimization Techniques
The model of retrieving data is fairly elegant. However, because the TClientDataset stores all
its records in memory, you need to be very careful about the result sets you return to the
TClientDataSet. The cleanest approach is to ensure that the application server is well

MIDAS Development

CHAPTER 32
1327

32

M
ID

A
S

D
EV

ELO
PM

EN
T

37.65227_Ch32 11/30/1999 5:51 PM Page 1327

designed and only returns the records the user is interested in. Because the real world seldom
follows the utopian solution, you can use the following technique to help throttle the number of
records you retrieve at one time to the client.

Limiting the Data Packet
When opening a TClientDataSet, the server retrieves the number of records specified in the
TClientDataSet.PacketRecords property at one time. However, MIDAS will retrieve enough
records to fill all available visual controls with data. For example, if you have a TDBGrid on a
form that can display 10 records at once, and you specify a value of 5 for PacketRecords, the
initial fetch of data will contain 10 records. After that, the data packet will contain just 5
records per fetch. If you specify –1 for this property, all records will be transferred. If you
specify a value greater than zero for PacketRecords, this introduces state to your application.
This is due to the requirement that the app server must keep track of each client’s cursor posi-
tion so the app server can return the appropriate packet of records to the client requesting a
packet. However, you can keep track of the state on the client, passing the last record position
to the server, as appropriate. For a simple example, look at this code, which does exactly that:

Server RDM:
procedure TStateless.DataSetProvider1BeforeGetRecords(Sender: TObject;
var OwnerData: OleVariant);

begin
with Sender as TDataSetProvider do
begin
DataSet.Open;
if not VarIsEmpty(OwnerData) then
DataSet.Locate(‘au_id’, OwnerData, []) else

DataSet.First;
end;

end;

procedure TStateless.DataSetProvider1AfterGetRecords(Sender: TObject;
var OwnerData: OleVariant);

begin
with Sender as TDataSetProvider do
begin
OwnerData := Dataset.FieldValues[‘au_id’];
DataSet.Close;

end;
end;

Client:
procedure TForm1.ClientDataSet1BeforeGetRecords(Sender: TObject;
var OwnerData: OleVariant);

begin

Database Development

PART IV
1328

37.65227_Ch32 11/30/1999 5:51 PM Page 1328

// KeyValue is a private OleVariant variable
if not (Sender as TClientDataSet).Active then
KeyValue := Unassigned;

OwnerData := KeyValue;
end;

procedure TForm1.ClientDataSet1AfterGetRecords(Sender: TObject;
var OwnerData: OleVariant);

begin
KeyValue := OwnerData;

end;

One last point when using automatic fetching is that executing
TClientDataSet.Last()retrieves the rest of the records left in the result set. This can be done
innocently by pressing Ctrl+End in the TDBGrid. To work around this problem, you should set
TClientDataSet.FetchOnDemand to False. This property controls whether a data packet will
be retrieved automatically when the user has read through all the existing records on the client.
To emulate that behavior in code, you can use the GetNextPacket() method, which will return
the next data packet for you.

Using the Briefcase Model
Another optimization to reduce network traffic is to use the briefcase model support offered
with MIDAS. Do this by assigning a filename to the TClientDataset.Filename property. If
the file specified in this property exists, the TClientDataSet will open up the local copy of the
file as opposed to reading the data directly from the application server. This is tremendously
useful for items that rarely change, such as lookup tables.

MIDAS Development

CHAPTER 32
1329

32

M
ID

A
S

D
EV

ELO
PM

EN
T

TIP

If you specify a TClientDataset.Filename that has an .XML extension, the data
packet will be stored in XML format, enabling you to use any number of XML tools
available to work on the briefcase file.

Sending Dynamic SQL to the Server
Some architectures require modification to the underlying TDataset’s core properties, such as
the SQL property of the TQuery, from the client. As long as solid multitier principles are fol-
lowed, this can actually be a very efficient and elegant solution. Delphi 5 makes this task triv-
ial to accomplish.

There are two steps required to allow for ad hoc queries. First, you simply assign the query
statement to the TClientDataset.CommandText property. You must also include the

37.65227_Ch32 11/30/1999 5:51 PM Page 1329

poAllowCommandText option in the DatasetProvider.Options property. When you open the
TClientDataSet or call TClientDataSet.Execute(), the CommandText is passed across to the
server. This same technique also works if you want to change the table or stored procedure
name on the server.

Application Server Techniques
MIDAS now has many different events for you to customize the behavior of your application.
There are BeforeXXX and AfterXXX events for just about every method imaginable. These
events will be especially useful as you migrate your application server to be completely state-
less.

Resolving Record Contention
The preceding discussion of the resolving mechanism included a brief mention that two users
working on the same record would cause an error when the second user tried to apply the
record back to the database. Fortunately, you have full control over detecting this collision.

The TDatasetProvider.UpdateMode property is used to generate the SQL statement that will
be used to check whether the record has changed since it was last retrieved. Consider the sce-
nario in which two users edit the same record. Here’s how DatasetProvider.UpdateMode
affects what happens to the record for each user:

• upWhereAll. This setting is the most restrictive setting but provides the greatest deal of
assurance that the record is the same one the user retrieved initially. If the two users edit
the same record, the first user will be able to update the record, whereas the second user
will receive the infamous “Another user changed the record” error message. If you want
to further refine which fields are used to perform this check, you can remove the
pfInWhere element from the corresponding TField.ProviderFlags property.

• upWhereChanged. This setting allows the two users to actually edit the same record at the
same time; as long as both users edit different fields in the same record, there will be no
collision detection. For example, if user A modifies the Address field and updates the
record, user B can still modify the BirthDate field and update the record successfully.

• upWhereKeyOnly. This setting is the most forgiving of all. As long as the record exists on
the database, every user will have his or her change accepted. This will always overwrite
the existing record in the database, so it can be viewed as a way to provide “last in wins”
functionality.

Miscellaneous Server Options
There are quite a few more options available in the TDatasetProvider.Options property to
control how the MIDAS data packet behaves. For example, adding poReadOnly will make the
dataset read-only on the client. Specifying poDisableInserts, poDisableDeletes, or

Database Development

PART IV
1330

37.65227_Ch32 11/30/1999 5:51 PM Page 1330

poDisableEdits will prevent the client from performing that operation and trigger the corre-
sponding OnEditError or OnDeleteError event to be fired on the client.

When using nested datasets, you can have updates or deletes cascade from the master record to
the detail records if you add poCascadeUpdates or poCascadeDeletes to the
DatasetProvider.Options property. Using this property requires your back-end database to
support cascading referential integrity.

One shortcoming in previous versions of MIDAS was the inability to easily merge changes
made on the server into your TClientDataset on the client. One had to resort to using
RefreshRecord (or possibly Refresh to repopulate the entire dataset in some cases) to achieve
this.

By setting DatasetProvider.Options to include poPropogateChanges, all the changes made to
your data on the application server (for example, in the DatasetProvider.BeforeUpdateRecord
event to enforce a business rule) are now automatically brought back into the TClientDataSet.
Furthermore, setting TDatasetProvider.Options to include poAutoRefresh will automatically
merge AutoIncrement and default values back into the TClientDataSet.

MIDAS Development

CHAPTER 32
1331

32

M
ID

A
S

D
EV

ELO
PM

EN
T

CAUTION

The poAutoRefresh option was non-functional for the initial release of Delphi 5.
poAutoRefresh will only work with a later version of Delphi 5 that includes the fix for
this bug. The workaround in the meantime is to either call Refresh() for your
TClientDatasets or take control of the entire process of applying updates yourself.

The entire discussion of the reconciliation process thus far has revolved around the default
SQL-based reconciliation. This means that all the events on the underlying TDataset will not
be used during the reconciliation process. The TDatasetProvider.ResolveToDataset prop-
erty was created to use these events during reconciliation. For example, if
TDatasetProvider.ResolveToDataset is true, most of the events on the TDataset will be trig-
gered. Be aware that the events that are used are only called when applying updates back to
the server. In other words, if you have a TQuery.BeforeInsert event defined on the server, it
will only fire on the server once you call TClientDataSet.ApplyUpdates. The events do not
integrate into the corresponding events of the TClientDataSet.

Dealing with Master/Detail Relationships
No discussion of database applications would be complete without at least a mention of mas-
ter/detail relationships. With MIDAS, you have two choices for dealing with master/detail. The
original technique involved exporting two providers on the server and creating the

37.65227_Ch32 11/30/1999 5:51 PM Page 1331

master/detail link on the client side. When doing this, the cdsDetail.PacketRecords property
defaults to zero. It’s important that you do not modify this value because the meaning of zero
when used in this context is to retrieve all the detail records for the current master record. The
downside to using client-side master/detail linking is that updates to the master and detail
datasets are not applied under the context of one transaction. This is certainly problematic, but
fortunately, we present an easy-to-use unit later on to work around this limitation.

Nested Datasets
Delphi 4 introduced nested datasets. Nested datasets allow a master table to actually contain
detail datasets. In addition to updating master and detail records in one transaction, they allow
for storage of all master and detail records to be stored in one briefcase file, and you can use
the enhancements to DBGrid to pop up detail datasets in their own windows. A word of caution
if you do decide to use nested datasets: All the detail records will be retrieved and brought over
to the client when selecting a master record. This will become a possible performance bottle-
neck if you nest several levels of detail datasets. For example, if you retrieve just one master
record that has 10 detail records, and each detail record has three detail records linked to the
first level detail, you would retrieve 41 records initially. When using client-side linking, you
would only retrieve 14 records initially and obtain the other grandchild records as you scrolled
through the detail TClientDataSet. We’ll cover nested datasets in more detail later on.

Real-World Examples
Now that we have the basics out of the way, let’s look at how MIDAS can help you by explor-
ing several real-world examples.

Joins
Writing a relational database application depends heavily on walking the relationships between
tables. Often, you’ll find it convenient to represent your highly normalized data in a view that’s
more flattened than the underlying data structure. However, updating the data from these joins
takes some extra care on your end.

One-Table Update
Applying updates to a joined query is a special case in database programming, and MIDAS is
no exception. The problem lies in the join query itself. Although some join queries will pro-
duce data that could be automatically updated, there are others that will never conform to rules
that will allow automatic retrieval, editing, and updating of the underlying data. To that end,
Delphi currently forces you to resolve updates to join queries yourself.

For joins that require only one table to be updated, Delphi can handle most of the updating
details for you. Here are the steps required in order to write one table back to the database:

Database Development

PART IV
1332

37.65227_Ch32 11/30/1999 5:51 PM Page 1332

1. Add persistent fields to the joined TQuery.

2. Set TField.ProviderFlags=[] for every field on the TQuery that you won’t be updating.

3. Write the following code in the DatasetProvider.OnGetTableName event to tell MIDAS
which table you want to update. Keep in mind that this new event makes it easier to
specify the table name, although you could do the same thing in Delphi 4 by using the
DatasetProvider.OnGetDatasetProperties event:

procedure TJoin1Server.prvJoinGetTableName(Sender: TObject;
DataSet: TDataSet; var TableName: String);

begin
TableName := ‘Emp’;

end;

By doing this, you’re telling the ClientDataset to keep track of the table name for you. Now
when you call ClientDataset1.ApplyUpdates(), MIDAS knows to default to the table name
that you specified, as opposed to letting MIDAS try and figure out what the table name is.

An alternate approach would be to use a TUpdateSQL component that only updates the table of
interest. This new feature of Delphi 5 allows the TQuery.UpdateObject to be used during the
reconciliation process and more closely matches the process used in traditional client/server
applications.

You’ll find an example on the book’s CD-ROM in the directory for this chapter under
\Join1.

Multitable Update
For more complex scenarios, such as allowing the editing and updating of multiple tables, you
need to write some code yourself. There are two approaches to solving this problem:

• The Delphi 4 method of using DatasetProvider.BeforeUpdateRecord() to break the
data packet apart and apply the updates to the underlying tables

• Using the Delphi 5 method of applying updates by using the UpdateObject property

When using cached updates with a multitable join, you need to configure one TUpdateSQL
component for each table that will be updated. Because the UpdateObject property can only be
assigned to one TUpdateSQL component, you needed to link all the TUpdateSQL.Dataset prop-
erties to the joined dataset programmatically in TQuery.OnUpdateRecord and call
TUpdateSQL.Apply to bind the parameters and execute the underlying SQL statement. In our
case, the dataset we’re interested in is the Delta dataset. This dataset is passed as a parameter
into the TQuery.OnUpdateRecord event.

However, the problem in using this technique in MIDAS becomes readily apparent when you
try to do this for the first time. The TUpdateSQL.Dataset property is declared as a
TBDEDataset. Because the Delta dataset is a TDataset, we cannot make this assignment

MIDAS Development

CHAPTER 32
1333

32

M
ID

A
S

D
EV

ELO
PM

EN
T

37.65227_Ch32 11/30/1999 5:51 PM Page 1333

legally. Rather than give up and use the Provider.BeforeUpdateRecord method of applying
updates, we present a TUpdateSQL component descendant that will work seamlessly. The key to
writing this component is to change the Dataset declaration to TDataset and perform a static
override of the SetParams method to bind parameters to the target TDataset. Additionally,
SessionName and DatabaseName properties were exposed to allow the update to occur in the
same context as other transactions. The resulting code for the TQuery.OnUpdateRecord event is
shown in Listing 32.2.

LISTING 32.2 Join Using a TUpdateSQL

procedure TJoin2Server.JoinQueryUpdateRecord(DataSet: TDataSet;
UpdateKind: TUpdateKind; var UpdateAction: TUpdateAction);

begin
usqlEmp.SessionName := JoinQuery.SessionName;
usqlEmp.DatabaseName := JoinQuery.DatabaseName;
usqlEmp.Dataset := Dataset;
usqlEmp.Apply(UpdateKind);

usqlFTEmp.SessionName := JoinQuery.SessionName;
usqlFTEmp.DatabaseName := JoinQuery.DatabaseName;
usqlFTEmp.Dataset := Dataset;
usqlFTEmp.Apply(UpdateKind);

UpdateAction := uaApplied;
end;

Because we’ve complied with the rules of updating data within the MIDAS architecture, the
whole update process is seamlessly triggered as it always is in MIDAS, with a call to
ClientDataset1.ApplyUpdates(0);.

Database Development

PART IV
1334

NOTE

Now that Delphi 5 supports the UpdateObject property during reconciliation, it’s
entirely reasonable to assume that the same method of applying updates to multi-
table joins that exist for cached updates will be available for MIDAS. However, at the
time of this writing, this functionality was not available.

You’ll find an example on the book’s CD-ROM in the directory for this chapter under \Join2.

37.65227_Ch32 11/30/1999 5:51 PM Page 1334

MIDAS on the Web
Delphi is tied to the Windows platform; therefore, any clients you write must run on a
Windows machine. This is not always desirable. For example, you may want to provide easy
access to the data that exists on your database to anyone who has an Internet connection.
Because you’ve already written an application server that acts as a broker for your data—in
addition to housing business rules for that data—it would be desirable to reuse the application
server as opposed to rewriting the entire data-access and business rule tier in another environ-
ment.

Straight HTML
This section focuses on how to leverage your application server while providing a new presen-
tation tier that will use straight HTML. This section assumes you’re familiar with the material
covered in Chapter 31, “Internet-Enabling Your Applications with WebBroker.” Using this
method, you’re introducing another layer into your architecture. The WebBroker acts as the
client to the application server and repackages this data into HTML that will be displayed on
the browser. You also lose some of the benefits of working with the Delphi IDE, such as the
lack of data-aware controls. However, this is a very viable option for allowing access to your
data in a simple HTML format.

After creating a WebModule, you simply place a TDispatchConnection and TClientDataset on
the WebModule. Once the properties are filled in, you can use a number of different methods to
translate this data into HTML that will eventually be seen by the client.

One valid technique would be to add a TDatasetTableProducer linked to the TClientDataset
of interest. From there, the user can click a link and go to an edit page, where she can edit the
data and apply the updates. See Listings 32.3 and 32.4 for a sample implementation of this
technique.

LISTING 32.3 HTML for Edit and Apply Updates

<form action=”<#SCRIPTNAME>/updaterecord” method=”post”>
EmpNo: <#EMPNO>
<input type=”hidden” name=”EmpNo” value=<#EMPNO>>
<table cellspacing=”2” cellpadding=”2” border=”0”>
<tr>

<td>Last Name:</td>
<td><input type=”text” name=”LastName” value=<#LASTNAME>></td>

</tr>
<tr>

<td>First Name:</td>
<td><input type=”text” name=”FirstName” value=<#FIRSTNAME>></td>

</tr>
<tr>

MIDAS Development

CHAPTER 32
1335

32

M
ID

A
S

D
EV

ELO
PM

EN
T

continues

37.65227_Ch32 11/30/1999 5:51 PM Page 1335

LISTING 32.3 Continued

<td>Hire Date:</td>
<td><input type=”text” name=”HireDate” size=”8”

value=<#HIREDATE>></td>
</tr>
<tr>

<td>Salary:</td>
<td><input type=”text” name=”Salary” size=”8” value=<#SALARY>></td>

</tr>
<tr>

<td>Vacation:</td>
<td><input type=”text” name=”Vacation” size=”4” value=<#VACATION>></td>

</tr>
</table>
<input type=”submit” name=”Submit” value=”Apply Updates”>
<input type=”Reset”>
</form>

LISTING 32.4 Code for Edit and Apply Updates

unit WebMain;

interface

uses
Windows, Messages, SysUtils, Classes, HTTPApp, DBWeb, Db, DBClient,
MConnect, DSProd;

type
TWebModule1 = class(TWebModule)
dcJoin: TDCOMConnection;
cdsJoin: TClientDataSet;
dstpJoin: TDataSetTableProducer;
dsppJoin: TDataSetPageProducer;
ppSuccess: TPageProducer;
ppError: TPageProducer;
procedure WebModuleBeforeDispatch(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

procedure WebModule1waListAction(Sender: TObject; Request: TWebRequest;
Response: TWebResponse; var Handled: Boolean);

procedure dstpJoinFormatCell(Sender: TObject; CellRow,
CellColumn: Integer; var BgColor: THTMLBgColor;
var Align: THTMLAlign; var VAlign: THTMLVAlign; var CustomAttrs,
CellData: String);

procedure WebModule1waEditAction(Sender: TObject; Request: TWebRequest;
Response: TWebResponse; var Handled: Boolean);

Database Development

PART IV
1336

37.65227_Ch32 11/30/1999 5:51 PM Page 1336

procedure dsppJoinHTMLTag(Sender: TObject; Tag: TTag;
const TagString: String; TagParams: TStrings;
var ReplaceText: String);

procedure WebModule1waUpdateAction(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

private
{ Private declarations }
DataFields : TStrings;

public
{ Public declarations }

end;

var
WebModule1: TWebModule1;

implementation

{$R *.DFM}

procedure TWebModule1.WebModuleBeforeDispatch(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

begin
with Request do
case MethodType of
mtPost: DataFields:=ContentFields;
mtGet: DataFields:=QueryFields;

end;
end;

function LocalServerPath(sFile : string = ‘’) : string;
var
FN: array[0..MAX_PATH- 1] of char;
sPath : shortstring;

begin
SetString(sPath, FN, GetModuleFileName(hInstance, FN, SizeOf(FN)));
Result := ExtractFilePath(sPath) + ExtractFileName(sFile);

end;

procedure TWebModule1.WebModule1waListAction(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

begin
cdsJoin.Open;
Response.Content := dstpJoin.Content;

end;

procedure TWebModule1.dstpJoinFormatCell(Sender: TObject; CellRow,

MIDAS Development

CHAPTER 32
1337

32

M
ID

A
S

D
EV

ELO
PM

EN
T

continues

37.65227_Ch32 11/30/1999 5:51 PM Page 1337

LISTING 32.4 Continued

CellColumn: Integer; var BgColor: THTMLBgColor; var Align: THTMLAlign;
var VAlign: THTMLVAlign; var CustomAttrs, CellData: String);

begin
if (CellRow > 0) and (CellColumn = 0) then
CellData := Format(‘%s’,
[Request.ScriptName, CellData, CellData]);

end;

procedure TWebModule1.WebModule1waEditAction(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

begin
dsppJoin.HTMLFile := LocalServerPath(‘join.htm’);
cdsJoin.Filter := ‘EmpNo = ‘ + DataFields.Values[‘empno’];
cdsJoin.Filtered := true;
Response.Content := dsppJoin.Content;

end;

procedure TWebModule1.dsppJoinHTMLTag(Sender: TObject; Tag: TTag;
const TagString: String; TagParams: TStrings; var ReplaceText: String);

begin
if CompareText(TagString, ‘SCRIPTNAME’)=0 then
ReplaceText:=Request.ScriptName;

end;

procedure TWebModule1.WebModule1waUpdateAction(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

var
EmpNo, LastName, FirstName, HireDate, Salary, Vacation: string;

begin
EmpNo:=DataFields.Values[‘EmpNo’];
LastName:=DataFields.Values[‘LastName’];
FirstName:=DataFields.Values[‘FirstName’];
HireDate:=DataFields.Values[‘HireDate’];
Salary:=DataFields.Values[‘Salary’];
Vacation:=DataFields.Values[‘Vacation’];

cdsJoin.Open;
if cdsJoin.Locate(‘EMPNO’, EmpNo, []) then
begin
cdsJoin.Edit;
cdsJoin.FieldByName(‘LastName’).AsString:=LastName;
cdsJoin.FieldByName(‘FirstName’).AsString:=FirstName;
cdsJoin.FieldByName(‘HireDate’).AsString:=HireDate;
cdsJoin.FieldByName(‘Salary’).AsString:=Salary;
cdsJoin.FieldByName(‘Vacation’).AsString:=Vacation;

Database Development

PART IV
1338

37.65227_Ch32 11/30/1999 5:51 PM Page 1338

if cdsJoin.ApplyUpdates(0)=0 then
Response.Content:=ppSuccess.Content else
Response.Content:=pPError.Content;

end;
end;

end.

Note that this method requires much custom code to be written, and the full feature set of
MIDAS is not implemented in this example—specifically error reconciliation. You can con-
tinue to enhance this example to be more robust if you use this technique extensively.

MIDAS Development

CHAPTER 32
1339

32

M
ID

A
S

D
EV

ELO
PM

EN
T

CAUTION

It’s imperative that you consider the concept of state when writing your WebModule
and application server. Because HTTP is a stateless protocol, you cannot rely on the
values of properties to be the same as you left them after the call is over.

You’ll find an example on the book’s CD-ROM in the directory for this chapter under \WebBrok.

InternetExpress
With InternetExpress, you can enhance the functionality of a straight WebModule approach to allow
for a richer experience on the client. This is possible due to the use of open standards such as XML
and JavaScript in InternetExpress. Using InternetExpress, you can create a browser-only front-end
to your MIDAS application server. No ActiveX controls are downloaded with zero client-side
install and configuration requirements; it’s nothing but a Web browser hitting a Web server.

In order to use InternetExpress, you will need to have some code running on a Web server. For
this sample, we will use an ISAPI application, but you could also use CGI or ASP. The purpose of
the Web broker is to take requests from the browser and pass those requests on to the app server.
Placing InternetExpress components in the Web broker application makes this task very easy.

This example will use a standard MIDAS app server that has Customers, Orders, and
Employees. Customers and Orders are linked in a nested dataset relationship (for more infor-
mation on nested datasets, see the next section), whereas the Employees dataset will serve as a
lookup table. See the accompanying source code for the app server definition. After the app
server has been built and registered, we can focus on building the Web broker application that
will communicate with the app server.

Create a new ISAPI application by selecting File, New, Web Server Application from the
Object Repository. Place a TDCOMConnection component on the WebModule. This will act as
the link to the app server, so fill in the ServerName property with the ProgID of the app server.

37.65227_Ch32 11/30/1999 5:51 PM Page 1339

Next, we will place a TXMLBroker component from the InternetExpress page of the component
palette on the WebModule and set the RemoteServer and ProviderName properties to the
CustomerProvider. The TXMLBroker component acts in a manner similar to the
TClientDataset. It is responsible for retrieving data packets from the app server and passing
those data packets to the browser. The main difference between the data packet in a
TXMLBroker and a TClientDataset is that the TXMLBroker translates the MIDAS data packets
into XML. We will also add a TClientDataset to the WebModule and tie it to the Employees
provider on the app server. We will use this as a lookup datasource later.

The TXMLBroker component is responsible for communication to the application server and also
the navigation of HTML pages. There are many properties available to customize how your
InternetExpress application will behave. For example, you can limit the number of records that
will be transmitted to the client, or specify the number of errors allowed during an update.

We now need a way to move this data to the browser. Using the TMidasPageProducer compo-
nent, we can use the WebBroker technology in Delphi to serve an HTML page up to the
browser. However, the TMidasPageProducer also allows for the visual creation of the Web
page via the Web Page Editor.

Double-click on the TMidasPageProducer to bring up the Web Page Editor. This visual editor
helps you customize what elements are present on a given Web page. One of the most interest-
ing things about InternetExpress is that it is completely extensible. You can create your own
components that can be used in the Web Page Editor by following some well-defined rules. For
examples of custom InternetExpress components, see the <DELPHI>\DEMOS\MIDAS\INTERNET-
EXPRESS\INETXCUSTOM directory.

Database Development

PART IV
1340

CAUTION

TMidasPageProducer has a property named IncludePathURL. It is essential to set this
property properly or your InternetExpress application will not work. Set the value to
the virtual directory that contains the InternetExpress JavaScript files. For example, if
you place the files in c:\inetpub\wwwroot\jscript, the value for this property will
be /jscript/.

With the Web Page Editor active, select the Insert tool button to display the Add Web
Component dialog box. This dialog box contains a list of Web components that can be added
to the HTML page. This list is based on which parent component (the section in the upper left)
is currently selected. For example, add a DataForm Web component to the root node to allow
end-users to display and edit database information in a form-like layout.

37.65227_Ch32 11/30/1999 5:51 PM Page 1340

MIDAS Development

CHAPTER 32
1341

32

M
ID

A
S

D
EV

ELO
PM

EN
T

FIGURE 32.7
Adding Web Component dialog from the Web Page Editor.

If you then select the DataForm node in the Web Page Editor, you can select the “Insert” tool
button again. Notice that the list of components available at this point is different than the list
displayed from the previous step. After selecting the FieldGroup component, you will see a
warning in the preview pane, telling you that the TXMLBroker property for the FieldGroup is
not assigned. By assigning the XMLBroker in the Object Inspector, you will immediately
notice the layout of the HTML in the preview pane of the Web Page Editor. As you continue to
modify properties or add components, the state of the HTML page will be constantly updated.

The level of customization available with the standard Web components is practically limitless.
Properties make it easy to change field captions, alignment, colors; add straight custom HTML
code; and even use style sheets. Furthermore, if the component does not suit your needs
exactly, you can always create a descendant component and use that in its place. The frame-
work is truly as extensible as your imagination allows.

In order to call the ISAPI DLL, you need to place it in a virtual directory capable of executing
a script. You also need to move the JavaScript files found in <DELPHI>\SOURCE\WEBMIDAS to a
valid location on your Web server and modify the TMidasPageProducer.IncludePathURL
property to point to the URI of the JavaScript files. After that, the page is ready to be viewed.

To access the page, all you need is a JavaScript-capable browser. Simply point the browser to
http://localhost/inetx/inetxisapi.dll and the data will display in the browser.

Lastly, you can detect reconciliation errors during the ApplyUpdates process like you are
already used to doing in a stand-alone MIDAS application. This capability is made possible
when you assign the TXMLBroker.ReconcileProducer property to a TPageProducer.
Whenever an error occurs, the Content of the TPageProducer assigned to this property will be
returned to the end-user.

37.65227_Ch32 11/30/1999 5:51 PM Page 1341

Database Development

PART IV
1342

FIGURE 32.8
The Web Page Editor after designing an HTML page.

FIGURE 32.9
Internet Explorer accessing the InternetExpress Web page.

37.65227_Ch32 11/30/1999 5:51 PM Page 1342

A specialized TPageProducer, TReconcilePageProducer, is available by installing the
InetXCustom.dpk package found in <DELPHI>\DEMOS\MIDAS\INTERNETEXPRESS\INETXCUSTOM.
This PageProducer generates HTML that acts much like the standard MIDAS Reconciliation
Error dialog box.

You’ll find an example on the book’s CD-ROM in the directory for this chapter under
\InetX.

More Client Dataset Features
There are many options available to control the TClientDataset component. In this section, we
will look at ways to use the TClientDataset to make coding easier in complex applications.

Nested Datasets
We looked at nested datasets from a high-level earlier. Now we’ll look at them in more detail.

In order to set up a nested dataset relationship, you need to define the master/detail relationship
on the application server. This is done using the same technique you’ve been using in
client/server applications—namely, defining the SQL statement for the detail TQuery, including
the link parameter. Here’s an example:

“select * orders where custno=:custno”

MIDAS Development

CHAPTER 32
1343

32

M
ID

A
S

D
EV

ELO
PM

EN
T

FIGURE 32.10
View of the HTML page generated by TReconcilePageProducer.

37.65227_Ch32 11/30/1999 5:51 PM Page 1343

You then assign the TQuery.Datasource for the detail TQuery to point to a TDatasource com-
ponent that’s tied to the master TDataset. Once this relationship is set up, you only need to
export the TDatasetProvider that’s tied to the master dataset. MIDAS is smart enough to
understand that the master dataset has detail datasets linked to it and will therefore send the
detail datasets across to the client as a TDatasetField.

On the client, you assign the master TClientDataset.ProviderName property to the master
provider. Then, you add persistent fields to the TClientDataset. Notice the last field in the
Fields Editor. It contains a field named the same as the detail dataset on the server and is
declared as a TDatasetField type. At this point, you have enough information to use the
nested dataset in code. However, to make things really easy, you can add a detail
TClientDataset and assign its DatasetField property to the appropriate TDatasetField from
the master. It’s important to note here that you did not set any other properties on the detail
TClientDataset, such as RemoteServer, ProviderName, MasterSource, MasterFields, or
PacketRecords. The only property you set was the DatasetField property. At this point, you
can bind data-aware controls to the detail TClientDataset as well.

After you’ve finished working with the data in the nested dataset, you need to apply the
updates back to the database. This is done by calling the master TClientDataset’s
ApplyUpdates method. MIDAS will apply all the changes in the master TClientDataset,
which includes the detail datasets, back to the server inside the context of one transaction.

You’ll find an example on the book’s CD-ROM in the directory for this chapter under
\NestCDS.

Client-Side Master/Detail Linking
Recall that there were some cautions mentioned earlier when using nested datasets. The alter-
native to using nested datasets is to create the master/detail relationship on the client side. In
order to create a master/detail link using this method, you simply create a TDataset and
TDatasetProvider for the master and the detail on the server.

On the client, you bind two TClientDataset components to the datasets that you exported on
the server. Then, you create the master/detail relationship by assigning the detail
TClientDataset.MasterSource property to the TDatasource component that points to the
master TClientDataset.

Setting MasterSource on a TClientDataset sets the PacketRecords property to zero. When
PacketRecords equals zero, it means MIDAS should just return the metadata information for
this TClientDataset. However, when PacketRecords equals zero in the context of a
master/detail relationship, the meaning changes. MIDAS will now retrieve the records for the
detail dataset for each master record. In summary, leave the PacketRecords property set to the
default value.

Database Development

PART IV
1344

37.65227_Ch32 11/30/1999 5:51 PM Page 1344

In order to reconcile the master/detail data back to the database in one transaction, you need to
write your own ApplyUpdates logic. This is not as simple as most tasks in Delphi, but it does
give you full flexible control over the update process.

Applying updates to a single table is usually triggered by a call to
TClientDataset.ApplyUpdates. This method sends the changed records from the
ClientDataset to its provider on the middle tier, where the provider will then write the
changes to the database. All this is done within the scope of a transaction and is accomplished
without any intervention from the programmer. To do the same thing for master/detail tables,
you must understand what Delphi is doing for you when you make that call to
TClientDataset.ApplyUpdates.

Any changes you make to a TClientDataset are stored in the Delta property. The Delta prop-
erty contains all the information that will eventually be written to the database. The following
code illustrates the update process for applying Delta properties back to the database. Listings
32.5 and 32.6 show the relevant sections of the client and server for applying updates to a mas-
ter/detail setup.

MIDAS Development

CHAPTER 32
1345

32

M
ID

A
S

D
EV

ELO
PM

EN
T

CAUTION

The initial release of Delphi 5 had a bug that prevented applying multiple deltas to
the server within the context of one transaction. Replace the following method in
DBTABLES.PAS with the code below if you want to take advantage of this technique.

function TDBDataSet.PSInTransaction: Boolean;
var
InProvider: Boolean;

begin
InProvider := SetDBFlag(dbfProvider, True);
try
Result := Database.InTransaction;

finally
SetDBFlag(dbfProvider, InProvider);

end;
end;

You’ll find an example on the book’s CD-ROM in the directory for this chapter under
\MDCDS.

37.65227_Ch32 11/30/1999 5:51 PM Page 1345

LISTING 32.5 Client Updates to Master/Detail

procedure TClientDM.ApplyUpdates;
var
MasterVar, DetailVar: OleVariant;

begin
Master.CheckBrowseMode;
Detail_Proj.CheckBrowseMode;
if Master.ChangeCount > 0 then
MasterVar := Master.Delta else
MasterVar := NULL;

if Detail.ChangeCount > 0 then
DetailVar := Detail.Delta else
DetailVar := NULL;

RemoteServer.AppServer.ApplyUpdates(DetailVar, MasterVar);
{ Reconcile the error datapackets. Since we allow 0 errors, only one error
packet can contain errors. If neither packet contains errors then we
refresh the data.}

if not VarIsNull(DetailVar) then
Detail.Reconcile(DetailVar) else

if not VarIsNull(MasterVar) then
Master.Reconcile(MasterVar) else

begin
Detail.Reconcile(DetailVar);
Master.Reconcile(MasterVar);
Detail.Refresh;
Master.Refresh;

end;
end;

LISTING 32.6 Server Updates to Master/Detail

procedure TServerRDM.ApplyUpdates(var DetailVar, MasterVar: OleVariant);
var
ErrCount: Integer;

begin
Database.StartTransaction;
try
if not VarIsNull(MasterVar) then
begin
MasterVar := cdsMaster.Provider.ApplyUpdates(MasterVar, 0, ErrCount);
if ErrCount > 0 then
SysUtils.Abort; // This will cause Rollback

end;
if not VarIsNull(DetailVar) then

Database Development

PART IV
1346

37.65227_Ch32 11/30/1999 5:51 PM Page 1346

begin
DetailVar := cdsDetail.Provider.ApplyUpdates(DetailVar, 0, ErrCount);
if ErrCount > 0 then
SysUtils.Abort; // This will cause Rollback

end;
Database.Commit;

except
Database.Rollback

end;
end;

Although this method works quite well, it really doesn’t provide opportunities for code reuse.
This would be a good opportunity to extend Delphi and provide easy reuse. Here are the main
steps required to abstract the update process:

1. Place the deltas for each CDS in a variant array.

2. Place the providers for each CDS in a variant array.

3. Apply all the deltas in one transaction.

4. Reconcile the error datapackets returned in the previous step and refresh the data.

The result of this abstraction is provided in the utility unit shown in Listing 32.7.

LISTING 32.7 A Unit Providing Utility Routines and Abstraction

unit CDSUtil;

interface

uses
DbClient, DbTables;

function RetrieveDeltas(const cdsArray : array of TClientDataset): Variant;
function RetrieveProviders(const cdsArray : array of TClientDataset): Variant;
procedure ReconcileDeltas(const cdsArray : array of TClientDataset;

vDeltaArray: OleVariant);

procedure CDSApplyUpdates(ADatabase : TDatabase; var vDeltaArray: OleVariant;
const vProviderArray: OleVariant);

implementation

uses
SysUtils, Provider,
{$IFDEF VER130}Midas{$ELSE}StdVcl{$ENDIF};

MIDAS Development

CHAPTER 32
1347

32

M
ID

A
S

D
EV

ELO
PM

EN
T

continues

37.65227_Ch32 11/30/1999 5:51 PM Page 1347

LISTING 32.7 Continued

type
PArrayData = ^TArrayData;
TArrayData = array[0..1000] of Olevariant;

{Delta is the CDS.Delta on input. On return, Delta will contain a data packet}
{containing all of the records that could not be applied to the database.}
{Remember Delphi 5 needs the provider name, so it is passed in the first}
{element of the AProvider variant.}
procedure ApplyDelta(AProvider: OleVariant; var Delta : OleVariant);
var
ErrCount : integer;
OwnerData: OleVariant;

begin
if not VarIsNull(Delta) then
begin
// ScktSrvr does not support early-binding

{$IFDEF VER130}
Delta := (IDispatch(AProvider[0]) as IAppServer).AS_ApplyUpdates(

AProvider[1], Delta, 0, ErrCount, OwnerData);
{$ELSE}

Delta := OleVariant(IDispatch(AProvider)).ApplyUpdates(Delta, 0, ErrCount);
{$ENDIF}

if ErrCount > 0 then
SysUtils.Abort; // This will cause Rollback in the calling procedure

end;
end;

{Server call}
procedure CDSApplyUpdates(ADatabase : TDatabase; var vDeltaArray: OleVariant;
const vProviderArray: OleVariant);

var
i : integer;
LowArr, HighArr: integer;
P: PArrayData;

begin
{Wrap the updates in a transaction. If any step results in an error, raise}
{an exception, which will Rollback the transaction.}
ADatabase.Connected:=true;
ADatabase.StartTransaction;
try
LowArr:=VarArrayLowBound(vDeltaArray,1);
HighArr:=VarArrayHighBound(vDeltaArray,1);
P:=VarArrayLock(vDeltaArray);
try
for i:=LowArr to HighArr do

Database Development

PART IV
1348

37.65227_Ch32 11/30/1999 5:51 PM Page 1348

ApplyDelta(vProviderArray[i], P^[i]);
finally

VarArrayUnlock(vDeltaArray);
end;
ADatabase.Commit;

except
ADatabase.Rollback;

end;
end;

{Client side calls}
function RetrieveDeltas(const cdsArray : array of TClientDataset): Variant;
var
i : integer;
LowCDS, HighCDS : integer;

begin
Result:=NULL;
LowCDS:=Low(cdsArray);
HighCDS:=High(cdsArray);
for i:=LowCDS to HighCDS do
cdsArray[i].CheckBrowseMode;

Result:=VarArrayCreate([LowCDS, HighCDS], varVariant);
{Setup the variant with the changes (or NULL if there are none)}
for i:=LowCDS to HighCDS do
begin
if cdsArray[i].ChangeCount>0 then
Result[i]:=cdsArray[i].Delta else
Result[i]:=NULL;

end;
end;

{If we’re using Delphi 5, then we need to return the provider name AND the
AppServer from this function. We will use ProviderName to call AS_ApplyUpdates
in the CDSApplyUpdates function later.}
function RetrieveProviders(const cdsArray : array of TClientDataset): Variant;
var
i: integer;
LowCDS, HighCDS: integer;

begin
Result:=NULL;
LowCDS:=Low(cdsArray);
HighCDS:=High(cdsArray);

Result:=VarArrayCreate([LowCDS, HighCDS], varVariant);
for i:=LowCDS to HighCDS do

MIDAS Development

CHAPTER 32
1349

32

M
ID

A
S

D
EV

ELO
PM

EN
T

continues

37.65227_Ch32 11/30/1999 5:51 PM Page 1349

LISTING 32.7 Continued

{$IFDEF VER130}
Result[i]:=VarArrayOf([cdsArray[i].AppServer, cdsArray[i].ProviderName]);

{$ELSE}
Result[i]:=cdsArray[i].Provider;

{$ENDIF}
end;

procedure ReconcileDeltas(const cdsArray : array of TClientDataset;
vDeltaArray: OleVariant);

var
bReconcile : boolean;
i: integer;
LowCDS, HighCDS : integer;

begin
LowCDS:=Low(cdsArray);
HighCDS:=High(cdsArray);

{If the previous step resulted in errors, Reconcile the error datapackets.}
bReconcile:=false;
for i:=LowCDS to HighCDS do
if not VarIsNull(vDeltaArray[i]) then begin
cdsArray[i].Reconcile(vDeltaArray[i]);
bReconcile:=true;
break;

end;

{Refresh the Datasets if needed}
if not bReconcile then
for i:=HighCDS downto LowCDS do begin
cdsArray[i].Reconcile(vDeltaArray[i]);
cdsArray[i].Refresh;

end;
end;

end.

Listing 32.8 shows a reworking of the previous example using the CDSUtil unit.

LISTING 32.8 A Rework of the Previous Example Using CDSUtil.pas

procedure TForm1.btnApplyClick(Sender: TObject);
var
vDelta: OleVariant;
vProvider: OleVariant;

Database Development

PART IV
1350

37.65227_Ch32 11/30/1999 5:51 PM Page 1350

arrCDS: array[0..1] of TClientDataset;
begin
arrCDS[0]:=cdsMaster; // Set up ClientDataset array
arrCDS[1]:=cdsDetail;

vDelta:=RetrieveDeltas(arrCDS); // Step 1
vProvider:=RetrieveProviders(arrCDS); // Step 2
DCOMConnection1.ApplyUpdates(vDelta, vProvider); // Step 3

ReconcileDeltas(arrCDS, vDelta); // Step 4
end;

procedure TServerRDM.ApplyUpdates(var vDelta, vProvider: OleVariant);
begin
CDSApplyUpdates(Database1, vDelta, vProvider); // Step 3

end;

You can use this unit in either two-tier or three-tier applications. To move from a two-tier to a
three-tier approach, you would export a function on the server that calls CDSApplyUpdates,
instead of calling CDSApplyUpdates on the client. Everything else on the client remains the
same.

Two-tier Applications
You’ve seen how to assign the provider—and therefore the data—to the ClientDataset in a
three-tier application. However, many times a simple two-tier application is all that’s needed.
So, how do we accomplish this in a two-tier application? There are four possibilities:

• Runtime assignment of data

• Design-time assignment of data

• Runtime assignment of a provider

• Design-time assignment of a provider

The two basic choices when using ClientDataset are assigning the AppServer property and
assigning the data. If you choose to assign the AppServer, you have a link between the
TDatasetProvider and the ClientDataset that will allow you to have communication
between the ClientDataset and TDatasetProvider, as needed. If, on the other hand, you
choose to assign the data, you have effectively created a local storage mechanism for your data
and will not communicate with the TDatasetProvider component for more information.

In order to assign the data directly from a TDataset to a TClientDataset at runtime, use the
code in Listing 32.9.

MIDAS Development

CHAPTER 32
1351

32

M
ID

A
S

D
EV

ELO
PM

EN
T

37.65227_Ch32 11/30/1999 5:51 PM Page 1351

LISTING 32.9 Code to Assign Data Directly from a TDataSet

function GetData(ADataset: TDataset): OleVariant;
begin
with TDatasetProvider.Create(nil) do
try
Dataset:=ADataset;
Result:=Data;

finally
Free;

end;
end;

procedure TForm1.Button1Click(Sender: TObject);
begin
ClientDataset1.Data:=GetData(ADOTable1);

end;

This method takes more code and effort than previous versions of Delphi, where you would
simply assign the Table1.Provider.Data property to the ClientDataset1.Data property.
However, this function will help make the additional code less noticeable.

You can also use the TClientDataset component to retrieve the data from a TDataset at
design time by selecting the Assign Local Data command from the context menu of the
TClientDataset component. Then, you specify the TDataset component that contains the data
you want, and the data is brought to the TClientDataset and stored in the Data property.

Database Development

PART IV
1352

CAUTION

If you were to save the file in this state and compare the size of the DFM file to the
size before executing this command, you would notice an increase in the DFM size.
This is because Delphi has stored all the metadata and records associated with the
TDataset in the DFM. Delphi will only stream this data to the DFM if the
TClientDataset is Active. You can also trim this space by executing the Clear Data
command on the TClientDataset context menu.

If you want the full flexibility that a provider assignment allows, you need to assign the
AppServer property. At runtime, you can assign the AppServer property in code. This can be
as simple as the following statement, found in FormCreate:

ClientDataset1.AppServer:=TLocalAppServer.Create(Table1);
ClientDataset1.Open;

37.65227_Ch32 11/30/1999 5:51 PM Page 1352

Lastly, you can assign the AppServer property at design time. If you leave the RemoteServer
property blank on a TClientDataset, you can assign a TDatasetProvider component to the
TClientDataset.ProviderName property.

The major difference between using TDataset components and ClientDataset is that when
you’re using ClientDataset, you’re using the IAppServer interface to broker your requests for
data to the underlying TDataset component. This means that you’ll be manipulating the prop-
erties, methods, events, and fields of the TClientDataset component, not the TDataset com-
ponent. Think of the TDataset component as if it were in a separate application and therefore
can’t be manipulated directly by you in code. Place all of your “server” components on a sepa-
rate DataModule. Placing the TDatabase, TDataset, and TCDSProvider components on a sepa-
rate DataModule effectively prepares your application for an easier transition to a multitier
deployment later on. Another benefit of doing this is that it may help you think of the
DataModule as something that the client cannot touch easily. Again, this is a good preparation
for your application, and your own mindset, when it comes time to port this application to a
multitier deployment.

MIDAS Development

CHAPTER 32
1353

32

M
ID

A
S

D
EV

ELO
PM

EN
T

NOTE

The TClientDataset.ProviderName property cannot be assigned to providers that
reside on another form or DataModule at design-time. Therefore, you need to set the
TClientDataset.AppServer property at runtime in code.

Deploying MIDAS Applications
After you’ve built a complete MIDAS application, the last hurdle left to clear is deploying that
application. This section will outline what needs to be done in order to make your MIDAS
application deployment painless.

Licensing Issues
Licensing has been a tough subject for many people ever since MIDAS was first introduced in
Delphi 3. The myriad of options for deploying this technology has contributed to this confu-
sion. This section will detail the overall requirements of when you need to purchase a MIDAS
license. However, the only legally binding document for licensing is in DEPLOY.TXT, located in
the Delphi 5 directory. Finally, for the ultimate authority to answer this question for a specific
situation, you must contact your local Borland sales office. More guidelines and examples are
available at

http://www.borland.com/midas/papers/licensing/

37.65227_Ch32 11/30/1999 5:51 PM Page 1353

or our Web site at

http://www.xapware.com/ddg

The information from this document was prepared to answer some of the more common scenar-
ios in which MIDAS is used. Pricing information and options are also included in the document.

The key criteria to determine the necessity of a MIDAS license for your application is whether
or not the MIDAS data packet crosses a machine boundary. If it does, you need to purchase a
license. If it does not (as in the one- and two-tier examples presented earlier), you’re using
MIDAS technology, but there’s no need to purchase a license to use MIDAS in this manner.

DCOM Configuration
DCOM configuration appears to be as much art as it is science. There are many aspects to a
complete and secure DCOM configuration, but this section will help you understand some of
the basics of this black art.

After registering your application server, your server object is now available for customization
in the Microsoft utility DCOMCNFG. This utility is included with NT systems automatically
but is a separate download for Win9x machines. As a side note, there are plenty of bugs in
DCOMCNFG; the most notable being DCOMCNFG can only be run on Win9x machines that
have user-level share enabled. This, of course, requires a domain. This is not always possible
or desirable in a peer-to-peer network, such as two Windows 9x machines. This has led many
people to incorrectly assume that an NT machine is required in order to run DCOM.

If you can run DCOMCNFG, you can select the registered application server and click the
Properties button to reveal custom information about your server. The Identity page is a good
place to start in our brief tour of DCOMCNFG. The default setting for a registered server object
is Launching User. Microsoft could not have made a worse decision for the default if it tried.

When DCOM creates the server, it uses the security context of the user specified on the
Identity page. The “launching user” will spawn one new process of the server object for each
and every distinct user login. Many people look at the fact that they select the ciMultiple
instancing mode and wonder why multiple copies of their server are being created. For exam-
ple, if user A connects to the server and then user B connects, DCOM will spawn an entirely
new process for user B. Additionally, you won’t see the GUI portion of the server for users
who log in under a different account than that currently in use on the server machine. This is
due to the NT concept known as Windows stations. The only Windows station capable of writ-
ing to the GUI is the Interactive User. This is the user who is currently logged in on the server
machine. In summary, never use the Launching User option as your identity for your server.

The next interesting option on this page is the Interactive User. This means that every single
client that creates a server will do so under the context of the user who is logged in to the

Database Development

PART IV
1354

37.65227_Ch32 11/30/1999 5:51 PM Page 1354

server at that point in time. This will also allow you to have visual interaction with your appli-
cation server. Unfortunately, most system administrators do not allow an open login to just sit
there idle on an NT machine. In addition, if the logged-in user decides to log out, the applica-
tion server will not work as desired anymore.

For this discussion, this only leaves the last enabled option on the Identity page: This User.
Using this setting, all clients will create one application server and use the login credentials
and context of the user specified on the Identity page. This also means that the NT machine
does not require a user to be logged in to use the application server. The one downside to this
approach is that there will be no GUI display of the server when using this option. However, it
is by far and away the best of all available options to get your application server to behave as it
should.

Once the server object is configured properly with the right identity, you need to turn your
attention to the Security tab. Make sure the user who will be running this object has the appro-
priate privileges assigned. Also be sure to grant the SYSTEM user access to the server; other-
wise, you’ll encounter errors along the way.

There are many subtle nuances strewn throughout the DCOM configuration process. For the
latest on DCOM configuration issues, especially as they pertain to Windows 9x, Delphi, and
MIDAS, visit the DCOM page of our Web site at

http://www.DistribuCon.com/dcom95.htm

Files to Deploy
The requirements for deploying a MIDAS application have changed with each new release of
Delphi. Delphi 5 makes deployment easier than any other version. With previous versions of
Delphi, you needed to deploy the file DBCLIENT.DLL to both the server and the client. This file
contained the code to implement the TClientDataset. DBCLIENT.DLL also required registration
on the client’s system. Other files also have been required over time, such as STDVCL32.DLL,
STDVCL40.DLL, and IDPROV32.DLL. If one file was missing or improperly registered, the appli-
cation would not run properly.

With Delphi 5, the breakdown of minimum files needed for deployment of your MIDAS appli-
cation is shown in the following lists.

Here are the steps for the server:

1. Copy the application server to a directory with sufficient NTFS privileges.

2. Install your data-access layer to allow the application server to act as a client to the
RDBMS (for example, BDE, MDAC, specific client-side database libraries, and so on).

3. Copy MIDAS.DLL to the %SYSTEM% directory. By default, this would be
C:\Winnt\System32 for NT machines and C:\Windows\System for 9x machines.

MIDAS Development

CHAPTER 32
1355

32

M
ID

A
S

D
EV

ELO
PM

EN
T

37.65227_Ch32 11/30/1999 5:51 PM Page 1355

4. Run the application server once to register it with COM.

Here are the steps for the client:

1. Copy the client to a directory, along with any other external dependency files used by
your client (for example, runtime packages, DLLs, ActiveX controls, and so on).

2. Copy MIDAS.DLL to the %SYSTEM% directory.

3. Optional: If you specify the ServerName property in your TDispatchConnection or if
you employ early binding in your client, you need to register the server’s type library
(TLB) file. This can be done by using a utility such as <DELPHI>\BIN\TREGSVR.EXE (or
programmatically if you so choose).

Internet Deployment Considerations (Firewalls)
When deploying your application over a LAN, there’s nothing to get in your way. You can
choose whatever connection type best suits your application’s needs. However, if you need to
rely on the Internet as your backbone, there are many things that can go wrong—namely, fire-
walls.

DCOM is not the most firewall-friendly protocol. It requires opening multiple ports on a fire-
wall. Most system administrators are weary of opening an entire range of ports because it
invites hackers to come knocking on the door. Using TSocketConnection, the story improves
somewhat. The firewall only needs one open port. However, the occasional system administra-
tor will even refuse to do that on the grounds that this is a security breach.

TWebConnection is a TSocketConnection descendant that permits MIDAS traffic to be bun-
dled up into valid HTTP traffic, which uses the most open port in the world—the HTTP port
(default port 80). Actually, the component even supports SSL, so you can have secure commu-
nications. By doing this, all firewall issues are completely eliminated. After all, if a corporation
doesn’t allow HTTP traffic in or out, there’s nothing that can be done to communicate with
them anyway.

This bit of magic is accomplished by using the Borland-provided ISAPI extension that trans-
lates HTTP traffic into MIDAS traffic, and vice versa. In this regard, the ISAPI DLL does the
same work that ScktSrvr does for socket connections. The ISAPI extension httpsrvr.dll
needs to be placed in a directory capable of executing code. For example, with IIS4, the default
location for this file would be in C:\Inetpub\Scripts.

One more benefit of using TWebConnection is that it supports object pooling. Object pooling is
used to spare the server the overhead of object creation every time a client connects to the
server. Furthermore, the pooling mechanism in MIDAS allows for a maximum number of
objects to be created. After this maximum has been reached, an error will be sent to the client
saying that the server is too busy to process this request. This is much more flexible than just

Database Development

PART IV
1356

37.65227_Ch32 11/30/1999 5:51 PM Page 1356

creating an arbitrary number of threads for every single client that wants to connect to the
server.

In order to tell MIDAS that this RDM will be pooled, you need to call RegisterPooled and
UnregisterPooled in the UpdateRegistry method of the RDM. (See Listing 32.1 for a sample
implementation of UpdateRegistry.) The following is a sample call to the RegisterPooled
method:

RegisterPooled(ClassID, 16, 30);

This call tells MIDAS that 16 objects will be available in the pool, and that MIDAS can free
any instances of objects that have been created if there has been no activity for 30 minutes. If
you never want to free the objects, you can pass zero as the timeout parameter.

The client does not change that drastically. Simply use a TWebConnection as the
TDispatchConnection for the client and fill in the appropriate properties, and the client will be
communicating to the application server over HTTP. The one major difference when using
TWebConnection is the need to specify the complete URL to the httpsrvr.dll, as opposed to
just identifying the server computer by name or address. See Figure 32.7 for a screenshot of a
typical setup using TWebConnection.

MIDAS Development

CHAPTER 32
1357

32

M
ID

A
S

D
EV

ELO
PM

EN
T

FIGURE 32.11
TWebConnection setup at design time.

Another benefit of using HTTP for your transport is that an OS such as NT Enterprise allows
you to cluster servers. This provides true load balancing and fault tolerance for your applica-
tion server. For more information about clustering, see

http://www.microsoft.com/ntserver/ntserverenterprise/exec/overview/clustering

The limitations of using TWebConnection are fairly trivial, and they’re well worth any conces-
sion in order to have more clients capable of reaching your application server. The limitations
are that you must install wininet.dll on the client, and no callbacks are available when using
TWebConnection. In addition, you must register the application server with the utility function
EnableWebTransport in an overridden UpdateRegistry method.

37.65227_Ch32 11/30/1999 5:51 PM Page 1357

Summary
This chapter has provided quite a bit of information on MIDAS. Still, it has only scratched the
surface of what can be done with this technology—something far beyond the scope of a single
chapter. Even after you explore all the nooks and crannies of MIDAS, you can still add to your
knowledge and capabilities by using MIDAS with C++Builder and JBuilder. Using JBuilder,
you can achieve the nirvana of cross-platform access to an application server while using the
same technology and concepts you learned here.

MIDAS is a quickly evolving technology that brings the promise of multitier applications to
every programmer. Once you experience the true power of creating an application with
MIDAS, you may never return to database application development as you know it today.

Database Development

PART IV
1358

37.65227_Ch32 11/30/1999 5:51 PM Page 1358

IN THIS PART
33 Inventory Manager: Client/Server

Development 1361

34 Client Tracker: MIDAS Development 1415

35 DDG Bug Reporting Tool—Desktop
Application Development 1439

36 DDG Bug Reporting Tool: Using
WebBroker 1469

Rapid Database Application
Development

PART

V

38.65227_Part V 11/30/1999 6:02 PM Page 1359

38.65227_Part V 11/30/1999 6:02 PM Page 1360

CHAPTER

33
Inventory Manager:
Client/Server Development

IN THIS CHAPTER
• Designing the Back End 1362

• Centralizing Database Access: The
Business Rules 1371

• Designing the User Interface 1388

• Summary 1414

39.65227_Ch33 11/30/1999 5:52 PM Page 1361

This chapter illustrates how to design a database application using the concepts discussed in
Chapter 29, “Developing Client/Server Applications.” Here, we illustrate techniques for devel-
oping a two-tier client/server application. In this application we have divided up the application
logic, or business rules, between both the client and the server. We also illustrate how to cen-
tralize data access in a data module, thus allowing us to completely separate the user interface
from the database logic.

Back in Chapter 4, “Application Frameworks and Design Concepts,” we introduced you to a
framework for forms that could be created independently or as child windows to another con-
trol. In this chapter, we use that framework for our user interface.

The database back end used is Local InterBase. The application is designed around a typical
auto-parts business model. This business model requires the application to keep track of three
primary sets of data:

• Product inventory. This includes the quantities of each item in the inventory and how
much each item is worth.

• Sales. This set contains information on items sold and to which customer these items
were sold.

• Customer. This set contains information such as name and address.

This is by no means a full-blown inventory manager application. The purpose of this chapter is
to focus on the techniques of client/server development. We have provided a complete working
application to illustrate that focus.

The chapter is divided into three parts. The first part, “Designing the Back End,” discusses the
design of the back end. This includes the database objects you learned about in Chapter 29.
The second part, “Centralizing Database Access: The Business Rules,” discusses how to use
Delphi’s TDataModule to centralize database access. Finally, the third part, “Designing the User
Interface,” discusses the design of the actual user interface for the inventory application.

Designing the Back End
We use the Local InterBase Server by InterBase Software Corporation as the back end for the
Inventory Manager application. This gives us the capability to design the database entirely
through SQL. It also offers the flexibility of being able to move some of the data processing to
the server side of the equation through the use of triggers, generators, and stored procedures—
which also helps to ensure better data integrity. Another more tangible benefit of the SQL back
end is that it can be scaled to a true client/server environment.

Rapid Database Application Development

PART V
1362

39.65227_Ch33 11/30/1999 5:52 PM Page 1362

As discussed in Chapter 29, we will use SQL to create the various database objects required
for the Inventory Manager application. This will include objects such as domains, tables, gen-
erators, triggers, stored procedures, and permissions.

There are several ways to create the back end using various data-modeling tools. Data-modeling
tools such as xCase, RoboCase, Erwin, and SQL-Designer are but a few of the tools that greatly
simplify the data-modeling process. All basically allow you to visually model your data without
having to type out the SQL code. After you get your basic data-model designed, you can make
changes as needed.

Figure 33.1 depicts the data model for our sales application.

Inventory Manager: Client/Server Development

CHAPTER 33
1363

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

NOTE

Some of the topics in this chapter are specific to InterBase and may not apply to
other SQL RDBMSs such as Oracle and Microsoft SQL. The concepts discussed, how-
ever, still apply and may just be implemented differently.

Part

Part_number:vc(10)

Description:vc(18)
Quantity:si(4,0)
List_price:f
Retail_price:f
Dealer_price:f
Jobber_price:f

Items

Sale_number:i(9,0)

Item_no:i(9,0)
Part_number:vc(10)
Quantity:i(9,0)

Sales

Sale_number:i(9,0)

Customer_id:i(9,0)
Sale_date:dt
Total_price:f

Customer

Customer_id:i(9,0)

Frame:c(20)
Lname:c(20)
Credit_line:si(4,0)
Work_address:vc(50)
Alt_address:vc(50)
City:vc(20)
State:vc(20)
Zip:vc(10)
Work_phone:vc(20)
Alt_phone:vc(20)
Comments:b
Company:vc(40)

RRRI

RRRI

RRRI

FIGURE 33.1
Sales application data model.

39.65227_Ch33 11/30/1999 5:52 PM Page 1363

Defining Domains
Before defining any tables, triggers, and so forth, you define domains that you will use
throughout the rest of the SQL code that makes up the metadata.

Rapid Database Application Development

PART V
1364

NOTE

Metadata is all the objects (tables, indexes, and so on) contained as part of a data-
base definition.

Think of a domain as an entity similar to a user-defined type in Object Pascal. Domains enable
you to define special data types with more structure than the built-in data types.

Domains help simplify data and constraint declarations by enabling you to create shorthand
names for types that are common throughout your database. Note that you cannot alter a
domain after table columns have used it.

The following are some of the domains used in the sales metadata:

• CREATE DOMAIN DCUSTOMERID AS INTEGER;

This is a straightforward domain. It defines a new domain called DCUSTOMERID as a type
identical to that of a standard, run-of-the-mill integer.

• CREATE DOMAIN DCREDITLINE AS SMALLINT default 0 CHECK (VALUE BETWEEN 0

AND 3000);

This defines a new smallint-type domain, but it applies the additional constraint that the
value must lie between 0 and 3000.

• CREATE DOMAIN DNAME AS CHAR(20);

This defines a domain called DNAME that is a fixed-length string of exactly 20 characters.

• CREATE DOMAIN DADDRESS AS VARCHAR(50);

CREATE DOMAIN DCITY AS VARCHAR(20);

CREATE DOMAIN DSTATE AS VARCHAR(20);

CREATE DOMAIN DZIP AS VARCHAR(10);

CREATE DOMAIN DPHONE AS VARCHAR(20);

This defines several domains as variable-length strings of up to 50, 20, 20, 10, and 20
characters, respectively.

• CREATE DOMAIN DPRICE AS NUMERIC(15, 2) default 0.00;

This creates a domain representing a decimal number. The first number, 15, specifies the
digits of precision to store. The second number, 2, specifies the number of decimal
places to store. The default value for columns of this domain is 0.00.

39.65227_Ch33 11/30/1999 5:52 PM Page 1364

You can refer to the InterBase Corp. “InterBase Language Reference Guide” or to the
IB32.Hlp help file for further information on domains.

Defining the Tables
Using the defined domains, you can create tables. Each table is created by using the CREATE
TABLE SQL statement, followed by the enumeration of table fields and data types or domains.

The CUSTOMER Table
The CUSTOMER table represents the customer data object, and it is defined as follows:

/* Table: CUSTOMER, Owner: SYSDBA */
CREATE TABLE CUSTOMER (CUSTOMER_ID INTEGER NOT NULL,

FNAME DNAME NOT NULL,
LNAME DNAME NOT NULL,
CREDIT_LINE DCREDITLINE NOT NULL,
WORK_ADDRESS DADDRESS,
ALT_ADDRESS DADDRESS,
CITY DCITY,
STATE DSTATE,
ZIP DZIP,
WORK_PHONE DPHONE,
ALT_PHONE DPHONE,
COMMENTS BLOB SUB_TYPE TEXT SEGMENT SIZE 80,
COMPANY VARCHAR(40),

CONSTRAINT PCUSTOMER_ID PRIMARY KEY (CUSTOMER_ID));

The fields defined with the NOT NULL specifier indicate that the user must enter a value for
those fields before a record can be posted to the table. In other words, those fields cannot be
left blank.

The COMMENTS field requires a bit of explanation. This field is of type BLOB (Binary Large
Object), which means that any type of free-form data can be stored there. The SUB TYPE of
TEXT, however, means that the data contained within the BLOB is ASCII text and therefore is
compatible with the Delphi TDBMemo component.

Inventory Manager: Client/Server Development

CHAPTER 33
1365

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

NOTE

The CHAR(n) data type always stores n characters to the database. If the string con-
tained in a particular field is less than n characters, unused characters will be padded
with spaces.

The VARCHAR(n) data type stores the exact size of the string, up to a maximum of n.
Its advantage over CHAR is that it is more space efficient, but operations on VARCHARs
tend to be slightly slower.

39.65227_Ch33 11/30/1999 5:52 PM Page 1365

The CONSTRAINT statement creates a primary key on the CUSTOMER_ID field, which ensures that
each record’s value for this field will be unique. This also is the first step to ensuring referen-
tial integrity throughout the database; the PRIMARY KEY field acts as a lookup field for the FOR-
EIGN KEY field defined in another table, as you will see later.

The PART Table
The PART table is the shop inventory. This table’s definition is fairly straightforward:

/* Table: PART, Owner: SYSDBA */
CREATE TABLE PART (PART_NUMBER VARCHAR(10) NOT NULL,

DESCRIPTION VARCHAR(18),
QUANTITY SMALLINT NOT NULL,
LIST_PRICE DPRICE NOT NULL,
RETAIL_PRICE DPRICE NOT NULL,
DEALER_PRICE DPRICE NOT NULL,
JOBBER_PRICE DPRICE NOT NULL,

CONSTRAINT PPART_NUMBER PRIMARY KEY (PART_NUMBER));

Each record represents the inventory of one unique part, holding description, quantity, and
pricing information. Notice that this table also has a primary key—this time, on the PART_NUM-
BER field.

The SALES Table
The SALES table is the table that contains records for every sale to a customer. This table is
defined as follows:

/* Table: SALES, Owner: SYSDBA */
CREATE TABLE SALES (SALE_NUMBER INTEGER,

CUSTOMER_ID INTEGER,
SALE_DATE DATE,
TOTAL_PRICE DOUBLE PRECISION);

ALTER TABLE SALES ADD FOREIGN KEY (CUSTOMER_ID)
REFERENCES CUSTOMER(CUSTOMER_ID);

Notice the ALTER TABLE statement, which adds a foreign key to the SALES table. A foreign key
is a column or set of columns in one table that correspond in exact order to a column or set of
columns defined as the primary key in another table. The foreign keys complete the referential
integrity with the SALES table by ensuring that no entries are made for the CUSTOMER_ID field
unless an entry with the same customer ID exists in the CUSTOMER table.

The ITEMS Table
The ITEMS table holds the items, or parts, for a particular sale. The SALES table has a one-to-
many relationship with the ITEMS table and is linked by the SALE_NUMBER and SALE_NO fields in
each table. The ITEMS table is defined as follows:

Rapid Database Application Development

PART V
1366

39.65227_Ch33 11/30/1999 5:52 PM Page 1366

/* Table: ITEMS, Owner: SYSDBA */
CREATE TABLE ITEMS (SALE_NUMBER INTEGER,

ITEM_NO INTEGER,
PART_NO VARCHAR(10),
QTY SMALLINT);

ALTER TABLE ITEMS ADD FOREIGN KEY (PART_NO)
REFERENCES PART(PART_NUMBER);

Like the SALES table, the ITEMS table has a foreign key that ensures that no record is entered
where the part number is nonexistent in the PART table.

Defining Generators
Think of a generator as a mechanism that automatically generates sequential numbers to be
inserted into a table. Generators are often used to create unique numbers to be inserted into a
table’s keyed field. The SALES database will use generators to automatically generate new cus-
tomer IDs for the CUSTOMER, SALES, and ITEMS tables. These generators are defined as follows:

CREATE GENERATOR GEN_CUSTID;
CREATE GENERATOR GEN_ITEMNO;
CREATE GENERATOR GEN_SALENO;

Inventory Manager: Client/Server Development

CHAPTER 33
1367

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

NOTE

After you add a generator to a database, it cannot be easily removed. The simplest
technique is to remove or modify the trigger or stored procedure so that GEN ID() is
not called. You also can remove your generator from the RDB$GENERATORS systems
table.

Defining Triggers
A trigger is a routine that automatically performs some action whenever a record in a table is
inserted, updated, or deleted. Triggers enable you to let the database perform repetitive tasks as
records are committed to tables, thereby freeing the application(s) used to access and modify
the data from doing so.

NOTE

Triggers and generators are features specific to InterBase. Although most major SQL
vendors also offer these facilities, it is possible that other SQL server vendors use

continues

39.65227_Ch33 11/30/1999 5:52 PM Page 1367

For starters, you need triggers that add new customers and sales numbers to their respective
tables using the generators created earlier. The trigger to insert a new, unique customer ID
would be as follows:

CREATE TRIGGER TCUSTOMER_ID FOR CUSTOMER
ACTIVE BEFORE INSERT POSITION 0
as begin
new.customer_id = gen_id(gen_custid, 1);

end

The following trigger also works on the ITEMS table:

CREATE TRIGGER TITEM_NO FOR ITEMS
ACTIVE BEFORE INSERT POSITION 0
as begin
new.item_no = gen_id(gen_itemno, 1);

end

Rapid Database Application Development

PART V
1368

different syntax and semantics in their implementations. Although they are very nice
features, you should keep in mind that using generators and triggers can be a sticky
point in migrating the application to a non-InterBase SQL server.

NOTE

There are several additional triggers in this database that convert a two-letter state
abbreviation to a full state name. You can find these triggers in Sales.ddl on the
CD-ROM in the directory for this chapter.

Defining Stored Procedures
A stored procedure is a standalone routine that is located on the server as part of a database’s
metadata.

You can invoke a stored procedure and have it return a dataset just like a normal query. The
advantages of stored procedures are that they reduce the amount of processing required at the
client end, they reduce the network traffic, and they centralize some particular functionality.
Stored procedures also can improve performance because they are precompiled SQL code exe-
cuted on the server instead of across a network. The general functionality of stored procedures
is discussed in greater length in Chapter 29, “Developing Client/Server Applications.”

The SALES database employs two stored procedures. The first, INSERT_SALE, is used to insert
a sale record into the SALES table. This stored procedure takes three input parameters: the

39.65227_Ch33 11/30/1999 5:52 PM Page 1368

customer ID, the sale data, and the total cost of the sale. This procedure returns the sale identi-
fier generated from within the stored procedure. The client application passes the value
returned to another stored procedure where it will be used as a foreign key for the ITEMS table.
INSERT_SALE is shown in Listing 33.1.

LISTING 33.1 The INSERT_SALE Stored Procedure

CREATE PROCEDURE INSERT_SALE AS BEGIN EXIT; END ^
·
ALTER PROCEDURE INSERT_SALE (
ICUSTOMER_ID INTEGER,
ISALE_DATE DATE,
ITOTAL_PRICE DOUBLE PRECISION)

RETURNS(
RSALE_NUMBER INTEGER)

AS
BEGIN
/* First obtain a new Sale identifier from the */
/* GEN_SALENO generator. This value is being stored in */
/* the rSale parameter which is defined as a return */
/* value and will therefore be returned to the calling */
/* client. */
rSALE_NUMBER = gen_id(GEN_SALENO, 1);
/* Now insert the record into the SALES table */
INSERT INTO SALES(
SALE_NUMBER,
CUSTOMER_ID,
SALE_DATE,
TOTAL_PRICE)

VALUES(
:rSALE_NUMBER,
:iCUSTOMER_ID,
:iSALE_DATE,
:iTOTAL_PRICE);

END

This stored procedure executes some very basic SQL code. It first retrieves a new ID for the
sale record from the GEN_SALENO generator. It then performs a simple INSERT INTO SQL state-
ment to insert the data passed to it through parameters.

The second stored procedure used by the application is slightly more complex. This stored pro-
cedure is named INSERT_SALE_ITEM and is used to insert individual items of a sale in the ITEMS
table. More than likely, this stored procedure will be called several times for a single sale.
Therefore, the client will first call the INSERT_SALE stored procedure to insert a sale record. It
would have also gotten a sale ID from the call to INSERT_SALE. Then, the client would call

Inventory Manager: Client/Server Development

CHAPTER 33
1369

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

39.65227_Ch33 11/30/1999 5:52 PM Page 1369

INSERT_SALE_ITEM for each item being sold. For every call, it must pass the specific item
information and the sale ID previously obtained.

INSERT_SALE_ITEM takes three parameters: the sale ID, the part number, and the quantity of the
item specified being sold. This stored procedure performs a few data-integrity operations. First,
it makes sure that there is at least the number of items requested in the PART table. If not, an
exception is raised. If the quantity of parts exists, the value of the Qty parameter is subtracted
from the quantity in the PART table for the specified part. Finally, the item is added to the
ITEMS table.

INSERT_SALE_ITEM is shown in Listing 33.2.

LISTING 33.2 The INSERT_SALE_ITEM Stored Procedure

CREATE PROCEDURE INSERT_SALE_ITEM AS BEGIN EXIT; END ^
·
ALTER PROCEDURE INSERT_SALE_ITEM (
ISALE_NUMBER INTEGER,
IPART_NO VARCHAR(10),
IQTY SMALLINT)

AS
DECLARE VARIABLE Actual_Qty VARCHAR(10);

BEGIN
/* CHECK IF iQTY ITEMS EXISTS IN THE PARTS TABLE */
SELECT QUANTITY FROM PART
WHERE PART_NUMBER = :iPART_NO
INTO Actual_Qty;

IF (Actual_Qty < iQTY) THEN
EXCEPTION EXP_EXCESS_ORDER;

ELSE BEGIN
/* First remove the quantity of parts from the PART table */
UPDATE PART
SET QUANTITY = (:Actual_Qty - :iQty)
WHERE PART_NUMBER = :iPART_NO;
/* Now Insert the new order */
INSERT INTO ITEMS(
SALE_NUMBER,
PART_NO,
QTY)

VALUES(
:iSALE_NUMBER,
:iPART_NO,
:iQTY);

END
END

Rapid Database Application Development

PART V
1370

39.65227_Ch33 11/30/1999 5:52 PM Page 1370

Granting Permissions
The final step in defining a database is granting permission to the tables and stored procedures
to particular users. For simplicity, you can grant all users SELECT and UPDATE rights on the
CUSTOMER table with the following statement:

GRANT SELECT, UPDATE ON CUSTOMER TO PUBLIC WITH GRANT OPTION;

Alternatively, you can grant all rights to the SALES table with the following statement:

GRANT ALL ON SALE TO PUBLIC WITH GRANT OPTION;

The GRANT OPTION clause means that those who are granted access to tables also are allowed
to grant others access to the data. The GRANT statements used on the Inventory Manager’s tables
and stored procedures are as follows:

/* Grant permissions for this database */
GRANT SELECT, UPDATE ON CUSTOMER TO PUBLIC WITH GRANT OPTION;
GRANT ALL ON SALES TO PUBLIC WITH GRANT OPTION;
GRANT ALL ON PART TO PUBLIC WITH GRANT OPTION;
GRANT ALL ON ITEMS TO PUBLIC WITH GRANT OPTION;
GRANT EXECUTE ON PROCEDURE INSERT_SALE TO PUBLIC;
GRANT EXECUTE ON PROCEDURE INSERT_SALE_ITEM TO PUBLIC;

The next section discusses how to connect to the database objects.

Centralizing Database Access: The Business Rules
This section illustrates how to separate database access and business logic from the user inter-
face. This serves several purposes. By placing the business logic within one data module, you
make it easier to maintain that same business logic because it is not scattered throughout the

Inventory Manager: Client/Server Development

CHAPTER 33
1371

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

NOTE

If you are using the ISQL tool to enter database metadata, you need to change the
terminating character. Because all statements within a procedure must be terminated
by a semicolon (;)—which is also the SQL terminating character—you must set the
SQL terminating character to some other symbol to avoid conflicts. Do this by using
the SET TERM command.

In SALES, you will use the caret symbol as the terminating character. This line of SQL
code will invoke the following change:

SET TERM ^ ;

39.65227_Ch33 11/30/1999 5:52 PM Page 1371

application. This technique also makes it possible to port your two-tier model to a three-tier
model by adding the appropriate components to the data module that already contains the busi-
ness logic. We do not do that here, but we mention this because it is something that merits seri-
ous consideration when developing two-tier systems.

You can use TDataModule to encompass as much of the database side of things as you see fit.
We will show how we do this for the Inventory Manager application.

In our demo application, we use a single TDataModule component. For small applications, this
approach is sufficient. For larger applications, you might consider separating the disparate
pieces among several TDataModule components where it logically makes sense.

Listing 33.3 shows the source code for TDDGSalesDataModule, which is defined in
SalesDM.pas.

LISTING 33.3 TDDGSalesDataModule

unit SalesDM;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
DBTables, Db;

type
TDDGSalesDataModule = class(TDataModule)
qryCustomer: TQuery;
dbSales: TDatabase;
usqlCustomer: TUpdateSQL;
qryCustomerCUSTOMER_ID: TIntegerField;
qryCustomerFNAME: TStringField;
qryCustomerLNAME: TStringField;
qryCustomerCREDIT_LINE: TSmallintField;
qryCustomerWORK_ADDRESS: TStringField;
qryCustomerALT_ADDRESS: TStringField;
qryCustomerCITY: TStringField;
qryCustomerSTATE: TStringField;
qryCustomerZIP: TStringField;
qryCustomerWORK_PHONE: TStringField;
qryCustomerALT_PHONE: TStringField;
qryCustomerCOMMENTS: TMemoField;
qryCustomerCOMPANY: TStringField;
qryParts: TQuery;
usqlParts: TUpdateSQL;
qryPartsPART_NUMBER: TStringField;
qryPartsDESCRIPTION: TStringField;

Rapid Database Application Development

PART V
1372

39.65227_Ch33 11/30/1999 5:52 PM Page 1372

qryPartsQUANTITY: TSmallintField;
qryPartsLIST_PRICE: TFloatField;
qryPartsRETAIL_PRICE: TFloatField;
qryPartsDEALER_PRICE: TFloatField;
qryPartsJOBBER_PRICE: TFloatField;
spInsertSaleItem: TStoredProc;
spInsertSale: TStoredProc;
qryTotalPrice: TQuery;
tblTempItems: TTable;
tblTempItemsPART_NUMBER: TStringField;
tblTempItemsDESCRIPTION: TStringField;
tblTempItemsQUANTITY: TSmallintField;
tblTempItemsRETAIL_PRICE: TFloatField;
tblTempItemsTOTAL_PRICE: TFloatField;
qryTotalPriceSUMOFTOTAL_PRICE: TFloatField;
qrySale: TQuery;
dsCustomer: TDataSource;
qryItems: TQuery;
dsSale: TDataSource;
qrySaleSALE_NUMBER: TIntegerField;
qrySaleSALE_DATE: TDateTimeField;
qrySaleTOTAL_PRICE: TFloatField;
qryItemsDESCRIPTION: TStringField;
qryItemsQTY: TSmallintField;
qryCustomerSearch: TQuery;
procedure tblTempItemsBeforePost(DataSet: TDataSet);
procedure dbSalesLogin(Database: TDatabase; LoginParams: TStrings);

protected
procedure SetAfterTempItemsChange(Value: TDataSetNotifyEvent);
function GetAfterTempItemsChange: TDataSetNotifyEvent;

public

// Connection methods

procedure Logout;
function Login: Boolean;
function Connect: Boolean;
procedure Disconnect;

// Customer methods
procedure FirstCustomer;
procedure LastCustomer;
procedure NextCustomer;
procedure PrevCustomer;
procedure EditCustomer;
procedure NewCustomer;

Inventory Manager: Client/Server Development

CHAPTER 33
1373

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

continues

39.65227_Ch33 11/30/1999 5:52 PM Page 1373

LISTING 33.3 Continued

procedure AcceptCustomer;
procedure CancelCustomer;
procedure DeleteCustomer;
function IsFirstCustomer: Boolean;
function IsLastCustomer: Boolean;
function GetCustomerName: String;
function SearchForCustomer: Boolean;

// Parts methods
procedure FirstPart;
procedure LastPart;
procedure NextPart;
procedure PrevPart;
procedure EditPart;
procedure NewPart;
procedure AcceptPart;
procedure CancelPart;
procedure DeletePart;
function IsFirstPart: Boolean;
function IsLastPart: Boolean;
function SearchForPart: Boolean;

// Sales methods

procedure AddItemToSale;
procedure SaveSale;
procedure CancelSale;
function SaleItemsTotalPrice: double;
procedure OpenTempItems;
procedure CloseTempItems;

// Surfaced properties
property AfterTempItemsChange: TDataSetNotifyEvent

read GetAfterTempItemsChange
write SetAfterTempItemsChange;

end;

var
DDGSalesDataModule: TDDGSalesDataModule;

implementation

uses CustomerSrchFrm, LoginFrm;

Rapid Database Application Development

PART V
1374

39.65227_Ch33 11/30/1999 5:52 PM Page 1374

{$R *.DFM}

procedure TDDGSalesDataModule.SetAfterTempItemsChange(Value:
TDataSetNotifyEvent);

begin
{ This writer method adds the Value parameter to both the AfterPost and
AfterDelete events of the temporary items table. This ensures that whenever
the data changes, the event handler will get called. }

tblTempItems.AfterPost := Value;
tblTempItems.AfterDelete := Value;

end;

function TDDGSalesDataModule.GetAfterTempItemsChange: TDataSetNotifyEvent;
begin
Result := tblTempItems.AfterPost;

end;

// Login methods.

procedure TDDGSalesDataModule.dbSalesLogin(Database: TDatabase;
LoginParams: TStrings);

begin
{ Calls method below to populate the LoginParams strings list
with the user’s login information. GetLoginParams is defined in
LoginFrm.pas. }

GetLoginParams(LoginParams);
end;

procedure TDDGSalesDataModule.Logout;
begin
Disconnect;

end;

function TDDGSalesDataModule.Login: Boolean;
begin
Result := Connect;

end;

function TDDGSalesDataModule.Connect: Boolean;
begin
{ Connects the user to the database. When dbSales is set to True, its OnLogon
event handler will be invoked which will invoke our customer login dialog
defined in LoginFrm.pas. }

try
dbSales.Connected := True;

Inventory Manager: Client/Server Development

CHAPTER 33
1375

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

continues

39.65227_Ch33 11/30/1999 5:52 PM Page 1375

LISTING 33.3 Continued

qryCustomer.Active := True;
qryParts.Active := True;
qrySale.Active := True;
qryItems.Active := True;
Result := True;

except
MessageDlg(‘Invalid Password or login information, cannot login.’,

mtError, [mbok], 0);
dbSales.Connected := False;
Result := False;

end;
end;

procedure TDDGSalesDataModule.Disconnect;
begin
// Disconnect from the database.
dbSales.Connected := False;

end;

// Customer methods

procedure TDDGSalesDataModule.AcceptCustomer;
begin
dbSales.ApplyUpdates([qryCustomer]);

end;

procedure TDDGSalesDataModule.CancelCustomer;
begin
qryCustomer.CancelUpdates;

end;

procedure TDDGSalesDataModule.DeleteCustomer;
begin
qryCustomer.Delete;

end;

procedure TDDGSalesDataModule.EditCustomer;
begin
qryCustomer.Edit;

end;

procedure TDDGSalesDataModule.FirstCustomer;
begin
qryCustomer.First;

end;

Rapid Database Application Development

PART V
1376

39.65227_Ch33 11/30/1999 5:52 PM Page 1376

procedure TDDGSalesDataModule.LastCustomer;
begin
qryCustomer.Last;

end;

procedure TDDGSalesDataModule.NewCustomer;
begin
qryCustomer.Insert;

end;

procedure TDDGSalesDataModule.NextCustomer;
begin
qryCustomer.Next;

end;

procedure TDDGSalesDataModule.PrevCustomer;
begin
qryCustomer.Prior;

end;

function TDDGSalesDataModule.IsFirstCustomer: Boolean;
begin
Result := qryCustomer.Bof;

end;

function TDDGSalesDataModule.IsLastCustomer: Boolean;
begin
Result := qryCustomer.Eof;

end;

function TDDGSalesDataModule.GetCustomerName: String;
begin
{ Normally, return the company name. If there is not a company name, return
the customer’s name. }

if qryCustomerCOMPANY.AsString <> EmptyStr then
Result := qryCustomerCOMPANY.AsString

else
Result := Format(‘%s %s’, [qryCustomerFNAME.AsString,

qryCustomerLNAME.AsString]);
end;

function TDDGSalesDataModule.SearchForCustomer: Boolean;
var
CustID: Integer;
SearchQry: String;

begin

Inventory Manager: Client/Server Development

CHAPTER 33
1377

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

continues

39.65227_Ch33 11/30/1999 5:52 PM Page 1377

LISTING 33.3 Continued

// Assume failure.
Result := False;
{ Invoke the SearchCustomer function which is defined in CustomerSrchFrm.pas.
this function returns the query string that is added to the

qryCustomerSearch
TQuery component }

SearchQry := SearchCustomer;
if SearchQry <> EmptyStr then
begin
Screen.Cursor := crSQLWait;
try

qryCustomerSearch.Close;
qryCustomerSearch.SQL.Clear;
qryCustomerSearch.SQL.Add(SearchQry);
qryCustomerSearch.Open;
try

// If a record was not found, exit this method.
if qryCustomerSearch.FieldByName(‘CUSTOMER_ID’).IsNull then
begin
Screen.Cursor := crDefault;
Exit;

end;

{ If a record is found, get the customer’s id that is used to
locate the record in the actual qryCustomer, TQuery component. This
will position the cursor to the location of the record. }

CustID := qryCustomerSearch.FieldByName(‘CUSTOMER_ID’).AsInteger;

{ If the record is not found in qryCustomer, there is an
inconsistency

in the database, raise an error. }
if not qryCustomer.Locate(‘CUSTOMER_ID’, CustID, []) then
raise Exception.Create(‘Inconsistency in database.’)

else
Result := True;

finally
qryCustomerSearch.Close;

end;
finally
Screen.Cursor := crDefault;

end;
end
else
Result := False;;

end;

Rapid Database Application Development

PART V
1378

39.65227_Ch33 11/30/1999 5:52 PM Page 1378

// Parts Methods

function TDDGSalesDataModule.IsFirstPart: Boolean;
begin
Result := qryParts.Bof;

end;

function TDDGSalesDataModule.IsLastPart: Boolean;
begin
Result := qryParts.Eof;

end;

procedure TDDGSalesDataModule.AcceptPart;
begin
dbSales.ApplyUpdates([qryParts]);

end;

procedure TDDGSalesDataModule.CancelPart;
begin
qryParts.CancelUpdates;

end;

procedure TDDGSalesDataModule.DeletePart;
begin
qryParts.Delete;

end;

procedure TDDGSalesDataModule.EditPart;
begin
qryParts.Edit;

end;

procedure TDDGSalesDataModule.FirstPart;
begin
qryParts.First;

end;

procedure TDDGSalesDataModule.LastPart;
begin
qryParts.Last;

end;

procedure TDDGSalesDataModule.NewPart;
begin
qryParts.Insert;

end;

Inventory Manager: Client/Server Development

CHAPTER 33
1379

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

continues

39.65227_Ch33 11/30/1999 5:52 PM Page 1379

LISTING 33.3 Continued

procedure TDDGSalesDataModule.NextPart;
begin
qryParts.Next;

end;

procedure TDDGSalesDataModule.PrevPart;
begin
qryParts.Prior;

end;

function TDDGSalesDataModule.SearchForPart: Boolean;
{ This method searches for a part based on the part id specified by the
user. }

var
PartNumber: string;

begin
Result := False;
PartNumber := ‘’;
if InputQuery(‘Part Search’, ‘Enter a Part Number’, PartNumber) then
if not qryParts.Locate(‘PART_NUMBER’, PartNumber, []) then
Exit

else
Result := True;

end;

// Sales methods

procedure TDDGSalesDataModule.AddItemToSale;
begin
{ The tblTempItems is a temporary table used to hold the
items that are being added to a sale. If the user saves
the sale, these records will be used in the stored procedure
calls that actually store the sale on the database. }

if not tblTempItems.Locate(‘PART_NUMBER’,
qryParts.FieldByName(‘PART_NUMBER’).AsString, []) then

begin
tblTempItems.Insert;
try
tblTempItems[‘PART_NUMBER’] := qryParts[‘PART_NUMBER’];
tblTempItems[‘DESCRIPTION’] := qryParts[‘DESCRIPTION’];
tblTempItems[‘QUANTITY’] := 1;
tblTempItems[‘RETAIL_PRICE’] := qryParts[‘RETAIL_PRICE’];
tblTempItems.Post;

except
tblTempItems.Cancel;

end;

Rapid Database Application Development

PART V
1380

39.65227_Ch33 11/30/1999 5:52 PM Page 1380

end
else
MessageDlg(‘Item already in list’, mtWarning, [mbok], 0);

end;

procedure TDDGSalesDataModule.CancelSale;
begin
{ If the user cancels the sale, the items that were added to the tblTempItems
table will have to be cleared. }

tblTempItems.Close;
tblTempItems.EmptyTable;
tblTempItems.Open;

end;

procedure TDDGSalesDataModule.SaveSale;
var
SaleNo: Integer;

begin
{ If the user saves the sale, first create a sale record which will return
a sale key to SaleNo. This is used as the link for sale items which are
added next. The sale items are gotten from the temporary table
tblTempItems. }

dbSales.StartTransaction;
try
{ First create the sale record. }
with spInsertSale do
begin
ParamByName(‘iCUSTOMER_ID’).AsInteger := qryCustomer[‘CUSTOMER_ID’];
ParamByName(‘iSALE_DATE’).AsDateTime := Now;
ParamByName(‘iTOTAL_PRICE’).AsFloat := SaleItemsTotalPrice;
ExecProc;
// Get the key value in SaleNo.
SaleNo := ParamByName(‘rSALE_NUMBER’).AsInteger;

end;

// Now add all records in tblTempItems to the sale specified by SaleNo.
tblTempItems.First;
while not tblTempItems.Eof do
begin
with spInsertSaleItem do
begin
ParamByName(‘IPART_NO’).AsString := tblTempItems[‘PART_NUMBER’];
ParamByName(‘IQTY’).AsInteger := tblTempItems[‘QUANTITY’];
ParamByName(‘ISALE_NUMBER’).AsInteger := SaleNo;
ExecProc;

end;

Inventory Manager: Client/Server Development

CHAPTER 33
1381

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

continues

39.65227_Ch33 11/30/1999 5:52 PM Page 1381

LISTING 33.3 Continued

tblTempItems.Next;
end;

dbSales.Commit;

// Refresh modified tables.
qryParts.Close;
qryParts.Open;

tblTempItems.Close;
tblTempItems.EmptyTable;
tblTempItems.Open;

except
dbSales.Rollback;

end;
end;

function TDDGSalesDataModule.SaleItemsTotalPrice: double;
begin
{ qryTotalPrice retrieves the total price for all records added to the
tblTempItems table. This method may be called from any form using this
data module. }

qryTotalPrice.Close;
qryTotalPrice.Open;
try
Result := qryTotalPrice.FieldByName(‘SUM OF TOTAL_PRICE’).AsFloat;

finally
qryTotalPrice.Close;

end;
end;

procedure TDDGSalesDataModule.tblTempItemsBeforePost(DataSet: TDataSet);
begin
{ Before posting a record to the temporary table, calculate the total price
for the TOTAL_PRICE field based on the number of items that the user is
adding. }

tblTempItemsTOTAL_PRICE.ReadOnly := False;
try
tblTempItems[‘TOTAL_PRICE’] := tblTempItems[‘RETAIL_PRICE’] *
tblTempItems[‘QUANTITY’];

finally
tblTempItemsTOTAL_PRICE.ReadOnly := True;

end;
end;

Rapid Database Application Development

PART V
1382

39.65227_Ch33 11/30/1999 5:52 PM Page 1382

procedure TDDGSalesDataModule.OpenTempItems;
begin
tblTempItems.Close;
tblTempItems.EmptyTable;
tblTempItems.Open;

end;

procedure TDDGSalesDataModule.CloseTempItems;
begin
tblTempItems.Active := False;

end;

end.

TDDGSalesDataModule has a TDatabase component, dbSales, and the various TQuery,
TUpdateSQL, and TStoredProc components necessary for our sales inventory application.

DbSales is the main connection to the SQL back end that exists in Sales.gdb. This connection
is made through the alias DDGSALES, which we set up using the DBExplorer program. DBSales
establishes the application-level alias DDGSalesDB. Initially, its Connected property is set to
False so all tables belonging to it will also be closed when the application is first run. DbSales
has an OnLogin event handler that we will discuss momentarily.

You will notice that we functionally grouped the TDDGSalesDataModule’s method definitions.
These functional groups are as follows:

Method Group Definition

Connection methods Methods that allow the user to log on and log off the appli-
cation

Customer methods Methods that manipulate customer data specifically

Parts methods Methods that manipulate the parts data specifically

Sales methods Methods that create and manage sales

Refer to the listing’s commentary for an explanation of the various methods. In particular,
examine the SaveSale() method, which is the method that uses the TStoredProc component
to create a new sale and adds sale items to that sale. The stored procedures in this method are
hooked to the stored procedures shown in Listings 33.1 and 33.2.

Login/Logout Methods
The methods for logging in and logging out are appropriately named Login() and Logout().
Login() invokes the Connect() method, which establishes a connection to the database
through dbSales. It does this by setting the dbSales.Connected property to True. When this

Inventory Manager: Client/Server Development

CHAPTER 33
1383

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

39.65227_Ch33 11/30/1999 5:52 PM Page 1383

happens, the dbSales.OnLogin event handler is invoked if one exists. The event handler
dbSalesLogin() invokes the GetLoginParams() method defined in LoginFrm.pas, which pop-
ulates the user’s login information by displaying a custom login dialog. This method is shown
in Listing 33.4.

LISTING 33.4 TLoginForm: The Custom Login Form

unit LoginFrm;

interface

uses WinTypes, WinProcs, Classes, Graphics, Forms, Controls, StdCtrls,
Buttons, ExtCtrls;

type
TLoginForm = class(TForm)
lblEnterPassword: TLabel;
lblEnterName: TLabel;
edtName: TEdit;
edtPassword: TEdit;
btnOK: TButton;
btnCancel: TButton;

public
end;

function GetLoginParams(ALoginParams: TStrings): Boolean;

implementation

{$R *.DFM}

function GetLoginParams(ALoginParams: TStrings): Boolean;
var
LoginForm: TLoginForm;

begin
Result := False;
LoginForm := TLoginForm.Create(Application);
try
if LoginForm.ShowModal = mrOk then
begin
ALoginParams.Values[‘USER NAME’] := LoginForm.edtName.Text;
ALoginParams.Values[‘PASSWORD’] := LoginForm.edtPassWord.Text;
Result := True;

end;
finally

Rapid Database Application Development

PART V
1384

39.65227_Ch33 11/30/1999 5:52 PM Page 1384

LoginForm.Free;
end;

end;

end.

The Logout() method simply closes dbSales, which in turn closes all the TQuery/TTable con-
nections.

Customer Table Methods
DDGSalesDataModule contains several methods to manipulate the CUSTOMER table:
NewCustomer(), AcceptCustomer(), EditCustomer(), DeleteCustomer(), and
CancelCustomer(). All are straightforward in that they just call the appropriate TQuery meth-
ods to invoke the action. The remaining methods require a bit more explanation.

GetCustomerName() is a function that retrieves the company name of a customer. If a company
name does not exist, the method returns the first and last name of a customer whose customer
ID is that specified by the CustID parameter.

SearchForCustomer() allows the user to perform a search on the customer table for a certain
customer. The search is based on the fields specified by the user from a customer search form.
This form builds a query string that gets passed to the server. We will discuss the functionality
of this form later. For now, just assume that it builds a query string that gets assigned to
qryCustomerSearch.SQL. If the customer specified is found, that customer record is made the
active one.

Part Table Methods
The part methods are similar to the customer methods. The NewPart(), EditPart(),
AcceptPart(), DeletePart(), and CancelPart() methods are simple methods that call the
appropriate TQuery methods to perform the specific operation.

SearchForPart() is not quite as complex as SearchForCustomer(). It retrieves a part number
by using the InputQuery() function and then performs a Locate() operation to find the part.

Sales Methods
The sales methods are where things get a bit more interesting. These methods represent more
what you would be doing to perform various operations against a client/server database—in
particular, the SaveSale() method.

AddItemToSale() allows the user to specify the items to add to a new sale (see Figure 33.2).

Inventory Manager: Client/Server Development

CHAPTER 33
1385

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

39.65227_Ch33 11/30/1999 5:52 PM Page 1385

FIGURE 33.2
Adding items to a sale.

CancelSale() terminates an “insert sale” operation.

SaveSale() is DDGSalesDataModule’s most complex method. This method uses the transaction
capabilities of dbSales to add a sale to the database. This involves starting the transaction,
adding the sale record, adding x number of items being sold, and then committing or rolling
back the entire process (transaction).

The sale record is added by using the spInsertSale stored procedure. Notice how the sale
number that is generated inside the actual stored procedure is returned to the client with the
following statement:

SaleNo := ParamByName(‘rSALE_NUMBER’).AsInteger;

This value is then used for each record added to the ITEMS table through the TStoredProc
component spInsertSaleItems. This is how you link the items being sold with a sale.

Temporary Table Methods
The TempPartsTable methods perform operations on the temporary table used to hold items
for a sale. Table 33.1 shows the definition of this table.

Rapid Database Application Development

PART V
1386

39.65227_Ch33 11/30/1999 5:52 PM Page 1386

TABLE 33.1 TEMPPART.DB Table Fields

Field Name Type Size Meaning

PART_NO A 10 Part number for this item

DESCRIPTION A 18 Description of this part

QUANTITY S Number of parts being sold

RETAIL_PRICE N 50 Retail price for the item being sold

RETAIL_PRICE N 50 Total price for the number of parts being sold

The AddItemToSale() method is responsible for adding parts to the sale.

The SaleItemsTotalPrice() method returns the total price in items existing in tblTempItems.
This method uses the qryTotalPrice component to run a query against the Paradox table to
calculate the total price. The SQL statement that is executed is

select SUM(RETAIL_PRICE) from temppart.db

This statement returns the sum of the numeric values for the specified column—in this case the
RETAIL_PRICE column.

The tblTempItemsBeforePost() method is the event handler for the
tblTempParts.BeforePost event. This event handler ensures that the record being posted
reflects the correct price based on the quantity of items being sold. This is possible because the
BeforePost event occurs before the record is actually posted to the table.

Surfacing Data-Access Component Events to Users of the
TDataModule
One of the problems with centralizing database access is that the data-access components each
have their own event that you might want the user interface to know about. Usually, you do
this because you want something to happen on the UI side as a result of a data-access compo-
nent’s event. Because the components reside on the TDataModule, there is no automatic way
for forms using the TDataModule to hook into these events. Keep in mind that the TDataModule
may be made accessible in the form of a compiled unit.

One way of surfacing certain events is to give the TDataModule its own event to which any
forms using it can attach an event handler. This TDataModule event can be invoked as a result
of a specific component’s event. This is how you surface the AfterPost and AfterDelete
events for the tblTempParts table through one property—AfterTempItemsChange. This prop-
erty has both reader and writer methods that directly access the tblTempParts actual properties.

Inventory Manager: Client/Server Development

CHAPTER 33
1387

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

39.65227_Ch33 11/30/1999 5:52 PM Page 1387

Designing the User Interface
With the centralized data access defined, you can build the user interface around the methods,
properties, and events of the TDataModule object. In the next few sections, we are going to talk
about the various forms in the application.

This application uses the framework discussed in Chapter 4, “Application Frameworks and
Design Concepts,” where a form can become a child window of another window.

Our application uses the model shown in Figure 33.3.

Rapid Database Application Development

PART V
1388

TCustomerForm TNewSalesFormTPartsForm TSalesForm

TMainForm

1 1 1 1

11

1 1

FIGURE 33.3
Inventory application layout.

This main form can contain four child forms:

• Customer form. Used to add, edit, and browse customers in the system

• Parts form. Used to add, edit, and browse the inventory of parts

• Sales form. Used to browse sales

• New Sales form. Used to add a new sale

There are some other supportive forms that are not invoked as child forms of the main form.
We will discuss these forms momentarily. For now, we will focus primarily on the main form
and each of the child forms.

TMainForm: The Application’s Main Form
The main form of the application contains a TTabControl component, which serves as the par-
ent component to the child forms. The user changes the child form by selecting the desired
screen either from the main menu or by selecting a tab of tcMain. The coding logic ensures
that the menu items and tab controls remain in sync. Most of the main form logic focuses on
ensuring that only one child form is created and visible and that others are properly freed.

39.65227_Ch33 11/30/1999 5:52 PM Page 1388

Listing 33.5 shows the source code for the main form, TMainForm.

LISTING 33.5 The Inventory Application’s Main Form: TMainForm

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
Menus, StdCtrls, ComCtrls, ExtCtrls, ChildFrm;

type

{ There are four types of child forms that can be displayed in this
application. The TActiveScreenType is declared to allow us to know
which of the four types of forms are active. }

TActiveScreenType = (acCustomer, acParts, acSales, acNewSales);

TMainForm = class(TForm)
mmSales: TMainMenu;
mmiScreen: TMenuItem;
mmiCustomer: TMenuItem;
mmiParts: TMenuItem;
mmiNewSale: TMenuItem;
mmiSales: TMenuItem;
mmiFile: TMenuItem;
mmiExit: TMenuItem;
mmiHelp: TMenuItem;
tcMain: TTabControl;
mmiUser: TMenuItem;
mmiLogon: TMenuItem;
mmiLogoff: TMenuItem;
imgCar: TImage;
procedure ScreenClick(Sender: TObject);
procedure mmiExitClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure tcMainChange(Sender: TObject);
procedure tcMainChanging(Sender: TObject; var AllowChange: Boolean);
procedure mmiLogonClick(Sender: TObject);
procedure mmiLogoffClick(Sender: TObject);

private
// ActiveScreenType stores the type of form that is active.
ActiveScreenType: TActiveScreenType;
// ActiveScreen is a reference to the active child form.

Inventory Manager: Client/Server Development

CHAPTER 33
1389

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

continues

39.65227_Ch33 11/30/1999 5:52 PM Page 1389

LISTING 33.5 Continued

ActiveScreen: TChildForm;
procedure SetActiveScreen;

public
{ Public declarations }

end;

var
MainForm: TMainForm;

implementation

uses CustomerFrm, PartsFrm, NewSalesFrm, SalesFrm, SalesDM;

{$R *.DFM}

procedure TMainForm.FormCreate(Sender: TObject);
begin
// Set the alignment for the main tab control.
tcMain.Align := alClient;

end;

procedure TMainForm.mmiExitClick(Sender: TObject);
begin
Close;

end;

procedure TMainForm.ScreenClick(Sender: TObject);
begin
{ This method is invoked when the user has chosen to change the screen via
the main menu.
This method determines if it is possible to change to another child form. It
does this by making sure that each child form’s CanChange() method returns
True. If so, it changes the global ActiveScreenType value and invokes the
SetActiveScreen() method to actually perform the change logic. }
if Sender is TMenuItem then
begin
if ActiveScreen <> nil then
begin
if ActiveScreen.CanChange then
begin

TMenuItem(Sender).Checked := True;
if Sender = mmiCustomer then
ActiveScreenType := acCustomer

else if Sender = mmiParts then

Rapid Database Application Development

PART V
1390

39.65227_Ch33 11/30/1999 5:52 PM Page 1390

ActiveScreenType := acParts
else if Sender = mmiSales then
ActiveScreenType := acSales

else if Sender = mmiNewSale then
ActiveScreenType := acNewSales;

// Ensure the TTabControl is in-sync with the clicked item on the menu.
tcMain.TabIndex := ord(ActiveScreenType);
SetActiveScreen;

end
end;

end;
end;

procedure TMainForm.tcMainChange(Sender: TObject);
begin
{ This method changes the screen when the user has switched tabs. It
synchronizes the settings for the main menu and the tab control. This method
also calls the SetActiveScreen() method to actually change the active

screen.}
if ActiveScreen <> nil then
begin
case tcMain.TabIndex of
0: mmiCustomer.Checked := True;
1: mmiParts.Checked := True;
2: mmiSales.Checked := True;
3: mmiNewSale.Checked := True;

end;
ActiveScreenType := TActiveScreenType(tcMain.TabIndex);
SetActiveScreen;

end;
end;

procedure TMainForm.SetActiveScreen;
{ This method changes the active screen to one of the four child forms. Each
child form becomes a child of the TTabControl tcMain. }

var
TempScreen: TChildForm;

begin
{ Determine if we have an instantiated child form yet. If so, unmerge its
menu and free the child form. }

TempScreen := ActiveScreen;

// Unmerge the menu.
if Assigned(ActiveScreen) then

Inventory Manager: Client/Server Development

CHAPTER 33
1391

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

continues

39.65227_Ch33 11/30/1999 5:52 PM Page 1391

LISTING 33.5 Continued

begin
if ActiveScreen.GetFormMenu <> nil then
mmSales.UnMerge(ActiveScreen.GetFormMenu);

end;

{ Determine which active screen (child form) to create and set its toolbar
to have the main form as the parent if appropriate. }

case ActiveScreenType of
acCustomer:
begin
ActiveScreen := TCustomerForm.Create(Application, tcMain);
TCustomerForm(ActiveScreen).SetToolBarParent(self);

end;
acParts:
begin
ActiveScreen := TPartsForm.Create(Application, tcMain);
TPartsForm(ActiveScreen).SetToolBarParent(self);

end;
acSales:

ActiveScreen := TSalesForm.Create(Application, tcMain);
acNewSales:
begin
ActiveScreen := TNewSalesForm.Create(Application, tcMain);
TPartsForm(ActiveScreen).SetToolBarParent(self);

end;
end;

// Merge the menu of the child form with the menu of the main form.
if ActiveScreen <> nil then
begin
if ActiveScreen.GetFormMenu <> nil then
mmSales.Merge(ActiveScreen.GetFormMenu);

ActiveScreen.Show;

end;

if Assigned(TempScreen) then
TempScreen.Free;

end;

procedure TMainForm.tcMainChanging(Sender: TObject;
var AllowChange: Boolean);

begin

Rapid Database Application Development

PART V
1392

39.65227_Ch33 11/30/1999 5:52 PM Page 1392

// Change only if the child form is in the mode that allows changing.
AllowChange := ActiveScreen.CanChange;

end;

procedure TMainForm.mmiLogonClick(Sender: TObject);
begin
// Log the user onto the system
if DDGSalesDataModule.Login then
begin
tcMain.Align := alClient;
tcMain.Visible := True;
ActiveScreenType := acCustomer;
SetActiveScreen;
mmiScreen.Enabled := True;
mmiLogon.Enabled := False;
mmiLogoff.Enabled := True;

end;
end;

procedure TMainForm.mmiLogoffClick(Sender: TObject);
begin
// Log the user off the system.
if Assigned(ActiveScreen) then
begin
if ActiveScreen.GetFormMenu <> nil then
mmSales.UnMerge(ActiveScreen.GetFormMenu);

ActiveScreen.Free;
ActiveScreen := nil;

end;

tcMain.Visible := False;
DDGSalesDataModule.Logout;

mmiScreen.Enabled := False;
mmiLogon.Enabled := True;
mmiLogoff.Enabled := False;

end;

end.

Refer to the commentary within the main form’s listing (see Listing 33.5) for specifics of each
method. The bulk of this application’s code exists in DDGSalesDataModule (already discussed).
The child forms contain most of the logic in regards to the user interface. We will discuss these
next.

Inventory Manager: Client/Server Development

CHAPTER 33
1393

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

39.65227_Ch33 11/30/1999 5:52 PM Page 1393

TCustomerForm: Customer Entry
TCustomerForm is where the user can add, edit, and delete customers from the database. This
form is shown in Figure 33.4. Because much of the user interface logic exists in
TCustomerForm’s ancestor classes, this form’s source code is pleasingly thin and simple to
understand. Listing 33.6 is the source for TCustomerForm.

Rapid Database Application Development

PART V
1394

FIGURE 33.4
The customer data-entry form.

LISTING 33.6 Customer Entry Form: TCustomerForm

unit CustomerFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
DBNAVSTATFRM, StdCtrls, DBCtrls, Mask, Menus, ImgList, ComCtrls, ToolWin,
Db, DBModeFrm;

type
TCustomerForm = class(TDBNavStatForm)
lblFirstName: TLabel;
dbeFirstName: TDBEdit;
lblLastName: TLabel;
dbeLastName: TDBEdit;
lblCreditLine: TLabel;
dbeCreditLine: TDBEdit;
lblWorkAddress: TLabel;

39.65227_Ch33 11/30/1999 5:52 PM Page 1394

dbeWorkAddress: TDBEdit;
lblHomeAddress: TLabel;
dbeHomeAddress: TDBEdit;
lblCity: TLabel;
dbeCity: TDBEdit;
lblState: TLabel;
dbeState: TDBEdit;
lblZipCode: TLabel;
dbeZip: TDBEdit;
lblWorkPhone: TLabel;
dbeWorkPhone: TDBEdit;
lblHomePhone: TLabel;
dbeHomePhone: TDBEdit;
lblComments: TLabel;
dbmmComments: TDBMemo;
lblCompany: TLabel;
dbeCompany: TDBEdit;
dsCustomer: TDataSource;
EXit1: TMenuItem;
procedure sbFirstClick(Sender: TObject);
procedure sbPrevClick(Sender: TObject);
procedure sbNextClick(Sender: TObject);
procedure sbLastClick(Sender: TObject);
procedure sbInsertClick(Sender: TObject);
procedure sbEditClick(Sender: TObject);
procedure sbDeleteClick(Sender: TObject);
procedure sbCancelClick(Sender: TObject);
procedure sbAcceptClick(Sender: TObject);
procedure FormShow(Sender: TObject);
procedure sbFindClick(Sender: TObject);
procedure sbBrowseClick(Sender: TObject);

private
procedure SetNavButtons;

public
function GetFormMenu: TMainMenu; override;
function CanChange: Boolean; override;

end;

var
CustomerForm: TCustomerForm;

implementation

uses SalesDM;

Inventory Manager: Client/Server Development

CHAPTER 33
1395

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

continues

39.65227_Ch33 11/30/1999 5:52 PM Page 1395

LISTING 33.6 Continued

{$R *.DFM}

procedure TCustomerForm.SetNavButtons;
begin
// Ensure that the navigational buttons are set according to the form’s mode.
sbFirst.Enabled := not DDGSalesDataModule.IsFirstCustomer;
sbLast.Enabled := not DDGSalesDataModule.IsLastCustomer;
sbPrev.Enabled := not DDGSalesDataModule.IsFirstCustomer;
sbNext.Enabled := not DDGSalesDataModule.IsLastCustomer;

// synchronize the navigational menu items with the speedbuttons.
mmiFirst.Enabled := sbFirst.Enabled;
mmiLast.Enabled := sbLast.Enabled;
mmiPrevious.Enabled := sbPrev.Enabled;
mmiNext.Enabled := sbNext.Enabled;

end;

procedure TCustomerForm.sbFirstClick(Sender: TObject);
begin
// Go to the first record in the result set.
inherited;
DDGSalesDataModule.FirstCustomer;
SetNavButtons;

end;

procedure TCustomerForm.sbPrevClick(Sender: TObject);
begin
// Go to the previous record in the result set.
inherited;
DDGSalesDataModule.PrevCustomer;
SetNavButtons;

end;

procedure TCustomerForm.sbNextClick(Sender: TObject);
begin
// Go to the next record in the result set.
inherited;
DDGSalesDataModule.NextCustomer;
SetNavButtons;

end;

procedure TCustomerForm.sbLastClick(Sender: TObject);
begin
// Go to the last record in the result set.

Rapid Database Application Development

PART V
1396

39.65227_Ch33 11/30/1999 5:52 PM Page 1396

inherited;
DDGSalesDataModule.LastCustomer;
SetNavButtons;

end;

procedure TCustomerForm.sbInsertClick(Sender: TObject);
begin
// Insert a new customer.
inherited;
DDGSalesDataModule.NewCustomer;

end;

procedure TCustomerForm.sbEditClick(Sender: TObject);
begin
// Edit the current customer.
inherited;
DDGSalesDataModule.EditCustomer;

end;

procedure TCustomerForm.sbDeleteClick(Sender: TObject);
begin
// Delete the current customer.
inherited;
DDGSalesDataModule.DeleteCustomer;

end;

procedure TCustomerForm.sbCancelClick(Sender: TObject);
begin
// Cancel the Edit or Add operation.
inherited;
DDGSalesDataModule.CancelCustomer;

end;

procedure TCustomerForm.sbAcceptClick(Sender: TObject);
begin
// Accept Add or Edit changes.
inherited;
DDGSalesDataModule.AcceptCustomer;

end;

procedure TCustomerForm.FormShow(Sender: TObject);
begin
// Initialize menus and buttons accordingly.
inherited;
SetNavButtons;

end;

Inventory Manager: Client/Server Development

CHAPTER 33
1397

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

continues

39.65227_Ch33 11/30/1999 5:52 PM Page 1397

LISTING 33.6 Continued

function TCustomerForm.CanChange: Boolean;
begin
// Allow the user to change forms only when browsing record.
Result := FormMode = fmBrowse;

end;

function TCustomerForm.GetFormMenu: TMainMenu;
begin
{ Return the main menu. This is required by the main form for
menu merging. }

Result := mmFormMenu;
end;

procedure TCustomerForm.sbFindClick(Sender: TObject);
begin
// Search for a specific customer by invoking the customer search form.
inherited;
DDGSalesDataModule.SearchForCustomer;

end;

procedure TCustomerForm.sbBrowseClick(Sender: TObject);
begin
// Set the form to browse mode. This will cancel an edit or add operation.
inherited;
if not (FormMode = fmBrowse) then
DDGSalesDataModule.CancelCustomer;

end;

end.

Refer to the listing commentary for explanations of the specific methods. The small amount of
code required for this form is possible because most of the database logic exists in
TDDGSalesDataModule, not to mention how much is handled for you by the VCL. The remain-
ing forms are equally lean.

TPartsForm: Inventory Entry
The parts entry form, TPartsForm, is shown in Figure 33.5. Listing 33.7 shows its source code.

Rapid Database Application Development

PART V
1398

39.65227_Ch33 11/30/1999 5:52 PM Page 1398

FIGURE 33.5
The parts data-entry form.

LISTING 33.7 Parts Entry Form: TPartsForm

unit PartsFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
DBNAVSTATFRM, Menus, ImgList, ComCtrls, ToolWin, Grids, DBGrids, Db,
StdCtrls, Mask, DBCtrls, DBModeFrm;

type
TPartsForm = class(TDBNavStatForm)
lblPartNo: TLabel;
dbePartNo: TDBEdit;
dsParts: TDataSource;
lblDescription: TLabel;
dbeDescription: TDBEdit;
lblQuantity: TLabel;
dbeQuantity: TDBEdit;
lblListPrice: TLabel;
dbeListPrice: TDBEdit;
lblRetailPrice: TLabel;
dbeRetailPrice: TDBEdit;
lblDealerPrice: TLabel;
dbeDealerPrice: TDBEdit;
lblJobberPrice: TLabel;

Inventory Manager: Client/Server Development

CHAPTER 33
1399

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

continues

39.65227_Ch33 11/30/1999 5:52 PM Page 1399

LISTING 33.7 Continued

dbeJobberPrice: TDBEdit;
dbgParts: TDBGrid;
procedure sbAcceptClick(Sender: TObject);
procedure sbCancelClick(Sender: TObject);
procedure sbInsertClick(Sender: TObject);
procedure sbEditClick(Sender: TObject);
procedure sbDeleteClick(Sender: TObject);
procedure sbFirstClick(Sender: TObject);
procedure sbPrevClick(Sender: TObject);
procedure sbNextClick(Sender: TObject);
procedure sbLastClick(Sender: TObject);
procedure FormShow(Sender: TObject);
procedure sbFindClick(Sender: TObject);
procedure sbBrowseClick(Sender: TObject);

private
procedure SetNavButtons;

public
function GetFormMenu: TMainMenu; override;
function CanChange: Boolean; override;

end;

var
PartsForm: TPartsForm;

implementation

uses SalesDM;

{$R *.DFM}

procedure TPartsForm.SetNavButtons;
begin
// Ensure that the navigational buttons are set according to the form’s mode.
sbFirst.Enabled := not DDGSalesDataModule.IsFirstPart;
sbLast.Enabled := not DDGSalesDataModule.IsLastPart;
sbPrev.Enabled := not DDGSalesDataModule.IsFirstPart;
sbNext.Enabled := not DDGSalesDataModule.IsLastPart;

// synchronize the navigational menu items with the speedbuttons.
mmiFirst.Enabled := sbFirst.Enabled;
mmiLast.Enabled := sbLast.Enabled;
mmiPrevious.Enabled := sbPrev.Enabled;
mmiNext.Enabled := sbNext.Enabled;

end;

Rapid Database Application Development

PART V
1400

39.65227_Ch33 11/30/1999 5:52 PM Page 1400

procedure TPartsForm.sbAcceptClick(Sender: TObject);
begin
// Accept add/edit changes to this part.
inherited;
DDGSalesDataModule.AcceptPart;

end;

procedure TPartsForm.sbCancelClick(Sender: TObject);
begin
// Cancel add/Edit operation.
inherited;
DDGSalesDataModule.CancelPart;

end;

procedure TPartsForm.sbInsertClick(Sender: TObject);
begin
// Insert a new part.
inherited;
DDGSalesDataModule.NewPart;

end;

procedure TPartsForm.sbEditClick(Sender: TObject);
begin
// Edit the current part.
inherited;
DDGSalesDataModule.EditPart;

end;

procedure TPartsForm.sbDeleteClick(Sender: TObject);
begin
// Delete the current part.
inherited;
DDGSalesDataModule.DeletePart;

end;

procedure TPartsForm.sbFirstClick(Sender: TObject);
begin
// Go to the first record in the result set.
inherited;
DDGSalesDataModule.FirstPart;
SetNavButtons;

end;

procedure TPartsForm.sbPrevClick(Sender: TObject);
begin
// Go to the previous record in the result set.

Inventory Manager: Client/Server Development

CHAPTER 33
1401

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

continues

39.65227_Ch33 11/30/1999 5:52 PM Page 1401

LISTING 33.7 Continued

inherited;
DDGSalesDataModule.PrevPart;
SetNavButtons;

end;

procedure TPartsForm.sbNextClick(Sender: TObject);
begin
// Go to the next record in the result set.
inherited;
DDGSalesDataModule.NextPart;
SetNavButtons;

end;

procedure TPartsForm.sbLastClick(Sender: TObject);
begin
// Go to the last record in the result set.
inherited;
DDGSalesDataModule.LastPart;
SetNavButtons;

end;

procedure TPartsForm.FormShow(Sender: TObject);
begin
// Initialize the speedbuttons and menu items accordingly.
inherited;
SetNavButtons;

end;

function TPartsForm.CanChange: Boolean;
begin
// Allow the user to change forms, only if not adding or editing a record.
Result := FormMode = fmBrowse;

end;

function TPartsForm.GetFormMenu: TMainMenu;
begin
// Return the main menu. This is used by the main form for menu merging of
// child forms.
Result := mmFormMenu;

end;

procedure TPartsForm.sbFindClick(Sender: TObject);
begin
// Search for a part by the part number.
inherited;

Rapid Database Application Development

PART V
1402

39.65227_Ch33 11/30/1999 5:52 PM Page 1402

DDGSalesDataModule.SearchForPart;
end;

procedure TPartsForm.sbBrowseClick(Sender: TObject);
begin
// Go into browse mode but only after canceling any changes made to the
// current record.
inherited;
if not (FormMode = fmBrowse) then
DDGSalesDataModule.CancelPart;

end;

end.

You will see from the listing that this is almost identical to TCustomerForm. This type of con-
sistency is a desired attribute and one that makes code easier to understand.

TSalesForm: Sales Browsing
The sales form is used to browse existing sales (see Figure 33.6). Its source code contains only
one method, GetFormMenu(), which had to be overridden to return nil so that the main form
would not attempt to perform a menu-merging operation. We will not show the listing for this
form because there is no specific code that we wrote. You will find its unit, SalesFrm.pas, on
the CD-ROM in the directory for this chapter.

Inventory Manager: Client/Server Development

CHAPTER 33
1403

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

FIGURE 33.6
The sales-browsing form.

39.65227_Ch33 11/30/1999 5:52 PM Page 1403

TNewSalesForm: Sales Entry
TNewSalesForm is the most complex of the four child forms. Its source is shown in Listing
33.8. Nevertheless, it is still a very simple form. The code commentary discusses the coding
logic. In particular, note that we had to create a method to return its TToolBar component. This
method already exists in the TDBNavStatForm component of which the other child forms were
descendants. This form, however, is a descendant of TChildForm only. Therefore, we needed to
create the method for it. Figure 33.7 shows TNewSalesForm.

Rapid Database Application Development

PART V
1404

FIGURE 33.7
The new sales data-entry form.

LISTING 33.8 New Sales Entry Form: TNewSalesForm

unit NewSalesFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
CHILDFRM, Grids, DBGrids, Buttons, StdCtrls, Db, Menus, ToolWin, ComCtrls,
ImgList;

type
TNewSalesForm = class(TChildForm)
dsParts: TDataSource;
dsTempItems: TDataSource;
lblCustomer1: TLabel;
lblCustomerName: TLabel;
lblTotCost: TLabel;

39.65227_Ch33 11/30/1999 5:52 PM Page 1404

lblTotalCost: TLabel;
lblSelectParts: TLabel;
sbAddPart: TSpeedButton;
sbRemovePart: TSpeedButton;
lblSaleItems: TLabel;
dbgParts: TDBGrid;
dbgSaleItems: TDBGrid;
mmFormMenu: TMainMenu;
mmiSales: TMenuItem;
mmiNew: TMenuItem;
mmiCancel: TMenuItem;
mmiSave: TMenuItem;
tbSales: TToolBar;
sbAccept: TToolButton;
sbCancel: TToolButton;
tb1: TToolButton;
sbInsert: TToolButton;
ilNavigationBar: TImageList;
procedure FormCreate(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure FormShow(Sender: TObject);
procedure sbAddPartClick(Sender: TObject);
procedure mmiNewClick(Sender: TObject);
procedure mmiCancelClick(Sender: TObject);
procedure mmiSaveClick(Sender: TObject);

private
AddingSale: Boolean;

procedure SetSaleMenus;
procedure TempItemsAfterChange(DataSet: TDataSet);

public
function CanChange: Boolean; override;
function GetFormMenu: TMainMenu; override;
procedure SetToolBarParent(AParent: TWinControl);

end;

var
NewSalesForm: TNewSalesForm;

implementation

uses SalesDM;

{$R *.DFM}

function TNewSalesForm.CanChange: Boolean;

Inventory Manager: Client/Server Development

CHAPTER 33
1405

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

continues

39.65227_Ch33 11/30/1999 5:52 PM Page 1405

LISTING 33.8 Continued

begin
Result := not AddingSale;

end;

procedure TNewSalesForm.FormCreate(Sender: TObject);
begin
inherited;
// The tblTempItems table on DDGSalesDataModule is required for this form.
DDGSalesDataModule.OpenTempItems;
AddingSale := False; // Initially we’re not adding a sale.

{ Assign the TempItemsAfterChange event handler to the event handlers
surfaced by DDGSalesDataModule. }

DDGSalesDataModule.AfterTempItemsChange := TempItemsAfterChange;
SetSaleMenus;

end;

procedure TNewSalesForm.FormDestroy(Sender: TObject);
begin
// Close the DDGSalesDataModule.tblTempItems table.
inherited;
DDGSalesDataModule.CloseTempItems;

end;

procedure TNewSalesForm.FormShow(Sender: TObject);
begin
// Retrieve the customer name for the current customer.
inherited;
lblCustomerName.Caption := DDGSalesDataModule.GetCustomerName;
{ The total should show a balance of zero since the form has just been
invoked. }

lblTotalCost.Caption := ‘$ 0.00’;
end;

procedure TNewSalesForm.TempItemsAfterChange(DataSet: TDataSet);
begin
// This is required in the AfterPost event of the
// tblTempItems on the datamodule
// because we must recalculate this everytime the user makes a change.
lblTotalCost.Caption := FormatFloat(‘$#,##0.00’,

DDGSalesDataModule.SaleItemsTotalPrice);
end;

procedure TNewSalesForm.sbAddPartClick(Sender: TObject);
begin

Rapid Database Application Development

PART V
1406

39.65227_Ch33 11/30/1999 5:52 PM Page 1406

// Add the selected item to the sale.
inherited;
DDGSalesDataModule.AddItemToSale;

end;

procedure TNewSalesForm.mmiNewClick(Sender: TObject);
begin
// Set the form into a mode to represent adding a sale.
inherited;
AddingSale := True;
SetSaleMenus;

end;

procedure TNewSalesForm.mmiCancelClick(Sender: TObject);
begin
// Cancel the current sale.
inherited;
AddingSale := False;
DDGSalesDataModule.CancelSale;
SetSaleMenus;

end;

procedure TNewSalesForm.mmiSaveClick(Sender: TObject);
begin
// Save the current sale.
inherited;
DDGSalesDataModule.SaveSale;
AddingSale := False;
SetSaleMenus;
{ Invoke the TempItemsAfterChange event handler to ensure that the form
updates is controls accordingly. }

TempItemsAfterChange(nil);
end;

procedure TNewSalesForm.SetSaleMenus;
begin
// Set menu items and speed buttons to reflect the form’s mode.
mmiNew.Enabled := not AddingSale;
mmiCancel.Enabled := AddingSale;
mmiSave.Enabled := AddingSale;
sbAddPart.Enabled := AddingSale;
sbRemovePart.Enabled := AddingSale;

sbAccept.Enabled := mmiSave.Enabled;
sbCancel.Enabled := mmiCancel.Enabled;
sbInsert.Enabled := mmiNew.Enabled;

Inventory Manager: Client/Server Development

CHAPTER 33
1407

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

continues

39.65227_Ch33 11/30/1999 5:52 PM Page 1407

LISTING 33.8 Continued

end;

function TNewSalesForm.GetFormMenu: TMainMenu;
begin
// Return the main menu to be used by the main form for menu merging.
Result := mmFormMenu;

end;

procedure TNewSalesForm.SetToolBarParent(AParent: TWinControl);
begin
{ This form uses a toolbar, return its parent. We were required to
create this method for this form as it is a descendant of TChildForm,
not TDBNavStatForm which already contains this method. }

tbSales.Parent := AParent;
end;

end.

The CustomerSearch Dialog
TCustomerSearchForm is used by DDGSalesDataModule to retrieve a query statement to be
used to perform a search on the CUSTOMER table. This form is responsible for obtaining the field
values from the user and building the query statement in SQL code. TCustomerSearchForm is
shown in Figure 33.8.

Rapid Database Application Development

PART V
1408

FIGURE 33.8
The customer search form.

TCustomerSearchForm is not a child form like the previously mentioned forms.
TCustomerSearchForm contains no data-aware controls. The user places values into the fields
on which a search is to be performed. The user must then click the labels for the fields on
which to search. This turns the label’s color to clRed. The logic of TCustomerSearchForm uses
the values entered by the user and the TLabel colors to build a SQL query statement.

39.65227_Ch33 11/30/1999 5:52 PM Page 1408

Listing 33.9 shows the source code for TCustomerSearchForm.

LISTING 33.9 Customer Search Form: TCustomerSearchForm

unit CustomerSrchFrm;

interface

uses WinTypes, WinProcs, Classes, Graphics, Forms, Controls, Buttons,
StdCtrls, SysUtils;

type
TCustomerSearchForm = class(TForm)
lblIDNumber: TLabel;
edtIDNumber: TEdit;
lblFirstName: TLabel;
lblLastName: TLabel;
lblAltPhone: TLabel;
lblWorkPhone: TLabel;
lblWorkAddress: TLabel;
lblAltAddress: TLabel;
lblCompany: TLabel;
edtFirstName: TEdit;
edtLastName: TEdit;
edtWorkPhone: TEdit;
edtAltPhone: TEdit;
edtWorkAddress: TEdit;
edtAltAddress: TEdit;
edtCompany: TEdit;
btnCancel: TButton;
btnFind: TButton;
lblInstruction: TLabel;
procedure FormCreate(Sender: TObject);
procedure FindCustBtnClick(Sender: TObject);
procedure CancelBtnClick(Sender: TObject);
procedure lblIDNumberClick(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);

private
FindPressed: Boolean;
procedure ClearEditFields;
function BuildSQLStatement: string;

public
QueryString: String;

end;

function SearchCustomer: String;

Inventory Manager: Client/Server Development

CHAPTER 33
1409

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

continues

39.65227_Ch33 11/30/1999 5:52 PM Page 1409

LISTING 33.9 Continued

implementation

{$R *.DFM}

uses Dialogs;

function SearchCustomer: String;
var
CustomerSearchForm: TCustomerSearchForm;

begin
Result := EmptyStr;
CustomerSearchForm := TCustomerSearchForm.Create(Application);
try
if CustomerSearchForm.ShowModal = mrOk then
Result := CustomerSearchForm.QueryString;

finally
CustomerSearchForm.Free;

end;

end;

function TCustomerSearchForm.BuildSQLStatement: string;
{ This function builds an SQL query statement based on the search
fields of a customer record as specified by the user. The search
fields are indicated by the labels whose color is clRed. The user
can select these labels by clicking on them. The user must enter a
value into the edit field to which the labels refer. }

var
Sep: String[3]; // Used as a seperator.

begin
Sep := ‘’;
Result := ‘’;

if lblIDNumber.Font.Color = clRed then
begin
Result := Format(‘(CUSTOMER_ID = %s)’, [edtIDNumber.Text]);
Sep := ‘AND’;

end;

if lblLastName.Font.Color = clRed then
begin
Result := Format(‘%s %s (UPPER(LNAME) = “%s”)’,

[Result, Sep, UpperCase(edtLastName.Text)]);
Sep := ‘AND’;

Rapid Database Application Development

PART V
1410

39.65227_Ch33 11/30/1999 5:52 PM Page 1410

end;

if lblFirstName.Font.Color = clRed then
begin
Result := Format(‘%s %s (UPPER(FNAME) = “%s”)’,

[Result, Sep, UpperCase(edtFirstName.Text)]);
Sep := ‘AND’;

end;

if lblWorkPhone.Font.Color = clRed then
begin
Result := Format(‘%s %s (UPPER(WORK_PHONE) = “%s”)’,

[Result, Sep, UpperCase(edtWorkPhone.Text)]);
Sep := ‘AND’;

end;

if lblAltPhone.Font.Color = clRed then
begin
Result := Format(‘%s %s (UPPER(ALT_PHONE) = “%s”)’,

[Result, Sep, UpperCase(edtAltPhone.Text)]);
Sep := ‘AND’;

end;

if lblWorkAddress.Font.Color = clRed then
begin
Result := Format(‘%s %s (UPPER(WORK_ADDRESS) = “%s”)’,

[Result, Sep, UpperCase(edtWorkAddress.Text)]);
Sep := ‘AND’;

end;

if lblAltAddress.Font.Color = clRed then
begin
Result := Format(‘%s %s (UPPER(ALT_ADDRESS) = “%s”)’,

[Result, Sep, UpperCase(edtAltAddress.Text)]);
Sep := ‘AND’;

end;

if lblCompany.Font.Color = clRed then
begin
Result := Format(‘%s %s (UPPER(COMPANY) = “%s”)’,

[Result, Sep, UpperCase(edtCompany.Text)]);
end;

if Length(Result) > 0 then
Result := Format(‘SELECT CUSTOMER_ID FROM CUSTOMER WHERE (%s)’,
[Result]);

Inventory Manager: Client/Server Development

CHAPTER 33
1411

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

continues

39.65227_Ch33 11/30/1999 5:52 PM Page 1411

LISTING 33.9 Continued

end;

procedure TCustomerSearchForm.ClearEditFields;
{ This method clears all of the edit fields and sets their labels
to clNavy in color. }

var
i: word;

begin
for i := 0 to ComponentCount - 1 do
begin
if Components[i] is TEdit then
TEdit(Components[i]).Text := ‘’;

if Components[i] is TLabel then
TLabel(Components[i]).Font.Color := clNavy;

end;

end;

procedure TCustomerSearchForm.FormCreate(Sender: TObject);
begin
FindPressed := False;
// Clear the edit fields.
ClearEditFields;

end;

procedure TCustomerSearchForm.FindCustBtnClick(Sender: TObject);
begin
FindPressed := True;
// Make the QueryString available to the caller of this dialog.
QueryString := BuildSQLStatement;

end;

procedure TCustomerSearchForm.CancelBtnClick(Sender: TObject);
begin
ClearEditFields;

end;

procedure TCustomerSearchForm.lblIDNumberClick(Sender: TObject);
{ All labels are hooked to this OnClick event handler which changes
the color of the labels. The clRed color is used to specify a label on
which to perform a search operation. }

begin

Rapid Database Application Development

PART V
1412

39.65227_Ch33 11/30/1999 5:52 PM Page 1412

with (Sender as TLabel) do
if Font.Color = clNavy then
Font.Color := clRed

else
Font.Color := clNavy;

end;

procedure TCustomerSearchForm.FormClose(Sender: TObject;
var Action: TCloseAction);

begin
{ Before closing the form to perform a search operation, make sure
the user has specified on which fields to perform the search. }

if (QueryString = ‘’) and FindPressed then
begin
MessageDlg(‘You must highlight a search field by’+

‘ clicking on a label.’, mtInformation, [mbOk], 0);
Action := caNone;

end
else begin
Action := caHide;
ClearEditFields;

end;
end;

end.

The main method to examine here is the BuildSQLStatement() function, which returns a
string representing the SQL query statement. This method looks at each of the labels and, if its
color is clRed, uses its corresponding edit control to build a query statement by using a series
of Format() statements.

ClearEditFields() is a simple method used to set all labels to clNavy and to clear the con-
tents of the edit controls. This method is used when the form is created in the FormCreate()
event handler.

The FormClose() event handler ensures that the user has specified fields on which to perform
the search by ensuring that QueryString is not empty. Only if a field was selected will
QueryString contain a valid SQL statement. Additionally, this method allows the form to close
regardless of the user’s specified fields if the user clicked the Cancel button. This is determined
by the value of the FindPressed Boolean variable, which is set to True when the Find button
is clicked.

If Find is clicked, the SQL statement is returned to the calling form.

Inventory Manager: Client/Server Development

CHAPTER 33
1413

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

39.65227_Ch33 11/30/1999 5:52 PM Page 1413

Summary
This concludes the Inventory Application. This chapter illustrates how you would design a
client/server, two-tier application. The two-tier model probably makes up the majority of
client/server systems. Nevertheless, with the Internet and related technologies, the three-tiered
model is becoming more popular and is the topic of later chapters.

Rapid Database Application Development

PART V
1414

39.65227_Ch33 11/30/1999 5:52 PM Page 1414

CHAPTER

34
Client Tracker: MIDAS
Development

IN THIS CHAPTER
• Designing the Server Application 1416

• Designing the Client Application 1419

• Summary 1437

40.65227_Ch34 11/30/1999 5:54 PM Page 1415

In the previous chapter, “Inventory Manager: Client/Server Development,” we discussed tech-
niques for developing two-tier applications. In this chapter, we will create a three-tier applica-
tion using the MIDAS technology presented in Chapter 32, “MIDAS Development.” The focus
of this chapter is to illustrate the simplicity of using the MIDAS components as well as the
briefcase model for offsite work.

The application we will develop lends itself to the briefcase model. This application is a client
tracker or manager. Often, sales reps perform much of their work offsite, possibly travelling to
several different locations. The client list that these sales reps work with might be critical to
both the reps and their parent company. Therefore, this client information should probably
reside at the company site. How then, can the sales rep make use of this data without having to
rely on a network connection? Also, how can the sales rep update the company data with
newer information that he or she is likely to get at the client’s site?

TClientDataSet makes it possible to create briefcase applications with its implementation of
internal caching, which allows the sales reps to download the data or even a subset of the data
with which they can work offsite. Later, when they return to home base, they can upload any
changes made to the database. In this chapter, we will build a simple client management tool
that illustrates this approach to building briefcase applications.

Designing the Server Application
The server application is designed using the same procedure discussed back in Chapter 32.
Here, you will see our TRemoteDataModule, called CustomerRemoteDataModule, containing
TSession, TDataBase, TQuery, and TDataSetProvider components. The TSession component,
ssnCust, is provided to handle multi-instancing issues (its AutoSessionName property is set to
True). DbCust, the TDataBase component, provides the client connection to the database and
prevents the login dialog from displaying. QryCust, the TQuery component, returns the result
set to the client table. PrvCust is bound to qryCust through its DataSet property. We use the
same Customer table presented in the last chapter.

Listing 34.1 shows the source code for the remote data module.

LISTING 34.1 Customer Remote Data Module Source Code

unit CustRDM;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
ComServ, ComObj, VCLCom, StdVcl, DataBkr, DBClient, CustServ_TLB,
Db, DBTables, Provider;

Rapid Database Application Development

PART V
1416

40.65227_Ch34 11/30/1999 5:54 PM Page 1416

type

TFilterType = (ftNone, ftCity, ftState);

TCustomerRemoteDataModule = class(TRemoteDataModule,
ICustomerRemoteDataModule)
ssnCust: TSession;
dbCust: TDatabase;
qryCust: TQuery;
prvCust: TDataSetProvider;

private
FFilterStr: String;
FFilterType: TFilterType;

public
{ Public declarations }

protected
procedure FilterByCity(const ACity: WideString; out Data: OleVariant);
safecall;

procedure FilterByState(const AStateStr: WideString; out Data: OleVariant);
safecall;

procedure NoFilter(out Data: OleVariant); safecall;
end;

var
CustomerRemoteDataModule: TCustomerRemoteDataModule;

implementation

{$R *.DFM}

procedure TCustomerRemoteDataModule.FilterByCity(const ACity: WideString;
out Data: OleVariant);

begin
FFilterType := ftCity;
FFilterStr := ACity;
qryCust.Close;
qryCust.SQL.Clear;
qryCust.SQL.Add(Format(‘select * from CUSTOMER where CITY = “%s”’, [ACity]));
qryCust.Open;
Data := prvCust.Data;

end;

procedure TCustomerRemoteDataModule.FilterByState(
const AStateStr: WideString; out Data: OleVariant);

begin
FFilterType := ftState;

Client Tracker: MIDAS Development

CHAPTER 34
1417

34

C
LIEN

T
T

R
A

C
K

ER:
M

ID
A

S
D

EV
ELO

PM
EN

T

continues

40.65227_Ch34 11/30/1999 5:54 PM Page 1417

LISTING 34.1 Customer Remote Data Module Source Code

FFilterStr := AStateStr;
qryCust.Close;
qryCust.SQL.Clear;
qryCust.SQL.Add(Format(‘select * from CUSTOMER where STATE = “%s”’,
[AStateStr]));

qryCust.Open;
Data := prvCust.Data;

end;

procedure TCustomerRemoteDataModule.NoFilter(out Data: OleVariant);
begin
FFiltertype := ftNone;
qryCust.Close;
qryCust.SQL.Clear;
qryCust.SQL.Add(‘select * from CUSTOMER’);
qryCust.Open;
Data := prvCust.Data;

end;

initialization
TComponentFactory.Create(ComServer, TCustomerRemoteDataModule,
Class_CustomerRemoteDataModule, ciMultiInstance, tmSingle);

end.

Listing 34.1 shows three methods that were added to TCustomerDataModule. These methods
were actually added to the interface ICustomerRemoteDateModule through the Type Library
Editor, which in turn created the implementation methods for the TCustomerRemoteDataModule
class (see Figure 34.1). In the Type Library Editor, we defined the methods and their parame-
ters and then added the code to each implementation method created by Delphi. You can exam-
ine the source code for the type library in the file CustServ_TLB.pas.

Rapid Database Application Development

PART V
1418

NOTE

This demo is a conversion of a demo written for Delphi 4. To port Delphi 4 MIDAS
servers to Delphi 5, you must perform a few steps. These steps are detailed in the
online help under “Converting MIDAS Applications.”

40.65227_Ch34 11/30/1999 5:54 PM Page 1418

FIGURE 34.1
The Type Library Editor.

The methods FilterByCity() and FilterByState() are used to allow the client to download
a subset of the entire table. This makes sense, because it might not be necessary to download
the entire client list when the sales rep is traveling to a single location. Both of these methods
take a string parameter that is used to specify the filter value. NoFilter() removes any filtering
applied to the table.

These methods cause server-side filtering in that they provide a way to limit the records
returned to the client. Alternatively, the user may want to perform filtering on the client side.
That is, the sales rep may want to access the entire result set but have the ability to filter out
desired records as needed. We will illustrate both techniques.

Designing the Client Application
The client application contains a data module and a main form. We will discuss the data mod-
ule first.

Client Data Module
The data module for the Client Tracker application illustrates several techniques. First, it illus-
trates how to implement the briefcase model. Second, it shows how to make its mode
(online/offline) persistent. In other words, when the user shuts down the application, it will
recall its state when executed again. This prevents the application from attempting to attach to
the server when the client is running it offline. We also illustrate how to perform client-side
filtering. When the user is online, the application will perform server-side filtering. When the
user is offline, filtering is performed on the client end. Listing 34.2 shows the source code for
CustomerDataModule.

Client Tracker: MIDAS Development

CHAPTER 34
1419

34

C
LIEN

T
T

R
A

C
K

ER:
M

ID
A

S
D

EV
ELO

PM
EN

T

40.65227_Ch34 11/30/1999 5:54 PM Page 1419

LISTING 34.2 Customer Data Module Source Code

unit CustDM;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
DBClient, MConnect, Db;

const
cFileName = ‘CustData.cds’;

cRegIniFile = ‘Software\DDG Client App’;
cRegSection = ‘Startup Config’;
cRegOnlineIdent = ‘Run Online’;

type

TFilterType = (ftNone, ftByCity, ftByState);

TAddErrorToClientEvent = procedure(const AFieldName, OldStr, NewStr,
CurStr, ErrMsg: String) of Object;

TCustomerDataModule = class(TDataModule)
cdsCust: TClientDataSet;
dcomCust: TDCOMConnection;
cdsCustCUSTOMER_ID: TIntegerField;
cdsCustFNAME: TStringField;
cdsCustLNAME: TStringField;
cdsCustCREDIT_LINE: TSmallintField;
cdsCustWORK_ADDRESS: TStringField;
cdsCustALT_ADDRESS: TStringField;
cdsCustCITY: TStringField;
cdsCustSTATE: TStringField;
cdsCustZIP: TStringField;
cdsCustWORK_PHONE: TStringField;
cdsCustALT_PHONE: TStringField;
cdsCustCOMMENTS: TMemoField;
cdsCustCOMPANY: TStringField;
procedure CustomerDataModuleCreate(Sender: TObject);
procedure cdsCustReconcileError(DataSet: TClientDataSet;
E: EReconcileError; UpdateKind: TUpdateKind;
var Action: TReconcileAction);

procedure CustomerDataModuleDestroy(Sender: TObject);
procedure cdsCustFilterRecord(DataSet: TDataSet; var Accept: Boolean);

private

Rapid Database Application Development

PART V
1420

40.65227_Ch34 11/30/1999 5:54 PM Page 1420

FFilterType: TFilterType;
FFilterStr: String;
FOnAddErrorToClient: TAddErrorToClientEvent;

function GetOnline: Boolean;
procedure SetOnline(const Value: Boolean);
{ Private declarations }

protected
function GetChangeCount: Integer;

public
procedure EditClient;
procedure AddClient;
procedure SaveClient;
procedure CancelClient;
procedure DeleteClient;
procedure ApplyUpdates;
procedure CancelUpdates;
procedure First;
procedure Previous;
procedure Next;
procedure Last;
function IsBOF: Boolean;
function IsEOF: Boolean;

procedure FilterByState;
procedure FilterByCity;
procedure NoFilter;

property ChangeCount: Integer read GetChangeCount;
property Online: Boolean read GetOnline write SetOnline;

property OnAddErrorToClient: TAddErrorToClientEvent
read FonAddErrorToClient
write FOnAddErrorToClient;

end;

var
CustomerDataModule: TCustomerDataModule;

implementation
uses MainCustFrm, Registry;

{$R *.DFM}

Client Tracker: MIDAS Development

CHAPTER 34
1421

34

C
LIEN

T
T

R
A

C
K

ER:
M

ID
A

S
D

EV
ELO

PM
EN

T

continues

40.65227_Ch34 11/30/1999 5:54 PM Page 1421

LISTING 34.2 Continued

procedure TCustomerDataModule.AddClient;
begin
cdsCust.Insert;

end;

procedure TCustomerDataModule.ApplyUpdates;
begin
cdsCust.ApplyUpdates(-1);

end;

procedure TCustomerDataModule.CancelClient;
begin
cdsCust.Cancel;

end;

procedure TCustomerDataModule.CancelUpdates;
begin
cdsCust.CancelUpdates;

end;

procedure TCustomerDataModule.DeleteClient;
begin
if MessageDlg(‘Are you sure you want to delete the current record?’,
mtConfirmation, [mbYes, mbNo], 0) = mrYes then

cdsCust.Delete;
end;

procedure TCustomerDataModule.EditClient;
begin
cdsCust.Edit;

end;

function TCustomerDataModule.IsBOF: Boolean;
begin
Result := cdsCust.Bof;

end;

function TCustomerDataModule.IsEOF: Boolean;
begin
Result := cdsCust.Eof;

end;

procedure TCustomerDataModule.First;
begin
cdsCust.First;

Rapid Database Application Development

PART V
1422

40.65227_Ch34 11/30/1999 5:54 PM Page 1422

end;

procedure TCustomerDataModule.Last;
begin
cdsCust.Last;

end;

procedure TCustomerDataModule.Next;
begin
cdsCust.Next;

end;

procedure TCustomerDataModule.Previous;
begin
cdsCust.Prior;

end;

procedure TCustomerDataModule.SaveClient;
begin
cdsCust.Post;

end;

procedure TCustomerDataModule.cdsCustReconcileError(
DataSet: TClientDataSet; E: EReconcileError; UpdateKind: TUpdateKind;
var Action: TReconcileAction);

{ If an error occurs, update the appropriate TListview on the main form with
the error data. }

var
CurStr, NewStr, OldStr: String;
i: integer;
V: Variant;

procedure SetString(V: Variant; var S: String);
{ We must test for a null value on V which would be returned if the
table field was null. This is necessary because we can’t typecast null
as a string. }

begin

if VarIsNull(V) then
S := EmptyStr

else
S := String(V);

end;

begin
for i := 0 to DataSet.FieldCount - 1 do

Client Tracker: MIDAS Development

CHAPTER 34
1423

34

C
LIEN

T
T

R
A

C
K

ER:
M

ID
A

S
D

EV
ELO

PM
EN

T

continues

40.65227_Ch34 11/30/1999 5:54 PM Page 1423

LISTING 34.2 Continued

begin

V := DataSet.Fields[i].NewValue;
SetString(V, NewStr);

V := DataSet.Fields[i].CurValue;
SetString(V, CurStr);

V := DataSet.Fields[i].OldValue;
SetString(V, OldStr);

if NewStr <> CurStr then
if Assigned(FOnAddErrorToClient) then
FOnAddErrorToClient(DataSet.Fields[i].FieldName, OldStr, NewStr,
CurStr, E.Message)

end;
//Update record and removes changes from the change log.
Action := raRefresh;

end;

function TCustomerDataModule.GetChangeCount: Integer;
begin
Result := cdsCust.ChangeCount;

end;

function TCustomerDataModule.GetOnline: Boolean;
begin
Result := dcomCust.Connected;

end;

procedure TCustomerDataModule.SetOnline(const Value: Boolean);
begin

if Value = True then
begin
dcomCust.Connected := True;

if cdsCust.ChangeCount > 0 then begin
ShowMessage(‘Your changes must be applied before going online’);
cdsCust.ApplyUpdates(-1);

end;
cdsCust.Refresh;

end
else begin

Rapid Database Application Development

PART V
1424

40.65227_Ch34 11/30/1999 5:54 PM Page 1424

cdsCust.FileName := cFileName;
dcomCust.Connected := False;

end;
end;

procedure TCustomerDataModule.CustomerDataModuleCreate(Sender: TObject);
{ Determine if the user last left the application online or offline and
re-launch the application in that same mode. }

var
RegIniFile: TRegIniFile;
IsOnline: Boolean;

begin
RegIniFile := TRegIniFile.Create(cRegIniFile);
try
IsOnline := RegIniFile.ReadBool(cRegSection, cRegOnlineIdent, True);

finally
RegIniFile.Free;

end;

if IsOnline then
begin
dcomCust.Connected := True;
cdsCust.Open;

end
else begin
cdsCust.FileName := cFileName;
cdsCust.Open;

end;

end;

procedure TCustomerDataModule.CustomerDataModuleDestroy(Sender: TObject);
{ Save the online/offline status of the application to the registry. When
the user runs the application again, it will launch as it was last
brought down. }

var
RegIniFile: TRegIniFile;

begin
RegIniFile := TRegIniFile.Create(cRegIniFile);
try
RegIniFile.WriteBool(cRegSection, cRegOnlineIdent, Online);

finally
RegIniFile.Free;

end;
end;

Client Tracker: MIDAS Development

CHAPTER 34
1425

34

C
LIEN

T
T

R
A

C
K

ER:
M

ID
A

S
D

EV
ELO

PM
EN

T

continues

40.65227_Ch34 11/30/1999 5:54 PM Page 1425

LISTING 34.2 Continued

procedure TCustomerDataModule.FilterByCity;
{ If we’re online, let the server apply the filter so that we only retrieve
the records we want. Otherwise, apply the filter to the in-memory result
set of cdsCust. }

var
CityStr: String;
Data: OleVariant;

begin
InputQuery(‘Filter on City’, ‘Enter City: ‘, CityStr);
FFilterStr := CityStr;

if Online then
begin
dcomCust.AppServer.FilterByCity(CityStr, Data);
cdsCust.Refresh;

end
else begin
FFilterType := ftByCity;
cdsCust.Filtered := True;
cdsCust.Refresh;

end;
end;

procedure TCustomerDataModule.FilterByState;
{ If we’re online, let the server apply the filter so that we only retrieve
the records we want. Otherwise, apply the filter to the in-memory result
set of cdsCust. }

var
StateStr: String;
Data: OleVariant;

begin
InputQuery(‘Filter on State’, ‘Enter State: ‘, StateStr);
FFilterStr := StateStr;

if Online then
begin
dcomCust.AppServer.FilterByState(StateStr, Data);
cdsCust.Refresh;

end
else begin
FFilterType := ftByState;
cdsCust.Filtered := True;
cdsCust.Refresh;

end;

Rapid Database Application Development

PART V
1426

40.65227_Ch34 11/30/1999 5:54 PM Page 1426

end;

procedure TCustomerDataModule.NoFilter;
{ If we’re online, let the server apply the filter so that we only retrieve
the records we want. Otherwise, apply the filter to the in-memory result
set of cdsCust. }

var
Data: OleVariant;

begin

if Online then
begin
dcomCust.AppServer.NoFilter(Data);
cdsCust.Refresh;

end
else begin
FFilterType := ftNone;
cdsCust.Filtered := False;
cdsCust.Refresh;

end;
end;

procedure TCustomerDataModule.cdsCustFilterRecord(DataSet: TDataSet;
var Accept: Boolean);

begin
case FFilterType of
ftByCity: Accept := DataSet.FieldByName(‘CITY’).AsString = FFilterStr;
ftByState: Accept := DataSet.FieldByName(‘STATE’).AsString = FFilterStr;
ftNone: Accept := True;

end;
end;

end.

Initial Wiring
Most of the methods you see in Listing 34.2 are simple methods that perform navigation or
manipulation on the client dataset, cdsCust. Notice that we provide a method on the data mod-
ule to expose an operation on cdsCust rather than to allow any forms to access it directly.
Here, we are just adhering to strict OOP methodologies. Although this is not necessary in
Delphi, we do so for consistency and to enforce centralization of database logic.

CustomerDataModule contains a TDCOMConnection object, dcomCust, and the TClientDataSet
object, cdsCust. DcomCust is connected to the server application through its ServerName prop-
erty, which is set to CustServ.CustomerRemoteDataModule.

Client Tracker: MIDAS Development

CHAPTER 34
1427

34

C
LIEN

T
T

R
A

C
K

ER:
M

ID
A

S
D

EV
ELO

PM
EN

T

40.65227_Ch34 11/30/1999 5:54 PM Page 1427

CdsCust is linked to qryCust on the remote data module in its ProviderName property. That
takes care of the wiring necessary to get a MIDAS application’s server and client up and run-
ning. However, to get the most out of this technology, some code needs to be written.

Error Reconciliation
After the client application passes changes back to the server, errors may occur (especially in
the briefcase model, where it is possible that another user has modified a given record). The
error can be handled on the server or on the client. If it is handled on the client, the server
passes error information back to the client through the OnReconcileError handler of
TClientDataSet. In this event handler, several options are available that we will discuss
momentarily. The OnReconcileError property refers to a TReconcileErrorEvent method,
which is defined as follows:

TReconcileErrorEvent = procedure(DataSet: TClientDataSet; E:
➥EReconcileError; UpdateKind: TUpdateKind; var Action: TReconcileAction)
➥of object;

The DataSet parameter refers to the data set on which the error occurred. EReconcileError is
an exception class for client dataset errors. You can use this class as you would any exception
class. UpdateKind can be any of the values specified in Table 34.1. This information comes
from Delphi’s online help.

TABLE 34.1 The TUpdateKind Values

TUpdateKind Value Meaning

ukModify The cached update to the record is a modification to the record’s contents.

ukInsert The cached update is the insertion of a new record.

ukDelete The cached update is the deletion of a record.

The Action parameter is of type TReconcileAction. By setting the Action parameter to
raRefresh, the client application cancels any changes made by the user and refreshes its copy
of the result so that it is the same as the server’s copy. This is what is done in the example.
Other options for the Action property may be set to those values shown in Table 34.2, which
comes from Delphi’s online help (where you can also look for further information on error rec-
onciliation).

TABLE 34.2 The TReconcileAction Values

TReconcileAction Value Meaning

raSkip Skips updating the record that raised the error condition and leaves
the unapplied changes in the change log

raAbort Aborts the entire reconcile operation

Rapid Database Application Development

PART V
1428

40.65227_Ch34 11/30/1999 5:54 PM Page 1428

TReconcileAction Value Meaning

raMerge Merges the updated record with the record on the server

raCorrect Replaces the current updated record with the value of the record in
the event handler

raCancel Backs out all changes for this record, reverting to the original field
values

raRefresh Backs out all changes for this record, replacing it with the current
values from the server

Within the OnReconcileError handler, you can refer to the OldValue, NewValue, and CurValue
properties for each field of the client data set. These are discussed in Chapter 32, “MIDAS
Development.”

The OnReconcileError event handler for cdsCust, cdsCustReconcileError(), takes care of
retrieving the new, old, and current values of any field for which an error has been passed back
to the client upon an update. It then invokes the method referred to by FOnAddErrorToClient.
FOnAddErrorToClient is a method pointer of type TAddErrorToClientEvent that is defined at
the top of Listing 34.2. You will see in our discussion of the application’s main form,
MainCustForm, how we implement a TAddErrorToClientEvent method and assign it to
FOnAddErrorToClient. Again, this is another example of how we try to keep the data module
independent of the user interface elements.

Online and Offline Data Manipulation
We have provided a Boolean property, Online, whose reader and writer methods take care of
putting the client in either its online or offline state. The method that does this is SetOnline().

SetOnline() sets dcomCust.Connected to True if the user is going online (that is, connecting
to the server). If the user was previously offline, any pending changes are applied to the server
database. Errors will result in the cdsCust.OnReconcileError event handler that is executed.
If the user is going offline, dcomCust.Connected is set to False. CdsCust will still work with
its in-memory copy of the data. In fact, because a filename is specified in cdsCust.FileName,
the data can be stored locally to a flat file.

GetOnline() just returns True if the user is online.

Client Tracker: MIDAS Development

CHAPTER 34
1429

34

C
LIEN

T
T

R
A

C
K

ER:
M

ID
A

S
D

EV
ELO

PM
EN

T

NOTE

TClientDataSet.FileName is specific to Delphi 4 and 5. If you are running Delphi 3,
you can accomplish the same thing by invoking the SaveToFile() and
LoadFromFile() methods of TClientDataSet.

40.65227_Ch34 11/30/1999 5:54 PM Page 1429

Online and Offline Persistence
The OnCreate and OnDestroy event handlers for CustomerDataModule ensure that the client
application is run in the same mode (online or offline) as when it was last closed. This is done
by storing its state in the System Registry, which is checked every time the application runs.
The constants defined at the top of Listing 34.2 specify the Registry section and keys.

Filtering Records
CustomerDataModule allows the user to filter out certain records based on the client’s city or
state of residence. Client-side filtering occurs when the status of the application is offline.
When the client is online, the server is allowed to perform the filtering. One thing to note is
that when the client issues a filter while online, when he or she goes offline, only those records
that were part of the filter are saved locally to the client’s machine.

The FilterByCity() and FilterByState() methods call the FilterbyCity() and
FilterbyState() methods of the application server discussed earlier. These methods are
called only if the user is online. If the user is offline, filtering is done via the Filter property
and the OnFilterRecord event handler of TClientDataSet.

Client Main Form
The main form for the client application is very straightforward. It is shown in Listing 34.3.

LISTING 34.3 MainCustFrm.pas—TMainCustForm

unit MainCustFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
DBNAVSTATFRM, Db, StdCtrls, DBCtrls, Mask, ComCtrls, Menus, ImgList,
ToolWin, DBMODEFRM, Grids, DBGrids;

type

TMainCustForm = class(TDBNavStatForm)
pcClients: TPageControl;
dsClientDetail: TTabSheet;
lblFirstName: TLabel;
lblLastName: TLabel;
lblCreditLine: TLabel;
lblWorkAddress: TLabel;
lblAltAddress: TLabel;
lblCity: TLabel;
lblState: TLabel;

Rapid Database Application Development

PART V
1430

40.65227_Ch34 11/30/1999 5:54 PM Page 1430

lblZipCode: TLabel;
lblWorkPhone: TLabel;
lblAltPhone: TLabel;
lblCompany: TLabel;
dbeFirstName: TDBEdit;
dbeLastName: TDBEdit;
dbeCreditLine: TDBEdit;
dbeWorkAddress: TDBEdit;
dbeAltAddress: TDBEdit;
dbeCity: TDBEdit;
dbeState: TDBEdit;
dbeZipCode: TDBEdit;
dbeWorkPhone: TDBEdit;
dbeAltPhone: TDBEdit;
dbeCompany: TDBEdit;
tsComments: TTabSheet;
dbmComments: TDBMemo;
dsClients: TDataSource;
SaveDialog1: TSaveDialog;
OpenDialog1: TOpenDialog;
mmiSave: TMenuItem;
N3: TMenuItem;
mmiApplyUpdates: TMenuItem;
mmiCancelUpdates: TMenuItem;
mmiMode: TMenuItem;
mmiOffline: TMenuItem;
mmiOnline: TMenuItem;
tsErrors: TTabSheet;
lvClient: TListView;
mmiExit: TMenuItem;
mmiFilter: TMenuItem;
mmiByState: TMenuItem;
mmiByCity: TMenuItem;
mmiNoFilter: TMenuItem;
tsClientList: TTabSheet;
DBGrid1: TDBGrid;
procedure sbAcceptClick(Sender: TObject);
procedure sbCancelClick(Sender: TObject);
procedure sbInsertClick(Sender: TObject);
procedure sbEditClick(Sender: TObject);
procedure sbDeleteClick(Sender: TObject);
procedure sbFirstClick(Sender: TObject);
procedure sbPrevClick(Sender: TObject);
procedure sbNextClick(Sender: TObject);
procedure sbLastClick(Sender: TObject);
procedure FormCreate(Sender: TObject);

Client Tracker: MIDAS Development

CHAPTER 34
1431

34

C
LIEN

T
T

R
A

C
K

ER:
M

ID
A

S
D

EV
ELO

PM
EN

T

continues

40.65227_Ch34 11/30/1999 5:54 PM Page 1431

LISTING 34.3 Continued

procedure mmiOnlineClick(Sender: TObject);
procedure mmiApplyUpdatesClick(Sender: TObject);
procedure mmiCancelUpdatesClick(Sender: TObject);
procedure dsClientsDataChange(Sender: TObject; Field: TField);
procedure Exit1Click(Sender: TObject);
procedure mmiExitClick(Sender: TObject);
procedure mmiByStateClick(Sender: TObject);
procedure mmiByCityClick(Sender: TObject);
procedure mmiNoFilterClick(Sender: TObject);

private
procedure SetControls;
procedure GoToOnlineMode;
procedure GoToOfflineMode;

public
procedure AddErrorToClient(const aFieldName, aOldValue, aNewValue,
aCurValue, aErrorStr: String);

end;

var
MainCustForm: TMainCustForm;

implementation

uses CustDM;

{$R *.DFM}

procedure TMainCustForm.AddErrorToClient(const aFieldName, aOldValue,
aNewValue,

aCurValue, aErrorStr: String);
{ This method is used to add a TListItem to the TListView, aLV. The items
added here give an indication of the errors that occur when performing
updates to the server data. }

var
NewItem: TListItem;

begin
NewItem := lvClient.Items.Add;
NewItem.Caption := aFieldName;
NewItem.SubItems.Add(aOldValue);
NewItem.SubItems.Add(aNewValue);
NewItem.SubItems.Add(aCurValue);
NewItem.SubItems.Add(aErrorStr);

end;

Rapid Database Application Development

PART V
1432

40.65227_Ch34 11/30/1999 5:54 PM Page 1432

procedure TMainCustForm.SetControls;
begin
// Ensure that the navigational buttons are set according to the form’s mode.
sbFirst.Enabled := not CustomerDataModule.IsBof;
sbLast.Enabled := not CustomerDataModule.IsEof;
sbPrev.Enabled := not CustomerDataModule.IsBof;
sbNext.Enabled := not CustomerDataModule.IsEof;

// synchronize the navigational menu items with the speedbuttons.
mmiFirst.Enabled := sbFirst.Enabled;
mmiLast.Enabled := sbLast.Enabled;
mmiPrevious.Enabled := sbPrev.Enabled;
mmiNext.Enabled := sbNext.Enabled;

// Set other menus accordingly

mmiApplyUpdates.Enabled := mmiOnline.Checked and (FormMode = fmBrowse) and
(CustomerDataModule.ChangeCount > 0);

mmiCancelUpdates.Enabled := mmiOnline.Checked and (FormMode = fmBrowse) and
(CustomerDataModule.ChangeCount > 0);

mmiOnline.Checked := CustomerDataModule.Online;
mmiOffline.Checked := not mmiOnline.Checked;

stbStatusBar.Panels[0].Text := Format(‘Changed Records: %d’,
[CustomerDataModule.ChangeCount]);

if CustomerDataModule.Online then
stbStatusBar.Panels[2].Text := ‘Working Online’

else
stbStatusBar.Panels[2].Text := ‘Working Offline’

end;

procedure TMainCustForm.sbAcceptClick(Sender: TObject);
begin
inherited;
CustomerDataModule.SaveClient;
SetControls;

end;

procedure TMainCustForm.sbCancelClick(Sender: TObject);
begin
inherited;

Client Tracker: MIDAS Development

CHAPTER 34
1433

34

C
LIEN

T
T

R
A

C
K

ER:
M

ID
A

S
D

EV
ELO

PM
EN

T

continues

40.65227_Ch34 11/30/1999 5:54 PM Page 1433

LISTING 34.3 Continued

CustomerDataModule.CancelClient;
SetControls;

end;

procedure TMainCustForm.sbInsertClick(Sender: TObject);
begin
inherited;
CustomerDataModule.AddClient;
SetControls;

end;

procedure TMainCustForm.sbEditClick(Sender: TObject);
begin
inherited;
CustomerDataModule.EditClient;
SetControls;

end;

procedure TMainCustForm.sbDeleteClick(Sender: TObject);
begin
inherited;
CustomerDataModule.DeleteClient;
SetControls;

end;

procedure TMainCustForm.sbFirstClick(Sender: TObject);
begin
inherited;
CustomerDataModule.First;
SetControls;

end;

procedure TMainCustForm.sbPrevClick(Sender: TObject);
begin
inherited;
CustomerDataModule.Previous;
SetControls;

end;

procedure TMainCustForm.sbNextClick(Sender: TObject);
begin
inherited;
CustomerDataModule.Next;
SetControls;

end;

Rapid Database Application Development

PART V
1434

40.65227_Ch34 11/30/1999 5:54 PM Page 1434

procedure TMainCustForm.sbLastClick(Sender: TObject);
begin
inherited;
CustomerDataModule.Last;
SetControls;

end;

procedure TMainCustForm.FormCreate(Sender: TObject);
begin
inherited;
CustomerDataModule.OnAddErrorToClient := AddErrorToClient;
SetControls;

// Make these guys refer to each other so that they reset the other
mmiOnline.Tag := Longint(mmiOffline);
mmiOffline.Tag := Longint(mmiOnline);

end;

procedure TMainCustForm.GoToOnlineMode;
begin
CustomerDataModule.Online := True;
SetControls;

end;

procedure TMainCustForm.GoToOfflineMode;
begin
CustomerDataModule.Online := False;
SetControls;

end;

procedure TMainCustForm.mmiOnlineClick(Sender: TObject);
var
mi: TMenuItem;

begin
inherited;
mi := Sender as TMenuItem;

if not mi.Checked then
begin

mi.Checked := not mi.Checked;
TMenuItem(mi.Tag).Checked := not mi.Checked;

if mi = mmiOnline then
begin
if mi.Checked then

Client Tracker: MIDAS Development

CHAPTER 34
1435

34

C
LIEN

T
T

R
A

C
K

ER:
M

ID
A

S
D

EV
ELO

PM
EN

T

continues

40.65227_Ch34 11/30/1999 5:54 PM Page 1435

LISTING 34.3 Continued

GoToOnlineMode
else
GoToOffLineMode

end

else begin
if mi.Checked then
GoToOfflineMode

else
GoToOnlineMode

end;
end;

end;

procedure TMainCustForm.mmiApplyUpdatesClick(Sender: TObject);
begin
inherited;
CustomerDataModule.ApplyUpdates;
SetControls;

end;

procedure TMainCustForm.mmiCancelUpdatesClick(Sender: TObject);
begin
inherited;
CustomerDataModule.CancelUpdates;
SetControls;

end;

procedure TMainCustForm.dsClientsDataChange(Sender: TObject;
Field: TField);

begin
inherited;
SetControls;

end;

procedure TMainCustForm.Exit1Click(Sender: TObject);
begin
inherited;
Close;

end;

procedure TMainCustForm.mmiExitClick(Sender: TObject);
begin
inherited;

Rapid Database Application Development

PART V
1436

40.65227_Ch34 11/30/1999 5:54 PM Page 1436

Close;
end;

procedure TMainCustForm.mmiByStateClick(Sender: TObject);
begin
inherited;
CustomerDataModule.FilterByState;

end;

procedure TMainCustForm.mmiByCityClick(Sender: TObject);
begin
inherited;
CustomerDataModule.FilterByCity;

end;

procedure TMainCustForm.mmiNoFilterClick(Sender: TObject);
begin
inherited;
CustomerDataModule.NoFilter;

end;

end.

Most of the methods for TMainCustForm call the methods of CustomerDataModule.

Notice the AddErrorToClient() method. This method serves as the OnAddErrorToClient
property of CustomerDataModule. The OnCreate event handler of TMainCustForm assigns this
method to the data module’s property. AddErrorToClient() adds any events to the TListView
control on the main form for the user to examine. This TListView control displays the field
name, old value, new value, and current values for the error. It also displays the error string.

The simple SetControls() method handles setting up various controls on the form. It ensures
that controls are enabled or disabled when appropriate. The rest of the methods are discussed
in the commentary in the source code.

Summary
Although the Client Tracker is a simple application, most of the wiring necessary for creating
three-tier applications is shown in this example. You might also find that you need to imple-
ment some other specifics such as callbacks or connection pooling, as discussed in Chapter 32,
“MIDAS Development.” The point is this: Developing three-tier applications using MIDAS is
not harder than developing two-tier or even desktop database applications.

Client Tracker: MIDAS Development

CHAPTER 34
1437

34

C
LIEN

T
T

R
A

C
K

ER:
M

ID
A

S
D

EV
ELO

PM
EN

T

40.65227_Ch34 11/30/1999 5:54 PM Page 1437

40.65227_Ch34 11/30/1999 5:54 PM Page 1438

CHAPTER

35
DDG Bug-Reporting Tool:
Desktop Application
Development

IN THIS CHAPTER
• General Application Requirements 1440

• The Data Model 1441

• Developing the Data Module 1441

• Developing the User Interface 1459

• Enabling the Application for
the Web 1467

• Summary 1467

41.65227_Ch35 11/30/1999 5:56 PM Page 1439

This chapter discusses techniques for developing desktop database applications. The DDG bug-
reporting application illustrates several methods to take into consideration, in particular, how to
design an application that may be deployed to the Internet. In this demo, we also illustrate sev-
eral techniques and tricks to get around some sticky issues when separating the user interface
from the data-manipulation routines.

Because of Delphi’s ease of use, developing database applications is simple. However, it is also
easy to overlook issues that may end up biting you later when you want to extend the applica-
tion’s basic functionality. In this chapter, we will show you how to take this into account when
creating your database applications.

General Application Requirements
The general requirements for the DDG bug-reporting application are discussed in this section.
Be aware that our intentions were not to actually design a deployable bug-reporting tool.
Rather, we use a real-world need to illustrate the techniques discussed in this chapter.
Therefore, we left out functionality that you might expect from this application so as not to
cloud our techniques with application logic.

World Wide Web–Ready
The bug-reporting application must be designed in such a manner as to minimize the develop-
ment effort to make its functionality available on the World Wide Web. This means that the
user interface must be completely—not almost completely—separated from the database logic.
In essence, you should be able to attach different user interfaces to the database logic. In fact,
you will see this in Chapter 36, “DDG Bug-Reporting Tool: Using WebBroker,” when we
make our application available through Web pages.

User Data Entry and Logon
The bug-reporting application contains a table of users who can log on to the system. These
users can report the existence of bugs by using this application. Users can also add other users
to the bug-reporting application. For this version of the application, it is not required that the
users be able to edit or delete user information.

A user logs on to the bug-reporting tool by providing a user name, which is stored in the
Users.db table. This logon is only for the process of obtaining the user ID, which is needed to
manipulate reported bugs—this is not a security measure.

Bug Manipulation, Browsing, and Filtering
Users can add, edit, and delete bug information. Users can also provide the necessary field
information for each bug. For example, a user can enter the date the bug is reported; assign it

Rapid Database Application Development

PART V
1440

41.65227_Ch35 11/30/1999 5:56 PM Page 1440

to another user; and specify a status, a summary, details, and the affected source. The user
entering the bug is added automatically.

Bug Actions
Users can add actions (notes) to an existing bug report. Users can also browse actions previ-
ously entered by themselves or by other users. This is a handy way to track the bug-correction
progress and for interested parties to pass notes back and forth about a bug.

Other UI Functionality
The application must make use of techniques necessary to make the user interface easy to
understand and use. Features such as lookup fields and “friendly” display labels will be used
where necessary.

The Data Model
The data model for the bug-reporting application is shown in Figure 35.1. Here is what the
tables in the model consist of:

• IDs. The IDs table serves as the key generation table and keeps track of the next avail-
able key for the Users, Bugs, and Actions tables.

• Users. The Users table stores users who are added to the bug-reporting system.

• Bugs. The Bugs table stores the general information about bugs.

• Actions. The Actions table stores notes on bugs. Each bug may have several notes.

• Status. The Status table is a lookup table for assigning a specific status to each bug.

Developing the Data Module
The data module is the central piece to the bug-reporting application. It is through the data
module that all database manipulation is handled. The user interface uses the data module’s
functionality through public methods and properties. No direct reference to data-access compo-
nents is made from any user interface element except where necessary from the Object
Inspector. An example of directly accessing a data-access component would be in the DataSet
property for the TDataSource component that resides on UI forms. Likewise, and even more
important, the data module should never access elements that reside in the user interface.

DDG Bud-Reporting Tool: Desktop Application Development

CHAPTER 35
1441

35

D
D

G
 B

U
D-R

EPO
R

TIN
G

T
O

O
L: D

ESK
TO

P

A
PPLIC

A
TIO

N
D

EV
ELO

PM
EN

T

41.65227_Ch35 11/30/1999 5:56 PM Page 1441

FIGURE 35.1
The bug-reporting application data model.

Rapid Database Application Development

PART V
1442

BugsID
ActionsID
UserID

Long
Long
Long

IDs

StatusID
StatusTitle

Long PK
Alpha(20)

Status

UserName
UserFirstName
UserLastName

UserID Long PK

Alpha(30)
Alpha(30)
Alpha(30)

DK1

UserID
ActionDate
ActionDetail

ActionID
BugID

Long PK
Long PK FK1 DK1

Long
Date
Memo

Users

WhenReported
SummaryDescription
Details
AffectedSource
UserID
AssignedTo UserID
StatusID

BugID Long PK

Date
Alpha(100)
Alpha(240)
Alpha(240)
Long FK2
Long
Long FK1

BUGSActions

has

has

has

NOTE

When developing applications in which you want to separate data logic from the
user interface, the placement of the TDataSource component is not of grave concern.
We chose to place it on the UI forms rather than in the data module because we feel
it has more to do with user interface than data access. This, however, is a preference,
and you may choose to do otherwise for whatever reason.

Listing 35.1 shows the source code for the bug application’s data module.

LISTING 35.1 Data Module for the DDGBugs Application

unit DDGBugsDM;

interface

41.65227_Ch35 11/30/1999 5:56 PM Page 1442

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
Db, DBTables, HTTPApp, DBWeb;

type

EUnableToObtainID = class(Exception);

TDDGBugsDataModule = class(TDataModule)
dbDDGBugs: TDatabase;
tblBugs: TTable;
tblUsers: TTable;
tblStatus: TTable;
tblActions: TTable;
tblBugsBugID: TIntegerField;
tblBugsWhenReported: TDateField;
tblBugsSummaryDescription: TStringField;
tblBugsDetails: TStringField;
tblBugsAffectedSource: TStringField;
tblBugsUserID: TIntegerField;
tblBugsStatusID: TIntegerField;
dsUsers: TDataSource;
dsStatus: TDataSource;
tblIDs: TTable;
tblBugsUserNameLookup: TStringField;
tblBugsAssignedToLookup: TStringField;
tblUsersUserID: TIntegerField;
tblUsersUserName: TStringField;
tblUsersUserFirstName: TStringField;
tblUsersUserLastName: TStringField;
tblBugsAssignedToUserID: TIntegerField;
dsBugs: TDataSource;
wbdpBugs: TWebDispatcher;
dstpBugs: TDataSetTableProducer;
procedure DDGBugsDataModuleCreate(Sender: TObject);
procedure tblBugsBeforePost(DataSet: TDataSet);
procedure tblBugsFilterRecord(DataSet: TDataSet; var Accept: Boolean);
procedure tblUsersBeforePost(DataSet: TDataSet);
procedure tblBugsAfterInsert(DataSet: TDataSet);
procedure wbdpBugswaShowAllBugsAction(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

procedure wbdpBugswaIntroAction(Sender: TObject; Request: TWebRequest;
Response: TWebResponse; var Handled: Boolean);

procedure wbdpBugswaUserNameAction(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

procedure wbdpBugswaVerifyUserNameAction(Sender: TObject;

DDG Bud-Reporting Tool: Desktop Application Development

CHAPTER 35
1443

35

D
D

G
 B

U
D-R

EPO
R

TIN
G

T
O

O
L: D

ESK
TO

P

A
PPLIC

A
TIO

N
D

EV
ELO

PM
EN

T

continues

41.65227_Ch35 11/30/1999 5:56 PM Page 1443

LISTING 35.1 Continued

Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);
private
FLoginUserID: Integer;
FLoginUserName: String;

function GetFilterOnUser: Boolean;
procedure SetFilterOnUser(const Value: Boolean);
function GetNumBugs: Integer;

protected
procedure PostAction(Sender: TObject; Action: TStrings);

public

// Bugs Methods
procedure FirstBug;
procedure LastBug;
procedure NextBug;
procedure PreviousBug;
function IsLastBug: Boolean;
function IsFirstBug: Boolean;
function IsBugsTblEmpty: Boolean;
procedure InsertBug;
procedure DeleteBug;
procedure EditBug;
procedure SaveBug;
procedure CancelBug;
procedure SearchForBug;

// User Functions
{$IFNDEF DDGWEBBUGS}
procedure AddUser;
{$ENDIF}

procedure PostUser(Sender: TObject);
function GetUserFLName(AUserID: Integer): String;

// Action Methods

{$IFNDEF DDGWEBBUGS}
procedure AddAction;
{$ENDIF}

procedure GetActions(AActions: TStrings);

// Id Generation
function GetDataSetID(const AFieldName: String): Integer;

Rapid Database Application Development

PART V
1444

41.65227_Ch35 11/30/1999 5:56 PM Page 1444

function GetNewBugID: Integer;
function GetNewUserID: Integer;
function GetNewActionID: Integer;

// Login Function
function Login: Boolean;

// Exposed properties

property LoginUserID: Integer read FLoginUserID;
property FilterOnUser: Boolean read GetFilterOnUser write SetFilterOnUser;
property NumBugs: Integer read GetNumBugs;

end;

var
DDGBugsDataModule: TDDGBugsDataModule;

implementation

{$IFNDEF DDGWEBBUGS}
uses UserFrm, ActionFrm;
{$ENDIF}

{$R *.DFM}

// Helper functions.

function IsInteger(IntVal: String): Boolean;
var
v, code: Integer;

begin
val(IntVal, v, code);
Result := code = 0;

end;

procedure MemoFromStrings(AMemoField: TMemoField; AStrings: TStrings);
var
Stream: TMemoryStream;

begin
Stream := TMemoryStream.Create;
try
AStrings.SaveToStream(Stream);
Stream.Seek(0, soFromBeginning);
AMemoField.LoadFromStream(Stream);

finally
Stream.Free;

DDG Bud-Reporting Tool: Desktop Application Development

CHAPTER 35
1445

35

D
D

G
 B

U
D-R

EPO
R

TIN
G

T
O

O
L: D

ESK
TO

P

A
PPLIC

A
TIO

N
D

EV
ELO

PM
EN

T

continues

41.65227_Ch35 11/30/1999 5:56 PM Page 1445

LISTING 35.1 Continued

end;
end;

procedure StringsFromMemo(AStrings: TStrings; AMemoField: TMemoField);
var
Stream: TMemoryStream;

begin
Stream := TMemoryStream.Create;
try
AMemoField.SaveToStream(Stream);
Stream.Seek(0, soFromBeginning);
AStrings.LoadFromStream(Stream);

finally
Stream.Free;

end;
end;

// Internal methods

function TDDGBugsDataModule.GetFilterOnUser: Boolean;
begin
Result := tblBugs.Filtered;

end;

procedure TDDGBugsDataModule.SetFilterOnUser(const Value: Boolean);
begin
tblBugs.Filtered := Value;
end;

function TDDGBugsDataModule.GetNumBugs: Integer;
begin
Result := tblBugs.RecordCount;

end;

// Identifier methods

function TDDGBugsDataModule.GetDataSetID(const AFieldName: String): Integer;
const
MaxAttempts = 50;

var
Attempts: Integer;
NextID: Integer;

begin
tblIDs.Active := True;
// Try fifty times if until this works or raise an exception

Rapid Database Application Development

PART V
1446

41.65227_Ch35 11/30/1999 5:56 PM Page 1446

Attempts := 0;
while Attempts <= MaxAttempts do
begin
try
Inc(Attempts);
// If another user has the table in edit mode, an error occurs here.
tblIDs.Edit;
// If we reach the Break statement, we are successful. Break out of loop.
Break;

except
on EDBEngineError do
begin
// Do some delay
Continue;

end;
end;

end;

if tblIDs.State = dsEdit then
begin
// Increment the value obtained from the table and restore the new value
// to the table for the next record.
NextID := tblIDs.FieldByName(AFieldName).AsInteger;
tblIDs.FieldByName(AFieldName).AsInteger := NextID + 1;
TblIDs.Post;
Result := NextID;

end
else
Raise EUnableToObtainID.Create(‘Cannot create unique ID’);

end;

function TDDGBugsDataModule.GetNewActionID: Integer;
begin
Result := GetDataSetID(‘ActionsID’);

end;

function TDDGBugsDataModule.GetNewBugID: Integer;
begin
Result := GetDataSetID(‘BugsID’);

end;

function TDDGBugsDataModule.GetNewUserID: Integer;
begin
Result := GetDataSetID(‘UsersID’);

end;

DDG Bud-Reporting Tool: Desktop Application Development

CHAPTER 35
1447

35

D
D

G
 B

U
D-R

EPO
R

TIN
G

T
O

O
L: D

ESK
TO

P

A
PPLIC

A
TIO

N
D

EV
ELO

PM
EN

T

continues

41.65227_Ch35 11/30/1999 5:56 PM Page 1447

LISTING 35.1 Continued

// Initialization/Login methods.

procedure TDDGBugsDataModule.DDGBugsDataModuleCreate(Sender: TObject);
begin
{ These tables are opened in the proper order so the master-detail
relationship does not fail.}

dbDDGBugs.Connected := True;
tblUsers.Active := True;
tblStatus.Active := True;
tblBugs.Active := True;
tblActions.Active := True;

end;

function TDDGBugsDataModule.Login: Boolean;
var
UserName: String;

begin
InputQuery(‘Login’, ‘Enter User Name: ‘, UserName);
Result := tblUsers.Locate(‘UserName’, UserName, []);
if Result then
begin
FLoginUserID := tblUsers.FieldByName(‘UserID’).AsInteger;
FLoginUserName := tblUsers.FieldByName(‘UserName’).AsString;

end;
end;

// Bug methods.

procedure TDDGBugsDataModule.FirstBug;
begin
tblBugs.First;

end;

procedure TDDGBugsDataModule.LastBug;
begin
tblBugs.Last;

end;

procedure TDDGBugsDataModule.NextBug;
begin
tblBugs.Next;

end;

procedure TDDGBugsDataModule.PreviousBug;
begin

Rapid Database Application Development

PART V
1448

41.65227_Ch35 11/30/1999 5:56 PM Page 1448

tblBugs.Prior;
end;

function TDDGBugsDataModule.IsLastBug: Boolean;
begin
Result := tblBugs.Eof;

end;

function TDDGBugsDataModule.IsFirstBug: Boolean;
begin
Result := tblBugs.Bof;

end;

function TDDGBugsDataModule.IsBugsTblEmpty: Boolean;
begin
// If RecordCount is zero, there are not bugs in the table.
Result := tblBugs.RecordCount = 0;

end;

procedure TDDGBugsDataModule.InsertBug;
begin
tblBugs.Insert;

end;

procedure TDDGBugsDataModule.DeleteBug;
var
Qry: TQuery;
BugID: Integer;

begin
if MessageDlg(‘Delete Action?’, mtConfirmation,

[mbYes, mbNo], 0) = mrYes then
begin
BugID := tblBugs.FieldByName(‘BugID’).AsInteger;
// Use a dynamically created TQuery component to perform these operations.
Qry := TQuery.Create(self);
try
dbDDGBugs.StartTransaction;
try
// First delete any action belonging to this bug.
Qry.DatabaseName := dbDDGBugs.DataBaseName;
Qry.SQL.Add(Format(‘DELETE FROM ACTIONS WHERE BugID = %d’, [BugID]));
Qry.ExecSQL;

// Now delete bug from the bugs table.
Qry.SQL.Clear;
Qry.SQL.Add(Format(‘DELETE FROM BUGS WHERE BugID = %d’, [BugID]));

DDG Bud-Reporting Tool: Desktop Application Development

CHAPTER 35
1449

35

D
D

G
 B

U
D-R

EPO
R

TIN
G

T
O

O
L: D

ESK
TO

P

A
PPLIC

A
TIO

N
D

EV
ELO

PM
EN

T

continues

41.65227_Ch35 11/30/1999 5:56 PM Page 1449

LISTING 35.1 Continued

Qry.ExecSQL;

tblBugs.Refresh;
tblActions.Refresh;

dbDDGBugs.Commit;
except
dbDDGBugs.Rollback;
raise;

end;
finally
Qry.Free;

end;
end;

end;

procedure TDDGBugsDataModule.EditBug;
begin
tblBugs.Edit;

end;

procedure TDDGBugsDataModule.SaveBug;
begin
tblBugs.Post;

end;

procedure TDDGBugsDataModule.CancelBug;
begin
tblBugs.Cancel;

end;

procedure TDDGBugsDataModule.SearchForBug;
var
BugStr: String;

begin
InputQuery(‘Search for bug’, ‘Enter bug ID: ‘, BugStr);
if IsInteger(BugStr) then
if not tblBugs.Locate(‘BugID’, StrToInt(BugStr), []) then
MessageDlg(‘Bug not found.’, mtInformation, [mbOK], 0);

end;

// User methods.

{$IFNDEF DDGWEBBUGS}
procedure TDDGBugsDataModule.AddUser;

Rapid Database Application Development

PART V
1450

41.65227_Ch35 11/30/1999 5:56 PM Page 1450

begin
tblUsers.Insert;
try
if NewUserForm(PostUser) = mrCancel then
tblUsers.Cancel;

except
{ An error occurred. Put the table to browse mode

and reraise the exception }
tblUsers.Cancel;
raise;

end;
end;
{$ENDIF}

procedure TDDGBugsDataModule.PostUser(Sender: TObject);
begin
if tblUsers.State = dsInsert then
tblUsers.FieldByName(‘UserID’).AsInteger := GetNewUserID;

tblUsers.Post;
end;

function TDDGBugsDataModule.GetUserFLName(AUserID: Integer): String;
begin
// Returns the first and last name concatenated.
if tblUsers.Locate(‘UserID’, AUserID, []) then
Result := Format(‘%s %s’, [tblUsers.FieldByName(‘UserFirstName’).AsString,
tblUsers.FieldByName(‘UserLastName’).AsString])

else
Result := EmptyStr;

end;

{$IFNDEF DDGWEBBUGS}
procedure TDDGBugsDataModule.AddAction;
begin
NewActionForm(PostAction);

end;
{$ENDIF}

procedure TDDGBugsDataModule.GetActions(AActions: TStrings);
var
Action: TStringList;
ActionUserId: Integer;

begin
Action := TStringList.Create;
try

DDG Bud-Reporting Tool: Desktop Application Development

CHAPTER 35
1451

35

D
D

G
 B

U
D-R

EPO
R

TIN
G

T
O

O
L: D

ESK
TO

P

A
PPLIC

A
TIO

N
D

EV
ELO

PM
EN

T

continues

41.65227_Ch35 11/30/1999 5:56 PM Page 1451

LISTING 35.1 Continued

with tblActions do
begin
tblActions.First;
while not Eof do
begin
Action.Clear;
ActionUserID := FieldByName(‘UserID’).AsInteger;
StringsFromMemo(Action, TMemoField(FieldByName(‘ActionDetail’)));
AActions.Add(Format(‘Action Added on: %s’,

[FormatDateTime(‘mmm dd, yyyy’,
FieldByName(‘ActionDate’).AsDateTime)]));

AActions.Add(Format(‘Action Added by: %s’,
[GetUserFLName(ActionUserID)]));

AActions.Add(EmptyStr);
AActions.AddStrings(Action);
AActions.Add(‘==============================’);
AActions.Add(EmptyStr);
tblActions.Next;

end; // while
end; // with

finally
Action.Free;

end;
end;

procedure TDDGBugsDataModule.PostAction(Sender: TObject; Action: TStrings);
var
BugID: Integer;

begin
tblActions.Insert;
try
BugID := tblBugs.FieldByName(‘BugID’).AsInteger;
tblActions.FieldByName(‘ActionID’).AsInteger := GetNewActionID;
tblActions.FieldByName(‘BugID’).AsInteger := BugID;
tblActions.FieldByName(‘UserID’).AsInteger := LoginUserID;
tblActions.FieldByName(‘ActionDate’).AsDateTime := Date;
MemoFromStrings(TMemoField(tblActions.FieldByName(‘ActionDetail’)),
Action);

tblActions.Post;
except
tblActions.Cancel;
raise;

end;
end;

Rapid Database Application Development

PART V
1452

41.65227_Ch35 11/30/1999 5:56 PM Page 1452

// Event Handlers

procedure TDDGBugsDataModule.tblBugsBeforePost(DataSet: TDataSet);
begin
if tblBugs.State = dsInsert then
tblBugs.FieldByName(‘BugID’).AsInteger := GetNewBugID;

end;

procedure TDDGBugsDataModule.tblBugsFilterRecord(DataSet: TDataSet;
var Accept: Boolean);

begin
Accept := tblBugs.FieldByName(‘UserID’).AsInteger = FLoginUserID;

end;

procedure TDDGBugsDataModule.tblUsersBeforePost(DataSet: TDataSet);
begin
if tblUsers.State = dsInsert then
tblUsers.FieldByName(‘UserID’).AsInteger := GetNewUserID;

end;

procedure TDDGBugsDataModule.tblBugsAfterInsert(DataSet: TDataSet);
begin
tblBugs.FieldByName(‘UserID’).AsInteger := FLoginUserID;
tblBugs.FieldByName(‘UserNameLookup’).AsString := FLoginUserName;

end;

end.

Application Initialization and Login
You will see in Listing 35.2 that we moved the TDDGBugsDataModule so that it is created first.
Then we call its Login() method, which determines whether the application execution contin-
ues. It makes this determination based on whether the username entered actually exists in the
Users.db table, as shown in the TDDGBugsDataModule.Login() method in Listing 35.1.

In order to support user logins, we had to modify the project file as shown in Listing 35.2.

LISTING 35.2 Project File for the Bug-Reporting Application

program DDGBugs;

uses
Forms,
Dialogs,
ChildFrm in ‘..\ObjRepos\CHILDFRM.pas’ {ChildForm},

DDG Bud-Reporting Tool: Desktop Application Development

CHAPTER 35
1453

35

D
D

G
 B

U
D-R

EPO
R

TIN
G

T
O

O
L: D

ESK
TO

P

A
PPLIC

A
TIO

N
D

EV
ELO

PM
EN

T

continues

41.65227_Ch35 11/30/1999 5:56 PM Page 1453

LISTING 35.2 Continued

DBModeFrm in ‘..\ObjRepos\DBMODEFRM.pas’ {DBModeForm},
DBNavStatFrm in ‘..\ObjRepos\DBNAVSTATFRM.pas’ {DBNavStatForm},
MainFrm in ‘MainFrm.pas’ {MainForm},
UserFrm in ‘UserFrm.pas’ {UserForm},
ActionFrm in ‘ActionFrm.pas’ {ActionForm},
DDGBugsDM in ‘..\Shared\DDGBugsDM.pas’ {DDGBugsDataModule: TDataModule};

{$R *.RES}

begin
Application.Initialize;
Application.CreateForm(TDDGBugsDataModule, DDGBugsDataModule);
if DDGBugsDataModule.Login then
begin
Application.CreateForm(TMainForm, MainForm);
Application.Run;

end
else
MessageDlg(‘Invalid Login’, mtError, [mbOk], 0);

end.

Generating Paradox Keys
Because the bug-reporting application uses the Paradox database as the back end, we acquire a
slight anomaly that we must get around. This anomaly has to do with the Paradox autoincre-
ment fields. Although Paradox’s autoincrement fields can supposedly allow you to use them as
key fields, they are highly unreliable. Our experience has been that they can easily become out
of sync with foreign keys. We opted to avoid their use and create our own keys based on the
values contained in the IDs.db table.

The IDs.db table stores the next available integer value for the Bugs, Users, and Action keys.
The TDDGBugsDataModule.GetDataSetID() method ensures that only one user is able to put
the specific key field of the tblIDs table into Edit mode. This will ensure that no two users get
identical key values when inserting records. GetDataSetID() is made generic for the three
types of keys by passing in the field name for the key value desired. Therefore, this method can
be used to obtain keys for bugs, users, and actions. In fact, this method is called by the
GetNewActionID(), GetNewBugID(), and GetNewUserID() methods. These three methods may
be called whenever posting a record to one of these tables. You do so in the BeforePost event
handlers for the tblBugs and tblUsers tables and in the PostAction() method for the
tblActions table.

Rapid Database Application Development

PART V
1454

41.65227_Ch35 11/30/1999 5:56 PM Page 1454

Bug-Manipulation Routines
The bug-manipulation routines are those methods declared under the comment // Bug
Methods. Most of these functions are self-explanatory—especially the navigation method,
which we will not go into. The method DeleteBug() contains most of the code for the bug
manipulation routines. This method ensures that any actions belonging to a bug get deleted
before the bug record is deleted. We will discuss actions shortly. Here, we are using the trans-
action functionality of TDatabase to wrap this operation in a transaction. This will ensure that
no data is lost if an error occurs. Note that to perform transaction processing against a local
database such as Paradox, you must set the TransIsolation property of the TDatabase com-
ponent to tiDirtyRead, as we have done.

Browsing/Filtering Bugs
The user is able to browse all bugs in the database or just those bugs belonging to him or her.
This is made possible through the use of the Filtered property of the tblBugs component.
When tblBugs.Filtered is True, the tblBugs.OnFilterRecord property is invoked for each
record. Here, you display a record only if its UserID field is that of the user logged on, as indi-
cated by the global field FLoginUserID. Notice how you surface the Filtered property of the
tblBugs table to the user interface. Instead of allowing the user interface to directly access the
tblBugs.Filtered property, you surface this property through the
TDDGBugsDataModule.FilterOnUser property. This property’s writer method,
SetFilterOnUser(), performs the assignment to the tblBugs.Filtered property. Now, you
cannot actually enforce the rule that forms cannot directly access properties of components that
reside on a TDatamodule because the VCL is not using strict OOP visibility rules.

Adding Users
Adding users is done through the TDDGBugsDataModule.AddUser() and
TDDGBugsDataModule.PostUser() methods. The AddUser() method invokes a simple dialog
with which you add the user data. Note how the PostUser() method is passed to the
NewUserForm() function, which invokes the user form. This illustrates how you can avoid hav-
ing to make a form invoked by a data module refer right back to that data module. The reason
this problem presented itself is because we are protecting the data module components from
external access. There are probably a number of ways we could have accomplished this—this
just happens to be the one we chose. NewUserForm() invokes the form defined in the
UserFrm.pas unit shown in Listing 35.3.

DDG Bud-Reporting Tool: Desktop Application Development

CHAPTER 35
1455

35

D
D

G
 B

U
D-R

EPO
R

TIN
G

T
O

O
L: D

ESK
TO

P

A
PPLIC

A
TIO

N
D

EV
ELO

PM
EN

T

41.65227_Ch35 11/30/1999 5:56 PM Page 1455

LISTING 35.3 UserFrm.pas: The User F30orm

unit UserFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, Mask, DBCtrls;

type

TUserForm = class(TForm)
lblUserName: TLabel;
dbeUserName: TDBEdit;
lblFirstName: TLabel;
dbeFirstName: TDBEdit;
lblLastName: TLabel;
dbeLastName: TDBEdit;
btnOK: TButton;
btnCancel: TButton;
procedure btnOKClick(Sender: TObject);

private
FPostUser: TNotifyEvent;

public
{ Public declarations }

end;

function NewUserForm(APostUser: TNotifyEvent): Word;

implementation
uses dbTables;
{$R *.DFM}

function NewUserForm(APostUser: TNotifyEvent): Word;
var
UserForm: TUserForm;

begin
UserForm := TUserForm.Create(Application);
try
UserForm.FPostUser := APostUser;
Result := UserForm.ShowModal;

finally
UserForm.Free;

end;
end;

procedure TUserForm.btnOKClick(Sender: TObject);

Rapid Database Application Development

PART V
1456

41.65227_Ch35 11/30/1999 5:56 PM Page 1456

begin
if dbeUserName.Text = EmptyStr then begin
MessageDlg(‘A user name is required.’, mtWarning, [mbOK], 0);
dbeUserName.SetFocus;
ModalResult := mrNone;

end
else begin
try
FPostUser(self);

except
on EDBEngineError do
begin
MessageDlg(‘User name already exists.’, mtWarning, [mbOK], 0);
dbeUserName.SetFocus;
ModalResult := mrNone;

end;
end;

end;
end;

end.

As shown in Listing 35.3, NewUserForm() creates the TUserForm and displays it. Notice that
you assign the APostUser parameter to the FPostUser field that is of the type TNotifyEvent.
By declaring FPostUser as a method pointer (TNotifyEvent), you can assign the PostUser()
method from TDDGBugDataModule to FPostUser because PostUser() matches the definition of
TNotifyEvent. This concept was covered in Chapters 20, “Key Elements of the VCL and
Runtime Type Information,” and 21, “Writing Delphi Custom Components.”

When the user clicks the OK button, btnOkClick() is invoked. Provided a user name was
entered, the TDDGBugDataModule.PostUser() method (referred to by FPostUser) is invoked,
which should save the user record (see PostUser() in Listing 35.1). If an error occurs in
PostUser(), the user name already exists in the database. This illustrates another advantage to
passing the PostUser() method to the TUserForm. The TUserForm can handle an error raised in
the data module. This concept is not that different from developing components. You develop
the data module such that it is completely self-contained. You also allow users of the data mod-
ule to handle any errors raised within the data module.

Adding Actions
Actions are basically notes that are optionally attached to each bug. Anybody can add an action
to a bug. The TDDGBugsDataModule.AddAction() method calls NewActionForm(), which
obtains the action data from the user and adds it to the database. NewActionForm() is defined
in ActionFrm.pas, which is shown in Listing 35.4.

DDG Bud-Reporting Tool: Desktop Application Development

CHAPTER 35
1457

35

D
D

G
 B

U
D-R

EPO
R

TIN
G

T
O

O
L: D

ESK
TO

P

A
PPLIC

A
TIO

N
D

EV
ELO

PM
EN

T

41.65227_Ch35 11/30/1999 5:56 PM Page 1457

LISTING 35.4 ActionFrm.pas: The Action Form

unit ActionFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls;

type

TPostActionEvent = procedure (Sender: TObject; Action: TStrings) of Object;

TActionForm = class(TForm)
memAction: TMemo;
lblAction: TLabel;
btnOK: TButton;
btnCancel: TButton;
procedure btnOKClick(Sender: TObject);

private
FPostAction: TPostActionEvent;

public
{ Public declarations }

end;

procedure NewActionForm(APostAction: TPostActionEvent);

implementation
{$R *.DFM}

procedure NewActionForm(APostAction: TPostActionEvent);
var
ActionForm: TActionForm;

begin
ActionForm := TActionForm.Create(Application);
try
ActionForm.FPostAction := APostAction;
ActionForm.ShowModal;

finally

Rapid Database Application Development

PART V
1458

41.65227_Ch35 11/30/1999 5:56 PM Page 1458

ActionForm.Free;
end;

end;

procedure TActionForm.btnOKClick(Sender: TObject);
begin
if Assigned(FPostAction) then
FPostAction(Self, memAction.Lines);

end;

end.

Much like NewUserForm(), the NewActionForm() method takes a method pointer as a parame-
ter. This time, we defined our own method type of TPostActionEvent, which takes a TObject
and the TStrings object containing the action text. When the user clicks the OK button, the
btnOKClick() event is invoked, which in turn invokes TDDGBugsDataSource.PostAction() to
add the action to the database (FPostAction refers to PostAction()).

You can refer to the source commentary for additional information on the data module. Later,
you will see how to add code to this data module to share it with another application—an
ISAPI server that Web-enables the bug program.

Developing the User Interface
In this section, we will discuss the development of the user interface for this application. We
will also point out some preparations you can make for Web deployment of this application.

The Main Form
The user interface basically refers to the methods of the data module. We have a single form
interface consisting of three pages. The first page allows the user to add, edit, and view the bug
information. The second page is for browsing actions. The third page allows the user to view a
grid that contains either all the bugs or only the currently logged-in user’s bugs. Figures 35.2,
35.3, and 35.4 show the three pages for the main form.

DDG Bud-Reporting Tool: Desktop Application Development

CHAPTER 35
1459

35

D
D

G
 B

U
D-R

EPO
R

TIN
G

T
O

O
L: D

ESK
TO

P

A
PPLIC

A
TIO

N
D

EV
ELO

PM
EN

T

41.65227_Ch35 11/30/1999 5:56 PM Page 1459

FIGURE 35.2
The Bug Information page.

Rapid Database Application Development

PART V
1460

FIGURE 35.3
The Actions page.

41.65227_Ch35 11/30/1999 5:56 PM Page 1460

FIGURE 35.4
The Browse Bugs page.

TMainForm is defined in MainFrm.pas, which is shown in Listing 35.5.

LISTING 35.5 The Main Form for the DDGBugs Application

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
DBNAVSTATFRM, Menus, ImgList, ComCtrls, ToolWin, StdCtrls, DBCtrls, Db,
Mask, dbModeFrm, ActnList, Grids, DBGrids, ExtCtrls;

type

TMainForm = class(TDBNavStatForm)
pcMain: TPageControl;
tsBugInformation: TTabSheet;
tsActions: TTabSheet;
lblBugID: TLabel;
dbeBugID: TDBEdit;
dsBugs: TDataSource;
lblDateReported: TLabel;
lblSummary: TLabel;

DDG Bud-Reporting Tool: Desktop Application Development

CHAPTER 35
1461

35

D
D

G
 B

U
D-R

EPO
R

TIN
G

T
O

O
L: D

ESK
TO

P

A
PPLIC

A
TIO

N
D

EV
ELO

PM
EN

T

continues

41.65227_Ch35 11/30/1999 5:56 PM Page 1461

LISTING 35.5 Continued

lblDetails: TLabel;
lblAffectedSource: TLabel;
lblReportedBy: TLabel;
lblAssignedTo: TLabel;
lblStatus: TLabel;
dbmSummary: TDBMemo;
dbmDetails: TDBMemo;
dbmAffectedSource: TDBMemo;
tsBrowseBugs: TTabSheet;
rgWhoseBugs: TRadioGroup;
dbgBugs: TDBGrid;
dbmSummary2: TDBMemo;
memAction: TMemo;
dblcAssignedTo: TDBLookupComboBox;
dblcStatus: TDBLookupComboBox;
dbeDateReported: TDBEdit;
mmiFile: TMenuItem;
mmiExit: TMenuItem;
mmiUsers: TMenuItem;
mmiAddUser: TMenuItem;
mmiActions: TMenuItem;
mmiAddActionToBug: TMenuItem;
dblcReportedBy: TDBLookupComboBox;
procedure FormCreate(Sender: TObject);
procedure sbFirstClick(Sender: TObject);
procedure sbPreviousClick(Sender: TObject);
procedure sbNextClick(Sender: TObject);
procedure sbLastClick(Sender: TObject);
procedure sbSearchClick(Sender: TObject);
procedure FormCloseQuery(Sender: TObject; var CanClose: Boolean);
procedure sbAcceptClick(Sender: TObject);
procedure sbCancelClick(Sender: TObject);
procedure sbInsertClick(Sender: TObject);
procedure sbEditClick(Sender: TObject);
procedure sbDeleteClick(Sender: TObject);
procedure sbBrowseClick(Sender: TObject);
procedure rgWhoseBugsClick(Sender: TObject);
procedure mmiExitClick(Sender: TObject);
procedure mmiAddUserClick(Sender: TObject);
procedure mmiAddActionToBugClick(Sender: TObject);
procedure dsBugsDataChange(Sender: TObject; Field: TField);

private
procedure SetActionStatus;

protected

Rapid Database Application Development

PART V
1462

41.65227_Ch35 11/30/1999 5:56 PM Page 1462

public
{ Public declarations }

end;

var
MainForm: TMainForm;

implementation

uses DDGBugsDM;

{$R *.DFM}

{ TMainForm }

procedure TMainForm.SetActionStatus;
begin
mmiFirst.Enabled := not DDGBugsDataModule.IsFirstBug;
mmiLast.Enabled := not DDGBugsDataModule.IsLastBug;
mmiNext.Enabled := not DDGBugsDataModule.IsLastBug;
mmiPrevious.Enabled := not DDGBugsDataModule.IsFirstBug;
mmiDelete.Enabled := not DDGBugsDataModule.IsBugsTblEmpty;

sbFirst.Enabled := mmiFirst.Enabled;
sbLast.Enabled := mmiLast.Enabled;
sbNext.Enabled := mmiNext.Enabled;
sbPrev.Enabled := mmiPrevious.Enabled;
sbDelete.Enabled := mmiDelete.Enabled;

// User cannot add users or actions when adding/editing a bug.
mmiUsers.Enabled := FormMode = fmBrowse;
mmiActions.Enabled := (FormMode = fmBrowse) and

(DDGBugsDataModule.NumBugs <> 0);

{ disable the browsing of bug records when the user is editing or adding
a new bug. }

dbgBugs.Enabled := FormMode = fmBrowse;
rgWhoseBugs.Enabled := FormMOde = fmBrowse;

end;

procedure TMainForm.FormCreate(Sender: TObject);
begin
inherited;
SetActionStatus;

end;

DDG Bud-Reporting Tool: Desktop Application Development

CHAPTER 35
1463

35

D
D

G
 B

U
D-R

EPO
R

TIN
G

T
O

O
L: D

ESK
TO

P

A
PPLIC

A
TIO

N
D

EV
ELO

PM
EN

T

continues

41.65227_Ch35 11/30/1999 5:56 PM Page 1463

LISTING 35.5 Continued

procedure TMainForm.sbFirstClick(Sender: TObject);
begin
inherited;
DDGBugsDataModule.FirstBug;
SetActionStatus;

end;

procedure TMainForm.sbPreviousClick(Sender: TObject);
begin
inherited;
DDGBugsDataModule.PreviousBug;
SetActionStatus;

end;

procedure TMainForm.sbNextClick(Sender: TObject);
begin
inherited;
DDGBugsDataModule.NextBug;
SetActionStatus;

end;

procedure TMainForm.sbLastClick(Sender: TObject);
begin
inherited;
DDGBugsDataModule.LastBug;
SetActionStatus;

end;

procedure TMainForm.sbSearchClick(Sender: TObject);
begin
inherited;
DDGBugsDataModule.SearchForBug;

end;

procedure TMainForm.FormCloseQuery(Sender: TObject; var CanClose: Boolean);
var
Rslt: word;

begin
inherited;
if not (FormMode = fmBrowse) then
begin
rslt := MessageDlg(‘Save changes?’, mtConfirmation, mbYesNoCancel, 0);
case rslt of
mrYes:
begin
DDGBugsDataModule.SaveBug;

Rapid Database Application Development

PART V
1464

41.65227_Ch35 11/30/1999 5:56 PM Page 1464

FormMode := fmBrowse;
CanClose := True;

end;
mrNo:
begin
DDGBugsDataModule.CancelBug;
FormMode := fmBrowse;
CanClose := True;

end;
mrCancel:
CanClose := False;

end;
end;

end;

procedure TMainForm.sbAcceptClick(Sender: TObject);
begin
inherited;
DDGBugsDataModule.SaveBug;
SetActionStatus;

end;

procedure TMainForm.sbCancelClick(Sender: TObject);
begin
inherited;
DDGBugsDataModule.CancelBug;
SetActionStatus;

end;

procedure TMainForm.sbInsertClick(Sender: TObject);
begin
inherited;
DDGBugsDataModule.InsertBug;
SetActionStatus;

end;

procedure TMainForm.sbEditClick(Sender: TObject);
begin
inherited;
DDGBugsDataModule.EditBug;
SetActionStatus;

end;

procedure TMainForm.sbDeleteClick(Sender: TObject);
begin
inherited;

DDG Bud-Reporting Tool: Desktop Application Development

CHAPTER 35
1465

35

D
D

G
 B

U
D-R

EPO
R

TIN
G

T
O

O
L: D

ESK
TO

P

A
PPLIC

A
TIO

N
D

EV
ELO

PM
EN

T

continues

41.65227_Ch35 11/30/1999 5:56 PM Page 1465

LISTING 35.5 Continued

DDGBugsDataModule.DeleteBug;
SetActionStatus;

end;

procedure TMainForm.sbBrowseClick(Sender: TObject);
begin
inherited;
DDGBugsDataModule.CancelBug;
SetActionStatus;

end;

procedure TMainForm.rgWhoseBugsClick(Sender: TObject);
begin
inherited;
DDGBugsDataModule.FilterOnUser := rgWhoseBugs.ItemIndex = 0;

end;

procedure TMainForm.mmiExitClick(Sender: TObject);
begin
inherited;
Close;

end;

procedure TMainForm.mmiAddUserClick(Sender: TObject);
begin
inherited;
DDGBugsDataModule.AddUser;

end;

procedure TMainForm.mmiAddActionToBugClick(Sender: TObject);
begin
inherited;
DDGBugsDataModule.AddAction;
dsBugsDataChange(nil, nil);

end;

procedure TMainForm.dsBugsDataChange(Sender: TObject; Field: TField);
begin
inherited;
// A new bug is being displayed so clear the action list and
// retrieve the actions for the newly displayed bug.
memAction.Lines.Clear;
DDGBugsDataModule.GetActions(memAction.Lines);

end;

end.

Rapid Database Application Development

PART V
1466

41.65227_Ch35 11/30/1999 5:56 PM Page 1466

TMainForm descends from TDBNavStatForm, which was presented back in Chapter 4,
“Application Frameworks and Design Concepts.” It should exist in your Object Repository.
TDBNavStatForm contains the functionality to update the speedbuttons and status bar based on
the form’s mode (Add, Edit, or Browse). Most of the methods simply call the corresponding
data module methods.

Note that you set the dsBugs.AutoEdit property to False, thus preventing the user from inad-
vertently placing the table into Edit mode. You want to have the user explicitly set the Bugs
table to Edit or Insert mode by clicking the appropriate buttons or menu items.

This form is uncomplicated. SetActionStatus() simply enables/disables buttons and menus
based on various conditions. FormCloseQuery() ensures that the user saves or cancels any
pending edit or insert.

Other User Interface Issues
From the data module, we have controlled how field labels are displayed by adding the fields
to the TTable object and specifying a friendlier label in the Object Inspector. The same can be
done for TDBGrid objects by modifying the Title property of the TDBGrid.Columns property.
We have used both methods to control the labels displayed to the user.

Enabling the Application for the Web
We stated earlier that a Web-enabled version of the application is required. To make this possi-
ble, we need to remove any references to any forms from within TDDGBugsDataModule. Using
the conditional compilation directives you will see in the DDGBugsDM.pas unit does this. For
example, examine the following code:

{$IFNDEF DDGWEBBUGS}
procedure AddUser;
{$ENDIF}

The {$IFNDEF} condition ensures that the AddUser() method is compiled into the application
only if the DDBWEBBUGS conditional directive is not defined, which is the case for this applica-
tion.

Summary
In this chapter we discussed techniques for developing a desktop database application. We also
emphasized separating the user interface from the data manipulation routines. This will make
converting the application to a Web-enabled version easier. The next chapter, “DDG Bug-
Reporting Tool: Using WebBroker,” illustrates how to do just that.

DDG Bud-Reporting Tool: Desktop Application Development

CHAPTER 35
1467

35

D
D

G
 B

U
D-R

EPO
R

TIN
G

T
O

O
L: D

ESK
TO

P

A
PPLIC

A
TIO

N
D

EV
ELO

PM
EN

T

41.65227_Ch35 11/30/1999 5:56 PM Page 1467

41.65227_Ch35 11/30/1999 5:56 PM Page 1468

CHAPTER

36
DDG Bug-Reporting Tool:
Using WebBroker

IN THIS CHAPTER
• The Page Layout 1470

• Changes to the Data Module 1471

• Setting Up the TDataSetTableProducer
Component: dstpBugs 1471

• Setting Up the TWebDispatcher
Component: wbdpBugs 1472

• Setting Up the TPageProducer
Component: pprdBugs 1473

• Coding the DDGWebBugs ISAPI Server:
Adding TActionItem Instances 1473

• Browsing Bugs 1480

• Adding a New Bug 1486

• Summary 1491

42.65227_Ch36 11/30/1999 5:57 PM Page 1469

The last chapter, “DDG Bug Reporting Tool: Desktop Application Development,” demon-
strated various techniques for designing desktop database applications. One consideration we
discussed was how to develop an application that you plan to deploy to the World Wide Web.
In this chapter, we are going to deploy the last chapter’s application, a simple bug-reporting
tool, to the World Wide Web as an ISAPI server. As stated in the previous chapter, this effort
should require minimal modifications to the code already written. We will use the techniques
covered in Chapter 31, “Internet-Enabling Your Applications with WebBroker.” Therefore, we
will not go into any detail here on topics covered in that chapter. If you feel you need to review
Chapter 31, you might do so before reading on.

The Page Layout
The layout (flow) of this Web-based bug-reporting tool is illustrated in Figure 36.1.

Rapid Database Application Development

PART V
1470

Intro Page

Login Page
Browse Bugs
Add New Bug

Browse all
Browse Your

Bug Table
Page

Invalid Login
Page

Verify Bug
Entry Page

Enter Bug
Page

Bug Detail
Page

Valid
Login

Invalid
Login

FIGURE 36.1
The flow for the Web-based bug-reporting tool.

You can see from the page layout that this application is really a subset of the functionality
presented in Chapter 35. As an exercise, feel free to expand on the techniques demonstrated in
this chapter to provide the full functionality presented in the previous chapter.

The following sections explain the code used to develop the pages. You will notice in this
example that all pages are created at runtime—that is, no predefined HTML documents are

42.65227_Ch36 11/30/1999 5:57 PM Page 1470

loaded. There weren’t any compelling reasons why we chose this method instead of writing
some HTML documents that are loaded by the WebBroker components. You can certainly use
the latter approach for your applications.

Changes to the Data Module
Our intent here is to use much of the functionality and components we used in designing
TDDGBugsDataModule from the last chapter. We mainly want to add functionality to that data
module and minimize any changes that could potentially break its use in the original non-
Web-based application. We accomplish this by avoiding making changes to already existing
methods. We also recompile and test the original application to further verify that the previous
application is left intact.

Note that we did not have to create a separate Web module; rather, we just added the
TWebDispatcher component to the existing TDataModule. This allows us to use TDataModule
as we had already designed it.

For this Web-based version of the bug-reporting tool, we have added four more components to
TDDGBugsDataModule: TWebDispatcher, TDataSetTableProducer, TPageProducer, and
TSession. We will use these components throughout the code.

We should also mention the purpose of the TSession component. The ISAPI server DLL can
potentially be accessed by multiple clients, meaning that multiple people might be trying to hit
the database simultaneously through this single DLL instance. This DLL will operate within a
single process space. Therefore, each client that attempts to hit the server requires a separate,
dedicated Web module. These separate Web modules are created at runtime and are handled in
their own unique thread. This also necessitates each database connection getting its own
TSession component in order to prevent database connections from conflicting with each other
when multiple clients hit the database. By setting the TSession.AutoSessionName property of
the TSession component to True, we ensure that each TSession instance is also given its own
unique name. Actually, it is the thread that requires its own BDE session.

Note that adding a TSession component to the Web module or to TDataModule is not required
when writing a WinCGI or CGI server application, because these are compiled to separate
applications that operate in their own process spaces.

Setting Up the TDataSetTableProducer
Component: dstpBugs
The data module’s TDataSetTableProducer component, dstpBugs, is attached to the TTable
component, tblBugs. Much like configuring a TDBGrid, we have modified the

DDG Bug-Reporting Tool: Using WebBroker

CHAPTER 36
1471

36 D
D

G
 B

u
g

-R
ep

o
rtin

g

To
o

l: U
sin

g

W
eb

B
ro

ker

42.65227_Ch36 11/30/1999 5:57 PM Page 1471

dstpBugs.Columns property to specify titles other than the default (see Figure 36.2). These are
the titles that will show up in the Web page table. We have also modified the
dstpBugs.TableAttributes property to allow for a one-pixel wide border that will give the
table a three-dimensional appearance on most Web browsers.

Rapid Database Application Development

PART V
1472

FIGURE 36.2
Editing the Columns property for dstpBugs.

Setting Up the TWebDispatcher Component:
wbdpBugs
Figure 36.3 shows the Actions editor used to add several TWebActionItem instances to
wbdpBugs. We will get into the details of each of these actions as well as how they present the
user with access to the bug application through the Web.

FIGURE 36.3
Editing the Actions property for wbdpBugs.

42.65227_Ch36 11/30/1999 5:57 PM Page 1472

Setting Up the TPageProducer Component:
pprdBugs
If you bring up the pprdBugs.HTMLDoc property, you will notice that it is empty. This property
is manipulated at runtime programmatically. We will use this same instance of TPageProducer
in two different situations, as you will see when we discuss the code.

Coding the DDGWebBugs ISAPI Server: Adding
TActionItem Instances
All the functionality of the Web bug-reporting tool is provided through the TWebDispatcher
component’s TActionItem instances. Table 36.1 shows the purpose of each TActionItem
instance. We will discuss each of these separately.

TABLE 36.1 The Purpose of the TActionItem Instances

TActionItem Purpose

waIntro Displays an initial introductory page to the user.

waUserName Prompts the user to enter a username.

waVerifyUserName Invoked from waUserName.OnAction. Verifies the username entered
by the user.

waBrowseBugs Displays two selections to the user: Browse All Bugs and Browse User’s
Bugs Only.

waBrowseAllBugs Displays a table containing all the bugs in the database.

waBrowseYourBugs Displays a table containing bugs belonging to the user.

waRetrieveBug Displays detail information on the bugs.

waGetBugInfo Provides the input page to which the user enters new bug information.

waAddBug Adds the new bug to the table and displays a verification screen.

In the following sections, we will show the individual listing for each method added to the
DDBBugsDM.pas unit instead of showing the entire listing.

Helper Routines
The AddHeader() procedure, shown in Listing 36.1, is used to add a standard header to the
Web bug pages consisting of the page title and header. Also, the background image to use is
specified here. Note that the location of this background image is dependant on the Web server.
You will most likely have to modify this statement, depending on your system, to be able to

DDG Bug-Reporting Tool: Using WebBroker

CHAPTER 36
1473

36 D
D

G
 B

u
g

-R
ep

o
rtin

g

To
o

l: U
sin

g

W
eb

B
ro

ker

42.65227_Ch36 11/30/1999 5:57 PM Page 1473

find the image. AddFooter(), shown in Listing 36.2, is used to add the standard footer infor-
mation, including the copyright statement.

LISTING 36.1 TDDGBugsDataModule.AddHeader() Is Used to Add the Standard Header
Information

procedure AddHeader(AWebPage: TStringList);
// Adds a standard header to each web page.
begin
with AWebPage do
begin
Add(‘<HTML>’);
Add(‘<HEAD>’);
Add(‘<BODY BACKGROUND=’’/samples/images/backgrnd.gif’’”>’);
Add(‘<TITLE>Delphi 5 Developer’’s Guide Bug Demo</Title>’);
Add(‘<CENTER>’);
Add(‘<P>’);
Add(‘Delphi 5 Developer’’s Guide Bug Demo’);
Add(‘</CENTER>’);
Add(‘</HEAD>’);

end;
end;

LISTING 36.2 TDDGBugsDataModule.AddFooter() Is Used to Add the Standard Footer
Information

procedure AddFooter(AWebPage: TStringList);
// Adds the standard footer information to each web page.
begin
with AWebPage do
begin
Add(‘

Copyright (c) 1998, Delphi 5 Developer’’s Guide.’);
Add(‘</BODY>’);
Add(‘</HTML>’);

end;
end;

The Introduction Page
The introduction page is shown in Figure 36.4. It is created by the waIntro.OnAction event
handler, wbdpBugswaIntroAction(), which is shown in Listing 36.3.

Rapid Database Application Development

PART V
1474

42.65227_Ch36 11/30/1999 5:57 PM Page 1474

FIGURE 36.4
The Introduction page.

LISTING 36.3 TDDGBugsDataModule.wbdpBugswaIntroAction() Displays an Initial
Introductory Page

procedure TDDGBugsDataModule.wbdpBugswaIntroAction(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

// Introductory page for the web demo.
var
WebPage: TStringList;

begin
WebPage := TStringList.Create;
try
AddHeader(WebPage);
with WebPage do
begin
Add(‘<BODY>’);
Add(‘<H1>Introduction</H1>’);
Add(‘<P>Welcome to the Delphi 5 Developer’’s Guide Bug Demonstration.’);
Add(‘
This demo, illustrates how to web enable an existing

➥application.’);
Add(‘
To test the demo, just click on the logon

➥link and follow the pages’);
Add(‘
to add bugs, or just to browse existing bugs.’);
Add(‘</P>’);

DDG Bug-Reporting Tool: Using WebBroker

CHAPTER 36
1475

36 D
D

G
 B

u
g

-R
ep

o
rtin

g

To
o

l: U
sin

g

W
eb

B
ro

ker

continues

42.65227_Ch36 11/30/1999 5:57 PM Page 1475

LISTING 36.3 Continued

Add(‘Login to DDG Bug Demo’);
AddFooter(WebPage);
Response.Content := WebPage.Text;
Handled := True;

end;
finally
WebPage.Free;

end;
end;

You will notice that in each instance where a Web page is generated, we pass WebPage to the
AddHeader() and AddFooter() procedures. The introduction page is straightforward enough. It
simply contains a link to the TWebAction, waUserName. For information on TWebAction, see
Chapter 31.

Obtaining and Verifying the User Login Name
Figure 36.5 shows the page generated by TDDGBugsDataModule.wbdpBugswaUserNameAction()
(see Listing 36.4). This is basically an HTML form used to obtain the username. This page
invokes the TDDGBugsDataModule.wbdpBugswaVerifyUserNameAction() event handler (see
Listing 36.5).

Rapid Database Application Development

PART V
1476

FIGURE 36.5
Obtaining the username.

42.65227_Ch36 11/30/1999 5:57 PM Page 1476

LISTING 36.4 TDDGBugsDataModule.wbdpBugswaUserNameAction() Displays the Username
Retrieval Page

procedure TDDGBugsDataModule.wbdpBugswaUserNameAction(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

// This page prompts the user for the username.
var
WebPage: TStringList;

begin
WebPage := TStringList.Create;
try
AddHeader(WebPage);
with WebPage do
begin
Add(‘<BODY>’);
Add(‘<H1>Enter your user name</H1>’);
Add(‘<FORM action=”../DDGWebBugs.dll/VerifyUserName” method=”GET”>’);
Add(‘<p>UserName: <INPUT type=”text” name=”UserName” maxlength=”30”

➥size=”50”></P>’);
Add(‘<p><INPUT type=”SUBMIT”><INPUT type=”RESET”></p>’);
Add(‘</FORM>’);
AddFooter(WebPage);
Response.Content := WebPage.Text;
Handled := True;

end;
finally
WebPage.Free;

end;
end;

LISTING 36.5 TDDGBugsDataModule.wbdpBugswaVerifyUserNameAction() Verifies the
Username

procedure TDDGBugsDataModule.wbdpBugswaVerifyUserNameAction(
Sender: TObject; Request: TWebRequest; Response: TWebResponse;
var Handled: Boolean);

{ This page takes the name entered by the user. The information is saved
and passed back to the client as a cookie. Additional information is also
passed back as a cookie that will be used later for adding bugs from
the Web. }

var
WebPage: TStringList;
CookieList: TStringList;
UserName: String;

DDG Bug-Reporting Tool: Using WebBroker

CHAPTER 36
1477

36 D
D

G
 B

u
g

-R
ep

o
rtin

g

To
o

l: U
sin

g

W
eb

B
ro

ker

continues

42.65227_Ch36 11/30/1999 5:57 PM Page 1477

LISTING 36.5 Continued

UserFName,
UserLName: String;
UserID: Integer;
ValidLogin: Boolean;

procedure BuildValidLoginPage;
begin
AddHeader(WebPage);
with WebPage do
begin
Add(‘<BODY>’);
Add(Format(‘<H1>User name, %s verified. User ID is: %d</H1>’,
[Request.QueryFields.Values[‘UserName’], UserID]));

Add(‘

Browse Bug List’);
Add(‘
Add a New Bug’);
AddFooter(WebPage);

end;
end;

procedure BuildInValidLoginPage;
begin
AddHeader(WebPage);
with WebPage do
begin
Add(‘<BODY>’);
Add(Format(‘<H1>User name, %s is not a valid user.</H1>’,
[Request.QueryFields.Values[‘UserName’]]));

AddFooter(WebPage);
end;

end;

begin

UserName := Request.QueryFields.Values[‘UserName’];

// The login will be valid if the username exists in the Users.db.
ValidLogin := tblUsers.Locate(‘UserName’, UserName, []);

WebPage := TStringList.Create;
try

if ValidLogin then
begin

// Retrieve the UserID and the user’s first and last name
UserID := tblUsers.FieldByName(‘UserID’).AsInteger;

Rapid Database Application Development

PART V
1478

42.65227_Ch36 11/30/1999 5:57 PM Page 1478

UserFName := tblUsers.FieldByName(‘UserFirstName’).AsString;
UserLName := tblUsers.FieldByName(‘UserLastName’).AsString;

CookieList := TSTringList.Create;
try

// Store the user’s information as cookies.
CookieList.Add(‘UserID=’+IntToStr(UserID));
CookieList.Add(‘UserName=’+UserName);
CookieList.Add(‘UserFirstName=’+UserFName);
CookieList.Add(‘UserLastName=’+UserLName);

Response.SetCookieField(CookieList, ‘’, ‘’, Now + 1, False);
finally
CookieList.Free;

end;
BuildValidLoginPage;

end
else begin
UserID := -1;
BuildInvalidLoginPage;

end;

Response.Content := WebPage.Text;
Handled := True;

finally
WebPage.Free;

end;

end;

WbdpBugswaVerifyUserNameAction() performs several actions. First, it verifies that the user-
name entered represents a valid user in the tblUsers table. If the username is valid, the
BuildValidLoginPage() procedure is called; otherwise, BuildInvalidLoginPage() is called.

If the logon is valid, the user’s first and last names and user ID is retrieved from tblUsers.
Then, these items are returned as cookies back to the client. Future requests to the Web bug
server will pass these values back to the server. We will use these values in generating other
pages. Finally, BuildValidLoginPage() is called. It constructs a page containing links for
browsing bugs or adding new bugs. If the login is invalid, BrowseInvalidLoginPage() is
called. It simply presents a message indicating the invalid login.

Assuming the user has entered a valid login, he or she has the option to browse bugs or enter a
new bug.

DDG Bug-Reporting Tool: Using WebBroker

CHAPTER 36
1479

36 D
D

G
 B

u
g

-R
ep

o
rtin

g

To
o

l: U
sin

g

W
eb

B
ro

ker

42.65227_Ch36 11/30/1999 5:57 PM Page 1479

Browsing Bugs
If the user chooses to browse bugs, he or she is presented with a page that provides the options
for browsing all bugs in the database or just browsing those bugs he or she has entered. This
page is constructed in TDDGBugsDataModule.wbdpBugswaBrowseBugsAction() and is shown in
Listing 36.6.

LISTING 36.6 TDDGBugsDataModule.wbdpBugswaBrowseBugsAction() Displays Browsing
Options for the User

procedure TDDGBugsDataModule.wbdpBugswaBrowseBugsAction(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

{ This page gives the user the option of browsing all bugs or just bugs
entered by him/her. }

var
WebPage: TStringList;

begin
WebPage := TStringList.Create;
try
AddHeader(WebPage);
with WebPage do
begin
Add(‘<BODY>’);
Add(‘<H1>Browse Option</H1>’);
Add(‘

➥Browse All Bugs’);
Add(‘

➥Browse Your Bugs’);
AddFooter(WebPage);
Response.Content := WebPage.Text;
Handled := True;

end;
finally
WebPage.Free;

end;

end;

Browsing All Bugs
The option to browse all bugs invokes the TDDGBugsDataModule.
wbdpBugswaBrowseAllBugsAction() event handler, as shown in Listing 36.7.

Rapid Database Application Development

PART V
1480

42.65227_Ch36 11/30/1999 5:57 PM Page 1480

LISTING 36.7 TDDGBugsDataModule.wbdpBugswaBrowseAllBugsAction() Displays All Bugs
in the System

procedure TDDGBugsDataModule.wbdpBugswaBrowseAllBugsAction(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

{ This page prepares the TPageProducer component for browsing all bugs.
The standard header and footer is applied to this page, but a tag is
used to add the table to the page. }

var
WebPage: TStringList;

begin
WebPage := TStringList.Create;
try
AddHeader(WebPage);
WebPage.Add(‘<BODY>’);
WebPage.Add(‘<H1>Browsing all Bugs</H1>’);
WebPage.Add(‘<#TABLE>’);
AddFooter(WebPage);

pprdBugs.HTMLDoc.Clear;
pprdBugs.HTMLDoc.AddStrings(WebPage);

{ As a result of the line below, the OnHTMLTag event handle for
pprdBugs will be invoked. }

Response.Content := pprdBugs.Content;

Handled := True;
finally
WebPage.Free;

end;
end;

This event handler makes use of the TPageProducer component pprdBugs. The functionality
needed from this component is its capability to use tags within the HTML content. In particu-
lar, we want to use the #TABLE tag. We have added the standard header and footer to the Web
page. However, instead of assigning WebPage to Response.Content, we assign WebPage to the
pprdBugs.HTMLDoc property. Then, we assign pprdBugs.Content to Response.Content. This
causes the pprdBugs.OnHTMLTag event to be invoked. This event,
TDDGBugsDataModule.pprdBugsHTMLTag(), is shown in Listing 36.8.

LISTING 36.8 TDDGBugsDataModule.pprdBugsHTMLTag() Assigns the Table to the Tag

procedure TDDGBugsDataModule.pprdBugsHTMLTag(Sender: TObject; Tag: TTag;
const TagString: String; TagParams: TStrings; var ReplaceText: String);

begin

DDG Bug-Reporting Tool: Using WebBroker

CHAPTER 36
1481

36 D
D

G
 B

u
g

-R
ep

o
rtin

g

To
o

l: U
sin

g

W
eb

B
ro

ker

continues

42.65227_Ch36 11/30/1999 5:57 PM Page 1481

LISTING 36.8 Continued

if Tag = tgTable then begin
with dstpBugs do
begin
DataSet.Close;
DataSet.Open;
ReplaceText := dstpBugs.Content;

end;
end;

end;

This simple event handler assigns the dstpBugs.Content property, which refers to the table, to
the pprdBugs.ReplaceText property, which will replace the #TABLE tag with the table contents.
The resulting page is shown in Figure 36.6. It displays the bugs entered by all users.

Rapid Database Application Development

PART V
1482

FIGURE 36.6
A list of bugs entered by all users.

Browsing User-Entered Bugs
If the user chooses to browse his or her own bugs, a page containing a table with only the bugs
he or she has entered is presented to the user. The
TDDGBugsDataModule.wbdpBugswaBrowseYourBugsAction() event handler constructs this page
(see Listing 36.9).

42.65227_Ch36 11/30/1999 5:57 PM Page 1482

LISTING 36.9 TDDGBugsDataModule.wbdpBugswaBrowseYourBugsAction() Displays Only
the User’s Bugs

procedure TDDGBugsDataModule.wbdpBugswaBrowseYourBugsAction(
Sender: TObject; Request: TWebRequest; Response: TWebResponse;
var Handled: Boolean);

{ This page prepares the TPageProducer component for browsing bugs which
belong to the user. The standard header and footer is applied to this page,
but a tag is used to add the table to the page. }

var
WebPage: TStringList;
UserID: Integer;
UserFName,
UserLName: String;

begin
WebPage := TStringList.Create;
try
AddHeader(WebPage);
WebPage.Add(‘<BODY>’);

// Retrieve the user ID which is stored in the cookie.
UserID := StrToInt(Request.CookieFields.Values[‘UserID’]);
UserFName := Request.CookieFields.Values[‘UserFirstName’];
UserLName := Request.CookieFields.Values[‘UserLastName’];

WebPage.Add(Format(‘<H1>Browsing Bugs Entered by %s %s</H1>’,
[UserFName, UserLName]));

WebPage.Add(‘<#TABLE>’);
pprdBugs.HTMLDoc.Clear;
pprdBugs.HTMLDoc.AddStrings(WebPage);

AddFooter(WebPage);

// Make sure the table is now filtered by the UserID
FLoginUserID := UserID;
FilterOnUser := True;

Response.Content := pprdBugs.Content;

Handled := True;
finally
WebPage.Free;

end;

end;

DDG Bug-Reporting Tool: Using WebBroker

CHAPTER 36
1483

36 D
D

G
 B

u
g

-R
ep

o
rtin

g

To
o

l: U
sin

g

W
eb

B
ro

ker

42.65227_Ch36 11/30/1999 5:57 PM Page 1483

As was the case with the event handler for browsing all bugs, the standard header and footer
need to be added to this page. Also, the UserID, UserFirstName, and UserLastName cookies
are retrieved from the Request.CookieFields property. UserFirstName and UserLastName are
used to display the user’s name on the Web page. UserID is assigned FLoginUserID. Then the
FilterOnUser property is set to True. If you recall from the previous chapter, by setting the
FilterOnUser property to True, its SetFilterOnUser() writer method is invoked, which in
turn sets tblBugs.Filtered to True. This causes the OnFilterRecord event handler for
tblBugs, tblBugsFilterRecord(), to be called for each record in the data set. This event exe-
cutes the following line of code:

Accept := tblBugs.FieldByName(‘UserID’).AsInteger = FLoginUserID;

You can see that the filter applied depends on the value contained in the FLoginUserID field.
This explains why the value of UserID from the cookie field needs to be assigned to
FLoginUserID.

Finally, the pprdBugs.Content property is assigned to Response.Content. Again, this will
cause the pprdBugs.OnHTMLTag event to be invoked.

Formatting Table Cells and Displaying Bug Detail
DstpBugs contains the OnFormatCell event handler
TDDGBugsDataModule.dstpBugsFormatCell(). This event handler converts the displayed bug
ID to an HTML link, which displays the detail information for that bug.
TDDGBugsDataModule.wbdpBugswaRetrieveBugAction() is the event handler that actually dis-
plays this bug information. Both these event handlers are shown in Listing 36.10.

LISTING 36.10 The Event Handlers for Displaying Bug Detail

procedure TDDGBugsDataModule.dstpBugsFormatCell(Sender: TObject; CellRow,
CellColumn: Integer; var BgColor: THTMLBgColor; var Align: THTMLAlign;
var VAlign: THTMLVAlign; var CustomAttrs, CellData: String);

{ Convert the BugID cell of the table to a link which invokes the page to
display the bug detail. }

begin
if (CellColumn = 0) and not (CellRow = 0) then
CellData := Format(‘<A href=”../DDGWebBugs.dll/RetrieveBug?

➥BugID=%s”>%s’,
[CellData, CellData]);

end;

procedure TDDGBugsDataModule.wbdpBugswaRetrieveBugAction(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

{ View the bug detail information. }
var
BugID: Integer;

Rapid Database Application Development

PART V
1484

42.65227_Ch36 11/30/1999 5:57 PM Page 1484

WebPage: TStringList;

procedure GetBug;
begin
if tblBugs.Locate(‘BugID’, BugID, []) then
with tblBugs do
begin
WebPage.Add(Format(‘Bug ID: %d’, [BugID]));
WebPage.Add(Format(‘
Reported By: %s’,

[FieldByName(‘UserNameLookup’).AsString]));
WebPage.Add(FormatDateTime(‘“
Reported On:” mmm dd, yyyy’,
FieldByName(‘WhenReported’).AsDateTime));

WebPage.Add(Format(‘
Assigned To: %s’,
[FieldByName(‘AssignedToLookup’).AsString]));

WebPage.Add(Format(‘
Status: %s’,
[FieldByName(‘StatusTitle’).AsString]));

WebPage.Add(Format(‘
Summary: %s’,
[FieldByName(‘SummaryDescription’).AsString]));

WebPage.Add(Format(‘
Details: %s’,
[FieldByName(‘Details’).AsString]));

WebPage.Add(‘
’);
WebPage.Add(‘
’);

GetActions(WebPage);
end;

end;

begin
BugID := StrToInt(Request.QueryFields.Values[‘BugID’]);

WebPage := TStringList.Create;
try
AddHeader(WebPage);
with WebPage do
begin
Add(‘<BODY>’);
Add(‘<H1>Bug Detail</H1>’);
GetBug;
AddFooter(WebPage);
Response.Content := WebPage.Text;
Handled := True;

end;
finally
WebPage.Free;

end;

end;

DDG Bug-Reporting Tool: Using WebBroker

CHAPTER 36
1485

36 D
D

G
 B

u
g

-R
ep

o
rtin

g

To
o

l: U
sin

g

W
eb

B
ro

ker

42.65227_Ch36 11/30/1999 5:57 PM Page 1485

Adding a New Bug
The user has the option of adding a new bug to the database. The following sections discuss
the pages that retrieve the bug data from the user and display the bug information back to the
user once the bug has been entered.

Retrieving the Bug Data
The event handler TDDGBugsDataModule.wbdpBugswaGetBugInfoAction(), shown in Listing
36.11, generates the page used to retrieve the new bug information from the user. This page
basically creates an HTML form that contains the appropriate controls to allow the user to
enter the proper bug information. Figure 36.7 shows the resulting page from this event handler.

LISTING 36.11 TDDGBugsDataModule.wbdpBugswaGetBugInfoAction() Displays the Bug
Detail Entry Page to the User

procedure TDDGBugsDataModule.wbdpBugswaGetBugInfoAction(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

{ Prepares the page to retrieve new bug information from the user. }
var
WebPage: TStringList;

procedure AddAssignToNames;
{ Adds a drop down list to the HTML Page of Assign to users }
begin

WebPage.Add(‘
Assign To:’);
WebPage.Add(‘
<SELECT name=”AssignTo”>
’);

with tblUsers do
begin
First;
while not Eof do
begin
WebPage.Add(Format(‘<OPTION>%s %s - %s’,
[FieldByName(‘UserFirstName’).AsString,
FieldByName(‘UserLastName’).AsString,
FieldByName(‘UserName’).AsString]));

tblUsers.Next;
end;
WebPage.Add(‘</SELECT>’);

end;
end;

procedure AddStatusTitles;

Rapid Database Application Development

PART V
1486

42.65227_Ch36 11/30/1999 5:57 PM Page 1486

{ Adds a drop down list to the HTML Page of bug status items }
begin
WebPage.Add(‘
Status:’);
WebPage.Add(‘
<SELECT name=”Status”>
’);

with tblStatus do
begin
First;
while not Eof do
begin
WebPage.Add(Format(‘<OPTION>%s’, [FieldByName(‘StatusTitle’).AsString]));
tblStatus.Next;

end;
WebPage.Add(‘</SELECT>’);

end;
end;

begin
WebPage := TStringList.Create;
try
AddHeader(WebPage);
with WebPage do
begin
Add(‘<BODY>’);
Add(‘<H1>Add New Bug</H1>’);
Add(‘<FORM action=”../DDGWebBugs.dll/AddBug”

➥method=”GET”>’);
Add(‘
Summary Description:
<INPUT type=”text”

➥name=”Summary” maxlength=”100” size=”50”>’);
Add(‘
Details:
<TEXTAREA name=”Details”

➥rows=5 cols=50> </TEXTAREA>’);

AddAssignToNames;
AddStatusTitles;

Add(‘<p><INPUT type=”SUBMIT”><INPUT type=”RESET”></p>’);
Add(‘</FORM>’);
AddFooter(WebPage);
Response.Content := WebPage.Text;
Handled := True;

end;
finally
WebPage.Free;

end;
end;

DDG Bug-Reporting Tool: Using WebBroker

CHAPTER 36
1487

36 D
D

G
 B

u
g

-R
ep

o
rtin

g

To
o

l: U
sin

g

W
eb

B
ro

ker

42.65227_Ch36 11/30/1999 5:57 PM Page 1487

FIGURE 36.7
The bug-entry page.

The two helper functions, AddAssignToNames() and AddStatusTitle(), create combo boxes
from which the user can select values for the bug. Unlike using Delphi data-aware controls that
can automatically assign the selected lookup values to the new record, this assignment has to
be made manually, as you will see in the event handler that adds the new bug to the database.

Verifying Bug Insertion
The event handler TDDGBugsDataModule.wbdpBugswaAddBugAction() is shown in Listing 36.12.

LISTING 36.12 TDDGBugsDataModule.wbdpBugswaAddBugAction() Adds a New Bug to the
Table

procedure TDDGBugsDataModule.wbdpBugswaAddBugAction(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

{ Adds the Bug to the database. Uses the cookies returned by the client
to display information about the user. }

var
SummaryStr,
DetailsStr,
AssignToStr,
StatusStr: String;
WebPage: TStringList;
UserID: Integer;

Rapid Database Application Development

PART V
1488

42.65227_Ch36 11/30/1999 5:57 PM Page 1488

UserName: String;
UserFName,
UserLName: String;
AssignedToUserName: String;
PostSucceeded: boolean;

function GetAssignedToID: Integer;
var
PosIdx: Integer;

begin
PosIdx := Pos(‘-’, AssignToStr);
AssignedToUserName := Copy(AssignToStr, PosIdx+2, 100);
tblUsers.Locate(‘UserName’, AssignedToUserName, []);
Result := tblUsers.FieldByName(‘UserID’).AsInteger;

end;

function GetStatusID: Integer;
begin
tblStatus.Locate(‘StatusTitle’, StatusStr, []);
Result := tblStatus.FieldByName(‘StatusID’).AsInteger;

end;

procedure DoPostSuccessPage;
begin
with WebPage do
begin
Add(Format(‘<H1>Thank you %s %s, your bug has been added.</H1>’,

[UserFName, UserLName]));
Add(FormatDateTime(‘“

Bug Entered on:” mmm dd, yyyy’, Date));
Add(Format(‘
Bug Assigned to: %s’, [AssignedToUserName]));
Add(Format(‘
Details: %s’, [DetailsStr]));
Add(Format(‘
Status: %s’, [StatusStr]));

end;
end;

procedure DoPostFailPage;
begin
WebPage.Add(‘
Bug Entry failed.’);

end;

begin

// Retrieve the fields inserted.
SummaryStr := Request.QueryFields.Values[‘Summary’];
DetailsStr := Request.QueryFields.Values[‘Details’];
AssignToStr := Request.QueryFields.Values[‘AssignTo’];

DDG Bug-Reporting Tool: Using WebBroker

CHAPTER 36
1489

36 D
D

G
 B

u
g

-R
ep

o
rtin

g

To
o

l: U
sin

g

W
eb

B
ro

ker

continues

42.65227_Ch36 11/30/1999 5:57 PM Page 1489

LISTING 36.12 Continued

StatusStr := Request.QueryFields.Values[‘Status’];

// Retrieve the cookie fields.
UserID := StrToInt(Request.CookieFields.Values[‘UserID’]);
UserName := Request.CookieFields.Values[‘UserName’];
UserFName := Request.CookieFields.Values[‘UserFirstName’];
UserLName := Request.CookieFields.Values[‘UserLastName’];

// Necessary for the AfterInsert event handler.
FLoginUserID := UserID;
FLoginUserName := UserName;

InsertBug;
try
tblBugs.FieldByName(‘SummaryDescription’).AsString := SummaryStr;
tblBugs.FieldByName(‘WhenReported’).AsDateTime := Date;
tblBugs.FieldByName(‘Details’).AsString := DetailsStr;
tblBugs.FieldByName(‘AssignedToUserID’).AsInteger := GetAssignedToID;
tblBugs.FieldByName(‘StatusID’).AsInteger := GetStatusID;
tblBugs.Post;
PostSucceeded := True;

except
tblBugs.Cancel;
PostSucceeded := False;

end;

WebPage := TStringList.Create;
try
AddHeader(WebPage);
with WebPage do
begin
Add(‘<BODY>’);

if PostSucceeded then
DoPostSuccessPage

else
DoPostFailPage;

AddFooter(WebPage);
Response.Content := WebPage.Text;
Handled := True;

end;

Rapid Database Application Development

PART V
1490

42.65227_Ch36 11/30/1999 5:57 PM Page 1490

finally
WebPage.Free;

end;

end;

This event handler first retrieves all the values entered by the user from the bug-entry page
shown in Figure 36.7. It also retrieves the cookie fields entered previously. The three lines of
code

// Necessary for the AfterInsert event handler.
FLoginUserID := UserID;
FLoginUserName := UserName;

are required for the AfterInsert event handler for tblBugs, which performs as follows:

tblBugs.FieldByName(‘UserID’).AsInteger := FLoginUserID;
tblBugs.FieldByName(‘UserNameLookup’).AsString := FLoginUserName;

Finally, the new bug is inserted into tblBugs. If the insertion succeeds, the Web page is con-
structed by calling DoPostSuccessPage(); otherwise, DoPostFailPage() is called.
DoPostSuccessPage() simply presents the bug data back to the user, whereas
DoPostFailPage() displays a failure notification.

Recall that data-aware lookup controls are not used to obtain valid entries for the
AssignToUserID and StatusID fields for tblBugs. Our bug-entry page provides the user with
the strings that represent these items in the drop-down combo boxes. In order to add the proper
lookup index values to tblBugs, a search is performed on the strings selected by the user
against both tblUsers and tblStatus. Note that a bit of string manipulation is required for the
AssignToUserID field in order to extract the proper string with which to perform the search
(see the GetAssignToID() method).

Summary
This chapter covered deploying Web database applications. In this chapter, we demonstrated
how, if properly designed, an existing application can be deployed to the Web with few modifi-
cations to the existing code (with the exception of adding code specific to the Web). In fact,
most of what we presented here has more to do with the construction of HTML documents
than with database manipulation. You might consider modifying this demo to extend its func-
tionality as well as moving the HTML construction code to actual HTML files.

DDG Bug-Reporting Tool: Using WebBroker

CHAPTER 36
1491

36 D
D

G
 B

u
g

-R
ep

o
rtin

g

To
o

l: U
sin

g

W
eb

B
ro

ker

42.65227_Ch36 11/30/1999 5:57 PM Page 1491

42.65227_Ch36 11/30/1999 5:57 PM Page 1492

IN THIS PART
A Error Messages and Exceptions 1495

B BDE Error Codes 1497

C Suggested Reading 1499

Appendixes
PART

VI

43.65227_Part VI 11/30/1999 6:02 PM Page 1493

43.65227_Part VI 11/30/1999 6:02 PM Page 1494

CHAPTER

15
The Generic with Mono

IN THIS APPENDIX
• A list of the C Heads 0

• A list of the C Heads 0

• Some of the C Heads might be very,
very long 0

• These are C Heads only 0

• Some of the C Heads might be very,
very long 0

• A list of the C Heads 0

• A list of the C Heads 0

APPENDIX

A

IN THIS APPENDIX
• Layers of Handlers, Layers

of Severity 390

• Runtime Errors 391

The complete text for this appendix appears
on the CD-ROM.

APPENDIX

A
Error Messages and
Exceptions

44.65227_AppAx 11/30/1999 6:03 PM Page 1495

One difference between good software and great software is that whereas good software runs
well, great software runs well and fails well. In Delphi programs, errors that are detected at
runtime usually are reported and handled as exceptions. This allows your code the opportunity
to respond to problems and recover (by backing up and trying another approach) or at least to
“degrade gracefully” (free allocated resources, close files, and display an error message),
instead of just crashing and making a mess of your system. Most exceptions in Delphi pro-
grams are raised and handled completely within the program; very few runtime errors actually
will bring a Delphi program to a screeching halt.

This appendix lists the most common error messages that a Delphi application can report and
provides field notes to help you find the cause of the error condition. Because each component
you add to your Delphi environment often has its own set of error messages, this list can never
be complete, so we’ll focus on the most common or most insidious error messages you’re
likely to face while developing and debugging your Delphi applications.

Appendixes

PART VI
1496

44.65227_AppAx 11/30/1999 6:03 PM Page 1496

CHAPTER

15
The Generic with Mono

IN THIS APPENDIX
• A list of the C Heads 0

• A list of the C Heads 0

• Some of the C Heads might be very,
very long 0

• These are C Heads only 0

• Some of the C Heads might be very,
very long 0

• A list of the C Heads 0

• A list of the C Heads 0

APPENDIX

A

IN THIS APPENDIX
The complete text for this appendix appears
on the CD-ROM.

APPENDIX

B
BDE Error Codes

45.65227_AppBx 11/30/1999 6:03 PM Page 1497

When working with the Borland Database Engine, occasionally you’ll receive an error dialog
box indicating that some error has occurred in the engine. Most commonly, this happens when
customers or clients install your software on their machines and they have some configuration
problems with their machines that you’re trying to track down for them. Typically, the afore-
mentioned error dialog box provides you with a hexadecimal error code as the description of
the error. The question is how to turn that number into a meaningful error message. In order to
help you with this task, we’ve provided the following table. Table B.1 lists all the possible
BDE error codes as well as the BDE error strings associated with these error codes.

Appendixes

PART VI
1498

45.65227_AppBx 11/30/1999 6:03 PM Page 1498

CHAPTER

15
The Generic with Mono

IN THIS APPENDIX
• A list of the C Heads 0

• A list of the C Heads 0

• Some of the C Heads might be very,
very long 0

• These are C Heads only 0

• Some of the C Heads might be very,
very long 0

• A list of the C Heads 0

• A list of the C Heads 0

APPENDIX

A

IN THIS APPENDIX
• Delphi Programming 1500

• Component Design 1500

• Windows Programming 1500

• Object-Oriented Programming 1500

• Software Project Management and
User Interface Design 1500

• COM/ActiveX/OLE 1501

APPENDIX

C
Suggested Reading

46.65227_AppC 11/30/1999 5:58 PM Page 1499

Delphi Programming
• The Tomes of Delphi 3: Win32 Graphical API, by John Ayres, David Bowden, Larry

Diehl, Phil Dorcas, Kenneth Harrison, Rod Mathes, Ovias Reza, and Mike Tobin
(Wordware Publishing, Inc., 1998).

• The Tomes of Delphi 3: Win32 Core API, by John Ayres, David Bowden, Larry Diehl,
Phil Dorcas, Kenneth Harrison, Rod Mathes, Ovias Reza, and Mike Tobin (Wordware
Publishing, Inc., 1997).

• Charlie Calvert’s Delphi 4 Unleashed, by Charlie Calvert (Sams Publishing, 1998).

• Mastering Delphi 5, by Marco Cantu (Sybex, 1999).

• Delphi Developer’s Handbook, by Marco Cantu, Tim Gooch, and John F. Lam
(Sybex, 1997).

• Hidden Paths of Delphi 3, by Ray Lischner (Informant Communications Group, 1997).

• Secrets of Delphi 2, by Ray Lischner (Waite Group Press, 1996).

Component Design
The following two books are listed as out of print. However, it may still be possible to get them
through Amazon.com or another retailer.

• Developing Custom Delphi 3 Components, by Ray Konopka (Coriolis Group
Books, 1997).

• Delphi Component Design, by Danny Thorpe (Addison-Wesley, 1997).

Windows Programming
• Advanced Windows, 3rd Ed., by Jeffrey Richter (Microsoft Press, 1997).

Object-Oriented Programming
• Object-Oriented Analysis and Design with Applications, 2nd Ed., by Grady Booch

(Addison-Wesley, 1994).

• Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma,
Richard Helm, Ralph Johnson, and John Vlissides (Addison-Wesley, 1995).

Software Project Management and User Interface
Design

• About Face: The Essentials of User Interface Design, by Alan Cooper (IDG Books,
1995).

Rapid Database Application Development

PART VI
1500

46.65227_AppC 11/30/1999 5:58 PM Page 1500

• Rapid Development, by Steve McConnell (Microsoft Press, 1996).

• Software Project Survival Guide, by Steve McConnell (Microsoft Press, 1998).

• Code Complete, by Steve McConnell (Microsoft Press, 1993).

COM/ActiveX/OLE
• Essential COM, by Don Box (Addison-Wesley, 1998).

• Inside OLE, 2nd Ed., by Kraig Brockschmidt (Microsoft Press, 1995).

Suggested Reading

APPENDIX C
1501

C

S
U

G
G

ESTED
R

EA
D

IN
G

46.65227_AppC 11/30/1999 5:58 PM Page 1501

46.65227_AppC 11/30/1999 5:58 PM Page 1502

INDEX
SYMBOLS

- operator, sets, 76
IShellLink interface, instancing, 934

$R directive, loading external resource
files, 24

* operator, set intersections, 77
+ operator

concatenating strings, 50

sets, 76

. operator, 78
/ operator, 43
<, > operators, 41
16-bit programs, porting to 32-bit

systems, 53
16-bit projects, upgrading, CD:237
32-bit address space, upgrading, CD:233
32-bit applications, Win32, CD:238
32-bit integers, unsigned, upgrading

issues, CD:214
32-bit math, upgrading, CD:229
32-bit resources, upgrading, CD:234
64-bit integers, upgrading issues,

CD:216
:= operator, 40
= operator, 41

47.65227_Index 12/3/99 7:48 AM Page 1503

Abort dialog box
1504

A
Abort dialog box,

CD:167
Abort TPrinter method,

CD:155
Abort() method,

CD:167
Aborted TPrinter

property, CD:154
aborting, printing,

CD:167
About dialog box,

CD:37, CD:54
AboutBox() method,

CD:37, CD:54
abstract classes,

TOleControl, CD:37
abstract methods,

CD:11
ABWizard.pas unit,

AppBar Wizard, 1087
Access (Microsoft)

data access
options, 1212

components, ADO, 1213
connections, 1207-1209

accessing
component properties,

572-573
methods, CD:12
rights, databases or

tables, 1243
Action form, DDG, 1458
Active property,

Tapplication
class, 155

ActiveForms
properties, 1030-1038
UrlMon functions,

1040-1048
ActiveX, 776

Control Wizard, 984
differences from OLE

and COM, 775
documents, 776
Listview control,

841-846
ActiveX controls,

982-983, 986,
CD:21-26, CD:29-32,
CD:35-38, CD:42-52
encapsulting VCL

controls, 985
frame control, 1015
invoking, CD:54
licensing, 1016-1017
Memo control

implementation file,
1001-1012

project file, 986
type library file,

989-1000
OCX application

example, CD:40
shipping, CD:40
System Registry, CD:40
property pages,

1018-1019
Web browser interac-

tion, 1039-1040
Web deployment,

1049-1052

ad-hoc queries,
MIDAS, 1329

Add Data Breakpoint
dialog box, CD:324

add-in forms, 682
add-in packages,

682-687
AddEmUp()

function, 90
adding

bugs to database, Web
DDG, 1488-1490

buttons to forms, 25
fields, datasets, 1165
text to files, 340

AddInts() function, 36
AddModU.pas unit,

Wizard project, 1071
AddRef() method,

IUnknown
interface, 781

address breakpoints,
CD:324

Address not found
error message,
CD:391

address space
32-bit, CD:233
flat, CD:233

addresses
memory, virtual, 130
preferred base, 227

AdjustSpeedButtons()
method, CD:305

ADO, (ActiveX Data
Objects), 1211
access

components, 1213

47.65227_Index 12/3/99 7:48 AM Page 1504

applications
1505

compatibiltiy
components, 1213

connections, 1216
components, 1213

data store
connections, 1214

advanced fonts, CD:134
advertising services,

RDM, 1317
aggregation, COM, 792
aliases, types, 81
aliasing methods,

IUnknown
interface, 785

alignment records,
upgrading, CD:228

allocating
AnsiStrings, 52

AllocRecordBuffer()
method, CD:364

ancestry, objects, 596
And operation, 41-43,

CD:132
animated

components, 696
animation, graphics

programming,
CD:124, CD:132-134

Animation Project’s
Main Form listing,
CD:124-130

AnsiStrings, CD:220
allocating, 52
length, 52
types, 48
Win32 compatibility, 52

apartment
threads, MIDAS
applications, 1316

ApBarFrm.pas unit,
929-931

API functions, CD:97
BDE, CD:334
compatibility, CD:236
obsolete,

CD:235-CD:236
PlaySound(), CD:292
printing, CD:184-186
upgrading, CD:234

API window
procedures, 409

APIs (Application
Programming
Interfaces)
Open Tools, 1056
Win32, 124

AppBar Wizard
AEWizard.pas

unit, 1087
CodeGen.txt

template, 1093
AppBars

ApBarFrm.pas unit, 929
AppBars.pas unit,

922-928
dwMessage

parameter, 918
notification messages,

921-922
pData parameter, 919
SHAppBarMessage()

function, 918
TAppBar form, 920

AppevMainIdle()
method, CD:131

application partitioning
packages,
components, 679

applications
attaching to Clipboard

viewer chain,
CD:124

client/server,
1220-1222, 1231
business rules, 1223
data integrity, 1224
data security, 1223
three-tiered, 1226
two-tiered, 1226

cursors, 177
DDG

action form, 1458
browsing bugs, 1455
bug manipulation

routines, 1455
data module,

1442-1452
login options, 1453
main form,

1461-1465
Paradox database

configuration,
1454

user form, 1456
user interface, 1459
~bug reporter,

1440-1441
DelSrch, 311-315, 321

priorities, 322

47.65227_Index 12/3/99 7:48 AM Page 1505

applications

search threads,
316-318

designing, 161-162
DLLs, 227

Callback functions,
251, 254-257

custom controls, 231
entry/exit events,

244-249
exceptions, 250-251
explicit loading,

241-243
exporting objects,

266-270
hiding implementa-

tion, 230
implicit linking,

239-241
interface units,

232-233
modal forms,

235-236
modeless forms,

237-238
PenniesToCoins, 231
shared memory,

259-265
sharing code, 230

dynamic linking, 229
exception handling,

overriding, 180
exiting Windows, 186
EZThrd, 287
formless, 186
graphics, multithreaded,

330-332
Internet, 1277

cookies, 1296-1299

data streaming,
1303-1305

dynamic Web pages,
1285

event handlers, 1279
forms, 1301-1302
HTML tables,

1288-1293
passing client

requests, 1282
redirection, 1300
server responses,

1282
Inventory Manager

back-end, 1362-1363
business rules, 1372
CUSTOMER

table, 1365
database

permissions, 1371
domains, 1364
generators, 1367
ITEMS table, 1366
login/out

methods, 1384
PART table, 1366
SALES table, 1366
stored procedures,

1368-1369
Temporary table

methods, 1386
triggers, 1367

MDI, CD:239-287
child forms,

CD:242-245,
CD:281-284

child windows,
CD:284

client window,
CD:274

main form,
CD:264-271

menus, CD:272-273
rich text editor form,

CD:254-261
text editor form,

CD:245-253
message handling, 408
messages, 194-195,

208-209, 212-214
between, 206
broadcasting, 207
handling, 197-199
notification, 203
result values, 200
sending, 201
user-defined, 205

MIDAS
ad-hoc queries, 1329
architecture, 1313
briefcase

model, 1329
client-side

transactions, 1324
connections, 1318
creating, 1319
data reconciliation,

1325
data retrieval, 1321
deploying, 1354
firewall issues, 1356
instancing, 1315
joins, 1332-1334
licensing, 1353
master/detail rela-

tionships, 1331

1506

47.65227_Index 12/3/99 7:48 AM Page 1506

Automation
1507

nested datasets, 1332
providers, 1320
record

contention, 1330
threads, 1316
two-tier, 1351-1352
undo options, 1323
Web options, 1335

multitier, 1310
centralized business

rules, 1311
load balancing, 1312
reconciling errors,

1312
thin clients, 1311

mutexes, 303-306
OLE containers, 886
owner-draw list

boxes, 255
passwords, 179
preventing multiple

instances, 416-420
semaphores, 307-310
splash screens, 182-183
subclassing

windows, 408
SysInfo, 484
threads, 277-280

critical sections,
300-303

priorities, 288
resuming, 291
scheduling, 288
suspending, 291
synchronization,

283-286, 297, 300
terminating, 281-283
timing, 291-292

Web DDG, 1470
adding bugs to data-

base, 1488-1490
browsing bugs,

1480-1481
bug details,

1484-1487
data module, 1471
dstpBugs

component, 1472
helper routines, 1474
introduction page,

1474-1475
page layout, 1470
pprdBugs

component, 1473
TActionItem

instances, 1473
user-entered bugs,

1482-1484
username retrieval

page, 1477-1478
wbdpBugs

component, 1472
arithmetic

operators, 42
array of const, 91-92
arrays, 71-72, CD:7

indexing strings as,
CD:222

Automation, 838-839
dynamic, 72
for loops, 71
multidimensional, 72-73
open parameters, 90
variants, 67-70, 854

ascenders, fonts,
CD:135-136

assembly language
power versus

complexity, 13
procedures, 424
upgrading, CD:230

Assign() method,
CD:78

assignment
operators, 40

AssignPrn() procedure,
CD:156

audio, CD players,
CD:299
initializing, CD:301
source, CD:306
splash screens,

CD:299, CD:303
time-conversion

routines, CD:304
updating information,

CD:303
audio-video interleave

(AVI), CD:293
auto-creating forms,

CD:15
automating SQL

Aggregate
Functions listing,
CD:350-CD:351

Automation, 793
arrays, 838-839
clients, 830-832
collections, 838-839
controllers

in-process
servers, 822

out-of-process
servers, 817-820

47.65227_Index 12/3/99 7:48 AM Page 1507

Automation
1508

early binding, 795
events, 825

with multiple sinks,
833-837

exchanging binary data,
848-851

in-process servers,
controllers, 822

late binding, 854
objects, registering, 796
out-of-process servers,

controllers, 817-820
safe arrays, 848-849
servers, 828-829

creating, 796
in-process, 812-816
out-of-process,

796-810
sinks, 828
sources, 828
type libraries, 795

Automation servers,
upgrading, CD:218

AVI files, See audio-
video inerleave

B
background queries,

databases, 324, 327
base mode forms, 165
baseline, fonts, CD:136
BASIC, 15
BASM (built-in assem-

bler), 421-422
parameter access, 423
records, access, 425

BDE (Borland Database
Engine), 1150-1153

Begin keyword, 84
begin..end pair, source

code formatting,
CD:3

BeginDoc TPrinter
method, CD:155

between application
messages, 206

binary data,
Automation
exchanges, 848-849

binding Automation,
795, 854

bit flags, TDeviceMode
structure,
CD:185-186

bitmap data, pasting to
Clipboard, CD:123

bitmaps, CD:58
copying, CD:124
drawing, CD:274
image, CD:59
mask, CD:59
printing, CD:158
viewer, CD:262

bitwise operators, 43
BLOB fields (Binary

Large Object),
datasets,
1171-1174

blocks, try..finally, 63
BOF property, datasets,

1153, 1159
bookmark methods,

CD:368
bookmarks,

datasets, 1154

Boolean parameters,
CD:46

Boolean types, upgrad-
ing, CD:216-217

Boolean variables, CD:5
Border Style/Icon

project, main form,
150-151

borders, forms, 149
Borland Database

Engine (BDE)
error codes, CD:425-450
Check() procedure,

CD:334
cursors, CD:335
handles, CD:335
unit, CD:334

BPL files, 141
Break() procedure, 87
Breakpoint List dialog

box, CD:322
breakpoints, CD:321

address, CD:324
conditional, CD:321
data, CD:323
groups, CD:325
module load

breakpoints, CD:324
Briefcase model,

MIDAS, 1329
broadcasting

messages, 207
browsing bugs

DDG program, 1455
Web DDG, 1480-1482

brush patterns, CD:75
brushes, CD:70

47.65227_Index 12/3/99 7:48 AM Page 1508

character cells
1509

Btn type prefix, CD:19
bug-manipulation

routines, DDG, 1455
bug-reporting pro-

gram, See DDG
bugs, CD:317

adding to database, Web
DDG, 1488-1490

browsing, Web DDG,
1480-1481

browsing/filtering,
DDG, 1455

class instances, CD:318
class variable, CD:317
nil pointer dereferenc-

ing, CD:320
PChar-type variables,

CD:320
user-entered,

Web DDG, 1482
viewing details, Web

DDG, 1484-1487
wild pointer, CD:319

business rules
client/server

applications, 1223
Inventory Manager

application, 1372
buttons

adjusting width, 26
forms, 25
ModalResult

property, 146
mouse click

responses, 26

C
C

functions, calling, 444
sharing data, 445-446

C++, 15
classes, 453
double backslash

comments, 34
files in Delphi projects,

443-444
functions, calling, 444
sharing data, 445-446
syntax highlighting, 31

C++ Builders, CD:210
calculated fields,

datasets, 1168
call stack, accessing,

CD:327
Callback functions,

251, 254-257
CallC project, main

unit, 455-457
calling

methods, CD:37
conventions, upgrading,

CD:231
CallNextHookEx()

function, 428
CallWindowProc()

function, 409
canvas, CD:58
canvas pen, CD:69
canvas properties,

CD:62
Canvas TPrinter

property, CD:154

Canvas.Font
property, CD:77

Capitals project,
342-343

captionless resizable
forms, 150

CardImpl.pas unit,
TCardX control,
1020-1025

Cardinal type,
46, CD:227

CardPP.pas unit, TCardX
control, 1027-1029

case statements,
84, CD:8

categories,
properties, 742

Cbdata unit, 552-554
Ccode.c. module, 447
CD players

audio, CD:299
components, CD:299
initializing, CD:301
source, CD:306
splash screen, CD:299,

CD:303
time-conversion

routines, CD:304
updating information,

CD:303
Cdll.cpp module, 453
cells, characters,

CD:135
CGI (Common Gateway

Interface), 1275
character cells, CD:135

47.65227_Index 12/3/99 7:48 AM Page 1509

character menu items
1510

character menu items,
event handlers,
CD:253

characters
measurements, CD:136
upgrading, CD:219,

CD:221-CD:225
types, 47

Check() procedure,
BDE, CD:334

child forms, 162
hidden, CD:281,

CD:283-CD:284
MDI applications,

888-890,
CD:242-245

constructors, 164
child windows

forms, 165
MDI applications,

CD:241, CD:284
Chord() method, CD:84
circular references,

units, 96
class completion, 29
class definition, control

wrapper, CD:36
class factories, COM,

786-787
class field names,

CD:11
class instances,

common program
bug, CD:318

Class keyword, 108
Class variable, common

program bug,
CD:317

classes, 100,
CD:10-11, 60
ancestor,

components, 616
C++, 453
CORBA support, 1101
exceptions, 115-116
friend, 107
MyFirstCORBAServer,

1104-1108
process priority,

288-289
project framework, 145
properties, 105
property categories, 743
specifiers, 106
TApplication, 153
TCanvas, 587
TChildForm, 162-163
TCollection, 749
TCollectionItem, 749
TComObject, 787-788
TComObjectFactory,

787-788
TComponent, 580
TControl, 582
TCustomControl, 584
TDatabase, 1151
TDataSet, 1150
TDataSet, 1151
TDataSetTableProducer,

1288
TField, hierarchy, 1166
TForm, 145
TForm1, 26
TGraphicControl, 584
TISAPIResponse, 1284

TListBoxStrings,
585-586

TMtsAutoObject,
864-865

TObject, 107
TOleContainer, 885
TPersistent, 579
TQuery, 1151
TQueryServer, 1111
TQueryTableProducer,

1289
TQueryTableProducer,

1292
TScreen, 159-160
TStringList, 586
TStrings, 584
TTable, 1150
TTHMLTableColumn,

1291
TVerInfoRes, 393
TWebRequest,

1281-1282
TWebResponse,

1281-1282
TWinControl, 582

ClassInfo()
function, 589

ClassInfo.dpr project,
591-595

ClearCanvas(), CD:69
ClearCanvas() method,

CD:74, CD:92
Client area, MDI

applications, CD:241
Client Tracker

application
customer data module,

1420-1427

47.65227_Index 12/3/99 7:48 AM Page 1510

COM (Component Object Model)
1511

error reconciliation,
1428-1429

main form, 1430,
1432-1434

RDM code, 1416-1418
client window, MDI

applications, CD:241
client-area

coordinates, CD:97
client-side transactions,

MIDAS applications,
1324

client/server
applications,
1220-1222, 1231
business rules, 1223
data integrity, 1224
data security, 1223
login dialogs,

1248, 1250-1251
pass-through

mode, 1254
three-tiered, 1226
transaction control,

1252, 1254
two-tiered, 1226

clients
Automation, 830-832
CORBA, 1129

Java servers, 1136
late-bound,

1133, 1135
server connections,

1131
database

applications, 1245
master/detail linking,

1344-1346,
1348, 1350

MIDAS
connections, 1317
data packet limits,

1328
editing data,

1322-1323
MTS, tic-tac-toe,

879-881, 884
Clipboard, 548, CD:264

pasting data to, CD:123
customizing, 552, 555
graphics operations,

550-551
OLE object

operations, 891
text operations, 549

CloseFile() procedure,
CD:156

CloseHandle()
function, 127

closing files, 339
CLSIDs (class IDs), 780
code

debugging line-by-line,
CD:325

sharing between
units, 142

See also source code
Code Editor, 22, CD:321

navigating code, 29
viewing source code, 23

Code Explorer, 22
Code Insight, 3, 17, 32
CodeGen.txt template,

AppBar Wizard, 1093
coding standards

document, CD:1-19

collections
Automation, 838-839
TRunButtons, editing

component lists,
760, 763-772

color printing, CD:188
Color property, CD:62
Columnar Report Demo

listing, CD:161-165
columns

databases
computed, 1234
data types, 1233

datasets, 1150
columns component

editor, 1291
COM (Component

Object Model),
124, 774
aggregation, 792
class factories, 786-787
CLSIDs, 780
connection points, 827
differences from OLE

and ActiveX, 775
dispinterfaces, 857
DllCanUnloadNow()

method, 790
DllGetClassObject()

method, 790
DllRegisterServer()

function, 789
DllUnregisterServer()

function, 789
GUIDs, 779
IDispatch interface, 794
IIDs, 780
in-proc servers, 788

47.65227_Index 12/3/99 7:48 AM Page 1511

COM (Component Object Model)
1512

interfaces, 774, 778, 855
IUnknown interface,

779
HResult return

type, 786
IIDs, 785
variables, 781-782

Object Pascal support,
852

objects, 775
out-of-process servers

instancing, 792
registering, 791

TComObject class,
787-788

TComObjectFactory
class, 787-788

TGUID records, 780
threading models, 777
variant arrays, 854
variants, 852
vtables, 778

COM Object Wizard,
shell extensions, 954

Com-based
programming, CD:7

CombineRgn()
function, 695

command-line parame-
ters, debugging,
CD:321

commands
Editor Options,

Tools, CD:2
Import ActiveX Control,

Component menu,
CD:24

comments, 34

committed
memory, 131

comparison
operators, 41

compatibility compo-
nents, ADO, 1213

compiled units, Delphi
5, CD:212

compiler directives,
packages, 680

compilers, 15
conditional defines,

CD:210
Idl2Pas, 1136-1140

complexity of
languages versus
power, 13

component classes,
COM objects, 775

component editors,
725-729

component menu
commands, Import
ActiveX, CD:24

Component Palette, 20,
CD:18, CD:22, CD:58
ActiveX controls,

CD:23, CD:26
QReport page, CD:154

component units,
CD:14, CD:18

component wrapper,
CD:26-35
control interfaces,

CD:36
enumerations, CD:36
file origins, CD:36

ComponentCount prop-
erty, TApplication
class, 155

components, 569
ADO, 1213
ancestor classes, 616
animated, 696
AppBars, See

AppBars, 918
application partitioning

packages, 679
array properties,

625-626
CD players, CD:299
customizing, 28, 570
default array

properties, 628
default property

values, 627
design packages,

676-677
elliptical hint

window, 692
enumerated

properties, 620
event handlers, 574-575
event properties, 630
events, 21, 574
extensibility, 28
forms, 668-669
graphical, 570
hierarchy, 578
icons, 642
lists of components,

749-760
editing, 760, 763-772

47.65227_Index 12/3/99 7:48 AM Page 1512

constant parameters
1513

marquee, 696-708
animating, 700
copying text, 699
testing, 710

methods, 574, 634
nonvisual, 571
object properties,

621-624
overriding constructors,

635-636
overriding

destructors, 637
ownership, 576
packages, 671-672

versioning, 680
parenthood, 577
properties, 21, 571-573

access methods,
572-573

categories, 742-743
custom categories,

745-747
property editors,

713-718
dialog style, 721-724
registering, 719-720

pseudo-visual, 692
registering, 638-639
runtime packages,

676-677
set properties, 620
simple properties, 619
standard, 569
states, 636
streaming, 576
streaming nonpublished

data, 730-733
TAppBar, 920, 929

TClientDataset, 1343
TDatabase, 1245-1248
TDataModule, 1188
TddgButtonEdit,

660-663
resurfacing

events, 661
TddgDigitalClock,

664-667
TddgExtendedMemo,

643-645
TddgHalfMinute,

630-632
TddgLaunchPad,

750-760
TddgPasswordDialog,

670
TddgRunButton,

653-657
methods, 659

TddgTabListbox,
646-651

TddgWaveFile, 734-741
Sound category,

745-747
testing, 639-641
TPageProducer,

1285-1287
TQuery, 1201, 1257
tray-notification

icon, 902
handling mouse

clicks, 906
Hide Task

property, 908
Icon property, 906
main unit, 916

message
handling, 905

parameters, 903
TStoredProc, 1201
TStoredProc, 1265
TTable, 1181
TWebDispatcher, 1278
TWebModule, 1277
units, 617-618
user-defined, CD:18
writing, 614-615, 697

Components property:
TApplication class,
155

compound
documents, 776

computed columns,
databases, 1234

Concat() function, 50
concatenating

strings, 50
conditional

breakpoints, CD:321
conditional defines,

compiler versions,
CD:210

connection points,
COM, 827

connections
Access, 1207
ADO, 1214-1216
applications,

MIDAS, 1318
clients, MIDAS, 1317

connectivity compo-
nents, ADO, 1213

constant parameters,
90, CD:5

47.65227_Index 12/3/99 7:48 AM Page 1513

constants
1514

constants, 38-40
constructors

child forms, 164
components, overriding,

635-636
objects, 100

contact-free
programming, 27

containers
applications, OLE, 886
container classes, CD:60
OLE, 775

Contains folder,
Package Editor, 675

context menu handlers,
960-963
ContMain.pas unit,

966-967
registering, 964

Continue()
procedures, 87

ContMain.pas unit
control interfaces,

Component wrapper,
CD:36

control wrapper, class
definition, CD:36

controllers,
Automation, 793
in-process servers,

822-824
out-of-process servers,

817-820
controls

ActiveX, See ActiveX
controls

custom, DLLs, 231
frame, 1015

Listview, 841-844
Memo, 986-1012
VBX, CD:22
VCL, CD:355

conventions, calling,
CD:231

converting types, 82
cookies, 1296-1297
cooperative

multitasking, 276
coordinate

mapping, CD:97
coordinate systems,

CD:95-97,
CD:100-102

copy hook handlers,
954, 957-959

Copy() procedure, 73
CopyCallback()

method,
954-956

CopyCut() method,
CD:124

CopyData project
main unit, 472
read unit, 474-476

CopyDirectoryTree()
procedure, 404

copying
bitmaps, CD:124
directories, 404
directory trees, 390
files, 357-359
tables, CD:352

CopyMain.pas unit,
Copy Hook Handler,
957-959

CopyMode property,
CD:78

CopyPasteBoxToImage()
method, CD:124

CopyRect() method,
CD:61

CopyToClipboard()
method, 555

CORBA (Common
Object Request
Broker Architecture),
17, 1096
clients, 1129

Java servers, 1136
late-bound, 1133
server connections,

1131
COM definitions, 1099
DII (Dynamic

Invocation Interface),
1133

IDL (Interface
Definition
Language), 1096

interfaces, 1096
proxies, 1097
server application,

1111, 1129
servers, Java-written,

1136
skeletons, 1097
Smart Agents, 1098
stubs, 1097
support classes, 1101
Type Library Editor,

1110-1111

47.65227_Index 12/3/99 7:48 AM Page 1514

databases
1515

CORBA Object Wizard,
1102, 1111
Instancing option, 1103
Threading Model

option, 1104
CorbaServer_c unit,

1140-1144
Count DrawText

parameter, CD:94
CPU view, CD:331-332
Create() method,

TApplication
class, 157

CreateForm() method,
TApplication
class, 156

CreateMutex()
function, 126

CreateRoundRectRgn()
function, 695

CreateToolhelp32Snaps
hot() function, 502

curly-brace
comments, 34

Currency type, 70
cursors

customizing, 177
synching, CD:335

Custom Clipboard
project, 557-559

custom
components , 570

custom controls,
DLLs, 231

Customer data module,
Client Tracker appli-
cation, 1420-1427

Customer entry
form, Inventory
Manager applica-
tion, 1394-1398

Customer search
form, Inventory
Manager applica-
tion, 1409-1412

CUSTOMER table,
Inventory Manager
application, 1365

customizing
Clipboard, 552, 555
components, 28
cursors, 177
hint window, 692
property categories,

745-747

D
data, global, zero-

initialized, CD:6
data access options,

Access, 1212
data breakpoints,

CD:323
data files, text

tables, 1204
data integrity,

client/server
applications, 1224

data module
DDG, 1442-1452
files, naming, CD:13
SRF project, 1188-1189

units, naming, CD:14
Web DDG, 1471

data reconciliation,
MIDAS applications,
1325-1327

data retrieval, MIDAS
applications, 1321

data stores, ADO
connections, 1214

data streaming, Web
sites, 1303-1305

data types
database columns, 1233
dataset fields, 1162
WideString, 855

Database Form
Expert, 29

databases, 1151
Access

connections, 1207
access privileges, 1243
background queries,

324, 327
clients, 1245
columns, data

types, 1233
computed

columns, 1234
data integrity, 1229
default field

values, 1235
domains, 1235
foreign keys, 1235
login dialogs,

1248-1251
migrating from Delphi

4, CD:214
queries, 1258-1260

47.65227_Index 12/3/99 7:48 AM Page 1515

databases
1516

Format() function,
1261-1262

result sets,
1263-1265

records, locking, 1228
revoking rights, 1245
security, 1228
SQL pass-through

mode, 1254
stored procedures,

1237-1240
access rights, 1244
non-result sets, 1266
result sets,

1267-1268
tables, defining, 1233
transaction control,

1252-1254
transaction

orientation, 1230
triggers, 1241-1242
VCL, CD:333

TDataSet,
CD:359-363

views, 1236
access rights, 1244

datasets, 1150
BLOB fields, 1171-1174
BOF property,

1153, 1159
bookmarks, 1154
calculated fields, 1168
drag-and-drop

fields, 1170
EOF property,

1153, 1159

fields, 1160
adding, 1165
data types, 1162
editing, 1163-1164
names, 1162
numbers, 1162
values, 1160-1161

Fields Editor, 1164
filters, 1178
indexes, 1183-1184
lookup fields, 1168
MIDAS, nested, 1332
navigating,

1153-1156, 1159
nested, 1343-1344
opening, 1152
records

finding, 1180
loop options, 1153
searches, 1181-1182

refreshing, 1177
State property, 1177

DAX (Delphi ActiveX
framework),
1014-1015
licensing ActiveX

controls, 1016-1017
reflector window, 1015

DBASE, tables, 16,
CD:336
deleted records,

CD:337, CD:339
packing, CD:340
physical record

number, CD:336
undeleted records,

CD:339

DbiGetRecord()
function, CD:336

DBSound.pas Unit list-
ing, CD:355-359

DC DrawText parame-
ter, CD:94

DCOM (Distributed
COM), 792

DCs, See Device
contexts

DCU files, 141, CD:212
DDG debug program,

1440-1441
action form, 1458
browsing bugs, 1455
bug-manipulation

routines, 1455
data module, 1442-1452
login options, 1453
main form, 1461-1465
Paradox database

configuration, 1454
user form, 1456
user interface, 1459
Web deployment, See

Web DDG
DDG Search Wizard,

1078-1085
DDGSrch.dpr unit, 1077
InitWiz.pas unit,

1075-1076
DDGMPlay project,

video programming,
CD:296

DDGSrch.dpr unit, DDG
Search Wizard, 1077

DDGTbls.pas Unit
listing, CD:344-348

47.65227_Index 12/3/99 7:48 AM Page 1516

directives
1517

DDG_DS.pas Unit
listing, CD:376-386

DDL (Data Definition
Language), 1232

Debug Inspector
window, CD:326

debug inspectors,
CD:326

debugging, 11
breakpoints, CD:321
call stack, CD:327
code, line-by-line,

CD:325
CPU view, CD:331
DLL, CD:330
Evaluate option, CD:327
Event Log, CD:329
inspectors, CD:326
integrated debugger,

CD:321
Modify option, CD:327
Modules view, CD:329
MTS, 885
shell extensions, 953
viewing threads,

CD:328
Watch window, CD:326

Dec() procedure, 44
declarations,

objects, 100
decorative font family,

CD:135
decrement

procedures, 44
default value

parameters, 35

defaults, printers,
changing,
CD:189-191

DefineBinaryProperty()
method, 734-736

DefineProperty()
function, 732

defining
events, 629-630, 633
interfaces, 108-109
tables, databases, 1233

deleted records
testing for, CD:339
viewing, CD:337

deleting directory
trees, 390

DelSrch program,
311-315, 321
priorities, 322
search threads, 316-318

Delta priority, 290
deploying applications,

MIDAS, 1354
dereferencing

pointers, 79
descendant classes,

CD:11, CD:37
descenders, fonts,

CD:135
design packages

components, 676-679
vs. runtime, CD:17

designing
applications, 161-162
UIs, 28

desktop options files,
140

Destroy() method,
Tapplication
class, 157

destructors, compo-
nents, 101, 637

detail tables, 1184-1185
Detail9x.pas unit,

520-526
DetailNT.pas unit,

537-540
deterministic record

locking, 1229
device contexts (DCs),

CD:94
device coordinates,

CD:95
device-independent

bitmaps (DIBs),
CD:58

DeviceCapabilities()
function, CD:191-194

DeviceType property,
TMediaPlayer,
CD:298

.df files, 140

.dfm files, 24, 138-139
dialog property editors,

721-724, 760,
763-768, 772

DIBs, See device-
independent bitmaps

DII (Dynamic
Invocation
Interface), CORBA,
1133

directives
compiler, packages,

680-681

47.65227_Index 12/3/99 7:48 AM Page 1517

directives
1518

implements, 111
message, 207
overload, 35
reintroduce, 104

directories
copying, 404
current,

determining, 385
files searches, 386-388
SysInfo data, 490
system, locating, 385
Windows, locating on

system, 384
directory trees, copying

or deleting, 390
DispatchMessage()

method, 207
dispinterfaces, 857
Display property, video

programming,
CD:294

displaying font
information, CD:146

DisplayRect property,
video programming,
CD:295

Div operator, 43
DllCanUnloadNow()

method, 790
DllGetClassObject()

method, 790
DllRegisterServer()

function, 789
DLLs (dynamic link

libraries), 124, 226,
CD:231
Callback functions,

251-257

custom controls, 231
displaying

modal forms,
235-236

modeless forms,
237-238

entry/exit events,
244-249

exceptions, 250-251
explicit loading,

241-243
exporting objects,

266-270
files, CD:40
hiding

implementation, 230
implicit linking,

239-241
interface units, 232-233
PenniesToCoins, 231
preferred base

addresses, 227
projects, debugging,

CD:330
PSAPI, 527
shared memory, 259-265
sharing code with appli-

cations, 230
DllUnregisterServer()

function, 789
docking

toolbars, 20
windows, 30

documents
adding to menus,

CD:273
ActiveX, 776

coding standards,
CD:1-19

compound, 776
.dof files, 140
domains

Inventory Manager
application, 1364

ORB, 1098
tables, 1235

dot symbol
operator, 78

double types, 46, CD:6
.-dp files, 140
.dpk files, 141
.dpr files, 24, 137,

179, 183
drawing

bitmaps, CD:274
ellipses, CD:84
lines, TCanvas, CD:83
MDI Client Window

listing, CD:276-280
shapes, CD:89

TCanvas, CD:84
DrawSprite() method,

CD:131
DrawText parameters,

CD:94
drivers, ODBC, 1206
drives

disk details, 381
listing for system, 380

.dsk files, 140
DstpBugs component,

Web DDG, 1472
Dumb Wizard,

1058-1060

47.65227_Index 12/3/99 7:48 AM Page 1518

.emf file extension
1519

DumbWiz.pas unit,
Dumb Wizard
project, 1060

duplex printing, CD:189
DwMessage parameter

AppBars, 918
tray-notification icon

component, 902
dynamic arrays, 72
dynamic link libraries,

See DLLs
dynamic linking,

226, 229
dynamic methods,

103, CD:11
dynamic SQL,

1257, 1329
dynamic typing,

variants, 60
dynamic Web pages,

1285
dynamically allocated

strings, CD:222

E
EAbort exception class,

CD:392
EAccessViolation

exception class,
CD:392

early binding
Automation, 795
CORBA clients, 1129

server connections,
1131

EAssertionFailed excep-
tion class, CD:392

EBitsError exception
class, CD:392

EComponentError
exception class,
CD:392

EControlC exception
class, CD:392

EDbEditError exception
class, CD:392

EDdeError exception
class, CD:392

Edit Breakpoint dialog
box, CD:322

Edit menu items, event
handlers, CD:252

editing
components, 725-726

component lists,
760-772

registering editor,
727-729

dataset fields,
1163-1164

Editors, 11
property, See prop-

erty editors
MIDAS client data,

1322-1323
properties

as text, 715-718
dialog style, 721-724

methods, CD:370
Editor Options

command, Tools
menu, CD:2

Edt type prefix, CD:19

EExternalException
exception class,
CD:392

EInOutError exception
class, CD:392

EIntError exception
class, CD:392

EIntfCastError excep-
tion class, CD:393

EInvalidCast exception
class, CD:393

EInvalidGraphic excep-
tion class, CD:393

EInvalidGraphic-
Operation exception
class, CD:393

EInvalidOperation
exception class,
CD:394

EInvalidPointer excep-
tion class, CD:394

Elements, arrays, 72
EListError exception

class, CD:394
ellipses, drawing,

CD:84
elliptical hint window,

692-696
EMathError exception

class, CD:394
embedding OLE

objects, 776, 886
EMCIDeviceError excep-

tion class, CD:395
EMenuError exception

class, CD:395
.emf file extension,

CD:59

47.65227_Index 12/3/99 7:48 AM Page 1519

empty variants
1520

empty variants, 66
encapsulating VCL

controls as ActiveX
controls, 985

End keyword, 84
EndDoc TPrinter

method, CD:155
Entry events, DLLs,

244-249
EnumDeviceDrivers()

method, 527
Enumerated properties,

components, 620
enumerated types,

CD:7, 605
EnumProcesses()

function, 527
Envelope Printing

Demo listing,
CD:173-180

envelopes, printing,
CD:168

environment variables,
SysInfo, 494-495

EOF property, datasets,
1153, 1159

EOleCtrlError exception
class, CD:395

EOleError exception
class, CD:395

EOutlineError excep-
tion class, CD:395

EOutOfMemory excep-
tion class, CD:395

EPackageError excep-
tion class, CD:395

EParserError exception
class, CD:395

EPrinter exception
class, CD:395

EPrivilege exception
class, CD:395

EPropertyError excep-
tion class, CD:395

ERegistryException
exception class,
CD:395

EReportError exception
class, CD:396

EResNotFound excep-
tion class, CD:396

error codes
BDE, CD:425
Win32, CD:397

API functions, 133
error handling, 133

printing, CD:156
runtime, CD:317
system, CD:397

error messages,
CD:389-391

error reconciliation,
Client Tracker appli-
cation, 1428-1429

error-checking options,
CD:316

EStackOverflow excep-
tion class, CD:396

EStreamError exception
class, CD:396

EStringListError excep-
tion class, CD:397

EThread exception
class, CD:397

ETreeViewError excep-
tion class, CD:397

Evaluate option,
debugging, CD:327

event handlers, CD:252
Character menu items,

CD:253
components, 574-575
Edit menu items,

CD:252
File menu items,

CD:261
OnAction, 1283
OnClose, 147
OnDestroy, 148
OnFormatCell,

1293-1295
WebModule1WebAction

Item1Action, 1279
Window menu items,

CD:270
Event Log, debugging,

CD:329
events, 21, 27

Automation, 825-827
with multiple sinks,

833-837
components, 574
defining, 629
Delphi, 826
OnKeyDown, 27
OnMessage, 200
OnMouseDown, 27
properties, 629-630, 633
TApplication class,

158-159
TQueryTableProducer,

1292
TTable component,

1186

47.65227_Index 12/3/99 7:48 AM Page 1520

files
1521

exception classes,
CD:391-397

exception handling,
CD:390
overriding, 180-182
structured, 112-115

exceptions, CD:389
classes, 115-116
DLLs, 250-251
flow of execution,

117-118
handlers, CD:9-10,

CD:390
reraising, 119
runtime errors, CD:391

exclusionary set
operator, 76

ExeName property,
TApplication
class, 154

Exit events, DLLs,
244-249

exiting Windows from
applications, 186

experts, 29
explicit loading, DLLs,

241-243
exporting objects from

DLLs, 266-270
expressions, variants,

64-65
Extended type, CD:6
extensibility of

components, 28
external leading,

fonts, CD:136
ExtractIcon()

function, 507
EZThrd application, 287

F
families, fonts, CD:135
FdwSound parameter,

PlaySound(), CD:292
fields, 99

databases, default
values, 1235

datasets, 1150, 1160
adding, 1165
BLOB, 1171-1174
calculated, 1168
data types, 1162
drag-and-drop, 1170
editing, 1163-1164
lookup, 1168
names, 1162
numbers, 1162
values, 1160-1161

formatting, CD:11
naming, CD:11
TLOGFONT, CD:144
visibility, CD:11

Fields Editor, 1164
calculated fields, 1168
editing dataset

fields, 1167
file headers, CD:14
File menu items, event

handlers, CD:261
file-mapping objects,

363-364. See also
memory-mapped
files

FileOfRec project,
source code, 350-353

files
.avi, CD:293
backup, 140

.bpl, 141
C/C++ in projects,

443-444
closing, 339
copy routine, 357-359
data, text tables, 1204
data module, naming,

CD:13
.dcu, 141
.df, 140
.dfm, 138-139
.dfm, saving as text

files, 24
DLLs, CD:40
.dof, 140
.-dp, 140
.dpk, 141
.dpr, 24, 137, 179
.dsk, 140
extensions, CD:59
form, naming, CD:12
memory-mapped, 262,

361-362
example, 367-370

moving to Recycle
Bin, 405

OCX, CD:40
operating system design,

401
.-pa, 140
packages, 673
pas, 138
PasStng.h, 448
projects, 24-25, 137

desktop options, 140
form files, 138-139
naming, CD:12
options, 140
package files, 141

47.65227_Index 12/3/99 7:48 AM Page 1521

files
1522

resource files, 139
unit files, 138

read-only, 339
remote data module,

naming, CD:13
.res, 139, 175-176
.rtf, 355
schema, text

tables, 1202
searches, across

directories, 386-388
source, loading, 25
text, See text files
.udl, 1214
unit, naming, CD:13
untyped, 355-356
version data, 392, 401
WAV, CD:291-293

files of record, 344
FileSrch project

main form, 375-378
MemMap.pas unit,

372-374
Fill Options radio

group, CD:123
FillFileMaskInfo()

method, 400
FillFileVersionInfo()

method, 399
FillFixedFileInfoBuf()

method, 400
Filter Editor, CD:291
Filter form, SRF project,

1197-1200
filters

bugs, DDG program,
1455

datasets, 1178

finalization parts,
units, 94

Finalization section,
CD:14

finding dataset
records, 1180

FindWindow()
function, 416

firewalls, MIDAS
issues, 1356

Flag pane, CPU view,
CD:332

flat address
space, CD:233

flat memory
model, 130

fliters, datasets, 1178
floating-point (/)

operator, 43
floating-point types,

CD:6
floating-point unit

(FPU), CD:213
flow of execution,

117-118
folders, shell, 934
Font-Creation Project

listing, CD:138-142
fonts, CD:77

advanced, CD:134
ascenders, CD:135
ascent, CD:136
baseline, CD:136
basic, CD:134
descenders, CD:135
descent, CD:136
displaying information,

CD:146

families, CD:135
GDI, CD:136
glyphs, CD:134
height, CD:136
leading, CD:136
point size, CD:136
points, CD:135
programming graphics,

CD:60
properties, CD:77-78
raster, CD:136
serifs, CD:135
stroke, CD:135-137
styles, CD:77
TrueType, CD:136-137
typefaces, CD:134
vector, CD:136-137
Win32, CD:134

Fonts TPrinter property,
CD:154

for loops, 71, 85
for statements, CD:9
foreign keys,

databases, 1235
form coordinates,

CD:96
Form Designer,

11-12, 21, CD:38
form files, 138-139,

CD:12
form units, CD:14-15
Form Wizards,

1086-1092
FormActive() method,

CD:150
Format DrawText

parameter, CD:94

47.65227_Index 12/3/99 7:48 AM Page 1522

functions
1523

Format() function,
485-486, 1261-1262

formatting
classes, CD:10
fields, CD:11
key words, CD:3
methods, CD:11
parameters, CD:4
parentheses, CD:3
properties, CD:12
reserved words, CD:3
routines, CD:4
source code, CD:2-3
strings, SysInfo,

485-486
type names, CD:6
variables, CD:5
with statements, CD:9

formless
applications, 186

FormPaint() method,
CD:131

forms
accessing other

forms, 143
add-in, 682
as components, 668-669
auto-creating, CD:15
base mode, 165
borders, 149
buttons, 25

mouse-click
responses, 26

captionless,
resizable, 150

child, 162, 888-890,
CD:242
child windows, 165

hidden, CD:281-284
icons, 149
InfoForm, 484
inheritance, 152
main

Border Style/Icon
project, 150-151

MDI applications,
CD:264

MDI applications,
CD:245-253, CD:264

modal, 145-146,
235-236

modeless, 147-148,
237-238

multiple instances,
preventing, 178

naming, CD:15
navigation/status, 167,

169-172
printing, CD:159
rich text editor,

CD:254-261
sizing, 184-185
source code, 23
status, 167-172
TDBModeForm, 165
TDBNavStatForm,

167-172
visual inheritance, 152
Web-based, 1301-1302

frame controls, 1015
Frame window, MDI

applications, CD:241
frames, 172
framework classes,

projects, 145
free memory, 131

FreeRecordBuffer(),
CD:365

friend classes, 107
FsBold font style, CD:77
FsItalic font style,

CD:77
FStrikeOut font

style, CD:77
FsUnderline font

style, CD:77
functions, 88

API, CD:235-236
PlaySound(),

CD:292
upgrading, CD:234

AddEmUp(), 90
AddInts(), 36
C/C++, calling, 444
Callback, 251-257
CallNextHookEx(), 428
CallWindowProc(), 409
ClassInfo(), 589
CloseHandle(), 127
CombineRgn(), 695
Concat(), 50
CreateMutex(), 126
CreateRoundRectRgn(),

695
CreateToolhelp32Snaps

hot(), 502
DbiGetRecord(),

CD:336
DefineProperty(), 732
DllRegisterServer(),

789
DllUnregisterServer(),

789
EnumProcesses(), 527

47.65227_Index 12/3/99 7:48 AM Page 1523

functions
1524

ExtractIcon(), 507
FindWindow(), 416
Format(), 485-486

database queries,
1261-1262

GetBaseClassInfo(),
596

GetDiskFreeSpace(),
382

GetDriveType(), 380
GetEnumName(), 596
GetFromClipboard(),

556
GetLastError(), 133
GetPropInfo(), 599
GetTextMetrics(), 697
GetTypeData(), 596
GetVersionEx(),

488-489
GlobalAlloc(), 556
heap, 132
Heap32First(), 512
Heap32ListFirst(), 512
Heap32ListNext(), 512
Heap32Next(), 512
helper, 51
High(), 91
IsPositive(), 89
Length(), 53
LoadImage(), 507
Low(), 91
MapViewOfFile(),

365-366
memory allocation, 58
memory deallocation, 58
Module32First(), 510

Module32Next(), 510
New(), 80
OpenMutex(), 126
OpenProcess() , 527
overloading, 35
Play(), 433
PostMessage(), 202
Printer(), CD:154
Process32First(), 503
Process32Next(), 503
processes, 124
ProcessExecute(), 659
RealizeLength(), 53
RegisterClipboard-

Format(), 555
RegisterWindow-

Message(), 206
SafeCall, 251
SelectObject(), 128
SendKeys(),

428-432, 440
SendMessage(), 202
SetWindowLong(), 409
SetWindowRgn(), 695
SHAppBarMessage(),

918
Shell_NotifyIcon(), 902
SHFileOperation(), 404
ShortStringAsPChar(),

55
SizeOf(), 47, 59, 91
SQL aggregate,

CD:350-CD:351
StdWndProc(), 207
StrAlloc(), 58-59
StrCat, 59

StrNew(), 59
SysAllocStrLen(), 56
Thread32First(), 507
Thread32Next(), 507
ToolHelp32ReadProcess

Memory(), 515
UnhookWindowsHook

Ex(), 428
UnmapViewOfFile(),

366
VarArrayCreate(), 67
VarArrayDimCount(),

68
VarArrayHighBound(),

68
VarArrayLock(), 68-69
VarArrayLowBound(),

68
VarArrayOf(), 68
VarArrayRedim(), 68
VarArrayRef(), 68
VarArrayUnlock(),

68-69
VarAsType(), 70
VarCast(), 70
VarClear(), 70
VarCopy(), 70
VarFromDateTime(), 70
VarIsArray(), 68
VarIsEmpty(), 70
VarIsNull(), 70
VarToDateTime(), 70
VarToStr(), 70
VarType(), 70
virtual memory, 131
VirtualAlloc(), 131

47.65227_Index 12/3/99 7:48 AM Page 1524

graphics programming
1525

G
garbage-collected

types, 49
GDI (Graphics Device

Interface)
fonts, CD:136
objects, 127
programming graphics,

CD:60
routines

coordinate systems,
CD:95

mapping
modes, CD:95,
CD:100-102

general-purpose
units, CD:14

generators,
Inventory Manager
application, 1367

generic thinking,
458-461, 467-468

Get methods, CD:37
GetBaseClassInfo()

function, 596
GetBookmarkData()

method, CD:368
GetBookmarkFlag()

method, CD:368
GetCDTotals() method,

CD:305
GetClassAncestry()

procedure, 596
GetClassProperties()

procedure, 597

GetDeviceCaps()
function, CD:191

GetDirInfo() procedure,
490

GetDiskFreeSpace()
function, 382

GetDriveType()
Function, 380

GetEnumName()
function, 596

GetFieldData()
method, CD:367

GetFileOS()
method, 401

GetFromClipboard()
function, 556

GetLastError()
function, 133

GetMapMode()
function, CD:99

GetPackageInfo()
procedure, 477

GetPreDefKeyString()
method, 400

GetPrinter TPrinter
method, CD:155

GetPropInfo()
function, 599

GetRecord() method,
CD:365

GetRecordSize()
method, CD:367

GetSystemInfo()
procedure, 490

GetTextMetrics()
function, 697

GetTypeData()
function, 596

GetUserDefKeyString()
method, 400

GetVersionEx()
function, 488-489

Getter methods,
609-612

global data,
zero-initialized, CD:6

global identifiers,
units, 143

global variables, CD:6
GlobalAlloc() function,

556
GlobalMemoryStatus()

procedure, 486
glyphs, CD:134
graphical

components, 570
graphics

bitmaps, CD:58
Clipboard operations,

550-551
icons, CD:59
metafiles, CD:59
multithreaded, 330, 332

Graphics Device
Interface, See GDI

graphics programming
animation, CD:124,

CD:132-134
fonts, CD:60
GDI, See GDI
TImage, CD:58

47.65227_Index 12/3/99 7:48 AM Page 1525

GUIDs
1526

GUIDs, (Globally
Unique Identifiers),
30, 779

H
Handle property,

CD:94, 155
Handle TPrinter

property, CD:154
HandleException()

method, TAppli-
cation class, 156

handlers
exceptions, CD:390

default, CD:390
overriding, 180-182
structured, 112-115

See also shell
extensions, 952

handles, 570
instance, 126
module, 126
objects, 127

handling messages,
197-201. See also
message handling

HasDefVal()
procedure, 36

heap
functions, 132
viewing, 515-516
walking through,

512-513
Heap32First()

function, 512

Heap32ListFirst()
function, 512

Heap32ListNext()
function, 512

Heap32Next()
function, 512

height, fonts, CD:136
help, 136
HelpCommand()

method,
TApplication class,
157

HelpContext() method,
TApplication class,
157

helper functions, 51
helper routines, Web

DDG, 1474
HelpFile property,

TApplication
class, 156

HelpJump() method,
TApplication
class, 157

Hide Task property,
tray-notification icon
component, 908

hierarchy
components, 578
TField class, 1166

High() function, 91
HInstance variable, 126
Hint window, 692-696
hints, tray-notification

icon component, 906
Hmod parameter,

PlaySound(), CD:292

HookMainWindow()
method, 414

hooks, 426-432
HookWnd project, 414
HPrevInst variable, 126
HResult return

type, IUnknown
interface, 786

HTML
forms, 1301-1302
pages, See Web pages

HTTP (Hypertext
Transfer Protocol),
1274

I
I/O checking runtime

error, CD:317
.ico file extension,

CD:59
icon handlers, 972

IconMain.pas unit,
974-977

registering, 974
Icon property

TApplication class, 155
tray-notification icon

component, 906
IconMain.pas unit, icon

handlers, 974-977
icons

components, 642
forms, 149
image bitmap, CD:59
mask bitmap, CD:59

47.65227_Index 12/3/99 7:48 AM Page 1526

instancing
1527

IContextMenu
interface, 962

ICopyHook interface,
954

ID binding,
Automation, 796

IDE (Integrated
Development
Environment)
Code Editor, 22
Code Explorer, 22
Component Palette, 20
Form Designer, 21
main menu, 20
main window, 19
migrating from Delphi

4, CD:212
Object Inspector, 21
packages, installing, 674
source code, See source

code
toolbars, 20

IDispatch interface, 794
IDL (Interface

Definition
Language), 1096

Idl2Pas compiler,
1136-1140

IExtractIcon
interface, 972

if statements, 83, CD:8
if..else statements, 84
IIDs (interface IDs),

780, 785
Illustration of Mapping

Modes listing,
CD:102-104

Illustration of Pen
Operations listing,
CD:66-68

Illustration of Shape-
Drawing Operations
listing, CD:84-88

images, See graphics
implementation files,

Memo control,
1001-1012

Implementation
section, CD:13

Implementation unit,
TQueryServer,
1124-1126

implementing
interfaces, 109

Implements
directive, 111

implicit linking, DLLs,
239-241

Import ActiveX dialog
box, CD:24

ImportActiveX Control
command,
Component menu,
CD:24

importing text
tables, 1205

In operator, 76
in-proc servers

Automation, 812-816,
822-824

COM, 788-790
Inc() procedure, 44
increment

procedures, 44

indentation, source
code formatting,
CD:2

indexes, 1151, 1234
properties, CD:38
tables, 1183-1184

InfoU.pas unit, 495-498
inheritance, forms, 152
InitControlData()

procedure, CD:37
InitControlInterface()

method, CD:37
Initialization section,

CD:13, 94
InitWiz.pas unit

DDG Search Wizard,
1075-1076

Wizard Wizard project,
1064-1065

Inprise, 18
Inprise Idl2Pas com-

piler, 1138-1140
inside objects, 107
Install dialog box,

CD:25
installing

MTS servers, 878
packages, 674

instance handles,
processes, 126

instancing
in-proc COM

servers, 790
IShellLink

interface, 934
MIDAS applications,

1315

47.65227_Index 12/3/99 7:48 AM Page 1527

instancing
1528

naming
components, CD:18
data modules, CD:17

out-of-process COM
servers, 792

threads, 281
Instancing option,

CORBA Object
Wizard, 1103

instantiation
modal forms, CD:15
objects, 100

integers
RTTI, 604
types, 46, CD:227

integrated debugger,
CD:321

InterBase, client/server
applications, 1232

Inteface section, CD:13
interface statements,

units, 94
interface units, DLLs,

232-233
interfaces, 108, 111,

855-857
COM, 774, 778
CORBA, 1096
defining, 109
IContextMenu, 962
ICopyHook, 954
IDispatch, 794
IExtractIcon, 972
implementing, 109
IPersistFile, 972
IQueryServer,

1111-1113
IShellExtInit, 960

IShellLink,
933-934, 937
instancing, 934
link operations,

938-942
IUnknown, 779

HResult return type,
786

IIDs, 785
method aliasing, 785
methods, 781
variables, 781-782

Open Tools, 1056
stateless, 859
type libraries, 848

internal leading, fonts,
CD:136

internal messages, 204
InternalAddRecord()

method, CD:370
InternalClose()

method, CD:372
InternalDelete()

method, CD:370
InternalGoto-

Bookmark()
method, CD:369

InternalHandle-
Exception()
method, CD:372

InternalInitFieldDefs()
method, CD:372

InternalInitRecord()
method, CD:365

InternalOpen()
method, CD:373

InternalSetToRecord()
method, CD:369

Internet
applications, 1277

cookies, 1296-1299
data streaming,

1303-1305
dynamic Web

pages, 1285
event handlers, 1279
forms, 1301-1302
HTML tables,

1288-1293
MIDAS, 1356
passing client

requests, 1282
redirection, 1300
server responses,

1282
DDG deployment, See

Web DDG
development issues,

migrating from
Delphi 4, CD:214

MIDAS applications,
1335-1337

InternetExpress,
1339-1341

intersection operator,
sets, 77

Introduction page, Web
DDG, 1474-1475

Inventory entry form,
Inventory Manager
application,
1399-1402

Inventory Manager
application

47.65227_Index 12/3/99 7:48 AM Page 1528

LineTo() method
1529

back-end, 1362-1363
business rules, 1372
customer entry form,

1394-1398
customer search form,

1409-1410
CUSTOMER

table, 1365
database

permissions, 1371
domains, 1364
generators, 1367
inventory entry form,

1399-1402
ITEMS table, 1366
login/out methods, 1384
main form, 1389-1393
PART table, 1366
sales entry form,

1404-1407
SALES table, 1366
stored procedures,

1368-1369
Temporary table,

methods, 1386
triggers, 1367
user interface, 1388

invoking ActiveX
controls, CD:54

IPersistFile
interface, 972

IQueryServer
interface, 1111
IDL, 1128
methods, 1113
stub/skeleton,

1114-1124

IREP (Interface
Repository), 1098

ISAPI (Internet Server
Application
Programming
Interface), 1276

ISAPITER.DPR
project, 1277

IsCursorOpen()
method, CD:374

IShellExtInit
interface, 960

IShellLink interface,
933-942

IsPositive()
function, 89

ITEMS table, Inventory
Manager
application, 1366

IUnknown
interface, 779
IIDs, 785
method aliasing, 785
methods, 781
variables, 781-782

J-K
Java, CORBA

client/servers, 1136
joins, MIDAS applica-

tions, 1332-1334
JournalPlayback hook,

428-432
kernel objects, 124-126
key presses, 431

Key search form, SRF
project, 1195-1196

keywords
begin, 84
class, 108
end, 84
formatting, CD:3
message, 28
set of, 75
Type, 71

L
late binding

Automation, 795, 854
CORBA clients,

1133-1135
LDTs (Local Descriptor

Tables), 127
left operator (<), 41
length, AnsiStrings, 52
Length() function, 53
length-byte strings, 54
libraries, type, See type

libraries
licensing MIDAS

applications, 1353
lifetime management

local variables, 50
types, 49
variants, 62

line styles, CD:64
LineTo() method,

CD:83

47.65227_Index 12/3/99 7:48 AM Page 1529

LineTo() TCanvas method
1530

LineTo() TCanvas
method, CD:83

linking
dynamic, 226, 229
master/detail,

1344-1350
OLE objects, 776
shell, IShellLink

interface, 938-942
static, 228

list boxes,
owner-draw, 255

lists of components,
749-760, 763-772

Listview control,
841-846

load balancing,
multitier applica-
tions, 1312

LoadImage()
function, 507

loading
DLLs explicitly,

241-243
source files, 25

Local InterBase
Server, 1362

local tables, 1187
local thread storage,

293-297
local variables, 50, CD:5
locating dataset

records, 1180
locking database

records, 1228
logical coordinates,

CD:95-96
logical operators, 41

logins
databases, 1248-1251
DDG program, 1453
Inventory Manager,

1384
long strings, See

AnsiStrings
lookup fields, datasets,

1168
loops, 85

control variables, CD:5
for, 85

arrays, 71
iterating dataset

records, 1153
repeat..until, 87
terminating, 87
while, 86

Low() function, 91
LpData parameter,

tray-notification icon
component, 903

Lstbx type prefix,
CD:19

M
main form

Client Tracker applica-
tion, 1430-1436

DDG, 1461-1465
FileSrch project,

375, 378
Inventory Manager

application,
1389-1393

MDI applications,
CD:264-271

Shell Link project,
943-951

SRF project, 1190
VerInfo project, 401-402

main menu, IDE, 20
main module, units, 24
main unit

CopyData project, 472
SRF project, 1191-1192
tray-notification icon

component, 916-918
Wavez project,

1174-1176
main window

IDE, 19
Main.pas unit

BJ Project listing,
CD:46-54

DDGSearch Wizard,
1079-1085

listing, CD:297-298
Wizard Wizard project,

1067-1070
MainForm property,

TApplication
class, 154

MainWndProc()
method, 208

MakeMessage()
procedure, 431-432

MakeObjectInstance()
method, 412

MakeObjectInstance()
method, 411

managing memory, 130

47.65227_Index 12/3/99 7:48 AM Page 1530

messages
1531

managing projects,
141-145

mapping modes, CD:95
coordinates, CD:97
default, CD:99
device coordinates,

CD:95
form coordinates,

CD:96
project example,

CD:102
screen coordinates,

CD:96
setting, CD:100
Win32, CD:98
Window extents,

CD:100
MapViewOfFile()

function, 365-366
margins, source code

formatting, CD:2
Marquee component,

696-708
animating, 700
copying text, 699
testing, 710-712

master tables,
1184-1185

master/detail
linking, 1344-1350
MIDAS relationships,

1331
math, 32-bit,

upgrading, CD:229
maximizing windows,

CD:284

MCI (Media
Control Interface),
functions, 304

MDI (Multiple
Document Interface)
child forms, 888-890
Windows implementa-

tion, CD:240
MdiBmpFrm.pas unit,

CD:262-263
MdiChildFrm.pas unit,

CD:242-244
MdiEditFrm.pas unit,

CD:246-252
MdiMainForm.pas unit,

CD:264-268
MdiRtfFrm.pas unit,

CD:254-261
measurement units

fonts, CD:136
metrics, CD:168

Media Control
Interface, See MCI

Media Player,
CD:290-291

membership operator,
sets, 76

MemMap.pas unit,
FileSrch project,
372-374

Memo control
implementation file,

1001-1012
project file, 986
type library file,

989-1000
memory

allocation functions, 58

arrays, 72
deallocation

functions, 58
flat memory model, 130
heaps, 132
managing, 130
multidimensional

arrays, 73
paging file, 130
pointers, allocating, 80
status data, SysInfo,

486-487
virtual addresses, 130

Memory Dump pane,
CPU view, CD:332

memory-mapped files,
132, 262, 361-362,
367-370

menus
MDI applications,

CD:272-273
merging, CD:272

Message directive, 207
Message keyword, 28
message-specific

records, 196
MessageBeep()

procedure, 199
messages, 192-194,

208-209, 212- 214
between

applications, 206
broadcasting, 207
Delphi, 195
handling, 197-199,

408, 905
internal, 204

47.65227_Index 12/3/99 7:48 AM Page 1531

messages
1532

methods, 103
notification, 203
result values, 200
sending, 201
thread synchronization,

286
user-defined, 205
WM_COPYDATA, 470

metadata, 1232
metafiles, CD:59,

CD:183
methods

AddRef(), 781
Abort(), CD:167
AboutBox(), CD:37,

CD:54
abstract, CD:11, CD:371
access, CD:12
aliasing, IUnknown

interface, 785
appevMainIdle(),

CD:131
Assign(), CD:78
calling, CD:37
Chord(), CD:84
ClearCanvas, CD: 74,

CD:92
components, 574, 634
CopyCallback(), 954
CopyCut(), CD:124
CopyPasteBoxTo

Image(), CD:124
CopyRect(), CD:61
CopyToClipboard(),

555
CUSTOMER table,

Inventory Manager

program, 1385
DefineBinaryProperty(),

734-736
DispatchMessage() ,

207
DllCanUnloadNow(),

790
DllGetClassObject(),

790
DrawSprite(), CD:131
dynamic, 103, CD:11
editing, CD:370
Ellipse(), CD:84
EnumDeviceDrivers(),

527
FillFileMaskInfo(), 400
FillFileVersionInfo(),

399
FillFixedFileInfoBuf(),

400
FormActive, CD:150
formatting, CD:11
FormPaint(), CD:131
get, CD:37
GetFileOS(), 401
GetPreDefKeyString(),

400
GetUserDefKeyString(),

400
HookMainWindow(),

414
InitControlInterface(),

CD:37
IQueryServer

interface, 1113
IUnknown

interface, 781

LineTo(), CD:83
MainWndProc(), 208
MakeObjectInstance(),

411-412
message, 103
mmiBitmapPattern1Click

(), CD:75
mmiBitmapPattern2Click

(), CD:75
mmiDrawText-Center(),

CD:93
mmiDrawTextLeft(),

CD:93
mmiDrawTextRight(),

CD:93
mmiMM_ISOTROPIC

Click(), CD:106
mmiPatternsclick(),

CD:75
mmiPenColors-Click(),

CD:69
mmiPenModeClick(),

CD:69
mmiStylesClick(),

CD:69
mmiTextRectClick(),

CD:93
MoveTo(), CD:83
naming, CD:11
navigational, CD:369
overloading, 35, 104
overriding, 103
PART table, Inventory

Manager program,
1385

pbPasteBoxPaint(),
CD:124

47.65227_Index 12/3/99 7:48 AM Page 1532

migrating to Delphi 5
1533

PenniesToCoins(), 231
Perform(), 202
Pie(), CD:84
Polygon(), CD:84,

CD:89
PolyLine(), CD:84
ProcessMessage(), 207
property access,

572-573, CD: 11
QueryInterface(), 783
read, CD:37
record number, CD:375
Rectangle(), CD:84
RoundRect(), CD:84
Release(), 781
RTTI, 599-603
safecall, 811
SALES table,

Inventory Manager
program, 1385

SaveToFile(), CD:60
set, CD:37
SetFillPattern(), CD:89
SendTrayMessage(),

904
SetAsHandle(), 555
setter/getter, 609-612
Show(), 147
ShowEnvironment(),

494
ShowModal(), 145-146
ShowProcessDetails(),

507
ShowProcess-

Properties(), 507
static, 102, CD:11
Synchronize(), 284

TCanvas
drawing lines, CD:83
drawing shapes,

CD:84
painting text, CD:89

TDataSet, CD:370
TComponent class, 581
TddgRunButton

component, 659
TObject class, 589
TPersistent class, 579
TPrinter, CD:155
TStrings class, 587
TWinControl class, 583
types, 102
UnhookMainWindow(),

414
virtual, 103, CD:11
write, CD:37

metrics, CD:168
Microsoft Access, See

Access
MIDAS (Multitier

Distributed
Application Services
Suite), 1310
ad-hoc queries, 1329
applications

architecture, 1313
client-side transac-

tions, 1324
connections, 1318
data reconciliation,

1325-1327
data retrieval, 1321
instancing, 1315
providers, 1320

threads, 1316
undo options, 1323

briefcase model, 1329
clients

connections, 1317
data packet limits,

1328
editing data,

1322-1323
deploying applications,

1354
firewall isssues, 1356
joins, 1332-1334
licensing

applications, 1353
master/detail

relationships, 1331
nested datasets, 1332
RDM (Remote Data

Module), 1313
advertising

services, 1317
record contention, 1330
servers

RDM, 1319
registering, 1321

two-tier applications,
1351-1352

Web options, 1335-1337
Middle East version,

Windows, CD:83
migrating to Delphi 5

components, CD:212
from Delphi 1, CD:219

16-bit vs. 32-bit,
CD:237

32-bit address space,
CD:233

47.65227_Index 12/3/99 7:48 AM Page 1533

migrating to Delphi
1534

32-bit math, CD:229
32-bit resources,

CD:234
API functions,

CD:234
assembly language,

CD:230
calling conventions,

CD:231
characters, CD:219
DLLs, CD:231
operating system,

CD:233
record alignment,

CD:228
strings, CD:219,

CD:221-225
TDateTime type,

CD:229
type sizes and

ranges, CD:227
unit finalization,

CD:229
VBX controls,

CD:234
from Delphi 2, CD:216

Automation servers,
CD:218

Boolean types,
CD:216

GetChildren(),
CD:218

ResourceString,
CD:217

RTL changes,
CD:217

TCustomForm,
CD:218

from Delphi 3, CD:214
32-bit integers,

CD:214
64-bit integers,

CD:216
Real type, CD:216

from Delphi 4, CD:212
database issues,

CD:214
IDE issues, CD:212
Internet development

issues, CD:214
RTL issues, CD:213
VCL issues, CD:213

packages, CD:212
units, CD:212

minimizing windows,
CD:284

Minimizing,
Maximizing, and
Restoring All MDI
Child Forms listing,
CD:285-CD:287

MmiBitmapPattern1-
Click() method,
CD:75

MmiBitmapPattern2-
Click() methods,
CD:75

MmiDrawTextCenter()
method, CD:93

MmiDrawTextLeft()
method, CD:93

MmiDrawTextRight()
method, CD:93

MmiMM_ISOTROPIC-
Click() method,
CD:106

MmiPatternsClick()
method, CD:75

MmiPenColorsClick()
method, CD:69

MmiPenModeClick()
method, CD:69

MmiStylesClick()
method, CD:69

MmiTextRectClick()
method, CD:93

modal forms, 145-146,
235-236

ModalResult
property, 146

modeless forms,
147-148, 237-238

Modern font family,
CD:135

modes, pen, CD:65
Modify option, debug-

ging, CD:327
Module Explorer,

Delphi 4, 17
Module32First() func-

tion, 510
Module32Next() func-

tion, 510
modules

ccode.c., 447
cdll.cpp, 453
data, 1188, CD:17
handles, 126
load breakpoints,

CD:324
TDDGSalesDataModule,

1372-1383
units, 94
walking through,

510-511

47.65227_Index 12/3/99 7:48 AM Page 1534

naming
1535

Modules view,
debugging, CD:329

mouse clicks
responses, buttons, 26
tray-notification icon

component, 906-908
MoveTo() method,

CD:83
MoveTo() TCanvas

method, CD:83
moving toolbars, 20
MTS (Microsoft

Transaction Server),
857-858
debugging, 885
installing servers, 878
Object Wizard, 863
packages, 861
Remote Data Module

Wizard, 863
resource dispensers, 862
resource managers, 862
scalability, 858
security roles, 862
stateless objects, 859
tic-tac-toe sample

program, 866-884
TMtsAutoObject class,

864-865
transactions, 862

multidimensional
arrays, 72-73

multimedia
programming
audio CD player,

CD:299
source, CD:306

splash screens,
CD:299

time-conversion
routines, CD:304

updating, CD:303
device support,

CD:298-299
Media Player,

CD:290-291
time formats, CD:304
video, CD:293

DDGMPlay, CD:296
Display property,

CD:294
DisplayRect property,

CD:295
first frames, CD:294
TMediaPlayer events,

CD:295
WAV files, CD:291

multiple clients,
Automation, 833

Multiple Document
Interface (MDI)
applications
child forms, CD:242-

245, CD:281-284
child windows, CD:284
client window, CD:274
main form, CD:264-271
menus, CD:272-273
rich text editor form,

CD:254-261
text editor form,

CD:245-253
multiple inheritance, 99

multiple instances,
preventing
forms, 178
programs, 416-420

multiple threads, 293
multitasking, 128

cooperative, 276
preemptive, 129

multithreading, 129
database access,

324, 327
DelSrch program,

311-315, 321
priorities, 322
search threads,

316-318
graphics, 330-332

multitier applications,
1310
centralized business

rules, 1311
load balancing, 1312
reconciling errors, 1312
thin clients, 1311

Mutex objects, 126
mutexes, 303-306
MyFirstCORBAServer

class, 1104-1108
MyFirstCORBAServer

unit, 1109

N
name mangling, 445
naming

classes, CD:10

47.65227_Index 12/3/99 7:48 AM Page 1535

naming
1536

component units,
CD:14-18

data modules, CD:13-17
fields, CD:11

datasets, 1162
forms, CD:12-15
general-purpose units,

CD:14
methods, CD:11
packages, 681, CD:17
parameters, CD:4
project files, CD:12
properties, CD:12
remote data module

files, CD:13
routines, CD:4-5
standards, CD:17
unit files, CD:13-14
variables, CD:5

Navig8 project,
1155-1159

navigating
datasets,

1153-1156, 1159
source code, 29

navigation forms,
167-172

nested datasets, 1332,
1343-1344

New() function,
pointer memory
allocation, 80

NewPage TPrinter
method, CD:155

NFolder parameter,
shell folders, 935

Nil pointer, common
program bug,
CD:320

non-result sets, stored
procedures, 1266

nonpreemptive
multitasking, 129

nonvisual
components, 571

Not operator, 42-43
notification messages,

203, 921-922
NSAPI (Netscape

Application
Programming
Interface), 1276

null pointers, 79
null variants, 66
null-terminated

strings, 52, 57-58,
CD:223-224

numbers, dataset
fields, 1162

O
OAD (Object Activation

Daemon), 1098
Object Browser, 26, 30
Object Inspector, 21,

1167, CD:38
Object Repository,

152, 162
Object Wizard, 863
objects, 77, 100, 124

TOleControl, CD:37
ancestry, 596
Automation,

registering, 796
Clipboard-aware, 552

COM, 775
class factories,

786-787
constructors, 100
declarations, 100
destructors, 101
exporting from DLLs,

266-270
file-mapping, See

memory-mapped files
GDI, 127
handles, 127
inside, 107
instantiation, 100
kernel, 124, 126
methods, 102
MTS, 858
mutex, 126
OLE, 775

Clipboard
operations, 891

embedding, 776, 886
linking, 776
saving, 890

properties, 105
checking for exis-

tence, 598
RTTI, 597

QueryServer, 1111
RTTI data, 591
specifiers, 106
stateful, 859
stateless, 859
TCopyHook, 956
TThread , 278-280
User, 128

Obtaining a Pointer to
a TDeviceMode
Structure listing,
CD:184-185

47.65227_Index 12/3/99 7:48 AM Page 1536

overflow checking runtime error
1537

OCX
controls, See ActiveX

controls
files, CD:40

ODBC (Open Database
Connectivity)
Access connections,

1207-1209
drivers, 1206
non-supported database

access, 1206
OLE (Object Linking

and Embedding)
containers, 775

applications, 886-888
objects, 775

Clipboard
operations, 891

embedding, 776, 886
linking, 776
saving, 890

servers, 775
structured storage, 777
UDT (uniform data

transfer), 777
OLE controls, See

ActiveX controls
OleVariant type, 70,

CD:7
OnAction Event

Handler, 1283
OnClose event

handler, 147
OnDestroy event

handler, 148
OnFormatCell Event

Handler, 1293-1295
OnKeyDown event, 27

OnMessage events, 200
OnMouseDown

event, 27
OnNotify event,

TMediaPlayer,
CD:295

OnPostClick event,
TMediaPlayer,
CD:295

OOP (Object-Oriented
Programming), 97

open array
parameters, 90

Open Tools API, 1056
Dumb Wizard,

1058-1059
units, 1057
Wizard Wizard,

1062-1064
OpenDialog dialog

box, CD:290
opening

datasets, 1152
memory-mapped

files, 362
source files, 25
text files, 338

OpenMutex()
function, 126

OpenProcess()
function, 527

OpenTools API, Form
Wizards, 1086-1092

operating system,
upgrading, CD:233

operators, 40
. (dot), 78
/, 43

and, 41
arithmetic, 42
assignment, 40
bitwise, 43
comparison, 41
div, 43
logical, 41
not, 42-43
or, 41-43, CD:134
set, 76-77
set exclusions, 76
set intersections, 77
set membership, 76
set unions, 76
shl, 43
shr, 43
xor, 43
^, 79

ORB (Object Request
Broker), 1096
domains, 1098
VisiBroker, 1098,

1144-1146
ordering parameters,

CD:4
orientation, printers,

CD:186
Orientation TPrinter

property, CD:155
OS, determining type,

SysInfo, 488-489
osagent, See Smart

Agents
out-of-process servers

Automation, 796-810
controllers, 817-820

COM, 791-792
overflow checking run-

time error, CD:317

47.65227_Index 12/3/99 7:48 AM Page 1537

Overload directive
1538

Overload directive, 35
overloading, 35, 104
overriding

component constructors,
635-636

component
destructors, 637

exception handling, 180
methods, 103

Owner property,
TApplication
class, 156

owner-draw list
boxes, 255

ownership of
components, 576

P
.-pa files, 140
Package Editor, 675
packages, 96

add-in, 682-687
compiler directives, 680
components, 671-672

application
partitioning, 679

design, 676-677
runtime, 676-677
versioning, 680

files, 673
getting data, 477
installing, 674
MTS, 861
naming, 681, CD:17
runtime vs. design,

CD:17

syntax, 97
weak, 680

Packed format, CD:304
Packed records, CD:228
PackInfo project,

478-479
Packing tables, CD:340
Page layout, Web

DDG, 1470
Page-level record

locking, 1229
PageHeight TPrinter

property, CD:155
PageNumber TPrinter

property, CD:155
PageWidth TPrinter

property, CD:155
Paging file, 130
Paint programs,

CD:108, CD:122
Painting text, CD:89
PAnsiChar string type,

CD:220
paper, See printing
Paradox, 16

database, configuring,
1454

session users, CD:353
tables

packing, CD:341-
343, CD:346-348

sequence numbers,
CD:341

Parameters
AppBars, 918
arrays, 90
BASM access, 423
Boolean, CD:46

command-line, debug-
ging, CD:321

constant, 90, CD:5
default value, 35
DrawText, CD:94
formal, CD:4
passing, 89
reference, 90
tray-notification icon

component, 903
value, 89
var, 423

Params Property
Editor, 1258

Parentheses,
34-35, CD:3

Parenthood of
components, 577

PART table, Inventory
Manager applica-
tion, 1366

Pas files, 138
Pascal strings, 54
Passing parameters, 89
PasStng.h file, 448
PasStrng.pas unit,

449-451
Passwords, accessing

applications, 179
Pasting bitmap data to

Clipboard, CD:123
Patterns, brush, CD:75
PbPasteBoxPaint()

method, CD:124
PChar string type,

CD:220
PChar types, 57-58
PChar variables, 53

47.65227_Index 12/3/99 7:48 AM Page 1538

printing
1539

PChar-type variables,
commong program
bug, CD:320

PChars as strings,
CD:225

PData parameter,
AppBars, 919

Pen modes, CD:65
Pen.Mode property,

CD:64
Pen.Width property,

CD:64
PenniesToCoins()

method, 231
Pens

modes, CD:65
properties,

CD:62-CD:63
styles, CD:63

Perform() method,
sending messages,
202

Permissions, Inventory
Manager applica-
tion, 1371

PersRec project, source
code, 346-349

Pessimistic record
locking, 1229

Pie() method, CD:84
PixDlg.pas unit, 647
Pixels, CD:70, CD:171
Play() function, 433
PlayCard.pas Unit list-

ing, CD:41, CD:44
PlaySound(), CD:292
Point size, fonts,

CD:136

pointers, 78
dereferencing, 79
memory allocation, 80
null, 79
type checking, 80

points, fonts, CD:135
Polygon() method,

CD:84
Polygon() method,

CD:83-89
PolyLine() method,

CD:84
polymorphism, 98
porting programs, 53,

CD:209, CD:212-219
PostMessage()

function, 202
PowerBuilder, 16
PprdBugs component,

Web DDG, 1473
preemptive multitask-

ing, 129
preferred base

addresses, DLLs, 227
prefixes, CD:19
preventing

multiple form
instances, 178

Windows shutdown, 188
previewing printing,

CD:182-183
primary threads, 124
print color, CD:188
print quality, CD:188
print scale, CD:188
Printer Information

Sample Program
listing, CD:194

Printer() function,
CD:154

PrinterIndex TPrinter
property, CD:155

printers
default, CD:189-191
devices, CD:191-194
information, CD:191
orientation, CD:186

Printers TPrinter
property, CD:155

printing
advanced, CD:159

aborting, CD:167
envelopes,

CD:168-182
print preview,

CD:182-183
reports, CD:160-166

API methods, CD:184
copies, CD:186
TDeviceMode struc-

ture, CD:184-186
bitmaps, CD:158
color, CD:188
copies, CD:186
default printers,

CD:189-191
duplex, CD:189
envelopes, CD:168-170
error-handling, CD:156
forms, CD:159
metafiles, CD:183
paper options, CD:187
print

preview, CD:182-183
scale, CD:188

47.65227_Index 12/3/99 7:48 AM Page 1539

printing
1540

printer
information,

CD:191-206
orientation, CD:186

quality, CD:188
resolution, CD:159,

CD:188
RTF data, CD:159
simple, CD:156

bitmaps, CD:158
RTF data, CD:159
TMemo component,

CD:156
TDeviceMode structure,

CD:184-CD:186
TPrinter object,

CD:154-155
TPrinter.Abort()

procedure, CD:167
TPrinter.Canvas,

CD:155
TPrinter.Copies prop-

erty, CD:186
TPrinter.Orientation

property, CD:187
TPrintPrevPanel,

CD:183
priorities

search threads, 322
threads, 288

privileges,
databases, 1243

procedures, 88
API window, 409
assembly-written, 424
Break(), 87
Continue(), 87
Copy(), 73
CopyDirectoryTree(),

404

databases, stored,
1237-1240

Dec(), 44
decrement, 44
GetClassAncestry(),

596
GetClassProperties(),

597
GetDirInfo(), 490
GetPackageInfo(), 477
GetSystemInfo(), 490
GlobalMemoryStatus(),

486
HasDefVal(), 36
Inc(), 44
increment, 44
InitControlData(),

CD:37
MakeMessage(), 432
MakeMessage(), 431
MessageBeep(), 199
Set Length(), 52
SetLength(), 53

array memory, 72
StartPlayback(), 432
ToRecycle(), 405

Process priority classes,
288-289

process walking,
503-506

process-local tables,
128

Process32First()
function, 503

Process32Next()
function, 503

processes, 124
functions, 124
instance handles, 126
virtual memory, 130

ProcessExecute()
function, 659

processing messages,
197-199

ProcessMessage()
method, 207

ProcessMessages()
method, TAppli-
cation class, 157

Professional version,
Delphi, 8

Program bugs,
CD:317-320

Program Pause option,
CD:325

programming
COM-based, CD:7
contact-free, 27
graphics

animation, CD:124,
CD:132-134

fonts, CD:60
GDI, CD:60
TImage, CD:58
Media Player,

CD:290-291
multimedia, CD:289

audio CD player,
CD:299-304

device support,
CD:298-299

video, CD:293
WAV files,

CD:291-293
programs

paint, CD:122, CD:128
MTS, tic-tac-toe exam-

ple, 866-877

47.65227_Index 12/3/99 7:48 AM Page 1540

Properties
1541

porting 16-bit to 32-bit
system, 53

See also applications
Project Explorer, 31
project files

Memo control, 986
naming, CD:12
sample application, 25
uses clause, 25

project groups, 144
Project Illustrating

CopyMode Usage
listing, CD:80-82

project management,
141-145

Project Manager,
project groups, 144

Project Options dialog
box, CD:15, CD:245,
CD:316

project options
files, 140

project-management
routines, 174

projects
Border Style/Icon, main

form, 150-151
CallC, main unit,

455-457
Capitals, source code,

342-343
ClassInfo.dpr, 591-595
CopyData

main unit, 472
read unit, 474-476

custom Clipboard,
557-559

FileOfRec, source code,
350-353

files, 137
backup files, 140
desktop options, 140
form files, 138-139
package files, 141
project options

files, 140
resource files, 139
unit files, 138

FileSrch
main form, 375, 378
MemMap unit,

372-374
framework classes, 145
HookWnd, 414
ISAPITER.DPR, 1277
Navig8, 1155-1159
PackInfo, 478-479
PersRec, source code,

346-349
project files, 24, 137
resource files, 175-176
SAMPLE1.DLL,

1280-1281
source code, units, 23
SRF, 1189
TestDLL.dpr, generic

thunking, 467
TestSend, 440, 442
using C/C++ files,

443-444
VerInfo, main form,

401-402
Properties, 21, 99

ActiveForms,
1030-1038

arrays, adding to com-
ponents, 625-626

assigning values,
RTTI, 609

categories, 742
classes, 743
custom, 745-747

CD contents
canvas, CD:62
Canvas.Font, CD:77
color, CD:62
CopyMode, CD:78
fonts, CD:77-CD:78
formatting, CD:12
groups of, CD:37
Handle, CD:94
index of, CD:38
naming, CD:12
Pen.Mode, CD:64
Pen.Width, CD:64
Style, CD:71
TBitmap.ScanLine

array, CD:70
TBrush, CD:70
TCanvas, CD:82
TPen, CD:62-63
TCanvas.Pixels,

CD:70
TMemo.Font, CD:77
TPrinter,

CD:154-155
TPrinter.Copies,

CD:186
TPrinter.Orientation,

CD:187
checking for

existence, 598
components, 571

access methods,
572-573

enumerated, 620
set, 620
simple, 619

47.65227_Index 12/3/99 7:48 AM Page 1541

Properties
1542

datasets, 1153, 1159
default array, adding to

components, 628
default values, adding to

components, 627
events, 629-630, 633
ModalResult, 146
objects, 105

adding to compo-
nents, 621-624

RTTI data, 597
persistent nonpublished,

defining, 731
TComponent class, 580
TWinControl class, 582
Width, buttons, 26

Properties dialog box,
CD:39

Property editors,
713-714
dialog

editing component
lists, 760,
763-767, 772

dialog style, 721-724
editing as text, 715-718
registering, 719-720

Property pages,
ActiveX controls,
1018-1019

Property-access
methods, CD:11

protocols, 1274
prototyping, 28
providers, MIDAS

applications, 1320
Proxies, CORBA, 1097
PSAPI, Windows

NT/2000 system
data, 527-531

PszSound parameter,
PlaySound(), CD:292

PwDlg.pas unit, 669
PWideChar string type,

CD:220

Q
QReport page,

Component Palette,
CD:154

qualifier names, com-
ponents, CD:19

quality, printing,
CD:188

queries, 1151
background, 324, 327
databases, 1258-1260
Format() function,

1261-1262
result sets, 1263-1265

QueryInterface()
method, 783

QueryServer
object, 1111

QuSoft, CD:154

R
$R directive, loading

external resource
files, 24

RAD (Rapid Application
Development), 15

range checking, strings,
55, CD:317

Range form, SRF
project, 1193-1194

raster fonts, CD:136
Raster Operation (ROP),

CD:64
RDM (Remote Data

Module)
Client Tracker applica-

tion, 1416-1418
MIDAS, 1313
servers, setup, 1319
services, advertising,

1317
Read methods, CD:37
Read unit, CopyData

project, 474
read-only files, 339
reading

text files, 341
untyped files, 356

real type, 46,
CD:6, CD:216

RealizeLength()
function, 53

record contention,
MIDAS, 1330

record numbers, dBASE
tables, CD:336

record types, CD:7
record-oriented data

access, 1228
records, 74

BASM access, 425
CD contents

buffer methods,
CD:363

deleted, CD:337,
CD:339

packed, CD:228
undeleted, CD:339
upgrading, CD:228

47.65227_Index 12/3/99 7:48 AM Page 1542

RndHint.pas unit
1543

datasets, 1150, 1153
finding, 1180
searches, 1181-1182

locking, 1228
message-specific, 196
TFileRec, 361
TGUID, 780
TSearchRec record, 391
TTextRec, 360
TWin32FindData, 392
variant, 62, 74-75

Rect DrawText
parameter, CD:94

Rectangle() method,
CD:84

Recycle Bin, moving
files to, 405

Redirection, 1300
Reference

parameters, 90
Reflector window,

DAX, 1015
refreshing

datasets, 1177
Register calling

convention, 424
Register OLE Control

dialog box, CD:24
Register pane, CPU

view, CD:332
RegisterClipboardForm

at() function, 555
registering

Automation objects, 796
components, 638-639
component editors,

727-729
context menu

handlers, 964

icon handlers, 974
MIDAS servers, 1321
out-of-process COM

servers, 791
property editors,

719-720
shell extensions, 957

RegisterWindow
Message() function,
206

Registration units,
CD:18

Reintroduce
directive, 104

Relative priorities,
threads, 289-290

Release() method,
IUnknown
interface, 781

relocating, See
moving, 20

remote data module
files, naming, CD:13

Remote Data Module
Wizard, 863

Repeat statements,
CD:9

Repeat..until loops, 87
reports, printing,

CD:160-166
Requires page, Package

Editor, 675
Reraising

exceptions, 119
RES files, 139, 175-176
reserved memory, 131
reserved words

formatting, CD:3
type, 81

resizable captionless
forms, 150

resolution, printing,
CD:159, CD:188

resource dispensers,
MTS, 862

resource files, 175-176
resource managers,

MTS, 862
resources

32-bit, upgrading,
CD:234

releasing, 63
strings, 83

ResQuery.pas Unit
listing, CD:348-349

restoring windows,
CD:284

Result sets
queries, 1263-1265
stored procedures,

1267-1268
Result values, mes-

sages, 200
resuming threads, 291
retrieving data, MIDAS

applications, 1321
revoking database

rights, 1245
Rewrite() procedure,

CD:156
RGB() method, CD:62
rich text editor form,

MDI applications,
CD:254-261

rich-text-formatted
data, printing,
CD:159

right operator (>), 41
RndHint.pas unit, 692

47.65227_Index 12/3/99 7:48 AM Page 1543

roles
1544

roles, MTS, 862
Roman font

family, CD:135
ROP (raster

operation), CD:64
RoundRect()

method, CD:84
routines

formatting, CD:4

naming, CD:5

rows, datasets, 1150
.rtf files, 355
RTL (Runtime Library),

447
changes, upgrading,

CD:217-CD:218

exception handler,

CD:390

migrating from Delphi

4, CD:213

RTTI (Runtime Type
Information), 14,
120, 587
enumerated types , 605

integer types, 604

methods, 599-603

objects, properties, 597

obtaining for

objects, 591

properties, assigning

values, 609

set types, 607

Run dialog box, CD:321
Run menu, integrated

debugger, CD:321

Run Parameters dialog
box, CD:321, CD:330

runtime errors, CD:317,
CD:391

S
safe arrays,

Automation, 848-851
SafeCall functions, 251
Safecall methods, 811
Sales entry form,

Inventory Manager
application, 1404-
1407

SALES table, Inventory
Manager applica-
tion, 1366

sample application
project file, 25
source code, 23

SAMPLE1.DLL project,
1280-1281

SaveToFile() method,
CD:60

saving
DFM files as text

files, 24
images, CD:60
OLE objects, 890

scalability
client/server

applications, 1222
MTS, 858

scheduling threads, 288

schema files, text
tables, 1202

scope, 93
screen coordinates,

CD:96
script font family,

CD:135
search threads, 316-321
searches

dataset records,
1181-1182

files, across directories,
386-388

security
client/server applica-

tions, 1223
databases, 1228
MTS, roles, 862
TDatabase component,

1248
segmented memory

model, 130
SEH (Structured

Exception Handling),
112-115

SelectObject()
function, 128

self variable, 104
semaphores, 307-310
sending messages, 201
SendKey.pas unit,

434-439
SendKeys() function,

428-432, 440
SendMessage() func-

tion, 202

47.65227_Index 12/3/99 7:48 AM Page 1544

ShowHint property
1545

SendTrayMessage()
method, 904

sequence number,
Paradox tables,
CD:341

serifs, CD:135
servers

Automation, 793,
828-829
creating, 796
in-process, 812-816
out-of-process, 796-

799, 801-810
COM

in-proc, 788-790
out-of-process, 791

CORBA, 1111
client connections,

1131
Java-written, 1136
starting, 1129

MIDAS
RDM, 1319
registering, 1321

MTS, installing, 878
OLE, 775
Web, 1276

services, RDM, 1317
Set Length() proce-

dure, 52
Set methods, CD:37
set of keywords, 75
set properties, compo-

nents, 620
set types, RTTI, 607
set-oriented data

access, 1228
SetAsHandle()

method, 555

SetBookmarkData()
method, CD:368

SetBookmarkFlag()
method, CD:368

SetFieldData(), CD:367
SetFillPattern()

method, CD:89
SetLength() procedure,

53, 72
SetMapMode()

function, CD:99
SetPrinter TPrinter

method, CD:155
sets, 75-77
setter methods,

609-612
SetViewPortExtEx()

function, CD:99
SetViewPortOrgEx()

function, CD:99
SetWindowExtEx()

function, CD:99
SetWindowLong()

function, 409
SetWindowOrgEx()

function, CD:99
SetWindowRgn() func-

tion, 695
shapes, drawing, CD:89
SHAppBarMessage()

function, 918
shared memory DLLs,

259-265
sharing

C/C++ data, 445-446
code, DLLs, 230

shell extensions,
952, 956
context menu handlers,

960-964
copy hook handlers,

954-956
debugging, 953
icon handlers, 972-974
registering, 957

shell folders, 934-935
Shell Link project, main

form, 943-951
shell links, 933
Shell_NotifyIcon()

function, 902
SHFileOperation()

function, 404
Shipping ActiveX

controls, CD:40
Shl operator, 43
ShortString string

type, CD:220
ShortString type,

compatibility, CD:227
ShortStringAsPChar()

function, 55
ShortStrings, 54-55
Show() method, 147
ShowCurrentTime()

method, CD:305
ShowEnvironment()

method, 494
ShowException()

method, TAppli-
cation class, 157

ShowHint property,
TApplication class,
156

47.65227_Index 12/3/99 7:48 AM Page 1545

ShowModal() method
1546

ShowModal() method,
145-146

ShowProcessDetails()
method, 507

ShowProcess-
Properties()
method, 507

ShowTrackTime()
method, CD:306

Shr operator, 43
simple properties,

components, 619
SimpleCorbaClient,

1131
single threads, MIDAS

applications, 1316
single type, CD:6
sinks, Automation,

828-837
SizeOf() function,

47, 59, 91
sizing forms, 184-185
Skeleton unit,

1104-1108
skeletons,

1097, 1114-1124
small application,

adding buttons to
forms, 25

SmallInt type, compati-
bility, CD:227

Smart Agents, 1098
snapshots of

system, 502
SND flags, CD:292-293
sound category,

TddgWaveFile
component, 745-747

source breakpoint,
CD:321

source code
formatting rules, CD:2-3
Capitals project,

342-343
FileOfRec project,

350-353
navigating, 29
PersRec project,

346-349
sample application, 23
sharing between

units, 142
units, 23

Source Code for
CDMain.pas listing,
CD:307-314

Source Code for
CDPlayer.dpr listing,
CD:306

Source Code for
DDGMPlay.dpr list-
ing, CD:296

Source Code for
SPLASH.PAS listing,
CD:300-CD:301

source files,
Loading, 25

Source to the Font
Information Form
listing, CD:147-150

sources, Automation,
828

Spdbtn type prefix,
CD:19

splash screens, 182-183
SQL, 1230

dynamic SQL, 1257

pass-through mode,
databases, 1254

queries, 1258-1260
SQL functions,

CD:350-CD:351
SRF project (Search,

Range and Filter),
1189
data modules, 1189
filter form, 1197-1200
key search form,

1195-1196
main form, 1190
main unit, 1191-1192
range form, 1193-1194

Stack pane, CPU view,
CD:332

standard
components, 569

Standard version,
Delphi, 8

starting CORBA server,
1129

StartPlayback()
procedure, 432

State property,
datasets, 1177

stateful objects, 859
stateless

interfaces, 859
stateless objects, 859
statements

case, 84, CD:8
for, CD:9
if, 83, CD:8
if..else, 84
repeat, CD:9
units, 94

47.65227_Index 12/3/99 7:48 AM Page 1546

SysUtils unit
1547

while, CD:8
with, CD:9

states, components,
636

static linking, 228
static methods, 102,

CD:11
status forms,

167, 169-172
StdWndProc()

function, 207
stored procedures

access rights, 1244
databases, 1237-1240

non-result sets, 1266
result sets,

1267-1268
Inventory Manager

application,
1368-1371

Str DrawText
parameter, CD:94

StrAlloc() function,
58-59

StrCat() function, 59
streaming

components, 576
nonpublished compo-

nent data, 730-733
Web-based, 1303, 1305

strings, 47-48, CD;220-
221, CD:227
concatenating, 50
dynamically allocated,

CD:222
formatting, 485-486
indexing as arrays,

CD:222
length, CD:221

length-byte, 54
memory allocation, 58
null-terminated, 52, 57-

58, CD:223-CD:224
PChars as, CD:225
range checking, 55
resources, 83
upgrading, CD:219-225

StrNew() function, 59
stroke fonts,

CD:136-CD:137
structured exceptions,

CD:9-10
structured storage,

OLE, 777
structures, TTypeData,

590-591
StrUtils unit, string

utility functions, 51
Stub/skeleton unit,

1104-1108
Stubs, 1097, 1114-1124
Style property, CD:71
Styles, pens, CD:63
subclassing

windows, 408
support classes,

CORBA, 1101
suspending

threads, 291
Swiss font family,

CD:135
synchronization,

threads, 283-286,
297, 300
critical sections,

300-303
mutexes, 304-306
semaphores, 307-310

Synchronize() method,
284

syntax highlighting,
C++, 31

SysAllocStrLen()
function, 56

SysInfo
directory data, 490
environment variables,

494-495
formatting strings,

485-486
InfoForm, 484
memory status data,

486-487
obtaining OS version,

488-489
platform neutrality, 500
system data, 490
system information

utility, 484
System data,

obtaining, 490
System directory,

locating, 385
System errors, Win32,

CD:397
System information

program, See
SysInfo

System Registery,
CD:40

System snapshots, 502
System unit, variant

types, 60
SysUtils unit, string

functions and
procedures, 51

47.65227_Index 12/3/99 7:48 AM Page 1547

Tables
1548

T
Tables, 1150

access rights, 1243
copying, CD:352
creating, 1233

on disk, 1187
dBASE, CD:336

packing, CD:340
physical record

number, CD:336
records, CD:337-339

defining, 1233
detail, 1184-1185
domains, 1235
indexes, 1183-1184
master, 1184-1185
Paradox, CD:341

packing, CD:341-348
sequence numbers,

CD:341
record locking, 1229
text, 1201

TActionItem instances,
Web DDG, 1473

TAppBar component,
920, 929

TApplication class,
153, 158-159

task switching, 128
TBitmap.ScanLine array

property, CD:70
TBrush Example listing,

CD:71-74
TBrush properties,

CD:70

TCanvas class, 587
TCanvas methods,

CD:83-84, CD:89
TCanvas parameter,

CD:74
TCanvas properties,

CD:82
TCanvas.Pixels prop-

erty, CD:70
TCardX control

CardImpl.pas unit,
1020-1025

CardPP.pas unit,
1027-1029

TChildForm class, 163
TClientDataset

component, 1343
TCollection class, 749
TCollectionItem

class, 749
TColor, CD:62
TComObject class,

787-788
TComObjectFactory

class, 787-788
TComponent class, 580
TControl class , 582
TCopyHook object, 956
TCustomControl

class, 584
TCustomForm,

upgrading, CD:218
TDatabase class, 1151
TDatabase component,

1245-1248

TDataModule compo-
nent, 1188

TDataSet, CD:359
abstract methods,

CD:362
bookmark methods,

CD:368
descendants, CD:361
methods, record number,

CD:375
record buffer methods,

CD:363
TDataSet class,

1150-1151
TDataSet methods,

CD:369-371
TDataSet.Close()

method, CD:372
TDataSetTableProducer

class, 1288
TDataSource compo-

nent, 1160
TDateTime type,

CD:229
TDBModeForm, 165
TDBNavStatForm,

167-172
TddgButtonEdit com-

ponent, 660-663
TddgDigitalClock

component, 664-667
TddgExtendedMemo

component, 643-645
TddgHalfMinute

component, 630-632

47.65227_Index 12/3/99 7:48 AM Page 1548

threads
1549

TddgLaunchPad
component, 750-760

TddgPasswordDialog
component, 670

TddgRunButton
component, 653-657

TDDGSalesDataModule
module, 1372-1382

TddgTabListbox
component, 646-651

TddgWaveFile
component, 734-741

TDeviceMode structure,
CD:184-186

TEdit components,
CD:181

terminated property,
TApplication
class, 156

terminating
loops, 87
threads, 281-283

TestDLL.dpr project,
generic thunking,
467

testing, CD:315
breakpoints, CD:321
code, line-by-line,

CD:325
components, 639-641
CPU view, CD:331
DLL, CD:330
Evaluate option, CD:327
Event Log, CD:329
integrated debugger,

CD:321

marquee component,

710, 712

Modify option, CD:327

Modules view, CD:329

viewing threads,

CD:328

Watch window, CD:326

TestSend project,
440-442

text, Clipboard
operations, 549

text editor form,
MDI applications,
CD:245-253

text files
adding text, 340

opening, 338

reading, 341

text tables, 1201
data file, 1204

importing, 1205

schema file, 1202

TextOut() TCanvas
method, CD:83

TField class, hierarchy,
1166

TFileRec record, 361
TForm class, 145
TForm1 class, 26
TGraphicControl

class, 584
TGUID records, 780
THandles, 556

The FTYPFORM.PAS
Unit Defining
TFileTypeForm
listing, CD:268-269

thin clients, multitier
applications, 1311

Thread Status window,
CD:328

Thread32First()
function, 507

Thread32Next().
function, 507

Threading Model
option, CORBA
Object Wizard, 1104

threads, 124, 276-278
background queries,

324, 327
COM models, 777
critical sections,

300-303
error handling, 133
instances, 281
local storage, 293-297
MIDAS applications,

1316
multiple, 293
primary, 124
priorities, 288
process priority classes,

288-289
relative priority,

289-290
resuming, 291
scheduling, 288
search, 316-322

47.65227_Index 12/3/99 7:48 AM Page 1549

threads
1550

suspending, 291
synchronization,

283-286, 297, 300
mutexes, 304-306
semaphores, 307-310

terminating, 281-283
timing, 291-292
variables, storage, 294
viewing, CD:328
walking through,

507-509
three-tiered

client/server
model, 1226

Thunking, 458-461,
467-468

Tic-tac-toe clients, MTS,
879-881, 884

TImage component,
CD:58, CD:123

time formats,
multimedia, CD:304

time-conversion
routines, CD:304

TimeFormat property,
CD:303-304

timing threads,
291-292

tips, tray-notification
icon component, 906

TISAPIResponse
class, 1284

Title property,
TApplication
class, 155

Title TPrinter property,
CD:155

TListBoxStrings
class, 585-586

TLOGFONT fields,
CD:144

TLOGFONT structure,
CD:143

TMDIChildForm, CD:244
TMDIChildForm Base

Class, CD:242
TMdiEditForm, main

menu, CD:272
TMediaPlayer, CD:298
TMediaPlayer

events, CD:295
TMediaPlayer

properties
DeviceType, CD:298
TimeFormat,

CD:303-CD:304
TMemo component,

printing, CD:156
TMemo.Font

property, CD:77
TMtsAutoObject class,

864-865
To Do List, 31
TObject, 107, 589
TOleContainer

class, 885
TOleControl, abstract

class, CD:37
TOleControl class,

descendant, CD:37
TOleControl object,

CD:37
toolbars, 20
ToolHelp32

heap walking, 512-513
module walking,

510-511

process walking,
503-506

thread walking, 507-509
ToolHelp32 , 501
ToolHelp32 viewing

heap, 515-516
ToolHelp32ReadProcess

Memory() function,
515

Tools menu commands,
Editor Options, CD:2

Tools, Environment
Options dialog box,
CD:329

ToRecycle()
procedure, 405

TPageProducer compo-
nent, 1285-1287

TPanel techniques,
CD:123

TPersistent class, 579
TPrinter object, CD:154

methods, CD:155
properties, CD:154-

CD:155
TPrinter.Abort()

procedure, CD:167
TPrinter.Canvas, CD:155
TPrinter.Copies prop-

erty, CD:186
TPrinter.Orientation

property, CD:187
TPrintPrevPanel,

CD:183
TQuery class, 1151
TQuery component,

1201, 1257
TQuery result sets,

CD:348

47.65227_Index 12/3/99 7:48 AM Page 1550

Types
1551

TQueryServer, imple-
mentation unit, 1124

TQueryServer class,
1111

TQueryTableProducer
class, 1289

Transaction control,
databases, 1252

Transactions, MTS, 862
Tray-notification icon

component, 902
handling mouse

clicks, 906
HideTask property, 908
Icon property, 906
main unit, 916
message handling, 905
parameters, 903

TrayIcon.pas unit, 909
TRect parameter, CD:74
triggers

databases, 1241-1242
Inventory Manager

application, 1367
TrueType fonts,

CD:136-137
TRunButtons collection,

editing component
lists, 760-722

Try..except construct,
CD:10

Try..except..else
construct, CD:10

Try..finally blocks, 63
Try..finally construct,

CD:9
TScreen class, 159-160
TSearchRec record, 391

TStoredProc
component, 1201

TStoredProc
component, 1265

TStringList class, 586
TStrings class, 584
TTable class, 1150
TTable component,

1181
events, 1186
SQL database

comparisons, 1255
TTextRec record, 360
TTHMLTableColumn

class, 1291
TThread object,

278-280
TTrayNotifyIcon

component, 902
TTypeData structure,

590-591
Turbo Pascal, 15,

CD:211
TVerInfoRes class, 393
TWebDispatcher

component, 1278
TWebModule

component, 1277
TWebRequest class,

1281-1282
TWebResponse class,

1281-1282
TWin32FindData

record, 392
TWinControl class, 582
two-tier applications,

MIDAS, 1351-1352

two-tiered client/server
model, 1226

type checking,
pointers, 80

type compatibility,
upgrading, CD:227

Type keyword, 71
type libraries

Automation, 795
interfaces, 848

Type Library Editor,
1110-1111

type library files,
Memo control,
989-1000

type
names, formatting, CD:6
prefixes, CD:19
ranges, CD:227
reserved word, 81
sizes, CD:227

typecasting, 64, 82
typed files, See files

of record
typed pointers, 79
typefaces, fonts,

CD:134
Types, 44-45, CD:6-7

aliases, 81
AnsiString, 48
array, CD:7
Cardinal, 46
characters, 47
component

properties, 573
components, 569
constants, 39
converting, 82

47.65227_Index 12/3/99 7:48 AM Page 1551

Types
1552

Currency, 70
Double, 46
garbage collected, 49
Integer, 46
lifetime-managed, 49
methods, 102
OleVariant, 70
PChar, 57-58
Real, 46
sets, 75-76
ShortStrings, 54-55
user-defined, 71
variants, 59, 61-62
WideString, 56

types, OleVariant, CD:7
types, record, CD:7
typesafe

programming, 588
TypInfo.pas unit, 589

U
UCallbackMessage

field, tray-notifica-
tion icon compo-
nent, 904

.udl files, 1214
UDT (uniform data

transfer), OLE, 777
UFlags field, tray-

notification icon
component, 903

UIs (User Interfaces),
designing, 28

undeleting records,
CD:339

undo options, MIDAS
applications, 1323

undocking toolbars, 20
UnhookMainWindow()

method, 414
UnhookWindowsHookE

x() function, 428
union operator, sets, 76
unit files, CD:13-14
Unit Showing MDI

Child Form–Hiding
Techniques listing,
CD:282, CD:284

Unit That Illustrates
Text-Drawing
Operations listing,
CD:90, CD:92

units, 24, 94
ApBarFrm.pas, 929
AppBars.pas, 922-928
cbdata, 552-554
circular references, 96
components, 617-618
CorbaServer_c,

1140-1144
Detail9x.pas, 520-526
DetailNT.pas, 537-540
files, 138
finalization part, 94,

CD:229
global identifiers, 143
implementation parts, 94
InfoU.pas, 495-496
initialization part, 94
Marquee.pas, 704-708
MyFirstCORBA

Server, 1109
Open Tools API, 1057
PasStrng.pas, 449, 451
PixDlg.pas , 647
PwDlg.pas, 669

RndHint.pas, 692
SendKey.pas, 434-439
sharing code, 142
statements, 94
StrUtils, 51
stub/skeleton,

1104-1108
system, variant types, 60
SysUtils, string

functions and
procedures, 51

TrayIcon.pas, 909-915
TypInfo.pas, 589
utility units, 142
VERINFO.PAS,

393-397
W9xInfo.pas, 517
WNTInfo.pas, 533-535
WOW32.pas, 462-464

UnmapViewOfFile()
function, 366

untyped files, 355-357
upgrading to Delphi 5,

CD:209-238
UrlMon functions,

ActiveForms,
1040-1048

URLs, redirection, 1300
User form, DDG,

1456, 1459
user interface,

Inventory Manager
application, 1388

user objects, 128
user-defined

messages, 205
user-defined types, 71

47.65227_Index 12/3/99 7:48 AM Page 1552

version data
1553

username retrieval
page, Web DDG,
1477-1478

Uses clause, 25, 95,
CD:13

utilities, SysInfo, 484
utility units, 142

V
value parameters, 89
values

dataset fields,
1160-1161

ModalResult property,
146

varEmpty, 66
varNull, 66

var blocks, 38
var parameters, 423
VarArrayCreate()

function, 67
VarArrayDimCount()

function, 68
VarArrayHighBound()

function, 68
VarArrayLock() func-

tion, 68-69
VarArrayLowBound()

function, 68
VarArrayOf()

function, 68
VarArrayRedim()

function, 68
VarArrayRef()

function, 68

VarArrayUnlock()
function, 68-69

VarAsType()
function, 70

VarCast()function, 70
VarClear() function, 70
VarCopy()function, 70
VarEmpty value, 66
VarFromDateTime()

function, 70
variables, 36-37

Boolean, CD:5
environment, 494-495
formatting, CD:5
global, CD:6
HInstance, 126
HPrevInst, 126
IUnknown interface,

781-782
local, 50, CD:5
loop control, CD:5
naming, CD:5
PChar, 53
self, 104
ShortString, 54
threads, storage, 294
typecasting, 82

variant arrays, 854
variant records, 62
variant type, CD:7
variants, 59-61, 852

arrays, 67-70
dynamic typing, 60
empty, 66
expressions, 65
lifetime managed, 62
null, 66

records, 74-75
typecasting

expression, 64
VarIsArray()

function, 68
VarIsEmpty()

function, 70
VarIsNull() function, 70
VarNull value, 66
VarToDateTime()

function, 70
VarToStr() function, 70
VarType() function, 70
VBX

controls, CD:22,
CD:234

support, CD:22
VCL (Visual Component

Library), 8, 14, 568,
CD:241, CD:334
controls, CD:355
database architecture,

1151
encapsulating ActiveX

controls, 985
exception handler,

CD:390
messages, 207

vector fonts,
CD:136-CD:137

VerInfo project, main
form, 401-402

VERINFO.PAS unit,
393-397

version data
conditional defines,

CD:210
files, 392

47.65227_Index 12/3/99 7:48 AM Page 1553

version numbers
1554

version numbers,
files, 401

versioning
packages, 680

VFI (visual form
inheritance), 12

video programming,
CD:293-299

viewing
bugs, Web DDG,

1484-1487
heap, 515-516
source code, 23
threads, CD:328

viewport extents,
CD:100

views
access rights, 1244
databases, 1236

virtual memory
addresses, 130
functions, 131
methods, 103, CD:11
processes, 130

VirtualAlloc()
function, 131

visibility, fields, CD:11
visibility specifiers, 106
VisiBroker

administration
tools, 1099

OAD (Object Activation
Daemon), 1098

ORB, 1098, 1144-1146
Smart Agents, 1098

Visual Basic, 15-17
Visual Component

Library, See VCL
visual development

environment, 11
visual inheritance,

forms, 152
VMTs (virtual method

tables), 778
vtables, 778

W
W9xInfo.pas unit,

517, 519
walking

over processes, 503-506
through heap, 512-513
through modules,

510-511
through threads,

507-509
Watch window, CD:326
WAV files, CD:291-293
Wavez project,

main unit, 1174
WbdpBugs component,

Web DDG, 1472
weak packages, 680
Web applications, 1277

cookies, 1296-1297
data streaming, 1303
dynamic pages, 1285
event handlers, 1279
forms, 1301-1302

HTML tables,
1288-1293

MIDAS, 1335
passing client

requests, 1282
redirection, 1300
server responses, 1282

Web browsers, ActiveX
controls, 1039-1040

Web DDG program
adding bugs to database,

1488-1490
browsing bugs,

1480-1481
bug details, 1484-1487
data module, 1471
dstpBugs

component, 1472
helper routines, 1474
Internet deployment,

1470
introduction page,

1474-1475
page layout, 1470
pprdBugs

component, 1473
TActionItem

instances, 1473
user-entered bugs, 1482
username retrieval page,

1477-1478
wbdpBugs

component, 1472
Web deployment,

ActiveX controls,
1049-1050, 1052

47.65227_Index 12/3/99 7:48 AM Page 1554

world coordinates
1555

Web pages
creating, 1279
dynamic, 1285

Web servers, 1276
Web sites,

redirection, 1300
WebModule1WebAction

Item1Action Event
Handler, 1279

while loops, 86
while statements, CD:8
WideStrings, 56, 855,

CD:220
Width property,

buttons, 26
wild pointer bug,

CD:319
Win 32

32-bit applications,
CD:238

API, 124, 133
Clipboard, 548

customizing, 552
graphics operations,

550-551
text operations, 549

error codes, CD:397
error handling, 133
flat memory model, 130
mapping modes, CD:98
system errors, CD:397

windows
child, CD:241

MDI applications,
CD:274, CD:284

client, CD:241
MDI applications,

CD:274
client area, CD:241
Debug Inspector,

CD:326
docking, 30
elliptical hint, 692-693
exiting from

applications, 186
frame, CD:241
hint, customizing, 692
hooks, 426-427
maximizing, CD:284
MDI implementation,

CD:240
messages, 192-194
Middle East version,

CD:83
minimizing, CD:284
preventing

shutdown, 188
restoring, CD:284
subclassing, 408, 410
Thread Status, CD:328
Watch, CD:326

Windows 2000 system
data, PSAPI, 527-529

Windows Clipboard,
CD:264

Windows directory,
locating on
system, 384

Windows NT system
data, PSAPI, 527-529

with statements, CD:9
wizards

ActiveX Control, 984
COM Object, shell

extensions, 954
CORBA Object,

1102, 1111
Instancing option,

1103
Threading Model

option, 1104
DDGSearch, 1078
Dumb, 1058-1059
Object, 863
Remote Data

Module, 863
Wizard Wizard,

1062-1064
AddModU.pas unit,

1071
InitWiz.pas unit,

1064-1065
Main.pas unit,

1067-1070
WizWiz.dpr unit, 1073

WizWiz.dpr unit,
Wizard Wizard
project, 1073

WM_COPYDATA
message, 470

WNTInfo.pas unit,
533-535

word type,
compatibility, CD:227

world coordinates,
CD:95

47.65227_Index 12/3/99 7:48 AM Page 1555

WOW32.pas unit
1556

WOW32.pas unit,
462-464, 466

Write methods, CD:37
writing

components,
614-615, 697
ancestor classes, 616
array properties,

625-626
default array

properties, 628
default property

values, 627

enumerated
properties, 620

event properties, 630
icons, 642
methods, 634
object properties,

621-624
overriding

constructors,
635-636

overriding
destructors, 637

set properties, 620

simple properties,
619

units, 617-618
untyped files, 357

X-Z
xor operator, 43
zero-initialized data,

CD:6

47.65227_Index 12/3/99 7:48 AM Page 1556

47.65227_Index 12/3/99 7:48 AM Page 1557

47.65227_Index 12/3/99 7:48 AM Page 1558

47.65227_Index 12/3/99 7:48 AM Page 1559

47.65227_Index 12/3/99 7:48 AM Page 1560

48.65227_Ads 12/3/99 7:46 AM Page 1561

48.65227_Ads 12/3/99 7:46 AM Page 1562

Charlie Calvert’s Delphi
4 Unleashed

Charles Calvert
0-672-31285-9
$49.99 US/$74.95 CAN

Other Unleashed Titles

Unleashed

JBuilder 3 Unleashed
Neal Ford
0-672-31548-3
$49.99 US/$74.95 CAN

CORBA Programming
Unleashed

Suhail Ahmed
0-672-31026-0
$39.99 US/$59.95 CAN

Sams Teach Yourself
C++ in 21 Days Complete
Compiler Edition

Jesse Liberty
0-672-31564-5
$49.99 US/$74.95 CAN

Roger Jennings’
Database Developer’s
Guide With Visual Basic 6

Roger Jennings
0-672-31063-5
$59.99 US/$89.95 CAN

Unleashed takes you beyond the average
technology discussions. It’s the best resource
for practical advice from experts and the most
in-depth coverage of the latest information.
Unleashed—the necessary tool for serious users.

www.samspublishing.com

Borland C++Builder 4
Unleashed

Kent Reisdorph,
Charlie Calvert
0-672-31510-6
$59.99 US/$89.95 CAN

Sams Teach Yourself
Borland Delphi 4 in 21
Days

Kent Reisdorph
0-672-31286-7
$39.99 US/$59.95 CAN

FROM KNOWLEDGE TO MASTERY

All prices are subject to change.

49.65227_seriesad 12/3/99 7:47 AM Page 1563

49.65227_seriesad 12/3/99 7:47 AM Page 1564

WHAT’S ON THE CD-ROM

50.65227_Install 12/3/99 7:48 AM Page 1565

WHAT’S ON THE CD-ROM
The companion CD-ROM contains eleven chapters from the book in Adobe Acrobat
format, all of the authors’ source code and samples from the book and some third-party
software products.

WINDOWS 95, WINDOWS 98, AND WINDOWS
NT 4 INSTALLATION INSTRUCTIONS

1. Insert the CD-ROM disc into your CD-ROM drive.

2. From the desktop, double-click the My Computer icon.

3. Double-click the icon representing your CD-ROM drive.

4. Double-click the icon titled START.EXE to run the installation program.

5. Follow the onscreen instructions to finish the installation.

NOTE

If Windows 95, Windows 98, or Windows NT 4 is installed on your computer,
and you have the AutoPlay feature enabled, the START.EXE program starts
automatically whenever you insert the disc into your CD-ROM drive.

50.65227_Install 12/3/99 7:48 AM Page 1566

	Delphi 5 Developer's Guide
	Copyright © 2000 by Sams Publishing
	Contents at a Glance
	Table of Contents

	Introduction
	Part I -- Essentials for Rapid Development
	Chapter 1 -- Windows Programming in Delphi 5
	Chapter 2 -- The Object Pascal Language
	Chapter 3 -- The Win32 API
	Chapter 4 -- Application Frameworks and Design Concepts
	Chapter 5 -- Understanding Windows Messaging
	Chapter 6 -- Coding Standards Document
	Chapter 7 -- Using ActiveX Controls with Delphi

	Part II -- Advanced Techniques
	Chapter 8 -- Graphics Programming with GDI and Fonts
	Chapter 9 -- Dynamic Link Libraries
	Chapter 10 -- Printing in Delphi 5
	Chapter 11 -- Writing Multithreaded Applications
	Chapter 12 -- Working with Files
	Chapter 13 -- Hard-Core Techniques
	Chapter 14 -- Snooping System Information
	Chapter 15 -- Porting to Delphi 5
	Chapter 16 -- MDI Applications
	Chapter 17 -- Sharing Information with the Clipboard
	Chapter 18 -- Multimedia Programming with Delphi
	Chapter 19 -- Testing and Debugging

	Part III -- Component-Based Development
	Chapter 20 -- Key Elements of the VCL and Runtime Type Information
	Chapter 21 -- Writing Delphi Custom Components
	Chapter 22 -- Advanced Component Design Techniques
	Chapter 23 -- COM-Based Technologies
	Chapter 24 -- Extending the Windows Shell
	Chapter 25 -- Creating ActiveX Controls
	Chapter 26 -- Using Delphi's Open Tools API
	Chapter 27 -- CORBA Development with Delphi

	Part IV -- Database Development
	Chapter 28 -- Writing Desktop Database Applications
	Chapter 29 -- Developing Client/Server Applications
	Chapter 30 -- Extending Database VCL
	Chapter 31 -- Internet-Enabling Your Applications with WebBroker
	Chapter 32 -- Midas Development

	Part V -- Rapid Database Application Development
	Chapter 33 -- Inventory Manager: Client/Server Development
	Chapter 34 -- Client Tracker: MIDAS Development
	Chapter 35 -- DDG Bug-Reporting Tool: Desktop Application Development
	Chapter 36 -- DDG Bug-Reporting Tool: Using WebBroker

	Part VI -- Appendixes
	Appendix A -- Error Messages and Exceptions
	Appendix B -- BDE Error Codes
	Appendix C -- Suggested Reading

	Index

