
Tenny
Hirani

Entity Fram
ew

ork 4.0 Recipes

Companion
eBook Available

Entity
Framework 4.0
Recipes
A Problem-Solution Approach

7.5 x 9.25 spine = 1.21875" 648 page count

THE EXPERT’S VOICE® IN .NET

Larry Tenny and Zeeshan Hirani

Ready-made solutions for putting Microsoft Entity
Framework 4.0 to work in your own applications

this print for content only—size & color not accurate

 CYAN
 MAGENTA

 YELLOW
 BLACK
 PANTONE 123 C

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Larry Tenny

Shelve in:
Microsoft .NET

User level:
Intermediate–Advanced

THE APRESS ROADMAP

Pro
Entity Framework 4.0

Pro LINQ: Language
Integrated Query

in C# 2010

Introducing .NET 4.0
with

Visual Studio 2010

Beginning
SQL Server 2008

for Developers

Entity Framework
Recipes

Expert
SQL Server 2008

Development

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

ISBN 978-1-4302-2703-8

9 781430 227038

54999

Entity Framework 4.0 Recipes:
A Problem-Solution Approach
Dear Reader,

You want to start using Entity Framework 4.0, but you’re a little overwhelmed by
all the new terms and concepts. Want to get started right away? You’ve come to the
right place.

Entity Framework is Microsoft’s core data access technology. It represents a
completely new way to build data-driven applications. Here in this book you’ll find
well over a hundred recipes that help you get started with Entity Framework and
solve problems without having to wade through chapter after chapter of terminol-
ogy and theory.

Want to create your first model? We’ve got recipes for that. Want to model Table
per Type inheritance? We’ve got recipes for that. Want to use Entity Framework with
Windows Communication Foundation? We’ve got recipes for that! If you have a
problem, we have a short, to-the-point recipe that will give you the solution and a
clear explanation of how it works.

This book assumes just a basic knowledge of databases and .NET development.
You don’t need to be an expert developer or database administrator to use these
recipes. Each recipe provides a clear statement of the problem it solves. That way,
you can quickly scan for your problem and get right to the solution. We give you
step-by-step directions and provide a complete working example in each recipe.
The recipes are completely independent so you never have to flip around trying to
tie together a complete concept.

Entity Framework is Microsoft’s key data-enabling technology for now and for
years to come. With Microsoft’s Entity Framework, Visual Studio 2010, .NET 4.0,
and this book, you’re all set to develop some incredibly powerful applications using
the latest technologies and practices on the planet. We hope you enjoy the book.

Larry Tenny and Zeeshan Hirani

Zeeshan Hirani

Entity Framework 4.0 Recipes
 A Problem-Solution Approach

Larry Tenny
Zeeshan Hirani

Entity Framework 4.0 Recipes: A Problem-Solution Approach

Copyright © 2010 by Larry Tenny and Zeeshan Hirani

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-2703-8

ISBN-13 (electronic): 978-1-4302-2704-5

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of
a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Publisher and President: Paul Manning
Lead Editor: Jonathan Gennick
Technical Reviewers: David Annesley-DeWinter, Brian Swan
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan

Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes, Jeffrey Pepper,
Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom
Welsh

Coordinating Editor: Mary Tobin
Copy Editor: Nancy Sixsmith
Compositor: Bytheway Publishing Services
Indexer: Toma Mulligan
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

You can download the examples from the book’s catalog page: http://apress.com/book/view/1430227036.
Look for the “Source Code” link underneath the cover image. You will need to answer questions pertaining
to this book in order to successfully download the code.

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://apress.com/book/view/1430227036

To the most important people in my life, my wife and kids.

– Larry

I would like to dedicate this book to my parents for encouraging me and supporting me always. Special thanks
to my Dad for his great love and support in everything.

– Zeeshan

 CONTENTS

Contents at a Glance

Contents at a Glance.. iv
 Contents.. v
 About the Authors... xxx
 About the Technical Reviewers ... xxxi
 Acknowledgments .. xxxii
 Preface... xxxiii
Chapter 1: Getting Started With Entity Framework ..1
Chapter 2: Entity Data Modeling Fundamentals ...9
Chapter 3: Querying an Entity Data Model..63
Chapter 4: Using Entity Framework in ASP.NET ...115
Chapter 5: Loading Entities and Navigation Properties155
Chapter 6: Beyond the Basics with Modeling and Inheritance...........................189
Chapter 7: Working with Object Services ...251
Chapter 8: Plain Old CLR Objects ..271
Chapter 9: Using the Entity Framework in N-Tier Applications311
Chapter 10: Stored Procedures...359
Chapter 11: Functions...393
Chapter 12: Customizing Entity Framework Objects ..429
Chapter 13: Improving Performance ..471
Chapter 14: Concurrency ..509
Chapter 15: Advanced Modeling...529
Index...591

iv

v

Contents

 Contents at a Glance.. iv

 Contents.. v

 About the Authors... xxx

 About the Technical Reviewers ... xxxi

 Acknowledgments .. xxxii

 Preface... xxxiii

Who This Book Is For ...xxxiii

What’s in This Book ...xxxiv

About the Recipes...xxxv

Stuff You Need to Get Started..xxxvi

Code Examples ..xxxvi

The Database...xxxvi

Apress Website ...xxxvii

Chapter 1: Getting Started With Entity Framework ..1

A Brief Tour of the Entity Framework World ..2

Models .. 2

Terminology.. 3

Code ... 4

Visual Studio 2010.. 4

Using Entity Framework ..5

 CONTENTS

vi

Chapter 2: Entity Data Modeling Fundamentals ...9

2-1. Creating a Simple Model ..9

Problem .. 9

Solution .. 9

How It Works .. 14

2-2. Creating a Model from an Existing Database ...16

Problem .. 16

Solution .. 16

How It Works .. 19

2-3. Modeling a Many-to-Many Relationship with No Payload..22

Problem .. 22

Solution .. 22

How It Works .. 23

2-4. Modeling a Many-to-Many Relationship with a Payload..26

Problem .. 26

Solution .. 26

How It Works .. 27

2-5. Modeling a Self-Referencing Relationship...29

Problem .. 29

Solution .. 29

How It Works .. 30

2-6. Splitting an Entity Across Multiple Tables..33

Problem .. 33

Solution .. 33

How It Works .. 35

2-7. Splitting a Table Across Multiple Entities...37

Problem .. 37

Solution .. 37

 CONTENTS

vii

How It Works .. 40

2-8. Modeling Table per Type Inheritance...42

Problem .. 42

Solution .. 42

How It Works .. 44

2-9. Using Conditions to Filter an ObjectSet..46

Problem .. 46

Solution .. 46

How It Works .. 48

2-10. Modeling Table per Hierarchy Inheritance ...49

Problem .. 49

Solution .. 49

How It Works .. 52

2-11. Modeling Is-a and Has-a Relationships Between Two Entities..............................54

Problem .. 54

Solution .. 55

How It Works .. 56

2-12. Creating, Modifying, and Mapping Complex Types ..57

Problem .. 57

Solution .. 58

How It Works .. 59

Chapter 3: Querying an Entity Data Model..63

3-1. Executing an SQL Statement..63

Problem .. 63

Solution .. 63

How It Works .. 65

3-2. Returning Objects from a SQL Statement ..66

Problem .. 66

 CONTENTS

viii

Solution .. 66

How It Works .. 67

3-3. Returning Objects from an Entity SQL Statement ..68

Problem .. 68

Solution .. 68

How It Works .. 70

3-4. Specifying Fully Qualified Names in Entity SQL ...71

Problem .. 71

Solution .. 72

How It Works .. 74

3-5. Finding a Master that Has Detail in a Master-Detail Relationship............................74

Problem .. 74

Solution .. 74

How It Works .. 76

3-6. Setting Default Values in a Query...77

Problem .. 77

Solution .. 77

How It Works .. 79

3-7. Returning Multiple Result Sets From a Stored Procedure..80

Problem .. 80

Solution .. 80

How It Works .. 81

3-8. Comparing Against a List of Values..82

Problem .. 82

Solution .. 82

How It Works .. 84

3-9. Building and Executing a Query Against an ObjectSet<T>85

Problem .. 85

 CONTENTS

ix

Solution .. 85

How It Works .. 87

3-10. Returning a Primitive Type From a Query ..87

Problem .. 87

Solution .. 87

How It Works .. 89

3-11. Filtering Related Entities ..89

Problem .. 89

Solution .. 89

How It Works .. 92

3-12. Applying a Left Outer Join ..93

Problem .. 93

Solution .. 93

How It Works .. 95

3-13. Ordering by Derived Types ...96

Problem .. 96

Solution .. 96

How It Works .. 97

3-14. Paging and Filtering ...98

Problem .. 98

Solution .. 98

How It Works .. 100

3-15. Grouping by Date..101

Problem .. 101

Solution .. 101

How It Works .. 102

3-16. Flattening Query Results ..103

Problem .. 103

 CONTENTS

x

Solution .. 103

How It Works .. 105

3-17. Grouping by Multiple Properties...105

Problem .. 105

Solution .. 106

How It Works .. 108

3-18. Using Bitwise Operators in a Filter...108

Problem .. 108

Solution .. 108

How It Works .. 111

3-19. Joining on Multiple Columns..111

Problem .. 111

Solution .. 111

How It Works .. 113

Chapter 4: Using Entity Framework in ASP.NET ...115

4-1. Building a Search Query...115

Problem .. 115

Solution .. 115

How It Works .. 118

4.2. Building CRUD Operations in an ASP.NET Web Page..119

Problem .. 119

Solution .. 119

How It Works .. 124

4-3. Executing Business Logic When Changes Are Saved...124

Problem .. 124

Solution .. 124

How It Works .. 126

4-4. Loading Related Entities...127

 CONTENTS

xi

Problem .. 127

Solution .. 127

How It Works .. 129

4-5. Searching with QueryExtender...129

Problem .. 129

Solution .. 129

How It Works .. 135

4-6. Retrieving a Derived Type Using an EntityDataSource Control136

Problem .. 136

Solution .. 136

How It Works .. 139

4-7. Filtering with ASP.NET’s URL Routing ..139

Problem .. 139

Solution .. 139

How It Works .. 142

4-8. Building CRUD Operations with an ObjectDataSource Control143

Problem .. 143

Solution .. 143

How It Works .. 148

4-9. Using Entity Framework With MVC...149

Problem .. 149

Solution .. 149

How It Works .. 154

Chapter 5: Loading Entities and Navigation Properties155

5-1. Loading Related Entities...155

Problem .. 155

Solution .. 155

How It Works .. 158

 CONTENTS

xii

5-2. Loading a Complete Object Graph..160

Problem .. 160

Solution .. 160

How It Works .. 162

5-3. Loading Navigation Properties on Derived Types...162

Problem .. 162

Solution .. 163

How It Works .. 164

5-4. Using Include() with Other LINQ Query Operators ..165

Problem .. 165

Solution .. 165

How It Works .. 166

5-5. Deferred Loading of Related Entities..167

Problem .. 167

Solution .. 167

How It Works .. 169

5-6. Filtering and Ordering Related Entities ..169

Problem .. 169

Solution .. 170

How It Works .. 171

5-7. Executing Aggregate Operations on Related Entities...172

Problem .. 172

Solution .. 172

How It Works .. 174

5-8. Testing Whether an Entity Reference or Entity Collection Is Loaded174

Problem .. 174

Solution .. 174

How It Works .. 176

 CONTENTS

xiii

5-9. Loading Related Entities Explicitly ...176

Problem .. 176

Solution .. 176

How It Works .. 178

5-10. Filtering an Eagerly Loaded Entity Collection...180

Problem .. 180

Solution .. 180

How It Works .. 181

5-11. Using Relationship Span ..182

Problem .. 182

Solution .. 182

How It Works .. 184

5-12. Modifying Foreign Key Associations ..184

Problem .. 184

Solution .. 184

How It Works .. 187

Chapter 6: Beyond the Basics with Modeling and Inheritance...........................189

6-1. Retrieving the Link Table in a Many-to-Many Association.....................................189

Problem .. 189

Solution .. 189

How It Works .. 191

6-2. Exposing a Link Table as an Entity...192

Problem .. 192

Solution .. 192

How It Works .. 195

6-3. Modeling a Many-to-Many, Self-Referencing Relationship196

Problem .. 196

Solution .. 196

 CONTENTS

xiv

How It Works .. 197

6-4. Modeling a Self-Referencing Relationship Using Table per Hierarchy Inheritance200

Problem .. 200

Solution .. 200

How It Works .. 202

6-5. Modeling a Self-Referencing Relationship and Retrieving a Complete Hierarchy .204

Problem .. 204

Solution .. 204

How It Works .. 207

6-6. Mapping Null Conditions in Derived Entities ..208

Problem .. 208

Solution .. 208

How It Works .. 209

6-7. Modeling Table per Type Inheritance Using a Non-Primary Key Column...............211

Problem .. 211

Solution .. 211

How It Works .. 215

6-8. Modeling Nested Table per Hierarchy Inheritance ...216

Problem .. 216

Solution .. 216

How It Works .. 218

6-9. Limiting the Values Assigned to a Foreign Key ..220

Problem .. 220

Solution .. 220

How It Works .. 222

6-10. Applying Conditions in Table per Type Inheritance ..224

Problem .. 224

Solution .. 224

 CONTENTS

xv

How It Works .. 225

6-11. Creating a Filter on Multiple Criteria ..227

Problem .. 227

Solution .. 227

How It Works .. 229

6-12. Using Complex Conditions with Table per Hierarchy Inheritance232

Problem .. 232

Solution .. 233

How It Works .. 235

6-13. Modeling Table per Concrete Type Inheritance..238

Problem .. 238

Solution .. 238

How It Works .. 240

6-14. Applying Conditions on a Base Entity...242

Problem .. 242

Solution .. 242

How It Works .. 244

6-15. Creating Independent and Foreign Key Associations...246

Problem .. 246

Solution .. 246

How It Works .. 247

6-16. Changing an Independent Association into a Foreign Key Association................247

Problem .. 247

Solution .. 248

How It Works .. 249

Chapter 7: Working with Object Services ...251

7-1. Dynamically Building a Connection String ...251

Problem .. 251

 CONTENTS

xvi

Solution .. 251

How It Works .. 252

7-2. Reading a Model from a Database ...253

Problem .. 253

Solution .. 253

How It Works .. 256

7-3. Deploying a Model..257

Problem .. 257

Solution .. 257

How It Works .. 257

7-4. Using the Pluralization Service...258

Problem .. 258

Solution .. 258

How It Works .. 260

7-5. Retrieving Entities from the Object State Manager ..261

Problem .. 261

Solution .. 261

How It Works .. 263

7-6. Generating a Model from the Command Line...263

Problem .. 263

Solution .. 263

How It Works .. 264

7-7. Working with Dependent Entities in an Identifying Relationship264

Problem .. 264

Solution .. 264

How It Works .. 267

7-8. Inserting Entities Using an Object Context ...267

Problem .. 267

 CONTENTS

xvii

Solution .. 267

How It Works .. 269

Chapter 8: Plain Old CLR Objects ..271

8-1. Using POCO ..271

Problem .. 271

Solution .. 271

How It Works .. 276

8-2. Loading Related Entities With POCO...276

Problem .. 276

Solution .. 276

How It Works .. 279

8-3. Lazy Loading With POCO ..279

Problem .. 279

Solution .. 280

How It Works .. 282

8-4. POCO With Complex Type Properties ...283

Problem .. 283

Solution .. 283

How It Works .. 285

8-5. Notifying Entity Framework About Object Changes ...286

Problem .. 286

Solution .. 286

How It Works .. 288

8-6. Retrieving the Original (POCO) Object ..289

Problem .. 289

Solution .. 289

How It Works .. 291

8-7. Manually Synchronizing the Object Graph and the Object State Manager.............292

 CONTENTS

xviii

Problem .. 292

Solution .. 292

How It Works .. 295

8-8. Testing Domain Objects ...296

Problem .. 296

Solution .. 296

How It Works .. 304

8-9. Testing a Repository Against a Database...305

Problem .. 305

Solution .. 305

How It Works .. 308

Chapter 9: Using the Entity Framework in N-Tier Applications311

9-1. Deleting an Entity When Disconnected ..311

Problem .. 311

Solution .. 311

How It Works .. 314

9-2. Managing Concurrency When Disconnected..315

Problem .. 315

Solution .. 315

How It Works .. 318

9-3. Finding Out What Has Changed..319

Problem .. 319

Solution .. 319

How It Works .. 322

9-4. Using POCO With WCF ..323

Problem .. 323

Solution .. 323

How It Works .. 328

 CONTENTS

xix

9-5. Using Self-Tracking Entities With WCF ..329

Problem .. 329

Solution .. 329

How It Works .. 333

9-6. Validating Self-Tracking Entities ..334

Problem .. 334

Solution .. 334

How It Works .. 338

9-7. Using Self-Tracking Entities on the Server Side ..338

Problem .. 338

Solution .. 338

How It Works .. 344

9-8. Serializing Proxies in a WCF Service..345

Problem .. 345

Solution .. 345

How It Works .. 349

9-9. Serializing Self-Tracking Entities in the ViewState ..349

Problem .. 349

Solution .. 349

How It Works .. 353

9-10. Fixing Duplicate References on a WCF Client ..354

Problem .. 354

Solution .. 354

How It Works .. 357

Chapter 10: Stored Procedures...359

10-1. Returning an Entity Collection..359

Problem .. 359

Solution .. 359

 CONTENTS

xx

How It Works .. 361

10-2. Returning Output Parameters...362

Problem .. 362

Solution .. 362

How It Works .. 365

10-3. Returning a Scalar Value Result Set...365

Problem .. 365

Solution .. 365

How It Works .. 367

10-4. Returning a Complex Type from a Stored Procedure ...367

Problem .. 367

Solution .. 367

How It Works .. 369

10-5. Defining a Custom Function in the Storage Model...370

Problem .. 370

Solution .. 370

How It Works .. 372

10-6. Populating Entities in a Table per Type Inheritance Model373

Problem .. 373

Solution .. 373

How It Works .. 375

10-7. Populating Entities in a Table per Hierarchy Inheritance Model376

Problem .. 376

Solution .. 376

How It Works .. 378

10-8. Mapping the Insert, Update, and Delete Actions to Stored Procedures379

Problem .. 379

Solution .. 379

 CONTENTS

xxi

How It Works .. 381

10-9. Using Stored Procedures for the Insert and Delete Actions in a Many-to-Many
Association ..382

Problem .. 382

Solution .. 383

How It Works .. 387

10-10. Mapping the Insert, Update, and Delete Actions to Stored Procedures for Table
per Hierarchy Inheritance ..387

Problems .. 387

Solution .. 387

How It Works .. 391

Chapter 11: Functions...393

11-1. Returning a Scalar Value from a Model Defined Function....................................393

Problem .. 393

Solution .. 393

How It Works .. 396

11-2. Filtering an Entity Collection Using a Model Defined Function.............................397

Problem .. 397

Solution .. 397

How It Works .. 400

11-3. Returning a Computed Column from a Model Defined Function401

Problem .. 401

Solution .. 401

How It Works .. 404

11-4. Calling a Model Defined Function from a Model Defined Function404

Problem .. 404

Solution .. 404

How It Works .. 408

11-5. Returning an Anonymous Type From a Model Defined Function408

 CONTENTS

xxii

Problem .. 408

Solution .. 408

How It Works .. 411

11-6. Returning a Complex Type From a Model Defined Function412

Problem .. 412

Solution .. 412

How It Works .. 415

11-7. Returning a Collection of Entity References From a Model Defined Function......415

Problem .. 415

Solution .. 415

How It Works .. 417

11-8. Using Canonical Functions in eSQL..418

Problem .. 418

Solution .. 418

How It Works .. 419

11-9. Using Canonical Functions in LINQ...419

Problem .. 419

Solution .. 419

How It Works .. 421

11-10. Calling Database Functions in eSQL...422

Problem .. 422

Solution .. 422

How It Works .. 424

11-11. Calling Database Functions in LINQ ...424

Problem .. 424

Solution .. 424

How It Works .. 425

11-12. Defining Built-in Functions...425

 CONTENTS

xxiii

Problem .. 425

Solution .. 426

How It Works .. 428

Chapter 12: Customizing Entity Framework Objects ..429

12-1. Executing Code When SaveChanges() Is Called ...429

Problem .. 429

Solution .. 429

How It Works .. 431

12-2. Validating Property Changes ..432

Problem .. 432

Solution .. 432

How It Works .. 434

12-3. Logging Database Connections..435

Problem .. 435

Solution .. 435

How It Works .. 437

12-4. Recalculating a Property Value When an Entity Collection Changes....................437

Problem .. 437

Solution .. 437

How It Works .. 439

12-5. Automatically Deleting Related Entities ...440

Problem .. 440

Solution .. 440

How It Works .. 443

12-6. Deleting All Related Entities ...443

Problem .. 443

Solution .. 444

How It Works .. 447

 CONTENTS

xxiv

12-7. Assigning Default Values..447

Problem .. 447

Solution .. 447

How It Works .. 450

12-8. Retrieving the Original Value of a Property ..451

Problem .. 451

Solution .. 451

How It Works .. 453

12-9. Retrieving the Original Association for Independent Associations.......................454

Problem .. 454

Solution .. 454

How It Works .. 457

12-10. Retrieving XML ...457

Problem .. 457

Solution .. 457

How It Works .. 460

12-11. Applying Server-Generated Values to Properties ...460

Problem .. 460

Solution .. 460

How It Works .. 464

12-12. Validating Entities on SavingChanges ..464

Problem .. 464

Solution .. 464

How It Works .. 469

Chapter 13: Improving Performance ..471

13-1. Optimizing Queries in a Table per Type Inheritance Model..................................471

Problem .. 471

Solution .. 471

 CONTENTS

xxv

How It Works .. 472

13-2. Retrieving a Single Entity Using an Entity Key ...473

Problem .. 473

Solution .. 473

How It Works .. 474

13-3. Retrieving Entities for Read Only..475

Problem .. 475

Solution .. 475

How It Works .. 476

13-4. Improving the Startup Time..477

Problem .. 477

Solution .. 477

How It Works .. 478

13-5. Efficiently Building a Search Query..479

Problem .. 479

Solution .. 480

How It Works .. 481

13-6. Making Change Tracking with POCO Faster...482

Problem .. 482

Solution .. 482

How It Works .. 485

13-7. Compiling LINQ Queries..485

Problem .. 485

Solution .. 485

How It Works .. 488

13-8. Returning Partially Filled Entities ...489

Problem .. 489

Solution .. 489

 CONTENTS

xxvi

How It Works .. 491

13-9. Moving an Expensive Property to Another Entity ...491

Problem .. 491

Solution .. 491

How It Works .. 494

13-10. Avoiding Include...495

Problem .. 495

Solution .. 495

How It Works .. 497

13-11. Improving QueryView Performance..497

Problem .. 497

Solution .. 497

How It Works .. 499

13-12. Generating Proxies Explicitly..500

Problem .. 500

Solution .. 500

How It Works .. 502

13-13. Preventing the Update of All Columns in Self-Tracking Entities503

Problem .. 503

Solution .. 503

How It Works .. 507

Chapter 14: Concurrency ..509

14-1. Applying Optimistic Concurrency ...509

Problem .. 509

Solution .. 509

How It Works .. 511

14-2. Managing Concurrency When Using Stored Procedures......................................512

Problem .. 512

 CONTENTS

xxvii

Solution .. 512

How It Works .. 516

14-3. Reading Uncommitted Data ...516

Problem .. 516

Solution .. 516

How It Works .. 518

14-4. Implementing the “Last Record Wins” Strategy ..518

Problem .. 518

Solution .. 518

How It Works .. 520

14-5. Getting Affected Rows from a Stored Procedure ...520

Problem .. 520

Solution .. 521

How It Works .. 524

14-6. Optimistic Concurrency with Table Per Type Inheritance524

Problem .. 524

Solution .. 524

How It Works .. 527

14-7. Generating a Timestamp Column with Model First ..527

Problem .. 527

Solution .. 527

How It Works .. 528

Chapter 15: Advanced Modeling...529

15-1. Creating an Association on a Derived Entity ..529

Problem .. 529

Solution .. 529

How It Works .. 531

15-2. Mapping an Entity to Customized Parts of One or More Tables532

 CONTENTS

xxviii

Problem .. 532

Solution .. 532

How It Works .. 534

15-3. Creating Conditional Associations..536

Problem .. 536

Solution .. 536

How It Works .. 541

15-4. Fabricating Additional Inheritance Hierarchies ..542

Problem .. 542

Solution .. 542

How It Works .. 545

15-5. Sharing Audit Fields Across Multiple Entities...547

Problem .. 547

Solution .. 547

How It Works .. 551

15-6. Modeling a Many-to-Many Relationship with Payload...553

Problem .. 553

Solution .. 553

How It Works .. 555

15-7. Mapping a Foreign Key Column to Multiple Associations556

Problem .. 556

Solution .. 557

How It Works .. 562

15-8. Using Inheritance to Map a Foreign Key Column to Multiple Associations564

Problem .. 564

Solution .. 564

How It Works .. 567

15-9. Creating Read-only and Computed Properties ...568

 CONTENTS

xxix

Problem .. 568

Solution .. 568

How It Works .. 574

15-10. Mapping an Entity to Multiple Tables...576

Problem .. 576

Solution .. 576

How It Works .. 577

15-11. Mapping an Entity to Multiple Entity Sets (MEST) ..578

Problem .. 578

Solution .. 578

How It Works .. 583

15-12. Extending Table per Type with Table per Hierarchy...585

Problem .. 585

Solution .. 585

How It Works .. 588

Index...591

 About the Authors

Larry Tenny has more than 20 years of experience developing
applications using a broad range of development tools primarily targeting
the Windows platform. He has extensive .NET development experience
from its initial community preview as Next Generation Windows Services
to the latest .NET 4.0 release. He has a PhD in Computer Science from
Indiana University.

Zeeshan Hirani is a longtime .NET and database developer. He is a senior
developer at a top Internet e-commerce site using Entity Framework,
ASP.NET, Silverlight, and many other Microsoft technologies. He has
extensive experience with many ORM and database technologies, which
provides him with a unique perspective on Microsoft’s Entity Framework.
He has written several articles, maintains an influential Entity Framework
blog, and is a frequent contributor to many .NET forums. He is a Microsoft
MVP.

xxx

 ABOUT THE TECHNICAL REVIEWERS

About the Technical Reviewers

David Annesley-DeWinter has worked with and implemented business
solutions on the .NET platform since .NET 1.1, leveraging a background in r
data modeling using ORM (object-role modeling) to drive data requi
for organizations. After working in industry on a variety of applications
ranging from highly concurrent middleware services to customer-faci
client and web applications, David moved to Washington and now w
the Entity Framework team at Microsoft, where he focuses on features for
object services like the POCO templates and Code First. In his spare time,
David enjoys photography and rowing for the Sammamish Rowing
Association in Redmond. You can read more about his experiences with the
Entity Framework and other .NET-related topics on his blog at
http://blogs.rev-net.com/ddewinter/ and follow him on Twitter at
@ddewinter.

ich
rements

ng rich
orks on

Brian Swan spent 14 years teaching high-school and junior-college
mathematics and dabbled in teaching introductory computer science
courses before making the jump to a career in technology. After a brief
stint at Amazon Web Services as a support engineer, he joined
Microsoft where he has been focused on learning and writing about
various data access technologies. In his spare time he is an amateur
husband, father, mountain biker, back packer, runner, and beer
drinker.

xxxi

http://blogs.rev-net.com/ddewinter

Acknowledgments

Without a doubt, this book required an enormous amount of research and countless hours of
discovering the common problems that developers face with Entity Framework. For months, we
pestered the Entity Framework Development Team and others in the forums and in hundreds of e-mails.
We found the team and the Internet community extremely patient and willing to help us explore this
technology and understand the problems developers often encounter. For this we are deeply grateful.

In particular, we would like to thank Diego Vega, Microsoft Program Manager, for sharing his
valuable knowledge and expertise. Throughout the writing of this book, Diego shed light into many areas
where our knowledge fell short. Without his explanations we would not have been able to deliver the
breadth and depth of content represented in this book.

We also would like to thank Noam Ben-Ami, Microsoft Program Manager, who answered many of
our questions about Entity Framework Designer. Noam provided incredibly important insight into some
of the most interesting aspects of Entity Framework.

We would like to thank our technical editors, David Annesley-DeWinter and Brian Swan, for their
careful and meticulous review of every recipe. The technical reviewers worked through each recipe and
provided us with very valuable advice throughout the process.

So much of what this book is is due to the professionalism and guidance of the many people at
Apress. Our editor, Jonathan Gennick, is not only a helpful guide but also a good friend and a writing
mentor. Our coordinating editor, Mary Tobin, provided the steady guidance and clock-like cadence that
kept this massive project humming along even when the writers struggled to keep up. Nancy Sixsmith,
our very patient copy editor, checked (and often corrected) every word with machine-like precision. To
all the wonderful people at Apress, thank you so much.

Finally, we want to thank our families, friends, and co-workers for putting up with a couple of
overly excited developers turned writers.

xxxii

Preface

Anyone who has been developing on the Microsoft platform for the last several years knows the drill:
every few years, there’s a new database access technology. There was ODBC; then DAO and RDO;
OLEDB, ADO, and ADO.NET; LINQ to SQL; and now Entity Framework! In many ways, this progression
of technologies has been confusing, but in other ways it’s wonderfully refreshing to see this field evolve
from simple open connectivity to componentized connectivity, to disconnected access in a managed
environment, to friction-less access syntax, and finally to conceptual modeling.

It’s the conceptual modeling that is the defining feature of Entity Framework and is at the heart of
this book. Entity Framework builds upon the previous data access paradigms providing an environment
that supports rich, real-world domain level modeling. We can now think of and program against real-
world things such as orders and customers, and leverage concepts such as inheritance to reason about
things in our domain and not just rows and columns.

There is no question that Entity Framework is the future of data access for the Microsoft platform.
The first release in August of 2008 was widely considered a good first step. Now, more than year later,
this new release of Entity Framework (often called EF 4.0) as part of the newly released Visual Studio
2010 and .NET 4.0 has matured into a full function data access technology ready for production use in
both green field and legacy applications.

The concepts and patterns you will learn as you use the recipes in this book will serve you well
into the future as Microsoft continues to evolve Entity Framework in the years to come.

Who This Book Is For
This book is for anyone who develops applications for the Microsoft platform. All of us who work in this
field need access to data in our applications. We are all interested in more powerful and intuitive ways to
reason about and program against the real-world objects in our applications. It makes much more sense
for us to architect, design, and build applications in terms of customers, orders, and products rather
than rows and columns scattered among tables locked away in a database. Because we can reason about
problem space in terms of real-world objects, we have a lot more confidence in our design and in the
code that we build. We are also better able to document and explain our applications to others. This
makes our code much more maintainable.

Entity Framework is not just for developers. Microsoft is aggressively positioning the modeling
concepts in Entity Framework to serve as the conceptual domain for Reporting Services and Integration
Services as well as other technologies that process, report on, and transform data. Entity Framework is
quickly becoming a core data access foundation for many other Microsoft technologies.

This book contains well over 150 recipes that you can put to work right away. Entity Framework is
a large and complex topic. Perhaps it’s too big for a monolithic reference book. In this book, you will find
direct and self-contained answers to just about any problem you’re facing in building your Entity
Framework-powered applications. Along the way, you’ll learn an enormous amount about Entity
Framework.

xxxiii

 PREFACE

What’s in This Book
We’ve organized the recipes in this book by topic. Sometimes we’ve found that a recipe fits into more
than one chapter, and sometimes we find that a recipe doesn’t fit perfectly in any chapter. We think it’s
better to include all the important recipes rather than just the ones that fit, so you might find yourself
wondering why a particular recipe is in a certain chapter. Don’t worry. If you find the recipe useful, we
hope that you can forgive its (mis)placement. At least we got it into the book.

The following is a list of the chapters and a brief synopsis of the recipes you’ll find in them:

Chapter 1: Getting Started with Entity Framework. We explain the motivation behind Entity
Framework. We also explain what the framework is and what it does for you.

Chapter 2: Entity Data Modeling Fundamentals. This chapter covers the basics in modeling. Here
you’ll find out how to get started with modeling and with Entity Framework in general. If you’re just
getting started, this chapter probably has the recipes you’re looking for.

Chapter 3: Querying an Entity Data Model. We’ll show you how to query your model using both
LINQ to Entities and Entity SQL.

Chapter 4: Using Entity Framework in ASP.NET. Web applications are an important part of the
development landscape, and Entity Framework is ideally suited for ASP.NET. In this chapter we
focus on using the EntityDataSource to interact with your model for selects, inserts, updates, and
deletes.

Chapter 5: Loading Entities and Navigation Properties. The recipes in this chapter cover just about
every possibility for loading entities from the database.

Chapter 6: Beyond the Basics with Modeling and Inheritance. Modeling is a key part of Entity
Framework. This is the second of three chapters with recipes specifically about modeling. In this
chapter, we included recipes that cover many of the more complicated, yet all-too-common
modeling problems you’ll find in real-world applications.

Chapter 7: Working With Object Services. In this chapter, we included recipes that provide practical
solutions for the deployment of your models. We also provide recipes for using the Pluralization
Service, using the edmgen.exe utility, and working with so-called identifying relationships.

Chapter 8: Plain Old CLR Objects. Using code-generated entities is fine in many scenarios, but there
comes a time when you need to use your own classes as EntityTypes. The recipes in this chapter
cover plain old CLR objects (POCO) in depth. They show you how to use your own classes and
reduce code dependence on Entity Framework.

Chapter 9: Using Entity Framework in n-Tier Applications. The recipes in this chapter cover a wide
range of topics using Entity Framework across the wire. We cover POCO, self-tracking entities,
serialization, and concurrency.

Chapter 10: Stored Procedures. If you are developing or maintaining a real-world, data-centric
application, you most likely work with stored procedures. The recipes in this chapter show you how
to consume the data exposed by those stored procedures.

Chapter 11: Functions. The recipes in this chapter show you how to create and use model-defined
functions. We also show how to use functions provided by Entity Framework, as well as functions
exposed by the storage layer.

xxxiv

 PREFACE

Chapter 12: Customizing Entity Framework Objects. The recipes in this chapter show you how to
respond to key events, such as when objects are persisted. We also show how to customize the way
those events are handled.

Chapter 13: Improving Performance. For many applications, getting the best performance possible
is an important goal. This chapter shows you several ways to improve the performance of your
Entity Framework applications.

Chapter 14: Concurrency. Lots of instances of your application are changing the database. How do
you control who wins? The recipes in this chapter show you how to manage concurrency.

Chapter 15: Advanced Modeling. This is the last of three chapters that focuses on modeling. The
recipes in this chapter show you how to solve some of the most vexing modeling problems you are
ever likely to encounter.

About the Recipes
At present there are four perspectives on model development in Entity Framework. Each of these
perspectives is at a different level of maturity in the product and at a different level of use in the
community.

The initial perspective supported by Entity Framework is called Database First. Using Database
First, a developer starts with an existing database that is used to create an initial conceptual model. This
initial model serves as the starting point for further development. As changes occur in the database, the
model can be updated from these database changes. Database First was the initial perspective
supported in Entity Framework, is the best-supported approach, and is widely used to migrate existing
applications to Entity Framework.

The current release of Entity Framework introduced the Model First perspective. With Model
First, the developer starts with a blank design surface and creates a conceptual model. Once the
conceptual model is complete, Entity Framework can automatically generate a script to create a
complete database for the conceptual model. In this release there is limited support for many of the
modeling scenarios. As you might expect, realizing an arbitrarily complex conceptual model in a
traditional relational database is an enormous challenge. The support for this perspective will mature
over time and will likely become the dominant approach, particularly for new projects.

Persistence ignorance, which is supported in many ORM products, is now supported in the
current version of Entity Framework. With persistence ignorance, you can use plain old CLR objects,
usually referred to as POCO, as entity types. There is no need for them to inherit from EntityObject. We
have devoted a number of recipes to POCO.

Finally, an emerging perspective is Code First. In this approach, there is no .edmx file (which
encapsulates model and mapping information). Your objects create and use a model dynamically at
runtime. This perspective is still in the experimental stage and is available as a Community Technology
Preview.

In this book, we focus on the Database First perspective. This perspective is the most widely used
and most mature approach. Many, if not most, developers in the Entity Framework community find
themselves working with existing applications or developing models that are not readily supported by
the other perspectives. We also have to share a dirty little secret: many existing applications don’t exactly
use the best database designs. Way too often we find ourselves working with databases (of course,
created by other less talented developers) that are poorly designed. As developers, sometimes in larger
organizations with lots of process control, or with lots of fragile legacy code, we can’t change the
database enough to really fix the design. In these cases, we simply have to work with the database design
we have.

xxxv

 PREFACE

Many of the recipes we selected for this book take on the task of modeling some of these more
challenged database designs. We’ve found hundreds of examples of these databases in the wild and
we’ve worked with many developers in the Entity Framework community who have struggled to model
these databases. We’ve taken these experiences and selected a number of recipes that will help you solve
these problems.

Stuff You Need to Get Started
Okay, what do you need? First off, you will need Microsoft’s latest software development environment.
Microsoft’s Visual Studio 2010 comes complete with full support for Entity Framework. Visual Studio
2010 Express Edition is freely available. The other versions of Visual Studio fully support Entity
Framework.

You’ll need a database. Microsoft SQL Server 2008 with Service Pack 1 is the simplest choice, but
there are Entity Framework providers for databases from other vendors. Microsoft SQL Server 2008
Express is freely available. Make sure you apply the latest service packs and updates. These recipes were
built and tested using Microsoft SQL Server 2008. Previous versions of SQL Server or other databases
may not play well with a few of the recipes.

Code Examples
This book is all about recipes that solve very specific problems in a way that allows you to directly apply
the solution to your code. Feel free to use and adapt any of the code you find here to help build or
maintain your applications. Of course, it’s not okay to copy large parts of this material and distribute it
for fun or profit. If you need to copy large parts of this material, contact our publisher, Apress, to get
permission.

If you use our code publicly (in blogs, forums, and so on), we would appreciate, but don’t require,
some modest attribution such as author, title, and ISBN.

We’ve taken a decidedly low-tech approach in the code in each recipe. We’ve tried not to clutter
the code with unnecessary constructs and clever tricks. In the text, we show just the code of interest, but
we also show enough to give the proper context. In the download for the code, we have complete
solutions for each recipe. The solutions build simple applications that you can modify and run over and
over to play with various changes that suit your needs.

The Database
Of course, there is more to each recipe than just the code. We created a single database for all the
recipes. This makes it much easier to work through the recipes because there is just one database to
create in your development environment.

To keep some sanity in the table names and provide at least a little organization, we created a
schema for each chapter. The recipes in the chapter use the tables in the corresponding schema. In the
text, we often show database diagrams similar to the one in Figure 0-1. This helps make clear the table
structure we’re working with. Each table in a diagram is annotated (courtesy of SQL Server Management
Studio) with the name of the table and the schema for the table. Because we reuse table names
throughout the book (we’re just not creative enough not to), this helps keep straight exactly which tables
we’re referring to in the database.

xxxvi

 PREFACE

Figure 0-1. Each database diagram in the text has the schema name next to the table name.

We’ve also provided the complete set of database diagrams for each recipe as part of the
database. If something isn’t clear from just the tables, especially when several tables are involved, it
often helps to look at the diagram to sort things out.

Apress Website
Visit the Apress website (http://apress.com/book/view/1430227036) for the complete code download as
well as the database with all the tables and database diagrams used in this book. Please look for the
“Source Code” link underneath the cover image.

xxxvii

http://apress.com/book/view/1430227036

C H A P T E R 1

Getting Started With
Entity Framework

In relational databases, we think of things in terms of tables with rows and columns. Tables are very
structured and amenable to all sorts of interesting set theory. Before the dawn of object-oriented
programming, back in the day when we focused on “structured” programming and wrote function after
function, it seemed a good idea to break down a big problem into lots of little problems. Working with
tables, rows, and columns seemed a good match with our code. Our code was structured and
procedural. Our data was structured and backed up by database side procedures. Things lined up well.
Many database vendors even supplied preprocessors that allowed developers to intermix SQL
statements and C (or Fortran) code. Life was good for a time.

Much has evolved on the code side. Now we think in terms of objects in a domain model. We
architect, design, and program against real-world things like customers and orders. We draw the nouns
in our problem space on whiteboards. We draw lines between them, denoting relationships and
interactions between customers and orders. We build specifications and assign work to development
teams in terms of these drawings. In short, we architect, design, and program at a conceptual level that is
very distant from the logical organization of the database.

While the software development process has matured, and the way in which we reason about and
solve problems during the process has evolved, the data in our databases has been locked in the same
tables, rows, and columns structure. The synergy between structured data and our code evaporated as
quickly as structured programming in the heat of modern object-oriented development. To cope with
this growing mismatch, many projects introduced a “database layer” to isolate the object-oriented code
from the data store. This layer translated objects to the rows and columns saved in tables. Many
commercial solutions were introduced, including an entire field of Object Relational Mapping (ORM).
These tools provided many out-of-the-box yet configurable ways to bridge the ever-widening gap
between the evolving development process and structured data.

The fundamental problem is this: the gap is widening and it is increasingly impractical to fill the gap
with yet more glue code. No one wants to develop and maintain more in house glue code and
commercial solutions are struggling to keep up. Microsoft is fond of calling this gap the impedance
mismatch between code and data.

Microsoft’s Entity Framework, together with Language-Integrated Query (LINQ) and a new query
language called Entity SQL, are technologies specifically designed to address the impedance mismatch
problem. With Entity Framework, we model the nouns (entity types) on a design surface. On the design
surface, we can model the relationships (associations) between entities. In our code, we program against
these entities and associations. LINQ allows us to express the set theoretical concepts of relational
databases directly in our code while working in terms of entity types and associations. All this elevates
the interactions with the data store to the conceptual level we design and reason about with our code.
When we work at the conceptual level for both code and data, we can worry less about the logical
schema of the data store and free ourselves from the noise of the glue code and third-party ORM tools.

1

CHAPTER 1 GETTING STARTED WITH ENTITY FRAMEWORK

A Brief Tour of the Entity Framework World
Entity Framework is a collection of technologies for developing applications that use data. Unlike
previous Microsoft data-access technologies, Entity Framework, together with Visual Studio, is a
comprehensive, model-based ecosystem that you can use to develop a wide range of data-oriented
applications. You can develop desktop applications, server-side applications, Internet applications using
ASP.NET and Silverlight, and Windows Communication Foundation (WCF)-based multimachine
applications. In this book, we have recipes that will help you develop all these types of applications.

Let’s take a very brief look at some of the parts of the Entity Framework ecosystem. What follows is
not by any means a comprehensive description of Entity Framework; that would take hundreds of pages.
We’ll look at just a few key things to help get you oriented for the recipes that are at the heart of this
book.

Models
Entity Framework is a technology that’s all about modeling. The modeling in Entity Framework
represents more of an evolutionary point than a revolutionary idea. As you work with models in Entity
Framework, you will see many familiar genetic markers from previous technologies and patterns. You
will, no doubt, see a family resemblance to entity-relationship diagrams and the long-used conceptual,
logical, and physical design layers approach.

Entity Framework uses models characterized by the Entity Data Model (EDM). The EDM is a formal
structure for defining data used in the applications you create with Entity Framework. The EDM defines
the data types, the specific definitions of what types of relationships are allowed, the schemas that
support the model, and the mapping between these schemas. The models you build and program
against are defined in terms of the EDM, but are not themselves Entity Data Models. It’s sort of like the
difference between a class and an instance of the class (an object). If you understand the definition of a
class, you know a great deal about the behavior of an instance of the class, but the two are quite
different. Although models in applications are often confused with the EDM (sometimes even in
Microsoft’s documentation), it’s important to emphasize the difference.

So what does the EDM say about the structure of models? Well, quite a lot as it turns out. First off, a
model is composed of three layers: a conceptual layer, a storage layer, and a mapping layer. The syntax
for each layer, that is, how it’s represented in a file, is XML-based. The schema for each of these layers is
defined, of course, by the EDM. XML is amenable to designer applications, can be consumed and
produced by developer tools, and is sort of human-readable. For convenience, all three of these layers
are usually bundled in single file in your project. The file has the .edmx extension.

The conceptual layer, or conceptual model, is perhaps the only part many developers see when they
work with a model. Visual Studio provides a full-featured designer that enables you to whiteboard the
high-level nouns (entity types) and relationships (associations) in our domain. On the conceptual layer,
there is no taint of a physical storage organization. With the designer you create entities, perhaps
establish inheritance hierarchies, and link entities together through associations. The syntax for the
conceptual model is defined by the Conceptual Schema Definition Language (CSDL).

Every useful application needs to persist objects to some data store. The store layer, or store model,
defines the data store. This includes the tables, columns, and data types that the EntityClient layer will
ultimately map to the underlying database. The syntax for the store model is defined in by the Store
Schema Definition Language (SSDL).

The mapping between the conceptual model and the store model is defined by the mapping layer.
Among other things, this layer defines how properties on entities map to columns on tables. Although it
is tucked away in the Mapping Details window, this mapping layer is also exposed to the developer

2

 CHAPTER 1 GETTING STARTED WITH ENTITY FRAMEWORK

through the designer. The syntax for the mapping layer is defined by the Mapping Specification
Language (MSL).

Terminology
There is a huge amount of terminology around Entity Framework. If you have used any of the popular
ORM tools or are familiar with database modeling, you’ve probably encountered some of the
terminology before. Much of the terminology is unique to Entity Framework. Here we’ll provide just a
few of the basic terms to get us started.

An EntityType is the “noun” in your model. An EntityType, like a class, defines a new type. An
instance of an EntityType is referred to as an entity. An EntityType is represented on the design surface
as a box with various properties. Figure 1-1 shows two EntityTypes: Employee and Task.

Figure 1-1. A model with Employee and Task and a one-to-many association between them

Most of the time, in this book and throughout much of the documentation, blogs, forum posts, and
so on, you’ll find people referring to a particular EntityType as just an entity. Following this somewhat
lazy approach, people will say that Figure 1-1 has two entities: Employee and Task, when really it has two
EntityTypes. For this section, we’ll stick with EntityType to be clear.

An EntityType usually has one or more properties. Just like with a class, a property is a named value
with a specific data type. Properties can have simple types like integer, string, and so on; or have
ComplexTypes; or be collections. Navigation properties refer to other entities in an association. The
non-navigation properties on an EntityType are usually just called scalar properties.

An Association between two EntityTypes is shown on the design surface as a line connecting the
EntityTypes. The line is annotated to show the multiplicity on each end of the association. The
association in Figure 1-1 is a one-to-many association between Employee and Task. An Employee can
have zero or more tasks. Each Task is associated to exactly one Employee.

Every EntityType has some set of properties which denote its EntityKey. An EntityKey for an entity
uniquely indentifies the entity to Entity Framework and is most often obtained from the entity’s
representation in the underlying database.

An EntitySet holds instances of an EntityType (or one of its derived types) at runtime. In most cases,
instances of a given EntityType are held in just one EntitySet, but we’ll cover examples of Multiple
EntitySets per Type (MEST).

A ComplexType is a set of related properties. A ComplexType does not have a key like an EntityType
does. A ComplexType is typically used to group related properties together to be reused in a model or to
simplify a model. For example, an Address ComplexType might group together address line 1, address
line 2, suite number, city, state, and ZIPCode. In a Customer EntityType, you might have a
BillingAddress and a ShipToAddress, each of type Address. This makes Customer a little simpler because
it doesn’t need individual properties for each part of the customer’s address (see Figure 1-2).

3

CHAPTER 1 GETTING STARTED WITH ENTITY FRAMEWORK

Figure 1-2. Address ComplexType that is the data type for both the BillingAddress and the ShipToAddress

for the customer

Code
The story of Entity Framework is not quite complete without code. After all, Entity Framework is just a
tool you use to create your applications. The models, EntityTypes, associations, mappings, and so on are
ultimately expressed in concrete code that becomes part of your application. This code is either
generated by Visual Studio and Entity Framework during the build process or else it is created by you,
the developer. You get to choose quite a bit about the code-generation process or the lack of it by
changing various properties on your project and modifying or creating code-generation templates.

Visual Studio uses a relatively new code-generation technology called Text Template
Transformation Toolkit, which is such mouthful everyone refers to it simply as T4 Templates. T4
Template support comes from the Domain Specific Language tools work that Microsoft has been doing
for some time. It is a way to provide a human-readable template that used to guide the tooling in Visual
Studio when it automatically generates code. The great thing about T4 Template support in Visual
Studio is that you can edit the templates to tailor the code-generation process to your needs. This is an
advanced technique, but it is necessary in some cases. We’ll show you how to do this in a few recipes.

Creating your own classes that implement your EntityTypes is often referred to as using Plain Old
CLR Objects or simply POCO. Your POCO classes typically don’t have any dependence on Entity
Framework plumbing. The recipes in Chapter 8 show you the basics of creating and using POCO. There
are also many recipes throughout the book that show you how to use POCO in specific contexts such as
in n-tier applications.

The workflow for code generation is managed during the build process by Windows Workflow
Foundation (WF). Although WF has been around for a while, the .NET 4.0 release contains a completely
re-engineered implementation and now an integration into Visual Studio 2010.

Visual Studio 2010
Of course, the main tool we use when developing applications for the Windows environment is Visual
Studio. This Integrated Development Environment has evolved over many years from a simple C++
compiler and editor to a highly integrated, multilanguage environment that supports the entire software
development lifecycle. Visual Studio and its related tools and services provide for design, development,
unit testing, debugging, software configuration management, build management and continuous
integration, and much more. Don’t be worried if you haven’t used all these in your work; few developers
have. The point is that Visual Studio 2010 is a full-featured toolset. Visual Studio plays a vital role in the
development of Entity Framework applications.

4

 CHAPTER 1 GETTING STARTED WITH ENTITY FRAMEWORK

Visual Studio provides an integrated design surface for Entity Framework models. Using this design
surface and other tools in Visual Studio, you can create models from scratch or create them from an
existing database.

If you have an existing database, which is the case for many of us with existing applications, Visual
Studio provides tools for importing your tables and relationships into a model. This approach, known as
Database First, is the best-supported modeling approach and the one we use in most of the recipes in
this book. This fits nicely with the real world because few of us have the luxury of developing brand-new
applications. Most of us have to extend, maintain, or evolve our existing code and databases.

When you create a model from scratch, also known as Model First, you start with an empty design
surface and add new EntityTypes to the surface and create both the associations and inheritance
hierarchies for your model. When you are done creating the model, right-click the design surface and
select Generate Database from Model. Not all modeling scenarios are currently supported with Model
First. In time, Model First will likely become the dominant modeling approach. For now, Model First is
great for many modeling scenarios for new applications.

Once you have created your model, changes often happen. That’s the nature of software
development. Visual Studio provides tools for updating the model from the database. This will keep the
model synchronized with changes in the database. Beware: updating the model will update the
conceptual model (.csdl), but may also change the underlying store model (.ssdl). This is fine if you
haven’t manually edited the store model (which we do in some recipes). If you have edited the store
model, you may find that you have to reapply your changes. We’ll warn you in the recipes in this book
when updating the model will make changes to your store model.

Using Entity Framework
Entity Framework is an integral part of Visual Studio 2010. One simple way to start using Entity
Framework is to include a new ADO.NET Entity Data Model in your project. Right-click your project and
select Add New Item. In the dialog box (see Figure 1-3), choose the ADO.NET Entity Data Model
template. This template is located under the Data templates. Click Add to launch the Entity Data Model
Wizard.

5

CHAPTER 1 GETTING STARTED WITH ENTITY FRAMEWORK

Figure 1-3. Adding a new model to your project

There are two options on the first page of the Entity Data Model Wizard: start with an existing
database or start with an empty model. This first page is shown in Figure 1-4.

6

 CHAPTER 1 GETTING STARTED WITH ENTITY FRAMEWORK

Figure 1-4. The Entity Data Model Wizard gives you a choice between creating a model from an existing

database or starting with an empty model

Generating a model from an existing database is the Database First approach. The wizard will create a
model based on one or more tables, views, and stored procedures from an existing database. With just a
few exceptions, the tables you include will be modeled as EntityTypes. If the tables you include are
related in the database, these relationships will be modeled as associations. This is a great way to create
your model if you already have a database for your application. If you’re working on a brand-new
application, you may want to start with an empty model. This approach is called Model First.

With Model First, you are presented with an empty design surface. Right-click the design surface to
create new EntityTypes, associations, or inheritances. You can also drag them from the Toolbox onto the
design surface. Once your model is complete, just right-click the design surface and select Generate
Database from Model. This will generate a script you can use to create the database tables and
relationships for the model.

With either Model First or Database First, you use the designer to develop your model. The key parts
of a model in the designer are shown in Figure 1-5. In this model, a Customer is in a one-to-many
association with an Order. Each customer may have many orders, but each order is associated with just
one customer. The Mapping Details window shows that the Customer EntityType maps to the Customer
table in the database. The Mapping Detail window also shows the mapping between the columns in the
Customer table and the scalar properties in the Customer EntityType.

7

CHAPTER 1 GETTING STARTED WITH ENTITY FRAMEWORK

8

Figure 1-5. Key parts of a model in the designer

Of course, there is a lot more to the designer and the model than just the few key parts illustrated in
Figure 1-5. In the recipes in this book, we’ll cover just about every aspect of using the designer to create
models. In some cases, we go beyond what can be done with the designer and show you how to create
models that require directly editing the underlying .edmx file. The .edmx file contains the complete
model definition, including the conceptual layer, store layer, and mapping layer.

Okay, now that you have a model, how do you program against it? Well, that’s where Entity
Framework really shines: you program against objects in the model (EntityTypes) as you do with other
objects in your application. For the model in Figure 1-5, your code uses Customer and Order in much
the same way as you use other objects.

If you want to insert a new customer and order into the database, you can use the new operator to
create instances of the Customer and Order types, set the properties, add them to the in-memory
context that represents the model, and call SaveChanges(). All the necessary SQL code is generated and
sent to the database to insert the rows. To retrieve customers and orders from the database, you use
either LINQ or Entity SQL to create a query in terms of the EntityTypes and associations in the model.

The recipes throughout this book will show you step by step how to model just about every
conceivable database scenario; how to query, insert, update, and delete using these models; and how to
use Entity Framework in many kinds of applications.

C H A P T E R 2

Entity Data Modeling Fundamentals

Entity Framework is a new technology from Microsoft. More likely than not, you are just beginning to
explore Entity Framework and you are probably asking the question, “Okay, how do I get started?” If this
describes you, this chapter is a great place to start. If, on the other hand, you have built some working
models and feel comfortable with a few key modeling concepts such as entity splitting and inheritance,
you can skip this chapter.

In this chapter, we will walk you through the basic examples of modeling with Entity Framework.
Modeling is the core feature of Entity Framework and what distinguishes Entity Framework from
previous Microsoft data access platforms. Once you have built your model, you can write code against
the model rather than against the rows and columns in the relational database.

We start off this chapter with an example of how to create a simple conceptual model and let Entity
Framework create the underlying database. In the remaining examples, we will show you how to create
models from existing tables and relationships in your databases.

2-1. Creating a Simple Model

Problem
You have a brand new project and want to create a model with just one entity.

Solution
Let’s imagine you want to create an application to hold names and phone numbers of people you know.
To keep things simple, let’s assume you need just one entity type: Person.

To create the new model, do the following:

1. Right-click your project and select Add New Item.

2. From the templates, select ADO.NET Entity Data Model and click Add. This
template is located in Data under Visual C# Items. See Figure 2-1.

3. In the first step of the wizard, choose Empty Model and click Finish. The
wizard will create a new conceptual model with an empty design surface.

4. Right-click the design surface and select Add Entity.

9

CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

5. Type Person in the Entity name field and select the box to Create a key
property. Use Id as the Key Property. Make sure its Property Type is Int32.
Click OK, and a new Person entity will appear on the design surface. See Figure
2-2.

6. Right-click near the top of the Person entity and select Add Scalar Property.
A new scalar property will be added to the Person entity.

7. Rename the scalar property FirstName. Add scalar properties for LastName,
MiddleName, and PhoneNumber.

8. Right-click the Id property and select Properties. In the properties view,
change the StoreGeneratedPattern property to Identity. This flags the Id
property as a value that will be computed by the store layer (database). The
database script we get at the end will flag the Id column as an identity column,
and the storage model will know that the database will automatically manage
the values in this column.

The completed conceptual model should look like the model in Figure 2-3.

Figure 2-1. Adding a new .emdx file that contains XML describing the conceptual model, storage model,

and mapping layer

10

 CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

Figure 2-2. Adding a new entity type representing a Person in our conceptual model

Figure 2-3. Our completed model with an entity type representing a Person

You now have a simple conceptual model. To generate a database for our model, there are a few things
we still have to do:

9. We need to change a couple of properties of our model to help with the
housekeeping. Right-click the design surface and select properties. Change the
Database Schema Name to Chapter2 and change the Entity Container Name
to EFRecipesEntities. Figure 2-4 illustrates these changes.

11

CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

10. Right-click the design surface and select Generate Database Script from
Model. Select an existing database connection or create a new one. In Figure 2-
5, we’ve opted to create a new connection to our local machine and to the
database EFRecipes.

11. Click OK to complete the connection properties and click Next to preview the
database script (see Figure 2-6). Once you click Finish, the generated script is
added to your project.

12. Run the database script in a query window to create the People table.

Figure 2-4. Changing the properties of our model

12

 CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

Figure 2-5. Creating a new database connection that will be used by Entity Framework to create a

database script that we can use to create a database from our conceptual model

13

CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

Figure 2-6. Generating the storage model in the .edmx file and creating the database script

How It Works
The Entity Framework Designer is a powerful tool for creating and updating a conceptual model, storage
model, and mapping layer. This tool provides support for bidirectional model development. You can
either start with a clean design surface and create a model; or start with a database you already have and
import it to create a conceptual model, storage model, and mapping layer. The current version of the
Designer supports somewhat limited roundtrip modeling, allowing you to re-create your database from
a model and update the model from changes in your database.

The model has a number of properties that affect what goes in the generated storage model and
database script. We changed two of these properties. The first was the name of the container. This is the
class derived from ObjectContext. We called this EFRecipesEntities to be consistent with the contexts we
use throughout this book.

Additionally, we changed the schema to “Chapter 2.” This represents the schema used to generate
the storage model as well as the database script.

The code in Listing 2-1 demonstrates one simple way to create and insert instances of our Person
entity type. The code also demonstrates iterating through all the Person entities in our database.

14

 CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

Listing 2-1. Inserting into and retrieving from our model

using (var context = new EFRecipesEntities())
{
 var person = new Person() { FirstName = "Robert", MiddleName="Allen",
 LastName = "Doe", PhoneNumber = "867-5309" };
 context.People.AddObject(person);
 person = new Person() { FirstName = "John", MiddleName="K.",
 LastName = "Smith", PhoneNumber = "824-3031" };
 context.People.AddObject(person);
 person = new Person() { FirstName = "Billy", MiddleName="Albert",
 LastName = "Minor", PhoneNumber = "907-2212" };
 context.People.AddObject(person);
 person = new Person() { FirstName = "Kathy", MiddleName="Anne",
 LastName = "Ryan", PhoneNumber = "722-0038" };
 context.People.AddObject(person);

 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 foreach (var person in context.People)
 {
 System.Console.WriteLine("{0} {1} {2}, Phone: {3}",
 person.FirstName, person.MiddleName,
 person.LastName, person.PhoneNumber);
 }
}

The output of the code in Listing 2-1 should look something like the following:

John K. Smith, Phone: 824-3031

Robert Allen Doe, Phone: 867-5309

Kathy Anne Ryan, Phone: 722-0038

Billy Albert Minor, Phone: 907-2212

15

CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

Best Practice

When we created a new instance of the object context, we did it within a using() statement:

using (var context = new EFRecipesEntities())
{
…
}

If you are not familiar with this pattern, it’s really pretty simple. Normally, when we get a new instance of
an object, we use the new operator and assign the result to some variable. When the variable goes out of
scope and the object is not longer referenced by anything else, the garbage collector will do its job at some
point and reclaim the memory for the object. That works great for most of the objects we create in our
.NET applications because most objects hold on to resources that can wait around for whenever the
garbage collector has a chance to reclaim them. The garbage collector is rather nondeterministic. It
reclaims resources pretty much on its own schedule, which we can only partially influence.

Instances of ObjectContext hold on to resources such as database connections that we want to release
as soon as we’re done with them. We don’t really want these database connections to stay open waiting
for the garbage collector to eventually reclaim them.

There are a few nice features of using statements. First, when the code execution leaves the using() {}
block, the Dispose() method on the context will be called (because ObjectContext implements the
IDisposable interface). For ObjectContext, the Dispose() method closes any active database connections
and properly cleans up any other resources that need to be released.

Second, no matter how the code leaves the using(){} block, the Dispose() method is called. Most
importantly, this includes return statements and exceptions that may be thrown within the code block. The
using(){} block is kind of a guarantee that critical resources will be reclaimed properly.

The best practice here is to always wrap your code in the using(){} block when creating new instances
of ObjectContext. It’s one more step to help bullet-proof your code.

2-2. Creating a Model from an Existing Database

Problem
You have an existing database with a few tables, perhaps a few views, and some foreign key constraints,
and you want to create a model for this database.

Solution
Let’s say you have database describing poets and their poetry. Your relational database might look
something like the diagram in Figure 2-7.

16

 CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

Figure 2-7. A simple database for poets and their poetry

From this database diagram, you can see that a poet can be the author of one or more poems and each
poem can be categorized by its meter, which is the basic pattern of a poem’s verse. It’s not shown in this
diagram, but our database also has a view that joins the tables together so that we can more easily
enumerate each poet, poem, as well as the poem’s meter.

To import the view, tables, and relationships into a model, do the following:

1. Right-click your project and select Add New Item.

2. From the Visual C# Items Data templates, select ADO.NET Entity Data Model.

3. Select Generate from database to create the model from our existing tables.
Click Next.

4. Either choose an existing connection to your database or create a new
connection. If you are creating a new connection, you will need to select your
database server, your authentication method (Windows or SQL Server), and
the database. Once you have selected these, it’s a good idea to click Test
Connection to be sure the connection is ready to go. Once you have tested the
connection, click Next.

5. The next dialog box shows all the tables, views, and stored procedures in the
database. Check the items you want to include in the model. We want to select
all the tables (Meter, Poem, and Poet). We also want to select the view
(vwLibrary). For now, leave the two check boxes for pluralizing and including
foreign key columns selected. We’ll talk more about them in a minute. Figure
2-8 shows the things we’ve selected.

17

CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

Figure 2-8. Selecting the tables and view to include in our model. Leave the Pluralize or singularize

generated object names and Include Foreign Key Columns in the Model checked.

When you click Finish, the wizard will create a new model with our three tables and the view. The wizard
will also read the foreign key constraints from the database and infer a one-to-many relationship
between Poet and Poem(s) as well as a one-to-many relationship between Meter and Poem(s).

Figure 2-9 shows the new model created for us by including the Poet, Poem, and Meter tables as well
as the vwLibrary view.

18

 CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

Figure 2-9. Our completed model

You now have a model you can use in your code. Note that the vwLibrary entity is based on the
vwLibrary view in our database. In most databases, views are read only objects: inserts, deletes, and
updates are typically not supported at the database layer. This is also the case with Entity Framework.
Entity Framework considers views read only. You can get around this by mapping stored procedures for
the create, update, and delete actions for view-based entities. We will show you how to do just that in
Chapter 6.

How It Works
Let’s look at the model created for us by the importing process. First, notice that the entities have scalar
properties and navigation properties. The scalar properties map to the columns in the tables of the
database while the navigation properties are derived from the relationships between the tables.

In our database diagram, a poem has a meter and a poet (the author). These correspond to the
Meter and Poet navigation properties. If we have an instance of a Poem entity, the Poet navigation
property holds an instance of a Poet entity while the Meter navigation property holds an instance of a
Meter entity. A poet can be the author of any number of poems. The Poems navigation property
contains a collection of instances of the Poem entity. This collection can be empty, of course, for those
poets that have yet to write any poetry. For the Meter entity, the Poems navigation property is also a
collection. For this navigation property, the collection holds instances of Poems that have the given
meter. Our database did not contain any relationships with the vwLibrary view and our model reflects
this with an empty set of navigation properties on the vwLibrary entity.

Notice that the Import Wizard was smart enough to pluralize the navigation properties that
contained collections. If you right-click the entities and look at their properties, you will notice that the
entity set names for each of the entities is also property pluralized. For example, the entity set name for

19

CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

the Poem entity is Poems. This automatic pluralization happened because we left the Pluralize or
singularize generated object names option checked.

The Include Foreign Key Columns in the model option caused the foreign keys to be included in the
model as well. Although it may seem a little unnecessary to have both foreign keys and navigation
properties, we’ll see in many of the following recipes that having direct access to the foreign keys can be
useful.

The code in Listing 2-2 demonstrates how to create instances of Poet, Poem, and Meter entities in
our model and how to save these entities to our database. The code also shows you how to query the
model to retrieve the poets and poems from the database.

In the first block of code in Listing 2-2, we create instances of the Poet, Poem, and Meter entity types
for the poet John Milton, his poem “Paradise Lost,” and the meter for the poem―which in this case is
Iambic Pentameter. Once we have created the instances of the entity types, we set the poem’s Meter
property to the meter instance and the poem’s Poet property to the poet instance. Using the same
approach we build up the other entities relating each poem to its meter and poet. Once we have
everything in place, we call SaveChanges()to generate and execute the appropriate SQL statements to
insert the rows into the underlying database.

Listing 2-2. Inserting into and querying our model

using (var context = new EFRecipesEntities())
{
 var poet = new Poet { FirstName = "John", LastName = "Milton" };
 var poem = new Poem { Title = "Paradise Lost" };
 var meter = new Meter { MeterName = "Iambic Pentameter" };
 poem.Meter = meter;
 poem.Poet = poet;
 context.Poems.AddObject(poem);
 poem = new Poem { Title = "Paradise Regained" };
 poem.Meter = meter;
 poem.Poet = poet;
 context.Poems.AddObject(poem);

 poet = new Poet { FirstName = "Lewis", LastName = "Carroll" };
 poem = new Poem { Title = "The Hunting of the Shark" };
 meter = new Meter { MeterName = "Anapestic Tetrameter" };
 poem.Meter = meter;
 poem.Poet = poet;
 context.Poems.AddObject(poem);

 poet = new Poet { FirstName = "Lord", LastName = "Byron" };
 poem = new Poem { Title = "Don Juan" };
 poem.Meter = meter;
 poem.Poet = poet;
 context.Poems.AddObject(poem);

 context.SaveChanges();

}

using (var context = new EFRecipesEntities())
{

20

 CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

 var poets = from p in context.Poets select p;
 foreach (var poet in poets)
 {
 Console.WriteLine("{0} {1}", poet.FirstName, poet.LastName);
 foreach (var poem in poet.Poems)
 {
 Console.WriteLine("\t{0} ({1})", poem.Title, poem.Meter.MeterName);
 }
 }
}

// using our vwLibrary view
using (var context = new EFRecipesEntities())
{
 var items = from i in context.vwLibraries select i;
 foreach (var item in items)
 {
 Console.WriteLine("{0} {1}", item.FirstName, item.LastName);
 Console.WriteLine("\t{0} ({1})", item.Title, item.MeterName);
 }
}

The output from the code in Listing 2-2 is the following:

Lord Byron

 Don Juan (Anapestic Tetrameter)

Lewis Carroll

 The Hunting of the Shark (Anapestic Tetrameter)

John Milton

 Paradise Regained (Iambic Pentameter)

 Paradise Lost (Iambic Pentameter)

Lewis Carroll

 The Hunting of the Shark (Anapestic Tetrameter)

Lord Byron

 Don Juan (Anapestic Tetrameter)

John Milton

21

CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

 Paradise Regained (Iambic Pentameter)

John Milton

 Paradise Lost (Iambic Pentameter)

In the code, we start by creating and initializing instances of the poet, poem, and meter for the first
of John Milton’s poems. Once we have these in place, we set the poem’s Meter navigation property and
the poem’s Poet navigation property to the instances of poem and meter. Now that we have the poem
instance completed, we add it using the AddToPoems() method. Entity Framework does all the remaining
work of adding the poem to the Poems collection on the poet instance and adding the poem to the
Poems collection on the meter instance. The rest of the setup follows the same pattern. To shorten the
code, we reuse variables and instances where we can.

Once we have the all the objects created and all the navigation properties initialized, we have
completed the object graph. Entity Framework keeps track of the changes we’ve made to build the object
graph. These changes are tracked in the object context. Our context variable contains an instance of the
object context (it’s of type ObjectContext) and is what we used to build the object graph. To send these
changes to the database, we call the SaveChanges() method.

To query our model and, of course, verify that we did indeed save everything to the database, we
grab a fresh instance of the object context and query it using LINQ to Entities. We could have reused the
same instance of the object context, but then we know it has the object graph and any subsequent
queries we do against it won’t flow through to the database because the graph is already in memory.

Using LINQ to Entities, we query for all the poets, and for each poet we print out the poet’s name
and the details for each of their poems. The code is pretty simple, but it does use a couple of nested for
loops.

The last block of code uses the vwLibrary entity. This entity is based on our vwLibrary view. This
view joins the tables together to flatten things out a bit and provide a cleaner perspective. When we
query for each poet against the vwLibraries entity set, we can get by with just one for loop. The output is
a little different because we repeat the poet’s name for each poem.

There is one last thing to note in this example. We didn’t insert the poets, poems, and meters using
the vwLibrary entity because views are always read-only in most database systems. In Entity Framework,
we can’t insert (or update, or delete) entities that are based on views. Of course, we’ll show you exactly
how to overcome this little challenge in many of the recipes in this book!

2-3. Modeling a Many-to-Many Relationship with No Payload

Problem
You have a couple of tables in an existing database that are related to each other via a link or junction
table. The link table contains just the foreign keys used to link the two tables together into a many-to-
many relationship. You want to import these tables model this many-to-many relationship.

Solution
Let’s say your database tables look something like the database diagram in Figure 2-10.

22

 CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

Figure 2-10. Artists and albums in a many-to-many relationship

To create a model and import these tables and relationships, do the following:

1. Add a new model to your project by right-clicking your project and selecting
Add New Item. Choose ADO.NET Entity Data Model from the Visual C#
Items Data templates.

2. Select Generate from database. Click Next.

3. Use the wizard to select an existing connection to your database or create a
new connection.

4. From the Choose Your Database Object dialog box, select the tables Album,
LinkTable, and Artist. Leave the Pluralize and Foreign Key options checked.
Click Finish.

The wizard will create the model shown in Figure 2-11.

Figure 2-11. Our model with a many-to-many relationship between our tables

The many-to-many relationship between Album and Artist is represented by a line with the *
character on both ends. Because an Album can have many Artists and an Artist can responsible for many
Albums, each of these navigation properties is of type EntityCollection.

How It Works
In Figure 2-11, an artist can be related to many albums, whereas an album can be the work of many
artists. Notice that the link table from Figure 2-10 is not represented as an entity in our model. Because
our link table has no scalar properties (that is, it has no payload), Entity Framework assumes that its sole
purpose is to create the association between Album and Artist. If the link table had scalar properties,
Entity Framework would have created a very different model, as we will see in the next Recipe.

23

CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

The code in Listing 2-3 demonstrates how to insert new albums and artists into our model and how
to query our model both for artists and their albums and albums with their artists.

Listing 2-3. Inserting and querying our artists and albums model through the many-to-many association

using (var context = new EFRecipesEntities())
{
 // add an artist with two albums
 var artist = new Artist { FirstName = "Alan", LastName = "Jackson" };
 var album1 = new Album { AlbumName = "Drive" };
 var album2 = new Album { AlbumName = "Live at Texas Stadium" };
 artist.Albums.Add(album1);
 artist.Albums.Add(album2);
 context.Artists.AddObject(artist);

 // add an album for two artists
 var artist1 = new Artist { FirstName = "Tobby", LastName = "Keith" };
 var artist2 = new Artist { FirstName = "Merle", LastName = "Haggard" };
 var album = new Album { AlbumName = "Honkytonk University" };
 artist1.Albums.Add(album);
 artist2.Albums.Add(album);
 context.Albums.AddObject(album);

 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 Console.WriteLine("Artists and their albums...");
 var artists = from a in context.Artists select a;
 foreach (var artist in artists)
 {
 Console.WriteLine("{0} {1}", artist.FirstName, artist.LastName);
 foreach (var album in artist.Albums)
 {
 Console.WriteLine("\t{0}", album.AlbumName);
 }
 }

 Console.WriteLine("\nAlbums and their artists...");
 var albums = from a in context.Albums select a;
 foreach (var album in albums)
 {
 Console.WriteLine("{0}", album.AlbumName);
 foreach (var artist in album.Artists)
 {
 Console.WriteLine("\t{0} {1}", artist.FirstName, artist.LastName);
 }
 }
}

24

 CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

The output from the code in Listing 2-3 looks like the following:

Artists and their albums...

Alan Jackson

 Drive

 Live at Texas Stadium

Tobby Keith

 Honkytonk University

Merle Haggard

 Honkytonk University

Albums and their artists...

Drive

 Alan Jackson

Live at Texas Stadium

 Alan Jackson

Honkytonk University

 Tobby Keith

 Merle Haggard

After getting an instance of our object context, we create and initialize an instance of an Artist entity
type and a couple of instances of the Album entity type. We add the albums to the artist and then add the
artist to the Object Context.

Next, we create and initialize a couple instances of the Artist entity type and an instance of the
Album entity type. Because the two artists collaborated on the album, we add the album to both artists’
Albums navigation property (which is of type EntityCollection). Adding the album to the Object Context
causes the artists to get added as well.

Now that the completed object graph is part of the object context, the only thing left to do is to use
SaveChanges() to save the whole thing to the database.

25

CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

When we query the database in a brand new Object Context, we grab the artists and display their
albums. Then we grab the albums and print the artists that created the albums.

Notice that we never refer to the underlying LinkTable from Figure 2-10. In fact, this table is not
even represented in our model as an entity. The LinkTable is represented in the many-to-many
association which we access via the Artists and Albums navigation properties.

2-4. Modeling a Many-to-Many Relationship with a Payload

Problem
You have a many-to-many relationship in which the link table contains some payload data (any
additional columns beyond the foreign keys) and you want to create a model that represents the many-
to-many relationship as two one-to-many associations.

Solution
Entity Framework does not support associations with properties, so creating a model like the one in the
previous recipe won’t work. As we saw in the previous recipe, if the link table in a many-to-many
relationship contains just the foreign keys for the relationship, Entity Framework will surface the link
table as an association and not as an entity type. If the link table contains additional information, Entity
Framework will create a separate entity type to represent the link table. The resulting model will contain
two one-to-many associations with an entity type representing the underlying link table.

Suppose we have the tables and relationships shown in Figure 2-12.

Figure 2-12. A many-to-many relationship with payload

An Order can have many Items. An Item can be on many orders. Additionally, we have a Count property
connected to each instance of the Order, Item relationship. This Count property is referred to as a
payload.

To create a model and import these tables and relationships into the model, do the following:

1. Add a new model to your project by right-clicking your project and selecting
Add New Item. Choose ADO.NET Entity Data Model from the Visual C# Data
templates.

2. Select Generate from database. Click Next.

3. Use the wizard to select an existing connection to your database or create a
new connection.

26

 CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

4. From the Choose Your Database Object dialog box, select the tables Order,
OrderItem, and Item. Leave the Pluralize and Foreign Key options checked.
Click Finish.

The wizard will create the model in Figure 2-13.

Figure 2-13. Two one-to-many associations from a many-to-many relationship with payload

How It Works
As we saw in the previous recipe, for a many-to-many relationship with no payload, the model is clean
and simple to navigate. Because Entity Framework does not support the notion of payloads on
associations, it surfaces the link table as an entity with two one-to-many associations to the related
entities. In this case, the OrderItem table is represented not as an association, but as an entity type with
a one-to-many association to Order and a one-to-many association to Item. In the previous recipe, the
payload-free link table did not translate into an entity type in the model. Instead, it became part of the
many-to-many association.

The addition of a payload requires an additional hop through the entity representing the link table
to retrieve the related items. This is illustrated in code in Listing 2-4.

Listing 2-4. Inserting into and retrieving from the model

using (var context = new EFRecipesEntities())
{
 var order = new Order { OrderId = 1,
 OrderDate = new DateTime(2010, 1, 18) };
 var item = new Item { SKU = 1729, Description = "Backpack",
 Price = 29.97M };
 var oi = new OrderItem { Order = order, Item = item, Count = 1 };
 item = new Item { SKU = 2929, Description = "Water Filter",
 Price = 13.97M };
 oi = new OrderItem { Order = order, Item = item, Count = 3 };
 item = new Item { SKU = 1847, Description = "Camp Stove",
 Price = 43.99M };
 oi = new OrderItem { Order = order, Item = item, Count = 1 };
 context.Orders.AddObject(order);
 context.SaveChanges();
}

27

CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

using (var context = new EFRecipesEntities())
{
 foreach (var order in context.Orders)
 {
 Console.WriteLine("Order # {0}, ordered on {1}",
 order.OrderId.ToString(),
 order.OrderDate.ToShortDateString());
 Console.WriteLine("SKU\tDescription\tQty\tPrice");
 Console.WriteLine("---\t-----------\t---\t-----");
 foreach (var oi in order.OrderItems)
 {
 Console.WriteLine("{0}\t{1}\t{2}\t{3}", oi.Item.SKU,
 oi.Item.Description, oi.Count.ToString(),
 oi.Item.Price.ToString("C"));
 }
 }
}

The following is the output from the code shown in Listing 2-4.

Order # 1, ordered on 1/18/2010

SKU Description Qty Price

--- ----------- --- -----

1729 Backpack 1 $29.97

1847 Camp Stove 1 $43.99

2929 Water Filter 3 $13.97

After we create the an instance of our object context, we create and initialize an order entity as well
as the items and order items for the order. We connect the order with the items by initializing the
OrderItem entities with the instances of the Order entity and the Item entity. We use the AddToOrders()
method to add the order to the context.

With the object graph complete and the order added to the context, we update the database with the
SaveChanges() method.

To retrieve the entities from the database, we create a fresh instance of the context and iterate
through the context.Orders collection. For each order (well, we just have one in this example), we print
the order detail and we iterate through the entity collection on the OrderItems navigation property.
These instances of the OrderItem entity type give us access to the Count scalar property (the payload)
directly and each item on the order via the Item navigation property. Going through the OrderItems
entity to get to the items is the “extra” hop that is the cost of having a payload in the link table
(OrderItems, in our example) in a many-to-many relationship.

28

 CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

Best Practice

Unfortunately, a project that starts out with several, payload-free, many-to-many relationships often ends
up with several, payload-rich, many-to-many relationships. Refactoring a model, especially late in the
development cycle, to accommodate payloads in the many-to-many relationships can be tedious. Not only
are additional entities introduced, but the queries and navigation patterns through the relationships change
as well. Some developers argue that every many-to-many relationship should start off with some payload,
typically a synthetic key, so the inevitable addition of more payload has significantly less impact on the
project.

So here’s the best practice. If you have a payload-free, many-to-many relationship and you think there is
some chance that it may change over time to include a payload, start with an extra identity column in the
link table. When you import the tables into your model, you will get two one-to-many relationships, which
means the code you write and the model you have will be ready for any number of additional payload
columns that come along as the project matures. The cost of an additional integer identity column is
usually a pretty small price to pay to keep the model more flexible.

2-5. Modeling a Self-Referencing Relationship

Problem
You have a table that references itself and you want to model this as an entity with a self-referencing
association.

Solution
Let’s say you have a self-referencing table that’s like the one in the database diagram in Figure 2-14.

Figure 2-14. A self-referencing table

To create a model and import this table and the self-referencing relationship into the model, do the
following:

1. Add a new model to your project by right-clicking your project and selecting
Add New Item. Choose ADO.NET Entity Data Model from the Visual C# Data
templates.

2. Select Generate from database. Click Next.

29

CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

3. Use the wizard to select an existing connection to your database or create a
new connection.

4. From the Choose Your Database Object dialog box, select the PictureCategory
table. Leave the Pluralize and Foreign Key options checked. Click Finish.

The wizard will create a model like the one shown in Figure 2-15.

Figure 2-15. Our initial model of a self-referencing PictureCategory table

The model generated by the wizard contains two navigation properties named PictureCategory1 and
PictureCategory2. Neither of these names is particularly helpful, so let’s change them. One of these
navigation properties refers to the parent category or the 0..1 side of the relationship. The other refers to
the children or the * side of the relationship. To sort out which is which, right-click PictureCategory1. In
the property window, the multiplicity for PictureCategory1 is * (many), so PictureCategory1 represents
the navigation property for the children or subcategories. Rename PictureCategory1 to Subcategories.
Change PictureCategory2 to ParentCategory.

The resulting model is shown in Figure 2-16.

Figure 2-16. The model with the correctly named navigation properties

How It Works
Database relationships are characterized by degree, multiplicity, and direction. Degree is the number of
entity types that participate in the relationship. Unary and binary relationships are the most common.
Tertiary and n-place relationships are more theoretical than practical.

Multiplicity is the number of entity types on each end of the relationship. You have seen the
multiplicities 0..1 (zero or 1), 1 (one), and * (many).

30

 CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

Finally, the direction is either one-way or bi-directional.
The Entity Data Model supports a particular kind of database relationship called an Association

Type. An Association Type relationship has either unary or binary degree, multiplicities 0..1, 1, or * and
the direction is bi-directional.

In this example, the degree is unary (just the entity type PictureCategory is involved), the
multiplicity is 0..1 and *, and the direction is, of course, bi-directional.

As is the case in this example, a self-referencing table often denotes a parent-child relationship with
each parent having many children while each child has just one parent. Because the parent end of the
relationship is 0..1 and not 1, it is possible for a child to have no parent. This is just what you want to
leverage in representing the root node; that is, the one node that has no parent and is the top of the
hierarchy.

Listing 2-5 shows how you can recursively enumerate the picture categories starting with the root
node, which of course, is the only node that has no parent.

Listing 2-5. Inserting into our model and recursively enumerating all the instances of the self-referencing

entity

static void RunExample()
{
 using (var context = new EFRecipesEntities())
 {
 var louvre = new PictureCategory { Name = "Louvre" };
 var child = new PictureCategory { Name = "Egyptian Antiquites" };
 louvre.Subcategories.Add(child);
 child = new PictureCategory { Name = "Sculptures" };
 louvre.Subcategories.Add(child);
 child = new PictureCategory { Name = "Paintings" };
 louvre.Subcategories.Add(child);
 var paris = new PictureCategory { Name = "Paris" };
 paris.Subcategories.Add(louvre);
 var vacation = new PictureCategory { Name = "Summer Vacation" };
 vacation.Subcategories.Add(paris);
 context.PictureCategories.AddObject(paris);
 context.SaveChanges();
 }

 using (var context = new EFRecipesEntities())
 {
 PictureCategory root = (from c in context.PictureCategories
 where c.ParentCategory == null
 select c).FirstOrDefault();
 Print(root, 0);
 }
}

static void Print(PictureCategory cat, int level)
{
 StringBuilder sb = new StringBuilder();
 Console.WriteLine("{0}{1}", sb.Append(' ', level).ToString(), cat.Name);
 foreach (PictureCategory child in cat.Subcategories)
 {

31

CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

 Print(child, level + 1);
 }
}

The output of the code in Listing 2-5 shows our root node: Summer Vacation. The first (and only)

child is Paris. Paris has Louvre as a child. And finally, at the Louvre, we categorized our pictures by the
various collections we visited.

Summer Vacation

 Paris

 Louvre

 Egyptian Antiquites

 Sculptures

 Paintings

Okay, the code is a little involved. First, we create and initialize the instances of our entity types. We wire
them together in the object graph by adding the PictureCategories to our louvre category. Then we add
the louvre category to the paris category. Finally, we add the paris category to our summer vacation
category. We build the hierarchy from the bottom up.

Once we do a SaveChanges(), the inserts are all done on the database, and it’s time to query our
tables to see whether we’ve actually inserted all the rows correctly.

For the retrieval part, we start by getting the root entity. This is the one that has no parent. In our
case, we created a summer vacation entity, but we didn’t make it the child of any other entity. This
makes our summer vacation entity the root of the hierarchy.

Now with the root, we call another method we wrote: Print(). The Print() method takes a couple of
parameters. The first parameter is an instance of a PictureCategory. The second parameter is a level, or
depth we are at in the hierarchy. With the root category, summer vacation, we’re at the top of the
hierarchy, so we pass in 0. The method call looks like Print(root, 0).

In the Print() method, we write out the name of the category preceded by a space for each level
deep in the hierarchy. One of the Append() methods of the StringBuilder class takes a character and a
integer count. It creates an instance of StringBuilder with the character appended count number of
times. In our call, we send in a space and level and it returns a string with a space for every level deep we
are in the hierarchy. We use the ToString() method to convert the StringBuilder instance to a string.

Now for the recursive part: we iterate through the children and call the Print() method on each
child, making sure to increment the level by one. When we run out of children, we simply return. The
result is the output shown previously.

In Recipe 6-5, we show another approach to this problem using a Common Table Expression in a
stored procedure on the store side to iterate through the graph and return a single flattened result set.

32

 CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

2-6. Splitting an Entity Across Multiple Tables

Problem
You have two or more tables that share the same primary key and you want to map a single entity to
these two tables.

Solution
Let’s illustrate the problem with the two tables shown in Figure 2-17.

Figure 2-17. Two tables, Product and ProductWebInfo, with common primary keys

To create a model with a single entity representing these two tables, do the following:

1. Add a new model to your project by right-clicking your project and selecting
Add New Item. Choose ADO.NET Entity Data Model from the Visual C# Data
templates.

2. Select Generate from database. Click Next.

3. Use the wizard to select an existing connection to your database or create a
new connection.

4. From the Choose Your Database Object dialog box, select the Product and
ProductWebInfo tables. Leave the Pluralize and Foreign Key options checked.
Click Finish.

The resulting model is shown in Figure 2-18.

Figure 2-18. The model after importing the Product and ProductWebInfo tables

33

CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

Now that we have our table imported into the model, we need to merge the two entities into a single
entity. To complete the model, do the following:

1. Copy the ImageURL scalar property from the ProductWebInfo entity to the
Product entity. You can use copy/paste for this. Do not copy the SKU scalar
property.

2. Right-click the ProductWebInfo entity and select Delete. The dialog box in
Figure 2-19 will ask if you want to delete the tables from the store model. Select
No. This will preserve the ProductWebInfo definition in the store model layer.

3. Click the Product entity to view the Mapping Details window. If the Mapping
Details window is not visible, show it by selecting View Other Windows
Entity Data Model Mapping Details.

4. In the Mapping Details window for the Product entity, click Add a Table or
View and select the ProductWebInfo table. This adds the ProductWebInfo to
the mappings for the Product entity.

5. Under the ProductWebInfo table in the Mapping Details window, map the
ImageURL column to the ImageURL property. Also, make sure that the SKU
property is mapped to the SKU column of the ProductWebInfo table. Your
mappings should look like Figure 2-20.

Figure 2-19. A dialog box asking if the underlying ProductWebInfo table should be deleted from the store

layer

34

 CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

Figure 2-20. Mappings Details window showing the mapping for the ProductWebInfo table in the Product

entity. Notice that the entity maps to two tables with the SKU column, the key, mapped in both tables.

The resulting model looks just like the one pictured in Figure 2-18, but without the ProductWebInfo
entity type and the ImageURL property moved to the Product entity.

How It Works
It seems all too common in legacy systems to find “extra” information for each row in one table tucked
away in another table. Often this happens over time as a database evolves and no one is willing to break
existing code by adding columns to some critical table. The answer is to graft on a new table to hold the
additional columns.

By merging two or more tables into a single entity, or as it is usually thought of, splitting a single
entity across two or more tables, we can treat all the parts as one logical entity. This process is often
referred to as vertical splitting.

The downside of vertical splitting is that retrieving each instance of our entity now requires an
additional join for each additional table that makes up the entity type. This extra join is shown in Listing
2-6.

Listing 2-6. Additional join required by vertical splitting

SELECT
[Extent1].[SKU] AS [SKU],
[Extent2].[Description] AS [Description],
[Extent2].[Price] AS [Price],
[Extent1].[ImageURL] AS [ImageURL]
FROM [dbo].[ProductWebInfo] AS [Extent1]
INNER JOIN [dbo].[Product] AS [Extent2] ON [Extent1].[SKU] = [Extent2].[SKU]

Nothing special is required to insert into or retrieve from the Product entity. Listing 2-7

demonstrates working with the vertically split Product entity type.

35

CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

Listing 2-7. Inserting into and retrieving from our model with the Product entity type

using (var context = new EFRecipesEntities())
{
 var product = new Product { SKU = 147,
 Description = "Expandable Hydration Pack",
 Price = 19.97M, ImageURL = "/pack147.jpg" };
 context.Products.AddObject(product);
 product = new Product { SKU = 178,
 Description = "Rugged Ranger Duffel Bag",
 Price = 39.97M, ImageURL = "/pack178.jpg" };
 context.Products.AddObject(product);
 product = new Product { SKU = 186,
 Description = "Range Field Pack",
 Price = 98.97M, ImageURL = "/noimage.jp" };
 context.Products.AddObject(product);
 product = new Product { SKU = 202,
 Description = "Small Deployment Back Pack",
 Price = 29.97M, ImageURL = "/pack202.jpg" };
 context.Products.AddObject(product);

 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 foreach (var p in context.Products)
 {
 Console.WriteLine("{0} {1} {2} {3}", p.SKU, p.Description,
 p.Price.ToString("C"), p.ImageURL);
 }
}

The code in Listing 2-7 produces the following results:

147 Expandable Hydration Pack $19.97 /pack147.jpg

178 Rugged Ranger Duffel Bag $39.97 /pack178.jpg

186 Range Field Pack $98.97 /noimage.jpg

202 Small Deployment Back Pack $29.97 /pack202.jpg

36

 CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

2-7. Splitting a Table Across Multiple Entities

Problem
You have a table with some frequently used fields and a few large but rarely needed fields. For
performance reasons, you want to avoid needlessly loading these expensive fields on every query. You
want to split the table across two or more entities.

Solution
Let’s say you have a table like the one shown in Figure 2-21, which holds information about photographs
as well as the bits for both the thumbnail and the full-resolution image of the photograph.

Figure 2-21. A Photograph table with a field holding the binary large object (blob) representing the data

for the image

To create an entity type that contains the reasonably low cost and frequently used columns, as well as an
entity type containing the high cost, rarely used HighResolutionBits column, do the following:

1. Add a new model to your project by right-clicking your project and selecting
Add New Item. Choose ADO.NET Entity Data Model from the Visual C# Data
templates.

2. Select Generate from database. Click Next.

3. Use the wizard to select an existing connection to your database or create a
new connection.

4. From the Choose Your Database Object dialog box, select the Photograph
table. Leave the Pluralize and Foreign Key options checked. Click Finish.

5. Right-click the design surface and select Add Entity. In the dialog box,
change the Entity name to PhotographFullImage. Also, change the Key
Property name to PhotoId. This is the same name as the key column in the
Photograph entity type. See Figure 2-22. Click OK to add the
PhotographFullImage entity type to the model.

6. Move the HighResolutionBits property from the Photograph entity type to the
PhotographFullImage entity. You can use select/cut/paste to move the
property.

37

CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

7. Click the newly created PhotographFullImage entity type to view the Mapping
Details window. If the Mapping Details window is not visible, show it by
selecting View Other Windows Entity Data Model Mapping Details.

8. In the Mapping Details window for the PhotographFullImage entity, click Add
a Table or View and select the Photograph table. Map the HighResolutionBits
column to the HighResolutionBits property. Map the PhotoId column to the
PhotoId property. See Figure 2-23.

9. Right-click the Photograph entity. Select Add Association. Add a one-to-one
association between the Photograph entity and the PhotographFullImage
entity. Make sure you do two things: choose 1 (one) for the multiplicity on both
ends of the association and uncheck the Add foreign key properties to the
Entity check box. See Figure 2-24.

10. Right-click the association link between the entities and select Properties. In
the Referential Constraint under the Constraints section, click the … button to
add a referential constraint. Set the Principal to Photograph and make sure the
key properties are set to PhotoId for both the principal and dependent entities.
See Figure 2-25.

Figure 2-22. Adding the PhotographFullImage entity to the Entity Data Model

38

 CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

Figure 2-23. The mapping details for the PhotographFullImage entity. We mapped the PhotoId and

HighResolutionBits columns from the Photograph table to the respective properties on the

PhotographFullImage entity.

Figure 2-24. Adding a one-to-one association between the Photograph entity type and the

PhotographFullImage entity type

39

CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

Figure 2-25. Creating the Referential Constraint between the Photograph (principal) entity type and the

PhotographFullImage (dependent) entity type

The completed model is shown in Figure 2-26.

Figure 2-26. The completed model with the HighResolutionBits column represented in a separate entity

How It Works
Entity Framework does not directly support the notion of lazy loading of individual entity properties. To
get the effect of lazy loading expensive properties, we exploit Entity Framework’s support for lazy
loading of associated entities. We created a new entity type to hold the expensive full image property and
created a one-to-one association between our Photograph entity type and the new
PhotographFullImage entity type. We added a referential constraint on the conceptual layer that, much
like a database referential constraint, tells Entity Framework that a PhotographFullImage can’t exist
without a Photograph.

Because of the referential constraint, there are a couple of things to note about our model. If we
have a newly created PhotographFullImage, an instance of Photograph must exist in the object context
or the data source prior to calling SaveChanges(). Also, if we delete a Photograph, the associated
PhotographFullImage is also deleted. This is just like cascading deletes in database referential
constraints.

The code in Listing 2-8 demonstrates inserting and retrieving from our model.

40

 CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

Listing 2-8. Inserting into and Lazy Loading Expensive Fields

byte[] thumbBits = new byte[100];
byte[] fullBits = new byte[2000];
using (var context = new EFRecipesEntities())
{
 var photo = new Photograph { PhotoId = 1, Title = "My Dog",
 ThumbnailBits = thumbBits };
 var fullImage = new PhotographFullImage { PhotoId = 1,
 HighResolutionBits = fullBits };
 photo.PhotographFullImage = fullImage;
 context.Photographs.AddObject(photo);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 foreach (var photo in context.Photographs)
 {
 Console.WriteLine("Photo: {0}, ThumbnailSize {1} bytes",
 photo.Title, photo.ThumbnailBits.Length.ToString());

 // explicitly load the "expensive" entity, PhotographFullImage
 photo.PhotographFullImageReference.Load();
 Console.WriteLine("Full Image Size: {0} bytes",
 photo.PhotographFullImage.HighResolutionBits.Length.ToString());
 }
}

The output from Listing 2-8 is the following:

Photo: My Dog, Thumbnail Size: 100 bytes

Full Image Size: 2000 bytes

The code in Listing 2-8 creates and initializes instances of the Photograph and
PhotographFullImage entities, adds them to the object context, and calls SaveChanges().

On the query side, we retrieve each of the photographs from the database, print some information
about the photograph, and then explicitly load the associated PhotographFullImage entity. Notice that
we did not change the default context option that turns off lazy loading. This puts the burden on us to
explicitly load related entities. This is just what we want. We could have chosen not to load the
associated instances of PhotographFullImage, and if we were iterating through hundreds or thousands
of photographs, this would have saved us an awful lot of cycles and bandwidth.

41

CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

2-8. Modeling Table per Type Inheritance

Problem
You have some tables that contain additional information about a common table and you want to model
this using table per type inheritance.

Solution
Suppose you have two tables that are closely related to a common table as in Figure 2-27. The Business
table is on the 1 side of a 1:0..1 relationship with the eCommerce and the Retail tables. The key feature
here is that the eCommerce and Retail tables extend information about a business represented in the
Business table.

Figure 2-27. Closely related tables ripe for inheritance

The tables Retail and eCommerce are related to the Business table which holds a few properties we
would naturally associate with any business. To model table per type inheritance such that entities
Retail and eCommerce inherit from the Business base entity type, perform the following steps:

1. Add a new model to your project by right-clicking your project and selecting
Add New Item. Choose ADO.NET Entity Data Model from the Visual C# Data
templates.

2. Select Generate from database. Click Next.

3. Use the wizard to select an existing connection to your database or create a
new connection.

4. From the Choose Your Database Object dialog box, select the Business,
eCommerce, and Retail tables. Leave the Pluralize and Foreign Key options
checked. Click Finish.

42

 CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

5. Delete the associations between the Retail and Business entities and between
the eCommerce and Business entities.

6. Right-click the Business entity and choose Add Inheritance. In the dialog
box, select Business as the base entity and Retail as the derived entity. Repeat
this step for the eCommerce entity, setting eCommerce as an entity derived
from the Business entity. See Figure 2-28.

7. Delete the BusinessId property from the Retail and eCommerce entities. For
these entities, BusinessId will come from the Business entity.

8. Click the eCommerce entity to view the Mapping Details window. If the
Mapping Details window is not visible, show it by selecting View Other
Windows Entity Data Model Mapping Details. Map the BusinessId column to
the BusinessId property. Repeat this step for the Retail entity. See Figure 2-29.

Figure 2-28. Adding Inheritance between the Retail entity type and the Business entity type

Figure 2-29. Mapping the BusinessId column to the BusinessId property. This must be done for both the

eCommerce entity type and the Retail entity type.

43

CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

The resulting model is shown in Figure 2-30.

Figure 2-30. Table per type inheritance with Retail and eCommerce deriving from the base entity type

Business

How It Works
Both the Retail and the eCommerce tables are on the 0..1 side of a 1:0..1 relationship with the Business
table. This means that we could have a business with no additional information or a business with
additional Retail or eCommerce information. In object-oriented programming terms, we have a base
type, Business, with two derived types, Retail and eCommerce.

Because of the 1:0..1 relationship, we cannot have a row in the Retail or eCommerce tables without a
corresponding row in the Business table. In object-oriented terms, an instance of a derived type has the
properties of the base type. This concept of a derived type extending the properties of a base type is a key
feature of inheritance. In table per type inheritance (often abbreviated TPT), each of the derived types is
represented in separate tables.

Listing 2-9 demonstrates inserting and retrieving from our model.

Listing 2-9. Inserting and retrieving entities in TPT inheritance

using (var context = new EFRecipesEntities())
{
 var business = new Business { Name = "Corner Dry Cleaning",
 LicenseNumber = "100x1" };
 context.Businesses.AddObject(business);
 var retail = new Retail { Name = "Shop and Save", LicenseNumber = "200C",
 Address = "101 Main", City = "Anytown",
 State = "TX", ZIPCode = "76106" };

44

 CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

 context.Businesses.AddObject(retail);
 var web = new eCommerce { Name = "BuyNow.com", LicenseNumber = "300AB",
 URL = "www.buynow.com" };
 context.Businesses.AddObject(web);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 Console.WriteLine("\n--- All Businesses ---");
 foreach (var b in context.Businesses)
 {
 Console.WriteLine("{0} (#{1})", b.Name, b.LicenseNumber);
 }

 Console.WriteLine("\n--- Retail Businesses ---");
 foreach (var r in context.Businesses.OfType<Retail>())
 {
 Console.WriteLine("{0} (#{1})", r.Name, r.LicenseNumber);
 Console.WriteLine("{0}", r.Address);
 Console.WriteLine("{0}, {1} {2}", r.City, r.State, r.ZIPCode);
 }

 Console.WriteLine("\n--- eCommerce Businesses ---");
 foreach (var e in context.Businesses.OfType<eCommerce>())
 {
 Console.WriteLine("{0} (#{1})", e.Name, e.LicenseNumber);
 Console.WriteLine("Online address is: {0}", e.URL);
 }
}

The code in Listing 2-9 creates and initializes instances of the Business entity type and the two

derived types. To add these to the Object Context, we use AddObject() method exposed on the Business
entity set in the context.

On the query side, to access all the businesses, we iterate through the Businesses entity set. For the
derived types, we use the OfType<>() method specifying the derived type to filter the Business entity set.

The output of Listing 2-9 looks like the following:

--- All Businesses ---

Corner Dry Cleaning (#100X1)

Shop and Save (#200C)

BuyNow.com (#300AB)

45

http://www.buynow.com

CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

--- Retail Businesses ---

Shop and Save (#200C)

101 Main

Anytown, TX 76106

---- eCommerce Businesses ---

BuyNow.com (#300AB)

Online address is: www.buynow.com

Table per type is one of three inheritance models supported by Entity Framework. The other two are
Table per Hierarchy (discussed in this chapter) and Table per Concrete Type (see Chapter 15).

Table per type inheritance provides a lot of database flexibility because we can easily add tables as
new derived types find their way into our model as an application develops. However, each derived type
involves additional joins that can reduce performance. In real-world applications, we have seen
significant performance problems with TPT when many derived types are modeled.

Table per hierarchy, as you will see in Recipe 2-10, stores the entire hierarchy in a single table. This
eliminates the joins of TPT and thereby providing better performance but at the cost of some flexibility.

Table per concrete type is supported by the Entity Framework runtime, but not by the designer.
Table per concrete type has some important applications, as we will see in Chapter 15.

2-9. Using Conditions to Filter an ObjectSet

Problem
You want to create a permanent filter on an entity type so that it maps to a subset of the rows in a table.

Solution
Let’s say you have a table holding account information, as shown in the database diagram in Figure 2-31.
The table has a DeletedOn nullable column that holds the date and time the account was deleted. If the
account is still active, the DeletedOn column is null. We want our Account entity to represent only active
accounts (i.e., account without a DeletedOn value).

46

http://www.buynow.com

 CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

Figure 2-31. Account table with DeletedOn DateTime column

To model this table so that only active accounts are used to populate the Account entity type, do the
following:

1. Add a new model to your project by right-clicking your project and selecting
Add New Item. Choose ADO.NET Entity Data Model from the Visual C# Data
templates.

2. Select Generate from database. Click Next.

3. Use the wizard to select an existing connection to your database or create a
new connection.

4. From the Choose Your Database Object dialog box, select the Account table.
Leave the Pluralize and Foreign Key options checked. Click Finish.

5. Click the Account entity to view the Mapping Details window. If the Mapping
Details window is not visible, show it by selecting View Other Windows
Entity Data Model Mapping Details. Click Add a Condition and select the
DeletedOn column. In the Operator column, select Is; in the Value/Property
column, select Null. This creates a mapping condition when the DeletedOn
column is Is Null. See Figure 2-32.

6. Right-click the DeletedOn property and select Delete. Because we’re using the
DeletedOn column in a conditional mapping, we can’t map it to a property. Its
value would always be null anyway in our model.

Figure 2-32. Creating the conditional mapping for the Account entity to the Account table

47

CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

How It Works
Conditional mappings are often used when you want to apply a permanent filter on an entity.
Conditional mappings are also key to implementing Table per Hierarchy Inheritance. You can apply
conditions using the following:

<value> Is Null

<value> Is Not Null

<integer> = <value>

<string> = <value>

In this example, we applied an Is Null condition on the Account entity that filters out rows that

contain a DeletedOn date/time. The code in Listing 2-10 demonstrates inserting into and retrieving rows
from the Account table.

Listing 2-10. Inserting into and retrieving from the account

using (var context = new EFRecipesEntities())
{
 context.ExecuteStoreCommand(@"insert into chapter2.account
 (DeletedOn,AccountHolderId) values ('2/10/2009',1728)");

 var account = new Account { AccountHolderId = 2320 };
 context.Accounts.AddObject(account);
 account = new Account { AccountHolderId = 2502 };
 context.Accounts.AddObject(account);
 account = new Account { AccountHolderId = 2603 };
 context.Accounts.AddObject(account);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 foreach (var account in context.Accounts)
 {
 Console.WriteLine("Account Id = {0}",
 account.AccountHolderId.ToString());
 }
}

In Listing 2-10, we use the ExecuteStoreCommand() method on the Object Context to insert a row into

the database the old-fashioned way. We need to do this because we are inserting a row with a non-null
value for the DeletedOn column. In our model, the Account entity type has no property mapping to this
column; in fact, the Account entity type would never be materialized with a row that had a DeletedOn
value. And that’s exactly what we want to test.

The rest of the first part of the code creates and initializes three additional instances of the Account
entity type. These are saved to the database with the SaveChanges() method.

48

 CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

When we query the database, we should get only the three instances of the Account entity type that
we added with the SaveChanges() method. The row that we added using the ExecuteStoreCommand()
method should not be visible. The following output confirms it:

Account Id = 2320

Account Id = 2502

Account Id = 2603

2-10. Modeling Table per Hierarchy Inheritance

Problem
You have a table with a type or discrimination column that you use to determine what the data in a row
represents in your application. You want to model this with table per hierarchy inheritance.

Solution
Let’s say your table looks like the one in Figure 2-33. This Employee table contains rows for both hourly
employees and salaried employees. The EmployeeType column is used to discriminate between the two
types of rows. When EmployeeType is 1, the row represents a salaried or full-time employee. When the
EmployeeType is 2, the row represents an hourly employee.

Figure 2-33. An Employee table containing both hourly and full-time employees

To create a model using table per hierarchy inheritance based on the Employee table, do the following:

1. Add a new model to your project by right-clicking your project and selecting
Add New Item. Choose ADO.NET Entity Data Model from the Visual C# Data
templates.

2. Select Generate from database. Click Next.

3. Use the wizard to select an existing connection to your database or create a
new connection.

49

CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

4. From the Choose Your Database Object dialog box, select the Employee table.
Leave the Pluralize and Foreign Key options checked. Click Finish.

5. Right-click the design surface and select Add Entity. Name the new entity
FullTimeEmployee and select Employee as the base type. Repeat this step
creating a new HourlyEmployee entity deriving from Employee. See Figure 2-
34.

6. Move the Salary property from the Employee entity to the FullTimeEmployee
entity. You can use cut/paste to move the property. Using cut/paste, move the
Wage property to the HourlyEmployee entity.

7. Click the FullTimeEmployee entity to view the Mapping Details window. If the
Mapping Details window is not visible, show it by selecting View Other
Windows Entity Data Model Mapping Details. Select the Employee table in
the Add a Table or View control. Make sure that the Salary property is mapped
to the Salary column.

8. In the Mapping Details window, add a condition by selecting EmployeeType in
the Add a Condition control. Set the operator to = and the Value/Property to 1.
This maps the Employee table to the FullTimeEmployee entity when the
EmployeeType column is 1. See Figure 2-35.

9. Repeat steps 7 and 8 for the HourlyEmployee entity. Change the mapping
condition to map the Employee table to the HourlyEmployee entity when the
EmployeeType column has a value of 2.

10. Right-click the Employee entity and select Properties. Change the Abstract
property to true. This makes the base entity abstract. In our model every
employee must either be an hourly employee or a full-time employee.

11. Delete the EmployeeType property from the Employee entity.

The completed model is shown in Figure 2-36.

50

 CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

Figure 2-34. Adding the FullTimeEmployee entity type that derives from Employee

Figure 2-35. Mapping the Employee table to the FullTimeEmployee entity type when the EmployeeType

column has a value of 1

51

CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

Figure 2-36. The completed model with the HourlyEmployee and FullTimeEmployee entity types deriving

from the abstract Employee entity type

How It Works
In table per hierarchy inheritance, often abbreviated TPH, a single table is used to represent the entire
inheritance hierarchy. Unlike table per type inheritance, in TPH rows for the derived types as well as the
base type are intermingled in the same table. The rows are distinguished by a discriminator column. In
our example, the discriminator column is EmployeeType.

In TPH, mapping conditions, available through the Mapping Details window, are used to indicate
the values of the discrimination column that cause the table to be mapped to the different derived types.
We marked the base type as abstract. By marking it as abstract, we didn’t have to provide a condition for
the mapping because an abstract entity can’t be created. We will never have an instance of an Employee
entity. We deleted the EmployeeType property from the Employee entity. A column used in a condition
is not, in general, mapped to a property.

The code in Listing 2-11 demonstrates inserting into and retrieving from our model.

Listing 2-11. Inserting into and retrieving from our TPH model

using (var context = new EFRecipesEntities())
{
 var fte = new FullTimeEmployee { FirstName = "Jane", LastName = "Doe",
 Salary = 71500M};
 context.Employees.AddObject(fte);
 fte = new FullTimeEmployee { FirstName = "John", LastName = "Smith",
 Salary = 62500M };
 context.Employees.AddObject(fte);
 var hourly = new HourlyEmployee { FirstName = "Tom", LastName = "Jones",
 Wage = 8.75M };

52

 CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

 context.Employees.AddObject(hourly);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 Console.WriteLine("--- All Employees ---");
 foreach (var emp in context.Employees)
 {
 bool fullTime = emp is HourlyEmployee ? false : true;
 Console.WriteLine("{0} {1} ({2})", emp.FirstName, emp.LastName,
 fullTime ? "Full Time" : "Hourly");
 }

 Console.WriteLine("--- Full Time ---");
 foreach (var fte in context.Employees.OfType<FullTimeEmployee>())
 {
 Console.WriteLine("{0} {1}", fte.FirstName, fte.LastName);
 }

 Console.WriteLine("--- Hourly ---");
 foreach (var hourly in context.Employees.OfType<HourlyEmployee>())
 {
 Console.WriteLine("{0} {1}", hourly.FirstName, hourly.LastName);
 }
}

The following is the output of the code in Listing 2-11:

--- All Employees ---

Jane Doe (Full Time)

John Smith (Full Time)

Tom Jones (Hourly)

--- Full Time ---

Jane Doe

John Smith

--- Hourly ---

Tom Jones

53

CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

The code in Listing 2-11 creates, initializes, and adds two full-time employees and an hourly employee.
On the query side, we retrieve all the employees and use the is operator to determine what type of
employee we have. We indicate the employee type when we print out the employee’s name.

In separate code blocks, we retrieve the full-time employees and the hourly employees using the
OfType<>() method.

Best Practice

There is some debate over when to use abstract base entities in TPH inheritance and when to create a
condition on the base entity. The difficulty with a concrete base entity is that it can be very cumbersome to
query for all the instances in the hierarchy. The best practice is that if your application never needs
instances of the base entity, make it abstract.

If your application needs instances of the base entity, consider introducing a new derived entity to cover
the condition for the concrete base entity. For example, we might create a new derived class such as
UnclassifiedEmployee. Once we have this new derived entity, we can safely make our base entity abstract.
This provides us with a simple way to query for condition formally covered by the base entity with a
condition.

There are some rules to keep in mind when using TPH. First, the conditions used must be mutually
exclusive. That is, you cannot have a row that can conditionally map to two or more types.

Second, the conditions used must account for every row in the table. You cannot have a row in the
table that has a discriminator value that does not map the row to exactly one type. This rule can be
particularly troubling if you are working with a legacy database in which other applications are creating
rows for which you have no appropriate condition mappings. What will happen in these cases? The rows
that do no map to your base or derived types will simply not be accessible in your model.

The discriminator column cannot be mapped to an entity property unless it is used in an is not
null condition. At first, this last rule might seem overly restrictive. You might ask, “How can I insert a
row representing a derived type if I can’t set the discriminator value?” The answer is rather elegant. You
simply create an instance of the derived type and add it to the context in the same way you would any
other entity instance. Object Services takes care of creating the appropriate insert statements to create a
row with the correct discriminator value.

2-11. Modeling Is-a and Has-a Relationships
Between Two Entities

Problem
You have two tables that participate in both Is-a and Has-a relations and you want to model them as two
entities with the corresponding Is-a and Has-a relationships.

54

 CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

Solution
Let’s say you have two tables that describe scenic parks and their related locations. In your database, you
represent these with a Location table and a Park table. For the purposes of your application, a park is
simply a type of location. Additionally, a park can have a governing office with a mailing address, which
is also represented in the Location table. A park then is both a derived type of Location and can have a
location that corresponds to the park’s governing office. It is entirely possible that the office is not
located on the grounds of the park. Perhaps several parks share an office in a nearby town. Figure 2-37
shows a database diagram with the Park and Location tables.

Figure 2-37. Location and Park in both a Has-a and Is-a relationship

Follow these steps to model both of these relationships:

1. Add a new model to your project by right-clicking your project and selecting
Add New Item. Choose ADO.NET Entity Data Model from the Visual C# Data
templates.

2. Select Generate from database. Click Next.

3. Use the wizard to select an existing connection to your database or create a
new connection.

4. From the Choose Your Database Object dialog box, select the Location and
Park tables. Leave the Pluralize and Foreign Key options checked. Click Finish.

5. Delete the one-to-zero or one association created by the Entity Data Model
Wizard.

6. Right-click the Location entity and select Add Inheritance. Select the Park
entity as the derived entity and the Location entity as the base entity.

7. Delete the ParkId property from the Park entity type.

8. Click the Park entity to view the Mapping Details window. If the Mapping
Details window is not visible, show it by selecting View Other Windows
Entity Data Model Mapping Details. Map the ParkId column to the LocationId
property.

9. Change the name of the Location1 navigation property in the Park entity type
to Office. This represents the office location for the park.

The completed model is shown in Figure 2-38.

55

CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

Figure 2-38. The completed model with Park deriving from Location. A Park is-a location. A park has-a

location for its office.

How It Works
Entities can have more than one association with other entities. In this example, we created an Is-a
relationship using table per type inheritance with Location as the base entity type and Park as the
derived entity type. We also created a Has-a relationship with a one-to-many association between the
Location and Park entity types.

In Listing 2-12, we demonstrate creating a new Park entity which also results in creating a Location
because of the Is-a relationship. We attach an office Location to the Park, which results in a second row
in the Location table.

Listing 2-12. Creating and retrieving Park and Location entities

using (var context = new EFRecipesEntities())
{
 var park = new Park { Name = "11th Street Park",
 Address = "801 11th Street", City = "Aledo",
 State = "TX", ZIPCode = "76106" };
 var loc = new Location { Address = "501 Main", City = "Weatherford",
 State = "TX", ZIPCode = "76201" };
 park.Office = loc;
 context.Locations.AddObject(park);
 park = new Park { Name = "Overland Park", Address = "101 High Drive",
 City = "Springtown", State = "TX", ZIPCode = "76081" };
 loc = new Location { Address = "8705 Range Lane", City = "Springtown",
 State = "TX", ZIPCode = "76081" };
 park.Office = loc;
 context.Locations.AddObject(park);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 context.ContextOptions.LazyLoadingEnabled = true;
 Console.WriteLine("-- All Locations -- ");
 foreach (var l in context.Locations)

56

 CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

 {
 Console.WriteLine("{0}, {1}, {2} {3}", l.Address, l.City,
 l.State, l.ZIPCode);
 }

 Console.WriteLine("--- Parks ---");
 foreach (var p in context.Locations.OfType<Park>())
 {
 Console.WriteLine("{0} is at {1} in {2}", p.Name, p.Address, p.City);
 Console.WriteLine("\tOffice: {0}, {1}, {2} {3}", p.Office.Address,
 p.Office.City, p.Office.State, p.Office.ZIPCode);
 }
}

The output from the code in Listing 2-12 is the following:

-- All Locations --

501 Main, Weatherford, TX 76201

801 11th Street, Aledo, TX 76106

8705 Range Lane, Springtown, TX 76081

101 High Drive, Springtown, TX 76081

--- Parks ---

11th Street Park is at 801 11th Street in Aledo

 Office: 501 Main, Weatherford, TX 76201

Overland Park is at 101 High Drive in Springtown

 Office: 8705 Range Lane, Springtown, TX 76081

2-12. Creating, Modifying, and Mapping Complex Types

Problem
You want to create a complex type, set it as a property on an entity, and map the property to some
columns on a table.

57

CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

Solution
Let’s say you have the table shown in Figure 2-39. You want to create a Name complex type for the
FirstName and LastName columns. You also want to create an Address complex type for the
AddressLine1, AddressLine2, City, State, and ZIPCode columns. You want to use these complex types for
properties in your model as shown in Figure 2-40.

Figure 2-39. The Agent table with the name and address of the agent

Figure 2-40. The completed model with the name and address components refactored into complex types

Follow these steps to create the model with the Name and Address complex types:

1. Add a new model to your project by right-clicking your project and selecting
Add New Item. Choose ADO.NET Entity Data Model from the Visual C# Data
templates.

2. Select Generate from database. Click Next.

3. Use the wizard to select an existing connection to your database or create a
new connection.

4. From the Choose Your Database Object dialog box, select the Agent table.
Leave the Pluralize and Foreign Key options checked. Click Finish.

5. Select the FirstName and LastName properties, right-click and select Refactor
Into Complex Type.

6. In the Model Browser, rename the new complex type from ComplexType1 to
Name. This changes the name of the type. On the Agent, rename the
ComplexTypeProperty to Name. This changes the name of the property.

58

 CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

7. We’ll create the next complex type from scratch so you can see an alternate
approach. Right-click on the design surface and select Add Complex Type.

8. In the Model Browser, rename the new complex type from ComplexType1 to
Address.

9. Select the AddressLine1, AddressLine2, City, State, and ZIPCode properties in
the Agent. Right-click and select Cut. Paste these properties onto the Address
complex type in the Model Browser.

10. Right-click the Agent and select Add Complex Property. Rename the
property Address.

11. Right-click on the new Address property and select Properties. Change its type
to Address. This changes the new property’s type to the new Address complex
type.

12. View the Mapping Details window for the Agent. Map the columns from the
Agent table to the properties on the two complex types we’ve created. The
mappings are shown in Figure 2-41.

Figure 2-41. Mapping the fields of the complex types to the columns in the Agent table

How It Works
Complex types allow you to group several properties into a single type for a property on an entity. A
complex type can contain scalar properties or other complex types, but they cannot have navigation
properties or entity collections. A complex type cannot be an entity key. Complex types are not tracked
on their own in an object context.

A property whose type is a complex type cannot be null. When you work with entities with complex
type properties, you have to be mindful of this rule. Occasionally, when the value of a complex type
property is unimportant for a particular operation, you may need to create a dummy value for the
property so that it has some non-null value.

59

CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

When you modify any field in complex type property, the property is marked as changed by Entity
Framework and an update statement will be generated that will update all of the fields of the complex
type property.

In Listing 2-13, we demonstrate using the model by inserting a few agents and displaying them.

Listing 2-13. Inserting agents and selecting from our model

using (var context = new EFRecipesEntities())
{
 var name1 = new Name { FirstName = "Robin", LastName = "Rosen" };
 var name2 = new Name { FirstName = "Alex", LastName = "St. James" };
 var address1 = new Address { AddressLine1 = "510 N. Grant",
 AddressLine2 = "Apt. 8",
 City = "Raytown", State = "MO",
 ZIPCode = "64133" };
 var address2 = new Address { AddressLine1 = "222 Baker St.",
 AddressLine2 = "Apt.22B",
 City = "Raytown", State = "MO",
 ZIPCode = "64133" };
 context.Agents.AddObject(new Agent { Name = name1, Address = address1 });
 context.Agents.AddObject(new Agent {Name = name2, Address = address2});
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 Console.WriteLine("Agents");
 foreach (var agent in context.Agents)
 {
 Console.WriteLine("{0} {1}", agent.Name.FirstName, agent.Name.LastName);
 Console.WriteLine("{0}", agent.Address.AddressLine1);
 Console.WriteLine("{0}", agent.Address.AddressLine2);
 Console.WriteLine("{0}, {1} {2}", agent.Address.City,
 agent.Address.State, agent.Address.ZIPCode);
 Console.WriteLine();
 }
}

The output of the code in Listing 2-13 is the following:

Agents

Robin Rosen

510 N. Grant

Apt. 8

Raytown, MO 64133

Alex St. James

60

 CHAPTER 2 ENTITY DATA MODELING FUNDAMENTALS

222 Baker St.

Apt.22B

Raytown, MO 64133

61

C H A P T E R 3

Querying an Entity Data Model

In the previous chapter, we showed you lots of different ways to model some fairly common database
scenarios. In this chapter, we dive right into querying your models.

In these recipes we’ll show you how to use LINQ and Entity SQL to query your models. We’ll cover a
wide range of common and some not so common scenarios that will help you understand some of the
basics of querying your models.

3-1. Executing an SQL Statement

Problem
You want to execute an SQL statement.

Solution
Let’s say you have a Payment table like the one shown in Figure 3-1 and you have created a model that
looks like the one in Figure 3-2.

Figure 3-1. A Payment table that contains information about a payment made by a vendor

63

CHAPTER 3 QUERYING AN ENTITY DATA MODEL

Figure 3-2. A model with a Payment entity type that was created when the model was updated with the

Payment table

You want to execute one or more SQL statements directly against the underlying Payment table. To
do this, use the ExecuteStoreCommand() method available on the object context. Although we have a
Payment entity in our model, it is not required. We simply need some model (after all, we need an object
context) that is connected to the database against which we want to execute the SQL commands.

Follow the pattern in Listing 3-1 to execute one or more SQL statements.

Listing 3-1. Executing an Insert statement

// insert a couple rows
using (var context = new EFRecipesEntities())
{
 string sql = @"insert into Chapter3.Payment(Amount, Vendor)
 values (@Amount, @Vendor)";
 var args = new DbParameter[] {
 new SqlParameter { ParameterName = "Amount", Value = 99.97M},
 new SqlParameter { ParameterName = "Vendor", Value="Ace Plumbing"}
 };
 int rowCount = context.ExecuteStoreCommand(sql, args);

 args = new DbParameter[] {
 new SqlParameter { ParameterName = "Amount", Value = 43.83M},
 new SqlParameter { ParameterName = "Vendor",
 Value = "Joe's Trash Service"}
 };
 rowCount += context.ExecuteStoreCommand(sql, args);
 Console.WriteLine("{0} rows inserted", rowCount.ToString());
}

// materialize some entities
using (var context = new EFRecipesEntities())
{
 Console.WriteLine("Payments");
 Console.WriteLine("========");
 foreach (var payment in context.Payments)
 {
 Console.WriteLine("Paid {0} to {1}", payment.Amount.ToString("C"),
 payment.Vendor);
 }
}

64

 CHAPTER 3 QUERYING AN ENTITY DATA MODEL

The following is the output of the code in Listing 3-1:

2 rows inserted

Payments

========

Paid $99.97 to Ace Plumbing

Paid $43.83 to Joe's Trash Service

How It Works
In Listing 3-1, we start off by creating a string with the SQL insert statement. This statement contains two
parameters: @Amount and @Vendor. These are placeholders that will be replaced by values when the
statement is executed.

Next, we create two parameters that bind the placeholder names to specific values. For the first
insert, we bind the value 99.97 to the Amount placeholder. Next, we create a parameter that binds ‘Ace
Plumbing’ to the Vendor placeholder.

To execute the SQL statement, we pass both the string with the SQL statement and the array of
parameters to the ExecuteStoreCommand() method. ExecuteStoreCommand() returns the count of rows
affected by the statement. In our case, one row is inserted each time we call ExecuteStoreCommand().

If you don’t have any parameters for a SQL statement, there is an overload of the
ExcuteStoreCommand() method that takes just the SQL statement.

The pattern in Listing 3-1 is similar to how we would do the same thing in ADO.NET with SqlClient.
The difference is that we don’t need to construct a connection string and explicitly open a connection.
This is handled by the object context.

The way we express the command text and the parameters are also different. With
ExecuteNonQuery(), the command text and parameters are set on the underlying Command object. Here,
these are passed into the ExecuteStoreCommand() method.

Of course, the observant reader will notice here that we’re really not querying the model. In fact, as
we mentioned, you don’t need to have the Payment entity shown in Figure 3-2. The
ExecuteStoreCommand() method simply uses the object context for its connection to the underlying data
store.

65

CHAPTER 3 QUERYING AN ENTITY DATA MODEL

Best Practice

To parameterize or not to parameterize, that is the question….Okay, Shakespeare aside, should I use
parameters for SQL statements or just create the SQL statement strings that contain the parameters? The
best practice is to use parameters whenever possible, and here are some reasons why:

• Parameterized SQL statements help prevent SQL Injection attacks. If you construct
a complete SQL statement as a string by appending together strings that you get
from a user interface such as an ASP.NET TextBox control, you may end up
constructing a SQL statement that does some serious damage to your database or
reveals some sensitive information. When you use parameterized SQL statements,
the parameters are handled in a way that prevents this.

• Parameterized SQL statements, as we have shown in this recipe, allow you to
reuse the non-varying part of the statement. This reuse can make your code more
simple and easy to read.

• Parameterized SQL statements make your code more maintainable and
configurable. For example, the statements could come from a configuration file.
This would allow you to make some changes to the application without changing
the code.

3-2. Returning Objects from a SQL Statement

Problem
You want to execute a SQL statement and get objects from your model.

Solution
Let’s say you have a model with a Student entity type as shown in Figure 3-3.

Figure 3-3. A model with a Student entity type

66

 CHAPTER 3 QUERYING AN ENTITY DATA MODEL

You want to execute a SQL statement that returns a collection of instances of the Student entity
type. As we saw in the previous recipe, the ExecuteStoreCommand() method is similar to SQLCommand’s
ExecuteNonQuery() method. It executes the SQL statement for its side effects like inserting rows, and
returns the number of rows affected. To materialize objects from our model, we can use the
ExecuteStoreQuery() method on the object context.

To execute a SQL statement and get back a collection of instances of the Student entity type, follow
the pattern in Listing 3-2.

Listing 3-2. Using ExecuteStoreQuery() to execute a SQL statement and get back objects

using (var context = new EFRecipesEntities())
{
 context.Students.AddObject(new Student { FirstName = "Robert",
 LastName = "Smith", Degree = "Masters" });
 context.Students.AddObject(new Student { FirstName = "Julia",
 LastName = "Kerns", Degree = "Masters" });
 context.Students.AddObject(new Student { FirstName = "Nancy",
 LastName = "Stiles", Degree = "Doctorate" });
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 string sql = "select * from Chapter3.Student where Degree = @Major";
 var args = new DbParameter[] {
 new SqlParameter {ParameterName = "Major", Value = "Masters"}};
 var students = context.ExecuteStoreQuery<Student>(sql, args);
 Console.WriteLine("Students...");
 foreach (var student in students)
 {
 Console.WriteLine("{0} {1} is working on a {2} degree",
 student.FirstName, student.LastName, student.Degree);
 }
}

The following is the output of the code in Listing 3-2:

Students...

Robert Smith is working on a Masters degree

Julia Kerns is working on a Masters degree

How It Works
In Listing 3-2, we add three Students to the object context and save them to the database using
SaveChanges().

67

CHAPTER 3 QUERYING AN ENTITY DATA MODEL

To retrieve the Students who are working on a Masters degree, we use the ExecuteStoreQuery()
method with a parameterized SQL statement and a parameter set to “Masters.” We iterate through the
returned collection of Students and print each of them.

Here we use * in place of explicitly naming each column in the select statement. This works because
the columns in the underlying table match the properties in the Student entity type. Entity Framework
will match up the returned values to the appropriate properties. This works out fine in most cases, but if
you have fewer columns returned from your query, Entity Framework will throw an exception during the
materialization of the object. This can easily be fixed by adding dummy columns and values of the
appropriate types to your query.

If your SQL statement returns more columns than required to materialize the entity, Entity
Framework will happily ignore the additional columns.

There are some restrictions with the ExecuteStoreQuery() method. If you are using Table per
Hierarchy inheritance and your SQL statement returns rows that could map to different derived types,
Entity Framework will not be able to use the discriminator column to map the rows to the correct
derived types. You will likely get a runtime exception because some rows don’t contain the values
required for the type being materialized.

If an entity has a complex type property, then instances of the entity can’t be returned using
ExecuteStoreQuery(). However, ExecuteStoreQuery() can be used to return a collection of instances of a
complex type. Returning instances of a complex type, which is supported, is subtly different from
returning instances of an entity that contains a complex type, which is not supported.

You can use ExecuteStoreQuery() to materialize objects that are not entities at all. For example, we
could create a StudentName class that contains just first and last names of a student. If our SQL statement
returned just these two strings, then we could use ExecuteStoreQuery<StudentName>() along with our
SQL statement to get a collection of instances of StudentName.

We’ve been careful to use the phrase SQL statement rather than select statement because the
ExecuteStoreQuery() method works with any SQL statement that returns a row set. This includes, of
course, select statements, but also includes statements that execute stored procedures.

There is a version of ExecuteStoreQuery() that takes a parameter that determines how the returned
objects are merged into the object context. By default, ExecuteStoreQuery() uses the
MegeOption.NoTracking, which means that the returned objects are not tracked in the object context. If
you happened to retrieve an object that has the same entity key as an object that is already in the object
context, you will get a fresh copy of the object. If you use this version of the ExecuteStoreQuery()
method, the second parameter is the name of the entity set that contains the entity.

3-3. Returning Objects from an Entity SQL Statement

Problem
You want to execute an Entity SQL statement that queries your model and returns objects.

Solution
Let’s say you have a model like the one in Figure 3-4. The model contains a single Customer entity type.
The Customer entity type has a Name and an Email property. You want to query this model using Entity
SQL.

68

 CHAPTER 3 QUERYING AN ENTITY DATA MODEL

Figure 3-4. A model with a Customer entity

To query the model using Entity SQL, follow the pattern in Listing 3-3. The code in Listing 3-3
demonstrates executing and Entity SQL statement using both Object Services and EntityClient.

Listing 3-3. Executing an Entity SQL statement using both Object Services and EntityClient

using (var context = new EFRecipesEntities())
{
 var cus1 = new Customer { Name = "Robert Stevens",
 Email = "rstevens@mymail.com" };
 var cus2 = new Customer { Name = "Julia Kerns",
 Email = "julia.kerns@abc.com" };
 var cus3 = new Customer { Name = "Nancy Whitrock",
 Email = "nrock@myworld.com" };
 context.Customers.AddObject(cus1);
 context.Customers.AddObject(cus2);
 context.Customers.AddObject(cus3);
 context.SaveChanges();
}

// using object services
using (var context = new EFRecipesEntities())
{
 Console.WriteLine("Customers...");
 string esql = "select value c from Customers as c";
 var customers = context.CreateQuery<Customer>(esql);
 foreach (var customer in customers)
 {
 Console.WriteLine("{0}'s email is: {1}",
 customer.Name, customer.Email);
 }
}

Console.WriteLine();

// using EntityClient
using (var conn = new EntityConnection("name=EFRecipesEntities"))
{
 Console.WriteLine("Customers...");
 var cmd = conn.CreateCommand();
 conn.Open();

69

mailto:rstevens@mymail.com
mailto:kerns@abc.com
mailto:nrock@myworld.com

CHAPTER 3 QUERYING AN ENTITY DATA MODEL

 cmd.CommandText = "select value c from EFRecipesEntities.Customers as c";
 using (var reader = cmd.ExecuteReader(CommandBehavior.SequentialAccess))
 {
 while (reader.Read())
 {
 Console.WriteLine("{0}'s email is: {1}",
 reader.GetString(1), reader.GetString(2));
 }
 }
}

The following is the output from the code in Listing 3-3:

Customers...

Robert Stevens's email is: rstevens@mymail.com

Julia Kerns's email is: julia.kerns@abc.com

Nancy Whitrock's email is: nrock@myworld.com

Customers...

Robert Stevens's email is: rstevens@mymail.com

Julia Kerns's email is: julia.kerns@abc.com

Nancy Whitrock's email is: nrock@myworld.com

How It Works
In Listing 3-4, we create three customers, add them to the object context, then call SaveChanges() to save
these new customers to the database.

After we have these customers in the database, we use two different approaches to retrieve them
using Entity SQL. In the first approach, we use the CreateQuery() method on the object context to create
an ObjectQuery. When we iterate over the customers, the query is executed in the database and the
resulting collection is printed to the console. Because each element in the collection is an instance of our
Customer entity type, we can use the properties of the Customer entity type.

In the second approach, we use EntityClient in a pattern that is very similar to how we would use
SqlClient or any of the other client providers in ADO.NET. We start by creating a connection to the
database. With the connection in hand, we create a command object and open the connection. Next we
initialize the command object with the text of the Entity SQL statement we want to execute. We execute
the command using ExecuteReader() and obtain an EntityDataReader, which is a type of the familiar
DbDataReader. We iterate over the resulting collection using the Read() method.

70

mailto:rstevens@mymail.com
mailto:kerns@abc.com
mailto:nrock@myworld.com
mailto:rstevens@mymail.com
mailto:kerns@abc.com
mailto:nrock@myworld.com

 CHAPTER 3 QUERYING AN ENTITY DATA MODEL

The Entity SQL statement in Listing 3-3 uses the value keyword. This keyword is useful when we
need the entire entity. If our Entity SQL statement forms a projection of the columns (that is, we use
some of the columns and/or create columns using Entity SQL expressions), we can dispense with the
value keyword. When using Object Services, this means working with a DbDataRecord directly. The code
in Listing 3-4 demonstrates this.

Listing 3-4. Projecting with both Object Services and EntityClient

// using object services without the VALUE keyword
using (var context = new EFRecipesEntities())
{
 Console.WriteLine("Customers...");
 string esql = "select c.Name, c.Email from Customers as c";
 var records = context.CreateQuery<DbDataRecord>(esql);
 foreach (var record in records)
 {
 var name = record[0] as string;
 var email = record[1] as string;
 Console.WriteLine("{0}'s email is: {1}", name, email);
 }
}

Console.WriteLine();

// using EntityClient without the VALUE keyword
using (var conn = new EntityConnection("name=EFRecipesEntities"))
{
 Console.WriteLine("Customers...");
 var cmd = conn.CreateCommand();
 conn.Open();
 cmd.CommandText = @"select c.Name, C.Email from
 EFRecipesEntities.Customers as c";
 using (var reader = cmd.ExecuteReader(CommandBehavior.SequentialAccess))
 {
 while (reader.Read())
 {
 Console.WriteLine("{0}'s email is: {1}",
 reader.GetString(0), reader.GetString(1));
 }
 }
}

When you form a projection in Entity SQL, the results are returned in a DbDataRecord object that

contains one element for each column in the projection. With the value keyword, the single object
resulting from the query is returned in the first element of the DbDataRecord.

71

CHAPTER 3 QUERYING AN ENTITY DATA MODEL

3-4. Specifying Fully Qualified Names in Entity SQL

Problem
You want to fully qualify an entity type with the correct namespace inside of an Entity SQL statement.

Solution
Let’s say you have a simple model using Table per Type inheritance, as shown in Figure 3-5.

Figure 3-5. A model using Table per Type inheritance with the derived entities Teacher and Lawyer

In Figure 3-5, we have two entities, Teacher and Lawyer, which are derived from the Person entity
type. Because we’re using Table per Type inheritance, each of the derived types is represented in a
separate table.

To query the model for all the Teachers using Object Services, we need to qualify the Teacher entity
type with the Recipe4 namespace. This is the CLR namespace that contains our object context and our
entities. Because we are interested in only the Teacher entities, we use the Entity SQL OfType() operator
passing in the People entity set that contains our Teacher entity and the fully qualified Teacher entity.
This is the first query in Listing 3-5.

The same query using EntityClient requires that we qualify the entity set with the Entity Container
name EFRecipesEntities and the Teacher entity type with the namespace of the conceptual model,
EFRecipesModel. This is shown in the second query in Listing 3-5.

Listing 3-5. Retrieving the teachers using Object Services and EntityClient

using (var context = new EFRecipesEntities())
{
 context.People.AddObject(new Teacher { Name = "Janet Dietz",

72

 CHAPTER 3 QUERYING AN ENTITY DATA MODEL

 IsProfessor = true });
 context.People.AddObject(new Teacher { Name = "Robert Kline",
 IsProfessor = false });
 context.People.AddObject(new Lawyer { Name = "Jenny Dunlap", Cases = 3 });
 context.People.AddObject(new Lawyer { Name = "Karen Eads", Cases = 7 });
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 var esql = "select value p from OfType(People,Recipe4.Teacher) as p";
 var teachers = context.CreateQuery<Teacher>(esql);
 Console.WriteLine("Teachers...Using Object Services");
 foreach (var teacher in teachers)
 {
 Console.WriteLine("{0} is{1} a professor", teacher.Name,
 teacher.IsProfessor ? "" : " not");
 }
}

Console.WriteLine();

using (var conn = new EntityConnection("name=EFRecipesEntities"))
{
 conn.Open();
 var esql = @"select value p from
 OfType(EFRecipesEntities.People,EFRecipesModel.Teacher) as p";
 var cmd = conn.CreateCommand();
 cmd.CommandText = esql;
 Console.WriteLine("Teachers...Using EntityClient");
 using (var reader = cmd.ExecuteReader(CommandBehavior.SequentialAccess))
 {
 while (reader.Read())
 {
 Console.WriteLine("{0} is{1} a professor", reader.GetString(1),
 reader.GetBoolean(2) ? "" : " not");
 }
 }
}

The following is the output of the code in Listing 3-5:

Teachers...Using Object Services

Janet Dietz is a professor

Robert Kline is not a professor

73

CHAPTER 3 QUERYING AN ENTITY DATA MODEL

Teachers...Using EntityClient

Janet Dietz is a professor

Robert Kline is not a professor

How It Works
In Listing 3-5, we referenced the People entity set in each query. Normally, when you reference an entity
set, it is qualified by the Entity Container name. In our case, this is EFRecipesEntities. In the first query,
we didn’t need to fully qualify the entity set because we are executing the query in the object context and
the entity set is in the default container for the context. In the second query, the one in which we execute
against EntityClient, we need to fully qualify the entity set with the Entity Container name.

In the first query, we qualified the Teacher entity type with the CLR namespace in which the entity
was generated. This namespace is, by default, the namespace of the project. You can change the
namespace for the generated code in the Custom Tool Namespace property of the model. To change this
namespace, right-click the .edmx file, select Properties and change the Custom Tool Namespace.

For the second query, we qualified the Teacher entity type with the namespace of the conceptual
model. For the EntityClient approach, we are not using the generated code so we can’t use the CLR
namespace. To find the conceptual model namespace, right-click the model design surface and select
Properties. The conceptual model namespace is listed under the Namespace property.

If you have a more complex query, you can make it somewhat more readable with the Entity SQL
using clause. Like the using statement in C#, this clause allows you to factor out the qualifiers and
simplify the code. We could rewrite the first Entity SQL statement as follows:

"using Recipe4; select value p from OfType(People,Teacher) as p";

3-5. Finding a Master that Has Detail in a
Master-Detail Relationship

Problem
You have two entities in a one-to-many association (a.k.a. Master-Detail) and you want to find all the
master entities that have at least one associated detail entity.

Solution
Imagine you have a model for blog posts and the comments associated with each post. Some posts have
lots of comments. Some posts have few or no comments. The model might look something like the one
in Figure 3-6.

74

 CHAPTER 3 QUERYING AN ENTITY DATA MODEL

Figure 3-6. A model for blog posts and the associated comments

You want to find all the blog posts that have at least one comment. To do this using either LINQ to
Entities or Entity SQL, follow the pattern in Listing 3-6.

Listing 3-6. Finding the masters that have detail using both LINQ and Entity SQL

using (var context = new EFRecipesEntities())
{
 var post1 = new BlogPost { Title = "The Joy of LINQ",
 Description = "101 things you always wanted to know about LINQ" };
 var post2 = new BlogPost { Title = "LINQ as Dinner Conversation",
 Description = "What wine goes with a Lambda expression?" };
 var post3 = new BlogPost {Title = "LINQ and our Children",
 Description = "Why we need to teach LINQ in High School"};
 var comment1 = new Comment {
 Comments = "Great post, I wish more people would talk about LINQ" };
 var comment2 = new Comment {
 Comments = "You're right, we should teach LINQ in high school!" };
 post1.Comments.Add(comment1);
 post3.Comments.Add(comment2);
 context.BlogPosts.AddObject(post1);
 context.BlogPosts.AddObject(post2);
 context.BlogPosts.AddObject(post3);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 Console.WriteLine("Blog Posts with comments...(LINQ)");
 var posts = from post in context.BlogPosts
 where post.Comments.Any()
 select post;
 foreach (var post in posts)
 {
 Console.WriteLine("Blog Post: {0}", post.Title);
 foreach (var comment in post.Comments)
 {
 Console.WriteLine("\t{0}", comment.Comments);
 }
 }

75

CHAPTER 3 QUERYING AN ENTITY DATA MODEL

}

Console.WriteLine();

using (var context = new EFRecipesEntities())
{
 Console.WriteLine("Blog Posts with comments...(ESQL)");
 var esql = "select value p from BlogPosts as p where exists(p.Comments)";
 var posts = context.CreateQuery<BlogPost>(esql);
 foreach (var post in posts)
 {
 Console.WriteLine("Blog Post: {0}", post.Title);
 foreach (var comment in post.Comments)
 {
 Console.WriteLine("\t{0}", comment.Comments);
 }
 }
}

The following is the output of the code in Listing 3-6:

Blog Posts with comments...(LINQ)

Blog Post: The Joy of LINQ

 Great post, I wish more people would talk about LINQ

Blog Post: LINQ and our Children

 You're right, we should teach LINQ in high school!

Blog Posts with comments...(ESQL)

Blog Post: The Joy of LINQ

 Great post, I wish more people would talk about LINQ

Blog Post: LINQ and our Children

 You're right, we should teach LINQ in high school!

How It Works
We start off the code in Listing 3-6 by inserting a few blog posts and comments into the database. We left
one of the blog posts without any comments to make sure our query is doing the right thing.

76

 CHAPTER 3 QUERYING AN ENTITY DATA MODEL

In the LINQ query, we use the Any() method in the where clause to determine whether there are
comments for a given post. The query finds all the posts for which the Any() method returns true. And
that’s just what we want: all the posts for which there is at least one comment.

For the Entity SQL approach, we use the exists() operator, again in a where clause, to determine
whether the given post has at least one comment.

There are, of course, other ways to get the same results. We could have used the Count() method in
the LINQ query’s where clause and tested if the count is greater than 0. For the Entity SQL approach, we
could use count(select value 1 from p.Comments) > 0 in the where clause. Either of these approaches
would work. The code in Listing 3-6 seems a bit cleaner and, if it’s any consolation, the semantics behind
Any() and exists() don’t require the enumeration of the entire collection on the server, whereas count()
does require a full enumeration on the server.

3-6. Setting Default Values in a Query

Problem
You want to assign a default value to a property that has null value in a query.

Solution
Let’s say you have a model like the one shown in Figure 3-7. You want to query the model for employees.
In the database, the table representing employees contains a nullable YearsWorked column. This is the
column mapped to the YearsWorked property in the Employee entity. You want the rows that contain a
null value for the YearsWorked to default to the value 0.

Figure 3-7. A model with an Employee entity type containing an EmployeeId property, a Name property,

and a YearsWorked property

There are a couple of different approaches you can take here. The simplest is to change the Default
Value property on YearsWorked to 0. To do this, right-click YearsWorked and select Properties. In the
Properties window, change the Default Value to 0.

You can also assign default values via a query as in Listing 3-7. Note that the pattern in Listing 3-7
doesn’t really materialize instances of the Employee entity type with the default value. Instead, it
projects the results of the query into a collection of an anonymous type whose YearsWorked property is
0 whenever the underlying value is null.

77

CHAPTER 3 QUERYING AN ENTITY DATA MODEL

Listing 3-7. Using both LINQ and Entity SQL to fill in default values for nulls

using (var context = new EFRecipesEntities())
{
 context.Employees.AddObject(new Employee { Name = "Robin Rosen",
 YearsWorked = 3 });
 context.Employees.AddObject(new Employee { Name = "John Hancock" });
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 Console.WriteLine("Employees (using LINQ)");
 var employees = from e in context.Employees
 select new {Name = e.Name, YearsWorked = e.YearsWorked ?? 0};
 foreach(var employee in employees)
 {
 Console.WriteLine("{0}, years worked: {1}",employee.Name,
 employee.YearsWorked);
 }
}

using (var context = new EFRecipesEntities())
{
 Console.WriteLine("Employees (using ESQL)");
 string esql = @"select
 e.Name,
 case when e.YearsWorked is null then 0
 else e.YearsWorked
 end as YearsWorked
 from Employees as e";
 var employees = context.CreateQuery<DbDataRecord>(esql);
 foreach (var employee in employees)
 {
 Console.WriteLine("{0}, years worked: {1}", employee.GetString(0),
 employee.GetInt32(1).ToString());
 }
}

using (var context = new EFRecipesEntities())
{
 Console.WriteLine("Employees (using ESQL w/named constructor)");
 string esql = @"select value Recipe6.Employee(e.EmployeeId,
 e.Name,
 case when e.YearsWorked is null then 0
 else e.YearsWorked end)
 from Employees as e";
 var employees = context.CreateQuery<Employee>(esql);
 foreach(var employee in employees)
 {
 Console.WriteLine("{0}, years worked: {1}",employee.Name,

78

 CHAPTER 3 QUERYING AN ENTITY DATA MODEL

 employee.YearsWorked.ToString());
 }
}

The following is the output of the code in Listing 3-7:

Employees (using LINQ)

Robin Rosen, years worked: 3

John Hancock, years worked: 0

Employees (using ESQL)

Robin Rosen, years worked: 3

John Hancock, years worked: 0

Employees (using ESQL w/named constructor)

Robin Rosen, years worked: 3

John Hancock, years worked: 0

How It Works
As we mentioned, the simple solution is to set the Default Value to 0 for the YearsWorked property. This
will cause the instances of the Employee entity type to be materialized with a 0 for the YearsWorked
property when the underlying value is null.

The other approach is to use either LINQ or ESQL to project the results into a collection of an
anonymous type. The query sets the YearsWorked to 0 when the underlying value is null.

For the LINQ approach, we use the null-coalescing operator ?? to assign the value of 0 when the
underlying value is null. We project the results into a collection of an anonymous type.

For Entity SQL we use a case statement to assign the value of 0 to YearsWorked when the underlying
value is null.

In the last bit of code, we show how to use Entity SQL to materialize instances of the Employee
entity type without setting the Default Value property for the entity. To do this, we use the named
constructor for the entity type. This constructor assigns the values from the parameters to the properties
in the same order as the properties are defined in the entity. In our case, the properties for the Employee
entity are defined in the following order: EmployeeId, Name, and YearsWorked. The parameters to the
constructor follow this same order. We also changed the type for the CreateQuery() method from
DbDataRecord to Employee.

Unfortunately, there is no corresponding name constructor syntax for LINQ to Entities.

79

CHAPTER 3 QUERYING AN ENTITY DATA MODEL

3-7. Returning Multiple Result Sets From a Stored Procedure

Problem
You have a stored procedure that returns multiple result sets and you want to materialize entities from
each result set.

Solution
Suppose you have a model like the one in Figure 3-8 and a stored procedure like the one in Listing 3-8
that returns both jobs and bids.

Figure 3-8. A model representing jobs and bids for the jobs

Listing 3-8. A stored procedure that returns multiple result sets

create procedure [Chapter3].[GetBidDetails]
as
begin
 select * from Chapter3.Job
 select * from Chapter3.Bid
end

In our model, for each job we have zero or more bids. Our stored procedure returns all the jobs and

all the bids. We want to execute the stored procedure and materialize all the jobs and all the bids from
the two result sets. To do this, follow the pattern in Listing 3-9.

Listing 3-9. Materializing jobs and bids from the two result sets returned by our stored procedure

using (var context = new EFRecipesEntities())
{
 var job1 = new Job { JobDetails = "Re-surface Parking Log" };
 var job2 = new Job { JobDetails = "Build Driveway" };
 job1.Bids.Add(new Bid { Amount = 948M, Bidder = "ABC Paving" });
 job1.Bids.Add(new Bid { Amount = 1028M, Bidder = "TopCoat Paving" });
 job2.Bids.Add(new Bid { Amount = 502M, Bidder = "Ace Concrete" });
 context.Jobs.AddObject(job1);

80

 CHAPTER 3 QUERYING AN ENTITY DATA MODEL

 context.Jobs.AddObject(job2);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 var cs = @"Data Source=.;Initial Catalog=EFRecipes;Integrated Security=True";
 var conn = new SqlConnection(cs);
 var cmd = conn.CreateCommand();
 cmd.CommandType = System.Data.CommandType.StoredProcedure;
 cmd.CommandText = "Chapter3.GetBidDetails";
 conn.Open();
 var reader = cmd.ExecuteReader(CommandBehavior.CloseConnection);
 var jobs = context.Translate<Job>(reader, "Jobs",
 MergeOption.AppendOnly).ToList();
 reader.NextResult();
 context.Translate<Bid>(reader, "Bids", MergeOption.AppendOnly).ToList();
 foreach (var job in jobs)
 {
 Console.WriteLine("\nJob: {0}", job.JobDetails);
 foreach (var bid in job.Bids)
 {
 Console.WriteLine("\tBid: {0} from {1}",
 bid.Amount.ToString("C"), bid.Bidder);
 }
 }
}

The following is the output of the code in Listing 3-8:

Job: Re-surface Parking Log

 Bid: $948.00 from ABC Paving

 Bid: $1,028.00 from TopCoat Paving

Job: Build Driveway

 Bid: $502.00 from Ace Concrete

How It Works
We start out by adding a couple of jobs and a few bids for the jobs. After adding them to the context, we
use SaveChanges() to save them to the database.

The current release of Entity Framework does not directly support working with multiple result sets.
To solve the problem, we read the data using the familiar SqlClient pattern. This pattern involves

81

CHAPTER 3 QUERYING AN ENTITY DATA MODEL

creating a SqlConnection, creating a SqlCommand, setting the command text to the name of the stored
procedure, and calling ExecuteReader() to get a data reader.

With a reader in hand, we use the Translate() method on the object context to materialize
instances of the Job entity from the reader. This method takes a reader, the entity set name, and a merge
option. The entity set name is required because an entity can live in multiple entity sets. Entity
Framework needs to know which to use.

The merge option parameter is a little more interesting. Using MergeOption.AppendOnly causes the
new instances to be added to the object context and tracked. We use this option because we want to use
Entity Framework’s entity span to automatically fix up the associations between jobs and bids. We
simply add to the context all the jobs and all the bids. Through the magic of entity span, Entity
Framework will automatically associate the bids to the right jobs. This saves us a ton of tedious code.
Entity span is not really magic, but it is something that comes in very handy.

A simpler version of the Translate() method does not require a MergeOption. This version
materializes objects that are disconnected from the object context. This is subtly different from objects
that are not tracked in that the objects are created completely outside of the object context. If you were
to use this simpler Translate() to read the jobs, you would not be able to later materialize bids into the
object context because Entity Framework would not have any reference to the associated jobs. Those
jobs are completely disconnected from the object context.

We used ToList() to force the evaluation of each query. This is required because the Translate()
method returns an ObjectResult<T>. It does not actually cause the results to be read from the reader. We
need to force the results to be read from the reader before we can use NextResult() to advance to the
next result set.

Although we didn’t run into it in this example, it is important to note that Translate() bypasses the
mapping layer of the model. If you try to map an inheritance hierarchy or use an entity that has complex
type properties, Translate() will fail. Translate() requires that the DbDataReader have columns that
match each property on the entity. This matching is done using simple name matching. If a column
name can’t be matched to a property, Translate() will fail.

3-8. Comparing Against a List of Values

Problem
You want to return entities whose property value matches one of the values in a given list.

Solution
Suppose you have a model like the one in Figure 3-9.

Figure 3-9. A model for books and their categories

82

 CHAPTER 3 QUERYING AN ENTITY DATA MODEL

You want to find all the books in a given list of categories. To do this using LINQ or Entity SQL,
follow the pattern in Listing 3-9.

Listing 3-9. Finding books in a list of categories using both LINQ and Entity SQL

using (var context = new EFRecipesEntities())
{
 var cat1 = new Category { Name = "Programming" };
 var cat2 = new Category { Name = "Databases" };
 var cat3 = new Category {Name = "Operating Systems"};
 context.Books.AddObject(new Book { Title = "F# In Practice", Category = cat1 });
 context.Books.AddObject(new Book { Title = "The Joy of SQL", Category = cat2 });
 context.Books.AddObject(new Book { Title = "Windows 7: The Untold Story",
 Category = cat3 });
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 Console.WriteLine("Books (using LINQ)");
 List<string> cats = new List<string> { "Programming", "Databases" };
 var books = from b in context.Books
 where cats.Contains(b.Category.Name)
 select b;
 foreach (var book in books)
 {
 Console.WriteLine("'{0}' is in category: {1}", book.Title,
 book.Category.Name);
 }
}

using (var context = new EFRecipesEntities())
{
 Console.WriteLine("Books (using ESQL)");
 var esql = @"select value b from Books as b
 where b.Category.Name in {'Programming','Databases'}";
 var books = context.CreateQuery<Book>(esql);
 foreach (var book in books)
 {
 Console.WriteLine("'{0}' is in category: {1}", book.Title,
 book.Category.Name);
 }
}

The following is the output of the code in Listing 3-9:

Books (using LINQ)

'F# In Practice' is in category: Programming

83

CHAPTER 3 QUERYING AN ENTITY DATA MODEL

'The Joy of SQL' is in category: Databases

Books (using ESQL)

'F# In Practice' is in category: Programming

'The Joy of SQL' is in category: Databases

How It Works
For the LINQ query, we build a simple list of category names, use this list in a contains clause in the
query. Entity Framework translates this to a SQL statement with an in clause, as shown in Listing 3-10.

Listing 3-10. The SQL statement created for the LINQ expression in Listing 3-9

SELECT
[Extent1].[BookId] AS [BookId],
[Extent1].[Title] AS [Title],
[Extent1].[CategoryId] AS [CategoryId]
FROM [chapter3].[Books] AS [Extent1]
LEFT OUTER JOIN [chapter3].[Category] AS [Extent2] ON [Extent1].[CategoryId] =
[Extent2].[CategoryId]
WHERE [Extent2].[Name] IN (N'Programming',N'Databases')

It is interesting to note that the generated SQL statement in Listing 3-10 does not use parameters for

the items in the in clause. This is different from the generated code we would see with LINQ to SQL
where the items in the list would be parameterized. With this code, we don’t run the risk of exceeding
the parameters limit that is imposed by SQL Server.

If we are interested in finding all books in a given list of categories or books that are not yet
categorized, we simply include null in the category list. The generated code is shown in Listing 3-11.

Listing 3-11. The SQL statement created for a LINQ expression like the one in Listing 3-9, but with a null

in the list of categories

SELECT
[Extent1].[BookId] AS [BookId],
[Extent1].[Title] AS [Title],
[Extent1].[CategoryId] AS [CategoryId]
FROM [chapter3].[Books] AS [Extent1]
LEFT OUTER JOIN [chapter3].[Category] AS [Extent2] ON [Extent1].[CategoryId] =
[Extent2].[CategoryId]
WHERE [Extent2].[Name] IN (N'Programming',N'Databases')
 OR [Extent2].[Name] IS NULL

84

 CHAPTER 3 QUERYING AN ENTITY DATA MODEL

3-9. Building and Executing a Query Against an
ObjectSet<T>

Problem
You want to build and execute a query against an ObjectSet<T>.

Solution
Let’s suppose you have model like the one in Figure 3-10 and you want to build and execute a query
against the ObjectSet<Patient>.

Figure 3-10. A model with a Patient entity type

For each of the entities we create in our model, Entity Framework creates code for the object context
that contains a definition of a property of type ObjectSet<T> where T is our entity type. In our case, the
object context contains a property called Patients that is of type ObjectSet<Patient>. To query against
this, follow one of the patterns in Listing 3-12.

Listing 3-12. Using three slightly different approaches to build and execute a query against an

ObjectSet<T>

using (var context = new EFRecipesEntities())
{
 context.Patients.AddObject(new Patient { Name = "Jill Stevens",
 City = "Dallas" });
 context.Patients.AddObject(new Patient { Name = "Bill Azle",
 City = "Fort Worth" });
 context.Patients.AddObject(new Patient { Name = "Karen Stanford",
 City = "Raytown" });
 context.Patients.AddObject(new Patient { Name = "David Frazier",
 City = "Dallas" });
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 Console.WriteLine("Using LINQ Builder Methods");

85

CHAPTER 3 QUERYING AN ENTITY DATA MODEL

 var patients = context.Patients.Where(p => p.City == "Dallas");
 foreach (var patient in patients)
 {
 Console.WriteLine("{0} is in {1}", patient.Name, patient.City);
 }
}

using (var context = new EFRecipesEntities())
{
 Console.WriteLine("\nUsing Entity SQL");
 var patients = context.CreateQuery<Patient>(
 @"select value p from Patients as p where p.City = 'Dallas'");
 foreach (var patient in patients)
 {
 Console.WriteLine("{0} is in {1}", patient.Name, patient.City);
 }
}
using (var context = new EFRecipesEntities())
{
 Console.WriteLine("\nUsing ESQL Builder Methods");
 var patients = context.CreateObjectSet<Patient>("Patients")
 .Where("it.City = 'Dallas'");
 foreach (var patient in patients)
 {
 Console.WriteLine("{0} is in {1}", patient.Name, patient.City);
 }
}

The following is the output of the code in Listing 3-12:

Using LINQ Builder Methods

Jill Stevens is in Dallas

David Frazier is in Dallas

Using Entity SQL

Jill Stevens is in Dallas

David Frazier is in Dallas

Using ESQL Builder Methods

Jill Stevens is in Dallas

David Frazier is in Dallas

86

 CHAPTER 3 QUERYING AN ENTITY DATA MODEL

How It Works
Each of our entities in a model is exposed as an ObjectSet<T>, which has everything that ObjectQuery<T>
has plus a few methods like AddObject(), Attach(), and DeleteObject(). When we build a query against
ObjectSet<T>, we get an ObjectQuery<T>. Of course, we can continue to compose queries on type of
ObjectQuery<T>.

In Listing 3-12, we demonstrate three common approaches to building a query. In the first
approach, we use the Where() method and a lambda expression to filter the collection to patients in
Dallas.

In the second approach, we use the CreateQuery() method and an Entity SQL expression to get all
the patients in Dallas.

In the last approach, we use the CreateObjectSet<Patient>() method and the Where() method with
an Entity SQL expression to filter the collection.

Although we didn’t show it in these examples, ObjectSet<T> has a MergeOption property that defines
how the materialized instances of our entities are to be loaded, tracked, and merged in the object
context. Table 3-1 summarizes these merge options.

Table 3-1. Merge Options Available on ObjectSet<T>

Merge Option Description

AppendOnly Default behavior; add new instances to the object context

OverwriteChanges Overwrite any changes made to objects in the object context

PreserveChanges Just reset the original values; don’t overwrite changes in the
object context

NoTracking Don’t track objects in the object context

3-10. Returning a Primitive Type From a Query

Problem
You want to return only a particular property of an entity type from a query.

Solution
Let’s say we have an Organization entity type as shown in the model in Figure 3-11.

87

CHAPTER 3 QUERYING AN ENTITY DATA MODEL

Figure 3-11. A model with an Organization entity type

Suppose that you have a query that you use in several places in your application. In this particular
use, you don’t need the entire entity; you just need one property, say the city, from the entity. For
simplicity, let’s say your query returns all the organizations in the state of Texas and you want to get just
the cities from the query.

To get just the cities, follow the pattern in Listing 3-13.

Listing 3-13. Retrieving a primitive type using both LINQ and Entity SQL

using (var context = new EFRecipesEntities())
{
 var o1 = new Organization { Name = "ABC Electric", City = "Azle",
 State = "TX" };
 var o2 = new Organization { Name = "PowWow Pests", City = "Miami",
 State = "FL" };
 var o3 = new Organization { Name = "Grover Grass & Seed",
 City = "Fort Worth", State = "TX" };
 context.Organizations.AddObject(o1);
 context.Organizations.AddObject(o2);
 context.Organizations.AddObject(o3);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 var query = context.Organizations.Where("it.State = 'TX'");
 Console.WriteLine("Cities (using LINQ)");
 var cities = query.Select(o => o.City).Distinct().OrderBy(c => c);
 foreach (var city in cities)
 {
 Console.WriteLine("{0}", city);
 }

 Console.WriteLine("Cities (using eSQL)");
 cities = query.SelectValue<string>("distinct it.City").OrderBy("it");
 foreach (var city in cities)
 {
 Console.WriteLine("{0}", city);
 }
}

88

 CHAPTER 3 QUERYING AN ENTITY DATA MODEL

The following is the output of the code in Listing 3-13:

Cities (using LINQ)

Azle

Fort Worth

Cities (using eSQL)

Azle

Fort Worth

How It Works
We start in Listing 3-13 by inserting a few organizations. Once these are in place, we create a new object
context and build our base query. This query simply retrieves all the organizations in the state of Texas.

Next, using LINQ, we use the Select() method to project just the city property from the result set.
This set may contain duplicate cities, so we apply the Distinct() method to eliminate these duplicates.
Finally, just for good measure, we sort the cities.

For Entity SQL, we use the SelectValue() method passing in an Entity SQL expression that uses the
distinct operator to remove duplicates. We sort the results.

In both cases, we take a base query and we use builder methods to compose the additional
operations of projection (using Select() for LINQ and SelectValue() for Entity SQL) and ordering to get
the final collection of city names.

3-11. Filtering Related Entities

Problem
You want to want to retrieve some, but not all, of the related entities.

Solution
Let’s say you have a model like the one in Figure 3-12.

89

CHAPTER 3 QUERYING AN ENTITY DATA MODEL

Figure 3-12. A model for a Worker and their Accidents

In this model, we have a Worker who has experienced zero or more accidents. Each accident is
classified by its severity. We want to retrieve all workers, but we are interested only in serious accidents.
These are accidents with a severity greater than 2.

To retrieve all the workers, but to limit the accidents retrieved to just the serious ones, follow the
pattern in Listing 3-14.

Listing 3-14. Retrieving serious accidents using anonymous types and using CreateSourceQuery()

using (var context = new EFRecipesEntities())
{
 var worker1 = new Worker { Name = "John Kearney" };
 var worker2 = new Worker { Name = "Nancy Roberts" };
 var worker3 = new Worker { Name = "Karla Gibbons" };
 context.Accidents.AddObject(new Accident {
 Description = "Cuts and contusions",
 Severity = 3, Worker = worker1 });
 context.Accidents.AddObject(new Accident {
 Description = "Broken foot",
 Severity = 4, Worker = worker1});
 context.Accidents.AddObject(new Accident {
 Description = "Fall, no injuries",
 Severity = 1, Worker = worker2});
 context.Accidents.AddObject(new Accident {
 Description = "Minor burn",
 Severity = 3, Worker = worker2});
 context.Accidents.AddObject(new Accident {
 Description = "Back strain",
 Severity = 2, Worker = worker3});
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 context.ContextOptions.LazyLoadingEnabled = false;
 var query = from w in context.Workers
 select new
 {
 Worker = w,

90

 CHAPTER 3 QUERYING AN ENTITY DATA MODEL

 Accidents = w.Accidents.Where(a => a.Severity > 2)
 };
 query.ToList();
 var workers = query.Select(r => r.Worker);
 Console.WriteLine("Workers with serious accidents...");
 foreach (var worker in workers)
 {
 Console.WriteLine("{0} had the following accidents", worker.Name);
 if (worker.Accidents.Count == 0)
 Console.WriteLine("\t--None--");
 foreach (var accident in worker.Accidents)
 {
 Console.WriteLine("\t{0}, severity: {1}",
 accident.Description, accident.Severity.ToString());
 }
 }
}

Console.WriteLine();

using (var context = new EFRecipesEntities())
{
 context.ContextOptions.LazyLoadingEnabled = false;
 foreach (var worker in context.Workers)
 {
 Console.WriteLine("{0} had the following accidents", worker.Name);
 var accidents = worker.Accidents.CreateSourceQuery()
 .Where(a => a.Severity > 2);
 worker.Accidents.Attach(accidents);
 if (worker.Accidents.Count == 0)
 Console.WriteLine("\t--None--");
 foreach (var accident in accidents)
 {
 Console.WriteLine("\t{0}, severity: {1}",
 accident.Description, accident.Severity.ToString());
 }
 }
}

The following is the output of the code in Listing 3-14:

Workers with serious accidents...

John Kearney had the following accidents

 Cuts and contusions, severity: 3

 Broken foot, severity: 4

91

CHAPTER 3 QUERYING AN ENTITY DATA MODEL

Nancy Roberts had the following accidents

 Minor burn, severity: 3

Karla Gibbons had the following accidents

 --None--

John Kearney had the following accidents

 Cuts and contusions, severity: 3

 Broken foot, severity: 4

Nancy Roberts had the following accidents

 Minor burn, severity: 3

Karla Gibbons had the following accidents

 --None--

How It Works
As you will see in Chapter 5, when we want to eagerly load a related collection, we often use the
Include() method with a query path. However, the Include() method does not allow filtering on the
related entities. In this recipe, we show two slightly different ways to load and filter related entities.

In the first block of code, we create a few workers and assign them accidents of varying levels of
severity. Granted, it’s a little creepy to assign accidents to people, but it’s all in the name of getting some
data to work with.

In the first approach, we select from all the workers and project the results into an anonymous type.
The type includes the worker and the collection of accidents. For the accidents, we filter the collection to
get just the serious accidents.

The very next line is important. Here we force the evaluation of the query by calling the ToList()
method. This brings all the workers and all the serious accidents into the Object Context. The
anonymous type didn’t attach the accidents to the workers, but by bringing them into the Object
Context, Entity Framework will fix up the navigation properties, attaching each collection of serious
accidents to the appropriate worker. This process, commonly known as Entity Span, is a powerful yet
subtle side effect that happens behind the scenes to fix up relationships between entities as they are
materialized in the Object Context.

We’ve turned off lazy loading (we’ll talk more about lazy loading in Chapter 5) so that only the
accidents in our filter are loaded. With lazy loading on, all the accidents would get loaded when we
referenced each worker’s accidents. That would defeat our filter.

Once we have the collection, we iterate through it, printing out each worker and their serious
accidents. If a worker didn’t have any serious accidents, we print none to indicate their stellar safety
record.

For the second approach, we use the CreateSourceQuery() method to append our filter onto the
query that Entity Framework will use to gather up all the accidents for the worker. We have more to say
about CreateSourceQuery() in Chapter 5. Once we have the collection of serious accidents for the

92

 CHAPTER 3 QUERYING AN ENTITY DATA MODEL

worker, we attach() it to the worker. After attaching the collection, we iterate through the collection
printing out the serious accidents.

3-12. Applying a Left Outer Join

Problem
You want to combine the properties of two entities using a left outer join.

Solution
Suppose you have a model like the one in Figure 3-13.

Figure 3-13. Our model with a Product entity type and its related TopSelling entity type

The top-selling products have a related TopSelling entity. Of course, not all products are top sellers,
and that’s why the relationship is one to zero or one. When a product is a top seller, the related TopSeller
entity also contains the customer rating for the product. You want to find all the products and their
related TopSeller entities even if, in some cases, the product is not a top seller. In database terms, this is
called a left outer join.

The code in Listing 3-15 demonstrates three slightly different approaches to this problem.

Listing 3-15. Doing a left outer join between entities

using (var context = new EFRecipesEntities())
{
 var p1 = new Product { Name = "Trailrunner Backpack" };
 var p2 = new Product { Name = "Green River Tent",
 TopSelling = new TopSelling { Rating = 3 } };
 var p3 = new Product { Name = "Prairie Home Dutch Oven",
 TopSelling = new TopSelling { Rating = 4 } };
 var p4 = new Product { Name = "QuickFire Fire Starter",
 TopSelling = new TopSelling { Rating = 2 } };
 context.Products.AddObject(p1);
 context.Products.AddObject(p2);
 context.Products.AddObject(p3);
 context.Products.AddObject(p4);
 context.SaveChanges();
}

93

CHAPTER 3 QUERYING AN ENTITY DATA MODEL

using (var context = new EFRecipesEntities())
{
 var products = from p in context.Products
 orderby p.TopSelling.Rating descending
 select p;
 Console.WriteLine("Top selling products sorted by rating");
 foreach (var product in products)
 {
 if (product.TopSelling != null)
 Console.WriteLine("\t{0} [rating: {1}]", product.Name,
 product.TopSelling.Rating.ToString());
 }
}

using (var context = new EFRecipesEntities())
{
 var products = from p in context.Products
 join t in context.TopSellings on
 p.ProductId equals t.ProductId into g
 from tps in g.DefaultIfEmpty()
 orderby tps.Rating descending
 select new
 {
 Name = p.Name,
 Rating = tps.Rating == null ? 0 : tps.Rating
 };

 Console.WriteLine("\nTop selling products sorted by rating");
 foreach (var product in products)
 {
 if (product.Rating != 0)
 Console.WriteLine("\t{0} [rating: {1}]", product.Name,
 product.Rating.ToString());
 }
}

using (var context = new EFRecipesEntities())
{
 var esql = @"select value p from products as p
 order by case when p.TopSelling is null then 0
 else p.TopSelling.Rating end desc";
 var products = context.CreateQuery<Product>(esql);
 Console.WriteLine("\nTop selling products sorted by rating");
 foreach (var product in products)
 {
 if (product.TopSelling != null)
 Console.WriteLine("\t{0} [rating: {1}]", product.Name,
 product.TopSelling.Rating.ToString());
 }
}

94

 CHAPTER 3 QUERYING AN ENTITY DATA MODEL

The following is the output of the code in Listing 3-15:

Top selling products sorted by rating

 Prairie Home Dutch Oven [rating: 4]

 Green River Tent [rating: 3]

 QuickFire Fire Starter [rating: 2]

Top selling products sorted by rating

 Prairie Home Dutch Oven [rating: 4]

 Green River Tent [rating: 3]

 QuickFire Fire Starter [rating: 2]

Top selling products sorted by rating

 Prairie Home Dutch Oven [rating: 4]

 Green River Tent [rating: 3]

 QuickFire Fire Starter [rating: 2]

How It Works
In Listing 3-15, we show three slightly different solutions. The first solution is the simplest because Entity
Framework handles the join automatically for related entities. The entities are in a one to zero or one
association. When the product entities are materialized, any associated top sellers are also materialized.
The TopSeller navigation property is either set to the associated TopSeller entity or null if no TopSeller
exists.

In some cases, you might not have a relationship between the entities that you want to join. In these
cases, you can explicitly join the entities projecting the results into an anonymous type. We need to
project into an anonymous type because the unrelated entities won’t have navigation properties so we
wouldn’t otherwise be able to reference the related entity.

The code in the second query block illustrates this approach. Here we join the entities on the
ProductId key and put the result into g. Now, from g we apply the DefaultIfEmpty() method to fill in
nulls when g is empty. This gives us the left inner join. We include an orderby clause to order the results
by the rating. Finally, we project the results into an anonymous type.

95

CHAPTER 3 QUERYING AN ENTITY DATA MODEL

In the third solution, we show you how to do the left inner join more explicitly using Entity SQL.

3-13. Ordering by Derived Types

Problem
You are using Table per Hierarchy inheritance and you want to sort results by the derived type.

Solution
Let’s suppose you have a model like the one in Figure 3-14.

Figure 3-14. A model using Table per Hierarchy inheritance with three derived types

This model uses Table per Hierarchy inheritance. The Medium entity has a discriminator property
whose values determine which derived type is represented by a row from the database. This
discriminator column has a value of 1 for the Article type, a value of 2 for the Video type, and a value of 3
for the Picture type. Because the property is used only to determine the derived type, it is not shown as
part of the entity.

You want to query the model for all media and sort the results by the derived types: Article, Video,
and Picture. To do this, follow the pattern in Listing 3-16.

Listing 3-16. Sorting Table per Hierarchy inheritance by type

using (var context = new EFRecipesEntities())
{
 context.Media.AddObject(new Article {
 Title = "Woodworkers' Favorite Tools" });
 context.Media.AddObject(new Article {
 Title = "Building a Cigar Chair" });
 context.Media.AddObject(new Video {

96

 CHAPTER 3 QUERYING AN ENTITY DATA MODEL

 Title = "Upholstering the Cigar Chair" });
 context.Media.AddObject(new Video {
 Title = "Applying Finish to the Cigar Chair" });
 context.Media.AddObject(new Picture {
 Title = "Photos of My Cigar Chair" });
 context.Media.AddObject(new Video {
 Title = "Tour of My Woodworking Shop" });
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 var allMedia = from m in context.Media
 let mediatype = m is Article ? 1 :
 m is Video ? 2 : 3
 orderby mediatype
 select m;
 Console.WriteLine("All Media sorted by type...");
 foreach (var media in allMedia)
 {
 Console.WriteLine("Title: {0} [{1}]", media.Title, media.GetType().Name);
 }
}

The following is the output of the code in Listing 3-16:

All Media sorted by type...

Title: Woodworkers' Favorite Tools [Article]

Title: Building a Cigar Chair [Article]

Title: Upholstering the Cigar Chair [Video]

Title: Applying Finish to the Cigar Chair [Video]

Title: Tour of My Woodworking Shop [Video]

Title: Photos of My Cigar Chair [Picture]

How It Works
When we use Table per Hierarchy inheritance we leverage a column in the table to distinguish which
derived type represents any given row. This column, often referred to as the discriminator column, can’t
be mapped to a property of the base entity. Because we don’t have a property with the discriminator
value, we need to create a variable to hold comparable discriminator values so that we can do the sort.
To do this, we use a let clause creating the mediatype variable. We use a conditional statement to assign
an integer to this variable based on the type of the media. For Articles we assign the value 1. For Videos,

97

CHAPTER 3 QUERYING AN ENTITY DATA MODEL

we assign the value 2. We assign 3 to anything else, which will always be of type Picture because we don’t
have any other derived types left.

3-14. Paging and Filtering

Problem
You want to create query with a filter and paging.

Solution
Let’s say you have a Customer entity type in a model, as shown in Figure 3-15.

Figure 3-15. A model with a Customer entity type

You have an application that displays customers based on a filter. Your company has many
customers (perhaps millions!) and to keep the user experience as responsive as possible, you want to
show only a limited number of customers on each page. To create a query that both filters the customers
and returns a manageable set for each results page in your application, follow the pattern in Listing 3-17.

Listing 3-17. Filtering and paging a query

using (var context = new EFRecipesEntities())
{
 context.Customers.AddObject(new Customer { Name = "Roberts, Jill",
 Email = "jroberts@abc.com" });
 context.Customers.AddObject(new Customer { Name = "Robertson, Alice",
 Email = "arob@gmail.com" });
 context.Customers.AddObject(new Customer { Name = "Rogers, Steven",
 Email = "srogers@termite.com" });
 context.Customers.AddObject(new Customer { Name = "Roe, Allen",
 Email = "allenr@umc.com" });
 context.Customers.AddObject(new Customer { Name = "Jones, Chris",
 Email = "cjones@ibp.com" });
 context.SaveChanges();
}

98

mailto:jroberts@abc.com
mailto:arob@gmail.com
mailto:srogers@termite.com
mailto:allenr@umc.com
mailto:cjones@ibp.com

 CHAPTER 3 QUERYING AN ENTITY DATA MODEL

using (var context = new EFRecipesEntities())
{
 string match = "Ro";
 int pageIndex = 0;
 int pageSize = 3;

 var customers = context.Customers.Where(c => c.Name.StartsWith(match))
 .OrderBy(c => c.Name)
 .Skip(pageIndex * pageSize)
 .Take(pageSize);
 Console.WriteLine("Customers Ro*");
 foreach (var customer in customers)
 {
 Console.WriteLine("{0} [email: {1}]", customer.Name, customer.Email);
 }
}
using (var context = new EFRecipesEntities())
{
 string match = "Ro%";
 int pageIndex = 0;
 int pageSize = 3;

 var customers = context.Customers.Where("it.Name like @Name",
 new ObjectParameter("Name", match))
 .Skip("it.Name", "@Skip",
 new ObjectParameter("Skip", pageIndex))
 .Top("@Limit",
 new ObjectParameter("Limit", pageSize));
 Console.WriteLine("\nCustomers Ro*");
 foreach (var customer in customers)
 {
 Console.WriteLine("{0} [email: {1}]", customer.Name, customer.Email);
 }
}

using (var context = new EFRecipesEntities())
{
 string match = "Ro%";
 int pageIndex = 0;
 int pageSize = 3;

 var esql = @"select value c from Customers as c
 where c.Name like @Name
 order by c.Name
 skip @Skip limit @Limit";
 Console.WriteLine("\nCustomers Ro*");
 var customers = context.CreateQuery<Customer>(esql, new[]
 {
 new ObjectParameter("Name",match),
 new ObjectParameter("Skip",pageIndex * pageSize),
 new ObjectParameter("Limit",pageSize)
 });

99

CHAPTER 3 QUERYING AN ENTITY DATA MODEL

 foreach (var customer in customers)
 {
 Console.WriteLine("{0} [email: {1}]", customer.Name, customer.Email);
 }
}

The following is the output from the code in Listing 3-17:

Customers Ro*

Roberts, Jill [email: jroberts@abc.com]

Robertson, Alice [email: arob@gmail.com]

Roe, Allen [email: allenr@umc.com]

Customers Ro*

Roberts, Jill [email: jroberts@abc.com]

Robertson, Alice [email: arob@gmail.com]

Roe, Allen [email: allenr@umc.com]

Customers Ro*

Roberts, Jill [email: jroberts@abc.com]

Robertson, Alice [email: arob@gmail.com]

Roe, Allen [email: allenr@umc.com]

How It Works
In Listing 3-17 we show three different solutions to the problem. In the first solution, we use LINQ
builder methods to construct the query. We use the Where() method to filter the results to customers
whose last name starts with Ro. Because we are using the StartsWith() method inside the lambda
expression, we don’t need to use a SQL wildcard expression such as “Ro%”.

After filtering, we use the OrderBy() method to order the results. Ordered results are required by the
Skip() method. We use the Skip() method to move over pageIndex number of pages, each of size
pageSize. We limit the results with the Take() method. We only need to take one page of results.

100

mailto:jroberts@abc.com
mailto:arob@gmail.com
mailto:allenr@umc.com
mailto:jroberts@abc.com
mailto:arob@gmail.com
mailto:allenr@umc.com
mailto:jroberts@abc.com
mailto:arob@gmail.com
mailto:allenr@umc.com

 CHAPTER 3 QUERYING AN ENTITY DATA MODEL

In the next solution, we use Entity SQL builder methods to construct the query. We use the Where()
and Skip() builder methods as we did in the LINQ solution but this time with Entity SQL syntax. For
limiting the result set size, we use the Top() method. One difference is that we don’t need to use the
OrderBy() method. The Skip() method takes a parameter to name the column on which to perform the
ordering. Ordering is important for the Skip() method because without it, the query results would not be
repeatable.

For the last solution we construct a complete, parameterized Entity SQL expression. This is perhaps
the most familiar way to solve the problem, but it exposes some of the inherent mismatch between a
query language expressed in a string and executable code expressed, in this case, in C#.

3-15. Grouping by Date

Problem
You have an entity type with a DateTime property and you want to group instances of this type based on
just the date portion of the property.

Solution
Let’s say you have a Registration entity type in your model and the Registration type has a DateTime
property. Your model might look like the one in Figure 3-16.

Figure 3-16. A model with a single Registration entity type. The entity type’s RegistrationDate property is a

DateTime.

We want to group all the registrations by just the date portion of the RegistrationDate property. You
might be tempted in LINQ to group by RegistrationDate.Date. Although this will compile, you will
receive a runtime error complaining that Date can’t be translated into SQL. To group by just the date
portion of the RegistrationDate, follow the pattern in Listing 3-18.

Listing 3-18. Grouping by the date portion of a DateTime property

using (var context = new EFRecipesEntities())
{
 context.Registrations.AddObject(new Registration {
 StudentName = "Jill Rogers",
 RegistrationDate = DateTime.Parse("12/03/2009 9:30 pm") });
 context.Registrations.AddObject(new Registration {

101

CHAPTER 3 QUERYING AN ENTITY DATA MODEL

 StudentName = "Steven Combs",
 RegistrationDate = DateTime.Parse("12/03/2009 10:45 am") });
 context.Registrations.AddObject(new Registration {
 StudentName = "Robin Rosen",
 RegistrationDate = DateTime.Parse("12/04/2009 11:18 am") });
 context.Registrations.AddObject(new Registration {
 StudentName = "Allen Smith",
 RegistrationDate = DateTime.Parse("12/04/2009 3:31 pm") });
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 var groups = from r in context.Registrations
 group r by EntityFunctions.TruncateTime(r.RegistrationDate)
 into g
 select g;
 foreach (var element in groups)
 {
 Console.WriteLine("Registrations for {0}",
 ((DateTime)element.Key).ToShortDateString());
 foreach (var registration in element)
 {
 Console.WriteLine("\t{0}", registration.StudentName);
 }
 }
}

The following is the output of the code in Listing 3-18:

Registrations for 12/3/2009

 Jill Rogers

 Steven Combs

Registrations for 12/4/2009

 Robin Rosen

 Allen Smith

How It Works
The key to grouping the registrations by the date portion of the RegistrationDate property is to use the
Truncate() function. This built-in Entity Framework function extracts just the date portion of the
DateTime value. We’ll have a lot more to say about functions in Chapter 11.

102

 CHAPTER 3 QUERYING AN ENTITY DATA MODEL

3-16. Flattening Query Results

Problem
You have two entity types in a one-to-many association and you want, in one query, to obtain a flatten
projection of all the entities in the association.

Solution
Let’s say you have a couple of entity types in a one-to-many association. Perhaps your model looks
something like the one in Figure 3-17.

Figure 3-17. A model with an Associate entity type representing an associate, and an AssociateSalary entity

type representing the salary history for the associate

You want to get all the associates and all their salary history in one query. There may be some new
hires that are in the system but don’t yet have a salary set. You want your query results to include these
associates as well.

To query the model and get the results you want, follow the pattern in Listing 3-19.

Listing 3-19. Flattening out the results using both LINQ and Entity SQL

using (var context = new EFRecipesEntities())
{
 var assoc1 = new Associate { Name = "Janis Roberts" };
 var assoc2 = new Associate { Name = "Kevin Hodges" };
 var assoc3 = new Associate { Name = "Bill Jordan" };
 var salary1 = new AssociateSalary { Salary = 39500M,
 SalaryDate = DateTime.Parse("8/14/09") };
 var salary2 = new AssociateSalary { Salary = 41900M,
 SalaryDate = DateTime.Parse("2/5/10") };
 var salary3 = new AssociateSalary { Salary = 33500M,
 SalaryDate = DateTime.Parse("10/08/09") };
 assoc2.AssociateSalaries.Add(salary1);
 assoc2.AssociateSalaries.Add(salary2);
 assoc3.AssociateSalaries.Add(salary3);
 context.Associates.AddObject(assoc1);

103

CHAPTER 3 QUERYING AN ENTITY DATA MODEL

 context.Associates.AddObject(assoc2);
 context.Associates.AddObject(assoc3);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 Console.WriteLine("Using LINQ...");
 var allHistory = from a in context.Associates
 from ah in a.AssociateSalaries.DefaultIfEmpty()
 orderby a.Name
 select new
 {
 Name = a.Name,
 Salary = (decimal ?) ah.Salary,
 Date = (DateTime ?) ah.SalaryDate
 };
 Console.WriteLine("Associate Salary History");
 foreach (var history in allHistory)
 {
 if (history.Salary.HasValue)
 Console.WriteLine("{0} Salary on {1} was {2}", history.Name,
 history.Date.Value.ToShortDateString(),
 history.Salary.Value.ToString("C"));
 else
 Console.WriteLine("{0} --", history.Name);
 }
}

using (var context = new EFRecipesEntities())
{
 Console.WriteLine("\nUsing Entity SQL...");
 var esql = @"select a.Name, h.Salary, h.SalaryDate
 from Associates as a outer apply
 a.AssociateSalaries as h order by a.Name";
 var allHistory = context.CreateQuery<DbDataRecord>(esql);
 foreach (var history in allHistory)
 {
 if (history["Salary"] != DBNull.Value)
 Console.WriteLine("{0} Salary on {1:d} was {2:c}", history["Name"],
 history["SalaryDate"], history["Salary"]);
 else
 Console.WriteLine("{0} --",history["Name"]);
 }
}

The following is the output of the code in Listing 3-19:

104

 CHAPTER 3 QUERYING AN ENTITY DATA MODEL

Using LINQ...

Associate Salary History

Bill Jordan Salary on 10/8/2009 was $33,500.00

Janis Roberts --

Kevin Hodges Salary on 8/14/2009 was $39,500.00

Kevin Hodges Salary on 2/5/2010 was $41,900.00

Using Entity SQL...

Bill Jordan Salary on 10/8/2009 was $33,500.00

Janis Roberts --

Kevin Hodges Salary on 8/14/2009 was $39,500.00

Kevin Hodges Salary on 2/5/2010 was $41,900.00

How It Works
To flatten the query results we followed the strategy in Recipe 12 in this chapter and used a nested from
clause and the DefaultIfEmpty() method to get a left outer join between the tables. The
DefaultIfEmpty() method ensured that we have rows from the left side (the Associate entities), even if
there are no corresponding rows on the right side (AssociateSalary entities). We project the results into
an anonymous type being careful to capture null values for the salary and salary date when there are no
corresponding AssociateSalary entities.

For the Entity SQL solution, we use the outer apply operator to create unique pairings between each
Associate entity and AssociateSalary entity. Both the cross and outer apply operators were introduced in
SQL Server 2005.

3-17. Grouping by Multiple Properties

Problem
You want to group the results of a query by multiple properties.

105

CHAPTER 3 QUERYING AN ENTITY DATA MODEL

Solution
Let’s say you have a model with an Event entity type like the one in Figure 3-18. Event has a name, city,
and state. You want to group events by state and then by city.

Figure 3-18. A model with an Event entity type which as properties for the event’s name, state, and city

To get all the events grouped by state and then city, follow the pattern in Listing 3-20.

Listing 3-20.

using (var context = new EFRecipesEntities())
{
 context.Events.AddObject(new Event { Name = "TechFest 2010",
 State = "TX", City = "Dallas" });
 context.Events.AddObject(new Event { Name = "Little Blue River Festival",
 State = "MO", City = "Raytown" });
 context.Events.AddObject(new Event { Name = "Fourth of July Fireworks",
 State = "MO", City = "Raytown" });
 context.Events.AddObject(new Event { Name = "BBQ Ribs Championship",
 State = "TX", City = "Dallas" });
 context.Events.AddObject(new Event { Name = "Thunder on the Ohio",
 State = "KY", City = "Louisville" });
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 Console.WriteLine("Using LINQ");
 var results = from e in context.Events
 group e by new { e.State, e.City } into g
 select new
 {
 State = g.Key.State,
 City = g.Key.City,
 Events = g };
 Console.WriteLine("Events by State and City...");
 foreach (var item in results)
 {
 Console.WriteLine("{0}, {1}", item.City, item.State);
 foreach (var ev in item.Events)
 {

106

 CHAPTER 3 QUERYING AN ENTITY DATA MODEL

 Console.WriteLine("\t{0}", ev.Name);
 }
 }
}

using (var context = new EFRecipesEntities())
{
 Console.WriteLine("\nUsing Entity SQL");
 var esql = @"select e.State, e.City, GroupPartition(e) as Events
 from Events as e
 group by e.State, e.City";
 var records = context.CreateQuery<DbDataRecord>(esql);
 Console.WriteLine("Events by State and City...");
 foreach (var rec in records)
 {
 Console.WriteLine("{0}, {1}", rec["City"], rec["State"]);
 var events = (List<Event>)rec["Events"];
 foreach (var ev in events)
 {
 Console.WriteLine("\t{0}", ev.Name);
 }
 }
}

The following is the output of the code in Listing 3-20:

Using LINQ

Events by State and City...

Louisville, KY

 Thunder on the Ohio

Raytown, MO

 Little Blue River Festival

 Fourth of July Fireworks

Dallas, TX

 TechFest 2010

 BBQ Ribs Championship

107

CHAPTER 3 QUERYING AN ENTITY DATA MODEL

Using Entity SQL

Events by State and City...

Louisville, KY

 Thunder on the Ohio

Raytown, MO

 Little Blue River Festival

 Fourth of July Fireworks

Dallas, TX

 TechFest 2010

 BBQ Ribs Championship

How It Works
In Listing 3-20, we show two different solutions. The first solution uses LINQ and the group by operator
to group the results by state and city. When using the group by operator for multiple properties, we
create an anonymous type for the grouping. We use an into clause to send the groups to g.

We project the results from g into a new anonymous type getting the State from the group key’s
State field (from the first anonymous type) and the City from the group key’s City field. For the events,
we simply select all the members of the group.

For the Entity SQL approach, we can only project columns used in the group by clause, a constant
value, or a computed value from using an aggregate function. In our case, we project the state, city, and
the collection of events for each grouping.

3-18. Using Bitwise Operators in a Filter

Problem
You want to use bitwise operators to filter a query.

Solution
Let’s say you have an entity type with an integer property that you want to use as a set of bit flags. You’ll
use some of the bits in this property to represent the presence or absence of some particular attribute for
the entity. For example, suppose you have an entity type for patrons of a local art gallery. Some patrons

108

 CHAPTER 3 QUERYING AN ENTITY DATA MODEL

contribute money. Some volunteer during gallery hours. A few patrons serve on the board of directors. A
few patrons support the art gallery in more than one way. A model with this entity type is shown in
Figure 3-19.

Figure 3-19. A Patron entity type with a SponsorType property that we use as a collection of bit flags

indicating the sponsorship type for the patron

We want to query for patrons and filter on the type of sponsorship provided by the patron. To do
this, follow the pattern in Listing 3-21.

Listing 3-21. Using bitwise operators in a query

static void Main(string[] args)
{
 RunExample();
}

public enum SponsorTypes
{
 ContributesMoney = 1,
 Volunteers = 2,
 IsABoardMember = 4
};

static void RunExample()
{
 using (var context = new EFRecipesEntities())
 {
 context.Patrons.AddObject(new Patron { Name = "Jill Roberts",
 SponsorType = (int)SponsorTypes.ContributesMoney });
 context.Patrons.AddObject(new Patron { Name = "Ryan Keyes",
 SponsorType = (int)(SponsorTypes.ContributesMoney |
 SponsorTypes.IsABoardMember)});
 context.Patrons.AddObject(new Patron {Name = "Karen Rosen",
 SponsorType = (int)SponsorTypes.Volunteers});
 context.Patrons.AddObject(new Patron {Name = "Steven King",
 SponsorType = (int)(SponsorTypes.ContributesMoney |
 SponsorTypes.Volunteers)});
 context.SaveChanges();
 }

 using (var context = new EFRecipesEntities())

109

CHAPTER 3 QUERYING AN ENTITY DATA MODEL

 {
 Console.WriteLine("Using LINQ...");
 var sponsors = from p in context.Patrons
 where (p.SponsorType &
 (int)SponsorTypes.ContributesMoney) != 0
 select p;
 Console.WriteLine("Patrons who contribute money");
 foreach (var sponsor in sponsors)
 {
 Console.WriteLine("\t{0}", sponsor.Name);
 }
 }

 using (var context = new EFRecipesEntities())
 {
 Console.WriteLine("\nUsing Entity SQL...");
 var esql = @"select value p from Patrons as p
 where BitWiseAnd(p.SponsorType, @type) <> 0";
 var sponsors = context.CreateQuery<Patron>(esql,
 new ObjectParameter("type", (int)SponsorTypes.ContributesMoney));
 Console.WriteLine("Patrons who contribute money");
 foreach (var sponsor in sponsors)
 {
 Console.WriteLine("\t{0}", sponsor.Name);
 }
 }
}

The following is the output of the code in Listing 3-21:

Using LINQ...

Patrons who contribute money

 Jill Roberts

 Ryan Keyes

 Steven King

Using Entity SQL...

Patrons who contribute money

 Jill Roberts

110

 CHAPTER 3 QUERYING AN ENTITY DATA MODEL

 Ryan Keyes

 Steven King

How It Works
In our model, the Patron entity type packs multiple bit flags into a single integer property. A patron can
sponsor the gallery in a number of ways. Each type of sponsorship is represented in a different bit in the
SponsorType property. We represented each of the ways a sponsor can contribute in the SponsorTypes
enum. We were careful to assign integers in power of 2 increments for each sponsor type. This means that
each will have exactly one unique bit in the bits of the SponsorType property.

When we inserted a few patrons, we assign the sponsorship type to the SponsorType property. For
patrons that contribute in more than one way, we simply use the bitwise OR (|) operator to build the bit
pattern representing all the ways the patron contributes to the gallery.

For the LINQ query, we use the bitwise AND (&) operator to extract the bit for the ContributesMoney
flag from the SponsorType property value. If the result is non-zero, then the patron has the
ContributesMoney flag set. If we needed to find patrons that contribute in more than one way, we would
OR all the SponsorTypes we’re interested in together before we used the AND operator to extract one or
more set bits.

The second solution demonstrates the same approach using Entity SQL. Here we use the
BitWiseAnd() function to extract the set bit. Entity SQL supports a full complement of bitwise functions.

3-19. Joining on Multiple Columns

Problem
You want to join two entity types on multiple properties.

Solution
Let’s say you have the model like the one in Figure 3-20. The Account entity type is in a one-to-many
association with the Order type. Each account may have many orders while each order is associated with
exactly one order. You want to find all the orders that are being shipped to a same city and state as the
account.

111

CHAPTER 3 QUERYING AN ENTITY DATA MODEL

Figure 3-20. A model with an Account entity type and its associated Order entity type

To find the orders, follow the pattern in Listing 3-22.

Listing 3-22. Using a join on multiple properties to find all the orders being shipped to the account’s city

and state

using (var context = new EFRecipesEntities())
{
 var a1 = new Account { City = "Raytown", State = "MO" };
 a1.Orders.Add(new Order { Amount = 223.09M, ShipCity = "Raytown",
 ShipState = "MO" });
 a1.Orders.Add(new Order { Amount = 189.32M, ShipCity = "Olathe",
 ShipState = "KS" });

 var a2 = new Account { City = "Kansas City", State = "MO" };
 a2.Orders.Add(new Order { Amount = 99.29M, ShipCity = "Kansas City",
 ShipState = "MO" });

 var a3 = new Account { City = "North Kansas City", State = "MO"};
 a3.Orders.Add(new Order { Amount = 102.29M, ShipCity = "Overland Park",
 ShipState = "KS" });
 context.Accounts.AddObject(a1);
 context.Accounts.AddObject(a2);
 context.Accounts.AddObject(a3);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 var orders = from o in context.Orders
 join a in context.Accounts on
 new {Id = o.AccountId, City = o.ShipCity, State = o.ShipState }
 equals
 new {Id = a.AccountId, City = a.City, State = a.State }
 select o;

 Console.WriteLine("Orders shipped to the account's city, state...");
 foreach (var order in orders)

112

 CHAPTER 3 QUERYING AN ENTITY DATA MODEL

 {
 Console.WriteLine("\tOrder {0} for {1}", order.AccountId.ToString(),
 order.Amount.ToString("C"));
 }
}

The following is the output of the code in Listing 3-21:

Orders shipped to the account's city, state...

 Order 31 for $223.09

 Order 32 for $99.29

How It Works
To solve this problem, you could find all the accounts and then go through each Orders collection and
find the orders that are in the same city and state as the account. For a small number of accounts, this
may be a reasonable solution. But in general, it is best to push this sort of processing into the store layer
where can be handled much more efficiently.

In the solution, we form the join by creating an anonymous type on each side of the equals clause.
This is required when we join on more than one property. We need to make sure that both anonymous
types are the same. They must have the same properties in the same order.

113

C H A P T E R 4

Using Entity Framework in ASP.NET

In this chapter, we show you how to use the Entity Framework in your ASP.NET web pages. You could, of
course, use many of the methods shown throughout this book in the code behind for your pages, but in
this chapter we focus specifically on using the declarative approach provided by EntityDataSource and
ObjectDataSource controls.

The EntityDataSource control together with the QueryExtender control provide a powerful, yet easy-
to-understand way for you to build ASP.NET web pages that leverage much of the capabilities of the
Entity Framework. The recipes in this chapter cover everything from simple searching to building a
complete insert, update, delete, and search page. The last recipe in this chapter shows you how to use
the ObjectDataSource control with Entity Framework.

Each of the recipes in this chapter starts with a new Empty ASP.NET Web Application. We’ve tried to
keep things simple by not including all of extra code that comes with the default new ASP.NET Web
Application template.

4-1. Building a Search Query

Problem
You want to declaratively build a search query in an ASP.NET page using EntityDataSource.

Solution
Let’s say you have a model like the one in Figure 4-1.

Figure 4-1. A model with a Customer entity

115

CHAPTER 4 USING ENTITY FRAMEWORK IN ASP.NET

In Listing 4-1, we use three basic parts to build our search page: a table to structure the query
parameters, a ListView to present the results, and an EntityDataSource to define the query. The code
behind for page in Listing 4-2, simply populates the database with some test data in the Page_Load()
event handler.

Listing 4-1. Using EntityDataSource to build a search query

<body>
 <form id="form1" runat="server">
 <div>
 <table>
 <tr>
 <td>Name</td>
 <td><asp:TextBox ID="Name" runat="server" /></td>
 </tr>
 <tr>
 <td>City</td>
 <td><asp:TextBox ID="City" runat="server" /></td>
 </tr>
 <tr>
 <td>State</td>
 <td><asp:TextBox ID="State" runat="server" /></td>
 </tr>
 <tr>
 <td colspan="2">
 <asp:Button ID="SearchCustomer" Text="Search" runat="server" />
 </td>
 </tr>
 </table>

 <asp:EntityDataSource ID="CustomerList" runat="server"
 ConnectionString="name=EFRecipesEntities"
 DefaultContainerName="EFRecipesEntities"
 Where="(@State is null || it.State = @State) &&
 (@City is null || it.City = @City) &&
 (@Name is null || it.Name LIKE '%' + @Name + '%')"
 EntitySetName="Customers">
 <WhereParameters>
 <asp:ControlParameter Name="Name" ControlID="Name" Type="String" />
 <asp:ControlParameter Name="City" ControlID="City" Type="String" />
 <asp:ControlParameter Name="State" ControlID="State" Type="String" />
 </WhereParameters>
 </asp:EntityDataSource>

 <asp:ListView ID="CustomerListView" runat="server"
 DataSourceID="CustomerList">
 <ItemTemplate>
 <tr>
 <td><%# Eval("Name") %></td>
 <td><%# Eval("City") %></td>
 <td><%# Eval("State") %></td>

116

 CHAPTER 4 USING ENTITY FRAMEWORK IN ASP.NET

 </tr>
 </ItemTemplate>
 <LayoutTemplate>
 <table>
 <tr>
 <th>Name</th>
 <th>City</th>
 <th>State</th>
 </tr>
 <tr id="ItemPlaceHolder" runat="server" />
 </table>
 </LayoutTemplate>
 </asp:ListView>
 </div>
 </form>
</body>

Listing 4-2. The code behind that builds the data to test our search page

public partial class Default : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 using (var context = new EFRecipesEntities())
 {
 // delete any previous data we might have
 context.ExecuteStoreCommand("delete from chapter4.customer");

 // insert some data
 context.Customers.AddObject(new Customer { Name = "Robin Rosen",
 City = "Olathe", State = "KS" });
 context.Customers.AddObject(new Customer { Name = "John Wise",
 City = "Springtown", State = "TX" });
 context.Customers.AddObject(new Customer { Name = "Karen Carter",
 City = "Raytown", State = "MO" });
 context.SaveChanges();
 }
 }
}

In the browser, the page looks something like the one in Figure 4-2.

117

CHAPTER 4 USING ENTITY FRAMEWORK IN ASP.NET

Figure 4-2. The rendered page shown in a browser

How It Works
In the first section of the page (refer to Listing 4-1), we format the query fields using a table. Nothing
fancy here. The idea is to provide some structure to capture the three query fields: Name, City, and State.
These values, or the lack of them, will be used in the EntityDataSource to form the filter for the query.

Next, we use an EntityDataSource to provide a data source for the results. In the EntityDataSource,
we reference the connection string that was added to our web.config when the model was added to the
project. In this recipe, the connection string is named EFRecipesEntities. In the EntityDataSource, we
provide the entity state name for our query. In this case, the entity set name is Customers.

The Where attribute and the nested WhereParameters define the filter for our query. The Where
attribute is set to a parameterized eSQL query. In the WhereParameters, we map the eSQL parameters to
controls on the page. We map the @Name parameter to the TextBox with the Name ID, the @City
parameter to the TextBox with the City ID, and the @State parameter to the TextBox with the State ID.

We use a ListView to display the results. The ListView is bound the EntityDataSource. In the
ItemTemplate for the ListView, we format each Customer entity from the EntityDataSource as a row in a
table. In the LayoutTemplate, we provide the placement of the items inside the well-formed table along
with the header row.

The code behind, shown in Listing 4-2, is used just to populate the database with some usable test
data. Here we do all the work in the Page_Load() event. We start off by deleting any rows that might be in
the database. Next, we populate the database with a few Customers.

118

 CHAPTER 4 USING ENTITY FRAMEWORK IN ASP.NET

4.2. Building CRUD Operations in an ASP.NET Web Page

Problem
You want to build an ASP.NET page that allows inserting, updating, deleting, and reading from your
model.

Solution
Let’s say you have an application that manages the membership in a local club. You have a model like
the one in Figure 4-3.

Figure 4-3. A model with a Member entity that contains a member’s name and email address

The model contains a Member entity. You want to create a simple ASP.NET page shows all the club
members and allows the user to create a new member, update an existing member, and delete a
member. There are lots of ways to do this, but you want to use an EntityDataSource control to do as
much of the work declaratively as possible.

To create this page, we’ll need three basic parts. First, we’ll need a way to show all the club
members. We’ll use a ListView to do this. Next, we’ll need a way to populate the ListView will the club
member. We’ll use an EntityDataSource for this. Finally, our club may grow large enough that we can’t
reasonably display all the members on a single web page. We will need a way to break up the display into
multiple pages. We’ll use a DataPager control to do this.

The code for the ASP.NET page is shown in Listing 4-3. We’ll also need some code behind to handle
a few events. The code behind is shown in Listing 4-4.

Listing 4-3. The ASP.NET page with the three core parts: ListView, EntityDataSource, and DataPager

<body>
 <form id="form1" runat="server">
 <div style="font-size:larger; margin: 10px;">Manage Club Members</div>
 <div>
 <asp:Button ID="Insert" Text="Insert New Member" runat="server"
 OnClick="InsertMember" />
 <asp:ListView ID="membersList" runat="server"
 DataSourceID="membersDataSource"
 DataKeyNames="MemberId" OnItemInserted="membersList_ItemInserted">
 <LayoutTemplate>
 <table>
 <tr>

119

CHAPTER 4 USING ENTITY FRAMEWORK IN ASP.NET

 <th colspan="2"> </th>
 <th>Name</th>
 <th>Email</th>
 </tr>
 <tr id="itemPlaceholder" runat="server" />
 </table>
 </LayoutTemplate>
 <ItemTemplate>
 <tr>
 <td><asp:LinkButton Text="Delete" CommandName="Delete"
 runat="server" /></td>
 <td><asp:LinkButton Text="Edit" CommandName="Edit"
 runat="server" /></td>
 <td><%# Eval("Name") %></td>
 <td><%# Eval("Email") %></td>
 </tr>
 </ItemTemplate>
 <InsertItemTemplate>
 <tr>
 <td colspan="4">
 <table>
 <tr>
 <td>Name:</td>
 <td><asp:TextBox ID="Name" runat="server"
 Text='<%# Bind("Name") %>' /></td>
 </tr>
 <tr>
 <td>Email:</td>
 <td><asp:TextBox ID="Email" runat="server"
 Text='<%# Bind("Email") %>' /></td>
 </tr>
 <tr>
 <td colspan="2">
 <asp:Button Text="Insert" CommandName="Insert"
 runat="server" />
 <asp:Button Text="Cancel" CommandName="Cancel"
 OnClick="CancelClick" runat="server" />
 </td>
 </tr>
 </table>
 </td>
 </tr>
 </InsertItemTemplate>

 <EditItemTemplate>
 <tr>
 <td colspan="4">
 <table>
 <tr>
 <td>Name:</td>
 <td><asp:TextBox ID="Name" runat="server"
 Text='<%# Bind("Name") %>' /></td>

120

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

 CHAPTER 4 USING ENTITY FRAMEWORK IN ASP.NET

 </tr>
 <tr>
 <td>Email:</td>
 <td><asp:TextBox ID="Email" runat="server"
 Text='<%# Bind("Email") %>' /></td>
 </tr>
 <tr>
 <td colspan="2">
 <asp:Button Text="Update" CommandName="Update"
 runat="server" />
 <asp:Button Text="Cancel" CommandName="Cancel"
 runat="server" />
 </td>
 </tr>
 </table>
 </td>
 </tr>
 </EditItemTemplate>
 </asp:ListView>

 <asp:EntityDataSource ID="membersDataSource" runat="server"
 ConnectionString="name=EFRecipesEntities"
 DefaultContainerName="EFRecipesEntities"
 EnableInsert="true" EnableUpdate="true" EnableDelete="true"
 EntitySetName="Members" />

 <asp:DataPager ID="Pager" runat="server" PagedControlID="membersList"
 PageSize="2">
 <Fields>
 <asp:NumericPagerField ButtonCount="10" />
 </Fields>
 </asp:DataPager>
 </div>
 </form>
</body>

Listing 4-4. The code behind that handles the events for our ASP.NET page

public partial class Default : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!Page.IsPostBack)
 {
 using (var context = new EFRecipesEntities())
 {
 context.ExecuteStoreCommand("delete from chapter4.Member");
 context.Members.AddObject(new Member { Name = "Robert Dewey",
 Email = "RobertD@gmail.com" });
 context.Members.AddObject(new Member { Name = "Nancy Steward",
 Email = "NSteward@AOL.com" });
 context.Members.AddObject(new Member { Name = "Robin Rosen",

121

mailto:RobertD@gmail.com
mailto:NSteward@AOL.com

CHAPTER 4 USING ENTITY FRAMEWORK IN ASP.NET

 Email = "RRosen@Regenix.com" });
 context.SaveChanges();
 }
 }
 }

 protected void membersList_ItemInserted(object sender,
 ListViewInsertedEventArgs e)
 {
 if (e.Exception == null)
 {
 membersList.InsertItemPosition = InsertItemPosition.None;
 }
 }

 protected void CancelClick(object sender, EventArgs e)
 {
 membersList.InsertItemPosition = InsertItemPosition.None;
 }

 protected void InsertMember(object sender, EventArgs e)
 {
 membersList.InsertItemPosition = InsertItemPosition.FirstItem;
 }
}

The page in Listing 4-3 and the code in Listing 4-4 displays a page that lists the club members, along

with buttons for inserting new members as well as editing and deleting current members. The listing
page is shown in Figure 4-4. The insert page is shown in Figure 4-5. The edit page is shown in Figure 4-6.

Figure 4-4. The listing of the club members. The data pager at the bottom allows the user to move forward

and backward through the pages containing members.

122

mailto:RRosen@Regenix.com

 CHAPTER 4 USING ENTITY FRAMEWORK IN ASP.NET

Figure 4-5. Inserting a new member. The TextBoxes allow the user to enter the member information.

Clicking the Insert button causes the new record to be added to the database.

Figure 4-6. Clicking the Edit button on a member shows this view allowing editing of the member.

123

CHAPTER 4 USING ENTITY FRAMEWORK IN ASP.NET

How It Works
The code in Listing 4-3 can be broken up into three parts: the ListView that handles much of the user
interface, the EntityDataSource that handles connection to the model, and the DataPager that provides
paging for the members.

The ListView is the largest part of the code and is the heart of the user interface. In the ListView, we
use the DataSourceID attribute to bind to the data from our model via the EntityDataSource. We use the
DataKeyNames attribute to indicate the MemberId property that contains the key for our Members. The
various templates allow us to provide the layout for the listing, editing, and inserting layouts.

The ItemTemplate provides our read-only, listing view of the members. Notice that we introduce
two buttons on each row. One button triggers editing of the member, and the other button triggers
deleting the member. The CommandName attributes for the buttons trigger the actions. If the user
clicks the Edit link button, the view is switched to the EditItemTemplate.

In the EditItemTemplate, we show a TextBox to edit the Name property and a TextBox to edit the
Email property. We use Bind() to retrieve the current value from the selected entity and push the
changed value to the property.

Just like with the EditItemTemplate, in the InsertItemTemplate we show a TextBox for the Name
property value and a TextBox for the Email property value. We also use Bind() to push the values to the
new Member entity.

The EntityDataSource control connects the model to the ListView control. In the EntityDataSource
control, we enabled inserting, deleting, and updating. The ConnectionString and EntitySetName
attributes bind this EntityDataSource control to our model and Members entity set within the model.

Finally, the DataPager control allows us to show a set number of members per page. This makes the
user interface much more manageable as the number of club members grows. Here we’ve limited a page
to just two members to keep things short.

The ListView control is tied to the EntityDataSource control through IDs. The ListView control’s
DataSourceID is the EntityDataSource’s ID. The DataPager’s PagedControlID is the ID of the ListView.

There are a handful of events that we hand in the code behind in Listing 4-4. In the Page_Load()
event, we delete any previous data from the database and populate it with our initial test data. Of course,
you wouldn’t normally do this, but it makes it easy to demonstrate what’s going on. For the other events,
we revert back to the listing view when an insert is successful or when the user clicks Cancel. When the
Insert New Member button is clicked, we handle the event by showing in the InsertItemTemplate.

4-3. Executing Business Logic When Changes Are Saved

Problem
You are using an EntityDataSource control and you want to make sure that your business logic is
executed inside the SavingChanges event.

Solution
Let’s say our model looks something like the one in Figure 4-7.

124

 CHAPTER 4 USING ENTITY FRAMEWORK IN ASP.NET

Figure 4-7. A model with a single PurchaseOrder entity

We have a purchase order with a company name and an amount. We want the CreateDate property
to be set automatically. To do this, we need to intercept the SavingChanges event and set the CreateDate
property to the current date and time if the entity is newly added. We want to do this while using an
EntityDataSource control on our page.

To do this, follow the pattern in Listings 4-5 and 4-6.

Listing 4-5. The code for the ASP.NET page that captures the Company name and Amount

<body>
 <form id="form1" runat="server">
 <div>
 <asp:DetailsView ID="detailsView" runat="server"
 AutoGenerateRows="false" DataSourceID="orderSource"
 DefaultMode="Insert">
 <Fields>
 <asp:BoundField DataField="Company" HeaderText="Company" />
 <asp:BoundField DataField="Amount" HeaderText="Amount" />
 <asp:CommandField ShowInsertButton="true" />
 </Fields>
 </asp:DetailsView>

 <asp:EntityDataSource ID="orderSource" runat="server"
 ConnectionString="name=EFRecipesEntities"
 ContextTypeName="Recipe3.EFRecipesEntities"
 DefaultContainerName="EFRecipesEntities"
 EnableInsert="true" EntitySetName="PurchaseOrders" />
 </div>
 </form>
</body>

Listing 4-6. The code behind for the page

public partial class Default : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 }
}

125

CHAPTER 4 USING ENTITY FRAMEWORK IN ASP.NET

public partial class EFRecipesEntities
{
 partial void OnContextCreated()
 {
 this.SavingChanges += (o, e) =>
 {
 var orders = this.ObjectStateManager
 .GetObjectStateEntries(System.Data.EntityState.Added)
 .Select(en => en.Entity as PurchaseOrder);
 foreach (var order in orders)
 {
 order.CreateDate = DateTime.Now;
 }
 };
 }
}

The resulting page is shown in a browser in Figure 4-8.

Figure 4-8. The simple input form used to capture the Company name and Amount

How It Works
In the code behind in Listing 4-6, we use the partial method OnContextCreated() to wire in our event
handler for the SavingChanges event. In our handler, we gather up all the PurchaseOrder entities that are
in the added state and assign the current date and time to the CreateDate property.

126

 CHAPTER 4 USING ENTITY FRAMEWORK IN ASP.NET

4-4. Loading Related Entities

Problem
You are using EntityDataSource in your ASP.NET page and you want to load related entities.

Solution
Suppose you have a model like the one in Figure 4-9.

Figure 4-9. A model for a web customer and her orders

In our model, each web customer can have many orders. We want to use an EntityDataSource
control to load the orders and include the customer associated with each of the orders.

To eagerly load the customer associated with each order, use the Include attribute on the
EntityDataSource control, as illustrated in Listing 4-7.

Listing 4-7. The ASP.NET page to display our customer’s orders

<body>
 <form id="form1" runat="server">
 <div>
 <asp:ListView ID="orderslist" runat="server" DataSourceId="orders">
 <LayoutTemplate>
 <table>
 <tr>
 <th>Name</th>
 <th>Amount</th>
 <th>OrderDate</th>
 </tr>
 <tr id="itemPlaceHolder" runat="server" />
 </table>
 </LayoutTemplate>
 <ItemTemplate>
 <tr>
 <td><%# Eval("WebCustomer.Name") %></td>
 <td><%# Eval("Amount") %></td>
 <td><%# Eval("OrderDate") %></td>

127

CHAPTER 4 USING ENTITY FRAMEWORK IN ASP.NET

 </tr>
 </ItemTemplate>
 </asp:ListView>
 <asp:EntityDataSource ID="orders" runat="server"
 DefaultContainerName="EFRecipesEntities" Include="WebCustomer"
 ConnectionString="name=EFRecipesEntities" EntitySetName="Orders" />
 </div>
 </form>
</body>

In the code behind in Listing 4-8, we handle the Page_Load event by deleting any previous test data

and populating the WebCustomers and Orders with fresh test data.

Listing 4-8. The code behind for our ASP.NET page

public partial class Default : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 using (var context = new EFRecipesEntities())
 {
 context.ExecuteStoreCommand("delete from chapter4.[order]");
 context.ExecuteStoreCommand("delete from chapter4.webcustomer");

 var cust1 = new WebCustomer { Name = "Joan Steward" };
 var cust2 = new WebCustomer { Name = "Allen Colbert" };
 var cust3 = new WebCustomer { Name = "Phil Marlowe" };
 var order1 = new Order { Amount = 29.95M,
 OrderDate = DateTime.Parse("3/18/2010") };
 var order2 = new Order { Amount = 84.99M,
 OrderDate = DateTime.Parse("3/20/2010") };
 var order3 = new Order { Amount = 99.95M,
 OrderDate = DateTime.Parse("4/10/2010") };
 order1.WebCustomer = cust1;
 order2.WebCustomer = cust2;
 order3.WebCustomer = cust3;
 context.Orders.AddObject(order1);
 context.Orders.AddObject(order2);
 context.Orders.AddObject(order3);
 context.SaveChanges();
 }
 }
}

The resulting page is shown in a browser in Figure 4-10.

128

 CHAPTER 4 USING ENTITY FRAMEWORK IN ASP.NET

Figure 4-10. Web customers with their orders

How It Works
By default, Entity Framework does not load the related entities like our WebCustomer. To eagerly load
them when using an EntityDataSource control, use the Include attribute and provide the path through
the navigation properties of all the related entities you want loaded.

4-5. Searching with QueryExtender

Problem
You want to use a QueryExtender control with an EntityDataSource control to implement searching in
your ASP.NET page.

Solution
Suppose you have a model like the one in Figure 4-11.

129

CHAPTER 4 USING ENTITY FRAMEWORK IN ASP.NET

Figure 4-11. A model for products, suppliers, and orders

In our model, a product has a supplier, is in a category, and may have some orders. We want to build
an ASP.NET page using an EntityDataSource control and a QueryExtender control to search our model
across these related entities.

The QueryExtender control provides a good deal of flexibility in formulating a search query. We
want to map TextBoxes for a number of properties to the QueryExtender control to build a query. We
want to display the results of the query in a grid. To do this, follow the pattern in Listing 4-9.

Listing 4-9. The ASP.NET search page

<body>
 <form id="form1" runat="server">
 <div>
 <table>
 <tr>
 <td>Name or Description</td>
 <td><asp:TextBox ID="ProductName" runat="server" /></td>
 </tr>
 <tr>
 <td>Discontinued</td>
 <td>
 <asp:DropDownList ID="Discontinued" runat="server">
 <asp:ListItem Text="All" Value="" />
 <asp:ListItem Text="Yes" Value="true" />
 <asp:ListItem Text="No" Value="false" />
 </asp:DropDownList>
 </td>
 </tr>
 <tr>
 <td>Category</td>

130

 CHAPTER 4 USING ENTITY FRAMEWORK IN ASP.NET

 <td><asp:TextBox ID="CategoryName" runat="server" /></td>
 </tr>
 <tr>
 <td>Units In Stock</td>
 <td><asp:TextBox ID="UnitsInStock" runat="server" /></td>
 </tr>
 <tr>
 <td>Price From</td>
 <td><asp:TextBox ID="FromPrice" runat="server" />
 Price To <asp:TextBox ID="ToPrice" runat="server" />
 </td>
 </tr>
 <tr>
 <td>Supplier Country</td>
 <td><asp:TextBox ID="SupplierCountry" runat="server" /></td>
 </tr>
 <tr>
 <td>Total Sales</td>
 <td><asp:TextBox ID="TotalSales" runat="server" /></td>
 </tr>
 <tr>
 <td align="left" colspan="2" > <asp:Button ID="SearchButton"
 Text="Search" runat="server" /></td>
 </tr>
 </table>

 <asp:GridView ID="GridView1" runat="server" AllowPaging="true"
 PageSize="50" AutoGenerateColumns="false" DataSourceID="DataSource">
 <Columns>
 <asp:BoundField DataField="ProductName" HeaderText="Product Name" />
 <asp:BoundField DataField="ProductDescription"
 HeaderText="Product Description" />
 <asp:CheckBoxField DataField="Discontinued" HeaderText="Discontinued" />
 <asp:TemplateField HeaderText="UnitPrice">
 <ItemTemplate><%# Eval("ProductDetail.UnitPrice","{0:C}") %>
 </ItemTemplate>
 </asp:TemplateField>
 <asp:TemplateField HeaderText="CategoryName">
 <ItemTemplate><%# Eval("Category.CategoryName") %></ItemTemplate>
 </asp:TemplateField>
 <asp:BoundField DataField="UnitsInStock" HeaderText="Units In Stock" />
 <asp:TemplateField HeaderText="Supplier Country">
 <ItemTemplate><%# Eval("Supplier.Country") %></ItemTemplate>
 </asp:TemplateField>
 <asp:TemplateField HeaderText="Total Sales">
 <ItemTemplate><%# Eval("TotalSales","{0:C}") %></ItemTemplate>
 </asp:TemplateField>
 </Columns>
 </asp:GridView>

 <asp:EntityDataSource ID="DataSource" runat="server"
 ConnectionString="name=EFRecipesEntities"

131

CHAPTER 4 USING ENTITY FRAMEWORK IN ASP.NET

 Include="Category,ProductDetail,Supplier,OrderDetails"
 DefaultContainerName="EFRecipesEntities"
 EnableFlattening="false" EntitySetName="Products" />

 <asp:QueryExtender ID="QueryExtender1" runat="server"
 TargetControlID="DataSource">
 <asp:SearchExpression SearchType="Contains"
 DataFields="ProductName,ProductDescription">
 <asp:ControlParameter ControlID="ProductName" />
 </asp:SearchExpression>
 <asp:OrderByExpression DataField="UnitsInStock" Direction="Descending">
 <asp:ThenBy DataField="ProductDetail.UnitPrice"
 Direction="Ascending" />
 </asp:OrderByExpression>
 <asp:PropertyExpression>
 <asp:ControlParameter Name="Discontinued" ControlID="Discontinued" />
 <asp:ControlParameter Name="UnitsInStock" ControlID="UnitsInStock" />
 <asp:ControlParameter Name="Supplier.Country"
 ControlID="SupplierCountry" />
 </asp:PropertyExpression>
 <asp:RangeExpression DataField="ProductDetail.UnitPrice"
 MinType="Inclusive" MaxType="Exclusive">
 <asp:ControlParameter ControlID="FromPrice" />
 <asp:ControlParameter ControlID="ToPrice" />
 </asp:RangeExpression>
 <asp:CustomExpression OnQuerying="ProductsWithCategory">
 <asp:ControlParameter Name="CategoryName" ControlID="CategoryName" />
 </asp:CustomExpression>
 <asp:MethodExpression MethodName="ProductWithSalesGreaterThan">
 <asp:ControlParameter Name="TotalSales" Type="Decimal"
 ControlID="TotalSales" />
 </asp:MethodExpression>
 </asp:QueryExtender>
 </div>
 </form>
</body>

Listing 4-10. The code behind for our search page

public partial class Default : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 using (var context = new EFRecipesEntities())
 {
 // cleanup from previous tests
 context.ExecuteStoreCommand("delete from chapter4.productdetail");
 context.ExecuteStoreCommand("delete from chapter4.orderdetail");
 context.ExecuteStoreCommand("delete from chapter4.product");
 context.ExecuteStoreCommand("delete from chapter4.category");
 context.ExecuteStoreCommand("delete from chapter4.supplier");

132

 CHAPTER 4 USING ENTITY FRAMEWORK IN ASP.NET

 // add in our test data
 var s1 = new Supplier { CompanyName = "Backcountry Supply",
 Country = "USA" };
 var s2 = new Supplier { CompanyName = "Alpine Tent",
 Country = "Italy" };
 var s3 = new Supplier { CompanyName = "Ace Footware",
 Country = "USA" };
 var c1 = new Category { CategoryName = "Tents" };
 var c2 = new Category { CategoryName = "Shoes/Boots" };
 var pd1 = new ProductDetail { UnitPrice = 99.95M };
 var pd2 = new ProductDetail { UnitPrice = 129.95M };
 var pd3 = new ProductDetail { UnitPrice = 39.95M };
 var p1 = new Product { ProductName = "Pup Tent",
 ProductDescription = "Small and packable tent",
 Discontinued = true, UnitsInStock = 4 };
 var p2 = new Product { ProductName = "Trail Boot",
 ProductDescription = "Perfect boot for hiking",
 Discontinued = false, UnitsInStock = 19 };
 var p3 = new Product { ProductName = "Family Tent",
 ProductDescription = "Sleeps 2 adults + 2 children",
 Discontinued = false, UnitsInStock = 10 };
 var od1 = new OrderDetail { UnitPrice = 39.95M, Quantity = 1};
 var od2 = new OrderDetail { UnitPrice = 129.95M, Quantity = 2 };
 var od3 = new OrderDetail { UnitPrice = 99.95M, Quantity = 1 };
 p1.Supplier = s2;
 p1.Category = c1;
 p1.ProductDetail = pd3;
 p1.OrderDetails.Add(od1);
 p2.Supplier = s3;
 p2.Category = c2;
 p2.OrderDetails.Add(od2);
 p2.ProductDetail = pd2;
 p3.Supplier = s1;
 p3.Category = c1;
 p3.ProductDetail = pd1;
 p3.OrderDetails.Add(od3);
 context.Products.AddObject(p1);
 context.Products.AddObject(p2);
 context.Products.AddObject(p3);
 context.SaveChanges();
 }
 }

 protected void ProductsWithCategory(object sender,
 CustomExpressionEventArgs e)
 {
 if (e.Values["CategoryName"] != null)
 {
 var catnames = e.Values["CategoryName"].ToString().Split(',');
 e.Query = from p in e.Query.Cast<Product>()
 where catnames.Contains(p.Category.CategoryName)
 select p;

133

CHAPTER 4 USING ENTITY FRAMEWORK IN ASP.NET

 }
 }

 static public IQueryable<Product> ProductWithSalesGreaterThan(
 IQueryable<Product> query,
 decimal totalSales)
 {
 return from p in query
 where p.OrderDetails
 .Sum(od => od.UnitPrice * od.Quantity) > totalSales
 select p;
 }
}

public partial class Product
{
 public decimal TotalSales
 {
 get
 {
 return this.OrderDetails.Sum(od => od.UnitPrice * od.Quantity);
 }
 }
}

The resulting search page is shown in Figure 4-12. The user can enter the search parameters in any

or all of the TextBoxes to filter the results displayed in the grid.

134

 CHAPTER 4 USING ENTITY FRAMEWORK IN ASP.NET

Figure 4-12. The completed search page implemented with an EntityDataSource control and a

QueryExtender control

How It Works
The model is a little involved, and the code in Listings 4-9 and 4-10 seem to reflect this. Let’s break down
the ASP.NET page part by part.

The first part of Listing 4-9 is a table providing structure for the properties we want to use for
searching. There’s nothing too complex here, just a bunch of TextBoxes and a DropDownList formatted
in a table.

The next part is a GridView control. This provides the structure for the results. We bind the control
to the EntityDataSource control through the DataSourceID attribute. The columns are mapped to
properties of the objects returned by the EntityDataSource control. This is not much different from the
binding we’ve seen in the previous recipes in this chapter. There is one difference to note here: we’re
binding to a TotalSales property that is not present in our model. This property represents the total sales

135

CHAPTER 4 USING ENTITY FRAMEWORK IN ASP.NET

for the product. To get this value, we added a TotalSales property to the Product entity in the code
behind shown in Listing 4-10.

As with the previous recipes, we use the EntityDataSource control to load the data. We’ve use the
Include attribute to eagerly load the Category, ProductDetail, Supplier, and OrderDetails navigation
properties. This causes the related entities to be loaded along with each Product entity.

And finally, we have the QueryExtender control. This control provides the filtering that we need to
implement searching. We set the TargetControlID to the ID of the EntityDataSource control. This ties the
QueryExtender control to our EntityDataSource control. We are exercising quite a few expression types
in our QueryExtender control. Each of these is used to extend the query.

In the SearchExpression, we set the SearchType to Contains and map the DataFields to the
ProductName and ProductDescription properties. The expression will get its filter value from the
ProductName TextBox. When not empty, this expression will filter the result set to product’s that
contain the string in the ProductName TextBox in either the ProductName or ProductDescription
properties.

The OrderByExpression orders the result set first by UnitsInStock and then by UnitPrice.
The PropertyExpression filters the result set by the Discontinued, UnitsInStock, and the Supplier’s

country. The corresponding TextBoxes are mapped through their IDs.
The RangeExpression is used to filter the result set by a range of values for the UnitPrice property.

We denote this in our search TextBoxes with the Price From and Price To fields.
We use the CustomExpression to add on our own arbitrary query to the one built by the

QueryExtender control. We’ve implemented this in the ProductsWithCategory() method. Here we
additionally filter by products that are in the given category.

With the MethodExpression we use a method outside of our class to perform additional filtering.
The method is passed an IQueryable<Product> and a total sales threshold and returns an
IQueryable<Product> that filters by the threshold. This is implemented in Listing 4-10 in the
ProductWithSalesGreaterThan() method.

The result of all of this is the search page shown in Figure 4-12. Nearly all the logic is implemented
declaratively in the ASP.NET page.

4-6. Retrieving a Derived Type Using an
EntityDataSource Control

Problem
You want to load a derived type from your Table per Hierarchy inheritance model using an
EntityDataSource control.

Solution
Suppose you have a model like the one in Figure 4-13.

136

 CHAPTER 4 USING ENTITY FRAMEWORK IN ASP.NET

Figure 4-13. A model using Table per Hierarchy inheritance with derived types Customer and Employee

The model in Figure 4-13 uses Table per Hierarchy inheritance with Customer and Employee as
derived types. The discriminator values for the derived types are the strings “Customer” and
“Employee.”

To filter the result set to a specific derived type using an EntityDataSource control, name the type
using the EntityTypeFilter attribute. The code in Listings 4-11 and 4-12 illustrate retrieving both the
Employees and Customers using an EntityDataSource control. The resulting page is shown in Figure
4-14.

Listing 4-11. The ASP.NET page using an EntityDataSource to retrieve derived types

<body>
 <form id="form1" runat="server">
 <div>
 <h2>Employees</h2>
 <asp:GridView ID="GridView1" runat="server" DataSourceID="EmployeesSource"
 AutoGenerateColumns="true" />
 <asp:EntityDataSource ID="EmployeesSource" runat="server"
 ConnectionString="name=EFRecipesEntities"
 DefaultContainerName="EFRecipesEntities" EnableFlattening="false"
 EntitySetName="Contacts" EntityTypeFilter="Employee" />

 <h2>Customers</h2>
 <asp:GridView ID="GridView2" runat="server" DataSourceID="CustomersSource"
 AutoGenerateColumns="true" />
 <asp:EntityDataSource ID="CustomersSource" runat="server"
 ConnectionString="name=EFRecipesEntities"
 DefaultContainerName="EFRecipesEntities" EnableFlattening="false"
 EntitySetName="Contacts" EntityTypeFilter="Customer" />
 </div>
 </form>
</body>

137

CHAPTER 4 USING ENTITY FRAMEWORK IN ASP.NET

Listing 4-12. The code behind for the page

protected void Page_Load(object sender, EventArgs e)
{
 using (var context = new EFRecipesEntities())
 {
 // delete the previous test data
 context.ExecuteStoreCommand("delete from chapter4.contact");

 // insert some new test data
 context.Contacts.AddObject(new Customer { Name = "Joan Ryan",
 Email = "joanr@gmail.com" });
 context.Contacts.AddObject(new Customer { Name = "Robert Kelly",
 Email = "rkelly@gmail.com" });
 context.Contacts.AddObject(new Employee { Name = "Karen Stanford",
 HireDate = DateTime.Parse("1/21/2010")});
 context.Contacts.AddObject(new Employee { Name = "Phil Marlowe",
 HireDate = DateTime.Parse("2/12/2009") });
 context.SaveChanges();
 }
}

The resulting web page as rendered in a browser is shown in Figure 4-14.

Figure 4-14. The web page showing the properties of the derived entities Employee and Customer

138

mailto:joanr@gmail.com
mailto:rkelly@gmail.com

 CHAPTER 4 USING ENTITY FRAMEWORK IN ASP.NET

How It Works
The code in Listing 4-11 for the ASP.NET page uses an EntityDataSource control to load instances of a
specific derived type and a GridView control to display the result set. We do this for the Employee
derived type and the Customer derived type.

The code behind in Listing 4-12 deletes the previous test data and populates the model with the new
test data. This is done in the Page_Load() event handler.

4-7. Filtering with ASP.NET’s URL Routing

Problem
You want to simplify the URLs on your site using a RouteTable and want to leverage these routes to filter
the result sets from an EntityDataSource control.

Solution
Suppose your model looks like the one in Figure 4-15.

Figure 4-15. A model for items and their categories

In Figure 4-15, we’ve modeled our products, represented here by the Item entity, together with their
categories. On a typical eCommerce website, we would show products by category. We want to avoid
exposing query strings like “/Product.aspx?Category=Tents” in our URLs. These cryptic URLs simplify
programming a little, but don’t help us much when it comes to search engine optimization. We would
rather have URLs that look more like “/Products/Tents”. We can get this more SEO-friendly URL
structure by using routing.

Routes are typically created in the Application_Start() event handler in Global.asax. The code in
Listing 4-13 illustrates adding a route for our Products.aspx page.

Listing 4-13. Adding the Route in Global.asax

protected void Application_Start(object sender, EventArgs e)
{
 RouteTable.Routes.MapPageRoute("Products", "Products/{category}",
 "~/Products.aspx");
}

139

CHAPTER 4 USING ENTITY FRAMEWORK IN ASP.NET

In our Products.aspx, we use the category name bound to the “category” parameter in a
QueryExtender control as illustrated in Listing 4-14. We use the code behind in Listing 4-15 to clear out
any previous test data and populate our model with fresh test data. Figures 4-16 and 4-17 show the
rendered pages for categories Tents and Cooking Equipment.

Listing 4-14. The Products.aspx page that displays the products filtered by category

<body>
 <form id="form1" runat="server">
 <div>
 <asp:GridView ID="GridView1" runat="server" AutoGenerateColumns="false"
 DataSourceID="itemSource">
 <Columns>
 <asp:BoundField DataField="Name" HeaderText="Product" />
 <asp:TemplateField HeaderText="Category">
 <ItemTemplate><%# Eval("ItemCategory.Name") %></ItemTemplate>
 </asp:TemplateField>
 </Columns>
 </asp:GridView>

 <asp:EntityDataSource ID="itemSource" runat="server"
 EntitySetName="Items" Include="ItemCategory"
 ConnectionString="name=EFRecipesEntities"
 DefaultContainerName="EFRecipesEntities" />
 <asp:QueryExtender ID="search" TargetControlID="itemSource" runat="server">
 <asp:PropertyExpression>
 <asp:RouteParameter Name="ItemCategory.Name" RouteKey="category" />
 </asp:PropertyExpression>
 </asp:QueryExtender>
 </div>
 </form>
</body>

Listing 4-15. The code behind that populates the model with the test data

public partial class Products : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 using (var context = new EFRecipesEntities())
 {
 // delete any previous test data
 context.ExecuteStoreCommand("delete from chapter4.item");
 context.ExecuteStoreCommand("delete from chapter4.itemcategory");

 // populate with some test data
 var cat1 = new ItemCategory { Name = "Tents" };
 var cat2 = new ItemCategory { Name = "Cooking Equipment" };
 context.Items.AddObject(new Item { Name = "Backpacking Tent",
 ItemCategory = cat1 });
 context.Items.AddObject(new Item { Name = "Camp Stove",
 ItemCategory = cat2 });

140

 CHAPTER 4 USING ENTITY FRAMEWORK IN ASP.NET

 context.Items.AddObject(new Item { Name = "Dutch Oven",
 ItemCategory = cat2 });
 context.Items.AddObject(new Item { Name = "Alpine Tent",
 ItemCategory = cat1 });
 context.Items.AddObject(new Item { Name = "Fire Starter",
 ItemCategory = cat2 });
 context.SaveChanges();
 }
 }
}

Figure 4-16. Using the route /Products/Tents, the result set is filtered to the “Tents” category.

Figure 4-17. Using the route /Products/Cooking Equipment, the result set is filtered to the “Cooking

Equipment” category.

141

CHAPTER 4 USING ENTITY FRAMEWORK IN ASP.NET

How It Works
In the Application_Start() event handler in Global.asax, we mapped the route /Products/{category} to
the ~/Products.aspx page. The route key, category, is bound to the actual category string in the URL. In
the QueryExtender control in Products.aspx, we used the category route key in a RouteParameter to filter
the result set to just those products in the given category.

If you need more control over the filtering or don’t want to use a QueryExtender control, you can
use the OnQueryCreated attribute on the EntityDataSource control to inject your own filter on the result
set.

In Listings 4-16 and 4-17, we have the same GridView as in Listing 4-14, but we have replaced the
QueryExtender control with our own OnQueryCreated handler.

Listing 4-16. The same products page but without the QueryExtender control

<body>
 <form id="form1" runat="server">
 <div>
 <asp:GridView ID="GridView1" runat="server" AutoGenerateColumns="false"
 DataSourceID="itemSource">
 <Columns>
 <asp:BoundField DataField="Name" HeaderText="Product" />
 <asp:TemplateField HeaderText="Category">
 <ItemTemplate><%# Eval("ItemCategory.Name") %></ItemTemplate>
 </asp:TemplateField>
 </Columns>
 </asp:GridView>

 <asp:EntityDataSource ID="itemSource" runat="server" EntitySetName="Items"
 Include="ItemCategory" ConnectionString="name=EFRecipesEntities"
 DefaultContainerName="EFRecipesEntities"
 OnQueryCreated="ProdFilter" />
 </div>
 </form>
</body>

Listing 4-17. The OnQueryCreated event handler in our code behind for our alternate products page

protected void ProdFilter(object sender, QueryCreatedEventArgs e)
{
 var catvalue = (string)Page.RouteData.Values["category"];
 e.Query = from p in e.Query.Cast<Item>()
 where p.ItemCategory.Name == catvalue
 select p;
}

The resulting pages look just like the ones in Figures 4-16 and 4-17. The only difference is that we

have more control of the filtering and don’t need to use a QueryExtender control.

142

 CHAPTER 4 USING ENTITY FRAMEWORK IN ASP.NET

4-8. Building CRUD Operations with an
ObjectDataSource Control

Problem
You want to build an ASP.NET page that allows inserting, updating, deleting, and reading from your
model using an ObjectDataSource control.

Solution
Suppose you have a model like the one in Figure 4-18.

Figure 4-18. A model for hotel reservations

Our model represents hotels and their reservations. We want to use an ObjectDataSource control to
perform inserts, updates, deletes, and, of course, select operations against this model. To do this, we first
need to create a couple of objects that will serve as the sources of our data. We loosely follow the
Repository Pattern in Listing 4-18 in building these objects.

Listing 4-18. Our HotelRepository and ReservationRepository classes

public class HotelRepository
{
 private EFRecipesEntities context;

 public HotelRepository()
 {
 this.context = new EFRecipesEntities();
 }

 public void Dispose()
 {
 this.context.Dispose();
 }

143

CHAPTER 4 USING ENTITY FRAMEWORK IN ASP.NET

 public List<Hotel> GetHotels()
 {
 return this.context.Hotels.OrderBy(h => h.Name).ToList();
 }
}

public class ReservationRepository
 {
 private EFRecipesEntities context;

 public ReservationRepository()
 {
 this.context = new EFRecipesEntities();
 }

 public void Dispose()
 {
 this.context.Dispose();
 }

 public List<Reservation> GetReservations(string sort,
 int startRowIndex, int maximumRows)
 {
 return this.context.Reservations.Include("Hotel")
 .OrderBy("it." + (sort == string.Empty ? "Name" : sort))
 .Skip(startRowIndex).Take(maximumRows).ToList();
 }

 public int ReservationCount()
 {
 return this.context.Reservations.Count();
 }

 public void Insert(Reservation reservation)
 {
 this.context.Reservations.AddObject(reservation);
 context.SaveChanges();
 }

 public void Update(Reservation reservation)
 {
 this.context.Reservations.Attach(reservation);
 this.context.ObjectStateManager
 .ChangeObjectState(reservation, EntityState.Modified);
 this.context.SaveChanges();
 }

 public void Delete(Reservation reservation)
 {
 this.context.Reservations.Attach(reservation);
 this.context.Reservations.DeleteObject(reservation);

144

 CHAPTER 4 USING ENTITY FRAMEWORK IN ASP.NET

 this.context.SaveChanges();
 }
 }

Once we have the object that will supply our data, we can construct the ASP.NET page that uses the

ObjectDataSource control to perform the inserts, update, deletes, and selection of the data. This page is
shown in Listing 4-19. The code behind for the page is shown in Listing 4-20.

Listing 4-19. The ASP.NET page using the ObjectDataSource control

<body>
 <form id="form1" runat="server">
 <div>
 <asp:ListView ID="reservationList" runat="server"
 DataSourceId="reservationSource" DataKeyNames="ReservationId,TimeStamp"
 InsertItemPosition="LastItem">
 <EditItemTemplate>
 <tr>
 <td>
 <asp:Button runat="server" CommandName="Update" Text="Update" />
 <asp:Button runat="server" CommandName="Cancel" Text="Cancel" />
 </td>
 <td>
 <asp:TextBox ID="nameTextBox" runat="server"
 Text='<%# Bind("Name") %>' />
 </td>
 <td>
 <asp:DropDownList ID="hotel" runat="server"
 AppendDataBoundItems="true"
 SelectedValue = '<%# Bind("HotelId") %>'
 DataSourceID="HotelSource" DataTextField="Name"
 DataValueField="HotelId">
 <asp:ListItem Text="Select" Value="" />
 </asp:DropDownList>
 <asp:ObjectDataSource ID="hotelSource" runat="server"
 TypeName="Recipe8.HotelRepository"
 SelectMethod="GetHotels" />
 </td>
 <td>
 <asp:TextBox ID="ResDateTextBox" runat="server"
 Text='<%# Bind("ReservationDate") %>' />
 </td>
 <td>
 <asp:TextBox ID="RateTextBox" runat="server"
 Text='<%# Bind("Rate") %>' />
 </td>
 </tr>
 </EditItemTemplate>
 <InsertItemTemplate>
 <tr>
 <td>

145

CHAPTER 4 USING ENTITY FRAMEWORK IN ASP.NET

 <asp:Button runat="server" CommandName="Insert" Text="Insert" />
 <asp:Button runat="server" CommandName="Cancel" Text="Cancel" />
 </td>
 <td>
 <asp:TextBox ID="nameTextBox" runat="server"
 Text='<%# Bind("Name") %>' />
 </td>
 <td>
 <asp:DropDownList ID="hotel" runat="server"
 AppendDataBoundItems="true"
 SelectedValue='<%# Bind("HotelId") %>'
 DataSourceID="hotelSource"
 DataTextField="Name" DataValueField="HotelId">
 <asp:ListItem Text="Select" Value="" />
 </asp:DropDownList>
 <asp:ObjectDataSource ID="hotelSource" runat="server"
 TypeName="Recipe8.HotelRepository" SelectMethod="GetHotels" />
 </td>
 <td>
 <asp:TextBox ID="ResDateTextBox" runat="server"
 Text='<%# Bind("ReservationDate") %>' />
 </td>
 <td>
 <asp:TextBox ID="RateTextBox" runat="server"
 Text='<%# Bind("Rate") %>' />
 </td>
 </tr>
 </InsertItemTemplate>
 <ItemTemplate>
 <tr>
 <td>
 <asp:Button runat="server" CommandName="Delete" Text="Delete" />
 <asp:Button runat="server" CommandName="Edit" Text="Edit" />
 </td>
 <td><%# Eval("Name") %></td>
 <td><%# Eval("Hotel.Name") %></td>
 <td><%# Eval("ReservationDate") %></td>
 <td><%# Eval("Rate") %></td>
 </tr>
 </ItemTemplate>
 <LayoutTemplate>
 <table>
 <tr>
 <th></th>
 <th>
 <asp:LinkButton runat="server" CommandName="Sort"
 CommandArgument="Name" Text="Name" />
 </th>
 <th>
 <asp:LinkButton runat="server" CommandName="Sort"
 CommandArgument="Hotel.Name" Text="Hotel" />
 </th>

146

 CHAPTER 4 USING ENTITY FRAMEWORK IN ASP.NET

 <th>
 <asp:LinkButton runat="server" CommandName="Sort"
 CommandArgument="ReservationDate" Text="Reservation Date" />
 </th>
 <th>
 <asp:LinkButton runat="server" CommandName="Sort"
 CommandArgument="Rate" Text="Daily Rate" />
 </th>
 </tr>
 <tr ID="itemPlaceholder" runat="server" />
 </table>
 </LayoutTemplate>
 </asp:ListView>
 <asp:DataPager ID="pager" runat="server"
 PagedControlID="reservationList" PageSize="2">
 <Fields>
 <asp:NumericPagerField />
 </Fields>
 </asp:DataPager>
 <asp:ObjectDataSource ID="reservationSource" runat="server"
 DataObjectTypeName="Recipe8.Reservation"
 DeleteMethod="Delete" InsertMethod="Insert"
 SelectMethod="GetReservations" UpdateMethod="Update"
 EnablePaging="true" SortParameterName="sort"
 SelectCountMethod="ReservationCount"
 TypeName="Recipe8.ReservationRepository" />
 </div>
 </form>
</body>

Listing 4-20. The code behind for the page in Listing 4-19

public partial class Default : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!this.IsPostBack)
 {
 using (var context = new EFRecipesEntities())
 {
 // delete all test data
 context.ExecuteStoreCommand("delete from chapter4.reservation");
 context.ExecuteStoreCommand("delete from chapter4.hotel");

 // insert new test data
 var h1 = new Hotel { Name = "Riverside Inn" };
 var h2 = new Hotel { Name = "Greenville Inn" };
 context.Reservations.AddObject(new Reservation {
 Name = "Robin Rosen",
 ReservationDate = DateTime.Parse("4/20/2010"),
 Rate = 99.95M, Hotel = h1 });

147

CHAPTER 4 USING ENTITY FRAMEWORK IN ASP.NET

 context.Reservations.AddObject(new Reservation {
 Name = "James Marlowe",
 ReservationDate = DateTime.Parse("5/18/2010"),
 Rate = 105.00M, Hotel = h2 });
 context.SaveChanges();
 }
 }
 }
}

Figure 4-19 shows the ASP.NET page rendered in a browser.

Figure 4-19. The page supporting inserts, updates, deletes, and listing

How It Works
Part of the solution is the two classes, HotelRepository and ReservationRepository, which provide the
needed operations on the underlying entities. These classes very roughly follow the widely used
Repository Pattern. Our ObjectDataSource control uses these two classes to perform the CRUD
operations. The bulk of the code in the ASP.NET page is used in the ListView control for InsertTemplate,
EditTemplate, and LayoutTemplate.

It is important to note here that the startRowIndex and maximumRows parameters to the
ReservationRepository’s GetReservations() method are not arbitrary names. These are the default
parameter names used by the ObjectDataSource control for paging. If you need to use different
parameter names, these must be specified in the definition of the ObjectDataSource control using the
StartRowIndexParameterName and MaximumRowsParameterName attributes. For the Reservation
entity we use both the ReservationId and TimeStamp properties to avoid a concurrency violation on
updates. We set both ReservationId and TimeStamp as DataKeyNames for the ListView. On post back,
the ListView control saves the keys in the control state to preserve the original values. On update, the
ObjectDataSource control gets the new values from the Bind() parameters and the original
ReservationId and TimeStamp values from the ListView control.

In the Update() method of the ReservationRepository, we Attach() the reservation and then change
its status using the ChangeObjectStatus() method. The drawback to this approach is that we end up
marking all the scalar properties except the entity key and the currency column, as modified. All these
properties changed or not, will be part of the update statement. Because our model uses foreign key

148

 CHAPTER 4 USING ENTITY FRAMEWORK IN ASP.NET

associations, when we change the HotelId property for a reservation, we are also changing the
association to the hotel as well.

The Delete() method also uses Attach() and ChangeObjectState() to change the state of the object
to Deleted. For this, we need only the entity key.

4-9. Using Entity Framework With MVC

Problem
You want to use Entity Framework with ASP.NET MVC.

Solution
Suppose you have a table in your database like the one shown in Figure 4-20.

Figure 4-20. A table with some information about a movie

This table holds some information about movies. You want to create a simple ASP.NET MVC web
application that uses Entity Framework. To create a web application that provides for inserting,
updating, and deleting movies in our Movie table, do the following:

1. Add a new ASP.NET MVC 2 Empty Web Application to your solution.

2. Right-click the Models folder and select Add New Item. Add an ADO.NET
Entity Data Model. Import the movie table in Figure 4-20. The model should
look like the one in Figure 4-21.

3. Right-click the Controllers folder and select Add Controller. Name the new
controller HomeController. Check the box: Add action methods for Create,
Update, and Details scenarios. Click Add.

4. Add a private variable to the HomeController to hold the context:

 private EFRecipesEntities context = new EFRecipesEntities();

5. Change the Index() method in the HomeController to return the list of movies.
Use the following code:

 public ActionResult Index()
 {
 return View(context.Movies.ToList());
 }

149

CHAPTER 4 USING ENTITY FRAMEWORK IN ASP.NET

6. Right-click the Index() method and select Add View. Uncheck Select master
page. Select Movie for the view data class and List as the content. See Figure 4-
22.

7. Change the Details() method in the HomeController to return a single movie
based on the MovieId. Use the following code:

 public ActionResult Details(int id)
 {
 var movie = context.Movies.Single(m => m.MovieId == id);
 return View(movie);
 }

8. Right-click the Details() method and select Add View. Set the view data
class to Movie and the view content to Details. See Figure 4-23.

9. Right-click the Create() method and select Add View. Set the view data class
to Movie and the view content to Create. See Figure 4-24.

10. Use the code in Listing 4-21 to replace the code for the overloaded Create()
method that takes a FormCollection. This is the method that is decorated with
the HttpPost attribute.

11. Change the Edit() method in the HomeController to return a single movie
based on the id. Use the following code:

 public ActionResult Edit(int id)
 {
 var movie = context.Movies.Single(m => m.MovieId == id);
 return View(movie);
 }

12. Right-click the Edit() method and select Add View. Set the view data class to
Movie and view content to Edit. See Figure 4-25.

13. The second Edit() method that takes a FormsCollection is called when the
user has modified the movie’s properties and has submitted the form to the
server. Use the code in Listing 4-22 to replace the code for this second Edit()
method.

14. We need to add a Delete button to the Index.aspx page in the Views Home
folder. Use the code in Listing 4-23 to add this button next to the Edit link.

15. Add a Delete() method to handle the Delete button click. Use the code in
Listing 4-24 to implement the Delete() method in HomeController.cs file.

16. Run the web application and add a few movies. After you have added a few
movies, the web application should look something like the one shown in
Figure 4-26.

150

 CHAPTER 4 USING ENTITY FRAMEWORK IN ASP.NET

Figure 4-21. The model created from the Movie table

Figure 4-22. Adding a view for the Index() method

Figure 4-23. Adding a view for the Details() method

151

CHAPTER 4 USING ENTITY FRAMEWORK IN ASP.NET

Figure 4-24. Adding a view for the Create() method

Figure 4-25. Adding a view for the Edit() method

152

 CHAPTER 4 USING ENTITY FRAMEWORK IN ASP.NET

Listing 4-21. The code for the second Create() method that handles posts

[HttpPost]
public ActionResult Create([Bind(Exclude = "MovieId")] Movie movie)
{
 try
 {
 context.Movies.AddObject(movie);
 context.SaveChanges();
 return RedirectToAction("Index");
 }
 catch
 {
 return View();
 }
}

Listing 4-22. The code for the second Edit() method that handles posts

[HttpPost]
public ActionResult Edit(int id, Movie movie)
{
 try
 {
 movie.MovieId = id;
 context.Movies.Attach(movie);
 context.ObjectStateManager.ChangeObjectState(movie,
 EntityState.Modified);
 context.SaveChanges();
 return RedirectToAction("Index");
 }
 catch
 {
 return View();
 }
}

Listing 4-23. Adding the Delete button to the Index.aspx page

<td>
 <% using (Html.BeginForm("Delete", "Home", new { id = item.MovieId }))
 { %> <input type="submit" value="Delete" /> <% } %>
</td>

Listing 4-24. The Delete() method that handles the Delete button click

[AcceptVerbs(HttpVerbs.Post)]
public ActionResult Delete(int id)
{
 try
 {

153

CHAPTER 4 USING ENTITY FRAMEWORK IN ASP.NET

154

 var movie = new Movie { MovieId = id };
 context.Movies.Attach(movie);
 context.Movies.DeleteObject(movie);
 context.SaveChanges();

 return RedirectToAction("Index");
 }
 catch
 {
 return View();
 }
}

Figure 4-26. The rendered Index.aspx page with a few movies from our database

How It Works
We created a very simple ASP.NET MVC web application that uses the Entity Framework model in Figure
4-21 that we created by importing the database table in Figure 4-20. The web application lists the current
movies and supports editing, creating, and deleting movies from the database.

C H A P T E R 5

Loading Entities and
Navigation Properties

Entity Framework provides a rich modeling environment representing a conceptual view of the
underlying objects and relationships in data storage. The recipes in this chapter show you how to control
the loading of instances of related entities in your queries.

The default behavior for Entity Framework is to load only the entities directly accessed by your
application. In general, this is exactly what you want. If Entity Framework aggressively loaded all the
entities related through one or more associations, you would likely end up loading more entities than
you needed. This would increase the memory footprint of your application and slow it down.

In Entity Framework, you can control when the loading of related entities occurs and optimize the
number of database queries executed. Carefully managing when related entities are loaded can increase
performance and simplify your code.

We start off this chapter with a number of recipes illustrating how to load some or all of the related
entities in a single query. This type of loading, also called eager loading, is used to both reduce the
number of round trips to the database and to more precisely control which related entities are loaded.

Sometimes you need to defer loading of certain related entities because they may be expensive to
load or are not used very often. We’ll cover a number of scenarios using the Load() method to precisely
control when to load one or more related entities.

5-1. Loading Related Entities

Problem
You want to load an entity along with some related entities in a single round trip to the database.

Solution
Let’s say you have a model like the one shown in Figure 5-1.

155

CHAPTER 5 LOADING ENTITIES AND NAVIGATION PROPERTIES

Figure 5-1. A model with a Customer and its related information

In this model, we have a Customer entity with a single CustomerType and perhaps many
CustomerEmail addresses. The association with CustomerType is one-to-many with CustomerType on
the one side of the association. This is an entity reference.

The association with CustomerEmail is also one-to-many but with CustomerEmail on the many side
of the association. This is an entity collection.

To include all the instances of the related CustomerEmail entity as well as the instance of the related
CustomerType entity when retrieving instances of the Customer entity, use the Include() method syntax
as shown in Listing 5-1.

Listing 5-1. Eager loading of instances of Customertype and Customeremail along with instances of

Customer

using (var context = new EFRecipesEntities())
{
 var web = new CustomerType { Description = "Web Customer",
 CustomerTypeId = 1 };
 var retail = new CustomerType { Description = "Retail Customer",
 CustomerTypeId = 2 };
 var customer = new Customer { Name = "Joan Smith", CustomerType = web };
 customer.CustomerEmails.Add(new CustomerEmail
 { Email = "jsmith@gmail.com" });
 customer.CustomerEmails.Add(new CustomerEmail { Email = "joan@smith.com" });
 context.Customers.AddObject(customer);
 customer = new Customer { Name = "Bill Meyers", CustomerType = retail };
 customer.CustomerEmails.Add(new CustomerEmail
 { Email = "bmeyers@gmail.com" });
 context.Customers.AddObject(customer);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 var customers = context.Customers.Include("CustomerType")
 .Include("CustomerEmails");
 Console.WriteLine("Customers");
 Console.WriteLine("=========");
 foreach (var customer in customers)
 {

156

mailto:jsmith@gmail.com
mailto:joan@smith.com
mailto:bmeyers@gmail.com

 CHAPTER 5 LOADING ENTITIES AND NAVIGATION PROPERTIES

 Console.WriteLine("{0} is a {1}, email address(es)", customer.Name,
 customer.CustomerType.Description);
 foreach (var email in customer.CustomerEmails)
 {
 Console.WriteLine("\t{0}", email.Email);
 }
 }
}

using (var context = new EFRecipesEntities())
{
 var customTypes = context.CustomerTypes.Include("Customers.CustomerEmails");
 Console.WriteLine("\nCustomers by Type");
 Console.WriteLine("=================");
 foreach (var customerType in customTypes)
 {
 Console.WriteLine("Customer type: {0}", customerType.Description);
 foreach (var customer in customerType.Customers)
 {
 Console.WriteLine("{0}", customer.Name);
 foreach (var email in customer.CustomerEmails)
 {
 Console.WriteLine("\t{0}", email.Email);
 }
 }
 }
}

The output of the code in Listing 5-1 is the following:

Customers

=========

Joan Smith is a Web Customer, email address(es)

 jsmith@gmail.com

 joan@smith.com

Bill Meyers is a Retail Customer, email address(es)

 bmeyers@gmail.com

Customers by Type

=================

157

mailto:jsmith@gmail.com
mailto:joan@smith.com
mailto:bmeyers@gmail.com

CHAPTER 5 LOADING ENTITIES AND NAVIGATION PROPERTIES

Customer type: Web Customer

Joan Smith

 jsmith@gmail.com

 joan@smith.com

Customer type: Retail Customer

Bill Meyers

 bmeyers@gmail.com

How It Works
By default, Entity Framework loads only entities that you specifically request. This is an important

nd. The alternative, always loading every associated entity, may cause a much
t graph to be loaded into memory than you might need.

In this example, we used the Include() method to eagerly load the related parts of the object graph.

e

asso
 By using the Include()

met

. On the one hand, loading a
larg

load

hen materializing the object graph, Entity
Fram

principle to keep in mi
larger part of the objec

Include() takes a string representation of the part of the object graph you want to load. This string
representation of the partial object graph is also called a path and is made of the navigation property
nam ter. es separated by the ‘.’ charac

In Listing 5-1, we create a couple of instances of the CustomerType entity and use these together
with instances of the CustomerEmail entity to create a couple of Customers.

To get the object graph from the Customer, we use the Include() method twice. In the first use, w
include the entity reference to the CustomerType entity. This is on the one side of the one-to-many

ciation. In the second use of Include(), we get the many side of the one-to-many association
bringing along all the instances of the CustomerEmail entity for the customer.

hod twice, we pull in all the referenced entities from both of the Customer’s navigation properties.
To get the object graph from the CustomerType, we invoke Include() just once, but this time we

pass in a path that includes both the Customers and the CustomerEmails.
Both of these queries resulted in a load of the entire object graph into the object context. In our

example, this wasn’t much, but for databases with thousands or millions of customers, we could end up
using lots of memory if we’re not careful.

The Include() method has some important performance implications
e part of the object graph into the object context (that is, into memory), can end up using a lot of

memory. If we had millions of customers, this would definitely be a problem. On the other hand, the
Include() method loads the object graph in one trip to the database. If your application will end up

ing each entity in the graph separately, requiring lots of trips to the database, you may end up with a
lot less database traffic with the use of the Include() method.

There is one more performance issue. To get everything in one trip to the database, Entity
Framework might construct a rather unwieldy SQL statement with lots of joins. The SQL statement from
our first query is shown in Listing 5-2. Not only is the query getting a little complicated but it’s also
bringing back duplicate information, as shown in Figure 5-2. W

ework has to remove the duplicate information.

158

mailto:jsmith@gmail.com
mailto:joan@smith.com
mailto:bmeyers@gmail.com

 CHAPTER 5 LOADING ENTITIES AND NAVIGATION PROPERTIES

The bottom line is that Include(), used carefully, can improve performance over piecemeal loading
of the entities. Keep in mind the extra memory footprint and the extra work done at the database layer
and

esulting from our use of the Include() method

[Project1].[CustomerId] AS [CustomerId],
].[Name] AS [Name],

eId],
 [CustomerTypeId1],

lId],
 [CustomerId1],

AS [CustomerId],
].[Name] AS [Name],

eId],
[CustomerTypeId1],

ULL) THEN CAST(NULL AS int) ELSE 1 END AS
1]

LEFT OUTER JOIN [Chapter5].[CustomerType] AS [Extent2] ON [Extent1].[CustomerTypeId] =

tomerId] ASC, [Project1].[CustomerTypeId1] ASC, [Project1].[C1] ASC

 in Entity Framework.

Listing 5-2. The SQL query r

SELECT

[Project1
[Project1].[CustomerTypeId] AS [CustomerTyp
[Project1].[CustomerTypeId1] AS
[Project1].[Description] AS [Description],
[Project1].[C1] AS [C1],
[Project1].[CustomerEmailId] AS [CustomerEmai
[Project1].[CustomerId1] AS
[Project1].[Email] AS [Email]
FROM (SELECT
 [Extent1].[CustomerId]
 [Extent1
 [Extent1].[CustomerTypeId] AS [CustomerTyp
 [Extent2].[CustomerTypeId] AS
 [Extent2].[Description] AS [Description],
 [Extent3].[CustomerEmailId] AS [CustomerEmailId],
 [Extent3].[CustomerId] AS [CustomerId1],
 [Extent3].[Email] AS [Email],
 CASE WHEN ([Extent3].[CustomerEmailId] IS N
[C
 FROM [Chapter5].[Customer] AS [Extent1]

[Extent2].[CustomerTypeId]
 LEFT OUTER JOIN [Chapter5].[CustomerEmail] AS [Extent3] ON [Extent1].[CustomerId] =
[Extent3].[CustomerId]
) AS [Project1]
ORDER BY [Project1].[Cus

Figure 5-2. Redundant data resulting from the Include() method

159

CHAPTER 5 LOADING ENTITIES AND NAVIGATION PROPERTIES

5-2. Loading a Complete Object Graph

Problem
You have a model with several related entities and you want to load the complete object graph of all the
instances of each entity in a single query.

Solution
Suppose you have a conceptual model like the one in Figure 5-3. Each course has several sections. Each
section is taught by an instructor and has several students.

Figure 5-3. A model with a few related entities

To retrieve all the courses, sections, instructors, and students represented in the database in a single
query, use the Include() method with a query path parameter, as shown in Listing 5-3.

Listing 5-3. Retrieving an entire object graph in a single query

using (var context = new EFRecipesEntities())
{
 var course = new Course { Title = "Biology 101" };
 var fred = new Instructor { Name = "Fred Jones" };
 var julia = new Instructor { Name = "Julia Canfield" };
 var section1 = new Section { Course = course, Instructor = fred };

160

 CHAPTER 5 LOADING ENTITIES AND NAVIGATION PROPERTIES

 var section2 = new Section { Course = course, Instructor = julia };
 var jim = new Student { Name = "Jim Roberts" };
 jim.Sections.Add(section1);
 var jerry = new Student { Name = "Jerry Jones" };
 jerry.Sections.Add(section2);
 var susan = new Student { Name = "Susan O'Reilly" };
 susan.Sections.Add(section1);
 var cathy = new Student { Name = "Cathy Ryan" };
 cathy.Sections.Add(section2);
 context.Courses.AddObject(course);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 var graph = context.Courses
 .Include("Sections.Instructor")
 .Include("Sections.Students");
 Console.WriteLine("Courses");
 Console.WriteLine("=======");
 foreach (var course in graph)
 {
 Console.WriteLine("{0}", course.Title);
 foreach (var section in course.Sections)
 {
 Console.WriteLine("\tSection: {0}, Instrutor: {1}",
 section.SectionId.ToString(),
 section.Instructor.Name);
 Console.WriteLine("\tStudents:");
 foreach (var student in section.Students)
 {
 Console.WriteLine("\t\t{0}", student.Name);
 }
 Console.WriteLine("\n");
 }
 }
}

The code in Listing 5-3 produces the following output:

Courses

=======

Biology 101

 Section: 7, Instructor: Fred Jones

 Students:

161

CHAPTER 5 LOADING ENTITIES AND NAVIGATION PROPERTIES

 Susan O'Reilly

 Jim Roberts

 Section: 8, Instructor: Julia Canfield

 Students:

 Cathy Ryan

 Jerry Jones

How It Works
A query path is a string parameter to the Include() method. A query path represents the entire path of
the object graph that is loaded by the Include() method. The Include() method extends the query to
include the entities referenced along the query path.

In Listing 5-3, we use the Include() method twice. Include() is invoked first with a query path
parameter that includes the part of the graph extending through Section to Instructor. This modifies the
query to include all the Sections and their Instructors. The second invocation includes a path extending
through Section to Student. This modifies the query to include Sections and their Students. The result is
a materialization of the complete object graph including all the Course entities and the entities on each
end of all associations in the model.

You can use query paths that use navigation properties to any depth. This gives you a lot of
flexibility in partial or complete object graph loading. Entity Framework attempts to optimize the final
query generation by pruning off overlapping or duplicate query paths.

The syntax and semantics of the Include() method is deceptively simple. Don’t let the simplicity
fool you into thinking that there is no performance price to be paid when using the Include() method.
Eager loading with several Include() method invocations can rapidly increase the complexity of the
query sent to the database and dramatically increase the amount of data returned from the database.
The complex queries generated can lead to poor performance plan generation and the large amount of
returned data can cause Entity Framework to spend an inordinate amount of time removing duplicate
data.

5-3. Loading Navigation Properties on Derived Types

Problem
You have a model with one or more derived types that are in a has-a relationship with one or more other
entities. You want to eagerly load all the related entities in one round trip to the database.

162

 CHAPTER 5 LOADING ENTITIES AND NAVIGATION PROPERTIES

Solution
Suppose you have a model like the one in Figure 5-4.

Figure 5-4. A model for Plumbers with their JobSite and other related entities

In this model, the Plumber entity extends the Tradesman entity. A Plumber has a JobSite that is
represented by a one-to-many association. The JobSite type extends the Location entity. Location has a
Phone, which is represented by a one-to-many association. Finally, a JobSite can have zero or more
Foremen. This is also represented by a one-to-many association.

Suppose you want to retrieve a plumber, the jobsite she works on, the jobsite’s phone number, and
all the foremen at the jobsite. You want to retrieve all this in one round trip to the database.

The code in Listing 5-4 illustrates one way to use the Include() method to eagerly load the related
entities in one query.

Listing 5-4. Retrieving related entities in one round trip to the database using eager loading with the

Include() method

using (var context = new EFRecipesEntities())
{
 var foreman1 = new Foreman { Name = "Carl Ramsey" };
 var foreman2 = new Foreman { Name = "Nancy Ortega" };
 var phone = new Phone { Number = "817 867-5309" };
 var jobsite = new JobSite { JobSiteName = "City Arena",
 Address = "123 Main", City = "Anytown",

163

CHAPTER 5 LOADING ENTITIES AND NAVIGATION PROPERTIES

 State = "TX", ZIPCode = "76082",
 Phone = phone };
 jobsite.Foremen.Add(foreman1);
 jobsite.Foremen.Add(foreman2);
 var plumber = new Plumber { Name = "Jill Nichols",
 Email = "JNichols@plumbers.com",
 JobSite = jobsite };
 context.Tradesmen.AddObject(plumber);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 var plumber = context.Tradesmen.OfType<Plumber>()
 .Include("JobSite.Phone")
 .Include("JobSite.Foremen").First();
 Console.WriteLine("Plumber's Name: {0} ({1})", plumber.Name, plumber.Email);
 Console.WriteLine("Job Site: {0}", plumber.JobSite.JobSiteName);
 Console.WriteLine("Job Site Phone: {0}", plumber.JobSite.Phone.Number);
 Console.WriteLine("Job Site Foremen:");
 foreach (var boss in plumber.JobSite.Foremen)
 {
 Console.WriteLine("\t{0}", boss.Name);
 }
}

The following output is produced by code in Listing 5-4:

Plumber's Name: Jill Nichols (JNichols@plumbers.com)

Job Site: City Arena

Job Site Phone: 817 867-5309

Job Site Foremen:

 Carl Ramsey

 Nancy Ortega

How It Works
Our query starts by selecting instances of the derived type Plumber. To get these, we use the
OfType<Plumber>() method. The OfType<>() method select instances of the given subtype from the entity
set.

From Plumber, we want to load the related JobSite and the Phone for the JobSite. Notice that the
JobSite entity does not have a Phone navigation property, but JobSite derives from Location, which does

164

mailto:JNichols@plumbers.com
mailto:JNichols@plumbers.com

 CHAPTER 5 LOADING ENTITIES AND NAVIGATION PROPERTIES

have a Phone navigation property. Because Phone is a property of the base entity, it’s also available on
the derived entity. That’s the beauty of inheritance. This makes the query path simply: “JobSite.Phone”.

We used the Include() method again with a query path that references the Foreman entities from
the JobSite entity. Here we have a one-to-many association JobSite and Foreman. Notice the navigation
property was pluralized by the wizard (from Foreman to Foremen).

Finally, we use the First() method to select just the first Plumber instance.
The resulting query is somewhat complex, involving several joins and subselects. The alternative,

using the Load() method for each related entity, would require several round trips to the database and
would result in a performance hit, especially if we retrieved many Plumbers.

5-4. Using Include() with Other LINQ Query Operators

Problem
You have a LINQ query that uses operators such as group by, join, and where; and you want to use the
Include() method to eagerly load additional entities.

Solution
Let’s say you have a model like the one shown in Figure 5-5.

Figure 5-5. A simple model with a one-to-many association between Club and Event

To use the Include() method in combination with a group by clause, form the LINQ expression
without the Include() method first; then cast the expression as an ObjectQuery<T> and invoke the
Include() method. The code in Listing 5-5 demonstrates this approach.

Listing 5-5. Casting to ObjectQuery<T> and Invoking Include()

using (var context = new EFRecipesEntities())
{
 var club = new Club { Name = "Star City Chess Club", City = "New York" };
 context.Clubs.AddObject(club);
 new Event { EventName = "Mid Cities Tournament",
 EventDate = DateTime.Parse("1/09/2010"), Club = club };
 new Event { EventName = "State Finals Tournament",

165

CHAPTER 5 LOADING ENTITIES AND NAVIGATION PROPERTIES

 EventDate = DateTime.Parse("2/12/2010"), Club = club };
 new Event { EventName = "Winter Classic",
 EventDate = DateTime.Parse("12/18/2009"), Club = club };
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 var events = from ev in context.Events
 where ev.Club.City == "New York"
 group ev by ev.Club into g
 select g.FirstOrDefault(e1 =>
 e1.EventDate == g.Min(evt => evt.EventDate));
 var e = ((ObjectQuery<Event>)events).Include("Club").First();
 Console.WriteLine("The next New York club event is:");
 Console.WriteLine("\tEvent: {0}", e.EventName);
 Console.WriteLine("\tDate: {0}", e.EventDate.ToShortDateString());
 Console.WriteLine("\tClub: {0}", e.Club.Name);
}

The output of the code in Listing 5-5 is the following:

The next New York club event is:

 Event: Winter Classic

 Date: 12/18/2009

 Club: Star City Chess Club

How It Works
We start by creating a Club and three Events. The code looks a little strange. We created the events
without assigning them to anything! Well, not quite. The initializer for each assigns the Club property the
instance of the club we created at the top. This is all that is needed to add the events to the club’s event
entity collection. There is no reason to keep another set of references to the events. They are already
referenced by the club.

In the query, we grab all the events at clubs in New York, group them by club, and find the first one
in date order. The events variable holds just the expression. It hasn’t executed anything on the database
yet.

Next, we cast the expression to ObjectQuery<Event>. This is required because the LINQ expressions
are of type IQueryable<T>. Because ObjectQuery<T> implements IQueryable<T>,and our LINQ to Entities
expression is really of type ObjectQuery<T>, it’s safe to do the cast. But why do we need to cast it? Because
IQueryable<T> doesn’t have an Include() method, but ObjectQuery<T> does have it. The cast gives us
access to the Include() method.

Many developers find the Include() method a little confusing. In some cases, Intellisense will not
show it as available (because of the type of the expression). In some cases, it will be silently ignored at
runtime. Surprisingly, the compiler rarely complains unless it cannot determine the resulting type. The

166

 CHAPTER 5 LOADING ENTITIES AND NAVIGATION PROPERTIES

problems usually show up at runtime when they can be a more difficult fix. Here are some simple rules
to follow when using Include():

1. Include() applies only to the final query results. When Include() is applied to a
subquery, join, or nested from clause, it is ignored when the command tree is
generated.

2. The Include() method is an extension method on type ObjectQuery<T>. If the
expression is of type IQueryable<T>, it must be cast to ObjectQuery<T> before
the Include() method will be available.

3. Include() can be applied only to results that are entities. If the expression
projects results that are not entities, Include() will be ignored.

4. The query cannot change the type of the results between the Include() and the
outermost operation. A group by clause, for example, changes the type of the
results.

5. The query path used in the Include() expression must start at a navigation
property on the type returned from the outermost operation. The query path
cannot start at an arbitrary point.

Let’s see how these rules apply to the code in Listing 5-5.
The query groups the events by the sponsoring club. The group by operator changes the result type

from Event to a grouping result. Here Rule 4 says that we need to invoke the Include() method after the
group by clause has changed the type. We do this by invoking Include() at the very end. If we applied
the Include() method earlier as in from ev in context.Events.Include(), the Include() method would
have been silently dropped from the command tree and never applied.

If you mouse over the events variable, you will notice that Intellisense shows the type as
IQueryable<Event>. Rule 2 says that IQueryable<T> does not implement the Include() method. However,
we know that events is really of type ObjectQuery<Event>, so following Rule 2, we cast events to
ObjectQuery<Event> and then invoke the Include() method.

5-5. Deferred Loading of Related Entities

Problem
You have an instance of an entity and you want to defer load two or more related entities in a single
query.

Solution
Suppose you have a model like the one in Figure 5-6.

167

CHAPTER 5 LOADING ENTITIES AND NAVIGATION PROPERTIES

Figure 5-6. A a model with an employee, her department, and the department’s company

In the model shown in Figure 5-6, an Employee is associated with exactly one Department. Each
Department is associated with exactly one Company.

Given an instance of an Employee, you want to load both his department and the department’s
company. What makes this problem somewhat unique is that we already have an instance of Employee
and we want to avoid going back to the database to get another copy of the Employee just so that we can
use the Include() method to obtain the related instances of Company and Department. Perhaps in your
real-world problem, Employee is a very expensive entity to retrieve and materialize.

We could use the Load() method twice to load the related Department instance and then again to
load the related Company instance. However, this would generate two round trips to the database. To
load the related instances using just one query, we can either re-query the Employee entity set using the
Include() method with a query path including the Department and the Company, or use the
CreateSourceQuery() method on the DepartmentReference property. The code in Listing 5-6 shows both
approaches.

Listing 5-6. Inserting into the model and retrieving the related entities using two slightly different

approaches

using (var context = new EFRecipesEntities())
{
 var company = new Company { Name = "Acme Products" };
 var acc = new Department { Name = "Accounting", Company = company };
 var ship = new Department { Name = "Shipping", Company = company };
 var emp1 = new Employee { Name = "Jill Carpenter", Department = acc };
 var emp2 = new Employee { Name = "Steven Hill", Department = ship };
 context.Employees.AddObject(emp1);
 context.Employees.AddObject(emp2);
 context.SaveChanges();
}

// first approach
using (var context = new EFRecipesEntities())
{
 // assume we already have an employee
 var jill = context.Employees.Where(o => o.Name == "Jill Carpenter").First();

 // now get Jill's department and company
 var results = context.Employees.Include("Department.Company")

168

 CHAPTER 5 LOADING ENTITIES AND NAVIGATION PROPERTIES

 .Where(o => o.EmployeeId == jill.EmployeeId).First<Employee>();
 Console.WriteLine("{0} works in {1} for {2}", jill.Name,
 jill.Department.Name, jill.Department.Company.Name);
}

// more efficient, does not retrieve employee again
using (var context = new EFRecipesEntities())
{
 // assume we already have an employee
 var jill = context.Employees.Where(o => o.Name == "Jill Carpenter").First();

 var moreResults = jill.DepartmentReference.CreateSourceQuery()
 .Include("Company").First();
 context.Attach(moreResults);
 Console.WriteLine("{0} works in {1} for {2}", jill.Name,
 jill.Department.Name, jill.Department.Company.Name);
}

The following is the output of the code in Listing 5-6:

Jill Carpenter works in Accounting for Acme Products

Jill Carpenter works in Accounting for Acme Products

How It Works
If we didn’t already have an instance the Employee entity, we could simply use the Include() method
with a query path “Department.Company”. This is essentially the approach we take in the first query.
The disadvantage of this approach is that it retrieves all the columns for the Employee entity. In many
cases, this might be an expensive operation. Because we already have this object in the context, it seems
wasteful to gather these columns again from the database and transmit them across the wire.

In the second query, we use the CreateSourceQuery() method available on the
DepartmentReference property to retrieve the related instance of the Department entity as well as the
instance of the Company entity. This second approach is more efficient because it does not retrieve the
Employee columns. Our use of the Attach() method to attach the retrieved Department instance to the
object context is not strictly required in this case because of relationship span.

5-6. Filtering and Ordering Related Entities

Problem
You have an instance of an entity and you want to load a related EntityCollection applying both a filter
and an ordering.

169

CHAPTER 5 LOADING ENTITIES AND NAVIGATION PROPERTIES

Solution
Suppose you have a model like the one shown in Figure 5-7.

Figure 5-7. A model for a hotel reservation system

Let’s assume we have an instance of a Hotel entity. To retrieve the executive suite rooms for the
hotel, see which have reservations, and order them by room rate, use the pattern shown in Listing 5-7.

Listing 5-7. Filtering and ordering an entity collection using CreateSourceQuery()

using (var context = new EFRecipesEntities())
{
 var hotel = new Hotel { Name = "Grand Seasons Hotel" };
 var r101 = new Room { Rate = 79.95M, Hotel = hotel };
 var es201 = new ExecutiveSuite { Rate = 179.95M, Hotel = hotel };
 var es301 = new ExecutiveSuite { Rate = 299.95M, Hotel = hotel };
 var res1 = new Reservation { StartDate = DateTime.Parse("3/12/2010"),
 EndDate = DateTime.Parse("3/14/2010"),
 ContactName = "Roberta Jones", Room = es301 };
 var res2 = new Reservation { StartDate = DateTime.Parse("1/18/2010"),
 EndDate = DateTime.Parse("1/28/2010"),
 ContactName = "Bill Meyers", Room = es301 };
 var res3 = new Reservation { StartDate = DateTime.Parse("2/5/2010"),
 EndDate = DateTime.Parse("2/6/2010"),
 ContactName = "Robin Rosen", Room = r101 };
 context.Hotels.AddObject(hotel);
 context.SaveChanges();
}

170

 CHAPTER 5 LOADING ENTITIES AND NAVIGATION PROPERTIES

using (var context = new EFRecipesEntities())
{
 // assume we have an instance of hotel
 var hotel = context.Hotels.First();

 var rooms = hotel.Rooms.CreateSourceQuery()
 .Include("Reservations")
 .Where(r => r is ExecutiveSuite &&
 r.Reservations.Any())
 .OrderBy(r => r.Rate);
 Console.WriteLine("Executive Suites for {0} with reservations", hotel.Name);
 hotel.Rooms.Attach(rooms);
 foreach (var room in hotel.Rooms)
 {
 Console.WriteLine("\nExecutive Suite {0} is {1} per night",
 room.RoomId.ToString(), room.Rate.ToString("C"));
 Console.WriteLine("Current reservations are:");
 foreach (var res in room.Reservations.OrderBy(r => r.StartDate))
 {
 Console.WriteLine("\t{0} thru {1} ({2})",
 res.StartDate.ToShortDateString(),
 res.EndDate.ToShortDateString(),
 res.ContactName);
 }
 }
}

The following is the output of the code shown in Listing 5-7:

Executive Suites for Grand Seasons Hotel with reservations

Executive Suite 84 is $299.95 per night

Current reservations are:

 1/18/2010 thru 1/28/2010 (Bill Meyers)

 3/12/2010 thru 3/14/2010 (Roberta Jones)

How It Works
The code in Listing 5-7 uses the CreateSourceQuery() method to get access to the query that is used to
retrieve the entity collection on the navigation property. We apply the Include() method to eagerly load
the associated reservations for each room. We apply Include() before the where clause because prior to
the where clause, the expression is of type ObjectQuery<Room>, which exposes the Include() method.

171

CHAPTER 5 LOADING ENTITIES AND NAVIGATION PROPERTIES

After the where clause, the expression is of type IQueryable<Room>, which does not have the Include()
method.

The where clause filters the collection to rooms of type ExecutiveSuite that have at least one
reservation. We then order the collection by room rate using an OrderBy clause.

After we obtain the filtered and ordered collection of rooms with their reservations, we use the
Attach() method to connect the collection to the instance of the Hotel entity. Once attached, we iterate
through the rooms. For each room, we order the reservations for the room by start date. This second
ordering is done in memory on the entity collection while the first ordering and filtering was performed
in the database.

One way to simplify the filter is to use the OfType<T>() method, as shown in the code snippet in
Listing 5-8. This approach relies on .NET 4.0’s new support for covariance and contravariance. Now the
type of rooms passed to the Attach() method is IOrderedQueryable<ExecutiveSuite>, which defines
methods whose signatures reference the ExecutiveSuite type that is derived from the Room entity.

Listing 5-8. Using OfType<T> to filter by derived type

var rooms = hotel.Rooms
 .CreateSourceQuery()
 .Include("Reservations")
 .OfType<ExecutiveSuite>()
 .Where(r => r.Reservations.Any()).OrderBy(r => r.Rate);
hotel.Rooms.Attach(rooms);

5-7. Executing Aggregate Operations on Related Entities

Problem
You want to apply an aggregate operator on a related entity collection without loading the collection.

Solution
Suppose you have a model like the one shown in Figure 5-8.

Figure 5-8. Orders and their associated order items

172

 CHAPTER 5 LOADING ENTITIES AND NAVIGATION PROPERTIES

In Figure 5-8, we have a simple model composed of an order and the products (collection of
OrderItems) shipped for the order. One way to get the total amount for the order is to use the Load()
method to load the EntityCollection of order items and then iterate through this collection, calculating
the sum of the amount for each order item.

Another way to get the same result is to push the iteration to the data store layer, letting it compute
the total amount. The advantage to this second approach is that we avoid the potentially costly overhead
of materializing each order item for the sole purpose of summing the total order amount. To implement
this second approach, follow the pattern shown in Listing 5-9.

Listing 5-9. Applying an aggregate operator on related entities without loading them

using (var context = new EFRecipesEntities())
{
 var order = new Order { CustomerName = "Jenny Craig",
 OrderDate = DateTime.Parse("3/12/2010") };
 var item1 = new OrderItem { Order = order, Shipped = 3, SKU = 2827,
 UnitPrice = 12.95M };
 var item2 = new OrderItem { Order = order, Shipped = 1, SKU = 1918,
 UnitPrice = 19.95M };
 var item3 = new OrderItem { Order = order, Shipped = 3, SKU = 392,
 UnitPrice = 8.95M };
 context.Orders.AddObject(order);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 // assume we have an instance of Order
 var order = context.Orders.First();

 // get the total order amount
 var amt = order.OrderItems.CreateSourceQuery()
 .Sum(o => (o.Shipped * o.UnitPrice));
 Console.WriteLine("Order Number: {0}", order.OrderId.ToString());
 Console.WriteLine("Order Date: {0}", order.OrderDate.ToShortDateString());
 Console.WriteLine("Order Total: {0}", amt.ToString("C"));
}

The following is the output of the code in Listing 5-9:

Order Number: 6

Order Date: 3/12/2010

Order Total: $85.65

173

CHAPTER 5 LOADING ENTITIES AND NAVIGATION PROPERTIES

How It Works
In Listing 5-9, we use the CreateSourceQuery() method to get access to the query used to retrieve the
order item EntityCollection. Once we have the query, we apply the Sum() method, passing in a lambda
expression that calculates the item total. The resulting sum over the collection is the order total. This
entire expression is converted to the appropriate store layer commands and executed in the storage
layer, saving the cost of materializing each order item.

This simple example demonstrates the flexibility of the CreateSourceQuery() method to modify the
query used to retrieve the underlying associated entity collection. In this case, we leveraged the query
without actually loading the collection.

5-8. Testing Whether an Entity Reference or
Entity Collection Is Loaded

Problem
You want to test whether the related entity or entity collection is loaded in the object context.

Solution
Entity Framework exposes the IsLoaded property that, under most circumstances, is true if the entity or
entity collection is loaded and available in the object context. IsLoaded is available on the navigation
property if it is an entity collection. For entity references, IsLoaded is available on a property with the
same name as the navigation property with the word “Reference” appended. For example, if the
navigation property is Order, IsLoaded would be available on the OrderReference property.

To demonstrate the use of IsLoaded, let’s assume you have a model like the one shown in Figure
5-9.

Figure 5-9. A model for projects, managers, and contractors

The model in Figure 5-9 represents projects, the managers for the projects, and the contractors that
work on the project. To test whether an entity or entity reference is loaded into the object context, follow
the pattern in Listing 5-10.

174

 CHAPTER 5 LOADING ENTITIES AND NAVIGATION PROPERTIES

Listing 5-10. Using IsLoaded to determine whether an entity or entity collection is in the object context

using (var context = new EFRecipesEntities())
{
 var man1 = new Manager { Name = "Jill Stevens" };
 var proj = new Project { Name = "City Riverfront Park", Manager = man1 };
 var con1 = new Contractor { Name = "Robert Alvert", Project = proj };
 var con2 = new Contractor { Name = "Alan Jones", Project = proj };
 var con3 = new Contractor { Name = "Nancy Roberts", Project = proj };
 context.Projects.AddObject(proj);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 var project = context.Projects.Include("Manager").First();
 if (project.ManagerReference.IsLoaded)
 Console.WriteLine("Manager entity is loaded.");
 else
 Console.WriteLine("Manager entity is NOT loaded.");
 if (project.Contractors.IsLoaded)
 Console.WriteLine("Contractors are loaded.");
 else
 Console.WriteLine("Contractors are NOT loaded.");

 Console.WriteLine("Calling project.Contractors.Load()...");
 project.Contractors.Load();

 if (project.Contractors.IsLoaded)
 Console.WriteLine("Contractors are now loaded.");
 else
 Console.WriteLine("Contractors failed to load.");
}

The following is the output from the code in Listing 5-10:

Manager entity is loaded.

Contractors are NOT loaded.

Calling project.Contractors.Load()...

Contractors are now loaded.

175

CHAPTER 5 LOADING ENTITIES AND NAVIGATION PROPERTIES

How It Works
We use the Include() method to eagerly load the project together with its related manager in the original
query. After the query, we check whether the manager instance is loaded using the
project.ManagerReference.IsLoaded property. Because this is an entity reference, the IsLoaded property
is available on ManagerReference property rather than on Manager property, which is null.

Next, we check whether the Contractor entity collection is loaded. It is not loaded because we didn’t
eagerly load it with the Include() method nor did we load it directly (yet) with the Load() method. Once
we use the Load() method, IsLoaded is set to true.

If lazy loading is enabled on the object context by setting DeferredLoadingEnabled to true, then
IsLoaded is set to true when the entity or entity collection is referenced. The DeferredLoadingEnabled
flag causes Entity Framework to automatically load the entity or entity collection when referenced.

When you use the CreateSourceQuery() method to grab the query for loading the entity or entity
collection, Entity Framework will not set IsLoaded when the query is executed.

The exact meaning of IsLoaded can be a little more confusing than it seems it should be. IsLoaded is
set by the results of a query, by calling the Load() method, or implicitly by the span of relationship keys.
When you query for an entity, there is an implicit query for the key of the related entity. If the result of
this implicit query is a null key value, then IsLoaded is set to true, indicating there is no related entity in
the database. This is the same value for IsLoaded we would expect if we did an explicit load on the
relationship and found no related entity.

5-9. Loading Related Entities Explicitly

Problem
You want to directly load related entities.

Solution
Let’s say you have a model like the one in Figure 5-10.

Figure 5-10. A model for doctors, their patients, and appointments

176

 CHAPTER 5 LOADING ENTITIES AND NAVIGATION PROPERTIES

The model depicted in Figure 5-10 represents doctors, their patients, and appointments. To
explicitly load related entities, follow the pattern in Listing 5-11.

Listing 5-11. Using the Load() method

using (var context = new EFRecipesEntities())
{
 var doc1 = new Doctor { Name = "Joan Meyers" };
 var doc2 = new Doctor { Name = "Steven Mills" };
 var pat1 = new Patient { Name = "Bill Rivers" };
 var pat2 = new Patient { Name = "Susan Stevenson" };
 var pat3 = new Patient { Name = "Roland Marcy" };
 var app1 = new Appointment { Date = DateTime.Today, Doctor = doc1,
 Fee = 109.92M, Patient = pat1,
 Reason = "Checkup" };
 var app2 = new Appointment { Date = DateTime.Today, Doctor = doc2,
 Fee = 129.87M, Patient = pat2,
 Reason = "Arm Pain" };
 var app3 = new Appointment { Date = DateTime.Today, Doctor = doc1,
 Fee = 99.23M, Patient = pat3,
 Reason = "Back Pain" };
 context.Doctors.AddObject(doc1);
 context.Doctors.AddObject(doc2);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 var doc = context.Doctors.First(o => o.Name == "Joan Meyers");
 if (!doc.Appointments.IsLoaded)
 {
 doc.Appointments.Load();
 Console.WriteLine("Dr. {0}'s appointments were lazy loaded.", doc.Name);
 }
 Console.WriteLine("Dr. {0} has {1} appointment(s).", doc.Name,
 doc.Appointments.Count().ToString());

 foreach (var app in context.Appointments)
 {
 if (!app.DoctorReference.IsLoaded)
 {
 app.DoctorReference.Load();
 Console.WriteLine("Dr. {0} was lazy loaded.", app.Doctor.Name);
 }
 else
 Console.WriteLine("Dr. {0} was already loaded.", app.Doctor.Name);
 }

 Console.WriteLine("There are {0} appointments for Dr. {1}",
 doc.Appointments.Count().ToString(), doc.Name);
 doc.Appointments.Clear();
 Console.WriteLine("Collection clear()'ed");

177

CHAPTER 5 LOADING ENTITIES AND NAVIGATION PROPERTIES

 Console.WriteLine("There are now {0} appointments for Dr. {1}",
 doc.Appointments.Count().ToString(), doc.Name);
 doc.Appointments.Load();
 Console.WriteLine("Collection loaded()'ed");
 Console.WriteLine("There are now {0} appointments for Dr. {1}",
 doc.Appointments.Count().ToString(), doc.Name);
 doc.Appointments.Load(MergeOption.OverwriteChanges);
 Console.WriteLine("Collection loaded()'ed with MergeOption.OverwriteChanges");
 Console.WriteLine("There are now {0} appointments for Dr. {1}",
 doc.Appointments.Count().ToString(), doc.Name);
}

The output of the code in Listing 5-11 is the following:

Dr. Joan Meyers's appointments were lazy loaded.

Dr. Joan Meyers has 2 appointment(s).

Dr. Steven Mills was lazy loaded.

Dr. Joan Meyers was already loaded.

Dr. Joan Meyers was already loaded.

There are 2 appointments for Dr. Joan Meyers

Collection clear()'ed

There are now 0 appointments for Dr. Joan Meyers

Collection loaded()'ed

There are now 0 appointments for Dr. Joan Meyers

Collection loaded()'ed with MergeOPtion.OverwriteChanges

There are now 2 appointments for Dr. Joan Meyers

How It Works
After inserting some sample data into our database, the first bit of code retrieves an instance of the
Doctor entity. It is good practice to use the IsLoaded property to check whether the entity or entity
collection is already loaded. In the code, we check whether the doctor’s appointments are loaded. If not,
we use the Load() method to load them.

In the foreach loop, we iterate through the appointments, checking if the associated doctor is
loaded. Notice in the output that one doctor was already loaded while the other one was not. This is
because our first query retrieved this doctor. During the retrieval process for the appointments, Entity
Framework connected the loaded instance of the doctor with her appointments. This process is
informally referred to as relationship span. Relationship span will not fix up all associations. In
particular, it will not tie in entities across a many-to-many association.

In the last bit of code, we print the number of appointments we have for the doctor. Then we clear
the collection from the context using the Clear() method. The Clear() method empties the entity

178

 CHAPTER 5 LOADING ENTITIES AND NAVIGATION PROPERTIES

collection; it does not remove the instances from memory because they are still in the object context–
they are just no longer connected to this instance of the Doctor entity.

Somewhat surprisingly, after we call Load() to reload the appointments, we see from the output that
no appointments are in our collection! What happened? It turns out that the Load() method is
overloaded to take a parameter that controls how the loaded entities are merged into the object context.
The default behavior for the Load() method is MergeOption.AppendOnly, which simply appends instances
that are not already in the object context. In our case, none of the appointments was actually removed
from the object context. Our use of the Clear() method simply removed them from the entity collection,
not the object context. When we called Load() with the default MergeOption.AppendOnly, no new
instances were found, so nothing was added to the entity collection. Other merge options include
NoTracking, OverwriteChanges, and PreserveChanges. When we use the OverwriteChanges option, the
appointments appear in the Doctor’s Appointments.

The NoTracking option turns off object state tracking for the loaded instances. With NoTracking,
Entity Framework will not track changes to the object and will not be aware that the object is loaded into
the context. The NoTracking option can be used on a navigation property of an object only if the object
was loaded with the NoTracking option. NoTracking has one additional side effect. If we had loaded an
instance of the Doctor entity with NoTracking, loading the appointments with the Load() method would
also occur with NoTracking, regardless of the default AppendOnly option.

The OverwriteChanges option will replace the current instance with the one found in the database.
This option is particularly useful if you need to discard changes made in the context and refresh them
from the database. This would be helpful, for example, in implementing an “undo” operation in an
application.

The PreserveChanges option is, essentially, the opposite of the OverwriteChanges option and is
typically used to force changes to objects in certain error recovery scenarios.

There are some restrictions on when you can use Load(). Load() cannot be called on an entity that is
in the Added, Deleted, or Detached state.

The Load() method can be helpful in improving performance by restricting how much of a
collection is loaded at any one time. For example, suppose our doctors had lots of appointments, but in
many cases we needed to work with just a few of them. In the rare case we need the entire collection, we
can simply call Load() to append the remaining appointment instances to the object context. This is
demonstrated in the code snippet in Listing 5-12.

Listing 5-12. Code snippet demonstrating partial loading of an entity collection

using (var context = new EFRecipesEntities())
{
 // load the first doctor and attach just the first appointment
 var doc = context.Doctors.First(o => o.Name == "Joan Meyers");
 doc.Appointments.Attach(doc.Appointments.CreateSourceQuery().Take(1));
 Console.WriteLine("Dr. {0} has {1} appointments loaded.", doc.Name,
 doc.Appointments.Count().ToString());

 // when we need all of the remaining appointments, simply Load() them
 doc.Appointments.Load();
 Console.WriteLine("Dr. {0} has {1} appointments loaded.", doc.Name,
 doc.Appointments.Count().ToString());
}

The output of the code snippet in Listing 5-12 is the following:

179

CHAPTER 5 LOADING ENTITIES AND NAVIGATION PROPERTIES

Dr. Joan Meyers has 1 appointments loaded.

Dr. Joan Meyers has 2 appointments loaded.

5-10. Filtering an Eagerly Loaded Entity Collection

Problem
You want to filter an eagerly loaded collection.

Solution
Entity Framework does not support a filtering predicate with the Include() method, but we can
accomplish the same thing by creating an anonymous type that includes the entity along with the
filtered collection of related entities.

Let’s assume you have a model like the one in Figure 5-11.

Figure 5-11. A model for movies and their categories

To eagerly load and filter both the categories and their associated movies, follow the pattern in
Listing 5-13.

Listing 5-13. Filtering an eagerly loaded entity collection

using (var context = new EFRecipesEntities())
{
 var cat1 = new Category { Name = "Science Fiction", ReleaseType = "DVD" };
 var cat2 = new Category { Name = "Thriller", ReleaseType = "Blu-Ray" };
 new Movie { Name = "Return to the Moon", Category = cat1, Rating = "PG-13" };
 new Movie { Name = "Street Smarts", Category = cat2, Rating = "PG-13" };
 new Movie { Name = "Alien Revenge", Category = cat1, Rating = "R" };
 new Movie { Name = "Saturday Nights", Category = cat1, Rating = "PG-13" };
 context.Categories.AddObject(cat1);
 context.Categories.AddObject(cat2);
 context.SaveChanges();
}

180

 CHAPTER 5 LOADING ENTITIES AND NAVIGATION PROPERTIES

using (var context = new EFRecipesEntities())
{
 // filter on ReleaseType and Rating
 // create collection of anonymous types
 var cats = from c in context.Categories
 where c.ReleaseType == "DVD"
 select new
 {
 category = c,
 movies = c.Movies.Where(m => m.Rating == "PG-13")
 };

 Console.WriteLine("PG-13 Movies Released on DVD");
 Console.WriteLine("============================");
 foreach (var c in cats)
 {
 Category category = c.category;
 Console.WriteLine("Category: {0}", category.Name);
 foreach (var m in category.Movies)
 {
 Console.WriteLine("\tMovie: {0}", m.Name);
 }
 }
}

The code in Listing 5-13 produces the following output:

PG-13 Movies Released on DVD

============================

Category: Science Fiction

 Movie: Return to the Moon

 Movie: Saturday Nights

How It Works
We start off in Listing 5-13 creating and initializing the categories and movies. To keep things short,
we’ve created only a couple of categories and four movies. Notice that we don’t really need to keep
references to the movies we create because we connect them immediately to their category. All we need
to do is add the categories to the object context and call SaveChanges(). Entity Framework does the work
of saving the entire object graph to the database.

In the query, we create a collection of anonymous types with the category instance and the filtered
collection of movies in the category. The query also filters the category collection retrieving only
categories whose movies are released on DVD. In this example, just one category was released on DVD.

181

CHAPTER 5 LOADING ENTITIES AND NAVIGATION PROPERTIES

Here we rely on relationship span to attach the movies to the categories. There is no need to explicitly
Attach() the movies.

5-11. Using Relationship Span

Problem
You have a self-referencing association and you want to load all the entities and create the hierarchy
without explicitly traversing the entire graph.

Solution
Suppose you have a model like the one in Figure 5-12.

Figure 5-12. A model with a self-referencing association

The model in Figure 5-12 describes an associate reporting hierarchy for three types of associates:
Project Manager, Supervisor, and CEO. The key feature of the model is the self-referencing association
that defines the reporting hierarchy.

We have discussed in other recipes how to traverse a hierarchy such as this using recursion on both
the client side and the server (database) side. Our goal here is to load the entire hierarchy letting
relationship span fix up the associations to form the hierarchy.

In Listing 5-14, we use the ToList() method to cause the materialization of all the associates and the
fix-up of the relationships. Once all the associates are in memory, we use the recursive PrintDetails()
method to print the reporting hierarchy.

182

 CHAPTER 5 LOADING ENTITIES AND NAVIGATION PROPERTIES

Listing 5-14. Using ToList() to cause the creation of the entire hierarchy via relationship span

static void RunExample()
{
 using (var context = new EFRecipesEntities())
 {
 var ceo = new CEO { Name = "Joan Miller" };
 var super = new Supervisor { Name = "Bill Mayer", Manager = ceo };
 var pm = new ProjectManager { Name = "Jill Williams", Manager = super };
 context.Associates.AddObject(ceo);
 context.SaveChanges();
 }

 using (var context = new EFRecipesEntities())
 {
 var ceo = context.Associates.First(a => a.ReportsTo == null);
 var associates = context.Associates.ToList();
 PrintDetails(ceo);
 }
}

static void PrintDetails(Associate associate)
{
 Console.WriteLine("{0} is a {1}", associate.Name, associate.GetType().Name);
 Console.WriteLine("\t{0} reports to {1}",associate.Name,
 associate.Manager != null ? associate.Manager.Name : "No One!");
 foreach (var e in associate.TeamMembers)
 {
 PrintDetails(e);
 }
}

The following is the output of the code in Listing 5-14:

Joan Miller is a CEO

 Joan Miller reports to No One!

Bill Mayer is a Supervisor

 Bill Mayer reports to Joan Miller

Jill Williams is a ProjectManager

 Jill Williams reports to Bill Mayer

183

CHAPTER 5 LOADING ENTITIES AND NAVIGATION PROPERTIES

How It Works
The key to Listing 5-14 is using the ToList() method to cause the execution of the query retrieving all the
associates. When the objects are materialized, not only are they brought into the object context but their
associations are also fully realized. This means that the entire hierarchy is created without our code
recursively loading or attaching each level of the hierarchy.

Let’s look a little deeper into relationship span and how Entity Framework wires together all the
associations in scenarios such as the one in Listing 5-14.

When Entity Framework loads an entity, it also loads all the associations that or 0..1 or one-to-one.
Remember, associations are first-class objects just like entities. Entity Framework creates three entries in
the object state manager. First, it creates the entry for the entity. Next, it creates an entry for the
association. Finally, it creates an entry stub for the other end of the association that is not yet loaded.

In our example, when an Associate entity is loaded, Entity Framework creates an entry for the entity,
an entry for the association, and finally, an entry stub for the Associate entity. The stub is a placeholder
for the entity on the other end of the Manager relationship. The stub is a placeholder because the related
associate has not yet been loaded into the object context. The stub has a valid entity key, even though
the entity has not yet been loaded. It is this stub entry with the entity key that allows Entity Framework
to complete the association once the related entity is loaded into the object context.

The process in which the stub entry for the association is replaced with the actual entity when the
related entity is loaded is called relationship span. The result of relationship span is that the association
is completed without your code explicitly connecting the entities. By retrieving all the entities as we did
in Listing 5-14, Entity Framework progressively completed the associations as the entities were loaded.

5-12. Modifying Foreign Key Associations

Problem
You want to modify a foreign key association.

Solution
Entity Framework provides a couple of ways to modify a foreign key association. You can add the
associated entity to a navigation property collection or assign it to a navigation property. You can also
set the foreign key value with the associated entity’s key value.

Suppose you have a model like the one shown in Figure 5-13.

Figure 5-13. A model for clients and invoices

184

 CHAPTER 5 LOADING ENTITIES AND NAVIGATION PROPERTIES

To modify the foreign key association between client entities and invoice entities in two different ways,
do the following:

1. Right-click your project and select Add New ADO.NET Entity Data Model.
Import the Client and Invoice tables. Be sure to check the Include foreign key
columns in the model check box as shown in Figure 5-14. This will cause the
relationships in the database that are not many-to-many to be imported as
foreign key associations.

2. Use the code in Listing 5-15 to demonstrate the ways in which a foreign key
association can be modified.

Figure 5-14. Checking the Include foreign key columns in the model check box means that foreign key

associations will be created for the imported database relationships that are not many-to-many.

Listing 5-15. Demonstrating the ways in which a foreign key association can be modified

using (var context = new EFRecipesEntities())
{
 var client1 = new Client { Name = "Karen Standfield", ClientId = 1 };
 var invoice1 = new Invoice { InvoiceDate = DateTime.Parse("4/1/10"), Amount = 29.95M };
 var invoice2 = new Invoice { InvoiceDate = DateTime.Parse("4/2/10"), Amount = 49.95M };
 var invoice3 = new Invoice { InvoiceDate = DateTime.Parse("4/3/10"), Amount = 102.95M };
 var invoice4 = new Invoice { InvoiceDate = DateTime.Parse("4/4/10"), Amount = 45.99M };

185

CHAPTER 5 LOADING ENTITIES AND NAVIGATION PROPERTIES

 // add the invoice
 // to the client's collection
 client1.Invoices.Add(invoice1);

 // assign the foreign key
 // directly
 invoice2.ClientId = 1;

 // Attach() and existing
 // row using a "fake" entity
 context.ExecuteStoreCommand(
 "insert into chapter5.client values (2, 'Phil Marlowe')");
 var client2 = new Client { ClientId = 2 };
 context.Clients.Attach(client2);
 invoice3.Client = client2;

 // using the ClientReference
 invoice4.ClientReference.Value = client1;

 // save the changes
 context.Clients.AddObject(client1);
 context.Invoices.AddObject(invoice2);
 context.Invoices.AddObject(invoice3);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 foreach (var client in context.Clients)
 {
 Console.WriteLine("Client: {0}", client.Name);
 foreach (var invoice in client.Invoices)
 {
 Console.WriteLine("\t{0} for {1}",
 invoice.InvoiceDate.ToShortDateString(),
 invoice.Amount.ToString("C"));
 }
 }
}

The following is the output of the code in Listing 5-15:

Client: Karen Standfield

 4/1/2010 for $29.95

 4/4/2010 for $45.99

 4/2/2010 for $49.95

186

 CHAPTER 5 LOADING ENTITIES AND NAVIGATION PROPERTIES

Client: Phil Marlowe

 4/3/2010 for $102.95

How It Works
Entity Framework supports independent associations and foreign key associations. For an independent
association, the association between the entities is tracked separately from the entities and the only way
to change the association is through object references.

With foreign key associations, you can change the association by changing object references or by
directly changing the foreign key property value. Foreign key associations are not used for many-to-
many relationships.

Table 5-1 illustrates the main differences between foreign key associations and independent
associations.

Table 5-1. The Differences between Foreign Key Associations and Independent Associations

Foreign Key Association Independent Association

Can be set using foreign key Can only be set using a navigation property
and navigation properties

Is mapped as a property and Is tracked independently from the entity which means
does not require a separate changing the association does not change the state of the entity
mapping

Data binding scenarios are Data binding is complicated because you have to manually
easier because can bind to create a property that reads the foreign key value from the
a property value entity key or traverse the navigation property to load the related key

Finding the old value for a Accessing an old relationship is complicated because relationships
foreign key is easier are tracked separately
because it is a property of
an entity

To delete an entity that To delete an entity that uses an independent association, you need
uses a foreign key association the entity key and the original values for all reference keys
you only need the entity key

187

CHAPTER 5 LOADING ENTITIES AND NAVIGATION PROPERTIES

188

Table 5-1. Continued

Foreign Key Association Independent Association

N-Tier scenarios are easier The client must send the related end’s entity key value
because you don’t have to send along with the entity When the entity is attached, Entity.
the related end’s entity key Framework will create a stub entry and the update
along with the entity statement includes the related end’s entity key

Three representations of the Two representations are kept in sync: the reference and
same association are kept in the navigation property
sync: the foreign key, the
reference, and the collection
navigation property on the
other side. This is handled by
Entity Framework with the
default code generation, but
with POCO, you need to keep
these synchronized

When you load a related entity, When you load a related entity, the foreign key value
Entity Framework uses the is read from the database and based on this value, the
foreign key value currently related entity is loaded
assigned on the entity not
the foreign key value in the
database

C H A P T E R 6

Beyond the Basics with Modeling
and Inheritance

By now you have a solid understanding of basic modeling techniques in Entity Framework. In this
chapter you will find recipes that will help you address many common and often complex modeling
problems. The recipes in this chapter specifically address problems you are likely to face in modeling
existing, real-world databases.

We start this chapter working with many-to-many relationships. This type of relationship is very
common in many modeling scenarios in both existing databases and new projects. Next, we’ll look at
self-referencing relationships and explore various strategies for retrieving nested object graphs. We
round out this chapter with several recipes involving more advanced modeling of inheritance and entity
conditions.

6-1. Retrieving the Link Table in a Many-to-Many Association

Problem
You want to retrieve the keys in the link table that connect two entities in a many-to-many association.

Solution
Let’s say you have a model with a many-to-many association between Event and Organizer entities, as
shown in Figure 6-1.

Figure 6-1. Many-to-many association between Event and Organizer entities

189

CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

As we illustrated in several recipes in Chapter 2, a many-to-many relationship is represented in a
database using an intermediate table called a link table. The link table holds the foreign keys on each
side of the relationship (see Figure 6-2). When a link table with no additional columns and the related
tables are imported into Entity Framework, the Entity Data Model Wizard creates a many-to-many
association between the related tables. The link table is not represented as an entity; however, it is used
internally for the many-to-many association.

Figure 6-2. A database diagram showing the EventOrganizer link table holding the foreign keys to the

related Event and Organizer tables

To retrieve the entity keys EventId and OrganizerId, we can use either a nested from clause or the
SelectMany() method. Listing 6-1 shows both approaches.

Listing 6-1. Retrieving a link table using both a nested from clause and the SelectMany() method

using (var context = new EFRecipesEntities())
{
 var org = new Organizer { Name = "Community Charity" };
 var evt = new Event { Name = "Fundraiser" };
 org.Events.Add(evt);
 context.Organizers.AddObject(org);
 org = new Organizer { Name = "Boy Scouts" };
 evt = new Event { Name = "Eagle Scout Dinner" };
 org.Events.Add(evt);
 context.Organizers.AddObject(org);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 var evsorg1 = from ev in context.Events
 from organizer in ev.Organizers
 select new { ev.EventId, organizer.OrganizerId };
 Console.WriteLine("Using nested from clauses...");
 foreach (var pair in evsorg1)
 {
 Console.WriteLine("EventId {0}, OrganizerId {1}",
 pair.EventId.ToString(),
 pair.OrganizerId.ToString());
 }

 var evsorg2 = context.Events
 .SelectMany(e => e.Organizers,
 (ev, org) => new { ev.EventId, org.OrganizerId });
 Console.WriteLine("\nUsing SelectManay()");

190

 CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

 foreach (var pair in evsorg2)
 {
 Console.WriteLine("EventId {0}, OrganizerId {1}",
 pair.EventId.ToString(), pair.OrganizerId.ToString());
 }
}

The output of the code in Listing 6-1 should be something like the following:

Using nested from clauses...

EventId 31, OrganizerId 87

EventId 32, OrganizerId 88

Using SelectManay()

EventId 31, OrganizerId 87

EventId 32, OrganizerId 88

How It Works
A link table is a common way of representing a many-to-many relationship between two tables in a
database. Because it serves no purpose other than defining the relationship between two tables, Entity
Framework represents a link table as a many-to-many association, not as a separate entity.

The many-to-many association between Event and Organizer allows easy navigation from an Event
entity to the associated organizers and from an Organizer entity to all the associated events. However,
you may want to retrieve just the keys in the link table. You may want to do this because the keys are
themselves meaningful or you want to use these keys for operations on these or other entities. The
problem here is that the link table is not represented as an entity so querying it directly is not an option.
In Listing 6-1, we show a couple of ways to get just the underlying keys without materializing the entities
on each side of the association.

The first approach in Listing 6-1 uses nested from clauses to retrieve the organizers for each event.
Using the Organizers navigation property on the instances of the Event entity leverages the underlying
link table to enumerate all the organizers for each of the events. We reshape the results to the pairs of
corresponding keys for the entities. Finally, we iterate through the results, printing the pair of keys to the
console.

In the second approach, we use the SelectMany() method to project the organizers for each event
into the pairs of keys for the events and organizers. As with the nested from clauses, this approach uses
the underlying link table through the Organizers navigation property. We iterate through the results in
the same way as with the first approach.

191

CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

6-2. Exposing a Link Table as an Entity

Problem
You want to expose a link table as an entity instead of a many-to-many association.

Solution
Let’s say your database has a many-to-many relationship between workers and tasks and looks
something like the one in the database diagram in Figure 6-3.

Figure 6-3. A many-to-many relationship between workers and tasks

The WorkerTask link table contains nothing more than the foreign keys supporting the many-to-many
relationship. When we import these tables into our model, the designer will create two entities with a
many-to-many association as shown in Figure 6-4.

Figure 6-4. A many-to-many association between the Worker and Task entities

To convert the association to an entity representing the WorkerTask link table, follow these steps.

1. Delete the many-to-many association created by the designer. To delete the
association, right-click the link and select Delete. When prompted to delete the
WorkerTask table from the underlying store model, click No (see Figure 6-5).

2. Right-click the design surface and select Add Entity. Name the new entity
WorkerTask and uncheck the Create key property box.

3. Right-click the WorkerTask entity and select Add Scalar property. Rename
the property WorkerId. Repeat this step, adding TaskId scalar property.

192

 CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

4. Right-click each scalar property and select Properties. Change the type for
each property from String to Int32. Mark both properties as entity key
properties by right-clicking the property and selecting Entity Key.

5. Select the WorkerTask entity. In the Mapping Details window select
WorkerTask in the Add Table or View drop-down control. This maps the entity
to the WorkerTask table.

6. Map the WorkerId and TaskId properties to the WorkerId column and TaskId
columns, respectively. See Figure 6-6.

7. Right-click the design surface and select Add Association to add a one-to-
many association between the Task entity and the WorkerTask entity. Make
sure that WorkerTask is on the many side of the association. Be sure to
uncheck the Add foreign key properties check box because we’ve already
created the foreign key properties. Repeat this step to create a one-to-many
association between the Worker entity and the WorkerTask entity.

8. Now we need to create a referential constraint between the Task entity and the
WorkerTask entity. This will complete the foreign key association between
these entities. Right-click the association link and select Properties. In the
properties for the association, click the Referential Constraint box. In the
dialog box, choose Task as the Principal and WorkerTask as the Dependent.
Choose TaskId as the Principal Key and TaskId as the Dependent Key. See
Figure 6-7. Repeat this step to build the referential constraint for the
association between the Worker entity and the WorkerTask entity.

The final model should look like the one in Figure 6-8.

Figure 6-5. Answer No, don’t delete the underlying WorkerTask table from the store model

193

CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

Figure 6-6. Mapping the WorkerTask table to the WorkerTask entity in the Mapping Details window.

Make sure that the WorkerId column is mapped to the WorkerId property and the TaskId property is

mapped to the TaskId column.

Figure 6-7. Building the referential constraint between the Task entity and the WorkerTask entity. TaskId

is the key on both sides of the constraint.

Figure 6-8. The completed model with the WorkerTask link table exposed as an entity in two one-to-many

associations

194

 CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

How It Works
When a payload-free link table in a many-to-many relationship is imported into a model, the designer
will create entities to represent the related tables and will represent the link table as a many-to-many
association. During the application development lifecycle, developers often find the need to add payload
to the many-to-many associations that started life payload-free. In this recipe, we show how to surface
the many-to-many association as a separate entity so that additional scalar properties (i.e., payload) can
be added.

Of course, if your many-to-many relationship started life with a payload, the designer will create a
model similar to the one shown in Figure 6-8 when it is imported. Many developers choose to assume
that all many-to-many relationships will ultimately hold a payload and create a synthetic key for the link
table rather than the traditional composite key formed by combining the foreign keys. This new key
becomes a payload and now, when imported, the designer will start off with a model like the one shown
in Figure 6-8.

The downside to our new model is that we do not have a simple way to navigate the many-to-many
association. We have two one-to-many associations that require an additional hop through the linking
entity. The code in Listing 6-2 demonstrates this additional bit of work on both the insert side and the
query side.

Listing 6-2. Inserting into and retrieving Task and Worker entities

using (var context = new EFRecipesEntities())
{
 var worker = new Worker { Name = "Jim" };
 var task = new Task { Title = "Fold Envelopes" };
 var workertask = new WorkerTask { Task = task, Worker = worker };
 context.WorkerTasks.AddObject(workertask);
 task = new Task { Title = "Mail Letters" };
 workertask = new WorkerTask { Task = task, Worker = worker };
 context.WorkerTasks.AddObject(workertask);
 worker = new Worker { Name = "Sara" };
 task = new Task { Title = "Buy Envelopes" };
 workertask = new WorkerTask { Task = task, Worker = worker };
 context.WorkerTasks.AddObject(workertask);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 context.ContextOptions.LazyLoadingEnabled = true;
 Console.WriteLine("Workers and Their Tasks");
 Console.WriteLine("=======================");
 foreach (var worker in context.Workers)
 {
 Console.WriteLine("\n{0}'s tasks:", worker.Name);
 foreach (var wt in worker.WorkerTasks)
 {
 Console.WriteLine("\t{0}", wt.Task.Title);
 }
 }
}

195

CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

The code in Listing 6-2 produces the following output:

Workers and Their Tasks

=======================

Jim's tasks:

 Fold Envelopes

 Mail Letters

Sara's tasks:

 Buy Envelopes

6-3. Modeling a Many-to-Many, Self-Referencing
Relationship

Problem
You have a table with a many-to-many relationship with itself and you want to model this table and
relationship.

Solution
Let’s say you have a table that has relationship to itself using a link table, as shown in Figure 6-9.

Figure 6-9. A table with a many-to-many relationship to itself

To create a model, do the following:

196

 CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

1. Add a new ADO.NET Entity Data Model to your project and import the Product
and RelatedProduct tables.

2. Rename the Product1 navigation property to RelatedProducts. Rename the
Products2 navigation property to OtherRelatedProducts.

The completed model is shown in Figure 6-10.

Figure 6-10. Product entity with a many-to-many association with itself

How It Works
As you can see, the Entity Framework designer supports a many-to-many, self-referencing association
with little effort. We imported the existing table and changed the navigation property names to
something more appropriate.

The code in Listing 6-3 inserts a few related products and retrieves the related products. To retrieve
all the related products for a given product, we need to traverse both the RelatedProducts navigation
property and the OtherRelatedProducts navigation property.

Tent is related to Ground Cover through the RelatedProducts navigation property because we added
Ground Cover to Tent’s RelatedProducts collection. Pole is related to Tent through Tent’s
OtherRelatedProducts collection because we added Tent to Pole’s RelatedProducts collection. The
associations go both ways. In one direction, it’s a related product. In the other direction, it’s an
OtherRelatedProduct.

Listing 6-3. Retrieving the related products

using (var context = new EFRecipesEntities())
{
 var product1 = new Product { Name = "Pole", Price = 12.97M };
 var product2 = new Product { Name = "Tent", Price = 199.95M };
 var product3 = new Product { Name = "Ground Cover", Price = 29.95M };
 product2.RelatedProducts.Add(product3);
 product1.RelatedProducts.Add(product2);
 context.Products.AddObject(product1);
 context.SaveChanges();
}

197

CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

using (var context = new EFRecipesEntities())
{
 var product2 = context.Products.Include("RelatedProducts")
 .Include("OtherRelatedProducts")
 .First(p => p.Name == "Tent");
 Console.WriteLine("Product: {0} ... {1}", product2.Name,
 product2.Price.ToString("C"));
 Console.WriteLine("Related Products");
 foreach (var prod in product2.RelatedProducts)
 {
 Console.WriteLine("\t{0} ... {1}", prod.Name, prod.Price.ToString("C"));
 }
 foreach (var prod in product2.OtherRelatedProducts)
 {
 Console.WriteLine("\t{0} ... {1}", prod.Name, prod.Price.ToString("C"));
 }
}

The output of Listing 6-3 is the following:

Product: Tent ... $199.95

Related Products

 Ground Cover ... $29.95

 Pole ... $12.97

The code in Listing 6-3 retrieves only the first level of related products. If we assume that the
“related products” relationship is transitive, we might want to form the transitive closure. The transitive
closure would be all related products regardless of how many hops away they may be. In an eCommerce
application, the first level of related products could be created by product specialists. Additional levels
could be derived by computing the transitive closure. The end result would allow the application to
show the familiar “…you may also be interested in …” message we often see during the checkout
process.

In Listing 6-4, we use a recursive method to form the transitive closure. In traversing the both the
RelatedProducts and OtherRelatedProducts associations we need to be careful not to get stuck in a cycle.
If product A is related to B, and B is related to A, our application would get trapped in the recursion. To
detect cycles, we use a Dictionary<> to help prune off paths we have already traversed.

Listing 6-4. Forming the transitive closure of the “Related Products” relationship

static void RunExample2()
{
 using (var context = new EFRecipesEntities())
 {
 var product1 = new Product { Name = "Pole", Price = 12.97M };
 var product2 = new Product { Name = "Tent", Price = 199.95M };
 var product3 = new Product { Name = "Ground Cover", Price = 29.95M };

198

 CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

 product2.RelatedProducts.Add(product3);
 product1.RelatedProducts.Add(product2);
 context.Products.AddObject(product1);
 context.SaveChanges();
 }

 using (var context = new EFRecipesEntities())
 {
 var product1 = context.Products.First(p => p.Name == "Pole");
 Dictionary<int, Product> t = new Dictionary<int, Product>();
 GetRelated(product1, t);
 Console.WriteLine("Products related to {0}", product1.Name);
 foreach (var key in t.Keys)
 {
 Console.WriteLine("\t{0}", t[key].Name);
 }
 }
}

static void GetRelated(Product p, Dictionary<int, Product> t)
{
 p.RelatedProducts.Load();
 foreach (var relatedProduct in p.RelatedProducts)
 {
 if (!t.ContainsKey(relatedProduct.ProductId))
 {
 t.Add(relatedProduct.ProductId, relatedProduct);
 GetRelated(relatedProduct, t);
 }
 }
 p.OtherRelatedProducts.Load();
 foreach (var otherRelated in p.OtherRelatedProducts)
 {
 if (!t.ContainsKey(otherRelated.ProductId))
 {
 t.Add(otherRelated.ProductId, otherRelated);
 GetRelated(otherRelated, t);
 }
 }
}

In Listing 6-4, we use the Load() method (see the Recipes in Chapter 5) to ensure that the collections

of related products are loaded. Unfortunately, this means we will end up with many additional round
trips to the database. We might be tempted to load all the rows from the Product table up front and hope
that relationship span would fix up the associations. However, relationship span will not fix up entity
collections, only entity references. Because our associations are many-to-many (entity collections), we
cannot rely on relationship span to help out and we have to resort to using the Load() method.

Following is the output of the code in Listing 6-4. From the first block of code that inserts the
relationships, we can see that a Pole is related to a Tent, and a Tent is related to Ground Cover. The
transitive closure for the products related to a Pole includes a Tent, Ground Cover, and Pole. Pole is
included because it is on the other side of the relationship with Tent, which is a related product.

199

CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

Products related to Pole

 Tent

 Ground Cover

 Pole

6-4. Modeling a Self-Referencing Relationship Using Table
per Hierarchy Inheritance

Problem
You have a table that references itself. The table represents several different but related kinds of objects
in your database. You want to model this table using table per hierarchy inheritance.

Solution
Suppose you have a table like the one in Figure 6-11 that describes some things about people. People
often have a hero, perhaps the individual who inspired them the most. We can represent a person’s hero
with a reference to another row in the Person table.

Each person has some role in life. Some people are firefighters. Some people are teachers. Some
people are retired. Of course, there could be many other roles. Information about people can be specific
to their roles. A firefighter is stationed at a firehouse. A teacher teaches at a school. A retired person often
has a hobby.

Figure 6-11. Person table containing people with different roles

For our example, the possible roles are firefighter (f), teacher (t), or retired (r). The role for a person is
indicated by a single character in the role column.

To create a model, do the following:

200

 CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

1. Add a new ADO.NET Entity Data Model to your project and import the Person
table.

2. Right-click the design surface and select Add Entity. Name the new entity
Firefighter and select Person as the base type. Repeat this step, creating
derived entities for Teacher and Retired.

3. Move the FireStation property from the Person entity to the Firefighter entity.
Move the School property from the Person entity to the Teacher entity. Finally,
move the FullTimeHobby property from the Person entity to the Retired entity.
You can use Cut/Paste to move these scalar properties.

4. Right-click the Person entity and view its properties. Change the Abstract value
to true. This marks the Person entity as an abstract entity.

5. Rename the Person1 navigation property on the Person entity to Fans. This
navigation property represents the person’s fans (people who consider this
person a hero). Rename the Person2 navigation property to Hero.

6. Select the Firefighter entity. In the Mapping Details window, select Add a Table
or View to map the entity to the Person table.

7. In the Mapping Details window for the Firefighter entity, select Add a
Condition. Add the condition for Role = f to conditionally map the Person
table to Firefighter entity when the Role column contains the letter ‘f’.

8. Repeat steps 6 and 7 for the Teacher and Retired entities using the conditions
Role = t and Role = r, respectively.

9. Remove the Role property from the Person entity.

The resulting model should look like the one in Figure 6-12.

Figure 6-12. A model for the Person type and derived types

201

CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

How It Works
The code in Listing 6-5 demonstrates inserting and retrieving from our model. We create a single
instance of each of the derived types and wire in a few hero relationships. We have a teacher who is the
hero of a firefighter and a retired person who is the hero of the teacher. When we set the firefighter as the
hero of the retired person we introduce just enough of a cycle so that Entity Framework generates a
runtime error (an UpdateException) because it cannot determine the appropriate order for inserting the
rows into the table. In the code, we get around this problem by calling the SaveChanges() method before
wiring in any of the hero relationships. Once the rows are committed to the database, and the store-
generated keys are brought back into the object graph, we are free to update the graph with the
relationships. Of course, these changes must be saved with a final call to SaveChanges().

Listing 6-5. Inserting into and retrieving from our model

using (var context = new EFRecipesEntities())
{
 var teacher = new Teacher { Name = "Susan Smith",
 School = "Custer Baker Middle School" };
 var firefighter = new Firefighter { Name = "Joel Clark",
 FireStation = "Midtown" };
 var retired = new Retired { Name = "Joan Collins",
 FullTimeHobby = "Scapbooking" };
 context.People.AddObject(teacher);
 context.People.AddObject(firefighter);
 context.People.AddObject(retired);
 context.SaveChanges();
 firefighter.Hero = teacher;
 teacher.Hero = retired;
 retired.Hero = firefighter;
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 context.ContextOptions.LazyLoadingEnabled = true;
 foreach(var person in context.People)
 {
 if (person.Hero != null)
 Console.WriteLine("\n{0}, Hero is: {1}", person.Name,
 person.Hero.Name);
 else
 Console.WriteLine("{0}", person.Name);
 if (person is Firefighter)
 Console.WriteLine("Firefighter at station {0}",
 ((Firefighter)person).FireStation);
 else if (person is Teacher)
 Console.WriteLine("Teacher at {0}", ((Teacher)person).School);
 else if (person is Retired)
 Console.WriteLine("Retired, hobby is {0}",
 ((Retired)person).FullTimeHobby);
 Console.WriteLine("Fans:");

202

 CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

 foreach (var fan in person.Fans)
 {
 Console.WriteLine("\t{0}", fan.Name);
 }
 }
}

The output from the code in Listing 6-5 is the following:

Susan Smith, Hero is: Joan Collins

Teacher at Custer Baker Middle School

Fans:

 Joel Clark

Joel Clark, Hero is: Susan Smith

Firefighter at station Midtown

Fans:

 Joan Collins

Joan Collins, Hero is: Joel Clark

Retired, hobby is Scapbooking

Fans:

 Susan Smith

203

CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

6-5. Modeling a Self-Referencing Relationship and Retrieving
a Complete Hierarchy

Problem
You are using a self-referencing table to store hierarchical data. Given a record, you want to retrieve all
associated records that are part of that hierarchy any level deep.

Solution
Suppose you have a Category table like the one in the database diagram in Figure 6-13.

Figure 6-13. Self-referencing Category table

To create our model, do the following:

1. Add a new ADO.NET Entity Data Model to your project and import the
Category table.

2. Change the navigation property Category1 to Subcategories. This property
holds the collection of entities that are subcategories of this entity instance.

3. Change the Category2 navigation property to ParentCategory. This navigation
property references the parent category entity instance.

The resulting model should look like the model in Figure 6-14.

Figure 6-14. Model including the self-referencing Category entity

204

 CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

In our model, the Category entity has a Subcategories navigation property we can use to get the
collection of all the immediate subcategories of the Category. However, to access them we need to
explicitly load them either using the Load() or the Include() methods. The Load() method requires an
additional round trip to the database, while the Include() method provides only a predefined, limited
depth.

We want to bring the entire hierarchy into the object graph as efficiently as possible. To do this, we
use a Common Table Expression in a stored procedure.

To add the stored procedure to our model, do the following:

1. Create a stored procedure called GetSubCategories() that makes use of a
Common Table Expression to return all the subcategories for a CategoryId.
The stored procedure is shown in Listing 6-6.

2. Right-click the design surface and select Update Model from Database. Select
the GetSubCategories stored procedure.

3. Now we need to add the stored procedure to the conceptual model. Open the
Model Browser window. If the Model Browser window is not visible, select
View Other Windows Entity Data Model Browser. Expand the Store model
and the Stored Procedures levels. Right-click the GetSubCategories stored
procedure and select Add Function Import. On the window, make sure
GetSubCategories stored procedure is selected and leave the function Import
Name as it is. Set the return type of the stored procedure to Category in the
Entities box. Figure 6-15 shows the Add Function Import dialog box with the
correct values.

Figure 6-15. Add Function Import dialog box, importing the GetSubCategories() stored procedure into

conceptual layer

205

CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

Listing 6-6. The GetSubCategories() stored procedure that returns subcategories for a given CategoryId

create proc chapter6.GetSubCategories
(@categoryid int)
as
begin
with cats as
 (
 select c1.*
 from chapter6.Category c1
 where CategoryId = @categoryid
 union all
 select c2.*
 from cats join chapter6.Category c2 on cats.CategoryId = c2.ParentCategoryId
)
 select * from cats where CategoryId != @categoryid
end

With the GetSubCategories() stored procedure imported into the conceptual model, Entity

Framework now exposes a GetSubCategories() method on the object context. We can use this method to
materialize our entire graph of categories and subcategories. The code in Listing 6-7 demonstrates the
use of the GetSubCategories() method.

Listing 6-7. Retrieving the entire hierarchy using the GetSubCategories() method

using (var context = new EFRecipesEntities())
{
 var book = new Category { Name = "Books" };
 var fiction = new Category { Name = "Fiction", ParentCategory = book };
 var nonfiction = new Category { Name = "Non-Fiction", ParentCategory = book };
 var novel = new Category { Name = "Novel", ParentCategory = fiction };
 var history = new Category { Name = "History", ParentCategory = nonfiction };
 context.Categories.AddObject(book);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 var root = context.Categories.Where(o => o.Name == "Books").First();
 Console.WriteLine("Parent category is {0}, subcategories are:", root.Name);
 foreach (var sub in context.GetSubCategories(root.CategoryId))
 {
 Console.WriteLine("\t{0}", sub.Name);
 }
}

The output from the code in Listing 6-7 is the following:

206

 CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

Parent category is Books, subcategories are:

 Fiction

 Non-Fiction

 History

 Novel

How It Works
Entity Framework supports self-referencing associations, as we have seen in Recipes 6.2 and 6.3. In these
recipes, we directly loaded the entity references and collections using the Load() method. We cautioned,
however, that each Load() results in a round trip to the database to retrieve an entity or entity collection.
For larger object graphs, this database traffic may consume too many resources.

In this recipe, we demonstrated a slightly different approach. Rather than explicitly using Load() to
materialize each entity or entity collection, we pushed the work off to the storage layer by using a stored
procedure to recursively enumerate all the subcategories and return the collection. We used a Common
Table Expression in our stored procedure to implement the recursive query. In our example, we chose to
enumerate all the subcategories. You could, of course, modify the stored procedure to selectively
enumerate elements of the hierarchy.

To use our stored procedure, we first imported it into the model. Then, using the Add Function
Import, we added the imported stored procedure to the conceptual layer. Once added, the stored
procedure was mapped by Entity Framework to a new method, GetSubCategories(), which was available
in the data context. On the conceptual side, the stored procedure is represented in the code snippet
shown in Listing 6-8.

Listing 6-8. GetSubCategories() store procedure represented in the conceptual layer

<Function Name="GetSubCategories" Aggregate="false" BuiltIn="false"
 NiladicFunction="false" IsComposable="false"
 ParameterTypeSemantics="AllowImplicitConversion" Schema="Chapter6">
 <Parameter Name="categoryid" Type="int" Mode="In" />
</Function>

Based on the signature of the stored procedure represented in the FunctionImport tag, Entity

Framework will generate a method in the object context to make the stored procedure available to the
application.

207

CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

6-6. Mapping Null Conditions in Derived Entities

Problem
You have a column in a table that allows null. You want to create a model using Table per Hierarchy
inheritance with one derived type representing instances in which the column has a value and another
derived type representing instances in which the column is null.

Solution
Let’s say you have a table describing experimental medical drugs. The table contains a column
indicating when the drug was accepted for production. Until the drug is accepted for production, it is
considered experimental. Once accepted, it is considered a Medicine. We’ll start with the Drug table in
the database diagram in Figure 6-16.

Figure 6-16. Drug table with the nullable discriminator column, AcceptedDate

To create a model using the Drug table, do the following:

1. Add a new ADO.NET Entity Data Model to your project and import the Drug
table.

2. Create the Experimental derived entity by right-clicking the design surface and
selecting Add Entity. Name the entity Experimental. Select Drug as the base
type. Repeat this step to create the Medicine entity.

3. Move the PrincipalResearcher property from the Drug entity to the
Experimental entity. Move the TargetPrice and AcceptedDate properties from
the Drug entity to the Medicine entity. You can use Cut/Paste to move
properties between entities.

4. Mark the Drug entity as abstract. Right-click the Drug entity and select
Properties. Set the Abstract property to true.

5. Select the Medicine entity. In the Mapping Details window, map the entity to
the Drug table by selecting Add a Table or View and choosing the Drug table.
Select Add a Condition and add the AcceptedDate is Not Null condition.

6. Repeat step 5 for the Experimental entity. This time, set the condition to
AcceptedDate Is Null.

208

 CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

7. Because all instances of Medicine will have a value for the AcceptedDate
property, we need to set the Nullable attribute of this scalar property to False.
This is a key step. Right-click the AcceptedDate property in the Medicine
entity. Select Properties and change the Nullable attribute to False.

The completed model is shown in Figure 6-17.

Figure 6-17. The model for the Experimental and Medicine derived types

How It Works
In this example, we made use of the null and is not null conditions to map a Drug without an
AcceptedDate to an Experimental drug and a Drug with an AcceptedDate to a Medicine. As in many
inheritance examples, we marked the base entity, Drug, as abstract because in our model we would
never have an uncategorized drug.

It is interesting to note that in the Medicine entity we mapped the AcceptedDate discriminator
column to a scalar property. In most scenarios, mapping the discriminator column to scalar property is
prohibited. However, in this example, our use of the null and is not null conditions, as well as marking
the AcceptedDate as not nullable, sufficiently constrains the values for property to allow the mapping.

In Listing 6-9, we insert a couple of Experimental drugs and query the results. We take the
opportunity provided by the exposed AcceptedDate property to demonstrate one way to change an
object from one derived type to another. In our case, we create a couple of Experimental drugs and then
promote one of them to a Medicine.

Listing 6-9. Inserting and retrieving instances of our derived types

class Program
{
 …
 static void RunExample()
 {
 using (var context = new EFRecipesEntities())

209

CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

 {
 var exDrug1 = new Experimental { Name = "Nanoxol",
 PrincipalResearcher = "Dr. Susan James" };
 var exDrug2 = new Experimental { Name = "Percosol",
 PrincipalResearcher = "Dr. Bill Minor" };
 context.Drugs.AddObject(exDrug1);
 context.Drugs.AddObject(exDrug2);
 context.SaveChanges();

 // Nanoxol just got approved!
 exDrug1.PromoteToMedicine(DateTime.Now, 19.99M, "Treatall");
 context.Detach(exDrug1); // better not use this instance any longer
 }

 using (var context = new EFRecipesEntities())
 {
 Console.WriteLine("Experimental Drugs");
 foreach (var d in context.Drugs.OfType<Experimental>())
 {
 Console.WriteLine("\t{0} ({1})", d.Name, d.PrincipalResearcher);
 }

 Console.WriteLine("Medicines");
 foreach (var d in context.Drugs.OfType<Medicine>())
 {
 Console.WriteLine("\t{0} Retails for {1}", d.Name,
 d.TargetPrice.Value.ToString("C"));
 }
 }
 }
}

public partial class Experimental
{
 public void PromoteToMedicine(DateTime acceptedDate, decimal targetPrice,
 string marketingName)
 {
 var drug = new Medicine { DrugId = this.DrugId };
 using (var context = new EFRecipesEntities())
 {
 context.AttachTo("Drugs", drug);
 drug.AcceptedDate = acceptedDate;
 drug.TargetPrice = targetPrice;
 drug.Name = marketingName;
 context.SaveChanges();
 }
 }
}

We change an Experimental drug to a Medicine using the PromoteToMedicine() method. In the

implementation of this method, we create a new Medicine instance, attach it to a new ObjectContext,

210

 CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

and initialize it with the appropriate new values. Once the new instance is attached and initialized, we
use the SaveChanges() method on the ObjectContext to save the new instance to the database. Because
the instance has the same key (DrugId) as the Experimental drug, Entity Framework generates an update
statement rather than an insert statement.

We implemented the PromoteToMedicine() method inside the partial class Experimental. This allows
us to seamlessly add the method to the class and provides for a much cleaner implementation.

The following is the output of the code in Listing 6-9:

Experimental Drugs

 Percosol (Dr. Bill Minor)

Medicines

 Treatall Retails for $19.99

6-7. Modeling Table per Type Inheritance Using a Non-
Primary Key Column

Problem
You have one or more tables that have a one-to-one relationship to a common table using keys that are
not primary keys in the tables. You want to model this using Table per Type inheritance.

Solution
Let’s say your database contains the tables shown in the database diagram in Figure 6-18.

Figure 6-18. A database diagram containing Staff, Principal, and Instructor tables

211

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

In Figure 6-18, we have a Staff table containing the name of the staff member and two related tables
containing information about Principals and Instructors. The important thing to notice here is that the
Principal and Instructor tables have primary keys that are not the foreign keys for the Staff table. This
type of relationship structure is not directly supported in Table per Type inheritance. For Table per
Type, the related tables’ primary keys must also be the foreign key for the primary (base) table. Also
notice that the relationship is one-to-one. This is because we have constrained the StaffId columns in
the Principal and Instructor tables to be unique by creating a unique index on this column in both
tables.

To model the tables and relationships in Figure 6-18 using Table per Type inheritance, do the
following:

1. Add a new ADO.NET Entity Data Model to your project and import the Staff,
Principal, and Instructor tables.

2. Delete the associations between the Principal and the Staff entities and
between the Instructor and the Staff entities.

3. Right-click the Staff entity and choose Add Inheritance. Select Staff as the
base entity and Principal as the derived entity. Repeat this step by selecting
Staff as the base entity and Instructor as the derived entity.

4. Delete the StaffId property from the Instructor and Principal entities.

5. Right-click the Staff entity and choose Properties. Set the Abstract attribute to
True. This marks the Staff entity as abstract.

6. Because the StaffId is not the primary key in either the Principal or the
Instructor tables, we cannot use the default table mapping to map the
Principal, Instructor, or Staff entities. Select each entity, view the Mapping
Details window, and delete the table mapping. Repeat this for each entity.

7. Create the stored procedures in Listing 6-10. We will map these procedures to
the Insert, Update, and Delete actions for the Principal and Instructor entities.

8. Right-click the design surface and select Update Model from Database. Add
the stored procedures you created in step 7.

9. Select the Principal entity and view the Mapping Details window. Click the
Map Entity to Functions button. This is the bottom button on the left of the
Mapping Details window. Map the Insert, Update, and Delete actions to the
stored procedures. Make sure you map the result columns StaffId and
PrincipalId from the Insert action. See Figure 6-19.

10. Repeat step 9 for the Instructor entity. Be sure to map the result columns
StaffId and InstructorId from the Insert action.

11. Right-click the .edmx file in the Solution Explorer and select Open With XML
Editor. This will close the designer and open the .edmx file in the XML editor.
Scroll down to <EntityContainerMapping> tag in the mapping layer. Insert the
QueryView in Listing 6-11 into the <EntitySetMapping> tag.

212

 CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

Figure 6-19. Insert, Update, and Delete actions mapped for the Principal entity

Listing 6-10. Stored procedures for the Insert,Update, and Delete Actions for the Instructor and Principal

entities

create procedure [chapter6].[InsertInstructor]
(@Name varchar(50), @Salary decimal)
as
begin
 declare @staffid int
 insert into Chapter6.Staff(Name) values (@Name)
 set @staffid = SCOPE_IDENTITY()
 insert into Chapter6.Instructor(Salary,StaffId) values (@Salary,@staffid)
 select @staffid as StaffId,SCOPE_IDENTITY() as InstructorId
end
go

create procedure [chapter6].[UpdateInstructor]
(@Name varchar(50), @Salary decimal, @StaffId int, @InstructorId int)
as
begin
 update Chapter6.Staff set Name = @Name where StaffId = @StaffId
 update Chapter6.Instructor set Salary = @Salary where InstructorId =
@InstructorId
end
go

213

CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

create procedure [chapter6].[DeleteInstructor]
(@StaffId int)
as
begin
 delete Chapter6.Staff where StaffId = @StaffId
 delete Chapter6.Instructor where StaffId = @StaffId
end
go

create procedure [Chapter6].[InsertPrincipal]
(@Name varchar(50),@Salary decimal,@Bonus decimal)
as
begin
 declare @staffid int
 insert into Chapter6.Staff(Name) values (@Name)
 set @staffid = SCOPE_IDENTITY()
 insert into Chapter6.Principal(Salary,Bonus,StaffId) values
(@Salary,@Bonus,@staffid)
 select @staffid as StaffId, SCOPE_IDENTITY() as PrincipalId
end
go

create procedure [Chapter6].[UpdatePrincipal]
(@Name varchar(50),@Salary decimal, @Bonus decimal, @StaffId int, @PrincipalId int)
as
begin
 update Chapter6.Staff set Name = @Name where StaffId = @StaffId
 update Chapter6.Principal set Salary = @Salary, Bonus = @Bonus where
PrincipalId = @PrincipalId
end
go

create procedure [Chapter6].[DeletePrincipal]
(@StaffId int)
as
begin
 delete Chapter6.Staff where StaffId = @StaffId
 delete Chapter6.Principal where StaffId = @StaffId
end

Listing 6-11. QueryView for the Instructor and Principal entities

<EntitySetMapping Name="Staffs">
 <QueryView>
 select value
 case
 when (i.StaffId is not null) then
 EFRecipesModel.Instructor(s.StaffId,s.Name,i.InstructorId,i.Salary)
 when (p.StaffId is not null) then
 EFRecipesModel.Principal(s.StaffId,s.Name,p.PrincipalId,p.Salary,p.Bonus)
 END

214

 CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

 from EFRecipesModelStoreContainer.Staff as s
 left join EFRecipesModelStoreContainer.Instructor as i
 on s.StaffId = i.StaffId
 left join EFRecipesModelStoreContainer.Principal as p
 on s.StaffId = p.StaffId
 </QueryView>
</EntitySetMapping>

How It Works
With Table per Type inheritance, Entity Framework requires that the foreign key for the base entity’s
table be the primary keys in the derived entity’s table. In our example, each of the tables for the derived
entities have separate primary keys.

To create a Table per Type inheritance model, we started at the conceptual level by deriving the
Principal and Instructor entities from the Staff entity. Next, we deleted the mappings created when we
imported the table. We then used a QueryView expression to create the new mappings. Using QueryView
pushed the responsibility for the Insert, Update, and Delete actions onto our code. To handle these
actions, we used traditional stored procedures in the database.

We used QueryView to supply the mappings from our underlying tables to the scalar properties
exposed by our derived entities. The key part of the QueryView is the case statement. There are two
cases: either we have a Principal or we have an Instructor. We have an Instructor if the Instructor’s
StaffId is not null. Or, we have a Principal if the Principal’s StaffId is not null. The remaining parts of the
expression bring in the rows from the derived tables.

The code in Listing 6-12 inserts a couple of Principals and one Instructor into our database.

Listing 6-12. Inserting into and retrieving from our model

using (var context = new EFRecipesEntities())
{
 var principal = new Principal { Name = "Robbie Smith",
 Bonus = 3500M, Salary = 48000M };
 var instructor = new Instructor { Name = "Joan Carlson",
 Salary = 39000M };
 context.Staffs.AddObject(principal);
 context.Staffs.AddObject(instructor);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 Console.WriteLine("Principals");
 Console.WriteLine("==========");
 foreach (var p in context.Staffs.OfType<Principal>())
 {
 Console.WriteLine("\t{0}, Salary: {1}, Bonus: {2}",
 p.Name, p.Salary.ToString("C"),
 p.Bonus.ToString("C"));
 }
 Console.WriteLine("Instructors");
 Console.WriteLine("===========");

215

CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

 foreach (var i in context.Staffs.OfType<Instructor>())
 {
 Console.WriteLine("\t{0}, Salary: {1}", i.Name, i.Salary.ToString("C"));
 }
}

The following is the output of the code in Listing 6-12:

Principals

==========

 Robbie Smith, Salary: $48,000.00, Bonus: $3,500.00

Instructors

===========

 Joan Carlson, Salary: $39,000.00

6-8. Modeling Nested Table per Hierarchy Inheritance

Problem
You want to model a table using more than one level of Table per Hierarchy Inheritance.

Solution
Suppose we have an Employee table that contains various types of employees such as Hourly and
Salaried Employee, as shown in Figure 6-20.

Figure 6-20. The Employee table containing various types of employees

216

 CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

The employee table contains hourly employees, salaried employees, and commissioned employees,
which is a subtype of salaried employees. To model this table with derived types for the hourly and
salaried employees and a commissioned employee type derived from the salaried employee, do the
following:

1. Add a new ADO.NET Entity Data Model to your project and import the
Employee table.

2. Right-click the design surface and choose Add Entity. Name the entity
HourlyEmployee and select Employee as the base entity. Repeat this step for
the SalariedEmployee entity. Make sure you select Employee as the base
entity.

3. Right-click the design surface and choose Add Entity. Name the entity
CommissionedEmployee and select SalariedEmployee as the base type.

4. Right-click the Employee entity and choose Properties. Set the Abstract
property to true.

5. Remove EmployeeType property from Employee. This property will serve as
the discriminator column.

6. Move the Rate and Hours properties from the Employee entity to the
HourlyEmployee entity. You can use Cut/Paste to move the properties. Repeat
this step moving the Salary property to the SalariedEmployee entity and the
Commission property to the CommissionedEmployee entity.

7. Right-click the Commission property in the CommissionedEmployee entity
and select Properties. Change the nullable property to false.

8. Select the HourlyEmployee entity and view the Mapping Details window.
Select the Employee table in Add a Table or View. Add a condition for
EmployeeType = hourly.

9. Select the SalariedEmployee entity and view the Mapping Details window.
Select the Employee table in Add a Table or View. Add a condition for
EmployeeType = salaried. Add another condition for Commission is null.

10. Select the CommissionedEmployee entity and view the Mapping Details
window. Select the Employee table in Add a Table or View. Add a condition for
Commission is not null.

The completed model should look like the one in Figure 6-21.

217

CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

.

Figure 6-21. The completed model with two levels of Table per Type inheritance

How It Works
Table per Type inheritance is a flexible modeling technique. The depth and breadth of the inheritance
tree can be reasonably large and is easily implemented. This approach is efficient because no additional
tables and their required joins are involved.

We implemented the first level of the tree using simple conditions on EmployeeType. This column
served as our discriminator. We ensured mutually exclusive conditions, is null and is not null, on the
Commission property for the SalariedEmployee and CommissionedEmployee entities.

Listing 6-13 demonstrates inserting into and retrieving from our model.

Listing 6-13. Inserting and retrieving derived entities from Employee

using (var context = new EFRecipesEntities())
{
 var hourly = new HourlyEmployee { Name = "Will Smith", Hours = 39,
 Rate = 7.75M };
 var salaried = new SalariedEmployee { Name = "JoAnn Woodland",
 Salary = 65400M };
 var commissioned = new CommissionedEmployee { Name = "Joel Clark",
 Salary = 32500M, Commission = 20M };

218

 CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

 context.Employees.AddObject(hourly);
 context.Employees.AddObject(salaried);
 context.Employees.AddObject(commissioned);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 Console.WriteLine("All Employees");
 Console.WriteLine("=============");
 foreach (var emp in context.Employees)
 {
 if (emp is HourlyEmployee)
 Console.WriteLine("{0} Hours = {1}, Rate = {2}/hour",
 emp.Name,
 ((HourlyEmployee)emp).Hours.Value.ToString(),
 ((HourlyEmployee)emp).Rate.Value.ToString("C"));
 else if (emp is CommissionedEmployee)
 Console.WriteLine("{0} Salary = {1}, Commission = {2}%",
 emp.Name,
 ((CommissionedEmployee)emp).Salary.Value.ToString("C"),
 ((CommissionedEmployee)emp).Commission.ToString());
 else if (emp is SalariedEmployee)
 Console.WriteLine("{0} Salary = {1}", emp.Name,
 ((SalariedEmployee)emp).Salary.Value.ToString("C"));
 }
}

The output of the code in Listing 6-13 is the following:

All Employees

=============

Will Smith Hours = 39, Rate = $7.75/hour

JoAnn Woodland Salary = $65,400.00

Joel Clark Salary = $32,500.00, Commission = 20.00%

219

CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

6-9. Limiting the Values Assigned to a Foreign Key

Problem
You have several foreign key columns in a table. All these foreign keys reference a primary key column in
a single lookup table. You want to limit the values inserted into the foreign key columns to subsets of
values that are contained in the lookup table.

Solution
Suppose you have an Order table that has foreign key columns whose values come from a single Lookup
table, as shown in Figure 6-22.

Figure 6-22. Order table with foreign key columns referencing a Lookup table

The columns OrderStatusId, TransactionTypeId, and ShippingTypeId are foreign keys referencing
the LookupId column in the Lookup table. The database will constrain values for these columns to
values that exist in the Lookup table. However, these database constraints do not limit the values to the
appropriate subsets in the Lookup table.

For example, let’s say the Lookup table contains the rows shown in Figure 6-23. LookupIds 1, 2, and
3 pertain to order status. LookupIds 4 and 5 are shipping types. And finally, LookupIds 6 and 7 are for
transaction types. Constraints at the database layer would prevent us for inserting a row into the Order
table with an OrderStatusId of 8, but it would not prevent us for inserting a row with an OrderStatusId of
7. From Figure 6-23, we know that an OrderStatusId of 7 makes no sense. The appropriate values should
be either 1(Ordered), 2 (Cancelled), or 3 (Shipped).

Figure 6-23. A typical collection of rows for our Lookup table. Notice that there are three subsets of lookup

values: one meaningful for order status, another for shipping types, and a third for transaction types.

220

 CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

In the database we cannot constrain the foreign key values by subset, but in Entity Framework we
can build a model that does impose the limits we want. Follow these steps to create a model for the
tables in Figure 6-22:

1. Add a new ADO.NET Entity Data Model to your project and import the Order
and Lookup tables.

2. Delete the three associations between Order and Lookup table.

3. Right-click the design surface and choose Add Entity. Name the new entity
OrderStatus and select Lookup as the base type.

4. Select the OrderStatus entity and view the Mapping Details window. In Add a
Table or View, select the Lookup table. This maps the entity to the Lookup
table. Add the condition Where Name = OrderStatus.

5. Repeat steps 3 and 4, creating the entities ShippingType and TransactionType.
Add the conditions Name = ShippingType, and Name = TransactionType,
respectively, in the Mapping Details window. In both cases, map the new
entities to the Lookup table.

6. Right-click the Lookup entity and view its properties. Set the Lookup entity’s
Abstract property to True.

7. Right-click the Order entity and choose Add Association to create a one-to-
many association between OrderStatus and Order. Set the multiplicity on the
Order side to Many and the multiplicity on the OrderStatus side to One.

8. Right-click the association between Order and OrderStatus entities and view
the association’s properties. Click the Referential Constraint box. In the
Referential Constraint dialog box, choose OrderStatus as the Principal. Set the
Dependent Property to OrderStatusId.

9. Repeat steps 7 and 8 for the ShippingType and TransactionType entities.

10. Delete the Name property from the Lookup entity.

The resulting model is shown in Figure 6-24.

221

CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

Figure 6-24. The completed model for the Order and Lookup tables

How It Works
It is common for a lookup table to be overloaded with semantically different subsets of values. In our
example, we used just one lookup table with three different kinds of values: order status, transaction
type, and shipping type. Of course, we could have created three separate lookup tables, but this
approach does not scale well and often ends up cluttering an otherwise clean database design with lots
of small lookup tables.

Overloading of a lookup table does introduce one problem. Most databases can constrain foreign
key column values to values that are contained in the related lookup tables. However, they typically
cannot constrain these values to subsets of a lookup table. In our example, the database would allow us
to set the OrderStatus column of an Order to “Cash,” which is a transaction type, not a valid order status.

We can address this problem at the conceptual level by introducing three entities derived from our
Lookup entity. These derived entities―OrderStatus, TransactionType, and ShippingType―surface the

222

 CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

semantics of the Lookup table as strongly typed entities. This allows us to leverage the type system to
enforce the finer grain constraint.

The code in Listing 6-14 demonstrates inserting and retrieving orders. Notice that before we create
the orders, we grab instances of our derived Lookup entities. We use them in creating the orders.

On the query side, we use the Include() method to load Lookup instances together with the
instance of the Order entity. This is admittedly ugly. A better approach would to be load all the possible
lookup values with something as simple as context.Lookup.ToList(); then use the much cleaner syntax
foreach(var order in context.Order) to iterate through the orders. This works because the ToList()
method forces the materialization of the entire Lookup table. The entity references in each Order
instance are fixed up by Entity Framework. This is commonly known as relationship span.

Listing 6-14. Inserting into and retrieving orders

using (var context = new EFRecipesEntities())
{
 var ordered = context.Lookups.OfType<OrderStatus>()
 .First(s => s.Value == "Ordered");
 var shipped = context.Lookups.OfType<OrderStatus>()
 .First(s => s.Value == "Shipped");
 var cash = context.Lookups.OfType<TransactionType>()
 .First(s => s.Value == "Cash");
 var fedex = context.Lookups.OfType<ShippingType>()
 .First(s => s.Value == "FedEx");
 var order = new Order { Amount = 99.97M, OrderStatus = shipped,
 ShippingType = fedex, TransactionType = cash };
 context.Orders.AddObject(order);
 order = new Order { Amount = 29.99M, OrderStatus = ordered,
 ShippingType = fedex, TransactionType = cash };
 context.Orders.AddObject(order);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 context.ContextOptions.LazyLoadingEnabled = true;
 Console.WriteLine("Active Orders");
 Console.WriteLine("=============");
 foreach (var order in context.Orders)
 {
 Console.WriteLine("\nOrder: {0}", order.OrderId.ToString());
 Console.WriteLine("Amount: {0}", order.Amount.ToString("C"));
 Console.WriteLine("Status: {0}", order.OrderStatus.Value);
 Console.WriteLine("Shipping via: {0}", order.ShippingType.Value);
 Console.WriteLine("Paid by: {0}", order.TransactionType.Value);
 }
}

The output of Listing 6-14 is the following:

223

CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

Active Orders

=============

Order: 15

Amount: $99.97

Status: Shipped

Shipping via: Fedex

Paid by: Cash

Order: 16

Amount: $29.99

Status: Ordered

Shipping via: Fedex

Paid by: Cash

6-10. Applying Conditions in Table per Type Inheritance

Problem
You want to apply conditions while using Table per Type inheritance.

Solution
Let’s say you have the two tables depicted in Figure 6-25. The Toy table describes toys a company
produces. Most toys manufactured by the company are for sale. Some toys are made just to donate to
worthy charities. During the manufacturing process, a toy may be damaged. Damaged toys are
refurbished, and an inspector determines the resulting quality of the refurbished toy.

224

 CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

Figure 6-25. Toy and RefurbishedToy tables with a one-to-one relationship

The application that generates reports for the company has no need to access toys manufactured for
donations. To create a model that filters out toys for donation while representing the Toy and
RefurbishedToy tables using Table per Type inheritance, do the following:

1. Add a new ADO.NET Entity Data Model to your project and import the Order
and Lookup tables.

2. Delete the association between Toy and RefurbishedToy.

3. Right-click the Toy entity and select Add Inheritance. Select Toy as the base
entity and RefurbishedToy as the derived entity.

4. Delete the ToyId property in the RefurbishedToy entity.

5. Select the RefurbishedToy entity. In the Mapping Details window, map the
ToyId column to the ToyId property. This value will come from the Toy base
entity.

6. Delete the ForDonationOnly scalar property from the Toy entity.

7. Select the Toy entity and view the Mapping Details window. Use Add a Table
or View to map this entity to the Toy table. Add a condition When
ForDonationOnly = 0.

The resulting model is shown in Figure 6-26.

Figure 6-26. The completed model with the Toy entity and derived RefurbishedToy entity

225

CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

How It Works
We limited the RefurbishedToy instances to non-donation toys by applying a condition on the base
entity. This approach is useful in cases such as this in which we need to apply a permanent filter to an
inheritance structure while using separate tables to implement some of the derived types.

The code in Listing 6-15 demonstrates inserting into and retrieving from our model.

Listing 6-15. Inserting into and retrieving from our model

using (var context = new EFRecipesEntities())
{
 context.ExecuteStoreCommand(@"insert into chapter6.toy
 (Name,ForDonationOnly) values ('RagDoll',1)");
 var toy = new Toy { Name = "Fuzzy Bear", Price = 9.97M };
 var refurb = new RefurbishedToy { Name = "Derby Car", Price = 19.99M,
 Quality = "Ok to sell" };
 context.Toys.AddObject(toy);
 context.Toys.AddObject(refurb);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 Console.WriteLine("All Toys");
 Console.WriteLine("========");
 foreach (var toy in context.Toys)
 {
 Console.WriteLine("{0}", toy.Name);
 }
 Console.WriteLine("\nRefurbished Toys");
 foreach (var toy in context.Toys.OfType<RefurbishedToy>())
 {
 Console.WriteLine("{0}, Price = {1}, Quality = {2}", toy.Name,
 toy.Price, ((RefurbishedToy)toy).Quality);
 }
}

The following is the output from Listing 6-15:

All Toys

========

Fuzzy Bear

Derby Car

226

 CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

Refurbished Toys

Derby Car, Price = 19.99, Quality = Ok to sell

6-11. Creating a Filter on Multiple Criteria

Problem
You want to filter rows for an entity based on multiple criteria.

Solution
Let’s assume we have a table that holds web orders, as shown in Figure 6-27.

Figure 6-27. The WebOrder table containing information about a web order

Suppose we have a business requirement that defines instances of WebOrder as orders placed after
the first day of 2007 or orders placed between 2005 and 2007 that are not deleted or orders placed before
2005 that have an order amount greater than $200. This kind of filter cannot be created using the rather
limited conditions available in the Mapping Details window in the designer. One way to implement this
complex filter is to use QueryView. To model this entity and implement a filter that satisfies the business
requirement using QueryView, do the following:

1. Add a new ADO.NET Entity Data Model to your project and import the
WebOrder table.

2. Create the stored procedures in Listing 6-16. In the next two steps, we’ll map
these to the insert, update, and delete actions for the WebOrder entity.

3. Right-click the design surface and select Update Model from Database. In the
Update Wizard, select the InsertOrder, UpdateOrder, and DeleteOrder stored
procedures.

227

CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

4. Select the WebOrder entity and select the Map Entities to Functions button in
the Mapping Details window. This button is the second of two buttons on the
left side of the window. Map the InsertOrder procedure to the Insert action,
the UpdateOrder procedure to the Update action, and the DeleteOrder
procedure to the Delete action. The property/parameter mappings should
automatically line up. However, the return value from the InsertOrder
procedure must be mapped to the OrderId property. This is used by Entity
Framework to get the value of the identity column OrderId after an insert.
Figure 6-28 shows the correct mappings.

5. Select the table mapping (top button) in the Mapping Details window. Delete
the mapping to the WebOrder table. We’ll map this using QueryView.

6. Right-click the .edmx file in the Solution Explorer window and select Open
With XML Editor. In the C-S mapping layer, inside the <EntitySetMapping>
tag, enter the code shown in Listing 6-17. This is the QueryView that will map
our WebOrder entity. Be careful! Changes made to the C-S mapping layer will
be lost if you do another Update Model from Database.

Listing 6-16. Procedures defined in the database for the Insert, Update, and Delete actions on the

WebOrder entity

create procedure [Chapter6].[InsertOrder]
(@CustomerName varchar(50),@OrderDate date,@IsDeleted bit,@Amount decimal)
as
begin
 insert into chapter6.WebOrder (CustomerName, OrderDate, IsDeleted, Amount)
 values (@CustomerName, @OrderDate, @IsDeleted, @Amount)
 select SCOPE_IDENTITY() as OrderId
end
go

create procedure [Chapter6].[UpdateOrder]
(@CustomerName varchar(50),@OrderDate date,@IsDeleted bit,
 @Amount decimal, @OrderId int)
as
begin
 update chapter6.WebOrder set CustomerName = @CustomerName,
 OrderDate = @OrderDate,IsDeleted = @IsDeleted,Amount = @Amount
 where OrderId = @OrderId
end
go

create procedure [Chapter6].[DeleteOrder]
(@OrderId int)
as
begin
 delete from Chapter6.WebOrder where OrderId = @OrderId
end

228

 CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

Figure 6-28. Details for the stored procedure/action mappings

Listing 6-17. Entity set mapping using QueryView for the WebOrder table

<EntitySetMapping Name="WebOrders">
 <QueryView>
 select value
 EFRecipesModel.WebOrder(o.OrderId,
 o.CustomerName,o.OrderDate,o.IsDeleted,o.Amount)
 from EFRecipesModelStoreContainer.WebOrder as o
 where (o.OrderDate > datetime'2007-01-01 00:00') ||
 (o.OrderDate between cast('2005-01-01' as Edm.DateTime) and
 cast('2007-01-01' as Edm.DateTime) and !o.IsDeleted) ||
 (o.Amount > 800 and o.OrderDate <
 cast('2005-01-01' as Edm.DateTime))
 </QueryView>
</EntitySetMapping>

How It Works
QueryView is a read-only mapping that can be used instead of the default mapping offered by Entity
Framework. When QueryView is inside of the <EntitySetMapping> tag of the mapping layer, it maps
entities defined on the store model to entities defined on the conceptual model. When QueryView is
inside of the <AssociationSetMapping> tag, it maps associations defined on the store model to
associations defined on the conceptual model. One common use of QueryView inside of an

229

CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

<AssociationSetMapping> tag is to implement inheritance based on conditions that are not supported by
the default condition mapping.

QueryView is expressed in Entity SQL. QueryView can query only entities defined on the store
model. Additionally, eSQL in QueryView does not support group by and group aggregates.

When entities are mapped using QueryView, Entity Framework is unaware of the precise
implementation of the mapping. Because Entity Framework does not know the underlying columns and
tables used to create instances of the entities, it cannot generate the appropriate store-level actions to
insert, update, or delete the entities. Entity Framework does track changes to these entities once they are
materialized, but it does not know how to modify them in the underlying data store.

The burden of implementing the insert, update, and delete actions falls onto the developer. These
actions can be implemented directly in the .edmx file or they can be implemented as stored procedures
in the underlying database. To tie the procedures to the actions, you need to create a
<ModificationFunctionMapping> section. We did this in step 4 using the designer rather than directly
editing the .edmx file.

If an entity mapped using QueryView has associations with other entities, those associations along
with related entities also need to be mapped using QueryView. This, of course, can become rather
tedious. QueryView is a powerful tool, but can rapidly become burdensome.

Some of the common use cases for using QueryView are listed as follows.

1. To define filters that are not directly supported such as greater than, less than,
and so on

2. To map inheritance that is based on conditions other than is null, not null or
equal to

3. To map computed columns or return subset of columns from a table or
change a restriction or data type of a column like making it nullable or to
surface a string column as integer

4. To map Table per Type Inheritance based on different primary and foreign key

5. To map the same column in the storage model to multiple types in the
conceptual model

6. To map multiple types to the same table

Inside the QueryView in Listing 6-17, we have an Entity SQL statement that contains three parts. The
first part is the select clause, which instantiates an instance of the WebOrder entity with a constructor.
The constructor takes the property values in precisely the same order as they are defined on the
conceptual model in Listing 6-18.

Listing 6-18. The definition of the WebOrder entity in the conceptual model

<EntityType Name="WebOrder">
 <Key>
 <PropertyRef Name="OrderId" />
 </Key>
 <Property Name="OrderId" Type="Int32" Nullable="false"
 annotation:StoreGeneratedPattern="Identity" />
 <Property Name="CustomerName" Type="String" Nullable="false"
 MaxLength="50" Unicode="false" FixedLength="false" />
 <Property Name="OrderDate" Type="DateTime" Nullable="false" />
 <Property Name="IsDeleted" Type="Boolean" Nullable="false" />

230

 CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

 <Property Name="Amount" Type="Decimal" Nullable="false"
 Precision="18" Scale="2" />
</EntityType>

Notice that, in the Entity SQL in Listing 6-17, we fully qualified the conceptual namespace

EFRecipesModel when creating an instance of the WebOrder entity. However, in the from clause, we
also fully qualified the store container, EFRecipesModelStoreContainer.

The final section of the Entity SQL expression includes the where clause that, of course, is the whole
reason for using a QueryView in this example. Although the where clause can be arbitrarily complex, it is
subject to the restrictions for Entity SQL in QueryView as noted above.

The code in Listing 6-19 demonstrates inserting and retrieving WebOrders in our model.

Listing 6-19. Inserting and retrieving WebOrder entities

using (var context = new EFRecipesEntities())
{
 var order = new WebOrder {CustomerName = "Jim Allen",
 OrderDate = DateTime.Parse("5/3/2009"),
 IsDeleted = false, Amount = 200};
 context.WebOrders.AddObject(order);
 order = new WebOrder { CustomerName = "John Stevens",
 OrderDate = DateTime.Parse("1/1/2006"),
 IsDeleted = false, Amount = 400 };
 context.WebOrders.AddObject(order);
 order = new WebOrder { CustomerName = "Russel Smith",
 OrderDate = DateTime.Parse("1/3/2006"),
 IsDeleted = true, Amount = 500 };
 context.WebOrders.AddObject(order);
 order = new WebOrder { CustomerName = "Mike Hammer",
 OrderDate = DateTime.Parse("3/6/2006"),
 IsDeleted = true, Amount = 1800 };
 context.WebOrders.AddObject(order);
 order = new WebOrder { CustomerName = "Steve Jones",
 OrderDate = DateTime.Parse("1/1/2003"),
 IsDeleted = true, Amount = 600 };
 context.WebOrders.AddObject(order);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 Console.WriteLine("Orders");
 Console.WriteLine("======");
 foreach (var order in context.WebOrders)
 {
 Console.WriteLine("\nCustomer: {0}", order.CustomerName);
 Console.WriteLine("OrderDate: {0}", order.OrderDate.ToShortDateString());
 Console.WriteLine("Is Deleted: {0}", order.IsDeleted.ToString());
 Console.WriteLine("Amount: {0}", order.Amount.ToString("C"));
 }
}

231

CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

The output of the code in Listing 6-19 follows. Notice that only customers that meet the criteria we
defined in the Entity SQL expression inside the QueryView are displayed.

Orders...

Customer: John Stevens

Order Date: 1/1/2006

Is Deleted: False

Amount: $400.00

Customer: Jim Allen

Order Date: 5/3/2009

Is Deleted: False

Amount: $200.00

Customer: Mike Hammer

Order Date: 6/3/2004

Is Deleted: True

Amount: $1,800.00

6-12. Using Complex Conditions with Table
per Hierarchy Inheritance

Problem
You want to model a table using Table per Hierarchy inheritance by applying conditions more complex
than those supported directly by Entity Framework.

232

 CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

Solution
Suppose we have a Member table, as depicted in Figure 6-29. The Member table describes members in
our club. In our model, we want to represent adult members, senior members, and teen members as
derived types using Table per Type inheritance.

Figure 6-29. The Member table describing members in our club

Entity Framework supports Table per Hierarchy Inheritance based on the conditions =, is null, and
is not null. Simple expressions such as <, between, and > are not supported. In our case, a member
whose age is less than 20 is a teen (the minimum age in our club is 13). A member between the age of 20
and 55 is an adult. And, as you might expect, a member over the age of 55 is a senior. To create a model
for the member table and the three derived types, do the following:

1. Add a new ADO.NET Entity Data Model to your project and import the
Member table.

2. Right-click the Member entity and select Properties. Set the Abstract attribute
to true. This marks the Member entity as abstract.

3. Create the stored procedures in Listing 6-20. We will use them to handle the
Insert, Update, and Delete actions on the entities we’ll derive from the
Member entity.

4. Right-click the design surface and select Update Model from Database. Select
the stored procedures you created in step 3.

5. Right-click the design surface and select Add Entity. Name the new entity
Teen and set the base type to Member. Repeat this step, creating the derived
entities Adult and Senior.

6. Select the Member entity and view the Mapping Details window. Click Maps to
Member, and select <Delete>. This deletes the mappings to the Member table.

7. Select the Teen entity and view the Mapping Details window. Click the Map
Entity to Functions button. This is the bottom button on the left of the
Mapping Details window. Map the stored procedures to the corresponding
Insert, Update, and Delete actions. The parameter/property mappings should
automatically populate. Make sure you set the Result Column Bindings to map
the return value to the MemberId property for the Insert action. This identity
column is generated on the database side. See Figure 6-30.

8. Repeat step 7 for the Adult and Senior entities.

9. Right-click the .edmx file in the Solution Explorer window and select Open
With XML Editor. This will open the .edmx file in the XML editor.

233

CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

10. In the C-S mapping section, inside the <EntityContainerMapping> tag, enter
the QueryView code shown in Listing 6-21.

Listing 6-20. Stored procedures for the Insert, Update, and Delete actions

create procedure [chapter6].[InsertMember]
(@Name varchar(50), @Phone varchar(50), @Age int)
as
begin
 insert into Chapter6.Member (Name, Phone, Age)
 values (@Name,@Phone,@Age)
 select SCOPE_IDENTITY() as MemberId
end
go

create procedure [chapter6].[UpdateMember]
(@Name varchar(50), @Phone varchar(50), @Age int, @MemberId int)
as
begin
 update Chapter6.Member set Name=@Name, Phone=@Phone, Age=@Age
 where MemberId = @MemberId
end
go

create procedure [chapter6].[DeleteMember]
(@MemberId int)
as
begin
 delete from Chapter6.Member where MemberId = @MemberId
end

Figure 6-30. Mapping the Insert, Update, and Delete actions for the Teen entity

234

 CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

Listing 6-21. QueryView for mapping the Member table to the derived types Teen, Adult, and Senior

<EntitySetMapping Name="Members">
 <QueryView>
 select value
 case
 when m.Age < 20 then
 EFRecipesModel.Teen(m.MemberId,m.Name,m.Phone,m.Age)
 when m.Age between 20 and 55 then
 EFRecipesModel.Adult(m.MemberId,m.Name,m.Phone,m.Age)
 when m.Age > 55 then
 EFRecipesModel.Senior(m.MemberId,m.Name,m.Phone,m.Age)
 end
 from EFRecipesModelStoreContainer.Member as m
 </QueryView>
</EntitySetMapping>

The resulting model should look like the one in Figure 6-31.

Figure 6-31. The resulting model with Member and the three derived types: Senior, Adult, and Teen

How It Works
Entity Framework supports only a limited set of conditions when modeling Table per Hierarchy
inheritance. In this recipe, we extended the conditions using QueryView to define our own mappings
between the underlying Member table and the derived types Senior, Adult, and Teen. This is shown in
Listing 6-21.

Unfortunately, QueryView comes at a price. Because we have defined the mappings ourselves, we
also take on the responsibility for implementing the Insert, Update, and Delete actions for the derived
types. This is not too difficult in our case.

In Listing 6-20, we defined the procedures to handle the Insert, Delete, and Update actions. We
need to create only one set because these actions target the underlying Member table. In this recipe, we

235

CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

implemented them as stored procedures in the underlying database. We could have implemented in the
.edmx file.

Using the designer, we mapped the procedures to the Insert, Update, and Delete actions for each of
the derived types. This completes the extra work we need to do when we use QueryView.

The code in Listing 6-22 demonstrates inserting into and retrieving from our model. Here we insert
one instance of each of our derived types. On the retrieval side, we print the members together with their
phone number, unless the member is a Teen.

Listing 6-22. Inserting into and retrieving from our model

using (var context = new EFRecipesEntities())
{
 var teen = new Teen { Name = "Steven Keller", Age = 17,
 Phone = "817 867-5309" };
 var adult = new Adult { Name = "Margret Jones", Age = 53,
 Phone = "913 294-6059" };
 var senior = new Senior { Name = "Roland Park", Age = 71,
 Phone = "816 353-4458" };
 context.Members.AddObject(teen);
 context.Members.AddObject(adult);
 context.Members.AddObject(senior);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 Console.WriteLine("Club Members");
 Console.WriteLine("============");
 foreach(var member in context.Members)
 {
 bool printPhone = true;
 string str = string.Empty;
 if (member is Teen)
 {
 str = " a Teen";
 printPhone = false;
 }
 else if (member is Adult)
 str = "an Adult";
 else if (member is Senior)
 str = "a Senior";
 Console.WriteLine("{0} is {1} member, phone: {2}",member.Name,
 str, printPhone ? member.Phone : "unavailable");
 }
}

The following is the output from the code in Listing 6-22:

236

 CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

Members of our club

===================

Steven Keller is a Teen member, phone: unavailable

Margret Jones is an Adult member, phone: 913 294-6059

Roland Park is a Senior member, phone: 816 353-4458

It is important to note here that no design time or even runtime checking is done to verify the ages
for the derived types. It is entirely possible to create an instance of the Teen type and set the age
property to 74―clearly not a teen. On the retrieval side, however, this row will be materialized as a
Senior member; a situation likely offensive to our Teen member.

We can introduce validation before changes are committed to the data store. To do this, register for
the SavingChanges event when the context is created. We wire this event to our code that performs the
validation. This code is shown in Listing 6-23.

Listing 6-23. Handling validation in the SavingChanges event

public partial class EFRecipesEntities
{
 partial void OnContextCreated()
 {
 this.SavingChanges += new EventHandler(Validate);
 }

 public void Validate(object sender, EventArgs e)
 {
 var entities = this.ObjectStateManager
 .GetObjectStateEntries(EntityState.Added |
 EntityState.Modified)
 .Select(et => et.Entity as Member);
 foreach (var member in entities) {
 if (member is Teen && member.Age > 19) {
 throw new ApplicationException("Entity validation failed");
 }
 else if (member is Adult && (member.Age < 20 || member.Age >= 55)) {
 throw new ApplicationException("Entity validation failed");
 }
 else if (member is Senior && member.Age < 55) {
 throw new ApplicationException("Entity validation failed");
 }
 }
 }
}

237

CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

In Listing 6-23, when SaveChanges() is called, our Validate() method checks each entity that has
either been added or modified. For each of these, we verify that the age property is appropriate for the
type of the entity. When we find a validation error, we simply throw an exception.

We have several recipes in Chapter 12 that focus on handling events and validating objects before
they are committed to the database.

6-13. Modeling Table per Concrete Type Inheritance

Problem
You have two or more tables with similar schema and data and you want to model these tables as types
derived from a common entity using Table per Concrete Type inheritance.

Solution
Let’s assume we have the tables shown in Figure 6-32.

Figure 6-32. Tables Toyota and BMW with similar structure that will become derived types of the Car

entity

In Figure 6-32, the tables Toyota and BMW that have similar schema and represent similar data. The
BMW table has an additional column with a bit value indicating whether the instance has the collision
avoidance feature. We want to create a model with a base entity holding the common properties of the
Toyota and BMW tables. Additionally, we want to represent the one-to-many relationship between the
car dealer and cars he holds in inventory. Figure 6-33 shows the final model.

To create the model, do the following:

1. Add a new ADO.NET Entity Data Model to your project and import the Toyota,
BMW, CarDealer, and Dealer tables.

2. Right-click the design surface and select Add Entity. Name the new entity
Car and unselect the Create key property check box.

3. Right-click the Car entity and view its properties. Set the Abstract property to
true.

238

 CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

4. Move the common properties of the Toyota and BMW entities to the Car
entity. You can use Cut/Paste to move these properties. Make sure that only
the CollisionAvoidance property remains with the BMW entity and the Toyota
entity has no properties. Both of these entities will inherit these common
properties from the Car entity.

5. Right-click the Car entity and select Add Inheritance. Set the base entity as
Car and the derived entity as BMW.

6. Repeat step 5, but this time set the Toyota as the derived entity.

7. Right-click the CarDealer entity and select Delete. When prompted to delete
the CarDealer table from the store model, select No.

8. Right-click the design surface and select Add Association. Name the
association CarDealer. Select Dealer on the left with a multiplicity of one.
Select Car on the right with a multiplicity of many. Name the navigation
property on the Car side Dealer. Name the navigation property on the Dealer
side Cars. Be sure to uncheck the Add foreign key properties.

9. Select the association and view the Mapping Details window. Select CarDealer
in the Add a Table or View drop-down menu. Make sure the DealerId property
maps to the DealerId column and the CarId property maps to the CarId
column.

10. Right-click the .edmx file and select Open With XML Editor. Edit the
mapping section with the changes shown in Listing 6-24 for the BMW and
Toyota entities.

Listing 6-24. Mapping the BMW and Toyota tables

<EntitySetMapping Name="Cars">
 <EntityTypeMapping TypeName="IsTypeOf(EFRecipesModel.BMW)">
 <MappingFragment StoreEntitySet="BMW">
 <ScalarProperty Name="CollisionAvoidance"
 ColumnName="CollisionAvoidance" />
 <ScalarProperty Name="CarId" ColumnName="CarId"/>
 <ScalarProperty Name="Model" ColumnName="Model"/>
 <ScalarProperty Name="Year" ColumnName="Year"/>
 <ScalarProperty Name="Color" ColumnName="Color"/>
 </MappingFragment>
 </EntityTypeMapping>
 <EntityTypeMapping TypeName="IsTypeOf(EFRecipesModel.Toyota)">
 <MappingFragment StoreEntitySet="Toyota">
 <ScalarProperty Name="CarId" ColumnName="CarId"/>
 <ScalarProperty Name="Model" ColumnName="Model"/>
 <ScalarProperty Name="Year" ColumnName="Year"/>
 <ScalarProperty Name="Color" ColumnName="Color"/>
 </MappingFragment>
 </EntityTypeMapping>
</EntitySetMapping>

239

CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

The resulting model is shown in Figure 6-33.

Figure 6-33. The completed model with the derived entities BMW and Toyota represented in the database

as separate tables

How It Works
Table per Concrete Type is an interesting inheritance model in that it allows each derived entity to map
to separate physical tables. From a practical perspective, the tables need to share at least some part of a
common schema. This common schema is mapped in the base entity while the additional schema parts
are mapped in the derived entities. For Table per Concrete Type inheritance to work properly, the entity
key must be unique across the tables.

The base entity is marked abstract and is not mapped to any table. In Table per Concrete Type, only
the derived entities are mapped to tables.

In our example, we marked the Car entity as abstract and did not map it to any table. In the
mapping in Listing 6-24, notice that we mapped only the derived entities BMW and Toyota. We moved
all the common properties (CarId, Model, Year, and Color) to the base entity. The derived entities
contained only the properties unique to the entity. For instance, the BMW entity has the additional
CollisionAvoidance property.

Because the entities Toyota and BMW derived from the Car entity, they became part of the same
Cars entity set. This means that the CarId entity key must be unique within the entity set that now
contains all the derived entities. Because the entities are mapped to different tables, it is possible that we
can have collisions in the keys. To avoid this, we set the CarId column in each table as an identity
column. For the BMW table, we set the initial seed to 1 with an increment of 2. This will create odd
values for the CarId key. For the Toyota table, we set the initial seed to 2 with an increment of 2. This will
create event values for the CarId key.

When modeling relationships in Table per Concrete Type inheritance, it is better to define them at
the derived type rather than at the base type. This is because the Entity Framework runtime would not
know which physical table represents the other end of the association. In our example, of course, we

240

 CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

provided a separate table (CarDealer) that contains the relationship. This allowed us to model the
relationship at the base entity by mapping the association to the CarDealer table.

There are many practical applications of Table per Concrete Type inheritance. Perhaps the most
common is in working with archival data. Imagine you have a several years worth of orders for your
eCommerce site. At the end of each year, you archive the orders for the previous 12 months in an archive
table and start the New Year with an empty table. With Table per Concrete Type inheritance, you can
model the current and archived orders using the approach demonstrated here.

Table per Concrete Type inheritance has a particularly important performance advantage over
other inheritance models. When querying a derived type, the generated query targets the specific
underlying table without the additional joins of Table per Type inheritance or the filtering of Table per
Hierarchy. For large datasets or models with several derived types, this performance advantage can be
significant.

The disadvantages of Table per Concrete Type inheritance include the overhead of potentially
duplicate data across tables and the complexity of insuring unique keys across the tables. In an archival
scenario, data is not duplicated but simply spread across multiple tables. In other scenarios, data
(properties) may be duplicated across the tables.

The code in Listing 6-25 demonstrates inserting into and retrieving from our model.

Listing 6-25. Inserting into and querying our model

using (var context = new EFRecipesEntities())
{
 var d1 = new Dealer { Name = "All Cities Toyota" };
 var d2 = new Dealer { Name = "Southtown Toyota" };
 var d3 = new Dealer { Name = "Luxury Auto World" };
 var c1 = new Toyota { Model = "Camry", Color = "Green",
 Year = "2010", Dealer = d1 };
 var c2 = new BMW { Model = "310i", Color = "Blue",
 CollisionAvoidance = true,
 Year = "2010", Dealer = d3 };
 var c3 = new Toyota { Model = "Tundra", Color = "Blue",
 Year = "2010", Dealer = d2 };
 context.Dealers.AddObject(d1);
 context.Dealers.AddObject(d2);
 context.Dealers.AddObject(d3);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 context.ContextOptions.LazyLoadingEnabled = true;
 Console.WriteLine("Dealers and Their Cars");
 Console.WriteLine("======================");
 foreach (var dealer in context.Dealers)
 {
 Console.WriteLine("\nDealer: {0}", dealer.Name);
 foreach(var car in dealer.Cars)
 {
 string make = string.Empty;
 if (car is Toyota)
 make = "Toyota";

241

CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

 else if (car is BMW)
 make = "BMW";
 Console.WriteLine("\t{0} {1} {2} {3}", car.Year,
 car.Color, make, car.Model);
 }
 }
}

The output of the code in Listing 6-25 is the following:

Dealers and Their Cars

======================

Dealer: Luxury Auto World

 2010 Blue BMW 310i

Dealer: Southtown Toyota

 2010 Blue Toyota Tundra

Dealer: All Cities Toyota

 2010 Green Toyota Camry

6-14. Applying Conditions on a Base Entity

Problem
You want to derive a new entity from a base entity that currently exists in a model and continue to allow
the base entity to be instantiated.

Solution
Let’s assume you have a model like the one shown in Figure 6-34.

242

 CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

Figure 6-34. Our model with the Invoice entity

This model contains a single Invoice entity. We want to derive a new entity that represents deleted
invoices. This will allow us to more cleanly separate business logic that operates on active invoices
differently than deleted invoices. To add the derived entity, do the following:

1. View the Mapping Details window for the Invoice entity. Add a condition on
the IsDeleted column to map the entity when the column is 0 as shown in
Figure 6-35.

2. Now that the IsDeleted column is used in a condition, we need to remove it
from the scalar properties for the entity. Right-click the IsDeleted property in
the entity and select Delete.

3. Right-click the design surface and select Add Entity. Name the new entity
DeletedInvoice and select Invoice as the base type.

4. View the Mapping Details window for the DeletedInvoice entity. Map the
entity to the Invoice table. Add a condition on the IsDeleted column to map
the entity when the column is 1 as shown in Figure 6-36.

The final model with the Invoice entity and the derived DeletedInvoice entity is shown in Figure 6-37.

Figure 6-35. Mapping the Invoice entity when the IsDeleted column is 0

243

CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

Figure 6-36. Mapping the DeletedInvoice entity to the Invoice table when the IsDeleted column is 1

Figure 6-37. Our completed model with the Invoice entity and the DeletedInvoice entity

How It Works
There are two different ways to model our invoices and deleted invoices. The approach we’ve shown
here is only recommended if you have an existing model and code base and would like to add the
DeletedInvoice derived type with as little impact as possible to the existing code. For a new model, it
would be better to derive an ActiveInvoice type and a DeletedInvoice type from the Invoice base type. In
this approach, you would mark the base type as abstract.

Using the approach we’ve shown here, you could can determine, as we do in the code in Listing 6-
26, if the entity is a DeletedInvoice either by casting or by using the OfType<>() method. However, you
can’t select for the Invoice entity alone. This is the critical drawback to the approach we’ve shown here.

244

 CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

The approach you should use for new code is to derive two new entities: ActiveInvoice and
DeleteInvoice. With these two sibling types, you can use either casting or the OfType<>() method to
operate on either type uniformly.

Listing 6-26. Using the as operator to determine if we have an Invoice or DeletedInvoice

using (var context = new EFRecipesEntities())
{
 context.Invoices.AddObject(new Invoice { Amount = 19.95M,
 Description = "Oil Change",
 Date = DateTime.Parse("4/11/10") });
 context.Invoices.AddObject(new Invoice { Amount = 129.95M,
 Description = "Wheel Alignment",
 Date = DateTime.Parse("4/01/10") });
 context.Invoices.AddObject(new DeletedInvoice { Amount = 39.95M,
 Description = "Engine Diagnosis",
 Date = DateTime.Parse("4/01/10") });
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 foreach (var invoice in context.Invoices)
 {
 var isDeleted = invoice as DeletedInvoice;
 Console.WriteLine("{0} Invoice",
 isDeleted == null ? "Active" : "Deleted");
 Console.WriteLine("Description: {0}", invoice.Description);
 Console.WriteLine("Amount: {0}", invoice.Amount.ToString("C"));
 Console.WriteLine("Date: {0}", invoice.Date.ToShortDateString());
 Console.WriteLine();
 }
}

The following is the output of the code in Listing 6-26:

Active Invoice

Description: Oil Change

Amount: $19.95

Date: 4/11/2010

Active Invoice

Description: Wheel Alignment

245

CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

Amount: $129.95

Date: 4/1/2010

Deleted Invoice

Description: Engine Diagnosis

Amount: $39.95

Date: 4/1/2010

6-15. Creating Independent and Foreign Key Associations

Problem
You want to use Model First to create both independent and foreign key associations.

Solution
1. Add a new ADO.NET Entity Data Model to your project. Select Empty Model

when prompted to choose the model contents. Click Finish. This will create an
empty design surface.

2. Right-click the design surface and select Add Entity. Name the new entity
User and click OK.

3. Right-click the new entity and add a scalar property for the UserName.

4. Right-click the design surface and select Add Entity. Name the new entity
PasswordHistory and click OK.

5. Right-click the new entity and add a scalar property for the LastLogin. Right-
click the LastLogin property and change its type to DateTime.

6. Right-click the User entity and select Add Association. To create a foreign
key association, check the Add foreign key properties to the ‘PasswordHistory’
entity check box. TO create an independent association, uncheck this box.

7. Right-click the design surface and select Generate Model from Database.
Select a database connection and complete the remainder of the wizard. This
will generate the storage and mapping layers of the model and produce a script
to generate the database for the model.

246

 CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

If you choose to create a foreign key association, the model should look like the one shown in Figure
6-38. If you choose to create an independent association, the model should look like the one shown in
Figure 6-39.

Figure 6-38. A foreign key association between User and PasswordHistory

Figure 6-39. An independent association between User and PasswordHistory

How It Works
With a foreign key association, the foreign key is exposed as a property in the dependent entity. Exposing
the foreign key allows many aspects of the association to be managed with the same code that manages
the other property values. This is particularly helpful in disconnected scenarios as we will see in Chapter
9. Foreign key associations are the default in Entity Framework.

For independent associations, the foreign keys are not exposed as properties. This makes the
modeling at the conceptual layer somewhat cleaner because there is no noise introduced concerning the
details of the association implementation. In the early versions of Entity Framework, only independent
associations where supported.

6-16. Changing an Independent Association into
a Foreign Key Association

Problem
You have a model that uses an independent association and you want to change it to a foreign key
association.

247

CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

Solution
Let’s say you have a model like the one shown in Figure 6-40.

Figure 6-40. A model for vehicles and tickets using an independent association

To change the association from an independent association to a foreign key association, do the
following:

1. Right-click the Ticket entity and select Add Scalar Property. Rename the
property LicenseNumber.

2. View the Mapping Details window for the association. Remove the mapping to
the Ticket table by selecting <Delete> from the Maps to Ticket control.

3. Right-click the association and view the properties. Click in the button in the
Referential Constraint control. In the dialog box select the Vehicle entity in the
Principal dropdown control. The Principal Key and the Dependent Property
should both be set to LicenseNumber as shown in Figure 6-41.

4. View the Mapping Details window for the Ticket entity. Map the
LicenseNumber column to the LicenseNumber property as shown in Figure
6-42.

The final model is shown in Figure 6-43.

Figure 6-41. Creating the referential constraint for the foreign key association

248

 CHAPTER 6 BEYOND THE BASICS WITH MODELING AND INHERITANCE

Figure 6-42. Mapping the LicenseNumber column to the LicenseNumber property for the Ticket entity

Figure 6-43. The model with the independent association changed to a foreign key association

How It Works
When you change an independent association into a foreign key association, most of your existing code
will continue to work. You will find it easier now to associate two entities by simply setting the exposed
foreign key to the appropriate value. To change a relationship with an independent association, you
need to create a new instance of EntityKey and set the entity’s xxxReference.EntityKey to this new
instance. With a foreign key association, you simply set the exposed foreign key property to the key
value.

Foreign key associations are not currently supported for many-to-many associations because these
associations must be mapped to the underlying link table. A future version of Entity Framework may
support foreign key associations along with payloads for many-to-many associations.

249

C H A P T E R 7

Working with Object Services

This chapter contains a rather eclectic collection of recipes that provide practical solutions to common
problems in real-world applications. We build our applications to tolerate changes in deployment
environments and make our applications flexible enough so that few if any configuration details need to
be hard-coded. The first three recipes provide you with tools to meet these challenges.

The remaining recipes cover topics such as Entity Framework’s Pluralization Service, using the
edmgen.exe utility, working with identifying relationships, and retrieving objects from an object context.

7-1. Dynamically Building a Connection String

Problem
You want to dynamically build the connection string for your application.

Solution
Many real-world applications start out on a developer’s desktop; move through one or more testing,
integration, and staging environments; and finally end up in a production deployment. You want to
dynamically configure the application’s connection string depending on the current environment.

To dynamically build the connection string for your application, follow the pattern in Listing 7-1.

Listing 7-1. Dynamically building a connection string

public static class ConnectionStringManager
{
 public static string EFConnection = GetConnection();

 private static string GetConnection()
 {
 var sqlBuilder = new SqlConnectionStringBuilder();

 // figure out the environment
 // strings here should come from a config file
 string myHost = Dns.GetHostName();
 if (myHost.ToLower().Contains("test"))
 sqlBuilder.DataSource = @"TestSql01";
 else if (myHost.ToLower().Contains("staging"))

251

CHAPTER 7 WORKING WITH OBJECT SERVICES

 sqlBuilder.DataSource = @"StagingSql01";
 else if (myHost.ToLower().Contains("prod"))
 sqlBuilder.DataSource = @"ProdSql01";
 else
 sqlBuilder.DataSource = @"localhost";

 // fill in the rest
 sqlBuilder.InitialCatalog = "EFRecipes";
 sqlBuilder.IntegratedSecurity = true;
 sqlBuilder.MultipleActiveResultSets = true;

 var eBuilder = new EntityConnectionStringBuilder();
 eBuilder.Provider = "System.Data.SqlClient";
 eBuilder.Metadata =
 "res://*/Recipe1.csdl|res://*/Recipe1.ssdl|res://*/Recipe1.msl";
 eBuilder.ProviderConnectionString = sqlBuilder.ToString();
 return eBuilder.ToString();
 }
}

public partial class EFRecipesEntities
{
 partial void OnContextCreated()
 {
 this.Connection.ConnectionString = ConnectionStringManager.EFConnection;
 }
}

How It Works
When you add an ADO.NET Entity Data Model to your project, Entity Framework adds an entry to the
<connectionStrings> section in your project’s .config file. At runtime, the constructor for the object
context is passed the key for this configuration entry (EFRecipesEntities for the recipes in this book).
Given this key, the object context uses the connection string found in the .config file.

To dynamically create the connection string based on the environment in which our application is
deployed, we created the ConnectionStringManager class (refer to Listing 7-1). In the GetConnection()
method, we check the name of the machine the application is on and use it to determine the target
database server. To keep things simple, we hard-coded the names of machines here (you would
probably want to put them in a .config file). To use our ConnectionStringManager, we implemented the
OnContextCreated() partial method inside EFRecipesEntities partial class.

In our implementation of the OnContextCreated() partial method, we get the statically built
connection string from the ConnectionStringManager. The object context will use this connection string
to connect to our database server. You don’t need to change anything else in your application. Each time
you get a new instance of your object context, the OnContextCreated() method will get the connection
string created when the static ConnectionStringManager class was created.

252

 CHAPTER 7 WORKING WITH OBJECT SERVICES

7-2. Reading a Model from a Database

Problem
You want to read the CSDL, MSL, and SSDL definitions for your model from a database table.

Solution
Suppose that you have a model like the one in Figure 7-1.

Figure 7-1. A model with a Customer entity

Our model has just one entity: Customer. The conceptual layer (CSDL), mapping layer (MSL), and
storage layer (SSDL) definitions are typically found in the .edmx file in your project. We want to read
these definitions from a database. To read these definitions from a database, do the following:

1. Right-click the design surface and view the Properties. Change the Code
Generation Strategy to None. We’ll use POCO for our Customer class. See
Chapter 8 for more recipes on using POCO.

2. Create the table shown in Figure 7-2. This table will hold the definitions for our
project.

3. Right-click the design surface and view the Properties. Change the Metadata
Artifact Processing to Copy to Output Directory. Rebuild your project. The
build process will create three files in the output directory: Recipe2.ssdl,
Recipe2.csdl, and Recipe2.msl.

4. Insert the contents of these files into the Definitions table in the corresponding
columns. Use 1 for the Id column.

5. Follow the pattern in Listing 7-2 to read the metadata from the Definitions
table and create a MetadataWorkspace that our application will use.

253

CHAPTER 7 WORKING WITH OBJECT SERVICES

Figure 7-2. The Definitions table holds the definitions for our SSDL, CSDL, and MSL. Note that the column

data types for the definitions are XML.

Listing 7-2. Reading the metadata from the Definitions table

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data.Metadata.Edm;
using System.Data.SqlClient;
using System.Data.EntityClient;
using System.Xml;
using System.Data.Mapping;
using System.Data.Objects;

namespace Recipe2
{
 class Program
 {
 static void Main(string[] args)
 {
 RunExample();
 }

 static void RunExample()
 {
 using (var context = ContextFactory.CreateContext())
 {
 context.Customers.AddObject(
 new Customer { Name = "Jill Nickels" });
 context.Customers.AddObject(
 new Customer { Name = "Robert Cole" });
 context.SaveChanges();
 }

 using (var context = ContextFactory.CreateContext())
 {
 Console.WriteLine("Customers");
 Console.WriteLine("---------");
 foreach (var customer in context.Customers)

254

 CHAPTER 7 WORKING WITH OBJECT SERVICES

 {
 Console.WriteLine("{0}", customer.Name);
 }
 }
 }
 }

 public class Customer
 {
 public virtual int CustomerId { get; set; }
 public virtual string Name { get; set; }
 }

 public class EFRecipesEntities : ObjectContext
 {
 private ObjectSet<Customer> customers;
 public EFRecipesEntities(EntityConnection cn)
 : base(cn)
 {
 }

 public ObjectSet<Customer> Customers
 {
 get
 {
 return customers ?? (customers = CreateObjectSet<Customer>());
 }
 }
 }

 public static class ContextFactory
 {
 static string connString = @"Data Source=localhost;
 Initial Catalog=EFRecipes;Integrated Security=True;";
 private static MetadataWorkspace workspace = CreateWorkSpace();

 public static EFRecipesEntities CreateContext()
 {
 var conn = new EntityConnection(workspace,
 new SqlConnection(connString));
 return new EFRecipesEntities(conn);
 }

 private static MetadataWorkspace CreateWorkSpace()
 {
 string sql = @"select csdl,msl,ssdl from Chapter7.Definitions";
 XmlReader csdlReader = null;
 XmlReader mslReader = null;
 XmlReader ssdlReader = null;

 using (var cn = new SqlConnection(connString))
 {

255

CHAPTER 7 WORKING WITH OBJECT SERVICES

 using (var cmd = new SqlCommand(sql, cn))
 {
 cn.Open();
 var reader = cmd.ExecuteReader();
 if (reader.Read())
 {
 csdlReader = reader.GetSqlXml(0).CreateReader();
 mslReader = reader.GetSqlXml(1).CreateReader();
 ssdlReader = reader.GetSqlXml(2).CreateReader();
 }
 }
 }

 var workspace = new MetadataWorkspace();
 var edmCollection = new EdmItemCollection(new XmlReader[]
 { csdlReader });
 var ssdlCollection = new StoreItemCollection(new XmlReader[]
 { ssdlReader });
 var mappingCollection = new StorageMappingItemCollection(
 edmCollection, ssdlCollection, new XmlReader[] { mslReader });

 workspace.RegisterItemCollection(edmCollection);
 workspace.RegisterItemCollection(ssdlCollection);
 workspace.RegisterItemCollection(mappingCollection);
 return workspace;
 }
 }
}

The following is the output of the code in Listing 7-2:

Customers

Jill Nickels

Robert Cole

How It Works
The first part of the code in Listing 7-2 should be very familiar to you by now. We use Entity Framework
to create a new context, create a few entities, and call SaveChanges() to persist the entities to the
database. To retrieve the entities, we iterate through the collection and display each on the console. The
only difference in this part is the call to ContextFactory.CreateContext(). Normally, we would just use
the new operator to get a new instance of our EFRecipesEntities context.

We’ve created the ContextFactory to create our context from the model metadata stored not in the
.edmx file, but in a table in a database. We do this in the CreateContext() method. The CreateContext()

256

 CHAPTER 7 WORKING WITH OBJECT SERVICES

method creates a new EntityConnection based on two things: a workspace that we create with the
CreateWorkSpace() method and a SQL connection string. The real work happens in how we create the
workspace in the CreateWorkSpace() method.

The CreateWorkSpace() method opens a connection to the database where our metadata is stored.
We construct a SQL statement that reads the one row from the Definitions table (refer to Figure 7-2) that
holds our definitions for the conceptual layer, storage layer, and mapping layer. We read these
definitions with XmlReaders. With these definitions, we create an instance of a MetadataWorkspace. A
MetadataWorkspace is an in-memory representation of a model. Typically, this workspace is created by
the default plumbing in Entity Framework from your .edmx file. In this recipe, we create this workspace
from the definitions in a database. There are other ways to create this workspace including using
embedded resources and an emerging perspective called Code First.

The code in Listing 7-2 uses Plain Old CLR Objects, also known as POCO, for our Customer entity.
We cover POCO extensively in Chapter 8, but here we use POCO to simplify the code. With POCO, we
don’t use the classes generated by Entity Framework. Instead, we use our own classes that have no
particular dependence on Entity Framework. In Listing 7-2, we created our own definition of the
Customer entity in the Customer class. We also created our own object context: EFRecipesEntities. Our
context, of course, does have a dependence on Entity Framework because it derives from ObjectContext.

7-3. Deploying a Model

Problem
You want to know the various options for deploying a model.

Solution
When you add a new ADO.NET Entity Data Model to your project, Entity Framework sets the Build
Action property for the .edmx file to Entity Deploy. Additionally, the Metadata Artifact Processing
property of the model is set to Embed in Output Assembly. When you build your project, the Entity
Deploy action extracts three sections from the .edmx file into three separate files. The CSDL section is
extracted into the Model.csdl file. The MSL section is extracted into the Model.msl file. The SSDL section
is extracted into the Model.ssdl file. With the Embed in Output Assembly, these three files get embedded
into the assembly as resources.

Changing the Metadata Artifact Processing property to Copy to Output Directory causes the three
Model.* files to be copied to the same directory as the resulting assembly. The files are not embedded as
a resource.

How It Works
The .edmx file contains all three model layers: conceptual, mapping, and storage. The file also contains
additional data used by the designer to manage the design surface. At runtime, Entity Framework uses
each of the layers separately. The .edmx file is just a convenient container for the design time user
experience. The deployment of a model depends on model layers either embedded in the assembly,
stored in files, or, as we saw in Recipe 7-2, retrieved from another source and used to complete a
MetadataWorkspace.

257

CHAPTER 7 WORKING WITH OBJECT SERVICES

If your Metadata Artifact Processing property is set to Embed in Output Assembly, you will notice
that the connection string in your App.config or web.config file, includes a metadata tag, which looks
something like the following:

metadata=res://*/Recipe3.csdl|res://*/Recipe3.ssdl|res://*/Recipe3.msl;

This notation indicates a search path for each of the model layers embedded in the assembly. If you

change the Metadata Artifact Processing property to Copy to Output Directory, you will see the
connection string change to something like this:

metadata=.\Recipe3.csdl|.\Recipe3.ssdl|.\Recipe3.msl;

This notation indicates a file path to each of the model layers.
When embedding the model layers as resources in an assembly, you are not restricted by the

connection string syntax to referencing only the executing assembly. Table 7-1 illustrates some of the
possible constructions you can use to reference the embedded model layers in other assemblies.

Table 7-1. Connection String Syntax for Loading Model Layers

Syntax Meaning

res://myassembly/file.ssdl Loads the SSDL from myassembly

res://myassembly/ Loads the SSDL, CSDL, and MSL from myassembly

res://*/file.ssdl Loads the SSDL from all assemblies in the AppDomain

res://*/ Loads the SSDL, CSDL, and MSL from all assemblies

7-4. Using the Pluralization Service

Problem
You want to use Entity Framework’s Pluralization Service when you import table from a database.

Solution
Suppose that you have a database with the tables shown in Figure 7-3.

Figure 7-3. Employees and Tasks tables in our database

258

res://myassembly/file.ssdl
res://myassembly

 CHAPTER 7 WORKING WITH OBJECT SERVICES

Notice that the tables in Figure 7-3 take the plural form. This is common in many databases. Some
DBAs believe that all table names should be plural; other DBAs believe just the opposite. And, of course,
there are a few who don’t seem to follow any particular view and mix things up. Depending on your
perspective, you may want to use the singular form of the table names for your model’s entities. Entity
Framework provides a Pluralization Service that can automatically generate the singular form of a table
name to use as the corresponding entity name.

To use the Pluralization Service when importing your tables, check the Pluralize or singularize
generated object names box in the last step of the Entity Data Model Wizard (see Figure 7-4). By default,
this box is checked.

Figure 7-4. Enabling the Pluralization Service

Figure 7-5 shows a model created when we import the table in Figure 7-3 without the Pluralization
Service enabled. Notice that entity names are taken directly from the table names and retain the plural
form. Figure 7-6 shows the same tables imported with the Pluralization Service enabled. These entities
use the singular forms of the table names.

259

CHAPTER 7 WORKING WITH OBJECT SERVICES

Figure 7-5. The model created from the tables in Figure 7-3 without the Pluralization Service

Figure 7-6. The model created from the tables in Figure 7-3 with the Pluralization Service

How It Works
Most developers prefer the entity names in the model in Figure 7-6. (Look at the names in boldface at
the top of each entity). Not only are the entity names singular but the Employee navigation property in
the Task entity also makes more sense than the Employees navigation property in the Tasks entity in
Figure 7-5. In both cases, this navigation property is an EntityReference, not a collection. The plural
form in Figure 7-5 seems somewhat confusing.

If our table names were singular to start with, the Pluralization Service would correctly pluralize the
collection-based navigation properties and pluralize the underlying entity set names. This takes cares of
the other half of the DBA community that use singular names for tables.

You can set the default on/off state of the Pluralization Service for new entities in your model by
changing the Pluralize New Objects property. When you add new entities to your model, this setting will
change the default on/off state for the Pluralization Service.

You can use the Pluralization Service outside of the context of Entity Framework. This service is
available in the System.Data.Entity.Design namespace. To add a reference to the
System.Data.Entity.Design.dll, you will need to change your project’s Target framework from the default
.NET Framework 4 Client Profile to the more expansive, .NET Framework 4. This setting is changed in
the properties of the project. The code in Listing 7-3 demonstrates using the Pluralization Service to
pluralize and singularize the words person and people.

260

 CHAPTER 7 WORKING WITH OBJECT SERVICES

Listing 7-3. Using the Pluralization Service

var service = PluralizationService.CreateService(new CultureInfo("en-US"));
string person = "Person";
string people = "People";
Console.WriteLine("The plural of {0} is {1}", person,
 service.Pluralize(person));
Console.WriteLine("The singular of {0} is {1}", people,
 service.Singularize(people));

The following is the output of the code in Listing 7-3:

The plural of Person is People
The singular of People is Person

7-5. Retrieving Entities from the Object State Manager

Problem
You want to create an extension method that retrieves entities from the object state manager.

Solution
Suppose you have a model like the one in Figure 7-7.

Figure 7-7. Our model with technicians and their service calls

In this model, each technician has service calls that include the contact name and issue for the call.
You want to create an extension method that retrieves all entities in the model that are in the Added,
Modified, or Unchanged state. To do this, follow the pattern in Listing 7-4.

261

CHAPTER 7 WORKING WITH OBJECT SERVICES

Listing 7-4. Creating an extension method that retrieves all the entities in the Added, Modified, or

Unchanged state

class Program
{
 static void Main(string[] args)
 {
 RunExample();
 }

 static void RunExample()
 {
 using (var context = new EFRecipesEntities())
 {
 var tech1 = new Technician { Name = "Julie Kerns" };
 var tech2 = new Technician { Name = "Robert Allison" };
 context.ServiceCalls.AddObject(new ServiceCall {
 ContactName = "Robin Rosen",
 Issue = "Can't get satellite signal.",
 Technician = tech1 });
 context.ServiceCalls.AddObject(new ServiceCall {
 ContactName = "Phillip Marlowe",
 Issue = "Channel not available",
 Technician = tech2 });

 // now get the entities we've added
 foreach (var tech in
 context.ObjectStateManager.GetEntities<Technician>())
 {
 Console.WriteLine("Technician: {0}", tech.Name);
 foreach (var call in tech.ServiceCalls)
 {
 Console.WriteLine("\tService Call: Contact {0} about {1}",
 call.ContactName, call.Issue);
 }
 }
 }
 }
}

public static class StateManagerExtensions
{
 public static IEnumerable<T> GetEntities<T>(this ObjectStateManager manager)
 {
 var entities = manager
 .GetObjectStateEntries(~EntityState.Detached)
 .Where(entry => !entry.IsRelationship && entry.Entity != null)
 .Select(entry => entry.Entity).OfType<T>();
 return entities;
 }
}

262

 CHAPTER 7 WORKING WITH OBJECT SERVICES

The following is the output of the code in Listing 7-4:

Technician: Julie Kerns

 Service Call: Contact Robin Rosen about Can't get satellite signal.

Technician: Robert Allison

 Service Call: Contact Phillip Marlowe about Channel not available

How It Works
In Listing 7-4, we implemented the GetEntities<T>() extension method to retrieve all the entities in the
object context that are in the Added, Modified, or Unchanged state. Because this may be a common
activity in your application, it makes sense to implement this just once in an extension method. In the
implementation of the GetEntities<T>() method, we call the GetObjectStateEntries() method passing
in the ~EntityState.Detached expression. The method returns all entries that are not in the Detached
state. From these, we filter out relationships and null entries. From the remaining entries, we select only
those of the given type.

There are some important scenarios in which you might want to implement a method like
GetEntities<T>(). For example, in the SavingChanges event, you may want to validate entities that are
about to be inserted, modified, or deleted.

It is important to note that when you add or delete entities from the object context, these changes
are not reflected in results of queries against the object context. These queries represent entities as they
exist in the database, not what currently exist in the object context.

In our implementation of GetEntities<T>(), we filtered out relationship entries in the object state
manager. Relationships are first-class objects in Entity Framework, and entries are created in the object
state manager for relationships.

7-6. Generating a Model from the Command Line

Problem
You want to generate a model from the command line.

Solution
To generate a model for a given database from the command line, use the edmgen.exe program. To
access the Visual Studio Command Prompt, click Visual Studio 2010 Command Prompt under Microsoft
Visual Studio 2010 from the Start menu.

The Microsoft documentation for the edmgen command provides a complete list of the command
line options. The edmgen command supports a lot of useful command line options. The following
command, for example, will generate a model from all of the tables in the given Test database:

263

CHAPTER 7 WORKING WITH OBJECT SERVICES

edmgen /mode:FullGeneration /project:Test /provider:"System.Data.SqlClient"
/c:"server=localhost;integrated security=true;database=Test;"

Other /mode options are available. One that can be particularly useful in a continuous integration

build process is /mode:ValidateArtifacts. With this option, one or more of the generated layers are
validated. You need to use one or both of the /inssdl or /incsdl options. If you are validating the
mapping layer, all three layers must be specified.

You can use one of the /out options to specify the name of the generated file for specific model
layers. For example, using /outcsdl:MyProject.csdl will create the conceptual layer definitions in a file
named MyProject.csdl. There are similar options for the other layers.

How It Works
The edmgen command provides a convenient way to automate some of the build processes and is a
useful tool for pregenerating views and generating separate files for the model layers. One restriction of
edmgen is that it does not provide a way to generate a model based on a subset of the tables in a
database.

7-7. Working with Dependent Entities in an Identifying
Relationship

Problem
You want to insert, update, and delete a dependent entity in an identifying relationship.

Solution
Suppose you have a model like the one in Figure 7-8. The LineItem’s entity key is a composite key
comprised of InvoiceNumber and ItemNumber. InvoiceNumber is also a foreign key to the Invoice
entity.

Figure 7-8. Invoice and LineItem in an identifying relationship because of the composite entity key in the

LineItem entity

264

 CHAPTER 7 WORKING WITH OBJECT SERVICES

When one of the properties of an entity key is both the primary key and the foreign key, the entity is
said to be participating in an identifying relationship. In our model, LineItem’s entity key, its identity, is
also a foreign key to the Invoice entity. The LineItem entity is referred to as the dependent entity while
Invoice is the principal entity.

There is a subtle difference in how Entity Framework handles the deletion of dependent entities in
an identifying relationship. Because the dependent entity cannot exist without participating in the
relationship, simply removing the dependent entity from the principal’s collection will result in Entity
Framework marking the dependent entity for deletion. Additionally, deleting the principal entity will
also mark the dependent for deletion. This is reminiscent of the cascading deletes common in database
systems. Of course, Entity Framework allows you to explicitly delete the dependent entity. The code in
Listing 7-5 demonstrates all three of these scenarios.

Listing 7-5. Deleting the dependent entity

static void Main(string[] args)
{
 RunExample();
}

static void RunExample()
{
 using (var context = new EFRecipesEntities())
 {

 var invoice1 = new Invoice { BilledTo = "Julie Kerns",
 InvoiceDate = DateTime.Parse("3/19/2010") };
 var invoice2 = new Invoice { BilledTo = "Jim Stevens",
 InvoiceDate = DateTime.Parse("3/21/2010") };
 context.LineItems.AddObject(new LineItem { Cost = 99.29M,
 Invoice = invoice1 });
 context.LineItems.AddObject(new LineItem { Cost = 29.95M,
 Invoice = invoice1 });
 context.LineItems.AddObject(new LineItem { Cost = 109.95M,
 Invoice = invoice2 });
 context.SaveChanges();

 // display the line items
 Console.WriteLine("Original set of line items...");
 DisplayLineItems();

 // remove a line item from invoice 1's collection
 var item = invoice1.LineItems.ToList().First();
 invoice1.LineItems.Remove(item);
 context.SaveChanges();
 Console.WriteLine("\nAfter removing a line item from an invoice...");
 DisplayLineItems();

 // remove invoice2
 context.DeleteObject(invoice2);
 context.SaveChanges();
 Console.WriteLine("\nAfter removing an invoice...");

265

CHAPTER 7 WORKING WITH OBJECT SERVICES

 DisplayLineItems();

 // remove a single line item
 context.DeleteObject(invoice1.LineItems.First());
 context.SaveChanges();
 Console.WriteLine("\nAfter removing a line item...");
 DisplayLineItems();
 }
}

static void DisplayLineItems()
{
 bool found = false;
 using (var context = new EFRecipesEntities())
 {
 foreach (var lineitem in context.LineItems)
 {
 Console.WriteLine("Line item: Cost {0}",
 lineitem.Cost.ToString("C"));
 found = true;
 }
 }
 if (!found)
 Console.WriteLine("No line items found!");
}

The following is the output of the code in Listing 7-5:

Original set of line items...

Line item: Cost $99.29

Line item: Cost $29.95

Line item: Cost $109.95

After removing a line item from an invoice...

Line item: Cost $29.95

Line item: Cost $109.95

After removing an invoice...

Line item: Cost $29.95

266

 CHAPTER 7 WORKING WITH OBJECT SERVICES

After removing a line item...

No line items found!

How It Works
The code in Listing 7-5 deletes line items in three ways. First, it deletes a line item from an invoice’s

ne item is dependent on the invoice for its identity, Entity Framework marks the
r deletion. Next, it deletes an invoice. Entity Framework marks all the dependent

ipal object in an identifying relationship is saved to the database, the key that is
gen

entit r

tity Framework does
mar

ing an Object Context

You want to insert entities in your model to the database using an object context.

Suppose you have a model like the one in Figure 7-9.

collection. Because a li
referenced line item fo
line items for deletion. Finally, the code deletes the last remaining line item directly by calling
DeleteObject().

You can modify all the properties of a dependent entity except for properties that participate in the
identifying relationship. In our model, we can modify the Cost property in a line item, but we can’t
change the Invoice navigation property.

When a princ
erated at the database (for store-generated values) is written to the principal entity and to all its

dependent entities. This ensures that all are synchronized in the object context.
The subtle difference in Entity Framework’s treatment of a deleted relationship between two
ies in an identifying relationship and two entities in any other relationship is worth noting. Fo

other types of relationships, Entity Framework does not mark an entity for deletion if the entity is
removed from the collection of another entity. For an identifying relationship, En

k the dependent entity for deletion.

7-8. Inserting Entities Us

Problem

Solution

Figure 7-9. A model with employees and their tasks

267

CHAPTER 7 WORKING WITH OBJECT SERVICES

The model in Figure 7-9 represents employees and their tasks. You want to insert new employees
and their tasks into the underlying database. To insert an Employee, create a new instance of Employee
and
an e t

Listi

 var employee1 = new Employee {EmployeeNumber = 629,
 Rosen", Salary = 106000M };

 var employee2 = new Employee {EmployeeNumber = 147,
ary = 62500M };

 Sales" };

 employee1.Tasks.Add(task2);

 and use
k to the object context

 employee2.Tasks.Add(task3);

e database

ecipesEntities())

 foreach (var employee in context.Employees)

, employee.Name);

 {

e following is the output of the code in Listing 7-6:

 call the AddObject() method available on the Employees entity set in the context. To add a Task for
mployee, create a new instance of Task and add it to the Tasks collection of the employee. You mus

also call AddObject() to add either the employee or the task to the object context. To persist the changes
to the database, call the SaveChanges() method.

The code in Listing 7-6 demonstrates using AddObject() to add new objects to the object context
and persist them to the database with SaveChanges().

ng 7-6. Inserting new entities into the database

using (var context = new EFRecipesEntities())
{

 Name = "Robin

 Name = "Bill Moore", Sal
 var task1 = new Task { Description = "Report 3rd Qtr Accounting" };
 var task2 = new Task { Description = "Forecast 4th Qtr
 var task3 = new Task { Description = "Prepare Sales Tax Report" };

 // use AddObject() on the Employees entity set
 context.Employees.AddObject(employee1);

 // add two new tasks to the employee1's tasks
 employee1.Tasks.Add(task1);

 // add a task to the employee
 // AddObject() to add the tas

 context.Tasks.AddObject(task3);

 // persist all of these to th
 context.SaveChanges();
}

using (var context = new EFR
{

 {
 Console.WriteLine("Employee: {0}'s Tasks"

 foreach (var task in employee.Tasks)

 Console.WriteLine("\t{0}", task.Description);
 }
 }
}

Th

268

 CHAPTER 7 WORKING WITH OBJECT SERVICES

Employee: Bill Moore's Tasks

 Prepare Sales Tax Report

ng

Employee: Robin Rosen's Tasks

 Report 3rd Qtr Accounti

 Forecast 4th Qtr Sales

How It Works
 the AddObject() method available on the Employees and Tasks entity sets to add
ntext. An AddObject() method is also available on the object context. This second

r
tity Framework uses this temporary key to uniquely identify the entity. This

tem

 entity. Although temporary keys are involved, Entity Framework will fix up the
keys

but the object state
man e

ethod

In Listing 7-6, we used
entities to the object co
version of AddObject() exists for largely historic reasons. Most new applications use the AddObject()
method on the entity set.

When you add an entity to the object context, Entity Framework creates a temporary entity key fo
the newly added entity. En

porary key is replaced by a real key after the object is persisted to the database. If saving two entities
to the database results in both entities being assigned the same entity key, Entity Framework will throw
an exception. This can happen if the keys are assigned the same value by the client or by some store-
generating process.

For foreign key associations, you can assign the foreign key property of an entity the value of the
entity key of a related

 and relationships correctly when the entities are saved to the database.
You can also use the Attach() method to add an entity to an object context. This is a two-step

process. First, call Attach() with the entity. This adds it to the object context,
ager initially marks the entity as Unchanged. Calling SaveChanges() at this point will not save th

entity to the database. The second step is to call the object state manager’s ChangeObjectState() m
passing in the new state: EntityState.Added. Calling SaveChanges() at this point will save the new entity
to the database.

269

C H A P T E R 8

Plain Old CLR Objects

Objects should not know how to save themselves, or load themselves, or filter themselves. That’s a
familiar mantra in software development and especially in Domain Driven Development. There is a
good bit of wisdom in the mantra. Having persistence knowledge bound too tightly to our domain
objects complicates testing, refactoring, and reuse. The classes generated by Entity Framework for our
model entities are heavily dependent on the plumbing of Entity Framework. For some developers, these
classes know too much about the persistence mechanism and are too closely tied to the concerns of
models and mapping. There is another option.

The Entity Framework also supports using your own classes for the entities in the model. The term
Plain Old CLR Objects, often referred to simply as POCO, isn’t meant to imply that your classes are either
plain or old, but simply that they don’t contain any reference at all to specialized frameworks. They don’t
need to derive from third-party code. They don’t need to implement any special interface. And they
don’t need to live in any special assembly or namespace. You implement your domain objects however
you see fit and tie them to the model with a custom object context. With that, you are all set to leverage
all the power of Entity Framework and follow just about any architectural pattern you choose.

This chapter covers a wide variety of recipes specific to POCO. The first recipe shows you the basics
of using POCO. The remaining recipes focus on loading entities and keeping Entity Framework in sync
with state of your objects.

In this chapter, we’ve purposefully focused on writing most of the POCO-related code by hand to
demonstrate how things work. Much of the work of building the POCO plumbing goes away if you use
the POCO T4 template available from the ADO.NET development team at Microsoft.

8-1. Using POCO

Problem
You want to use Plain Old CLR Objects (POCO) in your application.

Solution
Let’s say you have a data model like the one shown in Figure 8-1.

271

CHAPTER 8 PLAIN OLD CLR OBJECTS

Figure 8-1. A database model for customers and their orders

To create an Entity Framework model based on the database tables in Figure 8-1 and using your own
classes representing an Order, OrderDetail, Customer, and Product, do the following:

1. Right-click your project and select Add New Item.

2. From the Visual C# Items Data templates, select ADO.NET Entity Data Model.

3. Select Generate from database to create the model from our existing tables.

4. Select the Order, OrderDetail, Customer, and Product tables; and click Next.

5. In the generated model, the Product entity has an OrderDetails navigation
property for all the order details associated with this product. This is
unnecessary here, so delete this navigation property. The completed model is
shown in Figure 8-2.

Figure 8-2. The model for our customers’ orders

272

 CHAPTER 8 PLAIN OLD CLR OBJECTS

6. We won’t be using generated classes for our entities, so turn off code
generation for the model. Right-click the design surface and select Properties.
Change the Code Generation Strategy to None.

7. Create a class for each of the entities in our model. Make sure you use the exact
same name for the class and each property as we have in the model. Use
ISet<T> as the type for each of the navigation properties. The code in Listing 8-
1 shows the classes for our model.

Listing 8-1. The plain old CLR classes for our model

public class Customer
{
 public int CustomerId { get; set; }
 public string ContactName { get; set; }
 public ISet<Order> Orders {get; set;}
 public Customer()
 {
 this.Orders = new HashSet<Order>();
 }
}

public class Order
{
 public int OrderId {get; set;}
 public int CustomerId {get; set;}
 public DateTime OrderDate {get; set;}
 public Customer Customer {get; set;}
 public ISet<OrderDetail> OrderDetails {get; set;}
 public Order()
 {
 this.OrderDetails = new HashSet<OrderDetail>();
 }
}

public class OrderDetail
{
 public int OrderId {get; set;}
 public int ProductId {get; set;}
 public decimal UnitPrice {get; set;}
 public int Quantity {get; set;}
 public Order Order {get; set;}
 public Product Product {get; set;}
}

public class Product
{
 public int ProductId {get; set;}
 public string ProductName {get; set;}
 public decimal UnitPrice {get; set;}
}

273

CHAPTER 8 PLAIN OLD CLR OBJECTS

Notice that there is no association from Product to OrderDetail because we removed that navigation
property in the designer.

8. To use our POCO classes, we need to create another class that is derived from
ObjectContext. This class will expose an ObjectSet<T> for each of the entities in
our model. The code in Listing 8-2 illustrates how we might define this class.

Listing 8-2. Creating an ObjectContext for our model

public class EFRecipesEntities : ObjectContext
{
 private ObjectSet<Customer> _customers;
 private ObjectSet<Order> _orders;
 private ObjectSet<OrderDetail> _orderdetails;
 private ObjectSet<Product> _products;

 public EFRecipesEntities() :
 base("name=EFRecipesEntities","EFRecipesEntities")
 {
 _orders = CreateObjectSet<Order>();
 _orderdetails = CreateObjectSet<OrderDetail>();
 _products = CreateObjectSet<Product>();
 }

 public ObjectSet<Customer> Customers
 {
 get { return _customers ?? (_customers = CreateObjectSet<Customer>()); }
 }

 public ObjectSet<Order> Orders
 {
 get { return _orders; }
 }

 public ObjectSet<OrderDetail> OrderDetails
 {
 get { return _orderdetails; }
 }

 public ObjectSet<Product> Products
 {
 get { return _products; }
 }
}

This completes our model with our POCO classes. We can now use our model with our POCO

classes just as we would use the model with the generated classes. The code in Listing 8-3 illustrates this.

274

 CHAPTER 8 PLAIN OLD CLR OBJECTS

Listing 8-3. Using our POCO classes

using (var context = new EFRecipesEntities())
{
 var tea = new Product { ProductName = "Green Tea", UnitPrice = 1.09M };
 var coffee = new Product {ProductName = "Colombian Coffee",
 UnitPrice = 2.15M};
 var customer = new Customer { ContactName = "Karen Marlowe" };
 var order1 = new Order { OrderDate = DateTime.Parse("4/19/10") };
 order1.OrderDetails.Add(new OrderDetail { Product = tea,
 Quantity = 4, UnitPrice = 1.00M });
 order1.OrderDetails.Add(new OrderDetail { Product = coffee,
 Quantity = 3, UnitPrice = 2.15M });
 customer.Orders.Add(order1);
 context.Customers.AddObject(customer);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 var query = context.Customers.Include("Orders.OrderDetails.Product");
 foreach (var customer in query)
 {
 Console.WriteLine("Orders for {0}", customer.ContactName);
 foreach (var order in customer.Orders)
 {
 Console.WriteLine("--Order Date: {0}--",
 order.OrderDate.ToShortDateString());
 foreach (var detail in order.OrderDetails)
 {
 Console.WriteLine(
 "\t{0}, {1} units at {2} each, unit discount: {3}",
 detail.Product.ProductName,
 detail.Quantity.ToString(),
 detail.UnitPrice.ToString("C"),
 (detail.Product.UnitPrice - detail.UnitPrice).ToString("C"));
 }
 }
 }
}

The following is the output of the code in Listing 8-3:

275

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

CHAPTER 8 PLAIN OLD CLR OBJECTS

Orders for Karen Marlowe

--Order Date: 4/19/2010--

 Green Tea, 4 units at $1.00 each, unit discount: $0.09

 Colombian Coffee, 3 units at $2.15 each, unit discount: $0.00

How It Works
To substitute our own classes for the ones typically generated by the Entity Framework from a model, we
started off by setting the Code Generation Strategy property value to None. This keeps Entity Framework
from generating code for our model and allows us to use our own classes, which don’t derive from
anything special and are “untainted” by any reference to Entity Framework.

Of course, we need to create a class corresponding to each of the entities in our model. As you can
see from Listing 8-1, they are pretty simple and clean. We have to be careful to name the class exactly the
same as the entity, and we have to have the corresponding properties. The Entity Framework is smart
enough to find our classes almost anywhere they are defined in the AppDomain, so you don’t need to
put them in any special namespace or even in the same assembly as the model.

Of course, without code generation no object context is generated for us. To implement an object
context that is specific to our model and our entities, we simply create a new class that derived from
ObjectContext and provides properties of type ObjectSet<T> corresponding to each of the object sets in
our context. You can choose to initialize each of these object sets in the constructor as we have for
Product, Order, and OrderDetail. Or you can initialize them when accessed as we have for Customer.

Our EFRecipesEntities object context needs to be connected to the underlying database just like a
generated object context. To do this, we pass two things to the base constructor. First, we pass in the
connection string that was added by the designer to the config file. The second parameter is the default
entity container name, which is usually the same name as the connection string.

The code in Listing 8-3 demonstrates inserting into and querying our model. Notice that we follow
the same basic pattern when interacting with our POCO classes as we have previously with model-
generated code.

By default, POCO classes do not support lazy loading or change tracking. However, with proxies, you
can get both of these behaviors. We’ll cover proxies in recipe 8-3.

8-2. Loading Related Entities With POCO

Problem
Using POCO, you want to explicitly load related entities.

Solution
Suppose you have a model like the one in Figure 8-3.

276

 CHAPTER 8 PLAIN OLD CLR OBJECTS

Figure 8-3. A model representing venues, their events, and the competitors in the events

We’re using POCO for our entities and we want to explicitly load the related entities (navigation
properties). To do this we use the LoadProperty() method available on the object context. The code in
Listing 8-4 illustrates using the LoadProperty() method.

Listing 8-4. Using the LoadProperty() method to explicitly load navigation properties

class Program
{
 static void Main(string[] args)
 {
 RunExample();
 }

 static void RunExample()
 {
 using (var context = new EFRecipeEntities())
 {
 var venue = new Venue { Name = "City Center Hall" };
 var event1 = new Event { Name = "All Star Boxing" };
 event1.Competitors.Add(new Competitor { Name = "Big Joe Green" });
 event1.Competitors.Add(new Competitor { Name = "Terminator Tim" });
 venue.Events.Add(event1);
 context.Venues.AddObject(venue);
 context.SaveChanges();
 }

 using (var context = new EFRecipeEntities())
 {
 foreach (var venue in context.Venues)
 {
 Console.WriteLine("Venue: {0}", venue.Name);
 context.LoadProperty(venue, v => v.Events);
 foreach (var evt in venue.Events)
 {
 Console.WriteLine("\tEvent: {0}", evt.Name);
 Console.WriteLine("\t--- Competitors ---");
 context.LoadProperty(evt, e => e.Competitors);
 foreach (var competitor in evt.Competitors)
 {

277

CHAPTER 8 PLAIN OLD CLR OBJECTS

 Console.WriteLine("\t{0}", competitor.Name);
 }
 }
 }
 }
 }
}

public class Venue
{
 public int VenueId { get; set; }
 public string Name { get; set; }
 public ICollection<Event> Events { get; set; }
 public Venue()
 {
 this.Events = new HashSet<Event>();
 }
}

public class Event
{
 public int EventId { get; set; }
 public string Name { get; set; }
 public int VenueId { get; set; }
 public Venue Venue { get; set; }
 public ICollection<Competitor> Competitors { get; set; }
 public Event()
 {
 this.Competitors = new HashSet<Competitor>();
 }
}

public class Competitor
{
 public int CompetitorId { get; set; }
 public string Name { get; set; }
 public int EventId { get; set; }
}

public class EFRecipeEntities : ObjectContext
{
 public EFRecipeEntities()
 : base("name=EFRecipesEntities", "EFRecipesEntities")
 {
 }

 private ObjectSet<Venue> venues;
 private ObjectSet<Event> events;
 private ObjectSet<Competitor> competitors;

 public ObjectSet<Venue> Venues
 {

278

 CHAPTER 8 PLAIN OLD CLR OBJECTS

 get { return venues ?? (venues = CreateObjectSet<Venue>());}
 }

 public ObjectSet<Event> Events
 {
 get { return events ?? (events = CreateObjectSet<Event>());}
 }

 public ObjectSet<Competitor> Competitors
 {
 get { return competitors ?? (competitors = CreateObjectSet<Competitor>());
 }
}

The following is the output of the code in Listing 8-4:

Venue: City Center Hall

 Event: All Star Boxing

 --- Competitors ---

 Big Joe Green

 Terminator Tim

How It Works
When we’re using code generated by Entity Framework for our model, we use the Load() method
available on the EntityReference and EntityCollection properties. For POCO, these methods are not
available because the corresponding values for our properties are either instances of POCO classes or
ICollection<T>.

To explicitly load a navigation property when we use POCO, we need to use the LoadProperty()
method exposed on the object context. Recall that with POCO, we implement our own object context,
but because it derived from ObjectContext, it comes with an implementation of the LoadProperty()
method.

We need to explicitly load the navigation properties when we use POCO and are not using proxies.
Proxies are generated when properties are marked as virtual. When proxies are generated, you can
control lazy loading with the ContextOptions.LazyLoadingEnabled Boolean.

8-3. Lazy Loading With POCO

Problem
You are using plain old CLR objects and you want to lazy load related entities.

279

CHAPTER 8 PLAIN OLD CLR OBJECTS

Solution
Let’s say you have a model like the one in Figure 8-4.

Figure 8-4. A simple model for traffic tickets, the offending vehicles, and the details of the violation

To enable lazy loading, we need to do two things. First, set LazyLoadingEnabled to true on the object
context’s ContextOptions. Next, mark the properties we want lazy loaded as virtual. This will cause
proxy objects to be created for the entities which will handle the lazy loading. The code in Listing 8-5
illustrates this approach.

Listing 8-5. Marking properties as virtual and setting LazyLoadingEnable to true

class Program
{
 static void Main(string[] args)
 {
 RunExample();
 }

 static void RunExample()
 {
 using (var context = new EFRecipesEntities())
 {
 var vh1 = new Vehicle { LicenseNo = "BR-549" };
 var t1 = new Ticket { IssueDate = DateTime.Parse("4/18/10") };
 var v1 = new Violation {
 Description = "20 MPH over the speed limit",
 Amount = 125M };
 var v2 = new Violation {
 Description = "Broken tail light",
 Amount = 50M };
 t1.Violations.Add(v1);
 t1.Violations.Add(v2);
 t1.Vehicle = vh1;
 context.Tickets.AddObject(t1);
 var vh2 = new Vehicle { LicenseNo = "XJY-902" };
 var t2 = new Ticket { IssueDate = DateTime.Parse("4/20/10") };
 var v3 = new Violation {
 Description = "Parking in a no parking zone",
 Amount = 35M };

280

 CHAPTER 8 PLAIN OLD CLR OBJECTS

 t2.Violations.Add(v3);
 t2.Vehicle = vh2;
 context.Tickets.AddObject(t2);
 context.SaveChanges();
 }

 using (var context = new EFRecipesEntities())
 {
 context.ContextOptions.LazyLoadingEnabled = true;
 foreach (var ticket in context.Tickets)
 {
 Console.WriteLine(" Ticket: {0}, Total Cost: {1}",
 ticket.TicketId.ToString(),
 ticket.Violations.Sum(v => v.Amount).ToString("C"));
 foreach (var violation in ticket.Violations)
 {
 Console.WriteLine("\t{0}", violation.Description);
 }
 }
 }
 }
}

public class Ticket
{
 public int TicketId { get; set; }
 public int VehicleId { get; set; }
 public DateTime IssueDate { get; set; }
 public virtual Vehicle Vehicle {get; set;}
 public virtual ICollection<Violation> Violations {get; private set;}
 public Ticket()
 {
 this.Violations = new HashSet<Violation>();
 }
}

public class Vehicle
{
 public int VehicleId {get; set;}
 public string LicenseNo {get; set;}
}

public class Violation
{
 public int ViolationId { get; set; }
 public int TicketId { get; set; }
 public string Description { get; set; }
 public decimal Amount { get; set; }
}

public class EFRecipesEntities : ObjectContext
{

281

CHAPTER 8 PLAIN OLD CLR OBJECTS

 public EFRecipesEntities()
 : base("name=EFRecipesEntities", "EFRecipesEntities")
 {
 }

 private ObjectSet<Ticket> tickets;
 private ObjectSet<Violation> violations;
 private ObjectSet<Vehicle> vehicles;

 public ObjectSet<Ticket> Tickets
 {
 get { return tickets ?? (tickets = CreateObjectSet<Ticket>()); }
 }

 public ObjectSet<Violation> Violations
 {
 get { return violations ?? (violations = CreateObjectSet<Violation>()); }
 }

 public ObjectSet<Vehicle> Vehicles
 {
 get { return vehicles ?? (vehicles = CreateObjectSet<Vehicle>()); }
 }
}

The following is the output of the code in Listing 8-5:

Ticket: 1, Total Cost: $175.00

 20 MPH over the speed limit

 Broken tail light

Ticket: 2, Total Cost: $35.00

 Parking in a no parking zone

How It Works
To get lazy loading, we first needed to enable it by setting the LazyLoadingEnabled property on the
ContextOptions to true. This turns on lazy loading for the context.

Next, we let Entity Framework create proxy objects for our POCO objects by marking as virtual the
navigation properties we want to lazy load. These proxy objects derive from our POCO objects and act in
place of our objects.

There are two subtly different effects from marking properties as virtual. If we mark all the
properties as virtual, we get proxies that provide both change tracking and lazy loading. The lazy
loading, also, of course, depends on LazyLoadingEnabled being true. If we mark just the navigation

282

 CHAPTER 8 PLAIN OLD CLR OBJECTS

properties as virtual, the end result is that we get proxies that support just lazy loading, not change
tracking.

8-4. POCO With Complex Type Properties

Problem
You want to use a complex type in your POCO entity.

Solution
Suppose your model looks like the one in Figure 8-5. In this model, the Name property is a complex type.

Figure 8-5. A model for an employee. The Name property is a complex type composed of FirstName and

LastName.

Complex types are supported with POCO. Simply create a class for the complex type and use this
class as the type for the property. Only classes are supported. There is no current support for struct as a
complex type. The code in Listing 8-6 illustrates using the Name class for the complex type representing
the employee’s FirstName and LastName.

Listing 8-6. Using a complex type with POCO

class Program
{
 static void Main(string[] args)
 {
 RunExample();
 }

 static void RunExample()
 {
 using (var context = new EFRecipesEntities())
 {
 context.Employees.AddObject(new Employee {
 Name = new Name { FirstName = "Annie",
 LastName = "Oakley" },
 Email = "aoakley@wildwestshow.com" });

283

mailto:aoakley@wildwestshow.com

CHAPTER 8 PLAIN OLD CLR OBJECTS

 context.Employees.AddObject(new Employee {
 Name = new Name { FirstName = "Bill",
 LastName = "Jordan" },
 Email = "BJordan@wildwestshow.com" });
 context.SaveChanges();
 }

 using (var context = new EFRecipesEntities())
 {
 foreach (var employee in
 context.Employees.OrderBy(e => e.Name.LastName))
 {
 Console.WriteLine("{0}, {1} email: {2}",
 employee.Name.LastName,
 employee.Name.FirstName,
 employee.Email);
 }
 }
 }
}

public class Employee
{
 public int EmployeeId { get; set; }
 public string Email { get; set; }
 public Name Name { get; set; }
}

public class Name
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
}

public class EFRecipesEntities : ObjectContext
{
 public EFRecipesEntities()
 : base("name=EFRecipesEntities", "EFRecipesEntities")
 {
 }

 private ObjectSet<Employee> employees;

 public ObjectSet<Employee> Employees
 {
 get { return employees ?? (employees = CreateObjectSet<Employee>()); }
 }
}

The following is the output of the code in Listing 8-6:

284

mailto:BJordan@wildwestshow.com

 CHAPTER 8 PLAIN OLD CLR OBJECTS

Jordan, Bill email: BJordan@wildwestshow.com
Oakley, Annie email: aoakley@wildwestshow.com

How It Works
When you use complex types with POCO, keep in mind the following two rules:

• The complex type must be a class. It cannot be a struct.

• Inheritance cannot be used with complex type classes.

In the current version of Entity Framework, complex types do not leverage change tracking.
Changes to complex types will not be reflected in change tracking. This means that if you mark the
properties on a complex type as virtual, there is no change-tracking proxy support. All change tracking
is snapshot-based.

When you delete or update a POCO entity with a complex type without first loading it from the
database, you need to be careful to create an instance of the complex type. In Entity Framework,
instances of complex types are structurally part of the entity, and null values are not supported. The
code in Listing 8-7 illustrates one way to handle deletes.

Listing 8-7. Deleting a POCO entity with a complex type

int id = 0;
using (var context = new EFRecipesEntities())
{
 var emp = context.Employees.Where(e =>
 e.Name.FirstName.StartsWith("Bill")).FirstOrDefault();
 id = emp.EmployeeId;
}

using (var context = new EFRecipesEntities())
{
 var empDelete = new Employee { EmployeeId = id,
 Name = new Name { FirstName = string.Empty,
 LastName = string.Empty } };
 context.Employees.Attach(empDelete);
 context.Employees.DeleteObject(empDelete);
 context.SaveChanges();
}

In Listing 8-7, we first have to find the EmployeeId of Bill Jordan. Because we are trying to show how

we would delete Bill without first loading the entity into the context, we create a new context to illustrate
deleting Bill given just his EmployeeId. We need to create an instance of the Employee entity complete
with the Name type. Because we are deleting, it doesn’t matter much what values we put in for
FirstName and LastName. The key is that the Name property is not null. We satisfy this requirement by
assigning a new (dummy) instance of Name. We then Attach() the entity and call DeleteObject() and
SaveChanges(). This deletes the entity.

285

mailto:BJordan@wildwestshow.com
mailto:aoakley@wildwestshow.com

CHAPTER 8 PLAIN OLD CLR OBJECTS

8-5. Notifying Entity Framework About Object Changes

Problem
You are using POCO and want to have Entity Framework and the object state manager notified of
changes to your objects.

Solution
Let’s say you have a model like the one in Figure 8-6.

Figure 8-6. A model for donors and their donations

This model represents donations and donors. Because some donations are anonymous, the
relationship between donor and donation is 0..1 to *.

We want to make changes to our entities, such as moving a donation from one donor to another,
and have Entity Framework and the object state manager notified of these changes. In addition, we want
Entity Framework to leverage this notification to fix up any relationships that are affected by changes. In
our case, if we change the Donor on a Donation, we want Entity Framework to fix up both sides of the
relationship. The code in Listing 8-8 demonstrates how to do this.

The key part of Listing 8-8 is that we marked each property as virtual and each collection returning
a type of ICollection<T>. This allows Entity Framework to create proxies for our POCO entities that
enable change tracking.

Listing 8-8. By marking each property as virtual and each collection a type of ICollection<T>, we get

proxies that enable change tracking.

class Program
{
 static void Main(string[] args)
 {
 RunExample();
 }

 static void RunExample()
 {
 using (var context = new EFRecipesEntities())
 {

286

 CHAPTER 8 PLAIN OLD CLR OBJECTS

 var donation = context.CreateObject<Donation>();
 donation.Amount = 5000M;

 var donor1 = context.CreateObject<Donor>();
 donor1.Name = "Jill Rosenberg";
 var donor2 = context.CreateObject<Donor>();
 donor2.Name = "Robert Hewitt";

 // give Jill the credit for the donation and save
 donor1.Donations.Add(donation);
 context.Donors.AddObject(donor1);
 context.Donors.AddObject(donor2);
 context.SaveChanges();

 // now give Robert the credit
 donation.Donor = donor2;

 // report
 foreach (var donor in context.Donors)
 {
 Console.WriteLine("{0} has given {1} donation(s)", donor.Name,
 donor.Donations.Count().ToString());
 }
 var entry = context.ObjectStateManager.GetObjectStateEntry(donation);
 Console.WriteLine("Original Donor Id: {0}",
 entry.OriginalValues["DonorId"]);
 Console.WriteLine("Current Donor Id: {0}",
 entry.CurrentValues["DonorId"]);
 }
 }
}

public class Donor
{
 public virtual int DonorId { get; set; }
 public virtual string Name { get; set; }
 public virtual ICollection<Donation> Donations { get; set; }
}

public class Donation
{
 public virtual int DonationId { get; set; }
 public virtual int? DonorId { get; set; }
 public virtual decimal Amount { get; set; }
 public virtual Donor Donor { get; set; }
}

public class EFRecipesEntities : ObjectContext
{
 public EFRecipesEntities()
 : base("name=EFRecipesEntities", "EFRecipesEntities")
 {

287

CHAPTER 8 PLAIN OLD CLR OBJECTS

 }

 private ObjectSet<Donor> donors;
 private ObjectSet<Donation> donations;

 public ObjectSet<Donor> Donors
 {
 get { return donors ?? (donors = CreateObjectSet<Donor>()); }
 }

 public ObjectSet<Donation> Donations
 {
 get { return donations ?? (donations = CreateObjectSet<Donation>()); }
 }
}

The following is the output of the code in Listing 8-8:

Jill Rosenberg has given 0 donation(s)

Robert Hewitt has given 1 donation(s)

Original Donor Id: 1

Current Donor Id: 2

How It Works
By default, the Entity Framework uses a snapshot-based approach for detecting changes made to POCO
entities. If you make some minor code changes to your POCO entities, Entity Framework can create
change-tracking proxies that keep the object state manager synchronized with the runtime changes in
your POCO entities.

There are two important benefits that come with change-tracking proxies. First, the object state
manager stays informed of the changes and can keep the entity object graph state information
synchronized with your POCO entities. This means that no time needs to be spent detecting changes
using the snapshot-based approach.

Additionally, when the object state manager is notified of changes on one side of a relationship, it
can mirror the change on the other side of the relationship if needed. In Listing 8-8, when we moved a
Donation from one Donor to another, Entity Framework also fixed up the Donations collections of both
Donors.

For the Entity Framework to create the change-tracking proxies for your POCO classes, the following
conditions must be met.

• The class must be public, non-abstract, and non-sealed.

• The class must implement virtual getters and setters for all properties that are
persisted.

288

 CHAPTER 8 PLAIN OLD CLR OBJECTS

• You must declare collection-based relationships navigation properties as
ICollection<T>. They cannot be a concrete implementation or another interface
that derives from ICollection<T>.

Once your POCO classes have met these requirements, Entity Framework will return instances of
the proxies for your POCO classes. If you need to create instances, as we have in Listing 8-8, you need to
use the CreateObject<T>() method on the object context. This method creates the instance of the proxy
for your POCO entity and initializes all the collections as instances of EntityCollection. It is this
initialization of your POCO class’ collections as instances of EntityCollection that enables fixing up
relationships.

8-6. Retrieving the Original (POCO) Object

Problem
You are using POCO and you want to retrieve the original object from a database.

Solution
Let’s say you are using a model like the one in Figure 8-7 and you working in a disconnected scenario.
You want to use GetObjectByKey() to retrieve the original object from the database before you apply
changes received from a client. GetObjectByKey() takes an entity key. To form an entity key, you’ll need
the entity set name, which is not available on POCO classes.

Figure 8-7. A model with a single Item entity

To get the entity set name, form the entity key, and use GetObjectByKey() to retrieve the object and
then apply changes, follow the pattern in Listing 8-9.

Listing 8-9. Getting the entity set name to create the entity key enables us to use GetObjectByKey()

class Program
{
 static void Main(string[] args)
 {
 RunExample();
 }

 static void RunExample()

289

CHAPTER 8 PLAIN OLD CLR OBJECTS

 {
 int itemId = 0;
 using (var context = new EFRecipesEntities())
 {
 var item = new Item { Name = "Xcel Camping Tent",
 UnitPrice = 99.95M };
 context.Items.AddObject(item);
 context.SaveChanges();

 // keep the item id for the next step
 itemId = item.ItemId;
 Console.WriteLine("Item: {0}, UnitPrice: {1}",
 item.Name, item.UnitPrice.ToString("C"));
 }

 using (var context = new EFRecipesEntities())
 {
 // pretend this is the updated
 // item we received with the new price
 var item = new Item { ItemId = itemId,
 Name = "Xcel Camping Tent",
 UnitPrice = 129.95M };

 // use our method to get the entity set name
 var itemES = context.GetEntitySet(item);

 // create the entity key
 var key = context.CreateEntityKey(itemES.Name, item);

 // retrieve and update the item
 context.GetObjectByKey(key);
 context.ApplyCurrentValues(itemES.Name, item);
 context.SaveChanges();
 }

 using (var context = new EFRecipesEntities())
 {
 var item = context.Items.Single();
 Console.WriteLine("Item: {0}, UnitPrice: {1}", item.Name,
 item.UnitPrice.ToString("C"));
 }
 }
}

public class Item
{
 public int ItemId { get; set; }
 public string Name { get; set; }
 public decimal UnitPrice { get; set; }
}

public class EFRecipesEntities : ObjectContext

290

 CHAPTER 8 PLAIN OLD CLR OBJECTS

{
 public EFRecipesEntities()
 : base("name=EFRecipesEntities", "EFRecipesEntities")
 {
 }

 private ObjectSet<Item> items;
 public ObjectSet<Item> Items
 {
 get { return items ?? (items = CreateObjectSet<Item>()); }
 }

 // gets the entity set
 public EntitySetBase GetEntitySet(Object entityType)
 {
 var container = this.MetadataWorkspace.GetEntityContainer(
 this.DefaultContainerName,DataSpace.CSpace);
 var entitySet = container.BaseEntitySets.Single(
 es => es.ElementType.Name == entityType.GetType().Name);
 return entitySet;
 }
}

The following is the output of the code in Listing 8-9:

Item: Xcel Camping Tent, UnitPrice: $99.95
Item: Xcel Camping Tent, UnitPrice: $129.95

How It Works
In Listing 8-9, we inserted an item into the model and saved it to the database. Then we pretended to
receive an updated item, perhaps from a Silverlight client.

Next, we need to update the item in the database. To do this, we need to get the entity from the
database into the context. To get the entity, we’ll use GetObjectByKey(). To use GetObjectByKey(), we
need to form the entity key for the entity. Unfortunately, to use CreateEntityKey() we need the entity set
name. This name is not directly available when we are using POCO classes. To solve this problem, we
implemented the GetEntitySet() method in our implementation of the object context. This method gets
the entity set for our entity. Given the entity set, we can now pass the entity set name to
CreateEntityKey() to form the entity key. Now armed with the entity key, we can call GetObjectByKey()
to load the original item and apply the changes with the ApplyCurrentValues() method.

If you are using Multiple Entity Sets per Type (MEST), which maps an entity to multiple entity sets,
this approach doesn’t work. In this recipe, we’re assuming that the entity is mapped to just one entity
set.

291

CHAPTER 8 PLAIN OLD CLR OBJECTS

8-7. Manually Synchronizing the Object Graph and
the Object State Manager

Problem
You want to manually control the synchronization between your POCO classes and the object state
manager.

Solution
Suppose we have a model for speakers and the talks prepared for various conferences. The model might
something like the one in Figure 8-8.

Figure 8-8. A model with a many-to-many association between speakers and the talks they prepare

The first thing to note in our model is that Speaker and Talk are in a many-to-many association. We
have, through an independent association (and in intermediate SpeakerTalk table in the database), a
model that supports many speakers for any given talk and many talks for any given speaker.

We want to manually control the synchronization between our object graph and the object state
manager. We will do this by calling the DetectChanges() method and handling the SavingChanges event.
Along the way, we’ll illustrate how the synchronization is progressing.

Follow the pattern in Listing 8-10 to manually synchronize your POCO object graph with the object
state manager.

Listing 8-10. Using DetectChanges() and handling the SavingChanges event to manually synchronize the

object state manager

class Program
{
 static void Main(string[] args)
 {
 RunExample();
 }

 static void RunExample()
 {
 using (var context = new EFRecipesEntities())

292

 CHAPTER 8 PLAIN OLD CLR OBJECTS

 {
 var speaker1 = new Speaker { Name = "Karen Stanfield" };
 var talk1 = new Talk { Title = "Simulated Annealing in C#" };
 speaker1.Talks = new List<Talk> { talk1 };

 // associations not yet complete
 Console.WriteLine("talk1.Speaker is null: {0}",
 talk1.Speakers == null);
 context.Speakers.AddObject(speaker1);

 // now it's fixed up
 Console.WriteLine("talk1.Speaker is null: {0}",
 talk1.Speakers == null);
 Console.WriteLine("Number of added entries tracked: {0}",
 context.ObjectStateManager
 .GetObjectStateEntries(
 System.Data.EntityState.Added).Count());
 context.SaveChanges();

 // change the talk's title
 talk1.Title = "AI with C# in 3 Easy Steps";
 Console.WriteLine("talk1's state is: {0}",
 context.ObjectStateManager
 .GetObjectStateEntry(talk1).State);
 context.DetectChanges();
 Console.WriteLine("talk1's state is: {0}",
 context.ObjectStateManager
 .GetObjectStateEntry(talk1).State);

 context.SaveChanges();
 }

 using (var context = new EFRecipesEntities())
 {
 foreach(var speaker in context.Speakers.Include("Talks"))
 {
 Console.WriteLine("Speaker: {0}",speaker.Name);
 foreach(var talk in speaker.Talks)
 {
 Console.WriteLine("\tTalk Title: {0}",talk.Title);
 }
 }
 }
 }
}

public class Speaker
{
 public int SpeakerId { get; set; }
 public string Name { get; set; }
 public IList<Talk> Talks { get; set; }
}

293

CHAPTER 8 PLAIN OLD CLR OBJECTS

public class Talk
{
 public int TalkId { get; set; }
 public string Title { get; set; }
 public DateTime CreateDate { get; set; }
 public DateTime RevisedDate { get; set; }
 public IList<Speaker> Speakers { get; set; }
}

public class EFRecipesEntities : ObjectContext
{
 public EFRecipesEntities()
 : base("name=EFRecipesEntities", "EFRecipesEntities")
 {
 this.SavingChanges += new EventHandler(EFRecipesEntities_SavingChanges);
 }

 private ObjectSet<Speaker> speakers;
 private ObjectSet<Talk> talks;

 public ObjectSet<Speaker> Speakers
 {
 get { return speakers ?? (speakers = CreateObjectSet<Speaker>()); }
 }

 public ObjectSet<Talk> Talks
 {
 get { return talks ?? (talks = CreateObjectSet<Talk>()); }
 }

 private void EFRecipesEntities_SavingChanges(object sender, EventArgs e)
 {
 var addedTalks = this.ObjectStateManager
 .GetObjectStateEntries(
 System.Data.EntityState.Added)
 .Where(en => en.Entity is Talk)
 .Select(en => en.Entity as Talk);
 foreach (var talk in addedTalks)
 {
 talk.CreateDate = DateTime.Now;
 talk.RevisedDate = DateTime.Now;
 }

 var revisedTalks = this.ObjectStateManager
 .GetObjectStateEntries(
 System.Data.EntityState.Modified)
 .Where(en => en.Entity is Talk)
 .Select(en => en.Entity as Talk);
 foreach (var talk in revisedTalks)
 {
 talk.RevisedDate = DateTime.Now;

294

 CHAPTER 8 PLAIN OLD CLR OBJECTS

 }
 }

 public override int SaveChanges(SaveOptions options)
 {
 this.DetectChanges();
 return base.SaveChanges(options);
 }
}

The following is the output of the code in Listing 8-10:

talk1.Speaker is null: True

talk1.Speaker is null: False

Number of added entries tracked: 3

talk1's state is: Unchanged

talk1's state is: Modified

Speaker: Karen Stanfield

 Talk Title: AI with C# in 3 Easy Steps

How It Works
The code in Listing 8-10 is a little involved, so let’s take it one step at a time. First off, we create a speaker
and a talk. Then we add the talk to the speaker’s collection. At this point, the talk is part of the speaker’s
collection, but the speaker is not part of the talk’s collection. The other side of the association has not
been fixed up yet.

Next, we add the speaker to the object context with AddObject(speaker1). The second line of the
output shows now that the talk’s speaker collection is correct. Entity Framework has fixed up the other
side of the association. Here Entity Framework did two things. It notified the object state manager that
there are three entries to be created (third line of the output). One of these entries is for the speaker, one
is for the talk, and one is for the many-to-many association entry. The second thing Entity Framework
did was to fix up the talk’s speaker collection.

When we call SaveChanges(),Entity Framework raises the SavingChanges event. Inside the handler
for this event we update the CreateDate and RevisedDate properties. After the SavingChanges event is
handled, Entity Framework calls DetectChanges() to find any changes that occurred in the event
handler. In Listing 8-10, we override the SaveChanges() method and explicitly call DetectChanges(),
although this is not strictly necessary.

The DetectChanges() method relies on a snapshot base comparison of the original and current
values for each property on each entity. This process determines what has changed in the object graph.
For large object graphs, this comparison process may be time consuming.

295

CHAPTER 8 PLAIN OLD CLR OBJECTS

8-8. Testing Domain Objects

Problem
You want to create unit tests for the business rules you have defined for your entities.

Solution
For this solution, we’ll use the POCO template to generate the classes for our entities. Using the POCO
template will reduce the amount of code we need to write and make the solution a little more clear. Of
course, you use the remaining steps in this solution with your hand-crafted POCO classes.

Suppose you have a model like the one shown in Figure 8-9.

Figure 8-9. A model of reservations, schedules, and trains

This model represents reservations for train travel. Each reservation is for a particular scheduled
train departure. To create the model and prepare the application for unit testing, do the following:

1. Create an empty solution. Right-click the solution in the Solution Explorer and
select Add New Project. Add a new Class Library project. Name this new
project TrainReservation.

2. Right-click the TrainReservation project and select Add New Item. Add a
new ADO.NET Entity Data Model. Import the Train, Schedule, and Reservation
tables. The resulting model should look like the one in Figure 8-9.

3. Right-click the design surface and select Add Code Generation Item. Select
ADO.NET POCO Entity Generator. Name this item Recipe8.tt. Click Add. The
T4 template for POCO code generation will be added to your project. This will
cause POCO classes to be generated for your entities. If the POCO template is
not available, use the Tools Extension Manager to download the template or
enable it if you have already installed it.

4. Add the IValidate interface and ChangeAction enum in Listing 8-11 to the
project.

296

 CHAPTER 8 PLAIN OLD CLR OBJECTS

5. Add the code in Listing 8-12 to the project. This code adds the validation code
(the implementation of IValidate) to the Reservation and Schedule classes.

6. Override the SaveChanges() method in the object context with the code in
Listing 8-13. This will allow us to validate the changes before they are saved to
the database.

7. Create the IReservationContext interface in Listing 8-14. We’ll use this
interface to help us test against a fake object context so that changes are not
saved to the real database.

8. The POCO template generates both the POCO classes and the class that
implements the object context. We’ll need this object context class to
implement the IReservationContext interface. To do this, edit the
Recipe8.Context.tt template file and add IReservationContext at the end of
the line that generates the name of the object context class. The complete line
should look like the following:

<#=Accessibility.ForType(container)#> partial class <#=code.Escape(container)#> :
 ObjectContext,IReservationContext

9. The IReservationContext interface returns IObjectSet<T>. We need to change
the T4 template so that it generates an object context that returns
IObjectSet<T> in place of ObjectSet<T>. To do this, change this line

<#=Accessibility.ForReadOnlyProperty(entitySet)#>
 ObjectSet<<#=code.Escape(entitySet.ElementType)#>> <#=code.Escape(entitySet)#>

to this

<#=Accessibility.ForReadOnlyProperty(entitySet)#>
 IObjectSet<<#=code.Escape(entitySet.ElementType)#>> <#=code.Escape(entitySet)#>

and change this line

private ObjectSet<<#=code.Escape(entitySet.ElementType)#>>
 <#=code.FieldName(entitySet)#>;

to this

private IObjectSet<<#=code.Escape(entitySet.ElementType)#>>
 <#=code.FieldName(entitySet)#>;

10. Create the repository class in Listing 8-15. This class takes an
IReservationContext in the constructor.

11. Right-click the solution and select Add New Project. Add a Test Project to the
solution. Name this new project Tests. Add a reference to System.Data.Entity.

12. Create a fake object set and fake object context so that we can test our business
rules in isolation without interacting with the database. Use the code in Listing
8-16.

13. We don’t want to test against our real database, so we need to create a fake
object context that simulates the object context with in-memory collections
acting as our data store. Add the unit test code in Listing 8-17 to the Tests
project.

297

CHAPTER 8 PLAIN OLD CLR OBJECTS

The Test project now has three unit tests that exercise the following business rules:

• A passenger cannot have more than one reservation for a scheduled departure.

• The arrival date and time for a schedule must be after the departure date and time.

• The departure location cannot be the same as the arrival location.

Listing 8-11. The IValidate interface

public enum ChangeAction
{
 Insert,
 Update,
 Delete
}

interface IValidate
{
 void Validate(ChangeAction action);
}

Listing 8-12. Implementation of the IValidate interface for the Reservation and Schedule classes

public partial class Reservation : IValidate
{
 public void Validate(ChangeAction action)
 {
 if (action == ChangeAction.Insert)
 {
 if (Schedule.Reservations.Count(r =>
 r.ReservationId != ReservationId &&
 r.Passenger == this.Passenger) > 0)
 throw new InvalidOperationException(
 "Reservation for the passenger already exists");
 }
 }
}

public partial class Schedule : IValidate
{
 public void Validate(ChangeAction action)
 {
 if (action == ChangeAction.Insert)
 {
 if (ArrivalDate < DepartureDate)
 {
 throw new InvalidOperationException(
 "Arrival date cannot be before departure date");
 }

 if (LeavesFrom == ArrivesAt)

298

 CHAPTER 8 PLAIN OLD CLR OBJECTS

 {
 throw new InvalidOperationException(
 "Can't leave from and arrive at the same location");
 }
 }
 }
}

Listing 8-13. Overriding the SaveChanges() method

public partial class EFRecipesEntities
{
 public override int SaveChanges(SaveOptions options)
 {
 this.DetectChanges();
 var entries = from e in this.ObjectStateManager
 .GetObjectStateEntries(EntityState.Added |
 EntityState.Modified |
 EntityState.Deleted)
 where (e.IsRelationship == false) && (e.Entity != null) &&
 (e.Entity is IValidate)
 select e;
 foreach (var entry in entries)
 {
 switch (entry.State)
 {
 case EntityState.Added:
 ((IValidate)entry.Entity).Validate(ChangeAction.Insert);
 break;
 case EntityState.Modified:
 ((IValidate)entry.Entity).Validate(ChangeAction.Update);
 break;
 case EntityState.Deleted:
 ((IValidate)entry.Entity).Validate(ChangeAction.Delete);
 break;
 }
 }
 return base.SaveChanges(options & ~SaveOptions.DetectChangesBeforeSave);
 }
}

Listing 8-14. We’ll use this IReservationContext to define which methods we’ll need from the object context

public interface IReservationContext : IDisposable
{
 IObjectSet<Train> Trains { get; }
 IObjectSet<Schedule> Schedules { get; }
 IObjectSet<Reservation> Reservations { get; }

 int SaveChanges();
}

299

CHAPTER 8 PLAIN OLD CLR OBJECTS

Listing 8-15. The ReservationRepository class that takes an IReservationContext in the constructor

public class ReservationRepository
{
 private IReservationContext _context;

 public ReservationRepository(IReservationContext context)
 {
 if (context == null)
 throw new ArgumentNullException("context is null");
 _context = context;
 }
 public void AddTrain(Train train)
 {
 _context.Trains.AddObject(train);
 }

 public void AddSchedule(Schedule schedule)
 {
 _context.Schedules.AddObject(schedule);
 }

 public void AddReservation(Reservation reservation)
 {
 _context.Reservations.AddObject(reservation);
 }

 public void SaveChanegs()
 {
 _context.SaveChanges();
 }

 public List<Schedule> GetActiveSchedulesForTrain(int trainId)
 {
 var schedules = from r in _context.Schedules
 where r.ArrivalDate.Date >= DateTime.Today &&
 r.TrainId == trainId
 select r;
 return schedules.ToList();
 }
}

Listing 8-16. The implementation of the fake object set and fake object context

public class FakeObjectSet<T> : IObjectSet<T> where T : class
{
 HashSet<T> _data;
 IQueryable _query;

 public FakeObjectSet()
 : this(new List<T>())

300

 CHAPTER 8 PLAIN OLD CLR OBJECTS

 {
 }

 public FakeObjectSet(IEnumerable<T> initialData)
 {
 _data = new HashSet<T>(initialData);
 _query = _data.AsQueryable();
 }

 public void Add(T item)
 {
 _data.Add(item);
 }

 public void AddObject(T item)
 {
 _data.Add(item);
 }

 public void Remove(T item)
 {
 _data.Remove(item);
 }

 public void DeleteObject(T item)
 {
 _data.Remove(item);
 }

 public void Attach(T item)
 {
 _data.Add(item);
 }

 public void Detach(T item)
 {
 _data.Remove(item);
 }

 Type IQueryable.ElementType
 {
 get { return _query.ElementType; }
 }

 System.Linq.Expressions.Expression IQueryable.Expression
 {
 get { return _query.Expression; }
 }

 IQueryProvider IQueryable.Provider
 {
 get { return _query.Provider; }

301

CHAPTER 8 PLAIN OLD CLR OBJECTS

 }

 System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator()
 {
 return _data.GetEnumerator();
 }

 IEnumerator<T> IEnumerable<T>.GetEnumerator()
 {
 return _data.GetEnumerator();
 }
}

public class FakeReservationContext : IReservationContext, IDisposable
{
 private IObjectSet<Train> trains;
 private IObjectSet<Schedule> schedules;
 private IObjectSet<Reservation> reservations;
 public FakeReservationContext()
 {
 trains = new FakeObjectSet<Train>();
 schedules = new FakeObjectSet<Schedule>();
 reservations = new FakeObjectSet<Reservation>();
 }

 public IObjectSet<Train> Trains
 {
 get { return trains; }
 }

 public IObjectSet<Schedule> Schedules
 {
 get { return schedules; }
 }

 public IObjectSet<Reservation> Reservations
 {
 get { return reservations; }
 }

 public int SaveChanges()
 {
 foreach (var schedule in Schedules.Cast<IValidate>())
 {
 schedule.Validate(ChangeAction.Insert);
 }
 foreach (var reservation in Reservations.Cast<IValidate>())
 {
 reservation.Validate(ChangeAction.Insert);
 }
 return 1;
 }

302

 CHAPTER 8 PLAIN OLD CLR OBJECTS

 public void Dispose()
 {
 }
}

Listing 8-17. The unit tests for our Tests project

[TestClass]
public class ReservationTest
{
 private IReservationContext _context;

 [TestInitialize]
 public void TestSetup()
 {
 var train = new Train { TrainId = 1, TrainName = "Polar Express" };
 var schedule = new Schedule { ScheduleId = 1, Train = train,
 ArrivalDate = DateTime.Now,
 DepartureDate = DateTime.Today,
 LeavesFrom = "Dallas",
 ArrivesAt = "New York" };
 var reservation = new Reservation { ReservationId = 1,
 Passenger = "Phil Marlowe",
 Schedule = schedule };
 _context = new FakeReservationContext();
 var repository = new ReservationRepository(_context);
 repository.AddTrain(train);
 repository.AddSchedule(schedule);
 repository.AddReservation(reservation);
 repository.SaveChanges();
 }

 [TestMethod]
 [ExpectedException(typeof(InvalidOperationException))]
 public void TestForDuplicateReservation()
 {
 var repository = new ReservationRepository(_context);
 var schedule = repository.GetActiveSchedulesForTrain(1).First();
 var reservation = new Reservation { ReservationId = 2,
 Schedule = schedule,
 Passenger = "Phil Marlowe" };
 repository.AddReservation(reservation);
 repository.SaveChanges();
 }

 [TestMethod]
 [ExpectedException(typeof(InvalidOperationException))]
 public void TestForArrivalDateGreaterThanDepartureDate()
 {
 var repository = new ReservationRepository(_context);
 var schedule = new Schedule { ScheduleId = 2, TrainId = 1,
 ArrivalDate = DateTime.Today,

303

CHAPTER 8 PLAIN OLD CLR OBJECTS

 DepartureDate = DateTime.Now,
 ArrivesAt = "New York",
 LeavesFrom = "Chicago" };
 repository.AddSchedule(schedule);
 repository.SaveChanges();
 }

 [TestMethod]
 [ExpectedException(typeof(InvalidOperationException))]
 public void TestForArrivesAndLeavesFromSameLocation()
 {
 var repository = new ReservationRepository(_context);
 var schedule = new Schedule { ScheduleId = 3, TrainId = 1,
 ArrivalDate = DateTime.Now,
 DepartureDate = DateTime.Today,
 ArrivesAt = "Dallas",
 LeavesFrom = "Dallas" };
 repository.AddSchedule(schedule);
 repository.SaveChanges();
 }
}

How It Works
With quite a lot of code, we’ve manage to build a complete solution that includes an interface
(IReservationContext) we can use to abstractly reference an object context, a fake object set
(FakeObjectSet<T>), a fake object context (FakeReservationContext), and a small set of unit tests. We use
the fake object context so that our tests don’t interact with the database. The purpose of the tests is to
validate our business rules, not to test the database interactions.

One key to the solution is that we created a simplified repository that managed inserting and
selecting our objects. The constructor for this repository takes an IReservationContext. This subtle
abstraction allows us to pass in an instance of any class that implements IReservationContext. To test
our domain objects, we pass in an instance of FakeReservationContext. To allow our domain objects to
be persisted to the database, we would pass in an instance of our real object context: EFRecipesEntities.

We need the object sets returned by our fake object context to match the object sets returned by the
real EFRecipesEntities object context. To do this, we changed the T4 template that generates the context
to return IObjectSet<T> in place of ObjectSet<T>. We made sure our fake object context also returned
object sets of type IObjectSet<T>. With this in place, we implemented our FakeObjectSet<T> and derived
it from IObjectSet<T>.

In the Tests project, we set up the tests by creating a ReservationRepository based on an instance of
the FakeReservationContext. The unit tests interact with the FakeReservationContext in place of the real
object context.

304

 CHAPTER 8 PLAIN OLD CLR OBJECTS

Best Practice

There are two testing approaches that seem to work well for Entity Framework:

1. Define a repository interface that both the real repository and one or more
“testing” repositories implement. By hiding all the interactions with the
persistence framework behind the implementation of the repository interface,
there is no need to create fake versions of any of the other infrastructure parts.
This can simplify the implementation of the testing code, but it may leave parts of
the repository itself untested.

2. Define an interface for the object context that exposes properties of type
IObjectSet<T> and a SaveChanges() method, as we have done in this recipe.
The real object context and all the fake object contexts must implement this
interface. Using this approach, you don’t need to fake the entire repository, which
may be difficult in some cases. Your fake object contexts don’t need to mimic the
behavior of the entire ObjectContext class; that would be a real challenge. You do
need to limit your code to just what is available on the interfaces.

8-9. Testing a Repository Against a Database

Problem
You want to test your repository against the database.

Solution
You have created a repository that manages all the queries, inserts, updates, and deletes. You want to
test this repository against a real instance of the underlying database. Suppose you have a model like the
one shown in Figure 8-10. Because we will create and drop the database during the tests, let’s start from
the beginning in a test database.

305

CHAPTER 8 PLAIN OLD CLR OBJECTS

Figure 8-10. A model of books in categories

To test your repository, do the following:

1. Create an empty solution. Right-click the solution in the Solution Explorer and
select Add New Project. Add a new Class Library project. Name this new
project BookRepository.

2. Create a new database. Call the database Test. We’ll create and drop this
database in the unit tests, so make sure you create a new empty database.

3. Add the Book and Category tables along with the relation corresponding to the
model in Figure 8-10. Import these tables into a new model. Alternatively, you
can use Model First to create the model; then generate the database script to
create the database.

4. Add the code in Listing 8-18. This will create a BookRepository class that
handles inserts and queries against the model.

5. Right-click the solution and select Add New Project. Select Test Project from
the installed templates. Add a reference to System.Data.Entity and a project
reference to BookRepository.

6. Right-click the Test project and select Add New Test. Add a Unit Test to the
Test project. Add the code in Listing 8-19 to create the tests.

7. Right-click the Test project and select Add New Item. Select Application
Configuration File from the General templates. Copy the <connectionStrings>
section from the App.config file in the BookRepository project and insert it into
the new App.config file in the Test project.

8. Right-click the Test project and select Set as Startup Project. Select Debug
Start Debugging or press F5 to execute the tests. Make sure there are no active
connections to the Test database. Active connections will cause the
DropDatabase() method to fail.

Listing 8-18. The BookRepository class that handles inserts and queries against the model

namespace BookRepository
{
 public class BookRepository
 {

306

 CHAPTER 8 PLAIN OLD CLR OBJECTS

 private TestEntities _context;

 public BookRepository(TestEntities context)
 {
 _context = context;
 }

 public void InsertBook(Book book)
 {
 _context.Books.AddObject(book);
 }

 public void InsertCategory(Category category)
 {
 _context.Categories.AddObject(category);
 }

 public void SaveChanges()
 {
 _context.SaveChanges();
 }

 public IQueryable<Book> BooksByCategory(string name)
 {
 return _context.Books.Where(b => b.Category.Name == name);
 }

 public IQueryable<Book> BooksByYear(int year)
 {
 return _context.Books.Where(b => b.PublishDate.Year == year);
 }
 }
}

Listing 8-19. BookRepositoryTest class with the unit tests

[TestClass]
public class BookRepositoryTest
{
 private TestEntities _context;

 [TestInitialize]
 public void TestSetup()
 {
 _context = new TestEntities();
 if (_context.DatabaseExists())
 {
 _context.DeleteDatabase();
 }
 _context.CreateDatabase();
 }

307

CHAPTER 8 PLAIN OLD CLR OBJECTS

 [TestMethod]
 public void TestsBooksInCategory()
 {
 var repository = new BookRepository.BookRepository(_context);
 var construction = new Category { Name = "Construction" };
 var book = new Book { Title = "Building with Masonary",
 Author = "Dick Kreh",
 PublishDate = new DateTime(1998, 1, 1) };
 book.Category = construction;
 repository.InsertCategory(construction);
 repository.InsertBook(book);
 repository.SaveChanges();

 // test
 var books = repository.BooksByCategory("Construction");
 Assert.AreEqual(books.Count(), 1);
 }

 [TestMethod]
 public void TestBooksPublishedInTheYear()
 {
 var repository = new BookRepository.BookRepository(_context);
 var construction = new Category { Name = "Construction" };
 var book = new Book { Title = "Building with Masonary",
 Author = "Dick Kreh",
 PublishDate = new DateTime(1998, 1, 1) };
 book.Category = construction;
 repository.InsertCategory(construction);
 repository.InsertBook(book);
 repository.SaveChanges();

 // test
 var books = repository.BooksByYear(1998);
 Assert.AreEqual(books.Count(), 1);
 }
}

How It Works
There are two common approaches to testing that are used with Entity Framework. The first approach is
to test the business logic implemented in your objects. For this approach, we test against a “fake”
database layer because our focus is on the business logic that governs the interactions of the objects and
the rules that apply just before objects are persisted to the database. We illustrated this approach in
Recipe 8-8.

A second approach is to test both the business logic and the persistence layer by interacting with the
real database. This approach is more extensive, but also more costly in term of time and resources.
When implemented in an automated test harness, like the ones we often use in a continuous integration
environment, we need to automate the creation and dropping of the test database. Each test iteration
should start with a database in a known clean state. Subsequent test runs should not be affected by

308

 CHAPTER 8 PLAIN OLD CLR OBJECTS

residue left in the database by previous tests. Dropping and creating databases together with the end-to-
end code exercise requires more resources than the business logic only testing illustrated in Recipe 8-8.

In the unit tests in Listing 8-19 we checked to see whether the database exists in the Test Initialize
phase. If the database exists, it is dropped with the DropDatabase() method. Next, we create the database
with the CreateDatabase() method. These methods use the connection string contained in the
App.config file. This connection string would likely be different from the development database
connection string. For simplicity, we used the same connection string for both.

309

C H A P T E R 9

Using the Entity Framework in
N-Tier Applications

Not all applications can be neatly bundled into a single process. In fact, in this ever increasingly
networked world, many application architectures have both the classic logical layers of presentation,
application, and data, but also are physically deployed across multiple computers. While logical layering
can be accommodated in a single Application Domain without much concern for proxies, marshalling,
serialization, and network protocols, applications that span from something small like a Windows Phone
7 Series device to servers found in your data center, need to take all these into account. Fortunately, the
Entity Framework together with technologies like Microsoft’s Windows Communication Foundation is
well suited for these n-tier applications.

In this chapter, we’ll cover a wide range of recipes for using the Entity Framework in n-tier
applications. In these recipes, we’ll cover the basic create, read, update, and delete operations you’ll use
in virtually all your n-tier applications. Additionally, we’ll take a deep dive into the use of self-tracking
entities, entity and proxy serialization, concurrency, and working with the unique challenges of tracking
entity changes outside the scope of an object context.

9-1. Deleting an Entity When Disconnected

Problem
You have an object that you have retrieved from a Windows Communication Foundation (WCF) service
and you want to mark it for deletion.

Solution
Suppose you have a model like the one in Figure 9-1.

311

CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

Figure 9-1. A model for payments on invoices

Our model represents payments on invoices. In our application, we have implemented a WCF service to
handle the database interactions from a client. We want to delete an object, in our case a Payment entity,
using the service. To keep the solution as simple as possible, we’ll build a WCF service library and define
the model inside of it by doing the following.

1. Create a WCF Service Library by right-clicking the solution and selecting Add
New Project. Select WCF WCF Service Library.

2. Right-click the project and select Add New Item. Select Data ADO.NET
Entity Data Model. Use the wizard to add a model with the Invoice and
Payment tables. For simplicity, we’ve removed the Payments navigation
property on the Invoice entity. Right-click the TimeStamp property in the
Payment entity, select Properties and set its Concurrency Mode to Fixed.

3. Because the default entities generated by Entity Framework can’t be serialized,
we’ll need to create our own entities using POCO. With the Entity Data Model
Designer open, view the properties window and change the Code Generation
Strategy to None. Next, add the code in Listing 9-1 to create the POCO classes.

4. In the IService1.cs file, change the service definition as shown in Listing 9-2.

5. In the Service1.cs file, implement the service as shown in Listing 9-3.

6. To test our service, we’ll need a client. Add a new Windows Console
Application project to the solution. Use the code in Listing 9-4 for the client.
Add a service reference to the client by right-clicking the client project and
selecting Add Service Reference. You may need to right-click the service
project and select Debug Start Instance to start an instance of your service
before you can add a service reference in the client.

Listing 9-1. POCO classes that can be serialized by our WCF service

public class Payment
{
 public int PaymentId { get; set; }
 public decimal Amount { get; set; }
 public byte[] TimeStamp { get; set; }
 public int InvoiceId { get; set; }
 public Invoice Invoice { get; set; }
}

312

 CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

public class Invoice
{
 public int InvoiceId { get; set; }
 public string Description { get; set; }
}

public class EFRecipesEntities : ObjectContext
{
 public EFRecipesEntities()
 : base("name=EFRecipesEntities", "EFRecipesEntities")
 {
 }

 private ObjectSet<Payment> payments;
 private ObjectSet<Invoice> invoices;

 public ObjectSet<Payment> Payments
 {
 get { return payments ?? (payments = CreateObjectSet<Payment>()); }
 }

 public ObjectSet<Invoice> Invoices
 {
 get { return invoices ?? (invoices = CreateObjectSet<Invoice>()); }
 }
}

Listing 9-2. The service contract for our WCF service

[ServiceContract]
public interface IService1
{
 [OperationContract]
 Payment InsertPayment();

 [OperationContract]
 void DeletePayment(Payment payment);
}

Listing 9-3. The implementation of our service contract

public class Service1 : IService1
{
 public Payment InsertPayment()
 {
 using (var context = new EFRecipesEntities())
 {
 // delete the previous test data
 context.ExecuteStoreCommand("delete from chapter9.payment");
 context.ExecuteStoreCommand("delete from chapter9.invoice");

313

CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

 var payment = new Payment { Amount = 99.95M, Invoice =
 new Invoice { Description = "Auto Repair" } };
 context.Payments.AddObject(payment);
 context.SaveChanges();
 return payment;
 }
 }

 public void DeletePayment(Payment payment)
 {
 using (var context = new EFRecipesEntities())
 {
 context.Payments.Attach(payment);
 context.Payments.DeleteObject(payment);
 context.SaveChanges();
 }
 }
}

Listing 9-4. A simple console application to test our WCF service

class Program
{
 static void Main(string[] args)
 {
 var client = new Service1Client();
 var payment = client.InsertPayment();
 client.DeletePayment(payment);
 }
}

If you set a breakpoint on the first line in the Main() method of the client and debug the application,
you can step through the insertion and deletion of a Payment entity.

How It Works
In the client, we use the InsertPayment() method to insert a new payment into the database. The
method returns the payment that was inserted. The payment that is returned is disconnected from the
object context. In fact, the object context may be in a different process space or on an entirely different
computer.

We use the DeletePayment() method to delete the payment entity from the database. In the
implementation of this method (Listing 9-3), we first Attach() the payment entity. In the object context,
this entity is now in an unchanged state. Calling the DeleteObject() method marks the object for
deletion. SaveChanges() deletes the payment from the database.

The payment object that we attached had all its properties set as they were when the object was
inserted into the database. However, because we’re using foreign key association, only the entity key and
the concurrency property, in our case the TimeStamp property, are needed for Entity Framework to
generate the appropriate where clause to delete the entity. The one exception to this rule is when your
POCO class has one or more properties that are complex types. Because complex types are considered

314

 CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

structural parts of an entity, they cannot be null. For these, you would simply create a dummy instance
of the complex type. If you leave the complex type property null, SaveChanges() will throw an exception.

If you are using an independent association in which the multiplicity of the related entity is one or
0..1, then Entity Framework requires the entity keys of those references to be set correctly in order to
generate the appropriate where clause of an update or delete statement. In our example, if we had an
independent association between Invoice and Payment, we would need to set the Invoice navigation
property to an instance of Invoice with the correct value for the InvoiceId property. The resulting where
clause would include the PaymentId, the TimeStamp, and the InvoiceId.

If your object has several independent associations, setting all of them usually becomes tedious.
You might find it simpler to retrieve the instance from the database and then mark it for deletion. This
makes your code a little simpler, but when you retrieve the object from the database, Entity Framework
will rewrite the query to bring in all the relationships that are one or 0..1 unless, of course, you are using
the NoTracking context option. In our case, when you load the payment entity prior to marking for
deletion, Entity Framework will create an object state entry for the payment entity and a relationship
entry for the relationship between Payment and Invoice. When we mark the payment entity for deletion,
Entity Framework will also mark the relationship entry for deletion. As before, the resulting where clause
would include the PaymentId, the TimeStamp, and the InvoiceId.

Another option for deleting entities in independent associations is to eagerly load the related
entities and transport the entire object graph back to the WCF service for deletion. In our case, we could
eagerly load the related invoice entity with the payment entity. When we delete the payment entity, we
could send back the graph containing both entities to the service. Of course, this approach consumes
more network bandwidth and processing time for serialization, but it might make the code somewhat
more clear.

9-2. Managing Concurrency When Disconnected

Problem
You want to make sure that changes made on an entity by a WCF client are applied only if the
concurrency token has not changed.

Solution
Let’s suppose you have a model like the one in Figure 9-2.

Figure 9-2. Our model with a single Order entity

315

CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

We want to update an order using a WCF service while guaranteeing that the order we’re updating has
not changed since the last time we retrieved the order. We’ll show two slightly different ways to handle
this. In both approaches we use a concurrency column, in our case, the TimeStamp column.

1. Create a WCF Service Library by right-clicking the solution and selecting Add
New Project. Select WCF WCF Service Library.

2. Right-click the project and select Add New Item. Select Data ADO.NET
Entity Data Model. Use the wizard to add a model with the Order table. Right-
click the TimeStamp property, select Properties and set its Concurrency Mode
to Fixed.

3. Because the default entities generated by Entity Framework can’t be serialized,
we’ll need to create our own entities using POCO. With the Entity Data Model
Designer open, view the properties window and change the Code Generation
Strategy to None. Next, add the code in Listing 9-5 to create the POCO class for
the Order entity and our object context.

4. In the IService1.cs file, change the service definition as shown in Listing 9-6.

5. In the Service1.cs file, implement the service as shown in Listing 9-7.

6. To test our service, we’ll need a client. Add a new Windows Console
Application project to the solution. Use the code in Listing 9-8 for the client.
Add a service reference to the client by right-clicking the client project and
selecting Add Service Reference. You may need to right-click the service
project and select Debug Start Instance to start an instance of your service
before you can add a service reference in the client.

Listing 9-5. The code for the Order POCO class and the related object context

public class Order
{
 public int OrderId { get; set; }
 public string Product { get; set; }
 public int Quantity { get; set; }
 public string Status { get; set; }
 public byte[] TimeStamp { get; set; }
}

public class EFRecipesEntities : ObjectContext
{
 public EFRecipesEntities()
 : base("name=EFRecipesEntities", "EFRecipesEntities")
 {
 }

 private IObjectSet<Order> orders;

 public IObjectSet<Order> Orders
 {
 get { return orders ?? (orders = CreateObjectSet<Order>()); }
 }
}

316

 CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

Listing 9-6. Our WCF service contract

[ServiceContract]
public interface IService1
{
 [OperationContract]
 Order InsertOrder();

 [OperationContract]
 void UpdateOrderWithoutRetrieving(Order order);

 [OperationContract]
 void UpdateOrderByRetrieving(Order order);
}

Listing 9-7. The implementation of our service contract

public class Service1 : IService1
{
 public Order InsertOrder()
 {
 using (var context = new EFRecipesEntities())
 {
 // remove previous test data
 context.ExecuteStoreCommand("delete from chapter9.[order]");

 var order = new Order { Product = "Camping Tent",
 Quantity = 3, Status = "Received" };
 context.Orders.AddObject(order);
 context.SaveChanges();
 return order;
 }
 }

 public void UpdateOrderWithoutRetrieving(Order order)
 {
 using (var context = new EFRecipesEntities())
 {
 context.Orders.Attach(order);
 if (order.Status == "Received")
 {
 var entry = context.ObjectStateManager
 .GetObjectStateEntry(order);
 entry.SetModifiedProperty("Quantity");
 context.SaveChanges();
 }
 }
 }

 public void UpdateOrderByRetrieving(Order order)
 {

317

CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

 using (var context = new EFRecipesEntities())
 {
 var dbOrder = context.Orders
 .Single(o => o.OrderId == order.OrderId);
 if (dbOrder != null &&
 StructuralComparisons.StructuralEqualityComparer
 .Equals(order.TimeStamp, dbOrder.TimeStamp))
 {
 dbOrder.Quantity = order.Quantity;
 context.SaveChanges();
 }
 }
 }
}

Listing 9-8. The client we use to test our WCF service

class Program
{
 static void Main(string[] args)
 {
 var service = new Service1Client();
 var order = service.InsertOrder();
 order.Quantity = 5;
 service.UpdateOrderWithoutRetrieving(order);
 order = service.InsertOrder();
 order.Quantity = 3;
 service.UpdateOrderByRetrieving(order);
 }
}

If you set a breakpoint on the first line in the Main() method of the client and debug the application,
you can step through the inserting the order and updating the order using both methods.

How It Works
Our InsertOrder() method (Listing 9-7) deletes any previous test data, inserts a new order, and returns
the order. The order returned has both the database generated OrderId and TimeStamp properties. In
our client, we use two slightly different approaches to update this order.

In the first approach, UpdateOrderWithoutRetrieving(), we Attach() the order from the client, check
whether the order status is “Received” and if it is, we mark the entity’s Quantity property as modified,
and call SaveChanges().Entity Framework will generate an update statement setting the new quantity
with a where clause that includes both the OrderId and the TimeStamp values from the order entity. If
the TimeStamp value has changed by some intermediate update to the database, this update will fail.
This ensures that the order entity we are updating has not been modified between the time we obtained
it from the InsertOrder() method and the time we updated in the database.

Although the first approach is fairly simple and efficient, there are times that you may need to know
before you call SaveChanges() that the entity has been changed. In these cases, you can retrieve the
entity from the database and manually compare the TimeStamp properties to determine whether an
intervening change has occurred. This is illustrated with a fresh order by the UpdateOrderByRetrieving()

318

 CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

method. Although not foolproof (the order could be changed by another client between the time you
retrieve the order from the database and compare TimeStamps, and call SaveChanges()), this approach
does provide valuable insight into what properties or associations have changed on an entity. This may
be particularly useful if the object graph or entities are large or complex.

9-3. Finding Out What Has Changed

Problem
You have the original version of an object and a modified version. You want to update the object in the
model using Entity Framework to determine which properties have changed.

Solution
Let’s suppose you have a model like the one in Figure 9-3.

Figure 9-3. A model with an Project entity

Given an original order entity and a modified order entity, you want to update the model to reflect the
changes in the modified order entity. We’ll put together a simple web page that updates the database.
Do the following:

1. Create a new empty Web Application project. Add an ADO.NET Entity Data
Model with the Order table to the web application project. The model should
look like the one in Figure 9-3. Make sure you set the TimeStamp property’s
Concurrency Mode to Fixed. You can do this on the properties page for
TimeStamp.

2. We’ll use a simplified Repository pattern with an ObjectDataSource control for
the web page. Add the code in Listing 9-9 to create the repository.

3. We’ll create just the details part of a typical master/detail page. Add an
ASP.NET web page with the code in Listing 9-10.

4. Add the code behind in Listing 9-11. This code will populate the model with
some test data.

319

CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

Listing 9-9. A project repository with the UpdateProject() method

public class ProjectRepository
{
 public ProjectRepository()
 {
 }

 public List<Project> RetrieveAll()
 {
 using (var context = new EFRecipesEntities())
 {
 return context.Projects.ToList();
 }
 }

 public void UpdateProject(Project project, Project originalProject)
 {
 using (var context = new EFRecipesEntities())
 {
 context.Projects.Attach(project);
 context.Projects.ApplyOriginalValues(originalProject);
 context.SaveChanges();
 }
 }
}

Listing 9-10. A DetailsView in an ASP.NET web page

<body>
 <form id="form1" runat="server">
 <div>
 <h2>Azle City Project</h2>
 <asp:DetailsView ID="DetailsView1" runat="server"
 DataKeyNames="ProjectId, TimeStamp"
 AutoGenerateRows="false" DataSourceID="projectSource">
 <Fields>
 <asp:BoundField DataField="ProjectId" HeaderText="ProjectId"
 ReadOnly="true" />
 <asp:BoundField DataField="Name" HeaderText="Name" ReadOnly="true" />
 <asp:BoundField DataField="AmountAllocated"
 HeaderText="Amount Allocated" />
 <asp:BoundField DataField="PercentComplete"
 HeaderText="Percent Complete" />
 <asp:CommandField ShowEditButton="true" />
 </Fields>
 </asp:DetailsView>

 <asp:ObjectDataSource ID="projectSource" runat="server"
 UpdateMethod="UpdateProject"
 SelectMethod="RetrieveAll" TypeName="Recipe3.ProjectRepository"

320

 CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

 ConflictDetection="CompareAllValues"
 DataObjectTypeName="Recipe3.Project"
 OldValuesParameterFormatString="original{0}" />
 </div>
 </form>
</body>

Listing 9-11. The code behind for the ASP.NET page

public partial class Default : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!this.IsPostBack)
 {
 using (var context = new EFRecipesEntities())
 {
 // delete any previous test data
 context.ExecuteStoreCommand("delete from chapter9.project");

 // insert some test data
 context.Projects.AddObject(new Project {
 Name = "Trim City Park Trees",
 AmountAllocated = 8200M,
 PercentComplete = 75 });
 context.SaveChanges();
 }
 }
 }
}

Figure 9-4 shows the web page as rendered in a browser. The Edit button from the DetailsView
control allows editing of the properties which is shown in Figure 9-5.

Figure 9-4. The DetailsView for a project

321

CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

Figure 9-5. Updating the PercentComplete property to 80%

How It Works
In the DetailsView control we set the DataKeyNames to ProjectId and TimeStamp. These values are
serialized in the control state and preserved on post back. On update, the ASP.NET page will create a
new project instance and assign the ProjectId and TimeStamp values from the control state. The
remaining properties will be populated from the control. These represent the possibly changed values.

On the ObjectDataSource control we set the ConflictDetection to CompareAllValues. This causes
ASP.NET to store the original values of the project entity in the viewstate. During update, ASP.NET will
send the modified project entity and the project entity with the original values to the update method.
The OldValuesParameterFormatString attribute is used to determine the name of the method parameter
to receive the original project entity. In our case, the parameter’s name is originalProject. We set the
format string to original{0} which will format the correct name.

In the UpdateProject() method in Listing 9-9 we show how to update the project entity with the new
values given both the original project instance and the updated instance. We Attach() the modified
instance to the object context and then call the ApplyOriginalValues() method. This method marks all
the properties in the attached instance as modified if they differ from the corresponding properties on
the instance passed in to the method. With the changed properties marked as modified, we call
SaveChanges() to send the update to the database. This approach works well even if our modified entity
has several related entities. The Attach() method will attach the object graph.

Another approach is to attach the original instance and then call the ApplyCurrentValues() method.
In some sense, this is the mirror image of the first approach. The ApplyCurrentValues() method updates
the instance in the context with the property values that are different in the updated instance. If you
have an object graph associated with the original instance, this approach may be more useful.

Both approaches only compare changes in the scalar properties of the entities. If you are using
foreign key associations, then the one or 0..1 navigation properties will reflect the changes. Navigation
properties that are collections will not be compared.

In many cases, especially in disconnected scenarios, after changes are made to entities, we receive
only the updated entity. This would happen in our example if we had not set the ConflictDetection

322

 CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

attribute on the ObjectDataSource control to CompareAllValues. To perform an update in these cases,
we first need to load the original entity before applying the changes. This approach is covered in Recipe
2 in this chapter.

9-4. Using POCO With WCF

Problem
You want to use POCO with WCF for selects, inserts, deletes, and updates.

Solution
Let’s say you have a model like the one in Figure 9-6.

Figure 9-6. A model for blog posts and comments

Our model represents blog posts and the comments that readers have about the posts. To make
things clearer, we’ve stripped out most of the properties we would normally have such as the body of the
post, the author, the date and time of the post, and so on.

We want to put the all the database code behind a WCF service so that clients can read, update, and
delete posts and comments as well as insert new ones. To create the service, do the following.

1. Add a class library project to your solution. Add an ADO.NET Entity Data
Model with the Post and Comment tables. Because we are going to use POCO,
right-click the .edmx file and view the Properties. With the Entity Data Model
Designer open, view the properties window and change the Code Generation
Strategy to None.

2. Add the code in Listing 9-12 to create the POCO classes and the object context.
You may choose to put these in a separate project, add them to the class library
project, or split them into two new projects: one for the Post and Comment
classes and one for the EFReceipesEntities class.

3. Add a WCF Service Application to the solution. Use the default name Service1
just to keep things simple.

4. Change the IService1.cs file to reflect the new IService1 interface in Listing 9-
13.

323

CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

5. Change the service application code in the Service1.svc.cs file using the code
in Listing 9-14. Add a project reference to the class library and a using
statement so that the references to the POCO classes resolve correctly. You will
also need to add a reference to System.Data.Entity as well as a using for
System.Data.Objects.

6. Copy the connection string from the App.Config file in the class library to the
web.config in the service application.

7. Add a Windows Console Application to the project. We’ll use this for our client
to test the WCF service. Use the code in Listing 9-15 for the client. Right-click
the console application project and select Add Service Reference and add a
reference to the Service1 service. You will also need to add a project reference
to the class library created in Step 1.

Listing 9-12. Our POCO classes Post, Comment, and our EFReceipesEntities object context

[DataContract(IsReference = true)]
public class Post
{
 [DataMember]
 public virtual int PostId { get; set; }
 [DataMember]
 public virtual string Title { get; set; }
 [DataMember]
 public virtual ICollection<Comment> Comments { get; set; }
}

[DataContract(IsReference=true)]
public class Comment
{
 [DataMember]
 public virtual int CommentId { get; set; }
 [DataMember]
 public virtual int PostId { get; set; }
 [DataMember]
 public virtual string CommentText { get; set; }
 [DataMember]
 public virtual Post Post { get; set; }
}

public class EFRecipesEntities : ObjectContext
{
 public EFRecipesEntities()
 : base("name=EFRecipesEntities", "EFRecipesEntities")
 {
 }

 private ObjectSet<Post> posts;
 private ObjectSet<Comment> comments;

 public ObjectSet<Post> Posts

324

 CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

 {
 get { return posts ?? (posts = CreateObjectSet<Post>()); }
 }

 public ObjectSet<Comment> Comments
 {
 get { return comments ?? (comments = CreateObjectSet<Comment>()); }
 }
}

Listing 9-13. The service contract for our service

[ServiceContract]
public interface IService1
{
 [OperationContract]
 void Cleanup();

 [OperationContract]
 Post GetPostByTitle(string title);

 [OperationContract]
 Post SubmitPost(Post post);

 [OperationContract]
 Comment SubmitComment(Comment comment);

 [OperationContract]
 void DeleteComment(Comment comment);
}

Listing 9-14. The implementation of the service contract in Listing 9-13 (be sure to add references to

System.Data.Entity and System.Security to this project)

public class Service1 : IService
{
 public void Cleanup()
 {
 using (var context = new EFRecipesEntities())
 {
 context.ExecuteStoreCommand("delete from chapter9.comment");
 context.ExecuteStoreCommand("delete from chapter9.post");
 }
 }

 public Post GetPostByTitle(string title)
 {
 using (var context = new EFRecipesEntities())
 {
 context.ContextOptions.ProxyCreationEnabled = false;
 var post = context.Posts.Include("Comments")
 .Single(p => p.Title == title);

325

CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

 return post;
 }
 }

 public Post SubmitPost(Post post)
 {
 using (var context = new EFRecipesEntities())
 {
 context.Posts.Attach(post);
 if (post.PostId == 0)
 {
 // this must be an insert
 context.ObjectStateManager
 .ChangeObjectState(post, EntityState.Added);
 }
 else
 {
 context.ObjectStateManager
 .ChangeObjectState(post, EntityState.Modified);
 }
 context.SaveChanges();
 return post;
 }
 }

 public Comment SubmitComment(Comment comment)
 {
 using (var context = new EFRecipesEntities())
 {
 context.Comments.Attach(comment);
 if (comment.CommentId == 0)
 {
 // this is an insert
 context.ObjectStateManager
 .ChangeObjectState(comment, EntityState.Added);
 }
 else
 {
 var entry = context.ObjectStateManager
 .GetObjectStateEntry(comment);
 entry.SetModifiedProperty("CommentText");
 }
 context.SaveChanges();
 return comment;
 }
 }

 public void DeleteComment(Comment comment)
 {
 using (var context = new EFRecipesEntities())
 {
 context.Comments.Attach(comment);

326

 CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

 context.Comments.DeleteObject(comment);
 context.SaveChanges();
 }
 }
}

Listing 9-15. Our Windows console application that serves as our test client

class Program
{
 static void Main(string[] args)
 {
 using (var client = new ServiceReference1.Service1Client())
 {
 // cleanup previous data
 client.Cleanup();

 // insert a post
 var post = new Post { Title = "POCO Proxies" };
 post = client.SubmitPost(post);

 // update the post
 post.Title = "Change Tracking Proxies";
 client.SubmitPost(post);

 // add a comment
 var comment1 = new Comment {
 CommentText = "Virtual Properties are cool!",
 PostId = post.PostId };
 var comment2 = new Comment {
 CommentText = "I use ICollection<T> all the time",
 PostId = post.PostId };
 comment1 = client.SubmitComment(comment1);
 comment2 = client.SubmitComment(comment2);

 // update a comment
 comment1.CommentText = "How do I use ICollection<T>?";
 client.SubmitComment(comment1);

 // delete comment 1
 client.DeleteComment(comment1);

 // get posts with comments
 var p = client.GetPostByTitle("Change Tracking Proxies");
 Console.WriteLine("Comments for post: {0}", p.Title);
 foreach (var comment in p.Comments)
 {
 Console.WriteLine("\tComment: {0}", comment.CommentText);
 }
 }
 }
}

327

CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

The following is the output of our test client in Listing 9-15:

Comments for post: Change Tracking Proxies
 Comment: I use ICollection<T> all the time

How It Works
Let’s start with the Windows console application, which is our test client for the service. We create an
instance of our service client in a using {} block. Just as we’ve done with the creating an instance of an
object context in a using {} block, this ensures that Dispose() is called when we leave the block either
normally or via an exception.

Once we have an instance of our service client, the first thing we do is call the Cleanup() method. We
do this to remove any previous test data we might have.

With the next couple of lines, we call the service’s SubmitPost() method. In this method’s
implementation (see Listing 9-14), we Attach() the post and then check whether the PostId is 0. If the
PostId is 0, then we assume it’s a new post. Admittedly, this is a rather crude way of determining whether
the post is new. It depends on the domain of the valid Ids for a post as well as the runtime initializing
integers to 0. A better approach might involve sending an additional parameter to the method or
creating a separate InsertPost() method. The best approach is dependent on the structure of your
application.

If the post is to be inserted, we change the object state of the post to EntityState.Added. Otherwise,
we change its object state to EntityState.Modified. These mark the object as new; an insert statement
should be generated, or if modified, an update statement should be generated. If the post is inserted, the
post instance’s PostId is updated with the new correct value. The post is returned.

Inserting and updating a comment is similar to inserting and updating a post with one significant
difference. As a business rule, when we update a comment, we want to make sure to only update the
CommentText property. This property holds the body of the comment and we don’t want to update any
other part of the comment. To do this, we mark just the CommentText property as modified. Entity
Framework will generate an update statement that changes just the CommentText column in the
database.

To delete a comment, we Attach() the comment and call DeleteObject(), which marks the
comment for deletion.

Finally, the GetPostByTitle() method eagerly loads the comments for each post. This returns the
object graph of posts and related comments. Notice that we turn off proxy creation with the line
ProxyCreationEnabled = false. This is important because we don’t want change tracking proxies
created for our entities. These would normally be created because we have marked the entities’
properties as virtual. These proxies cannot be serialized and if they were generated, we would get an
error message similar to the following:

The underlying connection was closed: The connection was closed unexpectedly

In this recipe, we’ve seen that we can use POCO to handle CRUD operations with WCF. Because
there is no state information stored on the client, we’ve built separate methods for inserting/updating
and deleting posts and comments. In the next recipe, we’ll look at using Self-Tracking entities with WCF.
This approach reduces the number of methods our service must implement and simplifies the
communication between the client and the server.

328

 CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

9-5. Using Self-Tracking Entities With WCF

Problem
You want to use self-tracking entities with a WCF service to perform inserts, updates, and deletes.

Solution
Let’s suppose you have a model like the one in Figure 9-7.

Figure 9-7. A model for students and the courses in which they are enrolled

Our model represents students and the courses in which they are enrolled. We want to create a WCF
service that handles the interaction with the model and the database using self-tracking entities. To do
this, we need to use the Self-Tracking Entities template. We also want to isolate the entity classes in a
separate project so that both the client and the service can reference entities project. This is useful when
using Self-Tracking Entities with WCF because if we simply use the service reference on the client side to
get access to the entity classes, we will not be using entities generated by the Self-Tracking Entities
template. Much of the complexity in the following steps involves creating four separate projects:
EnrollmentData for the model and context, EnrollmentEntities for the generated entity classes,
EnrollmentService for the WCF service, and EnrollmentClient for the test client.

To create our application, do the following.

1. Add a Class Library project to your solution and name it EnrollmentData. Add
an ADO.NET Entity Data Model with the Course, Enrollment, and Student
tables.

2. With the Entity Data Model Designer open, view the properties window and
change the Code Generation Strategy to None.

3. Right-click the design surface again and select Add Code Generation Item.
Select Code under the Installed Templates and then select the ADO.NET Self-
Tracking Entity Generator template. Name the new template Enrollment.tt.
This will add two templates to the project: Enrollment.tt and
Enrollment.Context.tt. The first template generates the entities and the second
template generates the object context.

329

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

4. Add a Class Library project to the solution. Call this new project
EnrollmentEntities. Move the Enrollment.tt template from the
EnrollmentData project to the EnrollmentEntities project. Add a reference to
System.Runtime.Serialization. Add a project reference in the EnrollmentData
project to the EnrollmentEntities project.

5. Because we’ve moved the Enrollment.tt template file we need to edit it to
change the reference to the .edmx file for the model. Edit the Enrollment.tt
template and change the line string inputFile = @"Recipe5.edmx" to string
inputFile = @"..\EnrollmentData\Recipe5.edmx". You may have named your
.edmx file something else, if so, make the changes so that the relative path is
correct to your .edmx file.

6. Edit the Enrollment.Context.tt template (which should still be in the
EnrollmentData project) and add using EnrollmentEntities; after each <auto-
generated> comment section. This will put the using statement in each
generated file.

7. Add a WCF Service Application project to the solution. Name the new service
EnrollmentService. Add a reference to System.Data.Entity. Add project
references to EnrollmentEntities and EnrollmentData. Copy the
<connectionStrings> section from the App.Config file in EnrollmentData to the
Web.config.

8. Change the IService1.cs file to reflect the new IService1 interface in Listing 9-
16.

9. Change the IService1.svc.cs file to reflect the new implementation of the
IService1 interface in Listing 9-17.

10. Add a Windows Console Application to the solution. Name the project
EnrollmentClient. Use the code in Listing 9-18 for this application. Add a
project reference to EnrollmentEntities and a service reference to the
EnrollmentService.

Listing 9-16. The new IService1 interface, which replaces the code in the IService1.cs file

using EnrollmentEntities;
namespace EnrollmentService
{
 [ServiceContract]
 public interface IService1
 {
 [OperationContract]
 void InsertTestRecord();

 [OperationContract]
 Student SubmitStudentEnrollment(Student student);

 [OperationContract]
 List<Course> GetCourseDetail();
 }
}

330

 CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

Listing 9-17. The implementation of the IService1 interface, which replaces the code in the IService.svc.cs

file

using EnrollmentData;
using EnrollmentEntities;
namespace EnrollmentService
{
 public class Service1 : IService1
 {
 public void InsertTestRecord()
 {
 using (var context = new EFRecipesEntities())
 {
 // remove previous test data
 context.ExecuteStoreCommand("delete from chapter9.enrollment");
 context.ExecuteStoreCommand("delete from chapter9.course");
 context.ExecuteStoreCommand("delete from chapter9.student");

 // insert new test data
 var student = new Student { Name = "Robin Rosen",
 StudentId = 1 };
 var course1 = new Course { Title = "Mathematical Logic 101",
 CourseId = 1 };
 var course2 = new Course { Title = "Organic Chemistry 211",
 CourseId = 2 };
 context.Students.AddObject(student);
 context.Courses.AddObject(course1);
 context.Courses.AddObject(course2);
 context.SaveChanges();
 }
 }

 public Student SubmitStudentEnrollment(Student student)
 {
 using (var context = new EFRecipesEntities())
 {
 context.Students.ApplyChanges(student);
 context.SaveChanges();
 student.AcceptChanges();
 foreach (var enrollment in student.Enrollments)
 {
 enrollment.AcceptChanges();
 }
 return student;
 }
 }

 public List<Course> GetCourseDetail()
 {
 using (var context = new EFRecipesEntities())
 {

331

CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

 return context.Courses.Include("Enrollments.Student").ToList();
 }
 }
 }
}

Listing 9-18. The EnrollmentClient test client code

using EnrollmentEntities;
using EnrollmentClient.ServiceReference1;
namespace EnrollmentClient
{
 class Program
 {
 static void Main(string[] args)
 {
 using (var client = new Service1Client())
 {
 // insert test data
 client.InsertTestRecord();

 // create some entities with known
 // a known student id and course id
 var student1 = new Student { StudentId = 1 };
 var course1 = new Course { CourseId = 1 };
 student1.MarkAsUnchanged();
 course1.MarkAsUnchanged();

 // enroll the student in two courses, using both
 // an entity and the foreign key
 student1.Enrollments.Add(new Enrollment { Course = course1,
 Paid = true });
 student1.Enrollments.Add(new Enrollment { CourseId = 2,
 Paid = false });

 // save the enrollments
 student1 = client.SubmitStudentEnrollment(student1);

 // now drop courses the student has not paid for
 foreach (var enrollment in student1.Enrollments
 .Where(e => !e.Paid).ToArray())
 {
 enrollment.MarkAsDeleted();
 }

 // student got married!, change name
 student1.Name += "Robin Rosen-Parker";
 client.SubmitStudentEnrollment(student1);

 // retrieve the courses and enrollments
 foreach (var course in client.GetCourseDetail())
 {

332

 CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

 Console.WriteLine("Course: {0}", course.Title);
 foreach (var en in course.Enrollments)
 {
 Console.WriteLine("\tStudent: {0} {1} paid",
 en.Student.Name, en.Paid ? "has" : "has not");
 }
 }
 }
 }
 }
}

The following is the output of the test client:

Course: Mathematical Logic 101

 Student: Robin Rosen-Parker has paid

Course: Organic Chemistry 211

How It Works
In the model, we turned off the default code generation and used the Self-Tracking Entities template to
generate both the entity classes and the object context. These self-tracking entities can record changes
on scalar and complex properties as well as references, and navigation properties without the help of
Entity Framework. This makes self-tracking entities particularly useful in client-side scenarios where an
entity is modified outside of the scope of an object context. This is typically the case in Silverlight, WCF,
and some ASP.NET applications.

Self-tracking entities track changes because they implement the IObjectChangeTracker interface.
When the server receives the changed objects, we use the ApplyChanges() extension method on the
object context to replay the changes. This is clean and quite powerful and frees us from implementing
lots of code to determine what properties on which objects have changed. The downside is that these
changes are replayed blindly. On a complex object graph, we may have changes that occur throughout
the graph. Some validation is likely needed before the SaveChanges() method is called. We’ll cover
validating self-tracking entities in Recipe 6.

A self-tracking entity has a change tracking property that can be used to access the change state of
the entity. When you create a self-tracking entity, its initial change state is Added. When you modify the
entity, its change state is set to Modified. To change the state manually, use one of the extension
methods MarkAsUnchanged(), MarkAsModified(), MarkAsDeleted(), and MarkAsAdded(). In Listing 9-18, we
used the MarkAsUnchanged() method to change the status of the Student and Course entities to the
Unchanged state instead of querying from the server. This is similar to calling Attach() to attach an
existing object to an object context.

By default, self-tracking entities do not have change tracking enabled. You have to set
ChangeTrackingEnable to true before changes are tracked. When using WCF, the following code
generated by the template takes care of enabling change tracking when the entities are deserialized
using the DataContract serialization.

333

CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

[OnDeserialized]
public void OnDeserializedMethod(StreamingContext context)
{
 IsDeserializing = false;
 ChangeTracker.ChangeTrackingEnabled = true;
}

9-6. Validating Self-Tracking Entities

Problem
On the server side, you have received an object graph containing self-tracking entities and you want to
validate these changes before SaveChanges() is called.

Solution
Let’s suppose you have a model like the one in Figure 9-8.

Figure 9-8. A model for travel bookings and the associated travel agents

1. Add a Class Library project to your solution and name it BookingData. Add an
ADO.NET Entity Data Model with the TravelAgent and Booking tables.

2. Right-click the design surface and view the Properties With the Entity Data
Model Designer open, view the properties window and change the Code
Generation Strategy to None.

3. Right-click the design surface again and select Add Code Generation Item.
Select Code under the Installed Templates and then select the ADO.NET Self-
Tracking Entity Generator template. Name the new template Booking.tt. This
will add two templates to the project: Booking.tt and Booking.Context.tt. The
first template generates the entities and the second template generates the
object context.

334

 CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

4. Add a Class Library project to the solution. Call this new project
BookingEntities. Move the Booking.tt template from the BookingData project
to the BookingEntities project. Add a reference to
System.Runtime.Serialization. Add a project reference in the BookingData
project to the BookingEntities project.

5. Because we’ve moved the Booking.tt template file, we need to edit it to change
the reference to the .edmx file for the model. Edit the Booking.tt template and
change the line string inputFile = @"Recipe6.edmx" to string inputFile =
@"..\BookingData\Recipe6.edmx". You may have named your .edmx file
something else, if so, make the changes so that the relative path is correct to
your .edmx file.

6. Edit the Booking.Context.tt template (which should still be in the BookingData
project) and add using BookingEntities; after each <auto-generated>
comment section. This will put the using statement in each generated file.

7. Add a WCF Service Application project to the solution. Name the new service
BookingService. Add a reference to System.Data.Entity. Add project references
to BookingEntities and BookingData. Copy the <connectionStrings> section
from the App.Config file in BookingData to the Web.config file.

8. Change the IService1.cs file to reflect the new IService1 interface in Listing 9-
19.

9. Change the IService1.svc.cs file to reflect the new implementation of the
IService1 interface in Listing 9-20.

10. Add a Windows Console Application to the solution. Name the project
BookingClient. Use the code in Listing 9-21 for this application. Add a project
reference to BookingEntities and a service reference to the BookingService.

Listing 9-19. The new IService1 interface, which replaces the code in the IService1.cs file

using BookingEntities;
namespace BookingService
{
 [ServiceContract]
 public interface IService1
 {
 [OperationContract]
 TravelAgent GetAgentWithBookings();

 [OperationContract]
 void SubmitAgentBookings(TravelAgent agent);
 }
}

Listing 9-20. The implementation of the IService1 interface, which replaces the code in the IService.svc.cs

file

using BookingData;
using BookingEntities;

335

CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

namespace BookingService
{
 public class Service1 : IService1
 {
 public TravelAgent GetAgentWithBookings()
 {
 InsertAgent();
 using (var context = new EFRecipesEntities())
 {
 return context.TravelAgents.Include("Bookings")
 .Single(a => a.Name == "John Tate");
 }
 }

 public void SubmitAgentBookings(TravelAgent agent)
 {
 using (var context = new EFRecipesEntities())
 {
 ValidateAgentBeforeApplyChanges(agent);
 context.TravelAgents.ApplyChanges(agent);
 ValidateAgentAfterApplyChanges(context);
 context.SaveChanges();
 }
 }

 private void ValidateAgentAfterApplyChanges(EFRecipesEntities context)
 {
 var cantDelete = context.ObjectStateManager
 .GetObjectStateEntries(EntityState.Deleted)
 .Any(e => e.Entity is Booking && ((Booking)e.Entity).Paid);
 ValidateCondition(cantDelete,
 "Can't delete a booking that is paid for.");

 var cantBook = context.ObjectStateManager
 .GetObjectStateEntries(EntityState.Added)
 .Any(e => e.Entity is Booking &&
 ((Booking)e.Entity).BookingDate
 .Subtract(DateTime.Today).Days > 20);
 ValidateCondition(cantBook,
 "Can't book more than 20 days in advance.");
 }

 private void ValidateAgentBeforeApplyChanges(TravelAgent agent)
 {
 var cantAddOrDelete =
 agent.ChangeTracker.State == ObjectState.Deleted ||
 agent.ChangeTracker.State == ObjectState.Deleted;
 ValidateCondition(cantAddOrDelete, "Can't add or delete an agent.");

 var cantModify = agent.Bookings
 .Any(b => b.ChangeTracker.State == ObjectState.Modified &&
 b.BookingDate < DateTime.Today);

336

 CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

 ValidateCondition(cantModify, "Can't modify an expired booking.");
 }

 private static void ValidateCondition(bool condition, string message)
 {
 if (condition)
 {
 throw new FaultException<InvalidOperationException>(
 new InvalidOperationException(message), message);
 }
 }

 private void InsertAgent()
 {
 using (var context = new EFRecipesEntities())
 {
 // delete any previous test data
 context.ExecuteStoreCommand("delete from chapter9.booking");
 context.ExecuteStoreCommand("delete from chapter9.travelagent");

 // inser the test data
 var agent = new TravelAgent { Name = "John Tate" };
 var booking = new Booking {Customer = "Karen Stevens",
 Paid = false,
 BookingDate = DateTime.Parse("2/2/2010")};
 agent.Bookings.Add(booking);
 context.TravelAgents.AddObject(agent);
 context.SaveChanges();
 }
 }
 }
}

Listing 9-21. The BookingClient test client code

using BookingClient.ServiceReference1;
using BookingEntities;
namespace BookingClient
{
 class Program
 {
 static void Main(string[] args)
 {
 using (var client = new Service1Client())
 {
 var agent = client.GetAgentWithBookings();
 agent.Bookings.Add(new Booking {
 BookingDate = DateTime.Today.AddDays(5),
 Customer = "Jan Thomas", Paid = true});
 agent.Name = "John Parker";

 var bookings = agent.Bookings

337

CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

 .Where(b => b.Customer == "Karen Stevens").ToList();
 foreach (var booking in bookings)
 {
 booking.MarkAsDeleted();
 }
 client.SubmitAgentBookings(agent);
 }
 }
 }
}

How It Works
In Listing 9-20, we use two different approaches to validating the self-tracking entity object graph. In the
first approach, we validate the object graph before calling ApplyChanges(). This means we validate the
objects before the changes are applied to the object context. With this approach you can find changes
that would violate your business rules before these changes affect the object context. The drawback to
this approach is that your service needs intimate knowledge of the object graph, and these validation
rules need to be tailored to work with the ChangeTracker.State values. This second requirement limits
the validation rules to self-tracking entities.

In the second approach, we validate the objects after the changes have been applied to the object
context. Here we are not concerned with the structure of the object graph or the ChangeTracker.State
values. We can apply these rules with or without the use of self-tracking entities.

9-7. Using Self-Tracking Entities on the Server Side

Problem
You want to use self-tracking entities with ASP.NET to keep track of changes while the context is not
around.

Solution
Let’s suppose you have a mode like the one in Figure 9-9.

Figure 9-9. A model for customers and their phone numbers

338

 CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

We want to use self-tracking entities with ASP.NET to keep track of changes on entities without an
object context. When we need to save the changes, we create a new object context and replay the
changes recorded by the self-tracking entities.

Do the following to create a web application that uses self-tracking entities to track changes without
an object context:

1. Create a new empty Web Application project. Add an ADO.NET Entity Data
Model with the Customer and Phone tables to the web application project. The
model should look like the one in Figure 9-9.

2. Right-click the design surface and select Add Code Generation Item. Select
Code under the Installed Templates and then select the ADO.NET Self-
Tracking Entity Generator template. Name the new template Recipe7.tt.

3. Add the CustomerRepository class in Listing 9-22. We’ll use the methods in
this class to get a customer and to update customers and phone numbers.

4. In the CustomerRepository, we use the StartSelfTracking() method on the
context. We’ll need to implement this method. Add a partial class for our
EFRecipesEntities class using the code in Listing 9-23. This code also overrides
the SaveChanges() method so that we can mark our self-tracking entities as
UnChanged after they are saved.

5. To test our code, create an ASP.NET page with code in Listing 9-24 and the
code behind in Listing 9-25.

Listing 9-22. The CustomerRepository class we use getting and updating customers

public class CustomerRepository : IDisposable
{
 private EFRecipesEntities context;

 public CustomerRepository()
 {
 this.context = new EFRecipesEntities();
 }

 public void Dispose()
 {
 this.context.Dispose();
 }

 public Customer GetCustomer(string name)
 {
 var customer = this.context.Customers
 .Include("Phones").Single(c => c.Name == name);
 this.context.StartSelfTracking();
 return customer;
 }

 public Customer SubmitCustomerWithPhones(Customer customer)
 {
 this.context.Customers.ApplyChanges(customer);

339

CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

 this.context.SaveChanges();
 return customer;
 }
}

Listing 9-23. We extend the EFRecipesEntities class with this partial class

public partial class EFRecipesEntities
{
 public void StartSelfTracking()
 {
 var entities = this.ObjectStateManager
 .GetObjectStateEntries(~EntityState.Detached)
 .Where(e => !e.IsRelationship)
 .Select(e => e.Entity)
 .OfType<IObjectWithChangeTracker>();
 foreach (var entity in entities)
 {
 entity.StartTracking();
 }
 }

 public override int SaveChanges(SaveOptions options)
 {
 var affected = base.SaveChanges(options);
 if (SaveOptions.AcceptAllChangesAfterSave ==
 (SaveOptions.AcceptAllChangesAfterSave & options))
 {
 var entities = this.ObjectStateManager
 .GetObjectStateEntries(EntityState.Unchanged)
 .Where(e => !e.IsRelationship)
 .Select(e => e.Entity)
 .OfType<IObjectWithChangeTracker>();
 foreach (var entity in entities)
 {
 entity.AcceptChanges();
 }
 }
 return affected;
 }
}

Listing 9-24. Our ASP.NET page demonstrating reading, creating, and updating a customer

<body>
 <form id="form1" runat="server">
 <div>
 <asp:Button ID="button1" Text="Create Customer"
 OnClick="CreateCustomer" runat="server" />

 <asp:Button ID="button2" Text="Read Customer"
 OnClick="ReadCustomer" runat="server" />

340

 CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

 <asp:Button ID="button3" Text="Update Customer"
 OnClick="UpdateCustomer" runat="server" />

 <h2>Customer Details</h2>
 <table>
 <tr>
 <td>Customer Name</td>
 <td><asp:Label ID="CustomerName" runat="server" /></td>
 </tr>
 <tr>
 <td>Phone Number</td>
 <td><asp:Label ID="PhoneNumber" runat="server" /></td>
 </tr>
 </table>
 </div>
 </form>
</body>

Listing 9-25. The code behind for our ASP.NET page

public partial class Default : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!this.IsPostBack)
 {
 using (var context = new EFRecipesEntities())
 {
 // delete previous test data
 context.ExecuteStoreCommand("delete from chapter9.phone");
 context.ExecuteStoreCommand("delete from chapter9.customer");
 }
 }
 }

 private void ShowCustomer()
 {
 if (this.Session["Customer"] != null)
 {
 Customer customer = (Customer)this.Session["Customer"];
 this.CustomerName.Text = customer.Name;
 if (customer.Phones.Count > 0)
 {
 this.PhoneNumber.Text = customer.Phones[0].Number;
 }
 }
 }
 protected void CreateCustomer(object sender, EventArgs e)
 {
 var customer = new Customer { Name = "Phillip Marlowe",
 Company = "Chandler Enterprises" };

341

CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

 customer.Phones.Add(new Phone { Number = "212 555-5555",
 PhoneType = "Office" });
 using (var repository = new CustomerRepository())
 {
 repository.SubmitCustomerWithPhones(customer);
 }
 }

 protected void ReadCustomer(object sender, EventArgs e)
 {
 using (var repository = new CustomerRepository())
 {
 this.Session["Customer"] =
 repository.GetCustomer("Phillip Marlowe");
 }
 ShowCustomer();
 }

 protected void UpdateCustomer(object sender, EventArgs e)
 {
 Customer customer = (Customer)this.Session["Customer"];
 var number = customer.Phones
 .FirstOrDefault(p => p.PhoneType == "Office");
 if (number != null)
 number.MarkAsDeleted();
 customer.Phones.Add(new Phone { Number = "817 867-5309",
 PhoneType = "Cell" });
 using (var repository = new CustomerRepository())
 {
 var cust = repository.SubmitCustomerWithPhones(customer);
 cust.StartTracking();
 this.Session["Customer"] = cust;
 }
 ShowCustomer();
 }
}

To test the code, click the Create Customer button. Nothing interesting is changed in the browser,
but this causes our test data to be inserted into the database.

Once the test data is inserted, click the Read Customer button. This reads the customer entity and
displays it on the page (see Figure 9-10).

Finally, click the Update Customer button. This changes the customer’s phone number and displays
the updated customer and phone number (see Figure 9-11).

342

 CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

Figure 9-10. The web page after the customer is created and the customer is read and stored in the session

state

Figure 9-11. The web page after the customer has been updated and the new updated customer has been

inserted into the session state

343

CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

How It Works
Self-tracking entities make n-tier development easier because they implement their own change
tracking mechanism. Self-tracking entities record changes without the support of an object context.
When sent to the server, these changes can be replayed in the presence of an object context using the
ApplyChanges() method.

To make this process easier in WCF scenarios, the generated code for self-tracking entities hooks
into the deserialization process using the OnDeserializedAttribute. This code turns on change tracking
before the entity is received by the client. This makes change tracking with self-tracking entities fairly
seamless in a WCF environment.

The story is a little more manual outside of WCF. In this recipe, we used the self-tracking entities in
an ASP.NET environment. To turn on change tracking, we implemented the StartSelfTracking()
method. In this method we find all the self-tracking entities in the object state manager and for each call
StartTracking(). This sets the ChangeTracker.EnableChangeTracking property to true and initiates
change tracking for the entity.

Change tracking is also enabled on an entity in two other cases. It is enabled when the entity is
attached to another entity that has change tracking enabled. It is also enabled when the state of the self-
tracking entity is changed with MarkAsUnchanged(), MarkAsModified(), or MarkAsDeleted().

Change tracking is disabled or stopped on a self-tracking entity when you call StopTracking() or
after you apply the changes on the entity to object context using ApplyChanges(). The reason why the
internal mechanism for change tracking stops in a self-tracking entity when ApplyChanges() is called is
that at this point the entity is attached to the object context. The object context is now responsible for
tracking changes. As with any other POCO entity, after changes have been made you can call
DetectChanges() to cause snapshot-based change tracking or you can simply call SaveChanges() which
internally calls DetectChanges().

For other entities, SaveChanges() changes the state of each entity to Unchanged. However, for self-
tracking entities, SaveChanges() leaves the state as Added. In Listing 9-23 we override the SaveChanges()
method to manually change the state of the self-tracking entities (those that implement
IObjectWithChangeTracker).

When the Create Customer button is clicked, the code behind (Listing 9-25) creates our test
customer entity and calls SubmitCustomerWithPhones() to insert the new customer and the phone
numbers for the customer. When a new customer entity is created, change tracking is disabled. We don’t
need to turn it on at this point because the entity is in the Added state and we have no changes to apply.

When the Read Customer button is clicked, the customer is read from the repository using the
GetCustomer() method. This method turns on change tracking for the entities by calling our
StartSelfTracking() method (see Listing 9-23).

When the Update Customer button is clicked, the code behind reads the customer from the session
state, makes some changes to the customer’s phones, and submits these changes using the
CustomerRepository’s SubmitCustomerWithPhones() method. The customer entity that is returned has
change tracking disabled. We explicitly enable this with StartTracking() before we assign the customer
back to the session state.

You might be tempted to use the ObjectMaterialized event to turn on tracking for all entities when
they are materialized. This is not a viable approach because the ObjectMaterialized event only
guarantees that regular properties are initialized before the event is raised. Collection properties might
change after the event has been raised. If you turn on change tracking while handling the
ObjectMaterialized event, you may start tracking changes on collections that are simply part of the
normal object materialization process.

344

 CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

9-8. Serializing Proxies in a WCF Service

Problem
You have a dynamic proxy object returned from a query. You want to serialize the proxy as a plain old
CLR object.

Solution
Let’s suppose you have a model like the one in Figure 9-12.

Figure 9-12. A model with a Client entity

We’ll use the ProxyDataContractResolver class to deserialize a proxy object on the server to a POCO
object on the WCF client. Do the following:

1. Create a new WCF Service Application. Add an ADO.NET Entity Data Model
with the Client table. The model should look like the one in Figure 9-12.

2. With the Entity Data Model Designer open, view the properties window and
change the Code Generation Strategy to None.

3. Create the Client POCO class and object context from the code in Listing 9-26.

4. We need the DataContractSerializer to use ProxyDataContractResolver to
resolve the client proxy to the client entity for the WCF service’s client. For this,
we’ll create an operation behavior attribute and apply the attribute on the
GetClient() service method. Add the code in Listing 9-27 to create the new
attribute.

5. Change the IService1.cs interface using the code in Listing 9-28.

6. Change the implementation of the IService1 interface in the IService1.svc.cs
file with the code in Listing 9-29.

7. Add a Windows Console Application to the solution. This will be our test client.
Use the code in Listing 9-30 to implement our test client. Add a service
reference to our WCF service.

345

CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

Listing 9-26. Our Client POCO class and our object context

public class Client
{
 public virtual int ClientId { get; set; }
 public virtual string Name { get; set; }
 public virtual string Email { get; set; }
}

public class EFRecipesEntities : ObjectContext
{
 private ObjectSet<Client> clients;
 public EFRecipesEntities()
 : base("name=EFRecipesEntities", "EFRecipesEntities")
 {
 }

 public ObjectSet<Client> Clients
 {
 get { return clients ?? (clients = CreateObjectSet<Client>()); }
 }
}

Listing 9-27. Our custom operation behavior attribute

using System.ServiceModel.Description;
using System.ServiceModel.Channels;
using System.ServiceModel.Dispatcher;
using System.Data.Objects;

namespace Recipe8
{
 public class ApplyProxyDataContractResolverAttribute : Attribute,
 IOperationBehavior
 {
 public void AddBindingParameters(OperationDescription description,
 BindingParameterCollection parameters)
 {
 }

 public void ApplyClientBehavior(OperationDescription description,
 ClientOperation proxy)
 {
 DataContractSerializerOperationBehavior
 dataContractSerializerOperationBehavior =
 description.Behaviors
 .Find<DataContractSerializerOperationBehavior>();
 dataContractSerializerOperationBehavior.DataContractResolver =
 new ProxyDataContractResolver();
 }

346

 CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

 public void ApplyDispatchBehavior(OperationDescription description,
 DispatchOperation dispatch)
 {
 DataContractSerializerOperationBehavior
 dataContractSerializerOperationBehavior =
 description.Behaviors
 .Find<DataContractSerializerOperationBehavior>();
 dataContractSerializerOperationBehavior.DataContractResolver =
 new ProxyDataContractResolver();
 }

 public void Validate(OperationDescription description)
 {
 }
 }
}

Listing 9-28. Our IService1 interface definition, which replaces the code in IService1.cs

[ServiceContract]
public interface IService1
{
 [OperationContract]
 void InsertTestRecord();

 [OperationContract]
 Client GetClient();

 [OperationContract]
 void Update(Client client);
}

Listing 9-29. The implementation of the IService1 interface, which replaces the code in IService1.svc.cs

public class Client
{
 [ApplyProxyDataContractResolver]
 public Client GetClient()
 {
 using (var context = new EFRecipesEntities())
 {
 context.ContextOptions.LazyLoadingEnabled = false;
 return context.Clients.Single();
 }
 }

 public void Update(Client client)
 {
 using (var context = new EFRecipesEntities())
 {
 context.Clients.Attach(client);
 context.ObjectStateManager.ChangeObjectState(client,

347

CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

 EntityState.Modified);
 context.SaveChanges();
 }
 }

 public void InsertTestRecord()
 {
 using (var context = new EFRecipesEntities())
 {
 // delete previous test data
 context.ExecuteStoreCommand("delete from chapter9.client");

 // insert new test data
 context.ExecuteStoreCommand(@"insert into
 chapter9.client(Name, Email)
 values ('Jerry Jones','jjones@gmail.com')");
 }
 }
}

Listing 9-30. Our Windows console application test client

using Recipe8Client.ServiceReference1;

namespace Recipe8Client
{
 class Program
 {
 static void Main(string[] args)
 {
 using (var serviceClient = new Service1Client())
 {
 serviceClient.InsertTestRecord();
 var client = serviceClient.GetClient();
 Console.WriteLine("Client is: {0} at {1}",
 client.Name, client.Email);
 client.Name = "Alex Park";
 client.Email = "AlexP@hotmail.com";
 serviceClient.Update(client);
 client = serviceClient.GetClient();
 Console.WriteLine("Client changed to: {0} at {1}",
 client.Name, client.Email);
 }
 }
 }
}

The following is the output of our test client:

348

mailto:jjones@gmail.com
mailto:AlexP@hotmail.com

 CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

Client is: Jerry Jones at jjones@gmail.com
Client changed to: Alex Park at AlexP@hotmail.com

How It Works
Microsoft recommends using POCO with WCF so that serialization is easier and lazy loading is not
triggered. Self-tracking entities are an ideal solution for WCF applications because they are essentially
POCO classes with the added plumbing for managing change tracking. However, if your application is
using POCO objects with changed-based notification (you have marked properties as virtual and
navigation property collections are of type ICollection), then Entity Framework will create dynamic
proxies for entities returned from queries.

There are two problems with dynamic proxies and WCF. The first problem has to do with the
serialization of the proxy. The DataContractSerializer can only serialize and deserialize known types,
such as our Client entity. However, we need to serialize the proxy for the Client, not the Client. Here is
where DataContractResolver comes to the rescue. It can map one type to another during serialization.
ProxyDataContractResolver derives from DataContractResolver and maps proxy types to POCO classes
such as our Client entity. To use the ProxyDataContractResolver, we created an attribute (see Listing 9-
27) to resolve proxies into POCO classes. We applied this attribute to the GetClient() method in Listing
9-29. This causes the dynamic proxy for the Client entity returned by the GetClient() to be correctly
serialized for its journey to the user of the WCF service.

The second problem with dynamic proxies and WCF has to do with lazy loading. When the
DataContractSerializer serializes the entity, it accesses each of the properties of the entity that would
trigger lazy loading of navigation properties. This, of course, is not what we want. To prevent this, we
explicitly turned off lazy loading in Listing 9-29.

9-9. Serializing Self-Tracking Entities in the ViewState

Problem
You want to save a self-tracking entity in the ViewState of an ASP.NET application.

Solution
Let’s suppose you have a model like the one in Figure 9-13.

Figure 9-13. A model with a Job entity

349

mailto:jjones@gmail.com
mailto:AlexP@hotmail.com

CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

If you try to assign a job entity to the ViewState, the BinaryFormatter would fail. To get around this, we
can create our own serializer using the DataContractSerializer to serialize the self-tracking entity. To
create your own serializer and a test page, do the following:

1. Create a new empty Web Application. Add an ADO.NET Entity Data Model
with the Job table. Right-click the design surface and view the Properties.

2. Right-click the design surface and select Add Code Generation Item. Select the
ADO.NET Self-Tracking Entity Generator from the Code Installed Template.
Click Add.

3. Add the code in Listing 9-31 to the project. We’ll use this class to serialize the
object graph.

4. Add a Default.aspx page to the project. Use the code in Listing 9-32 for the
page and the code in Listing 9-33 for the code behind.

Listing 9-31. The ByteArraySerializer class is used to serialize the object graph.

using System.IO;
using System.Runtime.Serialization;

namespace Recipe9
{
 public class ByteArraySerializer
 {
 public static byte[] ToByteArray<T>(T graph)
 {
 var stream = new MemoryStream();
 var serializer = new DataContractSerializer(typeof(T));
 serializer.WriteObject(stream, graph);
 return stream.ToArray();
 }

 public static T ToObject<T>(byte[] bytes)
 {
 var stream = new MemoryStream(bytes);
 stream.Position = 0;
 var serializer = new DataContractSerializer(typeof(T));
 return (T)serializer.ReadObject(stream);
 }
 }
}

Listing 9-32. The ASP.NET page that tests our ViewState serialization

<body>
 <form id="form1" runat="server">
 <div>
 <table>
 <tr>
 <td>New Job Title:</td>
 <td><asp:TextBox ID="JobTitle" runat="server" /></td>

350

 CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

 </tr>
 <tr>
 <td>New Salary:</td>
 <td><asp:TextBox ID="Salary" runat="server" /></td>
 </tr>
 </table>

 <asp:Button ID="create" runat="server" OnClick="Create_Click"
 Text="Create Job" />
 <asp:Button ID="update" runat="server" OnClick="Update_Click"
 Text="Update Job" />

 <table>
 <tr>
 <td>Job Title:</td>
 <td><asp:Label ID="JobTitleLabel" runat="server" /></td>
 </tr>
 <tr>
 <td>Salary:</td>
 <td><asp:Label ID="SalaryLabel" runat="server" /></td>
 </tr>
 </table>

 </div>
 </form>
</body>

Listing 9-33. The code behind for the page

public partial class Default : System.Web.UI.Page
{
 public Job Job
 {
 get
 {
 var bytes = ViewState["job"] as byte[];
 return ByteArraySerializer.ToObject<Job>(bytes);
 }

 set
 {
 var bytes = ByteArraySerializer.ToByteArray<Job>(value);
 ViewState["job"] = bytes;
 }
 }

 protected void Page_Load(object sender, EventArgs e)
 {
 if (!this.IsPostBack)
 {
 // create the default job
 this.Job = CreateJob("Plumber", 82000M);

351

CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

 InitializeControls();
 }

 }

 private void InitializeControls()
 {
 this.JobTitleLabel.Text = Job.Title;
 this.SalaryLabel.Text = Job.Salary.ToString();
 }

 private Job CreateJob(string title, decimal salary)
 {
 using (var context = new EFRecipesEntities())
 {
 return new Job { Title = title, Salary = salary };
 }
 }

 protected void Create_Click(object sender, EventArgs e)
 {
 decimal salary = 0;
 decimal.TryParse(this.Salary.Text, out salary);

 this.Job = CreateJob(this.JobTitle.Text, salary);
 InitializeControls();
 }

 protected void Update_Click(object sender, EventArgs e)
 {
 decimal salary = 0;
 decimal.TryParse(this.Salary.Text, out salary);

 this.Job = CreateJob(this.JobTitle.Text, salary);
 InitializeControls();
 }
}

After filling in a job title, salary, and clicking Create Job, the page is rendered in the browser, as
shown in Figure 9-14.

352

 CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

Figure 9-14. The page rendered in a browser after the new job has been created

How It Works
We used the DataContractSerializer to serialize the self-tracking entity into a byte array. Once in the
byte array, we can assign it to the ViewState. To get the self-tracking entity from the ViewState, we read
the byte array and deserialize the entity. We needed to use the DataContractSerializer because the
current version of self-tracking entities does not support the binary serialization. A future version would
likely support it.

Binary serialization works for POCO entities as long as they are marked with the Serializable
attribute. Dynamic proxies can also be serialized and deserialized when using binary serialization.
However, when deserializing the proxy, if the proxy is not already loaded in the AppDomain, you will get
an exception. To avoid the exception, you can force the proxy to be loaded in the AppDomain before
deserialization by calling CreateProxyTypes(). You don’t need to call CreateProxyTypes() if the
serialization and de-serialization occur in the same AppDomain because the initial retrieval of the entity
would have created the proxy in the AppDomain.

353

CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

9-10. Fixing Duplicate References on a WCF Client

Problem
You have made several calls to a WCF service. The client has obtained two references from the service to
the same object. You want to fix the client-side graph so that it has only one reference to the object.

Solution
If the client’s object graph contains two references to the same object, any attempt at saving the graph
will throw a duplicate key exception on the service side. Duplicate references must be removed from the
graph before it can be saved on the service side.

Suppose you have the database tables shown Figure 9-15.

Figure 9-15. A database diagram with tables and relationships representing media in categories

To construct an example of how duplicate references can be created and fixed in the client’s graph, do
the following:

1. Create a new blank solution. Right-click the solution and select Add New
Project. Select Windows Class Library. Name the project MediaData and click
OK.

2. Right-click the project and add a new ADO.NET Data Model. Import the tables
in Figure 9-15 into the model. The model should look like the one shown in
Figure 9-16.

3. Right-click the design surface and select Add Code Generation Item. Select the
ADO.NET Self-Tracking Entity Generator template under the Code templates.
Name the template MediaTemplate.tt.

4. Right-click the solution and select Add New Project. Select Windows Class
Library. Name the new library MediaEntities. Add a reference in this project to
System.Runtime.Serialization.

354

 CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

5. Move the MediaTemplate.tt file from the MediaData project to the
MediaEntities project. Because we’ve moved the template, we need to update
its reference to the .edmx file. Edit the MediaTemplate.tt file and change the
inputFile variable to point to the .edmx file in the MediaData project. If you’ve
named your file Recipe10.edmx, the template file’s inputFile should be set as
follows:

string inputFile = @"../MediaData/Recipe10.edmx";

6. Add a reference on the MediaData project to the MediaEntities project.

7. Right-click the MediaTemplateContext.tt file and view its properties. Set the
Custom Tool Namespace to MediaEntities. The template will now generate the
object context in the same namespace as the entities.

8. Right-click the solution and select Add New Project. Select WCF Service
Application from the WCF templates. Name this new service MediaServices.
Add references to the MediaData and MediaEntities projects. Add a reference
to System.Data.Entity.

9. Copy the <connectionString> section from the App.Config file in the
MediaData project to the web.config file in the MediaServices project.

10. Change the service interface in the MediaServices project (in the file
IService1.cs) to the code in Listing 9-34.

11. Change the implementation of the interface in the MediaServices project (in
the file Service1.svc.cs) to the code in Listing 9-35. Make sure you add a using
for System.Data.Entity.

12. Right-click the solution and select Add New Project. Select a Windows
Console Application. Name the application TestClient.

13. Right-click the TestClient project and select Add Service Reference. Click
Discover and select Service1 to add a service reference to our service. Add a
reference to the MediaEntities project.

14. Use the code in Listing 9-36 to implement the TestClient. This code checks if
the graph has two references to the same object and repairs the graph so that it
can be sent to the service.

Figure 9-16. A model for representing media in categories

355

CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

Listing 9-34. The interface IService1 for our service

[ServiceContract]
public interface IService1
{
 [OperationContract]
 void Initialize();

 [OperationContract]
 Medium GetMediaByTitle(string title);

 [OperationContract]
 void SubmitCategory(Category category);
}

Listing 9-35. The implementation of the IService1 interface

public class Service1 : IService1
{
 public void Initialize()
 {
 using (var context = new EFRecipesEntities())
 {
 // clean up
 context.ExecuteStoreCommand("delete from chapter9.mediacategory");
 context.ExecuteStoreCommand("delete from chapter9.category");
 context.ExecuteStoreCommand("delete from chapter9.media");
 context.ExecuteStoreCommand("delete from chapter9.mediatype");

 // insert some test data
 var mediaType = new MediaType { MediaTypeId = 1,
 Description = "Article" };
 var media1 = new Medium { Title = "How to Design a Brick Fireplace",
 MediaType = mediaType };
 var media2 = new Medium { Title = "Repairing a Brick Oven",
 MediaType = mediaType };
 context.Media.AddObject(media1);
 context.Media.AddObject(media2);
 context.SaveChanges();
 }
 }

 public Medium GetMediaByTitle(string title)
 {
 using (var context = new EFRecipesEntities())
 {
 return context.Media.Include("MediaType")
 .First(m => m.Title == title);
 }
 }

356

 CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

 public void SubmitCategory(Category category)
 {
 using (var context = new EFRecipesEntities())
 {
 context.Categories.ApplyChanges(category);
 context.SaveChanges();
 }
 }
}

Listing 9-36. The implementation of our TestClient

class Program
{
 static void Main(string[] args)
 {
 var service = new Service1Client();
 service.Initialize();
 var media1 = service.GetMediaByTitle("How to Design a Brick Fireplace");
 var media2 = service.GetMediaByTitle("Repairing a Brick Oven");
 var category = new Category { Name = "Brick Construction" };
 category.Media.Add(media1);
 category.Media.Add(media2);

 // at this point, media1 and media2 both
 // reference the "Article" MediaType, but there
 // are two instances of this object each with
 // the same key, we need to fix this
 if (media1.MediaType.MediaTypeId == media2.MediaType.MediaTypeId)
 {
 // apply fix
 media2.StopTracking();
 media2.MediaType.StopTracking();
 media1.MediaType.StopTracking();
 media2.MediaType = media1.MediaType;
 media2.StartTracking();
 media2.MediaType.StartTracking();
 }
 service.SubmitCategory(category);
 }
}

How It Works
On the client side, the two media objects have the same media type. Because these two objects were
retrieved from the service by two separate calls, each media references its own instance of the media
type. The object graph on the client side is invalid. It contains two instances of an entity, each with the
same key. If we were to send this graph to the service, the service would throw an
InvalidOperationException when it attempts to use the graph. In our case, the AcceptChanges() call on
the service side throws the exception.

357

CHAPTER 9 USING THE ENTITY FRAMEWORK IN N-TIER APPLICATIONS

358

There are a few different approaches we can take to avoid sending an invalid object graph to the
service.

The first approach is to make sure that each object graph sent to the service was constructed
entirely from objects received from a previous service call. Because an object graph received by the
client is known to be valid, it is safe to send the same graph back to the service.

If the client can detect that two or more objects reference duplicate objects, then it can elect to send
each of the valid subgraphs separately to the service. In our example, we could have added media1 to the
category and then called SubmitCategory() to send the subgraph to the service. This would be followed
by adding media2 to the category and calling SubmitCategory() again.

If the client can detect that an object graph is invalid, it can repair the graph, as we have in the code
in Listing 9-36. Our graph was simple enough that it was easy to detect an invalid graph and easy to
repair it.

Perhaps the most convenient approach is to not modify the graph using reference types, but to set
the foreign key values. In our case, we can avoid sending instances of MediaType with the medium
entities. The client would have to set the MediaTypeId values directly.

C H A P T E R 10

Stored Procedures

Stored procedures are fixtures in the life of just about anyone who uses modern relational database
systems such as Microsoft’s SQL Server. A stored procedure is a bit of code that lives on the database
server and often acts as an abstraction layer isolating the code consuming the data from many of the
details of the physical organization of the data. Stored procedures can increase performance by moving
data-intensive computations closer to the data and can act as a data-side repository for business and
security logic. The bottom line is that if you use data, you will at some point consume it through a stored
procedure.

In this chapter, we explore a number of recipes specifically focused around using stored procedures
with Entity Framework. We used stored procedures in other recipes throughout this book, but usually
they were in the context of implementing Insert, Update, and Delete actions. In this chapter, we’ll show
you several ways to consume the data exposed by stored procedures.

10-1. Returning an Entity Collection

Problem
You want to get an entity collection from a stored procedure.

Solution
Let’s say you have a model like the one in Figure 10-1.

Figure 10-1. A simple model of a customer

In the database we have defined the stored procedure in Listing 10-1 that returns customers for
given a company name and customer title.

359

CHAPTER 10 STORED PROCEDURES

Listing 10-1. GetCustomers returns all the customers with the given title in the given company

create procedure Chapter10.GetCustomers
(@Company varchar(50),@ContactTitle varchar(50))
as
begin

select * from
chapter10.Customer where
(@Company is null or Company = @Company) and
(@ContactTitle is null or ContactTitle = @ContactTitle)

End

To use the GetCustomers stored procedure in the model, do the following.

1. Right-click the design surface and select Update Model From Database. In the
dialog box, select the GetCustomers stored procedure. Click Finish to add the
stored procedure to the model.

2. Right-click the design surface and select Add Function Import. Select the
GetCustomers stored procedure from the Stored Procedure Name drop-down.
In the Function Import Name text box, enter GetCustomers. This will be the
name used for the method in the model. Select the Entities Return Type and
select Customer in the drop-down. Then click OK (see Figure 10-2).

3. Follow the pattern in Listing 10-2 to use the GetCustomers stored procedure.

Figure 10-2. The Add Function Import dialog box. Select the GetCustomers stored procedure, name the

model function GetCustomers, and set the return type to Entities.

360

 CHAPTER 6 STORED PROCEDURES

Listing 10-2. Querying the model with the GetCustomers stored procedure via the GetCustomers() method

using (var context = new EFRecipesEntities())
{
 var c1 = new Customer {Name = "Robin Steele", Company = "GoShopNow.com",
 ContactTitle="CEO"};
 var c2 = new Customer {Name = "Orin Torrey", Company = "GoShopNow.com",
 ContactTitle="Sales Manager"};
 var c3 = new Customer {Name = "Robert Lancaster", Company = "GoShopNow.com",
 ContactTitle = "Sales Manager"};
 var c4 = new Customer { Name = "Julie Stevens", Company = "GoShopNow.com",
 ContactTitle = "Sales Manager" };
 context.Customers.AddObject(c1);
 context.Customers.AddObject(c2);
 context.Customers.AddObject(c3);
 context.Customers.AddObject(c4);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 var allCustomers = context.GetCustomers("GoShopNow.com", "Sales Manager");
 Console.WriteLine("Customers that are Sales Managers at GoShopNow.com");
 foreach (var c in allCustomers)
 {
 Console.WriteLine("Customer: {0}", c.Name);
 }
}

The following is the output of the code in Listing 10-2:

Customers that are Sales Managers at GoShopNow.com

Customer: Orin Torrey

Customer: Robert Lancaster

Customer: Julie Stevens

How It Works
To retrieve an entity collection from a stored procedure in the database, we updated the model with the
stored procedure from the database. Updating the model with the stored procedure added the code in
Listing 10-3 to the SSDL section in the .edmx file.

361

CHAPTER 10 STORED PROCEDURES

Listing 10-3. SSDL section updated with the GetCustomers stored procedure reference

<Function Name="GetCustomers" Aggregate="false" BuiltIn="false"
 NiladicFunction="false" IsComposable="false"
 ParameterTypeSemantics="AllowImplicitConversion" Schema="Chapter10">
 <Parameter Name="Company" Type="varchar" Mode="In" />
 <Parameter Name="ContactTitle" Type="varchar" Mode="In" />
</Function>

Next, we added a Function Import and specified both the name of the stored procedure and the

name we want to expose for it in the model. We also defined the return type as entities of type Customer.
Importing the GetCustomers stored procedure added the code in Listing 10-4 to the CSDL (conceptual)
section of the .edmx file. This essentially defines signature for the function.

The mapping between the conceptual definition and the storage layer definition is added by the
Function Import process through the <FunctionImportMapping> directive in the mapping section of the
.edmx file. This maps the name of the stored procedure represented in the SSDL section to the name we
provided for it in the model.

Listing 10-4. CSDL section updated with the GetCustomers()method

<FunctionImport Name="GetCustomers" EntitySet="Customers"
 ReturnType="Collection(EFRecipesModel.Customer)">
 <Parameter Name="Company" Mode="In" Type="String" />
 <Parameter Name="ContactTitle" Mode="In" Type="String" />
</FunctionImport>

A database function or stored procedure is composable if the results can be filtered. Most database

systems support composing functions but not stored procedures. In Listing 10-3, the IsComposable
attribute is set to false.

10-2. Returning Output Parameters

Problem
You want to retrieve values from one or more output parameters of a stored procedure.

Solution
Let’s say you have a model like the one in Figure 10-3.

362

 CHAPTER 6 STORED PROCEDURES

Figure 10-3. A simple model for vehicle rental

For a given date, you want to know the total number of rentals, the total rental payments made, and
the vehicles rented. The stored procedure in Listing 10-5 is one way to get the information we want.

Listing 10-5. A stored procedure for the vehicles rented, the number of rentals, and the total rental

payments

create procedure [chapter10].[GetVehiclesWithRentals]
(@date date,
@TotalRentals int output,
@TotalPayments decimal(18,2) output)
as
begin
 select @TotalRentals = COUNT(*), @TotalPayments = SUM(payment)
 from chapter10.Rental
 where RentalDate = @date

 select distinct v.*
 from chapter10.Vehicle v join chapter10.Rental r
 on v.VehicleId = r.VehicleId
end

To use the stored procedure in Listing 10-5 in the model, do the following.

1. Right-click the design surface and select Update Model From Database. In the
dialog box, select the GetVehiclesWithRentals stored procedure. Click Finish to
add the stored procedure to the model.

2. Right-click the design surface and select Add Function Import. Select the
GetVehiclesWithRentals stored procedure from the Stored Procedure Name
drop-down. In the Function Import Name text box, enter
GetVehiclesWithRentals. This will be the name used for the method in the
model. Select the Entities Return Type and select Vehicle in the drop-down.
Click OK.

3. Follow the pattern in Listing 10-6 to use the GetVehiclesWithRentals stored
procedure.

363

CHAPTER 10 STORED PROCEDURES

Listing 10-6. Querying the model using the GetVehiclesWithRentals stored procedure via the

GetVehiclesWithRentals() method

using (var context = new EFRecipesEntities())
{
 var car1 = new Vehicle { Manufacturer = "Toyota", Model = "Camry",
 Year = 2010 };
 var car2 = new Vehicle { Manufacturer = "Chevrolet", Model = "Corvette",
 Year = 2010 };
 var r1 = new Rental { Vehicle = car1,
 RentalDate = DateTime.Parse("2/2/2010"),
 Payment = 59.95M };
 var r2 = new Rental { Vehicle = car2,
 RentalDate = DateTime.Parse("2/2/2010"),
 Payment = 139.95M };
 context.AddToRentals(r1);
 context.AddToRentals(r2);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 string reportDate = "2/2/2010";
 var totalRentals = new ObjectParameter("TotalRentals", typeof(int));
 var totalPayments = new ObjectParameter("TotalPayments", typeof(decimal));
 var vehicles = context.GetVehiclesWithRentals(DateTime.Parse(reportDate),
 totalRentals, totalPayments);
 Console.WriteLine("Rental Activity for {0}",reportDate);
 Console.WriteLine("Vehicles Rented");
 foreach(var vehicle in vehicles)
 {
 Console.WriteLine("{0} {1} {2}",vehicle.Year.ToString(),
 vehicle.Manufacturer, vehicle.Model);
 }
 Console.WriteLine("Total Rentals: {0}",
 ((int)totalRentals.Value).ToString());
 Console.WriteLine("Total Payments: {0}",
 ((decimal)totalPayments.Value).ToString("C"));
}

The following is the output of the code in Listing 10-6:

Rental Activity for 2/2/2010

Vehicles Rented

2010 Toyota Camry

2010 Chevrolet Corvette

364

 CHAPTER 6 STORED PROCEDURES

Total Rentals: 2

Total Payments: $200.00

How It Works
When we updated the model with the GetVehiclesWithRentals stored procedure, the wizard updated the
store model with the stored procedure. By importing the function (in Step 2) we updated the conceptual
model. The result is that the stored procedure is exposed as the GetVehiclesWithRentals() method,
which has a signature semantically similar to the stored procedure.

There is one important thing to note when calling the GetVehiclesWithRentals() method: the
returned entity collection must be materialized before the output parameters will become available. This
should not be too surprising to those who have used multiple result sets in ADO.NET. The data reader
must be advanced (with the NextResult() method) to the next result set. Similarly, the entire returned
entity collection must be accessed or disposed before the output parameters can be accessed.

In our example, it is not enough to materialize the first vehicle for the output parameters to become
available. The entire collection must be materialized. This means moving the lines printing the total
rentals and total payments to a position after the foreach loop. Alternatively, we could materialize the
entire collection with the ToList() method and then iterate through the list. This would allow us to
access the output parameters prior to iterating through the collection.

10-3. Returning a Scalar Value Result Set

Problem
You want to use a stored procedure that returns a result set containing a single scalar value.

Solution
Let’s say you have a model like the one in Figure 10-4.

Figure 10-4. A model representing ATM machines and withdrawal transactions

365

CHAPTER 10 STORED PROCEDURES

You want to use a stored procedure that returns the total amount withdrawn from a given ATM on a
given date. The code in Listing 10-7 is one way to implement this stored procedure.

Listing 10-7. The GetWithdrawals stored procedure that returns the total amount withdrawn from a given

ATM on a given date

create procedure [Chapter10].[GetWithdrawals]
(@ATMId int, @WithdrawalDate date)
as
begin
 select SUM(amount) TotalWithdrawals
 from Chapter10.ATMWithdrawal
 where ATMId = @ATMId and [date] = @WithdrawalDate
end

To use the stored procedure in Listing 10-7 in the model, do the following:

1. Right-click the design surface and select Update Model From Database. In the
dialog box, select the GetWithdrawals stored procedure. Click Finish to add the
stored procedure to the model.

2. Right-click the design surface and select Add Function Import. Select the
GetWithdrawals stored procedure from the Stored Procedure Name drop-
down. In the Function Import Name text box, enter GetWithdrawals. This will
be the name used for the method in the model. Select the Scalars Return Type
and select Decimal in the drop-down. Click OK.

3. Follow the pattern in Listing 10-8 to use the GetWithdrawals stored procedure.

Listing 10-8. Querying the model with the GetWithdrawals stored procedure via the GetWithdrawals()

method

DateTime today = DateTime.Parse("2/2/2010");
DateTime yesterday = DateTime.Parse("2/1/2010");
using (var context = new EFRecipesEntities())
{
 var atm = new ATMMachine { ATMId = 17, Location = "12th and Main" };
 atm.ATMWithdrawals.Add(new ATMWithdrawal {Amount = 20.00M, Date= today});
 atm.ATMWithdrawals.Add(new ATMWithdrawal {Amount = 100.00M, Date = today});
 atm.ATMWithdrawals.Add(new ATMWithdrawal {Amount = 75.00M, Date = yesterday});
 atm.ATMWithdrawals.Add(new ATMWithdrawal {Amount = 50.00M, Date= today});
 context.AddToATMMachines(atm);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 var forToday = context.GetWithdrawals(17, today).FirstOrDefault();
 var forYesterday = context.GetWithdrawals(17, yesterday).FirstOrDefault();
 var atm = context.ATMMachines.Where(o => o.ATMId == 17).FirstOrDefault();
 Console.WriteLine("ATM Withdrawals for ATM at {0} at {1}",
 atm.ATMId.ToString(), atm.Location);

366

 CHAPTER 6 STORED PROCEDURES

 Console.WriteLine("\t{0} Total Withdrawn = {1}",
 yesterday.ToShortDateString(), forYesterday.Value.ToString("C"));
 Console.WriteLine("\t{0} Total Withdrawn = {1}", today.ToShortDateString(),
 forToday.Value.ToString("C"));
}

The following is the output from the code in Listing 10-8:

ATM Withdrawals for ATM at 17 at 12th and Main

 2/1/2010 Total Withdrawn = $75.00

 2/2/2010 Total Withdrawn = $170.00

How It Works
Notice that Entity Framework expects the stored procedure to return a collection of scalar values. In our
example, our store procedure returns just one decimal value. We use the FirstOrDefault() method to
extract this scalar from the collection.

10-4. Returning a Complex Type from a Stored Procedure

Problem
You want to use a stored procedure that returns a complex type in the model.

Solution
Let’s say you have a model with an Employee entity. Employee contains the employee’s id, name, and a
complex address type that holds the address, city, state, and ZIP code for the employee. The name of the
complex type is EmployeeAddress. The property in the Employee entity is simply Address. The
Employee entity is shown in Figure 10-5.

Figure 10-5. An Employee entity with an Address property of type EmployeeAddress, which is a complex

type

367

CHAPTER 10 STORED PROCEDURES

You want to use a stored procedure to return a collection of instances of the EmployeeAddress
complex type. The stored procedure that returns the addresses might look like the one in Listing 10-9.

Listing 10-9. A stored procedure to return the addresses for employees in a given city

create procedure [Chapter10].[GetEmployeeAddresses]
(@city varchar(50))
as
begin
 select [address], city, [state], ZIP
 from Chapter10.Employee where city = @city
end

To use the stored procedure in Listing 10-9 in the model, do the following.

1. Right-click the design surface and select Update Model From Database. In the
dialog box, select the GetEmployeeAddresses stored procedure. Click Finish to
add the stored procedure to the model.

2. Right-click the design surface and select Add Function Import. Select the
GetEmployeeAddresses stored procedure from the Stored Procedure Name
drop-down. In the Function Import Name text box, enter
GetEmployeeAddresses. This will be the name used for the method in the
model. Select the Complex Return Type and select EmployeeAddress in the
drop-down. Click OK.

3. Follow the pattern in Listing 10-10 to use the GetEmployeeAddresses stored
procedure.

Listing 10-10. Querying the model using the GetEmployeeAddresses stored procedure via the

GetEmployeeAddresses() method

using (var context = new EFRecipesEntities())
{
 var emp1 = new Employee { Name = "Lisa Jefferies",
 Address = new EmployeeAddress {
 Address = "100 E. Main",
 City = "Fort Worth", State = "TX",
 ZIP = "76106" } };
 var emp2 = new Employee { Name = "Robert Jones",
 Address = new EmployeeAddress {
 Address = "3920 South Beach",
 City = "Fort Worth", State = "TX",
 ZIP = "76102" } };
 var emp3 = new Employee { Name = "Steven Chue",
 Address = new EmployeeAddress {
 Address = "129 Barker",
 City = "Euless", State = "TX",
 ZIP = "76092" } };
 var emp4 = new Employee { Name = "Karen Stevens",
 Address = new EmployeeAddress {
 Address = "108 W. Parker",

368

 CHAPTER 6 STORED PROCEDURES

 City = "Fort Worth", State = "TX",
 ZIP = "76102" } };
 context.AddToEmployees(emp1);
 context.AddToEmployees(emp2);
 context.AddToEmployees(emp3);
 context.AddToEmployees(emp4);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 Console.WriteLine("Employee addresses in Fort Worth, TX");
 foreach (var address in context.GetEmployeeAddresses("Fort Worth"))
 {
 Console.WriteLine("{0}, {1}, {2}, {3}", address.Address,
 address.City, address.State, address.ZIP);
 }
}

The following is the output of the code in Listing 10-10:

Employee addresses in Fort Worth, TX

100 E. Main, Fort Worth, TX, 76106

3920 South Beach, Fort Worth, TX, 76102

108 W. Parker, Fort Worth, TX, 76102

How It Works
Complex types offer a convenient way to refactor repeated groups of properties into a single type that
can be reused across many entities. In this recipe, we created a stored procedure that returned the
address information for employees in a given city. In the model, we mapped these returned columns to
the fields of the EmployeeAddress complex type. The GetEmployeeAdresses() method is defined by the
Function Import Wizard to return a collection of instances of the EmployeeAddress type.

Complex types are often used to hold arbitrarily shaped data returned from a stored procedure. The
data is not required to map to any entity in the model. Because complex types are not tracked by the
object context, they are both a lightweight and efficient alternative to handling shaped data in the
model.

369

CHAPTER 10 STORED PROCEDURES

10-5. Defining a Custom Function in the Storage Model

Problem
You want to define a custom function inside the model rather than a stored procedure in the database.

Solution
Let’s say you have a database that keeps track of members and the messages they have sent. Figure 10-6
shows one representation of this database.

Figure 10-6. A simple database of members and their messages

Now it may be the case that, as a lowly programmer, you have not been granted access to the
database to create stored procedures. However, being a wise and productive programmer, you want to
encapsulate the query logic for finding the members with the highest number of messages into a
reusable custom function in the storage model procedure. The model looks like the one in Figure 10-7.

Figure 10-7. The model for members and their messages

To define the custom function in the storage model, do the following:

1. Right-click the .edmx file and select Open With XML Editor. This will open
the .edmx file in the XML editor.

2. Add the code in Listing 10-11 into the <Schema> element. This defines the
custom function.

370

 CHAPTER 6 STORED PROCEDURES

3. Open the .edmx file in the Designer. Right-click the design surface and select
Add Function Import. In the dialog box, select the
MembersWithTheMostMessages in the Stored Procedure Name drop-down.
Enter MembersWithTheMostMessages in the Function Import Name text box.
Finally, select Entities as the return type and choose Member as the entity
type. Click OK.

4. Follow the pattern in Listing 10-12 to use the MembersWithTheMostMessages()
method, which exposes the MembersWithTheMostMessages custom function.

Listing 10-11. The definition of the custom function MembersWithTheMostMessages

<Function Name="MembersWithTheMostMessages" IsComposable="false">
 <CommandText>
 select m.*
 from chapter10.member m
 join
 (
 select distinct msg.MemberId
 from chapter10.message msg where datesent = @datesent
) temp on m.MemberId = temp.MemberId
 </CommandText>
 <Parameter Name="datesent" Type="date" />
</Function>

Listing 10-12. Using the MembersWithTheMostMessages function via the MembersWithTheMostMessages()

method

DateTime today = DateTime.Parse("4/18/2010");
using (var context = new EFRecipesEntities())
{
 var mem1 = new Member { Name = "Jill Robertson" };
 var mem2 = new Member { Name = "Steven Rhodes" };
 mem1.Messages.Add(new Message { DateSent = today,
 MessageBody = "Hello Jim",
 Subject = "Hello" });
 mem1.Messages.Add(new Message { DateSent = today,
 MessageBody = "Wonderful weather!",
 Subject = "Weather" });
 mem1.Messages.Add(new Message { DateSent = today,
 MessageBody = "Meet me for lunch",
 Subject = "Lunch plans" });
 mem2.Messages.Add(new Message { DateSent = today,
 MessageBody = "Going to class today?",
 Subject = "What's up?" });
 context.Members.AddObject(mem1);
 context.Members.AddObject(mem2);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())

371

CHAPTER 10 STORED PROCEDURES

{
 Console.WriteLine("Members by message count for {0}",
 today.ToShortDateString());
 var members = context.MembersWithTheMostMessages(today);
 foreach (var member in members)
 {
 Console.WriteLine("Member: {0}", member.Name);
 }
}

The following is the output of the code in Listing 10-12:

Members by message count for 4/18/2010

Member: Jill Robertson

Member: Steven Rhodes

How It Works
A custom function is different from a model defined function (see Chapter 11) in that a custom function
is defined in the storage model. This makes the custom function much more like a traditional stored
procedure in a database. Just like a DefiningQuery in the storage model defines a “virtual” table that
doesn’t really exist in the database, a custom function in the storage model is like a “virtual” stored
procedure. Some in the Entity Framework community refer to custom functions as native functions. The
Microsoft documentation uses the term custom function, so we’ll go with that.

The code in Listing 10-11 defines our custom function. We put this in the storage model section of
the .edmx file by directly editing the file using the XML editor. Note that if you use the Update From
Database Wizard to update the model with new objects from your database, the wizard will overwrite
this section. So, be careful to save out any changes you’ve made to the storage model before you use the
Update From Database Wizard.

Just like with the stored procedures in the previous recipes, we used the Function Import Wizard to
map the custom function to a CLR method. This defines the name of the CLR method and the expected
return type. In our case, the Custom Function returns a collection of instances of the Member entity.

In Listing 10-12, the code uses the MembersWithTheMostMessages() method to invoke the custom
function. This is the same pattern we used with stored procedures.

Custom functions can be helpful in the following scenarios:

• You don’t have permissions to create the stored procedures you need in the
database.

• You want to manage deployments of the code and the database separately. Using
one or more custom functions, you can deploy your code without deploying new
stored procedures for the database.

• The existing stored procedures in the database have parameters that are
incompatible with your entities. Using custom functions, you can create an
abstraction layer that drops, adds, or changes types between the stored procedure
parameters and the properties on your entity.

372

 CHAPTER 6 STORED PROCEDURES

10-6. Populating Entities in a Table per Type
Inheritance Model

Problem
You want to use a stored procedure to populate entities in a Table per Type inheritance model.

Solution
Let’s say the model looks like the one in Figure 10-8. In this model, the entities Magazine and DVD
extend the base entity Media. In the underlying database, we have a table for each of these entities. We
have modeled these tables using Table per Type inheritance. We want to use a stored procedure to
obtain the data for this model from the database.

Figure 10-8. A model using Table per Type inheritance. The model represents some information about

magazines and DVDs.

To create and use a stored procedure that returns these entities, do the following.

1. In your database, create the stored procedure in Listing 10-13.

2. Right-click the design surface and select Update Model from Database. Select
the GetAllMedia stored procedure. Click Finish to add the stored procedure to
the model.

373

CHAPTER 10 STORED PROCEDURES

3. Right-click the design surface and select Add Function Import. In the dialog
box, select the GetAllMedia stored procedure. Enter GetAllMedia in the
Function Import Name text box. Select Entities as the type of collection and
Media as the type of entity returned. Click OK. This will create the skeleton
<FunctionImportMapping>.

4. Right-click the .edmx file and select Open With XML Editor. Edit the
<FunctionImportMapping> tag in the mapping section of the .edmx file to match
the code in Listing 10-14. This maps the rows returned by the stored procedure
to either the Magazine or the DVD entity based on the MediaType column.

5. Follow the pattern in Listing 10-15 to use the GetAllMedia stored procedure via
the GetAllMedia() method.

Listing 10-13. The GetAllMedia stored procedure that returns a rowset with a discriminator column

create procedure [Chapter10].[GetAllMedia]
as
begin
select m.MediaId,c.Title,m.PublicationDate, null PlayTime,'Magazine' MediaType
from chapter10.Media c join chapter10.Magazine m on c.MediaId = m.MediaId
union
select d.MediaId,c.Title,null,d.PlayTime,'DVD'
from chapter10.Media c join chapter10.DVD d on c.MediaId = d.MediaId
end

Listing 10-14. This FunctionImportMapping conditionally maps the returned rows to either the Magazine

or the DVD entity.

<FunctionImportMapping FunctionImportName="GetAllMedia"
 FunctionName="EFRecipesModel.Store.GetAllMedia">
 <ResultMapping>
 <EntityTypeMapping TypeName="EFRecipesModel.Magazine">
 <ScalarProperty ColumnName="PublicationDate" Name="PublicationDate"/>
 <Condition ColumnName="MediaType" Value="Magazine"/>
 </EntityTypeMapping>
 <EntityTypeMapping TypeName="EFRecipesModel.DVD">
 <ScalarProperty ColumnName="PlayTime" Name="PlayTime"/>
 <Condition ColumnName="MediaType" Value="DVD"/>
 </EntityTypeMapping>
 </ResultMapping>
</FunctionImportMapping>

Listing 10-15. Using the GetAllMedia stored procedure via the GetAllMedia() method

using (var context = new EFRecipesEntities())
{
 context.MediaSet.AddObject(new Magazine { Title = "Field and Stream",
 PublicationDate = DateTime.Parse("6/12/1945") });
 context.MediaSet.AddObject(new Magazine { Title = "National Geographic",
 PublicationDate = DateTime.Parse("7/15/1976") });
 context.MediaSet.AddObject(new DVD { Title = "Harmony Road",

374

 CHAPTER 6 STORED PROCEDURES

 PlayTime = "2 hours, 30 minutes" });
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 var allMedia = context.GetAllMedia();
 Console.WriteLine("All Media");
 Console.WriteLine("=========");
 foreach (var m in allMedia)
 {
 if (m is Magazine)
 Console.WriteLine("{0} Published: {1}", m.Title,
 ((Magazine)m).PublicationDate.ToShortDateString());
 else if (m is DVD)
 Console.WriteLine("{0} Play Time: {1}", m.Title, ((DVD)m).PlayTime);
 }
}

The following is the output of the code in Listing 10-15:

All Media

=========

Field and Stream Published: 6/12/1945

National Geographic Published: 7/15/1976

Harmony Road Play Time: 2 hours, 30 minutes

How It Works
The two key parts to the solution are the discriminator column injected into the result set by the stored
procedure and the conditional mapping of the results to the Magazine and DVD entities.

The stored procedure in Listing 10-13 forms a union of rows from the Magazine and DVD tables and
injects the strings Magazine or DVD into the MediaType discriminator column. For each select, we join
to the Media table, which is represented in the model by the base entity, to include the Title column. All
the rows from all three tables are now in the result set with each row tagged to indicate the table it came
from.

With each row tagged with either Magazine or DVD, we conditionally map the rows to either the
Magazine or DVD entities, based on the tag or value in the discriminator column. This is done in the
<FunctionImportMapping> section.

In Listing 10-15, we call the CLR method GetAllMedia(), which we mapped to the GetAllMedia
stored procedure when we added the Function Import. When we call GetAllMedia(), the entire object
graph is materialized with the inheritance hierarchy intact. We iterate through the collection, alternately
printing out the Magazine and DVD entities.

375

CHAPTER 10 STORED PROCEDURES

10-7. Populating Entities in a Table per Hierarchy
Inheritance Model

Problem
You want to use a stored procedure to populate entities in a Table per Hierarchy inheritance model.

Solution
Suppose you have a model like the one in Figure 10-9. We have two derived entities: Instructor and
Student. Because this model is using Table per Hierarchy inheritance, we have just one table in the
database. The Person table has a discriminator column that is used to map the table to the derived
entities. You want to populate the entities with a stored procedure.

Figure 10-9. A model for instructors and students

To create and use a stored procedure that returns these entities, do the following:

1. In your database, create the stored procedure in Listing 10-16. This stored
procedure returns all the people in the hierarchy.

2. Right-click the design surface and select Update Model from Database. Select
the GetAllPeople stored procedure. Click Finish to add the stored procedure to
the model.

376

 CHAPTER 6 STORED PROCEDURES

3. Right-click the design surface and select Add Function Import. In the dialog
box, select the GetAllPeople stored procedure. Enter GetAllPeople in the
Function Import Name text box. Select Entities as the type of collection and
Person as the type of entity returned. Click OK. This will create the skeleton
<FunctionImportMapping> section.

4. Right-click the .edmx file and select Open With XML Editor. Edit the
<FunctionImportMapping> tag in the mapping section of the .edmx file to match
the code in Listing 10-17. This maps the rows returned by the stored procedure
to either the Instructor or Student entity based on the PersonType column.

5. Follow the pattern in Listing 10-18 to use the GetAllPeople stored procedure
via the GetAllPeople() method.

Listing 10-16. The GetAllPeople stored procedure; this stored procedure returns all the people, both

Students and Instructors, in the model.

create procedure [Chapter10].[GetAllPeople]
as
begin
select * from chapter10.Person
end

Listing 10-17. The FunctionImportMapping conditionally maps rows to either the Instructor or Student

entity

<FunctionImportMapping FunctionImportName="GetAllPeople"
 FunctionName="EFRecipesModel.Store.GetAllPeople">
 <ResultMapping>
 <EntityTypeMapping TypeName="EFRecipesModel.Student">
 <ScalarProperty Name="Degree" ColumnName="Degree" />
 <Condition ColumnName="PersonType" Value="Student"/>
 </EntityTypeMapping>
 <EntityTypeMapping TypeName="EFRecipesModel.Instructor">
 <ScalarProperty Name="Salary" ColumnName="Salary"/>
 <Condition ColumnName="PersonType" Value="Instructor"/>
 </EntityTypeMapping>
 </ResultMapping>
</FunctionImportMapping>

Listing 10-18. Querying the model using the GetAllPeople stored procedure via the GetAllPeople() method

using (var context = new EFRecipesEntities())
{
 context.People.AddObject(new Instructor { Name = "Karen Stanford",
 Salary = 62500M });
 context.People.AddObject(new Instructor { Name = "Robert Morris",
 Salary = 61800M });
 context.People.AddObject(new Student { Name = "Jill Mathers",
 Degree = "Computer Science" });
 context.People.AddObject(new Student { Name = "Steven Kennedy",

377

CHAPTER 10 STORED PROCEDURES

 Degree = "Math" });
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 Console.WriteLine("Instructors and Students");
 var allPeople = context.GetAllPeople();
 foreach (var person in allPeople)
 {
 if (person is Instructor)
 Console.WriteLine("Instructor {0} makes {1}/year",
 person.Name,
 ((Instructor)person).Salary.ToString("C"));
 else if (person is Student)
 Console.WriteLine("Student {0}'s major is {1}",
 person.Name, ((Student)person).Degree);
 }
}

The following is the output of the code in Listing 10-18:

Instructors and Students

Instructor Karen Stanford makes $62,500.00/year

Instructor Robert Morris makes $61,800.00/year

Student Jill Mathers's major is Computer Science

Student Steven Kennedy's major is Math

How It Works
Using a stored procedure to populate entities in a Table per Hierarchy inheritance model turns out to be
a little easier than for Table per Type (see Recipe 6). Here the stored procedure just selected all rows in
the Person table. The PersonType column contains the discriminator value that we use in
<FunctionImportMapping> in Listing 10-17 to conditionally map the rows to either the Student or the
Instructor entities. In Recipe 6, the stored procedure had to create the column. In both recipes, the key
part is the conditional mapping in the <FunctionImportMapping> tag.

378

 CHAPTER 6 STORED PROCEDURES

10-8. Mapping the Insert, Update, and Delete Actions to
Stored Procedures

Problem
You want to map the Insert, Update, and Delete actions to stored procedures.

Solution
Let’s say you have a model with the Athlete entity in Figure 10-10. The underlying database has the
Athlete table in Figure 10-11. You want to use stored procedures for the Insert, Update, and Delete
actions.

Figure 10-10. The Athlete entity in the model

Figure 10-11. The Athlete table with some basic information about athletes

To map stored procedures to the Insert, Update, and Delete actions for the Athlete entity, do the
following:

1. In your database, create the stored procedures in Listing 10-19.

2. Right-click the design surface and select Update Model from Database. Select
the new stored procedures from Listing 10-19 and click Finish. This will add
the stored procedures to the model.

3. Right-click the Athlete Entity and select Stored Procedure Mapping. Select the
stored procedures for each of the actions. For the Insert action, map the return
column AthleteId for the Insert action to the AthleteId property (see Figure
10-12).

379

CHAPTER 10 STORED PROCEDURES

Listing 10-19. The stored procedures for the Insert, Update, and Delete actions

create procedure [chapter10].[InsertAthlete]
(@Name varchar(50), @Height int, @Weight int)
as
begin
 insert into Chapter10.Athlete values (@Name, @Height, @Weight)
 select SCOPE_IDENTITY() as AthleteId
end
go

create procedure [chapter10].[UpdateAthlete]
(@AthleteId int, @Name varchar(50), @Height int, @Weight int)
as
begin
 update Chapter10.Athlete set Name = @Name, Height = @Height, [Weight] = @Weight
 where AthleteId = @AthleteId
end
go

create procedure [chapter10].[DeleteAthlete]
(@AthleteId int)
as
begin
 delete from Chapter10.Athlete where AthleteId = @AthleteId
end

Figure 10-12. Mapping the stored procedures, parameters, and return values for the Insert, Update, and

Delete actions

380

 CHAPTER 6 STORED PROCEDURES

How It Works
We updated the model with the stored procedures we created in the database. This makes the stored
procedures available for use in the model. Once we have the stored procedures available in the model,
we mapped them to the Insert, Update, and Delete actions for the entity.

In this recipe, the stored procedures are about as simple as you can get. They take in properties as
parameters and perform the action. For the Insert stored procedure, we need to return the stored
generated key for the entity. In this recipe, the stored generated key is just an identity column. We need
to return this from the stored procedure for the Insert action and map this returned value to the
AthleteId property. This is an important step. Without this, Entity Framework would not be able to get
the entity key for the instance of the Athlete entity just inserted.

When do I map stored procedures to the actions?

In most cases, Entity Framework will generate efficient code for the Insert, Update, and Delete actions.
When would I ever need to replace this with my own stored procedures? Here are the best practice
reasons why.

 * Your company requires you to use stored procedures for some or all of the Insert, Update, or Delete
activity for certain tables.

 * You have additional tasks to do during one or more of the actions. For example, you might want to
manage an audit trail or perform some complex business logic or perhaps leverage a user’s
privileges to execute stored procedures for security checking.

 * Your entity is based on a QueryView (see Chapters 6 and 15) that requires you to map some or all of
the actions to stored procedures.

The code in Listing 10-20 demonstrates inserting, deleting, and updating in the model. The code
isn’t any different because of the mapping of the actions. And that’s fine. The fact that we have replaced
the code that Entity Framework would have dynamically generated with our own stored procedures
should not affect the code that uses the entity.

Listing 10-20. Executing the Insert, Update, and Delete actions

using (var context = new EFRecipesEntities())
{
 context.Athletes.AddObject(new Athlete { Name = "Nancy Steward",
 Height = 167, Weight = 53 });
 context.Athletes.AddObject(new Athlete { Name = "Rob Achers",
 Height = 170, Weight = 77 });
 context.Athletes.AddObject(new Athlete { Name = "Chuck Sanders",
 Height = 171, Weight = 82 });
 context.Athletes.AddObject(new Athlete { Name = "Nancy Rodgers",
 Height = 166, Weight = 59 });
 context.SaveChanges();
}

381

CHAPTER 10 STORED PROCEDURES

using (var context = new EFRecipesEntities())
{
 // do a delete and an update
 var all = context.Athletes;
 context.DeleteObject(all.Where(o => o.Name == "Nancy Steward").First());
 all.Where(o => o.Name == "Rob Achers").First().Weight = 80;
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 Console.WriteLine("All Athletes");
 Console.WriteLine("============");
 foreach (var athlete in context.Athletes)
 {
 Console.WriteLine("{0} weighs {1} Kg and is {2} cm in height",
 athlete.Name, athlete.Weight, athlete.Height);
 }
}

The following is the output of the code in Listing 10-20:

All Athletes

============

Rob Achers weighs 80 Kg and is 170 cm in height

Chuck Sanders weighs 82 Kg and is 171 cm in height

Nancy Rodgers weighs 59 Kg and is 166 cm in height

10-9. Using Stored Procedures for the Insert and Delete
Actions in a Many-to-Many Association

Problem
You want to use stored procedures for the Insert and Delete actions in a payload-free, many-to-many
association. These stored procedures affect only the link table in the association, not the associated
entities.

382

 CHAPTER 6 STORED PROCEDURES

Solution
Let’s say you have a many-to-many relationship between an Author table and a Book table. The link
table, AuthorBook, is used as part of the relationship. See Figure 10-13.

Figure 10-13. A payload-free, many-to-many relationship between an Author and a Book

When you import these tables into a model, you get a model that looks like the one in Figure 10-14.

Figure 10-14. The model created by importing the tables in Figure 10-13

To use stored procedures for the Insert and Delete actions, do the following.

1. In your database, create the stored procedures in Listing 10-21.

2. Right-click the design surface and select Update Model from Database. Select
the new stored procedures from Listing 10-21 and click Finish. This will add
the stored procedures to the model.

3. The current release of Entity Framework does not have designer support for
mapping stored procedures to the Insert and Delete actions for an association.
To perform this mapping manually, right-click the .edmx file and select Open
With XML Editor. Add the code in Listing 10-22 in the Mappings section
inside the <AssociationSetMapping> tag.

Listing 10-21. The stored procedures for the Insert and Delete actions

create procedure [chapter10].[InsertAuthorBook]
(@AuthorId int,@BookId int)
as
begin
 insert into chapter10.AuthorBook(AuthorId,BookId) values (@AuthorId,@BookId)
end
go

383

CHAPTER 10 STORED PROCEDURES

create proc [chapter10].[DeleteAuthorBook]
(@AuthorId int,@BookId int)
as
begin
 delete chapter10.AuthorBook where AuthorId = @AuthorId and BookId = @BookId
end

Listing 10-22. Mapping the stored procedures to the Insert and Delete actions for the many-to-many

association

<ModificationFunctionMapping>
 <InsertFunction FunctionName="EFRecipesModel.Store.InsertAuthorBook">
 <EndProperty Name="Author">
 <ScalarProperty Name="AuthorId" ParameterName="AuthorId" />
 </EndProperty>
 <EndProperty Name="Book">
 <ScalarProperty Name="BookId" ParameterName="BookId" />
 </EndProperty>
 </InsertFunction>
 <DeleteFunction FunctionName="EFRecipesModel.Store.DeleteAuthorBook">
 <EndProperty Name="Author">
 <ScalarProperty Name="AuthorId" ParameterName="AuthorId" />
 </EndProperty>
 <EndProperty Name="Book">
 <ScalarProperty Name="BookId" ParameterName="BookId" />
 </EndProperty>
 </DeleteFunction>
</ModificationFunctionMapping>

The code in Listing 10-23 demonstrates inserting into and deleting from the model. As you can see

from the SQL Profiler output that follows, our InsertAuthorBook and DeleteAuthorBook stored
procedures are called when Entity Framework updates the many-to-many association.

Listing 10-23. Inserting into the model

using (var context = new EFRecipesEntities())
{
 var auth1 = new Author { Name = "Jane Austin"};
 var book1 = new Book { Title = "Pride and Prejudice",
 ISBN = "1848373104" };
 var book2 = new Book { Title = "Sense and Sensibility",
 ISBN = "1440469563" };
 auth1.Books.Add(book1);
 auth1.Books.Add(book2);
 var auth2 = new Author { Name = "Audrey Niffenegger" };
 var book3 = new Book { Title = "The Time Traveler's Wife",
 ISBN = "015602943X" };
 auth2.Books.Add(book3);
 context.Authors.AddObject(auth1);
 context.Authors.AddObject(auth2);
 context.SaveChanges();

384

 CHAPTER 6 STORED PROCEDURES

 context.DeleteObject(book1);
 context.SaveChanges();
}

Here is the output of the SQL Profiler showing the SQL statements that are executed by the code in

Listing 10-23:

exec sp_executesql N'insert [Chapter10].[Author]([Name])

values (@0)

select [AuthorId]

from [Chapter10].[Author]

where @@ROWCOUNT > 0 and [AuthorId] = scope_identity()',N'@0 varchar(50)',

 @0='Jane Austin'

exec sp_executesql N'insert [Chapter10].[Author]([Name])

values (@0)

select [AuthorId]

from [Chapter10].[Author]

where @@ROWCOUNT > 0 and [AuthorId] = scope_identity()',N'@0 varchar(50)',

 @0='Audrey Niffenegger'

exec sp_executesql N'insert [Chapter10].[Book]([Title], [ISBN])

values (@0, @1)

select [BookId]

from [Chapter10].[Book]

where @@ROWCOUNT > 0 and [BookId] = scope_identity()',N'@0 varchar(50),

 @1 varchar(50)',@0='Pride and Prejudice',@1='1848373104'

385

CHAPTER 10 STORED PROCEDURES

exec sp_executesql N'insert [Chapter10].[Book]([Title], [ISBN])

values (@0, @1)

select [BookId]

from [Chapter10].[Book]

where @@ROWCOUNT > 0 and [BookId] = scope_identity()',N'@0 varchar(50),

 @1 varchar(50)',@0='Sense and Sensibility',@1='1440469563'

exec sp_executesql N'insert [Chapter10].[Book]([Title], [ISBN])

values (@0, @1)

select [BookId]

from [Chapter10].[Book]

where @@ROWCOUNT > 0 and [BookId] = scope_identity()',N'@0 varchar(50),

 @1 varchar(50)',@0='The Time Traveler''s Wife',@1='015602943X'

exec [Chapter10].[InsertAuthorBook] @AuthorId=1,@BookId=1

exec [Chapter10].[InsertAuthorBook] @AuthorId=1,@BookId=2

exec [Chapter10].[InsertAuthorBook] @AuthorId=2,@BookId=3

exec [Chapter10].[DeleteAuthorBook] @AuthorId=1,@BookId=1

exec sp_executesql N'delete [Chapter10].[Book]

 where ([BookId] = @0)',N'@0 int',@0=7

386

 CHAPTER 6 STORED PROCEDURES

How It Works
To map the stored procedures to the Insert and Delete actions for the many-to-many association, we
created the stored procedures in our database then updated the model with the stored procedures.

Because Entity Framework’s designer does not currently support mapping stored procedures to the
Insert and Delete actions for associations, we need to edit the .edmx file directly. In the Mappings
section, we added a <ModificationFunctionMapping> tag that maps the Insert and Delete actions for the
association to our stored procedures. In this, we refer to the InsertAuthorBook and DeleteAuthorBook
stored procedures which are defined in the Store model because we updated the model with these
stored procedures from the database.

In the trace from Listing 10-23, we can see not only the expected inserts for the Author and Book
table, but we can also see that our stored procedures are used for to insert and delete the association.

10-10. Mapping the Insert, Update, and Delete Actions to
Stored Procedures for Table per Hierarchy Inheritance

Problems
You have a model that uses Table per Hierarchy inheritance and you want to map the Insert, Update,
and Delete actions to stored procedures.

Solution
Let’s say you database contains a Product table that describes a couple of different kinds of products
(see Figure 10-15). You have created a model with derived types for each of the product types
represented in the Product table. The model looks like the one in Figure 10-16.

Figure 10-15. A Product table with a discriminator column, ProductType, that indicates the type of

product described by the row in the table

387

CHAPTER 10 STORED PROCEDURES

Figure 10-16. A model using Table per Hierarchy inheritance with a derived type for each of the products

To map stored procedures to the Insert, Update, and Delete actions for this model, do the following:

1. In your database, create the stored procedures in Listing 10-24. These stored
procedures will handle the Insert, Update, and Delete actions for the Book and
DVD entities.

2. Right-click the design surface and select Update Model from Database. Select
the newly created stored procedures and click Finish to add them to the
model.

3. Right-click the Book entity and select Stored Procedure Mapping. Map the
InsertBook, UpdateBook, and DeleteBook stored procedures to the
corresponding actions for the entity. Map the Result Column Binding for the
Insert action to the ProductId property. See Figure 10-17.

4. Right-click the DVD entity and select Stored Procedure Mapping. Map the
InsertDVD, UpdateDVD, and DeleteDVD stored procedures to the
corresponding actions for the entity. Map the Result Column Binding for the
Insert action to the ProductId property. See Figure 10-18.

Listing 10-24. The stored procedure we map to the Insert, Update, and Delete actions for the model

create procedure [chapter10].[InsertBook]
(@Title varchar(50), @Publisher varchar(50))
as
begin
 insert into Chapter10.Product (Title, Publisher, ProductType) values
 (@Title,@Publisher, 'Book')
 select SCOPE_IDENTITY() as ProductId
end
go

388

 CHAPTER 6 STORED PROCEDURES

create procedure [chapter10].[UpdateBook]
(@Title varchar(50), @Publisher varchar(50), @ProductId int)
as
begin
 update Chapter10.Product set Title = @Title, Publisher = @Publisher
 where ProductId = @ProductId
end
go

create procedure [chapter10].[DeleteBook]
(@ProductId int)
as
begin
 delete from Chapter10.Product where ProductId = @ProductId
end
go

create procedure [chapter10].[InsertDVD]
(@Title varchar(50), @Rating varchar(50))
as
begin
 insert into Chapter10.Product (Title, Rating, ProductType) values
 (@Title, @Rating, 'DVD')
 select SCOPE_IDENTITY() as ProductId
end
go

create procedure [chapter10].[DeleteDVD]
(@ProductId int)
as
begin
 delete from Chapter10.Product where ProductId = @ProductId
end
go

create procedure [chapter10].[UpdateDVD]
(@Title varchar(50), @Rating varchar(50), @ProductId int)
as
begin
 update Chapter10.Product set Title = @Title, Rating = @Rating
 where ProductId = @ProductId
end

389

CHAPTER 10 STORED PROCEDURES

Figure 10-17. Mapping the stored procedures to the Insert, Update, and Delete actions for the Book entity.

Be particularly careful to map the Result Column Binding to the ProductId property for the Insert action.

Figure 10-19. Mapping the stored procedures to the Insert, Update, and Delete actions for the DVD entity

390

 CHAPTER 6 STORED PROCEDURES

How It Works
We created the stored procedures for the Insert, Update, and Delete actions for both the Book and DVD
entities and imported them into the model. Once we have these stored procedures in the model, we
mapped them to the corresponding actions, being careful to map the Result Column Binding for the
Insert action to the ProductId property. This ensures that the store generated key for the Product is
mapped to the ProductId property.

The Table per Hierarchy inheritance is supported by the implementation of the Insert stored
procedures. Each of them inserts the correct ProductType value. Given these values in the tables, Entity
Framework can correctly materialize the derived entities.

The code in Listing 10-25 demonstrates inserting, updating, deleting, and querying the model.

Listing 10-25. Exercising the Insert, Update, and Delete actions

using (var context = new EFRecipesEntities())
{
 var book1 = new Book { Title = "A Day in the Life",
 Publisher = "Colorful Press" };
 var book2 = new Book { Title = "Spring in October",
 Publisher = "AnimalCover Press" };
 var dvd1 = new DVD { Title = "Saving Sergeant Pepper", Rating = "G" };
 var dvd2 = new DVD { Title = "Around The Block", Rating = "PG-13" };
 context.Products.AddObject(book1);
 context.Products.AddObject(book2);
 context.Products.AddObject(dvd1);
 context.Products.AddObject(dvd2);
 context.SaveChanges();

 // update a book and delete a dvd
 book1.Title = "A Day in the Life of Sergeant Pepper";
 context.DeleteObject(dvd2);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 Console.WriteLine("All Products");
 Console.WriteLine("============");
 foreach (var product in context.Products)
 {
 if (product is Book)
 Console.WriteLine("'{0}' published by {1}",
 product.Title, ((Book)product).Publisher);
 else if (product is DVD)
 Console.WriteLine("'{0}' is rated {1}",
 product.Title, ((DVD)product).Rating);
 }
}

The following is the output of the code in Listing 10-25:

391

CHAPTER 10 STORED PROCEDURES

392

All Products

============

'Spring in October' published by AnimalCover Press

'A Day in the Life of Sergeant Pepper' published by Colorful Press

'Saving Sergeant Pepper' is rated G

C H A P T E R 11

Functions

Functions provide a power mechanism for code reuse and a good way to make your code cleaner and
more understandable. They can also be used to leverage code in the Entity Framework runtime as well as
in the database layer.

In the first seven recipes we explore model defined functions. These functions are new in the
current release of Entity Framework and allow you to create functions at the conceptual layer. These
functions are defined in terms of Entity Framework types and your model entities. This makes them
portable across data store implementations.

In the remaining recipes we show you how to use functions defined by Entity Framework and the
database layer. These functions are implemented for you and allow you to leverage existing code either
in Entity Framework’s runtime or, closer to your data, in the database layer.

11-1. Returning a Scalar Value from a
Model Defined Function

Problem
You want to define a function in the conceptual model that takes an instance of an entity and returns a
scalar value.

Solution
Suppose you have a model like the one shown in Figure 11-1.

Figure 11-1. A model for products and categories

393

CHAPTER 11 FUNCTIONS

To create a model defined function that takes an instance of the Category entity and returns the
average unit price for all the products in the given category, do the following:

1. Right-click the .edmx file in the Solution Explorer and select Open With XML
Editor.

2. Insert the code in Listing 11-1 just below the <Schema> tag in the conceptual
models section of the .edmx file. This defines the function in the model.

3. Insert into and query the model using code similar to pattern shown in Listing
11-2.

Listing 11-1. Definition of the AverageUnitPrice() function in the model

<Function Name="AverageUnitPrice" ReturnType="Edm.Decimal">
 <Parameter Name="category" Type="EFRecipesModel.Category" />
 <DefiningExpression>
 ANYELEMENT(Select VALUE Avg(p.UnitPrice)
 from EFRecipesEntities.Products as p where p.Category == category
 group by p.Category.CategoryName
)
 </DefiningExpression>
</Function>

Listing 11-2. Inserting and querying the model using the model defined function AverageUnitPrice()

class Program
{
 static void Main(string[] args)
 {
 RunExample();
 }

 static void RunExample()
 {
 using (var context = new EFRecipesEntities())
 {
 var c1 = new Category { CategoryName = "Backpacking Tents" };
 new Product { ProductName = "Hooligan", UnitPrice = 89.99M,
 Category = c1 };
 new Product { ProductName = "Kraz", UnitPrice = 99.99M,
 Category = c1 };
 new Product { ProductName = "Sundome", UnitPrice = 49.99M,
 Category = c1 };
 context.Categories.AddObject(c1);
 var c2 = new Category { CategoryName = "Family Tents" };
 new Product { ProductName = "Evanston", UnitPrice = 169.99M,
 Category = c2 };
 new Product { ProductName = "Montana", UnitPrice = 149.99M,
 Category = c2 };
 context.Categories.AddObject(c2);
 context.SaveChanges();

394

 CHAPTER 11 FUNCTIONS

 }
 // with eSQL
 using (var context = new EFRecipesEntities())
 {
 Console.WriteLine("Using eSQL for the query...");
 Console.WriteLine();
 string sql = @"Select c.CategoryName, EFRecipesModel
 .AverageUnitPrice(c) as AveragePrice from
 EFRecipesEntities.Categories as c";
 var cats = context.CreateQuery<DbDataRecord>(sql);
 foreach (var cat in cats)
 {
 Console.WriteLine("Category '{0}' has an average price of {1}",
 cat[0], ((decimal)cat[1]).ToString("C"));
 }
 }

 // with LINQ
 using (var context = new EFRecipesEntities())
 {
 Console.WriteLine();
 Console.WriteLine("Using LINQ for the query...");
 Console.WriteLine();
 var cats = from c in context.Categories
 select new { Name = c.CategoryName,
 AveragePrice = MyFunctions.AverageUnitPrice(c) };
 foreach (var cat in cats)
 {
 Console.WriteLine("Category '{0}' has an average price of {1}",
 cat.Name, cat.AveragePrice.ToString("C"));
 }
 }
 }
}

public class MyFunctions
{
 [EdmFunction("EFRecipesModel", "AverageUnitPrice")]
 public static decimal AverageUnitPrice(Category category)
 {
 throw new NotSupportedException("Direct calls are not supported!");
 }
}

The following is the output from the code in Listing 11-2:

Using eSQL for the query...

395

CHAPTER 11 FUNCTIONS

Category 'Backpacking Tents' has an average price of $79.99

Category 'Family Tents' has an average price of $159.99

Using LINQ for the query...

Category 'Backpacking Tents' has an average price of $79.99

Category 'Family Tents' has an average price of $159.99

How It Works
Model defined functions are created in the conceptual layer and written in eSQL. Of course, this allows
you to program against the entities in your model as we have done here, referencing the Category and
Product entities and their association in the function’s implementation. The added benefit is that we are
not tied to a specific storage layer. We could swap out the lower layers, even the database provider, and
our program would still work.

The designer currently provides no support for model defined functions. Unlike stored procedures,
which are supported by the designer, model defined functions do not show up in the model browser nor
anywhere else in the designer. The designer will not check for syntax errors in the eSQL. These you will
find out about at runtime. However, the designer will at least tolerate model defined functions enough to
open the .edmx file.

In Listing 11-2, the code starts off by inserting a couple of categories and a few products for each.
Once we have the data in place, we query it using two slightly different approaches.

In the first query example, we build an eSQL statement that calls the AverageUnitPrice() function.
We create and execute the query. For each row in the results, we pull out the data for the first column,
which is the category name, and the data for the second column, which is the average unit price for the
category. We display them for each row.

The second query example is a little more interesting. Here we use the AverageUnitPrice() function
in a LINQ query. To do this, we need to add a stub method in a separate class. The method is decorated
with the [EdmFunction()] attribute, which marks it as an implementation of a model defined function.
This CLR method will not actually be called, which is evident by the exception we throw in the body of
the method. Because we return a scalar value, the method’s implementation here is simply for the
signature (the parameter number, types, and return type). In the LINQ query, we grab each category and
reshape the results into an anonymous type that holds the category name and the result of calling the
AverageUnitPrice() method in the MyFunction class. This is the stub we created that is tied to the
AverageUnitPrice() model defined function. For each of the resulting objects, we display the category
name and the category’s average unit price.

The parameters for model define functions can be scalar, entity types, complex types, anonymous
types, or collections of these. In many of the recipes in this chapter, we’ll show you how to create and
use model defined functions with these parameter types.

396

 CHAPTER 11 FUNCTIONS

The parameters for model defined functions don’t show direction. There are no ‘out’ parameters,
only implied ‘in’ parameters. The reason for this is that model defined functions are composable and
can be used as part of LINQ queries. This prevents them from returning values in output parameters.

In this example, we returned a single scalar decimal value. To do this, we had to explicitly return a
scalar using the AnyElement operator. Entity Framework does not know how to map a collection to a
scalar value. We help out here by using the AnyElement operator, which signals that only a single value
will result from the query. It just so happens that we return a collection of just one element from which
the AnyElement operator selects just one element.

Best Practice

Model defined functions provide a clean and practical way to implement parts of a conceptual model that
would be tedious if not impossible any other way. Here are some best practices and uses for model
defined functions.

Model defined functions are written in eSQL and defined at the conceptual layer. This provides a level of
abstraction from the details of the store layer and allows you to leverage a more complete model
independent of the store layer.

You can define functions for expressions you commonly use in your LINQ or eSQL queries. This provides
better code organization and allows code reuse.

Model defined functions are composable, which allows you to implement functions that serve as building
blocks for more complex expressions. This can both simplify your code and make it more maintainable.

Model defined functions can be used in places where you have computed properties. A computed property,
like a function, is a read-only value. For properties, you incur the cost of computing the value when the
entity is materialized, whether or not you need the computed property. With a model defined function, the
cost of computing the value is incurred only when you actually need the value.

11-2. Filtering an Entity Collection Using a
Model Defined Function

Problem
You want to create a model defined function that filters a collection.

Solution
Suppose we have a model with Customers and Invoices, as shown in Figure 11-2.

397

CHAPTER 11 FUNCTIONS

Figure 11-2. Customer and Invoice in a model

Let’s say we want to create a model defined function that takes a collection of invoices and filters the
collection to those invoices that have an amount greater than $300. Just for fun, let’s use this model
defined function in a query that further filters this collection to just those invoices created after
5/1/2009. Of course, we’ll want to load all the customers associated with these invoices.

To get started, do the following:

1. Right-click the .edmx file in the Solution Explorer and select Open With XML
Editor.

2. Insert the code in Listing 11-3 just below the <Schema> tag in the conceptual
models section of the .edmx file. This defines the function in the model.

3. Insert into and query the model using code similar to pattern shown in Listing
11-4.

Listing 11-3. The GetInvoices() model defined function

<Function Name="GetInvoices" ReturnType="Collection(EFRecipesModel.Invoice)" >
 <Parameter Name="invoices" Type="Collection(EFRecipesModel.Invoice)">
 </Parameter>
 <DefiningExpression>
 Select VALUE i
 from invoices as i where i.Amount > 300M
 </DefiningExpression>
</Function>

Listing 11-4. Querying the model using the GetInvoices() model defined function with both eSQL and LINQ

class Program
{
 static void Main(string[] args)
 {
 RunExample();
 }

 static void RunExample()
 {
 using (var context = new EFRecipesEntities())

398

 CHAPTER 11 FUNCTIONS

 {
 DateTime d1 = DateTime.Parse("8/8/2009");
 DateTime d2 = DateTime.Parse("8/12/2008");
 var c1 = new Customer { Name = "Jill Robinson", City = "Dallas" };
 var c2 = new Customer { Name = "Jerry Jones", City = "Denver" };
 var c3 = new Customer { Name = "Janis Brady", City = "Dallas" };
 var c4 = new Customer { Name = "Steve Foster", City = "Dallas" };
 context.Invoices.AddObject(new Invoice { Amount = 302.99M,
 Description = "New Tires", Date = d1, Customer = c1 });
 context.Invoices.AddObject(new Invoice { Amount = 430.39M,
 Description = "Brakes and Shocks", Date = d1, Customer = c2 });
 context.Invoices.AddObject(new Invoice { Amount = 102.28M,
 Description = "Wheel Alignment", Date = d1, Customer = c3 });
 context.Invoices.AddObject(new Invoice { Amount = 629.82M,
 Description = "A/C Repair", Date = d2, Customer = c4 });
 context.SaveChanges();
 }

 using (var context = new EFRecipesEntities())
 {
 Console.WriteLine("Using eSQL query...");
 string sql = @"Select value i from
 EFRecipesModel.GetInvoices(EFRecipesEntities.Invoices) as i
 where i.Date > DATETIME'2009-05-1 00:00'
 and i.Customer.City = @City";
 var invoices = context.CreateQuery<Invoice>(sql,
 new ObjectParameter("City", "Dallas")).Include("Customer");
 foreach (var invoice in invoices)
 {
 Console.WriteLine("Customer: {0}\tInvoice for: {1}, Amount: {2}",
 invoice.Customer.Name, invoice.Description, invoice.Amount);
 }
 }

 using (var context = new EFRecipesEntities())
 {
 Console.WriteLine();
 Console.WriteLine("Using LINQ query...");
 DateTime date = DateTime.Parse("5/1/2009");
 var invoices = from invoice in
 MyFunctions.GetInvoices(context.Invoices)
 where invoice.Date > date
 where invoice.Customer.City == "Dallas"
 select invoice;
 foreach (var invoice in ((ObjectQuery<Invoice>)invoices)
 .Include("Customer"))
 {
 Console.WriteLine("Customer: {0}, Invoice for: {1}, Amount: {2}",
 invoice.Customer.Name, invoice.Description, invoice.Amount);
 }
 }
 }

399

CHAPTER 11 FUNCTIONS

}

public class MyFunctions
{
 [EdmFunction("EFRecipesModel", "GetInvoices")]
 public static IQueryable<Invoice> GetInvoices(IQueryable<Invoice> invoices)
 {
 return invoices.Provider.CreateQuery<Invoice>(
 Expression.Call((MethodInfo)MethodInfo.GetCurrentMethod(),
 Expression.Constant(invoices,
 typeof(IQueryable<Invoice>))));
 }
}

How It Works
From the definition of our GetInvoices() function in Listing 11-3, we see that it takes a collection of
Invoices and returns a collection of Invoices. On the CLR side, this translates to taking an
IQueryable<Invoice> and returning an IQueryable<Invoice>.

In the eSQLexpression we use the GetInvoices() function in the from clause. We pass in the
unfiltered collection of invoices and our GetInvoices() function returns the filtered collection. We
further filter the collection by date and the customer’s city using a where clause. Then we use
CreateQuery<Invoice>() to build the ObjectQuery<Invoice>. In building the query, we pass in the
parameter to filter by city and use the Include() method to include the related customers. See the
recipes in Chapter 5 for other examples of using the Include() method.

Once we have the ObjectQuery<Invoice>, we iterate over the resulting collection and print out the
invoices that matched the two filters we applied.

For the LINQ query, the story is a little more interesting. Here we build the expression using the
GetInvoices() method in the from clause and filter the resulting collection by date and city much like we
did with the eSQLexpression. But to use our function in a LINQ query, we need to implement a CLR
method that takes an IQueryable<Invoice> and returns an IQueryable<Invoice>. Unlike the stub method
in Recipe 11-1, in which the model defined function returned a scalar value, here we have to provide an
implementation in the body of the method. Creating this method is often referred to as bootstrapping.

Here are some rules for bootstrapping:

• Bootstrapping is required when a model defined function returns an
IQueryable<T>.

• When a function returns an IQueryable<T>, but does not take an IQueryable<T>,
the bootstrapping method must be implemented in a partial class of the
ObjectContext.

The second rule comes about because we can’t return an IQueryable<T> that has meaning in our
ObjectContext without starting with an IQueryable<T>. If we pass in an IQueryable<T>, then we can
perform some operation in our bootstrapping method that returns a related IQueryable<T>. However, we
can’t manufacture an IQueryable<T> outside of a partial class of our ObjectContext. In our example, we
received an IQueryable<T> as a parameter, so we are free to implement the bootstrapping code outside
of a partial class of our ObjectContext.

In the implementation of our bootstrapping method, we get an instance of IQueryProvider from the
IQueryable<Invoice> through the Provider property. IQueryProvider.CreateQuery<Invoice>() allows us

400

 CHAPTER 11 FUNCTIONS

to tack onto the expression tree for the IQueryable<T>. Here we add in the call to the GetInvoices()
function, passing in the collection of invoices we have.

11-3. Returning a Computed Column from a
Model Defined Function

Problem
You want to return a computed column from a model defined function.

Solution
Suppose we have an Employee entity containing the properties FirstName, LastName, and BirthDate, as
shown in Figure 11-3.

Figure 11-3. An Employee entity with a few typical properties

We want to create a model defined function that returns the full name of the employee by combining the
FirstName and LastName columns. We want to create another model defined function that returns the
age of the employee based on the value in the BirthDate column.

To create and use these functions, do the following:

1. Right-click the .edmx file in the Solution Explorer and click Open With XML
Editor. This will open the .edmx file in the XML Editor.

2. Insert the code in Listing 11-5 just below the <Schema> tag in the conceptual
models section of the .edmx file. This defines the functions in the model.

3. Insert into and query the model using code similar to pattern shown in Listing
11-6.

Listing 11-5. Code for model defined functions

<Function Name="FullName" ReturnType="Edm.String">
 <Parameter Name="emp" Type="EFRecipesModel.Employee" />
 <DefiningExpression>
 Trim(emp.FirstName) + " " + Trim(emp.LastName)
 </DefiningExpression>

401

CHAPTER 11 FUNCTIONS

</Function>
<Function Name="Age" ReturnType="Edm.Int32">
 <Parameter Name="emp" Type="EFRecipesModel.Employee" />
 <DefiningExpression>
 Year(CurrentDateTime()) - Year(emp.BirthDate)
 </DefiningExpression>
</Function>

Listing 11-6. Inserting into and querying the model invoking the model defined functions using both eSQL

and LINQ

class Program
{
 static void Main(string[] args)
 {
 RunExample();
 }

 static void RunExample()
 {
 using (var context = new EFRecipesEntities())
 {
 context.Employees.AddObject(new Employee { FirstName = "Jill",
 LastName = "Robins", Birthdate = DateTime.Parse("3/2/1976") });
 context.Employees.AddObject(new Employee { FirstName = "Michael",
 LastName = "Kirk", Birthdate = DateTime.Parse("4/12/1985") });
 context.Employees.AddObject(new Employee { FirstName = "Karen",
 LastName = "Stanford", Birthdate = DateTime.Parse("6/18/1963") });
 context.SaveChanges();
 }

 using (var context = new EFRecipesEntities())
 {
 Console.WriteLine("Query using eSQL");
 var esql = @"Select EFRecipesModel.FullName(e) as Name,
 EFRecipesModel.Age(e) as Age from
 EFRecipesEntities.Employees as e";
 var emps = context.CreateQuery<DbDataRecord>(esql);
 foreach (var emp in emps)
 {
 Console.WriteLine("Employee: {0}, Age: {1}", emp["Name"],
 emp["Age"]);
 }
 }

 using (var context = new EFRecipesEntities())
 {
 Console.WriteLine("\nQuery using LINQ");
 var emps = from e in context.Employees
 select new

402

 CHAPTER 11 FUNCTIONS

 {
 Name = MyFunctions.FullName(e),
 Age = MyFunctions.Age(e)
 };
 foreach (var emp in emps)
 {
 Console.WriteLine("Employee: {0}, Age: {1}", emp.Name,
 emp.Age.ToString());
 }
 }
 }
}

public class MyFunctions
{
 [EdmFunction("EFRecipesModel", "FullName")]
 public static string FullName(Employee employee)
 {
 throw new NotSupportedException("Direct calls are not supported.");
 }

 [EdmFunction("EFRecipesModel", "Age")]
 public static int Age(Employee employee)
 {
 throw new NotSupportedException("Direct calls are not supported.");
 }
}

The output of the code in Listing 11-6 is the following:

Query using eSQL

Employee: Jill Robins, Age: 33

Employee: Michael Kirk, Age: 24

Employee: Karen Stanford, Age: 46

Query using LINQ

Employee: Jill Robins, Age: 33

Employee: Michael Kirk, Age: 24

Employee: Karen Stanford, Age: 46

403

CHAPTER 11 FUNCTIONS

How It Works
Our model defined functions return types Edm.String for the FullName() function and Edm.Int32 for the
Age() function. These functions are defined on the conceptual level so they don’t directly refer to any
type system outside of the Entity Data Model’s type system. These primitive types are easily translated to
the CLR type system.

In the <DefiningExpression> or body of the model defined functions, we directly access the
properties of the entities we received in the parameters. There is no need to use a select statement.
However, the resulting expression must have a type that matches the type defined as the return type of
the function.

After inserting a few employees into our model, we first query using eSQL. We construct an eSQL
expression that invokes our two model defined functions and projects the results to the Name and Age
columns. Our eSQL expression results in a collection of anonymous types that contain just the Name
and Age members. Because we’re not returning one of the types defined in the model, we declare the
type in CreateQuery<T>() to be DbDataRecord. We iterate over the collection resulting from the evaluation
of the query and print out the employees’ names and ages.

For the LINQ query, we select from the Employees entity set and project onto an anonymous type
containing the Name and Age members. We set these members to the result of invoking our FullName()
and Age() functions. As shown in the previous recipes in this chapter, we need to define the
corresponding CLR methods. Because we are returning scalar values, these methods are never called
and are used only for their signatures. The implementation of these methods reflects this.

We could have created read-only properties in a partial declaration of our Employee entity to
implement the full name and age calculations. However, this would force the evaluation of these
methods each time the entity is retrieved. With model defined functions, we perform the calculations
only when needed.

11-4. Calling a Model Defined Function from a
Model Defined Function

Problem
You want to use a model defined function in the implementation of another model defined function.

Solution
Suppose we have the model shown in Figure 11-4 representing the types of associates in a company
along with their reporting structure.

404

 CHAPTER 11 FUNCTIONS

Figure 11-4. A model representing the associate types in a company together with the reporting association

In our fictional company, team members are managed by a team leader. Team leaders are managed
by project managers. Supervisors manage the project managers. Of course, there could be many other
associate types but for simplicity we’ll stick with just these few.

If we wanted to return all the team members for a given project manager or supervisor, we would
need to drill down through the project managers and team leaders to get to the team members. To hide
the complexity of navigating through these layers, we can create model defined functions that allow
easier and more direct access to these navigation properties.

To create and use these functions, do the following:

1. Right-click the .edmx file in the Solution Explorer and click Open With XML
Editor. This will open the .edmx file in the XML Editor.

2. Insert the code in Listing 11-7 just below the <Schema> tag in the conceptual
models section of the .edmx file. This defines the functions in the model.

3. Insert into and query the model using code similar to pattern shown in Listing
11-8.

Listing 11-7. Model defined functions for navigating the associate hierarchy

<Function Name="GetProjectManager" ReturnType="EFRecipesModel.ProjectManager">
 <Parameter Name="teammember" Type="EFRecipesModel.TeamMember" />
 <DefiningExpression>
 treat(teammember.Manager.Manager as EFRecipesModel.ProjectManager)
 </DefiningExpression>
</Function>

<Function Name="GetSupervisor" ReturnType="EFRecipesModel.Supervisor">

405

CHAPTER 11 FUNCTIONS

 <Parameter Name="teammember" Type="EFRecipesModel.TeamMember" />
 <DefiningExpression>
 treat(EFRecipesModel.GetProjectManager(teammember).Manager as
 EFRecipesModel.Supervisor)
 </DefiningExpression>
</Function>

Listing 11-8. Using both eSQL and LINQ to query the model

class Program
{
 static void Main(string[] args)
 {
 RunExample();
 }

 static void RunExample()
 {
 using (var context = new EFRecipesEntities())
 {
 var john = new Supervisor { Name = "John Smith" };
 var steve = new Supervisor {Name = "Steve Johnson"};
 var jill = new ProjectManager { Name = "Jill Masterson",
 Manager = john };
 var karen = new ProjectManager { Name = "Karen Carns",
 Manager = steve };
 var bob = new TeamLead { Name = "Bob Richardson", Manager = karen };
 var tom = new TeamLead { Name = "Tom Landers", Manager = jill };
 var nancy = new TeamMember { Name = "Nancy Jones", Manager = tom };
 var stacy = new TeamMember { Name = "Stacy Rutgers",
 Manager = bob };
 context.Associates.AddObject(john);
 context.Associates.AddObject(steve);
 context.SaveChanges();
 }

 using (var context = new EFRecipesEntities())
 {
 Console.WriteLine("Using eSQL...");
 var emps = context.Associates.OfType<TeamMember>()
 .Where(@"EFRecipesModel.GetProjectManager(it).Name =
 @projectManager ||
 EFRecipesModel.GetSupervisor(it).Name == @supervisor",
 new ObjectParameter("projectManager", "Jill Masterson"),
 new ObjectParameter("supervisor", "Steve Johnson"));
 Console.WriteLine("Team members that report up to either");
 Console.WriteLine("Project Manager Jill Masterson ");
 Console.WriteLine("or Supervisor Steve Johnson");
 foreach (var emp in emps)
 {
 Console.WriteLine("\tAssociate: {0}", emp.Name);
 }

406

 CHAPTER 11 FUNCTIONS

 }

 using (var context = new EFRecipesEntities())
 {
 Console.WriteLine();
 Console.WriteLine("Using LINQ...");
 var emps = from e in context.Associates.OfType<TeamMember>()
 where MyFunctions.GetProjectManager(e).Name ==
 "Jill Masterson" ||
 MyFunctions.GetSupervisor(e).Name == "Steve Johnson"
 select e;
 Console.WriteLine("Team members that report up to either");
 Console.WriteLine("Project Manager Jill Masterson ");
 Console.WriteLine("or Supervisor Steve Johnson");
 foreach (var emp in emps)
 {
 Console.WriteLine("\tAssociate: {0}", emp.Name);
 }
 }
 }
}

public class MyFunctions
{
 [EdmFunction("EFRecipesModel", "GetProjectManager")]
 public static ProjectManager GetProjectManager(TeamMember member)
 {
 throw new NotSupportedException("Direct calls not supported.");
 }

 [EdmFunction("EFRecipesModel", "GetSupervisor")]
 public static Supervisor GetSupervisor(TeamMember member)
 {
 throw new NotSupportedException("Direct calls not supported.");
 }
}

The output of the code in Listing 11-8 is the following:

Using eSQL...

Team members that report up to either

Project Manager Jill Masterson

or Supervisor Steve Johnson

 Associate: Nancy Jones

 Associate: Stacy Rutgers

407

CHAPTER 11 FUNCTIONS

Using LINQ...

Team members that report up to either

Project Manager Jill Masterson

or Supervisor Steve Johnson

 Associate: Nancy Jones

 Associate: Stacy Rutgers

How It Works
In the GetSupervisor() function in Listing 11-7, we need to make three hops through the Manager

he first one gets the team lead from the team member, the second one gets the
he team lead, and the final one gets the supervisor from the project manager. We

already created the GetProjectManager() function earlier in Listing 11-7, so we can leverage that function

fy

to
plementation of the stubs we require to use these functions in the LINQ query.

Model Defined Function

You want to create a model defined function that returns an anonymous type.

Let’s say you have a model for hotel reservations like the one shown in Figure 11-5.

navigation property. T
project manager from t

to simplify the implementation of the GetSupervisor() function.
We use the treat() eSQL operator to cast an instance of Associate to its concrete type, which is

either ProjectManager or Supervisor. If we didn’t use the treat() operator, Entity Framework would
raise an exception complaining that it cannot map the instance of Associate to ProjectManager or
Supervisor.

In Listing 11-8, using the GetProjectManager() and GetSupervisor() functions allows us to simpli
the code by hiding all the traversal through the object graph via the Manager navigation property.

Because we are not returning IQueryable<T> from our model defined function, we didn’t need
provide an im

11-5. Returning an Anonymous Type From a

Problem

Solution

408

 CHAPTER 11 FUNCTIONS

Figure 11-5. A model for hotel reservations

You want to retrieve the total number of reservations and the total room revenue for each visitor.
Because you will need this information in several places, you want to create a model defined function
that takes in a search parameter and returns a collection of anonymous types containing the summary
information for each visitor.

To create and use this model defined function, do the following:

1. Right-click the .edmx file in the Solution Explorer and click Open With XML
Editor. This will open the .edmx file in the XML Editor.

2. Insert the code in Listing 11-9 just below the <Schema> tag in the conceptual
models section of the .edmx file. This defines the function in the model.

3. Insert into and query the model using code similar to pattern shown in Listing
11-10.

Listing 11-9. The VisitorSummary() model defined function

<Function Name="VisitorSummary">
 <Parameter Name="StartDate" Type="Edm.DateTime" />
 <Parameter Name="Days" Type="Edm.Int32" />
 <ReturnType>
 <CollectionType>
 <RowType>
 <Property Name="Name" Type="Edm.String" />
 <Property Name="TotalReservations" Type="Edm.Int32" />
 <Property Name="BusinessEarned" Type="Edm.Decimal" />
 </RowType>
 </CollectionType>
 </ReturnType>
 <DefiningExpression>
 Select
 r.Visitor.Name,
 COUNT(r.ReservationId) as TotalReservations,
 SUM(r.Cost) as BusinessEarned
 from EFRecipesEntities.Reservations as r
 where r.ReservationDate between StartDate and

409

CHAPTER 11 FUNCTIONS

 AddDays(StartDate,Days)
 group by r.Visitor.Name
 </DefiningExpression>
</Function>

Listing 11-10. Querying the model using the VistorySummary() model defined function

class Program
{
 static void Main(string[] args)
 {
 RunExample();
 }

 static void RunExample()
 {
 using (var context = new EFRecipesEntities())
 {
 var hotel = new Hotel { Name = "Five Seasons Resort" };
 var v1 = new Visitor { Name = "Alex Stevens" };
 var v2 = new Visitor { Name = "Joan Hills" };
 var r1 = new Reservation { Cost = 79.99M, Hotel = hotel,
 ReservationDate = DateTime.Parse("2/19/2010"), Visitor = v1 };
 var r2 = new Reservation { Cost = 99.99M, Hotel = hotel,
 ReservationDate = DateTime.Parse("2/17/2010"), Visitor = v2 };
 var r3 = new Reservation { Cost = 109.99M, Hotel = hotel,
 ReservationDate = DateTime.Parse("2/18/2010"), Visitor = v1 };
 var r4 = new Reservation { Cost = 89.99M, Hotel = hotel,
 ReservationDate = DateTime.Parse("2/17/2010"), Visitor = v2 };
 context.Hotels.AddObject(hotel);
 context.SaveChanges();
 }

 using (var context = new EFRecipesEntities())
 {
 Console.WriteLine("Using eSQL...");
 var esql = @"Select value v from
 EFRecipesModel.VisitorSummary(DATETIME'2010-02-16 00:00', 7) as v";
 var visitors = context.CreateQuery<DbDataRecord>(esql);
 foreach (var visitor in visitors)
 {
 Console.WriteLine("{0}, Total Reservations: {1}, Revenue: {2:C}",
 visitor["Name"], visitor["TotalReservations"],
 visitor["BusinessEarned"]);
 }
 }

 using (var context = new EFRecipesEntities())
 {
 Console.WriteLine();
 Console.WriteLine("Using LINQ...");
 var visitors = from v in

410

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

 CHAPTER 11 FUNCTIONS

 context.VisitorSummary(DateTime.Parse("2/16/2010"), 7)
 select v;
 foreach (var visitor in visitors)
 {
 Console.WriteLine("{0}, Total Reservations: {1}, Revenue: {2:C}",
 visitor["Name"], visitor["TotalReservations"],
 visitor["BusinessEarned"]);
 }
 }
 }
}

partial class EFRecipesEntities
{
 [EdmFunction("EFRecipesModel", "VisitorSummary")]
 public IQueryable<DbDataRecord> VisitorSummary(DateTime StartDate, int Days)
 {
 return this.QueryProvider.CreateQuery<DbDataRecord>(
 Expression.Call(
 Expression.Constant(this),
 (MethodInfo)MethodInfo.GetCurrentMethod(),
 new Expression[] { Expression.Constant(StartDate),
 Expression.Constant(Days) }
));
 }
}

The output from the code in Listing 11-10 is the following:

Using eSQL...

Alex Stevens, Total Reservations: 2, Revenue: $189.98

Joan Hills, Total Reservations: 2, Revenue: $189.98

Using LINQ...

Alex Stevens, Total Reservations: 2, Revenue: $189.98

Joan Hills, Total Reservations: 2, Revenue: $189.98

How It Works
In Listing 11-9, for the definition of the VisitorSummary() function, we group the results by visitor, which
is the navigation property exposed on the entity. To get the total count of reservations for each visitor,
we use the eSQL Count() function. To get the total revenue, we use the Sum() function.

411

CHAPTER 11 FUNCTIONS

In the function, we shape the results as a collection of rows of three values: Name,
TotalReservations, and BusinessEarned. Here we use the <CollectionType> and <RowType> tags to
indicate the return type. In CLR terms, this is a collection of DbDataRecords.

To use the function in a LINQ query, we create a CLR method that returns
IQueryable<DbDataRecord>. As in the previous recipes, we decorated the method with the EdmFunction()
attribute. However, because we are returning an IQueryable<T>, we need to implement the body of the
method to include the function call in the expression tree. And, because we need access to the
QueryProvider in our ObjectContext to return an IQueryable<T>, we need to implement this method
inside the EFRecipesEntities class.

11-6. Returning a Complex Type From a
Model Defined Function

Problem
You want to return a complex type from a model defined function.

Solution
Suppose we have a model for patients and their visits to a local hospital. This model is shown in Figure
11-6.

Figure 11-6. A model for patient visits

You want to create a model defined function that returns summary information about the patient
with their name, the total number of visits, and their accumulated bill. Additionally, you want to filter
the results to include only patients over 40 years old.

To create and use the model defined function, do the following:

1. Right-click the designer and select Add Complex Type.

2. Right-click the new complex type in the Model Browser. Rename the type to
VisitSummary and add the following properties:

 a. Name of type String, not nullable

412

 CHAPTER 11 FUNCTIONS

 b. TotalVisits of type Int32, not nullable

 c. TotalCost of type Decimal, not nullable

3. Right-click the .edmx file in the Solution Explorer and click Open With XML
Editor. This will open the .edmx file in the XML Editor.

4. Insert the code in Listing 11-11 just below the <Schema> tag in the conceptual
models section of the .edmx file. This defines the function in the model.

5. Insert into and query the model using code similar to pattern shown in Listing
11-12.

Listing 11-11. The GetVisitSummary() model defined function

<Function Name="GetVisitSummary" ReturnType="Collection(EFRecipesModel.VisitSummary)">
 <DefiningExpression>
 select VALUE EFRecipesModel.VisitSummary(pv.Patient.Name,
 Count(pv.VisitId),Sum(pv.Cost))
 from EFRecipesEntities.PatientVisits as pv
 group by pv.Patient.Name
 </DefiningExpression>
</Function>

Listing 11-12. Using eSQL and LINQ with the VisitSummary() function to query the model

class Program
{
 static void Main(string[] args)
 {
 RunExample();
 }

 static void RunExample()
 {
 using (var context = new EFRecipesEntities())
 {
 string hospital = "Oakland General";
 var p1 = new Patient { Name = "Robin Rosen", Age = 41 };
 var p2 = new Patient { Name = "Alex Jones", Age = 39 };
 var p3 = new Patient { Name = "Susan Kirby", Age = 54 };
 var v1 = new PatientVisit { Cost = 98.38M, Hospital = hospital,
 Patient = p1 };
 var v2 = new PatientVisit { Cost = 1122.98M, Hospital = hospital,
 Patient = p1 };
 var v3 = new PatientVisit { Cost = 2292.72M, Hospital = hospital,
 Patient = p2 };
 var v4 = new PatientVisit { Cost = 1145.73M, Hospital = hospital,
 Patient = p3 };
 var v5 = new PatientVisit { Cost = 2891.07M, Hospital = hospital,
 Patient = p3 };
 context.Patients.AddObject(p1);

413

CHAPTER 11 FUNCTIONS

 context.Patients.AddObject(p2);
 context.Patients.AddObject(p3);
 context.SaveChanges();
 }

 using (var context = new EFRecipesEntities())
 {
 Console.WriteLine("Query using eSQL...");
 var esql = @"Select value ps from EFRecipesEntities.Patients
 as p join EFRecipesModel.GetVisitSummary()
 as ps on p.Name = ps.Name where p.Age > 40";
 var patients = context.CreateQuery<VisitSummary>(esql);
 foreach (var patient in patients)
 {
 Console.WriteLine("{0}, Visits: {1}, Total Bill: {2}",
 patient.Name, patient.TotalVisits.ToString(),
 patient.TotalCost.ToString("C"));
 }
 }

 using (var context = new EFRecipesEntities())
 {
 Console.WriteLine();
 Console.WriteLine("Query using LINQ...");
 var patients = from p in context.Patients
 join ps in context.GetVisitSummary() on p.Name equals
 ps.Name
 where p.Age >= 40
 select ps;
 foreach (var patient in patients)
 {
 Console.WriteLine("{0}, Visits: {1}, Total Bill: {2}",
 patient.Name, patient.TotalVisits.ToString(),
 patient.TotalCost.ToString("C"));
 }
 }
 }
}

partial class EFRecipesEntities
{
 [EdmFunction("EFRecipesModel", "GetVisitSummary")]
 public IQueryable<VisitSummary> GetVisitSummary()
 {
 return this.QueryProvider.CreateQuery<VisitSummary>(
 Expression.Call(Expression.Constant(this),
 (MethodInfo)MethodInfo.GetCurrentMethod()));
 }
}

The code in Listing 11-12 produces the following output:

414

 CHAPTER 11 FUNCTIONS

Query using eSQL...

Robin Rosen, Visits: 2, Total Bill: $1,221.36

Susan Kirby, Visits: 2, Total Bill: $4,036.80

Query using LINQ...

Robin Rosen, Visits: 2, Total Bill: $1,221.36

Susan Kirby, Visits: 2, Total Bill: $4,036.80

How It Works
We started by creating the complex type in the model. With the complex type created, we defined the
GetVisitSummary() function in Listing 11-11 as returning a collection of our newly created complex type.
Notice that the constructor for our complex type takes in parameters in the same order as those defined
by our complex type. You might need to double-check in the .edmx file to make sure that the designer
created the complex type properties in the order in which you created them interactively.

Because our function returns IQueryable<VisitSummary>, we need to implement the bootstrapping
code. And, because we need to get access to the QueryProvider inside our ObjectContext, we need to
implement the method in a partial class of our EFRecipesEntities class, which is our ObjectContext.

You might be wondering when you would return a collection of complex types rather than a
collection of anonymous types from a function. If you used the function in a LINQ query, the
bootstrapping method would need to return IQueryable<DbDataRecord> for the anonymous type.
However, although this collection could not be further filtered, a collection of complex types could be
further filtered.

11-7. Returning a Collection of Entity References From a
Model Defined Function

Problem
You want to return a collection of entity references from a model defined function.

Solution
Let’s say you have a model, such as the one in Figure 11-7, for events and their sponsors. Sponsors
provide different levels of financial support for events. Platinum sponsors provide the highest level of
financial support.

415

CHAPTER 11 FUNCTIONS

Figure 11-7. A model for events and their sponsors

You want to create a model defined function that returns a collection of all the sponsors who are at
the Platinum level. Because you need only the entity key information for the sponsor, the function needs
to return only a collection of references to the sponsors.

To create and use the model defined function, do the following:

1. Right-click the .edmx file in the Solution Explorer and click Open With XML
Editor. This will open the .edmx file in the XML Editor.

2. Insert the code in Listing 11-13 just below the <Schema> tag in the conceptual
models section of the .edmx file. This defines the function in the model.

3. Insert into and query the model using code similar to pattern shown in Listing
11-14.

Listing 11-13. The definition of the PlatinumSponsors() function

<Function Name="PlatinumSponsors">
 <ReturnType>
 <CollectionType>
 <ReferenceType Type="EFRecipesModel.Sponsor" />
 </CollectionType>
 </ReturnType>
 <DefiningExpression>
 select value ref(s)
 from EFRecipesEntities.Sponsors as s
 where s.SponsorType.Description == 'Platinum'
 </DefiningExpression>
</Function>

Listing 11-14. Using eSQL and our PlatinumSponsors() function to find all events with Platinum level

sponsors

using (var context = new EFRecipesEntities())
{
 var platst = new SponsorType { Description = "Platinum" };
 var goldst = new SponsorType { Description = "Gold" };
 var sp1 = new Sponsor { Name = "Rex's Auto Body Shop",
 SponsorType = goldst };

416

 CHAPTER 11 FUNCTIONS

 var sp2 = new Sponsor { Name = "Midtown Eye Care Center",
 SponsorType = platst };
 var sp3 = new Sponsor { Name = "Tri-Cities Ford",
 SponsorType = platst };
 var ev1 = new Event { Name = "OctoberFest", Sponsor = sp1 };
 var ev2 = new Event { Name = "Concerts in the Park", Sponsor = sp2 };
 var ev3 = new Event { Name = "11th Street Art Festival", Sponsor = sp3 };
 context.Events.AddObject(ev1);
 context.Events.AddObject(ev2);
 context.Events.AddObject(ev3);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 Console.WriteLine("Events with Platinum Sponsors");
 Console.WriteLine("=============================");
 var esql = @"select value e from EFRecipesEntities.Events as e where
 ref(e.Sponsor) in (EFRecipesModel.PlatinumSponsors())";
 var events = context.CreateQuery<Event>(esql);
 foreach (var ev in events)
 {
 Console.WriteLine(ev.Name);
 }
}

The output of the code in Listing 11-13 is the following:

Events with Platinum Sponsors

=============================

Concerts in the Park

11th Street Art Festival

How It Works
The <ReferenceType> element in the conceptual model denotes a reference to an entity type. This means
that we are returning a reference to an entity, not the complete entity. Our model defined function
returns a collection of references to Platinum level sponsors. To illustrate using our function, we created
an eSQL expression in Listing 11-13 to get all the events with Platinum level sponsors. There are, of
course, lots of different ways to get the events sponsored by Platinum level sponsors, but by
encapsulating the collection of Platinum level sponsors in our model defined function, we introduce a
bit of code reusability.

We didn’t show a corresponding use in a LINQ query because the bootstrapping code would need to
return an IQueryable<EntityKey>, which is fine, but a subsequent Contains clause would not work
because the result is not strongly typed.

417

CHAPTER 11 FUNCTIONS

11-8. Using Canonical Functions in eSQL

Problem
You want to call a Canonical Function in your eSQL query. A canonical function is an eSQL function that
is natively supported by all data providers. Examples include Sum(), Count(), and Avg().

Solution
Suppose we have a model for customers and their orders, as shown in Figure 11-8.

Figure 11-8. A model for customers and their orders

You want to retrieve the number of orders and the total purchase amount made by customers who
have placed orders above the average order.

To create and use this query, follow the pattern shown in Listing 11-14.

Listing 11-14. Querying the model in eSQL using the Sum(), Count(), and Avg() functions

using (var context = new EFRecipesEntities())
{
 var c1 = new Customer { Name = "Jill Masters", City = "Raytown" };
 var c2 = new Customer { Name = "Bob Meyers", City = "Austin" };
 var c3 = new Customer { Name = "Robin Rosen", City = "Dallas" };
 var o1 = new Order { OrderAmount = 12.99M, Customer = c1 };
 var o2 = new Order { OrderAmount = 99.39M, Customer = c2 };
 var o3 = new Order { OrderAmount = 101.29M, Customer = c3 };
 context.Orders.AddObject(o1);
 context.Orders.AddObject(o2);
 context.Orders.AddObject(o3);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 Console.WriteLine("Customers with above average total purchases");
 var esql = @"select o.Customer.Name, count(o.OrderId) as TotalOrders,
 Sum(o.OrderAmount) as TotalPurchases

418

 CHAPTER 11 FUNCTIONS

 from EFRecipesEntities.Orders as o
 where o.OrderAmount >
 anyelement(select value Avg(o.OrderAmount) from
 EFRecipesEntities.Orders as o)
 group by o.Customer.Name";
 var summary = context.CreateQuery<DbDataRecord>(esql);
 foreach (var item in summary)
 {
 Console.WriteLine("\t{0}, Total Orders: {1}, Total: {2:C}",
 item["Name"], item["TotalOrders"], item["TotalPurchases"]);
 }
}

The output of the code in Listing 11-14 is the following:

Customers with above average total purchases

 Bob Meyers, Total Orders: 1, Total: $99.39

 Robin Rosen, Total Orders: 1, Total: $101.29

How It Works
In this recipe, we used the canonical functions Count(), Sum(), and Avg(). These functions are
independent of the data store, which means that they are portable and return types in the EDM space
rather than data store-specific types or CLR types.

The current release of Entity Framework introduced the EntityFunctions class, which exposes these
canonical functions to LINQ queries as well.

11-9. Using Canonical Functions in LINQ

Problem
You want to use canonical functions in a LINQ query.

Solution
Let’s say you have a model for movie rentals like the one in Figure 11-9. The MovieRental entity holds
the date the movie was rented and the date it was returned, as well as any late fees that have been
accumulated.

419

CHAPTER 11 FUNCTIONS

Figure 11-9. The MovieRental entity that has the dates for a rental period along with any late fees

You want to retrieve all the movies that were returned more than 10 days after they were rented.
These are the late movies.

To create and use this query, follow the pattern shown in Listing 11-15.

Listing 11-15. Retrieving the late movies using the DateDiff() function

using (var context = new EFRecipesEntities())
{
 var mr1 = new MovieRental { Title = "A Day in the Life",
 RentalDate = DateTime.Parse("2/19/2010"),
 ReturnedDate = DateTime.Parse("3/4/2010"),LateFees = 3M };
 var mr2 = new MovieRental { Title = "The Shortest Yard",
 RentalDate = DateTime.Parse("3/15/2010"),
 ReturnedDate = DateTime.Parse("3/20/2010"), LateFees = 0M };
 var mr3 = new MovieRental { Title = "Jim's Story",
 RentalDate = DateTime.Parse("3/2/2010"),
 ReturnedDate = DateTime.Parse("3/19/2010"), LateFees = 3M };
 context.MovieRentals.AddObject(mr1);
 context.MovieRentals.AddObject(mr2);
 context.MovieRentals.AddObject(mr3);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 Console.WriteLine("Movie rentals late returns");
 Console.WriteLine("==========================");
 var late = from r in context.MovieRentals
 where EntityFunctions.DiffDays(r.RentalDate, r.ReturnedDate) > 10
 select r;
 foreach (var rental in late)
 {
 Console.WriteLine("{0} was {1} days late, fee: {2}", rental.Title,
 (rental.ReturnedDate - rental.RentalDate).Days - 10,
 rental.LateFees.ToString("C"));
 }
}

420

 CHAPTER 11 FUNCTIONS

The output of the code in Listing 11-15 is the following:

Movie rentals late returns

==========================

A Day in the Life was 3 days late, fee: $3.00

Jim's Story was 7 days late, fee: $3.00

How It Works
Canonical functions, which are defined in Entity Framework, are data source-agnostic and supported by
all data providers. The types returned from canonical functions are defined in terms of types from the
Entity Data Model.

In this recipe, we used the DiffDays() function to calculate the number of days between the start and
end of the rental period. Because DiffDays() is a canonical function, it will be implemented by all
providers.

Best Practice

When should I use EntityFunctions? Entity Framework provides translations for some expressions into the
canonical functions, but the translation is limited. Not every CLR method will translate to the corresponding
canonical function.

Here’s the best practice. If there is a translation available, use it. It makes the code easier to read. If there
is no translation available, use the EntityFunction class to explicitly call the canonical function, as in the
following:

var laterentals = from r in context.MovieRentals
 where (r.ReturnedDate - r.RentalDate).Days > 10
 select r;

does not translate to the Canonical Function, so you should use,

var laterentals = from r in context.MovieRentals
 where EntityFunctions.DiffDays(r.RentalDate,
 r.ReturnedDate) > 10
 select r;

421

CHAPTER 11 FUNCTIONS

11-10. Calling Database Functions in eSQL

Problem
You want to call a database function in an eSQL statement.

Solution
Let’s say you have an eCommerce website and you need to find all the customers within a certain
distance of a given ZIP code. Your model might look like the one in Figure 11-10.

Figure 11-10. WebCustomer and Zip entities in a model

We’ll need to pull out some basic math functions to get this to work. Unfortunately, Entity
Framework does not have the canonical functions we need, so we’ll have to use the functions available
in the data store.

Use the pattern in Listing 11-16 to call the database functions from an eSQL expression.

Listing 11-16. Using database functions to determine the distance between a customer and a given ZIP

code

using (var context = new EFRecipesEntities())
{
 var c1 = new WebCustomer { Name = "Alex Stevens", Zip = "76039" };
 var c2 = new WebCustomer { Name = "Janis Jones", Zip = "76040" };
 var c3 = new WebCustomer { Name = "Cathy Robins", Zip = "76111" };
 context.Zips.AddObject(new Zip { Latitude = 32.834298M,
 Longitude = -32.834298M,
 ZipCode = "76039" });
 context.Zips.AddObject(new Zip { Latitude = 32.835298M,
 Longitude = -32.834798M,
 ZipCode = "76040" });
 context.Zips.AddObject(new Zip { Latitude = 33.834298M,
 Longitude = -31.834298M,
 ZipCode = "76111" });
 context.WebCustomers.AddObject(c1);
 context.WebCustomers.AddObject(c2);
 context.WebCustomers.AddObject(c3);

422

 CHAPTER 11 FUNCTIONS

 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 string esql = @"select value c
 from EFRecipesEntities.WebCustomers as c
 join
 (SELECT z.ZipCode,
 3958.75 * (SqlServer.Atan(SqlServer.Sqrt(1 -
 SqlServer.power(((SqlServer.Sin(t2.Latitude/57.2958M) *
 SqlServer.Sin(z.Latitude/57.2958M)) +
 (SqlServer.Cos(t2.Latitude/57.2958M) *
 SqlServer.Cos(z.Latitude/57.2958M) *
 SqlServer.Cos((z.Longitude/57.2958M) -
 (t2.Longitude/57.2958M)))), 2)) /(
 ((SqlServer.Sin(t2.Latitude/57.2958M) *
 SqlServer.Sin(z.Latitude/57.2958M)) +
 (SqlServer.Cos(t2.Latitude/57.2958M) *
 SqlServer.Cos(z.Latitude/57.2958M) *
 SqlServer.Cos((z.Longitude/57.2958M) -
 (t2.Longitude/57.2958M))))))
) as DistanceInMiles
 FROM EFRecipesEntities.Zips AS z join
 (select top(1) z2.Latitude as Latitude,z2.Longitude as
 Longitude
 from EFRecipesEntities.Zips as z2
 where z2.ZipCode = @Zip
) as t2 on 1 = 1
) as matchingzips on matchingzips.ZipCode = c.Zip
 where matchingzips.DistanceInMiles <= @RadiusInMiles";

 var custs = context.CreateQuery<WebCustomer>(esql,
 new ObjectParameter("Zip", "76039"),
 new ObjectParameter("RadiusInMiles", 5));
 Console.WriteLine("Customers within 5 miles of 76039");
 foreach (var cust in custs)
 {
 Console.WriteLine("Customer: {0}", cust.Name);
 }
}

The output of the code in Listing 11-16 is the following:

Customers within 5 miles of 76039

Customer: Alex Stevens

Customer: Janis Jones

423

CHAPTER 11 FUNCTIONS

How It Works
Okay, the eSQL is a little complex, but the complexity is because we’re calling a bunch of database
functions. Using the database functions in eSQL is fairly simple. These functions are available in the
SqlServer namespace. Not all database functions are available in eSQL, so check the current Microsoft
documentation to get a complete list.

In this example, the Zip entity has the Latitude and Longitude for each ZIP code. These values
represent the geographic location of the center of the ZIP code. To calculate the between two ZIP codes
involves a bit of math. Luckily, the database side provides the necessary functions to do the calculation.

11-11. Calling Database Functions in LINQ

Problem
You want to call a database function in a LINQ query.

Solution
Let’s say you have an Appointment entity in your model and you want to query for all the appointments
you have on a given day of the week. The Appointment entity might look like the one in Figure 11-11.

Figure 11-11. An Appointment entity with the start and end times for appointments

If we want to find all the appointments for Thursday, we can’t use the CLR enum DayOfWeek.Thursday
to compare with the StartsAt property in a where clause because this does not translate to a data store
statement. We need to use the pattern shown in Listing 11-17.

Listing 11-17. Using a database function in a LINQ query

using (var context = new EFRecipesEntities())
{
 var app1 = new Appointment { StartsAt = DateTime.Parse("4/7/2010 14:00"),
 GoesTo = DateTime.Parse("4/7/2010 15:00") };
 var app2 = new Appointment { StartsAt = DateTime.Parse("4/8/2010 9:00"),
 GoesTo = DateTime.Parse("4/8/2010 11:00") };
 var app3 = new Appointment { StartsAt = DateTime.Parse("4/8/2010 13:00"),
 GoesTo = DateTime.Parse("4/7/2010 15:00") };
 context.Appointments.AddObject(app1);

424

 CHAPTER 11 FUNCTIONS

 context.Appointments.AddObject(app2);
 context.Appointments.AddObject(app3);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 var apps = from a in context.Appointments
 where SqlFunctions.DatePart("WEEKDAY", a.StartsAt) == 5
 select a;
 Console.WriteLine("Appointments for Thursday");
 Console.WriteLine("=========================");
 foreach (var appointment in apps)
 {
 Console.WriteLine("Appointment from {0} to {1}",
 appointment.StartsAt.ToShortTimeString(),
 appointment.GoesTo.ToShortTimeString());
 }
}

The output of the code in Listing 11-17 is the following:

Appointments for Thursday

=========================

Appointment from 9:00 AM to 11:00 AM

Appointment from 1:00 PM to 3:00 PM

How It Works
Database functions are available for use in both eSQL and LINQ queries. These functions are exposed via
methods in the SqlFunctions class. Because these functions execute on the database side, the behavior
you get might differ slightly from what you would expect on the .NET side. For example,
DayOfWeek.Thursday evaluates to 4 on the .NET side. On the database side, Thursday is the fifth day of the
week, so we check for a value of 5.

As with database functions in eSQL, not all database functions are available for LINQ queries. Check
the current documentation from Microsoft for a complete list of the available functions.

11-12. Defining Built-in Functions

Problem
You want to define a built-in function for use in an eSQL or LINQ query.

425

CHAPTER 11 FUNCTIONS

Solution
Let’s say you want to use the IsNull function in the database, but this function is not currently exposed
by Entity Framework for either eSQL or LINQ. Suppose we have a WebProduct entity in our model like
the one shown in Figure 11-12.

Figure 11-12. A WebProduct entity in our model

To expose this database function for your queries, do the following:

1. Right-click the .edmx file in the Solution Explorer and click Open With XML
Editor. This will open the .edmx file in the XML Editor.

2. Insert the code in Listing 11-18 just below the <Schema> tag in the storage
models section of the .edmx file. This defines the functions in the storage layer.

3. Insert into and query the model using code similar to pattern shown in Listing
11-19.

Listing 11-18. Defining our function in the storage layer

<Function Name="ISNULL" ReturnType="varchar" BuiltIn="true" Schema="dbo">
 <Parameter Name="expr1" Type="varchar" Mode="In" />
 <Parameter Name="expr2" Type="varchar" Mode="In" />
</Function>

Listing 11-19. Using the ISNULL() function in an eSQL and LINQ query

class Program
{
 static void Main(string[] args)
 {
 RunExample();
 }

 static void RunExample()
 {
 using (var context = new EFRecipesEntities())
 {
 var w1 = new WebProduct { Name = "Camping Tent",
 Description = "Family Camping Tent, Color Green" };
 var w2 = new WebProduct { Name = "Chemical Light" };
 var w3 = new WebProduct { Name = "Ground Cover",

426

 CHAPTER 11 FUNCTIONS

 Description = "Blue ground cover" };
 context.WebProducts.AddObject(w1);
 context.WebProducts.AddObject(w2);
 context.WebProducts.AddObject(w3);
 context.SaveChanges();
 }

 using (var context = new EFRecipesEntities())
 {
 Console.WriteLine("Query using eSQL...");
 var esql = @"select value
 EFRecipesModel.Store.ISNULL(p.Description,p.Name)
 from EFRecipesEntities.WebProducts as p";
 var prods = context.CreateQuery<string>(esql);
 foreach (var prod in prods)
 {
 Console.WriteLine("Product Description: {0}", prod);
 }
 }

 using (var context = new EFRecipesEntities())
 {
 Console.WriteLine();
 Console.WriteLine("Query using LINQ...");
 var prods = from p in context.WebProducts
 select BuiltinFunctions.ISNULL(p.Description, p.Name);
 foreach (var prod in prods)
 {
 Console.WriteLine(prod);
 }
 }
 }
}

public class BuiltinFunctions
{
 [EdmFunction("EFRecipesModel.Store", "ISNULL")]
 public static string ISNULL(string check_expression, string replacementvalue)
 {
 throw new NotSupportedException("Direct calls are not supported.");
 }
}

The output from the code in Listing 11-19 is the following:

Query using eSQL...

Product Description: Family Camping Tent, Color Green

Product Description: Chemical Light

427

CHAPTER 11 FUNCTIONS

428

r Product Description: Blue ground cove

Query using LINQ...

Family Camping Tent, Color Green

Chemical Light

Blue ground cover

How It Works
In the definition of the ISNULL() function in Listing 11-17, we need to match the name of the database

tion’s name. Both have to be the same in spelling but not in case.
ction not in the conceptual layer, as in previous recipes in this chapter, but in the

store layer. This function is already available in the database; we are simply surfacing it in the store layer

pace for the

 IQueryable<T>, so no implementation of the method is required.

function with our func
We defined the fun

for our use.
When we use the function in the eSQL statement, we need to fully qualify the names

function. Here that fully qualified name is EFRecipesModel.Store.ISNULL().
To use the function in a LINQ query, we need to create the bootstrapping method. We are not

returning an

C H A P T E R 12

Customizing Entity
Framework Objects

The recipes in this chapter explore some of the customizations that can be applied to objects and to the
processes in Entity Framework. These recipes cover many of the “behind the scenes” things you can do
to make your code more uniform by pushing concerns about things like business rule enforcement from
the details of your application to a central, application-wide implementation.

We start off this chapter with a recipe that shows you how to have your own code execute anytime
SaveChanges() is called in your application. This recipe and a few others are particularly useful if you
want to enforce business rules from a single spot in your application.

In other recipes, we show you how to track database connections, how to automate responses to
collection changes, how to implement cascading deletes, how to assign default values, and how to work
with strongly typed XML properties.

The common thread of all these recipes is extending the objects and processes in Entity Framework
to make your code more resilient, uniform, and maintainable.

12-1. Executing Code When SaveChanges() Is Called

Problem
You want to execute code anytime SaveChanges() is called in a data context.

Solution
Let’s say you have a model that represents a job applicant. As part of the model, you want the file
containing the applicant’s resume to be deleted when the applicant’s record is deleted. You could find
every place in your application where you delete an applicant’s record, but you want a more consistent
and unified approach.

Your model looks like the one in Figure 12-1.

429

CHAPTER 12 CUSTOMIZING ENTITY FRAMEWORK OBJECTS

Figure 12-1. A model for job applicant

To ensure that the applicant’s resume file is deleted when the applicant is deleted, we override the
SavingChanges() method in the object context. In our overridden method, we need to scan the object
context for changes that include deleting instances of the Applicant entity. Next, we need to tell Entity
Framework to save the changes by calling the real SaveChanges() method. Finally, for each of the deleted
Applicants, we need to delete the associated resume file. The code in Listing 12-1 demonstrates this
approach.

Listing 12-1. Overriding SaveChanges() to delete the resume file when the applicant is deleted

class Program
{
 static void Main(string[] args)
 {
 RunExample();
 }

 static void RunExample()
 {
 using (var context = new EFRecipesEntities())
 {
 var path1 = "AlexJones.txt";
 File.AppendAllText(path1, "Alex Jones\nResume\n...");
 var path2 = "JanisRogers.txt";
 File.AppendAllText(path2, "Janis Rodgers\nResume\n...");
 var app1 = new Applicant { Name = "Alex Jones",
 ResumePath = path1 };
 var app2 = new Applicant { Name = "Janis Rogers",
 ResumePath = path2 };
 context.Applicants.AddObject(app1);
 context.Applicants.AddObject(app2);
 context.SaveChanges();

 // delete Alex Jones
 context.Applicants.DeleteObject(app1);
 context.SaveChanges();
 }
 }
}

public partial class EFRecipesEntities

430

 CHAPTER 12 CUSTOMIZING ENTITY FRAMEWORK OBJECTS

{
 public override int SaveChanges(SaveOptions options)
 {
 Console.WriteLine("Saving Changes...");
 var applicants = this.ObjectStateManager
 .GetObjectStateEntries(EntityState.Deleted)
 .Select(e => e.Entity)
 .OfType<Applicant>().ToList();
 int changes = base.SaveChanges(options);
 Console.WriteLine("\n{0} applicants deleted",
 applicants.Count().ToString());
 foreach (var app in applicants)
 {
 File.Delete(app.ResumePath);
 Console.WriteLine("\n{0}'s resume at {1} deleted",
 app.Name, app.ResumePath);
 }
 return changes;
 }
}

The following is the output from the code in Listing 12-1:

Saving Changes...

0 applicants deleted

Saving Changes...

1 applicants deleted

Alex Jones's resume at AlexJones.txt deleted

How It Works
The code in Listing 12-1 starts by inserting two applicants, each with the path to a resume file that we
also created. The goal here is to delete the resume file in a structured way when the instance of the
Applicant entity is deleted. We do this by overriding the SaveChanges() method.

In our SaveChanges() method, we first gather up all the instances of Applicant that have been
marked for deletion. These are the ones that will be deleted from the database when we call the real
SaveChanges() method. We need to get them before we call SaveChanges() because after we call
SaveChanges(), these instances will be detached from the context and we will no longer be able to use
this query to retrieve them. Once we have the instances that will be deleted, we call SaveChanges() to do

431

CHAPTER 12 CUSTOMIZING ENTITY FRAMEWORK OBJECTS

the real work of persisting objects to the database. Once the changes have been successfully committed,
we can delete the resume files.

There are a couple of possible variations worth noting. We could wrap both our call to
SaveChanges() and the file deletions in a transaction to ensure that both either succeed or fail together.

Another variation is to use the DetectChangesBeforeSave SaveOption in our call to SaveChanges().
This option preserves the tracking information in the object context and would allow us to move the
query for deleted objects to somewhere after the call the SaveChanges(). To clear the tracking
information, we would need to call AcceptAllChanges() before we leave the method.

Entity Framework does not expose insert, update, and delete events for each entity. However, much
of what we would do in these events can be handled, as we have demonstrated here, by overriding the
SaveChanges() method.

12-2. Validating Property Changes

Problem
You want to validate a value being assigned to a property.

Solution
Let’s say you have a model with a User entity. The User entity has properties for the full name and user
name for the user. You have a business rule that says each user must have a UserName greater than five
characters long. You want to enforce this business rule with code that sets the IsActive property to false
if the UserName is set to a string less than or equal to five characters; otherwise the IsActive flag is set to
true. The model is shown in Figure 12-2.

Figure 12-2. The User entity in our model

To enforce our business rule, we need to implement the partial methods OnUserNameChanging() and
OnUserNameChanged(). These methods are called during the property change activity and after the
property has been changed. The code in Listing 12-2 demonstrates one solution.

Listing 12-2. Monitoring the changing of the UserName property

class Program
{
 static void Main(string[] args)

432

 CHAPTER 12 CUSTOMIZING ENTITY FRAMEWORK OBJECTS

 {
 RunExample();
 }

 static void RunExample()
 {
 using (var context = new EFRecipesEntities())
 {
 var user1 = new User { FullName = "Robert Meyers",
 UserName = "RM" };
 var user2 = new User { FullName = "Karen Kelley",
 UserName = "KKelley" };
 context.Users.AddObject(user1);
 context.Users.AddObject(user2);
 context.SaveChanges();
 Console.WriteLine("Users saved to database");
 }

 using (var context = new EFRecipesEntities())
 {
 Console.WriteLine();
 Console.WriteLine("Reading users from database");
 foreach (var user in context.Users)
 {
 Console.WriteLine("{0} is {1}, UserName is {2}", user.FullName,
 user.IsActive ? "Active" : "Inactive", user.UserName);
 }
 }
 }
}

public partial class User
{
 partial void OnUserNameChanging(string value)
 {
 if (value.Length > 5)
 Console.WriteLine("{0}'s UserName changing to {1}, OK!",
 this.FullName, value);
 else
 Console.WriteLine("{0}'s UserName changing to {1}, Too Short!",
 this.FullName, value);
 }

 partial void OnUserNameChanged()
 {
 this.IsActive = (this.UserName.Length > 5);
 }
}

The following is the output of the code in Listing 12-2:

433

CHAPTER 12 CUSTOMIZING ENTITY FRAMEWORK OBJECTS

Robert Meyers's UserName changing to RM, Too Short!

Karen Kelley's UserName changing to KKelley, OK!

Users saved to database

Reading users from database

Robert Meyers's UserName changing to RM, Too Short!

Robert Meyers is Inactive, UserName is RM

Karen Kelley's UserName changing to KKelley, OK!

Karen Kelley is Active, UserName is KKelley

How It Works
In the solution, we implement the partial methods OnUserNameChanging() and OnUserNameChanged() to
monitor the property change activity. The OnUserNameChanging() method is called when the property
value is being set. Here we have an opportunity to throw an exception or, as in our example, simply
report that the UserName is being set to a value of five characters or fewer.

The OnUserNameChanged() method is called after the property has been changed. Here we simply set
the IsActive property based on the length of the final UserName property value.

These partial methods are created by Entity Framework as part of the code generation process. The
names of the partial methods are derived from the property names. In our case, each method name
included the name of the property. These partial methods are called inside the setter for each property.

You may be wondering a bit about the output of code. Notice that the partial methods are called
twice in our example. They are called when the property value is set. They are also called when the User
instances are materialized from the database. This second call happens, of course, because the
materialization process involves setting the property value from the persisted value in the database.

In addition to these two partial methods, Entity Framework exposes two events for monitoring
property changes. These events, PropertyChanging and PropertyChanged, are raised when any property
on an Entity is changed. The sender of the event is the instance of the entity and the PropertyEventArgs
parameter contains a PropertyName that holds the name of the property that is changing or has
changed. Because these events are fired for any property change on the entity, they can be useful in
some scenarios, particularly if you have an entity with many properties. They are somewhat less useful
in practical terms because they don’t readily expose the current and proposed values for the property.

When our UserName property value changes, the sequence is as follows:

1. OnUserNameChanging() method is called.

2. PropertyChanging event is raised.

3. PropertyChanged event is raised.

4. OnUserNameChanged() method is called.

The PropertyChanging and PropertyChanged events are not raised when a navigation property value
is changed. The state of an entity changes only when a scalar or complex property changes.

434

 CHAPTER 12 CUSTOMIZING ENTITY FRAMEWORK OBJECTS

12-3. Logging Database Connections

Problem
You want to create a log entry each time a connection is opened or closed to the database.

Solution
Entity Framework exposes a StateChange event on the connection for an object context. To create a log
entry each time a connection is opened or closed, we need to handle this event.

Suppose our model looks like the one in Figure 12-3. In Listing 12-3, we create a few instances of a
Donation and save them to the database. The code implements the OnContextCreated() partial method
to wire in our handler for the StateChange event.

Figure 12-3. The model with the Donation entity

Listing 12-3.

class Program
{
 static void Main(string[] args)
 {
 RunExample();
 }

 static void RunExample()
 {
 using (var context = new EFRecipesEntities())
 {
 context.Donations.AddObject(new Donation {
 DonorName = "Robert Byrd", Amount = 350M });
 context.Donations.AddObject(new Donation {
 DonorName = "Nancy McVoid", Amount = 250M });
 context.Donations.AddObject(new Donation {
 DonorName = "Kim Kerns", Amount = 750M });
 Console.WriteLine("About to SaveChanges()");
 context.SaveChanges();
 }

435

CHAPTER 12 CUSTOMIZING ENTITY FRAMEWORK OBJECTS

 using (var context = new EFRecipesEntities())
 {
 var list = context.Donations.Where(o => o.Amount > 300M);
 Console.WriteLine("Donations over $300");
 foreach (var donor in list)
 {
 Console.WriteLine("{0} gave {1}", donor.DonorName,
 donor.Amount.ToString("C"));
 }
 }
 }
}

public partial class EFRecipesEntities
{
 partial void OnContextCreated()
 {
 this.Connection.StateChange += (s, e) =>
 {
 var conn = ((EntityConnection)s).StoreConnection;
 Console.WriteLine("{0}: Database: {1}, State: {2}, was: {3}",
 DateTime.Now.ToShortTimeString(), conn.Database,
 e.CurrentState, e.OriginalState);
 };
 }
}

The following is the output from the code in Listing 12-3:

1:09 PM: Database: EFRecipes, State: Open, was: Closed

1:09 PM: Database: EFRecipes, State: Closed, was: Open

About to SaveChanges()

1:09 PM: Database: EFRecipes, State: Open, was: Closed

1:09 PM: Database: EFRecipes, State: Closed, was: Open

Donations over $300

1:09 PM: Database: EFRecipes, State: Open, was: Closed

Robert Byrd gave $350.00

Kim Kerns gave $750.00

1:09 PM: Database: EFRecipes, State: Closed, was: Open

436

 CHAPTER 12 CUSTOMIZING ENTITY FRAMEWORK OBJECTS

How It Works
To wire in the handler for the StateChange event, we implement the OnContextCreated() partial method.
This partial method is called when the context is created.

Our event handler receives two parameters: the sender of the event and a StateChangeEventArgs.
This second parameter provides access to the CurrentState of the connection and the OriginalState of
the connection. We create a log entry indicating both of these states as well as the time of the event and
the associated database.

If you are paying particularly close attention to the order of the log entries, you will notice that in the
second using block, the connection to the database occurs during the execution of the query in the
foreach loop, not when the query is constructed. This demonstrates the important concept that queries
are executed only when explicitly required. In our case, this execution occurs during the iteration.

12-4. Recalculating a Property Value When an Entity
Collection Changes

Problem
You want to recalculate a property value on the entity when its entity collection changes.

Solution
Both EntityCollection and EntityReference derive from RelatedEnd. RelatedEnd exposes an
AssociationChanged event. This event is raised when the association is changed or modified. In
particular, this event is raised when an element is added to or removed from a collection.

To recalculate a property values, we implement a handler for the AssociationChanged event.
Let’s say you have a model with a shopping cart and items for the cart. The model is shown in Figure

12-4.

Figure 12-4. A model for a cart and the cart’s items

The code in Listing 12-4 demonstrates using the AssociationChanged event to recalculate the
CartTotal property on the Cart entity when items are added to or removed from the CartItems collection.

437

CHAPTER 12 CUSTOMIZING ENTITY FRAMEWORK OBJECTS

Listing 12-4. Using the AssociationChanged event to keep the CartTotal in sync with the items in the cart

class Program
{
 static void Main(string[] args)
 {
 RunExample();
 }

 static void RunExample()
 {
 using (var context = new EFRecipesEntities())
 {
 var item1 = new CartItem { SKU = "AMM-223", Quantity = 3,
 Price = 19.95M };
 var item2 = new CartItem { SKU = "CAMP-12", Quantity = 1,
 Price = 59.95M };
 var item3 = new CartItem { SKU = "29292", Quantity = 2,
 Price = 4.95M };
 var cart = new Cart { CartTotal = 0 };
 cart.CartItems.Add(item1);
 cart.CartItems.Add(item2);
 cart.CartItems.Add(item3);
 context.Carts.AddObject(cart);
 item1.Quantity = 1;
 context.SaveChanges();
 }

 using (var context = new EFRecipesEntities())
 {
 foreach (var cart in context.Carts)
 {
 Console.WriteLine("Cart Total = {0}",
 cart.CartTotal.ToString("C"));
 foreach (var item in cart.CartItems)
 {
 Console.WriteLine("\tSKU = {0}, Qty = {1}, Unit Price = {2}",
 item.SKU, item.Quantity.ToString(),
 item.Price.ToString("C"));
 }
 }
 }
 }
}

public partial class Cart
{
 public Cart()
 {
 this.CartItems.AssociationChanged += (s, e) =>
 {

438

 CHAPTER 12 CUSTOMIZING ENTITY FRAMEWORK OBJECTS

 if (e.Action == CollectionChangeAction.Add)
 {
 var item = e.Element as CartItem;
 item.PropertyChanged += (ps, pe) =>
 {
 if (pe.PropertyName == "Quantity")
 {
 this.CartTotal =
 this.CartItems.Sum(t => t.Price * t.Quantity);
 Console.WriteLine("Qty changed, total = {0}",
 this.CartTotal.ToString("C"));
 }
 };
 }
 this.CartTotal = this.CartItems.Sum(t => t.Price * t.Quantity);
 Console.WriteLine("New total = {0}",
 this.CartTotal.ToString("C"));
 };
 }
}

The following is the output from the code in Listing 12-4:

New total = $59.85

New total = $119.80

New total = $129.70

Qty changed, total = $89.80

Cart Total = $89.80

New total = $89.80

 SKU = AMM-223, Qty = 1, Unit Price = $19.95

 SKU = CAMP-12, Qty = 1, Unit Price = $59.95

 SKU = 29292, Qty = 2, Unit Price = $4.95

How It Works
To keep the CartTotal property in sync with the items in the CartItems collection, we need to wire in a
handler for the AssociationChanged event on the CartItems collection. We do this in the constructor for
the Cart entity.

439

CHAPTER 12 CUSTOMIZING ENTITY FRAMEWORK OBJECTS

The event handler is a little complicated because we have to consider two cases. In the first case,
we’re simply adding or removing an item from the cart. Here we just recalculate the total by iterating
through the collection and summing the price for each item multiplied by the quantity of the item. To
get this sum, we use the Sum() method and pass in a lambda expression that multiplies the price and
quantity.

In the second case, the entity collection remains the same, but one of the items has its quantity
changed. This also affects the cart total and requires that we recalculate. For this case, we wire in a
handler for the PropertyChanged event whenever we add an item to the cart. This second handler simply
recalculates the cart total when the Quantity property changes.

To wire in this second handler, we depend on the Action property exposed in the
CollectionChangedEventArgs, which is passed as the second parameter to our first event handler. The
actions defined are Add, Remove, and Refresh.

Batch operations such as Load(), Clear(), and Attach() raise the CollectionChangedEvent just once
regardless of how many elements are in the collection. This can be good if your collection contains lots
of elements and you are interested, as we are here, in the entire collection. It can, of course, be annoying
if you need to track collection changes at a more granular level.

12-5. Automatically Deleting Related Entities

Problem
When an entity is deleted, you want to automatically delete the related entities.

Solution
Suppose you have a table structure that consists of a course, the classes for the course, and the
enrollment in each class, as shown in Figure 12-5.

Figure 12-5. The Course, Class, and Enrollment tables in our database

Given these tables, you have created a model like the one shown in Figure 12-6.

440

 CHAPTER 12 CUSTOMIZING ENTITY FRAMEWORK OBJECTS

Figure 12-6. A model with the Course, Class, and Enrollment entities and their associations

When a course is deleted from the database, you want all the classes for the course deleted and all
the enrollments for the classes deleted as well. To get this to work, we set a cascade delete rule in the
database for the relationships. To set this rule, select the relationship in SQL Server Management Studio,
view the properties, and select Cascade in the INSERT and UPDATE Specification’s Delete Rule.

When these tables are imported into the model, these cascade delete rules will also be imported.
You can see this by selecting the one-to-many association between Course and Class and viewing the
properties. See Figure 12-7.

Figure 12-7. The cascade delete rule from the database was imported into the model and is shown in the

properties for the association.

The cascade delete shown in Figure 12-7 is in the conceptual layer. There is a similar rule present in
the store layer. Both these Entity Framework rules and the underlying database cascade delete rule are
necessary to keep the object context and the database in sync when objects are deleted.

The code in Listing 12-5 demonstrates the cascade delete.

441

CHAPTER 12 CUSTOMIZING ENTITY FRAMEWORK OBJECTS

Listing 12-5. Using the underlying cascade delete rules to delete the related objects

using (var context = new EFRecipesEntities())
{
 var course1 = new Course { CourseName = "CS 301" };
 var course2 = new Course { CourseName = "Math 455" };
 var en1 = new Enrollment { Student = "James Folk" };
 var en2 = new Enrollment { Student = "Scott Shores" };
 var en3 = new Enrollment { Student = "Jill Glass" };
 var en4 = new Enrollment { Student = "Robin Rosen" };
 var class1 = new Class { Instructor = "Bill Meyers" };
 var class2 = new Class { Instructor = "Norma Hall" };
 class1.Course = course1;
 class2.Course = course2;
 class1.Enrollments.Add(en1);
 class1.Enrollments.Add(en2);
 class2.Enrollments.Add(en3);
 class2.Enrollments.Add(en4);
 context.Classes.AddObject(class1);
 context.Classes.AddObject(class2);
 context.SaveChanges();
 context.Classes.DeleteObject(class1);
 context.SaveChanges();
}
using (var context = new EFRecipesEntities())
{
 foreach (var course in context.Courses)
 {
 Console.WriteLine("Course: {0}", course.CourseName);
 foreach (var c in course.Classes)
 {
 Console.WriteLine("\tClass: {0}, Instructor: {1}",
 c.ClassId.ToString(), c.Instructor);
 foreach (var en in c.Enrollments)
 {
 Console.WriteLine("\t\tStudent: {0}", en.Student);
 }
 }
 }
}

The following is the output from the code in Listing 12-5:

Course: CS 301

Course: Math 455

 Class: 8, Instructor: Norma Hall

442

 CHAPTER 12 CUSTOMIZING ENTITY FRAMEWORK OBJECTS

 Student: Jill Glass

 Student: Robin Rosen

How It Works
This recipe has the cascade delete rule both in the database and in the model. In the model, the rule is
represented both at the conceptual layer and in the store layer. To keep the object context in sync with
the database, we defined the cascade delete in both the database and in the model.

Best Practice

Now, you may be asking, why do we need this rule in both the model and in the database? Wouldn’t it
suffice to have the rule either in the database or in the model?

The reason cascade delete exists at the conceptual layer is to keep the objects loaded in the object context
in sync with the cascade delete changes made by the database. For example, if we have classes and
enrollments for a given course loaded in the object context and we mark the course for deletion, Entity
Framework would also mark the course’s classes and their enrollments for deletion. All this happens
before anything is sent to the database. At the model layer, cascade delete means to mark related entities
for deletion. Ultimately, Entity Framework will issue redundant deletes for these entities.

So, if Entity Framework will issue redundant deletes, why not just have the rules in the model and not in
the database? Here’s why. For Entity Framework to mark entities for deletion, they must be loaded into the
object context. Imagine we have a course in the object context, but we haven’t loaded the related classes
or the related enrollments. If we delete the course, the related classes and enrollments can’t be marked for
deletion because they are not in the object context. No commands will be sent to the database to delete
these related rows. However, if we have the cascade delete rules in place in the database, the database
will take care of deleting the rows.

The best practice here is to have the cascade delete rules both in the model and in the database.

If you have added a cascade delete rule to a model, Entity Framework will not overwrite it if you
update the model from the database. Unfortunately, if you don’t have a cascade delete rule in the model
and you update the model from the database and the database has a newly created cascade delete rule,
Entity Framework will not add a cascade delete rule in the conceptual layer. You will have to manually
add it.

12-6. Deleting All Related Entities

Problem
You want to delete all related entities in the most generic way possible.

443

CHAPTER 12 CUSTOMIZING ENTITY FRAMEWORK OBJECTS

Solution
We want to delete all the related entities in a generic way; that is, in a way that will work across all
entities without specific reference to any particular entity type. To do this, we will create a method that
uses the RelationshipManager to get all the related ends. With these, we can use CreateSourceQuery() to
retrieve the entities and delete them.

The code in Listing 12-6 demonstrates this method using the model in Figure 12-8. In this model, we
have recipes with related ingredients and steps.

Figure 12-8. A model with ingredients and steps for each recipe

Listing 12-6. Demonstrating the DeleteRelatedEntities<>() method

class Program
{
 static void Main(string[] args)
 {
 RunExample();
 }

 static void DeleteRelatedEntities<T>(T entity, EFRecipesEntities context)
 where T : EntityObject
 {
 var entities = ((IEntityWithRelationships)entity)
 .RelationshipManager.GetAllRelatedEnds()
 .SelectMany(e =>
 e.CreateSourceQuery().OfType<EntityObject>()).ToList();
 foreach (var child in entities)
 {

444

 CHAPTER 12 CUSTOMIZING ENTITY FRAMEWORK OBJECTS

 context.DeleteObject(child);
 }
 context.SaveChanges();
 }

 static void RunExample()
 {
 using (var context = new EFRecipesEntities())
 {
 var recipe1 = new Recipe { RecipeName = "Chicken Risotto" };
 var recipe2 = new Recipe { RecipeName = "Baked Chicken" };
 recipe1.Steps.Add(new Step { Description = "Bring Broth to a boil" });
 recipe1.Steps.Add(new Step { Description =
 "Slowly add Broth to Rice" });
 recipe1.Ingredients.Add(new Ingredient { Name = "1 Cup White Rice" });
 recipe1.Ingredients.Add(new Ingredient { Name =
 "6 Cups Chicken Broth"});
 recipe2.Steps.Add(new Step { Description =
 "Bake at 350 for 35 Minutes" });
 recipe2.Ingredients.Add(new Ingredient { Name = "1 lb Chicken" });
 context.Recipes.AddObject(recipe1);
 context.Recipes.AddObject(recipe2);
 context.SaveChanges();
 Console.WriteLine("All the Related Entities...");
 ShowRecipes();
 DeleteRelatedEntities(recipe2, context);
 Console.WriteLine("\nAfter Related Entities are Deleted...");
 ShowRecipes();
 }
 }

 static void ShowRecipes()
 {
 using (var context = new EFRecipesEntities())
 {
 foreach (var recipe in context.Recipes)
 {
 Console.WriteLine("\n*** {0} ***", recipe.RecipeName);
 Console.WriteLine("Ingredients");
 foreach (var ingredient in recipe.Ingredients)
 {
 Console.WriteLine("\t{0}", ingredient.Name);
 }
 Console.WriteLine("Steps");
 foreach (var step in recipe.Steps)
 {
 Console.WriteLine("\t{0}", step.Description);
 }
 }
 }
 }
}

445

CHAPTER 12 CUSTOMIZING ENTITY FRAMEWORK OBJECTS

The following is the output of the code in Listing 12-6:

All the Related Entities...

*** Chicken Risotto ***

Ingredients

 1 Cup White Rice

 6 Cups Chicken Broth

Steps

 Bring Broth to a boil

 Slowly add Broth to Rice

*** Baked Chicken ***

Ingredients

 1 lb Chicken

Steps

 Bake at 350 for 35 Minutes

After Related Entities are Deleted...

*** Chicken Risotto ***

Ingredients

 1 Cup White Rice

 6 Cups Chicken Broth

446

 CHAPTER 12 CUSTOMIZING ENTITY FRAMEWORK OBJECTS

Steps

 Bring Broth to a boil

 Slowly add Broth to Rice

*** Baked Chicken ***

Ingredients

Steps

How It Works
Of course, there is no real performance benefit using the code in Listing 12-6. What is useful about this
approach is that it deletes all the related entities without reference to any particular entity type. We
could have loaded the second recipe and simply marked each of the ingredients and steps for deletion,
but this code snippet would be specific to these entities in this model. The method in Listing 12-6 will
work across all entity types and delete all related entities.

12-7. Assigning Default Values

Problem
You want to assign default values to the properties of an entity before it is saved to the database.

Solution
Let’s say you have a table similar to the one in Figure 12-9 that holds information about a purchase
order. The key, PurchaseOrderId, is a GUID, and there are two columns holding the date and time for the
creation and last modification of the object. There is also a comments column that is no longer used and
should always be set to “N/A”. Because we no longer use the comments, we don’t have this property
available on the entity. You want to initialize the PurchaseOrderId column, the date fields, the Paid
column, and the comment column to default values. Our model is shown in Figure 12-10.

447

CHAPTER 12 CUSTOMIZING ENTITY FRAMEWORK OBJECTS

Figure 12-9. The PurchaseOrder table with several columns that need default values

Figure 12-10. The model created from the PurchaseOrder table in Figure 12-9

We will illustrate three different ways to set default values. Default values that don’t need to be
dynamically calculated can be set as the Default Value for the property in the conceptual model. Select
the Paid property and view its Properties. Set the Default Value to false.

For properties that need to be calculated at runtime, we need to handle the SavingChanges event.
This is illustrated in Listing 12-7. In this handler, if the object is in the Added state, we set the
PurchaseOrderId to a new GUID and set the CreateDate and ModifiedDate fields.

To illustrate setting the default value outside of the conceptual model, we can modify the store layer
to set a default value for the comments column. This approach would be useful if we didn’t want to
surface some properties in the model, yet wanted to set their default values. To set the default value
through the store layer, right-click the .edmx file and select Open With XML Editor. Add
DefaultValue="N/A" to the <Property> tag for the Comment property in the SSDL section of the .edmx
file.

Listing 12-7. Handling the SavingChanges event to set the default values

class Program
{
 static void Main(string[] args)
 {
 RunExample();
 }

 static void RunExample()
 {

448

 CHAPTER 12 CUSTOMIZING ENTITY FRAMEWORK OBJECTS

 using (var context = new EFRecipesEntities())
 {
 context.PurchaseOrders.AddObject(
 new PurchaseOrder { Amount = 109.98M});
 context.PurchaseOrders.AddObject(
 new PurchaseOrder { Amount = 20.99M });
 context.PurchaseOrders.AddObject(
 new PurchaseOrder { Amount = 208.89M});
 context.SaveChanges();
 }

 using (var context = new EFRecipesEntities())
 {
 Console.WriteLine("Purchase Orders");
 foreach (var po in context.PurchaseOrders)
 {
 Console.WriteLine("Purchase Order: {0}",
 po.PurchaseOrderId.ToString(""));
 Console.WriteLine("\tPaid: {0}", po.Paid ? "Yes" : "No");
 Console.WriteLine("\tAmount: {0}", po.Amount.ToString("C"));
 Console.WriteLine("\tCreated On: {0}",
 po.CreateDate.ToShortTimeString());
 Console.WriteLine("\tModified at: {0}",
 po.ModifiedDate.ToShortTimeString());
 }
 }
 }
}

public partial class EFRecipesEntities
{
 partial void OnContextCreated()
 {
 this.SavingChanges += new EventHandler(EFRecipesEntities_SavingChanges);
 }

 void EFRecipesEntities_SavingChanges(object sender, EventArgs e)
 {
 var pos = this.ObjectStateManager
 .GetObjectStateEntries(EntityState.Added |
 EntityState.Modified)
 .Select(entry => entry.Entity)
 .OfType<PurchaseOrder>().ToList();
 foreach (var order in pos)
 {
 if (order.EntityState == EntityState.Added)
 {
 order.PurchaseOrderId = Guid.NewGuid();
 order.CreateDate = DateTime.Now;
 order.ModifiedDate = DateTime.Now;
 }
 else if (order.EntityState == EntityState.Modified)

449

CHAPTER 12 CUSTOMIZING ENTITY FRAMEWORK OBJECTS

 {
 order.ModifiedDate = DateTime.Now;
 }
 }
 }
}

The following is the output from the code in Listing 12-7:

Purchase Orders

Purchase Order: 6d07a26e-10f0-4aaa-a65a-2f3eaaef8bf9

 Paid: No

 Amount: $20.99

 Created On: 11:57 AM

 Modified at: 11:57 AM

Purchase Order: 15572f1f-674d-4e3d-a854-551cea412d33

 Paid: No

 Amount: $109.98

 Created On: 11:57 AM

 Modified at: 11:57 AM

Purchase Order: d6c88657-6e72-42e5-9714-cf420f36a403

 Paid: No

 Amount: $208.89

 Created On: 11:57 AM

 Modified at: 11:57 AM

How It Works
We demonstrated three different ways to set default values. For values that are static and for which a
property is exposed on the entity for the underlying column, we can use the designer’s Default Value for

450

 CHAPTER 12 CUSTOMIZING ENTITY FRAMEWORK OBJECTS

the property. This is ideally suited for the Paid property. By default, we want to set this to false. New
purchase orders are typically unpaid.

For columns that need dynamically calculated values, such as the CreateDate, ModifiedDate, and
PurchaseOrderId columns, we wire in a SavingChanges event handler that computes these values and
sets the column values just before the entity is saved to the database.

Finally, for columns that are not surfaced as properties on the entity and need a static default value,
we can use the Default Value attribute in the store layer property definition. In this recipe, we set the
comments column default value to “N/A” in the store layer property definition.

There is another option for assigning default values. You could assign them in the constructor for
the entity. The constructor is called each time a new instance of the entity is created. This includes each
time the instance is materialized from the database. You have to be careful not to overwrite previous
values for the properties from the database.

12-8. Retrieving the Original Value of a Property

Problem
You want to retrieve the original value of a property before the entity is saved to the database.

Solution
Let’s say you have a model (see Figure 12-11) representing an Employee and part of this entity includes
the employee’s salary. You have a business rule that an employee’s salary cannot be increased by more
than 10%. To enforce this rule, you want to check the new salary against the original salary for increases
in excess of 10%. You want to do this check just before the entity is saved to the database.

Figure 12-11. An Employee entity with the employee’s salary

To verify that a salary increase does not exceed 10%, as required by our business rule, we wire in a
handler for the SavingChanges event. In the handler, we retrieve the current and original values. If the
new value is more than 110% of the original value, we throw an exception. This exception, of course,
causes the saving of the entity to fail. The code in Listing 12-8 provides the details.

Listing 12-8. Handling the SavingChanges event to enforce the business rule

class Program
{
 static void Main(string[] args)

451

CHAPTER 12 CUSTOMIZING ENTITY FRAMEWORK OBJECTS

 {
 RunExample();
 }

 static void RunExample()
 {
 using (var context = new EFRecipesEntities())
 {
 var emp1 = new Employee { Name = "Roger Smith", Salary = 108000M };
 var emp2 = new Employee { Name = "Jane Hall", Salary = 81500M };
 context.Employees.AddObject(emp1);
 context.Employees.AddObject(emp2);
 context.SaveChanges();
 emp1.Salary = emp1.Salary * 1.5M;
 try
 {
 context.SaveChanges();
 }
 catch (Exception)
 {
 Console.WriteLine("Oops, tried to increase a salary too much!");
 }
 }

 using (var context = new EFRecipesEntities())
 {
 Console.WriteLine();
 Console.WriteLine("Employees");
 foreach (var emp in context.Employees)
 {
 Console.WriteLine("{0} makes {1}/year", emp.Name,
 emp.Salary.ToString("C"));
 }
 }
 }
}

public partial class EFRecipesEntities
{
 partial void OnContextCreated()
 {
 this.SavingChanges += new EventHandler(EFRecipesEntities_SavingChanges);
 }

 void EFRecipesEntities_SavingChanges(object sender, EventArgs e)
 {
 var entries = this.ObjectStateManager
 .GetObjectStateEntries(EntityState.Modified)
 .Where(entry => entry.Entity is Employee);
 foreach (var entry in entries)
 {
 var salaryProp = entry.GetModifiedProperties()

452

 CHAPTER 12 CUSTOMIZING ENTITY FRAMEWORK OBJECTS

 .FirstOrDefault(p => p == "Salary");
 if (salaryProp != null)
 {
 var originalSalary = Convert.ToDecimal(
 entry.OriginalValues[salaryProp]);
 var currentSalary = Convert.ToDecimal(
 entry.CurrentValues[salaryProp]);
 if (originalSalary != currentSalary)
 {
 if (currentSalary > originalSalary * 1.1M)
 throw new ApplicationException(
 "Can't increase salary more than 10%");
 }
 }
 }
 }
}

The following is the output of the code in Listing 12-8:

Oops, tried to increase a salary too much!

Employees

Roger Smith makes $108,000.00/year

Jane Hall makes $81,500.00/year

How It Works
In the SavingChanges event handler, we first retrieve all the object state entries for the Employee entity
that are in the modified state. For each of them, we look for a modified “Salary” property. If we find that
the Salary property has been modified, we retrieve both its current value, which represents the value
after modification, and its original value. If they differ, we check to see if they differ by more than 10%. If
they do, then we throw an ApplicationException. Otherwise, we simply return and let Entity Framework
save the changes to the database.

453

CHAPTER 12 CUSTOMIZING ENTITY FRAMEWORK OBJECTS

12-9. Retrieving the Original Association for
Independent Associations

Problem
You have an independent association. You want to retrieve the original association prior to saving the
changes to the database.

Solution
Suppose you have a model representing an order and the order’s status (see Figure 12-12). The
fulfillment of an order goes through three stages, as represented in the OrderStatus entity. First, the
order is assembled. Next, the order is tested. Finally, the order is shipped. Your application has a
business rule that confines all orders to this three-step process. You want to enforce this rule by
throwing an exception if an order goes, for example, from assemble to ship without first being tested.
The association between Order and OrderStatus is an independent association.

Figure 12-12. A model with orders and their status

To solve this problem, we wire in a handler for the SavingChanges event. In this handler, we check to
verify that the order status changes follow the prescribed sequence. The code in Listing 12-9 provides the
details.

Listing 12-9. Enforcing the sequence of fulfillment steps for an order

class Program
{
 static void Main(string[] args)
 {
 RunExample();
 }

 static void RunExample()
 {
 using (var context = new EFRecipesEntities())
 {
 // static order status
 var assemble = new OrderStatus { OrderStatusId = 1,

454

 CHAPTER 12 CUSTOMIZING ENTITY FRAMEWORK OBJECTS

 Status = "Assemble" };
 var test = new OrderStatus { OrderStatusId = 2,
 Status = "Test" };
 var ship = new OrderStatus { OrderStatusId = 3,
 Status = "Ship" };
 context.OrderStatus.AddObject(assemble);
 context.OrderStatus.AddObject(test);
 context.OrderStatus.AddObject(ship);

 var order = new Order { Description = "HAL 9000 Supercomputer",
 OrderStatus = assemble };
 context.Orders.AddObject(order);
 context.SaveChanges();

 order.OrderStatus = ship;
 try
 {
 context.SaveChanges();
 }
 catch (Exception)
 {
 Console.WriteLine("Oops...better test first.");
 }
 order.OrderStatus = test;
 context.SaveChanges();
 order.OrderStatus = ship;
 context.SaveChanges();
 }

 using (var context = new EFRecipesEntities())
 {
 foreach (var order in context.Orders)
 {
 Console.WriteLine("Order {0} [{1}], status = {2}",
 order.OrderId.ToString(),
 order.Description,
 order.OrderStatus.Status);
 }
 }
 }
}

public partial class EFRecipesEntities
{
 partial void OnContextCreated()
 {
 this.SavingChanges += new EventHandler(EFRecipesEntities_SavingChanges);
 }

 void EFRecipesEntities_SavingChanges(object sender, EventArgs e)
 {
 // all the tracked orders

455

CHAPTER 12 CUSTOMIZING ENTITY FRAMEWORK OBJECTS

 var orders = this.ObjectStateManager.GetObjectStateEntries(
 EntityState.Modified | EntityState.Unchanged)
 .Where(entry => entry.Entity is Order)
 .Select(entry => entry.Entity as Order);

 foreach (var order in orders)
 {
 var deletedEntry = this.ObjectStateManager
 .GetObjectStateEntries(EntityState.Deleted)
 .Where(entry => entry.IsRelationship &&
 entry.EntitySet.Name == order
 .OrderStatusReference
 .RelationshipSet.Name).First();
 if (deletedEntry != null)
 {
 EntityKey deletedKey = null;
 if ((EntityKey)deletedEntry.OriginalValues[0] == order.EntityKey)
 {
 deletedKey = deletedEntry.OriginalValues[1] as EntityKey;
 }
 else if ((EntityKey)deletedEntry.OriginalValues[1] ==
 order.EntityKey)
 {
 deletedKey = deletedEntry.OriginalValues[0] as EntityKey;
 }
 if (deletedKey != null)
 {
 var oldStatus = this.GetObjectByKey(deletedKey)
 as OrderStatus;

 // better be going to the next status
 if (oldStatus.OrderStatusId + 1 !=
 order.OrderStatus.OrderStatusId)
 throw new ApplicationException(
 "Can't transition to that order status!");
 }
 }
 }
 }
}

The following is the output of the code in Listing 12-9:

Oops...better test first.

Order 2 [HAL 9000 Supercomputer], status = Ship

456

 CHAPTER 12 CUSTOMIZING ENTITY FRAMEWORK OBJECTS

How It Works
We wired in a handler for the SavingChanges event. In this handler, we picked out the previous order
status and the new (current) order status and verified that the new status id is one greater than the
previous id. Of course, the code in Listing 12-9 doesn’t look quite that simple. Here’s how to find both
the original order status and the new one.

For independent associations, in the object state manager there is an entry for the order, the order
status, and a relationship entry with one end pointing to the order and the other end pointing to the
order status. The relationship entry is identified by IsRelationship set to true.

First, we get all the orders tracked in the object context. To do this, we use the object state manager
to get all the entries that are either modified or unchanged. We use a Where clause to filter this down to
just entities of type Order.

For each order, we get all object state entries that are deleted. Then we use a Where clause to pick out
just the relationship entries (IsRelationship is true) in the OrderStatus relationship set. Because there
should be at most one of these for any order, we pick the first. We look for the deleted relationships
because when a relationship is changed, the original one is marked deleted, and the new one is created.
Because we’re interested in the previous relationship, we look for a deleted relationship between the
order and the order status.

Once we have the deleted relationship, we need to look at the original values for the entry to find
both the order end and the order status end. Be careful not to reference the current values here. Because
the relationship is deleted, referencing the current values will cause an exception. As we don’t know
which end of the relationship is the order and which end is the order status, we test both.

With the original order status entity in hand, we simply check whether the original OrderStatusId is
one less than the new OrderStatusId. We created the OrderStatus objects so that their ids would
increment by one just to make the code a little easier.

12-10. Retrieving XML

Problem
You want to treat a scalar property of type string as XML data.

Solution
Let’s say you have an XML column in a table in your database. When you import this table into a model,
Entity Framework interpreted the data type as a string rather than XML (see Figure 12-13). The current
version of Entity Framework does not expose XML data types from the database. You want to work with
this property as if it were an XML data type.

457

CHAPTER 12 CUSTOMIZING ENTITY FRAMEWORK OBJECTS

Figure 12-13. A model with a Candidate entity. The Resume property is of type string in the model but of

type XML in the database.

Our Candidate entity’s Resume property is of type string in the model, but type XML in the database. To
manipulate the property as if it were type XML, we’ll make the property private and expose a
CandidateResume property as XML.

Select the Resume property and view its properties. Change the setter and getter to private. Next, we
need to expose a new property that will surface the resume as XML. The code in Listing 12-10 provides
the details.

With the CandidateResume property, we can manipulate the Resume natively by using the XML API.
In Listing 12-10, we create a strongly typed resume using XElement class and assign it to the
CandidateResume property, which assigns the original string Resume property inside the setter. After
saving the Candidate entity to the database, we later update the Resume element inside the
CandidateResume and update the changes made to the database.

Listing 12-10. Using the CandidateResume property to expose the resume as XML

class Program
{
 static void Main(string[] args)
 {
 RunExample();
 }

 static void RunExample()
 {
 using (var context = new EFRecipesEntities())
 {
 var resume = new XElement("Person",
 new XElement("Name", "Robin St.James"),
 new XElement("Phone", "817 867-5201"),
 new XElement("FirstOffice", "Dog Catcher"),
 new XElement("SecondOffice", "Mayor"),
 new XElement("ThirdOffice", "State Senator"));
 var can = new Candidate { Name = "Robin St.James",
 CandidateResume = resume };
 context.Candidates.AddObject(can);
 context.SaveChanges();
 can.CandidateResume.SetElementValue("Phone", "817 555-5555");
 context.SaveChanges();
 }

458

 CHAPTER 12 CUSTOMIZING ENTITY FRAMEWORK OBJECTS

 using (var context = new EFRecipesEntities())
 {
 foreach (var can in context.Candidates)
 {
 Console.WriteLine("{0}", can.Name);
 Console.WriteLine("Phone: {0}",
 can.CandidateResume.Element("Phone").Value);
 Console.WriteLine("First Political Office: {0}",
 can.CandidateResume.Element("FirstOffice").Value);
 Console.WriteLine("Second Political Office: {0}",
 can.CandidateResume.Element("SecondOffice").Value);
 Console.WriteLine("Third Political Office: {0}",
 can.CandidateResume.Element("ThirdOffice").Value);
 }
 }
 }
}

public partial class Candidate
{
 private XElement candidateResume = null;

 public XElement CandidateResume
 {
 get
 {
 if (candidateResume == null)
 {
 candidateResume = XElement.Parse(this.Resume);
 candidateResume.Changed += (s, e) =>
 {
 this.Resume = candidateResume.ToString();
 };
 }
 return candidateResume;
 }
 set
 {
 candidateResume = value;
 candidateResume.Changed += (s, e) =>
 {
 this.Resume = candidateResume.ToString();
 };
 this.Resume = value.ToString();
 }
 }
}

The following is the output of the code in Listing 12-10:

459

CHAPTER 12 CUSTOMIZING ENTITY FRAMEWORK OBJECTS

Robin St.James

Phone: 817 555-5555

First Political Office: Dog Catcher

Second Political Office: Mayor

Third Political Office: State Senator

How It Works
The current release of Entity Framework does not support the XML data type. Given the importance of
XML, it is likely that some future version will provide full support. In this recipe, we created a new
property, CandidateResume, which exposes the candidate’s resume as XML.

The code in Listing 12-10 demonstrates using the CandidateResume property in place of the
Resume property. For both the getter and setter, we wired in a handler for the Changed event on the XML.
This handler keeps the Resume property in sync with the CandidateResume property. Entity Framework
will look at the Resume property when it comes time to persist an instance of the Candidate entity. Only
changes to the Resume property will be saved. We need to reflect changes in the CandidateResume
property to the Resume property for the database to stay in sync (via Entity Framework).

12-11. Applying Server-Generated Values to Properties

Problem
You have several columns in a table whose values are generated by the database. You want to have Entity
Framework set the corresponding entity properties after inserts and updates.

Solution
Suppose you have a table like the one in Figure 12-14.

460

 CHAPTER 12 CUSTOMIZING ENTITY FRAMEWORK OBJECTS

Figure 12-14. The ParkingTicket table with the TicketId, CreateDate, PaidDate, and TimeStamp columns

generated by the database

Also, let’s say you have created a trigger, like the one in Listing 12-11, so that the PaidDate column is
populated when the Paid column is set to true. You’ve also set the TicketId to be an Identity column and
CreateDate to default to the current date. With the trigger in Listing 12-11 and the automatically
generated values, only the Amount and Paid columns are required for an insert.

Listing 12-11. A trigger that sets the PaidDate column when the Paid bit is set to true

create trigger Chapter12.UpdateParkingTicket on Chapter12.ParkingTicket
for update
as
update Chapter12.ParkingTicket
 set PaidDate = getdate()
 from Chapter12.ParkingTicket
 join inserted i on ParkingTicket.TicketId = i.TicketId
 where i.Paid = 1

After an insert or an update, you want Entity Framework to populate the entity with the values
generated by the database. To create the model that supports this, do the following:

1. Right-click the project and select Add New Item. Add a new ADO.NET Entity
Data Model. Import the ParkingTicket table. The resulting model should look
like the one shown in Figure 12-15.

2. Right-click on each of the scalar properties in the ParkingTicket entity. View
the properties of each. Notice that the StoreGeneratedPattern property is set to
Identity for the TicketId. For CreateDate and TimeStamp the
StoreGeneratedPattern property is set to Computed. The
StoreGeneratedPattern property for PaidDate is not set. Change this value to
Computed.

461

CHAPTER 12 CUSTOMIZING ENTITY FRAMEWORK OBJECTS

Figure 12-15. The model with the ParkingTicket entity

Listing 12-12. Code to check if the database generated values are populated back to the properties on

inserts and updates

using (var context = new EFRecipesEntities())
{
 context.ParkingTickets.AddObject(new ParkingTicket
 { Amount = 132.0M, Paid = false });
 context.ParkingTickets.AddObject(new ParkingTicket
 { Amount = 255.0M, Paid = false });
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 foreach (var ticket in context.ParkingTickets)
 {
 Console.WriteLine("Ticket: {0}", ticket.TicketId);
 Console.WriteLine("Date: {0}", ticket.CreateDate.ToShortDateString());
 Console.WriteLine("Amount: {0}", ticket.Amount.ToString("C"));
 Console.WriteLine("Paid: {0}",
 ticket.PaidDate.HasValue ?
 ticket.PaidDate.Value.ToShortDateString() : "Not Paid");
 Console.WriteLine();
 ticket.Paid = true; // just paid ticket!
 }

 // save all those Paid flags
 context.SaveChanges();
 foreach (var ticket in context.ParkingTickets)
 {
 Console.WriteLine("Ticket: {0}", ticket.TicketId);
 Console.WriteLine("Date: {0}", ticket.CreateDate.ToShortDateString());
 Console.WriteLine("Amount: {0}", ticket.Amount.ToString("C"));
 Console.WriteLine("Paid: {0}",
 ticket.PaidDate.HasValue ?
 ticket.PaidDate.Value.ToShortDateString() : "Not Paid");

462

 CHAPTER 12 CUSTOMIZING ENTITY FRAMEWORK OBJECTS

 Console.WriteLine();
 }
}

The following is the output of the code in Listing 12-12:

Ticket: 5

Date: 3/24/2010

Amount: $132.00

Paid: Not Paid

Ticket: 6

Date: 3/24/2010

Amount: $255.00

Paid: Not Paid

Ticket: 5

Date: 3/24/2010

Amount: $132.00

Paid: 3/24/2010

Ticket: 6

Date: 3/24/2010

Amount: $255.00

Paid: 3/24/2010

463

CHAPTER 12 CUSTOMIZING ENTITY FRAMEWORK OBJECTS

How It Works
When you set a property’s StoreGeneratedPattern to Identity or Computed, Entity Framework knows
that the database will generate the value. Entity Framework will retrieve these columns from the
database with a subsequent select statement.

When the StoreGeneratePattern is set to Identity, Entity Framework retrieves the database
generated value just once at the time of insert. When the StoreGeneratedPattern is set to Computed,
Entity Framework will refresh the value on each insert and update. In this example, the PaidDate column
was set by the trigger (because we set Paid to true) on update and Entity Framework acquired this value
after the update.

12-12. Validating Entities on SavingChanges

Problem
You want to validate entities before they are saved to the database.

Solution
Suppose you have a model like the one shown in Figure 12-16.

Figure 12-16. A model for customers and their orders

There are certain business rules around customers and their orders. You want to make sure that these
rules are checked before an order is saved to the database. Let’s say you have the following rules:

• The order date on an order must be after the current date

• The ship date on an order must be after the order date

• An order cannot be shipped unless it is in an “Approved” status

464

 CHAPTER 12 CUSTOMIZING ENTITY FRAMEWORK OBJECTS

• If an order amount is over $5,000 there is not shipping charge

• An order that has shipped cannot be deleted

To check if changes to an entity violates these rules, we’ll define an IValidator interface that has just
one method: Validate(). Any of our entity types can implement this interface. For this example, we’ll
show the implementation for the SalesOrder entity. We’ll handle the SavingChanges event and call
Validate() on all entities that implement IValidator. This will allow us to intercept and validate entities
before they are saved to the database. The code in Listing 12-13 provides the details.

Listing 12-13. Validating SaleOrder entities in the SavingChanges event

class Program
{
 static void Main(string[] args)
 {
 RunExample();
 }

 static void RunExample()
 {
 // bad order date
 using (var context = new EFRecipesEntities())
 {
 var customer = new Customer { Name = "Phil Marlowe" };
 var order = new SalesOrder { OrderDate = DateTime.Parse("3/12/18"),
 Amount = 19.95M, Status = "Approved",
 ShippingCharge = 3.95M,
 Customer = customer };
 context.Customers.AddObject(customer);
 try
 {
 context.SaveChanges();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
 }

 // order shipped before it was ordered
 using (var context = new EFRecipesEntities())
 {
 var customer = new Customer { Name = "Phil Marlowe" };
 var order = new SalesOrder { OrderDate = DateTime.Parse("3/12/10"),
 Amount = 19.95M, Status = "Approved",
 ShippingCharge = 3.95M,
 Customer = customer };
 context.Customers.AddObject(customer);
 context.SaveChanges();
 try
 {

465

CHAPTER 12 CUSTOMIZING ENTITY FRAMEWORK OBJECTS

 order.Shipped = true;
 order.ShippedDate = DateTime.Parse("3/10/10");
 context.SaveChanges();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
 }

 // order shipped, but not approved
 using (var context = new EFRecipesEntities())
 {
 var customer = new Customer { Name = "Phil Marlowe" };
 var order = new SalesOrder { OrderDate = DateTime.Parse("3/12/10"),
 Amount = 19.95M, Status = "Pending",
 ShippingCharge = 3.95M,
 Customer = customer };
 context.Customers.AddObject(customer);
 context.SaveChanges();
 try
 {
 order.Shipped = true;
 order.ShippedDate = DateTime.Parse("3/13/10");
 context.SaveChanges();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
 }

 // order over $5,000 and shipping not free
 using (var context = new EFRecipesEntities())
 {
 var customer = new Customer { Name = "Phil Marlowe" };
 var order = new SalesOrder { OrderDate = DateTime.Parse("3/12/10"),
 Amount = 6200M, Status = "Approved",
 ShippingCharge = 59.95M,
 Customer = customer };
 context.Customers.AddObject(customer);
 context.SaveChanges();
 try
 {
 order.Shipped = true;
 order.ShippedDate = DateTime.Parse("3/13/10");
 context.SaveChanges();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }

466

 CHAPTER 12 CUSTOMIZING ENTITY FRAMEWORK OBJECTS

 }

 // order deleted after it was shipped
 using (var context = new EFRecipesEntities())
 {
 var customer = new Customer { Name = "Phil Marlowe" };
 var order = new SalesOrder { OrderDate = DateTime.Parse("3/12/10"),
 Amount = 19.95M, Status = "Approved",
 ShippingCharge = 3.95M,
 Customer = customer };
 context.Customers.AddObject(customer);
 context.SaveChanges();
 order.Shipped = true;
 order.ShippedDate = DateTime.Parse("3/13/10");
 context.SaveChanges();
 try
 {
 context.DeleteObject(order);
 context.SaveChanges();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
 }
 }
}

public partial class EFRecipesEntities
{
 partial void OnContextCreated()
 {
 this.SavingChanges +=new EventHandler(EFRecipesEntities_SavingChanges);
 }

 private void EFRecipesEntities_SavingChanges(object sender, EventArgs e)
 {
 var entries = this.ObjectStateManager
 .GetObjectStateEntries(EntityState.Added |
 EntityState.Modified |
 EntityState.Deleted)
 .Where(entry => entry.Entity is IValidator)
 .Select(entry => entry).ToList();
 foreach (var entry in entries)
 {
 var entity = entry.Entity as IValidator;
 entity.Validate(entry);
 }
 }
}

467

CHAPTER 12 CUSTOMIZING ENTITY FRAMEWORK OBJECTS

public interface IValidator
{
 void Validate(ObjectStateEntry entry);
}

public partial class SalesOrder : IValidator
{
 public void Validate(ObjectStateEntry entry)
 {
 if (entry.State == EntityState.Added)
 {
 if (this.OrderDate > DateTime.Now)
 throw new ApplicationException(
 "OrderDate cannot be after the current date");
 }
 else if (entry.State == EntityState.Modified)
 {
 if (this.ShippedDate < this.OrderDate)
 {
 throw new ApplicationException(
 "ShippedDate cannot be before OrderDate");
 }
 if (this.Shipped.Value && this.Status != "Approved")
 {
 throw new ApplicationException(
 "Order cannot be shipped unless it is Approved");
 }
 if (this.Amount > 5000M && this.ShippingCharge != 0)
 {
 throw new ApplicationException(
 "Orders over $5000 ship for free");
 }
 }
 else if (entry.State == EntityState.Deleted)
 {
 if (this.Shipped.Value)
 throw new ApplicationException(
 "Shipped orders cannot be deleted");
 }
 }
}

The following is the output of the code in Listing 12-13:

OrderDate cannot be after the current date

ShippedDate cannot be before OrderDate

Order cannot be shipped unless it is Approved

468

 CHAPTER 12 CUSTOMIZING ENTITY FRAMEWORK OBJECTS

Orders over $5000 ship for free

Shipped orders cannot be deleted

How It Works
When you call SaveChanges(), Entity Framework raises the SavingChanges event before it saves the
object changes to the database. We implemented the partial method OnContextCreated() so that we can
wire in a handler for this event. When SavingChanges is raised, we handle the event by calling the
Validate() method on every entity that implements the IValidator interface. We’ve shown an
implementation of this interface that supports our business rules. If you have business rules for other
entity types in your model, you could implement the IValidator interface for them.

Best Practice

Business rules in many applications almost always change over time. Industry or government regulation
changes, continuous process improvement programs, evolving fraud prevention and many other factors
influence the introduction of new business rules and changes to existing rules. It’s a best practice to
organize your code base so that the concerns around business rule validation and enforcement are more
easily maintained. Often this means keeping all of this code in a separate assembly or in a separate folder
in the project. Defining and implementing interfaces, such as the IValidator interface in this recipe, help to
ensure that business rules validation is uniformly applied.

469

C H A P T E R 13

Improving Performance

The recipes in this chapter cover a wide range of specific ways to improve the performance of your Entity
Framework applications. In many cases, simple changes to a query, changes to the model, or even
pushing startup overhead to a different part of application can significantly improve some aspect of your
application’s performance.

13-1. Optimizing Queries in a Table per Type
Inheritance Model

Problem
You want to improve the performance of a query in a model with Table per Type inheritance.

Solution
Let’s say you have a simple Table per Type inheritance model like the one shown in Figure 13-1.

Figure 13-1. A simple Table per Type inheritance model for Salaried and Hourly employees

471

CHAPTER 13 IMPROVING PERFORMANCE

You want to query this model for a given employee. To improve the performance of the query if you
know the type of employee, use the OfType<T>() operator to narrow the result to entities of the specific
type, as shown in Listing 13-1.

Listing 13-1. Improving the performance of a query against a Table per Type inheritance model if you

know the entity type

using (var context = new EFRecipesEntities())
{
 context.Employees.AddObject(new SalariedEmployee { Name = "Robin Rosen",
 Salary = 89900M });
 context.Employees.AddObject(new HourlyEmployee { Name = "Steven Fuller",
 Rate = 11.50M });
 context.Employees.AddObject(new HourlyEmployee { Name = "Karen Steele",
 Rate = 12.95m });
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 // a typical way to get Steven Fuller's entity
 var emp1 = context.Employees.Single(e => e.Name == "Steven Fuller");
 Console.WriteLine("{0}'s rate is: {1} per hour", emp1.Name,
 ((HourlyEmployee)emp1).Rate.ToString("C"));

 // slightly more efficient way if we know that Steven is an HourlyEmployee
 var emp2 = context.Employees.OfType<HourlyEmployee>()
 .Single(e => e.Name == "Steven Fuller");
 Console.WriteLine("{0}'s rate is: {1} per hour", emp2.Name,
 emp2.Rate.ToString("C"));
}

The following is the output of the code in Listing 13-1:

Steven Fuller's rate is: $11.50 per hour
Steven Fuller's rate is: $11.50 per hour

How It Works
The key to making the query in a Table per Type inheritance model more efficient is to explicitly tell
Entity Framework the type of the expected result. This allows Entity Framework to generate code that
limits the search to the specific tables that hold the values for the base type and the derived type.
Without this information, Entity Framework has to generate a query that pulls together all the results
from all the tables holding derived type values and then determines the appropriate type for
materialization. Depending on the number of derived types and the complexity of your model, this may
require substantially more work than necessary. Of course, this assumes that you know exactly what
derived type the query will return.

472

 CHAPTER 13 IMPROVING PERFORMANCE

13-2. Retrieving a Single Entity Using an Entity Key

Problem
You want to retrieve a single entity using an entity key.

Solution
Suppose you have a model with an entity type representing a painting. The model might look like the
one in Figure 13-2.

Figure 13-2. The Painting entity type in our model

To retrieve a particular entity using an entity key can be more efficient than using a where clause. To
retrieve an entity using an entity key, use the GetObjectByKey() method, as shown in Listing 13-2.

Listing 13-2. Retrieving an entity using an entity key

using (var context = new EFRecipesEntities())
{
 context.Paintings.AddObject(new Painting { AccessionNumber = "PN001",
 Name = "Sunflowers",
 Artist = "Rosemary Golden",
 LastSalePrice = 1250M });
 context.Paintings.AddObject(new Painting { AccessionNumber = "PN002",
 Name = "Red River",
 Artist = "Alex Jones",
 LastSalePrice = 1800M });
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 // let's assume we already know the key for the painting
 var p = context.GetObjectByKey(
 new System.Data.EntityKey(
 "EFRecipesEntities.Paintings",
 "AccessionNumber", "PN001"));
 Painting painting = (Painting) p;

473

CHAPTER 13 IMPROVING PERFORMANCE

 Console.WriteLine("The painting with accession number {0}",
 painting.AccessionNumber);
 Console.WriteLine("\tName: {0}", painting.Name);
 Console.WriteLine("\tArtist: {0}", painting.Artist);
 Console.WriteLine("\tSale Price: {0}",
 painting.LastSalePrice.ToString("C"));
}

The following is the output of the code in Listing 13-2:

The painting with accession number PN001

 Name: Sunflowers

 Artist: Rosemary Golden

 Sale Price: $1,250.00

How It Works
At first, using the GetObjectByKey() method seems like a lot more work than using a simple LINQ
expression with a where clause. The call to GetObjectByKey() is more noisy, and the returned object must
be cast to our entity type. The one advantage that GetObjectByKey() has is that it can retrieve the entity
from the object context without making a round trip to the database. Using a LINQ expression with a
where clause and a first() or single() method call will always cause a round trip to the database even if
the entity has been previously retrieved and is in the object context.

Bypassing the database and retrieving the entity directly from the object context is the primary
performance benefit we might see from the GetObjectByKey() method. This assumes, of course, that
some previous operation has already fetched the entity from the database and placed it into the object
context.

GetObjectByKey() will throw an exception if an entity with the given entity key cannot be found in
either the object context or in the database. The TryGetObjectByKey() method does the same thing as the
GetObjectByKey() method but will not throw an exception if the entity can’t be found.

There are a couple of important things to remember about the GetObjectByKey() method. First, it
won’t return entities from the object context if they are in the inserted state. However, it will return
objects that are marked for deletion.

If MergeOption.NoTracking is set, calls to GetObjectByKey() will make a round trip to the database
because the MergeOption.NoTracking will keep objects from being inserted into the object context after
they are materialized. If the objects are not in the object context, then GetObjectByKey() has no choice
but to retrieve the objects from the database.

474

 CHAPTER 13 IMPROVING PERFORMANCE

13-3. Retrieving Entities for Read Only

Problem
You want to efficiently retrieve some entities that you will display only and not need to update.

Solution
A very common activity in many applications, especially websites, is to let the user browse through data.
In many cases, the user will never update the data. For these situations, we can make our code a lot more
efficient if we avoid the management overhead of the object context. We can do this using the
NoTracking merge option.

Let’s say you have an application that manages appointments for doctors. Your model may look
something like the one in Figure 13-3.

Figure 13-3. A model for managing doctors and their appointments

To retrieve the doctors and the companies they work for without adding them to the object context, set
the MergeOption to MergeOption.NoTracking as we have in Listing 13-3.

Listing 13-3. Doing a simple query using the NoTracking merge option

using (var context = new EFRecipesEntities())
{
 var company = new Company { Name = "Paola Heart Center" };
 var doc1 = new Doctor { Name = "Jill Mathers", Company = company };
 var doc2 = new Doctor {Name = "Robert Stevens", Company = company};
 var app1 = new Appointment { AppointmentDate = DateTime.Parse("3/18/2010"),
 Patient = "Karen Rodgers", Doctor = doc1 };
 var app2 = new Appointment { AppointmentDate = DateTime.Parse("3/20/2010"),
 Patient = "Steven Cook", Doctor = doc2 };
 context.Companies.AddObject(company);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 Console.WriteLine("Appointments for Doctors...");

475

CHAPTER 13 IMPROVING PERFORMANCE

 context.Doctors.MergeOption = MergeOption.NoTracking;
 var doctors = context.Doctors.Include("Company");
 foreach (var doctor in doctors)
 {
 Console.WriteLine("Doctor: {0} [{1}]", doctor.Name, doctor.Company.Name);
 Console.WriteLine("Appointments: {0}",
 doctor.Appointments.Count().ToString());
 }
}

The following is the output of the code in Listing 13-3:

Appointments for Doctors...

Doctor: Jill Mathers [Paola Heart Center]

Appointments: 1

Doctor: Robert Stevens [Paola Heart Center]

Appointments: 1

How It Works
ObjectSet<T> and ObjectQuery<T> expose a MergeOption property. This property can be set to a number
of different values including the NoTracking option. With NoTracking, the objects resulting from a query
are not tracked in the object context. In our case, this includes the doctors and the companies the
doctors work for because our query explicitly included these. If we were to later load related entities such
as the appointments, they also would be excluded from the object context.

The default merge option is AppendOnly. This is why, by default, the results of our queries are tracked
in the object context. This makes updating and deleting objects effortless, but at the cost of some
memory overhead. For applications that stream large numbers of objects, such as browsing products at
an ecommerce web site, using the NoTracking option often results in less resource overhead and better
application performance.

There are a couple of things to note about the NoTracking option. If you retrieve an entity with
NoTracking on and later need to update the entity, you can simply Attach() it to the object context
before you make any changes.

If your model is using foreign key associations, the foreign keys are tracked as part of the
associations and are always returned regardless of the current merge option value. However, the
EntityReference.EntityKey values will be null when you use NoTracking. In our example, the CompanyId
properties will have meaning values, but the CompanyReference.EntityKey values will be null.

When you set a tracking option on an ObjectSet<T> (as we do in Listing 13-3), the merge option
affects all future queries against the object set. If you set a merge option on an ObjectQuery<T>, it will not
affect the merge option of the underlying object set.

476

 CHAPTER 13 IMPROVING PERFORMANCE

13-4. Improving the Startup Time

Problem
You want to improve the startup time of the model.

Solution
When you execute a query against a model, Entity Framework converts the model into a collection of
Entity SQL views. These views contain all the necessary Entity SQL to query the store model directly.
Once these views are created, they are cached and reused during subsequent requests. These views can
be created at design time, which eliminates the need to create them at runtime during a cold startup.

Let’s say you have a model that looks like the one in Figure 13-4.

Figure 13-4. A relatively simple model that can benefit from pregenerated views

477

CHAPTER 13 IMPROVING PERFORMANCE

To pregenerate the views for this model, we’ll use a T4 template. We can write the T4 template, but the
Entity Framework development team has already created a sample T4 template that we can use.

To start off, we need to get a copy of the T4 template created by the Entity Framework development
team. We include the file CSharp.Views.tt in our example download available from Apress.com. (You can
download the example code in a zip file, from the book’s catalog page at
http://apress.com/book/view/1430227036. Look for the “Source Code” link under the book’s cover
image.) Use CSharp.Views.tt as your T4 template in this recipe. To use this template and pregenerate the
views, do the following:

1. Copy the CSharp.Views.tt template file into the same directory as the model.
This is the directory that contains the .edmx file.

2. Rename the template to match the name of the .edmx file. In our case, rename
the file to Recipe4.Views.tt.

3. Add the Recipe4.Views.tt template file to the project. Once it is part of the
project, right-click the Recipe4.Views.tt file in the Solution Explorer and select
Run Custom Tool. This will create a C# file beneath Recipe4.Views.tt. If you
generate the file and view its properties, you will notice that the Build Action is
set to Compile. This generated code will be built as part of the project.

4. Right-click the Recipe4.Views.tt file in the Solution Explorer and select Run
Custom Tool. This will generate the corresponding Recipe4.Views.cs files to be
generated from the template.

The build action for the Recipe4.Views.cs files is set to Compile. When your project builds, this file,
which contains the generated views, will be built as part of your project.

How It Works
The first use of an object context in an application domain (AppDomain) causes the views for the model to
be generated if they don’t already exist in the application domain. View generation, although not often
expensive, does impose some initial startup cost. For larger models, this startup cost can be significant.
In this recipe, we generated the code for the views using a T4 template. Because this precompiled view is
part of the project and present in the application domain, no view creation is required. This eliminates
the initial startup costs.

To demonstrate the effects of precompiling the views for the simple model in Figure 13-4, we used
the code in Listing 13-4 to time the cost of an initial query. Here we ran the code ten times with and
without the precompiled views. Because the views are cached for the application domain, we actually
ran the test application ten times for each scenario rather than putting it in a loop for a single run. Our
results are shown in Table 13-1.

Listing 13-4. Measuring the execution time of a simple query against our model

static void GetTimes()
{
 using (var context = new EFRecipesEntities())
 {
 var stopwatch = new Stopwatch();
 stopwatch.Start();
 var lawyer = context.People.Include("College")
 .OfType<Lawyer>().Include("CourtDates").First();

478

http://apress.com/book/view/1430227036

 CHAPTER 13 IMPROVING PERFORMANCE

 stopwatch.Stop();
 Console.WriteLine("Execution Time: {0}", stopwatch.ElapsedMilliseconds);
 }
}

Table 13-1. Runtimes with and without Precompiled Views

Run Without Precompiled Views (ms) With Precompiled Views (ms)

1 419 388

2 420 394

3 416 387

4 412 388

5 413 388

6 413 386

7 419 385

8 418 387

9 414 393

10 414 387

Average 415 388.3

For the ten runs, the average time to execute the query, including the view compile time, was 415 ms.
The average for the same query after ten runs with the views precompiled from the code generated by
the T4 template was 388.3 ms. For this relatively simple model, precompiling the views saved, on
average, a little more than 26 ms. For more complex models, we would expect significantly longer
startup times without precompiling and more savings with precompiling.

The other way to generate views for a model is to use the EdmGen.exe utility. This can be a little
tedious because EdmGen.exe requires three separate files representing the storage, conceptual, and
mapping layers from the .edmx file.

13-5. Efficiently Building a Search Query

Problem
You want to write a search query using LINQ so that it is translated to more efficient SQL.

479

CHAPTER 13 IMPROVING PERFORMANCE

Solution
Let’s say you have a model like the one in Figure 13-5.

Figure 13-5. A simple model with a Reservation entity

You want to write a search query using LINQ to find reservations for a particular person or reservations
on a given date or both. You might use the let keyword as we did in the first query in Listing 13-5 to
make the LINQ expression fairly clean and easy to read. However, the let keyword is translated to more
complex and often less efficient SQL. Instead of using the let keyword, consider explicitly creating two
conditions in the where clause, as we did in the second query in Listing 13-5.

Listing 13-5. Using both the let keyword and explicit conditions in the query

using (var context = new EFRecipesEntities())
{
 context.Reservations.AddObject(new Reservation { Name = "James Jordan",
 ResDate = DateTime.Parse("4/18/10")});
 context.Reservations.AddObject(new Reservation { Name = "Katie Marlowe",
 ResDate = DateTime.Parse("3/22/10")});
 context.Reservations.AddObject(new Reservation { Name = "Roger Smith",
 ResDate = DateTime.Parse("4/18/10")});
 context.Reservations.AddObject(new Reservation { Name = "James Jordan",
 ResDate = DateTime.Parse("5/12/10") });
 context.Reservations.AddObject(new Reservation { Name = "James Jordan",
 ResDate = DateTime.Parse("6/22/10") });
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 DateTime? searchDate = null;
 string searchName = "James Jordan";

 Console.WriteLine("More complex SQL...");
 var query2 = from reservation in context.Reservations
 let dateMatches = searchDate == null ||
 reservation.ResDate == searchDate
 let nameMatches = searchName == string.Empty ||
 reservation.Name.Contains(searchName)
 where dateMatches && nameMatches
 select reservation;

480

 CHAPTER 13 IMPROVING PERFORMANCE

 foreach (var reservation in query2)
 {
 Console.WriteLine("Found reservation for {0} on {1}", reservation.Name,
 reservation.ResDate.ToShortDateString());
 }

 Console.WriteLine("Cleaner SQL...");
 var query1 = from reservation in context.Reservations
 where (searchDate == null ||
 reservation.ResDate == searchDate) &&
 (searchName == string.Empty ||
 reservation.Name.Contains(searchName))
 select reservation;
 foreach (var reservation in query1)
 {
 Console.WriteLine("Found reservation for {0} on {1}", reservation.Name,
 reservation.ResDate.ToShortDateString());
 }
}

The following is the output of the code in Listing 13-5:

More complex SQL...

Found reservation for James Jordan on 4/18/2010

Found reservation for James Jordan on 5/12/2010

Found reservation for James Jordan on 6/22/2010

Cleaner SQL...

Found reservation for James Jordan on 4/18/2010

Found reservation for James Jordan on 5/12/2010

Found reservation for James Jordan on 6/22/2010

How It Works
Writing conditions inline, as we did in the second query in Listing 13-5, is not very good for readability or
maintainability. Typically, we would use the let keyword to make the code cleaner and more readable.
In some cases, however, this leads to more complex and often less efficient SQL code.

Let’s take a look at the SQL generated by both approaches. Listing 13-6 shows the SQL generated for
the first query. Notice that the where clause contains a case statement with quite a bit of cast’ing going
on. If we had more parameters in our search query, beyond just name and reservation date, the resulting
SQL statement would get even more complicated.

481

CHAPTER 13 IMPROVING PERFORMANCE

Listing 13-7 shows the SQL generated from the second query, where we created the conditions
inline. This query is simpler and likely more efficient at runtime.

Listing 13-6. SQL generated when let is used in the LINQ query

SELECT
[Extent1].[ReservationId] AS [ReservationId],
[Extent1].[ResDate] AS [ResDate],
[Extent1].[Name] AS [Name]
FROM [Chapter13].[Reservation] AS [Extent1]
WHERE (
 (CASE WHEN (@p__linq__0 IS NULL OR
 @p__linq__1 = CAST([Extent1].[ResDate] AS datetime2))
 THEN cast(1 as bit)
 WHEN (NOT (@p__linq__0 IS NULL OR
 @p__linq__1 = CAST([Extent1].[ResDate] AS datetime2)))
 THEN cast(0 as bit) END) = 1) AND
 ((CASE WHEN ((@p__linq__2 = @p__linq__3) OR
 ([Extent1].[Name] LIKE @p__linq__4 ESCAPE N''~''))
 THEN cast(1 as bit)
 WHEN (NOT ((@p__linq__2 = @p__linq__3) OR
 ([Extent1].[Name] LIKE @p__linq__4 ESCAPE N''~'')))
 THEN cast(0 as bit) END) = 1)

Listing 13-7. Cleaner, more efficient SQL generated when not using let in a LINQ query

SELECT
[Extent1].[ReservationId] AS [ReservationId],
[Extent1].[ResDate] AS [ResDate],
[Extent1].[Name] AS [Name]
FROM [Chapter13].[Reservation] AS [Extent1]
WHERE (@p__linq__0 IS NULL OR
 @p__linq__1 = CAST([Extent1].[ResDate] AS datetime2)) AND
 ((@p__linq__2 = @p__linq__3) OR
 ([Extent1].[Name] LIKE @p__linq__4 ESCAPE N''~''))

13-6. Making Change Tracking with POCO Faster

Problem
You are using POCO and want to improve the performance of change tracking.

Solution
Suppose you have the model with an account and related payments like the one in Figure 13-6.

482

 CHAPTER 13 IMPROVING PERFORMANCE

Figure 13-6. A model with an Account entity and a related Payment

If you are using POCO and want to get the best change-tracking performance, we need to have Entity
Framework create change-tracking proxies for our classes so that it is immediately notified of changes to
our objects. To get the change-tracking proxies created for our classes, mark each property as virtual, as
shown in Listing 13-8. Additionally, each navigation property is of type ICollection<T>.

Listing 13-8. Our POCO classes with properties marked as virtual and the navigation properties are of

type ICollection<T>

public class Account
{
 public virtual int AccountId { get; set; }
 public virtual string Name { get; set; }
 public virtual decimal Balance { get; set; }
 public virtual ICollection<Payment> Payments { get; set; }
}

public class Payment
{
 public virtual int PaymentId { get; set; }
 public virtual string Name { get; set; }
 public virtual string PaidTo { get; set; }
 public virtual decimal Paid { get; set; }
 public virtual int AccountId { get; set; }
}

public class EFRecipesEntities : ObjectContext
{
 private ObjectSet<Account> _accounts;
 private ObjectSet<Payment> _payments;

 public EFRecipesEntities()
 : base("name=EFRecipesEntities", "EFRecipesEntities")
 {
 _accounts = CreateObjectSet<Account>();
 _payments = CreateObjectSet<Payment>();
 }

 public ObjectSet<Account> Accounts
 {
 get { return _accounts; }

483

CHAPTER 13 IMPROVING PERFORMANCE

 }

 public ObjectSet<Payment> Payments
 {
 get { return _payments; }
 }
}

The code in Listing 13-9 illustrates inserting, retrieving, and updating our model. Note that we use

the CreateObject() method on the object context to get the proxies for our POCO classes.

Listing 13-9. Inserting, retrieving, and updating our model

using (var context = new EFRecipesEntities())
{
 Stopwatch watch = new Stopwatch();
 watch.Start();
 for (int i = 0; i < 5000; i++)
 {
 var account = context.CreateObject<Account>();
 account.Name = "Test" + i.ToString();
 account.Balance = 10M;
 account.Payments.Add(new Payment {
 PaidTo = "Test" + (i + 1).ToString(), Paid = 5M });
 context.Accounts.AddObject(account);
 }
 context.SaveChanges();
 watch.Stop();
 Console.WriteLine("Time to insert: {0} seconds",
 watch.Elapsed.TotalSeconds.ToString());
}

using (var context = new EFRecipesEntities())
{
 Stopwatch watch = new Stopwatch();
 watch.Start();
 var accounts = context.Accounts.Include("Payments").ToList();
 watch.Stop();
 Console.WriteLine("Time to read: {0} seconds",
 watch.Elapsed.TotalSeconds.ToString());

 watch.Restart();
 foreach (var account in accounts)
 {
 account.Balance += 10M;
 account.Payments.First().Paid += 1M;
 }
 context.SaveChanges();
 watch.Stop();
 Console.WriteLine("Time to update: {0} seconds",
 watch.Elapsed.TotalSeconds.ToString());
}

484

 CHAPTER 13 IMPROVING PERFORMANCE

How It Works
Change tracking with POCO occurs using either snapshots or proxies. With snapshots, Entity Framework
maintains the state, or snapshot, of the values and relationships before changes are made. This snapshot
is used to compare values after changes have been made to determine which properties on which
objects have changed. For this approach, Entity Framework maintains two copies of each object so that
it can determine what needs to happen when SaveChanges() or DetectChanges() is called on the object
context. You might expect this approach to be very slow, but Entity Framework is very fast in finding the
differences.

In the second approach, a proxy that implements the IEntityWithChangeTracking interface is
created for each POCO object. This proxy is responsible for notifying the object state manager of
changes to values and relationships on the object. Entity Framework creates these proxies for your
POCO object when you mark all the properties on your POCO class as virtual. Navigation properties
that return a collection must return ICollection<T>. Proxies avoid the potentially complex object by
object comparisons of the snapshot approach. It does, however, require some overhead to track each
change as it occurs.

Although change tracking with proxies immediately notifies the object state manager about changes
to the objects and avoids object comparisons, in practice, the performance benefits are typically seen
only when the model is quite complex and/or when few changes are made to a large number of objects.
The model in Figure 13-6 is very simple, and every object is updated in code in Listing 13-9. If you
change the code to use snapshots, you will notice only a second or so saved for the updates when proxies
are used.

13-7. Compiling LINQ Queries

Problem
You want to improve the performance of queries that are reused several times.

Solution
Let’s say you have a model like the one in Figure 13-7.

Figure 13-7. A model with an Associate and its related Paycheck

485

CHAPTER 13 IMPROVING PERFORMANCE

In this model, each Associate has zero or more Paychecks. You have a LINQ query that is used
repeatedly throughout your application and you want to improve the performance of this query by
compiling it just once and reusing the compiled version in subsequent executions.

To compile a query, use the CompileQuery.Compile() method. There are more than a dozen
overloads for this method. In Listing 13-10, we illustrate the most basic use in which the generic takes an
object context, zero or more parameters, and a return type.

To illustrate the performance benefit, we’ve instrumented the code in Listing 13-10 to print the
number of ticks for each of ten iterates taken for both the uncompiled and compiled versions of the
LINQ query. In this query, we can see that we get roughly a 3x performance boost. Most of this, of
course, is due to the relatively high cost of compiling versus the low cost for actually performing this
simple query.

Listing 13-10. Comparing the performance of a simple compiled LINQ query

using (var context = new EFRecipesEntities())
{
 var a1 = new Associate { Name = "Robert Stevens", City = "Raytown" };
 a1.Paychecks.Add(new Paycheck { PayDate = DateTime.Parse("3/1/10"),
 Gross = 1802.83M });
 a1.Paychecks.Add(new Paycheck { PayDate = DateTime.Parse("3/15/10"),
 Gross = 1924.91M });
 var a2 = new Associate { Name = "Karen Thorp", City = "Gladstone" };
 a2.Paychecks.Add(new Paycheck { PayDate = DateTime.Parse("3/1/10"),
 Gross = 2102.34M });
 a2.Paychecks.Add(new Paycheck { PayDate = DateTime.Parse("3/15/10"),
 Gross = 1992.18M });
 context.Associates.AddObject(a1);
 context.Associates.AddObject(a2);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 Stopwatch watch = new Stopwatch();
 long totalTicks = 0;

 // warm things up
 context.Associates.Where(a => a.Name.StartsWith("Karen")).ToList();

 // query gets compiled each time
 for (int i = 0; i < 10; i++)
 {
 watch.Restart();
 context.Associates.Where(a => a.Name.StartsWith("Karen")).ToList();
 watch.Stop();
 totalTicks += watch.ElapsedTicks;
 Console.WriteLine("Not Compiled: {0}", watch.ElapsedTicks.ToString());
 }
 Console.WriteLine("Average ticks without compiling: {0}",
 (totalTicks / 10).ToString());
 Console.WriteLine("");

486

 CHAPTER 13 IMPROVING PERFORMANCE

 // compile the query just once and re-use
 var query = CompiledQuery.Compile<EFRecipesEntities, IQueryable<Associate>>
 (ctx =>
 from a in ctx.Associates
 where a.Name.StartsWith("Karen")
 select a);
 totalTicks = 0;
 for (int i = 0; i < 10; i++)
 {
 watch.Restart();
 query(context).ToList();
 watch.Stop();
 totalTicks += watch.ElapsedTicks;
 Console.WriteLine("Compiled: {0}", watch.ElapsedTicks.ToString());
 }
 Console.WriteLine("Average ticks with compiling: {0}",
 (totalTicks / 10).ToString());
}

The following is the output of the code in Listing 13-10:

Not Compiled: 4206

Not Compiled: 3359

Not Compiled: 2970

Not Compiled: 2955

Not Compiled: 2899

Not Compiled: 3002

Not Compiled: 2900

Not Compiled: 3042

Not Compiled: 2897

Not Compiled: 2900

Average ticks without compiling: 3113

487

CHAPTER 13 IMPROVING PERFORMANCE

Compiled: 4305

Compiled: 511

Compiled: 447

Compiled: 444

Compiled: 461

Compiled: 471

Compiled: 477

Compiled: 443

Compiled: 449

Compiled: 438

Average ticks with compiling: 844

How It Works
When you execute a LINQ query, the corresponding expression tree for the query must be converted, or
compiled, into an internal command tree. This internal command tree is passed to the provider to be
converted into the appropriate database commands (typically SQL). The cost of converting an
expression tree can be relatively expensive depending on the complexity of the query and the underlying
model. Models with deep inheritance, horizontal splitting, QueryViews, and DefiningQuerys introduce
enough complexity in the conversion process that the compile time may become significant relative to
the actual query execution time. If the query is reused, you may get a performance improvement by
explicitly compiling the query, as illustrated in Listing 13-10.

A compiled query can’t contain eSQL or access any builder methods because an eSQL query, by
default, is cached. You can turn off caching in eSQL by setting ObjectQuery.EnablePlanCaching to false.
This does not, however, allow you to compile eSQL queries. Only LINQ queries can be compiled.

Compiled queries are especially helpful in ASP.NET search page scenarios where parameter values
may change, but the query is the same and can be reused on each page rendering. This works because a
compiled query is independent of the object context. The object context for the query is a parameter
when executing a compiled query.

A compiled query can return a single entity or a collection of entities, a complex type or a primitive
type. If you want to return an anonymous type, you’ll need to use the nongeneric version that infers the
type from the query itself. This is illustrated in Listing 13-11.

488

 CHAPTER 13 IMPROVING PERFORMANCE

Listing 13-11. Using Compile() for queries that return an anonymous type

using (var context = new EFRecipesEntities())
{
 // an example of returning an anonymous type
 var list = CompiledQuery.Compile((EFRecipesEntities ctx) =>
 from a in ctx.Associates
 select new
 {
 Name = a.Name,
 TotalPay = a.Paychecks.Sum(p => p.Gross)
 });
 var everyone = list(context).ToList();
}

In some cases, you may find that only part of a query is reused in an application. Because compiled

queries can be composed with other queries, even in these cases we can often get a performance
improvement. The code in Listing 13-12 illustrates using a compiled query in another query.

Listing 13-12. Composing compiled and noncompiled queries

using (var context = new EFRecipesEntities())
{
 // an example of composing compiled and non-compiled queries
 var query = CompiledQuery.Compile<EFRecipesEntities, string,
 IQueryable<Associate>>((ctx, city) =>
 ctx.Associates.Where(c => c.City == city));
 var highlyPaid = from a in query(context,"Raytown")
 where a.Paychecks.Average(p => p.Gross) > 1500M
 select a;
 var associates = highlyPaid.ToList();
}

13-8. Returning Partially Filled Entities

Problem
You have a property on an entity that is seldom read and updated. This property is expensive to read and
update because of its size. To improve performance, you want to selectively populate this property.

Solution
Let’s say you have a model like the one in Figure 13-8.

489

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

CHAPTER 13 IMPROVING PERFORMANCE

Figure 13-8. A model with a Resume entity with a Body property that contains the entire text of the

applicant’s resume

There are two simple ways to avoid loading one or more properties on an entity. We can partially fill the
entity using the constructor in eSQL, or we can use the ExecuteStoreQuery() method on the object
context to execute a SQL statement. The code in Listing 13-13 illustrates both approaches.

Listing 13-13. Returning partially filled entities using both eSQL and ExecuteStoreQuery()

using (var context = new EFRecipesEntities())
{
 var r1 = new Resume { Title = "C# Developer", Name = "Sally Jones",
 Body = "...very long resume goes here..." };
 context.Resumes.AddObject(r1);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 // using the constructor
 var query = @"select value Recipe8.Resume(r.ResumeId, r.Title, r.Name,'')
 from Resumes as r";
 var result1 = context.CreateQuery<Resume>(query).Single();
 Console.WriteLine("Resume body: {0}", result1.Body);

 context.Resumes.MergeOption = MergeOption.OverwriteChanges;
 var result2 = context.Resumes.Single();
 Console.WriteLine("Resume body: {0}", result2.Body);
}

using (var context = new EFRecipesEntities())
{
 // using ExecuteStoreQuery()
 var result1 = context.ExecuteStoreQuery<Resume>(@"select ResumeId, Title,
 Name,'' Body from chapter13.Resume", "Resumes",
 MergeOption.AppendOnly).Single();
 Console.WriteLine("Resume body: {0}", result1.Body);

 var result2 = context.ExecuteStoreQuery<Resume>(@"select * from
 chapter13.Resume", "Resumes",
 MergeOption.OverwriteChanges).Single();

490

 CHAPTER 13 IMPROVING PERFORMANCE

 Console.WriteLine("Resume body: {0}", result2.Body);
}

The following is the output of the code in Listing 13-13:

Resume body:

Resume body: ...very long resume goes here...

Resume body:

Resume body: ...very long resume goes here...

How It Works
In the first query in Listing 13-13, we use the constructor for the Resume entity and selectively fill all the
properties except for the Body property which we initialize to the empty string. If we later need to
populate the Body property from the database, we simply change the MergeOption to
MergeOption.OverwriteChanges and requery the database. The entire entity, including the Body property,
is refreshed from the database. This, of course, will overwrite any changes we’ve made to the object in
memory.

Another approach for partially filling an entity is to use the ExecuteStoreQuery() method on the
object context. Here we execute a SQL statement that fills all the properties except for the Body property,
which we initialize to the empty string. As with the first method, we can fill in the Body property from the
database by setting the MergeOption to MergeOption.OverwriteChanges and requerying for the object for
all the properties.

The following recipe shows a model-centric and perhaps cleaner approach for this problem.

13-9. Moving an Expensive Property to Another Entity

Problem
You want to move a property to another entity so that you can lazy load that entity. This is often helpful
if the property is particularly expensive to load and rarely used.

Solution
As with the previous recipe, let’s say you have a model that looks like the one in Figure 13-9.

491

CHAPTER 13 IMPROVING PERFORMANCE

Figure 13-9. A model with a Resume entity with a Body property that contains the entire text of the

applicant’s resume. In this recipe, we’ll move the Body property to another entity.

We’ll assume, as we did in the previous recipe, that the Body property for the Resume may contain a
rather large representation of the applicant’s resume. We want to move this property to another entity so
that we can lazy load only if we really want to read the resume.

To move the Body property to another entity, do the following:

1. Right-click the design surface and select Add Entity. Name the new entity
ResumeDetail and uncheck the Create key property check box.

2. Move the Body property from the Resume entity to the ResumeDetail entity.
You can use Cut/Paste to move the property.

3. Right-click the design surface and select Add Association. Set the
multiplicity to One on the Resume side and One on the ResumeDetail side.
Check the Add foreign key properties box. See Figure 13-10.

4. Change the name of the foreign key that was created by the association from
ResumeResumeId to just ResumeId.

5. Select the ResumeDetail entity and view the Mapping Details window. Map the
entity to the Resume table. Map the Body property to the Body column. Map
the ResumeId property to the ResumeId column. See Figure 13-11.

6. Select the ResumeId property on the ResumeDetail entity and view the
properties. Change the EntityKey property to true. This marks the ResumeId
property as the entity’s key. The completed model is shown in Figure 13-12.

492

 CHAPTER 13 IMPROVING PERFORMANCE

Figure 13-10. Adding an association between Resume and ResumeDetail

Figure 13-11. Map the ResumeDetail entity to the Resume table. Map the ResumeId and Body properties as

well.

493

CHAPTER 13 IMPROVING PERFORMANCE

Figure 13-12. The completed model with the Body property moved to the new ResumeDetail entity

The code in Listing 13-14 demonstrates how to use the ResumeDetail entity.

Listing 13-14. Using the ResumeDetail entity to lazy load the expensive Body property

using (var context = new EFRecipesEntities())
{
 var r1 = new Resume { Title = "C# Developer", Name = "Sally Jones" };
 r1.ResumeDetail = new ResumeDetail {
 Body = "...very long resume goes here..." };
 context.Resumes.AddObject(r1);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 var resume = context.Resumes.Single();
 Console.WriteLine("Title: {0}, Name: {1}", resume.Title, resume.Name);

 // note, the ResumeDetail is not loaded until we reference it
 Console.WriteLine("Body: {0}", resume.ResumeDetail.Body);
}

The following is the output of the code in Listing 13-14:

Title: C# Developer, Name: Sally Jones
Body: ...very long resume goes here...

How It Works
We avoided loading the expensive Body property on the Resume entity by moving the property to a new
related entity. By splitting the underlying table across these two entities, we can exploit the default lazy
loading of Entity Framework so that the Body property is loaded only when we reference it. This is a
fairly clean approach to the problem, but does introduce an additional entity into our model that we
have to manage in our code.

494

 CHAPTER 13 IMPROVING PERFORMANCE

13-10. Avoiding Include

Problem
You want to eagerly load a related collection without using Include().

Solution
Let’s say you have a model like the one in Figure 13-13.

Figure 13-13. A model for a Customer, their CreditCards and Transactions

To load all the Customers in a given city together with their credit cards and transactions without

using Include(), explicitly load the entities and let Entity Framework fix up the associations as shown in
Listing 13-15.

Listing 13-15. Loading related entities without using Include()

using (var context = new EFRecipesEntities())
{
 var cust1 = new Customer { Name = "Robin Rosen", City = "Raytown" };
 var card1 = new CreditCard { CardNumber = "41949494338899",
 ExpirationDate = DateTime.Parse("12/2010"), Type = "Visa" };
 var trans1 = new Transaction { Amount = 29.95M };
 card1.Transactions.Add(trans1);
 cust1.CreditCards.Add(card1);
 var cust2 = new Customer { Name = "Bill Meyers", City = "Raytown" };
 var card2 = new CreditCard { CardNumber = "41238389484448",
 ExpirationDate = DateTime.Parse("12/2013"), Type = "Visa" };
 var trans2 = new Transaction { Amount = 83.39M };
 card2.Transactions.Add(trans2);
 cust2.CreditCards.Add(card2);
 context.Customers.AddObject(cust1);
 context.Customers.AddObject(cust2);
 context.SaveChanges();
}

495

CHAPTER 13 IMPROVING PERFORMANCE

using (var context = new EFRecipesEntities())
{
 var customers = context.Customers.Where(c => c.City == "Raytown");
 var creditCards = customers.SelectMany(c => c.CreditCards);
 var transactions = creditCards.SelectMany(cr => cr.Transactions);

 // execute queries, EF fixes up associations
 customers.ToList();
 creditCards.ToList();
 transactions.ToList();

 foreach (var customer in customers)
 {
 Console.WriteLine("Customer: {0} in {1}", customer.Name, customer.City);
 foreach (var creditCard in customer.CreditCards)
 {
 Console.WriteLine("\tCard: {0} expires on {1}",
 creditCard.CardNumber,
 creditCard.ExpirationDate.ToShortDateString());
 foreach (var trans in creditCard.Transactions)
 {
 Console.WriteLine("\t\tTransaction: {0}",
 trans.Amount.ToString("C"));
 }
 }
 }
}

The following is the output of the code in Listing 13-15:

Customer: Robin Rosen in Raytown

 Card: 41949494338899 expires on 12/1/2010

 Transaction: $29.95

Customer: Bill Meyers in Raytown

 Card: 41238389484448 expires on 12/1/2013

 Transaction: $83.39

496

 CHAPTER 13 IMPROVING PERFORMANCE

How It Works
The Include() method is a powerful and usually efficient way to eagerly load related entities. However,
Include() does have some performance drawbacks. Although using Include() results in just one round
trip to the database in place of the three shown in Listing 13-15, the single query is quite complex and, in
some cases, may not perform as well as three much simpler queries. Additionally, the result set from this
single, more complex query, contains duplicate columns that increases the amount of data sent over the
wire if the database server and the application are on separate machines.

13-11. Improving QueryView Performance

Problem
You have an existing Table per Hierarchy model that is mapped using QueryView. You want to improve
the query generation when a specific derived entity is requested.

Solution
Let’s say you have a model that uses Table per Hierarchy like the one in Figure 13-14.

Figure 13-14. A Table per Hierarchy model for members who are either MiddleClass or UpperClass

Here we have two derived types: MiddleClass and UpperClass. MiddleClass members make a salary
of less than $70,000. UpperClass members make $70,000 and up. We use a QueryView to map these
derived types because the < and > operators are not supported for mapping inheritance.

We might be tempted to use just one QueryView similar to the one in Listing 13-16. However, we
can reduce the complexity of the query and gain some performance improvement when we are
retrieving a derived type by adding QueryViews for each of the derived types as shown in Listing 13-17.

497

CHAPTER 13 IMPROVING PERFORMANCE

Listing 13-16. The QueryView mapping the UpperClass and MiddleClass entities

<EntitySetMapping Name="Members">
 <QueryView>
 select value
 case when m.Salary > 70000 then
 EFRecipesModel.UpperClass(m.MemberId, m.Name, m.Salary)
 else EFRecipesModel.MiddleClass(m.MemberId, m.Name, m.Salary) end
 from EFRecipesModelStoreContainer.Member as m
 </QueryView>
</EntitySetMapping>

Listing 13-17. Improving performance by adding a QueryView for each derived type

<EntitySetMapping Name="Members">
 <QueryView>
 select value
 case when m.Salary > 70000 then
 EFRecipesModel.UpperClass(m.MemberId, m.Name, m.Salary)
 else EFRecipesModel.MiddleClass(m.MemberId, m.Name, m.Salary) end
 from EFRecipesModelStoreContainer.Member as m
 </QueryView>
 <QueryView TypeName="IsTypeOf(EFRecipesModel.MiddleClass)">
 select value EFRecipesModel.MiddleClass(m.MemberId, m.Name, m.Salary)
 from EFRecipesModelStoreContainer.Member as m where m.Salary < 70000
 </QueryView>
 <QueryView TypeName="IsTypeOf(EFRecipesModel.UpperClass)">
 select value EFRecipesModel.UpperClass(m.MemberId, m.Name, m.Salary)
 from EFRecipesModelStoreContainer.Member as m where m.Salary > 70000
 or m.Salary = 70000
 </QueryView>
</EntitySetMapping>

We use the code in Listing 13-18 to insert a few members into our model and retrieve the

UpperClass members.

Listing 13-18. Inserting and retrieving UpperClass members

using (var context = new EFRecipesEntities())
{
 context.ExecuteStoreCommand(@"insert into chapter13.member(name,salary)
 values ('Steven Jones',45000)");
 context.ExecuteStoreCommand(@"insert into chapter13.member(name,salary)
 values ('Kathy Kurtz', 85000)");
 context.ExecuteStoreCommand(@"insert into chapter13.member(name,salary)
 values ('Aaron McCabe', 82000)");
}

using (var context = new EFRecipesEntities())
{
 var upperclass = context.Members.OfType<UpperClass>();

498

 CHAPTER 13 IMPROVING PERFORMANCE

 foreach (var member in upperclass)
 {
 Console.WriteLine("{0}", member.Name);
 }
}

The following is the output of the code in Listing 13-18:

Kathy Kurtz
Aaron McCabe

How It Works
The SQL statement generated by the single QueryView in Listing 13-16 is shown in Listing 13-19. Notice
that the case statement in our QueryView was translated to a case statement in SQL. We can avoid this
case statement by introducing a QueryView for each of the derived types. This is illustrated in Listing 13-
17 and the resulting SQL is shown in Listing 13-20.

Listing 13-19. The case statement from our QueryView makes the generated SQL a little more complex

than needed

SELECT
CASE WHEN ([Extent1].[Salary] > 70000) THEN '0X0X' ELSE '0X1X' END AS [C1],
[Extent1].[MemberId] AS [MemberId],
[Extent1].[Name] AS [Name],
[Extent1].[Salary] AS [Salary]
FROM [Chapter13].[Member] AS [Extent1]
WHERE CASE WHEN ([Extent1].[Salary] > 70000) THEN '0X0X' ELSE '0X1X' END LIKE '0X0X%'

Listing 13-20. A simpler SQL statement tailored to the specific derived type

SELECT
'0X0X' AS [C1],
[Extent1].[MemberId] AS [MemberId],
[Extent1].[Name] AS [Name],
[Extent1].[Salary] AS [Salary]
FROM [Chapter13].[Member] AS [Extent1]
WHERE ([Extent1].[Salary] > 70000) OR ([Extent1].[Salary] = 70000)

For our simple model, the real runtime differences between Listing 13-19 and Listing 13-20 are

rather insignificant. For more complex models, the runtime performance differences can become
important.

499

CHAPTER 13 IMPROVING PERFORMANCE

13-12. Generating Proxies Explicitly

Problem
You have POCO entities that use dynamic proxies. When you execute a query, you do not want to incur
the cost of Entity Framework lazily creating the proxies.

Solution
Suppose you have a model like the one in Figure 13-15.

Figure 13-15. A model for CDs and music titles

The corresponding POCO classes are shown in Listing 13-21. We have marked each POCO class as
virtual and set the type for the Tracks property to ICollection. This will allow Entity Framework to
dynamically create the tracking proxies.

To cause Entity Framework to generate the proxies before they are required (before an entity is
loaded), we need to use the CreateProxyTypes() method on the object context as illustrated in Listing 13-
22.

Listing 13-21. The POCO classes along with our object context

public class CD
{
 public virtual int CDId { get; set; }
 public virtual string Title { get; set; }
 public virtual ICollection<Track> Tracks { get; set; }
}

public class Track
{
 public virtual string Title { get; set; }
 public virtual string Artist { get; set; }
 public virtual int CDId { get; set; }
}

public class EFRecipesEntities : ObjectContext
{
 private ObjectSet<CD> _cds;

500

 CHAPTER 13 IMPROVING PERFORMANCE

 private ObjectSet<Track> _tracks;

 public EFRecipesEntities()
 : base("name=EFRecipesEntities", "EFRecipesEntities")
 {
 _cds = CreateObjectSet<CD>();
 _tracks = CreateObjectSet<Track>();
 }

 public ObjectSet<CD> CDs
 {
 get { return _cds; }
 }

 public ObjectSet<Track> Tracks
 {
 get { return _tracks; }
 }
}

Listing 13-22. Generating the tracking proxies before loading the entities

using (var context = new EFRecipesEntities())
{
 var cd1 = context.CreateObject<CD>();
 cd1.Title = "Abbey Road";
 cd1.Tracks.Add(new Track { Title = "Come Together",
 Artist = "The Beatles" });
 var cd2 = context.CreateObject<CD>();
 cd2.Title = "Cowboy Town";
 cd2.Tracks.Add(new Track { Title = "Cowgirls Don't Cry",
 Artist = "Brooks & Dunn" });
 var cd3 = context.CreateObject<CD>();
 cd3.Title = "Long Black Train";
 cd3.Tracks.Add(new Track { Title = "In My Dreams",
 Artist = "Josh Turner" });
 cd3.Tracks.Add(new Track { Title = "Jacksonville",
 Artist = "Josh Turner" });
 context.CDs.AddObject(cd1);
 context.CDs.AddObject(cd2);
 context.CDs.AddObject(cd3);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 // trigger proxy generation
 context.CreateProxyTypes(new Type[] { typeof(CD), typeof(Track) });
 Console.WriteLine("{0} proxies generated!",
 EFRecipesEntities.GetKnownProxyTypes().Count());

 var cds = context.CDs.Include("Tracks");

501

CHAPTER 13 IMPROVING PERFORMANCE

 foreach (var cd in cds)
 {
 Console.WriteLine("Album: {0}", cd.Title);
 foreach (var track in cd.Tracks)
 {
 Console.WriteLine("\t{0} by {1}", track.Title, track.Artist);
 }
 }
}

The following is the output of the code in Listing 13-22:

2 proxies generated!

Album: Abbey Road

 Come Together by The Beatles

Album: Cowboy Town

 Cowgirls Don't Cry by Brooks & Dunn

Album: Long Black Train

 In My Dreams by Josh Turner

 Jacksonville by Josh Turner

How It Works
Dynamic proxies are created just before they are needed at runtime. This, of course, means that the
overhead of creating the proxy is incurred on the first query. This lazy creation approach works well in
most cases. You can generate the proxies before the entities are first loaded by calling the
CreateProxyTypes() method.

The CreateProxyTypes() method takes an array of types and generates the corresponding tracking
proxies. Once created, the proxies remain in the AppDomain for the life of the AppDomain. Notice that
the lifetime of the proxy is tied to the AppDomain, not the object context. We could dispose of the object
context and create another and the proxies would not be disposed. You can retrieve the proxies in the
AppDomain with the GetKnownProxyTypes() static method on the object context.

502

 CHAPTER 13 IMPROVING PERFORMANCE

13-13. Preventing the Update of All Columns
in Self-Tracking Entities

Problem
When using self-tracking entities with Windows Communication Foundation (WCF), you want to make
sure that the updates sent contain only columns that have been modified by the client.

Solution
Suppose you have a table like the one in Figure 13-16 that holds customer complaints.

Figure 13-16. A table for customer complaints

When just one property on a self-tracking entity on the client side is modified, the changes on the
entity on the service side include all the properties on the entity. The resulting SQL update statement
updates all the columns in the underlying table. This can be costly for some entities. You want to update
just the columns that changed. To do this, we’ll first create a solution complete with separate projects for
our entity and context as well as a service project and a test client project. You will likely have all these
projects in place already. If so, you can skip to step 12. Otherwise, to create the complete example, do the
following:

1. Add a Class Library project to your solution and name it ComplaintData. Add
an ADO.NET Entity Data Model with the Complaint table.

2. Right-click the design surface and select Add Code Generation Item. Select the
ADO.NET Self-Tracking Entity Generator from the Code template. Change the
name of the template to Complaint.tt. Click Add to add the template to your
project.

3. Add a Class Library project to your solution. Call this new project
ComplaintEntities. Move Complaint.tt from the ComplaintData project to the
ComplaintEntities project. Add a reference to System.Runtime.Serialization.
Add a project reference in the ComplaintData project to the ComplaintEntities
project.

503

CHAPTER 13 IMPROVING PERFORMANCE

4. Because we’ve moved the Complaint.tt template file, we need to edit it to
change the reference to the .edmx file for the model. Edit the Complaint.tt
template and change the line string inputFile = @"Recipe13.edmx" to string
inputFile = @"..\ComplaintData\Recipe13.edmx". You may have named your
.edmx file something else; if so, make the changes so that the relative path is
correct to your .edmx file.

5. Edit the Complaint.Context.tt template (which should still be in the
ComplaintData project) and add using ComplaintEntities; after each <auto-
generated> comment section. This will put the using statement in each
generate file.

6. Add a WCF Service Application project to your solution. Name this application
ComplaintService. Add project references to the ComplaintData and
ComplaintEntities. Add a reference to System.Data.Entity.

7. Copy the <connectionStrings> section from the App.Config file in the
ComplaintData project to the web.config file in the ComplaintService project.
This will allow Entity Framework to connect to the database.

8. Replace the IService1 interface definition IService1.cs file with the code in
Listing 13-23.

9. Replace the Service1 implementation in the Service1.svc.cs file with the code
in Listing 13-24.

10. Add a Windows Console Application project to the solution. Name the project
TestClient. The order of the following two steps is important. First, add a
reference to the ComplaintEntities project. Next, add a service reference to the
ComplaintService. The order is important here because the default behavior
(click the Advance button to change this) is to reuse types in all the referenced
assemblies. By adding a reference to ComplaintEntities first, when we add the
service reference, the CustomerComplaint type from ComplaintEntities is
used in place of the ones from ComplaintService.

11. Use the code in Listing 13-25 for the TestClient. Build the solution.

12. Set the TestClient as the Startup Project. Open the SQL Profiler and step
through the TestClient. Notice that the call to UpdateComplaint() causes the
update statement in Listing 13-26 to be sent to the database. This update
statement updates all the columns. We only changed the ActionTaken column.
To send just the updated column, do the next two steps.

13. Edit the Complaint.tt template file. Change the following lines:

 OriginalValueMembers originalValueMembers =

 new OriginalValueMembers(allMetadataLoaded, metadataWorkspace, ef);

 to the following:

 OriginalValueMembers originalValueMembers =

 new OriginalValueMembers(false, metadataWorkspace, ef);

14. Edit the Complaint.Context.tt template file. Change the following line:

504

 CHAPTER 13 IMPROVING PERFORMANCE

 context.ObjectStateManager.ChangeObjectState(entity,
EntityState.Modified);

 to the following:

 context.ObjectStateManager.ChangeObjectState(entity,
EntityState.Unchanged);

15. Build and run the TestClient again. The SQL Profiler should show that the SQL
in Listing 13-27 is sent to the database.

Listing 13-23. The IService1 interface definition in the IService1.cs file

using ComplaintEntities;
namespace ComplaintService
{
 [ServiceContract]
 public interface IService1
 {
 [OperationContract]
 void InsertTestRecord();

 [OperationContract]
 CustomerComplaint GetNextComplaint();

 [OperationContract]
 CustomerComplaint UpdateComplaint(CustomerComplaint complaint);
 }
}

Listing 13-24. The Service1 implementation in the Service1.svc.cs file

using System.Data.Entity;
using ComplaintEntities;
using ComplaintData;
namespace ComplaintService
{
 public class Service1 : IService1
 {
 public void InsertTestRecord()
 {
 using (var context = new EFRecipesEntities())
 {
 context.ExecuteStoreCommand(
 "delete from chapter13.customercomplaint");
 var complaint = new CustomerComplaint {
 Comment = "Your store should open early on Saturdays",
 ReportedBy = "Jill Morgan" };
 context.CustomerComplaints.AddObject(complaint);
 context.SaveChanges();
 }
 }

505

CHAPTER 13 IMPROVING PERFORMANCE

 public CustomerComplaint GetNextComplaint()
 {
 using (var context = new EFRecipesEntities())
 {
 var complaint = context.CustomerComplaints
 .Where(c => c.ActionTaken == null).First();
 complaint.StartTracking();
 return complaint;
 }
 }

 public CustomerComplaint UpdateComplaint(CustomerComplaint complaint)
 {
 using (var context = new EFRecipesEntities())
 {
 context.CustomerComplaints.ApplyChanges(complaint);
 context.SaveChanges();
 complaint.AcceptChanges();
 return complaint;
 }
 }
 }
}

Listing 13-25. Code for the TestClient console application. This application is used to test the WCF service.

using ComplaintEntities;
using TestClient.ServiceReference1;
namespace TestClient
{
 class Program
 {
 static void Main(string[] args)
 {
 using (var client = new Service1Client())
 {
 // insert a test record
 client.InsertTestRecord();

 var next = client.GetNextComplaint();
 next.ActionTaken = "Your issue is being reviewed";
 client.UpdateComplaint(next);
 }
 }
 }
}

Listing 13-26. Original update statement that updates each of the columns

exec sp_executesql N'update [Chapter13].[CustomerComplaint]
set [Comment] = @0, [ReportedBy] = @1, [ActionTaken] = @2
 where ([CustomerComplaintId] = @3)',

506

 CHAPTER 13 IMPROVING PERFORMANCE

 N'@0 varchar(1024),@1 varchar(50),@2 varchar(50),@3 int',
 @0='Your store should open early on Saturdays',
 @1='Jill Morgan',
 @2='Your issue is being reviewed',
 @3=12

Listing 13-27. New update statement that updates only the column that changed

exec sp_executesql N'update [Chapter13].[CustomerComplaint]
set [ActionTaken] = @0
 where ([CustomerComplaintId] = @1)',
 N'@0 varchar(50),@1 int',@0='Your issue is being reviewed',@1=18

How It Works
In the code generated by the Self-Tracking Entities T4 template, Entity Framework captures the original
values of properties that are required in an update statement. These include the primary key and the
columns that participate in concurrency. If your model uses independent associations, Entity
Framework will keep track of the original foreign key values of the relationships because these are always
part of the generated update statements. The end result of this approach is that when you update any
property of a self-tracking entity on the client side, Entity Framework simply marks the entity as
modified. This results in the update statement updating every column with all the property values,
including the properties that did not change.

Why is this the default behavior? The Entity Framework development team found that in most cases
sending less information over the wire and updating all columns was faster than sending the additional
information about which properties changed. It is faster to send less information and do more work on
the database side than send more information and do less work on the database side. Of course, this is
true in most cases. If you happen to have a case in which updating all the columns is significantly more
expensive than sending the additional information, you should consider making the changes illustrated
in this recipe.

With the changes we made to the templates, the self-tracking entity will grab the original values of
just the properties that are modified along with the primary key and concurrency columns. When these
are played back on the server side, only the changed properties are marked as modified. The resulting
SQL update statement updates just the modified columns.

507

C H A P T E R 14

Concurrency

Most applications that use sophisticated database management systems like Microsoft’s SQL Server are
used by more than one person at a time. The concurrency concerns around shared access to simple data
files is often the motivating reason developers turn to relational database systems to support their
applications. Many, but not all, of the concurrency concerns evaporate when an application relies on a
relational database for its data store. The concerns that remain usually involve detecting and controlling
when an object state is different in memory than in the database. The recipes in this chapter provide an
introduction to solving some of the problems typically faced by developers when it comes to detecting
concurrency violations and controlling which copy of the object is ultimately persisted in the database.

14-1. Applying Optimistic Concurrency

Problem
You want to use optimistic concurrency with an entity in your model.

Solution
Let’s suppose you have model like the one shown in Figure 14-1.

Figure 14-1. A Product entity describing products in your application

The Product entity describes products in your application. You want to throw an exception if an
intermediate update occurs between the time you retrieve a particular product entity and the time an
update is performed in the database. To implement that behavior, do the following:

509

CHAPTER 14 CONCURRENCY

1. Add a column of type TimeStamp to the table mapped to the Product entity.

2. Right-click the design surface and select Update Model from Database. Update
the model with the newly changed table. The updated model is shown in
Figure 14-2.

3. Right-click the TimeStamp property and select Properties. Change its
Concurrency Mode property to Fixed.

Figure 14-2. The updated model with the newly added TimeStamp property

The code in Listing 14-1 demonstrates that changing the underlying row in the table between the
time the product entity is materialized and the time we update the table from changes in the product
entity throws an exception.

Listing 14-1. Throwing an exception if optimistic concurrency is violated

using (var context = new EFRecipesEntities())
{
 context.Products.AddObject(new Product {
 Name = "High Country Backpacking Tent", UnitPrice = 199.95M });
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 // get the product
 var product = context.Products.SingleOrDefault();
 Console.WriteLine("{0} Unit Price: {1}", product.Name,
 product.UnitPrice.ToString("C"));

 // update out of band
 context.ExecuteStoreCommand(@"update chapter14.product set
 unitprice = 229.95 where productId = @p0", product.ProductId);

 // update the product the via the model
 product.UnitPrice = 239.95M;
 Console.WriteLine("Changing {0}'s Unit Price to: {1}", product.Name,
 product.UnitPrice.ToString("C"));

 try
 {

510

 CHAPTER 14 CONCURRENCY

 context.SaveChanges();
 }
 catch (OptimisticConcurrencyException ex)
 {
 Console.WriteLine("Concurrency Exception! {0}", ex.Message);
 }
 catch (Exception ex)
 {
 Console.WriteLine("Exception! {0}", ex.Message);
 }
}

The following is the output of the code in Listing 14-1:

High Country Backpacking Tent Unit Price: $199.95

Changing High Country Backpacking Tent's Unit Price to: $239.95

Concurrency Exception! Store update, insert, or delete statement affected an unexpected
number of rows (0). Entities may have been modified or deleted since entities were loaded.
Refresh ObjectStateManager entries.

How It Works
Optimistic concurrency is not enabled by default when tables are imported into a model. To enable
optimistic concurrency, change the Concurrency Mode property of one of the entity’s properties to
Fixed. You do not have to use a TimeStamp property as we did in this recipe. You do need to choose a
property that you know will be changed in every update to the underlying table. Typically, you would use
a column whose value is generated by the database on each update. The TimeStamp column is a good
candidate. If you choose another column, be sure to set the StoreGeneratedPattern property to
Computed for the corresponding entity property. This will tell Entity Framework that the value is
generated by the database. Entity Framework recognizes the TimeStamp data type as a Computed
property.

In Listing 14-1, we inserted a new product into the database. We queried the model for the one
product we inserted. Once we had the product, we updated the row out-of-band using the
ExecuteStoreCommand() method to send a SQL update statement to the database changing the row. On
the database side, this update caused the UnitPrice to be changed to $229.95 and the TimeStamp
column to be updated automatically by the database. After the out-of-band update, we changed the
UnitPrice on the product in the object context to $239.95. At this point, the object context believes
(incorrectly) that it has the most recent values for the product, including an update to the UnitPrice now
set at $239.95. When we call SaveChanges(), Entity Framework generates an update statement with a
where clause that includes both the ProductId and the TimeStamp values we have for the product. The
value for this TimeStamp is one retrieved when we read the product from the database before the out-
of-band update. Because the out-of-band update caused the TimeStamp to change, the value for the
TimeStamp column in the database is different than the value of the TimeStamp property on the
product entity in the object context. The update statement will fail because no row is found in the table
matching both the ProductId and the TimeStamp values. Entity Framework will respond by rolling back
the entire transaction and throwing an OptimisticConcurrencyException.

511

CHAPTER 14 CONCURRENCY

In responding to the exception, the code in Listing 14-1 printed a message and continued. This is
probably not how you would handle a concurrency violation in a real application. One way to handle
this exception is to refresh the entity with the current value of the concurrency column from the
database. With the correct value for the concurrency column, a subsequent SaveChanges() will likely
succeed. Of course, it might not for the same reason that it failed the first time, and you need to be
prepared for this as well.

The Refresh() method on the object context is used to refresh an entity including the current value
of the concurrency column. It takes two parameters: a RefreshMode and an entity. With
RefreshMode.ClientWins, property changes made to the entity in the object context are not updated from
the database. Only the values, such as the concurrency column value, that are different in the database
but not changed in the object context are updated on the entity. In short, changes made in the object
context (client) are kept.

With RefreshMode.StoreWins, changes made to the entity in the object context are overwritten by
values from the database. The database wins.

After calling Refresh(), the entity in the object context has the values reflecting either the client
winning or the database winning. Calling SaveChanges() at this point will generate a new update
statement with the new values. This update will either succeed or fail with possibly another
OptimisticConcurrencyException if an intervening update statement once again changed the values in
the database.

14-2. Managing Concurrency When Using Stored Procedures

Problem
You want to use optimistic concurrency when using stored procedures for the insert, update, and delete
actions.

Solution
Let’s suppose we have a table like the one shown in Figure 14-3 and the entity shown in Figure 14-4 that
is mapped to the table.

Figure 14-3. The Agent table in our database

512

 CHAPTER 14 CONCURRENCY

Figure 14-4. Our model with the Agent entity

You want to use stored procedures to handle the insert, update, and delete actions for the model.
These stored procedures need to be written so that they leverage the optimistic concurrency support
provided in Entity Framework. Do the following to create the stored procedures, import them into the
model, and map them to actions:

1. Create the stored procedures in the database using the code in Listing 14-2.

2. Right-click the design surface and select Update Model from Database. Select
the stored procedures you created in step 1. Click Finish. This will import the
stored procedures into the model.

3. View the Mapping Details window for the Agent entity. Click the Map Entity to
Functions button on the left side of the tool window. Map the insert, update,
and delete actions to the stored procedures, as shown in Figure 14-5. Make
sure you map the Result column to the TimeStamp property for both the insert
and update actions. For the update action, check the Use Original Value check
box for the procedure’s TimeStamp parameter.

Listing 14-2. Stored procedures for the insert, update, and delete actions

create procedure Chapter14.InsertAgent
(@Name varchar(50), @Phone varchar(50))
as
begin
 insert into Chapter14.Agent(Name, Phone) values (@Name, @Phone)
 select TimeStamp from Chapter14.Agent where Name = @Name and @@ROWCOUNT > 0
end
go
create procedure Chapter14.UpdateAgent
(@Name varchar(50), @Phone varchar(50), @TimeStamp TimeStamp)
as
begin
 update Chapter14.Agent set Phone = @Phone where Name = @Name and TimeStamp = @TimeStamp
 select TimeStamp from Chapter14.Agent where Name = @Name and @@ROWCOUNT > 0
end
go
create procedure Chapter14.DeleteAgent
(@Name varchar(50), @TimeStamp TimeStamp)
as
begin
 delete Chapter14.Agent where Name = @Name and TimeStamp = @TimeStamp
end

513

CHAPTER 14 CONCURRENCY

Figure 14-5. Mapping the insert, update, and delete actions to the stored procedures

The code in Listing 14-3 demonstrates inserting and updating the database using the stored
procedures. In the code, we update the phone numbers for both agents. For the first agent, we update
the agent in the object context and save the changes. For the second agent, we do an out-of-band update
before we update the phone using the object context. When we save the changes, Entity Framework
throws an OptimisticConcurrencyException, indicating that the underlying database row was modified
after the agent was materialized in the object context.

Listing 14-3. Demonstrating how Entity Framework and our insert and update stored procedures respond

to a concurrency violation

using (var context = new EFRecipesEntities())
{
 context.Agents.AddObject(new Agent { Name = "Phillip Marlowe",
 Phone = "202 555-1212" });
 context.Agents.AddObject(new Agent { Name = "Janet Rooney",
 Phone = "913 876-5309" });
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 // change the phone numbers
 var agent1 = context.Agents.Where(a => a.Name == "Janet Rooney").Single();
 var agent2 = context.Agents.Where(a => a.Name == "Phillip Marlowe").Single();
 agent1.Phone = "817 353-4458";

514

 CHAPTER 14 CONCURRENCY

 context.SaveChanges();

 // update the other agent's number out-of-band
 context.ExecuteStoreCommand(@"update Chapter14.agent
 set Phone = '817 294-6059' where name = 'Phillip Marlowe'");

 // now change it using the model
 agent2.Phone = "817 906-2212";
 try
 {
 context.SaveChanges();
 }
 catch (OptimisticConcurrencyException ex)
 {
 Console.WriteLine("Exception caught updating phone number: {0}",
 ex.Message);
 }
}

using (var context = new EFRecipesEntities())
{
 Console.WriteLine("-- All Agents --");
 foreach (var agent in context.Agents)
 {
 Console.WriteLine("Agent: {0}, Phone: {1}", agent.Name, agent.Phone);
 }
}

The following is the output of the code in Listing 14-3. Notice that we caught the exception thrown

during SaveChanges() and printed the exception message:

Exception caught updating phone number: Store update, insert, or delete statement

affected an unexpected number of rows (0). Entities may have been modified or deleted since
entities were loaded. Refresh ObjectStateManager entries.

-- All Agents --

Agent: Janet Rooney, Phone: 817 353-4458

Agent: Phillip Marlowe, Phone: 817 294-6059

515

CHAPTER 14 CONCURRENCY

How It Works
The key to leveraging the concurrency infrastructure in Entity Framework is in the implementation of
the stored procedures (see Listing 14-2) and in how we mapped the input parameters and the result
values. Let’s look at each stored procedure.

The InsertAgent() procedure takes in the name and phone number for the agent and executes an
insert statement. This results in the database computing a timestamp value that is inserted into the
table along with the name and phone number. The select statement retrieves this newly generated
timestamp. We map this result column (see Figure 14-5) to the TimeStamp property on the entity. After
the insert, the entity has the current values for the name and phone number and the newly generated
timestamp. At that instant, the entity is in sync with the database.

With the UpdateAgent() procedure, we map the Name, Phone, and TimeStamp properties from the
entity to the corresponding parameters of the procedure. We checked the Use Original Value check box
for the TimeStamp property. This ensures that the original value for the TimeStamp property is sent to
the database. The where clause on the update statement includes the timestamp. If the timestamp value
for the row in the database is different from the value in the entity, the update will fail. Because no rows
are updated, Entity Framework responds by throwing an OptimisticConcurrencyException. If the
update succeeds, the new timestamp value is mapped to the TimeStamp property on the entity. At this
point, the entity and row in the table are once again synchronized.

For the DeleteAgent() procedure, we map the Name and TimeStamp properties to the parameters
of the procedure. The where clause on the delete statement includes the primary key, Name, and the
timestamp value. This ensures that the row is deleted if and only if no intermediate update of the row
has occurred. If no row is deleted, Entity Framework will respond with an
OptimisticConcurrencyException.

Entity Framework relies on each of these stored procedures returning some indication of the
number of rows affected by the operation. We’ve crafted each procedure to return this value either using
a select statement that returns either one or zero rows, or in the case of DeleteAgent(), the stored
procedure returns the row count from the delete statement.

There are three ways, in order of precedence, that Entity Framework interprets the number of rows
affected by a stored procedure: the return value from ExecuteNonQuery(), the number of rows returned,
or an explicit output parameter (see Recipe 14-5).

The code in Listing 14-3 demonstrates that an intervening update, which we do out-of-band with
the ExecuteStoreCommand() method, causes a concurrency violation when we update Phillip Marlowe’s
phone number.

14-3. Reading Uncommitted Data

Problem
You want to read uncommitted data using LINQ to entities.

Solution
Suppose you have an Employee entity like the one shown in Figure 14-6. You want to insert a new
employee, but before the row is committed to the database, you want to read the uncommitted row into
a different object context. To do this, create nested instances of the TransactionScope class and set the

516

 CHAPTER 14 CONCURRENCY

IsolationLevel of the innermost scope to ReadUncommitted as shown in Listing 14-4. You will need to add
a reference in your project to System.Transactions.

Figure 14-6. An Employee entity

Listing 14-4. Creating nested TransactionScopes and setting the IsolationLevel to ReadUncommitted

using (var context = new EFRecipesEntities())
{
 using (var scope1 = new TransactionScope())
 {
 // save, but don't commit
 var outerEmp = new Employee { Name = "Karen Stanfield" };
 Console.WriteLine("Outer employee: {0}", outerEmp.Name);
 context.Employees.AddObject(outerEmp);
 context.SaveChanges();

 // second transaction for read uncommitted
 using (var innerContext = new EFRecipesEntities())
 {
 using (var scope2 = new TransactionScope(
 TransactionScopeOption.RequiresNew,
 new TransactionOptions {
 IsolationLevel = IsolationLevel.ReadUncommitted }))
 {
 var innerEmp = innerContext.Employees
 .First(e => e.Name == "Karen Stanfield");
 Console.WriteLine("Inner employee: {0}", innerEmp.Name);
 scope1.Complete();
 scope2.Complete();
 }
 }
 }
}

The following is the output of the code in Listing 14-4:

Outer employee: Karen Stanfield
Inner employee: Karen Stanfield

517

CHAPTER 14 CONCURRENCY

How It Works
In SQL, one of the common ways of reading uncommitted data is to use the NOLOCK query hint.
However, Entity Framework does not support the use of hints. In Listing 14-4, we used a
TransactionScope with the IsolationLevel set to ReadUncommitted. This allowed us to read the
uncommitted data from the outer TransactionScope. We did this in a fresh object context.

14-4. Implementing the “Last Record Wins” Strategy

Problem
You want to make sure that changes to an object succeed regardless of any intermediate changes to the
database.

Solution
Suppose you have a model like the one shown in Figure 14-7.

Figure 14-7. Our model with the ForumPost entity

Our model represents posts by users of an Internet forum. Moderators of forums often want to
review posts and possibly change or delete them. The changes a moderator makes need to take
precedence over any changes made by the forum’s users. In general, this can be implemented without
much concern for concurrency, except when the user makes a change between the time the moderator
retrieves the post and the when the moderator calls SaveChanges() to commit a change such as a delete
to the database. In this case, we want the moderator’s changes to overwrite the user’s changes. We want
the moderator to win.

To implement this, follow the pattern in Listing 14-5. Be sure to set the Concurrency Mode on the
TimeStamp property to Fixed.

Listing 14-5. Implementing last record wins

int postId = 0;
using (var context = new EFRecipesEntities())
{
 // post is created
 var post = new ForumPost { ForumUser = "FastEddie27", IsActive = false,

518

 CHAPTER 14 CONCURRENCY

 Post = "The moderator is a great guy." };
 context.ForumPosts.AddObject(post);
 context.SaveChanges();
 postId = post.PostingId;
}

using (var context = new EFRecipesEntities())
{
 // moderator gets post to review
 var post = context.ForumPosts.First(p => p.PostingId == postId);
 Console.WriteLine("Post by {0}: {1}", post.ForumUser, post.Post);

 // poster changes post out-of-band
 context.ExecuteStoreCommand(@"update chapter14.forumpost
 set post='The moderator''s mom dresses him funny.'
 where postingId = @p0", new object[] { postId.ToString() });
 Console.WriteLine("Fast Eddie changes the post");

 // moderator doesn't trust Fast Eddie
 if (string.Compare(post.ForumUser, "FastEddie27") == 0)
 post.IsActive = false;
 else
 post.IsActive = true;

 try
 {
 // refresh any changes to the TimeStamp
 context.ForumPosts.MergeOption = MergeOption.PreserveChanges;
 post = context.ForumPosts.First(p => p.PostingId == postId);
 context.SaveChanges();
 Console.WriteLine("No concurrency exception.");
 }
 catch (OptimisticConcurrencyException)
 {
 try
 {
 context.Refresh(RefreshMode.ClientWins, post);
 context.SaveChanges();
 }
 catch (OptimisticConcurrencyException)
 {
 // we tried twice...do something else
 }
 }
}

The following is the output of the code in Listing 14-5:

519

CHAPTER 14 CONCURRENCY

Post by FastEddie27: The moderator is a great guy.

Fast Eddie changes the post

No concurrency exception.

How It Works
The TimeStamp property is marked for concurrency because its ConcurrencyMode is set to Fixed. As
part of the update statement, the value of the TimeStamp property is checked against the value in the
database. If they differ, Entity Framework will throw an OptimisticConcurrencyException. We’ve seen
this behavior in the previous recipes in this chapter. What’s different here is that we want the change
from the client, in this case the moderator, to overwrite the newer row in the database. We do this by
using two slightly different strategies. Even with these two strategies, there is some chance that our
object can’t be committed to the database.

The first strategy we use in Listing 14-5 is to change the MergeOption for the ForumPosts entity set to
PerserveChanges and then requery for the object before calling SaveChanges(). With the PerserveChanges
set, the requery will reload the object overwriting only these values that we didn’t change in the object
context. Most importantly, this means that the TimeStamp property will be refreshed from the database.
Armed with the latest TimeStamp property, our call to SaveChanges() should succeed. There is a chance,
however, especially in a highly concurrent environment, that some intervening update could occur to
change the row before our update hits the database. If this occurs, Entity Framework will throw an
OptimisticConcurrencyException. We handle this case using our second strategy.

Our second strategy uses the Refresh() method on the object context. The Refresh() method
reloads the object. The first parameter to Refresh() is an enum that determines whether the client
values (ClientWins) or the server values (ServerWins) become the final values in the object. In our case,
we use RefreshMode.ClientWins, which causes the values changed in the object in the object context to
remain while the values not changed in the object context are refreshed from the server. Most
importantly, this includes the TimeStamp value from the server.

Using the Refresh() method is subtly different from the requery we used in our first strategy.
Refresh() works on a per-entity basis. Every call to Refresh() results in a round trip to the database. Our
requery strategy works on a per-query basis. All the entities that result from the query are refreshed with
the active MergeOption.

Even with these two approaches in place, it is still possible for an intervening update to occur
between the Refresh() or the requery and the time the update is executed on the database.

14-5. Getting Affected Rows from a Stored Procedure

Problem
You want to return the number of rows affected by a stored procedure through an output parameter.

520

 CHAPTER 14 CONCURRENCY

Solution
The Entity Framework uses the number of rows affected by an operation to determine whether the
operation succeeded or the operation failed because of a concurrency violation. When using stored
procedures (see Recipe 14-2 in this chapter), one of the ways to communicate the number of rows
affected by an operation is to return this value as an output parameter of the stored procedure.

Let’s suppose you have a model like the one shown in Figure 14-8.

Figure 14-8. Our model with the Account entity

To return the number of rows affected by the stored procedures mapped to the insert, update, and
delete actions, do the following:

1. Create the stored procedures in the database using the code in Listing 14-6.

2. Right-click the design surface and select Update Model from Database. Select
the stored procedures you created in Step 1. Click Finish. This will import the
stored procedures into the model.

3. View the Mapping Details window for the Account entity. Click the Map Entity
to Functions button on the left side of the tool window. Map the insert, update,
and delete actions to the stored procedures as shown in Figure 14-9. Make sure
you map the Result column to the TimeStamp property for both the insert and
update actions. For the update action, check the Use Original Value box for the
procedure’s TimeStamp parameter. For each procedure, check the Rows
Affected Parameter boxes as shown in Figure 14-9.

Listing 14-6. The stored procedures for the insert, update, and delete actions

create procedure [Chapter14].[UpdateAccount]
(@AccountNumber varchar(50), @Name varchar(50), @Balance decimal, @TimeStamp TimeStamp,
@RowsAffected int output)
as
begin
 update Chapter14.Account set Name = @Name, Balance = @Balance
 where AccountNumber = @AccountNumber and TimeStamp = @TimeStamp
 set @RowsAffected = @@ROWCOUNT
 select TimeStamp from Chapter14.Account where AccountNumber = @AccountNumber
end

go

521

CHAPTER 14 CONCURRENCY

create procedure [Chapter14].[InsertAccount]
(@AccountNumber varchar(50), @Name varchar(50), @Balance decimal,
 @RowsAffected int output)
as
begin
 insert into Chapter14.Account (AccountNumber, Name, Balance) values (@AccountNumber, @Name,
@Balance)
 set @RowsAffected = @@ROWCOUNT
 select TimeStamp from Chapter14.Account where AccountNumber = @AccountNumber
end

go

create procedure [Chapter14].[DeleteAccount]
(@AccountNumber varchar(50), @TimeStamp TimeStamp, @RowsAffected int output)
as
begin
 delete Chapter14.Account where AccountNumber = @AccountNumber and
 TimeStamp = @TimeStamp
 set @RowsAffected = @@ROWCOUNT
end

Figure 14-9. When mapping the stored procedures to the insert, update, and delete actions, make sure you

check the Rows Affected Parameter check boxes and Use Original Value check box as shown.

522

 CHAPTER 14 CONCURRENCY

When we call the SaveChanges() method in Listing 14-7 to update, insert, or delete, these actions are
performed by the stored procedures in Listing 14-6 because of the mappings in Figure 14-9. Both the
insert and update procedures return the updated TimeStamp value. This value is used by Entity
Framework to enforce optimistic concurrency.

Listing 14-7. Demonstrating the stored procedures mapped to the insert, update, and delete actions

using (var context = new EFRecipesEntities())
{
 context.Accounts.AddObject(new Account { AccountNumber = "8675309",
 Balance = 100M, Name = "Robin Rosen"});
 context.Accounts.AddObject(new Account { AccountNumber = "8535937",
 Balance = 25M, Name = "Steven Bishop"});
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 // get the account
 var account = context.Accounts.First(a => a.AccountNumber == "8675309");
 Console.WriteLine("Account for {0}", account.Name);
 Console.WriteLine("\tPrevious Balance: {0}", account.Balance.ToString("C"));

 // some other process updates the balance
 Console.WriteLine("[Rogue process updates balance!]");
 context.ExecuteStoreCommand(@"update chapter14.account set balance = 1000
 where accountnumber = '8675309'");

 // update the account balance
 account.Balance = 10M;

 try
 {
 Console.WriteLine("\tNew Balance: {0}", account.Balance.ToString("C"));
 context.SaveChanges();
 }
 catch (OptimisticConcurrencyException ex)
 {
 Console.WriteLine("Exception: {0}", ex.Message);
 }
}

The following is the output of the code in Listing 14-7:

Account for Robin Rosen

 Previous Balance: $100.00

[Rogue process updates balance!]

523

CHAPTER 14 CONCURRENCY

 New Balance: $10.00

Exception: Store update, insert, or delete statement affected an unexpected number of rows
(0). Entities may have been modified or deleted since entities were loaded. Refresh
ObjectStateManager entries.

How It Works
The code in Listing 14-7 demonstrates using the stored procedures we’ve mapped to the insert, update,
and delete actions. In the code, we purposely introduce an intervening update between the retrieval of
an account object and saving the account object to the database. This rogue update causes the
TimeStamp value to be changed in the database after we’ve materialized the object in the object context.
This concurrency violation is detected by Entity Framework because the number of rows affected by the
UpdateAccount() procedure is zero.

The mappings shown in Figure 14-9 tell Entity Framework how to keep the TimeStamp property
correctly synchronized with the database and how to be informed of the number of rows affected by the
insert, update, or delete actions. The Result Column for the insert and the update actions is mapped to
the TimeStamp property on the entity. For the update action, we need to make sure that Entity
Framework uses the original value from the entity when it constructs the statement invoking the
UpdateAccount() procedure. These two settings keep the TimeStamp property synchronized with the
database. Because our stored procedures return the number of rows affected the actions in an output
parameter, we need to check the Rows Affected Parameter box for this parameter for each of the action
mappings.

14-6. Optimistic Concurrency with Table Per Type Inheritance

Problem
You want to use optimistic concurrency in a model that uses Table per Type inheritance.

Solution
Let’s suppose you have the tables shown in Figure 14-10 and you want to model these tables using Table
per Type inheritance and use optimistic concurrency to ensure that updates are persisted correctly. To
create the model supporting optimistic concurrency, do the following:

1. Add a TimeStamp column to the Person table.

2. Import the Person, Instructor, and Student tables to your existing model or
create a new ADO.NET model with these tables.

3. Remove the associations between the Person and Student entities and
between the Person and Instructor entities.

524

 CHAPTER 14 CONCURRENCY

4. Right-click the design surface and select Add New Inheritance. Select Person
as the base entity and Instructor as the derived entity.

5. Right-click the design surface and select Add New Inheritance. Select Person
as the base entity and Student as the derived entity.

6. Remove the PersonId properties from both the Student and the Instructor
entities.

7. Right-click the TimeStamp property in the Person entity and view the
Properties. Set the Concurrency Mode to Fixed.

The resulting model is shown in Figure 14-11. The code in Listing 14-8 demonstrates what happens
in the model when an out-of-band update happens.

Figure 14-10. A database diagram with our Person table and the related Instructor and Student tables

Figure 14-11. The final model with the derived types Instructor and Student

525

CHAPTER 14 CONCURRENCY

Listing 14-8. Testing the model by applying a rogue update

using (var context = new EFRecipesEntities())
{
 var student = new Student { Name = "Joan Williams",
 EnrollmentDate = DateTime.Parse("1/12/2010") };
 var instructor = new Instructor { Name = "Rodger Keller",
 HireDate = DateTime.Parse("7/14/1992") };
 context.People.AddObject(student);
 context.People.AddObject(instructor);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 // find the student and update the enrollment date
 var student = context.People.OfType<Student>()
 .First(s => s.Name == "Joan Williams");
 Console.WriteLine("Updating {0}'s enrollment date", student.Name);

 // out-of-band update occurs
 Console.WriteLine("[Apply rogue update]");
 context.ExecuteStoreCommand(@"update chapter14.person set name = 'Joan Smith'
 where personId =
 (select personId from chapter14.person where name = 'Joan Williams')");

 // change the enrollment date
 student.EnrollmentDate = DateTime.Parse("5/2/2010");
 try
 {
 context.SaveChanges();
 }
 catch (OptimisticConcurrencyException ex)
 {
 Console.WriteLine("Exception: {0}", ex.Message);
 }
}

The following is the output of the code in Listing 14-8:

Updating Joan Williams's enrollment date

[Apply rogue update]

Exception: Store update, insert, or delete statement affected an unexpected number of rows
(0). Entities may have been modified or deleted since entities were loaded. Refresh
ObjectStateManager entries.

526

 CHAPTER 14 CONCURRENCY

How It Works
In Listing 14-8, the code retrieves a student entity. An intervening update occurs to the Person table
before the code updates the EnrollmentDate property on the entity and calls SaveChanges(). Entity
Framework detects the concurrency violation when updating the tables in the database because the
value in the TimeStamp column in the Person table does not match the TimeStamp value in the student
entity. Entity Framework applies concurrency at the entity level. Before the Student table is updated, the
Person table is updated with a meaningless or dummy update and the new TimeStamp value is
obtained. This can be seen in the trace in Listing 14-9. If this update fails to affect any rows, Entity
Framework knows that the underlying table was changed since the last read. This would cause Entity
Framework to throw an OptimisticConcurrencyException.

Listing 14-9. Entity Framework updates the TimeStamp in the base table prior to performing the update in

the derived table

exec sp_executesql N'declare @p int
update [Chapter14].[Person]
set @p = 0
where (([PersonId] = @0) and ([TimeStamp] = @1))
select [TimeStamp]
from [Chapter14].[Person]
where @@ROWCOUNT > 0 and
[PersonId] = @0',N'@0 int,@1 binary(8)',@0=10,@1=0x0000000000007D19

However, if the rogue update occurred on the Student table in the database, the TimeStamp column
in the Person table would not have been changed and Entity Framework would not have detected a
concurrency violation. This is an important point to remember. The concurrency detection illustrated
here extends just to rogue updates to the base entity.

14-7. Generating a Timestamp Column with Model First

Problem
You want to use Model First and you want an entity to have a TimeStamp property for use in optimistic
concurrency.

Solution
To use Model First and create an entity with a TimeStamp property, do the following:

1. Find the T4 Template that is used to generate the DDL for Model First. This file
is located in Program Files\Microsoft Visual Studio
10.0\Common7\IDE\Extensions\Microsoft\Entity Framework
Tools\DBGen\SSDLToSQL10.tt. Copy this file and rename this copy to
SSDLToSQL10Recipe7.tt. Place the copy in the same folder as the original.

527

CHAPTER 14 CONCURRENCY

528

2. Replace the line that starts with [<#=Id(prop.Name)#>] with the code in Listing
14-10. We’ll use this modified T4 Template to generate the DDL for our
database.

3. Add a new ADO.NET Entity Data Model to your project. Start with an Empty
Model.

4. Right-click the design surface and select Add Entity. Name this new entity
PhonePlan. Change the Key Property name to PhonePlanId. Click OK.

5. Add Scalar properties for Minutes, Cost, and TimeStamp. Change the type for
the Minutes property to Int32. Change the type for the Cost property to
Decimal.

6. Change the type of the TimeStamp property to Binary. Change its
StoreGeneratedPattern to Computed. Change the Concurrency Mode to Fixed.

7. Right-click the design surface and view the Properties. Change the DDL
Generation Template to SSDLToSQL10Recipe7.tt. This is the template that you
modified in step 2. Change the Database Schema Name to Chapter14.

8. Right-click the design surface and click Generate Database from Model. Select
the connection and click Next. The generated DDL is shown in the dialog box.
Listing 14-11 shows an extract from the generated DDL that creates the
PhonePlan table. Click Finish to complete the generation.

Listing 14-10. Replace the line in the the T4 Template with this line.

 [<#=Id(prop.Name)#>]
<#if (string.Compare(prop.Name,"TimeStamp",true) == 0)
{#>TIMESTAMP<#} else { #><#=prop.ToStoreType()#><#} #>
<#=WriteIdentity(prop, targetVersion)#> <#=WriteNullable(prop.Nullable)#>
<#=(p < entitySet.ElementType.Properties.Count - 1) ? "," : ""#>

Listing 14-11. The DDL that creates the PhonePlan table

-- Creating table 'PhonePlans'
CREATE TABLE [Chapter14].[PhonePlans] (
[PhonePlanId] int IDENTITY(1,1) NOT NULL,
[Minutes] int NOT NULL,
[Cost] decimal(18,0) NOT NULL,
[TimeStamp] TIMESTAMP NOT NULL
);
GO

How It Works
The TimeStamp data type is not a portable type. Not all database vendors support it. It is unlikely that
this type will be supported at the conceptual layer in future versions of Entity Framework. However,
future versions will likely improve the user experience in selecting or modifying the appropriate T4
template that will generate the DDL.

C H A P T E R 15

Advanced Modeling

The Entity Framework runtime supports a surprisingly wide variety of modeling scenarios, even if the
current implementation of the designer does have some limitations. In this chapter, we explore some of
the more advanced modeling concepts that are supported by Entity Framework. Many of these models
represent real-world challenges dealing with existing databases that may not have been designed with
the best approaches.

15-1. Creating an Association on a Derived Entity

Problem
You have a table with a nullable foreign key column. You want to model the table using Table per
Hierarchy inheritance and map the foreign key column as an association on the derived entity.

Solution
Let’s say you have a couple of tables like the ones shown in the diagram in Figure 15-1.

Figure 15-1. A Contact table with an optional (nullable) foreign key to an Account table

529

CHAPTER 15 ADVANCED MODELING

In Figure 15-1, we have a Contact table that contains a name and phone number as well as an
optional foreign key to related account information held in an Account table. In our model, if a contact
has related account information, the contact is a customer.

We want to represent the customer as a derived type in our model. Additionally, we want to
represent the related account information as an entity and create an association between the derived
type and the account entity.

To create the model, do the following:

1. Add a new ADO.NET Entity Data Model to your project and import the Contact
and Account tables. Or update an existing model with these tables.

2. Remove the association created by the designer between the Contact and
Account entities.

3. Right-click the design surface and select Add Entity. Name the new entity
Customer. Select Contact as the base type for the new Customer entity.

4. Move the AccountId property from the Contact entity to the Customer entity.
You can use Cut/Paste to move this property.

5. Select the Customer entity. In the Mapping Details window, select the Contact
table in Add a Table or View. Add the condition when AccountId is not null.

6. Right-click the design surface and select Add Association. Create a one-to-
many association between the Account entity and the Customer entity. Make
sure the Customer is on the many side of the association.

7. Right-click the association and select Properties. Click the Referential
Constraint box. In the dialog box, select the Account entity for the Principal
role. Select AccountId as the Dependent Property.

The completed model should look like the one in Figure 15-2.

Figure 15-2. The completed model with a one-to-many association between the Account entity and the

derived entity, Customer

530

 CHAPTER 15 ADVANCED MODELING

How It Works
We used the AccountId column as the discriminator in the Table per Hierarchy inheritance model. We
also used the AccountId column in a conditional association to the Account entity.

It may seem strange for the association between Account and Customer to be one-to-many. We
know that each customer has exactly one account and that AccountIds are unique across instances of
the Contact entity. However, the AccountId foreign key in Contact is not an entity key. From the model’s
perspective, there is no guarantee that the AccountId foreign key provides for the expected one-to-one
relationship to the Account table.

The code in Listing 15-1 demonstrates inserting into and querying our model.

Listing 15-1. Inserting and querying our model

using (var context = new EFRecipesEntities())
{
 var acc1 = new Account { Balance = 99.34M };
 var con1 = new Contact { Name = "Stacy Jones", Phone = "867-5301" };
 var cus1 = new Customer { Name = "Bill Waters", Phone = "907-2212",
 Account = acc1 };
 context.Contacts.AddObject(con1);
 context.Contacts.AddObject(cus1);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 context.ContextOptions.LazyLoadingEnabled = true;
 Console.WriteLine("All Contacts");
 Console.WriteLine("============");
 foreach (var contact in context.Contacts)
 {
 Console.WriteLine("{0} {1}", contact.Name, contact.Phone);
 }

 Console.WriteLine("Just Customers");
 foreach (var contact in context.Contacts.OfType<Customer>())
 {
 Console.WriteLine("\t{0} {1} (Balance: {2})", contact.Name,
 contact.Phone,
 contact.Account.Balance.ToString("C"));
 }
}

The following is the output of the code in Listing 15-1:

531

CHAPTER 15 ADVANCED MODELING

All Contacts

============

Stacy Jones 867-5301

Bill Waters 907-2212

Just Customers

 Bill Waters 907-2212 (Balance: $99.34)

15-2. Mapping an Entity to Customized Parts of One
or More Tables

Problem
You want to map an entity to parts of one or more tables, excluding some columns, changing the data
types of others and adding a computed column.

Solution
Let’s suppose you have the two tables shown in Figure 15-3.

Figure 15-3. Product and Supplier tables

In Figure 15-3, we have two tables: Product and Supplier. We want to map these tables to a single
Product entity with the following changes.

The Name property should be limited to 50 characters rather than the 100 in the underlying Product
table. The Description column is not needed. The StockCount property should not be null. If the
underlying StockCount column is null, the entity’s StockCount property should have a value of 0. The
Discontinued column should be a bit field in the entity rather than the integer field in the underlying

532

 CHAPTER 15 ADVANCED MODELING

table. Because you plan to use the supplier’s name often, you want to include it as a property in the
entity. Finally, you want to expose a computed property called IsBackOrderable on the entity.

To create a model with the Product entity having the correct properties, do the following:

1. Add a new ADO.NET Entity Data Model to your project and import the Product
and Supplier tables. Or update an existing model with these tables.

2. Select the Name property in the Product entity and view its properties. Change
its Max Length from 100 to 50.

3. Select the StockCount property and view its properties. Change its Nullable
value from True to False.

4. Delete the Description property from the entity.

5. Delete the SupplierId property from the entity.

6. Right-click the Product entity and select Add Scalar Property. Name the new
property IsBackOrderable. Set its Type to Boolean. Set its Nullable property to
False.

7. Select the Discontinued property and view its properties. Change its Type from
Int32 to Boolean.

8. Right-click the Product entity and select Add Scalar Property. Name the new
property SupplierName and set its Type to String with a Max Length of 50.

9. Select the Product entity and view the Mapping Details window. Click Maps to
Product and select <Delete> to delete the table mapping.

10. Right-click the .edmx file in the Solution Explorer and select Open With XML
Editor. This will close the designer and open the .edmx file in the XML Editor.

11. Add the code in Listing 15-2 to the .edmx file immediately after the
<EntityContainerMapping> tag in the mapping section.

Listing 15-2. QueryView to customize the Product entity

<EntitySetMapping Name="Products">
 <QueryView>
 select value
 EFRecipesModel.Product(p.ProductId,
 p.Name,
 case when p.StockCount is null then 0
 else p.StockCount
 end,
 case when p.Discontinued = 1 then True
 else False
 end,
 case when p.Discontinued = 0 and s.Name == "CallComm" then True
 else False
 end,
 case when s.Name is null then "Unknown"
 else s.Name
 end

533

CHAPTER 15 ADVANCED MODELING

)
 from EFRecipesModelStoreContainer.Product as p
 left join EFRecipesModelStoreContainer.Supplier as s
 on p.SupplierId = s.SupplierId
 </QueryView>
</EntitySetMapping>

The resulting model should look like the one in Figure 15-4.

Figure 15-4. The completed model with our QueryView-based Product entity and the Supplier entity

How It Works
We used QueryView together with changes to the conceptual model to map and reshape the columns
from the Product and Supplier tables to a more consumable Product entity. This reshaping included
changing the data types for some properties, ignoring a column, and creating computed properties.

In the conceptual model, we changed the maximum name length to 50 characters. We changed the
data type of the Discontinued property from Int32 to Boolean. And we changed the StockCount to not
accept nulls.

In the Entity SQL expression (in the QueryView), we handle the case of existing null stock counts by
changing the value to 0. We change the Discontinued values of 1 and 0 to true and false, respectively.
We compute the value of the IsBackorderable property if the product is not discontinued and the
supplier is ‘CallCom.’ Finally, we set the Supplier name, if it exists, from the Supplier table. If the name is
null, then we substitute the string ‘Unknown.’

The code in Listing 15-3 demonstrates inserting into and retrieving from our model. Because we
used QueryView and did not supply stored procedures for the Insert, Update, and Delete actions, our
Product entity is read-only. In the code of Listing 15-3, we use the ExecuteStoreCommand() method to
directly execute the appropriate insert statements.

Listing 15-3. Inserting and retrieving from our model

using (var context = new EFRecipesEntities())
{
 var sup1 = new Supplier { SupplierId = 1, Name = "CallCom" };
 var sup2 = new Supplier { SupplierId = 2, Name = "Toys, Ltd." };
 context.Suppliers.AddObject(sup1);
 context.Suppliers.AddObject(sup2);
 context.SaveChanges();

534

 CHAPTER 15 ADVANCED MODELING

 // insert some products directly
 context.ExecuteStoreCommand(@"insert into chapter15.product(productid,name,
 description,stockcount,discontinued)
 values (1,'Flowers','Dozen red roses',4,1)");
 context.ExecuteStoreCommand(@"insert into chapter15.product(productid,name
 description,stockcount,discontinued,supplierid)
 values (2,'Red Fire Truck',null,null,0,1)");
}

using (var context = new EFRecipesEntities())
{
 foreach (var p in context.Products)
 {
 Console.WriteLine("\nName: {0}", p.Name);
 Console.WriteLine("Stock Count: {0}", p.StockCount.ToString());
 Console.WriteLine("Discountinued: {0}", p.Discontinued ? "Yes" : "No");
 Console.WriteLine("Supplier: {0}", p.SupplierName);
 }
}

The output from the code in Listing 15-3 is the following:

Name: Flowers

Stock Count: 4

Discountinued: Yes

Supplier: Unknown

Name: Red Fire Truck

Stock Count: 0

Discountinued: No

Supplier: CallCom

535

CHAPTER 15 ADVANCED MODELING

15-3. Creating Conditional Associations

Problem
You have a link table that joins two tables in a many-to-many relationship. The link table contains a
column that defines the role for the relationship. You want each role in the relationship to surface as a
unique association between the two entities.

Solution
Suppose you have a couple of tables in a many-to-many relationship with a link table, as shown in the
database diagram in Figure 15-5.

Figure 15-5. Project and Employee in a many-to-many relationship with a column designating the role for

the relationship

A project can be associated with many employees, and an employee can be part of many projects.
Additionally, for each project and employee relationship, the link table contains a column that indicates
the role the employee plays in the related project. In our example, an employee can be a simple project
member with no special responsibilities or a project manager, with all the responsibilities of the role.

In the model, we want to expose each role as a separate association. This means we would have an
association for members and an association for project managers. To create the model, do the following:

1. Add a new ADO.NET Entity Data Model to your project and import the Project,
ProjectEmployee, and Employee tables. Or update an existing model with
these tables.

2. Create the stored procedures in Listing 15-4 in the database. Once the
database has these new stored procedures, right-click the design surface and
select Update Model from Database. Select the stored procedures and click
Add.

3. Right-click the ProjectEmployee entity and select Delete. Select No when
prompted to delete the entity from the store model. This will delete the
ProjectEmployee entity from the conceptual model, but leave the now
unmapped entity in the store model.

536

 CHAPTER 15 ADVANCED MODELING

4. Right-click the design surface and select Add Association. Name the new
association Members. Set the multiplicity on both ends to be many. This will
create a many-to-many association. Name the navigation properties Members
on the Project side and MemberProjects on the Employee side.

5. Right-click the design surface and select Add Association. Name the new
association ProjectManagers. Set the multiplicity on the Project side to many
and the multiplicity on the Employee side to one. Name the navigation
properties ManagerProjects on the Employee side and ProjectManager on the
Project side.

6. Now we need to map our stored procedures to the Insert, Update, and Delete
actions. Select the Employee entity and view the Mapping Details window.
Click the Map Entity to Functions button on the bottom left of the Mapping
Details window. Map the stored procedures to actions, as shown in Figure 15-
6. Be sure to map the result column EmployeeId to the EmployeeId property.
Entity Framework will use the stored generated EmployeeId for the entity key.

7. Map the stored procedures to the Insert, Update, and Delete actions for the
Project entity. As with the Employee entity, be sure to map the result column
ProjectId to the ProjectId property.

8. Select the Employee entity and view the Mapping Details window. Click Maps
to Employee and select <Delete> to delete the mapping to the Employee table.

9. Select the Project entity and view the Mapping Details window. Click Maps to
Project and select <Delete> to delete the mapping to the Project table.

Figure 15-6. Mapping the stored procedures to the Insert, Update, and Delete actions for the Employee

entity

537

CHAPTER 15 ADVANCED MODELING

At this point, we have configured the conceptual model. The next steps create the conditional
association. Modeling conditional associations is not directly supported by the designer. We will map
the association using QueryView. As you have seen in other recipes, when we use QueryView, all the
related entities must also be mapped using QueryView. Caution: After making these changes to the
.edmx file, you will no longer be able to open the file in the designer.

10. Insert the QueryView in Listing 15-5 right after the <EntitySetMapping
Name="Projects"> tag in the C-S mapping layer.

11. Insert the QueryView in Listing 15-6 right after the <EntitySetMapping
Name="Employees"> tag in the C-S mapping layer.

12. Insert the code in Listing 15-7 after the <EntityContainerMapping> tag. These
two QueryViews map a row in the link table to either the Member association
or the ProjectManager association based on the Role column.

Listing 15-4. Stored procedures for the Insert, Update, and Delete actions for the entities (notice that the

insert procedures for the Project and Employee tables returns the newly generated Id value)

create procedure [chapter15].[InsertProject]
(@Name varchar(50))
as
begin
 insert into Chapter15.Project(Name) values (@Name)
 select SCOPE_IDENTITY() as ProjectId
end
go

create procedure [chapter15].[UpdateProject]
(@Name varchar(50), @ProjectId int)
as
begin
 update Chapter15.Project set Name = @Name where ProjectId = @ProjectId
end
go

create procedure [chapter15].[DeleteProject]
(@ProjectId int)
as
begin
 delete Chapter15.Project where ProjectId = @ProjectId
end
go

create procedure [chapter15].[InsertEmployee]
(@Name varchar(50))
as
begin
 insert Chapter15.Employee (Name) values (@Name)
 select SCOPE_IDENTITY() as EmployeeId
end
go

538

 CHAPTER 15 ADVANCED MODELING

create procedure [chapter15].[UpdateEmployee]
(@Name varchar(50), @EmployeeId int)
as
begin
 update Chapter15.Employee set Name = @Name where EmployeeId = @EmployeeId
end
go

create procedure [chapter15].[DeleteEmployee]
(@EmployeeId int)
as
begin
 delete Chapter15.Employee where EmployeeId = @EmployeeId
end
go

create procedure [chapter15].[InsertMember]
(@ProjectId int, @EmployeeId int)
as
begin
 insert into Chapter15.ProjectEmployee values (@ProjectId, @EmployeeId, 'MM')
end
go

create procedure [chapter15].[DeleteMember]
(@ProjectId int, @EmployeeId int)
as
begin
 delete Chapter15.ProjectEmployee where ProjectId = @ProjectId and EmployeeId =
@EmployeeId
end
go

create procedure [chapter15].[InsertProjectManager]
(@ProjectId int, @EmployeeId int)
as
begin
 insert into Chapter15.ProjectEmployee values (@ProjectId, @EmployeeId, 'PM')
end
go

create procedure [chapter15].[DeleteProjectManager]
(@ProjectId int, @EmployeeId int)
as
begin
 delete Chapter15.ProjectEmployee where ProjectId = @ProjectId and EmployeeId =
@EmployeeId
end
go

539

CHAPTER 15 ADVANCED MODELING

Listing 15-5. QueryView and procedure mapping for the Project entity

<QueryView>
 select value EFRecipesModel.Project(p.ProjectId,p.Name)
 from EFRecipesModelStoreContainer.Project as p
</QueryView>

Listing 15-6. QueryView and procedure mapping for the Employee entity

<QueryView>
 select value EFRecipesModel.Employee(e.EmployeeId,e.Name)
 from EFRecipesModelStoreContainer.Employee as e
</QueryView>

Listing 15-7. QueryView and procedure mappings for the associations

<AssociationSetMapping TypeName="EFRecipesModel.Members" Name="Members">
 <QueryView>
 select value EFRecipesModel.Members(
 createref(EFRecipesEntities.Employees,row(pe.EmployeeId)),
 createref(EFRecipesEntities.Projects,row(pe.ProjectId))
)
 from EFRecipesModelStoreContainer.ProjectEmployee as pe
 where pe.Role = 'MM'
 </QueryView>
 <ModificationFunctionMapping>
 <InsertFunction FunctionName="EFRecipesModel.Store.InsertMember">
 <EndProperty Name="Project">
 <ScalarProperty Name="ProjectId" ParameterName="ProjectId" />
 </EndProperty>
 <EndProperty Name="Employee">
 <ScalarProperty Name="EmployeeId" ParameterName="EmployeeId" />
 </EndProperty>
 </InsertFunction>
 <DeleteFunction FunctionName="EFRecipesModel.Store.DeleteMember">
 <EndProperty Name="Project">
 <ScalarProperty Name="ProjectId" ParameterName="ProjectId" />
 </EndProperty>
 <EndProperty Name="Employee">
 <ScalarProperty Name="EmployeeId" ParameterName="EmployeeId" />
 </EndProperty>
 </DeleteFunction>
 </ModificationFunctionMapping>
 </AssociationSetMapping>
 <AssociationSetMapping TypeName="EFRecipesModel.ProjectManager" Name="ProjectManager">
 <QueryView>
 select value EFRecipesModel.ProjectManager(
 createref(EFRecipesEntities.Employees,row(pe.EmployeeId)),
 createref(EFRecipesEntities.Projects,row(pe.ProjectId))
)
 from EFRecipesModelStoreContainer.ProjectEmployee as pe

540

 CHAPTER 15 ADVANCED MODELING

 where pe.Role = 'PM'
 </QueryView>
 <ModificationFunctionMapping>
 <InsertFunction FunctionName="EFRecipesModel.Store.InsertProjectManager">
 <EndProperty Name="Project">
 <ScalarProperty Name="ProjectId" ParameterName="ProjectId" />
 </EndProperty>
 <EndProperty Name="Employee">
 <ScalarProperty Name="EmployeeId" ParameterName="EmployeeId" />
 </EndProperty>
 </InsertFunction>
 <DeleteFunction FunctionName="EFRecipesModel.Store.DeleteMember">
 <EndProperty Name="Project">
 <ScalarProperty Name="ProjectId" ParameterName="ProjectId" />
 </EndProperty>
 <EndProperty Name="Employee">
 <ScalarProperty Name="EmployeeId" ParameterName="EmployeeId" />
 </EndProperty>
 </DeleteFunction>
 </ModificationFunctionMapping>
 </AssociationSetMapping>

How It Works
That’s a lot of code. We used QueryView for all the mappings, which made for a lot of small stored
procedures and some tedious XML changes to the .edmx file. For the Members association, we used
QueryView (see Figure 15-8) to map the ProjectEmployee table. The constructor takes two parameters.
The first parameter is a reference to the Project entity. The second parameter is a reference to the
Employee entity. To get the references to the entities, we use the Entity SQL operator createref(). This
operator takes the fully qualified name of the EntitySet and an entity key. Notice that we also applied a
filter on the ProjectEmployee table where Role == 'MM'. This filter limits the results to employees in the
Member relationship to the project.

The ProjectManager relationship is implemented in the same way except for the filter, Role == 'PM',
which limits the results to the employee in the ProjectManager relationship to the project.

Mapping an entity based on conditions is natively supported by Entity Framework. This is the basis
for modeling Table per Hierarchy inheritance. Mapping an association based on conditions is not
supported and requires QueryView as we demonstrated in this example. The code in Listing 15-8
illustrates how to insert and query our model.

Listing 15-8. Inserting into and retrieving from our model

using (var context = new EFRecipesEntities())
{
 var proj = new Project { Name = "Highway 101 Access Route" };
 proj.Members.Add(new Employee { Name = "Jim Stone" });
 proj.Members.Add(new Employee { Name = "Roland Jones" });
 proj.Members.Add(new Employee { Name = "Jennifer Collins" });
 proj.ProjectManager = new Employee { Name = "Sue Raven" };
 context.Projects.AddObject(proj);
 context.SaveChanges();

541

CHAPTER 15 ADVANCED MODELING

}

using (var context = new EFRecipesEntities())
{
 context.ContextOptions.LazyLoadingEnabled = true;
 foreach (var p in context.Projects)
 {
 Console.WriteLine("Project: {0}, Manager: {1}", p.Name, p.ProjectManager.Name);
 Console.WriteLine("Members:");
 foreach (var m in p.Members)
 {
 Console.WriteLine("\t{0}", m.Name);
 }
 }
}

The following is the output from the code in Listing 15-8:

Project: Highway 101 Access Route, Manager: Sue Raven

Members:

 Roland Jones

 Jim Stone

 Jennifer Collins

15-4. Fabricating Additional Inheritance Hierarchies

Problem
You have a table you want to model using Table per Hierarchy inheritance and you want to add one or
more additional hierarchies that are not represented in the database.

Solution
Let’s say your table looks like the one in Figure 15-7.

542

 CHAPTER 15 ADVANCED MODELING

Figure 15-7. The Person table with information about an individual in a school

The table in Figure 15-7 holds information about students, instructors, and principals in a school.
We want to use Table per Hierarchy inheritance to model this table as a hierarchy of staff and students.
Students, instructors, or principals are distinguished in the table by the role column. We will use the role
column as our discriminator in the model. We want to introduce a Staff type in our hierarchy so that we
can group and ultimately program against, staff and students, separately. Representing the Staff level in
the hierarchy is the key part of the problem.

To create the model, do the following:

1. Add a new ADO.NET Entity Data Model to your project and import the Person
table. Or update an existing model with this table.

2. Remove the Role property from the Person entity.

3. Right-click the Person entity and select properties. Set the Abstract property to
True. This marks the Person entity as abstract.

4. Right-click the design surface and select Add Entity. Name the new entity
Student and set its base type to Person.

5. Move the EnrollmentDate property from the Person entity to the Student
entity. You can use Cut/Paste to move the property.

6. Select the Student entity and view the Mapping Details window. Select Add a
Table or View and choose the Person table.

7. In the Mapping Details window, add a condition for the Student entity When
Role = Student. This maps the Student entity when the Role is Student.

8. Right-click the design surface and select Add Entity. Name the new entity
Staff and set its base type to Person.

9. Move the HireDate and Salary properties from the Person entity to the Staff
entity.

10. Right-click the Staff entity and select Properties. Set the Abstract property to
True. This marks the Staff entity as abstract.

11. Right-click the design surface and select Add Entity. Name the new entity
Principal and set its base type to Staff.

12. Select the Principal entity and view the Mapping Details window. Select Add a
Table or View and choose the Person table.

543

CHAPTER 15 ADVANCED MODELING

13. In the Mapping Details window, add a condition for the Principal entity When
Role = Principal. This maps the Principal entity when the Role is Principal.

14. Right-click the design surface and select Add Entity. Name the new entity
Instructor and set its base type to Staff.

15. Select the Instructor entity and view the Mapping Details window. Select Add a
Table or View and choose the Person table.

16. In the Mapping Details window, add a condition for the Instructor entity When
Role = Instructor. This maps the Instructor entity when the Role is
Instructor.

At this point, we have the inheritance hierarchy in place with all the entities. We have marked
Person and Staff as abstract because we will never create them directly. We have not yet mapped the
properties of the Principal or the Instructor entities. This is not supported by the designer, so we need to
make some minor changes to the .edmx file.

17. Right-click the .edmx file in the Solution Explorer and select Open With XML
Editor. This will close the designer and open the .edmx file in the XML editor.

18. Add the HireDate and Salary mappings to both the Principal and Instructor
entities. The XML in Listing 15-9 highlights the required changes.

Listing 15-9. Mapping the HireDate and Salary properties in the Principal and Instructor entities

<EntityContainerMapping StorageEntityContainer="EFRecipesModelStoreContainer"
 CdmEntityContainer="EFRecipesEntities">
 <EntitySetMapping Name="People">
 <EntityTypeMapping TypeName="IsTypeOf(EFRecipesModel.Person)">
 <MappingFragment StoreEntitySet="Person">
 <ScalarProperty Name="PersonId" ColumnName="PersonId" />
 <ScalarProperty Name="Name" ColumnName="Name"/>
 </MappingFragment>
 </EntityTypeMapping>
 <EntityTypeMapping TypeName="IsTypeOf(EFRecipesModel.Student)">
 <MappingFragment StoreEntitySet="Person">
 <ScalarProperty Name="PersonId" ColumnName="PersonId" />
 <ScalarProperty Name="EnrollmentDate" ColumnName="EnrollmentDate" />
 <Condition ColumnName="Role" Value="Student" />
 </MappingFragment>
 </EntityTypeMapping>
 <EntityTypeMapping TypeName="IsTypeOf(EFRecipesModel.Principal)">
 <MappingFragment StoreEntitySet="Person" >
 <ScalarProperty Name="PersonId" ColumnName="PersonId"/>
 <ScalarProperty Name="HireDate" ColumnName="HireDate"/>
 <ScalarProperty Name="Salary" ColumnName="Salary"/>
 <Condition ColumnName="Role" Value="Principal" />
 </MappingFragment>
 </EntityTypeMapping>
 <EntityTypeMapping TypeName="IsTypeOf(EFRecipesModel.Instructor)">
 <MappingFragment StoreEntitySet="Person" >
 <ScalarProperty Name="PersonId" ColumnName="PersonId"/>

544

 CHAPTER 15 ADVANCED MODELING

 <ScalarProperty Name="HireDate" ColumnName="HireDate"/>
 <ScalarProperty Name="Salary" ColumnName="Salary"/>
 <Condition ColumnName="Role" Value="Instructor" />
 </MappingFragment>
 </EntityTypeMapping>
 </EntitySetMapping>
</EntityContainerMapping>

The resulting model is shown in Figure 15-8.

Figure 15-8. The model with the Staff entity added to the hierarchy

How It Works
We added the Staff entity that introduced a new level in the inheritance hierarchy. This allows us to
better organize the hierarchy and simplify the programming because the Staff entity contains all the
properties shared among the Principal and Instructor entities.

This modeling scenario is not directly supported by the designer. We had to make some minor
changes (as shown in Listing 15-9) to the .edmx file to map the properties of the Principal and Instructor
entities.

The code in Listing 15-10 demonstrates inserting into and retrieving from our model.

545

CHAPTER 15 ADVANCED MODELING

Listing 15-10. Inserting into and retrieving from our model

using (var context = new EFRecipesEntities())
{
 var p = new Principal { Name = "Jill Robins",
 HireDate = DateTime.Parse("8/12/2002"),
 Salary = 72500M };
 var i1 = new Instructor { Name = "Roland Jones",
 HireDate = DateTime.Parse("8/14/2005"),
 Salary = 61000M};
 var i2 = new Instructor { Name = "Steven Curtis",
 HireDate = DateTime.Parse("8/23/1992"),
 Salary = 68200M };
 context.People.AddObject(new Student { Name = "Karen Roberts" });
 context.People.AddObject(new Student {Name = "Bobby McGivens"});
 context.People.AddObject(new Student {Name = "Janis Hettler"});
 context.People.AddObject(p);
 context.People.AddObject(i1);
 context.People.AddObject(i2);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 Console.WriteLine("Staff");
 Console.WriteLine("=====");
 foreach (var staff in context.People.OfType<Staff>())
 {
 Console.WriteLine("\t{0}, Hire date: {1}, Salary: {2} {3})",
 staff.Name, staff.HireDate.Value.ToShortDateString(),
 staff.Salary.Value.ToString("C"),
 staff is Principal ? "Principal" : "Instructor");
 }
 Console.WriteLine("\nStudents");
 Console.WriteLine("==========");
 foreach (var student in context.People.OfType<Student>())
 {
 Console.WriteLine("\t{0}", student.Name);
 }
}

The output from the code in Listing 15-10 is the following:

Staff

=====

 Jill Robins, Hire date: 8/12/2002, Salary: $72,500.00 Principal)

546

 CHAPTER 15 ADVANCED MODELING

 Roland Jones, Hire date: 8/14/2005, Salary: $61,000.00 Instructor)

 Steven Curtis, Hire date: 8/23/1992, Salary: $68,200.00 Instructor)

Students

==========

 Karen Roberts

 Bobby McGivens

 Janis Hettler

15-5. Sharing Audit Fields Across Multiple Entities

Problem
You have several tables with common audit columns and you want to create a model that simplifies
updating these audit columns

Solution
Let’s say you have the two tables shown in Figure 15-9. These tables share the CreateDate and
ModifiedDate audit columns. We want to create a model that factors these common fields into a base
entity so that we can simplify tracking the audit information.

Figure 15-9. Client and Invoice tables share the CreateDate and ModifiedDate audit columns

To create the model, do the following:

1. Add a new ADO.NET Entity Data Model to your project and import the Client
and Invoice tables. Or update an existing model with these tables.

547

CHAPTER 15 ADVANCED MODELING

2. Right-click the design surface and select Add Entity. Name the new entity
Audit and check the Create key property box to create an entity key with the Id
property.

3. Move the audit fields CreateDate and ModifiedDate from the Client entity to
the Audit entity. You can use Cut/Paste to move these. Delete these audit fields
from the Invoice entity.

4. Right-click the Audit entity and select Add Inheritance. Select the Audit
entity as the base entity and the Client entity as the derived entity.

5. Repeat Step 4, selecting Audit as the base entity and Invoice as the derived
entity.

6. Remove the ClientId from the Client entity. Remove the InvoiceId properties
from the Invoice entity. We will use the Id property in the Audit entity as the
entity key.

7. Right-click the Audit entity and select properties. Change the Abstract property
to True. This marks the Audit entity as abstract.

8. Right-click the association between the Client entity and the Invoice entity.
View the Properties of the association. Click the box in the Referential
Constraints. Set the Principal as Client. Set the Dependent Property to the
ClientId property. The dialog box should look like the one in Figure 15-10.

9. Right-click the .edmx file in the Solution Explorer and select Open With XML
Editor. Edit the entity set mapping in the Mapping layer as shown in the
highlighted parts in Listing 15-11.

Figure 15-10. The Referential Constraint for the Foreign Key association between the Client and Invoice

entities

Listing 15-11. Entity set mappings for the Audits

<EntitySetMapping Name="Audits">
 <EntityTypeMapping TypeName="IsTypeOf(EFRecipesModel.Client)">

548

 CHAPTER 15 ADVANCED MODELING

 <MappingFragment StoreEntitySet="Client">
 <ScalarProperty Name="Id" ColumnName="ClientId" />
 <ScalarProperty Name="Name" ColumnName="Name" />
 <ScalarProperty Name="CreateDate" ColumnName="CreateDate" />
 <ScalarProperty Name="ModifiedDate" ColumnName="ModifiedDate" />
 </MappingFragment>
 </EntityTypeMapping>
 <EntityTypeMapping TypeName="IsTypeOf(EFRecipesModel.Invoice)">
 <MappingFragment StoreEntitySet="Invoice">
 <ScalarProperty Name="Id" ColumnName="InvoiceId" />
 <ScalarProperty Name="ClientId" ColumnName="ClientId" />
 <ScalarProperty Name="Amount" ColumnName="Amount" />
 <ScalarProperty Name="CreateDate" ColumnName="CreateDate" />
 <ScalarProperty Name="ModifiedDate" ColumnName="ModifiedDate" />
 </MappingFragment>
 </EntityTypeMapping>
</EntitySetMapping>

If the ClientId and InvoiceId columns, which alternately serve as the entity key for the Audit entity,

do not overlap, the model is complete. The conflict here is that both the Client and Invoice entities are
part of the Audits entity set. The entity key must be unique across this entity set. The entity key comes
from both the ClientId column and the InvoiceId column. If they overlap, it is possible we would have
non-unique keys in the Audits entity set. If these keys are naturally unique because they are drawn from
two non-overlapping sets, then we are safe. This would be the case if, for example, both are identity
columns with Client enumerating odd values (seed of 1, increment of 2) and Invoice enumerating even
values (seed of 2, increment of 2).

If ClientId and InvoiceId could conflict, then we need to remove the Audits entity set and move the
Client and Invoice entities to their own entity sets. This involves converting the model so that the Audit
entity is in both of the new entity sets. The use of multiple entity sets per type, better known as Multiple
Entity Sets per Type (MEST), is not supported in the current designer. Converting the model to use MEST
will prevent the designer from opening the model. To move the Client and Invoice entities to their own
entity sets and represent the Audit entity in these two sets using MEST, continue with these steps:

10. Right-click the .edmx file and select Open With XML Editor. In the
conceptual layer, replace the Audits definition with the XML in Listing 15-12.

11. Removing the Audits broke the association in our model. In the conceptual
layer, replace the AssociationSet definition with the code in Listing 15-13.

12. Update the mapping layer with by replacing the entity set mapping for the
Audits with the code in Listing 15-14.

Listing 15-12. Replace the <EntitySet Name=“Audits”…> tag with this code

<EntitySet Name="Clients" EntityType="EFRecipesModel.Client" />
<EntitySet Name="Invoices" EntityType="EFRecipesModel.Invoice" />

Listing 15-13. Replace the <AssociationSet Name=“FK_Invoice_Client …> code with this code

<AssociationSet Name="FK_Invoice_Client"
 Association="EFRecipesModel.FK_Invoice_Client">
 <End Role="Client" EntitySet="Clients" />

549

CHAPTER 15 ADVANCED MODELING

 <End Role="Invoice" EntitySet="Invoices" />
</AssociationSet>

Listing 15-14. Replace mappings for the Client and Invoice entities with this code

<EntitySetMapping Name="Clients">
 <EntityTypeMapping TypeName="IsTypeOf(EFRecipesModel.Client)">
 <MappingFragment StoreEntitySet="Client">
 <ScalarProperty Name="Name" ColumnName="Name" />
 <ScalarProperty Name="Id" ColumnName="ClientID" />
 <ScalarProperty Name="CreateDate" ColumnName="CreateDate" />
 <ScalarProperty Name="ModifiedDate" ColumnName="ModifiedDate" />
 </MappingFragment>
 </EntityTypeMapping>
</EntitySetMapping>
<EntitySetMapping Name="Invoices">
 <EntityTypeMapping TypeName="IsTypeOf(EFRecipesModel.Invoice)">
 <MappingFragment StoreEntitySet="Invoice">
 <ScalarProperty Name="Amount" ColumnName="Amount" />
 <ScalarProperty Name="Id" ColumnName="InvoiceID" />
 <ScalarProperty Name="CreateDate" ColumnName="CreateDate" />
 <ScalarProperty Name="ModifiedDate" ColumnName="ModifiedDate" />
 </MappingFragment>
 </EntityTypeMapping>
</EntitySetMapping>

The model is shown in Figure 15-11.

Figure 15-11. The completed model with the Audit entity holding the common audit fields

550

 CHAPTER 15 ADVANCED MODELING

How It Works
Our model uses Table per Concrete Type inheritance to factor the audit fields into the Audit base entity.
In the typical scenario for Table per Concrete Type inheritance, the tables for the derived types share
most of the same schema. In this example, only the audit fields are shared.

As is common with this inheritance model, we need to address the problem of ensuring that the
keys from the tables for the derived types do not overlap. Because the base entity’s key comes from these
tables, any overlap violates the uniqueness requirement for entity keys in an entity set. One way to
address this problem is to move the derived entities into their own entity sets. This solves the key
uniqueness problem (assuming, of course, that the keys are unique within each table). Unfortunately,
moving the entities into separate entity sets means that the Audit entity (the base entity) now spans two
entity sets. MEST is not supported by the current designer. After applying these changes, the model will
no longer open in the designer.

Regardless of how you choose to solve the entity key problem, once the base entity has the audit
fields, we can simplify maintaining the audit information for the derived entities. The code in Listing 15-
15 (this is the non-MEST version) demonstrates inserting into and retrieving from our model. The code
implements a handler for the SavingChanges event. In this handler, we find all the objects that are newly
created or modified. For each of these, we set the appropriate audit fields. This approach provides a
clean separation between the main code that inserts and updates the model and the code that manages
the audit fields.

Chapter 12 covers a number of recipes involving the SavingChanges event.

Listing 15-15. Inserting into and retrieving from our model (this is the TPC without MEST version; the

MEST version would use the Clients and Invoices sets rather than the AuditSet set for adding the objects)

class Program
{
 static void Main(string[] args)
 {
 RunExample();
 }

 static void RunExample()
 {
 using (var context = new EFRecipesEntities())
 {
 var c1 = new Client { Name = "Joanne Wise" };
 var c2 = new Client { Name = "Robert Marr" };
 var c3 = new Client { Name = "Shelly King" };
 var i1 = new Invoice { Amount = 99.23M };
 var i2 = new Invoice { Amount = 29.95M };
 c1.Invoices.Add(i1);
 c3.Invoices.Add(i2);
 context.Audits.AddObject(c1);
 context.Audits.AddObject(c2);

 context.Audits.AddObject(c3);
 context.SaveChanges();
 Console.WriteLine("Waiting 10 seconds to update...");
 System.Threading.Thread.Sleep(10 * 1000);
 i1.Amount = 98.49M;

551

CHAPTER 15 ADVANCED MODELING

 i2.Amount = 39.99M;
 context.SaveChanges();
 }

 using (var context = new EFRecipesEntities())
 {
 context.ContextOptions.LazyLoadingEnabled = true;
 Console.WriteLine("Invoices...");
 foreach (var bill in context.Audits.OfType<Invoice>())
 {
 Console.WriteLine("{0} Amount: {1}", bill.Client.Name,
 bill.Amount.ToString("C"));
 Console.WriteLine("\tCreated: {0}",
 bill.CreateDate.ToLongTimeString());
 Console.WriteLine("\tLast Modified: {0}\n",
 bill.ModifiedDate.ToLongTimeString());
 }
 }
 }
}

public partial class EFRecipesEntities
{
 partial void OnContextCreated()
 {
 this.SavingChanges += (o, s) =>
 {
 var inaudits = this.ObjectStateManager
 .GetObjectStateEntries(System.Data.EntityState.Added)
 .Where(entry => entry.Entity is Audit)
 .Select(entry => entry.Entity as Audit);
 foreach (var audit in inaudits)
 {
 audit.CreateDate = DateTime.Now;
 audit.ModifiedDate = DateTime.Now;
 }
 var modaudits = this.ObjectStateManager
 .GetObjectStateEntries(System.Data.EntityState.Modified)
 .Where(entry => entry.Entity is Audit)
 .Select(entry => entry.Entity as Audit);
 foreach (var audit in modaudits)
 {
 audit.ModifiedDate = DateTime.Now;
 }
 };
 }
}

The output from the code in Listings 15-15 is the following:

552

 CHAPTER 15 ADVANCED MODELING

Waiting 10 seconds to update...

Invoices...

Joanne Wise Amount: $98.49

 Created: 11:46:38 AM

 Last Modified: 11:46:49 AM

Shelly King Amount: $39.99

 Created: 11:46:38 AM

 Last Modified: 11:46:49 AM

15-6. Modeling a Many-to-Many Relationship with Payload

Problem
You have two tables in a many-to-many relationship. The relationship contains additional information
or payload. You want to create a model that models this relationship as a many-to-many association as
well as two one-to-many associations.

Solution
Let’s say we have three tables like the ones shown in the database diagram in Figure 15-12.

Figure 15-12. Author and Book in a many-to-many relationship through the AuthorBook link table

In Figure 15-12, the table AuthorBook is a link table that provides the many-to-many relationship
between the Author table and the Book table. The IsPrimary column stores information about the
relationship between an author and a book. This extra information is often referred to as payload.

553

CHAPTER 15 ADVANCED MODELING

If the AuthorBook table did not have the IsPrimary payload column, Entity Framework would model
this relationship as a many-to-many association between the Author entity and the Book entity. The
AuthorBook table would be part of the association and would not surface as a separate entity. With the
IsPrimary payload column, Entity Framework represents all three tables as entities with one-to-many
associations.

We want to model the tables in Figure 15-12 with a many-to-many association as well as two one-to-
many associations. To create this model, do the following:

1. Add a new ADO.NET Entity Data Model to your project and import the Author,
AuthorBook, and Book tables. Or update an existing model with these tables.

2. Right-click the design surface and select Add Association. Create the
association between the Author entity and the Book entity. Set the multiplicity
on both ends to many. Pluralize the navigation properties by setting them to
Books on the Author end and Authors on the Book end.

3. Use the code in Listing 15-16 to create a view in the database. This provides a
payload-free view of the link table.

4. Right-click the design surface and select Update Model from Database.
Expand Views in the Add tab and select the vwAuthorBook view. This will
update the model with the vwAuthorBook view.

5. Right-click the new vwAuthorBook entity and select Delete. When prompted to
Delete Unmapped Tables and Views, select no. This will remove the entity
from the conceptual layer, but leave the view in the storage layer.

6. Select the many-to-many association between the Author and Book entities
and view the Mapping Details window. In the Add a Table or View drop-down,
select the vwAuthorBook view. You may need to scroll the control down to see
the newly added view. The column and property mappings should match
those in Figure 15-13.

The completed model is shown in Figure 15-14.

Listing 15-16. A view of the AuthorBook link table excluding the payload column

create view [Chapter15].[vwAuthorBook]
as select BookId, AuthorId from Chapter15.AuthorBook

Figure 15-13. The mappings for the many-to-many association using the vwAuthorBook view

554

 CHAPTER 15 ADVANCED MODELING

Figure 15-14. Completed model with a read-only many-to-many association and two one-to-many

associations

How It Works
When a link table with no payload is imported into a model, it becomes part of the representation of the
many-to-many association. If the link table contains payload, it surfaces as an entity and participates in
two one-to-many associations. In this example, we leave the two one-to-many associations in place and
introduce a many-to-many relationship using a view of the link table without the payload column. We
cannot update through the many-to-many association because the association mapping relies on a
(read-only) view, but we can use the many-to-many association to simplify our queries.

In the code in Listing 15-17, we use AuthorBook entity to insert into our model; then we use the
many-to-many association to query the model.

Listing 15-17. Inserting into and retrieving from our model

using (var context = new EFRecipesEntities())
{
 var b1 = new Book { ISBN = "978-1-847193-81-0",
 Title = "jQuery Reference Guide" };
 var b2 = new Book { ISBN = "978-1-29298333",
 Title = "jQuery Tips and Tricks" };
 var b3 = new Book { ISBN = "978-1033988429",
 Title = "Silverlight 2" };
 var a1 = new Author { Name = "Jonathan Chaffer" };
 var a2 = new Author { Name = "Chad Campbell" };
 var ab1 = new AuthorBook { Author = a1, Book = b1, IsPrimary = true };

555

CHAPTER 15 ADVANCED MODELING

 var ab2 = new AuthorBook { Author = a1, Book = b2, IsPrimary = false };
 var ab3 = new AuthorBook { Author = a2, Book = b3, IsPrimary = false };
 context.AuthorBooks.AddObject(ab1);
 context.AuthorBooks.AddObject(ab2);
 context.AuthorBooks.AddObject(ab3);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 context.ContextOptions.LazyLoadingEnabled = true;
 Console.WriteLine("Authors and Their Books...");
 foreach (var author in context.Authors)
 {
 Console.WriteLine("{0}", author.Name);
 foreach (var book in author.Books)
 {
 Console.WriteLine("\t{0}, ISBN = {1}", book.Title, book.ISBN);
 }
 }
}

The output from the code in Listing 15-17 is the following:

Authors and Their Books...

Jonathan Chaffer

 jQuery Reference Guide, ISBN = 978-1-847193-81-0

 jQuery Tips and Tricks, ISBN = 978-1-29298333

Chad Campbell

 Silverlight 2, ISBN = 978-1033988429

15-7. Mapping a Foreign Key Column to Multiple
Associations

Problem
You have a column in a table that is a foreign key to two or more other tables. You also have a column in
the table that indicates which table the foreign key references. Although most database environments do
not support multiple table foreign key constraints, you want to create a model that models this structure.

We present an alternate solution to this problem in Recipe 15-8.

556

 CHAPTER 15 ADVANCED MODELING

Solution
Suppose you have three tables like the ones shown in Figure 15-15.

Figure 15-15. Three related tables without foreign key constraints

The Residence table contains the address of either a Relative or a Friend. The foreign key for either
of these tables is the PersonId column in the Residence table. The PersonType column indicates whether
the foreign key references the Relative table or the Friend table. There are no foreign key constraints
shown in the diagram in Figure 15-15 because most database systems do not support foreign keys
referencing multiple tables.

To create a model for the tables and implied relationships in Figure 15-15, do the following:

1. Add a new ADO.NET Entity Data Model to your project and import the Relative
and Friend tables. Or update an existing model with these tables.

2. In your database, create the vwResidence view using the code in Listing 15-18.

3. Right-click the design surface and select Update Model from Database. Add
the view to the model by selecting the vwResidence view from the Views
presented. Click Finish.

4. The importing process marked many of the columns of the vwResidence entity
as entity keys. Except for the AddressId column, right-click each property that
is marked as an entity key and select Properties. Set the Entity Key property to
False.

5. Right-click the vwResidence entity and select Properties. Change the Entity Set
Name to Residences. Change the Name to Residence.

6. Right-click the design surface and select Add Association. Select Residence
on one end of the association with a multiplicity of many, and choose Relative
on the other end with a multiplicity of zero-or-one. Change the navigation
properties to Residences and Relative.

7. Right-click the association between the Relative and Residence entities and
view the properties. Click the Referential Constraint box. In the dialog box,
select Relative as the Principal and RelativeId as the Dependent Property. See
Figure 15-16.

557

CHAPTER 15 ADVANCED MODELING

8. Right-click the design surface and select Add Association. Select Residence
on one end of the association with a multiplicity of many and Friend on the
other end with a multiplicity of zero-or-one. Change the navigation properties
to Friend and Residences.

9. Right-click the association between the Friend and Residence entities, and
view the properties. Click the Referential Constraint box. In the dialog box,
select Friend as the Principal and FriendId as the Dependent Property.

10. In your database, create the stored procedures for the Insert, Update, and
Delete actions for the Residence entity. Use the code in Listing 15-19. Right-
click the design surface and select Update Model from Database. Update your
model with these new stored procedures.

11. Select each entity and view the Mapping Details window. For each, click the
Map Entity to Functions button, which is on the bottom left of the Mapping
Details window. Map the Insert, Update, and Delete actions to the respective
stored procedures. Make sure that the Result Column Bindings map the
returned value to the PersonId property for the Friend and Relative entities
and the AddressId property for the Residence entity. See Figure 15-16.

12. Right-click the AddressId property in the Residence entity and view its
Properties. Change the StoreGeneratedPattern property to Identity.

13. Right-click the .edmx file in the Solution Explorer and select Open With XML
Editor.

14. Removing the entity keys from the Residence entity in Step 4 only removed the
keys from the conceptual level. Remove all the <PropertyRef> tags except for
the AddressId, from Residence entity in the storage layer under the <Key> tag
for the vwResidence EntityType.

The resulting model is shown in Figure 15-17.

Listing 15-18. A view that brings together the addresses of the relatives and friends

create view chapter15.vwResidence
as
select r.AddressId,r.[Address],r.City,r.[State],r.Zip,r.PersonId FriendId,null RelativeId
from chapter15.Residence as r
where r.PersonType = 'Friend'
union
select r.AddressId,r.[Address],r.City,r.[State],r.Zip,null FriendId,r.PersonId RelativeId
from chapter15.Residence as r
where r.PersonType = 'Relative'

558

 CHAPTER 15 ADVANCED MODELING

Figure 15-16. Creating the Referential Constraint for the association between the Relative and Residence

entities

Listing 15-19. Insert, Update, and Delete actions for the Friend, Relative, and Residence entities

create procedure [chapter15].[InsertFriend]
(@Name varchar(50))
as
begin
 insert into Chapter15.Friend (Name) values (@Name)
 select SCOPE_IDENTITY() as PersonId
end
go

create procedure [chapter15].[UpdateFriend]
(@Name varchar(50), @PersonId int)
as
begin
 update Chapter15.Friend set Name = @Name where PersonId = @PersonId
end
go

create procedure [chapter15].[DeleteFriend]
(@PersonId int)
as
begin
 delete Chapter15.Friend where PersonId = @PersonId
end
go

create procedure [chapter15].[InsertRelative]
(@Name varchar(50))
as
begin
 insert into Chapter15.[Relative](Name) values (@Name)

559

CHAPTER 15 ADVANCED MODELING

 select SCOPE_IDENTITY() as PersonId
end
go

create procedure [chapter15].[UpdateRelative]
(@Name varchar(50), @PersonId int)
as
begin
 Update Chapter15.[Relative] set Name = @Name where PersonId = @PersonId
end
go

create procedure [chapter15].[DeleteRelative]
(@PersonId int)
as
begin
 delete Chapter15.[Relative] where PersonId = @PersonId
end
go

create procedure [chapter15].[InsertResidence]
(@Address varchar(50), @City(50) varchar(50), @State varchar(20),
@Zip varchar(5), @FriendId int, @RelativeId int)
as
begin
 declare @personid int, @persontype varchar(50)
 if @FriendId is not null
 begin
 set @personid = @FriendId
 set @persontype = 'Friend'
 end
 else
 begin
 set @personid = @RelativeId
 set @persontype = 'Relative'
 end
 insert into Chapter15.Residence ([Address],City, State, ZIP,
 PersonId, PersonType)
 values (@Address,@City,@State,@Zip,@personid,@persontype)
 select SCOPE_IDENTITY() as AddressId
end
go

create procedure [chapter15].[UpdateResidence]
(@AddressId int, @Address varchar(50), @City varchar(50),
@State varchar(2), @Zip varchar(5), @FriendId int, @RelativeId int)
as
begin
 update Chapter15.Residence set [Address] = @Address,
 City = @City, [State] = @State, ZIP = @Zip
 where AddressId = @AddressId
end

560

 CHAPTER 15 ADVANCED MODELING

go

create procedure [chapter15].[DeleteResidence]
(@AddressId int, @FriendId int, @RelativeId int)
as
begin
 delete from Chapter15.Residence where AddressId = @AddressId
end
go

Figure 15-17. Mapping the Insert, Update, and Delete actions to the stored procedures. Make sure the

Result Column binding for the Insert action is mapped to the AddressId property.

561

CHAPTER 15 ADVANCED MODELING

Figure 15-18. The completed model

How It Works
Entity Framework does not allow mapping a foreign key column to multiple associations. To model our
existing database structure, we introduced a view that exposes separate foreign key columns from which
we can create the model shown in Figure 15-17. These foreign key columns in our view are populated
based on the values found in the PersonType column in the Residence table. If the PersonType is
“Friend,” the FriendId column is populated. If the PersonType is “Relative,” the RelativeId column is
populated.

With the introduction of the view for the Residence table, we needed to supply the implementation
for the Insert, Update, and Delete actions for the entities in our model. Our implementation for these
actions is shown in Listing 15-19. The mappings for the parameters and return values for these functions
for the Residence entity are shown in Figure 15-17.

The code in Listing 15-20 demonstrates inserting into and retrieving from our model. One problem
with this approach is that we have to be careful not to insert both a Relative and a Friend at the same
residence. To guard against this sort of collision, we can handle the SavingChanges event and validate the
changes before they are saved to the database.

Listing 15-20. Inserting into and retrieving from our model

class Program
{
 static void Main(string[] args)
 {
 RunExample();
 }

 static void RunExample()
 {
 using (var context = new EFRecipesEntities())

562

 CHAPTER 15 ADVANCED MODELING

 {
 var res1 = new Residence { Address = "123 Main", City = "Anytown",
 State = "CA", Zip = "90210" };
 var res2 = new Residence { Address = "1200 East Street",
 City = "Big Town", State = "KS", Zip = "66026" };
 var f = new Friend { Name = "Joan Roland"};
 f.Residences.Add(res1);
 var r = new Relative { Name = "Billy Miner"};
 r.Residences.Add(res2);
 context.Friends.AddObject(f);
 context.Relatives.AddObject(r);
 context.SaveChanges();
 }

 using (var context = new EFRecipesEntities())
 {
 context.ContextOptions.LazyLoadingEnabled = true;
 foreach (var r in context.Residences)
 {
 if (r.Friends != null)
 Console.WriteLine("My friend {0} lives at: ",
 r.Friends.Name);
 else if (r.Relatives != null)
 Console.WriteLine("My relative {0} lives at: ",
 r.Relatives.Name);
 Console.WriteLine("\t{0}", r.Address);
 Console.WriteLine("\t{0}, {1} {2}", r.City, r.State,
 r.Zip);
 }
 }
 }
}

public partial class EFRecipesEntities
{
 partial void OnContextCreated()
 {
 this.SavingChanges += (o, s) =>
 {
 var residences =
 this.ObjectStateManager.GetObjectStateEntries(
 EntityState.Modified |
 EntityState.Added)
 .Where(entry => entry.Entity is Residence)
 .Select(entry => entry.Entity as Residence);

 foreach (var residence in residences)
 {
 if ((residence.FriendId.HasValue ||
 residence.Friends != null) &&
 (residence.RelativeId.HasValue ||
 residence.Relatives != null))

563

CHAPTER 15 ADVANCED MODELING

 {
 throw new ApplicationException("Relative or friend?");
 }
 }
 };
 }
}

The output of the code from Listing 15-20 is the following:

My friend Joan Roland lives at:

 123 Main

 Anytown, CA 90210

My relative Billy Miner lives at:

 1200 East Street

 Big Town, KS 66026

15-8. Using Inheritance to Map a Foreign Key Column to
Multiple Associations

Problem
You have a column in a table that is a foreign key to two or more other tables. You also have a column in
the table that indicates which table the foreign key references. Although most database environments do
not support multiple table foreign key constraints, you want to create a model that models this structure.

We present an alternate solution to this problem in Recipe 15-7.

Solution
Suppose you have three tables like the ones shown in Figure 15-19.

564

 CHAPTER 15 ADVANCED MODELING

Figure 15-19. Three related tables without foreign key constraints

The Residence table contains the address of either a Relative or a Friend. The foreign key for either
of these tables is the PersonId column in the Residence table. The PersonType column indicates if the
foreign key references the Relative table or the Friend table. There are no foreign key constraints shown
in the diagram in Figure 15-19 because most database systems do not support foreign keys referencing
multiple tables.

In Recipe 15-7, we solved this problem using a view that exposed columns for the foreign keys for
the Friend and Relative entities. In this recipe, we’ll use inheritance. To create the model, do the
following:

1. Add a new ADO.NET Entity Data Model to your project and import the
Relative, Resident, and Friend tables. Or update an existing model with these
tables.

2. Delete the PersonId and PersonType properties from the Residence entity.

3. Right-click the Residence entity and view its properties. Make the entity
abstract by setting the Abstract property to True.

4. Right-click the design surface and select Add Entity. Name the entity
RelativeResidence. Set its base type to Residence.

5. Select the RelativeResidence entity and view the Mapping Details window.
Select Residence in Add a Table or View. Add the condition When PersonType =
Relative to the mapping.

6. Right-click the design surface and select Add Entity. Name the entity
FriendResidence. Set its base type to Residence.

7. Select the FriendResidence entity and view the Mapping Details window.
Select Residence in Add a Table or View. Add the condition When PersonType =
Friend to the mapping.

8. Right-click the design surface and select Add Association. Make one end of
the association the Relative entity with a multiplicity of one. Make the other
end of the association the RelativeResidence entity with a multiplicity of one.
Uncheck the “Add foreign key properties to ‘RelativeResidence’ entity” check
box.

9. Select the association and view the Mapping Details window. Select Residence
in Add a Table or View.

565

CHAPTER 15 ADVANCED MODELING

10. Right-click the design surface and select Add Association. Make one end of
the association the Friend entity with a multiplicity of one. Make the other end
of the association the FriendResidence entity with a multiplicity of one.
Uncheck the “Add foreign key properties to ‘FriendResidence’ entity” check
box.

11. Select the association and view the Mapping Details window. Select Residence
in Add a Table or View.

12. Right-click the .edmx file in the Solution Explorer and select Open With XML
Editor.

13. Edit the conditions for the RelativeResidence and FriendResidence association
sets in the mapping sections, as shown in Listing 15-21.

Listing 15-21. AssociationSet mappings with conditions

<AssociationSetMapping Name="RelativeRelativeResidence"
 TypeName="EFRecipesModel.RelativeRelativeResidence"
 StoreEntitySet="Residence">
 <EndProperty Name="RelativeResidence">
 <ScalarProperty Name="AddressId" ColumnName="AddressId" />
 </EndProperty>
 <EndProperty Name="Relative">
 <ScalarProperty Name="PersonId" ColumnName="PersonId" />
 </EndProperty>
 <Condition ColumnName="PersonType" Value="Relative" />
</AssociationSetMapping>
<AssociationSetMapping Name="FriendFriendResidence"
TypeName="EFRecipesModel.FriendFriendResidence" StoreEntitySet="Residence">
 <EndProperty Name="FriendResidence">
 <ScalarProperty Name="AddressId" ColumnName="AddressId" />
 </EndProperty>
 <EndProperty Name="Friend">
 <ScalarProperty Name="PersonId" ColumnName="PersonId" />
 </EndProperty>
 <Condition ColumnName="PersonType" Value="Friend" />
</AssociationSetMapping>

The resulting model is shown in Figure 15-20.

566

 CHAPTER 15 ADVANCED MODELING

Figure 15-20. The completed model

How It Works
We used Table per Hierarchy inheritance in creating two derived types to represent the friend residences
and the relative residences. Each of these derived types has a one-to-one conditional association to
tables that contain the friends’ or relatives’ names.

The code in Listing 15-22 demonstrates inserting into and retrieving from our model.

Listing 15-22. Inserting into and retrieving from our model

using (var context = new EFRecipesEntities())
{
 var res1 = new FriendResidence { Address = "123 Main", City = "Anytown",
 State = "CA", ZIP = "90210" };
 var res2 = new RelativeResidence { Address = "1200 East Street",
 City = "Big Town", State = "KS", ZIP = "66026" };
 var f = new Friend { Name = "Joan Roland", FriendResidence = res1 };
 var r = new Relative { Name = "Billy Miner", RelativeResidence = res2 };
 context.Friends.AddObject(f);
 context.Relatives.AddObject(r);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 context.ContextOptions.LazyLoadingEnabled = true;

567

CHAPTER 15 ADVANCED MODELING

 foreach (var r in context.Residences)
 {
 if (r is FriendResidence)
 Console.WriteLine("My friend {0} lives at: ",
 ((FriendResidence)r).Friend.Name);
 else if (r is RelativeResidence)
 Console.WriteLine("My relative {0} lives at: ",
 ((RelativeResidence)r).Relative.Name);
 Console.WriteLine("\t{0}", r.Address);
 Console.WriteLine("\t{0}, {1} {2}", r.City, r.State, r.ZIP);
 }
}

The output of the code in Listing 15-22 is the following:

My friend Joan Roland lives at:

 123 Main

 Anytown, CA 90210

My relative Billy Miner lives at:

 1200 East Street

 Big Town, KS 66026

Here we assumed that the PersonId in the Friend and Relative entities are never the same when
both entities are loaded into the object context. If they are the same, an InvalidOperationException will
be thrown.

15-9. Creating Read-only and Computed Properties

Problem
You want to create a few read-only columns on an entity as well as some computed columns.

Solution
Let’s say you have an Order table with a couple of related lookup tables (see Figure 15-21). Because
customers place orders, you also have a Customer table with a relationship to the Order table.

568

 CHAPTER 15 ADVANCED MODELING

Figure 15-21. Order with related lookup tables and Customer table

In our model, we want the Customer entity to expose a FullName property that would be the
concatenation of the FirstName column and the LastName column. Additionally, we want to expose a
TotalOrders property that would be the total number of orders for the customer.

For the Orders entity, we want to include the descriptions for the order status and shipping type.
These can be found in the related tables OrderStatusType and ShippingType.

To create our Entity Data Model, do the following:

1. In your database, create the views in Listing 15-23.

2. Create the stored procedures in Listing 15-24. We will use these implement the
Insert, Update, and Delete actions.

3. Add a new ADO.NET Entity Data Model to your project and import the
vwOrder and vwCustomer views and the stored procedures you created in Step
2. Or update an existing model with these views and stored procedures.

4. The Entity Framework Import Wizard marked many of the properties as keys
in the new entities. Right-click each of these properties, except CustomerId
and OrderId, and change the Entity Key Property to False.

5. Removing the entity keys in Step 4 only removed them from the conceptual
layer. To remove them from the storage layer, we’ll need to edit the .edmx file
directly. Right-click the .edmx file and select Open With XML Editor. In the
storage layer section, remove all the entity keys except for OrderId for the
vwOrder entity. These are the PropertyRef tags under the Key tag. Similarly,
remove all the entity keys except for CustomerId for the vwCustomer entity.
Save the .edmx file and reopen it with the designer.

6. Right-click the vwCustomer entity and change the name to Customer and the
entity set name to Customers. Right-click the vwOrder entity and change the
name to Order and the entity set name to Orders.

569

CHAPTER 15 ADVANCED MODELING

7. Right-click the design surface and select Add Association. Select a
multiplicity of one on the Customer side and a multiplicity of many on the
Order side. Rename the Order navigation property to Orders because it refers
to a set of orders. Uncheck the “Add foreign key properties to the ‘Order’
entity” check box.

8. Right-click the new association and view its properties. Click in the Referential
Constraint box. In the dialog box, set the Principal to Customer and the
Dependent Property to CustomerId. See Figure 15-22.

9. Select the Order entity and view the Mapping Details window. In the Mapping
Details window click the Map Entities to Functions button (second button on
the left). Map the Order Insert, Update, and Delete stored procedures to the
Insert, Update, and Delete actions. Figures 15-23 and 15-24 show the
mappings for the parameters and returned values for the actions.

Listing 15-23. View that combines FirstName and LastName and computes the total orders

create view chapter15.vwCustomer
as
select c.*,c.FirstName + ' ' + c.LastName as FullName,
(select COUNT(*) from chapter15.[Order] where CustomerId = c.CustomerId) TotalOrders
from chapter15.Customer c
go
create view chapter15.vwOrder
as
select o.*,os.Description OrderStatus,s.Description ShippingType
from chapter15.[Order] o
join chapter15.OrderStatusType os on os.OrderStatusTypeId = o.OrderStatusTypeId
join chapter15.ShippingType s on s.ShippingTypeId = o.OrderStatusTypeId

Listing 15-24. Stored procedure implementations for the Insert, Update, and Delete actions for the

Customer and Order entities

create procedure chapter15.InsertCustomer
(@FirstName varchar(50),
 @LastName varchar(50),
 @FullName varchar(50))
as
 begin
 insert into chapter15.Customer(FirstName,LastName) values (@FirstName,@LastName)
 select SCOPE_IDENTITY() CustomerId
end

go

create procedure chapter15.UpdateCustomer
 (@FirstName varchar(50),
 @LastName varchar(50),
 @FullName varchar(50),
 @CustomerId int)
as

570

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

 CHAPTER 15 ADVANCED MODELING

begin
 update chapter15.Customer set
 FirstName = @FirstName,
 LastName = @LastName
 where CustomerId = @CustomerId
end

go

create procedure chapter15.DeleteCustomer
 (@CustomerId int)
as
begin
 delete chapter15.Customer where CustomerId = @CustomerId
end

go

create procedure chapter15.InsertOrder
 (@OrderDate date,
 @CustomerId int,
 @OrderStatusTypeId int,
 @ShippingTypeId int,
 @OrderStatus varchar(50),
 @ShippingType varchar(50))
as
begin
 insert into chapter15.[Order](OrderDate,CustomerId,OrderStatusTypeId,ShippingTypeId)
values (@OrderDate,@CustomerId,@OrderStatusTypeId,@ShippingTypeId)
 select SCOPE_IDENTITY() OrderId
 end

go

create procedure chapter15.UpdateOrder
 (@OrderId int,
 @OrderDate date,
 @CustomerId int,
 @OrderStatusTypeId int,
 @ShippingTypeId int,
 @OrderStatus varchar(50),
 @ShippingType varchar(50))
as
begin
 update chapter15.[Order] set
 OrderDate = @OrderDate,
 CustomerId = @CustomerId,
 OrderStatusTypeId = @OrderStatusTypeId,
 ShippingTypeId = @ShippingTypeId
 where OrderId = @OrderId
end

571

CHAPTER 15 ADVANCED MODELING

go

create procedure chapter15.DeleteOrder
 (@OrderId int,
 @CustomerId int)
as
begin
 delete chapter15.[Order] where OrderId = @OrderId
 end
go

Figure 15-22. Setting the referential constraint for the one-to-many association between the Customer and

Order entities

Figure 15-23. Mappings for the parameters and returned values for the Insert, Update, and Delete actions

for the Customer entity

572

 CHAPTER 15 ADVANCED MODELING

Figure 15-24. Mappings for the parameters and returned values for the Insert, Update, and Delete actions

for the Order entity

The completed model is shown in Figure 15-25.

Figure 15-25. The completed model

573

CHAPTER 15 ADVANCED MODELING

How It Works
To expose the computed column TotalOrders and to combine the shipping type and order status
descriptions from the lookup tables we created two views and built our model around these views. When
we use views in this way, we are required to provide the Insert, Update, and Delete actions. Entity
Framework has no way of automating these CRUD operations on views. The stored procedures in Listing
15-24 provide an implementation of these actions.

In the mapping of the parameters and returned values from these stored procedures, it is important
to note that the returned value of the procedure mapped to the insert action must be the key for the
entity. In our case, these keys were CustomerId and OrderId. Failing to map these returned values will
result in a runtime error.

When we imported the views, Entity Framework marked each of the properties as part of the key for
the entity. Of course, Entity Framework has no way of knowing which, if any, of the columns from the
view are part of the key. As it does with tables that have no primary key constraint, it simply combines all
the columns into the entity key. We removed all but the Id properties from the keys both on the design
surface and in the .edmx file.

The code in Listing 15-25 demonstrates inserting into and retrieving from our model. We use code
not shown in this Listing to populate the lookup tables.

Listing 15-25. Inserting into and retrieving from our model

using (var context = new EFRecipesEntities())
{
 // insert our lookup values
 context.ExecuteStoreCommand(@"insert into chapter15
 .orderstatustype(OrderStatusTypeId, Description)
 values (1,'Processing')");
 context.ExecuteStoreCommand(@"insert into chapter15
 .orderstatustype(OrderStatusTypeId, Description)
 values (2,'Shipped')");
 context.ExecuteStoreCommand(@"insert into chapter15
 .shippingtype(ShippingTypeId, Description) values (1,'UPS')");
 context.ExecuteStoreCommand(@"insert into chapter15
 .shippingtype(ShippingTypeId, Description) values (2,'FedEx')");
}

using (var context = new EFRecipesEntities())
{
 var c1 = new Customer { FirstName = "Robert", LastName = "Jones" };
 var o1 = new Order { OrderDate = DateTime.Parse("11/19/2009"),
 OrderStatusTypeId = 2, ShippingTypeId = 1,
 Customer = c1 };
 var o2 = new Order { OrderDate = DateTime.Parse("12/13/09"),
 OrderStatusTypeId = 1, ShippingTypeId = 1,
 Customer = c1 };
 var c2 = new Customer { FirstName = "Julia", LastName = "Stevens" };
 var o3 = new Order { OrderDate = DateTime.Parse("10/19/09"),
 OrderStatusTypeId = 2, ShippingTypeId = 2,
 Customer = c2 };
 context.Customers.AddObject(c1);
 context.Customers.AddObject(c2);

574

 CHAPTER 15 ADVANCED MODELING

 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 context.ContextOptions.LazyLoadingEnabled = true;
 foreach (var c in context.Customers)
 {
 Console.WriteLine("{0} has {1} order(s)", c.FullName,
 c.TotalOrders.ToString());
 foreach (var o in c.Orders)
 {
 Console.WriteLine("\tOrdered on: {0}",
 o.OrderDate.ToShortDateString());
 Console.WriteLine("\tStatus: {0}", o.OrderStatus);
 Console.WriteLine("\tShip via: {0}\n", o.ShippingType);
 }
 }
}

The code in Listing 15-25 produces the following output:

Robert Jones has 2 order(s)

 Ordered on: 11/19/2009

 Status: Shipped

 Ship via: FedEx

 Ordered on: 12/13/2009

 Status: Processing

 Ship via: UPS

Julia Stevens has 1 order(s)

 Ordered on: 10/19/2009

 Status: Shipped

 Ship via: FedEx

575

CHAPTER 15 ADVANCED MODELING

15-10. Mapping an Entity to Multiple Tables

Problem
You want to insert an entity into different tables based on a property value.

Solution
Let’s say you have two tables: WorkOrder and PriorityWorkOrder. The WorkOrder table contains
information about common, standard priority work orders. The PriorityWorkOrder table contains the
same work order information, but represents work orders that need immediate attention.

The tables might look like those in the database diagram in Figure 15-26.

Figure 15-26. WorkOrder and PriorityWorkOrder tables

To create the model that maps a WorkOrder entity to these two tables, do the following:

1. Add a new ADO.NET Entity Data Model to your project and import the
WorkOrder and PriorityWorkOrder tables. Or update an existing model with
these tables.

2. Right-click the PriorityWorkOrder entity and select Delete. Select No in the
dialog box. This will delete the entity without deleting the underlying store
layer representation.

3. Right-click the WorkOrder entity and select Add Scalar Property. Name the
new property IsPriority. Select the IsPriority property and change its type to
Boolean.

4. Right-click the .edmx file in the Solution Explorer and select Open With XML
Editor.

5. Change the EntitySetMapping in the mapping layer to conditionally map the
WorkOrder entity to the WorkOrder or PriorityWorkOrder table, as shown in
Listing 15-26.

Listing 15-26. Changes for the .edmx file to conditionally map the WorkOrder entity to either the

WorkOrder table or the PriorityWorkOrder table

<EntitySetMapping Name="WorkOrders">
 <EntityTypeMapping TypeName="EFRecipesModel.WorkOrder">
 <MappingFragment StoreEntitySet="WorkOrder">

576

 CHAPTER 15 ADVANCED MODELING

 <ScalarProperty Name="WorkOrderId" ColumnName="WorkOrderId" />
 <ScalarProperty Name="RequestDate" ColumnName="RequestDate" />
 <ScalarProperty Name="Problem" ColumnName="Problem" />
 <Condition Name="IsPriority" Value="false" />
 </MappingFragment>
 <MappingFragment StoreEntitySet="PriorityWorkOrder">
 <ScalarProperty Name="WorkOrderId" ColumnName="WorkOrderId" />
 <ScalarProperty Name="RequestDate" ColumnName="RequestDate" />
 <ScalarProperty Name="Problem" ColumnName="Problem" />
 <Condition Name="IsPriority" Value="true" />
 </MappingFragment>
 </EntityTypeMapping>
</EntitySetMapping>

How It Works
To store the priority work orders in the PriorityWorkOrder table and the normal work orders in the
WorkOrder table, we added the IsPriority property to the entity and used it to conditionally map the
entity to the appropriate table.

Normally, each property must be mapped to a column in a table. The exception to this rule is when
the property participates in a condition, as IsPriority does, and the property cannot be null, which is also
true for the IsPriority property.

There is one important yet subtle problem. We have two tables that map to the same entity. This
means that we have two tables mapping into a single entity set. We need to guarantee that the
WorkOrderId values from the two tables never collide. These values must be unique in the entity set,
which means they must be unique across both tables. There are several strategies for managing this. One
approach is to assign GUIDs to the WorkOrderId. The approach we take here is to set the WorkOrderId
as an integer identity column with the WorkOrder table enumerating odd integers and the
PriorityWorkOrder table enumerating even integers. This effectively guarantees that the WorkOrderId
will be unique across the tables.

The code in Listing 15-27 demonstrates inserting into and retrieving from our model. After running
this code, check the content of the WorkOrder and PriorityWorkOrder tables. The WorkOrder table
should contain the normal work orders while the PriorityWorkOrder table contains the high priority
work orders.

Listing 15-27. Inserting into and retrieving from our model

using (var context = new EFRecipesEntities())
{
 var wo1 = new WorkOrder { RequestDate = DateTime.Parse("11/04/09"),
 Problem = "Printer needs paper in shipping.",
 IsPriority = false };
 var wo2 = new WorkOrder { RequestDate = DateTime.Parse("11/04/09"),
 Problem = "Main site database server is down!",
 IsPriority = true };
 var wo3 = new WorkOrder { RequestDate = DateTime.Parse("11/04/09"),
 Problem = "Backup job complete, remove tape.",
 IsPriority = false };
 context.WorkOrders.AddObject(wo1);
 context.WorkOrders.AddObject(wo2);

577

CHAPTER 15 ADVANCED MODELING

 context.WorkOrders.AddObject(wo3);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 Console.WriteLine("Work Orders");
 Console.WriteLine("===========");
 foreach (var wo in context.WorkOrders)
 {
 Console.WriteLine("{0}\t{1}\t{2}", wo.RequestDate.ToShortDateString(),
 wo.Problem, wo.IsPriority ? "High" : "Normal");
 }
}

The output of the code in Listing 15-27 is the following:

Work Orders

===========

11/4/2009 Main site database server is down! High

11/4/2009 Printer needs paper in shipping. Normal

11/4/2009 Backup job complete, remove tape. Normal

15-11. Mapping an Entity to Multiple Entity Sets (MEST)

Problem
You want to map an entity to two different entity sets, which allows you to have two different views of
the same type without using inheritance.

Solution
Leveraging Multiple Entity Sets per Type, also known as MEST, allows you to map an entity into two or
more entity sets each with their own associations to the entity.

Let’s say we have a data model like the one shown in Figure 15-27.

578

 CHAPTER 15 ADVANCED MODELING

Figure 15-27. Tables and relationships for preferred and risky customers

The tables in Figure 15-27 depict risky and preferred customers along with separate tables for their
orders. Risky customers have a relationship to their credit report information. Preferred customers have
a relationship to their discount information.

We want to expose just one Customer entity at the conceptual level. This Customer entity will span
two entity sets: one for the risky customers with the association to the credit reports, and one for the
preferred customers with the association to the customer discounts.

In a similar vein, we want to expose just one Order entity at the conceptual level. The risky orders
will live in one entity set while the preferred orders will live in a separate entity set.

To create the model, do the following:

1. Add a new ADO.NET Entity Data Model to your project and import the tables
shown in Figure 15-27. Or update an existing model with these tables.

2. Right-click the design surface and select Add Entity. Name the new entity
Customer. Uncheck Create key property box.

3. Cut the CustomerId and Name properties from the CreditRiskCustomer entity
and paste them into the new Customer entity.

4. Right-click the CreditRiskCustomer entity and select Delete. When prompted
to delete the underlying store model tables, select No. This will delete the
entity from the conceptual layer but leave it in the store layer.

5. Right-click the PreferredCustomer entity and select Delete. As in Step 4, do not
delete the underlying store layer representation.

6. Right-click the design surface and select Add Entity. Name the new entity
Order. Uncheck the Create key property box.

579

CHAPTER 15 ADVANCED MODELING

7. Cut the OrderId and Amount from the CreditRiskOrder entity and paste them
into the new Order entity.

8. Right-click the CreditRiskOrder entity and select delete. As in Steps 4 and 5, do
not delete the underlying store model tables.

9. Right-click the PreferredOrder entity and select Delete. As in the previous
steps, do not delete the underlying store layer representation.

10. Right-click the design surface and select Add Association. Select the
CustomerDiscount and Customer entities for the association. Name the new
association CustomerCustomerDiscount. Set the multiplicity to one on both
sides of the association. Uncheck “Add foreign key properties to
‘CustomerDiscount’ entity” check box.

11. Select the new association and view its properties. Click the Referential
Constraints box. In the dialog box, select Customer as the Principal. Set
CustomerId as the dependent property.

12. Right-click the design surface and select Add Association. Select the
CreditReport and Customer entities for the association. Name the new
association CustomerCreditReport. Set the multiplicity to one on the
Customer side and many on the CreditReport side. Uncheck “Add foreign key
properties to ‘CreditReport’ entity” check box.

13. Select the new association and view its properties. Click the Referential
Constraints box. In the dialog box, select Customer as the Principal.Set
CustomerId as the dependent property.

14. Right-click the design surface and select Add Association. Select the Order
and Customer entities for the association. Name the new association
RiskyCustomerRiskyOrder. Set the multiplicity to one on the Customer side
and many on the Order side. Change the name of the navigation property on
the Customer side to RiskyOrders. Change the name of the navigation
property on the Order side to RiskyCustomer. Uncheck the “Add foreign key
properties to the ‘Order’ entity” check box.

15. Select the new association and view the Mapping Details window. In the Add a
Table or View drop-down, select the CreditRiskOrder table. The CustomerId
property should map to the CustomerId column in the Customer table. The
OrderId property should map to the OrderId column in the Order table.

16. Right-click the design surface and select Add Association. Select the Order
and Customer entities for the association. Name the new association
PreferredCustomerPreferredOrder. Set the multiplicity to one on the
Customer side and many on the Order side. Change the name of the
navigation property on the Customer side to PreferredOrders. Change the
name of the navigation property on the Order side to PreferredCustomer.
Uncheck the “Add foreign key properties to the ‘Order’ entity” check box.

17. Select the new association and view the Mapping Details window. In the Add a
Table or View drop-down, select the PreferredOrder table. The CustomerId
property should map to the CustomerId column in the Customer table. The
OrderId property should map to the OrderId column in the Order table.

580

 CHAPTER 15 ADVANCED MODELING

18. Right-click the .edmx file and select Open With XML Editor. The Customer
and Order entities are now in two different entity sets. In the CSDL layer, edit
the code inside <EntityContainer> tags using the code in Listing 15-28.

19. The associations we create must now be fixed up with the correct entity sets. In
the mapping layer, make the changes shown in Listing 15-29.

After editing the .edmx, the designer will no longer open the file. The completed conceptual model
is shown in Figure 15-28.

Figure 15-28. The completed model

Listing 15-28. Customer and Order are now each in two entity sets. Moving these entities into the entity sets

also affects the mappings.

<EntityContainer Name="EFRecipesEntities">
 <EntitySet Name="PreferredCustomers" EntityType="EFRecipesModel.Customer" />
 <EntitySet Name="RiskyCustomers" EntityType="EFRecipesModel.Customer" />
 <EntitySet Name="PreferredOrders" EntityType="EFRecipesModel.Order" />
 <EntitySet Name="RiskyOrders" EntityType="EFRecipesModel.Order" />

 <EntitySet Name="CreditReports" EntityType="EFRecipesModel.CreditReport" />
 <EntitySet Name="CustomerDiscounts"
 EntityType="EFRecipesModel.CustomerDiscount" />

 <AssociationSet Name="CustomerCustomerDiscount"
 Association="EFRecipesModel.CustomerCustomerDiscount">

581

CHAPTER 15 ADVANCED MODELING

 <End Role="Customer" EntitySet="PreferredCustomers" />
 <End Role="CustomerDiscount" EntitySet="CustomerDiscounts" />
 </AssociationSet>

 <AssociationSet Name="CustomerCreditReport"
 Association="EFRecipesModel.CustomerCreditReport">
 <End Role="Customer" EntitySet="RiskyCustomers" />
 <End Role="CreditReport" EntitySet="CreditReports" />
 </AssociationSet>

 <AssociationSet Name="RiskyCustomerRiskyOrder"
 Association="EFRecipesModel.RiskyCustomerRiskyOrder">
 <End Role="Order" EntitySet="RiskyOrders" />
 <End Role="Customer" EntitySet="RiskyCustomers" />
 </AssociationSet>

 <AssociationSet Name="PreferredCustomerPreferredOrder"
 Association="EFRecipesModel.PreferredCustomerPreferredOrder">
 <End Role="Order" EntitySet="PreferredOrders" />
 <End Role="Customer" EntitySet="PreferredCustomers" />
 </AssociationSet>
</EntityContainer>

Listing 15-29. Mapping our conception layer entity sets to store entity sets (we need to add only the four

mappings shown here)

<EntitySetMapping Name="PreferredCustomers">
 <EntityTypeMapping TypeName="EFRecipesModel.Customer">
 <MappingFragment StoreEntitySet="PreferredCustomer">
 <ScalarProperty Name="CustomerId" ColumnName="CustomerId"/>
 <ScalarProperty Name="Name" ColumnName="Name"/>
 </MappingFragment>
 </EntityTypeMapping>
</EntitySetMapping>

<EntitySetMapping Name="RiskyCustomers">
 <EntityTypeMapping TypeName="EFRecipesModel.Customer">
 <MappingFragment StoreEntitySet="CreditRiskCustomer">
 <ScalarProperty Name="CustomerId" ColumnName="CustomerId"/>
 <ScalarProperty Name="Name" ColumnName="Name"/>
 </MappingFragment>
 </EntityTypeMapping>
</EntitySetMapping>

<EntitySetMapping Name="RiskyOrders">
 <EntityTypeMapping TypeName="EFRecipesModel.Order">
 <MappingFragment StoreEntitySet="CreditRiskOrder">
 <ScalarProperty Name="OrderId" ColumnName="OrderId" />
 <ScalarProperty Name="Amount" ColumnName="Amount" />
 </MappingFragment>
 </EntityTypeMapping>

582

 CHAPTER 15 ADVANCED MODELING

</EntitySetMapping>

<EntitySetMapping Name="PreferredOrders">
 <EntityTypeMapping TypeName="EFRecipesModel.Order">
 <MappingFragment StoreEntitySet="PreferredOrder">
 <ScalarProperty Name="OrderId" ColumnName="OrderId" />
 <ScalarProperty Name="Amount" ColumnName="Amount" />
 </MappingFragment>
 </EntityTypeMapping>
</EntitySetMapping>

How It Works
Multiple Entity Sets per Type, often referred to simply as MEST, is a modeling approach that allows us to
map a single conceptual entity to multiple entity sets. Although MEST is not a common modeling
technique, we have demonstrated its use here to map an entity to two underlying database tables. In
fact, we used MEST for both the Customer entity and the Order entity. This results in a clean conceptual
model with a little more complex storage level model.

Associations are also first-class objects and are tied to specific entity sets. At first glance, the one-to-
one association between Customer and CustomerDiscount in Figure 15-28 may look completely wrong.
It seems to require every Customer to have a CustomerDiscount, even though we know that risky
customers do not get discounts. Unfortunately, the design surface does not distinguish associations that
live in different entity sets. The association between the PreferredCustomer and the CustomerDiscount
is in an entity set that makes this one-to-one association completely valid.

When an entity is part of two or more entity sets, two or more “add” methods are generated. In our
example, both AddToPreferredCustomers() and AddToRiskyCustomers() were generated by Entity
Framework. The companion PreferredCustomers.AddObject() and RiskyCustomers.AddObject()
methods were also generated.

As you can see from the amount of .edmx file editing required in this recipe, extensive use of MEST
rapidly becomes impractical. Not the least of the impractical parts is that the changes are not supported
by the designer and it will not open the .edmx file after the changes have been made.

The code in Listing 15-30 demonstrates inserting into and retrieving from our model.

Listing 15-30. Inserting and retrieving from our model

using (var context = new EFRecipesEntities())
{
 var pc = new Customer { Name = "Steven James" };
 var rc = new Customer { Name = "Kathy Naudot" };
 pc.PreferredOrders.Add(new Order { Amount = 19.95M });
 pc.CustomerDiscount = new CustomerDiscount { PurchaseDiscount = 10 };
 rc.RiskyOrders.Add(new Order { Amount = 29.99M });
 rc.CreditReports.Add(new CreditReport { CreditRating = 630 });
 context.PreferredCustomers.AddObject(pc);
 context.RiskyCustomers.AddObject(rc);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{

583

CHAPTER 15 ADVANCED MODELING

 Console.WriteLine("Preferred Customers");
 context.ContextOptions.LazyLoadingEnabled = true;
 foreach (var customer in context.PreferredCustomers)
 {
 Console.WriteLine("Name: {0}, Discount = {1}%", customer.Name,
 customer.CustomerDiscount.PurchaseDiscount.ToString());
 foreach (var order in customer.PreferredOrders)
 {
 Console.WriteLine("\tOrder: {0}", order.Amount.ToString("C"));
 }
 }
 Console.WriteLine("\nRisky Customers");
 foreach (var customer in context.RiskyCustomers)
 {
 Console.WriteLine("Name: {0}", customer.Name);
 foreach (var order in customer.RiskyOrders)
 {
 Console.WriteLine("\tOrder: {0}", order.Amount.ToString("C"));
 }
 foreach (var report in customer.CreditReports)
 {
 Console.WriteLine("\tCredit Score: {0}",
 report.CreditRating.ToString());
 }
 }
}

The output of the code in Listing 15-30 is the following:

Preferred Customers

Name: Steven James, Discount = 10%

 Order: $19.95

Risky Customers

Name: Kathy Naudot

 Order: $29.99

 Credit Score: 630

584

 CHAPTER 15 ADVANCED MODELING

15-12. Extending Table per Type with Table per Hierarchy

Problem
You want to extend a Table per Type inheritance model with a Table per Hierarchy approach.

Solution
Let’s say you have the tables shown in Figure 15-29.

Figure 15-29. The tables containing information about the articles and videos

We want to create a model with an abstract base type for Media with two derived abstract types for
articles and videos. We want to extend this Table per Type model by deriving new types representing
specific kinds of articles and videos. In particular, we want to model the new types BlogPosting and Story
by deriving from the Article base class. Also, we want to model the new types RecreationalVideo and
EducationalVideo by deriving from the Video base class.

To create the Entity Data Model, do the following:

1. Add a new ADO.NET Entity Data Model to your project and import the Media,
Article and Video tables. Or update an existing model with these tables.

2. Right-click the Medium entity and select Properties. Change the Abstract
property to True and change the name of the entity to Media. Also change the
entity set name to Media.

3. Delete the associations between the Media entity and the Article and Video
entities.

4. Right-click the Video entity and select Add Inheritance. Select Media as the
base entity and Video as the derived entity.

585

CHAPTER 15 ADVANCED MODELING

5. Right-click the Article entity and select Add Inheritance. Select Media as the
base entity and Article as the derived entity.

6. Delete the ArticleId property from the Article entity. Delete the VideoId
property from the Video entity.

7. Select the Video entity and view the Mapping Details window. Map the
VideoId column to the MediaId property.

8. Select the Article entity and view the Mapping Details window. Map the
ArticleId column to the MediaId property.

9. Right-click the Video entity and select Properties. Set the Abstract property to
True. Similarly, set the Abstract property for Article entity to True.

10. Delete the VideoType and ArticleType properties from the Video and Article
entities. We will use these columns as discriminators for the Table per
Hierarchy inheritance.

11. Right-click the design surface and select Add Entity. Name the new entity
BlogPosting and uncheck the Create key property check box.

12. Right-click the design surface and select Add Entity. Name the new entity
Story and uncheck the Create key property check box.

13. Right-click the BlogPosting entity and select Add Inheritance. Select Article
as the base entity and BlogPosting as the derived entity. Repeat this process for
the Story entity.

14. Cut the ArticleContent and Comments properties from the Article entity and
paste them into the BlogPosting entity. Rename the ArticleContent property to
Post.

15. Select the BlogPosting entity and view the Mapping Details window. In the Add
a Table or View drop-down, select Article. Add the condition where
ArticleType = BlogPosting. Map the Post property to the ArticleContent
column.

16. Right-click the Story entity and select Add Scalar Property. Name the new
property Plot.

17. Select the Story entity and view the Mapping Details. In the Add a Table or
View drop-down, select Article. Add the condition where ArticleType = Story.
Map the Plot property to the ArticleContent column.

18. Right-click the design surface and select Add Entity. Name the new entity
RecreactionalVideo and uncheck the Create key property check box.

19. Right-click the design surface and select Add Entity. Name the new entity
EducationalVideo and uncheck the Create key property checkbox.

20. Right-click the RecreationalVideo entity and select Add Inheritance. Select
Video as the base entity and RecreationalVideo as the derived entity. Repeat
this for the EducationalVideo entity.

586

 CHAPTER 15 ADVANCED MODELING

21. Cut the Rating property from the Video entity and paste it into the
RecreationalVideo entity. Similarly, cut the Instructor property from the Video
entity and paste it into the EducationalVideo entity.

22. Select the RecreationalVideo entity and view the Mapping Details window. In
the Add a Table or View drop-down, select the Video table. Add the condition
where VideoType = RecreationalVideo. Map the Rating column to the Rating
property.

23. Select the EducationalVideo entity and view the Mapping Details window. In
the Add a Table or View drop-down, select the Video table. Add the condition
where VideoType = EducationalVideo. Map the Instructor column to the
Instructor property.

The completed model is shown in Figure 15-30.

Figure 15-30. The completed model with Table per Type inheritance extended with Table per Hierarchy

inheritance

587

CHAPTER 15 ADVANCED MODELING

How It Works
Entity Framework supports both Table per Type inheritance and Table per Hierarchy inheritance. These
inheritance techniques can be combined to create an elegant and usable model.

In this recipe, we started off with Table per Type inheritance by deriving the Video and Article
entities from the Media entity. This closely models the representation in the database. Next, we
introduced Table per Hierarchy inheritance by synthesizing four new entities representing the types of
videos and articles in our database. These new entities derived from the Article and Video entities.

The code in Listing 15-31 demonstrates inserting into and retrieving from our model.

Listing 15-31. Inserting into and retrieving from our model

using (var context = new EFRecipesEntities())
{
 var blogpost = new BlogPosting { Title = "ASP.NET MVC",
 Author = "Steven Grace", Post = "What's New",
 Comments = "50" };
 var story = new Story { Title = "Time in a Bottle",
 Author = "Emily Jones",
 Plot = "Murder on the high seas" };
 var ed = new EducationalVideo { Instructor = "Joseph Robins",
 ResourcePath = "\\videos\asp.wmv",
 Title = "ASP.NET Examples" };
 var movie = new RecreationalVideo { Title = "Archie's Place",
 Rating = 1, ResourcePath = "\\videos\archie.wmv" };
 context.Media.AddObject(blogpost);
 context.Media.AddObject(story);
 context.Media.AddObject(ed);
 context.Media.AddObject(movie);
 context.SaveChanges();
}

using (var context = new EFRecipesEntities())
{
 Console.WriteLine("All of the media...");
 foreach(var m in context.Media)
 {
 Console.WriteLine();
 if (m is BlogPosting)
 {
 var post = (BlogPosting) m;
 Console.WriteLine("Blog Posting");
 Console.WriteLine("Title: {0}, Author: {1}, Post: {2}",
 post.Title,post.Author,post.Post);
 }
 else if (m is Story)
 {
 var story = (Story)m;
 Console.WriteLine("Story");
 Console.WriteLine("Title: {0}, Author: {1}, Plot: {2}",
 story.Title, story.Author, story.Plot);

588

 CHAPTER 15 ADVANCED MODELING

 }
 else if (m is EducationalVideo)
 {
 var edvideo = (EducationalVideo)m;
 Console.WriteLine("Educational Video");
 Console.WriteLine("Title: {0}, Instructor: {1}",
 edvideo.Title, edvideo.Instructor);
 }
 else if (m is RecreationalVideo)
 {
 var video = (RecreationalVideo)m;
 Console.WriteLine("Recreational Video");
 Console.WriteLine("Title: {0}, Rating: {1}", video.Title,
 video.Rating);
 }
 }
}

The output of the code in Listing 15-31 is the following:

All of the media...

Blog Posting

Title: ASP.NET MVC, Author: Steven Grace, Post: What's New

Story

Title: Time in a Bottle, Author: Emily Jones, Plot: Murder on the high seas

Educational Video

Title: ASP.NET Examples, Instructor: Joseph Robins

Recreational Video

Title: Archie's Place, Rating: 1

589

Index

 A
abstract base entities, 54
AcceptAllChanges(), 432
AcceptChanges(), 357
AccountId foreign key, 531
AddObject(), 45, 87, 268–269
AddToOrders(), 28
AddToPreferredCustomers(), 583
AddToRiskyCustomers(), 583
ADO.NET

Entity Data Model, 5, 9, 17
SqlClient, 65, 70

Age(), 404
@Amount parameter, 65
Any(), 77
AnyElement operator, 397
App.config file, 258
AppDomain, 276
Append(), 32
AppendOnly option, 179
Application_Start(), 139, 142
ApplicationException, 453
ApplyChanges(), 333, 338, 344
ApplyCurrentValues(), 291, 322
ApplyOriginalValues(), 322
as operator, 245
ASP.NET

Application_Start(), 139, 142
Attach(), 148
Bind(), 124, 148
building a search query using an

EntityDataSource control, code listing,
115

building CRUD operations with an
ObjectDataSource control, 143

building CRUD operations, code listing, 119
ChangeObjectState(), 149
ChangeObjectStatus(), 148
ConnectionString attribute, 124
Create(), 150, 153

CreateDate property, 125–126
CustomExpression, 136
DataPager control, 119, 124
DataSourceID attribute, 124, 135
Delete(), 149–150, 153
Details(), 150
Edit(), 150, 153
EditItemTemplate, 124
EditTemplate, 148
EntityDataSource control, 115, 119, 124–125,

127, 129–130, 135, 137, 139
EntitySetName attribute, 124
EntityTypeFilter attribute, 137
executing business logic when changes are

saved, code listing, 124
filtering with URL routing, code listing, 139
GetReservations(), 148
Global.asax, 139
GridView control, 135, 142
HotelRepository and ReservationRepository

classes, code listing, 143
Index(), 149
InsertItemTemplate, 124
InsertTemplate, 148
IQueryable<Product>, 136
ItemTemplate, 124
LayoutTemplate, 148
ListView control, 119, 124, 148
loading related entities, code listing, 127
ObjectDataSource control, 115, 143, 145, 148
OnContextCreated(), 126
OnQueryCreated attribute, 142
OrderByExpression, 136
Page_Load event, 128
Page_Load(), 116, 118, 124, 139
PagedControlID, 124
ProductsWithCategory(), 136
ProductWithSalesGreaterThan(), 136
PropertyExpression, 136
QueryExtender control, 115, 130, 136, 142
RangeExpression, 136

591

 INDEX

defining in both the database and the model,
443

ASP.NET (cont.)
retrieving a derived type using an

EntityDataSource control, code listing,
136

setting, 441
using to delete related objects, code listing, 441

Changed event, 460 SavingChanges event, 125–126
ChangeObjectState(), 149, 269 searching with a QueryExtender control,

code listing, 129 ChangeObjectStatus(), 148
change-tracking proxies, creating, 288 TargetControlID, 136
Choose Your Database Object dialog box,

23
TotalSales property, 135
Update(), 148

Cleanup(), 328 using Entity Framework with MVC,
procedure for, 149 Clear(), 178, 440

CLR namespace, 74 Association Type relationship, definition of, 31
Code Generation Strategy property, 253,

276
AssociationChanged event, code listing, 437
associations, 3

CollectionChangedEventArgs, 440 <AssociationSetMapping> tag, 229
<CollectionType> tag, 412 Attach(), 87, 93, 148, 169, 172, 269, 285, 314, 318,

322, 328, 440, 476 Common Table Expression, using in a stored
procedure, 205 AverageUnitPrice()

complex types code listing, 394
creating, modifying, and mapping complex

types, code listing, 60
using in a LINQ query, 396
using in an Entity SQL query, 396

creating, modifying, and mapping complex
types, procedure for, 57

Avg(), 419

definition of, 3 B requirements of, 59
composite key, 264 BinaryFormatter, 350
conceptual model, 2, 9 Bind(), 124, 148
Conceptual Schema Definition Language (CSDL), 2 bitwise AND operator, 111
concrete base entities, 54 BitWiseAnd(), 111
concurrency BookRepository class, code listing, 306

applying optimistic concurrency, procedure for,
509

BookRepositoryTest class, code listing, 307
bootstrapping, rules for, 400

Concurrency Mode property, 511 Build Action property, 257
creating nested TransactionScopes, code listing,

517
ByteArraySerializer class, code listing, 350

DeleteAgent(), 516
 C ensuring that a forum moderator’s changes

overwrite a user’s posts, 518
canonical functions ExecuteNonQuery(), 516

Avg(), 419 ExecuteStoreCommand(), 511, 516
Count(), 419 generating a Timestamp column with Model

First, procedure for, 527 definition of, 418
EntityFunction class, 421 getting affected rows from a stored procedure,

code listing, 521 Sum(), 419
See also custom functions; functions;

model-defined functions
implementing the last record wins strategy, code

listing, 518
CartItems collection, 439 InsertAgent(), 516
cascade delete rules inserting and updating a database using stored

procedures, code listing, 514 adding manually, 443

592

 INDEX

CreateProxyTypes(), 353, 500, 502 managing concurrency when using stored
procedures, 512 CreateQuery(), 70, 79, 87

CreateQuery<Invoice>(), 400 MergeOption, 520
CreateQuery<T>(), 404 optimistic concurrency, enabling, 511
createref(), 541 OptimisticConcurrencyException, 520
CreateSourceQuery(), 90, 92, 168, 169–171, 174, 176,

444
PerserveChanges, 520
reading uncommitted data using LINQ to

entities, 516 CreateWorkSpace(), 257
cross operator, 105 Refresh(), 512, 520
custom functions rogue updates, 524, 527

contrasting custom functions with model-
defined functions, 372

SaveChanges(), 511–512, 520
stored procedures for the Insert, Update,

and Delete actions, code listing, 513 when to use, 372
See also canonical functions; functions; model-

defined functions
stored procedures mapped to the Insert,

Update, and Delete actions, code
listing, 523 Custom Tool Namespace property, changing, 74

CustomerRepository class, code listing, 339 StoreGeneratedPattern property, 511
CustomExpression, 136 throwing an exception if optimistic

concurrency is violated, code listing,
510 D TimeStamp property, 511, 513, 520, 524

TransactionScope class, 516 database connections
UpdateAccount(), 524 accessing the CurrentState and OriginalState of

the connection, 437 UpdateAgent(), 516
using optimistic concurrency with Table per

Type inheritance, procedure for, 524,
526

clicking Test Connection, 17
creating a log entry when a connection is

opened or closed, 435
See also optimistic concurrency creating a new connection, 17

Concurrency Mode property, 511 Database First, 5, 7
conditional mappings Database Schema Name, 11

applying, 48 databases
Table per Hierarchy inheritance, 48 evolution of, 1

.config file, 252 impedance mismatch between code and data, 1
connection string, building dynamically, 251 DataContractResolver, 349
ConnectionString attribute, 124 DataContractSerializer, 349–350, 353
ConnectionStringManager class, 252 DataPager control, 119, 124
Contains clause, 417 DataSourceID attribute, 124, 135
ContextOptions, 280 DbDataReader, 70
Count property, 26 DbDataRecord, 71
Count(), 77, 411, 419 Default Value attribute, 451
Create Customer button, 342 DefaultIfEmpty(), 95, 105
Create(), 150, 153 degree, definition of, 30
CreateContext(), 256 Delete(), 149–150, 153
CreateDatabase(), 309 DeleteAgent(), 516
CreateDate property, 125–126 DeleteObject(), 87, 267, 285, 314, 328
CreateEntityKey(), 291 DeletePayment(), 314
CreateObject(), 484 DeleteRelatedEntities<>(), code listing, 444
CreateObject<T>(), 289

593

 INDEX

Attach(), 169, 172, 269 designer
automatically deleting related entities, 440 bidirectional model development, support

for, 14 casting to ObjectQuery<T> and invoking
Include(), code listing, 165 lack of support for model-defined

functions, 396 ChangeObjectState(), 269
Clear(), 178 roundtrip modeling, 14
concrete base entities, 54 Details(), 150
CreateSourceQuery(), 168–171, 174, 176 DetailsView control, 322
creating a model with one entity, 9 DetectChanges(), 292, 295, 344, 485
deferred loading of related entities, 155, 167 DetectChangesBeforeSave, 432
dependent and principal entities, deleting, 265 DiffDays(), 420–421
differences between foreign key associations

and independent associations, table of, 187
direction, definition of, 31
Dispose(), 16, 328

eager loading, code listing, 156 Distinct(), 89
eager loading, definition of, 155 Domain Driven Development, 271
entity collection, 156 DropDatabase(), 309
entity reference, 156
entity, definition of, 3 E EntityKey, definition of, 3
EntitySet, definition of, 3 eager loading
EntityType, definition of, 3 code listing, 156
executing aggregate operations on related

entities, 172
definition of, 155

Edit(), 150, 153
filtering an eagerly loaded entity collection, code

listing, 180
EditItemTemplate, 124
EditTemplate, 148

filtering and ordering an entity collection, code
listing, 170

EdmFunction(), 412
edmgen.exe

filtering and ordering related entities, 169 automating some of the build processes,
264 First(), 165

Include(), 156, 158, 160, 163, 165, 167, 176 command line options, 263
inserting new entities using an object context,

code listing, 267
generating a model from the command line,

263
IQueryable<T>, 166 EdmGen.exe utility, generating views for a

model, 479 IsLoaded property, using, 174, 176
Load(), 165, 168, 173, 176–177 .edmx file, 253
loading a complete object graph, 160 Build Action property, 257
loading navigation properties on derived types,

162
contents of, 257
<FunctionImportMapping> tag, 362

loading related entities explicitly, 176 EFRecipesEntities, 14, 72, 252, 257
loading related entities in a single round trip to

the database, 155
EFRecipesModel, 72
entities

loading related entities using POCO, 276 abstract base entities, 54
mapping an entity based on conditions, 541 AddObject(), 268–269
mapping an entity to customized parts of one or

more tables, code listing, 534
applying an aggregate operator on related

entities without loading, code listing,
173 mapping an entity to customized parts of one or

more tables, procedure for, 532 applying conditions on a base entity,
procedure for, 242 mapping an entity to multiple tables, code

listing, 577 assigning default values to the properties of
an entity, 447 mapping an entity to multiple tables, procedure

for, 576

594

 INDEX

Entity Container Name, 11 mapping an entity type to a subset of table
rows, 46 Entity Data Model Wizard, Pluralization Service, 259

Entity Framework mapping Null conditions in derived entities,
code listing, 209 ADO.NET Entity Data Model, including in a

project, 5 mapping Null conditions in derived entities,
procedure for, 208 associations, 3

code-generation process, 4 modeling Is-a and Has-a relationships
between two entities, code listing, 56 coding in terms of entity types and associations,

1 modeling Is-a and Has-a relationships
between two entities, procedure for,
54

ComplexType, definition of, 3
conceptual model (conceptual layer), 2
Conceptual Schema Definition Language

(CSDL), 2
modifying foreign key associations, code

listing, 185
Database First, 7 Multiple EntitySets per Type (MEST), 3
deferred loading of related entities, 155 ObjectQuery<T>, 165–166
.edmx files, 8 OfType<>(), 164, 172
Entity Data Model (EDM), 2 populating entities in a Table per Hierarchy

inheritance model, 376 Entity Data Model Wizard, starting, 5
Entity SQL, 8 populating entities in a Table per Type

inheritance model, 373 entity, definition of, 3
EntityClient layer, 2 PrintDetails(), 182
EntityKey, definition of, 3 query path, definition of, 162
EntitySet, definition of, 3 relationship span, 178, 182, 184
EntityType, definition of, 3 retrieving an entire object graph in a single

query, code listing, 160 Generate Database from Model, selecting, 7
generating a model from an existing database, 7 retrieving entities from the object state

manager, 261 hints, 518
lack of support for associations with properties,

26
retrieving related entities in one round trip

to the database, code listing, 163
lack of support for lazy loading of individual

entity properties, 40
retrieving related entities using two slightly

different approaches, code listing, 168
lack of support for the XML data type, 460 returning an entity collection from a stored

procedure, 359 LINQ, 8
loading only the entities directly accessed by an

application, 155
SaveChanges(), 181, 268–269
sharing audit fields across multiple entities,

code listing, 551 Mapping Details window, 2, 7
mapping layer, 2 sharing audit fields across multiple entities,

procedure for, 547 Mapping Specification Language (MSL), 3
Model First, 7 splitting a table across multiple entities,

code listing, 40 model, definition of, 2
modeling in, 2 splitting a table across multiple entities,

procedure for, 37 Multiple EntitySets per Type (MEST), 3
navigation properties, 3 Sum(), 174
optimizing the number of database queries

executed, 155
testing whether an entity reference or entity

collection is loaded, 174
overview of, 2 ToList(), 182, 184
POCO, 4 validating entities on the SavingChanges

event, 464 programming against objects in the model, 8
property, definition of, 3 where clause, 171
scalar properties, 3 working with dependent entities in an

identifying relationship, 264 store model (store layer), 2

595

 INDEX

grouping query results by multiple properties,
code listing, 105

Entity Framework (cont.)
Store Schema Definition Language (SSDL),

2 Include(), 92
joining two entity types on multiple properties,

code listing, 111
tasks, 3
testing approaches, best practices, 305

NextResult(), 82 Workflow Foundation (WF), 4
ObjectQuery, 70 working at the conceptual level for both

code and data, 1 ObjectQuery<T>, 87
ObjectSet<T>, 87 XML and models, 2
OfType(), 72 See also modeling
OrderBy(), 100 Entity SQL
ordering by derived types, 96 AddObject(), 87
outer apply operator, 105 Attach(), 87, 93
Read(), 70 BitWiseAnd(), 111
Recipe4 namespace, 72 building and executing a query against an

ObjectSet<T>, code listing, 85 retrieving a primitive type using both LINQ and
Entity SQL, code listing, 87 calling database functions in Entity SQL,

code listing, 422 retrieving serious accidents using
CreateSourceQuery(), code listing, 90 CLR namespace, 74

returning multiple result sets from a stored
procedure, code listing, 80

combining the properties of two entities
using a left outer join, code listing, 93

returning objects from an Entity SQL statement,
code listing, 68

Count(), 77
CreateQuery(), 70, 79, 87

SaveChanges(), 70, 81 CreateSourceQuery(), 92
SelectValue(), 89 cross operator, 105
setting default values in a query, code listing, 77 Custom Tool Namespace property,

changing, 74 Skip(), 100
sorting Table per Hierarchy inheritance by type,

code listing, 96
DbDataReader, 70
DbDataRecord, 71

specifying fully qualified names, code listing, 72 DefaultIfEmpty(), 95, 105
SqlClient, 70 DeleteObject(), 87
SqlCommand, 82 EFRecipesEntities, 72
SqlConnection, 82 EFRecipesModel, 72
SqlServer namespace, 424 EntityClient, 70
StartsWith(), 100 EntityDataReader, 70
Take(), 100 ExecuteReader(), 70, 82
ToList(), 82, 92 exists(), 77
Top(), 101 filtering and paging a query, code listing, 98
Translate(), 82 filtering related entities, 89
Truncate(), 102 finding books in a list of categories using

both LINQ and Entity SQL, code
listing, 82

turning off caching in, 488
using bitwise operators to filter a query, code

listing, 108 finding the masters that have detail using
both LINQ and Entity SQL, code
listing, 74

using canonical functions in Entity SQL, code
listing, 418

using clause, 74 flattening query results using LINQ and
Entity SQL, code listing, 103 Where(), 87, 100

See also LINQ; SQL group by operator, 108
EntityClient, 2, 70 grouping by the date portion of a DateTime

property, code listing, 101 EntityCollection, 437
<EntityContainer> tag, 581

596

 INDEX

functions <EntityContainerMapping> tag, 212, 234, 533,
538 Age(), 404

AnyElement operator, 397 EntityDataReader, 70
AverageUnitPrice(), code listing, 394 EntityDataSource control, 115, 119, 124–125,

127, 129–130, 135, 137, 139 Avg(), 419
calling a model-defined function from a model-

defined function, code listing, 406
EntityFunction class, 421
EntityReference, 437

calling a model-defined function from a model-
defined function, procedure for, 404

<EntitySetMapping> tag, 212, 229
EntitySetName attribute, 124

calling database functions in Entity SQL, code
listing, 422

EntityTypeFilter attribute, 137
equals clause, 113

calling database functions in LINQ, code listing,
424

ExecuteNonQuery(), 65, 67, 516
ExecuteReader(), 70, 82

canonical function, definition of, 418 ExecuteStoreCommand(), 48–49, 64–65, 67, 511,
516, 534 <CollectionType> tag, 412

contrasting custom functions with model-
defined functions, 372

ExecuteStoreQuery(), 490–491
code listing, 67

Count(), 411, 419 restrictions on using, 68
CreateQuery<T>(), 404 exists(), 77
defining built-in functions, procedure for, 425
DiffDays(), 420–421 F EdmFunction(), 412
Entity SQL, 396 FakeObjectSet<T>, 304
EntityFunction class, 421 First(), 165, 474
filtering an entity collection using a model-

defined function, procedure for, 397
FirstOrDefault(), 367
foreign keys

FullName(), 404 changing an independent association into a
foreign key association, procedure for,
247

GetInvoices(), code listing, 398
GetProjectManager(), 408
GetSupervisor(), 408 creating independent and foreign key

associations, procedure for, 246 GetVisitSummary(), code listing, 413
ISNULL(), code listing, 426 differences between foreign key

associations and independent
associations, table of, 187

model-defined functions, 394, 396
MyFunction class, 396
native functions, 372 Include Foreign Key Columns, 20
overview of, 393 limiting the values assigned to, 220
PlatinumSponsors(), code listing, 416 mapping a foreign key column to multiple

associations, code listing, 562 returning a collection of entity references from a
model-defined function, procedure for,
415

mapping a foreign key column to multiple
associations, procedure for, 556

returning a complex type from a model-defined
function, procedure for, 412

modifying foreign key associations, code
listing, 185

returning a scalar value from a model-defined
function, procedure for, 393

reading the foreign key constraints from a
database, 18

returning an anonymous type from a model-
defined function, procedure for, 408

from clause, 190, 231, 400
FullName(), 404

<RowType> tag, 412 Function Import Wizard, 369
<Schema> tag, 394, 398, 401 mapping a custom function to a CLR

method, 372 SqlFunctions class, 425
SqlServer namespace, 424 <FunctionImportMapping> tag, 362, 374–378
Sum(), 419

597

 INDEX

GetWithdrawals(), code listing, 366 functions (cont.)
Global.asax, 139 treat(), 408
GridView control, 135, 142 using canonical functions in Entity SQL,

code listing, 418 group by operator, 108, 165, 167
using canonical functions in LINQ, code

listing, 420 H VisitorSummary(), code listing, 410
when to use custom functions, 372 hints, 518
See also canonical functions; custom

functions; model-defined functions
 I

 G ICollection<T>, 279, 286, 289, 483, 485
identifying relationship

garbage collector, waiting to reclaim resources,
16

definition of, 265
DeleteObject(), 267

Generate Database from Model, selecting, 7 deleting a dependent entity, code listing, 265
Generate Database Script from Model, 12 dependent and principal entities, deleting, 265
GetAllMedia stored procedure, 374 working with dependent entities, 264
GetAllMedia(), code listing, 374 ImageURL scalar property, 34
GetAllPeople stored procedure, 377 impedance mismatch problem, 1
GetAllPeople(), code listing, 377 in clause, 84
GetClient(), 349 Include Foreign Key Columns, 20
GetConnection(), 252 Include(), 92, 156, 160, 163, 176, 205, 400
GetCustomer(), 344 invoking, 158
GetCustomers(), code listing, 361 lack of support for a filtering predicate in Entity

Framework, 180 GetEmployeeAddresses(), code listing, 368
GetEntities<T>(), 263 object graph and, 158
GetInvoices() performance drawbacks of, 497

bootstrapping, rules for, 400 performance implications of using, 158
code listing, 398 query path, definition of, 162
CreateQuery<Invoice>(), 400 rules for using, 167
Include(), 400 SQL query, 158
IQueryable<Invoice>, 400 using with other LINQ query operators, 165
ObjectQuery<Invoice>, 400 Index(), 149
returning a computed column from a

model-defined function, code listing,
402

inheritance
derived type extending the properties of a base

type, 44
returning a computed column from a

model-defined function, procedure
for, 401

inheritance models supported by Entity
Framework, 46

modeling Table per Type inheritance, code
listing, 44 GetKnownProxyTypes(), 502

GetObjectByKey(), 289, 291, 473 modeling Table per Type inheritance, procedure
for, 42 GetObjectStateEntries(), 263

GetPostByTitle(), 328 Table per Concrete Type, 46
GetProjectManager(), 408 Table per Hierarchy, 46
GetReservations(), 148 Table per Type, 46
GetSubCategories(), 205–207 insert statement, 516
GetSupervisor(), 408 InsertAgent(), 516
GetVehiclesWithRentals(), code listing, 364 InsertItemTemplate, 124
GetVisitSummary(), code listing, 413 InsertOrder(), 318

598

 INDEX

representing a many-to-many relationship, 190 InsertPayment(), 314
retrieving in a many-to-many association, 189 InsertPost(), 328

LINQ, 1, 8 InsertTemplate, 148
Any(), 77 Int32, 10
bitwise AND operator, 111 into clause, 108
calling database functions in LINQ, code listing,

424
InvalidOperationException, 568
IObjectChangeTracker interface, 333

Distinct(), 89 IObjectSet<T>, 304
finding books in a list of categories using both

LINQ and Entity SQL, code listing, 82
IQueryable<Invoice>, 400
IQueryable<Product>, 136

finding the masters that have detail using both
LINQ and Entity SQL, code listing, 74

IQueryable<T>, 166
IReservationContext interface, 297

flattening query results using LINQ and Entity
SQL, code listing, 103

Is Not Null condition, 54, 209, 218
Is Null condition, 48, 218

LINQ to Entities, querying a model, 22 is operator, 54
retrieving a primitive type using both LINQ and

Entity SQL, code listing, 87
IsActive property, 432, 434
IsBackOrderable property, 533

Select(), 89 IsComposable attribute, 362
setting default values in a query, code listing, 77 ISet<T>, 273
using canonical functions in LINQ, code listing,

420
IsLoaded property

code listing, 174
See also Entity SQL; SQL using, 174, 176

ListView control, 119, 124, 148 ISNULL()
Load(), 168, 173, 176, 199, 205, 207, 440 code listing, 426

AppendOnly option, 179 defining in the store layer, 428
merge options, 179 IsPriority property, 577
NoTracking option, 179 IsRelationship property, 457
OverwriteChanges option, 179 ItemTemplate, 124
partial loading of an entity collection, code

listing, 179
IValidate interface, 296
IValidator interface

performance implications of using, 165 defining, 465
PreserveChanges option, 179 Validate(), 465, 469
using, code listing, 177

LoadProperty(), 279 K using to load navigation properties, code listing,
277 Key Property, 10

lookup tables, overloading, 222

 L M
LayoutTemplate, 148

Main(), 314, 318 lazy loading, 40–41
many-to-many relationship, 190 LazyLoadingEnabled, 280
Mapping Details window, 2, 7, 34 let clause, 97
mapping layer, 2 let keyword, 480
Mapping Specification Language (MSL), 3 link table, 23
MarkAsAdded(), 333 creating a synthetic key for, 195
MarkAsDeleted(), 333, 344 exposing as an entity, procedure for, 192
MarkAsModified(), 333, 344 importing a link table with no payload into

a model, 555 MarkAsUnchanged(), 333, 344
MembersWithTheMostMessages(), code listing, 371 obtaining the underlying keys, 191

599

 INDEX

creating an association on a derived entity, code
listing, 531

MergeOption property, 520
AppendOnly option, 82, 476

creating an association on a derived entity,
procedure for, 529

NoTracking option, 68, 475
OverwriteChanges option, 491

creating conditional associations, procedure for,
536

table of options, 87
Metadata Artifact Processing property, 253,

257–258 creating independent and foreign key
associations, procedure for, 246 metadata tag, 258

creating read-only and computed properties,
code listing, 574

MetadataWorkspace
creating, 253

creating read-only and computed properties,
procedure for, 568

definition of, 257
model-defined functions, 394

creating, modifying, and mapping complex
types, code listing, 60

acceptable parameter types, 396
best practices for employing, 397

creating, modifying, and mapping complex
types, procedure for, 57

Entity SQL, 396
See also canonical functions; custom

functions; functions deploying a model, 257
<EntityContainer> tag, 581 Model First, 5, 7, 527
<EntityContainerMapping> tag, 212, 234, 533,

538
Model.csdl file, 257
Model.msl file, 257

Entity Framework’s approach to, 2 Model.ssdl file, 257
entity set mappings for the Audits, code listing,

548
modeling

adding an extra integer identity column to a
link table, 29 <EntitySetMapping> tag, 212, 229

ExecuteStoreCommand(), 534 AddToPreferredCustomers(), 583
exposing a link table as an entity, procedure for,

192
AddToRiskyCustomers(), 583
applying conditions in Table per Type

inheritance, code listing, 226 extending a Table per Type inheritance model
with a Table per Hierarchy approach, code
listing, 588

applying conditions in Table per Type
inheritance, procedure for, 224

extending a Table per Type inheritance model
with a Table per Hierarchy approach,
procedure for, 585

applying conditions on a base entity,
procedure for, 242

AssociationSet mappings with conditions,
code listing, 566 fabricating additional inheritance hierarchies,

code listing, 545 <AssociationSetMapping> tag, 229
fabricating additional inheritance hierarchies,

procedure for, 542
bidirectional model development,

designer’s support for, 14
Generate Database Script from Model, 12 changing an independent association into a

foreign key association, procedure for,
247

generating a database for a model, 11
GetSubCategories(), 205–207
handling validation in the SavingChanges event,

code listing, 237
conditional associations, modeling, 538
createref(), 541

implementing a complex filter using QueryView,
227

creating a database script, 12
creating a filter on multiple criteria, code

listing, 228 importing a link table with no payload into a
model, 555 creating a filter on multiple criteria,

procedure for, 227 importing the view, tables, and relationships
into a model, procedure for, 17 creating a model from an existing database,

16 Include Foreign Key Columns, 20
Include(), 205 creating a simple conceptual model,

procedure for, 9

600

 INDEX

merging two entities into a single entity,
procedure for, 34

inheritance models supported by Entity
Framework, 46

model, definition of, 2 Insert, Update, and Delete actions for the
Friend, Relative, and Residence
entities, code listing, 559

modeling a many-to-many relationship with a
payload, code listing, 27

modeling a many-to-many relationship with a
payload, procedure for, 26

inserting and retrieving WebOrders, code
listing, 231

modeling a many-to-many relationship with no
payload, code listing, 24

inserting into and querying of a model, 20
inserting into and retrieving rows from the

Account table, code listing, 48 modeling a many-to-many relationship with no
payload, procedure for, 22 inserting into and retrieving Task and

Worker entities, code listing, 195 modeling a many-to-many relationship with
payload, code listing, 555 InvalidOperationException, 568

modeling a many-to-many relationship with
payload, procedure for, 553

Is Not Null condition, 218
Is Null condition, 218

modeling a many-to-many, self-referencing
relationship, code listing, 197

IsBackOrderable property, 533
IsPriority property, 577

modeling a many-to-many, self-referencing
relationship, procedure for, 196

limiting the values assigned to a foreign key,
code listing, 223

modeling a self-referencing relationship and
retrieving a complete hierarchy, procedure
for, 204

limiting the values assigned to a foreign key,
procedure for, 220

link table, 23
modeling a self-referencing relationship using

Table per Hierarchy inheritance, code
listing, 202

Load(), 199, 205, 207
mapping a foreign key column to multiple

associations, code listing, 562
modeling a self-referencing relationship using

Table per Hierarchy inheritance,
procedure for, 200

mapping a foreign key column to multiple
associations, procedure for, 556

mapping an entity based on conditions, 541
modeling a self-referencing relationship, code

listing, 31
mapping an entity to customized parts of

one or more tables, code listing, 534
modeling a self-referencing relationship,

procedure for, 29
mapping an entity to customized parts of

one or more tables, procedure for, 532
modeling Is-a and Has-a relationships between

two entities, code listing, 56
mapping an entity to Multiple EntitySets

per Type (MEST), code listing, 583
modeling Is-a and Has-a relationships between

two entities, procedure for, 54
mapping an entity to Multiple EntitySets

per Type (MEST), procedure for, 578
modeling nested Table per Hierarchy

inheritance, code listing, 218
mapping an entity to multiple tables, code

listing, 577
modeling nested Table per Hierarchy

inheritance, procedure for, 216
mapping an entity to multiple tables,

procedure for, 576
modeling Table per Concrete Type inheritance,

code listing, 241
mapping conception layer entity sets to

store entity sets, code listing, 582
modeling Table per Concrete Type inheritance,

procedure for, 238
mapping Null conditions in derived entities,

code listing, 209
modeling Table per Hierarchy inheritance, code

listing, 52
mapping Null conditions in derived entities,

procedure for, 208
modeling Table per Hierarchy inheritance,

procedure for, 49
mapping the HireDate and Salary

properties, code listing, 544
modeling Table per Type inheritance using a

non-primary key column, procedure for,
211, 213

mappings for the many-to-many
association using the vwAuthorBook
view, 554

601

 INDEX

using conditions to filter an objectset, procedure
for, 46

modeling (cont.)
modeling Table per Type inheritance, code

listing, 44 using inheritance to map a foreign key column
to multiple associations, code listing, 567 modeling Table per Type inheritance,

procedure for, 42 using inheritance to map a foreign key column
to multiple associations, procedure for, 564 Multiple EntitySets per Type (MEST), 549

using LINQ to Entities to query a model, 22 object graph, building, 22
using the as operator, code listing, 245 OfType<>(), 244
Validate(), 238 PromoteToMedicine(), 210
vertical splitting, definition of, 35 querying an entity data model, 63
when two tables map into a single entity set, 577 QueryView, 215, 227
working with payload-free, many-to-many

relationships, 29
QueryView and procedure mappings for the

associations, code listing, 540
working with the vertically split Product entity

type, code listing, 35
refactoring a model, 29
representing a many-to-many relationship

as two one-to-many associations, 26 See also Entity Framework
<ModificationFunctionMapping> tag, 387 retrieving a link table, code listing, 190
Multiple EntitySets per Type (MEST), 3, 549 retrieving the link table in a many-to-many

association, 189 mapping an entity to, code listing, 583
mapping an entity to, procedure for, 578 roundtrip modeling, 14

multiplicity, definition of, 30 SaveChanges(), 211
MyFunction class, 396 SelectMany(), 190–191

sharing audit fields across multiple entities,
code listing, 551 N sharing audit fields across multiple entities,
procedure for, 547 native functions, 372

solving the entity key problem, 551 navigation properties, 3, 19
splitting a table across multiple entities,

code listing, 40
new operator, 8
NextResult(), 82, 365

splitting a table across multiple entities,
procedure for, 37

NOLOCK query hint, 518
NoTracking option, 179

splitting an entity across multiple tables,
procedure for, 33

n-tier applications
AcceptChanges(), 357

stored procedures for the Insert, Update,
and Delete actions for the Customer
and Order entities, code listing, 570

ApplyChanges(), 333, 338, 344
ApplyCurrentValues(), 322
ApplyOriginalValues(), 322

Stored procedures for the Insert, Update,
and Delete actions for the entities,
code listing, 538

Attach(), 314, 318, 322, 328
BinaryFormatter, 350
BookingClient test client code, 337

Table per Hierarchy inheritance, 529, 542 ByteArraySerializer class, code listing, 350
ToList(), 223 Cleanup(), 328
using a Common Table Expression in a

stored procedure, 205
Client POCO class and object context, code

listing, 346
using a recursive method to form the

transitive closure, code listing, 198
Create Customer button, 342
CreateProxyTypes(), 353

using complex conditions with Table per
Hierarchy inheritance, code listing,
236

CustomerRepository class, code listing, 339
DataContractResolver, 349
DataContractSerializer, 349–350, 353

using complex conditions with Table per
Hierarchy inheritance, procedure for,
232

DeleteObject(), 314, 328
DeletePayment(), 314

602

 INDEX

service contract for the WCF service, code
listing, 313

deleting an entity when disconnected,
procedure for, 311

StartSelfTracking(), 339, 344 DetailsView control in an ASP.NET web
page, code listing, 320 StartTracking(), 344

StopTracking(), 344 DetectChanges(), 344
SubmitCategory(), 358 Dispose(), 328
SubmitCustomerWithPhones(), 344 EnrollmentClient test client code, 332
SubmitPost(), 328 extending the EFRecipesEntities class, code

listing, 340 Update Customer button, 342, 344
UpdateOrderByRetrieving(), 318 finding out which properties have changed,

procedure for, 319 UpdateOrderWithoutRetrieving(), 318
UpdateProject(), 322 fixing duplicate references on a WCF client,

procedure for, 354 using POCO with WCF, procedure for, 323
using self-tracking entities on the server side,

procedure for, 338
GetClient(), 349
GetCustomer(), 344

using self-tracking entities with WCF, procedure
for, 329

GetPostByTitle(), 328
implementation of the IService1 interface,

code listing, 331, 335, 347, 356 validating self-tracking entities, procedure for,
334 implementation of the service contract,

code listing, 325 WCF Service Library, creating, 312
Windows console application serving as a test

client, code listing, 327
InsertOrder(), 318
InsertPayment(), 314

Null condition, 209 InsertPost(), 328
IObjectChangeTracker interface, 333
Main(), 314, 318 O managing concurrency when disconnected,

procedure for, 315 object graph, building, 22
MarkAsAdded(), 333 Object Relational Mapping (ORM), 1
MarkAsDeleted(), 333, 344 object services
MarkAsModified(), 333, 344 building a connection string dynamically, code

listing, 251 MarkAsUnchanged(), 333, 344
ObjectDataSource control, 319, 322 conceptual layer (CSDL), 253
ObjectMaterialized event, 344 connection string syntax for loading model

layers, table of, 258 Order POCO class and related object
context, code listing, 316 ConnectionStringManager class, 252

POCO classes serialized by the WCF service,
code listing, 312

CreateContext(), 256
CreateWorkSpace(), 257

Post, Comment, and EFReceipesEntities
object context, code listing, 324

deploying a model, 257
.edmx file, 253

project repository with UpdateProject(),
code listing, 319

EFRecipesEntities, 257
embedding the model layers as resources in an

assembly, 258 ProxyDataContractResolver class, 345, 349
Read Customer button, 342, 344 GetConnection(), 252
Repository pattern, 319 mapping layer (MSL), 253
SaveChanges(), 314–315, 318, 333 Metadata Artifact Processing property, 257–258
Self-Tracking Entities template, 329 metadata tag, 258
Serializable attribute, 353 MetadataWorkspace, creating, 253
serializing proxies in a WCF service,

procedure for, 345
MetadataWorkspace, definition of, 257
Model.csdl file, 257

serializing self-tracking entities in the
ViewState, procedure for, 349

Model.msl file, 257

603

 INDEX

EntityCollection, 437 object services (cont.)
EntityReference, 437 Model.ssdl file, 257
executing code when SaveChanges() is called,

code listing, 430
OnContextCreated(), 252
POCO, 257

handling the SavingChanges event to enforce
the business rule, code listing, 451

reading a model from a database, procedure
for, 253

handling the SavingChanges event to set the
default values, code listing, 448

reading the metadata from the Definitions
table, code listing, 254

IsActive property, 432, 434 SaveChanges(), 256
IsRelationship property, 457 storage layer (SSDL), 253
IValidator interface, defining, 465 using the connection string found in the

.config file, 252 Load(), 440
logging database connections, code listing, 435 XmlReaders, 257
monitoring the changing of the UserName

property, code listing, 432
object state manager, 288

GetEntities<T>(), 263
OnContextCreated(), 435, 437, 469 GetObjectStateEntries(), 263
OnUserNameChanged(), 432, 434 retrieving all entities in the Added,

Modified, or Unchanged state, code
listing, 261

OnUserNameChanging(), 432, 434
PropertyChanged event, 434, 440
PropertyChanging event, 434 retrieving entities from, 261
PropertyEventArgs parameter, 434 SavingChanges event, 263
recalculating a property value when an entity

collection changes, 437
ObjectContext, 14
ObjectDataSource control, 115, 143, 145, 148,

319, 322 RelatedEnd, 437
retrieving the original association for

independent associations, 454
ObjectMaterialized event, 344
ObjectQuery, 70

retrieving the original value of a property, 451 ObjectQuery<Invoice>, 400
SaveChanges(), 469 ObjectQuery<T>, 87, 165–166, 476
setting a property’s StoreGeneratedPattern, 464 objects
setting the default value through the store layer,

448
applying server-generated values to

properties, code listing, 462
StateChange event, 435, 437 applying server-generated values to

properties, procedure for, 460 StateChangeEventArgs parameter, 437
Sum(), 440 assigning default values to the properties of

an entity, 447 throwing an ApplicationException, 453
treating a scalar property of type string as XML

data, 457
Attach(), 440
automatically deleting related entities, 440

User entity, 432 business rule validation and enforcement,
best practices, 469 using the AssociationChanged event, code

listing, 437 CartItems collection, 439
using the CandidateResume property to expose

the resume as XML, code listing, 458
cascade delete rules, setting, 441
Changed event, 460

using the cascade delete rules to delete related
objects, code listing, 441

Clear(), 440
CollectionChangedEventArgs, 440

Validate(), 465, 469 CreateSourceQuery(), 444
validating entities on the SavingChanges event,

464
Default Value attribute, 451
DeleteRelatedEntities<>(), code listing, 444

validating SaleOrder entities in the
SavingChanges event, code listing, 465

deleting all related entities in a generic way,
443

XElement class, 458 enforcing the order-fulfillment stages, code
listing, 454 ObjectSet<T>, 87, 274, 276, 476

604

 INDEX

CreateProxyTypes(), 500, 502 OfType<T>(), 472
DetectChanges(), 485 OfType<>(), 172, 244
eagerly loading a related collection without

using Include(), code listing, 495
selecting instances of a given subtype from

an entity set, 164
ExecuteStoreQuery(), 490–491 OnContextCreated(), 126, 252, 435, 437, 469
first(), 474 OnQueryCreated attribute, 142
generating proxies explicitly, 500 OnUserNameChanged(), 432, 434
generating tracking proxies before loading the

entities, code listing, 501
OnUserNameChanging(), 432, 434
operators

GetKnownProxyTypes(), 502 AnyElement, 397
GetObjectByKey(), 473 as, 245
ICollection<T>, 483, 485 bitwise AND, 111
improving QueryView performance, 497 cross, 105
improving the startup time, procedure for, 477 group by, 165, 167
making change tracking with POCO faster, 482 is, 54
measuring the execution time of a simple query,

code listing, 478
new, 8
outer apply, 105

moving an expensive property to another entity,
procedure for, 491

optimistic concurrency
Concurrency Mode property, 511

ObjectQuery<T>, 476 enabling, 511
ObjectSet<T>, 476 procedure for applying, 509
OfType<T>(), 472 throwing an exception if optimistic

concurrency is violated, code listing,
510

optimizing queries in a Table per Type
inheritance model, code listing, 471

performing a simple query using the NoTracking
merge option, code listing, 475

using with Table per Type inheritance,
procedure for, 524, 526

POCO classes with properties marked as virtual,
code listing, 483

See also concurrency
OptimisticConcurrencyException, 520

preventing the update of all columns in self-
tracking entities, procedure for, 503

OrderBy(), 100
OrderByExpression, 136

retrieving a single entity using an entity key,
code listing, 473

outer apply operator, 105
OverwriteChanges option, 179

retrieving entities for read only, 475
returning partially filled entities, code listing,

489 P
SaveChanges(), 485 Page_Load event, 128
Service1 implementation in the Service1.svc.cs

file, code listing, 505
Page_Load(), 116, 118, 124, 139
PagedControlID, 124

single(), 474 partial methods, 434
SQL generated when let is used in the LINQ

query, 482
performance improvements

adding a QueryView for each derived type,
code listing, 497 TestClient console application, code listing, 506

TryGetObjectByKey(), 474 Attach(), 476
UpdateComplaint(), 504 building a search query efficiently, 479
using Compile() for queries that return an

anonymous type, code listing, 488
comparing the performance of a simple

compiled LINQ query, code listing, 486
using CompileQuery.Compile() to compile a

query, 486
compiling LINQ queries, 485
composing compiled and noncompiled

queries, code listing, 489 using the CSharp.Views.tt T4 template, 478
using the let keyword and explicit conditions in

a query, code listing, 480
CreateObject(), 484

605

 INDEX

implementing the fake object set and fake object
context, code listing, 300

performance improvements (cont.)
using the ResumeDetail entity, code listing,

494 IObjectSet<T>, 304
IReservationContext interface, 297 PerserveChanges, 520
ISet<T>, 273 PlatinumSponsors(), code listing, 416
IValidate interface, 296 Pluralization Service
IValidate interface, implementing for the

Reservation and Schedule classes, 298
enabling, 259
Pluralize New Objects property, 260

lack of support for lazy loading and change
tracking, 276

pluralizing and singularizing words, code
listing, 260

lack of support for struct as a complex type, 283 setting the default on/off state, 260
lazy loading of related entities, code listing, 279 System.Data.Entity.Design namespace, 260
LazyLoadingEnabled, 280 using to import tables from a database, 258
loading related entities using POCO, 276 POCO
making change tracking with POCO faster, 482 AppDomain, 276
manually synchronizing the object graph and

the object state manager, 292
ApplyCurrentValues(), 291
Attach(), 285

marking properties as virtual, 280 automating the creation and dropping of a
test database, 308 notifying Entity Framework about object

changes, code listing, 286 BookRepository class, code listing, 306
object state manager, 288 BookRepositoryTest class with unit tests,

code listing, 307 ObjectSet<T>, 274, 276
Plain Old CLR Objects, explanation of, 271 calling DetectChanges() and handling the

SavingChanges event, code listing, 292 POCO template, using, 296
ReservationRepository class, 300 change tracking with proxies, 485
retrieving the original object from a database,

code listing, 289
change tracking with snapshots, 485
change-tracking proxies, creating, 288

rules for using complex types with POCO, 285 classes and the Entity Framework, 4
SaveChanges(), 285, 295, 299 Code Generation Strategy property, 276
SavingChanges event, 295 ContextOptions, 280
testing a repository against a database,

procedure for, 305
CreateDatabase(), 309
CreateEntityKey(), 291

testing domain objects, procedure for, 296 CreateObject<T>(), 289
unit tests for the Tests project, code listing, 303 creating a class derived from ObjectContext,

code listing, 274 using a complex type in a POCO entity, code
listing, 283 creating classes for the entities in the

customers’ orders model, code listing,
273

using LoadProperty() to load navigation
properties, code listing, 277

using POCO in an application, code listing, 274 creating unit tests for defined business
rules, 296 using POCO in an application, procedure for,

271 DeleteObject(), 285
PreserveChanges option, 179 deleting a POCO entity with a complex type,

code listing, 285 primary keys, 33
Print(), 32 DetectChanges(), 295
PrintDetails(), 182 DropDatabase(), 309
ProductsWithCategory(), 136 EFRecipesEntities object context, 276
ProductWebInfo entity, 34 FakeObjectSet<T>, 304
ProductWithSalesGreaterThan(), 136 GetObjectByKey(), 289, 291
PromoteToMedicine(), 210 ICollection<T>, 279, 286, 289

implementing an object context specific to
the model and entities, 276

606

 INDEX

SavingChanges event, 125–126, 263, 295 properties
handling in order to enforce the business rule,

code listing, 451
ComplexType, definition of, 3
marking as virtual, 280

handling in order to set the default values, code
listing, 448

navigation, 3, 19
property, definition of, 3

scalar properties, 3, 10, 19 scalar, 3, 19
<Schema> tag, 394, 398, 401 Property Type, 10
select statement, 230, 404, 516 PropertyChanged event, 434, 440
Select(), 89 PropertyChanging event, 434
SelectMany(), 190–191 PropertyEventArgs parameter, 434
SelectValue(), 89 PropertyExpression, 136
Self-Tracking Entities template, 329 ProxyDataContractResolver class, 345, 349
Serializable attribute, 353
single(), 474 Q Skip(), 100
Solution Explorer, 398 query path, definition of, 162
SQL QueryExtender control, 115, 130, 136, 142

@Amount parameter, 65 QueryView, 215, 534
ExecuteNonQuery(), 65, 67 common use cases for using, 230
ExecuteStoreCommand(), 64–65, 67 Entity SQL, 230
ExecuteStoreQuery(), 67–68 implementing a complex filter, 227
executing an SQL statement, code listing, 63
injection attacks, 66

 R returning objects from an SQL statement, 66
SaveChanges(), 67

RangeExpression, 136 using parameters for SQL statements, best
practices, 66 Read Customer button, 342, 344

Read(), 70 @Vendor parameter, 65
Refresh(), 512, 520 See also Entity SQL; LINQ
RelatedEnd, 437 SQL Server Management Studio, 441
relationship span SqlClient, 65, 70

definition of, 178, 184 SqlCommand, 82
using, 182 SqlConnection, 82

RelationshipManager, 444 SqlFunctions class, 425
Repository pattern, 319 SqlServer namespace, 424
ReservationRepository class, 300 StartSelfTracking(), 339, 344
rogue updates, 524, 527 StartsWith(), 100
root entity, 32 StartTracking(), 344
roundtrip modeling, 14 StateChange event, 435, 437
<RowType> tag, 412 StateChangeEventArgs parameter, 437

StopTracking(), 344

 S store model, 2
Store Schema Definition Language (SSDL), 2
stored procedures SaveChanges()

Add Function Import dialog box, 360 AcceptAllChanges(), 432
defining a custom function in the storage model,

370
DetectChangesBeforeSave, 432
executing code when SaveChanges() is

called, code listing, 430 definition of, 359
FirstOrDefault(), 367 overriding, 299, 431
Function Import Wizard, 369 validating property changes, 432

607

 INDEX

stored procedures for the Insert and Delete
actions in a many-to-many association,
SQL Profiler output, 385

stored procedures (cont.)
<FunctionImportMapping> tag, 374–375,

377–378
ToList(), 365 GetAllMedia(), code listing, 374

StoreGeneratedPattern property, 10, 511 GetAllPeople(), code listing, 377
StringBuilder class, 32 GetCustomers(), code listing, 361
SubmitCategory(), 358 GetEmployeeAddresses(), code listing, 368
SubmitCustomerWithPhones(), 344 GetSubCategories(), 205–207
SubmitPost(), 328 getting affected rows from a stored

procedure, code listing, 521 Sum(), 174, 419, 440
GetVehiclesWithRentals(), code listing, 364
GetWithdrawals(), code listing, 366 T IsComposable attribute, 362
managing concurrency when using stored

procedures, 512
Table per Concrete Type inheritance, 46

ensuring a unique entity key across tables, 240
mapping stored procedures to actions, best

practices, 381
performance advantages and disadvantages of,

241
mapping the Insert, Update, and Delete

actions to stored procedures, 379
practical applications for, 241
procedure for modeling relationships in, 238

mapping the Insert, Update, and Delete
actions to stored procedures for Table
per Hierarchy inheritance, code
listing, 391

Table per Hierarchy inheritance, 46, 48, 529, 542
modeling a self-referencing relationship, code

listing, 202
modeling a self-referencing relationship,

procedure for, 200 mapping the Insert, Update, and Delete
actions to stored procedures for Table
per Hierarchy inheritance, procedure
for, 387

modeling nested Table per Hierarchy
inheritance, code listing, 218

modeling nested Table per Hierarchy
inheritance, procedure for, 216 mapping the Insert, Update, and Delete

actions to stored procedures, code
listing, 381

rules for using, 54
using a single table to represent an inheritance

hierarchy, 52 MembersWithTheMostMessages(), code
listing, 371 using complex conditions with, 232

<ModificationFunctionMapping> tag, 387 Table per Type inheritance, 46
NextResult(), 365 applying conditions in, 224
populating entities in a Table per Hierarchy

inheritance model, 376
modeling using a non-primary key column,

procedure for, 211, 213
populating entities in a Table per Type

inheritance model, 373
optimizing queries, code listing, 471

tables
returning a complex type from a stored

procedure, 367
giving singular or plural names to, 259
inserting a row with a non-Null value, 48

returning a scalar value result set, 365 mapping an entity type to a subset of table rows,
46 returning an entity collection, 359

returning output parameters, 362 People table, creating, 12
Stored Procedure Mapping, 379 self-referencing, 31
stored procedures for the Insert and Delete

actions in a many-to-many
association, 382

two or more tables with common primary keys,
33

vertical splitting, definition of, 35
stored procedures for the Insert and Delete

actions in a many-to-many
association, code listing, 383

Take(), 100
TargetControlID, 136
tasks, 3

608

 INDEX

609

Test Connection, 17
Text Template Transformation Toolkit (T4

Templates), 4
Self-Tracking Entities template, 507
using the CSharp.Views.tt template, 478

TimeStamp property, 511, 513, 520, 524
ToList(), 82, 92, 182, 184, 223, 365
Top(), 101
ToString(), 32
TotalSales property, 135
TransactionScope class, 516
transitive closure, 198
Translate(), 82
treat(), 408
Truncate(), 102
TryGetObjectByKey(), 474

 U
Update Customer button, 342, 344
Update From Database Wizard, 372
Update Model From Database, 360
update statement, 511, 516, 520
Update(), 148
UpdateAccount(), 524
UpdateAgent(), 516
UpdateComplaint(), 504
UpdateOrderByRetrieving(), 318
UpdateOrderWithoutRetrieving(), 318
UpdateProject(), 322
User entity, 432
using clause, 74
using(), 16

 V
Validate(), 238, 465, 469

@Vendor parameter, 65
vertical splitting

additional join required by, 35
definition of, 35

VisitorSummary(), code listing, 410
Visual Studio 2010

Command Prompt, accessing, 263
Database First, 5
features of, 4
importing tables and relationships into a model,

5
Model First, 5
providing an integrated design surface for Entity

Framework models, 5
Text Template Transformation Toolkit (T4

Templates), 4
updating a model from its database, 5
Workflow Foundation (WF), 4

vwLibrary, 17, 22

 W
web.config file, 258
where clause, 171, 231, 400, 511, 516
Where(), 87, 100
Windows Communication Foundation (WCF), 312–

313, 323, 329, 345, 354, 503
Workflow Foundation (WF), 4

 X
XElement class, 458
XML

models and, 2
treating a scalar property of type string as XML

data, 457
XmlReaders, 257

	Prelim
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewers
	Acknowledgments
	Preface
	Who This Book Is For
	What’s in This Book
	About the Recipes
	Stuff You Need to Get Started
	Code Examples
	The Database
	Apress Website

	Getting Started With Entity Framework
	A Brief Tour of the Entity Framework World
	Models
	Terminology
	Code
	Visual Studio 2010

	Using Entity Framework

	Entity Data Modeling Fundamentals
	2-1. Creating a Simple Model
	Problem
	Solution
	How It Works

	2-2. Creating a Model from an Existing Database
	Problem
	Solution
	How It Works

	2-3. Modeling a Many-to-Many Relationship with No Payload
	Problem
	Solution
	How It Works

	2-4. Modeling a Many-to-Many Relationship with a Payload
	Problem
	Solution
	How It Works

	2-5. Modeling a Self-Referencing Relationship
	Problem
	Solution
	How It Works

	2-6. Splitting an Entity Across Multiple Tables
	Problem
	Solution
	How It Works

	2-7. Splitting a Table Across Multiple Entities
	Problem
	Solution
	How It Works

	2-8. Modeling Table per Type Inheritance
	Problem
	Solution
	How It Works

	2-9. Using Conditions to Filter an ObjectSet
	Problem
	Solution
	How It Works

	2-10. Modeling Table per Hierarchy Inheritance
	Problem
	Solution
	How It Works

	2-11. Modeling Is-a and Has-a Relationships Between Two Entities
	Problem
	Solution
	How It Works

	2-12. Creating, Modifying, and Mapping Complex Types
	Problem
	Solution
	How It Works

	Querying an Entity Data Model
	3-1. Executing an SQL Statement
	Problem
	Solution
	How It Works

	3-2. Returning Objects from a SQL Statement
	Problem
	Solution
	How It Works

	3-3. Returning Objects from an Entity SQL Statement
	Problem
	Solution
	How It Works

	3-4. Specifying Fully Qualified Names in Entity SQL
	Problem
	Solution
	How It Works

	3-5. Finding a Master that Has Detail in a Master-Detail Relationship
	Problem
	Solution
	How It Works

	3-6. Setting Default Values in a Query
	Problem
	Solution
	How It Works

	3-7. Returning Multiple Result Sets From a Stored Procedure
	Problem
	Solution
	How It Works

	3-8. Comparing Against a List of Values
	Problem
	Solution
	How It Works

	3-9. Building and Executing a Query Against an ObjectSet<T>
	Problem
	Solution
	How It Works

	3-10. Returning a Primitive Type From a Query
	Problem
	Solution
	How It Works

	3-11. Filtering Related Entities
	Problem
	Solution
	How It Works

	3-12. Applying a Left Outer Join
	Problem
	Solution
	How It Works

	3-13. Ordering by Derived Types
	Problem
	Solution
	How It Works

	3-14. Paging and Filtering
	Problem
	Solution
	How It Works

	3-15. Grouping by Date
	Problem
	Solution
	How It Works

	3-16. Flattening Query Results
	Problem
	Solution
	How It Works

	3-17. Grouping by Multiple Properties
	Problem
	Solution
	How It Works

	3-18. Using Bitwise Operators in a Filter
	Problem
	Solution
	How It Works

	3-19. Joining on Multiple Columns
	Problem
	Solution
	How It Works

	Using Entity Framework in ASP.NET
	4-1. Building a Search Query
	Problem
	Solution
	How It Works

	4.2. Building CRUD Operations in an ASP.NET Web Page
	Problem
	Solution
	How It Works

	4-3. Executing Business Logic When Changes Are Saved
	Problem
	Solution
	How It Works

	4-4. Loading Related Entities
	Problem
	Solution
	How It Works

	4-5. Searching with QueryExtender
	Problem
	Solution
	How It Works

	4-6. Retrieving a Derived Type Using an EntityDataSource Control
	Problem
	Solution
	How It Works

	4-7. Filtering with ASP.NET’s URL Routing
	Problem
	Solution
	How It Works

	4-8. Building CRUD Operations with an ObjectDataSource Control
	Problem
	Solution
	How It Works

	4-9. Using Entity Framework With MVC
	Problem
	Solution
	How It Works

	Loading Entities and Navigation Properties
	5-1. Loading Related Entities
	Problem
	Solution
	How It Works

	5-2. Loading a Complete Object Graph
	Problem
	Solution
	How It Works

	5-3. Loading Navigation Properties on Derived Types
	Problem
	Solution
	How It Works

	5-4. Using Include() with Other LINQ Query Operators
	Problem
	Solution
	How It Works

	5-5. Deferred Loading of Related Entities
	Problem
	Solution
	How It Works

	5-6. Filtering and Ordering Related Entities
	Problem
	Solution
	How It Works

	5-7. Executing Aggregate Operations on Related Entities
	Problem
	Solution
	How It Works

	5-8. Testing Whether an Entity Reference or Entity Collection Is Loaded
	Problem
	Solution
	How It Works

	5-9. Loading Related Entities Explicitly
	Problem
	Solution
	How It Works

	5-10. Filtering an Eagerly Loaded Entity Collection
	Problem
	Solution
	How It Works

	5-11. Using Relationship Span
	Problem
	Solution
	How It Works

	5-12. Modifying Foreign Key Associations
	Problem
	Solution
	How It Works

	Beyond the Basics with Modeling and Inheritance
	6-1. Retrieving the Link Table in a Many-to-Many Association
	Problem
	Solution
	How It Works

	6-2. Exposing a Link Table as an Entity
	Problem
	Solution
	How It Works

	6-3. Modeling a Many-to-Many, Self-Referencing Relationship
	Problem
	Solution
	How It Works

	6-4. Modeling a Self-Referencing Relationship Using Table per Hierarchy Inheritance
	Problem
	Solution
	How It Works

	6-5. Modeling a Self-Referencing Relationship and Retrieving a Complete Hierarchy
	Problem
	Solution
	How It Works

	6-6. Mapping Null Conditions in Derived Entities
	Problem
	Solution
	How It Works

	6-7. Modeling Table per Type Inheritance Using a NonPrimary Key Column
	Problem
	Solution
	How It Works

	6-8. Modeling Nested Table per Hierarchy Inheritance
	Problem
	Solution
	How It Works

	6-9. Limiting the Values Assigned to a Foreign Key
	Problem
	Solution
	How It Works

	6-10. Applying Conditions in Table per Type Inheritance
	Problem
	Solution
	How It Works

	6-11. Creating a Filter on Multiple Criteria
	Problem
	Solution
	How It Works

	6-12. Using Complex Conditions with Table per Hierarchy Inheritance
	Problem
	Solution
	How It Works

	6-13. Modeling Table per Concrete Type Inheritance
	Problem
	Solution
	How It Works

	6-14. Applying Conditions on a Base Entity
	Problem
	Solution
	How It Works

	6-15. Creating Independent and Foreign Key Associations
	Problem
	Solution
	How It Works

	6-16. Changing an Independent Association into a Foreign Key Association
	Problem
	Solution
	How It Works

	Working with Object Services
	7-1. Dynamically Building a Connection String
	Problem
	Solution
	How It Works

	7-2. Reading a Model from a Database
	Problem
	Solution
	How It Works

	7-3. Deploying a Model
	Problem
	Solution
	How It Works

	7-4. Using the Pluralization Service
	Problem
	Solution
	How It Works

	7-5. Retrieving Entities from the Object State Manager
	Problem
	Solution
	How It Works

	7-6. Generating a Model from the Command Line
	Problem
	Solution
	How It Works

	7-7. Working with Dependent Entities in an Identifying Relationship
	Problem
	Solution
	How It Works

	7-8. Inserting Entities Using an Object Context
	Problem
	Solution
	How It Works

	Plain Old CLR Objects
	8-1. Using POCO
	Problem
	Solution
	How It Works

	8-2. Loading Related Entities With POCO
	Problem
	Solution
	How It Works

	8-3. Lazy Loading With POCO
	Problem
	Solution
	How It Works

	8-4. POCO With Complex Type Properties
	Problem
	Solution
	How It Works

	8-5. Notifying Entity Framework About Object Changes
	Problem
	Solution
	How It Works

	8-6. Retrieving the Original (POCO) Object
	Problem
	Solution
	How It Works

	8-7. Manually Synchronizing the Object Graph and the Object State Manager
	Problem
	Solution
	How It Works

	8-8. Testing Domain Objects
	Problem
	Solution
	How It Works

	8-9. Testing a Repository Against a Database
	Problem
	Solution
	How It Works

	Using the Entity Framework in N-Tier Applications
	9-1. Deleting an Entity When Disconnected
	Problem
	Solution
	How It Works

	9-2. Managing Concurrency When Disconnected
	Problem
	Solution
	How It Works

	9-3. Finding Out What Has Changed
	Problem
	Solution
	How It Works

	9-4. Using POCO With WCF
	Problem
	Solution
	How It Works

	9-5. Using Self-Tracking Entities With WCF
	Problem
	Solution
	How It Works

	9-6. Validating Self-Tracking Entities
	Problem
	Solution
	How It Works

	9-7. Using Self-Tracking Entities on the Server Side
	Problem
	Solution
	How It Works

	9-8. Serializing Proxies in a WCF Service
	Problem
	Solution
	How It Works

	9-9. Serializing Self-Tracking Entities in the ViewState
	Problem
	Solution
	How It Works

	9-10. Fixing Duplicate References on a WCF Client
	Problem
	Solution
	How It Works

	Stored Procedures
	10-1. Returning an Entity Collection
	Problem
	Solution
	How It Works

	10-2. Returning Output Parameters
	Problem
	Solution
	How It Works

	10-3. Returning a Scalar Value Result Set
	Problem
	Solution
	How It Works

	10-4. Returning a Complex Type from a Stored Procedure
	Problem
	Solution
	How It Works

	10-5. Defining a Custom Function in the Storage Model
	Problem
	Solution
	How It Works

	10-6. Populating Entities in a Table per Type Inheritance Model
	Problem
	Solution
	How It Works

	10-7. Populating Entities in a Table per Hierarchy Inheritance Model
	Problem
	Solution
	How It Works

	10-8. Mapping the Insert, Update, and Delete Actions to Stored Procedures
	Problem
	Solution
	How It Works

	10-9. Using Stored Procedures for the Insert and Delete Actions in a Many-to-Many Association
	Problem
	Solution
	How It Works

	10-10. Mapping the Insert, Update, and Delete Actions to Stored Procedures for Table per Hierarchy Inheritance
	Problems
	Solution
	How It Works

	Functions
	11-1. Returning a Scalar Value from a Model Defined Function
	Problem
	Solution
	How It Works

	11-2. Filtering an Entity Collection Using a Model Defined Function
	Problem
	Solution
	How It Works

	11-3. Returning a Computed Column from a Model Defined Function
	Problem
	Solution
	How It Works

	11-4. Calling a Model Defined Function from a Model Defined Function
	Problem
	Solution
	How It Works

	11-5. Returning an Anonymous Type From a Model Defined Function
	Problem
	Solution
	How It Works

	11-6. Returning a Complex Type From a Model Defined Function
	Problem
	Solution
	How It Works

	11-7. Returning a Collection of Entity References From a Model Defined Function
	Problem
	Solution
	How It Works

	11-8. Using Canonical Functions in eSQL
	Problem
	Solution
	How It Works

	11-9. Using Canonical Functions in LINQ
	Problem
	Solution
	How It Works

	11-10. Calling Database Functions in eSQL
	Problem
	Solution
	How It Works

	11-11. Calling Database Functions in LINQ
	Problem
	Solution
	How It Works

	11-12. Defining Built-in Functions
	Problem
	Solution
	How It Works

	Customizing Entity Framework Objects
	12-1. Executing Code When SaveChanges() Is Called
	Problem
	Solution
	How It Works

	12-2. Validating Property Changes
	Problem
	Solution
	How It Works

	12-3. Logging Database Connections
	Problem
	Solution
	How It Works

	12-4. Recalculating a Property Value When an Entity Collection Changes
	Problem
	Solution
	How It Works

	12-5. Automatically Deleting Related Entities
	Problem
	Solution
	How It Works

	12-6. Deleting All Related Entities
	Problem
	Solution
	How It Works

	12-7. Assigning Default Values
	Problem
	Solution
	How It Works

	12-8. Retrieving the Original Value of a Property
	Problem
	Solution
	How It Works

	12-9. Retrieving the Original Association for Independent Associations
	Problem
	Solution
	How It Works

	12-10. Retrieving XML
	Problem
	Solution
	How It Works

	12-11. Applying Server-Generated Values to Properties
	Problem
	Solution
	How It Works

	12-12. Validating Entities on SavingChanges
	Problem
	Solution
	How It Works

	Improving Performance
	13-1. Optimizing Queries in a Table per Type Inheritance Model
	Problem
	Solution
	How It Works

	13-2. Retrieving a Single Entity Using an Entity Key
	Problem
	Solution
	How It Works

	13-3. Retrieving Entities for Read Only
	Problem
	Solution
	How It Works

	13-4. Improving the Startup Time
	Problem
	Solution
	How It Works

	13-5. Efficiently Building a Search Query
	Problem
	Solution
	How It Works

	13-6. Making Change Tracking with POCO Faster
	Problem
	Solution
	How It Works

	13-7. Compiling LINQ Queries
	Problem
	Solution
	How It Works

	13-8. Returning Partially Filled Entities
	Problem
	Solution
	How It Works

	13-9. Moving an Expensive Property to Another Entity
	Problem
	Solution
	How It Works

	13-10. Avoiding Include
	Problem
	Solution
	How It Works

	13-11. Improving QueryView Performance
	Problem
	Solution
	How It Works

	13-12. Generating Proxies Explicitly
	Problem
	Solution
	How It Works

	13-13. Preventing the Update of All Columns in Self-Tracking Entities
	Problem
	Solution
	How It Works

	Concurrency
	14-1. Applying Optimistic Concurrency
	Problem
	Solution
	How It Works

	14-2. Managing Concurrency When Using Stored Procedures
	Problem
	Solution
	How It Works

	14-3. Reading Uncommitted Data
	Problem
	Solution
	How It Works

	14-4. Implementing the “Last Record Wins” Strategy
	Problem
	Solution
	How It Works

	14-5. Getting Affected Rows from a Stored Procedure
	Problem
	Solution
	How It Works

	14-6. Optimistic Concurrency with Table Per Type Inheritance
	Problem
	Solution
	How It Works

	14-7. Generating a Timestamp Column with Model First
	Problem
	Solution
	How It Works

	Advanced Modeling
	15-1. Creating an Association on a Derived Entity
	Problem
	Solution
	How It Works

	15-2. Mapping an Entity to Customized Parts of One or More Tables
	Problem
	Solution
	How It Works

	15-3. Creating Conditional Associations
	Problem
	Solution
	How It Works

	15-4. Fabricating Additional Inheritance Hierarchies
	Problem
	Solution
	How It Works

	15-5. Sharing Audit Fields Across Multiple Entities
	Problem
	Solution
	How It Works

	15-6. Modeling a Many-to-Many Relationship with Payload
	Problem
	Solution
	How It Works

	15-7. Mapping a Foreign Key Column to Multiple Associations
	Problem
	Solution
	How It Works

	15-8. Using Inheritance to Map a Foreign Key Column to Multiple Associations
	Problem
	Solution
	How It Works

	15-9. Creating Read-only and Computed Properties
	Problem
	Solution
	How It Works

	15-10. Mapping an Entity to Multiple Tables
	Problem
	Solution
	How It Works

	15-11. Mapping an Entity to Multiple Entity Sets (MEST)
	Problem
	Solution
	How It Works

	15-12. Extending Table per Type with Table per Hierarchy
	Problem
	Solution
	How It Works

	Index
	A
	B
	C
	D
	E
	F
	H
	I G
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W
	X
	V

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 729.000]
>> setpagedevice

