
x

Intro
Your brain on Design Patterns. Here you are trying to learn something, while

here your brain is doing you a favor by making sure the learning doesn’t stick. Your brain’s

thinking, “Better leave room for more important things, like which wild animals to avoid and

whether naked snowboarding is a bad idea.” So how do you trick your brain into thinking

that your life depends on knowing Design Patterns?

Who is this book for? xxvi

We know what your brain is thinking xxvii

Metacognition xxix

Bend your brain into submission xxxi

Technical reviewers xxxiv

Acknowledgements xxxv

Table of Contents (summary)
 Intro xxv

1 Welcome to Design Patterns: an introduction 1

2 Keeping your Objects in the know: the Observer Pattern 37

3 Decorating Objects: the Decorator Pattern 79

4 Baking with OO goodness: the Factory Pattern 109

5 One of a Kind Objects: the Singleton Pattern 169

6 Encapsulating Invocation: the Command Pattern 191

7 Being Adaptive: the Adapter and Facade Patterns 235

8 Encapsulating Algorithms: theTemplate Method Pattern 275

9 Well-managed Collections: the Iterator and Composite Patterns 315

10 The State of Things: the State Pattern 385

11 Controlling Object Access: the Proxy Pattern 429

12 Patterns of Patterns: Compound Patterns 499

13 Patterns in the Real World: Better Living with Patterns 577

14 Appendix: Leftover Patterns 611

Table of Contents (the real thing)

table of contents

xi

1 Welcome to Design Patterns

Someone has already solved your problems. In this chapter,

you’ll learn why (and how) you can exploit the wisdom and lessons learned by

other developers who’ve been down the same design problem road and survived

the trip. Before we’re done, we’ll look at the use and benefits of design patterns,

look at some key OO design principles, and walk through an example of how one

pattern works. The best way to use patterns is to load your brain with them and

then recognize places in your designs and existing applications where you can

apply them. Instead of code reuse, with patterns you get experience reuse.

intro to Design Patterns

Your BRAIN

Your Code, now new
and improved with
design patterns!

A
Bu

nc
h o

f
Pa

tt
er

ns swim()

display()

performQuack()

performFly()

setFlyBehavior()

setQuackBehavior()

// OTHER duck-like methods...

Duck

FlyBehavior flyBehavior;

QuackBehavior quackBehavior;

<<interface>>

FlyBehav
ior

fly()

fly() {

 // implements duck flying

}

FlyWithWings
fly() {

 // do nothing - can’t fly!

}

FlyNoWay

<<interface>>

QuackBe
havior

quack()

quack) {

 // implements duck quacking

}

Quack
quack() {

 // rubber duckie squeak

}

Squeak
quack() {

 // do nothing - can’t quack!

}

MuteQuack

display() {

// looks like a decoy duck }

Decoy Duck

display() {

// looks like a mallard }

Mallard Duck
display() {

// looks like a redhead }

Redhead Duck
display() {

// looks like a rubberduck }

Rubber Duck

Encapsulated fly behavior

Encapsulated quack behavior
Client

View

Controller

Model

Reque
st

MVC

Subject Object

8

int
 Dog Objec

t

Mouse Objec
t

 Cat Object Duck Objec
t

Observers

8
8
8

8

Automatic update/notification

Object that
holds state

De
pe

nd
en

t
Ob

jec
ts

OBSERVER

Remember, knowing
concepts like abstraction,

inheritance, and polymorphism do
not make you a good object oriented

designer. A design guru thinks
about how to create flexible
designs that are maintainable

and that can cope with
change.

The SimUDuck app 2

Joe thinks about inheritance... 5

How about an interface? 6

The one constant in software development 8

Separating what changes from what stays the same 10

Designing the Duck Behaviors 11

Testing the Duck code 18

Setting behavior dynamically 20

The Big Picture on encapsulated behaviors 22

HAS-A can be better than IS-A 23

The Strategy Pattern 24

The power of a shared pattern vocabulary 28

How do I use Design Patterns? 29

Tools for your Design Toolbox 32

Exercise Solutions 34

xii

The Weather Monitoring application 39

Meet the Observer Pattern 44

Publishers + Subscribers = Observer Pattern 45

Five minute drama: a subject for observation 48

The Observer Pattern defined 51

The power of Loose Coupling 53

Designing the Weather Station 56

Implementing the Weather Station 57

Using Java’s built-in Observer Pattern 64

The dark side of java.util.Observable 71

Tools for your Design Toolbox 74

Exercise Solutions 78

2 Keeping your Objects in the Know

Don’t miss out when something interesting happens!
We’ve got a pattern that keeps your objects in the know when something they

might care about happens. Objects can even decide at runtime whether they

want to be kept informed. The Observer Pattern is one of the most heavily used

patterns in the JDK, and it’s incredibly useful. Before we’re done, we’ll also look

at one to many relationships and loose coupling (yeah, that’s right, we said

coupling). With Observer, you’ll be the life of the Patterns Party.

the Observer Pattern

Subject Object

8

int
 Dog Objec

t

Mouse Objec
t

 Cat Object Duck Objec
t

Observers

8
8
8

8

ONE TO MANY RELATIONSHIP

Automatic update/notification

Object that
holds state

De
pe

nd
en

t
Ob

jec
ts

Abstraction

Encapsulation

Polymorphism

Inheritence

OO Basics

Encapsulate what varies

Favor Composition over i
nheri-

tance

Program to Interface
s, not

implementations

Strive for loo
sely coupled

designs between objects th
at

interact

OO Principles

table of contents

xiii

3 Decorating Objects

Just call this chapter “Design Eye for the Inheritance
Guy.” We’ll re-examine the typical overuse of inheritance and you’ll learn how

to decorate your classes at runtime using a form of object composition. Why?

Once you know the techniques of decorating, you’ll be able to give your (or

someone else’s) objects new responsibilities without making any code changes

to the underlying classes.

the Decorator Pattern

I used to think real men
subclassed everything. That was until
I learned the power of extension
at runtime, rather than at compile

time. Now look at me!

Welcome to Starbuzz Coffee 80

The Open-Closed Principle 86

Meet the Decorator Pattern 88

Constructing a Drink Order with Decorators 89

The Decorator Pattern Defined 91

Decorating our Beverages 92

Writing the Starbuzz code 95

Real World Decorators: Java I/O 100

Writing your own Java I/O Decorator 102

Tools for your Design Toolbox 105

Exercise Solutions 106

xiv

4 Baking with OO Goodness

Get ready to cook some loosely coupled OO designs.
There is more to making objects than just using the new operator. You’ll learn

that instantiation is an activity that shouldn’t always be done in public and can

often lead to coupling problems. And you don’t want that, do you? Find out how

Factory Patterns can help save you from embarrasing dependencies.

the Factory Pattern

<<interface>>
Clams

<<interface>>
Cheese

<<interface>>
Sauce

<<interface>>
Dough

createPizza()

NYPizzaStore

ThinCrustDough

MarinaraSauce

ReggianoCheese

FrozenClams

ThickCrustDough

PlumTomatoSauce

Mozzarella Cheese

FreshClams

Each factory produces a different
implementation for the family of products.

The abstract PizzaIngredientFactory
is the interface that defines how to
make a family of related products

- everything we need to make a pizza.

The clients of the Abstract
Factory are the two
instances of our PizzaStore,
NYPizzaStore and
ChicagoStylePizzaSore.

The job of the concrete
pizza factories is to
make pizza ingredients.
Each factory knows
how to create the right
objects for their region.

createDough()

createSauce()

createCheese()

createVeggies()

createPepperoni()

createClam()

<<interface>>
PizzaIngredientFactory

createDough()

createSauce()

createCheese()

createVeggies()

createPepperoni()

createClam()

NYPizzaIngredientFactory

createDough()

createSauce()

createCheese()

createVeggies()

createPepperoni()

createClam()

ChicagoPizzaIngredientFactory

table of contents

When you see “new”, think “concrete” 110

Objectville Pizza 112

Encapsulating object creation 114

Building a simple pizza factory 115

The Simple Factory defined 117

A Framework for the pizza store 120

Allowing the subclasses to decide 121

Let’s make a PizzaStore 123

Declaring a factory method 125

Meet the Factory Method Pattern 131

Parallel class hierarchies 132

Factory Method Pattern defined 134

A very dependent PizzaStore 137

Looking at object dependencies 138

The Dependency Inversion Principle 139

Meanwhile, back at the PizzaStore... 144

Families of ingredients... 145

Building our ingredient factories 146

Looking at the Abstract Factory 153

Behind the scenes 154

Abstract Factory Pattern defined 156

Factory Method and Abstract Factory compared 160

Tools for your Design Toolbox 162

Exercise Solutions 164

xv

5 One of a Kind Objects

The Singleton Pattern: your ticket to creating one-of-a-
kind objects, for which there is only one instance. You

might be happy to know that of all patterns, the Singleton is the simplest in terms

of its class diagram; in fact the diagram holds just a single class! But don’t get

too comfortable; despite its simplicity from a class design perspective, we’ll

encounter quite a few bumps and potholes in its implementation. So buckle

up—this one’s not as simple as it seems...

the Singleton Pattern

Strategy - defines a fam
ily of algorith

ms,

encapsulates e
ach one, and m

akes them inter-

changeable. S
trategy lets t

he algorithm vary

independently
from clients that

use it.

OO Patterns
Observer - defines a one

-to-many

dependency be
tween objects so

 that

when one object
 changes state

, all its

dependents ar
e notified and

 updated

automatically

Decorator - Attach additio
nal

responsibilities
 to an object

dynami-

cally. Decorators pro
vide a flexible

alternative to
 subclassing fo

r extending

functionality.

Abstract Factory - Provide an

interface for
 creating fam

ilies of

related or de
pedent object

s without

specifying the
ir concrete cl

asses.
Factory Method - Define an

interface for
 creating an o

bject, but

let subclasses
decide which class to i

n-

stantiate. Factory Method lets a c
lass

defer instant
iation to the

subclasses.
Singleton - Ensure a class o

nly has

one instance a
nd provide a g

lobal point

of access to i
t.

One and only one object 170

The Little Singleton 171

Dissecting the classic Singleton Pattern 173

Confessions of a Singleton 174

The Chocolate Factory 175

Singleton Pattern defined 177

Houston, we have a problem... 178

BE the JVM 179

Dealing with multithreading 180

Singleton Q&A 184

Tools for your Design Toolbox 186

Exercise Solutions 188

Hershey, PA

xvi

6 Encapsulating Invocation

In this chapter we take encapsulation to a whole new
level: we’re going to encapsulate method invocation.
That’s right, by encapsulating invocation we can crystallize pieces of computation

so that the object invoking the computation doesn’t need to worry about how to do

things; it just uses our crystallized method to get it done. We can also do some

wickedly smart things with these encapsulated method invocations, like save

them away for logging or reuse them to implement undo in our code.

the Command Pattern

I’ll have a Burger
with Cheese and a Malt
Shake

Burger w
ith Cheese

 Malt Shak
e

createOrder()

takeOrder()

Burger w
ith Cheese

 Malt Shak
e

ord
erU

p()

makeBurger(), makeShake()

outp
ut

The Order consists of an
 order

slip and the custom
er’s menu

items that are written on it.

The customer knows
what he wants and
creates an order.

The Waitress takes the Order, and when she gets around to it, she calls its orderUp() method to begin the Order’s preparation.

The Order has
 all

the inst
ructions

needed t
o prepar

e

the meal. The

Order dir
ects the

Short O
rder Cook

with methods l
ike

makeBurger().

The Short Order Cook follows the instructions of the Order and produces the meal.

Start H
ere

table of contents

Home Automation or Bust 192

The Remote Control 193

Taking a look at the vendor classes 194

Meanwhile, back at the Diner... 197

Let’s study the Diner interaction 198

The Objectville Diner Roles and Responsibilities 199

From the Diner to the Command Pattern 201

Our first command object 203

The Command Pattern defined 206

The Command Pattern and the Remote Control 208

Implementing the Remote Control 210

Putting the Remote Control through its paces 212

Time to write that documentation 215

Using state to implement Undo 220

Every remote needs a Party Mode! 224

Using a Macro Command 225

More uses of the Command Pattern: Queuing requests 228

More uses of the Command Pattern: Logging requests 229

Tools for your Design Toolbox 230

Exercise Solutions 232

xvii

Home Automation or Bust 192

The Remote Control 193

Taking a look at the vendor classes 194

Meanwhile, back at the Diner... 197

Let’s study the Diner interaction 198

The Objectville Diner Roles and Responsibilities 199

From the Diner to the Command Pattern 201

Our first command object 203

The Command Pattern defined 206

The Command Pattern and the Remote Control 208

Implementing the Remote Control 210

Putting the Remote Control through its paces 212

Time to write that documentation 215

Using state to implement Undo 220

Every remote needs a Party Mode! 224

Using a Macro Command 225

More uses of the Command Pattern: Queuing requests 228

More uses of the Command Pattern: Logging requests 229

Tools for your Design Toolbox 230

Exercise Solutions 232

7 Being Adaptive

In this chapter we’re going to attempt such impossible
feats as putting a square peg in a round hole. Sound impossible?

Not when we have Design Patterns. Remember the Decorator Pattern? We

wrapped objects to give them new responsibilities. Now we’re going to wrap some

objects with a different purpose: to make their interfaces look like something they’re

not. Why would we do that? So we can adapt a design expecting one interface to a

class that implements a different interface. That’s not all, while we’re at it we’re going

to look at another pattern that wraps objects to simplify their interface.

the Adapter and Facade Patterns

Adaptee

Client

Adapter

request() tra
nslatedRequest()

The Client is implemented

against the target interface

The Adapter implements the

target interface and holds an

instance of the Adaptee

target interface

adaptee
interface

Turkey was the
adaptee interface

European Wall Outlet

AC Power Adapter

Standard AC Plug

Adapters all around us 236

Object Oriented Adapters 237

The Adapter Pattern explained 241

Adapter Pattern defined 243

Object and Class Adapters 244

Tonight’s talk: The Object Adapter and Class Adapter 247

Real World Adapters 248

Adapting an Enumeration to an Iterator 249

Tonight’s talk: The Decorator Pattern and the Adapter Pattern 252

Home Sweet Home Theater 255

Lights, Camera, Facade! 258

Constructing your Home Theater Facade 261

Facade Pattern defined 264

The Principle of Least Knowledge 265

Tools for your Design Toolbox 270

Exercise Solutions 272

xviii

8 Encapsulating Algorithms

We’ve encapsulated object creation, method invocation,
complex interfaces, ducks, pizzas... what could be next?
We’re going to get down to encapsulating pieces of algorithms so that subclasses can

hook themselves right into a computation anytime they want. We’re even going to

learn about a design principle inspired by Hollywood.

the Template Method Pattern

table of contents

1 Boil some water

2

3

4

Steep the teabag in the water

Pour tea in a cup

Add lemon

1 Boil some water
2

3

4

Brew the coffee grinds
Pour coffee in a cup

Add sugar and milk

2

4

Steep the teabag in the water

Add lemon

Tea subclass Coffee subclass

2

4

Brew the coffee grinds

Add sugar and milk

1 Boil some water

2

3

4

Brew

Pour beverage in a cup

Add condiments

Caffeine Beverage

Tea Coffee

Caffeine Beverage knows

and controls the step
s of

the recipe, and perfo
rms

steps 1 and 3 itself,
but

relies on Tea or Coffee

to do steps 2 and 4.

We’ve recognized
that the two recipes
are essentially the

same, although
some of the steps
require different

implementations. So
we’ve generalized the
recipe and placed it in

the base class.

generalize

relies on

subclass for

some steps

generalize

relies on

subclass for

some steps

Whipping up some coffee and tea classes 277

Abstracting Coffee and Tea 280

Taking the design further 281

Abstracting prepareRecipe() 282

What have we done? 285

Meet the Template Method 286

Let’s make some tea 287

What did the Template Method get us? 288

Template Method Pattern defined 289

Code up close 290

Hooked on Template Method... 292

Using the hook 293

Coffee? Tea? Nah, let’s run the TestDrive 294

The Hollywood Principle 296

The Hollywood Principle and the Template Method 297

Template Methods in the Wild 299

Sorting with Template Method 300

We’ve got some ducks to sort 301

Comparing ducks and ducks 302

The making of the sorting duck machine 304

Swingin’ with Frames 306

Applets 307

Tonight’s talk: Template Method and Strategy 308

Tools for your Design Toolbox 311

Exercise Solutions 312

xix

Whipping up some coffee and tea classes 277

Abstracting Coffee and Tea 280

Taking the design further 281

Abstracting prepareRecipe() 282

What have we done? 285

Meet the Template Method 286

Let’s make some tea 287

What did the Template Method get us? 288

Template Method Pattern defined 289

Code up close 290

Hooked on Template Method... 292

Using the hook 293

Coffee? Tea? Nah, let’s run the TestDrive 294

The Hollywood Principle 296

The Hollywood Principle and the Template Method 297

Template Methods in the Wild 299

Sorting with Template Method 300

We’ve got some ducks to sort 301

Comparing ducks and ducks 302

The making of the sorting duck machine 304

Swingin’ with Frames 306

Applets 307

Tonight’s talk: Template Method and Strategy 308

Tools for your Design Toolbox 311

Exercise Solutions 312

9 Well-Managed Collections

There are lots of ways to stuff objects into a collection.
Put them in an Array, a Stack, a List, a Map, take your pick. Each has its own

advantages and tradeoffs. But when your client wants to iterate over your objects,

are you going to show him your implementation? We certainly hope not! That just

wouldn’t be professional. Don’t worry—in this chapter you’ll see how you can let

your clients iterate through your objects without ever seeing how you store your

objects. You’re also going to learn how to create some super collections of objects

that can leap over some impressive data structures in a single bound. You’re also

going to learn a thing or two about object responsibility.

the Iterator and Composite Patterns

PancakeHouseM
en

u

 DinerMenu
 CafeMenu

1 2 3

 MenuItem
 MenuItem

 MenuItem
 MenuItem

1 2 3 4

Pancake Menu

 MenuItem

 MenuItem

 MenuItem

 MenuItem

Café Menu

 key

 key

 key

 key

 MenuItem

 MenuItem

 MenuItem

 MenuItem

1

2

3

4

Diner Menu

All Menus

 MenuItem

 MenuItem

 MenuItem

 MenuItem

1

2

3

4

Dessert Menu

Array

ArrayList

Objectville Diner and Pancake House merge 316

Comparing Menu implementations 318

Can we encapsulate the iteration? 323

Meet the Iterator Pattern 325

Adding an Iterator to DinerMenu 326

Looking at the design 331

Cleaning things up with java.util.Iterator 333

What does this get us? 335

Iterator Pattern defined 336

Single Responsibility 339

Iterators and Collections 348

Iterators and Collections in Java 5 349

Just when we thought it was safe... 353

The Composite Pattern defined 356

Designing Menus with Composite 359

Implementing the Composite Menu 362

Flashback to Iterator 368

The Null Iterator 372

The magic of Iterator & Composite together... 374

Tools for your Design Toolbox 380

Exercise Solutions 381

xx

10 The State of Things

A little known fact: the Strategy and State Patterns were
twins separated at birth. As you know, the Strategy Pattern went on

to create a wildly successful business around interchangeable algorithms. State,

however, took the perhaps more noble path of helping objects learn to control their

behavior by changing their internal state. He’s often overheard telling his object

clients, “just repeat after me, I’m good enough, I’m smart enough, and doggonit...”

the State Pattern

Mighty Gumball, Inc.
Where the Gumball Machine

is Never Half Empty

Here’s the way we think the gumball machine controller needs to

work. We’re hoping you can implement this in Java for us! We

may be adding more behavior in the future, so you nee
d to keep

the design as flexible and maintainable as possible!

 - Mighty Gumball Engineers

Out of
Gumballs

 Has
Quarter

 No

Quarter

Gumball

 Sold

ins
er

ts
qu

ar
te

r

eje
ct

s q
ua

rt
er

turns crank

dispense
gumball

gumballs = 0

gumballs > 0

table of contents

How do we implement state? 387

State Machines 101 388

A first attempt at a state machine 390

You knew it was coming... a change request! 394

The messy STATE of things... 396

Defining the State interfaces and classes 399

Implementing our State Classes 401

Reworking the Gumball Machine 402

The State Pattern defined 410

State versus Strategy 411

State sanity check 417

We almost forgot! 420

Tools for your Design Toolbox 423

Exercise Solutions 424

xxi

11 Controlling Object Access

Ever play good cop, bad cop? You’re the good cop and you provide

all your services in a nice and friendly manner, but you don’t want everyone

asking you for services, so you have the bad cop control access to you. That’s

what proxies do: control and manage access. As you’re going to see there are

lots of ways in which proxies stand in for the objects they proxy. Proxies have

been known to haul entire method calls over the Internet for their proxied objects;

they’ve also been known to patiently stand in the place for some pretty lazy

objects.

the Proxy Pattern

Not

Hot

<<interface>>
Subject

request()

RealSubject
request()

Proxy

request()

<<interface>>
InvocationHandler

invoke()

InvocationHandler

The proxy now consists

of two classes.

invoke()

Monitoring the gumball machines 430

The role of the ‘remote proxy’ 434

RMI detour 437

GumballMachine remote proxy 450

Remote proxy behind the scenes 458

The Proxy Pattern defined 460

Get Ready for virtual proxy 462

Designing the CD cover virtual proxy 464

Virtual proxy behind the scenes 470

Using the Java API’s proxy 474

Five minute drama: protecting subjects 478

Creating a dynamic proxy 479

The Proxy Zoo 488

Tools for your Design Toolbox 491

Exercise Solutions 492

xxii

12 Patterns of Patterns

Who would have ever guessed that Patterns could work
together? You’ve already witnessed the acrimonious Fireside Chats (and be

thankful you didn’t have to see the Pattern Death Match pages that the publisher

forced us to remove from the book so we could avoid having to use a Parent’s

Advisory warning label), so who would have thought patterns can actually get along

well together? Believe it or not, some of the most powerful OO designs use several

patterns together. Get ready to take your pattern skills to the next level; it’s time for

Compound Patterns. Just be careful—your co-workers might kill you if you’re struck

with Pattern Fever.

Compound Patterns

Beat
Model

Controller

setBPM()

getBPM()

on()

off()

You click on
the increase
beat button.

The controller asks
the model to update
its BPM by one.

View is notified that the BPM
changed. It calls getBPM() on
the model state.

Because the BPM is 120, the view gets a beat notification every 1/2 second.

The beat is set at 119 BPM and you
would like to increase it to 120.

Which results in the
controller being invoked.

The view is updated
to 120 BPM.

You see the beatbar
pulse every 1/2 second.

View

View

table of contents

Compound Patterns 500

Duck reunion 501

Adding an adapter 504

Adding a decorator 506

Adding a factory 508

Adding a composite, and iterator 513

Adding an observer 516

Patterns summary 523

A duck’s eye view: the class diagram 524

Model-View-Controller, the song 526

Design Patterns are your key to the MVC 528

Looking at MVC through patterns-colored glasses 532

Using MVC to control the beat... 534

The Model 537

The View 539

The Controller 542

Exploring strategy 545

Adapting the model 546

Now we’re ready for a HeartController 547

MVC and the Web 549

Design Patterns and Model 2 557

Tools for your Design Toolbox 560

Exercise Solutions 561

xxiii

13 Patterns in the Real World

Ahhhh, now you’re ready for a bright new world filled with
Design Patterns. But, before you go opening all those new doors of opportunity

we need to cover a few details that you’ll encounter out in the real world—things get a

little more complex out there than they are here in Objectville. Come along, we’ve got

a nice guide to help you through the transition...

Better Living with Patterns

Erich Gamma

John Vlissides

Richard
 Helm

Ralph
Johnson

Your Objectville guide 578

Design Pattern defined 579

Looking more closely at the Design Pattern definition 581

May the force be with you 582

Pattern catalogs 583

How to create patterns 586

So you wanna be a Design Patterns writer? 587

Organizing Design Patterns 589

Thinking in patterns 594

Your mind on patterns 597

Don’t forget the power of the shared vocabulary 599

Top five ways to share your vocabulary 600

Cruisin’ Objectville with the Gang of Four 601

Your journey has just begun... 602

Other Design Pattern resources 603

The Patterns Zoo 604

Annihilating evil with Anti-Patterns 606

Tools for your Design Toolbox 608

Leaving Objectville... 609

Gang of Four

The Objectville Guide to

 Better Living with Design Patterns

Please accept our handy guide of tips & tricks for living with patterns in the real

world. In this guide you will:

b Learn the all too common misconceptions about the definition of a

“Design Pattern.”

b Discover those nifty Design Pattern Catalogs and why you just have to

get one.

b Avoid the embarrassment of using a Design Pattern at the wrong time.

b Learn how to keep patterns in classifications where they belong.

b See that discovering patterns isn’t just for the gurus; read our quick

HowTo and become a patterns writer too.

b Be there when the true identify of the mysterious Gang of Four is revealed.

b Keep up with the neighbors – the coffee table books any patterns user

must own.

b Learn to train your Design Patterns mind like a Zen master.

b Win friends and influence developers by improving your patterns

vocabulary.

xxiv

14Appendix: Leftover Patterns

Not everyone can be the most popular. A lot has changed in

the last 10 years. Since Design Patterns: Elements of Reusable Object-Oriented

Software first came out, developers have applied these patterns thousands of times.

The patterns we summarize in this appendix are full-fledged, card-carrying, official

GoF patterns, but aren’t always used as often as the patterns we’ve explored so

far. But these patterns are awesome in their own right, and if your situation calls for

them, you should apply them with your head held high. Our goal in this appendix is

to give you a high level idea of what these patterns are all about.

i Index 631

MenuItem

Menu

Ingredient

MenuItem

Ingredient

Visitor

 Client /
Traverser

getState()
getState()

getState()
getState()

getState()

getHealth
Ratin

g()

getCalorie
s()

getProtein()

getCarbs()

All these composite
classes have to do is add
a getState() method
(and not worry about
exposing themselves :).

The Client asks the
Visitor to get in-
formation from the
Composite structure...
New methods can be
added to the Visitor
without affecting the
Composite.

The Visitor needs to be able to call
getState() across classes, and this

is
where you can add new methods for
the client to use.

The Traverser knows how to
guide the Visitor through
the Composite structure.

Bridge 612

Builder 614

Chain of Responsibility 616

Flyweight 618

Interpreter 620

Mediator 622

Memento 624

Prototype 626

Visitor 628

table of contents

this is a new chapter 79

Just call this chapter “Design Eye for the Inheritance Guy.”
We’ll re-examine the typical overuse of inheritance and you’ll learn how to decorate

your classes at runtime using a form of object composition. Why? Once you know the

techniques of decorating, you’ll be able to give your (or someone else’s) objects new

responsibilities without making any code changes to the underlying classes.

Decorating Objects

3 the DecoratorPattern

I used to think real men
subclassed everything. That was

until I learned the power of
extension at runtime, rather than
at compile time. Now look at me!

g

h
g

80 Chapter 3

Starbuzz Coffee has made a name for itself as the
fastest growing coffee shop around. If you’ve seen one
on your local corner, look across the street; you’ll see
another one.

Because they’ve grown so quickly, they’re scrambling
to update their ordering systems to match their
beverage offerings.

When they first went into business they designed their
classes like this...

Welcome to Starbuzz Coffee

Beverage is an abstract cl
ass,

subclassed by all beverag
es

offered in the coffee s
hop.

Each subclass implements cost() to return the cost of the beverage.

cost()

Espresso

cost()

Decaf

cost()

DarkRoast

cost()

HouseBlend

Beverage

description

getDescription()
cost()

// Other useful methods...

The description instance variable
is set in each subclass and holds a
description of the beverage, like
“Most Excellent Dark Roast”.

The getDescription() method
returns the description.

The cost() method is
abstract; subclassses
need to define their
own implementation.

the starbuzz story

the decorator pattern

you are here 4 81

Beverage

description

getDescription()
cost()

// Other useful methods...

In addition to your coffee, you can also ask for several condiments like
steamed milk, soy, and mocha (otherwise known as chocolate), and have
it all topped off with whipped milk. Starbuzz charges a bit for each of
these, so they really need to get them built into their order system.

 Here’s their first attempt...

cost()

HouseBlendWithSteamedMilk
andCaramel

cost()

HouseBlendWithMocha

cost()

HouseBlendWithWhipandMocha

cost()

HouseBlendWithSteamedMilk
andSoy

cost()

HouseBlendWithSteamedMilk

cost()

HouseBlendWithSteamedMilk
andMocha

cost()

HouseBlendWithSoy

cost()

HouseBlendWithWhip

cost()

HouseBlendWithSteamedMilk
andWhip

cost()

HouseBlendWithSoyandMocha

cost()

HouseBlendWithWhipandSoy

cost()

DarkRoastWithSteamedMilk
andCaramel

cost()

DarkRoastWithMochacost()

DarkRoastWithWhipandMocha

cost()

DarkRoastWithSteamedMilk
andSoy

cost()

DarkRoastWithSteamedMilk

cost()

DarkRoastWithSteamedMilk
andMocha

cost()

DarkRoastWithSoy

cost()

DarkRoastWithWhip

cost()

DarkRoastWithSteamedMilk
andWhip

cost()

DarkRoastWithSoyandMocha

cost()

DarkRoastWithWhipandSoy

cost()

DecafWithSteamedMilk
andCaramel

cost()

DecafWithMochacost()

DecafWithWhipandMocha

cost()

DecafWithSteamedMilk
andSoy

cost()

DecafWithSteamedMilk

cost()

DecafWithSteamedMilk
andMocha

cost()

DecafWithSoy

cost()

DecafWithWhip

cost()

DecafWithSteamedMilk
andWhip

cost()

DecafWithSoyandMocha

cost()

DecafWithWhipandSoy

cost()

DarkRoastWithSoy

cost()

EspressoWithSteamedMilk
andCaramel

cost()

EspressoWithMocha
cost()

EspressoWithWhipandMocha

cost()

EspressoWithSteamedMilk
andSoy

cost()

EspressoWithSteamedMilk

cost()

EspressoWithSteamedMilk
andMocha

cost()

DecafWithSoy

cost()

EspressoWhip

cost()

EspressoWithSteamedMilk
andWhip

cost()

DecafWithSoyandMocha

cost()

EspressoWithWhipandSoy

Each cost method computes the

cost of the coffee along w
ith the

other condiments in the order.

Whoa!
Can you say

“class explosion?”

82 Chapter 3

Well, let’s give it a try. Let’s start with the Beverage base
class and add instance variables to represent whether or
not each beverage has milk, soy, mocha and whip...

It’s pretty obvious that Starbuzz has created a maintenance nightmare for
themselves. What happens when the price of milk goes up? What do they do
when they add a new caramel topping?

Thinking beyond the maintenance problem, which of the design principles that
we’ve covered so far are they violating?

brain
powerA

Hint: they’re violating two of them in a big way!

This is stupid; why do we need
all these classes? Can’t we just use
instance variables and inheritance in

the superclass to keep track of the
condiments?

Beverage

description
milk
soy
mocha
whip

getDescription()
cost()

hasMilk()
setMilk()
hasSoy()
setSoy()
hasMocha()
setMocha()
hasWhip()
setWhip()

// Other useful methods..

These get and set the boo
lean

values for the condiments.

New boolean values for
each condiment.

Now we’ll implement cost() in Beverage (instead of
keeping it abstract), so that it can calculate the
costs associated with the condiments for a particular
beverage instance. Subclasses will still override
cost(), but they will also invoke the super version so
that they can calculate the total cost of the basic
beverage plus the costs of the added condiments.

violating design principles

the decorator pattern

you are here 4 83

cost()

Espresso

cost()

Decaf

cost()

DarkRoast

cost()

HouseBlend

Now let’s add in the subclasses, one
for each beverage on the menu:

Write the cost() methods for the following classes (pseudo-Java is okay):

Each cost() method needs to compute

the cost of the beverag
e and then

add in the condiments by calling the

superclass implementation of cost().

public class Beverage {
 public double cost() {

 }
}

public class DarkRoast extends Beverage {

 public DarkRoast() {
 description = “Most Excellent Dark Roast”;
 }

 public double cost() {

 }
}

Beverage

description
milk
soy
mocha
whip

getDescription()
cost()

hasMilk()
setMilk()
hasSoy()
setSoy()
hasMocha()
setMocha()
hasWhip()
setWhip()

// Other useful methods..

The superclass cost() will calculate the

costs for all of the cond
iments, while

the overridden cost() in
the subclasses

will extend that function
ality to

include costs for that sp
ecific

beverage type.

Sharpen your pencil

84 Chapter 3

See, five
classes total. This is
definitely the way to go.

I’m not so sure; I can
see some potential problems

with this approach by thinking
about how the design might need
to change in the future.

What requirements or other factors might change that will impact this design?

Price changes for condiments will force us to alter existing code.

New condiments will force us to add new methods and alter the cost method in the superclass.

We may have new beverages. For some of these beverages (iced tea?), the condiments
may not be appropriate, yet the Tea subclass will still inherit methods like hasWhip().

What if a customer wants a double mocha?

Sharpen your pencil

Your turn:

As we saw
 in

Chapte
r 1, t

his is

a ver
y bad

 idea!

impact of change

the decorator pattern

you are here 4 85

Master and Student...

Master: Grasshopper, it has been some time since our last
meeting. Have you been deep in meditation on inheritance?

Student: Yes, Master. While inheritance is powerful, I have
learned that it doesn’t always lead to the most flexible or

maintainable designs.

Master: Ah yes, you have made some progress. So, tell me my student, how
then will you achieve reuse if not through inheritance?

Student: Master, I have learned there are ways of “inheriting” behavior at
runtime through composition and delegation.

Master: Please, go on...

Student: When I inherit behavior by subclassing, that behavior is set statically
at compile time. In addition, all subclasses must inherit the same behavior. If
however, I can extend an object’s behavior through composition, then I can do
this dynamically at runtime.

Master: Very good, Grasshopper, you are beginning to see the power of
composition.

Student: Yes, it is possible for me to add multiple new responsibilities to objects
through this technique, including responsibilities that were not even thought of
by the designer of the superclass. And, I don’t have to touch their code!

Master: What have you learned about the effect of composition on maintaining
your code?

Student: Well, that is what I was getting at. By dynamically composing objects,
I can add new functionality by writing new code rather than altering existing
code. Because I’m not changing existing code, the chances of introducing bugs
or causing unintended side effects in pre-existing code are much reduced.

Master: Very good. Enough for today, Grasshopper. I would like for you to
go and meditate further on this topic... Remember, code should be closed (to
change) like the lotus flower in the evening, yet open (to extension) like the
lotus flower in the morning.

Administrator
反白

Administrator
反白

86 Chapter 3

The Open-Closed Principle

Design Principle

Classes should be open
for extension, but closed for

modification.

Come on in; we’re
open. Feel free to extend

our classes with any new behavior you
like. If your needs or requirements change (and we
know they will), just go ahead and make your own
extensions.

Sorry, we’re closed.
That’s right, we spent
a lot of time getting this code correct and
bug free, so we can’t let you alter the existing code.
It must remain closed to modification. If you don’t
like it, you can speak to the manager.

Grasshopper is on to one of the most important design principles:

Our goal is to allow classes to be easily extended to
incorporate new behavior without modifying existing code.
What do we get if we accomplish this? Designs that are
resilient to change and flexible enough to take on new
functionality to meet changing requirements.

the open-closed principle

the decorator pattern

you are here 4 87

Q: Open for extension and closed
for modification? That sounds very
contradictory. How can a design be
both?

A: That’s a very good question. It
certainly sounds contradictory at first.
After all, the less modifiable something
is, the harder it is to extend, right?

As it turns out, though, there are some
clever OO techniques for allowing
systems to be extended, even if we can’t
change the underlying code. Think
about the Observer Pattern (in Chapter
2)... by adding new Observers, we can
extend the Subject at any time, without
adding code to the Subject. You’ll see
quite a few more ways of extending
behavior with other OO design
techniques.

Q: Okay, I understand Observable,
but how do I generally design
something to be extensible, yet closed
for modification?

A: Many of the patterns give us
time tested designs that protect your
code from being modified by supplying
a means of extension. In this chapter
you’ll see a good example of using the
Decorator pattern to follow the Open-
Closed principle.

Q: How can I make every part of
my design follow the Open-Closed
Principle?

A: Usually, you can’t. Making OO
design flexible and open to extension
without the modification of existing
code takes time and effort. In general,
we don’t have the luxury of tying
down every part of our designs (and it
would probably be wastefu). Following
the Open-Closed Principle usually
introduces new levels of abstraction,
which adds complexity to our code.
You want to concentrate on those areas
that are most likely to change in your
designs and apply the principles there.

Q: How do I know which areas of
change are more important?

A: That is partly a matter of
experience in designing OO systems and
also a matter of the knowing the domain
you are working in. Looking at other
examples will help you learn to identify
areas of change in your own designs.

While it may seem like a contradiction,
there are techniques for allowing code to be
extended without direct modif ication.

Be careful when choosing the areas of code
that need to be extended; applying the
Open-Closed Principle EVERYWHERE
is wasteful, unnecessary, and can lead to
complex, hard to understand code.

there are noDumb Questions

88 Chapter 3

Meet the Decorator Pattern

Okay, enough of the “Object
Oriented Design Club.” We have real
problems here! Remember us? Starbuzz
Coffee? Do you think you could use
some of those design principles to

actually help us?

Okay, we’ve seen that representing our beverage plus condiment pricing
scheme with inheritance has not worked out very well – we get class
explosions, rigid designs, or we add functionality to the base class that isn’t
appropriate for some of the subclasses.

So, here’s what we’ll do instead: we’ll start with a beverage and “decorate”
it with the condiments at runtime. For example, if the customer wants a
Dark Roast with Mocha and Whip, then we’ll:

1

2

Take a DarkRoast object

Decorate it with a Mocha object

3 Decorate it with a Whip object

4 Call the cost() method and rely on
delegation to add on the condiment costs

Okay, but how do you “decorate” an object, and how does delegation
come into this? A hint: think of decorator objects as “wrappers.” Let’s
see how this works...

meet the decorator pattern

the decorator pattern

you are here 4 89

Remember that D
arkRoast

inherits fro
m Beverage and

 has

a cost() method that
 computes

the cost of
 the drink.

 DarkRoast
cost()

 Mocha

cost()

 Whip

cost()

 Mocha

cost()

1

2

We start with our DarkRoast object.

The customer wants Mocha, so we create a Mocha
object and wrap it around the DarkRoast.

3 The customer also wants Whip, so we create a
Whip decorator and wrap Mocha with it.

The Mocha object is a dec
orator. Its

type mirrors the object it
 is decorating,

in this case, a Beverage. (By “mirror”,

we mean it is the same type..)

So, Mocha has a cost()
 method too,

and through polym
orphism we can treat

any Beverage wrapped in Mocha as

a Beverage, too (bec
ause Mocha is a

subtype of Beverage).

Whip is a decorator, so it also
mirrors DarkRoast’s type and
includes a cost() method.

Constructing a drink order with Decorators

So, a DarkRoast wrapped in Mocha and Whip is still
a Beverage and we can do anything with it we can do
with a DarkRoast, including call its cost() method.

 DarkRoast
cost()

 DarkRoast
cost()

90 Chapter 3

First, we call cost() on the

outmost decorator, Whip.

 Whip
 Mocha

 DarkRoast

Now it’s time to compute the cost for the customer. We do this
by calling cost() on the outermost decorator, Whip, and Whip is
going to delegate computing the cost to the objects it decorates.
Once it gets a cost, it will add on the cost of the Whip.

Whip calls cost() on Mocha.

Mocha adds its cost, 20

cents, to the result from

DarkRoast, and returns

the new total, $1.19.

4

.99.20.10$1.29

Whip adds its total, 10 cents,
to the result from Mocha, and
returns the final result—$1.29.

1

2

5

5

Okay, here’s what we know so far...

ß Decorators have the same supertype as the objects they decorate.

ß You can use one or more decorators to wrap an object.

ß Given that the decorator has the same supertype as the object it decorates, we can pass
around a decorated object in place of the original (wrapped) object.

ß The decorator adds its own behavior either before and/or after delegating to the object it
decorates to do the rest of the job.

ß Objects can be decorated at any time, so we can decorate objects dynamically at runtime
with as many decorators as we like.

Now let’s see how this all really works by looking at the
Decorator Pattern definition and writing some code.

3 Mocha calls cost() on
DarkRoast.

DarkRoast

returns its cost,

99 cents.

4

(You’ll see how in
a few pages.)

Key Point!

decorator characteristics

cost() cost()cost()

Administrator
反白

Administrator
反白

the decorator pattern

you are here 4 91

The Decorator Pattern attaches additional
responsibilities to an object dynamically.
Decorators provide a flexible alternative to
subclassing for extending functionality.

The Decorator Pattern defined

Decorators implement the

same interface or abstr
act

class as the component they

are going to decorat
e.

methodA()

methodB()

// other methods

ConcreteComponent

component
methodA()

methodB()

// other methods

Component

methodA()

methodB()

// other methods

Decorator

The ConcreteDecorator has an
instance variable for the thing
it decorates (the Component
the Decorator wraps).

Decorators can add new methods; however, new
behavior is typically added by doing computation
before or after an existing method in the component.

Each decorator HAS-A
(wraps) a component, which
means the decorator has an
instance variable that holds
a reference to a component.

The ConcreteComponent
is the object we’re going
to dynamically add new
behavior to. It extends
Component.

Let’s first take a look at the Decorator Pattern description:

While that describes the role of the Decorator Pattern, it doesn’t give us a lot
of insight into how we’d apply the pattern to our own implementation. Let’s
take a look at the class diagram, which is a little more revealing (on the next
page we’ll look at the same structure applied to the beverage problem).

Each component can be used on its
own, or wrapped by a decorator.

Decorators can extend the
state of the component.

ConcereteDecoratorB

methodA()

methodB()

// other methods

Component wrappedObj

Object newState

ConcereteDecoratorA

methodA()

methodB()

newBehavior()

// other methods

Component wrappedObj

Administrator
註解
Here

92 Chapter 3

Decorating our Beverages

Okay, let’s work our Starbuzz beverages into this framework...

getDescription()

CondimentDecorator

getDescription()

cost()

// other useful methods

Beverage

description

Beverage beverage

cost()

getDescription()

Milk

cost()

HouseBlend

component

cost()

DarkRoast

cost()

Decaf

cost()

Espresso

Beverage beverage

cost()

getDescription()

Soy
Beverage beverage

cost()

getDescription()

Mocha
Beverage beverage

cost()

getDescription()

Whip

The four c
oncrete

components,
one per

coffee t
ype.

And here are our condiment decorators; notice
they need to implement not only cost() but also
getDescription(). We’ll see why in a moment...

Beverage acts as our
abstract component class.

Before going further, think about how you’d implement the cost() method of
the coffees and the condiments. Also think about how you’d implement the
getDescription() method of the condiments.

brain
powerA

decorating beverages

the decorator pattern

you are here 4 93

Cubicle Conversation
Some confusion over Inheritance versus Composition

Mary

Sue: What do you mean?

Mary: Look at the class diagram. The CondimentDecorator is extending the Beverage class.
That’s inheritance, right?

Sue: True. I think the point is that it’s vital that the decorators have the same type as the
objects they are going to decorate. So here we’re using inheritance to achieve the type matching,
but we aren’t using inheritance to get behavior.

Mary: Okay, I can see how decorators need the same “interface” as the components they wrap
because they need to stand in place of the component. But where does the behavior come in?

Sue: When we compose a decorator with a component, we are adding new behavior. We
are acquiring new behavior not by inheriting it from a superclass, but by composing objects
together.

Mary: Okay, so we’re subclassing the abstract class Beverage in order to have the correct type,
not to inherit its behavior. The behavior comes in through the composition of decorators with
the base components as well as other decorators.

Sue: That’s right.

Mary: Ooooh, I see. And because we are using object composition, we get a whole lot more
flexibility about how to mix and match condiments and beverages. Very smooth.

Sue: Yes, if we rely on inheritance, then our behavior can only be determined statically at
compile time. In other words, we get only whatever behavior the superclass gives us or that we
override. With composition, we can mix and match decorators any way we like... at runtime.

Mary: And as I understand it, we can implement new decorators at any time to add new
behavior. If we relied on inheritance, we’d have to go in and change existing code any time we
wanted new behavior.

Sue: Exactly.

Mary: I just have one more question. If all we need to inherit is the type of the component,
how come we didn’t use an interface instead of an abstract class for the Beverage class?

Sue: Well, remember, when we got this code, Starbuzz already had an abstract Beverage class.
Traditionally the Decorator Pattern does specify an abstract component, but in Java, obviously,
we could use an interface. But we always try to avoid altering existing code, so don’t “fix” it if
the abstract class will work just fine.

Okay, I’m a little
confused...I thought we weren’t

going to use inheritance in this
pattern, but rather we were going

to rely on composition instead.

94 Chapter 3

Okay, I need for you to
make me a double mocha,

soy latte with whip.

New barista training

First, we call cost() on the

outmost decorator, Whip.

 Whip

cost()

 Mocha

 DarkRoast
cost()cost()

Whip calls cost() on Mocha.

Mocha adds its cost, 20

cents, to the result from

DarkRoast, and returns

the new total, $1.19.

.99.20.10$1.29

Whip adds its total, 10 cents,
to the result from Mocha, and
returns the final result—$1.29.

1

2

5

5

3

DarkRoast

returns its cost,

99 cents.

4

Mocha calls cost() on
DarkRoast.

Sharpen your pencil

Make a picture for what happens when the order is for a
“double mocha soy lotte with whip” beverage. Use the menu
to get the correct prices, and draw your picture using the
same format we used earlier (from a few pages back):

Starbuzz Coffee
Coffees
House Blend
Dark Roast
Decaf
Espresso

Condiments
Steamed Milk
Mocha
Soy
Whip

 .89
 .99
1.05
1.99

 .10
 .20
 .15
 .10

Draw your picture here.

This picture was for

a “dark roast
mocha

whip” beverage.

decorator training

Starbuzz Coffee St
ar

bu
zz

 Coffee

HINT: you c
an make a

“doubl
e

mocha s
oy lat

te with whip”

by com
bining

HouseB
lend, S

oy,

two shot
s of M

ocha a
nd Whip!

the decorator pattern

you are here 4 95

Writing the Starbuzz code

It’s time to whip this design into some real code.

Let’s start with the Beverage class, which doesn’t need to
change from Starbuzz’s original design. Let’s take a look:

public abstract class Beverage {
 String description = “Unknown Beverage”;

 public String getDescription() {
 return description;
 }

 public abstract double cost();
}

public abstract class CondimentDecorator extends Beverage {
 public abstract String getDescription();
}

Beverage is simple enough. Let’s implement the abstract
class for the Condiments (Decorator) as well:

Beverage is an abstr
act

class with the two methods

getDescription() and co
st().

getDescription is already
implemented for us, but we
need to implement cost()
in the subclasses.

First, we need to be

interchangeable with a Beverage,

so we extend the Beverage class.

We’re also going to require
that the condiment
decorators all reimplement the
getDescription() method. Again,
we’ll see why in a sec...

96 Chapter 3

Coding beverages

public class Espresso extends Beverage {

 public Espresso() {
 description = “Espresso”;
 }

 public double cost() {
 return 1.99;
 }
}

Starbuzz Coffee

Coffees

House Bl
end

Dark Roa
st

Decaf

Espresso

Condimen
ts

Steamed
Milk

Mocha

Soy
Whip

 .89
 .99
1.05
1.99

 .10
 .20
 .15
 .10

public class HouseBlend extends Beverage {
 public HouseBlend() {
 description = “House Blend Coffee”;
 }

 public double cost() {
 return .89;
 }
}

Now that we’ve got our base classes out of the way, let’s
implement some beverages. We’ll start with Espresso.
Remember, we need to set a description for the specific
beverage and also implement the cost() method.

First we extend the Beverage

class, since this is
a beverage.

To take care of the description, we
set this in the constructor for the
class. Remember the description instance
variable is inherited from Beverage.

Finally, we need to compute the cost of an
 Espresso. We don’t

need to worry about adding i
n condiments in this class, we just

need to return the
price of an Espresso: $1.99.

Okay, here’s another Beverage. All we
do is set the appropriate description,
“House Blend Coffee,” and then return
the correct cost: 89¢.

You can create the other two Beverage classses
(DarkRoast and Decaf) in exactly the same way.

implementing the beverages

the decorator pattern

you are here 4 97

Coding condiments

public class Mocha extends CondimentDecorator {
 Beverage beverage;

 public Mocha(Beverage beverage) {
 this.beverage = beverage;
 }

 public String getDescription() {
 return beverage.getDescription() + “, Mocha”;
 }

 public double cost() {
 return .20 + beverage.cost();
 }
}

If you look back at the Decorator Pattern class diagram, you’ll
see we’ve now written our abstract component (Beverage), we
have our concrete components (HouseBlend), and we have our
abstract decorator (CondimentDecorator). Now it’s time to
implement the concrete decorators. Here’s Mocha:

Mocha is a decorator, so we
extend CondimentDecorator. We’re going to instant

iate Mocha with

a reference to a Beverage using:

 (1) An instance variable t
o hold the

beverage we are wrapping.

 (2) A way to set this instan
ce

variable to the objec
t we are wrapping.

Here, we’re going to pass th
e beverage

we’re wrapping to the decor
ator’s

constructor.

Now we need to compute the cost of our beve
rage

with Mocha. First, we delegate the call to the

object we’re decorating, so that it
 can compute the

cost; then, we add the cost of Mocha to the result.

We want our description to not only
include the beverage - say “Dark
Roast” - but also to include each
item decorating the beverage, for
instance, “Dark Roast, Mocha”. So
we first delegate to the object we are
decorating to get its description, then
append “, Mocha” to that description.

On the next page we’ll actually instantiate the beverage and
wrap it with all its condiments (decorators), but first...

Remember, CondimentDecorator

extends B
everage.

Sharpen your pencil Write and compile the code for the other Soy and Whip
condiments. You’ll need them to finish and test the application.

98 Chapter 3

public class StarbuzzCoffee {

 public static void main(String args[]) {
 Beverage beverage = new Espresso();
 System.out.println(beverage.getDescription()
 + “ $” + beverage.cost());

 Beverage beverage2 = new DarkRoast();
 beverage2 = new Mocha(beverage2);
 beverage2 = new Mocha(beverage2);
 beverage2 = new Whip(beverage2);
 System.out.println(beverage2.getDescription()
 + “ $” + beverage2.cost());

 Beverage beverage3 = new HouseBlend();
 beverage3 = new Soy(beverage3);
 beverage3 = new Mocha(beverage3);
 beverage3 = new Whip(beverage3);
 System.out.println(beverage3.getDescription()
 + “ $” + beverage3.cost());
 }
}

Serving some coffees

File Edit Window Help CloudsInMyCoffee

% java StarbuzzCoffee
Espresso $1.99
Dark Roast Coffee, Mocha, Mocha, Whip $1.49
House Blend Coffee, Soy, Mocha, Whip $1.34
%

Congratulations. It’s time to sit back, order a few coffees and marvel at
the flexible design you created with the Decorator Pattern.

Here’s some test code to make orders:

Order up an
espresso, no

 condiments

and print it
s descriptio

n and cost.

Make a DarkRoast object.

Finally, give us a HouseBlend
with Soy, Mocha, and Whip.

Now, let’s get those orders in:

We’re going to see a much better way of
creating decorated objects when we cover the
Factory and Builder Design Patterns.

File Edit Window Help CloudsInMyCoffee

Wrap it with a Mocha.

Wrap it in a second Mocha.
Wrap it in a Whip.

testing the beverages

the decorator pattern

you are here 4 99

Our friends at Starbuzz have introduced sizes to their menu. You can now order
a coffee in tall, grande, and venti sizes (translation: small, medium, and large).
Starbuzz saw this as an intrinsic part of the coffee class, so they’ve added two
methods to the Beverage class: setSize() and getSize(). They’d also like for the
condiments to be charged according to size, so for instance, Soy costs 10¢, 15¢
and 20¢ respectively for tall, grande, and venti coffees.

How would you alter the decorator classes to handle this change in requirements?

Q: I’m a little worried about code
that might test for a specfic concrete
component – say, HouseBlend – and
do something, like issue a discount.
Once I’ve wrapped the HouseBlend
with decorators, this isn’t going to work
anymore.

A: That is exactly right. If you have
code that relies on the concrete component’s
type, decorators will break that code.
As long as you only write code against
the abstract component type, the use of
decorators will remain transparent to your
code. However, once you start writing code
against concrete components, you’ll want to
rethink your application design and your use
of decorators.

Q: Wouldn’t it be easy for some
client of a beverage to end up with
a decorator that isn’t the outermost
decorator? Like if I had a DarkRoast with
Mocha, Soy, and Whip, it would be easy
to write code that somehow ended up
with a reference to Soy instead of Whip,
which means it would not including Whip
in the order.

A: You could certainly argue that
you have to manage more objects with
the Decorator Pattern and so there is
an increased chance that coding errors
will introduce the kinds of problems you
suggest. However, decorators are typically
created by using other patterns like Factory
and Builder. Once we’ve covered these
patterns, you’ll see that the creation of the
concrete component with its decorator is
“well encapsulated” and doesn’t lead to
these kinds of problems.

Q: Can decorators know about the
other decorations in the chain? Say, I
wanted my getDecription() method to
print “Whip, Double Mocha” instead of
“Mocha, Whip, Mocha”? That would
require that my outermost decorator
know all the decorators it is wrapping.

A: Decorators are meant to add
behavior to the object they wrap. When
you need to peek at multiple layers into
the decorator chain, you are starting to
push the decorator beyond its true intent.
Nevertheless, such things are possible.
Imagine a CondimentPrettyPrint decorator
that parses the final decription and can print
“Mocha, Whip, Mocha” as “Whip, Double
Mocha.” Note that getDecription() could
return an ArrayList of descriptions to make
this easier.

there are noDumb Questions

Sharpen your pencil

100 Chapter 3

Real World Decorators: Java I/O

The large number of classes in the java.io package is... overwhelming. Don’t feel alone
if you said “whoa” the first (and second and third) time you looked at this API. But
now that you know the Decorator Pattern, the I/O classes should make more sense
since the java.io package is largely based on Decorator. Here’s a typical set of
objects that use decorators to add functionality to reading data from a file:

LineNumberInputStre
am

BufferedInputStre
am

FileInputStream

FileInputStream
 is the component that’s

being decorate
d. The Java I/O library

supplies severa
l components, includ

ing

FileInputStream
, StringBufferInputStr

eam,

ByteArrayInputStre
am and a few others.

All of these giv
e us a base com

ponent from

which to read b
ytes.

BufferedInputStream
is a concrete decorator.
BufferedInputStream adds
behavior in two ways: it
buffers input to improve
performance, and also augments
the interface with a new
method readLine() for reading
character-based input, a line
at a time.

LineNumberInputStream is
also a concrete decorator.
It adds the ability to
count the line numbers as
it reads data.

A text file for reading.

BufferedInputStream and LineNumberInputStream both extend
FilterInputStream, which acts as the abstract decorator class.

decorators in java i/o

the decorator pattern

you are here 4 101

FileInputStream ByteArrayInputStream FilterInputStreamStringBufferInputStream

InputStream

LineNumberInputStreamDataInputStreamBufferedInputStreamPushbackInputStream

Here’s our abstr
act component.

FilterInputStream
is an abstract
decorator.

These InputStreams act as
the concrete components that
we will wrap with decorators.
There are a few more we didn’t
show, like ObjectInputStream.

And finally, here are all our concrete
decorators.

You can see that this isn’t so different from the Starbuzz design. You should
now be in a good position to look over the java.io API docs and compose
decorators on the various input streams.

You’ll see that the output streams have the same design. And you’ve probably
already found that the Reader/Writer streams (for character-based data)
closely mirror the design of the streams classes (with a few differences and
inconsistencies, but close enough to figure out what’s going on).

Java I/O also points out one of the downsides of the Decorator Pattern:
designs using this pattern often result in a large number of small classes
that can be overwhelming to a developer trying to use the Decorator-based
API. But now that you know how Decorator works, you can keep things in
perspective and when you’re using someone else’s Decorator-heavy API, you
can work through how their classes are organized so that you can easily use
wrapping to get the behavior you’re after.

Decorating the java.io classes

102 Chapter 3

Writing your own Java I/O Decorator

Okay, you know the Decorator Pattern, you’ve
seen the I/O class diagram. You should be ready to
write your own input decorator. No problem. I just have to

extend the FilterInputStream class
and override the read() methods.

public class LowerCaseInputStream extends FilterInputStream {
 public LowerCaseInputStream(InputStream in) {
 super(in);
 }

 public int read() throws IOException {
 int c = super.read();
 return (c == -1 ? c : Character.toLowerCase((char)c));
 }

 public int read(byte[] b, int offset, int len) throws IOException {
 int result = super.read(b, offset, len);
 for (int i = offset; i < offset+result; i++) {
 b[i] = (byte)Character.toLowerCase((char)b[i]);
 }
 return result;
 }
}

How about this: write a decorator that converts
all uppercase characters to lowercase in the
input stream. In other words, if we read in “I
know the Decorator Pattern therefore I RULE!”
then your decorator converts this to “i know the
decorator pattern therefore i rule!”

First, extend the FilterInputStream, the
abstract decorator for all InputStreams.

Now we need to implement two
read methods. They take a
byte (or an array of bytes)
and convert each byte (that
represents a character) to
lowercase if it’s an uppercase
character.

Don’t forget to
 import

java.io... (not s
hown)

write your own i/o decorator

REMEMBER: we don’t provide import and package
statements in the code listings. Get the complete
source code from the wickedlysmart web site. You’ll
find the URL on page xxxiii in the Intro.

the decorator pattern

you are here 4 103

public class InputTest {
 public static void main(String[] args) throws IOException {
 int c;
 try {
 InputStream in =
 new LowerCaseInputStream(
 new BufferedInputStream(
 new FileInputStream(“test.txt”)));

 while((c = in.read()) >= 0) {
 System.out.print((char)c);
 }

 in.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

Write some quick code to test the I/O decorator:

% java InputTest
i know the decorator pattern therefore i rule!
%

File Edit Window Help DecoratorsRule

Give it a spin:

Set up the FileInputStream

and decorate i
t, first with

a BufferedInputSt
ream

and then our b
rand new

LowerCaseInputStream
 filter.

Just use the stream to read
characters until the end of
file and print as we go.

I know the Decorator Pattern therefore I RULE!

test.txt file

Test out your new Java I/O Decorator

You need to
make this file.

104 Chapter 3

HeadFirst: Welcome Decorator Pattern. We’ve heard that you’ve been a bit
down on yourself lately?

Decorator: Yes, I know the world sees me as the glamorous design pattern, but
you know, I’ve got my share of problems just like everyone.

HeadFirst: Can you perhaps share some of your troubles with us?

Decorator: Sure. Well, you know I’ve got the power to add flexibility to
designs, that much is for sure, but I also have a dark side. You see, I can sometimes
add a lot of small classes to a design and this occasionally results in a design
that’s less than straightforward for others to understand.

HeadFirst: Can you give us an example?

Decorator: Take the Java I/O libraries. These are notoriously difficult for
people to understand at first. But if they just saw the classes as a set of wrappers
around an InputStream, life would be much easier.

HeadFirst: That doesn’t sound so bad. You’re still a great pattern, and
improving this is just a matter of public education, right?

Decorator: There’s more, I’m afraid. I’ve got typing problems: you see,
people sometimes take a piece of client code that relies on specific types and
introduce decorators without thinking through everything. Now, one great thing
about me is that you can usually insert decorators transparently and
the client never has to know it’s dealing with a decorator. But like I
said, some code is dependent on specific types and when you start introducing
decorators, boom! Bad things happen.

HeadFirst: Well, I think everyone understands that you have to be careful
when inserting decorators, I don’t think this is a reason to be too down on
yourself.

Decorator: I know, I try not to be. I also have the problem that introducing
decorators can increase the complexity of the code needed to instantiate the
component. Once you’ve got decorators, you’ve got to not only instantiate the
component, but also wrap it with who knows how many decorators.

HeadFirst: I’ll be interviewing the Factory and Builder patterns next week – I
hear they can be very helpful with this?

Decorator: That’s true; I should talk to those guys more often.

HeadFirst: Well, we all think you’re a great pattern for creating flexible designs
and staying true to the Open-Closed Principle, so keep your chin up and think
positively!

Decorator: I’ll do my best, thank you.

This week’s interview:
Confessions of a Decorator

Patterns Exposed

decorator interview

the decorator pattern

you are here 4 105

Tools for your Design Toolbox BULLET POINTS
ß Inheritance is one form of

extension, but not necessarily
the best way to achieve flexibility
in our designs.

ß In our designs we should allow
behavior to be extended without
the need to modify existing code.

ß Composition and delegation
can often be used to add new
behaviors at runtime.

ß The Decorator Pattern provides
an alternative to subclassing for
extending behavior.

ß The Decorator Pattern involves
a set of decorator classes that
are used to wrap concrete
components.

ß Decorator classes mirror the
type of the components they
decorate. (In fact, they are the
same type as the components
they decorate, either through
inheritance or interface
implementation.)

ß Decorators change the behavior
of their components by adding
new functionality before and/or
after (or even in place of) method
calls to the component.

ß You can wrap a component with
any number of decorators.

ß Decorators are typically
transparent to the client of the
component; that is, unless
the client is relying on the
component’s concrete type.

ß Decorators can result in many
small objects in our design, and
overuse can be complex.

Abstraction

Encapsulation

Polymorphism

Inheritance

OO Basics

Encapsulate what varies.

Favor composition over i
nheritance.

Program to interfaces
, not

implementations.

Strive for loo
sely coupled d

esigns

between objects th
at interact.

Classes should b
e open for

extension but
closed for

modification.

OO Principles

Strategy - defines a fam
ily of algorith

ms,

encapsulates e
ach one, and m

akes them

interchangeab
le. Strategy

lets the algor
ithm

vary independ
ently from clients that

use it.

OO Patterns

You’ve got another chapter under
your belt and a new principle and
pattern in the toolbox.

Observer - defines a one
-to-many

dependency be
tween objects so

 that

when one object
 changes state

, all its

dependents ar
e notified and

 updated

automatically

We now have the Open-Closed
Principle to guide us. We’re going
to strive to design our system
so that the closed parts are
isolated from our new extensions.

And here’s our first
 pattern for creat

ing designs

that satisfy the O
pen-Closed Principle. Or was it

really the first?
Is there another p

attern we’ve

used that follows this principle as w
ell?

Decorator - Attach additio
nal

responsibilities
 to an object

dynamically.

Decorators pro
vide a flexible

alternative to
 subclassing fo

r extending

functionality.

106 Chapter 3

Exercise solutions
public class Beverage {

 // declare instance variables for milkCost,
 // soyCost, mochaCost, and whipCost, and
 // getters and setters for milk, soy, mocha
 // and whip.

public float cost() {

 float condimentCost = 0.0;
 if (hasMilk()) {
 condimentCost += milkCost;
 }
 if (hasSoy()) {
 condimentCost += soyCost;
 }
 if (hasMocha()) {
 condimentCost += mochaCost;
 }
 if (hasWhip()) {
 condimentCost += whipCost;
 }
 return condimentCost;
 }
}

public class DarkRoast extends Beverage {

 public DarkRoast() {
 description = “Most Excellent Dark Roast”;
 }

 public float cost() {

 return 1.99 + super.cost();

 }
}

Sta
rb

uzz Coffee

 Mocha

 HouseBlen
d

 Mocha

 Soy
 Whip

cost()cost()cost()cost()cost()
.89.15.20.20.10$1.54

First, we call cost() on the

outmost decorator, Whip.

Whip calls cost() on Mocha

Last topping! Soy calls

cost() on HouseBlend.

Finally, the result returns to
Whip’s cost(), which adds .10 and
we have a final cost of $1.54.

1

2

5

11

3 Mocha calls cost() on another Mocha.

4 Next, Mocha calls cost() on Soy.

New barista training
“double mocha soy lotte with whip”

HouseBlend’s cost()

method returns .89

cents and pops off

the stack.

6

Soy’s cost() method

adds .15 and returns

the result, and pops

off the stack.

7

The second Mocha’s

cost() method adds .20

and returns the result,

and pops off the stack.

8

The first Mocha’s cost() method

adds .20 and returns the result,

and pops off the stack.

9

exercise solutions

the decorator pattern

you are here 4 107

Our friends at Starbuzz have introduced sizes to their menu. You can now order a coffee in
tall, grande, and venti sizes (for us normal folk: small, medium, and large). Starbuzz saw this
as an intrinsic part of the coffee class, so they’ve added two methods to the Beverage class:
setSize() and getSize(). They’d also like for the condiments to be charged according to size, so
for instance, Soy costs 10¢, 15¢, and 20¢ respectively for tall, grande, and venti coffees.

How would you alter the decorator classes to handle this change in requirements?

Exercise solutions

public class Soy extends CondimentDecorator {
 Beverage beverage;

 public Soy(Beverage beverage) {
 this.beverage = beverage;
 }

 public getSize() {
 return beverage.getSize();
 }

 public String getDescription() {
 return beverage.getDescription() + “, Soy”;
 }

 public double cost() {
 double cost = beverage.cost();
 if (getSize() == Beverage.TALL) {
 cost += .10;
 } else if (getSize() == Beverage.GRANDE) {
 cost += .15;
 } else if (getSize() == Beverage.VENTI) {
 cost += .20;
 }
 return cost;
 }
}

Now we need to propagat
e the

getSize() method to the wrapped

beverage. We should also move this

method to the abst
ract class since

it’s used in all cond
iment decorators.

Here we get the size (which
propagates all the way to the
concrete beverage) and then
add the appropriate cost.

	Head First Design Patterns - toc.pdf
	Head First Design Patterns ch03.pdf
	Head First Design Patterns Ch05.pdf
	Head First Design Patterns Ch07-08.pdf
	Head First Design Patterns Ch14.pdf

