table of contents

Table of Contents (summary)

Intro XXV
1 Welcome to Design Patterns: an introduction 1
2 Keeping your Objects in the know: the Observer Pattern 37
3 Decorating Objects: the Decorator Pattern 79
4 Baking with OO goodness: the Factory Patlern 109
5 One of a Kind Objects: the Singleton Pattern 169
6 Encapsulating Invocation: the Command Pattern 191
7 Being Adaptive: the Adapter and Facade Patlerns 235
8 Encapsulating Algorithms: theTemplate Method Pattern 275
9 Well-managed Collections: the lterator and Composite Patterns 315
10 The State of Things: the State Pattern 385
11 Controlling Object Access: the Proxy Pattern 429
12 Patterns of Patterns: Compound Fatterns 499
13 Patterns in the Real World: Better Living with Patterns 377
14 Appendix: Leflover Paiterns 611

Table of Contents (the rea] thing)

Intro

Your brain on Design Patterns. Here you are trying to learn something, while
here your brain is doing you a favor by making sure the learning doesn’t stick. Your brain’s
thinking,“Better leave room for more important things, like which wild animals to avoid and
whether naked snowboarding is a bad idea.” So how do you trick your brain into thinking

that your life depends on knowing Design Patterns?

Who is this book for? XXV1
We know what your brain is thinking XXVil
Metacognition XXIX
Bend your brain into submission XXX1
Technical reviewers XXXIV
Acknowledgements XXXV

Remember, knowing
concepts like abstraction,

inheritance, and polymorphism do
not make you a good object oriented
desigher. A design guru thinks
about how to create flexible
designs that are maintainable

and that can cope with
change.

intro to Design Patterns

Welcome to Design Patterns

Someone has already solved your problems. In this chapter,
you'’ll learn why (and how) you can exploit the wisdom and lessons learned by
other developers who've been down the same design problem road and survived
the trip. Before we’re done, we’ll look at the use and benefits of design patterns,
look at some key OO design principles, and walk through an example of how one
pattern works. The best way to use patterns is to load your brain with them and
then recognize places in your designs and existing applications where you can

apply them. Instead of code reuse, with patterns you get experience reuse.

The SimUDuck app
Joe thinks about inheritance...

How about an interface?

The one constant in software development

Separating what changes from what stays the same

Designing the Duck Behaviors

Testing the Duck code

Setting behavior dynamically

The Big Picture on encapsulated behaviors
HAS-A can be better than IS-A

The Strategy Pattern

The power of a shared pattern vocabulary
How do I use Design Patterns?

Tools for your Design Toolbox

Exercise Solutions

A Bunch of Patterns

\(ow Code, now.“:‘“
and improved ¥

desiop ‘;a’d:crns!

x® o o N

11
18
20
22
23
24
28
29
32
34

Xi

table of contents

the Qbserver Tattern

Keeping your Objects in the Know

Don’t miss out when something interesting happens!
We've got a pattern that keeps your objects in the know when something they
might care about happens. Objects can even decide at runtime whether they
want to be kept informed. The Observer Pattern is one of the most heavily used
patterns in the JDK, and it’s incredibly useful. Before we’re done, we’ll also look
at one to many relationships and loose coupling (yeah, that’s right, we said

coupling). With Observer, you'll be the life of the Patterns Party.

The Weather Monitoring application

Meet the Observer Pattern

00 Dasits

Acheaedion

Publishers + Subscribers = Observer Pattern
Five minute drama: a subject for observation

The Observer Pattern defined

00 Printiples

‘e what vavies The power of Loose Coupling

Ev\ca‘;su\a

kion over Designing the Weather Station
oS\ \O!
Favor Com?

inhevi—

Implementing the Weather Station

tante fates not
Progyram ko Inter aces Using Java’s built-in Observer Pattern
4 .
'\m\v\cmc,\hakw"s e The dark side of java.util.Observable
e for loosely 2T .
Styive bietts tha Tools for your Design Toolbox
d es\%'\s \)C&‘NCC'\ o \)
.“Jw‘.af}g Exercise Solutions
\

ONE TO MANY RELATIONSH|P

Objeet that
hoﬁis state >

Dcpendcn{: Objeets

Observers

AU{oma{ic uyda‘[:c/ no{ifica‘[:ion

Xii

39
44
45
48
51
33
56
57
64
71
74
78

the Decorator Pattern

Decorating Objects

Just call this chapter “Design Eye for the Inheritance
Guy.” We’'ll re-examine the typical overuse of inheritance and you’ll learn how
to decorate your classes at runtime using a form of object composition. Why?
Once you know the techniques of decorating, you'll be able to give your (or
someone else’s) objects new responsibilities without making any code changes

to the underlying classes.

Welcome to Starbuzz Coffee

The Open-Closed Principle

T used to think real men
subclassed everything. That was until
I learned the power of extension

at runtime, rather than at compile
time. Now look at me!

Meet the Decorator Pattern

Constructing a Drink Order with Decorators
The Decorator Pattern Defined

Decorating our Beverages

Writing the Starbuzz code

Real World Decorators: Java I/0

Writing your own Java 17O Decorator

Tools for your Design Toolbox

Exercise Solutions

80
86
88
89
91
92
95
100
102
105
106

Xiii

table of contents

the Factory Pattern

Baking with OO Goodness

Get ready to cook some loosely coupled OO designs.
There is more to making objects than just using the new operator. You'll learn
that instantiation is an activity that shouldn’t always be done in public and can
often lead to coupling problems. And you don’t want that, do you? Find out how

Factory Patterns can help save you from embarrasing dependencies.

When you see “new”, think “concrete” 110
Objectville Pizza 112
Encapsulating object creation 114
Building a simple pizza factory 115
The Simple Factory defined 117
A Tramework for the pizza store 120
Allowing the subclasses to decide 121
Let’s make a PizzaStore 123
Declaring a factory method 125
Meet the Factory Method Pattern 131
Parallel class hierarchies 132
Factory Method Pattern defined 134
A very dependent PizzaStore 137
Looking at object dependencies 138
The Dependency Inversion Principle 139
Meanwhile, back at the PizzaStore... 144
Families of ingredients... 145
Building our ingredient factories 146
Looking at the Abstract Factory 153
Behind the scenes 154
Abstract Factory Pattern defined 156
Factory Method and Abstract Factory compared 160
Tools for your Design Toolbox 162
Exercise Solutions 164

Xiv

the Singleton Pattern

One of a Kind Objects

The Singleton Pattern: your ticket to creating one-of-a-
kind objects, for which there is only one instance. You
might be happy to know that of all patterns, the Singleton is the simplest in terms
of its class diagram; in fact the diagram holds just a single class! But don’t get
too comfortable; despite its simplicity from a class design perspective, we’'ll
encounter quite a few bumps and potholes in its implementation. So buckle

up—this one’s not as simple as it seems...

One and only one object
The Little Singleton
Dissecting the classic Singleton Pattern
Confessions of a Singleton
The Chocolate Factory
Singleton Pattern defined
Bevshey, P

, we have a problem...
BE the JVM
Dealing with multithreading
Singleton Q&A
Tools for your Design Toolbox

Exercise Solutions

00 Patterrs .
S (‘t T

e (¢ e
\d f
MM smg\e’w‘
3 9 \ one \v\S‘ta b
S Ns of aveess toi

~

\y has
_ Bnsure 3 tlass oy poin

\obal
nd prov vide 3 9

o

170
171
173
174
175
177
178
179
180
184
186
188

XV

table of contents

XVi

aﬂ‘\w\\
ot ot
el R
] =
Tre =
o “ -
der O e Co* makeBurger(), makeShake()
o
9
s

the Command Tattern

Encapsulating Invocation

In this chapter we take encapsulation to a whole new
level: we’re going to encapsulate method invocation.
That's right, by encapsulating invocation we can crystallize pieces of computation
so that the object invoking the computation doesn’t need to worry about how to do
things; it just uses our crystallized method to get it done. We can also do some
wickedly smart things with these encapsulated method invocations, like save

them away for logging or reuse them to implement undo in our code.

Home Automation or Bust

Tl have a Burger
with Cheese and a Malt
Shake

The Remote Control

Taking a look at the vendor classes

Meanwhile, back at the Diner...

Let’s study the Diner interaction

The Objectville Diner Roles and Responsibilities
From the Diner to the Command Pattern

Our first command object

The Command Pattern defined

The Command Pattern and the Remote Control
Implementing the Remote Control

Putting the Remote Control through its paces

Time to write that documentation

Using state to implement Undo

Every remote needs a Party Mode!

Using a Macro Command

More uses of the Command Pattern: Queuing requests
More uses of the Command Pattern: Logging requests
Tools for your Design Toolbox

Exercise Solutions

192
193
194
197
198
199
201
203
206
208
210
212
215
220
224
225
228
229
230
232

European Wall Outlet

Standard AC Plug

the Adapter and Facade Patterns

Being Adaptive

In this chapter we’re going to attempt such impossible
feats as putting a square peg in a round hole. Sound impossible?
Not when we have Design Patterns. Remember the Decorator Pattern? We
wrapped objects to give them new responsibilities. Now we’re going to wrap some
objects with a different purpose: to make their interfaces look like something they’re
not. Why would we do that? So we can adapt a design expecting one interface to a
class that implements a different interface. That's not all, while we're at it we’re going

to look at another pattern that wraps objects to simplify their interface.

Adapters all around us

Object Oriented Adapters

The Adapter Pattern explained

Adapter Pattern defined

Object and Class Adapters
AC Power Adapter
Tonight’s talk: The Object Adapter and Class Adapter
Real World Adapters

Adapting an Enumeration to an Iterator

Tonight’s talk: The Decorator Pattern and the Adapter Pattern
Home Sweet Home Theater

Lights, Camera, Facade!

Constructing your Home Theater Facade

Facade Pattern defined

The Principle of Least Knowledge

Tools for your Design Toolbox

Exercise Solutions

=@
Client ey
B

The Client s implemented
against the target inferface. Aapter

o % oo)

erta® ey was the
oreet™ The Adapter implements the Takey i BE
{argel nterface and holds an adaptee
instance of the Adaploe

236
237
241
243
244
247
248
249
252
255
258
261
264
265
270
272

XVii

table of contents

the Template Methed Pattern

Encapsulating Algorithms

We’ve encapsulated object creation, method invocation,
complex interfaces, ducks, pizzas... what could be next?
We’re going to get down to encapsulating pieces of algorithms so that subclasses can
hook themselves right into a computation anytime they want. We’re even going to

learn about a design principle inspired by Hollywood.

Whipping up some coffee and tea classes 277

Abstracting Coffee and Tea 280

Taking the design further 281

Tea o Abstracting prepareRecipe() 282
© pollsmert

© Stoopthoaaban n eVl What have we done? 285

zv::;:::mv Meet the Template Method 286

L_‘ Caffeine Beverage ‘_J Let’s make some tea 287

goneraze © Follsomewater goneraizs

O brew What did the Template Method get us? 288

@Eﬁ; 2 ?:::::::::.:mp @:ﬁ%i’ Template Method Pattern defined 289

T’W\%Bt 1 i) 3 e Code up close 290

© S the st ' - Hooked on Template Method... 292

O Addlewon et °‘ / zt:’s::::“"““k Using the hook 293

\ it Coffee? Tea? Nah, let’s run the TestDrive 294

The Hollywood Principle 296

The Hollywood Principle and the Template Method 297

Template Methods in the Wild 299

Sorting with Template Method 300

We’ve got some ducks to sort 301

Comparing ducks and ducks 302

The making of the sorting duck machine 304

Swingin’ with Frames 306

Applets 307

Tonight’s talk: Template Method and Strategy 308

Tools for your Design Toolbox 311

Exercise Solutions 312

xviii

the Iterator and Composite Patterns

Well-Managed Collections

There are lots of ways to stuff objects into a collection.
Put them in an Array, a Stack, a List, a Map, take your pick. Each has its own
advantages and tradeoffs. But when your client wants to iterate over your objects,
are you going to show him your implementation? We certainly hope not! That just
wouldn’t be professional. Don’t worry—in this chapter you'll see how you can let
your clients iterate through your objects without ever seeing how you store your
objects. You'’re also going to learn how to create some super collections of objects
that can leap over some impressive data structures in a single bound. You’re also

going to learn a thing or two about object responsibility.

Objectville Diner and Pancake House merge 316
Comparing Menu implementations 318
Can we encapsulate the iteration? 323
Pancake Meny " Meet the Iterator Pattern 325
-~ —\ Wm:r” enu
<) (o) Adding an Iterator to DinerMenu 326
Ai\(Pessert M;m\ Looking at the design 331
T\ \
| Cleaning things up with java.util.Iterator 333
What does this get us? 335
Iterator Pattern defined 336
Single Responsibility 339
Iterators and Collections 348
Iterators and Collections in Java 5 349
ust when we thought it was safe... 353
J g
The Composite Pattern defined 356
Designing Menus with Composite 359
Implementing the Composite Menu 362
Flashback to Iterator 368
The Null Iterator 372
The magic of Iterator & Composite together... 374
Tools for your Design Toolbox 380
Exercise Solutions 381

Xix

table of contents

the State Pattern

The State of Things

A little known fact: the Strategy and State Patterns were
twins separated at birth. As you know, the Strategy Pattern went on

to create a wildly successful business around interchangeable algorithms. State,
however, took the perhaps more noble path of helping objects learn to control their
behavior by changing their internal state. He’s often overheard telling his object

clients, “just repeat after me, I'm good enough, I'm smart enough, and doggonit...”

How do we implement state? 387

State Machines 101 388

@ for’s B vy we ik the bl e sl e o A first attempt at a state machine 390
EE;:?:%E;E;:;{%{ETJ:a.:&t:‘ﬁ:t:;vmﬂ e You knew it was coming... a change request! 394
Rualuiacesd The messy STATE of things... 396
Defining the State interfaces and classes 399

Implementing our State Classes 401

Reworking the Gumball Machine 402

The State Pattern defined 410

State versus Strategy 411

State sanity check 417

We almost forgot! 420

Tools for your Design Toolbox 423

Exercise Solutions 424

XX

the Troxy Pattern

Controlling Object Access

Ever play good cop, bad cop? You're the good cop and you provide
all your services in a nice and friendly manner, but you don’t want everyone
asking you for services, so you have the bad cop control access to you. That’s
what proxies do: control and manage access. As you're going to see there are
lots of ways in which proxies stand in for the objects they proxy. Proxies have
been known to haul entire method calls over the Internet for their proxied objects;

they’ve also been known to patiently stand in the place for some pretty lazy

objects.

-
@

Hot \

<<interface>>
Subject
request()

Monitoring the gumball machines
The role of the ‘remote proxy’

RMI detour

GumballMachine remote proxy
Remote proxy behind the scenes

The Proxy Pattern defined

Get Ready for virtual proxy
Designing the CD cover virtual proxy
Virtual proxy behind the scenes
Using the Java API’s proxy

Five minute drama: protecting subjects
Creating a dynamic proxy

The Proxy Zoo

Tools for your Design Toolbox

Exercise Solutions

<<interface>>
InvocationHandler

invoke()

< The \wo%‘f
¢ of two tlasses:

RealSubject

request()

Proxy InvocationHandler
request() invoke()

now tonsists

430
434
437
450
458
460
462
464
470
474
478
479
488
491
492

XXi

table of contents

Compound Tatterns

Patterns of Patterns

Who would have ever guessed that Patterns could work
together? You've already witnessed the acrimonious Fireside Chats (and be
thankful you didn’t have to see the Pattern Death Match pages that the publisher
forced us to remove from the book so we could avoid having to use a Parent’s
Advisory warning label), so who would have thought patterns can actually get along
well together? Believe it or not, some of the most powerful OO designs use several
patterns together. Get ready to take your pattern skills to the next level; it's time for
Compound Patterns. Just be careful—your co-workers might kill you if you're struck

with Pattern Fever. Compound Patterns

The beat s sek at 19 BPM and yor ‘l Duck reunion
would like to inevease it to 120,
806 comrat | Adding an adapter
| o Cantrol]
Ender BPM You click on

fhe meresee Adding a decorator
o m-) beat button

{C=< 12

View Adding a factory
Which vesults in the
eontraller being invoked.

Adding a composite, and iterator

The contrale sits Adding an observer
Lhe model to vpdate
its BPM by enc.
Controller Patterns summary
You see the beatbar

ke every /2 et tMog, A duck’s eye view: the class diagram
%gﬁ o] e/

View 2 Beeause the BPM is 120, the view gets onl)

a beat notification every 172 secomd

BOB View
| e R

/\w

Model-View-Controller, the song

setBPMO off()

Design Patterns are your key to the MVC

et

The view i spdated View s vosbid that the BPN Looking at MVC through patterns-colored glasses

o120 BPM, changed. It calls ogtBPMO on
the model state

Using MVC to control the beat...

The Model

The View

The Controller

Exploring strategy

Adapting the model

Now we’re ready for a HeartController

MVC and the Web

Design Patterns and Model 2
Tools for your Design Toolbox

Exercise Solutions

XXii

500
501
504
506
508
513
516
523
524
526
528
532
534
5337
539
542
545
546
547
549
557
560
561

Better Living with Patterns

Patterns in the Real World

Ahhhh, now you’re ready for a bright new world filled with
Design Patterns. But, before you go opening all those new doors of opportunity
we need to cover a few details that you'll encounter out in the real world—things get a
little more complex out there than they are here in Objectville. Come along, we've got

a nice guide to help you through the transition...

Your Objectville guide
Design Pattern defined
Looking more closely at the Design Pattern definition
May the force be with you
Pattern catalogs
i Objctlle Gide©
Bt Liing it h How to create patterns
So you wanna be a Design Patterns writer?
Organizing Design Patterns
Thinking in patterns
Your mind on patterns

Don’t forget the power of the shared vocabulary

Top five ways to share your vocabulary

Cruisin’ Objectville with the Gang of Four
Your journey has just begun...

Other Design Pattern resources

The Patterns Zoo

Annihilating evil with Anti-Patterns

Tools for your Design Toolbox

Leaving Objectville...

%"

oY Py
®e \ § == Ralph
Johnson

[_\éang of Four

7
John Vlissides

Erith Gamma

578
379
581
582
583
586
587
589
594
597
599
600
601
602
603
604
606
608
609

XXiii

table of contents

Appendix: Leftover Patterns

Not everyone can be the most popular. Aot has changed in

the last 10 years. Since Design Patterns: Elements of Reusable Object-Oriented
Software first came out, developers have applied these patterns thousands of times.
The patterns we summarize in this appendix are full-fledged, card-carrying, official
GoF patterns, but aren’t always used as often as the patterns we’ve explored so

far. But these patterns are awesome in their own right, and if your situation calls for

them, you should apply them with your head held high. Our goal in this appendix is

to give you a high level idea of what these patterns are all about.

Al bhse compaste .
lasses have o do is add Bridge
3 getStateO) method
! ds +o be able to call (and not worry about .
T e es and frig s expoig dhemsives) Builder
The Client asks the Sheve you can add new methods for
Visitor to aet in— the client to use. ‘/ . P
ormstion rem e — ‘ Chain of Responsibility
Compsite structure N / e
New methods tan be R \o‘\°‘\\\ getSel >4
added o the Visitor A ~ .
vithout afFecting the e = Flyweight
Composite. §°‘° et
2 Interpreter

Mediator

\ Memento
e averser knows how £o Inrodiont
e e Vit B Prototype
The Composite structure

Visitor

Index

XXiv

612
614
616
618
620
622
624
626
628

631

Your Brain on Design Patterns

Head First
Design Patterns

Learn why everything
Avoid those 1_ your friends know about Factory

embarrassing | " ol Pattern is
'] i Al " b b
coupling mistakes | } 14 & probably wrong

Load the patterns
that matter straight

Discover the sécrets ¥ | into your brain
of the Patterns Guru ' '

oee why Jim's
love life improved

Find out how : ' when he cut down
Starbuzz Coffee doubled ™ his inheritance

their stock price with
the Decorator pattern

" Eric I;'Iieeman & Elisabeth Freeman
O REILLY i 4

with Kathy bierra &' Bert Bates

3 the DecoratorPattern

*
+ Decorating Objects *

T used to think real men
subclassed everything. That was
until T learned the power of
extension at runtime, rather than
at compile time. Now look at me!

Just call this chapter “Design Eye for the Inheritance Guy.”
We’'ll re-examine the typical overuse of inheritance and you'll learn how to decorate
your classes at runtime using a form of object composition. Why? Once you know the
techniques of decorating, you'll be able to give your (or someone else’s) objects new

responsibilities without making any code changes to the underlying classes.

this is a new chapter 79

the starbuzz story

Welcome to Starbuzz Coffee

Starbuzz Coffee has made a name for itself as the & 2
fastest growing coffee shop around. If you’ve seen one ‘

on your local corner, look across the street; you’ll see

another one.

Because they’ve grown so quickly, they’re scrambling
to update their ordering systems to match their
beverage offerings.

When they first went into business they designed their
classes like this...

i \ass,
a0 is an abstratt ¢
?:\::\Yas?cd by all beverages
offeved in the toffee shop-
Beverage The destription instante vaviable

ipti T — s set in eath subelass and holds a
e deseription of the beverage, like

The tost() mc?\"d is getDescription() “Most Excellent Dark Roast”
abstract; subelassses ™ ——_ %I cost() iption() method
need to define theiv e 56{?;56;‘?:::“50: ’
own implementation I/l Other useful methods... veturns the destrip

HouseBlend DarkRoast Decaf

| | |
cost() I cost() I cost() I cost()

~) A

Each subtlass implements cost() to veturn the cost of the beverage.

Espresso

80 Chapter 3

the decorator pattern

In addition to your coffee, you can also ask for several condiments like
steamed milk, soy, and mocha (otherwise known as chocolate), and have
it all topped off with whipped milk. Starbuzz charges a bit for each of
these, so they really need to get them built into their order system.

Here’s their first attempt...

Beverage

description

getDescription()
cost()

11 Other useful methods.

- - ’ 1 EspressoWith dMilk
HouseBIe::mt:‘g::amedMllk DarkRoa:;V::‘lﬂllsct::medM DecafWith dMilk andMocha
HouseBlel . andMocha cost()
_ad cCOS() cost() cost)
cost() . e EspressoWithSteamedMilk
DecafWithSteamedMik | andCaramel I
DarkRoastWithSteamedMilk Pl g —
cost() andCaramel andCaramel cost()| EspressoWithWhipandMocha
Hou! .
i DecafWithV
HouseBlel cost() DarkRoastWithW -
d cost().
cost() cost() | cost(DecafWithSoy
. . DecafWithSteamedMilk ||
HouseBlendWith: L DarkRoastWithSteamedMilk cost()
0 andSoy I kel | pressoWith!
HouseBlendWithWhip— - - A
i DecafWithSteamedMilk |
1cosl()4r‘ DarkRoasththSteamedM DarkRoa: cost() DecaMithSoyandMocha

HouseB] cost()

HouseBlendWith

cost()

dMilk

=

cost()

DecafWithSteame
al

EspressoWithSteamedMilk
andWhip

DarkRoastWithWhipandSoy

DecafWith

WithWhij

P!

cost()

Whoa!
Can you say

“class explosion?”

the

h tost method com?u{',CS.

E:sc{: oE the CO‘Q‘CCC along with the
other tondiments in Lhe ovder-

81

you are here »

violating design principles

i @3 RALN
PQAQWEWR
It's pretty obvious that Starbuzz has created a maintenance nightmare for

themselves. What happens when the price of milk goes up? What do they do
when they add a new caramel topping?

Thinking beyond the maintenance problem, which of the design principles that
we’ve covered so far are they violating?

iAem BIq e ul wayj Jo om) bunejoin al fay) JuiH

This is stupid; why do we need
all these classes? Can't we just use

instance variables and inheritance in
the superclass to keep track of the
condiments?

Well, let's give it a try. Let's start with the Beverage base
class and add instance variables to represent whether or
not each beverage has milk, soy, mocha and whip...

Beverage

description New boolean values ‘("OY'

milk tondiment.
oy k/%/ eath tondiment

mocha
whip

hasMilk()

hasMocha()

setMocha()

hasWhip() \ | These aet and set the boolean
SetWhip() it . the condiments.

/I Other useful methods..

82 Chapter 3

Now we'll implement cost() in Beverage (instead of
getDescription() — kcc\?ing it abstract), so that it can caleulate the

cost() (-—// costs assotiated with the condiments for a particular

beverage instance. Subelasses will still overvide

setMiIk(() eost(), but they will also invoke the super version so
hasSoy() that they can caleulate the total eost of the basic
setSoy() beverage plus the osts of the added tondiments.

the decorator pattern

Beverage
, . descriofi
Now let's add in the subclasses, one m?ﬁ(Cf'P ion
for each beverage on the menu: soy
mocha
whip

ss tost() will calevlate the

The sw ertld of the Lond\mcn{:s, while getDescription()

i,‘\)\s{-’:ve\orvr'\;‘c\icn tost() in the sublasses > cost)

\c\ extend that §vné’c\°"a"‘bf to hasMilk()
. de tosks for that specitit setMilk()
ntlude o{\/‘:c hasSoy()
beverage) setSoy()

i h 3 s£() method needs o tompute hasMocha()

Bach i< of the beveraoe and then sethlocha()

the tost ks by calling the hasWhip()

add in the tondiments 0Y setWhip()

Lakion of tost().

SS Im lemen
5“?‘”“3 (/I Other useful methods..

lg\\ ——

HouseBlend i DarkRoast i Decaf i Espresso i

cost() cost() cost() I cost() I

G harpen our pencil
o y

Write the cost() methods for the following classes (pseudo-Java is okay):

public class Beverage { public class DarkRoast extends Beverage {

public double cost() {
public DarkRoast() {

description = "Most Excellent Dark Roast";

}
public double cost() {

you are here » 83

impact of

See, five
classes total. This is
definitely the way to go.

I'm not so sure; I can
see some potential problems
with this approach by thinking
about how the desigh might need
to change in the future.

e dbharpen your penci
What requirements or other factors might change that will impact this design?

Price thanges £or tondiments will foree us to alter c%is{ing tode.

New condiments will forte us to add new methods and alter the cost method in the superclass.

We may have new beverages. For some of these beverages (iced tea?), the condiments
may not be appropriate, yet the Tea subelass will still inherit methods like hasWhipQ).

e yex

What if a customer wants a double motha?

\(ow ‘b““..

84

we Gt

\s
O\“&*\;a

wel

w

e

N .\6@3 g

the decorator pattern

Master and Student...

. =« Master: Grasshopper, it has been some time since our last
\7 © meeting. Have you been deep in meditation on inheritance?

Student: Yes, Master. While inheritance is powerful, | have
learned that it doesn’t always lead to the most flexible or
maintainable designs.

Master: Ah yes, you have made some progress. So, tell me my student, how
then will you achieve reuse if not through inheritance?

Student: Master, | have learned there are ways of “inheriting” behavior at
runtime through composition and delegation.

Master: Please, go on...

Student: When | inherit behavior by subclassing, that behavior is set statically
at compile time. In addition, all subclasses must inherit the same behavior. If
however, | can extend an object’s behavior through composition, then | can do
this dynamically at runtime.

Master: Very good, Grasshopper, you are beginning to see the power of
composition.

Student: Yes, it is possible for me to add multiple new responsibilities to objects
through this technique, including responsibilities that were not even thought of
by the designer of the superclass. And, | don’t have to touch their code!

Master: What have you learned about the effect of composition on maintaining
your code?

Student: Well, that is what | was getting at. By dynamically composing objects,
I can add new functionality by writing new code rather than altering existing
code. Because I'm not changing existing code, the chances of introducing bugs
or causing unintended side effects in pre-existing code are much reduced.

Master: Very good. Enough for today, Grasshopper. | would like for you to
go and meditate further on this topic... Remember, code should be closed (to
change) like the lotus flower in the evening, yet open (to extension) like the
lotus flower in the morning.

85

Administrator
反白

Administrator
反白

the open-closed

The Open-Closed Principle

Grasshopper is on to one of the most important design principles:

Design Principle

Classes should be open
for extension, but closed for
modification.

S CLOSED

open. Feel free to extend BUSINESS HOURS:
our classes with any new behavior you von IR 1o -y
like. If your needs or requirements change (and we EN

know they will), just go ahead and make your own
extensions.

Sorry, we’re closed.
That’s right, we spent
alot of time getting this code correct and

bug free, so we can’t let you alter the existing code.
It must remain closed to modification. If you don’t
like it, you can speak to the manager.

Our goal is to allow classes to be easily extended to
incorporate new behavior without modifying existing code.
What do we get if we accomplish this? Designs that are
resilient to change and flexible enough to take on new
functionality to meet changing requirements.

86

there]gre no

Dumb Questions

Q': Open for extension and closed
for modification? That sounds very
contradictory. How can a design be
both?

A: That’s a very good question. It
certainly sounds contradictory at first.

After all, the less modifiable something
is, the harder it is to extend, right?

As it turns out, though, there are some
clever OO techniques for allowing
systems to be extended, even if we can't
change the underlying code. Think
about the Observer Pattern (in Chapter
2)...by adding new Observers, we can
extend the Subject at any time, without
adding code to the Subject.You'll see
quite a few more ways of extending
behavior with other OO design
techniques.

Q: Okay, | understand Observable,
but how do | generally design
something to be extensible, yet closed
for modification?

A: Many of the patterns give us
time tested designs that protect your

code from being modified by supplying
a means of extension. In this chapter
you'll see a good example of using the
Decorator pattern to follow the Open-
Closed principle.

Q: How can | make every part of
my design follow the Open-Closed
Principle?

the decorator pattern

A: Usually, you can’t. Making OO
design flexible and open to extension

without the modification of existing
code takes time and effort. In general,
we don't have the luxury of tying

down every part of our designs (and it
would probably be wastefu). Following
the Open-Closed Principle usually
introduces new levels of abstraction,
which adds complexity to our code.
You want to concentrate on those areas
that are most likely to change in your
designs and apply the principles there.

Q_: How do | know which areas of
change are more important?

A: That is partly a matter of
experience in designing OO systems and

also a matter of the knowing the domain
you are working in. Looking at other
examples will help you learn to identify
areas of change in your own designs.

While 1t may seem like a contradiction,
there are teclmin[ues for allowing code to be
extended without direct modification.

Be careful when choosing the areas of code
that need 1o bhe extended; applying the
Open-Closec[Principle EVERYWHERE

is wasteful, unnecessary, and can lead to
com]olex, hard to understand code.

87

meet the decorator pattern

Okay, enough of the "Object
Oriented Design Club." We have real
problems here! Remember us? Starbuzz
Coffee? Do you think you could use
some of those design principles to
actually help us?

Meet the Pecorator Pattern

Okay, we’ve seen that representing our beverage plus condiment pricing
scheme with inheritance has not worked out very well — we get class
explosions, rigid designs, or we add functionality to the base class that isn’t
appropriate for some of the subclasses.

So, here’s what we’ll do instead: we’ll start with a beverage and “decorate”
it with the condiments at runtime. For example, if the customer wants a
Dark Roast with Mocha and Whip, then we’ll:

© Take a DarkRoast object

© Decorate it with a Mocha object
© Decorate it with a Whip object

Q Call the cost() method and rely on
delegation to add on the condiment costs

Okay, but how do you “decorate” an object, and how does delegation
come into this? A hint: think of decorator objects as “wrappers.” Let’s
see how this works...

88 Chapter 3

the decorator pattern

Constructing a drink order with Pecorators

© We start with our DarkRoast object.

o
ber -\;\'\a‘\: an ')
Remem veragt
m 'mhc\'-‘*’s Qv::\\B; ‘\;\\3‘\3 f,o"‘?“*‘cs
™ 'S

6 The customer wants Mocha, so we create a Mocha
object and wrap it around the DarkRoast.

i tor. ks
bietk is a decovd .
P i M?::ir: he ob)cc'h s ‘c‘ic_t,o\ri{,‘;mg,
m i ’
{':\IY‘:h\s case, @ Deverdde: (By “wie
‘:c mean it is the same Lyve-

() c{‘,hod {;oo,
So, Motha has 2 tost :, we tan tred

morph
’K and Eheoudh poly °YYd‘.m Motha 3s

B apye :
evevrage WY .
a'% Vcragc? too (betauvse Moc\n

a pe

svbtype § Beveraoe):

Q The customer also wants Whip, so we create a
Whip decorator and wrap Mocha with it.

Whip is a detorator, so it also
miveors DavkRoast’s type and
intludes a tost() method.

So, a DarkRoast wrapped in Motha and Whip is still
a Bcvcvage and we ¢an do an\/{:hing with it we ¢an do
with a DavkRoast, intluding call its cost() method.

you are here » 89

decorator

Q Now it’s time to compute the cost for the customer. We do this
by calling cost() on the outermost decorator, Whip, and Whip is
going to delegate computing the cost to the objects it decorates.

Once it gets a cost, it will add on the cost of the Whip. .
(Youll see how in

cs,)
e Whip calls cost() on Mocha. é? a few P39

First, we call cost() on the Mocha calls cost() on
outmost decorator, Whip. DarkRoast.

e DarkRoast
returns its cost,

99 cents.
Whip adds its total, 10 cents,
to the result from Mocha, and Mocha adds its cost, 20
returns the final result—$1.29. e cents, to the result from
parkRoast, and returns
the new total, $1.19.
Okay, here’s what we know so far...
= Decorators have the same supertype as the objects they decorate.
= You can use one or more decorators to wrap an object.
= Given that the decorator has the same supertype as the object it decorates, we can pass
around a decorated object in place of the original (wrapped) object. |
ey Pore

= The decorator adds its own behavior either before and/or after delegating to the object it
decorates to do the rest of the job.

= Objects can be decorated at any time, so we can decorate objects dynamically at runtime
with as many decorators as we like.

Now let’s see how this all really works by looking at the
Pecorator Pattern definition and writing some code.

90

Administrator
反白

Administrator
反白

The Decorator Pattern defined

Let’s first take a look at the Decorator Pattern description:

The Decorator Pattern attaches additional
responsibilities to an object dynamically.
Decorators provide a flexible alternative to
subclassing for extending functionality.

While that describes the role of the Decorator Pattern, it doesn’t give us a lot
of insight into how we’d apply the pattern to our own implementation. Let’s
take a look at the class diagram, which is a little more revealing (on the next
page we’ll look at the same structure applied to the beverage problem).

Component h

The Contrc{:eComPoncv\{:
is the objeet we're 9oing
to d\/namicall\/ add new
behavior to. [t extends

DY

methodA()

methodB()
Il other methods

the decorator pattern

=

Eath (.om?oncn{: ¢tan be used on its

C°MY°"°"J° ConcreteComponent i Decorator
methodA() methodA()
methodB() methodBy()

I other methods Il other methods

>

has an
The Cov\crc{:chcora{:or .
inskante vaviable Lor the thing
it decovates (the Com?oncv&
the Detorator wraps)-

\

ConcereteDecoratorA

ConcereteDecoratorB

own, or wraﬂ?cd b\/ a decorator.

component

Eath detorator HAS-A
(wraps) a tomponent, whith
means the detorator has an
instante vaviable that holds
a veferente to a component.

Dectorators implement the

same inkecfate or asbstract

tlass as the tomponent they

are 9oiny ko decorate

Component wrappedObj

methodA()
methodB()
newBehavior()
Il other methods

Component wrappedObj
Object newState

R

methodA()
methodBj()
Il other methods

Detovators tan extend the
skate of the ¢omponent.

—

Detorators tan add new methods; however, new
behavior is typically added by doing computation
before or after an existing method in the component.

you are here » 91

Administrator
註解
Here

decorating beverages

Pecorating our Beverages

Okay, let’s work our Starbuzz beverages into this framework...

Deveraoe atts as owr
Jbstract componen

AN

L class

Beverage

description

getDescription()
cost()
I/ other useful methods

component

HouseBlend DarkRoast CondimentDecorator
cost() cost() getDescription()
v 1
Espresso Decaf
cost() cost()
X Milk Mocha Soy Whip
erete B b B b B b B b
S}o\r‘f (X YC‘(everage beverage everage beverage everage beverage everage beverage
e e
T onent " cost() cost() cost() cost()
c’o:\;i et A\—‘\RC getDescription() getDescription() getDescription() getDescription()
t

NY 7oA

And here are our tondiment detorators; noti

get

estription(). We'll see why in @ moment...

ce

{hc%nccd to imFICmcn{; not only tost() but also

RANN
PQWEWR

Before going further, think about how you’d implement the cost() method of
the coffees and the condiments. Also think about how you’'d implement the
getDescription() method of the condiments.

92 Chapter 3

the decorator pattern

Cubicle Conversation

Some confusion over Inheritance versus Composition

going to use inheritance in this

Okay, I'm a little
confused...I thought we weren't

pattern, but rather we were going
to rely on composition instead.

Sue: What do you mean?

Mary: Look at the class diagram. The CondimentDecorator is extending the Beverage class.
That’s inheritance, right?

Sue: True. I think the point is that it’s vital that the decorators have the same type as the
objects they are going to decorate. So here we’re using inheritance to achieve the &ype matching,
but we aren’t using inheritance to get behavior.

Mary: Okay, I can see how decorators need the same “interface” as the components they wrap
because they need to stand in place of the component. But where does the behavior come in?

Sue: When we compose a decorator with a component, we are adding new behavior. We
are acquiring new behavior not by inheriting it from a superclass, but by composing objects
together.

Mary: Okay, so we're subclassing the abstract class Beverage in order to have the correct type,
not to inherit its behavior. The behavior comes in through the composition of decorators with
the base components as well as other decorators.

Sue: That’s right.

Mary: Ooooh, I see. And because we are using object composition, we get a whole lot more
flexibility about how to mix and match condiments and beverages. Very smooth.

Sue: Yes, if we rely on inheritance, then our behavior can only be determined statically at
compile time. In other words, we get only whatever behavior the superclass gives us or that we
override. With composition, we can mix and match decorators any way we like... at runtime.

Mary: And as I understand it, we can implement new decorators at any time to add new
behavior. If we relied on inheritance, we’d have to go in and change existing code any time we
wanted new behavior.

Sue: Exactly.

Mary: Ijust have one more question. If all we need to inherit is the type of the component,
how come we didn’t use an interface instead of an abstract class for the Beverage class?

Sue: Well, remember, when we got this code, Starbuzz already /ad an abstract Beverage class.
Traditionally the Decorator Pattern does specify an abstract component, but in Java, obviously,
we could use an interface. But we always try to avoid altering existing code, so don’t “fix” it if
the abstract class will work just fine.

93

decorator fraining

Okay, I need for you to
make me a double mocha,
soy latte with whip.

New barista training

Make a picture for what happens when the order is for a
“double mocha soy lotte with whip” beverage. Use the menu

to get the correct prices, and draw your picture using the

same format we used earlier (from a few pages back):

© whip calls cost() on Mocha.
Mocha calls cost() on

DarkRoast.
as for

wetwre W
—\ This pict e
=t 1B

& 5 “dark v
\m‘, " \peverade:
ocha

First, we call cost() on the
outmost decorator, Whip.

$1.29

o DarkRoast
returns its cost,

99 cents.
5] rlh‘l: adds its total, 10 cents,
e e e, © Mokt
DarkRoast, and returns
the new total, $1.19.
g i Starbuzz
L arpen your Pen(}l Draw your picture here. uzz ﬁoﬁ‘e .
Coffees
House Blend .89
Dark Roast .99
Decaf G
Espresso 1.99
Condiments
Steamed Milk 19
Mocha 20
Soy .15
Whip .10

94 Chapter 3

the decorator pattern

Writing the Starbuzz code

It’s time to whip this design into some real code.

Let’s start with the Beverage class, which doesn’t need to
change from Starbuzz’s original design. Let’s take a look:

public abstract class Beverage { s an a\;s{:‘rac‘t

String description = “Unknown Beverage”; Bcvcﬂﬁ;\“ fhe two methods
elass W 0 0.
‘ohi and Cos
public String getDescription () { 5C£DCSL\'\Y£‘O“
return description;
} \ getDeseription is alveady
i but we
public abstract double cost(); |mﬂtma¢£d§orus t w
} need to m?lcrncn{: COS‘[;()

in the subelasses.

Beverage is simple enough. Let’s implement the abstract
class for the Condiments (Decorator) as well:

public abstract class CondimentDecorator extends Beverage {

public abstract String getDescription(); (\
}

We've also going to require

that the tondiment

decorators all veimplement the
gc{:Dcscriy{:ion() method. Aoain,

we'll see why in a sec..

95

implementing the beverages
Coding beverages

Now that we’ve got our base classes out of the way, let’s
implement some beverages. We’ll start with Espresso.
Remember, we need to set a description for the specific
beverage and also implement the cost() method.

First we extend the DPeverage

. .
¢lass, sinte Lhis 1s 3 beveraqy
public class Espresso extends Beverage {

public Espresso() {

otion, we
description = “Espresso”; & To takectare of the dcscrl?E|0h£:’
: set this in the tonstruttor Yor he
tlass. Remember the destription instance
public double cost() { vaviable is hevited ‘Crom Bcvevagc.
return 1.99;
| We dont
} tost of an Espresse :
L Finally, we reed ©0 eompute the B 0 b in Ehis lass, e just
' n)

need to worey about addin

1197
d ko vekuen the prite ot an Espresso |
nee

public class HouseBlend extends Beverage {
public HouseBlend() {

description = “House Blend Coffee”;
) : o
} SsarbuZZ Coffe ‘
bli doubl t s
public double cost () { 992222— - 9
return .89; House 99
/ park Roast .05
: pecaf 1.99
ss0
,L Okay, here’s another Beverage. All we Espre
do is set the ap row;ialcc deseviption, (w 10
“House Blend Coffee,” and then veturn = Coamed wilk L
the corveet tost: 89¢. ocha e
soy 10
Whip
You tan treate the other two Beverage elassses

(DavkRoast and Decaf) in exattly the same way.

96 Chapter 3

Coding condiments

the decorator pattern

If you look back at the Decorator Pattern class diagram, you’ll
see we’ve now written our abstract component (Beverage), we
have our concrete components (HouseBlend), and we have our
abstract decorator (CondimentDecorator). Now it’s time to
implement the concrete decorators. Here’s Mocha:

Motha is a detorator, so we b
extend CondimentDetorator. Reme™

e e.
L ke o %mfa‘b

public class Mocha extends CondimentDecorator ({
Beverage beverage; A -
(2) way to e
{ vaviable to Lhe dbjett we J;:‘c \::4 C\:“;S?
Here, we've 909 pass the beve

public Mocha (Beverage beverage)
this.beverage = beverage;

}

public String getDescription() {

return beverage.getDescription() + “, Mocha”;

N

}

public double cost () {
return .20 + beverage.cost();
}
: beverage
ouke Lhe eost of our beverad

¢ the tall to the

tom
Now we need {o to "'e deleoat

with Motha: Fiest, <o Fhat it tan compute the

| ' torating, |
Zb i:tj{l{\‘:‘:n“v:ca;; {:\ncgcos{: of Motha to fhe vesult
osT))

Condimer e

(',oralwY

to \v\shan{:\a{c Motha with
toa Peverage using
le Lo hold the

We've ooing
a3 rcﬁcrcncc

(1) An instante vaviab

¢ we are Wrappind

beveray
et this instance

we' e wrapping Lo the detorator's

COhs‘b'\AC‘hor N

We want our deseription to not only
intlude the beverage — say “Davk
Roast” - but also to intlude each

item decorating the beverage, for
insfancc,“l)ark Roast, Motha”. So
we first delegate to the object we ave
decorating to get its description, then
append “, Motha” to that destription.

On the next page we'll actually instantiate the beverage and
wrap it with all its condiments (detorators), but First..

Write and compile the code for the other Soy and Whip
condiments. You'll need them to finish and test the application.

e harpen our pencil
S y

you are here »

97

testing the beverages

Serving some coffees

Congratulations. It’s time to sit back, order a few coffees and marvel at
the flexible design you created with the Decorator Pattern.

Here’s some test code to make orders:

public class StarbuzzCoffee { o“&mﬂAﬁ
an €5 esso d Los‘\'/
; - ; ' : Ovdec ¥ wpuon
public static void main(String args[]) { Vs . &\ksdchv
_ . 4 prw
Beverage beverage = new Espresso();
System.out.println (beverage.getDescription ()
+ N $” + beverage.cost()); b t
objett
Ma\(C a Da‘(‘kRoas‘t \)
Beverage beverage2 = new DarkRoast (); ¢~ Wrap it with 3 Motha-
beverage2 = new Mocha (beverage2) ;
beverage2 = new Mocha (beverage?2) ; V——- W”'aP itina setond Motha.
beverage2 = new Whip (beverage2); &——— WV'&P itina Whip
System.out.println (beverage2.getDescription ()
+ N $” + beverage2.cost());
Beverage beverage3 = new HouseBlend() ; 4?’_—“\\\
beverage3 = new Soy (beverage3) ; F'm&“‘[; oive us a HouscBlcnd
beverage3 = new Mocha (beverage3) ; with Soy, Motha, and Whip-

beverage3 = new Whip (beverage3) ;
System.out.println (beverage3.getDescription ()
+ N $” + beverage3.cost());

*We've 9oing to see a much better way of
ereating detorated ochch,s when we tover the

Now, let’s get those orders in: Factory and Builder

% java StarbuzzCoffee
Espresso $1.99
Dark Roast Coffee, Mocha, Mocha, Whip $1.49

House Blend Coffee, Soy, Mocha, Whip $1.34

%

98 Chapter 3

csign Patterns.

therejare no

Dumb Questions

Q: I'm a little worried about code
that might test for a specfic concrete
component — say, HouseBlend - and

do something, like issue a discount.
Once I've wrapped the HouseBlend
with decorators, this isn’t going to work
anymore.

A: That is exactly right. If you have
code that relies on the concrete component’s

type, decorators will break that code.

As long as you only write code against

the abstract component type, the use of
decorators will remain transparent to your
code. However, once you start writing code
against concrete components, you'll want to
rethink your application design and your use
of decorators.

Q: Wouldn't it be easy for some
client of a beverage to end up with

a decorator that isn’t the outermost
decorator? Like if | had a DarkRoast with
Mocha, Soy, and Whip, it would be easy
to write code that somehow ended up
with a reference to Soy instead of Whip,
which means it would not including Whip
in the order.

A: You could certainly argue that

you have to manage more objects with

the Decorator Pattern and so there is

an increased chance that coding errors
will introduce the kinds of problems you
suggest. However, decorators are typically
created by using other patterns like Factory
and Builder. Once we've covered these
patterns, you'll see that the creation of the
concrete component with its decorator is
“well encapsulated” and doesn't lead to
these kinds of problems.

the decorator pattern

Q: Can decorators know about the
other decorations in the chain? Say, |
wanted my getDecription() method to
print “Whip, Double Mocha” instead of
“Mocha, Whip, Mocha”? That would
require that my outermost decorator
know all the decorators it is wrapping.

AZ Decorators are meant to add
behavior to the object they wrap. When
you need to peek at multiple layers into
the decorator chain, you are starting to
push the decorator beyond its true intent.
Nevertheless, such things are possible.
Imagine a CondimentPrettyPrint decorator
that parses the final decription and can print
“Mocha, Whip, Mocha” as “Whip, Double
Mocha.” Note that getDecription() could
return an ArrayList of descriptions to make
this easier.

— s oharpen your pencil
i’ your p

Our friends at Starbuzz have introduced sizes to their menu. You can now order
a coffee 1n tall, grande, and vent sizes (translation: small, medium, and large).
Starbuzz saw this as an intrinsic part of the coffee class, so they’ve added two
methods to the Beverage class: setSize() and getSize(). They’d also like for the
condiments to be charged according to size, so for instance, Soy costs 10¢, 15¢
and 20¢ respectively for tall, grande, and venti coffees.

How would you alter the decorator classes to handle this change in requirements?

929

decorators in java i/o

Real World Pecorators: Java 170

The large number of classes in the java.io package is... overwhelming. Don’t feel alone
if you said “whoa” the first (and second and third) time you looked at this API. But
now that you know the Decorator Pattern, the I/O classes should make more sense
since the java.io package is largely based on Decorator. Here’s a typical set of

objects that use decorators to add functionality to reading data from a file:

A text file for veading,

<

Pnak's
wm 1S the tom O“c“.

Fx\.c\“";‘it:fcd‘\‘r he Java _/ ?,\‘\,‘:::’\l

\oc\'\‘b' cs al componen™ g‘ n wkSream

supplies rekream S‘\’X""?)ng cvgzw ner
LineNumbernputStream is Flehts aylnputStred™ and onent X¥0
also a contrete detorator-. Bl FevedlnputShrean B\f{',CP“’"\‘ \lsc give vs 2 base tom?
I adds the abilfy fo wreres P Al ok the

i i evete detorator
tount the line numbers as s @ ton ol

I'& !rcads da‘ta bcha\[ior in {wo Wa\lsz i

bu‘u:crs 'm\?u{: to improve
ycv(:o\rmancc, and also augmcn{s
he interface with a new
method readLine() for veading
thavatter—based nput, a line
at a time.

BufferedInputStream and LineNumberInputStream both extend
FilterInputStream, which acts as the abstract decorator class.

100 Chapter 3

BufferedlnputStream adds whith

Lo vead bytes

the decorator pattern

Pecorating the java.io classes

y\cn{’,
s owr a\)sjcxad’« tomye
fece

InputStream FilterlnputStream
/\ s an abs{:rac{:
decovator.

‘ FilelnputStream StnngBufferInputStream N ByteArraylnputStream FilterinputStream
‘ PushbackinputStream H BufferedinputStream h‘ DatalnputStream H LineNumberinputStream b
These InputStreams act as 7‘ / /
the tontrete tomponents that
we will wrap with detorators. ctovators.

Theve are a few more we didn't
show, like ObJCC‘EIn?u'ES‘Evcam

And (-"ma\l\/, heve ave all owr tontrete d

You can see that this isn’t so different from the Starbuzz design. You should
now be in a good position to look over the java.io API docs and compose
decorators on the various mput streams.

You'll see that the output streams have the same design. And you’ve probably
already found that the Reader/Writer streams (for character-based data)
closely mirror the design of the streams classes (with a few differences and
inconsistencies, but close enough to figure out what’s going on).

Java I70 also points out one of the downsides of the Decorator Pattern:
designs using this pattern often result in a large number of small classes

that can be overwhelming to a developer trying to use the Decorator-based
API. But now that you know how Decorator works, you can keep things in
perspective and when you’re using someone else’s Decorator-heavy API, you
can work through how their classes are organized so that you can easily use
wrapping to get the behavior you’re after.

you are here » 101

write your own

Writing your own Java 170 Decorator

Okay, you know the Pecorator Pattern, you've
seen the 170 class diagram. You should be ready to
write your own input decorator.

No problem. I just have to
extend the FilterInputStream class

How about this: write a decorator that converts and override the read() methods.

all uppercase characters to lowercase in the
input stream. In other words, if we read in “I
know the Pecorator Pattern therefore | RULE!”
then your decorator converts this to “i know the
decorator pattern therefore i rule!”

mport First, extend the Fi"{?CVI“\"‘{"S{"Ycam’ the
Dont foroet ::own§ abstract detorator for all InputStreams.

58V3.\o~-~ (not l

public class LowerCaselnputStream extends FilterInputStream {
public LowerCaselInputStream(InputStream in) {
super (in) ;

}

public int read() throws IOException {
int ¢ = super.read();
return (¢ == -1 ? ¢ : Character.tolLowerCase ((char)c));

}

public int read(byte[] b, int offset, int len) throws IOException {
int result = super.read(b, offset, len);

for (int i = offset; i < offset+result; i++) { \
b[i] = (byte)Character.toLowerCase ((char)b[i]); Now we need to im\’lc:rncv\{: two
} vead methods. They take a
st e byte (ov an arvay of bytes)
} and tonvert each byte (that

vepresents a thavatter) to
lowerease if it's an upperease
tharatter.

REMEMBER: we don't provide import and package

statements in the code listings. Get the complete

sourte tode from the wickedlysmart web site. Youll

find the URL on page xxxiii in the [ntvo.

102

the decorator pattern

Test out your new Java 170 Decorator

Write some quick code to test the 1/0 decorator:

public class InputTest {
public static void main(String[] args) throws IOException {

int c;
try {
InputStream in =) wtStream
new LowerCaseInputStream (K"_\ Qet v the F‘\i“?ﬁ'\rsjc with
new BufferedInputStream and dct,ov‘a‘h\c ! ,{—,S{‘xca"‘
new FileInputStream(“test.txt”))); Leceding¥
a Bv& bvahd new

Lhen owr
while ((c = in.read()) >= 0) { alrgwcvcasc\y\vuhg{’xcam

System.out.print ((char)c);

}

in.close();

filker-

} catch (IOException e) {
e.printStackTrace() ;

I know the Decorator Pattern therefore I RULE!

}

} Just use the stream to vead

thavatters until the end of

test.ixt file
file and print as we 90 I

\(O“ v\CCd {',O
Give it a spin: | ke this Fle

File Edit Window Help DecoratorsRule

% java InputTest
i know the decorator pattern therefore i rule!

%

you are here »

103

decorator

104

~ Patterns Exposed
This week’s interview:
Confessions of a Decorator

HeadFirst: Welcome Decorator Pattern. We've heard that you’ve been a bit
down on yourself lately?

Decorator: Yes, I know the world sees me as the glamorous design pattern, but
you know, I've got my share of problems just like everyone.

HeadFirst: Can you perhaps share some of your troubles with us?

Decorator: Sure. Well, you know I've got the power to add flexibility to
designs, that much is for sure, but I also have a dark side. You see, I can sometimes
add a lot of small classes to a design and this occasionally results in a design
that’s less than straightforward for others to understand.

HeadFirst: Can you give us an example?

Decorator: Take the Java I/0 libraries. These are notoriously difficult for
people to understand at first. But if they just saw the classes as a set of wrappers
around an InputStream, life would be much easier.

HeadFirst: That doesn’t sound so bad. You're still a great pattern, and
improving this is just a matter of public education, right?

Decorator: There’s more, I'm afraid. I've got typing problems: you see,
people sometimes take a piece of client code that relies on specific types and
introduce decorators without thinking through everything. Now, one great thing
about me is that you can usually insert decorators transparently and
the client never has to know it’s dealing with a decorator. But like |
said, some code is dependent on specific types and when you start introducing
decorators, boom! Bad things happen.

HeadFirst: Well, I think everyone understands that you have to be careful
when inserting decorators, I don’t think this is a reason to be too down on
yourself.

Decorator: I know, I try not to be. T also have the problem that introducing
decorators can increase the complexity of the code needed to instantiate the
component. Once you’ve got decorators, you've got to not only instantiate the
component, but also wrap it with who knows how many decorators.

HeadFirst: I'll be interviewing the Factory and Builder patterns next week — I
hear they can be very helpful with this?

Decorator: That’s true; I should talk to those guys more often.

HeadFirst: Well, we all think you’re a great pattern for creating flexible designs
and staying true to the Open-Closed Principle, so keep your chin up and think
positively!

Decorator: I’ll do my best, thank you.

Tools for your Design Toolbox

You’ve got another chapter under
your belt and a new principle and
pattern in the toolbox.

00 Printiples

hat vavies:
Ent,avsu\akc W —

; v
<sikion over inher

no‘h

F avor tomyo

Prooyam ‘o '\n{:cvﬁ ates)

\m\’\cmc"{"ahms'

for \oosc\\’ covv\cd desions

Ghyive ker atk
. Lhat
bebween oh)cc‘cs for A/W-c\ row have the OVCh‘C!“‘d .
Classes should be oFEY or Printiple £o quide vs. Wee 9oing
Lension bk closed to strive £o design our system
¢ (ieation: so that the tlosed parts are
modixé isolated from our new extensions.

]) ons
¢ our Kiest \JaH:crn for _cVFa\t,\ngocjc; 25 .‘
o \"C“.SQ the Ovcv\—C\oscd Printip JC.JC or v
ot 53{:)";\‘5 E’ws‘c?. |s there another Ya\ e
rcig\,’c\\ai Lollows this YY‘\V\C\\?\C as well¢
(T3

the decorator pattern

—— BULLET POINTS

= |nheritance is one form of
extension, but not necessarily
the best way to achieve flexibility
in our designs.

= |n our designs we should allow
behavior to be extended without
the need to modify existing code.

= Composition and delegation
can often be used to add new
behaviors at runtime.

= The Decorator Pattern provides
an alternative to subclassing for
extending behavior.

= The Decorator Pattern involves
a set of decorator classes that
are used to wrap concrete
components.

= Decorator classes mirror the
type of the components they
decorate. (In fact, they are the
same type as the components
they decorate, either through
inheritance or interface
implementation.)

= Decorators change the behavior
of their components by adding
new functionality before and/or
after (or even in place of) method
calls to the component.

= You can wrap a component with
any number of decorators.

= Decorators are typically
transparent to the client of the
component; that is, unless
the client is relying on the
component’s concrete type.

= Decorators can result in many
small objects in our design, and
overuse can be complex.

105

exercise solufions

Exercise solutions

public class Beverage {

// declare instance variables for milkCost,
// soyCost, mochaCost, and whipCost, and
// getters and setters for milk, soy, mocha public class DarkRoast extends Beverage {

// and whip.
public DarkRoast() {
public float cost() { description = "Most Excellent Dark Roast";
float condimentCost = 0.0;)
if (hasMilk()) { public float cost() {
condimentCost += milkCost;
} return 1.99 + super.cost():
if (hasSoy()) {
condimentCost += soyCost; } }
}

if (hasMocha()) {
condimentCost += mochaCost;
}
if (hasWhip()) {
condimentCost += whipCost;
}

return condimentCost;

New barista trainin
! “double mocha soy lotte with whip”

e Whip calls cost() on Mocha
e Mocha calls cost() on another Mocha.

° P e dec cots t()\:l:it: © e Next, Mocha calls cost() on Soy.
outmost decorator, .

"

e Last topping! Soy calls
cost() on HouseBlend.

0 HouseBlend’s cost()
method returns .89
cents and pops off
the stack.

Soy’s cost() method

adds .15 and returns
the result, and pops
off the stack.

The second Mocha’s

cost() method adds .20

and returns the result,

and pops off the stack.

@ Finally, the result returns to
Whip’s cost(), which adds .10 and
we have a final cost of $1.54.

e The first Mocha’s cost() method
adds .20 and returns the result,
and pops off the stack.

106

Chapter 3

the decorator pattern

Exercise soutions

Our friends at Starbuzz have introduced sizes to their menu. You can now order a coffee in
tall, grande, and venti sizes (for us normal folk: small, medium, and large). Starbuzz saw this
as an intrinsic part of the coffee class, so they’ve added two methods to the Beverage class:
setSize() and getSize(). They’d also like for the condiments to be charged according to size, so
for instance, Soy costs 10¢, 15¢, and 20¢ respectively for tall, grande, and venti coffees.

How would you alter the decorator classes to handle this change in requirements?

public class Soy extends CondimentDecorator ({
Beverage beverage;

aoate the
Now we need to YYJZ\: ‘3\6 wra\y\:cd_

public Soy(Beverage beverage) { N SC{S\u() md’,\\z\d wd also move 'S
this.beverage = beverage; beverage: We sho L elass sinte
} ethod to he bstrac detorators:
m‘l:’ s wsed In all CO“d""“"*‘ €
\

public getSize() {
return beverage.getSize();

}

public String getDescription() {
return beverage.getDescription() + %, Soy”;

}

public double cost() {

double cost = beverage.cost();

if (getSize() == Beverage.TALL) { L7\ Heve we 56{: the size (whith
cost += .10; onyasa’ccs all the way 4o the

} else if (getSize() == Beverage.GRANDE) ({ tontrete bcvcvagc) and then
cost += .15; add the appropriate cost.

} else if (getSize() == Beverage.VENTI) {

cost += .20;
}

return cost;

you are here » 107

J the Singleton Pattern

*
*+ One of a Kind Objects .,

I tell ya she's ONE OF A

KIND. Look at the lines,

the curves, the body,
the headlights!

You talkin' to me or the car? Oh,
and when can I get my oven mitt
back?

Our next stop is the Singleton Pattern, our ticket to creating one-
of-a-kind objects for which there is only one instance. you might be
happy to know that of all patterns, the Singleton is the simplest in terms of its class diagram;
in fact, the diagram holds Just a single class! But don't get too comfortable; despite its
simplicity from a class design perspective, we are going to encounter quite a few bumps and
potholes in its implementation. So buckle up.

this is a new chapter 169

one and only one

What is this? An
entire chapter about how to

instantiate just
ONE OBJECT!

That's ene and ONLY
ONE object.

Developer: What use is that?

Guru: There are many objects we only need one of: thread pools, caches, dialog boxes, objects that handle
preferences and registry settings, objects used for logging, and objects that act as device drivers to devices
like printers and graphics cards. In fact, for many of these types of objects, if we were to instantiate

more than one we'd run into all sorts of problems like incorrect program behavior, overuse of resources, or
inconsistent results,

Developer: Okay, so maybe there are classes that should only be instantiated once, but do I need a whole
chapter for this? Can't I just do this by convention or by global variables? You know, like in Java, I could do it
with a static variable.

Guru: Inmany ways, the Singleton Pattern is a convention for ensuring one and only one object is instantiated
for a given class, If you've got a better one, the world would like to hear about it; but remember, like all
patterns, the Singleton Pattern is a time-tested method for ensuring only one object gets created. The
Singleton Pattern also gives us a global point of access, just like a global variable, but without the downsides.

Developer: What downsides?

Guru: Well, here's one example: if you assign an object to a global variable, then you have to create that object
when your application begins®. Right? What if this object is resource intensive and your application never ends
up using it? As you will see, with the Singleton Pattern, we can create our objects only when they are needed.

Developer: This still doesn't seem like it should be so difficult.

Guru: If you've got a good handle on static class variables and methods as well as access modifiers, it's not.
But, in either case, it is interesting to see how a Singleton works, and, as simple as it sounds, Singleton code is
hard to get right. Just ask yourself: how do I prevent more than one object from being instantiated? It's not
so obvious, is it?

*This Is actually implementation dependent. Some IVM's will create these objects lazily.

170 Chapter 5

the singleton pattern

I/ - -

The Little Singleton

A small Soeratic exereise in the style of The Little Lisper
- How would you create a single object? new MyObject ()
And, what if another object wanted to create a Yes, of course.
MyObject? Could it call new on MyOhbject again?
S0 as long as we have a class, can we always Yes. Well, only if its a public class,
instantiate it one or more times?

And if not? Well, if it’s not a public class, only classes in the same

package can instantiate it, But they can still instantiate
it more than once.

Hmm, interesting, No, I'd never thought of it, but I guess it makes

Did you know you could do thie? sense because it is a legal definition,

Public MyClass |

private MyClass() {}

What does it mean? Tsuppose it is a class that can’t be instantiated
because it has a private constructor,

Well, is there ANY object that could use

Huml,lmhlkﬂmcodeinM}'Classixthcunly
the private constructor? code that could call it. But that doesn't make
much sense,

youare here » 171

creating a singleton

Why not ?

Because I'd have to have an instance of the
class to call it, but I can't have an instance
because no other class can instantiate it. It’s
a chicken and egg problem: 1 can use the
constructor from an object of type MyClass,
but | can never instantiate that object because
no other object can use “new MyClass()",

Okay. It was just a thought.
What does this mean?

public MyClass {

public static MyClass getInstance()
}

{

MyClass 15 a class with a static method. 'We can
call the static method like this:

MyClass.getInstance():

Why did you use MyClass, instead of
some object name?

Well, getInstance() is a static method; in other
words, it is a CLASS method. You need to use
the class name to reference a static method.

Very interesting. What ift we put things together.
Now can I instantiate a MyClass?

public MyClass {
private MyClass() [}
public static MyClass getInstancel()

return new MyClasas();:
}

Waw, you sure can,

So, now can you think of a second way to instantiate
an object?

MyClass.getIinstance();

Can you finish the code so that only ONE instance
of MyClass is ever created?

172 Chapter5

Yes, I think so...

(You'll find the code on the next page.}

Pissecting the classic Singleton
Pattern implementation

Let's rendame Mh‘“ Qe Wave 3 ‘ﬁw
W q u#
public class Singleton | - “:\::‘MEW

private static Singleton uniquelnstance;

/{ other useful instance variables here

€ Qur tomstructor

private Singleton() {} detlared private;
. 1 La-"_
public sts gleton getihets ﬁhgﬁm“ elass!
if (unigueInstance == null) | tns tanti

uniquelnstance = new Singleton

}

The getlnstance)

method Bives ws 3 way

to imstantiate the elass
phier useful methods here ard also to vedurn an
instante of it

0f Course, Simaleton is
d normal glass: it has
vaviables ang methads,

n uniguelnstance:

the singleton pattern

Wateh it]

If you're just
flipping through
the book, don't

code, you'll see a
it has a few issues

blindly type in this

later in the chapter.

if (uniqueInstance == null) |
uniquelnstance = new MyClassi() ;

} e

return unigueInstance;

have an instante and we retirn it

instante; vemember, it is 2)
ctatic Euht:. /

ﬁ Code Up (sse
£ uniquelnstante is riell, Ehen we

unique|nstante holds cur ONE haven't treated the instante yeb..
cand, if it doesm't exist, we
instantiate Singleton through its

private tonstruttor and assign

it to wniquelnstance. Note that

if we never need the instance, it
never ﬁch eveated; this is]a:.'f

mstantiation

£ unique[nstance wasm't mall,

then it was previously treated
We just fall through to the
By the time we hit this code, we redurn statement

you -are here »

173

interview with singleton

This week's interview:
Confessions of a Singleton

HeadFirst: Today we are pleased to bring you an interview with a Singleton object. Why don'’t
you begin by telling us a bit about yourself,

Singleton: Well, I'm totally unique; there is just one of me!
HeadFirst: One?

Singleton: Yes, one. I'm based on the Singleton Pattern, which assures that at any one time
there is only one instance of me.

HeadFirst: Isn't that sort of a waste? Someone took the time to develop a full-blown class and
now all we can get is one object out of it?

Singleton: Not at all! There is power in ONE. Let's say you have an object that contains
registry settings. You don’t want multiple copies of that object and its values running around
— that would lead to chaos. By using an object like me you can assure that every object in your
application is making use of the same global resource.

HeadFirst: Tell us more...

Singleton: Oh, I'm good for all kinds of things, Being single sometimes has its advantages you
know. I'm often used to manage pools of resources, like connection or thread pools.

HeadpFirst: Siill, only one of your kind? That sounds lonely.

Singleton: Because there's only one of me, I do keep busy, but it would be nice ift mare
developers knew me — many developers run into bugs because they have multiple copies of
objects floating around they’re not even aware of,

HeadFirst: So, if we may ask, how do you know there is only one of you? Can't anyone with a
new operator create a *new you™'?

Singleton: Nope! I'm truly unique.
HeadFirst: Well, do developers swear an oath not to instantiate you more than once?

Singleton: OFf course not. The truth be told... well, this is getting kind of personal but... 1
have no public constructor.

HeadFirst: NO PUBLIC CONSTRUCTOR! Oh, sorry, no public constructor?
Singleton: That's right. My constructor is declared private.
HeadFirst: How does that work? How do you EVER get instantiated?

Singleton: You sce, to get a hold of a Singleton object, you don't instantiate one, you just ask
for an instance. So my class has a static method called getInstance(). Call that, and I'll show up
at once, ready to work. In fact, [may already be helping other objects when you request me.

HeadFirst: Well, Mr. Singleton, there seems to be a lot under your covers to make all this work.
Thanks for revealing yourself and we hope to speak with you again soon!

174 Chapter 5

o e ———

the singleton pattern

Everyone knows that all modern chocolate factories have computer controlled
colate boilers. The job of the bailer is to take in chocolate and milk, bring them
boil, and then pass them on to the next phase of making chocolate bars.

Here's the controller class for Choc-O-Holie, Ine.’s industrial strength Chocolate
Boiler. Check out the code; you'll notice they've tried to be very careful to ensure
that bad things don’t happen, like draining 500 gallons of unboiled mixture, or
filling the boiler when it’s already full, or boiling an empty boiler!

lpublic class ChocolateBoiler {
private boolaean empty;
private boolean boilaed;

empty = true; when the boiler iz emphyl

boiled = false;

public ChocolateBoiler() [e_/—Thi: eode is only started

}

; dev it must be
public void fi11() ¢ To ﬁ"::: ib's Full, we set
if (fsEmpty()) | Ez?':?bf r;,,d, boiled ‘Fh&"

empty = false;
boiled = false;
// 11l the boiler with a milk/chocolate mixture

public void drain() | p

if (lisEmpty() && isBoiled()) |{ To drain the boiler, it must be full
// drain the boiled milk and choeelata (non empty) and also boiled. Once it is
empty = true; drained we set empty back to true.

public wvoid boil() {
if (lisEmpty() && !isBoiled()) |

i ; To boil the miture, the boiler
;:ill:::;ng :Eﬁa;:mntents to a boil has o be full 2 mi:ah-_ml:.r
} boiled. Once it's boiled we sel
) the boiled flag £o frue,

public boolean isEmpty() |
return empty;
}

pPublic boolean isBoilead() {

return boiled;
}

you are here » 175

chocolate boiler singleton

VAN
QWEWR

Choc-O-Holic has done a decent job of ensuring bad things don't happen, don't ya think? Then
again, you probably suspect that if two ChocolateBoiler instances get loose, some very bad

things can happen.

How might things go wrong if mere than one instance of ChocolateBailer is created in an
application?

pen your Penm] Can you help Choc-O-Holic improve their ChocolateBoiler class
by turning it into a singleton?

public class ChocolateBoiler |
private boolean empty;
private boolean boiled;

: ChocolateBoiler{) |

empty = Ltrue;
boiled = false;

public void fill({) {
if (isEmpty(}) |
empty = false;
boiled = false:
// fill the boiler with a milk/chocolate mixture
}
}
// rest of ChocolateBoiler code,..

176 Chapter 5

the singleton pattern

Singleton Pattern defined

Now that you’ve got the classic implementation of Singleton
in your head, it’s time to sit back, enjoy a bar of chocolate,
and check out the finer points of the Singleton Pattern.

Let’s start with the concise definition of the pattern:

The Singleton Pattern ensures a class has only one
instance, and provides a global point of access to it.

No big surprises there. But, let’s break it down a bit more:

® What's really going on here? We're taking a class and letting it manage a
single instance of itsell. We're also preventing any other class from creating a
new instance on its own. To get an instance, you've got to go through the class
itself,

® We're also providing a global access point to the instance: whenever you
need an instance, just query the class and 1t will hand vou back the single

instance. As you've seen, we can implement this so that the Singleton is created
mn a lazy manner, which is especially important for resource intensive objects.

Dkay, let’s check out the class diagram:

(0 metbed 800 The mengans:
i rﬂﬁ%‘ Yo ﬁi ::a:::l;im{mﬂ:r
i x of Sinaleton.
t;: W::lm:::l Y n“-‘i‘-m:ﬁ}ﬂti’ | Singlaton 3
o ta : : | static uniqueinstance
Q,WE‘H \doal vavies :
Ei?:tk::“; “‘51' ebar | static getlnstance()

i if Othar useful Singleton methads..,

R A elass implementing the Singleton

. Sinaleton;
Patlern is more ‘H"a“: da:"sﬁ'w T e

tisa al
ffm and metheds.

o 5

you are here v 177

threads are a problem

Hershey. A
~Houston-we have a problew...

It looks like the Chocolate Boiler has let us down; despite
the fact we improved the code using Classic Singleton,
somehow the ChocolateBoiler's fill() method was able

to start filling the boiler even though a batch of milk and
chocolate was already boiling! That’s 500 gallons of spilled
milk (and chocolate)! What happened!?

We don't know what happened! The
new Singleton code was running fine. The only
thing we can think of is that we just added some
optimizations to the Chocolate Boiler Controller
that makes use of multiple threads.

Could the addition of threads have caused
this? Isn't it the case that once we've set
the uniquelnstance variable to the sole
instance of ChocolateBoliler, all calls to
getinstance() should return the same
instance? Right?

178 Chapter 5

the singleton pattern

BE the JVM

_ We have two threads, each executing this code. Your job is fo play the JVM

@ and determine whether there is a case in which two threads might get ahold

o of different hoiler objects. Hint:
; you rea]ly just need to Jook at the

sequence of operations
in the getInstance()

method and the va]ue of

%f* uniquelnstance fo see
: how they might over]ap.
Use the code Magnets to help

you study how the code might inter|eave to create two hoiler objects.

public static ChocolateBoiler

Make sure you check your answer on
getInstance () {

page 188 before turning the pagel

if (uniqueInstance == null) |

uniquelnstance =
new ChocolateBoiler():

return uniquelnstance;

Thread Thread Value of
One Two || uniqueInstance

vou are here v 179

multithreading and singleton

Pealing with multithreading

Our multithreading woes are almost trivially fixed by making
getinstance() a synchronized method:

public class Singleton ({ . ized keyword o
private static Singleton unigqueInstance; BT ﬁi‘aﬁ%‘! -:t F.:::LEWT thread to
ni evdy ; E f..ﬂf
// other useful instance variables here waik, its turn before it mtmads may
nekhod: That is, no twe A
private Singleton() {} enber the mebhiod ab the same .

public static Mﬁ E< Singleten getInstance() |
if (uniquelnstance == null) |
uniquelnstance = new Singleton();

return uniquelnstance;
}

// other useful methods here

I agree this
fixes the problem,
But synchronization
is expensive; is this an
issue?

Good point, and it's actually a little worse than you make out: the only
time synchronization is relevant is the first tme through this method. In
other words, once we've set the uniquelnstance variable to an instance
of Singleton, we have no further need to synchronize this method. After
the first time through, synchronization is totally unneeded overhead!

180 Chapter 5

the singleton pattern

Can we improve multithreading?

For most Java applications, we obviously need to ensure that the Singleton works in the presence
of multiple threads. But, it looks fairly expensive to synchronize the getInstance() method, so what
do we do?

Well, we have a few options...

1. Po nothing if the performance of getlnstancel) isn't eritical to
your application

That's right; if calling the getInstance() method isn't causing substantial overhead for your
application, forget about it. Synchronizing getInstance() is straightforward and effective. Just keep
in mind that synchronizing a method can decrease performance by a factor of 100, so if a high
traffic part of your code begins using getInstance(), you may have to reconsider.

2., Move to an eagerly created instance rather than a lazily
created one
If your application always creates and uses an instance of the Singleton or the overhead of

creation and runtime aspects of the Singleton are not onerous, you may want to create your
Singleton eagerly, like this:

public class Singleton { mﬁﬂihﬂdh&;
private static Singleton unigueInstance = new Singleten(); insta ! 5!
L L A L 12 e i m ,,ansr in
private Singleton() {} . ihr{'x. initializer. This
tode is ﬁuarin&.:d ta be
public static Singleton getInstance() | thread :a&_f
} instante, 0 just ret

Using this approach, we rely on the JVM to create the unique instance of the Singleton when
the class is loaded. The JVM guarantees that the instance will be created before any thread
accesses the static uniquelnstance variable,

yvou are here » 181

double-checked locking

3. Use ‘double-checked locking” to reduce the use of
synchronization in getlnstancel)

With double-checked locking, we first check to see if an instance is created, and if not, THEN we
synchronize. This way, we only synchronize the first time through, just what we want.

Let's check out the code:

public class Singleten |

private yolati ;*statir: Singleton uniguelnstance;

private Singleton() {}

E hw‘-"d

public static Sinqleton getlnstance{} { == &Himwﬂi one, enter 3
Af {uniguelnstance == null) { SoryEe blotk.

Nq{-,cwoﬂyswhhmiu

the Fiest Lime throuah!

}
return uniqueInstance; - ﬂnct in the block, eheck 383in and
} i still mull, eveate an instante,

* The volatile keyword ensures that multiple hreads
handle the uniquelnstante variable t.armﬂ'r when it
is being initialized +o the Singleton mstance.

If performance is an issue in your use of the getInstance() method then this method of
implementing the Singleton can drastically reduce the overhead.

B Double-checked locking doesn’t
Watch jt! workin Java 1.4 or earlier!

infortur, d earlier, many
ately, in Java version 1.4 an

E\st contain implementations of the ﬁ:?tabh keyword
that allow improper synchronization ey
locking. If you must use & a JVM other than et
consider other methods of implementing your :

182 Chapter 5

e ————

the singleton pattern

‘Meanwhile, back at the Chocolate Factory...

‘While we've been off diagnosing the multithreading problems, the chocolate boiler
has been cleaned up and is ready to go. But first, we have to fix the multithreading
problems. We have a few solutions at hand, each with different tradeoffs, so which
solution are we going to employ?

e

For each solution, describe its applicability to the problem of fixing the Chocolate
Boiler code:

Synchronize the getinstance(} method:

Use eager instantiation:

Double-checked locking:

Congratulations!

At this point, the Chocolate Factory is a happy customer and Choe-O-Holic was glad to have some
expertise applied to their boiler code. No matter which multithreading solution you applied, the boiler
should be in good shape with no more mishaps. Congratulations, You've not only managed to escape
500Ibs of hot chocolate in this chapter, but you've been through all the potential problems of the Singleton.

you are here »+ 41B3

g&a about singleton

Q: For such a simple pattern
consisting of only one class,
Singletons sure seem to have some
problems.

A: Well, we warned you up

front! But don't let the problems
discourage you; while implementing
Singletons correctly can be tricky, after
reading this chapter you are now

well informed on the techniques for
creating Singletons and should use
them wherever you need to control
the number of instances you are
creating.

Since Java 1.2 this bug has been fixed and a global reference is no longer
required. If you are, for some reason, still using a pre-Java 1.2 JVM, then be
aware of this issue, otherwise, you can sleep well knowing your Singletons

DU Giestions

Q: Can'tl just create a class in
which all methods and variables are
defined as static? Wouldn't that be
the same as a Singleton?

A: Yes, If your class is self-
contained and doesn't depend on

complex initialization. However,
because of the way static
initializations are handled in Java,
this can get very messy, especially if
multiple classes are involved. Often
this scenario can result in subtle,
hard to find bugs involving erder

of initialization. Unless there is a
compelling need to implement your
“singleton” this way, it is far better to
stay in the object world.

pEEssssrEnnn

Rumors of Singletons being eaten by the garbage

collectors are greatly exaggerated

Prior to Java 1.2, a bug in the garbage collector allowed Singletons :

to be prematurely collected if there was no global reference to them. In other :
words, you could create a Singleton and if the only reference to the Singleton
was in the Singleton itself, it would be collected and destroyed by the garbage :
collector. This leads to confusing bugs because afler the Singleton is ;

“collected,” the next call to getinstance() produced a shiny new Singleton. In
many applications, this can cause confusing behavior as stafe is mysteriously
reset o initial values or things like network connections are reset.

won't be prematurely collected.

ERRA S e R N AR R R R b e R R e

184 Chapter 5

Q,: What about class loaders?

I heard there is a chance that two (
class loaders could each end up with o
their own instance of Singleton. ::
Is
A: Yes, that is true as each class
loader defines a namespace. If you /|
have two or more classloaders, you
can load the same class multiple times t
lonce in each classloader). Now, if that P
class happens to be a Singleton, then th
since we have more than one version fc
of the class, we also have more than P
one instance of the Singleton. So, if 51
you are using multiple classloaders ir
and Singletons, be careful. One way b
around this problem is to specify the si
classloader yourself. te
n
n
o
w
W
d
S S|

*

Q: I've always been taught that
- aclass should do one thing and one
thing only. For a class to do twe
things is considered bad 00 design.
Isn't a Singleton violating this?

_ A: You would be referring to

the “One Class, One Responsibility”
principle, and yes, you are correct,

the Singleton is not only responsible
for managing its one instance (and
providing global access), it is also re-
sponsible for whatever its main role is
Inyour application. So, certainly it can
be argued it is taking on two respon-
sibilities. Mevertheless, itisn't hard

to see that there is utility in a class
‘managing its own instance; it certainly
makes the overall design simpler. In
addition, many developers are familiar
with the Singleton pattern as itis in
wide use, That said, some developers
do feel the need to abstract out the
Singleton functionality.

Q: I wanted to subclass my
Singleton code, but | ran into
problems. Is it okay to subclassa
Singleton?

A: One problem with subclassing
Singleton is that the constructor is
private. You can't extend a class with
a private constructor. So, the first
thing you'll have to do is change
your constructor so that it's public

or protected. But then, it's not really
a Singleton anymore, because other
classes can instantiate it.

If you do change your constructor,
there's another issue. The
implementation of Singleton is based
on a static variable, so if you do a
straightforward subclass, all of your
derived classes will share the same
instance variable. This Is probably
not what you had in mind. So, for
subclassing to work, implementing
registry of sorts is required in the base
class.

Before implementing such a scheme,
you should ask yourself what you

are really gaining from subclassing

a Singleton. Like most patterns, the
Singleton is not necessarily meant

to be a solution that can fitinto a
library. In addition, the Singleton code
is trivial to add to any existing class.
Last, if you are using a large number
of Singletons in your application,
you should take a hard look at your
design. Singletons are meant to be
used sparingly.

the singleton pattern

Q,: I still don't totally understand
why global variables are worse than
a Singleton,

A: In Java, global variables are
basically static references to objects.
There are a couple of disadvantages
to using global variables in this
manner. We've already mentioned
one:the issue of lazy versus eager
Instantiation. But we need to keep

in mind the intent of the pattern: to
ensure only one instance of a class
exists and to provide global access. A
global variable can provide the latter,
but not the former. Global variables
also tend to encourage developers
to pollute the namespace with lots
of global references to small objects.
Singletons don't encourage this in
the same way, but can be abused
naonetheless.

185

you are here »

your design toolbox

Tools for your Pesign Toolbox

You've now added another pattern to your
toolbox. Singleton gives you another method
of creating objects - in this case, unique
objects.

When you need &0 €S
m\l"‘ hﬁ“:r"::n:w iﬁ‘,‘hmﬂﬂl

Lurn b0 the Singleter

' n, despite its apparent simplicity, theve are a Ifrl:. of details
iime':fi: S:;Irl:nn': implementation. hhﬂ reading 'E}.us thapter,
thouah, You are ready to 8o owk and use 5ih5|rﬁon in the wild.

186 Chapter 5

e,

The Singleton Pattern ensures
you have at most one instance
of a class in your application;

The Singleton Pattemn also
provides a global access point
to that instance.

Java's implementation of the
Singleton Pattern makes use
of a private constructor, a static
method combined with a static
varable.

Examine your performance
and resource constraints and
carefully choose an appropriate |
Singleton implementation for
multithreaded applications
(and we should consider all
applications multithreaded!).

Beware of the double-checked
locking implementation; it is nol
thread-safe in versions before
Java 2, version 5.

Be careful if you are using
multiple class loaders; this
could defeat the Singleton
implementation and result in
multiple instances.

If you are using a JVM earlier
than 1.2, you'll need to create a
registry of Singletons to defeat
the garbage collector.

chapter,

Sit back, open that case of chocolate
the multithreading problem, and have some downtime working on
this little crossword puzzle; all of the solution words are from this

|

the singleton pattern

that you were sent for solving

Across

1. It was "one of a kind"

2. Added to chocolate in the boiler

8. An incorrect implementation caused this to
overflow

10. Singleton provides a single instance and
{three words)

12. Flawed multithreading approach if not using
Java 1.5

13. Chocolate capital of the US

14. One advantage over global variables:
creation

15. Company that produces boilers

16. To totally defeat the new constructor, we
have to declare the constructor

Down

1. Multiple can cause problems
3. A Singleton is a class that manages an
instance of

4. If you don't need to worry about lazy
instantiation, you can create your instance

9. Prior to 1.2, this can eat your Singletons (two
words)

6. The Singleton was embarassed it had no
public

7. The classic implementation doesn't handle
this

9. Singleton ensures only one of these exist
11. The Singleton Pattern has one

you are here » 187

exercise solutions

Exercise
so]utions

geatlnstancel) |

BE the JUM
Thead Thead Value of
One Two || uniqeelnstance
public atatic Chetdlstdbollers moll

Funlic sracie Chacnlatebodiler
getinatancel) |

LE juniguaTaatands == full) |

null #uh oy Ehis dotlh’{r

1 ook goed!

Af lieniguelnstances == nullj {

unlguslrstances =
naw ChocolateBoilarily

raturn unigualnstancs

unlgualnatance =
new ChocolateBodles()r

Faturn uniguelnstance;

nall

“girjectls

<ebjactlsla

1@”!:'.21__# T'II'G dI‘FFCrﬂ\‘E
ohiet

<abjectds J h e

veturned! We have
two ChotolatePailer

inskanesll

}'ﬂl!'

public class ChocolateBoiler |
private boolean empty;
private boolean bolleds

il Can you help Choe-O-Holic improve their ChocolateBoller class
“ by turning it into a singleton?

private static ChocolateBoller uniquelnstance:

ChocolateBoller() |

mty = Erued
batled = False;

piblic static ChocolateBoiler getInscance() |

i

1f [unlgquelnstance == pgull] |

vnigquelnstance = new ChocolateBaller(]:
|

return unigquelnstance;

I

pablic woid HLL() |
if (isEsptyil) |

i

£ paak of ChocolateSoiler coda...

srpry = false:
boiled = falase;

ff ALl the boiler with & milk/chocolate mixture

188

Chapter 5

]

the singleton pattern

ercise Solutions

wrpe yor pe

For each solution, describe its applicabillity to the problem of fixing the Chocolate
Boiler code:

Synchronize the getinstance() method:

fi straiahtfovuard Lechnique that is auaranteed to work. We don't seem o have amy

performante conterns with the chotalabe boiler, 50 this would be 2 good theice.

Use eager instantiation:
We are aluays going to instantiste the ehotolite boiler in our tade, 10 statically imializing the

intante would Lause no tonterns. Thi sobebion would work a5 well 3s the snehrorized methed,
although perbaps be less obviows to 3 developer familar with the standard pattern.

Double checked locking:
Given we have no performante concerns, double-thecked locking scems like overkill, [n addition, we'd

have to ersure that we are renning at leaik Java 5.

you are here + 189

crossword puzzle solution

:
-
.
2

Hlelrlsulely

(801 |L]E el
[N
IEE
Al
[N
&

ﬂ
&
< =
= B O
& E E
IHEEIIIMEEIEIIER
CEEECEERRRBRER
=) [
()
Lol | <] -l el ol < o o »
=
Lol o 2] vl H af 5| o] | of &
=

IEE!E!HE!EE

Chapter 5

190

7 the Adapter and Facade Patterns

+ Being Adaptive

Do you think the readers are
really getting the impression we're

: That's the
watching a horse race rather than beauty of our profession
sitting in a photo studio? we can make things look '
like something they're notl

You

mean it's not
supposed to be a Wrapped in
football match? this coat, Ima

different manl

In this chapter we’re going to attempt such impossible feats as
putting a square peg in a round hole. Sound impossible? Not when we have
Design Pattems. Remember the Decorator Pattern? We wrapped objects to give them new
responsibilities. Now we're going to wrap some objects with a different purpose: to make their
interfaces look like something they're not. Why would we do that? So we can adapt a design
expecting one interface to a class that implements a different interface. That's not all; while
we're at it, we're going to look at another pattern that wraps objects to simplify their interface.

this is a new chapter 235

adapters everywhere

Object

Say you've

Adapters all around us

You'll have no trouble understanding what an OO adapter is

because the real world is full of them. How’s this for an example: mto, but th
Have you ever needed to use a US-made laptop in a European
country? Then you've probably needed an AC power adapter...
European Wall Ovtlet
T AC Power Adapter
Standard AC Plug
Dkay, you
hange th
vendi
The US laptop expects
arother 'In'Eﬂr‘-Fiﬁt.
The adapter converts one
interfate into another.
You know what the adapter does: it sits in between the plug of your laptop and the
European AC outlet; its job is to adapt the European outlet so that you can plug your e adap
them into

laptop into it and receive power. Or look at it this way: the adapter changes the interface
of the outlet into one that your laptop expects.

Some AC adapters are simple — they only change the shape of the outlet so that it matches
your plug, and they pass the AC current straight through — but other adapters are more
complex internally and may need to step the power up or down to match your devices
needs.

Okay, that's the real world, what about object oriented adapters? Well, our OO adapters
play the same role as their real world counterparts: they take an interface and adapt it to
one that a client is expecting,

236 Chapter 7

the adapter pattern

)bject oriented adapters

ay you've got an existing software system that you need to work a new vendor class library
but the new vendor designed their interfaces differently than the last vendor:

 Okay, you don’t want to solve the problem by changing your existing code (and you can't
change the vendor’s code). So what do you do? Well, you can write a class that adapts the
new vendor interface into the one you're expecting,

The adapter implements the hnd Lalks o bhe vender merkate
interface your tlasses expeet Lo sevvice Your reapests

The adapter acts as the middleman by receiving requests from the client and converting
them into requests that make sense on the vendor classes.

you aro here v 237

turkey adapter

If it walks like a duck and quacks like a duck,
then it wust might be a-dvek turkey wrapped
with a duck adapfter...

It's time to see an adapter in action. Remember our
ducks from Chapter 1? Let’s review a slightly simplified
version of the Duck interfaces and classes:

public interface Duck { This time arounds #ﬁ'ﬂ
public void quack(); dutks imF ta
public woid fly(): hwﬁ;u that ;EHEH
} Dtks ko 03t
Here’s a subclass of Duck, the MallardDuck.
public class MallardDuck implements Duck |
public woid quack() {
System.ont.println(™0uack”) s y 1,_,,“4:25“’* the dutk
} K Smplein? Tt it doiny
sk prints
=

public wvoid fly() |
System.out,printin(“I'm flying™);
}

Now it's time to meet the newest fowl on the block:

\e.
Turkeys dont quaths el s

public interface Turkey |
public void gobble():
publie void fly();
) V\— Turkeys ean £ly, although they
£an ml’f -Fl'j short distanees.

238 Chapter 7

e e ———

the adapter pattern

public class WildTurkey implements Turkey | Here's a .r,mr.rtit """i'h':":_“l-'i
public void gobble{) { & 1 of Turkey; like Dutk, it s
System.out.println("Gobble geobble”); ‘/ prints out its attions.
}

public woid fiy() {
System,out.println(“I'm flying & short distance”);
}

let’s say you're short on Duck objects and you'd like to
se some Turkey objects in their place. Obviously we can’t
se the turkeys outright because they have a different interface,

y let’s write an Adapter:

,@ Code Up Close
; First, you need o implement the interface
of the Lype you've adapting to. This is the
iwhv&ﬁ:1un-dkn£¢nwitlhaxt
public class TurkeyAdapter implements Duck {
Turkey turkey;

Nksi,wt-mad{n5e£i~1¢ewmuc{n
public TurkeyAdapter(Turkey turkey) | e T ohjs:{: hat we are adapting; here
this.turkey = turkey; we do that through the tonstrustor.
]
public void guack() f Now we need to implement all the methods in
turkey.gobble(); the interface; Lthe quatkl) translation between
} elasses is easy: just eall he gobblel) method.

public woid flyv() |
for(int d=0; 1 < B; d4+4) |

matReReR L " Even though bokh inerFaces have 2 Fiy0
} md:hod..kaap-FlTinshwtspwb-{.hq
) ¢an't do lona~distance flying like ducks To
map between 3 Duck's £Fiy() method and a
Turkey's, we need to call the Turkey's £iy0
method five times to make up for it

you are here » 239

test the adapter

Test drive the adapter

Now we just need some code to test drive our adapter:

public class DuckTestDrive { 1. peeate 3 Dutke
public static void main(Scring[] args) { ‘:(‘
MallardDuck duck = new MallardDuck(});

WildTurkey turkey = new WildTurkey(); And then wrap the -Ewltql
Duck turkeyAdapter = new TurkeyAdapter (turkey) ; tna Tuﬁﬂﬁda?{'ﬂ. which
makes it look like a Duek.

System.out.println(“The Turkey says...”);:

turkey.gobble () ;

turkey.fiy(); S Then, let's fest the karf.- -
make it gobble, make it fly The

System.out.println(®\nThe Duck says...”); aga

testDuck (duck) ; Q:._____\ Now leb's fest Hhe duel
System.out.println(“\nThe TurkeyAdapter says...");: by calling the testDuck
testDuck (turkeyAdapter) ; methed, whith expetts a
} T % Duck object
oy
static void testDuck(Duck duck) | D#-ffje E.}j fest.
duck, quack() ; S they 50 V€ try o
duck.fly () ; ‘f‘;“ our LestDuckl) methoq ¢ e S
} Jets 3 dugk 5.4 talls ifs va.*.I;f;
] and FJ',-U metheds 1

The Turkey says... o The Turkey gobbles and
Gobble gobble flies 3 short distance.

I'm flying a short distance

The Duck says. .. The Duck quatks and flies
Quack J“Jc' like "Inhﬂd ﬂ‘-?ﬂf-{',.

I'm flying

he TurkeyAdapter says...

sobble gobble 3 i!?‘i:t‘-‘r bles when

'm flying a short distance .E(-‘ find %‘ lled a&h;bn;,‘, a few
'm flying a short distance quackl) is ealle Y is ealled. The
I'm flying a short distance times when “T(i Lo 4
I'm flying a short distance testDuckl) methed never km“;
I'm flying a short distance has a turkey disquised as 3 duek]

240 Chapter7

the adapter pattern
The Adapter Pattern explained

Now that we have an idea of what an Adapter is, let’s step back
and look at all the pieces again.

The Client is implemented
against the target interface.

Adapter
adas
\nterte©® <=y G interfacy ﬁ
garaet The Adapter implements the S Turkey was the
target interface and hald :
In;gtano'; nl‘ﬁ:dapt:a.a = \oh adaptee interfate
'm.'lilllﬁ 2 .
Twﬁ'ﬁ"ﬁ;fwﬁ ace, Dotk
the
Here’s how the Client uses the Adapter
€ The client makes a request to the
adapter by calling a method on it using
the target interface. ke trat the Client and Pdaptee
— perther knows
© The adapter translates that request into are d‘ﬁ:‘::mfn
one or more calls on the adaptee using dbout

the adaptee interface.

© The client receives the resuits of the
call and never knows there is an adapter
doing the translation.

you are here v 241

adapler pattern defined

— W r pencl
you Let's say we also need an Adapter that converts a Duck to a Turkey.

Let's call it DuckAdapter. Write that class;

How did you handle the fly method (after all we know ducks fly longer than turkeys)? Check the answers al
the end of the chapter for our solution. Did you think of a better way?

Q: How much “adapting” does

an adapter need to do? It seems like

it | need to implement a large target
Interface, | could have a LOT of work on
my hands.

A: You certainly could. The job

of implementing an adapter really is
proportional to the size of the interface you
need to support as your target interface.
Think about your options, however. You
could rework all your client-side calls to
the interface, which would result in a lot

of investigative work and code changes.
Or, you can cleanly provide one class that
encapsulates all the changes in one class.

242 Chapter7

thare,are
Damb uestions

Q} Does an adapter always wrap one
and only one class?

A’: The Adapter Pattern’s role is to
convert one interface into another. While
most examples of the adapter pattem show
an adapter wrapping one adaptee, we both
know the world is often a bit more messy.
So, you may well have situations where an
adapter holds two or more adaptees that are
needed o implement the target interface.

This relates to another pattem called the
Facade Pattern; people often confuse the
two. Remind us fo revisit this point when we
talk about facades later in this chaper.

Q: What if | have old and new parts
of my system, the old parts expect the
old vendor interface, but we've already
written the new parts to usa the new

vendor interface? It is going to get

confusing using an adapter here and the
unwrapped interface there. Wouldn't | be
better off just writing my older code and
forgetting the adapter?

A: Mot necessarily. One thing you
can do is create a Two Way Adapler that
supports both interfaces. TocreateaTwa
Way Adapter, just implement both interfaces | 5
involved, 50 the adapter can act as an old
interface or a new interface.

Now, we know this pattern allows us to yse 4 client with an mncompatible interface by
freating an Adapter that does the conversion. This acts tn decouple the client from

implemented interface, and if e EXpect the interface to change over time, the
adapter encapsulates that change so that the client doesn’t have 1 be modified each
time it necds o Operate against a different interface.

We've taken a look at the runtime behavior of the pattern; let’s take a Jook at jte class
diagram as well:

EN The Ada implements
'Eh: Tm-:-f interface.

.

The client sees enly the
Target interface.

Al get
Adapter ;s Compose \j T delegated to the
with ﬂ'ﬁt ﬂ'daneg. hda?‘m

Also check out how the Pattern binds the client 1o an interface, not an

implementation; we could use several adapters, each converting a different backend

set of classes. Or, we could add new implementations after the fact, as long as they
to the Target interface.

You are here »

243

obfect and class adapters

Object and class adapters

Now despite having defined the pattern, we haven't told you the whole story yet.
There are actually foe kinds of adapters: olject adapters and elass adapters, This
chapter has covered object adapters and the class diagram on the previous page is a
diagram of an object adapter.

So what’s a elaws adapter and why haven't we told you about it? Because you need
multiple inheritance to implement it, which isn't possible in Java. But, that doesn’t
mean you might not encounter a need for class adapters down the road when using
your favorite multiple inheritance language! Let's lock at the class diagram for
multiple inheritance.

Client - Target
request()
Adapter

request() k—\

[nskead of using tom—

osition to 3"13?": the

S.d.a?{gr.. the Adapter now
subtlasses the Adaptee
and the Ta-.-ﬁg{, tlasses.

Look familiar? That's right — the only diflerence is that with class adapter we

subclass the Target and the Adaptee, while with object adapter we use composition

to pass requests to an Adaptee,

= BRAM

PQAOWEW

Object adapters and class adapters use two different means of
adapting the adaptee (composition versus inheritance). How do these
implementation differences affect the flexibility of the adapter?

244 Chapter 7

J— —

the adapter pattern

Duck Magnets

Your job is to take the duck and turkey magnets and
drag them over the part of the diagram that describes
the role played by that bird, in our earlier example. (Try
not to flip back through the pages). Then add your own
annotations to describe how it works,

Class Adapter
Client = = =
I — spocitRaguest)
Adapter
. request)
.uh'g.cl Aﬂﬂlﬂﬂr
! Client ""| “w
lez oo iieiihe o
a8
. Adapter
request() i i
Drij these onto
the elass
£o show which part f o the d Hﬁm‘
::Fn‘:enfs the Dugk 34 whn.'.h
ePresents the Ty wrkey.

yvou are here » 245

axercise answers

' Dﬂf-& hl'lﬂgﬂﬁﬂ Nete: the g]ass 3dapter uses

"‘“I:Eif'lt inhevitanee,

tan't do it in Java... e
Duek ¢elass Turkey class
Class Adapter
Client >
request(specificRoquesy) A
- dots
Client £hi ; ; ey thass
Eolki {;"hﬁlt s The Tﬂ"‘b&‘ u. 'Eﬁ" The TJ::‘ ame mekhods a:.an
"3 %o a Duck. ass. TS have e hdagter
Duek 911, tlient Dok, bt F L
- Jhat bhe Adaptar Dotk method &
[} 1) afls o e} .b;'f.c W‘d ﬁ'n-d- L
mick e e om0 1 ke
The Adapter lets 4 ; B
e Tuk
Bg"ﬂtmh on a Duck, by ;m“‘d
TH elasses (Duck and T"rqu}. g
Duek inﬂ";au-
Object Adapter
Chant > < W ;r"lﬂ Tln-kg:,r I:FJES. dmh"ﬁ ha“ -ﬁh: v
rexquasi() Tk maf{’hcp"‘k fho‘f:h:rwwd,
Client. thinks he's = €fs don't have quack() methods, rf'::.'.
talki : : '
e Tarack ® 04y dlient Tukey
\ass This 18 ¥ nbjlf-{‘.-
: okes ™ <2 e l--—:-
wy request) I
: the kaﬁ
The Adapter implements the Duck Tharks to U o Ils that the
m{’,ﬂ#g,ej when it aeks Ad Lee) will 5,'-‘-‘.- ta {
method eall it 4ur e (kes on Duck i
I ns dround and LT'.CHJC- mad
delegates the calls 45 5 Turkey.

246 Chapter 7

the adapter pattern

851(18 Tonight's talk: The Object Adapter and Class Adapter

BN meet face to face.
\\ &
Object Adapter Class Adapter

Because I use composition I've gota leg up. Ican
not only adapt an adaptee class, but any of its

helasses.
oy That's true, I do have trouble with that because

I am committed to one specific adaptee class,
but I have a huge advantage because [don't
have to reimplement my entire adaptee. I can
also override the behavior of my adaptee if 1
need to because I'm just subclassing,

' In myy part of the world, we like to use

composition over inheritance; you may be

saving a few lines of code, but all I'm doing is

writing a little code to delegate to the adaptee.

- We like to keep things flexible.

Flexible maybe, efficient? No. Using a class
adapter there is just one of me, not an adapter
and an adaptee.

You're worried about one little object? You

might be able to quickly override a method,

but any behavior I add to my adapter code

works with my adaptee class and all its

subclasses.

Yeah, but what if a subclass of adaptee adds

: jor. 2
Hey, come on, cut me a break, I just need to some new behavior. Then what!

compose with the subclass to make that work.

Sounds messy...

You wanna see messy? Look in the mirror!

you are here » 247

real world adapters

Real world adapters

Let’s take a look at the use of a simple Adapter in the real world

(something more serious than Ducks at least)...

0ld world Enumerators

If you've been around Java for a while
you probably remember that the early

collections types (Vector, Stack, Hashtable,

. beckate
¢ miration P32 e
P
¢ if ther any
<cinlerface>> Tells you i £ are an
Enumeration L;Emh in Lhe ollettion.

and a few others) implement a method
elements(), which returns an Enumeration.
The Enumeration interface allows you to
step through the elements of a collection
without knowing the specifics of how they
are managed in the collection.

New world lterators

Gives you bhe et
{:!'ul: ealles ::“ element

Mﬂﬁm 1o hmﬂcmmﬁﬂ

in the Erumevation 1.h't¢'l’$m
e ecboed ok ek you

When Sun released their more recent

ou've locked al: all the items in

<<interface>
Collections classes they began using an Iterator J he tollettion.
Iterator interface that, like Enumeration, hastvet]
: 2 3 rex]

ia]Ium you to iterate through a set ﬂ.f.:ttms S—— Gives you the pext
in a collection, but also adds the ability to element in the collec fion
remove items. (\

Removes an item

from the collection

And today...

We are often faced with legacy code that exposes the

Enumerator interface, yet we'd like for our new code to only

use Iterators. It looks like we need to build an adapter.

248 Chapter 7

=]

e e e ——t

the adapter pattern

Adapting an Enumeration fo an lterator

First we'll look at the two interfaces to figure out how the methods map from
one to the other. In other words, we'll figure out what to call on the adaptee
‘when the client invokes a method on the target.

These two methods Jock easy,
they map straight 4o hasNext()
Taraet interface 1 and next() in [terator.
=<interface>> <<interface=>
terator Enumeration
hasNex()
next()
ramave() | y
<-) N Adsptee inberface
But what about this method

removel) in [tevator? There's
M{‘.I'Iiha like that in Enumeration.

Vesigning the Adapter

Here’s what the classes should look like: we need an adapter that implements
the Target interface and that is composed with an adaptee. The hasNext() and
next() methods are going to be straightforward to map from target to adaptee:
we just pass them right through. But what do you do about remove()? Think
about it for a moment (and we'll deal with it on the next page). For now, here’s

the class diagram:
Your new tode still gets “W’ We're making the Enumerations
o use [terators, even in your old tode lock like
if there's veally an wﬂ &Lh., for your new code.
Enwmeration underneath. A elass
implmh'-‘{'-""ﬂ

4he Enumeration
(- interkace is the
adaptee:

Enemcvationliovator =
is the adapter.

yvou are here » 249

enumeration iterator adapter

Pealing with the removel) method

Well, we know Enumeration just doesn’t support remove. It’s a “read only” interface.
There’s no way to implement a fully functioning remove() method on the adapter. The
best we can do is throw a runtime exception. Luckily, the designers of the Iterator
interface foresaw this need and defined the remove() method so that it supports an
UnsupportedOperationException.

"This is a case where the adapter isn’t perfect; clients will have to watch out for potential
exceptions, but as long as the client is careful and the adapter is well documented this is
a perfectly reasonable solution.

Writing the Enumerationlterator adapter

Here's simple but effective code for all those legacy classes still producing Enumerations:

[\\ Sinte we've adapting Enumeration

public class EnumerationIterator implements Iterator implements the [terator interface..
i i
Enumeration enum; it has b, it G H‘,:ra{'.ﬁ'
o U i |.
public Enumerationlterator (Enumeration m TH}SNE:::::;“;:L: e W";E;i'h
this. - H
: =2 BOER S SR it in an instance variable.
: —— The |[terator’ £0)
public boolean hasNext() { i ;ELF{T ;ﬁf?nm;&atﬁ;
: return enum.hasMcreElements(); hasMoreElements() method..
i o « and the [terator's next() method
public Object nex E"__"_—— is deleaated En atians’
return enum,nextElement(); :t::ﬁkmtnﬂ?::;hnd S !
' :
public void remove() | p——)
throw new UnsupportedOperationException(); thwﬂ?ihH- "E}H“;:;' port
} [tevator's removel) me) SO
} “havc*{:pf'm'i:nhﬂthﬂ'wﬁs!
we give u?.‘l Here mjm{ throw
an ﬂt.{.:?‘l:iﬁh-

250 Chapter 7

the adapter pattern

While Java has gone the direction of the Iterator, there is nevertheless a lot of
legacy client code that depends on the Enumeration interface, so an Adapter
that converts an Iterator to an Enumeration 1s also quite useful.

Write an Adapter that adapts an Iterator to an Enumeration. You can test your
code by adapting an ArrayList. The ArrayList class supports the Iterator interface
but doesn’t support Enumerations (well, not yet anyway).

- HNaweaiw
QWEWwW

Some AC adapters do more than just change the interface — they add other features like surge
protection, indicator lights and other bells and whistles,

If you were going to implement these kinds of features, what pattern would you use?

you are here + 251

fireside chats: decorator and adapter

FESld-E Chats Tonight's talk: The Decorator Pattern and the Adapter
‘ ' Pattern discuss their differences.
>
Decorator Adapter

I'm important. My job is all about responsibility —
you know that when a Decorator is involved there's
going to be some new responsibilities or behaviors
added to your design.

That may be true, but don’t think we don’t
work hard. When we have to decorate a big
interface, whoa, that can take a lot of code.

Cute. Don't think we get all the glory; sometimes
I'm just one decorator that is being wrapped by
who knows how many other decorators. When a
method call gets delegated to you, you have no
idea how many other decorators have already dealt
with it and you don’t know that you'll ever get
noticed for your efforts servicing the request.

252 Chapter 7

You guys want all the glory while us adapters
are down in the trenches doing the dirty work:
converting interfaces. Our jobs may not be
glamorous, but our clients sure do appreciate
us making their lives simpler.

Try being an adapter when you've got to bring
several classes together to provide the interface
your client is expecting. Now that’s tough. But
we have a saying: “an uncoupled client is a
happy client,”

Hey, if adapters are doing their job, our clients
never even know we're there, Tt can be a thank-
less job.

Well us decorators do that as well, only we allow

nett behazior to be added to classes without altering
existing code. I still say that adapters are just fancy
decorators — I mean, just like us, you wrap an object.

Uh, no. Our job in life is to extend the
behaviors or responsibilities of the objects we
-wrap, we aren't a simple pass through.

Maybe we should agree to disagree. We seem
to look somewhat similar on paper, but clearly
we are miles away In our inlent.

the adapter pattern

Adapter

But, the great thing about us adapters is that we
allow clients to make use of new libraries and
subsets without changing any code, they just rely
on us to do the conversion for them. Hey itsa
niche, but we're good at it.

No, no, no, not at all. We always convert the
interface of what we wrap, you never do. I'd
say a decorator is like an adapter; it is just that
you don't change the interface!

Hey, who are you calling a simple pass
through? Come on down and we’ll see how
long you last converting a few interfaces!

Oh yeah, I'm with you there,

you are here »+ 253

who does whai?

And now for sowmething different...

There’s another pattern in this chapter.

You've seen how the Adapter Pattern converts the interface of a class into
one that a client is expecting. You also know we achieve this in Java by
wrapping the object that has an incompatible interface with an object that
implements the correct one.

We're going to look at a pattern now that alters an interface, but for a
different reason: to simplify the interface. It’s aptly named the Facade
Pattern because this pattern hides all the complexity of one or more
classes behind a clean, well-lit facade.

W+ bh‘ WH AT P

Match each pattern with its intent;

Pattern intent

(Converts one interface to

Demrﬂtﬂr ﬂ.lwtjﬂr

Adapter Doesn’t alter the Interface, but
adds responsibility

Facade
Makes an interface simpler

254 Chapter7

the adapter pattern

lome Sweet Home Theater

Before we dive into the details of the Facade Pattern, let’s take a look
growing national obsession: building your own home theater.

You've done your research and you've assembled a killer system
complete with a DVD player, a projection video system, an
automated screen, surround sound and even a popcorn popper.

Check out all the components you've put together:

> Amplifier
unar
theiPlaper
{ oo
Y) ¥
Tonar) 2
angifer i) e
o StSTPE0u)
o e o That's a lot of
it B ol I lek
] mject) Classes; a
o requercyl) m Q'F ihh"i‘l'-m- 7]
sl and 3 big set of
> CdPlaywr wr Gkl ih{t’ﬂfﬂﬂﬂ to
e et learn and use
Scroan]
W o)
= 2
]
el
si) Fropsclor
| gy
| Porconfopow | =
on) rehaay
:2] ThasterLights wideScranbiodel)
o)
o)
]

You've spent weeks running wire, mounting the projector, making all
the connections and fine tuning. Now it’s time to put it all in motion
‘and enjoy a movie...

you are here v 255

tasks to watch a mavie

Watching a movie (the hard way)

Pick out a DVD, relax, and get ready for movie magic. Oh, Le
there's just one thing - to watch the movie, you need to mi
perform a few tasks:

© Turn on the popcorn popper

© Start the popper popping
© Pim the lights

© Put the sereen down 4
© Turn the projector on in
© Set the projector input to PVP

@ Put the projector on wide-screen mode
© Torn the sound amplifier on

© Set the amplifier to PVP input

© Set the amplifier to surround sound

@ Set the amplifier volume to medivm (5)
&® Turn the PVP Player on

B
® Start the DVD Player playing e
everything onl
S
Ls

256 Chapter 7

the adapter pattern

Let’s check out those same tasks in terms of the classes and the
method calls needed to perform them:

Turn on the poptorn popper and start

popper.on();

popper.pop();
Dim the lights +o 10%...

f Hghts.dim(10); __—
../{:'7 Screen.down () ; L 'Fu{’chtf-f-\“!‘-"‘dm"'

v dif fevent classes T

3 'muoht.d]. projector.on();

\ projector.setInput (dvd); ; T
\ projector.wideScreenMode () f___ Tuen on the projettor and ?H{‘- it in
wide streen mode For the mevie..

amp.on();
amp.getDvd {(dvd) ; é‘\\
amp.setSurroundSound () ; Turn on the amp; set it £o DVD, put
amp.setVolume(5) ; k in survound sound mode and set the
dvd.on(); volume £o 5.
dvd.play(movie) ; <\

Turn on the DVD player-.

and FINALLY, play the movie!

But there's more...
® When the movie is over, how do you turn everything off?
Wouldn't you have to do all of this over again, in reverse?
® Wouldn'tit be as complex to listen to a CD or the radio?
® If you decide to upgrade your system, you're probably going
to have to learn a slightly different procedure.

So what to do? The complexity of using your home theater is becoming apparent!

Let's see how the Facade Pattern can get us out of this mess so we can enjoy the movie...

youare here » 257

lights camera facade

Lights, Camera, Facade!

A Facade is just what you need: with the Facade Pattern you can take a complex

subsystem and make it easier to use by implementing a Facade class that
provides one, more reasonable interface. Don't worry; if you need the power

of the complex subsystem, it’s still there for you to use, but if all you need is a
straightforward interface, the Facade is there for you.

Let’s take a look at how the Facade operates:

@ Okaytimeto create a

The Facade class t
Facade for the h$rn§ © the home theater s
pater system. To do com

:;rﬂs we cr:tate a new class _ subsyp:t::ts:: >
HomeTheaterFacade, The Facade on the subsyster

em
which exposes a few to implement its
simple metihgds such as watchMovie() method.,
watchMoviel). Sl

258 Chapter7

the adapter pattern

A elient of the
[’— %F&udc

Your client code now calls
methods on the home theater
Facade, not on the subsystem.
o now to watch a movie we just
call one method, watch Moviel),
and it communicates with the
lights, DVD player, projector,
amplifier, screen, and popcorn
maker for us.

T've got to have my
low-level occess!

e The Facade still leaves the subsystem

accessible to be used direct|
F
| need the advanced functfun:Iityyuu
£ ";“HH Frt!ld""{'- £ of the subsystem classes, they 3
s e Sobool available for your use, o tis
AV Stience Club.

you are here » 259

facade versus adapter

are 1o
Dumb Questions

Q: If the Facade encapsulates the
subsystem classes, how does a client
that needs lower-level functionality gain
access to them?

A: Facades don't “encapsulate” the
subsystem classes; they merely provide a
simplified interface to their functionality. The
subsysiem classes still remain available

for direct use by clients that need 1o use
mare specific interfaces, This is a nice
property of the Facads Pattem: it provides

a simplified interfaca while still exposing the
full functionality of the system to those who
may need it.

Q,: Does the facade add any
functionality or does it just pass through
each request to the subsystem?

A: A facade is free to add its own
“smarts” in addition to making use of the
subsystem. For instance, while our home
theater facade doesn't implement any new
behavior, it is smart enough to know that the
popcorn popper has to be turned on before it
can pop (as well as the details of how to turn
on and stage a movie showing),

Q: Does each subsystem have only
one facade?

A: Mot necessarily. The pattem
certainly alfows for any number of facades to
be created for a given subsystem,

260 Chapter 7

Q: What is the benefit of the facade
other than the fact that | now have a
simpler interface?

A: The Facade Pattern also allows
you to decouple your client implemeantation
from any one subsystem. Let's say for
Instance that you gel a big raise and decide
to upgrade your home theater to all new
components that have different interfaces.
Well, if you coded your client to the facade
rather than the subsystem, your client code
doesn't need to change, just the facade
(and hapefully the manufacturer is supplying
thatl).

Q: So the way to tell the difference
between the Adapter Pattern and the
Facade Pattern is that the adapter wraps
one class and the facade may represent
many classes?

A: Nol Remember, the Adapter Pattern
changes the interface of ane or more
classes into one Interface that a cliant is
expecting. While most textbook examples
show the adapter adapting one class, you
may need to adapt many classes to provide
the interface a client is coded to. Likewise,
a Facade may provide a simplified interface
to a single class with a very complex
Interface,

The differenca between tha two is not in
terms of how many classes they “wrap,” it
is in their intent. The intent of the Adapter
Pattern Is to alter an interface so that it
matches one a client Is expecting, The
intent of the Facade Pattem s to provide a
simplified interface to a subsystem.

A facade not
un[y simp[ifies
an interface, it
decouples a client
from a subsystem
of nmnponmts.

Facades and
a::[a]aters may
wrap mulﬁ]:[e
classes, but a
facade’s intent is
to simpl.i{y, while
an aJaPter’s

is to convert

the interface

to snmething
different.

the adapter pattern

sonstructing your howe theater facade

85 step through the construction of the HomeTheaterFacade: The
I8 10 use composition so that the facade has access to all the
ponents of the subsystem:

public class HomeTheaterFacade |

Amplifier amp; Here's the tomposition; these
Tuner tuner; are all the tomponents of the
DvdPlayer dvd; “bﬂ;{tm we are feing to use.

CdPlayer cd;
Projector projector;
TheaterLights lights:
Screen screen;
PopecornPopper popper;

public HomeTheaterFacade (Amplifier amp,
Tuner tuner,
DvdPlayer dwd,
CdPlayer cd,
Projector projector,

Screen screen, & The facade is passed 3
TheaterLights lights, vefevente to Hd'r @m{'
PopcornPopper popper) | of the subsystem in its
tonsbruttor. The facade
this.amp = amp; then assians eath to the
this.tuner = tuner; torvesponding instante variable.

this.dvd = dvd;

this.ed = cd;
this.projector = projector;
this.screen = screen;
this.lights = lights;
this.popper = popper;

// other methods here é\

Wc'ujbﬂ; about {5 £ these in..

you are here » 261

implementing facade

Implementing the simplified interface Ti

Now it's time to bring the components of the subsystem together into a unified interface. Its
Let’s implement the watchMovie() and endMovie() methods:

P
public void watchMovie(String movie) |
System.out.println(“Get ready to watch a movie...”):
popper.on();
popper.pop();
lights.dim(10) ; wakthMovie() Follows the same sequente
screen.down() ¢ p we had to de by hard before, but wraps
projector.onl): it up in a handy method that does all
projector.wideScreenMode () ; the work. Notice that for eath task we
amp.on(); delegatin he vesponsibility to the
amp.setDvd (dvd) ; e 3 ent in the fubﬁi'ﬁm
amp. setSurroundSound () ; torresponding Eompon !

amp.setVolume (5) ;

dvd.oni();

dvd.play (movie};
}

public vold endMovie() |
System.out.println(*Shutting movie theater down..."}:
popper.off();
lights.on();

screen.upf); h
And endMovie() Lakes tave

projector.off();

amp.off(); of shutti i
dvd.sf_:r:p{} ; oF L3, ;:i:::::ﬁ:mﬂ:h
dvd.eject () ; delegated to the appropriate
dvd.off(); 54

r tomponent in the subsystem.

= RALN
QWEW

Think about the facades you've encountered in the Java AP,
Where would you like to have a few new ones?

262 Chapter 7

the adapter pattern

me to watch a movie (the easy way)

s SHOWTIME!

Heve we've treating the components
public class HomeTheaterTestDrive | "’iﬁht in the dest drive. N a“? he
Tt ?tatic ?Qid e I:EF'_rinq_[] args) | tlient is ﬁiucn a facade, it doesn't have
// instantiate components here et el

HomeTheaterFacade homeTheater =
new HomeTheaterFacade (amp, tuner, dwvd, od, ==—01{ Fiest nstantiate
projector, screen, lights, popper); 'Eht F:::de with all 1ie

tomponents in the subsystem.

homeTheater.watchMovie (“Ralders of the Lost Ark™):
homeTheater.endMoviel();
) RS Use the simplified interface to
first stavt the movie up, and

then shut it down.

Fila Edil Window Halp SnakesWhy'diiHawe ToBeSnaes?

Here's the ou{Pu{,. %java HomeTheaterTestDrive
C&“inﬁ the Facade's Get ready to watch a movie...
watehMovie() does all Fopcorn Popper on

+his work 'Fﬂ' e Fopoorn Fopper popping popcorn!
Theater Ceiling Lights dimming to 10%
{/)7 Theater Screen going down
Top-0-Line Projector on
Top-O-Line Projector in widescreean mode (lox3 aspect ratio)
Top-0O-Line Amplifier on
Top-0-Line Amplifier setting DVD playar to Top-O-Line DVD Player
Top~0=-Line Amplifier surround sound on (5 speakers, 1 subwoofer)
Top-O-Line Amplifier setting voluma to 5
Top-0O-Line DVD Player on
Top-O-Line DVD Player playing “"Raiders of the Lost Ark”
Shutting movie theater down...
wand here, we're done ()T Fopcorn Popper off
waér.hing, the movie, s Theater Ceiling Lights on

talling en 7 Theater Screen going up
" dMevie() turns Top-0-Line Projector off

everything of f. —7 Top-O-Line Amplifier off
Top~0-Line DVD Player stopped "Raiders of the Lost Ark"
Top-0O-Line DVD Player eject
Top-0O-Line DVD Flayer off

vou are here + 283

facade pattern defined

Facade Pattern defined

To use the Facade Pattern, we create a class that simplifies and unifies a set of more

complex classes that belong to some subsystem. Unlike a lot of patterns, Facade is fairly
straightforward; there are no mind bending abstractions to get your head around. But that
doesn’t make it any less powerful: the Facade Pattern allows us to avoid tight coupling between
clients and subsystems, and, as you will see shortly, also helps us adhere to a new ohject
oriented principle.

Before we introduce that new principle, let's take a look at the official definition of the pattern:

There isn't a lot here that you don't already know, but one of the most important things
to remember about a pattern is its intent. This definition tells us loud and clear that the
purpose of the facade it to make a subsystem easier to use through a simplified interface.
You can see this in the pattern’s class diagram:

—y F Unified interface

Ham ﬂ'ir.hh whest M is easier to use.
e Detavse
easier
T e S B i o M e S T
isubsystem classes
More tomple* subsyste™

That's it: you've got another pattern under your belt! Now, it's time for that new QO pnnciple.
Watch out, this one can challenge some assumptions!

264 Chapter 7

the adapter Pattern

The Principle of Least Knowledge

Design Principle

y !
Principie of Least Knowledge -
falk anly to Your immediate friends.

M

But what does this mean in real terms? [y means when yoy
are designing a system, for any object. be careful of the

number of classes jt nteracts with and also how jt comes to
interact with those classes,

This principle Prevents us from Creating designs that haye
a large number of classes coupled together g that changes
in one part of he System eascade 1o other

build a lot of dependencies

classes, you are
building a fragile system that wi
complex for others 1o understand,

L4 Raaw
QW E w How many classes s this code coupled to7 _-|

Public float getTemp () ¢

L }

return statinn.gatThnmmter () -getTemperature)i

=

youare here » 2gs5

principle of least knowledge

How NOT to Win Friends and Influence Objects K

Okay, but how do vou keep from doing this? The principle F
provides some guidelines: take any object; now from any a
method in that object, the principle tells us that we should delines Lell us
only invoke methods that belong to; Nekite that these ﬁ:hsu.b that u:'rt-“

on 5,
" The object itself ko ta) ":?j: caling other ™€
B Objects passed in as a parameter to the method L L iate

. L}

® Any object the method creates or instantiates Think $a umfm{." s i::ﬂﬁﬁh obher

instante ¥ =
B Any components of the object e\/ ﬁmb:[‘;:}\:i& 3 HAS-A velakionship:

"This sounds kind of stringent doesn’t it? What’s the harm in
calling the method of an object we get back from another
call? Well, if we were to do that, then we'd be making a
request of another object’s subpart (and increasing the
number of objects we directly know), In such cases, the
principle forces us to ask the object to make the request for us;
that way we don’t have to know about its component objects
{and we keep our circle of friends small). For example:

public float getTemp() {
Without. the Thermometer thermometer = station.getThermometer () ;
Printiple return thermometer.getTemperature() ;

}
Here we get the thermometer cbject
from the station and then call the
actTemperaturel) method ourselves.
thi
rel
With the public float getTemp() {
Printiple return station.getTemperature(); jj
}
ani
When we apphy the prinziple, we add
method to J;:re Shation elass that makes E*I
the request fo the thermometer for s 3
This redutes the number of tlasses we've the
dependent on-

266 Chapter7

to the Principle of Least Knowledge:

the adapter pattern

?uhlic class Car |
' Engine engine;

public Car() |

!

/4 initialize engine, etc.

public void start (Key key) |
Doors doors

boolean authorized =

if (authorized) ({

// 'other instance wvariables

new Doors();

engine.start(j;]

updatebashboardDisplay () :

}

Thera is another principle called
Law of Demeter; how are they
felated?

I; - The two are one and the same
and you'll encounter these terms being

e word “Law” implies we always have to

}

public void updateDashboardDisplayi() |
/{ update display

grmived. We prefer to use the Principle of
12ast Knowledge for a couple of reasons: (1)
e name is more intuitive and (2) the use of

component: oF
/

S You tan ¢all a lozal method
within the bhjd-‘l‘.-
You tan tall 3 method on 3n

Here we've ereating a new
object, its methods are legal.

You ean tall 3 methed

on an cbject passed as
/— @ parameter:

Yﬂutannﬂliﬂﬂ*b’dnna

ﬁw¢ﬁytb

object you ereate or instantiate.

therejare no
Dumb Questions

apply this principle, In fact, no principle is a
law, all principles should be used when and
where they are helpful. All design involves
tradeoffs {abstractions versus speed, space
versus time, and so on) and while principles
provide guidance, all factors should be taken
into account before applying them,

Q: Are there any disadvantages
to applying the Principle of Least

Knowledge?

A: Yes; while the principle reduces
the dependencies between objects and
studies have shown this reduces software
maintenance, it Is also the case thal
applying this principle results in more
“wrapper” ciasses being written to handle
method calls to other components, This
can result in increased complexity and
development lime as well as decreased
runtime performance,

you are here v 26T

violating the principle of least knowledge

W Do either of these classes violate the Principle of Least Knowledge?

Why or why not?

public House {
WeatherStation station;

[/ other methods and constructor

public float getTemp() {

return station.getThermometer () .getTemperaturead() ;
]

public Houze |
WeatherStation station;

// other methods and constructor

public float getTemp() |

Thermometer thermometer = station.getThermomater();
return getTempHelper (thermometer):
}

public float getTempHelper (Thermometer thermometer) |
return thermometer.getTemperatura();
}

HARD HAT ARER. WATCH OUT
FOR FALLING ASSUMPTIONS

8 VAN

QWEWR

Can you think of a common use of Java that violates the Principle of Least Knowledge?

Should you care?

Llupuudino’weisis Inoge Moy Jemsuy

268 Chapter 7

the adapter pattern

g Facade and the Principle of Least Knowledge

rates all those
onents For the elient.
the elient simple

you are here » 269

your design toolbox

Tools for your Pesign Toolbox

Your toolbox is starting to get heavy! In this
chapter we've added a couple of patterns that
allow us to alter interfaces and reduce coupling
between clients and the systems they use.

funiAe
23 Yow level
mind) 3 167
:I.I'\ oy W‘!Fh‘-
Lalk only £2 17
S .and TWO new patterns
T ‘ Eath ehanges an interface,
Patkeems P the adapter to convert
Oqﬁ__d__.:.—ﬁ;‘:ff:.::‘“:f:f—'—:__lﬂ and the Fatade to wniky
s n-—_:—'“‘ ‘_T'% ,___.:n-.:r;—*::ﬁ and simpliy

BULLET POINTS

When you need to use an
existing class and its interface
is not the one you need, use an
adapter.

When you need to simplify

and unify a large interface or
complex set of interfaces, use a
facade.

An adapter changes an
interface into one a client
expects,

A facade decouples a client
from a complex subsystem.

Implementing an adapter may
require little work or a great deal
of work depending on the size
and complexity of the target
interface.

Implementing a facade requires
that we compose the facade
with its subsystem and use
delegation to perform the work
of the facade.

There are two forms of the
Adapter Pattemn: object and
class adapters. Class adapters
require multiple inheritance.

You can implement more than
one facade for a subsystem.

An adapter wraps an object to
change its interface, a decorator
wraps an object to add new
behaviors and responsibilities,
and a facade “wraps” a set of
objects to simplify,

270 Chapter 7

e ———

the adapter pattern

Yes, it's another crossword. All of the solution words are from this chapter.

Across

1. True or false, Adapters can only wrap one
object

5. An Adapter an interface

&. Movie we watched (5 words)

10. If in Europe you might need one of these
(two words)

11. Adapter with two roles (two words)

14. Facade still low level access

15. Ducks do it better than Turkeys

16. Disadvantage of the Principle of Least
Knowledge: toomany _

17. A simplifies an interface

19. New American dream (two words)

Hlllllll.

AEEEEEEE N

Down

2. Decorator called Adapter this (3 words)

3. One advantage of Facade

4. Principle that wasn't as easy as it sounded
(two words)

T.A adds new behavior

8. Masquerading as a Duck

9. Example that violates the Principle of Least
Knowledge: Eystem out,

12. No movie is complete withaut this

13. Adapter client uses the interface
18. An Adapter and a Decorator can be said to
an object

you are here »

271

axercise solutions

S i pedt

Let's sy we also need an adapter thal converts a Duck to a Turkey.
Let's call |t DuckAdapier. Wiite that class:

How et 302 % e
o Prochn 2 55
(‘» i am s>
public class Duckhdapter irplements Turley |

Buek dusks
Rangam rarid:

e vhanh 3 vefevente &s the Dk we are adaphins

publie DuckAdaptar{Duck duck] [
this.duck = ducks

rand = new Bandom())
|
'\ We alsa recreate a vandom chjeck;

Boke 3 look ot the Fhyl} mebhod

publle woid gobbled) |
disck.quack(}r \bﬂl‘th it ed
|
A nohble jat betemen & guith,

public veld fy{) |
LE (rand.nextInt|5) == Q) |

e i \ it
I
1 alet thae

e yor poed

Da aither of thass classes violate the Principle of Least Knowledge?
Far each, why or why nod?

public House |
WeathsrStarion statbeon;

{f other netheds and constroctor

public float getTempi) |
raturn station.getThermoneter() .gecTemperature|) ;

i e A R T

pablis fouse | o Bt
WeatherEtaticn ataticn; ,.'l;ﬂ#a'

ff othar pethods and constructor

publlc foat getTesp() |
ThErnoewter tharmonetar = stationigobThermomazar|):
return: getTempHelper [thernsmetat] 5

|

pablic float getlespHelper|Thersoneter thacrometac] |
cacurn thermoamisr. golTerparature ()|

|

Leink; Krralodee

|
D.m-t.uuuv-umk-ﬂﬂ__‘m
tiple - i amybie el Ehdnied SndC 52
;.td“;&MhW”M

272

Chapter 7

the adapter pattern

Exercise solutions

You've seen how to implement an adapter that adapts an Enumeration to an
Iterator; now write an adapter that adapts an Iterator to an Enumaration.

public class IteratorEnumeration implements Enumeration |
Iterator iterator;

public IteratorEnumeration{Iterator iterator) |(
this.iterator = itarator;

!

public boolean hasMoreElements{) [
return iterator.hasMNext ():

i

public Object nextElement ()} |
return iterator.next():

|

+ » +
WHE DOES WHAT?

Match each pattern with its intent:

Pattern Iintent

Decorator Cemvert one interface
another

Adapter Don't alter interface, bat add

responsibility
Facade
-______H-\'j Make Interface simpler

you are here » 273

crossword puzzle solution

c M

2 i
EHEEHEEHEEEHEHH

V 1r

i

& E
> >
2]
[l =]
2o [4]> [=]o]a [m o]
=

Z
Gl EIEEE
=il

5l
=l
@l

i
&
n
s |
T
|
N
o]
W/
L |
&l

w4
b

FlA

a R
HEMEHHEEHEE

c

274 Chapter 7

8 the Témplate Method Tattern

. Encapsulating *
Algonthms

Yeah, he's a great boss until
it comes to getting down in this
hole, then it ALL becomes MY job.
See what I mean? He's nowhere

in sightl

We’re on an encapsulation roll; we’ve encapsulated object
creation, method invocation, complex interfaces, ducks,

pizzas... what could be next? we're going to get down to encapsulating
pieces of algorithms so that subclasses can hook themselves right into a computation
anytime they want. \We're even going to learn about a design principle inspired by
Hollywood.

this is a new chapter 275

coffee and tea recipes are similar

I1’s time for some more caffeine

Some people can't live without their coffee; some
people can't ive without their tea, The common
ingredient? Caffeine of course!

But there's more; tea and coffee are macde in very
similar ways. Let’s check it out:

276 Chapter 8

The retipe for
cobbee looks a lot
fike the vetipe for
e, doesnt t2

= =

v r

I #

the template method pattern
Whipping up some coffee and tea classes
(in Java)
Let's play “coding barista” and write
liumn code for creating coffee and tea.
‘Here's the coffee:
Heve's our Cokfee tlass for making totfee.
] L'y e -Fdf :'“i;:t'
*:E:-’.;'E"' o e rainv manidt
public class Coffee | / b
: ; e merted 3
et fa o the st 2
brewCoffeeGrinds(); J a seqarate
pourInCup ()
addSugarAndMilk():
i
public void boilWater() |
System.cut.println{“Beiling water”); (‘\ Eath of these methods
} imflmh one step of

. : There's
public wvoid brewCoffeeGrinds() { the iliﬁnr;ih:hil water,
System.cut.println{"Dripping Coffee through filter”): 3.

brew the coffee, pour
] El:r-""'-_- {_'h‘ M'F.F“hi;wm

public void pourInCup() | / add svgar and milk
System.out.println(“Pouring into cup*);
}

public void addSugazAndMilk() |

System.out.println(“Adding Sugar and Milk"™):
}

vou are here v 277

tea implementation

and now the Tea...
Thiz locks very similav +o the

ARt iolagmor one we just implemented in
2 il Coffee; the setond and forth
void prepareRecipe() { 1?{'-\‘,?5 are different, but it's
boilWater(); basically the same retipe.

steepTeaBag();
pourInCup();
addLemon () :

}

public void boilWater() |
System.out.printin(*Boiling water®);

}
Notite that
public woid steepTeaBag() { L these two
System.out.println(“Steeping the tea"); These two methods ave
) methods ave

sfr.cia'lh:d’m
public void addLemon() { Tea
System.out.println("Adding Lemon®}); &/
}

public void pourInCup() |

System.out,println{“Pouring into cup®):
} &—K/

When we've got code
duplication, that's a good sign
we need to clean up the design, It
seems like here we should abstract
the commonality into a base class
since coffee and tea are so
similar?

278 Chapter 8

—

the template method pattern

Design Puzz]e

You've seen that the Coffee and Tea classes have a fair bit of code duplication, Take
another look at the Coffee and Tea classes and draw a class diagram showing how you'd
redesign the classes to remove redundancy:

you are here v+ 279

first cut at abstraction

Sir, may | abstract your Coffee, Tea?

It looks like we've got a pretty straightforward design
exercise on our hands with the Coffee and Tea classes,
Your first cut might have looked something like this:

The bailWater) and powrinCeg0)

both subtlasses,
mekhods are shared by both
CatfoineBoverage o they are defined in the supertlass
Thﬂ PEPEPEREQFEH l'pc'ﬂud /-F-, balWon)
lir'F €r3 in each ﬂ.&h“’ o i s paurinCup()
defined as abstract.
Eath subelass Cotfse : Tea ,_f" Eath subelass overrides
implements its prepareecipe() preparsRecipe() the prepareRetipel)
own reLipe. browCaseGrinday) SinepTeabiagi) method and impl
SidSugachndiii)) its own retipe.
kol e e to Cobfee
hﬂ Tea 5*-3'1' i the sibelasees
\-4 N\
QWEWR

Did we do a goed job on the redesign? Hmmmm, take another look, Are we overlooking some other
commonality? What are other ways that Coffee and Tea are similar?

280 Chapter 8

the template method pattern

aking the design further..

5 what else do Coffee and Tea have in common? Let's start with
e recipes.

8 Co
water ater
(1) Boil et in poiling W
(@) B ortes 12 SUF
() add sugsr = Starkuzz Tea Recipe

(1) Boil some water
(2) Steep tea ip boi

(3) Pour tea in
() Ad Tanen. ¥

ling water

NNotice that both recipes follow the same algorithm:

© Boil some water. Pd_\
o D

These aven't
© Use the hot water to extract the coffee Sttt W D i
or i'ea. are the same, inko the base elass.
khey st apply
to dikferent

© Pour the resulting beverage into a cup.

beverages.

@ Add the appropriate condiments to the
beverage.

$o, can we find a way to abstract prepareRecipe() too? Yes, let’s find out...

you are here v 281

Abstracting prepareRecipe()

Let's step through abstracting prepareRecipe()
from each subclass (that is, the Coffee and Tea
classes)...

The first problem we have is that Coffee uses brewCoffeeGrinds() and
addSugarAndMilk() methods while Tea uses steep TeaBag() and addLemony)

methods.
Coffee Tea
void prepareRecipe() | void prepareRecipe() |
boilWater(); boilWater();
brewCoffeeGrinds()i ¢ \——> [steepleaBag()i

pourInCupi); pourInCup() ;
AdASUGRRRAMIK(<——————— addLemon()s
| }

Let’s think through this: steeping and brewing aren't so different; they're pretty analogous,
So let’s make a new method name, say, brew(), and we'll use the same name whether
we're brewing coffee or steeping tea.

Likewise, adding sugar and milk is pretty much the same as adding a lemon: hoth
are adding condiments to the beverage. Let's also make up a new method name,
addCondiments(), to handle this. So, our new prepareRecipe() method will look like this:

void prepareRecipe() |
boilWater () ;
brew():

pourinCup ()

ddCondinents ();

e Now we have a new prepareRecipe() method, but we need to fit it into the code.
To do this we are going to start with the CaffeineBeverage superclass: J

282 ChapterB

the template method pattern

CakFeineBeverane © abstract, pt
bke in the tlass design

Now, the same wqaaﬂ;ﬁﬂ method -.u;:::;ﬁu:
I are [
iblic abstract class CaffeineBeverage { {:Ekgdb;{:aiz:auld S A;E_tmw e
. eelaved 10 o
T G 4, be shle o overvide this wethed and e

1
boilWater () ; vecipel We've geneval m,&plmﬂnw
EERL] add.CnndmanH[

brew () e e ard

pourInCup{ Yk

‘addCondiments ()

!
bm': Because Coblee and Tea handle these methods
@h e f—-_-" in difFevent wals, JduT ve goma o have to
vold addCondiments () be declaved as abstract Let the subelasses
worry asbout that stuff!

vold boilWater () |

System.out.printin(*Boiling water™):
| b S Remember, we moved these into

the CaffeimeBeverane elass (back
void pourInCup() {

in ovr tlass diagram).
System.out.println{"Pouring inte cup”};
}
!

e Finally we need to deal with the Coffee and Tea classes. They now rely on
CaffeineBeverage to handle the recipe, so they just need to handle brewing and

condiments:
hﬂu in our desian, Tea and Cokkee

public class Tea [@xtends Caffninaﬁavﬂmgﬂ { row extend CaffeincBeverage
public void brew() { =l

_ System. {mn‘pr:lm:ln t“ﬁtqﬂping tlw m'“u
i)k

publte void SaineREE D) ‘
System. mt,wmtlntﬁﬁiﬁng Lemon”); ?\ Tea needs to define brewl) and
} F—— addCondimentsl) — the twe shstrack
) methods From Beverage.

Same $or Coflee, except Coffee deals
with tofFee, and swaar and milk instead

public class Coffes extends Caﬁqmmagn { / "tha&‘a“d o
public void brew() 3

'} System.out .prinﬂn f“nxiﬁf:dtpg Gqﬁm“ ﬁh:ﬁug}l ﬂ:lt@t"'}.
=
public void ﬁddﬂnrﬁ.mmt&ﬁ
System.out. prmtmt“ﬁminq awﬁmﬂﬂd%ﬁﬁ%w
}.

| X

you are here » 283

| A
class diagram for caffeine beverages

@ ! ’ I Draw the new class diagram now that we've moved the

implementation of prepareRecipe(} into the CaffeineBeverage class:

284 Chapters

the template method pattern

at have we done?
We've vetognized
that the two vetipes
are essentially the
same, although
some of the steps
€ vepire different 7 co f
1ea implementations. So fee
we've genevalized the
(1] Boll some water veeipe and placed it in o ,ﬂﬂmﬂm far
i the water the base ¢lass. (2} Bre
© Steep the teabdd o " the ofee g
© Pour teainaoop v o our ot eup
@ Addlewmon Ad"“’“i’andqﬂk
Caffeine Beverage
genaraize @ PBoil some water Cenaraie
© Brew
m © Pour beverage in a eup relies on
subclass for subclass for
! some sleps e Add condiments some steps
voelass { Cof.
T:i! - ij sube 35,
© Steep the teabag in the water T e ot e arinds
e Deverage lenows W g eo
9 -‘rdd 'emi.']l'l Eﬁi‘:bdi ;E gh_?: vf e bre “k
the vetige, and gerForns @ Addsugarand
s{:?’- | and ES rl;,u\‘. but
relies on Tea or Cﬂrsﬂt
Lo do steps 7. and &

you are-here » 285

meet the tempfate mathod pattern

Meet the Template Method

We've basically just implemented the Template Method Pattern. What's that? Let's look
at the structure of the CaffeineBeverage class; it contains the actual “template method:”

Wiyt

public abstract class Cﬂ!ﬁinnﬂ?yé {

Betause:
void final prepareRecipa() | L () |k is 3 method, after all.
boilWater(): = (2) [t serves as a template for an
ek b LR ilﬁﬂ'i'u'“"'a in "Ihh tase, hal&gr'ruim 'Fﬂ"
making taffemated beverages.
brew(}:
_E__ 'h -H“ ‘ﬁﬁh!"rﬂﬁ' eath s{zP ﬂ-'F
. f..- 'E-IW il&bﬂ'{hu i ygrymhhd
pourInCup(): — by 3 method.
' — Some methods ave handled
addCondimentsa () ; % b'f this ¢lass...
} wand some are handled
by the subelass
abstract void brew()
abstract void addCondiments(); éfd_—___ﬁ““*-... be supplied by 2 subelass are

_ declaved abstract
void boilwWater() {

[/ implementation
}

void pourInCup() {
// implementation
}

The Tem]:late Method defines the steps of an algorithm and allows
subclasses to Prnvic{e the im]:len:entation for one or more steps.

286 Chapter 8

let’s make some tea... Behind

the template method works. You'll see that
template method controls the algorithm; at
in points in the algorithm, it lets the subclass

the template method pattern

et's step through making a tea and trace through the Scenes

o Okay, first we need a Tea object...

)ply the implementation of the steps...

boilWater () ;
brew();
pourInCup():
addCondiments () ;

Tea myTea = new Tea();

Then we call the template method: The preparehetipel)

method controls the
alagri-l:,hm o one Lan
thange this, and it
Lounts on subelasses to

myTea.prepareRecipe();

which follows the algorithm for making caffeine

beverages... provide some or all of
First we boil water: ki ation
r CaffpineBoverage
boilWater(); — e —
3’ talivaian]
which happens in CaffeineBeverage. powrinGug)

Next we need to brew the tea, which only the subclass knows
how to do:

brew() ; "’f’_\

Now we pour the tea in the cup; this is the same for all beverages so it
happens in CaffeineBeverage:

pourlInCup () ;

Finally, we add the condiments, which are specific to each beverage, so
the subclass implements this:

addCondiments ()

you are here » 287

what did template method get us?

What did the Template Method get us?

Underpowered Tea & Coffee
implementation

New, hip CaffeineBeverage
powered by Tewmplate Method

Coffee and Tea are running the show;

they contral the algorithm.

Code is duplicated across Coffee and
Tea.

Code changes to the algorithm
require opening the subclasses and
making multiple changes.

Classes are organized in a structure
that requires a lot of work to add a
new caffeine beverage.

Knowledge of the algorithm and how
to implement it is distributed over
many classes.

Chapter 8

The CaffeineBeverage class runs
the show; it has the algorithm, and
protects it.

The CaffeineBeverage class
maximizes reuse among the
subclasses.

The algorithm lives in one place and
code changes only need to be made
there.

The Template Method version provides
a framework that other caffeine
beverages can be plugged into. New
caffeine beverages only need to
implement a couple of methods.

The CaffeineBeverage class
concentrates knowledge about the
algorithm and relies on subclasses to
provide complete implementations.

*

the template method pattern

lemplate Method Pattern defined

This pattern is all about creating a template for an algorithm. What's template?

As you've seen it's just a method; more specifically, it's a method that defines an

algorithm as a set of steps. One or more of these steps is defined to be abstract and
implemented by a subclass, This ensures the algorithm’s strueture stays unchanged,
ihile subclasses provide some part of the implementation.

Let's check out the class diagram;

The template method makes use of he
PrimitiveOperations to implement an
algorithm. [f is detoupled from the et
implementation of these operations.

The AbstractClass //\, 2

tontains the template AbstractClass

HTHHHEM:I FEERsaaiisa
PrimitiveCparation fy)
it 3

wand abstract versions
of the opevations used ——
" {'hg 'Egu?li‘t.t ml‘ﬂ'md-

primEveOparation1();

The ContreteClass implements

i ‘H’p{ ib-l.{'l'i{.‘k ﬂfﬂaﬁmh

; e whith are talled when the

: I““?k—c_h 5 .rtq.\l'\"‘d‘ H e {mF]a{;u'ﬂth@dﬂ needs them.
Y

youare here » 289

template method pattern up closa

ﬂ Code Up Clsse

Let’s take a closer look at how the AbstractClass is defined, including the template method
and primitive operations.

Here we have owr abstract elass; it

« declaved sbsbract and meant {,
be sbtlassed by elasses that ?T-ou-dt
i"?k'f":ﬁi:ﬂ":iw; ﬂ'F blc ﬂ?ﬁ'abﬂ":" Hcr:.s %t {-‘Gmfh}_c ..g-ijd- H:l;
detlared Final £o prevent subelasses
Frrom veworking the sequente
s{gf& in the il&ﬂ'l’l‘t'lﬂl
abstract class AbstractClass |
final void templateMethod() { The b |
a » 5 F i{! =
primitiveOparationl () ; ; ethed
primitiveOperation2() ; f f*im the seauente of
concreteOperation() ; hr . i eath represented
) methed.

abstract void primitiveCperationl{():

abstract void primitiveOperation2(); '\'\

[n +hi
void concreteOperation() { i exdmple, two of

; // implementation hera = “’{r;tm:f;;:::j::
j it ﬂb‘hﬂﬁ.

We also have a tontrete opevation defined
in the abstract elass. More about these
kinds of methods in a bit...

290

Chapter 8

Code Way Up Close —
Now we're going to look even closer at the types of method that can go mn the abstract class:

've thamaed the
ti‘:iaﬂmﬁdhadﬂ 4o intlude

a new methed call

abstract class AbstractClass {

final void bﬂmplu.tﬂunthnd“ {
PrimitiveOperation] ():
PrimitiveOperation2()7

SoncreteOperation() ; We still have owr primitive
hook () ; (\ methods; these are
) abstract and implemented

by eoncrete subelasses
abatract void primitiveOperationi {):

abstract void PrimitiveOparation? () A aperation is.d elined i he

i iz detlaved
final void concreteOperation() { absbract elass This one “, .
// implementation here &_/ final so that subelasses tan't overvide it
£ may be used in the template method
d-wccil-?' o m,d h‘f illblﬂm-

!

veid hook() {}

.

A loncrets method, but We £an also I\awmc{,gn!{:hnds{:l\a{:dv nothing

it does mothing! R/ by default; we el these "hooks.” Subtlasses are free
%o override these but don't have to. We've going £o
se¢ how these are useful on Lhe next page.

Youare here v 291

the template method pattern

implement a hook

Hooked on
Tewplate Method...

A hook is a method that is declared in the
abstract class, but only given an empty

or default implementation. This gives
subclasses the ability to “hook inte” the
algorithm at various points, if they wish; a
subclass is also free to ignore the hook.

With a hook, I can override
the methed, or not. It's my choice.
If I don't, the abstract class
provides a default implementation.

There are several uses of hooks; let’s take
a look at one now. We'll talk about a few
ather uses later;

'

public abstract class CaffeineBeverageWithHook |

void prepareRecipe() |
boilWater():

brew(); '\ve added a little
€ et vass hs seeess on 3 e). 1t
i mekhod t..sio-eﬂ"fh’ﬁc"‘dmw
addcondiments(); rethd, NS 8 tondimerts Y
R o A (T, e -).
p b < H S ST R R e mh‘tﬂ]\aﬂdﬁnﬂdmu‘b{
abstract wvoid brew();
abstract void addCondiments();
void boilWater() |
System.out.println(“Bolling watexr™);
|
Here we ve defimed 3 "‘M&
void pourInCup() | with 3 (mesthy) enpty deas ek
System.out.println(“Fouring intc cup”); im?'lﬁmhﬁ’““‘ Tﬁsmdh?d-,].:w
r rebuens true and docs nothird

subtlass tan override this
method, but doesn't have to.

2892 Chapter 8

the template method pattern
the hook

everage evaluates a certain part of the algorithm; that is, whether
|ﬁﬁﬂtm¢hﬁbﬂkﬁ@t
vwhether the customer wants the condiment? Just ask !

o class CoffeeWithHook extends CaffeineBaverageWithHook |{

_public void brew()

- System.out.println{“Dripping Coffee through filter™);
)

‘public void addCondiments() |

tem. «print o in d M L B3 ide
; System.out.println(“Adding Sugar and Milk") Here's 'IM‘P“”“"'&

Lhe hock and provide your

youare here v+ 293

test drive

Let’s run the TestPrive

Okay, the waters$ boiling... Here’s the test code where
we create a hot tea and a hot coffee

public class BeverageTestDrive |
public static wold main(String([] args) {

TeaWithHook teaHook = new TeaWithHook():
CoffeeWithHook coffeeHook = new CoffeeWithHook();

=~ A cobfee

System.out.println(™\nMaking tea...”);
teaHook.prepareRecipe():

coffeeHook.prepareRecipe ()

And let$ give it a run...

=

System.out.printin(“\nMaking coffee..."); é,#/

<=— (reate a tea.

And eall prepareRecipel) on

Fila Edil. Window Help send-more-honsstioa
%java BeverageTestDrive

Making tea...

Boiling water A steaming cup of tea, arnd ey, ok

Steeping the tea
Fouring into cup

Would you like lemon with your tea (y/n)? y .= A

Adding Lemon

Making coffee... ru"ﬁ,,,j R hat. ¢

Boiling water

erp
FPouring into cup

Would you like milk and sugar with your coffee (v/n)? n

294 Chapter8

|
Lobvse wWe want ‘I:h.i{'_ lewmcrn

.b“{_. wr...lll- ?E“Ji an
Dripping Coffee through filter .;r.d'lr-[';. {_nhdlmr'r-l;-‘- T

w of ¢t 05 kee,

Lhe waistline

MNow, I would have thought
that functionality like asking the
customer could have been used by
all subclasses?

the template method pattern

You know what? We agree with you. But you
have to admit before you thought of that it was a
pretty cool example of how a hook can be used
to conditionally control the flow of the algorithm

in the abstract class. Right?

We're sure you can think of many other more
realistic scenarios where you could use the
template method and hooks in your own code.

When I'm creating a template
d, how do | know when to use
methods and when to use

_'-1 % Use abstract methods when your
ibelass MUST provide an implementation
i the method or step in the algorithm.

ks hooks when that part of the algorithm
goptional. With hooks, a subclass may

'-t used for?

_' : There are a few uses of hooks. As
_just said, a hook may provide a way for
subclass to implement an optional part

therejare po

Dumb Questions
of an algorithm, or if it isn’t impartant to
the subclass' implementation, it can skip
it. Another use is to give the subclass
a chance to react to some step in the
template method that is about to happen,
or just happened. Forinstance, a hook
method like justReOrderedList() allows the
subclass to perform some activity (such as
redisplaying an cnscreen representation)
after an internal list is reordered. As you've
seen a hook can also provide a subclass
with the ability to make a decision for the
abstract class.

Q: Does a subclass have to
implement all the abstract methods in the
AbstractClass?

A‘.‘ Yes, each concrete subclass defines
the entire set of abstract methods and

provides a complete implementation of the
undefined steps of the template method's
algorithm,

= It seems like | should keep my
abstract methods small in number,
otherwise it will be a big job to implement
them in the subclass.

A: That's a good thing to keep in

mind when you write template methods.
Sometimes this can be done by not making
the steps of your algorithm too granular, But
it's obviously a trade off: the less granularity,
the less flexibility.

Remember, too, that some sleps will be
optional; so you can implement these as
hooks rather than abstract classes, easing
the burden on the subclasses of your
abstract class.

295

you ara here »

(the hollywood principle

You've heard me say it
before, and T'll say it again:
don't call me, Tl call youl

‘The Hollywood Principle

We've got another design principle for you; it’s called the
Hollywood Principle:

The Hollywood Principle

Don't call us, we'll call you.

Easy to remember, right? But what has it got to do with 00
design?

The Hollywood principle gives us a way to prevent

*dependency rot.” Dependency rot happens when you have
high-level components depending on low-level components
depending on high-level components depending on sideways
components depending on low-level components, and so on.
When rot sets in, no one can easily understand the way a
system is designed.

With the Hollywood Principle, we allow low-level components
to hook themselves into a system, but the high-level
components determine when they are needed, and how, In
other words, the high-level components give the low-level
components a “don’t call us, we'll call you" treatment.

298 Chapter 8

the template method pattern

e Hollywood Principle and Template Method

connection between the Hollywood Principle and the Template Method Pattern is probably somewhat
t: when we design with the Template Method Pattern, we're telling subclasses, “don’t call us, we'll call
" How? Let’s take another look at our CaffeineBeverage design:

b '&mﬁﬂ'ﬂaﬁ‘t is our 'h'tgl'l'n-h\ld
omponcnt. [t has eantral over the Clients of pey,

S by Lhe vetipe, and ealls on “rages will depeng
s e S Rl
. ;IH' ian 'ln?kh!nhﬂﬂﬂ dm g

CaffeineBoverage boncrete Tea or Coffee, whigh
prepareRecie(:d:;f’ dePerdencies in the
bolﬂi"-l'atartj er %.
pourinCup()

| besw)
addCondimants(}

Coffes

brew(]
addCondiments{)

TR B

addCondiments()

" Tea and Coffee never
The subelasses 510 tall the bstrack s

e uied simp] j K/ : 7 bei
Provide implement.ation dgﬁiiﬁ _j\ diveetly withork 53

vealled” First

T WAL
QW | =3 “ What other patterns make use of the Hollywood Principle?

4548L0 Aue Laalesap ‘pouisiy Aiopoed ey

you are here » 297

who does what

Ddﬁﬁn?bm@fuesﬁons

Q} How does the Hollywood Principle
relate to the Dependency Inversion
Principle that we learned a few chapters
back?

A_: The Dependency Inversion
Principle teaches us to avoid the use of
concrele classes and instead work as

inta the computaticn, but without creating
dependencles between the lower-level
components and the higher-level layers. So,
they both have the goal of decoupling, but
the Dependency Inversion Principle makes a
much stronger and general statement about
how to avoid dependencies in design,

The Hollywood Principle gives us a
technigue for creating designs that aflow
low-level structures to interoperate while

Q: Is a low-level component
disallowed from calling a method ina
higher-level component?

A: Mot really. In fact, a low level
component will often end up calling a metho
defined above it in the Inheritance hisrarchy
purely through inheritance, But we wantty

much as possible with abstractions. The preventing other classes from becoming too avoid creating explicit circular depe
Hallywood Principle is a technique for between the low-leve! companent and the
building frameworks or components so that depandent orc e, high-level ones.
lower-level components can be hooked
SO S
W+ Do - W AT P
Match each pattern with its deseription:
Pattern Description
Encapsulate interchangeable
Template Method behaviors and use delegation to
decide which behavior to use
Strategy Subelasses decide how
to implement steps in an
algorithm
Factory Method Subelasses decide which
conerete classes to create

298 Chapter 8

mplate Methods in the Wild

‘Template Method Pattern is a Very common pattern and
going to find lots of it in the wild. You've got to have
eye, though, because there are many implementations
mplate methods that don't quite look like the

design of the pattern,

i pattern shows up so often because it’s a great design tool

ing frameworks, where the framework controls how
g gets done, but leaves you (the person using the

ork) to specify your own details about what is actually

ing at each step of the framework’s algorithm.

take a little safari through a few uses in the wild (well,
iy, in the Java API...

In training, we study the
classic patterns. However,
when we are out in the real world, we
must learn to recognize the patterns
out of context. We must also learn
To recognize variations of patterns,

because in the real world a square
hole is not always truly square.

the template method pattern

you are here » 299

sorting with template method
Sorting with Template Method

What's something we often need to do with arrays?
Sort them!

Recognizing that, the designers of the Java Arrays class

have provided us with a handy template method for
sorting. Let's take a look at how this method operates: F

We've paired down this
tode a little to make ri'.l
easier to explaim. 1§ you'd
like to see it all, arab
*hllmﬂtlgfnhsuniwd
We atkually have two methods heve and they act together to Ry
pwvdtfh:nwiFuﬂthnﬂ&}

It also passes 303 :
bhe sort ko start g e

public static wvoid sort{Object[] a) {
Object aux[] = (Object(])la.clone(}:
mergeSort (aux, a, 0; a.length, 0);

The meraeSortl) method tontains
the sort algorithm, and relies on an
implementation of the tompareTol)
method to complete the alaorithm.
EF-_H\ Think of this as Lhe
private static woid mergeSort (Cbject src[], Object dest[], inwhﬁlntﬂwd

int low, int high, int off)
[

for (int i=low; i<high: i++)({
for (int d=1; j>low &&
{{Comparable}dest[j-1]) .compareTo((Comparable)dest[j]l}=0; j--)
{

Ewﬂp{dest- jl j_ll: &'/—\
} \ tompaveTol) is the methed we

} This is 3 contrete method, implement £o "Rl out”
return; defined in the Arrays r.!as:w ;:d{}::;;& -.zl:hi:: ‘

300 Chapterd

R

the template method pattern

ve got sowe ducks to sort...

i have an array of ducks that you'd like to sort. How

it Well, the sort template method in Arrays gives us the

tyou need to tell it how to compare ducks, which you do by
enting the compareTo() method... Make sense?

Mo, it doesn't, Aren't
we supposed to be
subclassing something? I thought

that was the point of Template
Method. An array doesn't subclass
anything, so I don't get how we'd
use sort().

C,

t*vt 59‘£ an -a'ﬂ'i':f ﬂ-F

2 we reed to sord

Good point. Here’s the deal: the designers of sort() wanted it
to be useful across all arrays, so they had to make sort() a static
method that could be used from anywhere. But that’s okay,

it works almost the same as i’ it were in a superclass, Now,
here is one more detail: because sort]) really isn't defined in
our superclass, the sort{) method needs to know that you've
implemented the compareTo() method, or else you don't have
the piece needed to complete the sort algorithm.

To handle this, the designers made use of the Comparable
interface, All you have to do is implement this interface, which
has one method (surprise): compareTo{).

hat is compareTo()?

The compareTo() method compares two objects and returns whether one is less than, greater than,
or equal to the other. sort() uses this as the basis of its comparison of objects in the array.

I don't know,
that's what
compareTo() tells us.

Am I greater
than you?

you are here » 301

implementing comparable

Comparing Pucks and Pucks

Okay, so you know that if you want to sort Ducks,
you're going to have to implement this compareTof)
method; by doing that you'll give the Arrays class
what it needs to complete the algorithm and sort your
ducks,

Here's the duck implementation:

i able
Remember, we need Lo implement the C?mfi\'
{1\ l‘n"tl‘.ﬂ";it:*flhﬂ: we aven't veally subelassing,

public class Duck implements Comparable |
String name;

int weight; t'_-\ Our Dutks have a name and 3 weight

public Duck(String name, int weight) |
this.name = name;
this.weight = weight;
}
W:.r" ht?‘m‘ Ll‘t !i‘!?it; i“ Dh!-k" dﬂ
public String toStringi() | it ?ﬁh{-’ Lheir name and w:rghif
return name + “ weighs “ + weight;

ﬂ Okay, here's what sort needs..
{

public int compareTo(Object cbject)

b

; tompareTol) takes another Duek o compare THIS Duck to
Duck otherDuck = (Duck)object; «——

if (this.weight < otherDuck.weight) |
return =1;

L) i
} else if (this.weight == otherDuck.weight) (& Here’s where we specify how Dutks

return 0; tompare. |§ THIS Duck weighs less
} else { // this.weight > otherDuck.weight than otherDuck then we vetuen -;
return 1; i ave equal, we veturn O; and if
! THE Duek weighs more, we reburn [,

302 Chapters

the template method pattern

sort some Pucks
5 the test drive for sorting Ducks...

public class DuckSortTestDrive |
public static void main(Btring[] args) {

Duck[]l ducks = {
new Duck{“Datfy"™, B),
new Duck{“Dewey™, Z), r“\wg reed ;na\-\'i‘f"‘ !
new Duck(“Howard™, 7); Dutks these lock &
new Duck(“Louie”, 2},
new Duck(“Donald™, 10},
new Duck{“Huey, 2)

bi

ﬁh'a}u' static Eystem,au.t: ,1:-:ir.1tln ("Before sorting:”): e Lets ?‘f'i'"'E them to see
d sort. and display (ducks); Lheir names and weights:

pass it our Ducks. Arrays.sort (ducks); |
= s sort time!

System.out.println{“\nAfter serting:”); |
display {ducks); ¢ Let's print them [353"") to see

t their names and weights-

public static wvoid display(Duck[] ducks) |
for {int i = 0; 1 < ducks.length; i++} |{
System.out.println(ducks(i]};

Let the sorting commence!

[Pis Lok Aicdos Hpp Dnssttenioleteb
Yjava DuckSortTaestDrive

Baforo sorting:
Daffy waighs B
Deway waighs 2
Howard weighs 7
Louin waighs 2
Donald weaighsa 10
Huey waigha 2

The wiicrbed Deeks

After sorting:
Doway waighs 2
Louie weighs 2
fuay waighs 2
Howard weighs 7
Daffy waighs @
Donald waighs 10

%

vou are here » 303

behind the scenes: sorting ducks

The making of the sorting duck machine

Behind
Let’s trace through how the Arrays sort() template
method works. We’ll check out how the template ﬂl& SCEIIEE
method controls the algorithm, and at certain
points in the algorithm, how it asks our Ducks to

= M

e Then we call the sort{) template method in the Array
class and pass it our ducks:

the algorithm, ro tlass tan
thange this. sortl) counts
on 3 Comparable elass to
provide the implementation of
tompareTol)

Arrays.sort (ducks);

supply the implementation of a step... | for (Enk. iiow; d<hiohs a4y /
. compareTa() ﬁ

o - swap(} . A

o First, we need an array of Ducks: } a:
I

Duck[] ducks = {new Duck{"Daffy", B}, ... }; ﬁi

in

hi

5

s

is

m

The sort() method (and its helper mergeSort()) control
the sort procedure.

e To sort an array, you need to compare two items ane
by one until the entire list is in sorted order,

When it comes to companng two ducks, the sort
method relies on the Duck’s compareTo(} methad
to know how to do this, The compareTo{) method
is called on the first duck and passed the duck to be
compared to:

ducks [0] .compareTo (ducks([1]); Duck
H compareTol)
First él:\ ,t toString])
& Dutk to tompare it to
No inkeritante,
@ If the Ducks are not in sorted order, they're swapped with a typical template -
the conerete swap() method in Arrays: method.
swap () /—’-’_’\
sort)
swap])

e The sort method continues comparing and swapping Ducks
until the array is in the correct order!

304 Chapter 8

Is this really the Template
d Pattern, or are you trying too

The pattem calls for implementing
ithm and letting subclasses supply
ementation of the steps — and the
sort Is clearly not daing that! But,
know, pattems in the wild aren't

Just like the textbook pattems. They
tobe modified to fit the context and
pEmentation constraints.

Ihe designers of the Arrays sort{) method

i few constraints. In general, you can't
aJava armay and they wanted the

to be used on all arrays (and each array
dfferent class). So they defined a static

imélhod and deferred the comparison part of

the algorithm to the items being sorted.

So, while it's not a textbook template
method, this implementation is still in the
spirit of the Template Method Pattem. Also,
by eliminating the requirement that you have
to subclass Arrays to use this algorithm,
they've made sorfing in some ways mare
fiexible and useful

Q! This implementation of sorting
actually seems more like the Strategy
Pattern than the Template Method
Pattern. Why do we consider it
Template Mathod?

A: You're probabiy thinking that
because the Strateqy Pattern uses object
composition. You're right in & way - we're

—*

the template method pattern

using the Arrays object to sort our array, so
that's similar to Strategy. But remember,

in Strategy, the class that you compose
with implements the enfire algorithm, The
algorithm that Arrays implements for sort

is incomplete; it needs a class to fill in the
missing compareTo() method. So, in that
way, it's more like Template Method.

Q: Are there other examples of
template methods in the Java API?

A: Yes, you'll find them in a few
places. For exampls, Java.lo has a read()
method in InputStream that subclasses
must implement and is used by the tempate
method read{byte b, int off, int len).

We know that we should faver com position over inheritance, right? Well, the implementers of the

sort() template method decided not to use inheritance and instead to implement sorl() as a static
method that is composed with a Comparable at runtime. How is this better? How is it worse? How
would you approach this problem? Do Java arrays make this particularly tricky?

'icgg}gnnuul
 Xrvawew

Think of another pattern that is a specialization of the template method. In this specialization, primitive
operations are used to create and retum objects. What pattern is this?

you are here »

305

the paint hook

Swingin’ with Frames 2

Up next on our Template Method safari... keep your eye out for swinging JFrames! g P

If you haven't encountered JFrame, it's the most basic Swing container and inherits

a paint() method. By default, paint() does nothing because it’s a fiwok! By overriding

paint(}, you can insert yourself into JFrame’s algorithm for displaying its area of the

screen and have your own graphic output incorporated into the JFrame. Here's

an embarrassingly simple example of using a JFrame to override the paint{) hook

method: We've extending JFrame, which tortains
3 method wpdate() that eontrols the

alaorithm For wpdating the sereen.
We tan hook into that algerithm by

iding the paint() hook method.
public class MyFrame extends JFrame | e Y

e e Dtk bk b

public MyFrame (String title) | turkain] Just some

super (title); imiialization heve .
this.setDefaultCloseOperation (JFrame.EXIT ON CLOSE);

this.setSize (300, 300);
this.setVisible (true);
}
#'_‘“--.\ Wy vfd-ih ;lgprl";hh ealls ?Jal‘nui B‘!
public void paint (Graphics graphics) | default, ?3-.,,15{} doet m{}.‘qﬂ... it's a hook.
super.paint (graphics); We're overriding paimt(), and tellmg the

e to draw a in the window,
graphics.drawString(msg, 100, 100); JFrame message

}

public static veid main{(String[] args) |
MyFrame myFrame = new MyFrame{“Head First Design Patterns”);

}

© © O Head First Design Patterns

H‘grg's Ehe raEiidaE H\E{- ﬁ‘{’ ;
painted in the frame beeawse we've

306 Chapter 8

the template method pattern

p on the safari: the applet.
know an applet is a small Program that runs in a web page. Any
ibelass Applet, and this class provides several hooks. Let's take a look

The init hook allows the all'l?h!{ to dn;whﬁ!':r
~1 ¥ +-afa I t
2lass MyApplet extends Applet | / it wants o initialize the applet the First time.

Ny message;

blic void init(} { vepaintl) is 3 tontrete method in the Applet

message = “Hello World, I'm alivel”; tlass that lets upper—level Lomponents know
reépaint () ; the ’FF"’J‘: needs o be vedrawn.

:I lic void start () { g—\ Th{‘ !*."F{; hook aﬂm {'.I'IE inEt tﬂ‘ do
message = “How I'm starting up..."”:

something when the applet is just about
repaint(); to be displaved on the web Pase.
'_}r

‘public woid stop() |

\ messaga = “Oh, now I'm being stopped...”; ﬁl# &tmﬁﬂ;{»an&hn Faae, the
repaint () ; stop hook is used, and the applet can do
whatever it needs £o do to stop its attions.

}

public void destrov() |
/f applet ia going away...

e

And the dH{:r«:rT hook is used when the applet
Public void paint (Graphics g) | is 4oing to be destroyed, 23y, when the browzer
g.drawString (message, 5, 15); Pane is elosed. We eould try to display
'

something here, but what would be the point?
Well looky here! Our old friend the

fa'ln{'.f} method! hﬂﬂt{. also makes
use of this method as a hook.

Concrete applets make extensive use of hooks to suP]:ly their
own Lehavinm. Because these methods are implunentetl as

hooks, the applet isn't required to implement them.

you are here » 307

fireside chats: template method and strategy

Fic

Template Method

Hey Strategy, what are you doing in my
chapter? I figured I'd get stuck with someone
boring like Factory Method

[was just kidding! But seriously, what are you
doing here? We haven't heard from you in eight
chapters!

You might want to remind the reader what
you're all about, since it’s been so long,

Hey, that does sound a lot like what I do. But
my intent’s a little different from yours; my job
is to define the outline of an algorithm, but

let my subclasses do some of the work. That
way, 1 can have different implementations of an
algorithm’s individual steps, but keep control
over the algorithm’s structure. Seems like you
have to give up control of your algorithms.

308 Chapter 8

Tonight's talk: Template Method and Strategy
compare methods.

F Method
Str attory
Hey, I heard
that! @ a

Nope, it’s me, although be careful — you and
Factory Method are related, aren’t you?

I'd heard you were on the final draft of your
chapter and I thought I'd swing by to see how
it was going. We have a lot in common, so |
thought I might be able to help...

I don't know, since Chapter 1, people have

been stopping me in the street saying, “Aren't
you that pattern...” So I think they know who
I am. But for your sake: I define a family of
algorithms and make them interchangeable.
Since each algorithm is encapsulated, the client
can use different algorithms easily.

I'm not sure I'd put it quite like that... and
anyway, I'm not stuck using inheritance for
algorithm implementations. [offer clients a
choice of algorithm implementation through
object composition.

e —

the template method pattern

‘that. But I have more control over

m and I don't duplicate code. In faet,
of my algorithm is the same except
line, then my classes are much more
han yours. All my duplicated code

nto the superclass, 5o all the subclasses

You might be a little more efficient (just a little)
and require fewer objects, And you might also
be a little less complicated in comparison to
my delegation model, but 'm more flexible
because I use object composition, With me,
clients can change their algorithms at runtime
simply by using a different strategy object.
Come on, they didn’t choose me for Chapter 1

for nothing!
Il, I'm real happy for va, but don't

I'm the most used pattern around.
Because [provide a fundamental

for code reuse that allows subelasses to
tify behavior. I'm sure you can see that this

Yeah, I guess... but, what about dependency?
You're way more dependent than me.

How's that? My superclass is abstract.

But you have to depend on methods
implemented in vour superclass, which are part
of your algorithm, I don't depend on anyone;
I can do the entire algorithm myself!

Like I said Strategy, I'm real happy for you.

Thanks for stopping by, but I've got to get the

rest of this chapter done.

Okay, okay, don't get touchy. I'll let you
work, but let me know if you need my special
techniques anyway, I'm always glad to help.
Gotit. Don't call us, we’ll call you...

youare here v 309

crossword puzzle

310

Across
1. Strategy uses
inheritance
4. Type of sort used in Arays
5. The JFrame hook method that we overrode to
print "I Rule"
B. The Template Method Pattern uses
to defer implementation to other

rather than

classes

8. Coffee and

9. Don't call us, we'll call you is known as the
Principle

12. A template method defines the steps of an

13. In this chapter we gave you more

14. The template method is usually defined in an method as a

- lass
16. Class that likes web pages

Chapter 8

Down

2 algorithm steps are implemented
by hook methods

3. Factory Method is a of

Template Method
7. The steps in the algorithm that must be
supplied by the subclasses are usually declared

8. Huey, Louie and Dewey all weigh

pounds

8. A method in the abstract superclass that does

nothing or provides default behavior is called a
method

10. Big headed pattern

11. Our favorite coffee shop in Objectville

15. The Arrays class implements its template

method

Tools for your Pesign Toolbox

We've added Template Method to your toolbox. With
Template Method you can reuse code like a pro while
keeping control of your algorithms.

s gt h;w
(i 'hlwﬂt ?‘.MIIT lasses

O e
5 v m:h:;m e

M re neededs

do m H"‘\M

M our newest 'i'i-‘tb‘-"'l"
leks elasses implementing
an algorithm defer some
:.b:?i +o subtlasses.

the template method pattern

BULLET I’ﬂlllﬁ%

" Atemplate method" defines
the steps of an algorithm,
deferring to subclasses for the
implementation of those steps.

® The Template Method
Fattern gives us an important
technique for code reuse,

" The template method's
abstract class may define
concrete methods, abstract
methods and hooks.

= Abstract methods are
implemented by subclasses,

®= Hooks are methods that do
nothing or default behavior in
the abstract class, but may be
overridden in the subclass,

® To prevent subclasses from
changing the algorithm in the
template method, declare the
template method as final.

® The Hollywood Principle guides
us to put decision-making in
high-level modules that can
decide how and when to call
low level modules,

® You'll see lots of uses of the
Template Method Pattern in
real world code, but don't
expect it all (like any pattern) fo
be designed "by the book.”

® The Strategy and Template
Method Patterns both
encapsulate algorithms, one
by inheritance and one by
composition.

= The Factory Method is a
specialization of Template

Method.

youvarshere » 311

exercise solutions

Exercise
so]utions

@! }*U'Il' l Draw the new class diagram now that we've moved

prepareRecipe() into the CaffeineBeverage class:

+

Match each patiern

Pattern

y +
WG 'ﬂﬁ?\'ﬂﬂ [g 4
with its destription:

Description

Strategy’

Template Method behayiors and use delegation to

Factory Method Subclasses decide which

Encapsulate interchangable

decide which babavier to use
Subeclassey decids hew

implement steps in an
algerithm

concrete classes to create

312 Chapter 8

N

the template method pattern

EEH
.
AENERANER

v lwlololo

. o
(alilelolrlr|r]ulm]
|
EE

|
|

you are here » 313]

14 Appendix
Appendix: Leftover Patterns

Not everyone can be the most popular. Alot has changed in
the last 10 years. Since Design Patterns: Elements of Reusable Object-Onented
Software first came out, developers have applied these patterns thousands

of times. The patterns we summarize in this appendix are full-fledged, card-
carrying, official GoF patterns, but aren't always used as often as the patterns
we've explored so far. But these patterns are awesome in their own right. and

if your situation calls for them, you should apply them with your head held high.
Our goal in this appendix is to give you a high level idea of what these pattemns
are all about.

this is the appendix 611

bridge pattern

Bridge

Use the Bridge Pattern to vary not only your
implementations, but also your abstractions.

This is an abstraction. [£ eould be

A scenario . -“‘Mm or an abstract elass.

Imagine you're going to revolutionize “extreme
lounging.” You're writing the code for a new
ergonomic and user-friendly remote control for
TVs. You already know that you've got to use
good OO0 techniques because while the remote is
based on the same abstraction, there will be lots of
implementations — one for each model of TV,

RemeleControl
E,‘. rmnf: I'I-al ‘H"-‘ onfl
sa::T abstraction. ——>> | @
sofChannal]

& rnors methods

SonyContral
Lobsof —> 0
im?fenchfar{;im.
one for each TV mﬂmmF
: tuneChannel{channel)
annel);
Your dilemma }

You know that the remote’s user interface won't be right the
first time. In fact, you expect that the product will be refined
many times as usability data is collected on the remote

control,

; . ian we Lan Y
So your dilemma is that the remotes are going to change and Mm&ﬁ#ﬁz;h:e:bﬁ:?m{
the T'Vs are going to change. You've already abstracted the user ﬁ:h A inkerbace.

mterface so that you can vary the implementation over the many
TVs your customers will own. But you are also going to need
to vary the abstraction because it is going to change over time as
the remote is improved based on the user feedback.

So how are you going to create an OO design that allows you
to vary the implementation and the abstraction?

612 appendix

leftover patterns

Why use the Bridge Pattern?

The Bridge Pattern allows you to vary the implementation and
the abstraction by placing the two in separate class hierarchies,

Implementation elass hierarehy.

attion The velationship between
hbr:r Wierav ey €— Lhe two is referved te —
as the “bridae.”
Has-A | v
o)
of

| implementor. tuneChannel{channel), I tumeChanaal)
& mare mathods
All methods in the a.h!'l:raf;-l::gion E\
| Sony

| RCA

mi

are imf‘tmtﬂ&d in
the im?icmthhﬁﬂh-

-"'| setChannel{currentStation + 1); '

/R Contrete subelasses are implemented in tevms of the
abstrattion, not the implementation.

&
off)

|' tuneChanned()

Now you have two hierarchies, one for the remotes and a separate one [or platform
specific TV implementations. The bridge allows you to vary either side of the two
hierarchies independently.

-Bridge Benefits -Bridge Uses and Drawbacks
= Decouples an implementation so that it is not bound = Useful in graphic and windowing systems that need to
permanently to an interface. run over multiple platforms.
= Abstraction and implementation can be extended = Useful any time you need to vary an interface and an
independently. implementation in different ways.
= (Changes to the concrete abstraction classes don't * Increases complexity.
affect the client.

youare here » 613

builder patiern

Builder

Use the Builder Pattern to encapsulate the construction of
a product and allow it to be constructed in steps.

A scenario

You've just been asked to build a vacation planner for Patternsland, a new theme

park just outside of Objectville, Park guests can choose a hotel and various types of
admission tickets, make restaurant reservations, and even book special events. To create
a vacation planner, you need to be able to create structures like this:

Eath vacation s planned

@ memmﬁm.

Lompimation
have any

l_/ E;“h dw:m o, Litkets

" eals and spetid) events-

You need a flexible design

Each guest’s planner can vary in the number of days and types of activitics it includes,
For instance, a local resident might not need a hotel, but wants to make dinner and
special event reservations. Another guest might be flying into Objectville and needs a
hotel, dinner reservations, and admission tickets.

So, you need a flexible data structure that can represent guest planners and all their
variations; you also need to follow a sequence of potentially complex steps to create the
planner. How can you provide a way to create the complex structure without mixing it
with the steps for creating it?

614 appendix

Why use the Builder Pattern?

leftover patterns

Remember Iterator? We encapsulated the iteration into a separate
object and hid the internal representation of the collection from the
client. It's the same idea here: we encapsulate the creation of the
trip planner in an object (let’s call it a builder), and have our client

ask the builder to construct the trip planner structure for it,

i Cllent builder
The Client |
divetds the | mnﬂmﬂmrﬁ_;
builder o
tonstruct the
?!lanr.c'l'-
builder bulldDay(date);

builder, addHotel{date, “Grand Facadian®);
builder. eddTickets{"Patterns on lea®);

 plan rest of vacation

Planner yourPlanner =
bullder.getVacationPlanner():

b'b‘-ildﬂr 'Ln i_'.'rt;&‘i'-ﬂ
of steps and

u{-,q,.,Fiaane'r”

ewplete objeet

The Client divetts {:::
the ?'lanw:r in 8 numpDEr
Lhen calls the getV/a
methed to yebrieve dhe &

——Builder Benefits

The thent uses an
abstract interface +o
(build the planner.

AbstractBuilder

bulidDayy)
addHotel()
addResarvation()
addSpecialCvent)
addTickets()
gelVacationPlanner)

The contrete bulder
eveates vea produtts
I ar.d l‘l'.ﬂ‘\'ti ﬂ\ch
VacationBuilder in the vatation
‘vacaion tomposite shrusture.
buildDay() =
addHotel()
addReservation()
addSpecialEvent()
addTickets()

gelVacationPlanner()

= Encapsulates the way a complex object is
constructed,

= Allows objects to be constructed in a multistep and

varying process (as opposed to one step factories),

Hides the internal representation of the product from

the client.

= Product implementations can be swapped in and out
because the client only sees an abstract interface.

Builder Uses and Drawbacks

® Often used for building composite structures,

= Constructing objects requires more domain
knowledge of the client than when using a Factory.

you are here + 615

chain of responsibility pattern

Chain of Responsibility

Use the Chain of Responsibility Pattern when you want to
give more than one object a chance to handle a request.

A scenario

Mighty Gumball has been getting more email
than they can handle since the release of the
Java-powered Gumball Machine. From their
own analysis they get four kinds of email: fan
mail from customers that love the new 1 in 10
game, complaints from parents whose kids

are addicted to the game and requests to put
machines in new locations. They also get a fair
amount of spam.

All fan mail needs to go straight to the CEQ,
all complaints go to the legal department and
all requests for new machines go to business
development. Spam needs to be deleted.

Your task

Mighty Gumball has already written some Al
detectors that can tell if an email is spam, fan
mail, a complaint, or a request, but they need you
to create a design that can use the detectors to
handle incoming email.

616 appendix

You've
got to help us
deal with the flood
of email we're getting
since the release of
the Java Gumball
Machine.

leffover patterns

How to use the Chain of Responsibility Pattern

With the Chain of Responsibility Pattern, you create a chain of objects
that examine a request. Each object in turn examines the request and
handles it, or passes it on to the next abject in the chain,

AN

SUCCEess0r

Eath nhjlf-{'v in the tham handiaRequasi()

ac‘.';s as a hahdiﬂf End hlas'
a sublessor F.':'j‘&" Ik it
£an handle the request
& does; obherwise, it
Forwards the vepest &
ii:.i Subbessor. SpamHandler

| FanHandler NewLocHandler

i ComplaintHandler

handleReguast() handleRequest{)

handleRequest{)

handieRequest{)

As email is received, it is passed to the first handler: the
SpamHandler. Il the SpamHandler can't handle the request,

it is passed on to the FanHandler. And so on... Fﬂ_iﬁpﬁ:‘::‘fﬁ“ -I-fl-.::{:.:hain
A — althoush, tan always
Bath enal i passed ©2 g -w.?h::?t & irahol Adler
the First handler-

— Chain of Responsibility Benefits ——— Chain of Responsibility Uses and Drawbacks-
= Decouples the sender of the request and its = Commonly used in windows systems to handle
receivers,

events like mouse clicks and keyboard events.
= Simplifies your object because it doesn't have to e

o J Execution of the request isn't guaranteed; it may fall
know the chain's structure and keep direct references off the end of the chain if no object handles it (this can
1o its members. be an advantage or a disadvantage).

® (Can be hard to observe the runtime characteristics
and debug.

= Allows you to add or remaove responsibilities

dynamically by changing the members or order of the
chain,

you are here + 617

flyweight patiern

Flyweight

Use the Flyweight Pattern when one instance of a class
can be used to provide many “virtual instances.”

A scenario

You want to add trees as objects in your hot new landscape design application. In
your application, trees don't really do very much; they have an X-Y location, and they
can draw themselves dynamically, depending on how old they are. The thing is, a user
might want to have lots and lots of trees in one of their home landscape designs, It

might look something like this;

Your big cient’s dilemma

You've just landed your “reference account.” That key client
you've been pitching for months. They’re going to buy 1,000
seats of your application, and they're using your software

to do the landscape design for huge planned communities.
After using your software for a week, your client is
complaining that when they create large groves of trees, the

app starts getting sluggish...

618 appendix

Eah 7
i iﬁm%‘

Tree

xCoord
yCoord
age

display() {
il use X-Y coords

Il & complex age
/I related calcs

}

Why use the Flyweight Pattern?

What if, instead of having thousands of Tree objects, you
could redesign your system so that you've got only one

instance of Tree, and a client object that maintains the state

of ALL your trees? That's the Flyweight!

All the state, for ALL
of your virtual Tree
orﬂjcf-‘l:-i. is stored in

this 1D-array- \

— Flyweight Benefits

TreeManager
treeArray

displayTrees() {

I for all trees {
Il get array row
display(x, y, age);
}

® Reduces the number of object
saving memory.

single location.

® (Centralizes state for many “virtual® objects into a

instances at runtime,

—Flyweight Uses and Drawbacks

leftover patterns

One, sinal
Tree ﬁ;i:’;ﬁafc_ﬁ_q

Tree

display(x, y, age) {
Il use X-Y coords
Il & complex age
If related calcs

}

The Flyweight is used when a class has many
instances, and they can all be controlled identically.
A drawback of the Flyweight pattern is that once
you've implemented it, single, logical instances of the
class will not be able to behave independently from
the other instances.

619

you are here »

interpreter patiern

Interpreter ;
Use the Interpreter Pattern to build an Q
interpreter for a language.
A seenario : \ s ‘iras
Remember the Duck Pond Simulator? You have a hunch it The |nterpreter Paﬁe;:‘;;?nmats.
would also make a great educational tool for children to learn some knowledg? of fuﬂ;,mﬂ
programming, Using the simulator, each child gets to control one i |f you've never 5tud:;-'a read through
duck with a simple language. Here's an example of the language: i grammars,9° ahea il get the gist e
i {he pattern:yot L ELonk e
/ Tuen the dutk Fa e
right;
while (daylight) fiy; & I3l day-
quack; <
~dnd then quack.
Now, remembering how to create grammars from one of your old
introductory programming classes, you write out the grammar: . pomsisting
A program s 38 T
[\ °£ Sﬂﬂ o [u“h'.:u M[M
xel A sequente is 3

expression ::= <command> | <sequence> | <repetition> é,_,.-— set. of expressions
sequence ::= <expression> ';’ <expression>

command ::= right | quack | fly semitolons.
repetition ::= while '(' <variable> ‘) '<expresion> We have three

variable ::= [A-Z,a-z]+ tommands: rig,h{'-u
H A quack, and Fly.
while statement is ;
d tonditiona| viriaiale‘}“{
and an eXPression.

Now what?

You've got a grammar; now all you need is a way to represent and
interpret sentences in the grammar so that the students can see the
effects of their programming on the smulated ducks.

620 appendix

leftover patterns

How to implement an interpreter

When you need to implement a simple language, the
Interpreter Pattern defines a class-based representation for its
grammar along with an_interpreter to interpret its sentences.
To represent the language, you use a class to represent each
rule in the language. Here's the duck language translated
into classes. Notice the direct mapping to the grammar.

Exprassion
interpret(context)

Sequence
expression 1

expression2

interpratconteaxt)

Variable
interprel{contaxt)

FlyCommand
interprat{context)

To interpret the language, call the interpret) method on each
expression type. This method is passed a context — which
contains the input stream of the program we're parsing — and
matches the input and evaluates it.

—Interpreter Benefits —Interpreter Uses and Drawbacks
= Representing each grammar rule in a class makes = Use interpreter when you need to implement a
the language easy to implement. simple language.
= Because the grammar is represented by classes, you = Appropriate when you have a simple grammar and
can easily change or extend the language. simplicity is more important than efficiency.
= By adding additional methods to the class structure, ® Used for scripting and programming languages.

you can add new behaviors beyond interpretation,
like pretty printing and more sophisticated program
validation.

= This pattem can become cumbersome when the
number of grammar rules is large. In these cases a
parsericompller generator may be more appropriate.

yvou are here » 621

mediator pattern

Mediator

Use the Mediator Pattern to centralize complex
communications and control between related objects.

A scenario

Bob has a Java-enabled auto-house, thanks to the good folks at HouseOfTheFuture.
All of his appliances are designed to make his life easier, When Bob stops hitting the
snooze button, his alarm clock tells the coffee maker to start brewing, Even though
life is good for Bob, he and other clients are always asking for lots of new features:
No coffee on the weekends... Turn off the sprinkler 15 minutes before a shower is
scheduled... Set the alarm early on trash days...

CoffeaPot
Alarm
onEvent() {
onEvent() { c?md-:né{aiendar{}
checkCalendar() checkAlarm()
checkSprinkler() /l do more stuff
startCoffee() }
Il do more stuff
}

Calendar
Sprinkler
onEvent() {
checkDayOfWeek() onEvent() {
doSprinkler() checkCalendar()
doCoffes() checkShower()
doAlarm() checkTemp()
{f do more stuff checkWeather()
N do more stuff
}
R —

HouseOfTheFuture’s dilemma

It’s getting really hard to keep track of which rules reside in which objects, and how
the various objects should relate to each other.

622 appendix

leftover patterns

Mediator in action...

With a Mediator added to the system, all
of the appliance objects can be greatly
simplified:

It's sucha

relief, not having to

figure out that Alarm

clock’s picky rules!

® They tell the Mediator when their state
changes.

& They respond to requests from the
Mediator.

Before adding the Mediator, all of the

appliance objects needed to know about each Mediator
Dlhcl_',., Ihtj."!.." were all light]ytcoupled: With the iftalarmEvent)
Mediator in place, the appliance objects are checkCalendar()
all completely decoupled from each other. checkShower()
checkTemp()
The Mediator contains all of the control ?f(waahﬂnd} {
logic for the entire system. When an existing checkWeather()
appliance needs a new rule, or a new i do more stuff
appliance is added to the system, you'll know }
that all of the necessary logic will be added 1o if{trashDay) {
the Mediator. resetAlarmy()
/f do more stuff
\'}_
— Mediator Benefits —— Mediator Uses and Drawbacks

Increases the reusability of the objects supported by
the Mediator by decoupling them from the system.
Simplifies maintenance of the system by centralizing
control logic.

Simplifies and reduces the variety of messages sent
between objects in the system.

The Mediator is commonly used to coordinate related
GUI components.

A drawback of the Mediator pattern is that without
proper design, the Mediator object itself can become
overly complex.

you are here » 623

memento patiern

Mewento

Use the Memento Pattern when you need
to be able to return an object to one of its
previous states; for instance, if your user
requests an “undo.”

A scenario

Your interactive role playing game is hugely successful,
and has created a legion of addicts, all trying to get

to the fabled “level 13.” As users progress to more
challenging game levels, the odds of encountering

a game-ending situation increase, Fans who have

spent days progressing to an advanced level are
understandably miffed when their character gets snuffed
and they have to start all over. The cry goes out for a
“save progress” command, so that players can store their
game progress and at least recover most of their efforts
when their character is unfairly extinguished. The
“save progress” function needs to be designed to return
a resurrected player to the last level she completed
successfully.

r

Just be careful how you go about
saving the game state. It's pretty
complicated, and I don't want anyone
else with access to it mucking it up and
breaking my code,

624 appendix

leftover patterns

The Mewento at work

The Memento has two goals:

" Saving the important state of a system’s key object.
® Maintaining the key object’s encapsulation.

Keeping the single responsibility principle in mind, it's also
a good idea to keep the state that you're saving separate
from the key object. This separate object that holds the
state is known as the Memento object.

Client MasterGameObject
If when new level is reached gameState
Object saved = :
(Object) mao.getCurrentState(); Object getCurrentState() {
Il gather state
I/ when & restore is required }mmm{gameStahe};
; ¥ mgo.restoreState(saved);
While this isn't 3 Leveibly ¢
$anty implementation: restoreState(Object savedState) {
notite that the Client /f restore state
has no attess to the }
¥
Memento's 343 i1 do other game stuff
— Memento Benefits — Memento Uses and Drawbacks
= Keeping the saved state external from the key object = The Memento is used to save state.
T thtesmn. = Adrawback to using Memento is that saving and
" Keeps the key object’s data encapsulated. restoring state can be ime consuming.
" Provides easy-to-implement recovery capability. * In Java systems, consider using Serialization to save
a system's state.

you are here v 625

626

pratotype pattern

Prototype

Use the Prototype Pattern when creating an

instance of a given class is either expensive or
complicated.

A scenario

Your interactive role playing game has an insatiable appetite for monsters. As your
heros make their journey through a dynamically created landscape, they encounter
an endless chain of foes that must be subdued. You'd like the monster’s characteristics
to evolve with the changing landscape. It doesn’t make a lot of sense for bird-like

monsters to follow your characters into underseas realms. Finally, you'd like to allow
advanced players to create their own custom monsters.

Yikes! Just the act
of creating all of these different
kinds of monster instances is getting
tricky... Putting all sorts of state detail in the
constructors doesn't seem to be very cohesive. It
would be great if there was a single place where
all of the instantiation details could be
encapsulated...

It would be a lot cleaner if we
could decouple the code that handles
the details of creating the monsters
from the code that actually needs to

create the instances on the fly.

appendix

Prototype fo the rescue

The Prototype Pattern allows you to make new instances by
copying existing instances. (In Java this typically means using
the clone() method, or de-serialization when you need deep
copies.) A key aspect of this pattern is that the client code can
make new instances without knowing which specific class is

being instantiated.

leftover patterns

MonsterMaker

makeRandomManster() {
Monsterm =

MonsterRegistry.getMonster();

WellKnownMonster I DynamicPlayerGeneratedMonster l

The tlient needs a new mm:’ct'r
ate to the turven
m (The tlient won T know
what kind of monster he aets)

— Prototype Benefits

= Hides the complexities of making new instances from
the client.

= Provides the option for the client to generate objects
whose type is not known.

= | some circumstances, copying an object can be
more efficient than creating a new object.

MonsterRegistry
Monster getMonster() {
Il find the correct monster 6\-\ The registry f;
return correctMonster.clone(); ; a:t)’ '"Ij‘::he
monster, makes
tlone of i, and rd""‘:‘:ﬁtaﬂm.

—Prototype Uses and Drawbacks ————

= Prototype should be considered when a system must
create new objects of many types in a complex class
hierarchy.

= Adrawback to using the Prototype is that making a
copy of an object can sometimes be complicated.

you are here + 627

visitor pattern

Visitor

Use the Visitor Pattern when you want to
add capabilities to a composite of objects
and encapsulation is not important.

A scenario

Customers who frequent the Objectville Diner and Objectville
Pancake House have recently become more health conscious. They
are asking for nutritional information before ordering their meals.
Because both establishments are so willing to create special orders,
some customers are even asking for nutritional information on a
per ingredient basis.

Lou’s proposed solution: I new methods

getHealthRating

getCalories \
gaﬁnﬁn% ¢
getCarbs

/f new methods

getHealthRating
getCalories
getProtein

Mel’s concerns...

“Boy, it seems like we're opening Pandora’s box. Who knows what
new method we're going to have to add next, and every time we
add a new method we have to do it in two places. Plus, what if
we want to enhance the base application with, say, a recipes class?
Then we'll have to make these changes in three different places...”

628 appendix

The Visitor drops by

The Visitor must visit each element of the Composite; that
functionality is in a Traverser object. The Visitor is guided by the
Traverser to gather state from all of the objects in the Composite,
Once state has been gathered, the Client can have the Visitor perform
various operations on the state, When new functionality is required,

leftover patterns

only the Visitor must be enhanced.
All these composite
tlasses have to do is add
3 aetState() method
The Visikor needs to be able 06l (and not worry bout
getStatel) acvess classes, and exposing themselves).
The Client asks wm:wunaddm'ﬁ"“ ar
the Visitor to get the tlient Lo wse.
information from the

Composite structure...
New methods £an be
added to the Visitor
without affecting the
Cm?mi&

e classes' encapsulation is broken

e traversal function is involved, changes to
ite structure are more difficult.

you are here » 629

* Index
A

Abstract Factory Pattern 156, See also Factory Pattern
Adapter Pattern
advantages 242
class adapters 244
class diagram 243
combining patterns 504
defined 243
duck magnets 245
Enumeration Iterator Adapter 248
exercise 231
explained 241
fireside chat 247, 252-253
introduction 237
object adapters 244
Alexander, Christopher 602
annihilating evil 606
Anti-Patterns 606-607
Golden Hammer 607
application patterns 604
architectural patterns 604

B

Bridge Pattern 612-613
Builder Pattern 614-615

bullet points 32, 74, 105, 162, 186, 230, 270, 311, 380,
423,491, 560, 608

+
"

business process patterns 605

C

CD Cover Viewer 463
Chain of Responsibility Pattern 616-617
change 339
anticipating 14
constant in software development 8
identifying 53
Choc-0-Holic, Inc. 175
class explosion 81
code magnets. 69, 179, 245, 350
cohesion 339-340
Combining Patierns 500
Abstract Factory Pattern 508
Adapter Pattern 504
class diagram 524

Composite Pattern 513
Decorator Pattern' 506
Observer Pattern 516
Command Pattern
class diagram 207
command object 203
defined 206-207
introduction 196
loading the Invoker 201

this is the index 631

D-G

Command Pattern, continued fireside chat 252-253
logging requests 229 interview 104
macro command 224 introduction 88
Null Object 214 in Java /'O 100-101
queuing requests 228 structural pattern 591
unde 216, 220, 227 Dependency Inversion Principle 139-143
Composite Pattern and the Hollywood Principle 298
‘and Iterator Pattern 368 Design Patterns
class diagram 358 Abstract Factory Pattern 156
combining patterns 513 Adapter Pattern 243
composite behavior 363 benefits 599
default behavior 360 Bridge Pattern 612-613
defined 356 Builder Pattern 614615
interview 376-377 categories 589, 592-593
safety 367 Chain of Responsibility Pattern 616-617
safety versus transparency 515 class patterns 591
transparency 367, 375 Command Pattern 206
composition 23, 85, 93, 247, 309 Composite Pattern 356
compound pattern 500, 522 Decorator Pattern 91
controlling access 460. See also Proxy Pattern defined 579, 581
creating objects 134 discover your own 586-587
crossword puzzle 33, 76, 163, 187, 231, 271, 310, 378, Facade Pattern 264
450 Factory Method Pattern 134
cubicle conversation 55, 93, 195, 208, 387, 397, 433, Flyweight Pattern 618-619
383-584
Interpreter Pattern 620-621
D Iterator Pattern 336
Mediator Pattern 622623
Decorator Pattern Memento Pattern 624625
and Proxy Pattern 472473 Null Object 214
class diagram 91 object patterns 591
combining patterns 506 Observer Pattern 51
cubicle conversation 93 organizing 589
defined 91 Prototype Pattern 626-627
disadvantages 101, 104 Proxy Pattern 460

632 index

Simple Factory 114

Singleton Pattern 177

State Pattern 410

Strategy Pattern 24

Template Method Pattern 289

use 29

versus frameworks 29

versus libraries 29

Visitor Pattern 628-629
Design Principles. See Object Oriented Design Principles
Design Puzzle 25, 133, 279, 395, 468, 542

Design Toolbox 32, 74, 105, 162, 186, 230, 270, 311,
380, 423, 491, 560, 608

DI View 534

domain specific patterns 604

E

Elvis 526

encapsulate what varies 8-9, 75, 136, 397, 612
encapsulating algorithms 286, 289
encapsulating behavior 11

encapsulating iteration 323

encapsulating method invocation 206
encapsulating object construction 614615
encapsulating object creation 114, 136
encapsulating requests 206

encapsulating state 399

F

Facade Pattern
advantages 260
and Principle of Least Knowledge 269
class diagram 264

the index

defined 264
introduction 258

Factory Method Pattern 134, See also Factory Pattern

Factory Pattern
Abstract Factory
and Factory Method 158-159, 160-161
class diagram 156-157
combining patterns 508
defined 156
interview 158-159
introduction 153
Factory Method
advantages 135
and Abstract Factory 160-161
class diagram 134
defined 134
interview 158-159
introduction 120, 131-132
up close 125
Simple Factory
defined 117
introduction 114
family of algorithms. See Strategy Pattern
family of products 145
favor composition over inheritance 23, 75
fireside chat 62, 247, 252, 308, 418, 472-473
Five minute drama 48, 478
Flyweight Pattern 618-61%
forces 582
Friedman, Dan 171

G

Gamma, Erich 601

you are here »

633

H-P

Gang of Four 583, 601
Gamma, Erich 601
Helm, Richard 601
Johnson, Ralph 601
Vlissides, John 601
global access point 177
gobble gobble 239
Golden Hammer 607
guide to better living with Design Patterns 578
Gumball Machine Monitor 431

H

HAS-A 23
Head First learning principles xxx
Helm, Richard 601
Hillside Group 603
Hollywood Principle, The 296
and the Dependency Inversion Principle 298
Home Automation or Bust, Inc. 192
Home Sweet Home Theater 255
Hot or Not 475

[

inheritance

disadvantages 5

for reuse 5-6

versus composition 93
interface 12
Interpreter Pattern 620-621
inversion 141-142
IS-A 23
Iterator Pattern

advantages 330

634 index

and collections 347-349
and Composite Pattern 368
and Enumeration 338
and Hashtable 343, 34§
class diagram 337

code magnets 350
defined 336

exercise 327

external iterator 338
for/in 349

internal iterator 338
introduction 325
java.util.Iterator 332

Null Iterator 372
polymorphic iteration 338
removing objects 332

J

Johnson, Ralph 601

K

KISS 594

I

Law of Demeter. See Principle of Least Knowledge
lazy instantiation 177
loose coupling 53

M

magic bullet 594
master and student 23, 30, 85, 136, 592, 596
Matchmaking in Objectville 475

Mediator Pattern 622-623
Memento Pattern 624-625
middleman 237
Mighty Gumball, Inc. 386
Model-View-Controller

Adapter Pattern 546

and design patterns 532

and the Web 549

Composite Pattern 532, 559

introduction 529

Mediator Pattern 559

Observer Pattern 532

ready-bake code 564-576

song 526

Strategy Pattern 532, 545

up close 530
Model 2 549. See also Model-View-Controller

and design patterns 557-558
MVC. See Model-View-Controller

N

Mull Object 214, 372

0

Objectville Diner 26, 197, 316, 628

Objectville Pancake House 316, 628

Object Oriented Design Principles 9, 30-31
Dependency Inversion Principle 139-143

encapsulate what varies 9, 111

favor composition over inheritance 23, 243, 397

Hollywood Principle 296

one class, one responsibility 185, 336, 339, 367

Open-Closed Principle 86-87, 407

the index

Principle of Least Knowledge 265

program to an interface, not an implementation 11,
243 335

strive for loosely coupled designs between objects that
interact 53

Observable 64, 71

Observer Pattern
class diagram 52
code magnets 69
combining patterns 516
cubicle conversation 535
defined 51-52
fireside chat 62
Five minute drama 48
introduction 44
in Swing 72-73
Java support 64
pull 63
push 63

one-to-many relationship 51-52

OOPSLA 603

Open-Closed Principle 86-87
oreo cookie 526

organizational patterns 605

I

part-whole hierarchy 356. See also Composite Pattern
patterns catalog 581, 583, 585

Patterns Exposed 104, 158, 174, 377-378

patterns in the wild 299, 488-489

patterns zoo 604

Pattern Honorable Mention 117, 214

Pizza shop 112

Portland Patterns Repository 603

you are here » 635

Q-y

Principle of Least Knowledge 265-268 Remote Method Invocation, See RMI
disadvantages 267 remote proxy 434. See also Proxy Pattern

program to an implementation 12, 17, 71 reuse 13, 23, 85

program to an interface 12 RMI 436

program to an interface, not an implementation 11, 75

Prototype Pattern 626627

Proxy Pattern 8
and Adapter Pattern 471

shared vocabulary 26-28, 599-600
and Decorator Pattern 471, 472-473

sharpen your pencil 5, 42, 54, 61, 94, 97, 99, 124, 137,

Caching Proxy. 471 148, 176, 183, 205, 225, 242, 268, 284, 322, 342,
class diagram 461 396, 400, 406, 409, 421, 483, 511, 518, 520, 589
defined 460 Simple Factory 117
Dynamic Proxy 474, 479, 486 SimUDuck 2, 500
and RM1 486 Singleton Pattern
exercise 482 advantages 170, 184
fireside chat 472-473 and garbage collection 184
javalang.reflect. Proxy 474 and global variables 185
Protection Proxy 474, 477 and multithreading 180-182
Proxy Zoo 488489 class diagram 177
ready-bake code 494 defined 177
Remote Proxy 434 disadvantages 184
variants 471 double-checked locking 182
Virtual Proxy 462 interview 174
image proxy 464 up close 173
publisher/subscriber 45 Single Responsibility Principle 339, See also Object
Oriented Design Principles: one class, one respon-
Q sibility
skeleton 440
Quality, The. See Quality without a name Starbuzz Coffee 80, 276
Quality without a name. See Quality, The state machines 388-389
State Pattern
R and Strategy Pattern 411, 418-419
class diagram 410

refactoring 354, 595
remote control 193, 209

defined 410

636 index

the index

disadvantages 412,417

introduction 398 v

sharing state 412 ‘ .
varies. See encapsulate what varies

Visitor Pattern 628-629
Vhissides, John 601

static factory 115
Strategy Pattern 24
and State Pattern 411, 418-419

and Template Method Pattern 308-309 W

encapsulating behavior 22

family of algorithms 22 Weather-O-Rama 38

fireside chat 308 when not to use patterns 596-598
stub 440 Who Does What? 202, 254, 298, 379, 422, 487, 588

Why a duck? 500
Ol wrapping objects 88, 242, 252, 260, 473, 508. See
also Adapter Pattern, Decorator Pattern, Facade

Template Method Pattern Pattern, Proxy Pattern

advantages 288

and Applet 307

and java.util. Arrays 300 Y

and Strategy Pattern 305, 308-309 your mind on patterns 597

and Swing 306
and the Hollywood Principle 297
class diagram 289
defined 289
fireside chat 308-309
hook 292, 295
introduction 236
up close 290-291
The Little Lisper 171
thinking in patterns 594-5595
tightly coupled 53

U

undo 216, 227
user interface design patterns 605

you are here » 637

638

*
+ Colophon +*

All interior layouts were designed by Eric Freeman, Elisabeth Freeman,
Kathy Sierra and Bert Bates. Kathy and Bert created the look & feel of the Head First series.
The book was produced using Adobe InDesign CS {an unbelievably cool design tool that we can't get
enough of) and Adobe Photoshop CS. The book was typeset using Uncle Stinky, Mister Frisky (you think
we're kidding), Ann Satellite, Baskerville, Comic Sans, Myriad Pro, Skippy Sharp, Savoye LET, Jokerman
LET, Courier New and Woodrow typefaces.

Interior design and production all happened exclusively on Apple Macintoshes—at Head First we're all
about "Think Different” (even if it isn’t grammatical). All Java code was created using James Gosling's
favorite IDE, vi, although we really should try Erich Gamma's Eclipse.

Long days of writing were powered by the caffeine fuel of Honest Tea and Tejava, the clean Santa Fe air,
and the grooving sounds of Banco de Gaia, Cocteau Twins, Buddha Bar |-V, Delerium, Enigma, Mike
Cidfield, Olive, Orb, Orbital, LTJ Bukem, Massive Attack, Steve Roach, Sasha and Digweed, Thievery
Corporation, Zero 7 and Neil Finn (in all his incarnations) along with a heck of a lot of acid trance and
more B0s music that you'd care to know about.

Index

Head First

Institute

And now, a final word from the Head First Institute...

Our world class researchers are working day and night in a mad race to

uncover the mysteries of Life, the Universe and Everything—before it too late.
Never before has a research team with such noble and daunting goals been
assembled. Currently, we are focusing our collective energy and brain power on
creating the ultimate learning machine. Once perfected, you and others will join

us in our quest!

You're fortunate to be holding one of our first protoypes in your hands. But only
through constant refinement can our goal be achieved. We ask you, a pioneer
user of the technology, to send us periodic field reports of your progress, at

fieldreports@wickedlysmart.com

And next time you're in Objectville,
drop by and take one of our behind
the scenes laboratory tours.

Head First Design Patterns

*I received the book yester-
day and started to read it...
and I couldn't stop. This is
trés “coal.” It is fun, but they
cover a lot of ground and
they are right to the point.
I'm really impressed.”
| —Erich Gamma,
IBM J'Ji!ﬁ?:g‘!tf shed F ngineet, dand
mrm-‘fmr f,jlff.h \!g'.u: Palterns

“I feel like a thousand
pounds of books have just
been lifted off of my head.”

—Ward Cunningham,

inventor of the Wiki and
[founder of the Hillside Group

“This book is close ta per- '
fect, because of the way it
combines expartise and
readability. It speaks with
authority and it reads '
beautifully”

| —David Gelernter, Professor of

Computer Science, Yale University

“One of the funniest and
smartest books on software
desgign I've ever read.”

—Aaron 1. ﬂﬁ'c'r;{r
V.” Technology, LS | com

Visit 0’Reilly on the Web at www.oreillv.com____
In Canada

ISBN D-5946-00712-4

e

6007126

US $44.95

Uil s

Software Development,/Java. ! |

You know you don't want to reinvent the wheel (or worse, a flat tire), so 4
you look to design patterns—the lessons learned by those who've faced
the same software design problems. With design patterns, you get to take
advantage of the best practices and experience of others, so that you

can spend your time on...something else. Something more challenging.
Something more complex. Something more fun. You want to learn: | 5

* The patterns that matter

. H'?w_'.u to use them, and n.l.h.}' _

* How to apply them to your own designs, right now
= When not L:.: se 1|1.::r|| (how to :m;'.n'ul pattern fever)
* OO design principles on which patterns are based

Maost importantly, you want 1o learn design patterns in a way that won't put 1
you to sleep. If you've read a Head First book, you know what to expect— |
a visually rich format designed for the way vour brain works. Using the latest

research in neurobiology, cognitive science; and learning theory, Head -
First Design Patterns will load patterns into your brain in a way that sticks.
In a way that makes you better at solving software design problems, and
better at speaking the language of patterns with others onyour team. .|

Eric Freeman and Elisabeth Freeman are authors, educators, and tech-

nology innovators. After four years leading digital media and Internet

efforts ar the Walt Disttey Company, they're applving some of that | ' 1
pixie dust to their own media, including this book. Eric and Elisabeth

both hold computer science degrees from Yale
Eniversity: Elisabeth -holdsan M.S. degree and
Fnr a I’h B

Kathy Sierra {inundm of javaranch. nmr] mul
Bert Bates are the creators of the bestselling
Head First series and develapers of Sun
Microsystems Java dm'c'lnpf'r certification
exXams. | {

63 95

[ks

+ O’REILLY"

	Head First Design Patterns - toc.pdf
	Head First Design Patterns ch03.pdf
	Head First Design Patterns Ch05.pdf
	Head First Design Patterns Ch07-08.pdf
	Head First Design Patterns Ch14.pdf

