Programmer to Programmer™

Professional

ASP.NET 2.

Bill Evjen, Scott Hanselman, Farhan Muhammad, Srinivasa Sivakumar, Devin Rader

Updates, source code, and Wrox technical support at WwWw.wrox.com




Professional

ASP.NET 2.0






Professional

ASP.NET 2.0

Bill Evjen
Scott Hanselman
Farhan Muhammad
Srinivasa Sivakumar
Devin Rader

WILEY

Wiley Publishing, Inc.



Professional ASP.NET 2.0

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256

www.wiley.com
Copyright © 2006 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN-13: 978-0-7645-7610-2
ISBN-10: 0-7645-7610-0

Manufactured in the United States of America
10987654321
1B/SR/RQ/QV/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal Department,
Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESEN-
TATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF
THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WAR-
RANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY
SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE
SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS
NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFES-
SIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE
SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HERE-
FROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION
AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE
PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOM-
MENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN
THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND
WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Department within the
United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. All other trademarks are the property of their respective owners. Wiley
Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Library of Congress Cataloging-in-Publication Data

Professional ASP.NET 2.0 / Bill Evjen ... [et al.].
p.cm.
Includes index.
ISBN-13: 978-0-7645-7610-2 (paper / website)
ISBN-10: 0-7645-7610-0 (paper/website)

1. Active server pages 2. Microsoft.NET. 3. Web sites—Design. 4. Web servers. 5. Web site development. 6. Internet
programming. I. Evjen, Bill.
TK5105.8885.A26P787 2005
005.2'76—dc22
2005020484


www.wiley.com

About the Authors

Bill Evjen

Bill Evjen is an active proponent of NET technologies and community-based learning initiatives for
.NET. He has been actively involved with .NET since the first bits were released in 2000. In the same
year, Bill founded the St. Louis .NET User Group (www. st1net.org), one of the world’s first such
groups. Bill is also the founder and executive director of the International .NET Association

(www . ineta.org), which represents more than 375,000 members worldwide.

Based in St. Louis, Missouri, USA, Bill is an acclaimed author and speaker on ASPNET and XML Web
services. He has written or co-written Professional C#, Third Edition; Professional VB.NET, Third Edition;
and ASP.NET 2.0 Beta Preview (all Wrox titles), as well as ASP.NET Professional Secrets, XML Web Services
for ASP.NET, Web Services Enhancements: Understanding the WSE for Enterprise Applications, Visual Basic
.NET Bible, and ASP.NET Professional Secrets (all published by Wiley). In addition to writing, Bill is a
speaker at numerous conferences, including DevConnections, VSLive, and TechEd.

Bill is a Technical Director for Reuters, the international news and financial services company, and he
travels the world speaking to major financial institutions about the future of the IT industry. He was
graduated from Western Washington University in Bellingham, Washington, with a Russian language
degree. When he isn’t tinkering on the computer, he can usually be found at his summer house in
Toivakka, Finland. You can reach Bill at evjen@yahoo.com. He presently keeps his weblog at
www.geekswithblogs.net/evjen.

Scott Hanselman

Scott Hanselman is currently the Chief Architect at the Corillian Corporation (NASDAQ: CORI), an
eFinance enabler. He has more than 13 years’ experience developing software in C, C++, VB, COM, and
certainly in VB.NET and C#. Scott is proud to be both a Microsoft RD as well as an MVP for both
ASP.NET and Solutions Architecture. Scott has spoken at dozens of conferences worldwide, including
three TechEds and the North African DevCon. He is a primary contributor to “newtelligence DasBlog
Community Edition 1.7,” the most popular open-source ASPNET blogging software hosted on
SourceForge.

This is the third book Scott has worked on for Wrox and certainly the most fun. His thoughts on the Zen
of .NET, programming, and Web Services can be found on his blog at www . computerzen.com. He wel-
comes email and PayPal’ed money at scott@hanselman.com.



Farhan Muhammad

Farhan Muhammad is the Chief Architect of ILM Professional Service. He is also the Microsoft Regional
Director (RD) for the U.S. North Central region. As an RD, he focuses on providing the vital link
between Microsoft and the developer community. He has been a board member at the International
.NET Association (INETA), where he actively helped support developers’ communities worldwide. He
leads the Twin Cities .NET User Group, a developers’ community of more than 1,200 members in
Minnesota dedicated to sharing .NET knowledge among developers. He has also written Real World
ASP.NET Best Practices (Apress, 2003).

S. Srinivasa Sivakumar

S. Srinivasa Sivakumar is a Solution Architect for Microsoft India. Srinivasa has co-written more than
15 books and more than 40 technical articles for major publications. A list of his published materials is
available at www3 .brinkster.com/webguru/.

Devin Rader

Devin Rader is an Infragistics Technology Evangelist and is responsible for writing Infragistics reference
applications and .NET technology articles, as well as the worldwide delivery of Infragistics’ technology
demonstrations. Devin is an active member and leader for the International .NET Association (INETA)
and believes strongly in the software development community. He helped found the St. Louis .NET
Users Group in November 2000 and is a frequent speaker at community events nationwide. Devin
writes the monthly ASPNET Tips & Tricks column for ASP.NET Pro magazine, as well as .NET technol-
ogy articles for MSDN Online. He has served as the sole technical editor for a number of works, includ-
ing Web Services Enhancements: Understanding the WSE for Enterprise Applications, ASP.NET Professional
Secrets, and ASP.NET 2.0 Beta Preview (all published by Wiley).



Credits

Senior Acquisitions Editor Production Manager
Jim Minatel Tim Tate
Senior Development Editor Vice President and Executive Group Publisher
Jodi Jensen Richard Swadley
Technical Editors Vice President and Executive Publisher
Derek Comingore Joseph B. Wikert
Hal Levy
Farhan Muhammad Graphics and Production Specialists
Jeffrey Palermo Lauren Goddard
Richard Purchas Denny Hager
Devin Rader Barbara Moore
Patrick Santry Melanee Prendergast
Srinivasa Sivakumar Heather Ryan
Scott Spradlin Alicia B. South
Copy Editor Quality Control Technicians
Mary Lagu Leeann Harney
Jessica Kramer
Editorial Manager Carl William Pierce
Mary Beth Wakefield

Proofreading and Indexing
TECHBOOKS Production Services



To Kalle—welcome to the family! —Bill Evjen

I dedicate this book to my lovely wife, Luna, whose continuous support and encouragement made this book
possible. I also dedicate this book to my parents, who taught me to do my best in everything I start. —Farhan
Muhammad

I dedicate my work in this book to my dear late father, Mr. V. Sathyanarayanan, whom I miss most in this
world. —S. Srinivasa Sivakumar



Acknowledgments

Bill Evjen

I have said it before, and I'll say it again: Writing a book may seem like the greatest of solo endeavors,
but it requires a large team of people working together to get technical books out the door—and this
book is no exception. This time around, the team was incredible. First, and foremost, I thank Jim Minatel
of Wrox for giving me the opportunity to work on such a great project. There is nothing better than get-
ting the opportunity to write about your favorite topic for the world’s best publisher!

Besides Jim, I dealt with the book’s development editor, Jodi Jensen, on a weekly, if not daily, basis.
Much of the quality of this book is because of Jodi’s attention to detail and her targeted corrections and
queries. Jodi was just so dang good that Wiley has decided to promote her to bigger and better things. So
I am sad to say that after so many books, this is the last book Jodi and I will be working on together.
Good luck, Jodi, in the new job!

I worked closely with both Scott Hanselman and Devin Rader, and these guys deserve a lot of thanks. I
appreciate your help and advice throughout this process. Thanks, guys!

I also thank the various editors who worked on the book—Mary Lagu, Tom Dinse, Brian Herrmann,
Sara Shlaer, and Maryann Steinhart—as well as the contributing authors Srinivasa Sivakumar, Farhan
Muhammad, and Devin Rader (who also worked as technical editors).

Big and ongoing thanks go to the Wrox/Wiley gang, including Joe Wikert (publisher), Katie Mohr
(acquisitions editor), and David Mayhew (marketing).

Writing books while the product is still in an alpha or beta format is a difficult task. For this reason, I
also thank specific members of the ASP.NET team who helped me immeasurably. Thanks to Kent
Sharkey, Thomas Lewis, Brian Goldfarb, and Scott Guthrie. You guys were very helpful!

Finally, thanks to my entire family. I had a new son come into this world while I was writing the book,
so things got rather hectic from time to time. The biggest thanks go to my wife, Tuija, who keeps my
world together. Thanks, also, to my outstanding children—Sofia, Henri, and now Kalle! You guys are
my sunshine.

Scott Hanselman

I want to thank my wife, Ntombenhle (“Mo”), for her infinite patience and understanding as I poked
away on the computer into the wee hours when I should have been hanging with her. Thanks to ScottGu
and the ASPNET 2.0 team for making a rocking sweet development platform. Thanks to Ben Miller, the
ASP.NET MVP Lead, for brokering my questions all over Redmond and beyond. I thank all the folks at
Corillian, including my CTO, Chris Brooks, for his constant mentoring, and especially Patrick Cauldwell
for his friendship and technical wisdom over the years. Thanks to Jodi Jensen and Jim Minatel at Wiley/
Wrox for all their hard work. Thanks to the folks who read my blog and allow me to bounce code and
thoughts off them. Finally, I thank Bill Evjen for his ongoing support, ideas, guidance, and tutelage
about the book-writing process.



Contents

Acknowledgments ix
Introduction Xxvii
What You Need for ASP.NET 2.0 XXVii
Who Should Read This Book? xxviii
What This Book Covers XXViii
Conventions XXXii
Source Code XXXiii
Errata XXXiv
p2p.wrox.com XXXiv
Chapter 1: Hello ASP.NET 2.0! 1
A Little Bit of History 1
The Goals of ASP.NET 2.0 3
Developer Productivity 3
Administration and Management 6
Performance and Scalability 9
Additional New Features of ASP.NET 2.0 9
New Developer Infrastructures 9

New Compilation System 14
Additions to the Page Framework 15

New Objects for Accessing Data 17

New Server Controls 17

A New IDE for Building ASP.NET 2.0 Pages 18
Summary 20
Chapter 2: Visual Studio 2005 21
The Start Page 22
The Document Window 22
Views in the Document Window 23

The Tag Navigator 24
Page Tabs 24
Code Change Status Notifications 26

Error Notifications and Assistance 26



Contents

The Toolbox 28
The Solution Explorer 30
The Server Explorer 32
The Properties Window 32
Lost Windows 33
Other Common Visual Studio Activities 33
Creating New Projects 34
Making References to Other Objects 34
Using Smart Tags 36
Saving and Importing Visual Studio Settings 37
Validating Your HTML 39
Reaching Out to the Community 41
Working with Snippets 41
Summary 43
Chapter 3: Application and Page Frameworks 45
Application Location Options 45
Built-ln Web Server 46
1S 47
FTP 48
Web Site Requiring FrontPage Extensions 48
The ASP.NET Page Structure Options 50
Inline Coding 51
New Code-Behind Model 53
ASP.NET 2.0 Page Directives 56
@Page 57
@Master 59
@Control 60
@Import 62
@Implements 63
@Register 63
@Assembly 64
@PreviousPageType 64
@MasterType 65
@QutputCache 65
@Reference 66
ASP.NET Page Events 66
Dealing with PostBacks 68
Cross-Page Posting 69
ASP.NET Application Folders 75
\App_Code Folder 75

\App_Data Folder 80



Contents

\App_Themes Folder 81
\App_GlobalResources Folder 81
\App_LocalResources 84
\App_WebReferences 85
\App_Browsers 85
Compilation 85
Global.asax 89
Summary 20
Chapter 4: ASP.NET Server Controls and Client-Side Scripts 93
ASP.NET Server Controls 93
Types of Server Controls 94
Building with Server Controls 95
Working with Server Control Events 98
Applying Styles to Server Controls 100
Examining the Controls’ Common Properties 100
Changing Styles Using Cascading Style Sheets 102
HTML Server Controls 108
Looking at the HtmIControl Base Class 110
Looking at the HtmlContainerControl Class 111
Looking at All the HTML Classes 111
Using the HtmlGenericControl Class 113
Manipulating Pages and Server Controls with JavaScript 114
Using Page.ClientScript.RegisterClientScriptBlock 115
Using Page.ClientScript.RegisterStartupScript 117
Using Page.ClientScript.RegisterClientScriptinclude 119
Client-Side Callback 120
Comparing a Typical Postback to a Callback 120
Using the Callback Feature —A Simple Approach 123
Using the Callback Feature with Parameters 127
Summary 130
Chapter 5: ASP.NET Web Server Controls 131
An Overview of Web Server Controls 131
The Label Server Control 132
The Literal Server Control 134
The TextBox Server Control 135
Using the Focus() Method 136
Using AutoPostBack 137

Using AutoCompleteType 138



Contents

The Button Server Control 139
The CausesValidation Property 139
The CommandName Property 140
Buttons That Work with Client-Side JavaScript 141

The LinkButton Server Control 143

The ImageButton Server Control 143

The HyperLink Server Control 145

The DropDownlList Server Control 145

Visually Removing Items from a Collection 148

The ListBox Server Control 150
Allowing Users to Select Multiple Items 150
An Example of Using the ListBox Control 150
Adding Items to a Collection 152

The CheckBox Server Control 153
How to Determine If Check Boxes Are Checked 154
Assigning a Value to a Check Box 155
Aligning Text Around the Check Box 155

The CheckBoxList Server Control 156

The RadioButton Server Control 159

The RadioButtonList Server Control 161

Image Server Control 162

Table Server Control 163

The Calendar Server Control 166
Making a Date Selection from the Calendar Control 167
Choosing a Date Format to Output from the Calendar 168
Making Day, Week, or Month Selections 169
Working with Date Ranges 169
Modifying the Style and Behavior of Your Calendar 172

AdRotator Server Control 175

The Xml Server Control 177

Panel Server Control 178

The PlaceHolder Server Control 181

Summary 181

Chapter 6: ASP.NET 2.0 Web Server Controls 183

BulletedList Server Control 183

HiddenField Server Control 189

FileUpload Server Control 190
Uploading Files Using the FileUpload Control 191
Giving ASP.NET Proper Permissions to Upload Files 193

Understanding File Size Limitations 194



Contents

Placing the Uploaded File into a Stream Object 195
Moving File Contents from a Stream Object to a Byte Array 196
MultiView and View Server Controls 196
Wizard Server Control 201
Customizing the Side Navigation 203
Examining the AllowReturn Attribute 203
Working with the StepType Attribute 203
Adding a Header to the Wizard Control 204
Working with the Wizard’s Navigation System 205
Utilizing Wizard Control Events 206
Using the Wizard Control to Show Form Elements 207
ImageMap Server Control 211
Summary 214
Chapter 7: Validation Server Controls 215
Understanding Validation 215
Client-Side versus Server-Side Validation 216
ASP.NET Validation Server Controls 217
Validation Causes 218
The RequiredFieldValidator Server Control 219
The CompareValidator Server Control 224
The RangeValidator Server Control 227
The RegularExpressionValidator Server Control 232
The CustomValidator Server Control 233
The ValidationSummary Server Control 238
Turning Off Client-Side Validation 241
Using Images and Sounds for Error Notifications 242
Working with Validation Groups 244
Summary 247
Chapter 8: Working with Master Pages 249
Why Do You Need Master Pages? 249
The Basics of Master Pages 251
Coding a Master Page 253
Coding a Content Page 256
Mixing Page Types and Languages 259
Specifying Which Master Page to Use 261
Working with the Page Title 262
Working with Controls and Properties from the Master Page 263

Specifying Default Content in the Master Page 270



Contents

Programmatically Assigning the Master Page 272
Nesting Master Pages 272
Container-Specific Master Pages 276
Event Ordering 277
Caching with Master Pages 278
Summary 278
Chapter 9: Themes and Skins 279
Using ASP.NET 2.0 Themes 279
Applying a Theme to a Single ASP.NET Page 279
Applying a Theme to an Entire Application 281
Removing Themes from Server Controls 282
Removing Themes from Web Pages 283
Understanding the StyleSheetTheme Attribute 283
Creating Your Own Themes 284
Creating the proper folder structure 284
Creating a Skin 285
Including CSS Files in Your Themes 287
Having Your Themes Include Images 290
Defining Multiple Skin Options 293
Programmatically Working with Themes 295
Assigning the Page’s Theme Programmatically 295
Assigning a Control’s SkinID Programmatically 296
Themes and Custom Controls 296
Summary 298
Chapter 10: Collections and Lists 299
Arrays 299
Resizing Arrays 302
Finding Objects in Arrays 302
Sorting Objects in Arrays 306
The System.Collections Namespace 307
ArrayList 307
IEnumerable and IEnumerator 310
ICollection 311
Lists and IList 312
Dictionaries and IDictionary 313
Hashtables 314
SortedList 317

Queues and Stacks 318



Contents

Specialized Collections 320
HybridDictionary and ListDictionary 320
StringCollection, StringDictionary, and NameValueCollection 321
BitArray 321

The Microsoft.VisualBasic.Collection Class 321

Strongly Typed Collections 322

System.Collections.Generics 325
What Are Generics? 325
Generic Lists 326
Generic Dictionary 327
Other Generic Collections 328

Collection Changes from .NET 1.1 to .NET 2.0 328

Collections and List Guidance 329

Summary 331

Chapter 11: Data Binding in ASP.NET 2.0 333

Data Source Controls 333
SqglDataSource Control 336
XmIDataSource Control 343
ObjectDataSource Control 344
SiteMapDataSource Control 349

Configuring Data Source Control Caching 349

Storing Connection Information 350

Using Bound List Controls with Data Source Controls 353
GridView 353
Editing GridView Row Data 363
Deleting GridView Data 368
DetailsView 370
Inserting, Updating, and Deleting Data Using DetailsView 376
FormView 378

Other Databound Controls 383
DropDownlList, ListBox, RadioButtonList and CheckBoxList 383
TreeView 383
Ad Rotator 384
Menu 384

Inline Data-Binding Syntax 385
DataBinder Syntax Changes 386
XML Data Binders 386

Summary 387



Contents

Chapter 12: Data Management with ADO.NET 389
Basic ADO.NET Features 389
Basic ADO.NET Namespaces and Classes 389
Using the Connection Object 391
Using the Command Object 391
Using the DataReader Object 393
Using Data Adapter 395
Using Parameters 398
Understanding DataSet and DataTable 401
Newly Added ADO.NET Features 405
Bulk Loading of Data from a Variety of Sources 405
Batch Processing Multiple Updates 416
Multiple Active Result Sets 422
Asynchronous Command Execution 429
Asynchronous Connections 451
Summary 452
Chapter 13: Working with XML 453
The Basics of XML 454
The XML InfoSet 456
XSD-XML Schema Definition 457
Editing XML and XML Schema in Visual Studio .NET 2005 458
XmiIReader and XmIWriter 461
Using Schema with XmlITextReader 464
Including NameTable Optimization 466
Retrieving .NET CLR Types from XML 468
ReadSubtree and XmlSerialization 470
Creating Xml with XmIWriter 472
Improvements for XmIReader and XmlIWriter in 2.0 474
XmiDocument and XPathDocument 474
Problems with the DOM 475
XPath, the XPathDocument, and XmIDocument 475
DataSets 479
Persisting DataSets to XML 479
XmIDataDocument 480
The XmIDataSource Control 482
XSLT 486
XsICompiledTransform 488
XML Web Server Control 489

XSLT Debugging 491



Contents

Databases and XML 492
FOR XML AUTO 493
SQL Server Yukon 2005 and the XML DataType 497

Summary 498

Chapter 14: Site Navigation 499

XML-Based Site Maps 500

SiteMapPath Server Control 502
The PathSeparator Property 504
The PathDirection Property 506
The ParentlLevelsDisplayed Property 507
The ShowToolTips Property 507
The SiteMapPath Control’s Child Elements 508

TreeView Server Control 509
Identifying the TreeView Control’s Built-In Styles 511
Examining the Parts of the TreeView Control 512
Binding the TreeView Control to an XML File 512
Selecting Multiple Options in a TreeView 514
Specifying Custom Icons in the TreeView Control 518
Specifying Lines Used to Connect Nodes 520
Working with the TreeView Control Programmatically 522

Menu Server Control 527
Applying Different Styles to the Menu Control 529
Menu Events 535
Binding the Menu Control to an XML File 536

SiteMap Data Provider 538
ShowStartingNode 538
StartFromCurrentNode 539
StartingNodeOffset 540
StartingNodeUrl 541

SiteMap API 541

URL Mapping 544

Sitemap Localization 545
Structuring the Web.sitemap File for Localization 545
Making Modifications to the Web.config File 546
Creating Assembly Resource (.resx) Files 547
Testing the Results 549

Summary 550



Contents

Chapter 15: Personalization

551

The Personalization Model
Creating Personalization Properties
Adding a Simple Personalization Property
Using Personalization Properties
Adding a Group of Personalization Properties
Using Grouped Personalization Properties
Defining Types for Personalization Properties
Using Custom Types
Providing Default Values
Making Personalization Properties Read-Only
Anonymous Personalization
Enabling Anonymous ldentification of the End User
Working with Anonymous Identification Events
Anonymous Options for Personalization Properties
Programmatic Access to Personalization
Migrating Anonymous Users
Personalizing Profiles
Determining Whether to Continue with Automatic Saves
Personalization Providers
Working with SQL Server Express Edition
Working with Microsoft's SQL Server
Using Multiple Providers
Summary

Chapter 16: Membership and Role Management

551
552
553
554
558
559
559
560
563
563
563
563
566
567
567
568
569
570
571
571
573
581
581

583

Authentication

Authorization

ASP.NET 2.0 Authentication
Setting Up Your Web Site for Membership
Adding Users
Asking for Credentials
Working with Authenticated Users
Showing the Number of Users Online
Dealing with Passwords

ASP.NET 2.0 Authorization
Using the LoginView Server Control
Setting Up Your Web Site for Role Management
Adding and Retrieving Application Roles
Deleting Roles

584
584
584
584
587
599
604
607
608
613
613
615
619
621



Contents

Adding Users to Roles 622
Getting All the Users of a Particular Role 622
Getting All the Roles of a Particular User 624
Removing Users from Roles 625
Checking Users in Roles 625
Understanding How Roles Are Cached 627
Using the Web Site Administration Tool 628
Public Methods of the Membership API 628
Public Methods of the Roles API 629
Summary 630
Chapter 17: Portal Frameworks and Web Parts 631
Introducing Web Parts 631
Building Dynamic and Modular Web Sites 633
Introducing the WebPartManager Control 633
Working with Zone Layouts 634
Understanding the WebPartZone Control 638
Allowing the User to Change the Mode of the Page 640
Modifying Zones 652
Working with Classes in the Portal Framework 658
Creating Custom Web Parts 663
Summary 668
Chapter 18: Security 669
Authentication and Authorization 670
Applying Authentication Measures 670
The <authentication> Node 671
Windows-Based Authentication 672
Forms-Based Authentication 679
Passport Authentication 689
Authenticating Specific Files and Folders 689
Programmatic Authorization 690
Working with User.ldentity 691
Working with User.IsInRole() 692
Pulling More Information with Windowsldentity 693
Identity and Impersonation 696
Securing Through IIS 699
IP Address and Domain Name Restrictions 699
Working with File Extensions 700
Using the New ASP.NET MMC Snap-In 702

Summary 703



Contents

Chapter 19: State Management 705
What Are Your Choices? 706
Understanding the Session Object in ASP.NET 2.0 708

Sessions and the Event Model 709
Configuring Session State Management 710
In-Process Session State 711
Out-of-Process Session State 719
SQL-Backed Session State 724
Extending Session State with Other Providers 728
Cookieless Session State 729
Choosing the Correct Way to Maintain State 730
The Application Object 731
QueryStrings 732
Cookies 732
PostBacks and Cross-Page PostBacks 733
Hidden Fields, ViewState, and ControlState 735
Using HttpContext.Current.ltems for Very Short-Term Storage 739
Summary 740

Chapter 20: Caching 741

Caching 741
Output Caching 742
Partial Page (UserControl) Caching 744
Post-Cache Substitution 745
HttpCachePolicy and Client-Side Caching 47

Caching Programmatically 750
Data Caching Using the Cache Object 750
Cache Dependencies 750

Using the SQL Server Cache Dependency 756
Enabling Databases for SQL Server Cache Invalidation 757
Enabling Tables for SQL Server Cache Invalidation 758
Looking at SQL Server 758
Looking at the Tables That Are Enabled 759
Disabling a Table for SQL Server Cache Invalidation 760
Disabling a Database for SQL Server Cache Invalidation 760
SQL Server 2005 Cache Invalidation 760

Configuring Your ASP.NET Application 761

Testing SQL Server Cache Invalidation 763
Adding More Than One Table to a Page 765
Attaching SQL Server Cache Dependencies to the Request Object 766
Attaching SQL Server Cache Dependencies to the Cache Object 766

Summary 770



Contents

Chapter 21: Debugging and Error Handling Techniques 771
Design-Time Support 771
Syntax Notifications 772
Immediate and Command Window 774
Task List 774
Tracing 775
System.Diagnostics.Trace and ASP.NET’s Page.Trace 776
Page-Level Tracing 776
Application Tracing 776
Viewing Trace Data 777
Tracing from Components 781
Trace Forwarding 782
TracelListeners 783
Diagnostic Switches 787
Web Events 788
Debugging 790
What’s Required 790
IIS versus ASENET Development Server 792
Starting a Debugging Session 793
New Tools to Help You with Debugging 796
SQL Stored Proc Debugging 798
Exception and Error Handling 800
Handling Exceptions on a Page 800
Handling Application Exceptions 801
Http Status Codes 802
Summary 804
Chapter 22: File 1/0 and Streams 805
Working with Drives, Directories, and Files 806
The Drivelnfo Class 806
The Directory and Directorylnfo Classes 809
File and FileInfo 816
Working with Paths 820
File and Directory Properties, Attributes, and Access Control Lists 824
Reading and Writing Files 832
Streams 832
Readers and Writers 837
Compressing Streams 842
Working with Serial Ports 847

Network Communications

848



Contents

WebRequest and WebResponse 848
Sending Mail 855
Summary 856

Chapter 23: User Controls, Server Controls, Modules, and HttpHandlers 857

User Controls 858
Creating User Controls 858
Interacting with User Controls 861

Server Controls 862
Project Setup 863
Control Attributes 867
Control Rendering 869
Adding Tag Attributes 873
Styling HTML 875
Themes and Skins 877
Adding Client-Side Features 878
Detecting and Reacting to Browser Capabilities 887
Using ViewState 890
Raising PostBack Events 895
Handling PostBack Data 899
Composite Controls 901
Templated Controls 903
Creating Control Design-Time Experiences 910

Modules and Handlers 929
HttpModules 930
HttpHandlers 940

Summary 947

Chapter 24: Using Business Objects 949

Using Business Objects in ASP.NET 2.0 949
Creating Precompiled .NET Business Objects 950
Using Precompiled Business Objects in Your ASP.NET Applications 952

COM Interop: Using COM within .NET 954
The Runtime Callable Wrapper 954
Using COM objects in ASP.NET code 955
Error Handling 960
Deploying COM Components with .NET Applications 963

Using .NET from Unmanaged Code 965
The COM-Callable Wrapper 965

Using .NET Components within COM Objects 968



Contents

Early versus Late Binding 971
Error Handling 972
Deploying .NET Components with COM Applications 974
Summary 975
Chapter 25: Mobile Development 977
Creating a NEW ASP.NET Mobile Web Application 977
Views of an ASP.NET Mobile Web Form 980
Using Control Containers 981
The Form Control 982
The Panel Control 982
Using StyleSheets 983
Creating a Single StyleSheet Control for All Mobile Web Forms 985
Using ASP.NET Mobile Controls 985
The AdRotator Control 985
The Calendar Control 988
The Label Control 990
The TextBox Control 291
The TextView Control 993
The Command Control 994
The Image Control 994
The PhoneCall Control 996
The Link Control 997
The List Control 999
The ObjectList Control 1003
The SelectionList Control 1004
Using Validation Controls 1008
Navigating between Mobile Web Forms 1010
The Mobile Web User Control 1010
Using Emulators 1014
Understanding Devices Filters 1015
State Management in ASP.NET Mobile Applications 1017
ViewState in Mobile Web Controls 1017
Managing Session State 1019
Hidden Fields 1019
Summary 1021
Chapter 26: Building and Consuming XML Web Services 1023
Communication Between Disparate Systems 1023
Building a Simple XML Web Service 1025
The WebService Page Directive 1026
Looking at the Base Web Service Class File 1027



Contents

Exposing Custom Datasets as SOAP 1028
The XML Web Service Interface 1031
Consuming a Simple XML Web Service 1034
Adding a Web Reference 1035
Invoking the Web Service from the Client Application 1036
Transport Protocols for Web Services 1039
HTTP-GET 1040
HTTP-POST 1043
SOAP 1044
Overloading WebMethods 1044
Caching Web Service Responses 1047
SOAP Headers 1048
Building a Web Service with SOAP Headers 1049
Consuming a Web Service Using SOAP Headers 1051
Requesting Web Services Using SOAP 1.2 1053
Consuming Web Services Asynchronously 1055
Summary 1058
Chapter 27: Configuration 1059
Configuration Overview 1059
Server Configuration File 1060
Application Configuration File 1061
How Configuration Is Applied 1061
Detecting Configuration File Changes 1062
Configuration File Format 1062
Common Configuration Settings 1063
Connecting Strings 1063
Configuring Session State 1064
Compilation Configuration 1068
Browser Capabilities 1070
Custom Errors 1072
Authentication 1073
Anonymous Identity 1075
Authorization 1076
Locking-Down Configuration Settings 1078
ASP.NET Page Configuration 1078
Include Files 1080
Configuring ASP.NET Runtime Settings 1081
Configuring ASP.NET Worker Process 1084
Storing Application-Specific Settings 1087
Programming Configuration Files 1087
Protecting Configuration Settings 1095
Editing Configuration Files 1095

Summary 1097



Contents

Chapter 28: Administration and Management 1099
The Web Site Administration Tool 1099
The Home Tab 1101

The Security Tab 1101

The Application Tab 1114

The Provider Tab 1118

The MMC ASP.NET Snap-In 1120
General 1123
Custom Errors 1124
Authorization 1125
Authentication 1126
Application 1128
State Management 1129
Locations 1131
Summary 1132
Chapter 29: Packaging and Deploying ASP.NET Applications 1133
Deployment Pieces 1133
Steps to Take before Deploying 1134
Methods of Deploying Web Applications 1135
Using XCopy 1135
Using the VS Copy Web Site Option 1138
Deploying a Precompiled Web Application 1142
Building an Installer Program 1144
Looking More Closely at Installer Options 1155
Working with the Deployment Project Properties 1155

The File System Editor 1160

The Registry Editor 1164

The File Types Editor 1165

The User Interface Editor 1166

The Custom Actions Editor 1168

The Launch Conditions Editor 1169
Summary 1170
Appendix A: Visual Basic 8.0 and C# 2.0 Language Enhancements 1171
Appendix B: ASP.NET Online Resources 1193

Index 1195



Introduction

Simply put, ASPNET 2.0 is an amazing release! When ASP.NET 1.0 was introduced in 2000, many consid-
ered it a revolutionary leap forward in the area of Web application development. We believe ASPNET 2.0
is just as exciting and revolutionary. Although the foundation of ASPNET was laid with the release of
ASP.NET 1.0, ASPNET 2.0 builds on this foundation by focusing on the area of developer productivity.

ASP.NET 2.0 brings with it a staggering number of new technologies built into the ASPNET framework.
After reading this book, you will see just how busy the ASP.NET team has been in the past few years.
The number of classes inside ASP.NET has more than doubled, and this release contains more than 50
new server controls!

This book covers these new built-in technologies. It not only introduces new topics, it also shows you
examples of these new technologies in action. So sit back, pull up that keyboard, and let’s have some fun!

What You Need for ASP.NET 2.0

You might find it best to install Visual Studio 2005 to work through the examples in this book; you can,
however, just use Microsoft’s Notepad and the command-line compilers that come with the NET
Framework 2.0. To work through every example in this book, you need the following;:

a Windows Server 2003, Windows 2000, or Windows XP
a Visual Studio 2005

a SQL Server 2000 or 2005
Q

Microsoft Access or SQL Server Express Edition

The nice thing is that you are not required to have Microsoft Internet Information Services (IIS) to work
with ASP.NET 2.0 because this release of ASP.NET includes a built-in Web server based on the previ-
ously released Microsoft Cassini technology. And if you don’t have SQL Server, don’t be alarmed. Many
examples that use this database can be altered to work with Microsoft Access.

Who Should Read This Book?

This book was written to introduce you to the new features and capabilities that ASP.NET 2.0 offers, as
well as to give you an explanation of the foundation that ASPNET provides. We assume you have a gen-
eral understanding of Web technologies, such as previous versions of ASP.NET, Active Server Pages 2.0/
3.0, or JavaServer Pages. If you understand the basics of Web programming, you shouldn’t have much
trouble following along with this book’s content.



Introduction

If you are brand new to ASP.NET, be sure to check out Beginning ASP.NET 2.0 by Chris Hart, John
Kauffman, Dave Sussman, and Chris Ullman (published by Wiley; ISBN: 0-7645-8850-8) to help you
understand the basics.

In addition to working with Web technologies, we also assume that you understand basic programming
constructs, such as variables, For Each loops, and object-oriented programming.

You may also be wondering whether this book is for the Visual Basic developer or the C# developer.
We're happy to say that it’s for both! When the code differs substantially, this book provides examples in
both VB and C#.

What This Book Covers

This book spends its time reviewing the big changes that have occurred in the 2.0 release of ASPNET.
Each major new feature included in ASP.NET 2.0 is covered in detail. The following list tells you some-
thing about the content of each chapter.

Q

Chapter 1, “Hello ASP.NET 2.0.” This first chapter gives a good grounding in the new
features of ASPNET 2.0 by taking a look at some of the major new features and capabili-
ties. It starts by providing you with a little bit of the history of ASPNET and moves on to
some of the exciting new additions that this latest version of the technology offers.

Chapter 2, “Visual Studio 2005.” This chapter introduces the next generation of the major
IDE for developing .NET applications: Visual Studio 2005. Previous releases of this IDE
included Visual Studio .NET 2003 and Visual Studio .NET 2002. This chapter focuses on
the Visual Studio 2005 release and how you can use it to build better ASPNET applica-
tions more quickly.

Chapter 3, “Application and Page Frameworks.” The third chapter covers the frame-
works of ASPNET applications as well as the structure and frameworks provided for sin-
gle ASPNET pages. This chapter shows you how to build ASP.NET applications using IIS
or the built-in Web server that now comes with Visual Studio 2005. This chapter also
shows you the new folders and files that have been added to ASP.NET. It discusses new
ways to compile code and shows you how to perform cross-page posting.

Chapters 4, 5, 6, and 7. These four chapters are grouped here because they all deal with
server controls. This batch of chapters starts by examining the idea of the server control and
its pivotal role in ASPNET development. In addition to looking at the server control frame-
work, these chapters delve into the plethora of server controls that are at your disposal for
ASP.NET development projects. Chapter 4, “Developing with ASPNET Server Controls
and Client-Side Scripts,” looks at the basics of working with server controls. Chapter 5,
“ASPNET Web Server Controls,” covers the controls that have been part of the ASPNET
technology since its initial release. Chapter 6, “ASP.NET 2.0 Web Server Controls,” on the
other hand, looks at the new controls that have been added with the 2.0 release. Chapter 7,
“Validation Server Controls,” describes a special group of server controls: those for valida-
tion. You can use these controls to create beginning-to-advanced form validations.

Chapter 8, “Master Pages.” Master pages are a great new addition to the ASPNET 2.0
technology. They provide a means of creating templated pages that enable you to work



Introduction

with the entire application, as opposed to single pages. This chapter examines the creation
of these templates and how to apply them to your content pages throughout an ASPNET
application.

Chapter 9, “Themes and Skins.” The Cascading Style Sheet files you are allowed to use in
ASP.NET 1.0/1.1 are simply not adequate in many regards, especially in the area of server
controls. When using these early versions, the developer can never be sure of the HTML
output these files might generate. This chapter takes a look at how to deal with the styles
that your applications require and shows you how to create a centrally managed look-
and-feel for all the pages of your application by using themes and the skin files that are
part of a theme.

Chapters 10 and 11. One of the more important tasks of ASP.NET is presenting data, and
these two chapters show you how to do that. ASPNET provides a number of controls to
which you can attach data and present it to the end user. Chapter 10, “Collections and
Lists,” shows you how to take data and attach it to various ASP.NET server controls.
Chapter 11, “Data Binding in ASP.NET 2.0,” looks at the underlying capabilities that
enable you to work with the data programmatically before issuing the data to a control.

Chapter 12, “Data Management with ADO.NET.” ADO.NET incorporates some radical
changes in this release of ASPNET. This chapter presents the new data model provided by
ASP.NET, which allows you to handle the retrieval, updating, and deleting of data quickly
and logically. This new data model enables you to use one or two lines of code to get at
data stored in everything from SQL Server to XML files.

Chapter 13, “Working with XML.” Without a doubt, XML has become one of the leading
technologies used for data representation. For this reason, the .NET Framework and
ASP.NET 2.0 have many capabilities built into their frameworks that enable you to easily
extract, create, manipulate, and store XML. This chapter takes a close look at the XML
technologies built into ASP.NET and the underlying .NET Framework.

Chapter 14, “Site Navigation.” It is quite apparent that many developers do not simply
develop single pages—they build applications. Therefore, they need mechanics that deal
with functionality throughout the entire application, not just the pages. One of the new
application capabilities provided by ASP.NET 2.0 is the site navigation system covered in
this chapter. The underlying navigation system enables you to define your application’s
navigation structure through an XML file, and it introduces a whole series of new naviga-
tion server controls that work with the data from these XML files.

Chapter 15, “Personalization.” Developers are always looking for ways to store informa-
tion pertinent to the end user. After it is stored, this personalization data has to be per-
sisted for future visits or for grabbing other pages within the same application. The
ASP.NET team developed a way to store this information—the ASP.NET personalization
system. The great thing about this system is that you configure the entire behavior of the
system from the web.config file.

Chapter 16, “Membership and Role Management.” This chapter covers the new mem-
bership and role management system developed to simplify adding authentication and
authorization to your ASPNET applications. These two new systems are extensive; they
make some of the more complicated authentication and authorization implementations of
the past a distant memory. This chapter focuses on using the web. config file for control-
ling how these systems are applied, as well as on the new server controls that work with
the underlying systems.



Introduction

Qa

Chapter 17, “Portal Frameworks and Web Parts.” This chapter explains Web Parts—a
new way of encapsulating pages into smaller and more manageable objects. The great
thing about Web Parts is that they can be made of a larger Portal Framework, which can
then enable end users to completely modify how the Web Parts are constructed on the
page—including their appearance and layout.

Chapter 18, “Security.” Chapter 18 discusses security beyond the membership and role
management features provided by ASPNET 2.0. This chapter provides an in-depth look at
the authentication and authorization mechanics inherent in the ASPNET technology, as
well as HTTP access types and impersonations.

Chapter 19, “State Management.” Because ASP.NET is a request-response-based technol-
ogy, state management and the performance of requests and responses take on significant
importance. This chapter introduces these two separate but important areas of ASPNET
development.

Chapter 20, “Caching.” Because of the request-response nature of ASP.NET, caching (stor-
ing previous generated results, images, and pages) on the server becomes rather impor-
tant to the performance of your ASPNET applications. This chapter takes a look at some
of the advanced caching capabilities provided by ASP.NET, including the new SQL cache
invalidation feature introduced by ASP.NET 2.0.

Chapter 21, “Debugging and Error Handling Techniques.” Being able to handle unantic-
ipated errors in your ASPNET applications is vital for any application that you build. This
chapter tells you how to properly structure error handling within your applications. It
also shows you how to use various debugging techniques to find errors that your applica-
tions might contain.

Chapter 22, “File I/O and Streams.” More often than not, you want your ASP.NET appli-
cations to work with items that are outside the base application. Examples include files
and streams. This chapter takes a close look at working with various file types and
streams that might come into your ASP.NET applications.

Chapter 23, “User Controls, Server Controls, Modules, and HttpHandlers.” Not only can
you use the plethora of server controls that come with ASP.NET 2.0, but you can also uti-
lize the same framework these controls use and build your own. This chapter describes
building your own server controls and how to use them within your applications. The
chapter also delves into building your own HttpHandlers.

Chapter 24, “Using Business Objects.” Invariably, you are going to have components
created with previous technologies that you don’t want to rebuild but that you do want

to integrate into new ASP.NET applications. If this is the case, the .NET Framework makes
it fairly simple and straightforward to incorporate your previous COM components

into your applications. Beyond showing you how to integrate your COM components into
your applications, this chapter also shows you how to build newer style NET components
instead of turning to the previous COM component architecture.

Chapter 25, “Mobile Development.” Many people forget that ASPNET development is
not only about building applications for the browser; it is also a great technology for
mobile development. This chapter discusses using ASP.NET 2.0 for your mobile applica-
tion development projects and how ASPNET can make this process quite simple.



Introduction

Q  Chapter 26, “Building and Consuming XML Web Services.” XML Web services have
monopolized all the hype for the past few years, and a major aspect of the Web services
model within .NET is part of ASPNET. This chapter reveals the ease not only of building
XML Web services, but consuming them in an ASP.NET application. This chapter then
ventures further by describing how to build XML Web services that utilize SOAP headers
and how to consume this particular type of service.

Q  Chapter 27, “Configuration.” Configuration in ASP.NET can be a big topic because the
ASP.NET team is not into building black boxes; instead, it is building the underlying capa-
bilities of ASP.NET in a fashion that can easily be expanded on later. This chapter teaches
you to modify the capabilities and behaviors of ASPNET using the various configuration
files at your disposal.

Q  Chapter 28, “Administration and Management.” Besides making it easier for the devel-
oper to be more productive in building ASPNET applications, the ASPNET team also put
considerable effort into making it easier to manage applications. In the past, using
ASP.NET 1.0/1.1, you managed ASP.NET applications by changing values in an XML con-
figuration file. This chapter provides an overview of the new GUI tools that come with
this latest release that enable you to manage your Web applications easily and effectively.

Q  Chapter 29, “Packaging and Deploying ASP.NET Applications.” So you've built an
ASP.NET application—now what? This chapter takes the building process one step fur-
ther and shows you how to package your ASP.NET applications for easy deployment.
Many options are available for working with the installers and compilation model to
change what you are actually giving your customers.

Q  Appendix A, “Visual Basic 8.0 and C# 2.0 Language Enhancements.” In addition to
major changes to ASPNET, considerable change has occurred in Visual Basic 8.0 and C#
2.0. The changes to these two languages, the primary languages used for ASP.NET devel-
opment, are discussed in this appendix.

QO  Appendix B, “ASP.NET Resources.” This small appendix points you to some of the more
valuable online resources for enhancing your understanding of ASP.NET.

Conventions

This book uses a number of different styles of text and layout to help differentiate among various types
of information. Here are examples of the styles used and an explanation of what they mean:

QO  New words being defined are shown in italics.



Introduction

QO  Keys that you press on the keyboard, such as Ctrl and Enter, are shown in initial caps and
spelled as they appear on the keyboard.

O  File and folder names, file extensions, URLs, and code that appears in regular paragraph
text are shown in a monospaced typeface.

When we show a block of code that you can type as a program and run, it’s shown on separate lines, like
this:

public static void Main/()
{

AFunc (1,2, "abc") ;
}

or like this:

public static void Main()
{

AFunc (1,2, "abc") ;
}

Sometimes you see code in a mixture of styles, like this:

// If we haven't reached the end, return true, otherwise
// set the position to invalid, and return false.
pos++;
if (pos < 4)
return true;
else {
pos = -1;
return false;
}
When mixed code is shown like this, the code with no background represents code that has been shown
previously and that you don’t need to examine further. Code with the gray background is what you
should focus on in the current example.

We demonstrate the syntactical usage of methods, properties, and so on using the following format:
SglDependency="database: table"

Here, the italicized parts indicate placeholder text: object references, variables, or parameter values that
you need to insert.

Most of the code examples throughout the book are presented as numbered listings that have descriptive
titles, like this:

Listing 1-3: Targeting WML devices in your ASP.NET pages

Each listing is numbered (for example: 1-3) where the first number represents the chapter number and
the number following the hyphen represents a sequential number that indicates where that listing falls
within the chapter. Downloadable code from the Wrox Web site (www . wrox.com) also uses this number-
ing system so that you can easily locate the examples you are looking for.



Introduction

All code is shown in both VB and C#, when warranted. The exception is for code in which the only dif-
ference is, for example, the value given to the Language attribute in the Page directive. In such situa-
tions, we don’t repeat the code for the C# version; the code is shown only once, as in the following
example:

<%@ Page Language="VB"%>

<html xmlns="http://www.w3.0org/1999/xhtml">
<head runat="server">
<title>DataSetDataSource</title>
</head>
<body>
<form id="forml" runat="server">
<asp:DropDownList ID="Dropdownlistl" Runat="server" DataTextField="name"
DataSourceID="XmlDataSourcel">
</asp:DropDownList>

<asp:XmlDataSource ID="XmlDataSourcel" Runat="server"
DataFile="~/Painters.xml">
</asp:DataSetDataSource>
</form>
</body>
</html>

Source Code

As you work through the examples in this book, you may choose either to type all the code manually or
to use the source code files that accompany the book. All the source code used in this book is available
for download at www.wrox.com. When you get to the site, simply locate the book’s title (either by using
the Search box or one of the topic lists) and click the Download Code link. You can then choose to down-
load all the code from the book in one large zip file or download just the code you need for a particular
chapter.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
0-7645-7610-0 (changing to 978-0-7645-7610-2 as the new industry-wide 13-digit ISBN numbering
system is phased in by January 2007).

After you download the code, just decompress it with your favorite compression tool. Alternatively, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download. aspx to
see the code available for this book and all other Wrox books. Remember, you can easily find the code
you are looking for by referencing the listing number of the code example from the book, such as
“Listing 1-3.” We used these listing numbers when naming the downloadable code files.

Errata

We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, such as a spelling mistake or faulty



Introduction

piece of code, we would be very grateful if you’d tell us about it. By sending in errata, you may spare
another reader hours of frustration; at the same time, you are helping us provide even higher-quality
information.

To find the errata page for this book, go to www.wrox. com and locate the title using the Search box or one
of the title lists. Then, on the book details page, click the Book Errata link. On this page, you can view all
errata that have been submitted for this book and posted by Wrox editors. A complete book list including
links to each book’s errata is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error already on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll check

the information and, if appropriate, post a message to the book’s errata page and fix the problem in sub-
sequent editions of the book.

p2p.wrox.com

For author and peer discussion, join the P2P forums at p2p . wrox . com. The forums are a Web-based sys-
tem for you to post messages relating to Wrox books and technologies and to interact with other readers
and technology users. The forums offer a subscription feature that enables you to receive e-mail on top-
ics of interest when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are represented in these forums.

Athttp://p2p.wrox.com you will find a number of different forums that will help you not only as
you read this book but also as you develop your own applications. To join the forums, just follow these
steps:

1. Gotop2p.wrox.comand click the Register link.
2. Read the terms of use and click Agree.
3. Supply the information required to join, as well as any optional information you want to pro-

vide, and click Submit.

You will receive an e-mail with information describing how to verify your account and complete the
joining process.

You can read messages in the forums without joining P2P, but you must join in order to post messages.

After you join, you can post new messages and respond to other users’ posts. You can read messages at
any time on the Web. If you would like to have new messages from a particular forum e-mailed to you,
click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how the forum software works, as well as answers to many common ques-
tions specific to P2P and Wrox books, be sure to read the P2P FAQs. Simply click the FAQ link on any
P2P page.



Professional

ASP.NET 2.0

XXXV






Hello ASP.NET 2.0!

The evolution of ASPNET continues! The progression from Active Server Pages 3.0 to ASPNET 1.0
was revolutionary, to say the least; and we are here to tell you that the evolution from ASPNET
1.0/1.1 to ASPNET 2.0 is just as exciting and dramatic.

The introduction of ASP.NET 1.0/1.1 changed the Web programming model; but ASPNET 2.0 is
just as revolutionary in the way it increases productivity. The primary goal of ASPNET 2.0 is to
enable you to build powerful, secure, and dynamic applications using the least possible amount of
code. Although this book covers the new features provided by ASP.NET 2.0, it also covers most of
what the ASPNET technology offers.

A Little Bit of History

Before organizations were even thinking about developing applications for the Internet, much of
the application development focused on thick desktop applications. These thick-client applications
were used for everything from home computing and gaming to office productivity and more. No
end was in sight for the popularity of this application model.

During that time, Microsoft developed its thick-client applications using mainly Visual Basic (VB).
Visual Basic was not only a programming language; it was tied to an IDE that allowed for easy
thick-client application development. In the Visual Basic model, developers could drop controls
onto a form, set properties for these controls, and provide code behind them to manipulate the
events of the control. For example, when an end user clicked a button on one of the Visual Basic
forms, the code behind the form handled the event.

Then, in the mid-1990s, the Internet arrived on the scene. Microsoft was unable to move the Visual
Basic model to the development of Internet-based applications. The Internet definitely had a lot of
power, and right away the problems facing the thick-client application model were revealed.

Internet-based applications created a single instance of the application that everyone could access.
Having one instance of an application meant that when the application was upgraded or patched,




Chapter 1

the changes made to this single instance were immediately available to each and every user visiting the
application through a browser.

To participate in the Web application world, Microsoft developed Active Server Pages (ASP). ASP was a
quick and easy way to develop Web pages. ASP pages consisted of a single page that contained a mix of
markup and languages. The power of ASP was that you could include VBScript or JScript code instruc-
tions in the page executed on the Web server before the page was sent to the end user’s Web browser.
This was an easy way to create dynamic Web pages customized based on parameters dictated by the
developer.

ASP used script between brackets and percentage signs — <% %>—to control server-side behaviors. A
developer could then build an ASP page by starting with a set of static HTML. Any dynamic element
needed by the page was defined using a scripting language (such as VBScript or JScript). When a user
requested the page from the server by using a browser, the asp.d11 (an ISAPI application that provided
a bridge between the scripting language and the Web server) would take hold of the page and define all
the dynamic aspects of the page on-the-fly based on the programming logic specified in the script. After
all the dynamic aspects of the page were defined, the result was an HTML page output to the browser of
the requesting client.

As the Web application model developed, more and more languages mixed in with the static HTML to
help manipulate the behavior and look of the output page. Over time, such a large number of languages,
scripts, and plain text could be placed in a typical ASP page that developers began to refer to pages that
utilized these features as spaghetti code. For example, it was quite possible to have a page that used HTML,
VBScript, JavaScript, Cascading Style Sheets, T-SQL, and more. In certain instances, it became a manage-
ability nightmare.

ASP evolved and new versions were released. ASP 2.0 and 3.0 were popular because the technology
made it relatively straightforward and easy to create Web pages. Their popularity was enhanced because
they appeared in the late '90s, just as the dotcom era was born. During this time, a mountain of new Web
pages and portals were developed, and ASP was one of the leading technologies individuals and compa-
nies used to build them. Even today, you can still find a lot of . asp pages on the Internet—including
some of Microsoft’s own Web pages.

But even at the time of the final release of Active Server Pages in late 1998, Microsoft employees Marc
Anders and Scott Guthrie had other ideas. Their ideas generated what they called XSP (an abbreviation
with no meaning) —a new way of creating Web applications in an object-oriented manner instead of the
procedural manner of ASP 3.0. They showed their idea to many different groups within Microsoft, and
were well received. In the summer of 2000, the beta of what was then called ASP+ was released at
Microsoft’s Professional Developers Conference. The attendees eagerly started working with it. When
the technology became available (with the final release of the .NET Framework 1.0), it was renamed
ASP.NET — receiving the .NET moniker that most of Microsoft’s new products were receiving at that
time.

Before the introduction of .NET, the model that classic ASP provided and what developed in Visual Basic
were so different that few VB developers also developed Web applications —and few Web application
developers also developed the thick-client applications of the VB world. There was a great divide.
ASP.NET bridged this gap. ASPNET brought a Visual Basic-style eventing model to Web application
development, providing much-needed state management techniques over stateless HTTP. Its model is
much like the earlier Visual Basic model in that a developer can drag and drop a control onto a design



Hello ASP.NET 2.0!

surface or form, manipulate the control’s properties, and even work with the code behind these controls
to act on certain events that occur during their lifecycles. What ASP.NET created is really the best of both
models, as you will see throughout this book.

I know you’ll enjoy working with this latest release of ASPNET — 2.0. Nothing is better than getting
your hands on a new technology and seeing what’s possible. The following section discusses the goals of
ASP.NET 2.0 so you can find out what to expect from this new offering!

The Goals of ASP.NET 2.0

ASPNET 2.0 is a major release of the product and is an integral part of the NET Framework 2.0. This
release of the Framework was code-named Whidbey internally at Microsoft. You might hear others refer-
ring to this release of ASPNET as ASP.NET Whidbey. ASPNET 2.0 heralds a new wave of development
that should eliminate any of the remaining barriers to adopting this new way of coding Web applications.

When the ASP.NET team started working on ASP.NET 2.0, it had specific goals to achieve. These goals
focused around developer productivity, administration and management, as well as performance and
scalability. These goals are achieved with this milestone product release. The next sections look at each of
these goals.

Developer Productivity

Much of the focus of ASP.NET 2.0 is on productivity. Huge productivity gains were made with the
release of ASPNET 1.x — could it be possible to expand further on those gains?

One goal the development team had for ASPNET 2.0 was to eliminate much of the tedious coding that
ASP.NET originally required and to make common ASP.NET tasks easier. The ASPNET team developing
ASPNET 2.0 had the goal of reducing by two-thirds the number of lines of code required for an ASPNET
application! It succeeded in this release; you will be amazed at how quickly you can create your applica-
tions in ASPNET 2.0.

The new developer productivity capabilities are presented throughout this book. First, take a look at the
older ASP.NET technology. Listing 1-1 provides an example of using ASP.NET 1.0 to build a table in a
Web page that includes the capability to perform simple paging of the data provided.

Listing 1-1: Showing data in a DataGrid server control with paging enabled (VB only)

<%@ Page Language="VB" AutoEventWireup="True" %>
<%@ Import Namespace="System.Data" %>
<%@ Import Namespace="System.Data.SglClient" %>

<script runat="server">

Private Sub Page_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs)
If Not Page.IsPostBack Then
BindData ()
End If

(continued)

3



Chapter 1

Listing 1-1: (continued)
End Sub

Private Sub BindData ()
Dim conn As SglConnection = New SglConnection ("server='localhost';
trusted_connection=true; Database='Northwind'")
Dim cmd As SglCommand = New SglCommand("Select * From Customers", conn)
conn.Open ()

Dim da As SglDataAdapter = New SglDataAdapter (cmd)
Dim ds As New DataSet

da.Fill(ds, "Customers")

DataGridl.DataSource = ds
DataGridl.DataBind ()
End Sub

Private Sub DataGridl_PageIndexChanged (ByVal source As Object, _
ByVal e As System.Web.UI.WebControls.DataGridPageChangedEventArgs)
DataGridl.CurrentPageIndex = e.NewPageIndex
BindData ()
End Sub

</script>
<html>
<head>
</head>
<body>
<form runat="server">
<asp:DataGrid id="DataGridl" runat="server" AllowPaging="True"
OnPageIndexChanged="DataGridl_PageIndexChanged"></asp:DataGrid>
</form>
</body>
</html>

Although quite a bit of code is used here, this is a dramatic improvement over the amount of code
required to accomplish this task using classic Active Server Pages 3.0. We won't go into the details of this
older code; we just want to demonstrate that in order to add any additional common functionality (such
as paging) for the data shown in a table, the developer had to create custom code.

This is one area where the new developer productivity gains are most evident. ASP.NET 2.0 now pro-
vides a new control called the GridView server control. This control is much like the DataGrid server
control that you may already know and love, but the GridView server control (besides offering many
other new features) contains the built-in capability to apply paging, sorting, and editing of data with
relatively little work on your part. Listing 1-2 shows you an example of the GridView server control.
This example builds a table of data from the Customers table in the Northwind database that includes

paging.



Hello ASP.NET 2.0!

Listing 1-2: Viewing a paged dataset with the new GridView server control
<%@ Page Language="VB" %>
<script runat="server">
</script>

<html xmlns=http://www.w3.0rg/1999/xhtml>
<head runat="server">
<title>Gridview Demo</title>
</head>
<body>
<form runat="server">
<asp:GridvView ID="GridViewl" Runat="server" AllowPaging="True"
DataSourceId="Sgldatasourcel" />
<asp:SglDataSource ID="SglDataSourcel" Runat="server"
SelectCommand="Select * From Customers"
ProviderName="System.Data.0OleDb"
ConnectionString="Provider=SQLOLEDB; Server=1localhost;uid=sa;
pwd=password; database=Northwind" />
</form>
</body>
</html>

That’s it! You can apply paging by using a couple of new server controls. You turn on this capability
using a server control attribute, the AllowPaging attribute of the GridView control:

<asp:Gridview ID="Gridviewl" Runat="server" AllowPaging="True"
DataSourceId="SglDataSourcel" />

The other interesting event occurs in the code section of the document:
<script runat="server">
</script>

These two lines of code aren’t actually needed to run the file. They are included here to make a point—
you don’t need to write any server-side code to make this all work! You have to include only some server con-
trols: one control to get the data and one control to display the data. Then the controls are wired
together. Running this page produces the results shown in Figure 1-1.

This is just one of thousands of possible examples, so at this point you likely can’t grasp how much more
productive you can be with ASPNET 2.0. As you work through the book, however, you will see plenty
of examples that demonstrate this new level of productivity.



Chapter 1

£] GridView Demo - Mi ft Intenet Explorer e
Eile Edit View Favorites Tools Help "
O Back - o) 2] Th ) search 7 Favorites @ Media 49 ~aELD QB
Address | E] hitp: [fiocabost 20228/ Chapter01_YB/Listing2. aspe 7| Go  Links ®

CustometrID Companylame ContactMame ContactTitle Address City Eegion PostalCede Country  Phene Fam
- Courmet André . . . {11y 555-
GOTEL Lanchonetes Fonseca Sales Associate Av. Brasi, 442 Campinas 3P 04876-78¢6 Brazil ugo
Great Lakes Food Howard Idarketing (503) 555-
7
GFEAL Market Sugder Menager 2732 Baker Blvd  Eugene OR 57403 Uza 7555
GROSELLA- . 5% Ave Los Palos (2) 283- (2) 283-
T
GEOSE. Restaurante Idanuel Pereira Owner Grandes Caracas DF 1081 Venezela 5951 3397
HANAR Hanari Cames  Mario Pontes 2-°°™8  RuadoPago, 67 “°% BRI 05454976 Braat 00000 @3-
Manager Janewro 0051 8765
Carrera 22 con Ave
HILAFICIH- Carlos Sales San . () 555- (5) 555-
HILAA g pastos Hemindez  Representative 383“3"55 Soubletle  opipgpa  Tachia 5022 Venezuela 5, 1948
Hungry Coyote P Sales City Center Plaza . (503) 555-  (503) 553-
HUNGC | port Store Voshi Latimer p e sesative 516 Main St Flgin OR 97827 USA Gy 2376
Hungry Owl All-  Paticia : Co
HUNGO ight Grocers MeE erma Sales Associate 8 Johnstown Boad Cork Clork Ireland 2967 542 2967 3333
. Iarketing Garden House Isle of (198) 555-
¥ 7
ISLAT Tsland Trading Helen Bennett Manager Crouther Way Cowes Wight PO31 7R UE 2988
EOENE  FKeoniglich Essen  Philip Cramer Sales Associate Maubelstr. 90 Brandenburg 14776 Germany 0555-09876
LACOR Lacome Daniel Tonini S0 Glavemede g e 78000 France 30.59.8410 3059.85.11
d'abondance Eepresentative  1Europe
12345678910
&] cone &J Local intranet
Figure 1-1

Administration and Management

The initial release of ASP.NET focused on the developer, and little thought was given to the people who
had to administer and manage all the ASP.NET applications that were built and deployed. Instead of
working with consoles and wizards as they did in the past, administrators and managers of these new
applications now had to work with unfamiliar XML configuration files such as machine.config and
web.config.

To remedy this situation, ASPNET 2.0 now includes a Microsoft Management Console (MMC) snap-in
that enables Web application administrators to edit configuration settings easily on the fly. Figure 1-2
shows the ASPNET Configuration Settings dialog open on one of the available tabs.

This dialog allows system administrators to edit the contents of the machine.config and the web.
config files directly from the dialog instead of having them examine the contents of an XML file.

In addition to this dialog, Web or system administrators have a web-based way to administer their
ASP.NET 2.0 applications — using the new Web Administration Tool shown in Figure 1-3.




Hello ASP.NET 2.0!

"Default Web Site Properties B2[%]
| Web Site || ISAP| Fitters || Home Directory || Documents || Directory Security |
| HTTP Headers || Customn Ermors | ASP.NET Server Extensions
Mi

net

AP NET verson: [Z0s02IS 0 ]
Virtual path: |Default Web Site |
File location: |c:\inetpub\wwmot\web .config |
File creation date: |Date not available. |
File last modified: |Date not available. |
Edit Global Configuration... ] [ Edit Configuration... ]
o ) (oo ]| oo
Figure 1-2
(&]ASP.Net Web Application Administration - Microsoft Interet Explorer oog|

File Edit View Favorites Tools

Help

(€ B

O KRG P dore @ R-S=ELJK B

ASP

Address %J http:/flocalhost: 1358 /asp. netwebadminfiles /default. asox?applicaionPhysicalP ath=C: \Documents %20and % 205e tings \Administrator My %e20Documentsvisual %205 ¥

Web Site Administration Tool

How do T use this tool? ®

Welcome to the Web Site Administration Tool

Application:/WebSital
Current User Name:REUTERS-EVIEN\ADMINISTRATOR

Enables you to set up and edit users, roles, and access permissions for your site.
Site Is using for user

Enables you to manage your application's configuration settings.
Enables you to specify where and how to store administration data used by your Web site.

Security
S T .
Provider Configuration

&
Figure 1-3

& Local ntranet




Chapter 1

You might be asking yourself how you can access these new tools programmatically. Well, that’s the
exciting part. These tools build off new APIs that are now part of the .NET Framework 2.0 and that are
open to developers. These new APIs give you programmatic access to many of the configurations of
your Web applications such as reading and writing to . config files. They enable you to create similar
tools or even deployment and management scripts.

In addition to these new capabilities, you can now easily encrypt sections of your configuration files. In
the past, many programmers stored vital details —such as usernames, passwords, or even their SQL
connection strings — directly in the web. config file. With the capability to easily encrypt sections of
these files, you can now store these items in a more secure manner. As an example, suppose you have a
<connectionStrings> section in your web. config file, like this:

<connectionStrings>
<add name="Northwind"
connectionString="Server=1localhost;Integrated Security=True;Database=Northwind"
providerName="System.Data.SglClient" />

</connectionStrings>

You could then use the new Configuration class to encrypt this portion of the web. config file. Doing
this causes the <connectionStrings> section of the web. config file to be changed to something simi-
lar to the following;:

<protectedData>
<protectedDataSections>
<add name="connectionStrings"
provider="DataProtectionConfigurationProvider" />
</protectedDataSections>
</protectedData>
<connectionStrings>
<EncryptedData>
<CipherData>
<CipherValue>
AQAAANCMnd8BFAERjHOAWE/Cl+sBAAAZIAfS2PZzIdES
8JLaXDcYEOC11Np5t SAVGQAAAACAAAAAAADZGAAGAAA
ABAAAACMBOcYwzIdfS2PZsFtKLfwAAAAAASAAACGAAA
AEAAAAHKRgsmwUgN8 ZAWQIGZ /QYmMAAQAAMI 1 T+uDJIXA
czcH+galaaBpw0QBQggDfH3gpF+nXhaQugLJdio/1Cp2
Sx7a7N3K91+gnMTKO101fxIMwSBKvallgX+iFdurku7
Y5KhdAQAAANCMNA8BFAERJHOAWE /Cl+sBAAAAX8JLaX
DCYEOC1 1Np5t SAvgQAAAACAAAAAAADZGAAQAAAABAAA
ACm80cYwzIdfS2PZsFtKLfwAAAAAASAAACGAAAAEAAA
AHKRgsmwUgN8zAWQIGZ /QYMAAQAAMI 1 T+uDJIXAczCcH+
galaaBpw0QBQggDfH3gpF+nXhaQugLJdio/1Cp2Sx7a7
N3K9i+gnMTKO101fxIMwSBKvallgX+iFdurku7Y5Khd
AQAAANCMnd8BFAERjHOAWE /Cl+sBAAAAX8JLaXDcYEO
smwUgN8zAWQIGZ /QYmMAAQAAMI 1 T+uDJXAczcH+galaa
Bpw0QBQggDfH3gpF+nXhaQugLJio/1Cp2Sx7a7N3K91
+gnMTKO101 fxIMwSBKvallgX+iFdurku7Y5Khd
</Ciphervalue>
</CipherData>
</EncryptedData>
</connectionStrings>



Hello ASP.NET 2.0!

Now if some malicious user illegally gets into your machine and gets his hands on your application’s
web.config file, you could prevent him from getting much of value —such as the connection string of
your database.

Performance and Scalability

One of the goals for ASPNET 2.0 set by the Microsoft team was to provide the world’s fastest Web appli-
cation server. This book also addresses a number of performance enhancements available in ASPNET 2.0.

One of the most exciting performance enhancements is the new caching capability aimed at exploiting
Microsoft’s SQL Server. ASP.NET 2.0 now includes a feature called SQL cache invalidation. Before
ASP.NET 2.0, it was possible to cache the results that came from SQL Server and to update the cache
based on a time interval — for example, every 15 seconds or so. This meant that the end user might see
stale data if the result set changed sometime during that 15-second period.

In some cases, this time interval result set is unacceptable. In an ideal situation, the result set stored

in the cache is destroyed if any underlying change occurs in the source from which the result set is
retrieved —in this case, SQL Server. With ASPNET 2.0, you can make this happen with the use of SQL
cache invalidation. This means that when the result set from SQL Server changes, the output cache is
triggered to change, and the end user always sees the latest result set. The data presented is never stale.

Another big area of change in ASPNET is in the area of performance and scalability. ASP.NET 2.0 now
provides 64-bit support. This means that you can now run your ASP.NET applications on 64-bit Intel or
AMD processors.

Because ASP.NET 2.0 is fully backward compatible with ASP.NET 1.0 and 1.1, you can now take any for-
mer ASPNET application, recompile the application on the .NET Framework 2.0, and run it on a 64-bit
processor.

Additional New Features of ASP.NET 2.0

You just learned some of the main goals of the ASPNET team that built ASPNET 2.0. To achieve these
goals, the team built a mountain of new features into ASPNET. A few of them are described in the fol-
lowing sections.

New Developer Infrastructures

An exciting advancement in ASP.NET 2.0 is that new infrastructures are in place for you to use in your
applications. The ASP.NET team selected some of the most common programming operations performed
with ASPNET 1.0 to be built directly into ASPNET. This saves you considerable time and coding.

Membership and Role Management

In earlier versions, if you were developing a portal that required users to log in to the application to gain
privileged access, invariably you had to create it yourself. It can be tricky to create applications with
areas that are accessible only to select individuals.



Chapter 1

With ASP.NET 2.0, this capability is now built in. You can now validate users as shown in Listing 1-3.

Listing 1-3: Validating a user in code

VB

If (Membership.ValidateUser (Username.Text, Password.Text)) Then
' Allow access code here

End If

C#

if (Membership.ValidateUser (Username.Text, Password.Text)) {
// Allow access code here

}

A new series of APIs, controls, and providers in ASP.NET 2.0 enable you to control an application’s user
membership and role management. Using these APIs, you can easily manage users and their complex
roles — creating, deleting, and editing them. You get all this capability by using the APIs or a built-in
Web tool called the Web Site Administration Tool.

As far as storing users and their roles, ASP.NET 2.0 uses an .mdb file (the file type for the new SQL Server
Express Edition, not to be confused with Microsoft Access) for storing all users and roles. You are in no
way limited to just this data store, however. You can expand everything offered to you by ASPNET and
build your own providers using whatever you fancy as a data store. For example, if you want to build
your user store in LDAP or within an Oracle database, you can do so quite easily.

Personalization

One advanced feature that portals love to offer their membership base is the capability to personalize
their offerings so that end users can make the site look and function however they want. The capability
to personalize an application and store the personalization settings is now completely built into the
ASP.NET framework.

Because personalization usually revolves around a user and possibly a role that this user participates in,
the personalization architecture can be closely tied to the membership and role infrastructures. You have
a couple of options for storing the created personalization settings. The capability to store these settings
in either Microsoft Access or in SQL Server is built into ASP.NET 2.0. As with the capabilities of the
membership and role APIs, you can use the flexible provider model, and then either change how the
built-in provider uses the available data store or build your own custom data provider to work with a
completely new data store. The personalization API also supports a union of data stores, meaning that
you can use more than one data store if you want.

Because it is so easy to create a site for customization using these new APIs, this feature is quite a value-
add for any application you build.

The ASPNET Portal Framework

10

During the days of ASPNET 1.0, developers could go to the ASP.NET team’s site (found at http: //
www . asp .net) and download some Web application demos called IBuySpy., These demos were known
as Developer Solution Kits and are used as the basis for many of the Web sites on the Internet today.
Some were even extended into Open Source frameworks such as DotNetNuke.



Hello ASP.NET 2.0!

The nice thing about IBuySpy was that you could use the code it provided as a basis to build either a
Web store or a portal. You simply took the base code as a starting point and extended it. For example,
you could change the look and feel of the presentation part of the code or introduce advanced function-
ality into its modular architecture. Developer Solution Kits were quite popular because they made per-
forming these types of operations so easy. Figure 1-4 shows the INETA (International .NET Association)
Web site, which builds on the IBuySpy portal framework.

Because of the popularity of frameworks such as IBuySpy, ASP.NET 2.0 offers built-in capability for
using Web Parts to easily build portals. The possibilities for what you can build using the new Portal
Framework is astounding. The power of building using Web Parts is that it easily enables end users to
completely customize the portal for their own preferences. Figure 1-5 shows an example application
built using Web Parts.

rnational .| ciation - Microsof orer @
File Edit View Favorites Tools Help L
Qe - O - H B fh POsearch Frfavontes @reda £ O 5 B 0@
r‘qul:SSLﬁ_]h:ln:.l'_l';\'.r-"z.'-inela.Ofﬂ.&skmfﬂult.m M Ed G0 Links ¥
o e
Ineta
Intermational NET Associstion

Community Resources Events User Group Specials About INETA

New Resources

Sign In | Register

INETA is the next evalution in user group communities ;;-hl Repository lkems:
= a non-prefit, independent organization, chartered with

supporting all user groups Interested in the Microseft {Zy The ROI of .NET. An
MET platform. INETA is run by a board of user group

leaders, elected by their peers, and supported by

Microsoft Corporation and other sponsors,

Read Mora »

Mews and Features

DevDays 2004: 32 U.S. Cities in March and elsewhere!
J— DevDays2004 Attend this full day of awesome Microsoft training for $99US (£75 before 2/10) and
ge\,z% leave with code, swag and the Whidbey &lpha!
Also, click HERE for U.S. User Group Registration Contest!

b Aead More lneta ’/‘q

278 User Groups joined in 2003, mere than doubling the number of member groups and bringing in over Bureau
n. 38,000 .NET developers a3 their members. INETA is now serving over 135,000 developers around the world.

INETA Membership more than Doubles in 2003 Speakers!
b Rizad More -

Newsletter Archive Availlable

_ An archive of past INETA newsletters is now available. Click Hare
Unsubscribe

JANUARY 2004 NEWSLETTER CONTENTS
New Members

Membership by Country

Boston .NET Vendor Night DevDays 2004
Ohig .NET Leader Meeting

M “anadian Taoe

B Internet

Figure 1-4

11



Chapter 1

[ET Wy Internet Site - Microsoft | Explorer f:]@;]
Eile Edit View Favorites Tools Help L
Qe - O - H B fh Psearch Frravortes @reda 8 | O B0 @©
Address [ hast: 55556/ WebSite 1idefalt. aspx [T

e
Home
= 0O Home )
+ O Articles My Internet Site
+ O Picture Gallery
This project template enables you to quickly i
jumpstart the development of Internet web QQS
applications using Visual Studio and \\' .
ASP.NET. \§ A
It provides a pre-configured template that \
includes an Internet security membership e
system, a site navigation architecture for
F optimized site layout/organization, a ad-
J 0 e S banner system with impression/clickthrough
tracking and reporting, and a master page
Flowers template design that enables developars to
quickly modify the look and feel of a site
without recoding.
| Articles Links
1- 4
% "‘I i .I . - Lln—kl
vild flowers My First Article Link 2
e bl i::;; My Second Article Link 3
. My Third Article Hncs
Link 4
Link &
Link 6
1 el T | [
&] cone & Local intranet
Figure 1-5

Site Navigation

The ASPNET team members realize that end users want to navigate through applications with ease. The
mechanics to make this work in a logical manner is sometimes hard to code. The team solved the prob-
lem in ASP.NET 2.0 with a series of navigation-based server controls.

First, you can build a site map for your application in an XML file that specific controls can inherently
work from. Listing 1-4 shows a sample site map file.

Listing 1-4: An example of a site map file
<?xml version="1.0" encoding="utf-8" ?>

<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0">
<siteMapNode title="Home" description="Home Page" url="default.aspx">
<siteMapNode title="News" description="The Latest News" url="News.aspx">
<siteMapNode title="U.S." description="U.S. News"
url="News.aspx?cat=us" />
<siteMapNode title="World" description="World News"
url="News.aspx?cat=world" />

12



Hello ASP.NET 2.0!

<siteMapNode title="Technology" description="Technology News"
url="News.aspx?cat=tech" />
<siteMapNode title="Sports" description="Sports News"
url="News.aspx?cat=sport" />
</siteMapNode>
<siteMapNode title="Finance" description="The Latest Financial Information"
url="Finance.aspx">
<siteMapNode title="Quotes" description="Get the Latest Quotes"
url="Quotes.aspx" />
<siteMapNode title="Markets" description="The Latest Market Information"
url="Markets.aspx">
<siteMapNode title="U.S. Market Report"
description="Looking at the U.S. Market" url="MarketsUS.aspx" />
<siteMapNode title="NYSE"
description="The New York Stock Exchange" url="NYSE.aspx" />
</siteMapNode>
<siteMapNode title="Funds" description="Mutual Funds"
url="Funds.aspx" />
</siteMapNode>
<siteMapNode title="Weather" description="The Latest Weather"
url="Weather.aspx" />
</siteMapNode>
</siteMap>

After you have a site map in place, you can use this file as the data source behind a couple of new site
navigation server controls, such as the TreeView and the SiteMapPath server controls. The TreeView
server control enables you to place an expandable site navigation system in your application. Figure 1-6
shows you an example of one of the many looks you can give the TreeView server control.

= Home
= Mews
T2
TWorld
Technology
Sports
= Finance
Clustes
= Markets
.3, Market Eeport
NTEE
Funds
Weather

Figure 1-6

The SiteMapPath is a control that provides the capability to place what some call navigation bread-
crumbs in your application so that the end user can see the path that he has taken in the application and
can easily navigate to higher levels in the tree. Figure 1-7 shows you an example of the SiteMapPath
server control at work.

13



Chapter 1

Home = Finance = IMarkets » 1.3 Market Eeport

Figure 1-7

These new site navigation capabilities provide a great way to get programmatic access to the site layout
and even to take into account things like end-user roles to determine which parts of the site to show.

New Compilation System

14

In ASP.NET 2.0, the code is constructed and compiled in a new way. Compilation in ASP.NET 1.0 was
always a tricky scenario. With ASP.NET 1.0, you could build an application’s code-behind files using
ASP.NET and Visual Studio, deploy it, and then watch as the . aspx files were compiled page by page as
each was requested. If you made any changes to the code-behind file in ASPNET 1.0, it was not reflected
in your application until the entire application was rebuilt. That meant that the same page-by-page
request had to be done again before the entire application was recompiled.

Everything about how ASP.NET 1.0 worked with classes and compilation changed with the release of
ASP.NET 2.0. The mechanics of the new compilation system actually begin with how a page is struc-
tured in ASPNET 2.0. In ASP.NET 1.0, you either constructed your pages using the code-behind model
or by placing all the server code inline between <script> tags on your .aspx page. Most pages were
constructed using the code-behind model because this was the default when using Visual Studio .NET
2002 or 2003. It was quite difficult to create your page using the inline style in these IDEs. If you did, you
were deprived of the use of IntelliSense, which can be quite the lifesaver when working with the tremen-
dously large collection of classes that the NET Framework offers.

ASP.NET 2.0 offers a new code-behind model because the .NET Framework 2.0 offers the capability to
work with partial classes (also called partial types). Upon compilation, the separate files are combined
into a single offering. This gives you much cleaner code-behind pages. The code that was part of the Web
Form Designer Generated section of your classes is separated from the code-behind classes that you
create yourself. Contrast this with the ASPNET 1.0 . aspx file’s need to derive from its own code-behind
file to represent a single logical page.

ASP.NET 2.0 applications can include an \App_Code directory where you place your class’s source. Any
class placed here is dynamically compiled and reflected in the application. You do not use a separate
build process when you make changes as you did with ASP.NET 1.0. This is a just save and hit deploy-
ment model like the one in classic ASP 3.0. Visual Studio Web Developer also automatically provides
IntelliSense for any objects that are placed in the \App_Code directory, whether you are working with
the code-behind model or are coding inline.

ASP.NET 2.0 also provides you with tools that enable you to precompile your ASP.NET applications,
both . aspx pages and code behind so that no page within your application has latency when it is
retrieved for the first time. It is also a great way to figure out if you have made any errors in the pages
without invoking every page yourself.

Precompiling your ASP.NET 2.0 applications is as simple as calling the precompile.axd imaginary file
in the application root of your application after it has been deployed. This one call causes your entire
application to be precompiled. You receive an error notification if any errors are found anywhere within
your application. It is also possible to precompile your application and deliver only the created assembly



Hello ASP.NET 2.0!

to the deployment server, thereby protecting your code from snooping, change, and tampering after
deployment. You see examples of both of these scenarios later in this book.

Additions to the Page Framework

The ASPNET page framework has some dramatic new additions that you can include in your applica-
tions. One of the most striking ones is the capability to build ASP.NET pages based upon visual inheri-
tance. This was possible in the Windows Forms world, but it was harder to achieve with ASPNET. You
also gain the capability to easily apply a consistent look and feel to the pages of your application by
using themes. Many of the difficulties in working with ADO.NET in the past have now been removed
with the addition of a new series of data source controls that take care of accessing and retrieving data
from a large collection of data stores. Although these are not the only new controls, the many new server
controls create a larger ASP.NET page framework.

Master Pages

With the introduction of master pages in ASPNET 2.0, you can now use visual inheritance within your
ASP.NET applications. Because many ASP.NET applications have a similar structure throughout their
pages, it is logical to build a page template once and use that same template throughout the application.

In ASP.NET 2.0, you do this by creating a .master page, as shown in Figure 1-8.

(2] WebSite1 - Visual Web Developer 2005 Express Edition Beta == %]
Fle Edt View \Vebsite Buld Debug Data Format Llayout Tools Window Community Help
HnAREs A= N - AR el ke S L =
: + TmesMewRoman - 12t - | B I U |.i.3kIl & | = - | s 3= | -]
Tookbox -1 x MasterPage.master| Start Page ~ 3 | Solution Explorer >34 x
g S plERaEB
A s My Company Home Page O
abl] TewtBox B~ [l Default.aspx
Button (] MasterPage.master
LinkButton ContentFlaceHolder - ContentPlaceHolderl ContentPlaceHolder - ContentFlaceHolder2
ImageButton
A HyperLink
TE DropDownList
= ListBox
CheckBox
i~ CheckBoxdist
(&) RadoBution
°= RadioButtonlist
| Image
|l tmagemap
3 rabe Copyright 2005]- My Company
1= Buletedlist
abl; HiddenField
@] witeral Fml 4
" Calendar | ERFA
B Misc -
tj :daotamr ) (
~] Filelpload Abbr
%+ Wizard AccessKey
] xml Abgry
15 Multiview AtomicSelectio
IL] Bansl Axis [
52 PlaceHolder Ll
O View
11 ContentPiacetolder
Ready

p .;:g Solution Ex... /7 Database ... /

 Properties -3 x
<TD> -

[w]| | @ Deson | & Source <body>|| <table> |[<tr>

Figure 1-8

15



Chapter 1

An example master page might include a header, footer, and any other elements that all the pages can
share. Besides these core elements, which you might want on every page that inherits and uses this tem-
plate, you can place <asp:ContentPlaceHolder> server controls within the master page itself for the
subpages (or content pages) to use in order to change specific regions of the master page template. The
editing of the subpage is shown in Figure 1-9.

When an end user invokes one of the subpages, he is actually looking at a single page compiled from
both the subpage and the master page that the particular subpage inherited from. This also means that
the server and client code from both pages are enabled on the new single page.

The nice thing about master pages is that you now have a single place to make any changes that affect
the entire site. This eliminates making changes to each and every page within an application.

Themes

The introduction of themes in ASP.NET 2.0 has made it quite simple to provide a consistent look and feel
across your entire site. Themes are simple text files where you define the appearance of server controls
that can be applied across the site, to a single page, or to a specific server control. You can also easily
incorporate graphics and Cascading Style Sheets, in addition to server control definitions.

[5] WebSite1 - Visual Web Developer 2005 Express Edition Beta D[]
Fle Edt View \Website Buld Debug Data Format Llayout Tools Window Community Help

i RRGI AN N N L L 8 LE =
i _.| .!. | B 7 U A | = - |i= =A N |

Tookax >3 x Default.aspx | MasterPage.master | StartPage ~ X | | Solution Explorer > 1 x

© Standard [ 2| EEE e E e

R Ponter 1 C\..\Website1)

A Label i Apn Data

abl| TextBox 5| Default.aspx

Button [ MasterPage.master

LinkButton Content - Contentl (Custom) Content - Content2 (Custom)

ImageButton
A HyperLink

TE DropDownList

=5 ListBox

CheckBox

= CheckBoxlist

(&) RadioButton
‘= RadioButtonlist

| Image

|l tmagemap

2 Table p ._g Solution Ex. 4 ?‘;_' Database ... /

i= Buletedist
atl: HiddenField
B viteral o
T Calendar =P

= AdRotator E:n: 1
. FleUpload

L+ Wizard

 Properties -3 x
DOCUMENT =

TraceMods
UICulture
] xml B Body
5 mutiview ALink
[} Panel Background w
[<] PlaceHolder Alink
Color of al active links in the document.
1 View —
[w]| [ Desgn & Source

1| Substitution
Ready

Figure 1-9

16



Hello ASP.NET 2.0!

Themes are stored in the /App_Theme directory within the application root for use within that particular
application. One cool capability of themes is that you can dynamically apply them based on settings that
use the new personalization service provided by ASP.NET 2.0. Each unique user of your portal or appli-
cation can have her own personalized look and feel that she has chosen from your offerings.

New Objects for Accessing Data

One of the more code-intensive tasks in ASP.NET 1.0 was the retrieval of data. In many cases, this meant
working with a number of objects. If you have been working with ASP.NET for a while, you know that it
was an involved process to display data from a Microsoft SQL Server table within a DataGrid server
control. For instance, you first had to create a number of new objects. They included a SqlConnection
object followed by a SglCommand object. When those objects were in place, you then created a
SglDataReader to populate your DataGrid by binding the result to the DataGrid. In the end, a table
appeared containing the contents of the data you were retrieving (such as the Customers table from the
Northwind database).

ASP.NET 2.0 eliminates this intensive procedure with the introduction of a new set of objects that work
specifically with data access and retrieval. These new data controls are so easy to use that you access and
retrieve data to populate your ASP.NET server controls without writing any code. You saw an example
of this in Listing 1-2, where an <asp: SglDataSource> server control retrieved rows of data from the
Customers table in the Northwind database from SQL Server. This SqlDataSource server control was
then bound to the new GridView server control via the use of simple attributes within the GridView con-
trol itself. It really couldn’t be any easier!

The great news about this new functionality is that it is not limited to just Microsoft’s SQL Server. In
fact, several data source server controls are at your disposal. You also have the capability to create your
own. In addition to the SqlDataSource server control, ASP.NET 2.0 introduces the AccessDataSource,
XmlDataSource, ObjectDataSource, and SiteMapDataSource server controls. You use all these new data
controls later in this book.

New Server Controls

So far, you have seen a number of new server controls that you can use when building your ASP.NET 2.0
pages. For example, the preceding section talked about all the new data source server controls that you
can use to access different kinds of data stores. You also saw the use of the new GridView server control,
which is an enhanced version of the previous DataGrid control that you used in ASP.NET 1.0.

Besides the controls presented thus far in this chapter, ASPNET 2.0 provides more than 50 additional
new server controls! In fact, so many new server controls have been introduced that the next IDE for
building ASPNET applications, Visual Studio 2005, had to reorganize the Toolbox where all the server
controls are stored. They are now separated into categories instead of being displayed in a straight list-
ing as they were in Visual Studio .NET or the ASPNET Web Matrix. The new Visual Studio 2005 Toolbox
is shown in Figure 1-10.

17



Chapter 1

A

18

Toolbox * 1 X
+ Standard

=l Data

K Pointer

- cridview

| Datalist

"2 Detailsview

-_J FormView

~*- Repeater

_L] SqgiDataSource
_p AccessDataSource
_,g ObjectDataSource
I_ﬂh? ¥miDataSource
L3, SiteMapDataSource
+ Validation

= Navigation

R Pointer

b2+ SiteMapPath

= Menu

= TreeView

+ Login

+ WebParts

+ HTML

=l General

Figure 1-10

New IDE for Building ASP.NET 2.0 Pages

With ASP.NET 1.0/1.1, you can build your ASPNET application using Notepad, Visual Studio .NET
2002 and 2003, as well as the hobbyist-focused ASPNET Web Matrix. ASP.NET 2.0 comes with another
IDE to the Visual Studio family — Visual Studio 2005.

Visual Studio 2005 offers some dramatic enhancements that completely change the way in which you
build your ASPNET applications. Figure 1-11 shows you a screen shot of the new Visual Studio 2005.

The most exciting change to the IDE is that Visual Studio 2005 builds applications using a file-based sys-
tem, not the project-based system used by Visual Studio .NET. When using Visual Studio .NET, you had
to create new projects (for example, an ASPNET Web Application project). This process created a num-
ber of project files in your application. Because everything was based on a singular project, it became
very difficult to develop applications in a team environment.

Web projects in Visual Studio 2005, on the other hand, are based on a file system approach. No project
files are included in your project, and this makes it very easy for multiple developers to work on a single
application together without bumping into each other. Other changes are those to the compilation sys-
tem discussed earlier. You can now build your ASP.NET pages using the inline model or the new code-
behind model. Whether you build pages inline or with the new code-behind model, you have full
IntelliSense capabilities. This, in itself, is powerful and innovative. Figure 1-12 shows IntelliSense run-
ning from an ASPNET page that is being built using the inline model.



Hello ASP.NET 2.0!

—
gw;mm Express Edition Beta UoeE
Edit \View \Vebsite PBuld Debug Tools Window Community Help
i W[ R < =N W A ) =B
Internet Explorer 6.0 =
Toobox + & X MasterPage.master StartPage | + % || Solution Explorer -3 x
E'L Standard 2 | Server Objects & Events ][ o Everts) v
Painter
1] %6 Master Langnage="VB" %> ':' C:\..\Website1),
A Label o ] Apo_Data
TextBox 3} <html xmlns="htep://ww.wd.0rq/1999/xheml” > - Il Default.aspx
Sutton 414 <head id="Headl" runat="server"s (] MasterPage. master
[E) LinkButton 5 <title>My Company Master Page</title>
(@) ImageButton &6 </head>
5 713 <body>
HyperLink
A <form id="forml" runat="server"> =5
Q O <table cellpadding="3" rder="1">
[E3] LstBox ctr booolor="silver's
[¥] checkBox 4 <td colspan="2">
i~ CheckBoxist <nl>My Company Home Page</hl>
@ Radouth </td>
3 N </tre
£~ RadioButtonList 8
= 1543 <t
il tmage 1643 <td>
ImageMap 17 I_ <azp:ContentPlaceHolder ID=MContentPlaceHolderl®™ | .
EES e A Solibon .., 54 Dabase -
= muletediist </asp:ContentPlaceHolder> -1 x
‘abl HiddenField <ftd>
I crds -
i <asp:ContentPlaceHolder ID="ContentPlaceHolder2™
[ calendsr ‘u Runat="server": -
= adRotator </asp:ContentPlaceHolder> H
) AleUpload </rdx
a‘, Wizard </tr>
) ¥l <E:><td 1 MRS =
calspan="<
AtomicSelectio false
MdtiView Copyright 2005 = My Company )
Panel Ais [}
D </ftd>
[55] Placetiolder CLE | eires M Abbr
= [£] ul | [i>
] [w] ®Deson @ souce | o||<htmi>[<body> |<form#formi> ||<table> Il
Ready Ln 29 Col 35 Ch 35 NS
Figure 1-11
MasterP * | Start Page | -~

|;f Load

1! <%E Master Language="VB" I>
s
i <script runat="server">
4
5 Protected Sub Page_ Load(ByVal sender Rs Cbject,
& Page.
7 End 3u . : AddOnPreRenderCompleteAsync ~
sib</script> 75 Application E
e 25 Cache
100 <html xmln i ClientiD ml" >
11{ <head id= ClientQueryString
12 <title P ClientScript ey
13l </head> P Controls
141 <body> “iy CreateStateFormatter
1534 <form |- DataBind
161 © - Dispose
17 := Common All
184 Itd colopan
19 <hl>My Company Home Page</hl>

ByVal e As System

Figure 1-12

19



Chapter 1

Another feature of Visual Studio 2005 that has come over from the ASPNET Web Matrix is that you
don’t need IIS on your development machine. Visual Studio 2005 has a built-in Web server that enables
you to launch pages from any folder in your system with relative ease. Chapter 2 discusses the new
Visual Studio 2005 in detail.

Summary

This whirlwind tour briefly introduced some of the new features in ASPNET 2.0. This release offers so
much that we can’t come close to covering it all in this chapter. The new ways of working with data and
presentation and the new infrastructure provide effective means to create powerful and secure applica-
tions. But this book also gets down and dirty in the underlying architecture and features that have been
included in ASP.NET since it was initially released.

ASP.NET 2.0 is so powerful and has so much capability built in that its tremendous benefits to produc-

tivity really shine through. Pull up your keyboard and have some fun as you take the journey through
this book and this powerful technology.

20



|

Visual Studio 2005

When you use ASPNET 2.0, I recommend you also work with Visual Studio 2005 — the latest IDE
from Microsoft —to facilitate building .NET components and applications. Visual Studio 2005,
building on Visual Studio .NET 2003, provides one of the best development environments for cod-
ing your ASP.NET applications.

When learning a new programming language or technology, you spend a lot of time learning the
details of the language, as well as how it is structured and used. You must also learn about the
environment in which you will code this new language or technology. Understanding the environ-
ment is just as important as understanding the programming language itself.

In the past, it seemed that Microsoft had just as many development environments as it had lan-
guages or technologies. For example, before the introduction of Visual Studio .NET 2002, Web
development required one environment, Visual Basic development another, and C++ development
yet another. You had to choose the appropriate development environment for the specific type of
programming you were trying to accomplish. With the release of the new Visual Studio Integrated
Development Environments (IDEs), you can now build all the possible .NET classes, components,
and applications from a single environment — Visual Studio!

Visual Studio 2005 enables you to build any type of .NET component or application. When you
use this tool, you can choose any of the Microsoft .NET-compliant languages for building your
applications; plus it allows you to create Windows Forms, XML Web services, .NET components,
mobile applications, ASPNET applications, and more. Included in this version are a large number
of new wizards and smart tags that simplify the development process for you.

When you pull up Visual Studio 2005 for the first time on your computer, you select the environ-
ment in which you wish the IDE to open. This chapter assumes you have selected Web Developer

Settings because that environment is the focus of this book.

The next section provides a quick tour of the new Visual Studio 2005 IDE.




Chapter 2

The Start Page

The Start Page is the first page you see when you pull up Visual Studio 2005 for the first time. This page
guides you as you start projects, as well as search for help or resources.

The Start Page is shown in Figure 2-1.

From this figure, you can see that the latest projects you have worked on are presented in the Recent
Projects box. From this box on the Start Page, you can also create a new project or open a project that is
not listed. The MSDN: Visual Studio 2005 box shows some of the latest articles available on the public
MSDN Web site. The Getting Started box allows you to create new projects from existing code, create
new Web sites, import or export Visual Studio settings, or pull up the MSDN help application.

If you close the Start Page from the document window, you can reactivate the Start Page by selecting
View & Start Page from the Visual Studio menu.

The Document Window

22

The document window is where you create your ASPNET pages. This section of the IDE enables you to
create ASPNET pages either by dragging and dropping elements onto a design surface or by directly
coding them yourself.

| Start Page|

. Microsoft B
« Visual Studio 2005

[Bwrax Where Did My Icons Go? &)
:;.',E_\_fa'hdnns-!mimﬁanl This, 12 May 2005 07:00:00 GMT - Review the host of improvements and new features
n that make the Microsoft Visual Studo 2005 d divel {Iog)

Even more impressive than its predecessors.

The Future of the Platform

Tue, 03 May 2005 07:00:00 GMT - In this special 50th episode of the .NET Show, Rick
Rashid, Brad Abrams, John Shewchuk, and Michael Walent discuss where the Microsoft
platform technologies can, should, and will be going in the future, This show slso features
& special interview with Gill Gates,

Configuring ClickOnce Trusted Publishers
This, 28 Apr 2005 07:00:00 GMT - Take advantage of Code Access Sequrity runtme

Open: web Site.., | Praject/s... protectons while stil allowing a dynamic determination of permissions at the pont of
Create: Web Site... |Project... application deployment through ClideOnce. L
. 7 ding the I Web Site Starter Kit
Wed, 27 Apr 2005 07:00:00 GMT - Use Visual Studio 2005 and S0L Server 2005 Express
Gelting Started Edition to personalize and extend the Personal Web Site Starter Kit.
& aFa 1 Web Site Personalization with ASP.NET 2.0
Create a Web Site Tue, 13 Apr 2005 D7:00:00 GMT - Create personalized Web sites faster, and buid entirely
Create & Web Service new dlasses of apphcations, with the new i features in ASP.NET 2.0,
Dowrload Additional Starter Kits ASPHET 2.0 Internals
Commurity Resources for Visual We... Tue, 19 Apr 2005 07:00:00 GMT - While 100 percent backward compatible with ASP,NET
Introckichion in Mz.el Wek: Develop.. 1.1, ASP,NET 2.0 beings & number of ntemal changes to ASP.NET, Thess indude changes
Guided Tour of Creating Web Sites i., to the code model, complation, page Wecyde, and more. This artide outiines those change:
What's New Visual Web Developer 2.,
HowDol... ? Creating Web Application Themes in ASP.NET 2.0

Tue, 15 Apr 2005 07:00:00 GMT - Learn to use cascading style sheets and images with
themes in ASP.NET 2.0, and how you can dynamically load themes at run time.

Looking for ASP.NET 2.0 Beta 2 Web Hosting? [v\

Bri 1K Ao NG AT GEMT . TF s v Innbinn foe = mhaes tn dandne e A5 NET 2 0 )
Visual Studio Headlines \ s
»

Figure 2-1

\ J




Visual Studio 2005

Views in the Document Window

Visual Studio .NET 2002 and 2003 both had a Design view and an HTML view of the ASP.NET page.
Visual Studio 2005 offers two views of a page: Design and Source. Figure 2-2 shows the document win-
dow in Visual Studio 2005.

The document window contains two tabs at the bottom that enable you to switch the view of your page:
Design and Source. The Design tab enables you to view your ASP.NET page as it would appear in the
browser. You use Design view to create your ASPNET page visually in a WYSIWYG fashion. Dragging
and dropping controls onto the design surface causes Visual Studio to generate code in the page. This is
not very different from older versions of Visual Studio. The Source tab shows the complete source of the
file and is the default view used by Visual Studio 2005.

By using the Options dialog, you can change the default view Visual Studio uses when a page is opened
for the first time. Choose Tools = Options and navigate to the HTML Designer section. If you highlight
this node, you see the option to open pages in either the Design or Source view. Select the view you want
and click OK.

5 Wirox - Microsoft Visual Studio DX
Fle Edit Wew Webgite Build Debug Dgta Format Layout Tooks Window Community Help
R @K S e e o D) (S -
- Z 2| B L UIALIS =28
»;. Default.aspx* « 3 ||Solution Explorer - 0 %
i =ia R si=sicR
: | Welcome P ChWirom)
=) 7} App_Data
; ®- [ pefault.aspx

Q [ web. config

=0

, &3] Solution Ex... s Datzhase E... /
:Pr:nperﬁes > 1 X
TextBoxl System.Web, UL WebCont +
RN A=

(Expressions) ]
B Layout

Height

Width

Wrap True
E Misc =

(iD) TextBox1 ]

Misc

3 Design | [ Source <body> |<div> <p> |<asp:texboxFtedboxi>

Ready

Figure 2-2

23



Chapter 2

If you don’t see the HTML Designer section in the list of options, be sure to check the Show all settings
checkbox in the dialog. By default, this checkbox is unchecked.

Although the document Window is basically the same as in earlier versions of Visual Studio, this section
of the IDE does have some new functionality that I describe in the following sections.

The Tag Navigator

When you’re working visually with an ASP.NET page, notice that a list of the elements appears on your
page at the bottom of the document window. This list of elements is called the tag navigator and is illus-
trated in Figure 2-3.

03 Design | El Source <body>|| <form#forml> || <p>||<asp:gridview#gridviewl>

Figure 2-3

Instead of requiring you to select the element from the design surface or from within Source view, the
tag navigator enables you to right-click an element to select it and display the properties for that control
in the Properties window (discussed shortly). You can also select the content of the element by using this
approach (see Figure 2-4).

Select Tag

[4 Design | [ Source <body=| <divz| <p>

Ready
Figure 2-4

When you have many elements on your page, the tag navigator is quite helpful. To use its capabilities,
simply place your cursor in the document window and use the arrow buttons associated with the dis-
play to scroll quickly through elements to find what you are looking for. The tag navigator shows all
the controls from the element you selected, as well as all the selected control’s child controls. When
working in Source view, you can use the same mechanics to jump quickly to the content of the control.
This new functionality is a quick and powerful way of navigating your page. You can also use this new
functionality to highlight specific sections of code. To highlight everything inside a table, for example,
select the <asp: Table> element from the tag navigator, right-click the option, and select the content of
the control. All the code between the opening <asp:Table> and the closing </asp:Table> elements is
highlighted.

Page Tabs

24

Another new and interesting feature of the Document Window is how the page tabs work. Whenever
you have a page open in the document window;, a tab for that page appears at the top of the window.
When you have multiple documents open, this tabbed view of the pages enables you to switch quickly
from one page to another simply by clicking the tab of the page you want to view. Although page tabs
are not new to the IDE, the functionality these tabs provide is certainly new. The following paragraphs
explain this new functionality.



Visual Studio 2005

Right-clicking the page tab gives you the new options illustrated in Figure 2-5.

' Wrox - Microsoft Visual Studio
File Edit Wew Website Buld Debug Data Format Layou
PR N W= NI TREETGEN [ I s R I
- B ZU|A
5e Default.aspx™* [ Default. aspoi.vb
i =l Save Default.aspx
o
% Close
» Close All But This
Copy Full Path
Open Containing Folder
"B utton B new Horizontal Tab Group
1 mew vertical Tab Group
Figure 2-5

By right-clicking the page tab, you can save the file, close the file, close every open document but the one
selected, display the full path of the file (such as C: \Documents and Settings\Billy\My Documents\
Visual Studio 2005\WebSites\Wrox\Default.aspx), and open the containing folder in Windows
Explorer (shown in Figure 2-6).

I3 Wrox

File

(€ Back.

Edit View Favorites Tools

@

Help

LT /:‘-Sea:h |'_ Folders '

Agdress ||3) C:\Documents and Settings\@illy My DocumentsYisusl Studio 2005\WebSitesWrox

I WebSites

Details

Wrox
File Folder

Date Modified

File and Folder Tasks £

&g Share this folder

Other Places

|:’] App_Code
L:] App_WebReferences

:

() Make a new folder
) Pubish this folder to the
Web

\Web, config
"

guration Fie

I} My Documents
IC) Shared Documents
i My Computer
ﬂj My Network Places

: Today, June 23,

2005, 11:09 AM

Figure 2-6

25



Chapter 2

Code Change Status Notifications

Some other changes to the document window include a new code-change notification system. When you
work with code on your pages, notice that line numbers are now included by default. Clicking any num-
ber highlights that line of code. Next to the line numbers is a changing color bar, illustrated in Figure 2-7.

This color bar notifies you of code changes that have occurred on your ASPNET pages. If no color bar
appears on a particular line of code, you have not yet made any changes to that particular line. After you
make a change to a particular line of code, a yellow bar appears at the head of that line. After the file is
saved, this line changes to green. Yellow code lines indicate that changes have been made but not yet
saved to the file. Although you can’t see the yellow bar next to lines 13, 14, and 15 in the black-and-white
screen shot shown in Figure 2-7, you may be able to see the shading difference. The color difference
(when compared to the bar’s color next to the rest of the lines of code) indicates that these lines have

recently been changed.

Error Notifications and Assistance

In previous versions of Visual Studio, design-time error checking was a great feature of the IDE. As you
typed code, Visual Studio checked the code for errors. For instance, if you wrote an If Then statement
(in Visual Basic) that didn’t include an End If statement, the IDE underlined the If Then statement to
remind you that the block of code was not complete. The line disappeared after you corrected the error.
With Visual Studio 2005, if you make any design-time errors, a small square appears to the right of the

underline (as shown in Figure 2-8).

Defaultaspx® Default.aspe.vb - ¥
Client Objects & Events + | | (Mo Events) v |
1] <%@ Page Language="VB" ventWireup="falze" CodeFile="Default.aspx.vb" Inherita=" DrAI-

hemlll/DIDS XA

Welcome</hl>
i4 Here is some text that I just

added and haven't yet
15; saved to file!!!!

17 <asp:TextBox
18] </p>

<p>

runat="server"></asp:TextBox>

<asp:Button ID="Buttonl" runat="server"

B Source

L4 Design <htmlz||<body>| | <formaforml= | [<divs

Figure 2-7

26



Visual Studio 2005

Sub Buttonl Click

Dim x &Ls Inte

Figure 2-8

Hovering your cursor over the square causes an error sign to appear. Clicking the error sign opens a dia-
log that gives you options for fixing the error. For example, if you are using an If Then statement with-
out the closing End If statement in Visual Basic, clicking the Error Notification button provides you
with a fix from the IDE, as shown in Figure 2-9.

This pop-up dialog first states the issue. In this case, it says that any opening If statement must include
a closing End If statement. Below this error notification is a link that enables you to apply the fix. Below

the link is a code sample showing how the fix will affect your code.

Sometimes, more than one option exists for fixing a design-time error. For example, you might have the
following code in your ASP.NET page:

Dim x As Integr

90 Wrox - Microsoft Visual Studio BE
File Edit View Website Buld Debug Tools Window Community Help
XA A=A R TR RN L RRC R S A= W) -4
G b A | ==l J @ e
>: - Default.aspx™ ' Defaultaspxvb™ | - 3 |Solunnn Explorer -1 X
|| % _pefautt |v] |1 ectarations) MiBlEEEE
= 1 —| P C\Wrox)
g ~
- Parcial Class _Default = jADD_Dab
Inherits System.Web.UI.Page = [E] Defaut.aspx
"] Default.aspx.vb
. .
Frotected 5ub Buttonl Click(ByVal sender As Object, ByVal e hs System.Eventhrgs) Ha b Webconfig
Dim x Az Integer = 3
ILxz.A
End Sub
Ead Class 'If must end with a matching "End If.
# | Insert the missing End If,
Dim % As Integer = 3
If x = 2 Then
End IE
End Sub |
Znd Class , &3] Solution Ex... s Datzhase E... /
[#]Expand all Previews |H—aperﬁes - 1%
_Default Attributes -
EEFAMNE
El coM
COM Class False
COM Visible True
E Component Design
Default Event  (Mone)
B Serialization
Serigizable Falze
|com class
'l Expose Class to COM,
a2 ! 2] |
Ready Ln 4 Col 1 chi NS
Figure 2-9

27



Chapter 2

In this case, Integr is spelled incorrectly; the correct spelling, of course, is Integer. The IDE notifies
you of this error and opens up the associated error dialog. You have three options for fixing the error
(shown in Figure 2-10). To fix it, you simply scroll to the appropriate fix option and click that link.

Integr

Type 'Integr’ is not defined.
Change 'Integr' to Integer.

Change 'Integr' to UInteger.

Change 'Integr' to IntPtr.

Figure 2-10

The Toolbox

One of the first changes you notice when you open this latest release of Visual Studio is a change in the
Toolbox. The controls in the IDE are now presented in a hierarchical manner. This change was made
because of the tremendous number of new controls in ASP.NET 2.0. The Toolbox is shown in Figure 2-11.

Toolbox * 0 x
+ Standard

=l Data

K Pointer

A Gridview

| Datalist

El petaisview

5 Formview

- Repeater

_L] SgiDataSource
_é';g AccessDataSource
._,g ObjectDataSource
:_‘ib XmiDataSource
_ﬂ.: SiteMapDataSource
|zl Reportviewer

+ Validation

+ Mavigation

+ Login

WebParts

HTHML

=l General

+
T

There are no usable controls
in this group. Drag an item
onto this text to add it to the
toolbox.

Figure 2-11
28



Visual Studio 2005

Because of the number of new controls (somewhere around 50), they have been organized into sections
in the Toolbox. The following table shows what all is included in the new control sections.

Control Section Controls Included in the Section

General There is nothing in this section, although you are free to use this sec-
tion for your own custom developed controls. (You can also create a
completely new control section if you choose.)

HTML Includes the HTML server controls that have been a part of ASPNET
since the beginning. The names of these controls, however, have
changed.

WebParts Includes all the controls that deal with the new personalization fea-

tures provided by ASP.NET 2.0, including all the WebPart controls
such as WebPartManager and WebPartZone.

Login Contains all controls that deal with adding user login and password
capabilities to your ASP.NET applications, such as Login, LoginView,
and LoginStatus.

Navigation Includes controls that enable end users to work through a collection of
ASP.NET pages, including SiteMapPath, Menu, and TreeView.

Validation Includes all the validation controls that have always been a part of
ASP.NET, such as RequiredField Validator and RegularExpressionVal-
idator.

Data Includes all the controls that deal with the retrieval and display of

data that comes from a data store of some kind. Therefore, this section
includes all the data source controls (SqlDataSource, AccessDataSource,
and more), as well as the data display controls, such as GridView and
DetailsView.

Standard Contains the standard <asp: > controls, such as TextBox, Button, and
other core controls.

One feature that has always been present in Visual Studio, but makes more sense now that so many new
controls have been added, enables you to turn off the List View of the controls. Doing this causes the
Toolbox to show the controls simply as icons (see Figure 2-12).

Right-click in the section of the Toolbox you want to change and deselect List View. This changes the
view for only those controls in the section where you right-clicked. Each section in the Toolbox main-
tains its own settings.

Also by right-clicking on the Toolbox, you can select the Show All option. This shows all the possible cat-
egories available through the Visual Studio IDE. It is usually not the best option to enable when working
with ASP.NET projects because most of the object categories have nothing to do with ASPNET and,
therefore, are not controls you would use in your projects.

29



Chapter 2

=
<8
o
[=}
=
4

=
X

=
[
||L
O EE @

Validation
Navigation
Login
WebParts
HTHML
General

T EEEE E

Figure 2-12

The Solution Explorer

The Solution Explorer is still located where it was in previous versions of Visual Studio. The Solution
Explorer, shown in Figure 2-13, provides you with an organized view of the projects in your application.

Solution Explorer - C:\...\Wr... + & X

Aa| AR )

i App_Data
£ 3 Default.aspx
iy Web.config

.:j? Solution Ex... /% Database E...

Figure 2-13

The toolbar at the top of the Solution Explorer still enables you to do many of the same tasks that you
could perform in previous versions of Visual Studio, but this latest release of Visual Studio has some
additional buttons on the toolbar. Figure 2-14 shows you the toolbar with a description of the items it
contains.

30



Visual Studio 2005

View
Refresh Code Copy Web Site

Solution Fxplorer

|

> 1 X

Properties

Nest
Related
Files

Figure 2-14

View
Designer

ASPNET

Configuration

The Un-nest/Nest Related Files button is a new feature in the Solution Explorer that enables you to
undo the nesting found in ASP.NET pages developed using code-behind files. By default, when working
with code-behind files, you can click the plus sign next to the . aspx page to expose the code-behind file
(.aspx.vbor .aspx.cs). Un-nesting these files puts them all on the same hierarchical level. Once un-
nested, you can then re-nest these files by clicking the same button.

Another new button in the Solution Explorer is the Copy Web Site button. This opens up a new dialog in
the document window that enables you to copy your application from one point to another. This dialog

is shown in Figure 2-15.

Copy Web C\...\Wrox} |

i Connections: C:\Documents and Setings Billy My Documents s + & Connect & Disconnect

Source Web site:

Name Status
) App_Data

= [3] Default.aspx
= e Defait.asox...
= |L§|Emula'.-’:cs.ml
& [TZ]Login.aspx

= x_a'___]mgn.aspx.cs
= |E§Web.config

New
MNew
New
New
MNew
New

Last refresh: 5/28/2005 3:44: 14 PM

Status:

C\Documents and Settings\Bily'My Documents \isual Studo 2005\Web?

Date Modified

5/28/2005 3:43:15 PM
5/28/2005 3:43:16 PM
1/17/2005 7:07:14PM
5/28/2005 3:42:58 PM
5/28/2005 3:42:58 PM
5/26/2005 10:23:25 PM

Show deleted files since the last copy operation

[l @[]

Copy from Saurce Web site to Remote Web site is finished, Completed at 5/28/2005 3:44: 14 PM,

-
Remote Web site:
C:\Documents and vgs \Billy'WMy Doc Studio
Name Status Date Modified
) App_Data
Last refrech: 5/28/2005 3:44: 14 PM

Figure 2-15

31



Chapter 2

Using this dialog, you can copy your projects to a different place on the same server or to an entirely dif-
ferent server. You can now enjoy easy file movements and synchronization between two projects.

A final new button in the toolbar is the ASPNET Configuration button that pulls up the ASP.NET config-
uration page for your selected application within the document window. This configuration system is
discussed in detail in Chapter 27.

The Server Explorer

The Server Explorer is one of the more valuable windows within Visual Studio. This window can now
be found on a separate tab next to the Solution Explorer. The Server Explorer (shown in Figure 2-16)
enables you to perform a number of functions such as working with database connectivity, monitoring
performance, and interacting with event logs.

= {Data Connections |
WAY Morthwind. dbo

4 [ Tables
- [l Views
#- [ Stored Procedures
- 3 Functions
= % Servers

= hemingway

#)- + Crystal Services

Event Logs
,E’ | Management Classes
E,% Management Events
= Message Queuss
Performance Counters

% Services

[d Solution Explorer Server Explorer

F -

Figure 2-16

The Properties Window

The Properties window is also relatively unchanged from the previous versions of Visual Studio. This
window (shown in Figure 2-17) enables you to work with and control the properties of any item that is
part of your application. After you select an item or focus the cursor on the item in the Code view of
your ASP.NET page, the properties of that particular item are shown in the Properties window.

32



Visual Studio 2005

Froperties > 1 x
TextBox1 System.Web. UL WebControls ~

a=lsLELZ )
B Accessibility ad
AccessKey
TabIndex 0
& Appearance
BackColor ]
BorderColor ]
BorderStyle NotSet
Borderidth
Columns 0
CssClass
Font
ForeColor 1
Text
B Behavior

AutoCompleteType Mone
AutoPostBack False
CausesValidation False
Enabled True -

Text
The text value.

Figure 2-17

Lost Windows

In the Visual Studio 2005 release, you may not be able to find some familiar windows that were up front
in previous versions of Visual Studio. For example, when you open one of your ASP.NET applications in
Visual Studio 2005, you do not see the Class View and Dynamic Help windows. Although they are not
visible in the default view when the IDE first opens, these windows are still available for use with your
applications.

You can find the Class View by choosing View &> Other Windows &> Class View from the Visual Studio
menu. The Class View window opens directly next to the Server Explorer. You can move the window
wherever you want within the IDE.

You can find the Dynamic Help window by choosing Help = Dynamic Help. Selecting this option opens
the Dynamic Help window next to the Properties window.

Other Common Visual Studio Activities

Visual Studio 2005 is so packed with functionality that it deserves a book of its own. This IDE is mam-
moth and enables you to do almost anything in the construction and management of your ASPNET
applications. This section takes a look at some of the common tasks that are done somewhat differently
or in an altogether new manner in this latest release of Visual Studio.

33



Chapter 2

Creating New Projects

The process of creating new files and projects within Visual Studio 2005 is different from the process
using Visual Studio 2002 or 2003. In this latest release of Visual Studio, the focus on project-based appli-
cations is gone. Now projects are created in a page-based manner. This means that when you create an
ASPNET application in Visual Studio, you don’t find solution or project files. In fact, when you first cre-
ate the application, the only items created for you by the IDE are the project folder and a single . aspx
file. If you are creating an ASPNET page using the code-behind model, you also have an .aspx.vb or
.aspx.cs file.

Visual Studio allows you to create either a new single . aspx page or a Web site. To create a single page,
simply go to the menu and choose File &> New File. To work on a previous file, choose File = Open File.
To create a new ASP.NET application, choose File=> New Web Site. You can see the dialog of options in

Figure 2-18.

New Web Site 2%

Templates:
Visual Studio installed templates

RSB RET Site! B ASPNET Web Service (ZPersonal Web Site Starter Kit
% Empty Web Site

My Templates

_'j Search Online Templates...

A blank ASP,NET Web site

Location: Fiie System | | Ct\Documents and Settings\Bily My Documents\Visual Studio 2002 .v|

Language: Visual Basic [t

Figure 2-18

In most cases, you select the first option— ASP.NET Web Site. This creates a single folder for your appli-
cation and a default . aspx page.

Making References to Other Objects

When you look at the Solution Explorer of your ASP.NET application, notice that the References and Web
References folders are not present. How do you add these references to your file-based applications?

You can add them in a couple of ways, and both ways bring you to the same dialog within the IDE. The
first way to add a reference to your application is to highlight the project in the Solution Explorer and
then choose Web Site &> Add Reference or Add Web Reference from the Visual Studio menu.

The second option is to right-click the project name in the Solution Explorer and select Property Pages

from the list of options (the last option in the menu). This brings up the Property Pages dialog shown in
Figure 2-19.

34



Visual Studio 2005

C:WebSites\VisualStudio\ Property Pages

2]]

References Reference Name Type
Buid

Accessbility

Start Options

M5Buld Support

Wersion

AddReference.. || AddwebReference.. |

Figure 2-19

The Property Pages dialog allows you to make many modifications to your ASP.NET applications. For
now, however, focus only on the first item within the dialog — the References tab. When you have the
References item highlighted, two enabled buttons appear in the right-hand portion of the dialog— Add

Reference and Add Web Reference.

The Add Reference button invokes the Add Reference dialog so that you can make a reference to a DLL
to use in your project. Again in this version of Visual Studio, the objects are divided into categories such

as .NET, COM, and others, as shown in Figure 2-20.

Add Reference

3]

NET |COM Projects | Browse | Recent

Component Name Version Runtime
System.Configuration.I... 2.0.0.0 w2.0.50215
System.Data 2.0.0.0 v2.0.50215
System.Data.OradeClient  2.0.0.0 v2.0.50215
System.Data.SglXml 2.0.0.0 v2.0.50215
System.Deployment 2.0.00 w2.0.50215
System.Design 2.0.0.0 w2.0.50215
System.DirectoryServices  2.0.0.0 w2.0.50215

Path [A]
C:\WINDOWS \Microsof.
C:\WINDOWS \Microsof.
C:\WINDOWS \Microsof.
C:\WINDOWS \Microsof.
C:\WINDOWS \Microsof,
C:\WINDOWS \Microsof.
C:\WINDOWS \Microsof,

2.0.0.0 v2.0.50215 C:\WINDOWS \Microsof,

50.0.0 V2.0, 50215 WINDGWS Wicrosof, _

2.0.0.0 v2.0.50215 C:\WINDOWS \Microsof.—
System.EnterpriseServices  2.0.0.0 v2.0.50215 C:\WINDOWS WMicrosof,
System.Management 2.0.0.0 v2.0.50215  C:\WINDOWS \Microsof,
System.Messaging 2.0.0.0 v2.0.50215 C:\WINDOWS Microsof,
System,Runtime.Remoting 2.0.0.0 v2.0,50215 C:\WINDOWS WMicrosof,
Swatem.Runtime. Serializ...  2.0.0.0 w2.N.50215  C:WATNDOWS \Mirrasnf, [v]

| (2]

OK H Cancel ]

Figure 2-20

35



Chapter 2

The Add Web References button invokes the Add Web Reference dialog (shown in Figure 2-21). Here
you can make references to other Web services or .wsdl files found either in the same solution, on the
same server, or on some remote server.

Add Web Reference %]

Mavigate to a web service URL (asmx or wsdl) and dick Add Reference to add all the available services found at that URL.

Gt @ | @[3 o
wL: | g:}-

Web gervices found at this URL:
Start Browsing for Web Services

Uise this page as a starting point to find Web services. You can dick the finks
below, or type a known URL into the address bar,

Browse to:

Web services in this solution

Web services on the local machine

Browse UDDI Servers on the local network

UDDI Directory
Query the UDDI business registry to find comparies and production Web Add Reference
SEMACES,

Test Microsoft UDDI Directory

Locate test Web services to use during development.

Cancsl

Help

Figure 2-21

Be aware that these buttons have been added because no References or Web References folder appears in
the Solution Explorer, which shows the referenced objects.

Using Smart Tags

The visual designer of Visual Studio now includes smart tags. Smart tags are a great enhancement to the
development experience because they enable you to quickly program common tasks. Each smart tag is
different and depends on the server control that it works with. For instance, the smart tag that appears
for the GridView server control enables you to apply paging and sorting of the data that the GridView
displays. Other controls, however, may have different capabilities exposed through their respective
smart tags.

Not every server control has a smart tag associated with it. If a server control has this extra capability,
you notice it after you drag and drop the control onto the design surface. After it is on the design sur-
face, an arrow appears in the upper-right-hand corner of the control if a smart tag exists for that particu-
lar control. Clicking the arrow opens the smart tag and all the options that the smart tag contains. This is
illustrated in the GridView server control shown in Figure 2-22.

From the smart tag, you can select items either to add or alter by clicking one of the available links or

by checking one of the available check boxes. When you have completed either of these actions, Visual
Studio changes the code in the background —adding the capabilities that you want. You can also see the
additions and modifications to the IDE if you change your view to the Code view of the page.

36



Visual Studio 2005

%0 Wrox - Microsoft Visual Studio
Fle Edit Wew Webgite Build Debug Dgta Format Layout Tooks Window Community Help
ER RN - W= N W Ly R R e LW -
H ] = n B LU lALIS sl
Toalbax - 1 X Default.aspx™*| - 3 ||Sclution Explorer -~ 0
® Stondard s EsE-F
= N | P €\ \Wirox
Welcome P o\
5 i jhu:;‘[:ab
GridView & 2] Defaut.aspx
e 1 e e ST * 5 an
] Datalst Column0 Columnl Columnl e L Web.config
-. Wito Format...
7 Detalsview ‘abe abe abc . P
r hoose (=3 one) d
+ Formiew iabe abe abe
Y i Edit Columns...
= R;p“m ‘abe abe abe .
SalDataSource L ew Column...
U abe abe abe =
[ AccessDataSource ; Edit Templates
abe abc abc
1§ objctDatasource
"" ¥miDataSource
L3, SiteMapDataSource
5 Repartiiewer
*_‘\I‘ai::tiun £ Solution £x... i DatsbaseE... /
+ Navigation | Properties > 1 %
= -
> I::;:‘a"s GridViewl System,Web, UL WehControls =
+ win ENEIR
= General Height e
HorizontalAign MotSet
There are no usable controls idth
in this group. Drag an item E M
onto this text to add it to the Misc
toolbasx. (D) GridViewl
Columng (Colection)
Editindex -1
. SelectedIndex -1 e
Autn Format...
Misc
3 Design [ Source <body>||<div> |<p> |<asp:gridviewsgridviewl>
Ready
Figure 2-22

Saving and Importing Visual Studio Settings

Visual Studio 2005 allows for a tremendous number of customizations and modifications to the develop-
ment environment and the development experience. You can do a lot to change Visual Studio either by
dragging elements and components to new locations within the IDE, or by choosing Tools => Options in
the Visual Studio menu bar to bring up the Options dialog shown in Figure 2-23.

The number of options you can work with from this dialog are staggering and impossible to cover com-
pletely in this chapter. In fact, at first you won't see this extensive list of options; the list you see will be
rather limited. To see the extensive list presented in Figure 2-23, you must check the Show All Settings
check box found in the lower left-hand corner of the dialog. You will find that this Options dialog has
many of the same options you worked with in the past, plus some new ones.

After you have Visual Studio set up as you want, you should save these settings so that they can be used
again if you rebuild your computer, if you are working with an another instance of Visual Studio else-
where, or if you want to share your settings with others. To save your settings, choose Tools = Import
and Export Settings in the IDE. This pulls up the Import/Export Settings Wizard shown in Figure 2-24.

37



Chapter 2

Import and Export Settings
International Settings

Source Control

Options ZJE3
[: Window layout

(%) Tabbed documents

Add-in/Macros Security () Multiple documents

AutoRecover

Documents Recent files

Find and Replace 10 |items shown in Window menu

Fonts and Colors

Help = 10 | items shown in recently used lists

Show status bar

Keyboard } _
Startup [¥] Close button affects active tool window only
Task List [ auto Hide button affects active tool window only
Web Browser Animate environment tools

Projects and Solutions | Speed - —— +

Text Editor

[ Restore File Associations

Database Tools

Show all settings

Ok l [ Cancel

Figure 2-23

Import and Export Settings Wizard

emvironment to one of the default collections of settings.
What do you want to do?

) Export selected environment settings
Setbings wil be saved out to a file so they can later be

(B[]

gg Welcome to the Import and Export Settings Wizard

You can use this wizard to import or export spedfic categories of settings, or to reset the

Import and Export Settings Wizard

85 Choose Settings to Export

1. Some categories may contain settings that could reveal information about you g

Which settings do you want to export?
Al Settings

Description:

General settings in the|

Expand this category
ls.

Call Browser deta

Class View Options =
Code Snippet Locations

Command Window Allases

Errer List Options

External Tools List

File Extension Mapping

Find Options

Find Symbol Options

Meru and Command Bar Customiz|y,.

I | &

Import and Export Settings Wizard

gj Name Your Settings File

What do you wanl to name your settings file?
Exported-2005-05-28. vasettings

]]

Store my settings file in this
c: \doouments and settings'pily\my documentsyisual studio 2005\settings

[v]

< Previous B

Figure 2-24

38



Visual Studio 2005

From this wizard, you can either save your settings to a file that can be used elsewhere or you can import
settings that are stored in the same type of file. You can also just reset Visual Studio to return the settings
to the default that existed when Visual Studio was first installed and run.

If you are going to export your settings, select Export Selected Environment Settings. This shows a list of
exportable settings in the left-hand pane of the dialog. By default, almost everything is selected. Feel free
to uncheck the settings you don’t want to export. When this is set up the way you want it, choose the
name of the file and the location where you want to save the file. The file has a . vssettings extension.
If you go back and look at the file, notice that Visual Studio saves the settings as an XML file.

Importing the settings is simply the process of making reference through the Import and Export Settings
Wizard to a file of the same type.

Validating Your HTML

When coding your pages in Visual Studio, this IDE provides you with design-time errors it sees in the
code you construct. One thing being checked is the structure you apply to the HTML code in your pages.
By default, Visual Studio 2005 checks your ASP.NET pages to make sure they are compliant so that they
work with Microsoft’s Internet Explorer 6.0.

Visual Studio enables you to change this behavior through the use of a drop-down list of available
schemas. This drop-down list, found at the top of the document window, is shown in Figure 2-25.

v Visual Studio - Microsoft Visual Studio
File Edit Wew Website Build Debug Took Window Community Hslp

HE RACE RN W= NP =N R = Lo 2| b Debug - NET - | [ nie

|HiEE| = |[internet Explorer 5.0 |7| & b

Internet Explorer 6,0

Internet Explorer 3.02 [ Netscape Mawigator 3.0
2 || Client Objects & Events :_'Fﬁ ;‘a\"gaw 40

& } Laq¥HTML 1.0 Transitional (MNetscape 7, Opera 7, Internet Explorer &) ="Default.aspx.vbk" Inf

¥ | Default.aspx

meep 1 www . w3 . or g/ TR X}

Figure 2-25

The available list of schemas includes the following:

Q  Internet Explorer 6.0

Internet Explorer 3.02/Netscape Navigator 3.0

Netscape Navigator 4.0

HTML 4.01

XHTML 1.0 Transitional (Netscape 7, Opera 7, Internet Explorer 6)
XHTML 1.0 Frameset

XHTML 1.1 Strict

O 000 oo

39



Chapter 2

From this, you get different errors for your HTML depending on the schema you are trying to adhere to
when developing. For instance, you may be trying to adhere to the XHTML 1.1 schema using a break
tag, as shown here:

<br>

You see a red squiggly line underneath this bit of HTML and an error notification placed in the Error
List, which specifies that you should construct the break tag as <br />.

In addition to these specified schemas, by using Visual Studio you can also make sure you follow spe-
cific accessibility standards for how the HTML is structured. This is meant for Web surfers with disabili-
ties when it comes to browsing content online. These end users might not be able to see, hear, or move.
Therefore, they have special programs on their computers to help them browse Internet content. It is eas-
ier to accomplish this, however, if these programs work with pages that follow certain schematic rules.

You can validate your HTML pages using WCAG Priority 1, WCAG Priority 2, or the Access Board
Section 508 schemas. You can get to this validation process by clicking the Check Page For Accessibility
button in the Visual Studio menu (see Figure 2-26) or by selecting Website &> Check Accessibility in
Visual Studio.

Figure 2-26

You can get more information on these schemas at the following locations: WCAG Priority 1—
http://www.w3.org/TR/WAL-WEBCONTENT/; WCAG Priority2 —
http://www.w3.org/TR/WAI-WEBCONTENT/full-checklist.html; Access Board Section
508 —http://www.access-board.gov/508.htm.

From Visual Studio, clicking the Check Page For Accessibility button gives you the following dialog

where you can check the schemas against which you are validating your page (shown here in Figure
2-27).

Accessibility Validation [B[%]
Chedk For

Access Board Section 508

Show

Errors

Warnings
Manual checklist

[ Validate ] [ Cancel

Figure 2-27

Check the schemas you are interested in working with and click the Validate button to start the valida-
tion process. If there are any errors, you see a list of them in the Error List dialog of Visual Studio. A sam-
ple page that I ran through this validation process is presented in Figure 2-28.

40



Visual Studio 2005

Error List >0 x
[ 0Erors || 58 Warmings||[Li) 21 Messages

Description _ Fie Line Column Praject |1 |

# 1 WCAG 1.1: Consider using <nosaript>> to provide an alternative  Default.aspx 5
description of <script> content.

512 WCAG 1.1: If you use ASCII art, be sure to include alternate Defauit.aspx 2
equivalent text, using <abbr> with the "tite” atiribute. Also
provide a link to skip over the ASCII figure,

i) 3 WCAG L4 : Synchronize alternatives, captions, or auditory Default.aspx 2
descriptions with time-based multimedia tracks.

i) 4 \WCAG 2.1:Be sure not to convey information usng color alone.  Default.aspx 2
Use context or markup as well

i) 5 \WCAG 2.2 : Be sure that foreground and background colars for Default.aspx 2
images provide suffident contrast for low-vision users and for use
wiith black and white screens,

i) & \WCAG 3.1: Use markup rather than images to convey information  Default.aspx 2
wihere possible, Examples: use MathML to markup mathematical =

scustionc: uce chils cheste bn format baut and control laanut

Figure 2-28

Reaching Out to the Community

The Community section adds a new menu bar item in Visual Studio 2005. This section allows you to
reach beyond your local computer and your Visual Studio instance to get help and use resources on the
Internet. The available options for this menu include the following:

Qa

0O 00 oo

Ask a Question: A link to the MSDN Forums

Send Feedback: A link to the MSDN Product Feedback Center

Check Question Status: A link to the MSDN Forums

Developer Center: A link to the Visual Studio 2005 MSDN Developer Center support page
Codezone Community: A link to a Microsoft page that describes the Codezone Community

Community Search: Perhaps the most useful link from the Community menu. The Community
Search section enables you to search for Starter Kits, Item Templates, Code Snippets, Samples,
and Controls from your local MSDN, various Microsoft properties, and from the associated
member sites.

Working with Snippets

In an effort to help you become a more productive developer, Visual Studio 2005 now includes a rather
large collection of code snippets for you to use freely within your code. Snippets are little pieces of code
that perform a specific task. Here are some examples of tasks you can perform with snippets:

a
a
a
a

Generating a random number
Iterating a Hashtable using For Each
Encrypting a String

Determining if a folder exists

And the list goes on and on. To get at the list of available snippets, simply place your cursor in the page
of code you are working with and right-click directly in the Code view of the page. You are presented
with a menu in which you will find the option called Insert Snippet. Selecting this option opens a drop-
down list of snippet categories (as shown in Figure 2-29).

41



Chapter 2

42

1l

B

| App_Code/Customer.vb
“i Customer v‘_ [l (Dedarations)

Imports Microsoft.VisualGasic
3 Public Class Customer
4 Insert Snippet:|

S{-End Class | [3{ Application - Compilng, Resources, snd Settngs [ |

&

3 Connectivity and Networking

[l Data - Designer features and ACLNET

3 Data Types - defined by visual Basic

[ File system - Processing Drives, Folders, and Files
1 Globalzation and Localization

1 Math
[ Security |
J Visual Basic Language [v

Figure 2-29

To select a snippet, double-click the appropriate folder. Doing this either presents a selection of subfold-

ers, snippets, or both to choose from. You also see the breadcrumb navigation showing where you are in

the snippet selection above the drop-down list of items (shown here in Figure 2-30). A single click on one
of the linked categories brings you back to this section of the snippets catalog.

App_Code/Customer.vb ¥ X
“i% Customer w| [ (Dedarations) .v]
Imports Microsoft.VisualBasic T:'l

3] Public Class Customer
4 Tnsert Snippek: Windows Operating System > Eventlogs » |
5:-End Class

|Z] Read Entries Created by a Particular Apphcation from the Event Log
|z} Read Entries from Event Logs
5] Write to the Application Event Log from a Specfied Source

Figure 2-30

For an example of using snippets, navigate to and choose Math => Get a Random Number using the
Random class. This produces the following results in your page:

Dim generator As New Random
Dim randomValue As Integer
randomValue = generator.Next (10, 100)

From here, you can modify this code snippet to get it to perform as you want. In addition to adding code
snippets in this manner, all code snippets include a shortcut (found from the ToolTip box when high-
lighting the snippet). For instance, the previous random number snippet has a shortcut word —
mathrandom. If you type this word in the IDE and press the Tab key, the snippet appears in your code.

You can also manage the snippets made available to you through Visual Studio. The Visual Studio
IDE includes a Code Snippets Manager, which you can find at Tools => Code Snippets Manager (see
Figure 2-31).



Visual Studio 2005

Code Snippets Manager

B3] ]

Language:

Visual Basic

Location:

+- [ application
=[5 collections

C:\Program Files \Microsoft Visual Studio 8\vb\Snippets1033\collections\IterateHashtableusingForEach

» | Description
(|| Iterates through a Hashtable using a For Each

+- [ Arraylist HEEEE
+)-{ ] Custom Collections Shortcut
=] Implement IFormattable colhash
2] Implement the IComparable Interfa
o Sk SR R eS| Author )
- - Microsoft Corporation
|Z] Iterate SortedLlist using For Each
[=] Iterate Through a Collection Using
#- [ localization
+- [ math
-1 security ladl
[ Import... ] [ Search Onling. .. Ok H Cancel
Figure 2-31

From this dialog, you can add or remove snippets used by Visual Studio. Visual Studio includes a My
Snippets folder in which you can place your own snippets or snippets you have downloaded from other

locations. A snippet is a single . snippet file. You ¢

an find the . snippet files at C: \Program Files\

Microsoft Visual Studio 8\Vb\Snippets\1033.

From this location, you can add your own categories, but you must be sure you add this new folder to
the snippetIndex.xml file found at the same location in order for your folder to be recognized by

Visual Studio.

Summary

This chapter took a quick look at the best possible tool for creating ASP.NET 2.0 applications — Visual

Studio 2005. This tool is unquestionably packed wit
developer.

h functionality and makes you a more productive

Included in this IDE are a number of wizards that make quick work of common programming tasks

and allow you to concentrate on getting your applic

ations live as soon as possible. Visual Studio 2005

expands on allowing developers to code to the database, to classes, and to the presentation layer —all

from the same IDE.

Ilustrated in this chapter were such features as snippets, validations of code, finding answers to problems
from the community, and more. This chapter is in no way meant to fully explain this IDE; the intention
was to show you some of the newer features you might utilize when building your applications. Delve
more deeply into what is shown in the chapter, and you will find new features around every corner.

43






ﬁ

Application and Page
Frameworks

If you are new to ASPNET and building your first set of applications in ASP.NET 2.0, you may be
amazed by all the wonderful new server controls it provides. You may marvel at how it enables
you to work with data more effectively using the new data providers. You may be impressed at
how easily you can build in security and personalization.

The outstanding capabilities of ASP.NET 2.0 don’t end there, however. This chapter takes a look at
many exciting additions that facilitate working with ASPNET pages and applications. One of the
first steps you, the developer, should take when starting a project is to become familiar with the
foundation you are building on and the options available for customizing that foundation.

Application Location Options

With ASP.NET 2.0, you have the option — using Visual Studio 2005 — to create an application with
a virtual directory mapped to IIS or a standalone application outside the confines of IIS. Whereas
Visual Studio .NET forced developers to use IIS for all Web applications, Visual Studio 2005 (and
Visual Web Developer Express Edition, for that matter) includes a built-in Web server that you can
use for development, much like the one used in the past with the ASPNET Web Matrix.

This built-in Web server was previously presented to developers as a code sample called Cassini.
In fact, the code for this mini Web server is freely downloadable from the ASP.NET team Web site
found at http: //www.asp.net.




Chapter 3

The following section shows you how to use this new built-in Web server that comes with ASP.NET 2.0.

Built-in Web Server

46

By default, Visual Studio 2005 builds applications without the use of IIS. You can see this when

you select New Web Site in the IDE. By default, the location provided for your application is in
C:\Documents and Settings\ [user] \My Documents\Visual Studio 2005\WebSites (shown in
Figure 3-1). It is not C: \Inetpub\wwwroot\ as it would have been in Visual Studio .NET 2003 /2002. By
default, any site that you build and host inside C: \Documents and Settings\ [user] \My Documents\
Visual Studio 2005\WebSites (or any other folder you create) uses the built-in Web server that is part
of Visual Studio 2005. If you use the built-in Web server from Visual Studio 2005, you are not locked into
the Websites folder; you can create any folder you want in your system.

New Web Site 2%

Templates: e
Visual Studio installed templates

B ASPNET Web Service (APersonal Web Ste Starter Kit

My Templates

_'] Search Online Templates...

A blank ASP,NET Web site

Location: File System a | | C:\Documents and Settings\Administrator\My Documents \Visual 5t .vl

Language: Visual Basic [

Figure 3-1

To change from this default, you have a handful of options. Click the Browse button in the New Web Site
dialog. This brings up the Choose Location dialog, shown in Figure 3-2.

If you continue to use the built-in Web server that Visual Studio 2005 provides, you can choose a new
location for your Web application from this dialog. To choose a new location, select a new folder and
save your .aspx pages and any other associated files to this directory. When using Visual Studio 2005,
you can run your application completely from this location. This new way of working with the ASP.NET
pages you create is ideal if you don’t have access to a Web server because it enables you to build applica-
tions that don’t reside on a machine with IIS. This means that you can even develop ASP.NET applica-
tions on operating systems such as Windows XP Home Edition.



Application and Page Frameworks

Choose Location =]
= File System
K
Select the folder you want to open. X
File System —
— + ufll My Pictures [
% +-|5) My Received Files
=T + E My Videos
oca +-{3) Reuters

=3 Visual Studio 2005
+-{C3) Backup Files
#-{C3) Code Snippets
+-{5) Projects
+-|3) Settings
Remote Site #-{3) Templates
=) WehSites
+-I3) WebSite1
+=-13) Wiley
+-{3) Start Menu
+-|3) UserData
+-5) WINDOWS
+-3) All Users
+-{3) Downloads -
+I-{~h Inetoub d]

&

w

8:

Folder: s\Administrator My Documents\Wisual Studio 2005\WebSites\Website2|

[ Open l[ Cancel ]

Figure 3-2

s

From the Choose Location dialog, you can also change where your application is saved and which type
of Web server your application employs. To use IIS (as you probably did when you used Visual Studio
.NET 2003/2002), select the Local IIS button in the dialog. This changes the results in the text area to
show you a list of all the virtual application roots on your machine.

To create a new virtual root for your application, highlight Default Web Site. Two accessible buttons
appear at the top of the dialog (see Figure 3-3). When you look from left to right, the first button in the
upper-right corner of the dialog is for creating a new Web application — or a virtual root. This button is
shown as a globe inside a box. The second button enables you to create virtual roots for any of the vir-
tual directories you created. The third button is a Delete button, which allows you to delete any selected
virtual directories or virtual roots on the server.

After you have created the virtual directory you want, click the Open button. Visual Studio 2005 then
goes through the standard process to create your application. Now, however, instead of depending on
the built-in Web server from ASP.NET 2.0, your application will use IIS. When you invoke your applica-
tion, the URL now consists of something like http://localhost/myweb/default.aspx, which means
it is using IIS.

47



Chapter 3

Choose Location =83
r Local Internet Information Server
A
ol Select the Web site want to open.

QU =- J& Default Web Site
+-_J _private
+-[J aspnet_dient

e) - TIsHelp
=

+-{_1 images
FTP Site +- [ Printers
9 +-{ 4 tsweb
ity +-[ 3 VirtualServer
Remote Site

[use Secure Sockets Layer

Cancel

Figure 3-3

FTP

Not only can you decide on the type of Web server for your Web application when you create it using
the Choose Location dialog, but you can also decide where your application is going to be located. With
the previous options, you built applications that resided on your local server. The FTP option enables
you to actually store and even code your applications while they reside on a server somewhere else in
your enterprise — or on the other side of the planet. You can also use the FTP capabilities to work on dif-
ferent locations within the same server. Using this new capability provides a wide range of possible
options.

The built-in capability giving FTP access to your applications is a major enhancement to the IDE.
Although formerly difficult to accomplish, this task is now quite simple, as you can see from Figure 3-4.

To create your application on a remote server using FTP, simply provide the server name, the port to use,
and the directory —as well as any required credentials. If the correct information is provided, Visual
Studio 2005 reaches out to the remote server and creates the appropriate files for the start of your appli-
cation, just as if it were doing the job locally. From this point on, you can open your project and connect
to the remote server using FTP.

Web Site Requiring FrontPage Extensions

The last option in the Choose Location dialog is the Remote Sites option. Clicking this button provides a
dialog that enables you to connect to a remote or local server that utilizes FrontPage Extensions. This
option is displayed in Figure 3-5.

48



Application and Page Frameworks

@

Choose Location =]
= FTP Site
}_:\J
Server:
File System
Port:
Local IIS 21
e;_f Directory:
FTP Site

[ Passive Mode

EIELE Anonymous Login
Figure 3-4
Choose Location 2

—" Remote Site
_\_;\/ For the Web site location, enter the URL of a Web site configured with the FrontPage Server

File System Extensions.
% Weh site location:

Local TIS http:/f
e) [ New Web Site...
-

@

FTF Site

Remote Site

|:| Connect using Secure Sockets Layer

Cancel

Figure 3-5

49



Chapter 3

The ASP.NET Page Structure Options

ASP.NET 2.0 provides two paths for structuring the code of your ASP.NET pages. The first path utilizes
the code-inline model. This model should be familiar to ASP 2.0/3.0 developers because all the code is
contained within a single . aspx page. The second path uses ASP.NET’s code-behind model, which
allows for code separation of the page’s business logic from its presentation logic. In this model, the pre-
sentation logic for the page is stored in an . aspx page, whereas the logic piece is stored in a separate
class file: .aspx.vb or .aspx.cs.

One of the major complaints about Visual Studio .NET 2002 and 2003 is that it forced you to use the
code-behind model when developing your ASP.NET pages because it did not understand the code-inline
model. The code-behind model in ASPNET was introduced as a new way to separate the presentation
code and business logic. Listing 3-1 shows a typical . aspx page generated using Visual Studio .NET
2002 or 2003.

Listing 3-1: A typical .aspx page from ASP.NET 1.0/1.1

<%@ Page Language="vb" AutoEventWireup="false" Codebehind="WebForml.aspx.vb"
Inherits="WebApplication.WebForml"%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<title>WebForml</title>
<meta name="GENERATOR" content="Microsoft Visual Studio .NET 7.1">
<meta name="CODE_LANGUAGE" content="Visual Basic .NET 7.1">
<meta name="vs_defaultClientScript" content="JavaScript">
<meta name="vs_targetSchema"
content="http://schemas.microsoft.com/intellisense/ie5">
</HEAD>
<body>
<form id="Forml" method="post" runat="server">
<P>What is your name?<br>
<asp:TextBox id="TextBoxl" runat="server"></asp:TextBox><BR>
<asp:Button id="Buttonl" runat="server" Text="Submit"></asp:Button></P>
<P><asp:Label id="Labell" runat="server"></asp:Label></P>
</form>
</body>
</HTML>

The code-behind file created within Visual Studio .NET 2002/2003 for the . aspx page is shown in
Listing 3-2.

Listing 3-2: A typical .aspx.vb/.aspx.cs page from ASP.NET 1.0/1.1

Public Class WebForml
Inherits System.Web.UI.Page

#Region " Web Form Designer Generated Code "

'This call is required by the Web Form Designer.
<System.Diagnostics.DebuggerStepThrough()> Private Sub InitializeComponent ()

End Sub

50



Application and Page Frameworks

Protected WithEvents TextBoxl As System.Web.UI.WebControls.TextBox
Protected WithEvents Buttonl As System.Web.UI.WebControls.Button
Protected WithEvents Labell As System.Web.UI.WebControls.Label

'NOTE: The following placeholder declaration is required by the Web Form
Designer.

'Do not delete or move it.

Private designerPlaceholderDeclaration As System.Object

Private Sub Page_Init (ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Init
'CODEGEN: This method call is required by the Web Form Designer
'Do not modify it using the code editor.
InitializeComponent ()
End Sub

#End Region

Private Sub Page_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
'Put user code to initialize the page here
End Sub

Private Sub Buttonl_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Buttonl.Click
Labell.Text = "Hello " & TextBoxl.Text
End Sub
End Class

In this code-behind page from ASPNET 1.0/1.1, you can see that a lot of the code that developers never
have to deal with is hidden in the #Region section of the page. Because ASP.NET 2.0 is built on top of
.NET 2.0, it can now take advantage of the new .NET Framework capability of partial classes. Partial
classes enable you to separate your classes into multiple class files, which are then combined into a sin-
gle class when the application is compiled. Because ASP.NET 2.0 combines all this page code for you
behind the scenes when the application is compiled, the code-behind files you work with in ASPNET 2.0
are simpler in appearance and the model is easier to use. You are presented with only the pieces of the class
that you need. Next, we will take a look at both the inline and code-behind models from ASP.NET 2.0.

Inline Coding

With the .NET Framework 1.0/1.1, developers went out of their way (and outside Visual Studio .NET)
to build their ASP.NET pages inline and avoid the code-behind model that was so heavily promoted by
Microsoft and others. Visual Studio 2005 (as well as Visual Web Developer 2005 Express Edition) allows
you to build your pages easily using this coding style. To build an ASP.NET page inline instead of using
the code-behind model, you simply select the page type from the Add New Item dialog and make sure
that the Place Code in Separate File check box is unchecked. You can get at this dialog by right-clicking
the project or the solution in the Solution Explorer and selecting Add New Item (see Figure 3-6).

51



Chapter 3

Add New Item - C:\Doc and Settings\A \My Doc Studio 2005\WebSi... 2JEJ
Templates: E|
Visual Studio installed templates “
[12] web Foem [CMaster Page [B:] web User Control
|#] HTML Page #i] Web Service '] Class
AjjStyle Sheet ] Global Application Class |y Web Configuration File
[ ¥ML Fle ] ¥ML schema =] Text File
S Assembly Resource File |0l QL Database |&] Dataset
k] Generic Handler || Site: Map 52" Mobile Web Form B

A )VEScript Fle ;\_g_]JS:npr Fie i Mobile Web User Control
ﬁ Mobile Web Configuration File (24 ¥5LT File [ skin Fie

(& ] Browser Fle

My Templates

\search Online Templates. .,

A form for Web Applications
Mame: Defaultl.aspx
Language: Visual Basic v'| [V]EL
[ sstect master page
Figure 3-6

From here, you can see the check box you need to unselect if you want to build your ASP.NET pages
inline. In fact, many page types have options for both inline and code-behind styles. The following table
shows your inline options when selecting files from this dialog.

File Options Using Inline Coding File Created
Web Form .aspx file
Master Page .master file
Web User Control .ascx file
Web Service .asmx file

By using the Web Form option with a few controls, you get a page that encapsulates not only the presen-
tation logic, but the business logic as well. This is illustrated in Listing 3-3.

Listing 3-3: A simple page that uses the inline coding model

VB
<%@ Page Language="VB" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml1l.dtd">

<script runat="server">
Protected Sub Buttonl_ Click(ByVal sender As Object, _
ByVal e As System.EventArgs)

Labell.Text = "Hello " & Textboxl.Text
End Sub

52



Application and Page Frameworks

</script>

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>Simple Page</title>
</head>
<body>
<form runat="server">
What is your name?<br />
<asp:Textbox ID="Textboxl" Runat="server"></asp:Textbox><br />
<asp:Button ID="Buttonl" Runat="server" Text="Submit"
OnClick="Buttonl_Click" />
<p><asp:Label ID="Labell" Runat="server"></asp:Label></p>
</form>
</body>
</html>

C#
<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtmll11l/DTD/xhtmlll.dtd">

<script runat="server">
protected void Buttonl_Click(object sender, System.EventArgs e)

{
Labell.Text = "Hello " + Textboxl.Text;

}

</script>

From this example, you can see that all the business logic is encapsulated in between <script> tags.
The nice feature of the inline model is that the business logic and the presentation logic are contained
within the same file. Some developers find that having everything in a single viewable instance makes
working with the ASPNET page easier. Another great thing is that Visual Studio 2005 now provides
IntelliSense when working with the inline coding model and ASP.NET 2.0. In the past, this capability
didn’t exist. Visual Studio forced you to use the code-behind model and, even if you rigged it so your
pages were using the inline model, you lost all IntelliSense capabilities.

New Code-Behind Model

The other option for constructing your ASP.NET 2.0 pages is to build your files using the new code-
behind model. We say new because, even though the idea of the code-behind model is the same as it was
in previous versions of ASP.NET, the way in which the code-behind model is used in ASP.NET 2.0 is
quite a bit different.

To create a new page in your ASP.NET solution that uses the code-behind model, select the page type
you want from the New File dialog. To build a page that uses the code-behind model, you first select the
page in the Add New Item dialog and make sure the Place Code in Separate File check box is checked.
The following table shows you the options for pages that use the code-behind model.

53



Chapter 3

File Options Using Code-Behind File Created

Web Form .aspx file
.aspx.vbor .aspx.cs file

Master Page .master file
.master.vb or .master.cs file

Web User Control .ascx file
.ascx.vbor .ascx.cs file

Web Service .asmx file
.asmx.vb or .asmx.cs file

The idea of using the code-behind model is to separate the business logic and presentation logic into
separate files. Doing this makes it easier to work with your pages, especially if you are working in a
team environment where visual designers work on the UI of the page and coders work on the business
logic that sits behind the presentation pieces. In the earlier Listings 3-1 and 3-2, you saw how pages
using the code-behind model in ASPNET 1.0/1.1 were constructed. To see the difference in ASPNET 2.0,
take a look at how its code-behind pages are constructed. This is illustrated in Listing 3-4 for the presen-
tation piece and Listing 3-5 for the code-behind piece.

Listing 3-4: An .aspx page that uses the ASP.NET 2.0 code-behind model

VB
<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.0org/TR/xhtml11/DTD/xhtmll1l.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>Simple Page</title>
</head>
<body>
<form runat="server">
What is your name?<br />
<asp:Textbox ID="Textboxl" Runat="server"></asp:Textbox><br />
<asp:Button ID="Buttonl" Runat="server" Text="Submit"
OnClick="Buttonl Click" />
<p><asp:Label ID="Labell" Runat="server"></asp:Label></p>
</form>
</body>
</html>

C#
<%@ Page Language="C#" CodeFile="Default.aspx.cs" Inherits="Default_aspx" %>

54



Application and Page Frameworks

Listing 3-5: A code-behind page

VB
Partial Class _Default
Inherits System.Web.UI.Page

Protected Sub Buttonl_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Buttonl.Click

Labell.Text = "Hello " & TextBoxl.Text
End Sub
End Class

C#

using System;

using System.Data;

using System.Configuration;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class _Default : System.Web.UI.Page

{
protected void Buttonl_Click(object sender, EventArgs e)

{
Labell.Text = "Hello " + Textboxl.Text;

}

The . aspx page using this new ASP.NET 2.0 code-behind model has some attributes in the Page
directive different from those you are familiar with from previous versions of ASPNET. The first is

the CodeFile attribute. This is a new attribute in the Page directive and is meant to point to the
code-behind page that is used with this presentation page. In this case, the value assigned is Default
.aspx.vb or Default.aspx.cs. The second attribute needed is the Inherits attribute. This attribute
was available in previous versions of ASPNET, but was little used. This attribute specifies the name of
the class that is bound to the page when the page is compiled. The directives are simple enough in
ASPNET 2.0. Take another look at the code-behind page from Listing 3-5.

The new code-behind page is rather simple in appearance because of the partial class capabilities that
.NET 2.0 provides. You can see that the class created in the code-behind file uses partial classes, employ-
ing the new partial keyword in Visual Basic 2005 and the partial keyword from C# 2.0. This enables
you to simply place the methods that you need in your page class. In this case, you have a button-click
event and nothing else.

Later in this chapter, we look at the compilation process for both of these models.

55



Chapter 3

ASP.NET 2.0 Page Directives

ASP.NET directives are something that is a part of every ASP.NET page. You can control the behavior of
your ASP.NET pages by using these directives. Here’s an example of the page directive:

<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
Inherits="_Default" %>

Eleven directives are at your disposal in your ASP.NET pages or user controls. You use these directives
in your applications whether the page uses the code-behind model or the inline coding model.

Basically, these directives are commands that the compiler uses when the page is compiled. Directives
are simple to incorporate into your pages. A directive is written in the following format:

<%@ [Directive] [Attribute=Value] %>
From this, you can see that a directive is opened with a <%@ and closed with a %>. It is best to put these
directives at the top of your pages or controls because this is traditionally where developers expect to see
them (although the page still compiles if the directives are located at a different place). Of course, you
can also add more than a single attribute to your directive statements, as shown in the following:

<%@ [Directive] [Attribute=Value] [Attribute=Value] %>

The following table describes the directives at your disposal in ASPNET 2.0.

Directive Description

Assembly Links an assembly to the Page or user control for which it is associated.
Control Page directive meant for use with user controls (. ascx).

Implements Implements a specified .NET Framework interface.

Import Imports specified namespaces into the Page or user control.

Master Enables you to specify master page-specific attributes and values to use

when the page parses or compiles. This directive can be used only with
master pages (.master).

MasterType Associates a class name to a Page in order to get at strongly typed refer-
ences or members contained within the specified master page.

OutputCache Controls the output caching policies of a Page or user control.

Page Enables you to specify page specific attributes and values to use when the

page parses or compiles. This directive can be used only with ASPNET
pages (.aspx).

PreviousPageType Enables an ASP.NET page to work with a postback from another page in
the application.

Reference Links a Page or user control to the current Page or user control.

Register Associates aliases with namespaces and class names for notation in cus-

tom server control syntax.

56



Application and Page Frameworks

The following sections provide a quick review of each of these directives.

@Page

The @page directive enables you to specify attributes and values for an ASPNET page (.aspx) to be
used when the page is parsed or compiled. This is the most frequently used directive of the bunch.
Because the ASP.NET page is such an important part of ASPNET, you have quite a few attributes at your
disposal. The following table summarizes the attributes available through the @page directive.

Attribute Description

AspCompat Permits the page to be executed on a single-threaded apart-
ment thread when given a value of True. The default setting
for this attribute is False.

Async Specifies whether the ASPNET page is processed syn-
chronously or asynchronously.

AutoEventWireUp Specifies whether the page events are autowired when set to
True. The default setting for this attribute is True.

Buffer Enables HTTP response buffering when set to True. The
default setting for this attribute is True.

ClassName Specifies the name of the class that is bound to the page
when the page is compiled.

CodeFile References the code-behind file with which the page is
associated.

CodePage Indicates the code page value for the response.

CompilerOptions Compiler string that indicates compilation options for
the page.

CompileWith Takes a string value that points to the code-behind file used.

ContentType Defines the HTTP content type of the response as a standard
MIME type.

Culture Specifies the culture setting of the page. ASP.NET 2.0 now
includes the capability to give the Culture attribute a value
of Auto to enable automatic detection of the culture required.

Debug Compiles the page with debug symbols in place when set
to True.

Description Provides a text description of the page. The ASP.NET parser
ignores this attribute and its assigned value.

EnableSessionState Session state for the page is enabled when set to True. The
default setting is True.

EnableTheming Page is enabled to use theming when set to True. The
default setting for this attribute is False.

Table continued on following page




Chapter 3

Attribute Description

EnableViewState View state is maintained across the page when set to True.
The default value is True.

EnableViewStateMac Page runs a machine-authentication check on the page’s
view state when the page is posted back from the user when
set to True. The default value is False.

ErrorPage Specifies a URL to post to for all unhandled page exceptions.

Explicit Visual Basic Explicit option is enabled when set to True.
The default setting is False.

Language Defines the language being used for any inline rendering
and script blocks.

LCID Defines the locale identifier for the Web Form’s page.

LinePragmas Boolean value that specifies whether line pragmas are used
with the resulting assembly.

MasterPageFile Takes a String value that points to the location of the mas-

MaintainScrollPositionOn
Postback

PersonalizationProvider

ResponseEncoding

SmartNavigation

Src

Strict

Theme

Title

Trace

ter page used with the page. This attribute is used with con-
tent pages.

Takes a Boolean value, which indicates whether the page
should be positioned exactly in the same scroll position or if
the page should be regenerated in the uppermost position
for when the page is posted back to itself.

Takes a string value that specifies the name of the personal-
ization provider used in applying personalization to the page.

Specifies the response encoding of the page content.

Specifies whether to activate the ASPNET Smart Navigation
feature for richer browsers. This returns the postback to the
current position on the page. The default value is False.

Points to the source file of the class used for the code behind
of the page being rendered.

Compiles the page using the Visual Basic Strict mode
when set to True. The default setting is False.

Applies the specified theme to the page using the ASPNET
2.0 themes feature.

Applies a page’s title. This is an attribute mainly meant for
content pages that must apply a page title other than what is
specified in the master page.

Page tracing is enabled when set to True. The default setting
is False.

58




Application and Page Frameworks

Attribute

Description

TraceMode

Specifies how the trace messages are displayed when tracing

is enabled. The settings for this attribute include SortByTime
or SortByCategory. The default setting is SortByTime.

Transaction Specifies whether transactions are supported on the
page. The settings for this attribute are Not Supported,
Supported, Required, and RequiresNew. The default
setting is Not Supported.

UICulture The value of the UICulture attribute specifies what UI Cul-
ture to use for the ASPNET page. ASPNET 2.0 now includes
the capability to give the UICulture attribute a value of
Auto to enable automatic detection of the UICulture.

ValidateRequest When this attribute is set to True, the form input values are
checked against a list of potentially dangerous values. This
helps protect your Web application from harmful attacks
such as JavaScript attacks. The default value is True.

WarningLevel Specifies the compiler warning level at which to stop compi-
lation of the page. Possible values are 0 through 4.

Here is an example of how to use the @pPage directive:

<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
Inherits="_Default" %>

@Master

The @Master directive is quite similar to the @Page directive except that the @Master directive is meant
for master pages (.master). In using the @Master directive, you specify properties of the templated
page that you will be using in conjunction with any number of content pages on your site. Any content
pages (built using the @Page directive) can then inherit from the master page all the master content
(defined in the master page using the @Master directive). Although they are similar, the @Master direc-
tive has fewer attributes available to it than does the @Page directive. The available attributes for the
@Master directive are shown in the following table.

Attribute Description

AutoEventWireUp Specifies whether the master page’s events are autowired when set to
True. Default setting is True.

ClassName Specifies the name of the class that is bound to the master page when
compiled.

CodeFile References the code-behind file with which the page is associated.

CompilerOptions Compiler string that indicates compilation options for the master page.

Table continued on following page

59



Chapter 3

Attribute Description

CompileWith Takes a String value that points to the code-behind file used for the
master page.

Debug Compiles the master page with debug symbols in place when set
to True.

Description Provides a text description of the master page. The ASP.NET parser
ignores this attribute and its assigned value.

EnableTheming Indicates the master page is enabled to use theming when set to True.
The default setting for this attribute is False.

EnableViewState Maintains view state for the master page when set to True. The default
value is True.

Explicit Indicates that the Visual Basic Explicit option is enabled when set to
True. The default setting is False.

Inherits Specifies the CodeBehind class for the master page to inherit.

Language Defines the language that is being used for any inline rendering and
script blocks.

LinePragmas Boolean value that specifies whether line pragmas are used with the
resulting assembly.

MasterPageFile Takes a String value that points to the location of the master page
used with the master page. It is possible to have a master page use
another master page, which creates a nested master page.

Src Points to the source file of the class used for the code behind of the
master page being rendered.

Strict Compiles the master page using the Visual Basic Strict mode when
set to True. The default setting is False.

WarningLevel Specifies the compiler warning level at which you want to abort com-

pilation of the page. Possible values are from 0 to 4.

Here is an example of how to use the @Master directive:

<%@ Master Language="VB" CodeFile="MasterPagel.master.vb"
AutoEventWireup="false" Inherits="MasterPage" %>

@Control

60

The @Control directive is similar to the @Page directive except that @Control is used when you build
an ASP.NET user control. The @Control directive allows you to define the properties to be inherited by
the user control. These values are assigned to the user control as the page is parsed and compiled. The
available attributes are fewer than those of the @page directive, but quite a few of them allow for the
modifications you need when building user controls. The following table details the available attributes.



Application and Page Frameworks

Attribute Description

AutoEventWireUp Specifies whether the user control’s events are autowired when set to
True. Default setting is True.

ClassName Specifies the name of the class that is bound to the user control when
the page is compiled.

CodeFile References the code-behind file with which the user control is
associated.

CompilerOptions Compiler string that indicates compilation options for the user control.

CompileWith Takes a String value that points to the code-behind file used for the
user control.

Debug Compiles the user control with debug symbols in place when set
to True.

Description Provides a text description of the user control. The ASP.NET parser
ignores this attribute and its assigned value.

EnableTheming User control is enabled to use theming when set to True. The default
setting for this attribute is False.

EnableViewState View state is maintained for the user control when set to True. The
default value is True.

Explicit Visual Basic Explicit option is enabled when set to True. The default
setting is False.

Inherits Specifies the CodeBehind class for the user control to inherit.

Language Defines the language used for any inline rendering and script blocks.

LinePragmas Boolean value that specifies whether line pragmas are used with the
resulting assembly.

Src Points to the source file of the class used for the code behind of the
user control being rendered.

Strict Compiles the user control using the Visual Basic Strict mode when
set to True. The default setting is False.

WarningLevel Specifies the compiler warning level at which to stop compilation of

the user control. Possible values are 0 through 4.

The @control directive is meant to be used with an ASP.NET user control. The following is an example
of how to use the directive:

<%@ Control Language="VB" Explicit="True"

CodeFile="WebUserControl.ascx.vb" Inherits="WebUserControl"
Description="This is the registration user control." %>

61



Chapter 3

@Import

62

The @Import directive allows you to specify a namespace to be imported into the ASP.NET page or user
control. By importing, all the classes and interfaces of the namespace are made available to the page or
user control. This directive supports only a single attribute: Namespace.

The Namespace attribute takes a String value that specifies the namespace to be imported. The
@Import directive cannot contain more than one attribute/value pair. Because of this, you must place
multiple namespace imports in multiple lines as shown in the following example:

<%@ Import Namespace="System.Data" %>
<%@ Import Namespace="System.Data.SqglClient" %>

Several assemblies are already being referenced by your application. You can find a list of these imported
namespaces by looking in the web. config. comments file found at C: \Windows\Microsoft.NET\
Framework\v2.0xxxxx\CONFIG. You can find this list of assemblies being referenced from the
<assemblies> child element of the <compilation> element. The settings in the web.config.comments
file are as follows:

<assemblies>

<add assembly="mscorlib" />

<add assembly="System, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c¢561934e089" />

<add assembly="System.Web, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a" />

<add assembly="System.Data, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" />

<add assembly="System.Web.Services, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a" />

<add assembly="System.Xml, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" />

<add assembly="System.Drawing, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a" />

<add assembly="System.EnterpriseServices, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a" />

<add assembly="System.Web.Mobile, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a" />

<add assembly="*" />

</assemblies>

Because of this reference in the web.config.comments file, these assemblies need not be referenced in a
References folder, as you would have done in ASPNET 1.0/1.1. You can actually add or delete assem-
blies that are referenced from this list. For example, if you have a custom assembly referenced continu-
ously by each and every application on the server, you can simply add a similar reference to your
custom assembly next to these others. Note that you can perform this same task through the web
.config file of your application as well.

Even though assemblies might be referenced, you must still import the namespaces of these assemblies
into your pages. The same web . config. comments file contains a list of namespaces automatically
imported into each and every page of your application. This is specified through the <namespaces>
child element of the <pages> element.



Application and Page Frameworks

<namespaces>
<add namespace="System" />
<add namespace="System.Collections" />
<add namespace="System.Collections.Specialized" />
<add namespace="System.Configuration" />
<add namespace="System.Text" />
<add namespace="System.Text.RegularExpressions" />
<add namespace="System.Web" />
<add namespace="System.Web.Caching" />
<add namespace="System.Web.SessionState" />
<add namespace="System.Web.Security" />
<add namespace="System.Web.Profile" />
<add namespace="System.Web.UI" />
<add namespace="System.Web.UI.Imaging" />
<add namespace="System.Web.UI.WebControls" />
<add namespace="System.Web.UI.WebControls.WebParts" />
<add namespace="System.Web.UI.HtmlControls" />
</namespaces>

From this XML list, you can see that quite a number of namespaces are imported into each and every
one of your ASPNET pages. Again, you can feel free to modify this selection in the web.config
.comments file or even make a similar selection of namespaces from within your application’s web
.config file.

Remember that importing a namespace into your ASP.NET page or user control gives you the opportu-
nity to use the classes without fully identifying the class name. For example, by importing the names-
pace System.Data.0leDB into the ASPNET page, you can refer to classes within this namespace by
using the singular class name (OLEDBConnection instead of System.Data.0leDB.OLEDBConnection).

@Implements

The @Implements directive gets the ASPNET page to implement a specified .NET Framework interface.
This directive supports only a single attribute: Interface.

The Interface attribute directly specifies the NET Framework interface. When the ASPNET page or
user control implements an interface, it has direct access to all its events, methods, and properties.

Here is an example of the @Implements directive:

<%@ Implements Interface="System.Web.UI.IValidator" %>

@Register

The @rRegister directive associates aliases with namespaces and class names for notation in custom
server control syntax. You can see the use of the @Register directive when you drag and drop a user
control onto any of your .aspx pages. Dragging a user control onto the . aspx page causes Visual Studio
2005 to create an @Register directive at the top of the page. This registers your user control on the page
so that the control can then be accessed on the . aspx page by a specific name.

The @rRegister directive supports five attributes, as described in the following table.

63



Chapter 3

Attribute Description

Assembly The assembly you are associating with the TagPrefix.
Namespace The namespace to relate with TagPrefix.

Src The location of the user control.

TagName The alias to relate to the class name.

TagPrefix The alias to relate to the namespace.

Here’s an example of how to use the @Register directive to import a user control to an ASP.NET page:

<%@ Register TagPrefix="MyTag" Namespace="MyName:MyNamespace"
Assembly="MyAssembly" %>

@Assembly

The eAssembly directive attaches assemblies, the building blocks of .NET applications, to an ASP.NET
page or user control as it compiles, thereby making all the assembly’s classes and interfaces available to
the page. This directive supports two attributes: Name and Src.

0  Name: Enables you to specify the name of an assembly used to attach to the page files. The name
of the assembly should include the filename only, not the file’s extension. For instance, if the file
is MyAssembly . vb, the value of the name attribute should be MyAssembly.

0  src:Enables you to specify the source of the assembly file to use in compilation.
The following provides some examples of how to use the @Assembly directive:

<%@ Assembly Name="MyAssembly" %>
<%@ Assembly Src="MyAssembly.vb" %>

@PreviousPageType

This directive is used to specify the page from which any cross-page postings originate. Cross-page
posting between ASP.NET pages is explained later in the section “Cross-Page Posting” and again in
Chapter 19.

The @PreviousPageType directive is a new directive that works with the new cross-page posting capa-
bility that ASPNET 2.0 provides. This simple directive contains only two possible attributes: TypeName
and VirtualPath:

0  TypeName: Sets the name of the derived class from which the postback will occur.

0  virtualPath: Sets the location of the posting page from which the postback will occur.

64



Application and Page Frameworks

@MasterType

The @MasterType directive associates a class name to an ASP.NET page in order to get at strongly typed
references or members contained within the specified master page. This directive supports two attributes:

0O  TypeName: Sets the name of the derived class from which to get strongly typed references or
members.

0  vVirtualPath: Sets the location of the page from which these strongly typed references and
members will be retrieved.

Details of how to use the @MasterType directive are shown in Chapter 8. Here is an example of its use:

<%@ MasterType VirtualPath="~/Wrox.master" %>

@OutputCache

The @outputcache directive controls the output caching policies of an ASPNET page or user control.
This directive supports the ten attributes described in the following table.

Attribute Description

CacheProfile Allows for a central way to manage an application’s cache profile. Use
the cacheProfile attribute to specify the name of the cache profile
detailed in the web.config.

DiskCacheable Specifies whether the cache can be stored to disk.

Duration The duration of time in seconds that the ASP.NET page or user control
is cached.

Location Location enumeration value. The default is Any. This is valid for
.aspx pages only and does not work with user controls (.ascx).
Other possible values include Client, Downstream, None, Server,
and ServerAndClient.

NoStore Specifies whether to send a no-store header with the page.

SqglDependency Enables a particular page to use SQL Server cache invalidation—a
new feature of ASPNET 2.0.

VaryByControl Semicolon-separated list of strings used to vary the output cache of a
user control.

VaryByCustom String specifying the custom output caching requirements.

VaryByHeader Semicolon-separated list of HTTP headers used to vary the output
cache.

VaryByParam Semicolon-separated list of strings used to vary the output cache.

65



Chapter 3

Here is an example of how to use the @OutputCache directive:
<%@ OutputCache Duration="180" VaryByParam="None" %>

Remember that the Duration attribute specifies the amount of time in seconds during which this page is
to be stored in the system cache.

@Reference

The @Reference directive declares that another ASP.NET page or user control should be compiled along
with the active page or control. This directive supports just two attributes:

0  TypeName: Sets the name of the derived class from which the active page will be referenced.

O  virtualPath: Sets the location of the page or user control from which the active page will be
referenced.

Here is an example of how to use the @Reference directive:

<%@ Reference VirtualPath="~/MyControl.ascx" %>

ASP.NET Page Events

ASPNET developers consistently work with various events in their server-side code. Many of the events
that they work with pertain to specific server controls. For instance, if you want to initiate some action
when the end user clicks a button on your Web page, you create a button-click event in your server-side
code, as shown in Listing 3-6.

Listing 3-6: A sample button-click event shown in VB

Protected Sub Buttonl_Click(sender As Object, e As EventArgs) Handles Buttonl.Click
Labell.Text = TextBoxl.Text
End Sub

In addition to the server controls, developers also want to initiate actions at specific moments when
the ASP.NET page is being either created or destroyed. The ASP.NET page itself has always had a num-
ber of events for these instances. The following list shows you all the page events you could use in
ASPNET 1.0/1.1:

0 AbortTransaction
CommitTransaction
DataBinding
Disposed

Error

U 000U

Init

66



Application and Page Frameworks

a Load
a PreRender

a Unload

One of the more popular page events from this list is the Load event, which is used in VB as shown in
Listing 3-7.

Listing 3-7: Using the Page_Load event

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.Load

Response.Write("This is the Page_Load event")
End Sub

Besides the page events just shown, ASPNET 2.0 adds the following new events:

O  InitComplete: Indicates the initialization of the page is completed.
0  LoadComplete: Indicates the page has been completely loaded into memory.

Q  prelInit:Indicates the moment immediately before a page is initialized.

0  PreLoad: Indicates the moment before a page has been loaded into memory.

0O  PreRenderComplete: Indicates the moment directly before a page has been rendered in the
browser.

You construct these new page events just as you did the previously shown page events. For example,
you use the PreInit event as shown in Listing 3-8.

Listing 3-8: Using the new page events

VB
<script runat="server" language="vb">
Protected Sub Page_Prelnit (ByVal sender As Object, ByVal e As System.EventArgs)
Page.Theme = Request.QueryString ("ThemeChange")
End Sub
</script>

C#
<script runat="server">
protected void Page_PreInit (object sender, System.EventArgs e)
{
Page.Theme = Request.QueryStringl["ThemeChange"];
}

</script>

If you create an ASPNET 2.0 page and turn on tracing, you can see the order in which the main page
events are initiated. They are fired in the following order:

67



Chapter 3

1. PreInit

Init
InitComplete
PreLoad

Load
LoadComplete

PreRender

® NoO Ok wWDN

PreRenderComplete

o. Unload

With the addition of these new choices, you can now work with the page and the controls on the page at
many different points in the page-compilation process. You see these useful new page events in code
examples throughout the book.

Dealing with PostBacks

When you're working with ASP.NET pages, be sure you understand the page events just listed. They are
important because you place a lot of your page behavior inside these events at specific points in a page
lifecycle.

In Active Server Pages 3.0, developers had their pages post to other pages within the application. ASPNET
pages typically post back to themselves in order to process events (such as a button-click event).

For this reason, you must differentiate between posts for the first time a page is loaded by the end user
and postbacks. A postback is just that—a posting back to the same page. The postback contains all the
form information collected on the initial page for processing if required.

Because of all the postbacks that can occur with an ASP.NET page, you want to know whether a request
is the first instance for a particular page or is a postback from the same page. You can make this check by
using the IsPostBack property of the Page class, as shown in the following example:

VB
If Page.IsPostBack = True Then
' Do processing

End If
C#
if (Page.IsPostBack == true) {

// Do processing
}

In addition to checking against a True or False value, you can also find out if the request is not a post-
back in the following manner:

68



Application and Page Frameworks

VB

If Not Page.IsPostBack Then
' Do processing

End If

C#
if (!Page.IsPostBack) {
// Do processing

Cross-Page Posting

One common feature in ASP 3.0 that is difficult to achieve in ASPNET 1.0/1.1 is the capability to do
cross-page posting. Cross-page posting enables you to submit a form (say, Pagel . aspx) and have this
form and all the control values post themselves to another page (Page2 . aspx).

Traditionally, any page created in ASPNET 1.0/1.1 simply posted to itself, and you handled the control
values within this page instance. You could differentiate between the page’s first request and any post-
backs by using the Page . IsPostBack property, as shown here:

If Page.IsPostBack Then
' deal with control values
End If

Even with this capability, many developers still wanted to be able to post to another page and deal with
the first page’s control values on that page. This is now possible in ASP.NET 2.0, and it is quite a simple
process.

For an example, create a page called Pagel.aspx that contains a simple form. This page is shown in
Listing 3-9.

Listing 3-9: Pagel.aspx

VB
<%@ Page Language="VB" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtmlll.dtd">

<script runat="server">
Protected Sub Buttonl_Click(ByVal sender As Object, _
ByVal e As System.EventArgs)

Labell.Text = "Hello " & TextBoxl.Text & "<br />" & _
"Date Selected: " & Calendarl.SelectedDate.ToShortDateString ()
End Sub
</script>

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">

(continued)

69



Chapter 3

70

Listing 3-9: (continued)

<title>First Page</title>
</head>
<body>
<form id="forml" runat="server">
Enter your name:<br />
<asp:Textbox ID="TextBoxl" Runat="server">
</asp:Textbox>
<p>
When do you want to fly?<br />
<asp:Calendar ID="Calendarl" Runat="server"></asp:Calendar></p>
<br />
<asp:Button ID="Buttonl" Runat="server" Text="Submit page to itself"
OnClick="Buttonl_Click" />
<asp:Button ID="Button2" Runat="server" Text="Submit page to Page2.aspx"
PostBackUrl="Page2.aspx" />
<p>
<asp:Label ID="Labell" Runat="server"></asp:Label></p>
</form>
</body>
</html>

C#
<%@ Page Language="C#" %>

<script runat="server">
protected void Buttonl_ Click (object sender, System.EventArgs e)
{
Labell.Text = "Hello " + TextBoxl.Text + "<br />" +
"Date Selected: " + Calendarl.SelectedDate.ToShortDateString() ;
}

</script>

The code from Pagel . aspx, as shown in Listing 3-9, is quite interesting. First, two buttons are shown on
the page. Both buttons submit the form, but each submits the form to a different location. The first but-
ton submits the form to itself. This is the behavior that has been the default for ASPNET 1.0/1.1. In fact,
nothing is different about Buttonl. It submits to Pagel.aspx as a postback because of the use of the
OnClick property in the button control. A Buttonl_Click event on Pagel.aspx handles the values
that are contained within the server controls on the page.

The second button, Button2, works quite differently. This button does not contain an onCclick event as
the first button did. Instead, it uses the PostBackurl property. This property takes a string value that
points to the location of the file to which this page should post. In this case, it is Page2 . aspx. This
means that Page2 . aspx now receives the postback and all the values contained in the Pagel .aspx con-
trols. Look at the code for Page2 . aspx, shown in Listing 3-10.

Listing 3-10: Page2.aspx

VB
<%@ Page Language="VB" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.0org/TR/xhtml11/DTD/xhtmlll.dtd">



Application and Page Frameworks

<script runat="server">
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Dim pp_Textboxl As TextBox
Dim pp_Calendarl As Calendar

pp_Textboxl = CType (PreviousPage.FindControl ("Textboxl"), TextBox)
pp_Calendarl = CType (PreviousPage.FindControl ("Calendarl"), Calendar)

Labell.Text = "Hello " & pp_Textboxl.Text & "<br />" & _
"Date Selected: " & pp_Calendarl.SelectedDate.ToShortDateString ()
End Sub
</script>

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>Second Page</title>
</head>
<body>
<form id="forml" runat="server">
<asp:Label ID="Labell" Runat="server"></asp:Label>
</form>
</body>
</html>

C#
<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.0org/TR/xhtml111/DTD/xhtml11.dtd">

<script runat="server">
protected void Page_Load(object sender, System.EventArgs e)
{
TextBox pp_Textboxl;
Calendar pp_Calendarl;

pp_Textboxl = (TextBox)PreviousPage.FindControl ("Textboxl") ;
pp_Calendarl = (Calendar)PreviousPage.FindControl ("Calendarl") ;
Labell.Text = "Hello " + pp_Textboxl.Text + "<br />" + "Date Selected: " +
pp_Calendarl.SelectedDate.ToShortDateString () ;
}
</script>

You have a couple of ways of getting at the values of the controls that are exposed from pagel . aspx
from the second page. The first option is displayed in Listing 3-10. To get at a particular control’s value
that is carried over from the previous page, you simply create an instance of that control type and popu-
late this instance using the FindControl method from the PreviousPage property. The String value
assigned to the FindControl method is the 1d value, which is used for the server control from the pre-
vious page. After this is assigned, you can work with the server control and its carried-over values just
as if it had originally resided on the current page. You can see from the example that you can extract the
Text and SelectedDate properties from the controls without any problem.

Another way of exposing the control values from the first page (Pagel . aspx) is to create a Property
for the control. This is shown in Listing 3-11.

71



Chapter 3

Listing 3-11: Exposing the values of the control from a Property

72

VB
<%@ Page Language="VB" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtmlll.dtd">

<script runat="server">
Public ReadOnly Property pp_TextBoxl () As TextBox
Get
Return TextBoxl
End Get
End Property

Public ReadOnly Property pp_Calendarl() As Calendar
Get
Return Calendarl
End Get
End Property

Protected Sub Buttonl_Click(ByVal sender As Object, ByVal e As System.EventArgs)

Labell.Text = "Hello " & TextBoxl.Text & "<br />" & _
"Date Selected: " & Calendarl.SelectedDate.ToShortDateString/()
End Sub
</script>

C#
<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.0org/TR/xhtml11/DTD/xhtmll1l.dtd">

<script runat="server">
public TextBox pp_TextBoxl
{
get
{

return TextBoxl;

public Calendar pp_Calendarl
{

get

{

return Calendarl;

protected void Buttonl_Click (object sender, System.EventArgs e)
{
Labell.Text = "Hello " + TextBoxl.Text + "<br />" +
"Date Selected: " + Calendarl.SelectedDate.ToShortDateString() ;
}

</script>



Application and Page Frameworks

Now that these properties are exposed on the posting page, the second page (Page2 . aspx) can more
easily work with the server control properties that are exposed from the first page. Listing 3-12 shows
you how Page2.aspx works with these exposed properties.

Listing 3-12: Consuming the exposed properties from the first page

VB
<%@ Page Language="VB" %>
<%@ PreviousPageType VirtualPath="Pagel.aspx" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.o0rg/TR/xhtml11/DTD/xhtml11.dtd">

<script runat="server">
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Labell.Text = "Hello " & PreviousPage.pp_Textboxl.Text & "<br />" & _
"Date Selected: " & _
PreviousPage.pp_Calendarl.SelectedDate.ToShortDateString ()
End Sub
</script>

C#
<%@ Page Language="C#" %>
<%@ PreviousPageType VirtualPath="Pagel.aspx" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.0rg/TR/xhtml11/DTD/xhtml1l.dtd">

<script runat="server">
protected void Page_Load(object sender, System.EventArgs e)
{
Labell.Text = "Hello " + PreviousPage.pp_TextBoxl.Text + "<br />" +
"Date Selected: " +

PreviousPage.pp_Calendarl.SelectedDate.ToShortDateString() ;
}

</script>

In order to be able to work with the properties that Pagel.aspx exposes, you have to strongly type the
PreviousPage property to Pagel .aspx. To do this, you use the PreviousPageType directive. This
new directive allows you to specifically point to Pagel . aspx with the use of the VirtualPath attribute.
When that is in place, notice that you can see the properties that Pagel . aspx exposes through IntelliSense
from the PreviousPage property. This is illustrated in Figure 3-7.

As you can see, working with cross-page posting is straightforward. Notice that, when you are cross-
posting from one page to another, you aren’t restricted to working only with the postback on the second
page. In fact, you can still create methods on Pagel . aspx that work with the postback before moving
onto Page2 . aspx. To do this, you simply add an onClick event for the button in Pagel.aspx and a
method. You also assign a value for the PostBackUr1 property. You can then work with the postback on
Pagel.aspx and then again on Page2.aspx

73



Chapter 3

5 pp_Calendarl

b ok -
|Public ReadOnly Property pp_TextBox1() As System.Web.Ul.WebControls.TextBox| "7 po.TexiBox1
- o 167 Fead

WebSite1 - Visual Web D 2005 Express Edition [BIE[X]
Fle Edit Wew Webgite Buid Debug Tools Window Community Help
AR B R Y R RR R = EA=A WA |- -5
i | = = | = 2 | ntemetBxplorer 6.0 = H
Toalbax + & X || web.confip  Page2.aspx® | Pagelaspx | + 3 || Soltion Explorer -0 x
et ) o [¥][# tona SV ERRR=]
R 1] <%@ Page L :‘ P O\ \WebsSitel)
A_ - 2{ <&@ Previou ualPath="~/Pagel.aspx" &3 —  App_Data
abl TextBox 3 2| Page1.aspx
28] Button 4 <!DOCTYFE html PUBLIC "-//W3C//DID XHIML 1.1//EN" "BLTD://wew.w3.org/TF ’ Spafz-a:i’“
- Sy webD.Con
LinkButton s .
a cript run =" rarh
@ mm‘ E <2cript runat: serverf>
A HyperLink " . . I
p " Frotected Sub Page Load(ByVal sender Rs Cbject, ByVal e As System.[
?a_ g Labell.Text = "Hello " & PreviousPage.pp_TextBoxl.Text & "<br i
24 ListBox "Date Selected: " § PrevicusPage. =
ChedkBox 115 _ 9 PageAdapter =
= checkBoxList = 1z End Sub & Parent
(%) RadioButton 13;-</script> i ParseControl

runac=rserver f Pre\'E:Ea_g_e“_““_““_“—[:

il ImageMap 17 <title>Untitled Page</title> @ RegisterAsyncTask
1 Table 18} - </head> @ Regi qui Tyption ', & Solution Ex... 4 Database ... [
1= Buletedlist chodys % RenderControl = | il
Wy <form id="formi" runac="serverh I t v Propertiss >0 x
i HiddenField <;9_w. 1d="forml"™ runat="ssrver”: j‘m .

<divs Al crip =
B Literal label id="labellf zumaz=h il
— <asp:label id="Labell" runat="serT&r FE-T-) a3 uu-1al-a0 &= ,;1 |
iz} Calendar < fdiv> (== .
= AdRotator </Torms> B ASP.NET |
) FileUpload </body> :’\:blile\c\ewsta 1T_rue 3
e iz </html> = i
i 2 7 B Misc
E ()
5] Multiview Defer
{7} Panel Even! =
] PlaceHolder 1 [v| Defer —
01 View (%] m B
32| Substitution 'v|| @ Desin | source [+/[z5eript> e
Ready Ln 10 Cal 45 Ch 45 NS

Figure 3-7

What happens if someone requests Page2 . aspx before she works her way through pagel.aspx? Itis
actually quite easy to determine if the request is coming from Pagel.aspx or if someone just hit

Page2 .aspx directly. You can work with the request through the use of the IsCrossPagePostBack
property that is quite similar to the IsPostBack property from ASP.NET 1.0/1.1. The
IsCrossPagePostBack property enables you to check whether the request is from Pagel . aspx. Listing

3-13 shows an example of this.

Listing 3-13: Using the IsCrossPagePostBack property

VB
<%@ Page Language="VB" %>

<%@ PreviousPageType VirtualPath="Pagel.aspx" %>

<!DOCTYPE html PUBLIC

"-//W3C//DTD XHTML 1.1//EN"

"http://www.w3.0rg/TR/xhtml11/DTD/xhtml11l.dtd">

<script runat="server">

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

If Page.IsCrossPagePostBack Then

Labell.Text = "Hello " & PreviousPage.pp_Textboxl.Text & "<br />" & _

74



Application and Page Frameworks

"Date Selected: " & _
PreviousPage.pp_Calendarl.SelectedDate.ToShortDateString ()
Else
Response.Redirect ("Pagel.aspx")
End If
End Sub
</script>

C#
<%@ Page Language="C#" %>
<%@ PreviousPageType VirtualPath="Pagel.aspx" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.0rg/TR/xhtml11/DTD/xhtml1l.dtd">

<script runat="server">
protected void Page_Load(object sender, System.EventArgs e)
{
if (Page.IsCrossPagePostBack) {
Labell.Text = "Hello " + PreviousPage.pp_Textboxl.Text + "<br />" +
"Date Selected: " +

PreviousPage.pp_Calendarl.SelectedDate.ToShortDateString() ;
}
else
{
Response.Redirect ("Pagel.aspx") ;
}
}

</script>

ASP.NET Application Folders

When you create ASP.NET applications, notice that ASP.NET 2.0 now uses a file-based approach. When
working with ASPNET 2.0, you can add as many files and folders as you want within your application
without recompiling each and every time a new file is added to the overall solution. ASP.NET 2.0 now
includes the capability to automatically precompile your ASP.NET applications dynamically.

ASP.NET 1.0/1.1 compiled everything in your solution into a DLL. This is no longer necessary because
ASP.NET 2.0 applications have a defined folder structure. By using the ASP.NET 2.0 defined folders, you
can have your code automatically compiled for you, your application themes accessible throughout your
application, and your globalization resources available whenever you need them. Take a look at each of
these defined folders to see how they work. The first is the \App_Code folder.

\App_Code Folder

The \App_Code folder is meant to store your classes, .wsdl files, and typed datasets. Any of these items
stored in this folder are then automatically available to all the pages within your solution. The nice thing
about the \App_Code folder is that when you place something inside this folder, Visual Studio 2005
automatically detects this and compiles it if it is a class (. vb or . cs), automatically creates your XML

75



Chapter 3

76

Web service proxy class (from the .wsdl file), or automatically creates a typed dataset for you from your
.xsd files. After the files are automatically compiled, these items are then instantaneously available to
any of your ASP.NET pages that are in the same solution. Look at how to employ a simple class in your
solution using the \App_Code folder.

The first step is to create an \App_Code folder. To do this, simply right-click the solution and choose Add
Folder &> App_Code Folder. Right away you will notice that Visual Studio 2005 treats this folder differ-
ently than the other folders in your solution. The \App_Code folder is shown in a different color (gray)
with a document pictured next to the folder icon. See Figure 3-8.

Solution Explorer + 1 X

2 | 3]s B @
2P C\..\Wrox\
_=| App_Code
+ i App_Data
ﬁ DataExample. aspx
,j Default.aspx
& Hardware.xml
J Login.aspx
J Magazines_us.aspx
i3 web.config
& web.sitemap
] Wrox.master
[ wrox_logo.gif

.:j7;| Solution Explorer /%4 Database Explorer

Figure 3-8

After the \App_Code folder is in place, right-click the folder and select Add New Item. The Add New
Item dialog that appears doesn’t give you many options for the types of files that you can place within
this folder. The available options include a Class file, a Text file, a DataSet, a Report, and a Class
Diagram if you are using Visual Studio 2005. Visual Web Developer 2005 Express Edition offers only the
Class file, Text file, and DataSet file. For the first example, select the file of type Class and name the class
Calculator.vbor Calculator.cs. Listing 3-14 shows how the Calculator class should appear.

Listing 3-14: The Calculator class

VB
Imports Microsoft.VisualBasic

Public Class Calculator
Public Function Add(ByVal a As Integer, ByVal b As Integer) As Integer
Return (a + Db)
End Function
End Class



Application and Page Frameworks

C#
using System;

public class Calculator
{
public int Add(int a, int b)
{

return (a + b);

What's next? Just save this file, and it is now available to use in any pages that are in your solution. To
see this in action, create a simple . aspx page that has just a single Label server control. Listing 3-15
shows you the code to place within the Page_Load event to make this new class available to the page.

Listing 3-15: An .aspx page that uses the Calculator class

VB
<%@ Page Language="VB" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.0rg/TR/xhtml11/DTD/xhtml11l.dtd">

<script runat="server">
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Dim myCalc As New Calculator
Labell.Text = myCalc.Add (12, 12)
End Sub
</script>

C#
<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtmll11/DTD/xhtmlll.dtd">

<script runat="server">
protected void Page_Load(object sender, System.EventArgs e)
{
Calculator myCalc = new Calculator();
Labell.Text = myCalc.Add(12, 12).ToString() ;
}

</script>

When you run this . aspx page, notice that it utilizes the Calculator class without any problem, with
no need to compile the class before use. In fact, right after saving the Calculator class in your solution
or moving the class to the \App_Code folder, you also instantaneously receive IntelliSense capability on
the methods that the class exposes (as illustrated in Figure 3-9).

77



Chapter 3

78

WebSite1 - Visual Web Developer 2005 Express Edition [BIE[X]
Ble Edit Vew Webgite Build Debug Tools Window Community Help
AR A A" B AP RN R AR LA WY~ -5
= | = 2 | mternet Explorer 6.0 H
» - Default.aspx*| - X
:clu Lﬁpage M # Load F | |
3 - .
g 1 %@ Page Language="VB" %> :‘ P C\\WebSite1},
o 2 | e L) App_Code
3 <!DOCTYPE hcoml PUELIC "-//W3C//DTD XHTML 1.1//EN" "hcep://www.w3.org/TR/xhcml11/DTD/xhoy
4
5§ <script runat="server">»
8 Frotected 5ub Page_Load(ByVal sender As Object, ByVal e As System.Eventhrgs)
7 Dim MyCalc As New Calculator()
8 Mycale.|
g End Sub n -
. . i Public Function Add[a As Integer, b As Integer] As Integer
1 </script> =
html tp://www.w3.0rg/1998 /xhtml " >
3 h Mgerver">
14 <title>Untitled Page</title>
15| </head>
16i <body>
179 <form id="forml" runat="server">
3 <div> ||| %, &3] Solution Ex... T Database ... /
1% <asp:Label ID="Labell" runat="serwver" Text="Label">»</asp:Label>» n
2t </divs | Propertes -1 X
21 </form> <script= -
22i - </body> E= ,;1 |
23 L </html> oo =
24 B ASP.NET ~
Enableviewsta True
Visible True 3
B Misc
()
Defer
Event o
) [v/|[Defer
<] m N
L4 Design | [ Source 1 || <soript= 3
Ready Ln8 Cal 16 Ch 16 NS
Figure 3-9

To see how Visual Studio 2005 works with the \App_Code folder, open the Calculator class again in
the IDE and add a Subtract method. Your class should now appear as shown in Listing 3-16.

Listing 3-16: Adding a Subtract method to the Calculator class

VB
Imports Microsoft.VisualBasic

Public Class Calculator
Public Function Add(ByVal a As Integer, ByVal b As Integer) As Integer
Return (a + b)
End Function

Public Function Subtract (ByVal a As Integer, ByVal b As Integer) As Integer
Return (a - b)
End Function
End Class

C#
using System;

public class Calculator



Application and Page Frameworks

{
public int Add(int a, int b)
{
return (a + b);
}
public int Subtract(int a, int b)
{
return (a - b);
}
}

After you have added the subtract method to the Calculator class, save the file and go back to your
.aspx page. Notice that the class has been recompiled by the IDE, and the new method is now available
to your page. You see this directly in IntelliSense. Figure 3-10 shows this in action.

Everything placed in the \App_Code folder is compiled into a single assembly. The class files placed
within the \App_Code folder are not required to use a specific language. This means that even if all the
pages of the solution are written in Visual Basic 2005, the Calculator class in the \App_Code folder of

the solution can be built in C# (Calculator.cs).

WebSite1 - Visual Web Developer 2005 Express Edition [B[E]=]
Ble Edit Vew Webgite @uld Debug Tools Window Community Help
A= AR N - - NN Y Ry AR R =N LN |
i = 2 | itemetExplorsr 6.0 = H
;; " App_Code/Calodator vb " Default.aspx® | w X || Solution Explorer - 1 X
= [v][# Load MzERkasEe
3 1i <%@ Page Language="VB" %> ,:‘ P C\..\WebsSitel)
» 2 || = (G App_Code
. 3 <!DCCTYPE html PUBLIC "-//W3C//DTD MHTML 1.1//EN" "hcotop://www.w3.org/TR/xhcml1] /DTD/xher E] Calculatar.vb
4 3 App_Data
5 <script runat="server"> = Defax.:t.am
8 Frotected 5ub Page_Load(ByVal sender As Cbject, ByVal e As System.Eventhrgs) CJPagez.::D:
7 Dim MyCalc As Mew Calculatox() u_}wt:?—:co;nﬁpg
MyCalc.
End Sub  Add
Ui efsexipEs | Sublract |[Public Function Subtract{a As Integer, b As Integer] As Integer| =
2 comon | A | sao/mnemn s
13 =Mgerver">
14 <title>Unticled Fage</title>
15| </head>
16i <body>
17 <form id="forml" runat="server">
1 <div> ||| %, &3] Solution Ex... T Database ... /
1% <asp:Label ID="Labell" runat="server" Text="Label"»</asp:Label> |P( s T x
- Ope - &
2
21 <script=> -
22i - </body> [ ,;1 |
23l </homl> 35 £ |
24 B ASP.NET tad
Enableviewsta True
Visible True 3
B Misc
()
Defer
Event o
.['| Defer
(<] i 2]
L& Design | & Source 1||<saript> b
Item(s) Saved Ln8 Cal 15 ch 16 NS

Figure 3-10

79



Chapter 3

Because all the classes contained in this folder are built into a single assembly, you cannot have classes of
different languages sitting in the root \ App_Code folder, as in the following example:

\App_Code
Calculator.cs
AdvancedMath.vb

Having two classes made up of different languages in the \App_Code folder (as shown here) causes
an error to be thrown. It is impossible for the assigned compiler to work with two different languages.
Therefore, in order to be able to work with multiple languages in your \App_Code folder, you must
make some changes to the folder structure and to the web. config file.

The first step is to add two new subfolders to the \App_Code folder —a \VB folder and a \cs folder.
This gives you the following folder structure:

\App_Code
\VB
Add.vb
\CS
Subtract.cs

This still won’t correctly compile these class files into separate assemblies, at least not until you make
some additions to the web. config file. Most likely, you don’t have a web. config file in your solution
at this moment, so add one through the Solution Explorer. After it is added, change the <compilation>
node so that it is structured as shown in Listing 3-17.

Listing 3-17: Structuring the web.config file so that classes in the \App_Code folder
can use different languages

<compilation>
<codeSubDirectories>
<add directoryName="VB"></add>
<add directoryName="CS"></add>
</codeSubDirectories>
</compilation>

Now that this is in place in your web. config file, you can work with each of the classes in your ASPNET
pages. Also, any C# class placed in the cs folder is now automatically compiled just like any of the classes
placed in the VB folder. Because you can add these directories in the web. config file, you are not required
to name them VB and Cs as we did; you can use whatever name tickles your fancy.

\App_Data Folder

The \App_Data folder holds the data stores utilized by the application. It is a good spot to centrally
store all the data stores your application might use. The \App_Data folder can contain Microsoft SQL
Express files (. mdf files), Microsoft Access files (.mdb files), XML files, and more.

80



Application and Page Frameworks

The user account utilized by your application will have read and write access to any of the files con-
tained within the \App_Data folder. By default, this is the ASPNET account. Another reason for storing
all your data files in this folder is that much of the ASP.NET system — from the membership and role
management systems to the GUI tools such as the ASPNET MMC snap-in and ASPNET Web Site
Administration Tool —is built to work with the \App_Data folder.

\App_Themes Folder

Themes are a new way of providing a common look-and-feel to your site across every page. You imple-
ment a theme by using a . skin file, CSS files, and images used by the server controls of your site. All
these elements can make a theme, which is then stored in the \App_Themes folder of your solution. By
storing these elements within the \App_Themes folder, you ensure that all the pages within the solution
can take advantage of the theme and easily apply its elements to the controls and markup of the page.
Themes are discussed in great detail in Chapter 9 of this book.

\App_GlobalResources Folder

Resource files are string tables that can serve as data dictionaries for your applications when these appli-
cations require changes to content based on things such as changes in culture. You can add Assembly
Resource Files (. resx) to this folder, and they are dynamically compiled and made part of the solution
for use by all your . aspx pages in the application. When using ASPNET 1.0/1.1, you had to use the
resgen. exe tool and also had to compile your resource files to a .d11 or . exe for use within your solu-
tion. Now it is considerably easier to deal with resource files in ASP.NET 2.0.

In addition to strings, you can also add images and other files to your resource files. For an example

of how to use resource files to create a multilingual ASP.NET 2.0 application, first create the
\App_GlobalResources folder in your application. For this example, create two resource files in this
folder: Resource.resx and Resource. fi-FI.resx. The first file, Resource. resx, is the default lan-
guage file using American English. The second file is for the same text, but in the Finnish language.
Hence, this file uses £i-F1I in its name. When someone with a browser culture of £i-FI invokes the
page, he sees the information that comes from this file (Resource. fi-FI.resx). Everyone else who
comes to the site gets the information that comes from the other file (Resource. resx).

Notice (as shown in Figure 3-11) that you can actually do a lot with . resx files. The idea is to create a
table of the items to be localized (such as text, images, and files). For this example, you can stick to text.

The Resource. resx file should have the following structure:

Name Value

Answer Hello there
PageTitle Sample Page
Question What is your name?

For the Resource. £i-FI.resx file, use the following structure:

Name Value

Answer Hei

PageTitle Naytesivu

Question Mikd sinun nimi on?

81



Chapter 3

82

E Wrox - Visual Web Developer 2005 Express Edition [B[E]=]
Ble Edit Vew Webgite Buld Debug Resources Tools Window Community  Help
i b o3 @ g |9 e o S| ) | CustomerReady 9 |
Tookbax -~ 0 |_ App_Global efi-FLresxc* | App_GlobalRes. .. /Resource.resxc + ¥ || Soluton Explorer ~ 0 x
B General | @dswings - ) AddResource ~ A Remove Resource | ] - | =y Q.| & @
P oW
There are no usable @ j\-'\:u ::;1
controls in this group. ; ~—ghliy
Drag an item nto this e s (EEni - 1 App_Data
text to add it to the Angwer Hei = I App_GlobaResources
toobox, | —— G Resource.fiFLresx
PageTitle MNaytesivu 3 Resourece.resx
F | Question Mica sinun nimi on?) =] Defavit.aspx
* | web.config

, 5] Solution Explorer iy Database Explorer /

|Prnperba -1 x
Question 5tring -
=LLE
El Resource

(Name]) Question
Comment

(Name)

Mame used to identify the resource in code.

Ready

Figure 3-11

To use these files, create a simple . aspx page with the code from Listing 3-18.

Listing 3-18: A simple ASP.NET page that uses resource files

VB
<%@ Page Language="VB" Culture="Auto" UICulture="Auto" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.0org/TR/xhtml11/DTD/xhtml1l.dtd">

<script runat="server">
Protected Sub Page_Load(ByVal sender As Object,
ByVal e As System.EventArgs)

Page.Title = Resources.Resource.PageTitle
End Sub

Protected Sub Buttonl_Click(ByVal sender As Object,
ByVal e As System.EventArgs)

Labell.Text = Resources.Resource.Answer & " " & Textboxl.Text
End Sub



Application and Page Frameworks

</script>
<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head id="Headl" runat="server">
<title></title>
</head>
<body>
<form id="Forml" runat="server">
<p><%= Resources.Resource.Question %></p><br />
<asp:TextBox ID="Textboxl" Runat="server"></asp:TextBox><br />
<asp:Button ID="Buttonl" Runat="server" Text="Submit"
OnClick="Buttonl Click" />
<p><asp:Label ID="Labell" Runat="server"></asp:Label></p>
</form>
</body>
</html>

C#
<%@ Page Language="C#" Culture="Auto" UICulture="Auto" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.0rg/TR/xhtml11/DTD/xhtml1l.dtd">

<script runat="server">
protected void Page_Load(object sender, System.EventArgs e)
{

Page.Title = Resources.Resource.PageTitle;

protected void Buttonl_Click(object sender, System.EventArgs e)
{
Labell.Text = Resources.Resource.Answer + " " + Textboxl.Text;
}
</script>

When this is run, you get the appropriate text based upon the culture setting in your browser. If this set-
ting is not £1-FI, you get the American English text. The page output is shown in Figure 3-12.

€] Sample Page - Microsoft Internet Explorer =J=E
File Edit Wiew Favorites Tools Help l',"
QBack - ) - [¥ [2] (0 S search rFavorites @ Media £ ~a 2058

Address é:l http: jflocalhost: 13835) ApplicationandPagefDefault. aspx M Go Links >

“What 15 vour name?

Bill Ewjen

Hello there Bill Evjen

@ Dane ‘-'J Local inkranst

Figure 3-12

83



Chapter 3

In order to see the Finnish text, change your preferred culture in the Microsoft Internet Explorer browser
by choosing Tools = Internet Options. This pulls up the Internet Options dialog. From the first tab,
General, you can click the Languages button to pull up a dialog that enables you to specify the Finnish
language as your preferred language choice. After you have added the Finnish language to the list, be
sure that it is the uppermost choice in the dialog. You can do this by highlighting this choice and press-
ing the Move Up button until it is the uppermost choice.

After this is in place, run the page. You see the Finnish language output shown in Figure 3-13.

& | Naytesivu - Microsoft Internat Explorer =l
File Edit Yiew Favorites Tools Help (','
@Back ~ ) B [2] tn | ) search 7 Favorites @ Media ) v B O 8
Address L@ http:fflacalhost: 15835 applicationandPageDefault. aspx M Go Links **

Mika sinun nimt on?

Bill Evjen

Hei Eill Evien

&] Dane & Lacal intranet

Figure 3-13

\App_LocalResources

84

As you saw with the \App_GlobalResources folder, it is now pretty simple to incorporate resources
that can be used application-wide. If you are not interested in constructing application-wide resources,
however, but instead are interested in resources that can be used for a single . aspx page only, you want
to turn to the \App_LocalResources folder.

You can add resource files that are page-specific to the \App_LocalResources folder by constructing
the name of the . resx file in the following manner:

Default.aspx.resx
Default.aspx.fi.resx

Default.aspx.ja.resx

U 0 0 U

Default.aspx.en-gb.resx

Now, the resource declarations used on the Default .aspx page will be retrieved from the appropriate
file found in the \App_LocalResources folder. By default, the Default.aspx. resx resource file will
be used if another match is not found. If the client is using a culture specification of £1-FI (Finnish),
however, the Default.aspx.fi.resx file will be used instead.



Application and Page Frameworks

\App_WebReferences

The \App_wWebReferences folder is a new name for the previous Web References folder used in previ-
ous versions of ASP.NET. Now you can use the \App_tiebReferences folder and have automatic access
to the remote Web services referenced from your application. Web services in ASPNET are covered in
Chapter 26.

\App_Browsers

The \App_Browsers folder holds .browser files, which are XML files used to identity the browsers
making requests to the application and understanding the capabilities these browsers have. You can find
a list of globally accessible . browser files at C: \Windows\Microsoft.NET\Framework\v2. 0xxxxx\
CONFIG\Browsers. In addition, if you want to change any part of these default browser definition files,
just copy the appropriate . browser file from the Browsers folder to your application’s \App_Browsers
folder and change the definition.

Compilation

You already saw how Visual Studio 2005 compiles pieces of your application as you work with them
(for instance, by placing a class in the \App_Code folder). The other parts of the application, such as
the . aspx pages, can be compiled just as they were in ASPNET 1.0/1.1 by referencing the pages in the
browser.

When an ASP.NET page is referenced in the browser for the first time, the request is passed to the
ASP.NET parser that creates the class file in the language of the page. It is passed to the ASP.NET parser
based on the file’s extension (. aspx) because ASP.NET realizes that this file extension type is meant for
its handling and processing. After the class file has been created, the class file is compiled into a DLL and
then written to the disk of the Web server. At this point, the DLL is instantiated and processed, and an
output is generated for the initial requester of the ASP.NET page. This is detailed in Figure 3-14.

Code-
ASP.NET Behind
Engine Class

Parse Generate
Request Generated
q .ASPX Page Compile
File
Class
Instantiate,
process, and
Response Page render
< Class
Figure 3-14

85



Chapter 3

86

On the next request, great things happen. Instead of going through the entire process again for the sec-
ond and respective requests, the request simply causes an instantiation of the already-created DLL,
which sends out a response to the requester. This is illustrated in Figure 3-15.

Code-
ASP.NET Behind
Engine Class

Parse Generate
Request 2nd Request
— Instantiation Generated
.AFiZX Page Compile

- Class

2nd Request
Instantiate,
process, and

Response render

Figure 3-15

Because of the mechanics of this process, if you made changes to your . aspx code-behind pages, you
found it necessary to recompile your application. This was quite a pain if you had a larger site and didn’t
want your end users to experience the extreme lag that occurs when an . aspx page is referenced for the
first time after compilation. Many developers, consequently, began to develop their own tools that auto-
matically go out and hit every single page within their application to remove this first-time lag hit from
the end user’s browsing experience.

ASP.NET 2.0 introduces the technology to precompile your entire application with a single command

that you can issue directly in the browser. This type of compilation is referred to as in-place precompilation.

In order to precompile your entire ASPNET application, pull up one of the pages in the browser and

replace the page name with precompile.axd. So, if you are working with the Web server that is built

into Visual Studio 2005, your request is structured in the following format:
http://[host] : [port]/[Application Name]/precompile.axd

If you are using IIS as the Web server, your request is structured in the following format:

http://[host]/[Application Name]/precompile.axd

You get a message stating that the precompilation was successful. The other great thing about this pre-
compilation capability is that you can also use it to find any errors on any of the ASP.NET pages in your



Application and Page Frameworks

application. Because it hits each and every page, if one of the pages contains an error that won't be trig-
gered until runtime, you get notification of the error immediately as you invoke precompile.axd.

The next precompilation option is commonly referred to as precompilation for deployment. This is an out-
standing new addition to ASP.NET that enables you to compile your application down to some DLLs,
which can then be deployed to customers, partners, or elsewhere for your own use. Not only are mini-
mal steps required to do this, but after your application is compiled, you only have to move around the
DLL and some placeholder files for the site to work. This means that your Web site code is completely
removed and placed in the DLL when deployed.

To precompile your application for deployment, you must use the aspnet_compiler.exe tool that now
comes with ASPNET 2.0. You navigate to the tool using the Command window. Open the Command
window and navigate to C: \Windows\Microsoft.NET\Framework\v2.0.xxxxx\. When you are
there, you can work with the aspnet_compiler tool.

Before you do, however, create a folder in your root drive called, for example, Wwrox. This folder is the
one you ask the compiler to output to. When it is in place, you can return to the compiler tool and give
the following command:

aspnet_compiler -v [Application Name] -p [Physical Location] [Target]

So, if you have an application called INETA located at C: \Websites\INETA, you use the following com-
mands:

aspnet_compiler -v /INETA -p C:\Websites\INETA C:\Wrox
Press the Enter key, and the compiler either tells you that it has a problem with one of the command

parameters or that it was successful (shown in Figure 3-16). If it was successful, you can see the output
placed in the target directory.

B CAWIND OWS'sy: 32\ cmd.exe ol =/

-
SUINDOWS~Hicrosof t . NET“Framework+u2 A.31113 aspnet_compiler —uv <THETA —p (::\l.lﬂzJ
sitesINETA C:sMrox

tility to precompile an ASP.NET application —
opyright (C» Microsoft Corporation 2881-2883. All rights reserved.

he compilation was successful?

WINDOWS“Hicrosof £ .NET“Frameworksw2.8.311133

Figure 3-16

In the example just shown, -v is a command for the virtual path of the application —which is provided
by using /INETA. The next command is -p, which is pointing to the physical path of the application. In

this case, it is C: \Websites\INETA. Finally, the last bit, C: \Wrox, is the location of the compiler output.
The following table describes the possible commands for the aspnet_compiler.exe tool.

87



Chapter 3

Command Description

-m Specifies the full IIS metabase path of the application. If you use the -m
command, you cannot use the -v or -p command.

-v Specifies the virtual path of the application to be compiled. If you also
use the -p command, the physical path is used to find the location of
the application.

-p Specifies the physical path of the application to be compiled. If this is
not specified, the IIS metabase is used to find the application.

targetDir Specifies the target directory where the compiled files should be
placed. If this is not specified, the output files are placed in the appli-

cation directory.

88

After compiling the application, you can go to C: \Wirox to see the output. Here, you see all the files and
the file structures that were in the original application. But if you look at the content of one of the files,
notice that the file is simply a placeholder. In the actual file, you find the following comment:

This is a marker file generated by the precompilation tool
and should not be deleted!

In fact, you find a Code . d11 file in the bin folder where all the page code is located. Because it is in a
DLL file, it provides great code obfuscation as well. From here on, all you do is move these files to
another server using FTP or Windows Explorer, and you can run the entire Web application from these
files. When you have an update to the application, you simply provide a new set of compiled files. A
sample output is displayed in Figure 3-17.

) C:WWrox [®[=]=]
File Edit View Favorites Tools Help 'ﬁ'
Qoack = & - [F | Poearch B rFoders | [ (2 X ) | [~
fddress || CiWros v] !

Name = Sze | Type Date Modfied Attribu...

D: Fle Folder 2[15/2004 11:58 AM

D Articles File Folder 201502004 11:58 AM

Dibin File Folder 2/15/2004 11:58 AM

Cabsta File Folder 2{15/2004 11158 AM

[Dimages Fili: Folder 2/15]2004 1156 AM

() Photoalbum File Folder 2/15/2004 11:58 AM

) SkeReports Fila Folder 2{15{2004 11:58 AM

&= app.sitemap LEE  SITEMAPR File Z15/2004 1155 4M A
changepassword. aspe LKE ASP.MET Server Page  2/15/2004 11:SBAM &

@ conkact. asp LKE ASP.MET Server Page  2/15/2004 11:58AM A
default. aspx LKE ASP.MET Ssrver Page  2/15/2004 11:584M A

El LKE ASPNET Server Page 201502004 11:56AM &
pagenatfound.aspx LKE ASP.MNET Server Page  2/15/2004 11:58AM A
passwordvemindsr . asp LKB ASP.MET Ssrver Page  2/15/2004 11:S84M A

E] Precomplledapp. bt LKE Text Document 2[15/2004 11:56 &AM A

EI readme. bt LKE Text Documsnt 2015/2004 11:554M &
ragisher. asp LKE ASP.MET Server Page  2/15/2004 11:58AM A

|ﬂ wieb, config 2KE ML Source File 2[15/2004 11:55.4M A
18 objects 2.93KB g My Computer

Figure 3-17

Note that this compilation process doesn’t compile every type of Web file. In fact, it compiles only the
ASP.NET-specific file types and leaves out of the compilation process the following types of files:




Application and Page Frameworks

0O 00 0 O

web.

HTML files
XML files
XSD files

config files

Text files

You can’t do much to get around this, except in the case of the HTML files and the text files. For these
file types, just change the file extension of these file types to . aspx; they are then compiled into the
Code.d11 like all the other ASP.NET files.

Global.asax

If you add a new item to your ASPNET application, you get the Add New Item dialog. From here,

you can see that you can add a Global Application Class to your applications. This adds a Global .asax
file. This file is used by the application to hold application-level events, objects, and variables —all of
which are accessible application-wide. Active Server Pages developers had something similar with the
Global.asa file.

Your ASP.NET applications can have only a single Global . asax file. This file supports a number of
items. When it is created, you are given the following template:

<%@ Application Language="VB" %>

<script
Sub
End
Sub
End
Sub
End
Sub
End

Sub

End

runat="server">

Application_Start (ByVal sender As Object, ByVal e As EventArgs)
' Code that runs on application startup
Sub

Application_End(ByVal sender As Object, ByVal e As EventArgs)
' Code that runs on application shutdown
Sub

Application_Error (ByVal sender As Object, ByVal e As EventArgs)
' Code that runs when an unhandled error occurs
Sub

Session_Start (ByVal sender As Object, ByVal e As EventArgs)
' Code that runs when a new session is started
Sub

Session_End(ByVal sender As Object, ByVal e As EventArgs)

' Code that runs when a session ends.

' Note: The Session_End event is raised only when the sessionstate mode
' 1s set to InProc in the Web.config file. If session mode is

' set to StateServer

' or SQLServer, the event is not raised.

Sub

</script>

89



Chapter 3

Just as you can work with page-level events in your . aspx pages, you can work with overall application
events from the Global . asax file. In addition to the events listed in this code example, the following list
details some of the events you can structure inside this file:

QO Application_sStart: Called when the application receives its very first request. It is an ideal
spot in your application to assign any application-level variables or state that must be main-
tained across all users.

0  Session_Start: Similar to the Application_Start event except that this event is fired when an
individual user accesses the application for the first time. For instance, the Application_Start
event fires once when the first request comes in, which gets the application going, but the
Session_Start is invoked for each end user who requests something from the application for
the first time.

QO Application_BeginRequest: Although it not listed in the preceding template provided by
Visual Studio 2005, the Application_BeginRequest event is triggered before each and every
request that comes its way. This means that when a request comes into the server, before this
request is processed, the Application_BeginRequest is triggered and dealt with before any
processing of the request occurs.

QO Application_AuthenticateRequest: Triggered for each request and enables you to set up
custom authentications for a request.

QO  Application_Error: Triggered when an error is thrown anywhere in the application by any
user of the application. This is an ideal spot to provide application-wide error handling or an
event recording the errors to the server’s event logs.

QO  Session_End: When running in InProc mode, this event is triggered when an end user leaves
the application.

Q Application_End: Triggered when the application comes to an end. This is an event that most
ASP.NET developers won't use that often because ASP.NET does such a good job of closing and
cleaning up any objects that are left around.

In addition to the global application events that the Global. asax file provides access to, you can also
use directives in this file as you can with other ASPNET pages. The Global . asax file allows for the
following directives:

a @Application
a @Assembly

a @Import

These attributes perform in the same way when they are used with other ASP.NET page types.

Summary

20

This chapter covered a lot of ground. It discussed some of the issues concerning ASP.NET applications as
a whole and the choices you have when building and deploying these new applications. With the help of
Visual Studio 2005, you now have options about which Web server to use when building your applica-
tion and whether to work locally or remotely through the new built-in FTP capabilities.



Application and Page Frameworks

ASP.NET 2.0 and Visual Studio 2005 make it easy to build your pages using an inline coding model or to
select a new and better code-behind model that is simpler to use and easier to deploy. You also learned
about the new cross-posting capabilities and the new fixed folders that ASP.NET 2.0 has incorporated to
make your life easier. These folders make their resources available dynamically with no work on your
part. Finally, you saw some of the outstanding new compilation options that you have at your disposal.

As you worked through some of the examples, you may have been thinking, “WOW!” But wait . . .
there’s plenty more to come!

91






ASP.NET Server Controls
and Client-Side Scripts

As you already know from earlier chapters, ASP.NET evolved from Microsoft’s earlier Web tech-
nology called Active Server Pages (referred to as ASP then and classic ASP today). This model was
completely different from today’s ASP.NET. Classic ASP used interpreted languages to accomplish
the construction of the final HTML document before it was sent to the browser. ASP.NET, on the
other hand, uses true compiled languages to accomplish the same task. The idea of building Web
pages based on objects in a compiled environment is one of the main focuses of this chapter.

This chapter looks at how to use a particular type of object in ASP.NET pages called a server con-
trol, and how you can profit from using this control. We also introduce a particular type of server
control — the HTML server control. The chapter also demonstrates how you can use JavaScript in
ASP.NET pages to modify the behavior of server controls.

The rest of this chapter shows you how to use and manipulate server controls, both visually and
programmatically, to help with the creation of your ASPNET pages.

ASP.NET Server Controls

In the past, one of the difficulties of working with classic ASP was that you were completely in
charge of the entire HTML output from the browser by virtue of the server-side code you wrote.
Although this might seem ideal, it created a problem because each browser interpreted the HTML
given to it in a slightly different manner.

The two main browsers out there at the time were Microsoft’s Internet Explorer and Netscape
Navigator. This meant that not only did developers have to be cognizant of the browser type to
which that they were outputting HTML, but they also had to take into account which versions of
those particular browsers might be making a request to their application. Some developers resolved
the issue by creating two separate applications. When an end user made an initial request to the
application, the code made a browser check to see what browser type was making the request.




Chapter 4

Then, the ASP page would redirect the request down one path for an IE user, or down another path for a
Netscape user.

Because requests came from so many different versions of the same browser, the developer often
designed for the lowest possible version that might be used to visit the site. Essentially, everyone lost out
by using the lowest common denominator as the target. This technique ensured that the page was ren-
dered properly in most browsers making a request, but it also forced the developer to dummy-down his
application. If applications were always built for the lowest common denominator, the developer could
never take advantage of some of the more advanced features offered by newer browser versions.

ASP.NET server controls overcome these obstacles. When using the server controls provided by
ASP.NET, you are not specifying the HTML to be output from your server-side code. Rather, you are
specifying the functionality you want to see in the browser and letting the ASP.NET decide for you on
the output to be sent to the browser.

When a request comes in, ASP.NET examines the request to see which browser type is making the
request, as well as the version of the browser, and then it produces HTML output specific to that
browser. This process is accomplished by a User Agent retrieved from the header of the HTTP Request
to sniff the browser. This means that you can now build for the best browsers out there without worrying
about whether features will work in the browsers making requests to your applications. Because of the
previously described capabilities, you will often hear these controls referred to as smart controls.

Types of Server Controls

ASPNET provides two distinct types of server controls —HTML server controls and Web server con-
trols. Each type of control is quite different and, as you work with ASPNET, you will see that much of
the focus is on the Web server controls. This doesn’t mean that HTML server controls have no value.
They do provide you with many capabilities —some that Web server controls do not give you.

You might be asking yourself which is the better control type to use. The answer is that it really depends
on what you are trying to achieve. HTML server controls map to specific HTML elements. You can place
an HtmlTable server control on your ASP.NET page that works dynamically with a <table> element.
On the other hand, Web server controls map to specific functionality that you want on your ASPNET
pages. This means an <asp: Panel> control might use a <table> or an <IFrame> element—it really
depends on the capability of the browser making the request.

The following table summarizes some advice on when to use HTML server controls and when to use
Web server controls.

Control Type When to Use This Control Type

HTML Server When converting traditional ASP 3.0 Web pages to ASP.NET Web pages
and speed of completion is a concern. It is a lot easier to change your HTML
elements to HTML server controls than it is to change them to Web server
controls.

When you prefer a more HTML-type programming model.

When you want to explicitly control the code that is generated for the
browser.

94



ASP.NET Server Controls and Client-Side Scripts

Control Type When to Use This Control Type
Web Server When you require a richer set of functionality to perform complicated page
requirements.

When you are developing Web pages that will be viewed by a multitude of
browser types and that require different code based upon these types.

When you prefer a more Visual Basic—type programming model that is
based on the use of controls and control properties.

Of course, some developers like to separate certain controls from the rest and place them in their own
categories. For instance, you may see references to the following types of controls:

O  List controls: These control types allow data to be bound to them for display purposes of
some kind.

O  Rich controls: Controls, such as the Calendar control, that display richer content and capabili-
ties than other controls.

QO  Validation controls: Controls that interact with other form controls to validate the data that
they contain.

0O  Mobile controls: Controls that are specific for output to devices such as mobile phones, PDAs,
and more.

O  User controls: These are not really controls, but page templates that you can work with as you
would a control on your ASPNET page.

QO  Custom controls: Controls that you build yourself and use in the same manner as the supplied
ASP.NET server controls that come with the default install of ASPNET 2.0.

When you are deciding between HTML server controls and Web server controls, remember that no hard
and fast rules exist about which type to use. You might find yourself working with one control type
more than another, but certain features are available in one control type that might not be available in
the other. If you are trying to accomplish a specific task and you don’t see a solution with the control
type you are using, take a look at the other control type because it may very well hold the answer. Also
realize that you can mix and match these control types. Nothing says that you cannot use both HTML
server controls and Web server controls on the same page or within the same application.

Building with Server Controls

You have a couple of ways to use server controls to construct your ASPNET pages. You can actually use
tools that are specifically designed to work with ASPNET 2.0 that enable you to visually drag and drop
controls onto a design surface and manipulate the behavior of the control. You can also work with server
controls directly through code input.

95



Chapter 4

Working with Server Controls on a Design Surface

Visual Studio 2005 enables you to visually create an ASPNET page by dragging and dropping visual
controls onto a design surface. You can get to this visual design option by clicking the Design tab at the
bottom of the IDE when viewing your ASPNET page. In this view, you also can place the cursor on the
page in the location where you want the control to appear and then double-click the control you want in
the Toolbox window of Visual Studio. Unlike previous versions of Visual Studio, Visual Studio 2005 does
a really good job of not touching your code when switching between the Design and Source tabs.

In the Design view of your page, you can highlight a control and the properties for the control appear in
the Properties window. For example, Figure 4-1 shows a Button control selected in the design panel, and
its properties are displayed in the Properties window on the lower right.

Changing the properties in the window changes the appearance or behavior of the highlighted control.
Because all controls inherit from a specific base class (WebControl), you can also highlight multiple con-
trols at the same time and change the base properties of all the controls at once. You do this by holding
down the Ctrl key as you make your control selections.

> ServerControls - Microsoft Develop Envi f:][‘-“_]@
Ble Edt Vew Webgite Buld Debug Fomat Layout Tools Window Help
iR | 6 S @]9 | BB b | ol e -
T T PR A=Y
Taohox 2 X | Defaultaspx* = x| Solution Explorer -1 %
Standard R = =] Bl &
X 23] A ELELA
il 2P C\WebsSites\ServerControls)
A Label j Data
A 3
bl TextBox Dm 72| Default.aspx
&) Button L e} 3 Web.Config
[22] LinkButton
(&) ImageButton
A HyperLink
=% DropDownList -
Ey ListBox ra Solution Explorer .‘-'!, Server Explorer
Cheddox -
4= Cheddontist i %
(%) RadioButton Buttonl System.Web,ULWebControls.Button -
i RadioButtonList =T ==10 |E
 Image {Expressions) |
72 Dynamicimage (D) Buttonl
J‘ ImageMap AccessKey
T Table BackColar (]
R Cr SorderColor (]
L e .5 Borderstyle Notset
bl HiddenField BorderWidth
B Uiteral CausesValidation | True
A Treeview CommandArgumeant
* Calendar CommandName
scli F
= ke Eauﬂ.cllccks .Eal-s:’-'|
ounterGroup ut
t,
= Febreed CounterName
5" Phonelink CssClass
ifF ContentPager Enabled True =
= o |
.‘I Wizard Text
] Xml The text to be shown on the button.
A3 MultiView [se] || @ Desion | & Source <html> |<body> |<div>||<asp:button#buttoni>
Ready
Figure 4-1

96



ASP.NET Server Controls and Client-Side Scripts

Coding Server Controls

You also can work from the Code page directly. Because many developers prefer this, it is the default
when you first create your ASPNET page. Hand-coding your own ASP.NET pages may seem to be a
slower approach than simply dragging and dropping controls onto a design surface, but it isn’t as slow
as you might think. You get plenty of assistance in coding your applications from Visual Studio 2005. As
you start typing in Visual Studio, the IntelliSense features kick in and help you with code auto-completion.
Figure 4-2, for example, shows an IntelliSense drop-down list of possible code completion statements

that appea

red as the code was typed.

The IntelliSense focus is on the most commonly used attribute or statement for the control or piece of

code that you are working with. Using IntelliSense effectively as you work is a great way to code with
great speed.

As with Design view, the Source view of your page lets you drag and drop controls from the Toolbox

onto the code page itself. For example, dragging and dropping a TextBox control onto the code page pro-
duces the same results as dropping it on the design page:

<asp:TextBox ID="TextBoxl" Runat="server"></asp:TextBox>

[=] Wrox - Visual Web D

2005 Express Edition

P

Eile Edit  Vew

ige - m. pg

Webgite Guid Debug Tools Window  Community
= = A =

Help
{ - G- | b (€| @ CustomerReady

iE R
== | =

| Internet Explorer 6.0

abl TextBox
Button
LinkButton
(@) ImageButton
A Hypertini
=8 DropDowmlist
=3 ListBox

[#] cheddox
1= CheckBoxlist
(%) RadioButton
*~ RadioButtonList
il Image

o ImageMap
] Table

i= Bulletedlist
+/ HiddenFiekd
B Literal

7 calendar

= AdRotator

T FileUpioad
4 Wizard

& mil

5] Multiviews

<] PlaceHolder
O View
32| Substitution

-1 x | _ Defaultaspx*

- X || Soution Explorer

A [ carver Objects & Events 'v'| (No Events)

MlBEEERSImR

1| @ Page Language="VB" %>

3 DOCTYDE homl

PUBLIC "-//W3C//DID MHTML 1.
50 cript runat="server">

7ilscripe>

WWW.W3.0rg/1899/xheml™ >

runat="gerver":

<asp:TextBox
<br />
<asp:Button
<fdiv>
</form>

ID="Buttonl™ runat="server”

I3 m

L4 Design | [= Source

i1//EN"

ID="TextBoxl" runat="server"»</asp:TextBox»<br

Text="Button"

<html> || <bedy>|| <form#formi> || <div> 1|

— | G O\ W)
2| & Cf App_Data
%] Default.aspx

Mhoop: //wWww. W3 . o
=4 Web.Config

X :g Solution Explorer 8 Database Explorer /

| Properties >« 1 X

Buttonl <asp:Button>

|~ | JlE=ls

iAccessey I
27 BackColor

# BorderColor

257 Borderstyle

# BorderWidth

7 Causesvaidation
# CommandArgument
7 Commandhame

A CssClass

7 Enabled

ritSehavio True
INGroup
True

¥
Buttonl

runat server

<]

~| [Misc
2]

Ready

Ln 18 Cal 63 Ch63

Figure 4-2

97



Chapter 4

You can also highlight a control in Source view or simply place your cursor in the code statement of the
control, and the Properties window displays the properties of the control. Now, you can apply proper-
ties directly in the Properties window of Visual Studio, and these properties are dynamically added to
the code of your control.

Working with Server Control Events

As discussed in Chapter 1, ASP.NET uses more of a traditional Visual Basic event model than classic
ASP. Instead of working with interpreted code, you are actually coding an event-based structure for
your pages. Classic ASP used an interpreted model —when the server processed the Web page, the code
of the page was interpreted line-by-line in a linear fashion where the only “event” implied was the page
loading. This meant that occurrences you wanted to get initiated early in the process were placed at the
top of the page.

Today, ASP.NET uses an event-driven model. Items or coding tasks get initiated only when a particular
event occurs. A common event in the ASPNET programming model is Page_Load, which is illustrated
in Listing 4-1.

Listing 4-1: Working with specific page events

VB

Protected Sub Page_lLoad(ByVal sender As Object, ByVal e As System.EventArgs)
' Code actions here
End Sub

C#
protected void Page_Load(object sender, EventArgs e)
{

// Code actions here

}

Not only can you work with the overall page —as well as its properties and methods at particular
moments in time through page events —but you can also work with the server controls contained on
the page through particular control events. For example, one common event for a button on a form is
Button_Click, which is illustrated in Listing 4-2.

Listing 4-2: Working with a Button Click event

VB

Protected Sub Buttonl Click(ByVal sender As Object, ByVal e As System.EventArgs)
' Code actions here
End Sub

C#
protected void Buttonl_Click(object sender, EventArgs e)
{
// Code actions here
}

The event shown in Listing 4-2 is fired only when the end user actually clicks the button on the form that
has an onClick attribute value of Buttonl_Click. So, not only does the event handler exist in the

98



ASP.NET Server Controls and Client-Side Scripts

server-side code of the ASPNET page, but that handler is also hooked up using the onclick property of
the server control in the associated ASP.NET page markup as illustrated in the following code:

<asp:Button ID="Buttonl" Runat="server" Text="Button" OnClick="Buttonl_ Click" />

How do you fire these events for server controls? You have a couple of ways to go about it. The first way
is to pull up your ASP.NET page in the Design view and double-click the control for which you want to
create a server-side event. For instance, double-clicking a Button server control in Design view creates
the structure of the Buttonl_C1lick event within your server-side code, whether the code is in a code-
behind file or inline. This creates a stub handler for that server control’s most popular event.

With that said, be aware that a considerable number of additional events are available to the Button con-
trol that you cannot get at by double-clicking the control. To access them, pull up the page that contains
the server-side code, select the control from the first drop-down list at the top of the IDE, and then
choose the particular event you want for that control in the second drop-down list. Figure 4-3 shows

the event drop-down list displayed. You might, for example, want to work with the Button control’s
PreRender event rather than its C1ick event. The handler for the event you choose is placed in your
server-side code.

=) Wrox - Visual Web Devel 2005 Express Edition [BE[X]
P P
Efle Edit Vew Webgte Buid Debug Tools Window Community Help
H=RAEE R~ B~ |9 - - L - | |4 | [# CustomerReady =8
iFiE| | Internet Explorer 6.0 = =
Toolbax - 1 % = - Solution Explorer _
Default.aspx’ x
| B ][ o= MlBlEEss e
LT 1] @ Page Language="VB" %> # Llick P G\ \Wrox
A Label ; # Command [Event} =5 App_pata
abl TextBox 2 e F homl DUBLIC "—//W3C// # DataBinding %] Default.aspx
Button # Disposed |54 web.Config
LinkButton 50 cript runat="server"> - Ei;:l
_ ¥
(&) 1msgetutton 5 # PreRender
A Hyperiink # Unload
=H Drosormte 95 tml r.wd.org /1009 /xhtml" >
=1 ListBox . L
[¥] chedgox e>Untitled Page</title>
= CheckBowlist
(%) RadioButton . . -
.-) ) ) <form 14="forml" rURaL="SErver"s .\.‘?Sdunur: Explorer s Database Explorer /
- RadioButtonList cdivy o v il
4 e Froperties 1 x
il Image <asp:TextBox ID=MTextBoxl" runat="server"></asp:TextBox><br |
i ImageMap by > Buttonl <asp:Button= -
1 Table 18% <asp:Button ID="Buttonl” runat="server"” Text="Button" /> A |
= 19ik  </divs — -
:= Bullztedlist . g s SkinlD ]
- HiddenFiekd : form ToolTip
B Literal Us=SubmitSehavia True
7 calendar "3 vaidationGroun
j AdRotator = Visible True
. B Layout
! -] FileUpioad Haght
Wt Wizard width
& mil B Misc
3 Multiview o) Button1
runat server |
w
<] PlaceHolder v | [Mise
L View ] il B
35| substitution +w|| 3 Design | B Source <html>|| <body>|| <form#formi= | <div> 1>
Ready Ln 18 Cal 63 Ch 63 NS
Figure 4-3

99



Chapter 4

The second way is to create server-side events for your server controls from the Properties window of
Visual Studio. This works only from Design view of the page. In Design view, highlight the server con-
trol that you want to work with. The properties for the control then appear in the Properties window,
along with an icon menu. One of the icons, the Events icon, is represented by a lightning bolt (shown in
Figure 4-4).

Events

Properties ~ 3 x

Buttonl System|Web.UL. WebContrals Button  ~
=408 A
B Action
Click v
Command
B Data
DataBinding
B Misc
Disposed
Init
Load
PreRender
Unload

Click
Fires when the button is dicked.

Figure 4-4

Clicking the Events icon pulls up a list of events available for the control. You simply double-click one of
the events to get that event structure created in your server-side code.

After you have an event structure in place, you can program specific actions that you want to occur
when the event is fired.

Applying Styles to Server Controls

More often than not, you want to change the default style (which is basically no style) to the server con-
trols you implement in your applications. You most likely want to build your Web applications so that
they reflect your own look-and-feel. One way to customize the appearance of the controls in your pages
is to change the controls’ properties.

As stated earlier in this chapter, to get at the properties of a particular control you simply highlight the
control in the Design view of the page from Visual Studio. If you are working from the Source view,
place the cursor in the code of the control. The properties presented in the Properties window allow you
to control the appearance and behavior of the selected control.

Examining the Controls’ Common Properties

Many of the default server controls that come with ASPNET 2.0 are derived from the WebControl class
and share similar properties that enable you to alter their appearance and behavior. Not all the derived

100



ASP.NET Server Controls and Client-Side Scripts

controls use all the available properties (although many are implemented). Another important point is
that not all server controls are implemented from the WebControl class. For instance, the Literal,
PlaceHolder, Repeater, and XML server controls do not derive from the webControl base class, but
instead the Control class.

HTML server controls also do not derive from the webControl base class because they are more focused
on the set attributes of particular HTML elements. The following table lists the common properties the
server controls share.

Property Description

AccessKey Enables you to assign a character to be associated with the Alt key so
that the end user can activate the control using quick-keys on the key-
board. For instance, you can assign a Button control an AccessKey
property value of XK. Now, instead of clicking the button on the
ASP.NET page (using a pointer controlled by the mouse), the end user
can simply press Alt+K.

Attributes Enables you to define additional attributes for a Web server control
that are not defined by a public property.

BackColor Controls the color shown behind the control’s layout on the
ASP.NET page.

BorderColor Assigns a color that is shown around the physical edge of the server
control.

BorderWidth Assigns a value to the width of the line that makes up the border of

the control. Placing a number as the value assigns the number as
a pixel-width of the border. The default border color is black if
the BorderColor property is not used in conjunction with the
BorderWidth property setting.

BorderStyle Enables you to assign the design of the border that is placed around
the server control. By default, the border is created as a straight line,
but a number of different styles can be used for your borders. Other
possible values for the Borderstyle property include Dotted,
Dashed, Solid, Double, Groove, Ridge, Inset, and Outset.

CssClass Assigns a custom CSS (Cascading Style Sheet) class file to the control.

Enabled Enables you to turn off the functionality of the control by setting the
value of this property to False. By default, the Enabled property is
set to True.

EnableTheming Enables you to turn on theming capabilities for the selected server con-

trol. The default value is True. This is a new property in the NET
Framework 2.0.

Font Sets the font for all the text that appears anywhere in the control.

ForeColor Sets the color of all the text that appears anywhere in the control.

Table continued on following page

101



Chapter 4

Property Description
Height Sets the height of the control.
SkinID Sets the skin to use when theming the control. This is a new property

in the .NET Framework 2.0.
Style Enables you to apply CSS styles to the control.

TabIndex Sets the control’s tab position in the ASP.NET page. This property
works in conjunction with other controls on the page.

ToolTip Assigns text that appears in a yellow box in the browser when a mouse
pointer is held over the control for a short length of time. This can be
used to add more instructions for the end user.

Width Sets the width of the control.

You can see these common properties in many of the server controls you work with. New properties of
the WebControl class in the NET Framework 2.0 include the EnableTheming and SkinID properties.
These properties are covered in more detail in Chapter 9. You also see additional properties that are spe-
cific to the control you are viewing. Learning about the properties from the preceding table enables you
to quickly work with Web server controls and to modify them to your needs.

Now take a look at some additional methods of customizing the look-and-feel of your server controls.

Changing Styles Using Cascading Style Sheets

One method of changing the look-and-feel of specific elements on your ASPNET page is to apply a style
to the element. The most rudimentary method of applying a defined look-and-feel to your page ele-
ments is to use various style-changing HTML elements such as <font>, <b>, and <i> directly.

All ASP.NET developers should have a good understanding of HTML. For more information on
HTML, please read Wrox's Beginning Web Programming with HTML, XHTML, and CSS
(published by Wiley; ISBN 0-7645-7078-1).

Using various HTML elements, you can change the appearance of many items contained on your pages.
For instance, you can change a string’s style as follows:

<font face="verdana"><b><i>Pork chops and applesauce</i></b></font>

You can go through an entire application and change the style of page elements using any of the appro-
priate HTML elements. You'll quickly find that this method works, but it is tough to maintain. To make

any global style changes to your application, this method requires that you go through your application
line-by-line to change each item individually. This can get cumbersome very fast!

102



ASP.NET Server Controls and Client-Side Scripts

Besides applying HTML elements to items to change their style, you can use another method known
as Cascading Style Sheets (CSS). This alternative, but greatly preferred, styling technique allows you to
assign formatting properties to HTML tags throughout your document in a couple of different ways.
One way is to apply these styles directly to the HTML elements in your pages using inline styles. The
other way involves placing these styles in an external stylesheet that can be placed either directly in an
ASP.NET page or kept in a separate document that is simply referenced in the ASPNET page. You
explore these methods in the following sections.

Applying Styles Directly to HTML Elements

The first method of using CSS is to apply the styles directly to the tags contained in your ASP.NET
pages. For instance, you apply a style to a string, as shown in Listing 4-3.

Listing 4-3: Applying CSS styles directly to HTML elements

<p style="color:blue; font-weight:bold">
Pork chops and applesauce
</p>

This text string is changed by the CSS included in the <p> element so that the string appears bold and
blue. Using the style attribute of the <p> element, you can change everything that appears between the
opening and closing <p> elements. When the page is generated, the first style change applied is to the
text between the <p> elements. In this example, the text has changed to the color blue because of the
color:blue command, and then the font-weight :bold command is applied. You can separate the
styling commands using semicolons, and you can apply as many styles as you want to your elements.

Applying CSS styles in this manner presents the same problem as simply applying various HTML style
elements — this is a tough structure to maintain. If styles are scattered throughout your pages, making
global style changes can be rather time consuming. Putting all the styles together in a stylesheet is the
best approach. A couple of methods can be used to build your stylesheets.

Working with the Visual Studio Style Builder

Visual Studio 2005 includes Style Builder, a tool that makes the building of CSS styles fairly simple. It
can be quite a time saver because so many possible CSS definitions are available to you. If you are new
to CSS, this tool can make all the difference.

The Visual Studio Style Builder enables you to apply CSS styles to individual elements or to construct
your own stylesheets. To access the Style Builder tool when applying a style to a single page element,
highlight the page element and then right-click it. From the menu that appears, select Style. Style Builder

is shown in Figure 4-5.

You can use Style Builder to change quite a bit about your selected item. After making all the changes
you want and clicking OK, you see the styles you chose applied to the selected element.

Now take a look at how to create styles in a stylesheet.

103



Chapter 4

Style Builder
%Font Font name
Background
9 o (®) Family: E]
E Text
. () System font:
& Position
i Font attributes
] Color: Italics: Small caps:
1+ Edges —
e w E] v v
a— Lists —
i Other Size Effects
() Spedific: (w| [Onone
[ underline
() Absolute: =
[ strikethrough
(O Relative: [ overiine
Bold Capitalization:
() Absolute: b w
() Relative:
Sample text
[ OK ] [ Cancel ] [ Help
Figure 4-5

Creating External Style Sheets

You can use a couple of different methods to create stylesheets. The most common method is to create an
external stylesheet—a separate stylesheet file that is referenced in the pages that employ the defined
styles. To begin the creation of your external stylesheet, add a new item to your project. From the Add
New Item dialog, create a style sheet called StyleSheet.css. Add the file to your project by pressing

the Add button. Figure 4-6 shows the result.

controls in this group.
Drag &n item onto this

[E] Wrox - Visual Web Developer 2005 Express Edition Beta [:‘Ii:ﬁl
Ble Edit Wew ‘Website Build Debug Took Styles  Window Community  Help
S‘J'J.Hdlaﬁ—d | = z - |P |,_@mst:rne.'Rnady =8
i “p 43 Buid style... | ] | cs52.1 =
Toohox -3 x StyleSheet.css + 3 || Solubon Explorsr -0 x
= General 1 ':}:.- iy { e i-Il B @
There are no usable 3 P C\.-\Wrox\

F- _j App_Data
|| Default. aspx

texct to add it to the A styleshest.ces
toolbox, i3 Web.Config
", Gy Sokution Explorer Ty Database Explorer
Figure 4-6

Using Visual Studio’s CSS Outline window (in the left pane in Figure 4-6), you can apply style rules in

any of three ways:

104



ASP.NET Server Controls and Client-Side Scripts

0 By element: You apply styles to specific HTML elements, such as the <p>, <a>, or <table>.

0 By class: You bring your style definitions together as a package, otherwise known as a class.
Then you apply the selected classes to either specific page elements or to an entire page.

Q By element IDs: This method enables you to say that the selected styles should be applied only
to controls with specific ID names, such as Tablel or Buttonl.

Using Visual Studio, you can construct a stylesheet that looks similar to what is shown in Listing 4-4.

Listing 4-4: An external stylesheet

body {
font-weight: normal;
font-family: Verdana, Helvetica, sans-serif;
font-size: .8em;
letter-spacing: normal;
text-transform: none;
word-spacing: normal;
background-color: white;

}

H1, H2, H3, H4, TH, THEAD, TFOOT {
color: #003366;
}

H1 {
font-family: Verdana, Arial, Helvetica, sans-serif;
font-size: 2em;
font-weight: 700;
font-style: normal;
text-decoration: none;
word-spacing: normal;
letter-spacing: normal;
text-transform: none;

}

A stylesheet can go on for quite awhile until each and every possible HTML element is defined (though
not required). The first definition in this example is for the entire body of the page (everything between
the opening and closing <body> elements). The styles are applied in the order in which they appear in
the stylesheet. So first, a style is applied to the entire document; then the style is further defined by spe-
cific HTML elements. All style definitions follow this pattern:

Definition: Value;

The name of the CSS property is applied first, followed by a colon, and then the value to apply to this
property. The definition ends with a semicolon.

The CSS file in Listing 4-4 also shows that it is possible to apply a style to many different elements at the
same time by separating the element names with a comma as is done with H1, H2, H3, H4, TH, THEAD,
TFOOT.

One wonderful addition to working with CSS files in Visual Studio is that even these allow for
IntelliSense features, as illustrated in Figure 4-7.

105



Chapter 4

[=] Wrox - Visual Web Developer 2005 Express Edition e
Bl Edit Wew Webgte Quid Debug Tools Styes  Window  Community  Help
H=RaEE =A™ - I e |9 - 0 - Dl | b o | [ CustomerReady =8
i Hreuldste.. | O |css2.1 M
Toolbax - 4 Xl vhesk css® - X |Sduhun Explorer -1 X
= General : - -;'ll ﬂ é_lil @ (]
. &P Gl W

There are no usable 3 +? }A;DJ:;«:

controls in this group. ! j

Drag an Item onto this | Default.aspx

text to add it to the o A styeshest.css

-2 & } =y Web.Config

A background
%A background-attachment
# background-color

= background-mage

A hadeground-position

= backgroundrepeat

% barder

= border-bottom

5 horder bottom-calor |

= .__*g Solution Explorer % Database Explorer /

|H'Duurtis » 1 X
body ICS5Selection -
EEIPANE
B Misc

Style (Style)

Style

AR Toobox 3 0oav- /g1 i ) |
Ready Ln 5 Col 5 Chs NS

Figure 4-7

After your style file is created, even though it is contained in your project, it is not applied to anything
unless you specifically apply the stylesheet to the page itself. You have a couple of approaches to accom-
plish this task.

One option is to pull up the DOCUMENT properties in the Properties window of Visual Studio and
assign a value to the StyleSheet property. Assigning the stylesheet shown earlier, StyleSheet.css, as
a value of the styleSheet property adds the following line to your ASPNET page within the <head>
section:

<head runat="server">

<title>My ASP.NET page</title>

<link type="text/css" rel="stylesheet" href="StyleSheet.css" />
</head>

After this line is added to your page, the ASP.NET page applies the styles that are defined in
StyleSheet.css.

The other method of getting this line into your page is simply to drag and drop the StyleSheet.css

file from the Solution Explorer to the Design or Source view of the page in the Document window of
Visual Studio. The exact same <1ink> element used previously is applied.

106



ASP.NET Server Controls and Client-Side Scripts

Using an external stylesheet within your application enables you to make global changes to the look-
and-feel of your application quickly. Simply making a change at this central point cascades the change as
defined by the stylesheet to your entire application.

Creating Internal Stylesheets

The second method for applying a stylesheet to a particular ASP.NET page is to bring the defined
stylesheet into the actual document by creating an internal stylesheet. Instead of making a reference to
an external stylesheet file, you bring the style definitions into the document. Note, however, that it is
considered best practice to use external, rather than internal, stylesheets.

Consider using an internal stylesheet only if you are applying certain styles to a small number of pages
within your application. Listing 4-5 shows the use of an internal stylesheet.

Listing 4-5: Using an internal stylesheet
<%@ Page Language="VB" %>

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>My ASP.NET Page</title>

<style type="text/css">
<!——
body {
font-family: Verdana;

}

a:link {
text-decoration: none;
color: blue;

}

a:hover {
text-decoration: underline;
color: red;

}

a:visited {
text-decoration: none;
color: blue;
}
-——>
</style>

</head>
<body>
<form id="forml" runat="server">
<div>
<a href="Default.aspx">Home</a>
</div>
</form>
</body>
</html>

107



Chapter 4

In this document, the internal stylesheet is set inside the opening and closing <head> elements. Although
this is not a requirement, it is considered best practice. The stylesheet itself is placed between <script>
tags with a type attribute defined as text/css.

HTML comment tags are included because not all browsers support internal stylesheets (it is generally
the older browsers that do not accept them). Putting HTML comments around the style definitions hides
these definitions from very old browsers. Except for the comment tags, the style definitions are handled
in the same way they are done in an external stylesheet.

HTML Server Controls

ASP.NET enables you to take HTML elements and, with relatively little work on your part, turn them
into server-side controls. Afterward, you can use them to control the behavior and actions of elements
implemented in your ASP.NET pages.

Of course, you can place any HTML you want in your pages. You have the option of using the HTML
placed in the page as a server-side control. You can also find a list of HTML elements contained in the
Toolbox of Visual Studio (shown in Figure 4-8).

Toolbox * 1 X

® Standard

+ Data

Validation

Navigation

Login

WebParts

= HTML

R Pointer

[ Input (Button)

[Z] Input (Reset)

# Input (Submit)

abl] Input (Text)

abl| Input (File)

%] Input (Passwaord)

Input (Chedkbox)

(% Input (Radia)
Input (Hidden)

g%ﬂ Textarea

H Table

|8 Image

=4 Select

+

—| Horizontal Rule

+ General

Figure 4-8

Dragging and dropping any of these HTML elements from the Toolbox to the Design or Source view of
your ASPNET page in the Document window simply produces the appropriate HTML element. For
instance, placing an HTML Button control on your page produces the following results in your code:

<input id="Buttonl" type="button" value="button" />

108



ASP.NET Server Controls and Client-Side Scripts

In this state, the Button control is not a server-side control. It is simply an HTML element and nothing
more. You can turn this into an HTML server control in a couple of different ways. In Design view, you
can right-click the element and select Run As Server Control from the menu. This causes a few things to
happen. The first thing is that a small green triangle appears on the visual element. The Button element,
after it has been turned into an HTML server control, looks like Figure 4-9.

Green triangle

||Lhutt|:|n E

Figure 4-9

In Source view, you simply change the HTML element by adding a runat="server" to the control:
<input id="Buttonl" type="button" value="button" runat="server" />

After it is converted to a server control, you can work with the selected element as you would work with
any of the Web server controls. For instance, double-clicking the button from the Design view of the
page generates a button-click event for the control. Listing 4-6 shows an example of some HTML server
controls.

Listing 4-6: Working with HTML server controls

VB
<%@ Page Language="VB" %>

<script runat="server">
Protected Sub Buttonl_ServerClick (ByVal sender As Object, _
ByVal e As System.EventArgs)
Response.Write("Hello " & Textl.Value)
End Sub
</script>

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>Using HTML Server Controls</title>

</head>
<body>
<form id="forml" runat="server">
<div>
What is your name?<br />
<input id="Textl" type="text" runat="server" />
<input id="Buttonl" type="button" value="Submit" runat="server"
onserverclick="Buttonl_ServerClick" />
</div>
</form>
</body>
</html>

(continued)

109



Chapter 4

Listing 4-6: (continued)

C#
<%@ Page Language="C#" %>

<script runat="server">
protected void Buttonl_ServerClick(object sender, EventArgs e)
{
Response.Write("Hello " + Textl.Value);
}
</script>

In this example, you can see two HTML server controls on the page. Both are simply typical HTML ele-
ments with the additional runat="server" attribute added. If you are working with HTML elements
as server controls, you must include an id attribute so that the server control can be identified in the
server-side code.

The Button control includes a reference to a server-side event using the onServerClick attribute. This
attribute points to the server-side event that is triggered when an end user clicks the button —in this
case, Buttonl_ServerClick. Within the Buttonl_ServerClick event, the value placed in the text box
is output by using the value property.

Looking at the HtmIControl Base Class

All the HTML server controls use a class that is derived from the HtmlControl base class (fully quali-
fied as System.Web.UI.HtmlControls). These classes expose many properties from the control’s
derived class. The following table details some of the properties available from this base class. Some of
these items are themselves derived from the base Control class.

Method or Property Description

Attributes Provides a collection of name/value of all the available attributes spec-
ified in the control, including custom attributes.

Disabled Allows you to get or set whether the control is disabled using a
Boolean value.

EnableTheming Enables you, using a Boolean value, to get or set whether the control
takes part in the page theming capabilities.

EnableViewState Allows you to get or set a Boolean value that indicates whether the
control participates in the page’s view state capabilities.

D Allows you to get or set the unique identifier for the control.

Page Allows you to gets a reference to the Page object that contains the
specified server control.

Parent Gets a reference to the parent control in the page control hierarchy.

Site Provides information about the Web site for which the server control
belongs.

110



ASP.NET Server Controls and Client-Side Scripts

Method or Property Description

SkinID When the EnableTheming property is set to True, the SkinID prop-
erty specifies the skin file that should be used in setting a theme.

Style Makes references to the CSS style collection that applies to the speci-
fied control.

TagName Provides the name of the element that is generated from the specified
control.

Visable Specifies whether the control is visible on the generated page.

You can find a more comprehensive list in the SDK.

Looking at the HtmIContainerControl Class

The HtmlContainerControl base class is used for those HTML classes that are focused on HTML
elements that can be contained within a single node. For instance, the <img>, <input>, and <link>
elements work from classes derived from the HtmlControl class.

Other HTML elements such as <a>, <form>, and <select>, require an opening and closing set of tags.
These elements use classes that are derived from the HtmlContainerControl class—a class specifi-
cally designed to work with HTML elements that require a closing tag.

Because the HtmlContainerControl class is derived from the HtmlControl class, you have all the
HtmlControl class’s properties and methods available to you as well as some new items that have been
declared in the HtmlContainerControl class itself. The most important of these are the InnerText
and InnerHtml properties:

a

Q

InnerHtml: Enables you to specify content that can include HTML elements to be placed
between the opening and closing tags of the specified control.

InnerText: Enables you to specify raw text to be placed between the opening and closing tags
of the specified control.

Looking at All the HTML Classes

It is quite possible to work with every HTML element because a corresponding class is available for each
one of them. The NET Framework documentation shows the following classes for working with your
HTML server controls:

a

a
a
a
a

HtmlAnchor controls the <a> element.

HtmlButton controls the <button> element.

HtmlForm controls the <form> element.

HtmlHead controls the <head> element. This is new to the .NET Framework 2.0.

HtmlImage controls the <img> element.

111



Chapter 4

0  HtmlInputButton controls the <input type="button"> element.

d  HtmlInputCheckBox controls the <input type="checkbox"> element.
Q HtmlInputFile controls the <input type="file"> element.

O  HtmlInputHidden controls the <input type="hidden"> element.

O  HtmlInputImage controls the <input type="image"> element.

a

HtmlInputPassword controls the <input type="password"> element. This is new to the
NET Framework 2.0.

(]

HtmlInputRadioButton controls the <input type="radio"> element.

(]

HtmlInputReset controls the <input type="reset"> element. This is new to the .NET
Framework 2.0.

(W

HtmlInputSubmit controls the <input type="submit"> element. This is new to the .NET
Framework 2.0.

HtmlInputText controls the <input type="text"> element.

HtmlLink controls the <1ink> element. This is new to the .NET Framework 2.0.
HtmlSelect controls the <select> element.

HtmlTable controls the <table> element.

HtmlTableCell controls the <td> element.

HtmlTableRow controls the <tr> element.

HtmlTextArea controls the <textarea> element.

U 00U U000

HtmlTitle controls the <title> element. This is new to the .NET Framework 2.0.

You gain access to one of these classes when you convert an HTML element to an HTML server control.
For example, convert the <title> element to a server control this way:

<title id="Titlel" runat="Server"/>

That gives you access to the Htm1Tit1e class for this particular HTML element. Using this class
instance, you can perform a number of tasks including providing a text value for the page title
dynamically:

VB
Titlel.Text = DateTime.Now.ToString/()

C#
Titlel.Text = DateTime.Now.ToString() ;

You can get most of the HTML elements you need by using these classes, but a considerable number of

other HTML elements are at your disposal that are not explicitly covered by one of these HTML classes. For
example, the HtmlGenericControl class provides server-side access to any HTML element you want.

112



ASP.NET Server Controls and Client-Side Scripts

Using the HtmIGenericControl Class

You should be aware of the importance of the HtmlGenericControl class; it gives you some capabili-
ties that you do not get from any other server control offered by ASP.NET. For instance, using the
HtmlGenericControl class, you can get server-side access to the <meta>, <p>, <span>, or other ele-
ments that would otherwise be unreachable.

Listing 4-7 shows you how to change the <meta> element in your page using the HtmlGenericControl
class.

Listing 4-7: Changing the <meta> element using the HtmlGenericControl class

VB
<%@ Page Language="VB" %>

<script runat="server">
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Metal.Attributes("Name") = "description"
Metal.Attributes ("CONTENT") = "Generated on: " & DateTime.Now.ToString ()
End Sub
</script>

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>Using the HtmlGenericControl class</title>
<meta id="Metal" runat="server" />
</head>
<body>
<form id="forml" runat="server">
<div>
The rain in Spain stays mainly in the plains.
</div>
</form>
</body>
</html>

C#
<%@ Page Language="C#" %>

<script runat="server">
protected void Page_Load(object sender, EventArgs e)
{

Metal.Attributes["Name"] = "description";
Metal.Attributes["CONTENT"] = "Generated on: " + DateTime.Now.ToString() ;
}
</script>

In this example, the page’s <meta> element is turned into an HTML server control with the addition of
the id and runat attributes. Because the HtmlGenericControl class can work with a wide range of
HTML elements, you cannot assign values to HTML attributes in the same manner as you do when
working with the other HTML classes (such as HtmlInputButton). You assign values to the attributes of
an HTML element through the use of the HtmlGenericControl class’s Attributes property, specify-
ing the attribute you are working with as a string value.

113



Chapter 4

The following is a partial result of running the example page:

<html xmlns="http://www.w3.0rg/1999/xhtml" >

<head>
<meta id="Metal" Name="description"
CONTENT="Generated on: 6/5/2006 2:42:52 PM"></meta>
<title>Using the HtmlGenericControl class</title>

</head>

By using the HtmlGenericControl class, along with the other HTML classes, you can manipulate every

element of your ASPNET pages from your server-side code.

Manipulating Pages and Server
Controls with JavaScript

Developers generally like to include some of their own custom JavaScript functions in their ASPNET
pages. You have a couple of ways to do this. The first is to apply JavaScript directly to the controls on
your ASP.NET pages. For example, look at a simple Label server control, shown in Listing 4-8, which
displays the current date and time.

Listing 4-8: Showing the current date and time

VB

Protected Sub Page_lLoad(ByVal sender As Object, ByVal e As System.EventArgs)
TextBoxl.Text = DateTime.Now.ToString ()

End Sub

C#

protected void Page_Load(object sender, EventArgs e) {
TextBoxl.Text = DateTime.Now.ToString() ;

}

This little bit of code displays the current date and time on the page of the end user. The problem is that
the date and time displayed are correct for the Web server that generated the page. If someone sits in the
Pacific time zone (PST), and the Web server is in the Eastern time zone (EST), the page won’t be correct
for that viewer. If you want the time to be correct for anyone visiting the site, regardless of where they
reside in the world, you can employ JavaScript to work with the TextBox control, as illustrated in
Listing 4-9.

Listing 4-9: Using JavaScript to show the current time for the end user
<%@ Page Language="VB" %>

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">

<title>Using JavaScript</title>
</head>

114



ASP.NET Server Controls and Client-Side Scripts

<body onload="javascript:document.forms[0] ['TextBoxl'].value=Date() ;">
<form id="forml" runat="server">
<div>
<asp:TextBox ID="TextBoxl" Runat="server" Width="300"></asp:TextBox>
</div>
</form>
</body>
</html>

In this example, even though you are using a standard TextBox server control from the Web server con-
trol family, you can get at this control using JavaScript that is planted in the onload attribute of the
<body> element. The value of the onload attribute actually points to the specific server control by using
the value of the 1D attribute from the server control: TextBox1. You can get at other server controls on
your page by employing the same methods. This bit of code produces the result illustrated in Figure 4-10.

&1 Using JavaScript - Microsoft Internet Explorer =0
T
y

Eile Edit View Favorites Tools Help

A =y n'_ . - 'y
> > lﬂ lELI 0|, ! Search . Favorites eI‘Medla -6’-& T i E

Address féj http: flocalhost: 42252 /ServerControlsDefault. aspx I . Go Links *

»

Sun Dec 05 21:52:03 2004

@;I] Done & Local intranet

Figure 4-10

ASP.NET uses the new Page.ClientScript property to register and place JavaScript functions on your
ASP.NET pages. Three of these methods are reviewed here. More methods and properties than just these
two are available through the ClientScript object, but these are the more useful ones. You can find the
rest in the SDK documentation.

The Page .RegisterStartupScript and the Page .RegisterClientScriptBlock methods
from the NET Framework 1.0/1.1 are now considered obsolete. Both of these possibilities for registering
scripts required a key/script set of parameters. Because two separate methods were involved, there was
an extreme possibility that some key name collisions would occur. The Page .ClientScript property
is meant to bring all the script registrations under one umbrella, making your code less error prone.

Using Page.ClientScript.RegisterClientScriptBlock

The RegisterClientScriptBlock method allows you to place a JavaScript function at the top of the
page. This means that the script is in place for the startup of the page in the browser. Its use is illustrated
in Listing 4-10.

115



Chapter 4

Listing 4-10: Using the RegisterClientScriptBlock method

VB
<%@ Page Language="VB" %>

<script runat="server">
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Dim myScript As String = "function AlertHello() { alert('Hello ASP.NET'); }"
Page.ClientScript.RegisterClientScriptBlock (Me.GetType (), "MyScript",
myScript, True)
End Sub
</script>

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>Adding JavaScript</title>
</head>
<body>
<form id="forml" runat="server">
<div>
<asp:Button ID="Buttonl" Runat="server" Text="Button"
OnClientClick="AlertHello()" />
</div>
</form>
</body>
</html>

C#
<%@ Page Language="C#" %>

<script runat="server">
protected void Page_Load(object sender, EventArgs e)
{
string myScript = @"function AlertHello() { alert('Hello ASP.NET'); }";
Page.ClientScript.RegisterClientScriptBlock (this.GetType(),
"MyScript", myScript, true);
}

</script>

From this example, you can see that you create the JavaScript function AlertHello () as a string called
myScript. Then using the Page.ClientScript.RegisterClientScriptBlock method, you program
the script to be placed on the page. The two possible constructions of the
RegisterClientScriptBlock method are the following:

0 RegisterClientScriptBlock (fype, key, script)

0 RegisterClientScriptBlock (type, key, script, script tag specification)
In the example from Listing 4-10, you are specifying the type as Me .GetType (), the key, the script to
include, and then a Boolean value setting of True so that .NET places the script on the ASP.NET page

with <script> tags automatically. When running the page, you can view the source code for the page to
see the results:

116



ASP.NET Server Controls and Client-Side Scripts

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head><title>

Adding JavaScript
</title></head>
<body>

<form method="post" action="JavaScriptPage.aspx" id="forml">
<div>
<input type="hidden" name="__VIEWSTATE"
value="/wEPDwWUKMTY3NzE5M]j IyMGRkiyYSRMg+bcXi9DiawYlbxndiTDo=" />
</div>

<script type="text/javascript">

<l--

function AlertHello() { alert('Hello ASP.NET'); }// -->
</script>

<div>
<input type="submit" name="Buttonl" value="Button" onclick="AlertHello();"
id="Buttonl" />
</div>
</form>
</body>
</html>

From this, you can see that the script specified was indeed included on the ASPNET page before the
page code. Not only were the <script> tags included, but the proper comment tags were added around
the script (so older browsers won’t break).

Using Page.ClientScript.RegisterStartupScript

The RegisterStartupScript method is not too much different from the RegisterClientScriptBlock
method. The big difference is that the RegisterStartupScript places the script at the bottom of the
ASPNET page instead of at the top. In fact, the RegisterStartupScript method even takes the same
constructors as the RegisterClientScriptBlock method:

0 RegisterStartupScript (type, key, script)

0  RegisterStartupScript (type, key, script, script tag specification)
So what difference does it make where the script is registered on the page? A lot, actually!
If you have a bit of JavaScript that is working with one of the controls on your page, in most cases you
want to use the RegisterStartupScript method instead of RegisterClientScriptBlock. For
example, you'd use the following code to create a page that includes a simple <asp: TextBox> control
that contains a default value of Hello ASP.NET.

<asp:TextBox ID="TextBoxl" Runat="server">Hello ASP.NET</asp:TextBox>

Then use the RegisterClientScriptBlock method to place a script on the page that utilizes the value
in the TextBox1 control, as illustrated in Listing 4-11.

117



Chapter 4

Listing 4-11: Improperly using the RegisterClientScriptBlock method

VB

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Dim myScript As String = "alert (document.forms[0] ['TextBoxl'].value);"
Page.ClientScript.RegisterClientScriptBlock (Me.GetType (), "myKey", myScript,

True)

End Sub

C#

protected void Page_Load(object sender, EventArgs e)

{

string myScript = @"alert (document.forms[0] ['TextBoxl'].value);";
Page.ClientScript.RegisterClientScriptBlock (this.GetType (),
"MyScript", myScript, true);

Running this page gives you a JavaScript error, as shown in Figure 4-11.

&1 Internet Explorer
2 Problems with this Web page might prevent it from being displayed propery

or functioning propery. In the future, you can display this message by
double-clicking the waming icon displayed in the status bar.

il Always display this message when a page containg emors.

] [Hide Details <= ]

Line: 20

Char: 1

Emor: ‘document forme. 0.TextBox1 . value' iz null or not an object
Code:0

LRL: http:/localhost: 591 53/R eutersClient/D ef aultd. azpx

Figure 4-11

The reason for the error is that the JavaScript function fired before the text box was even placed on the
screen. Therefore, the JavaScript function did not find TextBox1, and that caused an error to be thrown

by the page. Now try the RegisterstartupScript method shown in Listing 4-12.

Listing 4-12: Using the RegisterStartupScript method

VB
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Dim myScript As String = "alert (document.forms[0] ['TextBoxl'].value);"
Page.ClientScript.RegisterStartupScript (Me.GetType(), "myKey", myScript,
True)
End Sub

118



ASP.NET Server Controls and Client-Side Scripts

C#
protected void Page_Load(object sender, EventArgs e)
{
string myScript = @"alert (document.forms[0] ['TextBoxl'].value);";
Page.ClientScript.RegisterStartupScript (this.GetType(),
"MyScript", myScript, true);

This approach puts the JavaScript function at the bottom of the ASP.NET page, so when the JavaScript
actually starts, it finds the TextBox1 element and works as planned. The result is shown in Figure 4-12.

€] Using JavaScript - Microsoft Internet Explorer

- —, i
) 7 ) \ﬂ |§| _'\J 7/ ! Search ‘?;_'\':(Favorites @Media 6’-‘:‘ A

address | @] http:/focalhost: 59153/Ref Microsoft Internet Explorer [+ . Go nks *

Hello ASP.NET !} Hello ASP.NET

@;‘] Opening page http: /localhost: 59 153/ReutersCli :] ‘-_} Local intranet
Figure 4-12

Using Page.ClientScript.RegisterClientScriptinclude

The final method is RegisterClientScriptInclude. Many developers place their JavaScript inside a
. j s file, which is considered a best practice because it makes it very easy to make global JavaScript
changes to the application. You can register the script files on your ASP.NET pages through the use of
the RegisterClientScriptInclude method illustrated in Listing 4-13.

Listing 4-13: Using the RegisterClientScriptinclude method

VB
Dim myScript As String = "myJavaScriptCode.js"
Page.ClientScript.RegisterClientScriptInclude ("myKey", myScript)

C#

string myScript = "myJavaScriptCode.js"

Page.ClientScript.RegisterClientScriptInclude ("myKey", myScript) ;
This creates the following construction on the ASPNET page:

<script src="myJavaScriptCode.js" type="text/javascript"></script>

119



Chapter 4

Client-Side Callback

ASP.NET 2.0 includes a new client callback feature that enables you to retrieve page values and populate
them to an already-generated page without regenerating the page. This makes it possible to change val-
ues on a page without going through the entire postback cycle; that means you can update your pages
without completely redrawing the page. End users will not see the page flicker and reposition, and the
pages will have a flow more like the flow of a thick-client application.

To work with the new callback capability, you have to know a little about working with JavaScript. This
book does not attempt to teach you JavaScript. If you need to get up to speed on this rather large topic,
check out Wrox’s Beginning JavaScript, Second Edition, by Paul Wilton (ISBN: 0-7645-5587-1).

Comparing a Typical Postback to a Callback

Before you jump into some examples of the new callback feature, first look at a comparison to the cur-
rent postback feature of a typical ASPNET page.

When a page event is triggered on an ASPNET page that is working with a typical postback scenario, a
lot is going on. The diagram in Figure 4-13 illustrates the process.

In a normal postback situation, an event of some kind triggers an HTTP Post request to be sent to the
Web server. An example of such an event might be the end user clicking a button on the form. This
sends the HTTP Post request to the Web server, which then processes the request with the
IPostbackEventHandler and runs the request through a series of page events. These events include
loading the state (as found in the view state of the page), processing data, processing postback events,
and finally rendering the page to be interpreted by the consuming browser once again. The process com-
pletely reloads the page in the browser, which is what causes the flicker and the realignment to the top
of the page.

On the other hand, you have the alternative of using the new callback capabilities, as shown in the dia-
gram in Figure 4-14.

In this case, an event (again, such as a button click) causes the event to be posted to a script event han-

dler (a JavaScript function) that sends off an asynchronous request to the Web server for processing.
ICallbackEventHandler runs the request through a pipeline similar to what is used with the postback —
but you notice that some of the larger steps (such as rendering the page) are excluded from the process
chain. After the information is loaded, the result is returned to the script callback object. The script code
then pushes this data into the Web page using JavaScript’s capabilities to do this without refreshing the
page. To understand how this all works, look at the simple example in the following section.

120



ASP.NET Server Controls and Client-Side Scripts

Bl e Sgersa

) - X @ €| £

]

mmear to

P CORNUNTY

Find Wrox Books

b Ly bz
a1 Uty

nzkel
A
Search Tz
Euriomed e 2 530 KR
| Nesdio download cods?

8 0 GO ORI

PzPcommunity ;&é"
LOIny ol
Wrow Blogs

Factunie fabna s

grammar™

ERET HPWSLETTR

a0 pkng et s
debuggrg srpTng
S g a1

ek

=k avn wrHar e Ty

e
i

AnouT e

Brofessiaeal firacin
Ersganmizn

o Inerat

®] (2] | e e 53 5

Taplc: ASE
1— LEFAET 10 Betn Previesr Purzmass This oot
A @|merem e 5 50
v EH (LIRS TEEE = e
v
e

B S e w3 k] A5P
iamekzs tha: s b

Ew Santy vwake T rala Mrees

AT SV O b Pk maarced Sases et curPrbar B

Bruar 452 Feume

o Inerat

Figure 4-13

Page event
triggers postback
as POST Request

Init

Load State

Process Postback Data

Load

Postback Events

Save State

PreRender

Render

Response

Unload

121



Chapter 4

‘=S Enoks P CORNUNTY

Find Wrox Books
b Ly bz

Allisiss Uty

=4 LeInZume

& Wnst b s I
nehel ™
i

SearchTHzs:

Euriomed e 2 530 KR

|| Need o download cade?
T e S e T

p"-:pgommunity Im‘g

Wi Elngs

Factuniz b

s

A Wrertare Sra
T I

ERET HPWSLETTR

Featured Wrox Tifles

" tuch dosa,
won Dice =i

Brofessiaeal firacin
Ersganmizn

Figure 4-14

122

Script Event Handler

Script Callback

Async
& e request
Event triggers
callback to
script event
handler
Init
Load State

Process Postback Data

Load

Callback Event

Unload

Result
of callback
returned




ASP.NET Server Controls and Client-Side Scripts

Using the Callback Feature — A Simple Approach

Begin examining the callback feature by looking at how a simple ASPNET page uses it. For this exam-
ple, you have only an HTML button control and a TextBox server control (the Web server control ver-
sion). The idea is that when the end user clicks the button on the form, the callback service is initiated
and a random number is populated into the text box. Listing 4-14 shows an example of this in action.

Listing 4-14: Using the callback feature to populate a random value to a Web page

.aspx page (VB version)
<%@ Page Language="VB" AutoEventWireup="false" CodeFile="RandomNumber.aspx.vb"
Inherits="RandomNumber" %>

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>Callback Page</title>

<script type="text/javascript">
function GetNumber () {
UseCallback() ;
}

function GetRandomNumberFromServer (TextBoxl, context) {
document. forms[0] .TextBoxl.value = TextBoxl;
}
</script>

</head>
<body>
<form id="forml" runat="server">
<div>
<input id="Buttonl" type="button" value="Get Random Number"
onclick="GetNumber ()" />
<br />
<br />
<asp:TextBox ID="TextBoxl" Runat="server"></asp:TextBox>
</div>
</form>
</body>
</html>

VB (code-behind)
Partial Class RandomNumber
Inherits System.Web.UI.Page
Implements System.Web.UI.ICallbackEventHandler

Dim _callbackResult As String = Nothing;

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.Load

Dim cbReference As String = Page.ClientScript.GetCallbackEventReference (
Me, "arg", "GetRandomNumberFromServer", "context")
Dim cbScript As String = "function UseCallback(arg, context)" & _

(continued)

123



Chapter 4

Listing 4-14: (continued)

124

"{" & cbReference & ";" & "}"

Page.ClientScript.RegisterClientScriptBlock (Me.GetType (),
"UseCallback", cbScript, True)
End Sub

Public Sub RaiseCallbackEvent (ByVal eventArgument As String)

Implements System.Web.UI.ICallbackEventHandler.RaiseCallbackEvent

_callbackResult = Rnd().ToString()
End Function

Public Function GetCallbackResult() As String _
Implements System.Web.UI.ICallbackEventHandler.GetCallbackResult

Return _callbackResult
End Function

End Class

C# (code-behind)

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class RandomNumber : System.Web.UI.Page,

System.Web.UI.ICallbackEventHandler
private string _callbackResult = null;

protected void Page_Load(object sender, EventArgs e)

{
string cbReference = Page.ClientScript.GetCallbackEventReference (this,
"arg", "GetRandomNumberFromServer", "context");
string cbScript = "function UseCallback (arg, context)" +
"{" + cbReference + ";" + "}";

Page.ClientScript.RegisterClientScriptBlock (this.GetType (),
"UseCallback", cbScript, true);

public void RaiseCallbackEvent (string eventArg)
{

Random rnd = new Random() ;
_callbackResult = rnd.Next () .ToString() ;

public string GetCallbackResult ()



ASP.NET Server Controls and Client-Side Scripts

return _callbackResult;

When this page is built and run in the browser, you get the results shown in Figure 4-15.

&1 Callback Page - Microsoft Internet Explorer =IEd
File Edit View Favorites Tools Help i

5 ~ i |
> > \ﬂ |EL| .'\J P, | Search ‘gl\'l:/Favorites @Media 6’-& -

Address @j http: /localhost: 55153 /ReutersClient/RandomMumber. aspx il Go Links

»

»

l:  Get Handom Number |

0.7055475

&] Done % Local intranet

Figure 4-15

Clicking the button on the page invokes the client callback capabilities of the page, and the page then
makes an asynchronous request to the code behind of the same page. After getting a response from this
part of the page, the client script takes the retrieved value and places it inside the text box —all without
doing a page refresh!

Now take a look at the . aspx page, which simply contains an HTML button control and a TextBox
server control. Notice that a standard HTML button control is used because a typical <asp:button>
control does not work here. No worries. When you work with the HTML button control, just be sure to
include an onclick event to point to the JavaScript function that initiates this entire process:

<input id="Buttonl" type="button" value="Get Random Number"
onclick="GetNumber ()" />

You don’t have to do anything else with the controls themselves. The final thing to include in the page is
the client-side JavaScript functions to take care of the callback to the server-side functions. GetNumber ()
is the first JavaScript function that’s instantiated. It starts the entire process by calling the name of the
client script handler that is defined in the page’s code behind. A string type result from GetNumber () is
retrieved using the GetRandomNumberFromServer () function. GetRandomNumberFromServer () sim-
ply populates the string value retrieved and makes that the value of the Textbox control — specified by
the value of the 1D attribute of the server control (TextBox1):

<script type="text/javascript">
function GetNumber () {
UseCallback() ;
}

function GetRandomNumberFromServer (TextBoxl, context) {

125



Chapter 4

document.forms[0] .TextBoxl.value = TextBoxl;
}

</script>
Now turn your attention to the code behind.
The pPage class of the Web page implements the System.Web.UI.ICallbackEventHandler interface:
Partial Class RandomNumber
Inherits System.Web.UI.Page
Implements System.Web.UI.ICallbackEventHandler

' Code here

End Class

This interface requires you to implement a couple of methods—the RaiseCallbackEvent and the
GetCallbackResult methods, both of which work with the client script request.
RaiseCallbackEvent enables you to do the work of retrieving the value from the page, but the value
can be only of type string:

Public Sub RaiseCallbackEvent (ByVal eventArgument As String) _
Implements System.Web.UI.ICallbackEventHandler.RaiseCallbackEvent

_callbackResult = Rnd().ToString()
End Function

The GetCallbackResult is the method that actually grabs the returned value to be used:

Public Function GetCallbackResult() As String _
Implements System.Web.UI.ICallbackEventHandler.GetCallbackResult

Return _callbackResult
End Function

In addition, the Page_Load event includes the creation and placement of the client callback script man-
ager (the function that will manage requests and responses) on the client:

Dim cbReference As String = Page.GetCallbackEventReference (Me, "arg", _

"GetRandomNumberFromServer", "context")
Dim cbScript As String = "function UseCallback(arg, context)" & _
"{" & cbReference & ";" & "}"

Page.ClientScript.RegisterClientScriptBlock (Me.GetType (), _
"UseCallback", cbScript, True)

The function placed on the client for the callback capabilities is called UseCallback (). This string is
then populated to the Web page itself using the Page.ClientScript.RegisterClientScripBlock
that also puts <script> tags around the function on the page. Make sure that the name you use here is
the same name you use in the client-side JavaScript function presented earlier.

In the end, you have a page that refreshes content without refreshing the overall page. This opens the
door to a whole new area of possibilities. One caveat is that the callback capabilities described here

126



ASP.NET Server Controls and Client-Side Scripts

use XmIHTTP and, therefore, the client browser needs to support XmIHTTP (Microsoft’s Internet
Explorer and FireFox do support this feature). Because of this, the .NET Framework 2.0 introduces the
SupportsCallBack and the SupportsXmlHTTP properties. To ensure this support, you could put a

check in the page’s code behind when the initial page is being generated. It might look similar to the
following:

VB
If (Page.Request.Browser.SupportsXmlHTTP) Then

End If
C#
if (Page.Request.Browser.SupportsXmlHTTP == true) {

Using the Callback Feature with Parameters

Now you'll build a Web page that utilizes the callback feature but requires a parameter to retrieve a
returned value. At the top of the page, place a text box that gathers input from the end user, a button,
and another text box to populate the page with the result from the callback.

The page asks for a ZIP Code from the user and then uses the callback feature to instantiate an XML Web
service request on the server. The Web service returns the latest weather for that particular ZIP Code in a
string format. Listing 4-15 shows an example of the page.

Listing 4-15: Using the callback feature with a Web service

.aspx page (VB version)
<%@ Page Language="VB" AutoEventWireup="false" CodeFile="WSCallback.aspx.vb"
Inherits="WSCallback" %>

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>Web Service Callback</title>

<script type="text/javascript">
function GetTemp () {
var zipcode = document.forms[0].TextBoxl.value;
UseCallback(zipcode, "");

}
function GetTempFromServer (TextBox2, context) {
document . forms[0] .TextBox2.value = "Zipcode: " +
document.forms[0] .TextBoxl.value + " | Temp: " + TextBox2;
}
</script>
</head>
<body>
<form id="forml" runat="server">
<div>

<asp:TextBox ID="TextBoxl" Runat="server"></asp:TextBox>

(continued)

127



Chapter 4

Listing 4-15: (continued)

<br />
<input id="Buttonl" type="button" value="Get Temp" onclick="GetTemp()" />
<br />
<asp:TextBox ID="TextBox2" Runat="server" Width="398px"
Height="22px"></asp:TextBox>
<br />
<br />
</div>
</form>
</body>
</html>

VB (code-behind)

Partial Class WSCallback
Inherits System.Web.UI.Page
Implements System.Web.UI.ICallbackEventHandler
Dim _callbackResult As String = Nothing

Protected Sub Page_lLoad(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.Load

Dim cbReference As String = Page.ClientScript.GetCallbackEventReference (

Me, "arg", "GetTempFromServer", "context")
Dim cbScript As String = "function UseCallback(arg, context)" & _
"{" & cbReference & ";" & "}"

Page.ClientScript.RegisterClientScriptBlock (Me.GetType(),
"UseCallback", cbScript, True)
End Sub

Public Sub RaiseCallbackEvent (ByVal eventArgument As String)
Implements System.Web.UI.ICallbackEventHandler.RaiseCallbackEvent

Dim ws As New Weather.TemperatureService
_callbackResult = ws.GetTemp (eventArgument) .ToString()
End Sub
Public Function GetCallbackResult () As String _
Implements System.Web.UI.ICallbackEventHandler.GetCallbackResult

Return _callbackResult
End Function
End Class

C# (code-behind)

using System;

using System.Data;

using System.Configuration;
using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

128



ASP.NET Server Controls and Client-Side Scripts

using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class WSCallback : System.Web.UI.Page,
System.Web.UI.ICallbackEventHandler

{
protected void Page_Load(object sender, EventArgs e)

{
string cbReference = Page.ClientScript.GetCallbackEventReference (this,

"arg", "GetTempFromServer", "context");
string cbScript = "function UseCallback(arg, context)" +
"{" + cbReference + ";" + "}";

Page.ClientScript.RegisterClientScriptBlock (this.GetType(),
"UseCallback", cbScript, true);
}

public void RaiseCallbackEvent (string eventArg)

{
Weather.TemperatureService ws = new Weather.TemperatureService() ;

_callbackResult = ws.GetTemp (eventArg) .ToString() ;
}

public string GetCallbackResult ()

{
return _callbackResult;

What you don’t see on this page from the listing is that a Web reference has been made to a remote Web
service that returns the latest weather to the application based on a ZIP Code the user supplied.

To get at the Web service used in this demo, the location of the WSDL file at the time of this writing is
http://services.xmethods.net:80/soap/servlet/rpcrouter. For more information on

working with Web services in your ASP.NET applications, check out Chapter 26.

After building and running this page, you get the results illustrated in Figure 4-16.

&1 Untitled Page - Microsoft Internet Explorer D=
File Edit View Favorites Tools Help lf:'
M —. n »
J ? \ﬂ IELI '\J 7 ! Search ‘::( Favorites @ Media 6-4? -
Address ﬁj http:/flocalhost: 55153 /ReutersClient/Weather, aspx V Go Links **
63301

Zipcode: 63301 | Temp: 51

@'] Done ‘-_} Local intranet

Figure 4-16

129



Chapter 4

The big difference with the client callback feature is that this example sends in a required parameter.
That is done in the GetTemp () JavaScript function on the . aspx part of the page:

function GetTemp () {
var zipcode = document.forms[0].TextBoxl.value;
UseCallback(zipcode, "");

}

The JavaScript function shows the population that the end user input into TextBox1 and places its value
in a variable called zipcode that is sent as a parameter in the UseCallback () method.

This example, like the previous one, updates the page without doing a complete page refresh.

Summary

This chapter gave you one of the core building blocks of an ASPNET page — the server control. The
server control is an object-oriented approach to page development that encapsulates page elements into
modifiable and expandable components.

The chapter also showed you how to customize the look-and-feel of your server controls using
Cascading Style Sheets (CSS). Working with CSS in ASP.NET 2.0 is easy and quick, especially if you
have Visual Studio 2005 to assist you. Finally, this chapter looked at both HTML server controls and
adding JavaScript to your pages to modify the behaviors of your controls.

130



ASP.NET
Web Server Controls

Of the two types of server controls, HTML server controls and Web server controls, the second is
considered the more powerful and flexible. The previous chapter looked at how to use HTML
server controls in applications. HTML server controls enable you to manipulate HTML elements
from your server-side code. On the other hand, Web server controls are powerful because they are
not explicitly tied to specific HTML elements; rather, they are more closely aligned to the specific
functionality that you want to generate. As you will see throughout this chapter, Web server con-
trols can be very simple or rather complex depending on the control you are working with.

This chapter introduces some of the available Web server controls. It concentrates on the Web server
controls that were around during the ASP.NET 1.0/1.1 days; Chapter 6 explores the server controls
that are newly available in ASPNET 2.0. These chapters do not discuss every possible control
because some server controls are introduced and covered in other chapters throughout the book.

The controls that were originally introduced with ASP.NET 1.0/1.1 still work as they did before.
ASP.NET 2.0 is backward compatible with the previous two versions of ASPNET. This means that
the control code you wrote in those past versions will work in ASPNET 2.0, but some of the con-
trols you originally used may now have some additional functionality you may choose to take
advantage of. This chapter also looks at some of the new features that make these controls even
better today. Some of the improvements are minor, but others are quite dramatic.

An Overview of Web Server Controls

The ASPNET Web server control is its most-used component. Although you may have been pretty
excited by the HTML server controls shown in the previous chapter, Web server controls are defi-
nitely a notch higher in capability. They allow for a higher level of functionality that becomes more
apparent as you work with them.




Chapter 5

The HTML server controls provided by ASPNET work in that they map to specific HTML elements. You
control the output by working with the HTML attributes that the HTML element provides. The attributes
can be changed dynamically on the server side before they are finally output to the client. There is a lot of
power in this, and you have some HTML server control capabilities that you simply do not have when
you work with Web server controls.

Web server controls work differently. They don’t map to specific HTML elements, but instead enable
you to define functionality, capability, and appearance without the attributes that are available to you
through a collection of HTML elements. When constructing a Web page that is made up of Web server
controls, you are describing the functionality, the look-and-feel, and the behavior of your page elements.
You then let ASP.NET decide how to output this construction. The output, of course, is based on the
capabilities of the container that is making the request. This means that each requestor might see a dif-
ferent HTML output because each is requesting the same page with a different browser type or version.
ASP.NET takes care of all the browser detection and the work associated with it on your behalf.

Unlike HTML server controls, Web server controls are not only available for working with common Web
page form elements (such as text boxes and buttons), but they can also bring some advanced capabilities
and functionality to your Web pages. For instance, one common feature of many Web applications is a
calendar. No HTML form element places a calendar on your Web forms, but a Web server control from
ASP.NET can provide your application with a full-fledged calendar, including some advanced capabili-
ties. In the past, adding calendars to your Web pages was not a small programming task. Today, adding
calendars with ASP.NET is rather simple and is achieved with a single line of code!

Remember that when you are constructing your Web server controls, you are actually constructing a
control —a set of instructions — that is meant for the server (not the client). By default, all Web server con-
trols provided by ASP.NET use an asp: at the beginning of the control declaration. The following is a
typical Web server control:

<asp:Label ID="Labell" runat="server" Text="Hello World"></asp:Label>

Like HTML server controls, Web server controls require an ID attribute to reference the control in the
server-side code, as well as a Runat="server" attribute declaration. As you do for other XML-based
elements, you need to properly open and close Web server controls. In the preceding example, you can
see the <asp:Label> control has a closing </asp:Label> element associated with it. You could have
also closed this element using the following syntax:

<asp:Label ID="Labell" Runat="server" Text="Hello World" />

The rest of this chapter examines some of the Web server controls available to you in ASP.NET.

The Label Server Control

The Label server control is used to display text in the browser. Because this is a server control, you can
dynamically alter the text from your server-side code. As you saw from the preceding examples of using
the <asp:Label> control, the control uses the Text attribute to assign the content of the control as
shown here:

<asp:Label ID="Labell" Runat="server" Text="Hello World" />

132



ASP.NET Web Server Controls

Instead of using the Text attribute, however, you can place the content to be displayed between the
<asp:Label> elements like this:

<asp:Label ID="Labell" Runat="server">Hello World</asp:Label>

You can also provide content for the control through programmatic means, as illustrated in Listing 5-1.

Listing 5-1: Programmatically providing text to the Label control

VB
Labell.Text = "Hello ASP.NET"

C#
Labell.Text = "Hello ASP.NET";

The Label server control has always been a control that simply showed text. Now with ASP.NET 2.0, it
has a little bit of extra functionality. The big change is that you can now give items in your form hot-key
functionality (also known as accelerator keys). This causes the page to focus on a particular server control
that you declaratively assign to a specific hot-key press (for example, using Alt+N to focus on the first
text box on the form).

Ahot key is a quick way for the end user to initiate an action on the page. For instance, if you use
Microsoft Internet Explorer, you can press Ctrl+N to open a new instance of IE. Hot keys have always
been quite common in thick-client applications (Windows Forms), and now you can use them in
ASP.NET. Listing 5-2 shows an example of how to give hot-key functionality to two text boxes on a form.

Listing 5-2: Using the Label server control to provide hot-key functionality
<%@ Page Language="VB" %>

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>Label Server Control</title>
</head>
<body>
<form id="forml" runat="server">
<p>
<asp:Label ID="Labell" Runat="server" AccessKey="N"
AssociatedControlID="Textboxl">User<u>n</u>ame</asp:Label>
<asp:Textbox ID="TextBoxl" Runat="server"></asp:Textbox></p>
<p>
<asp:Label ID="Label2" Runat="server" AccessKey="P"
AssociatedControlID="Textbox2"><u>P</u>assword</asp:Label>
<asp:Textbox ID="TextBox2" Runat="server"></asp:Textbox></p>
<p>
<asp:Button ID="Buttonl" Runat="server" Text="Submit" />
</p>
</form>
</body>
</html>

133



Chapter 5

Hot keys are assigned with the AccessKey attribute. In this case, Labell uses N, and Label2 uses P. The
second new attribute for the Label control is the AssociatedControlID attribute. The String value
placed here associates the Label control with another server control on the form. The value must be one
of the other server controls on the form. If not, the page gives you an error when invoked.

With these two controls in place, when the page is called in the browser, you can press Alt+N or Alt+P to
automatically focus on a particular text box in the form. In Figure 5-1, HTML-declared underlines indi-
cate the letters to be pressed along with the Alt key to create focus on the control adjoining the text. This
is not required, but we highly recommend it because it is what the end user expects when working with
hot keys. In this example, the letter n in Username and the letter p in Password. are underlined.

&7 Label Server Control - Microsoft Internet Explorer == %]
File Edit View Favorites Tools Help ﬂ'

»

) Back 3] BNE 7o | S search FrFavorites @ Media 8 (v & B [
Address @htu::,r'ﬂocalhost:1}"32—1,r'\-'-s'eh.-‘-\pplication 1/Default.aspx M Go Links **

Username |

Password

ﬁj Done \-'J Local intranet

Figure 5-1

When working with hot keys, be aware that not all letters are available to use with the Alt key. Microsoft
Internet Explorer already uses Alt+E E, V, I, O, T, A, W, and H. If you use any of these letters, IE actions
supersede any actions you place on the page.

The Literal Server Control

The Literal server control works very much like the Label server control. This control was always used
in the past for text that you wanted to push out to the browser, but keep unchanged in the process (a lit-
eral state). A Label control alters the output by placing <span> elements around the text as shown:

<span id="Labell">Here is some text</span>
The Literal control just outputs the text without the <span> elements. In ASPNET 2.0, it includes the
new attribute Mode that enables you to dictate how the text assigned to the control is interpreted by the

ASP.NET engine.

If you place some HTML code in the string that is output (for instance, <b>Here is some text</b>), the
Literal control outputs just that and the consuming browser shows the text as bold:

Here is some text

134



ASP.NET Web Server Controls

Try using the Mode attribute as illustrated here:

<asp:Literal ID="Literall" Runat="server" Mode="Encode"
Text="<b>Here is some text</b>"></asp:Literal>

Adding Mode="Encode" encodes the output before it is received by the consuming application:

&1t ;b&gt;Label&lt; /b&gt;
Now, instead of the text being converted to a bold font, the <b> elements are displayed:

<b>Here is some text</b>
This is ideal if you want to display code in your application. Other values for the Mode attribute include
Transform and PassThrough. Transform looks at the consumer and includes or removes elements as
needed. For instance, not all devices accept HTML elements so, if the value of the Mode attribute is set to
Transform, these elements are removed from the string before it is sent to the consuming application. A

value of PassThrough for the Mode property means that the text is sent to the consuming application
without any changes being made to the string.

The TextBox Server Control

One of the main features of Web pages is to offer forms that end users can use to submit their informa-
tion for collection. The TextBox server control is one of the most used controls in this space. As its name
suggests, the control provides a text box on the form that enables the end user to input text. You can map
the TextBox control to three different HTML elements used in your forms.

First, the TextBox control can be used as a standard HTML text box, as shown in the following code
snippet:

<asp:TextBox ID="TextBoxl" Runat="server"></asp:TextBox>

This code creates a text box on the form that looks like the one shown in Figure 5-2.

[Hello World |
Figure 5-2

Second, the TextBox control can allow end users to input their passwords into a form. This is done by
changing the TextMode attribute of the TextBox control to Password, as illustrated here:

<asp:TextBox ID="TextBoxl" Runat="server" TextMode="Password"></asp:TextBox>
When asking end users for their passwords through the browser, it is best practice to provide a
text box that encodes the content placed in this form element. Using an attribute and value of

TextMode="Password" ensures that the text is encoded with either a star (*) or a dot, as shown in
Figure 5-3.

135



Chapter 5

Figure 5-3

Third, the TextBox server control can be used as a multiline text box. The code for accomplishing this
task is shown in the following example:

<asp:TextBox ID="TextBoxl" Runat="server" TextMode="MultiLine"
Width="300px" Height="150px"></asp:TextBox>

Giving the TextMode attribute a value of MultiLine creates a multilined text box in which the end user
can enter a larger amount of text in the form. The width and Height attributes set the size of the text
area, but these are optional attributes — without them, the text area is produced in its smallest size.
Figure 5-4 shows the use of the preceding code.

Hello World. Here is some really
long text that wraps!

Figure 5-4

When working with a multilined text box, be aware of the Wrap attribute. When set to True (which is
the default), the text entered into the text area wraps to the next line if needed. When set to False, the
end user can type continuously in a single line until she presses the Enter key, which brings the cursor
down to the next line.

Using the Focus() Method

Because the TextBox server control is derived from the base class of WebControl, one of the methods
available to it is Focus () —a new method introduced in version 2.0 of ASP.NET. The Focus () method
enables you to dynamically place the end user’s cursor in an appointed form element (not just the
TextBox control, but in any of the server controls derived from the WebControl class). With that said, it
is probably most often used with the TextBox control, as illustrated in Listing 5-3.

Listing 5-3: Using the Focus() method with the TextBox control

VB

Protected Sub Page_lLoad(ByVal sender As Object, ByVal e As System.EventArgs)
TextBoxl.Focus ()

End Sub

C#
protected void Page_Load(object sender, EventArgs e)
{

TextBoxl.Focus() ;

}

136



ASP.NET Web Server Controls

When the page using this method is loaded in the browser, the cursor is already placed inside of the text
box, ready for you to start typing. There’s no need to move your mouse to get the cursor in place so you
can start entering information in the form. This is ideal for those folks who take a keyboard approach to
working with forms.

Using AutoPostBack

ASP.NET pages work in an event-driven way. When an action on a Web page triggers an event, server-
side code is initiated. One of the more common events is an end user clicking a button on the form. If
you double-click the button in Design view of Visual Studio 2005, you can see the code page with the
structure of the Buttonl_Click event already in place. This is because OnC1lick is the most common
event of the Button control. Double-clicking the TextBox control constructs an OnTextChanged event.
This event is triggered when the end user moves the cursor focus outside the text box, either by clicking
another element on the page after entering something into a text box, or by simply tabbing out of the
text box. The use of this event is shown in Listing 5-4.

Listing 5-4: Triggering an event when a TextBox change occurs

VB
<%@ Page Language="VB" %>

<script runat="server">
Protected Sub TextBoxl_ TextChanged (ByVal sender As Object, _
ByVal e As System.EventArgs)

Response.Write ("OnTextChanged event triggered")
End Sub

Protected Sub Buttonl_Click(ByVal sender As Object, _
ByVal e As System.EventArgs)

Response.Write("OnClick event triggered")
End Sub
</script>

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>OnTextChanged Page</title>

</head>
<body>
<form id="forml" runat="server">
<div>
<asp:TextBox ID="TextBoxl" Runat="server" AutoPostBack="True"
OnTextChanged="TextBoxl_ TextChanged"></asp:TextBox>
<asp:Button ID="Buttonl" Runat="server" Text="Button"
OnClick="Buttonl Click" />
</div>
</form>
</body>
</html>

(continued)

137



Chapter 5

Listing 5-4: (continued)

C#
<%@ Page Language="C#" %>

<script runat="server">
protected void TextBoxl_ TextChanged (object sender, EventArgs e)
{
Response.Write ("OnTextChanged event triggered");

}

protected void Buttonl_Click(object sender, EventArgs e)
{

Response.Write("OnClick event triggered");
}

</script>

As you build and run this page, notice that you can type something in the text box; but once you tab out
of it, the OnTextChanged event is triggered and the code contained in the TextBox1_TextChanged
event runs. To make this work, you must add the AutoPostBack attribute to the TextBox control and set
it to True. This causes the Web page to look for any text changes prior to an actual page postback. For
the AutoPostBack feature to work, the browser viewing the page must support ECMAScript.

Using AutoCompleteType

You want the forms you build for your Web applications to be as simple to use as possible. You want to
make them easy and quick for the end user to fill out the information and proceed. If you make a form
too time consuming, the people who come to your site may leave without completing it.

One of the great capabilities for any Web form is smart auto-completion. You may have seen this your-
self when you visited a site for the first time. As you start to fill out information in a form, a drop-down
list appears below the text box as you type showing you a value that you have typed in a previous form.
The plain text box you were working with has become a smart text box. Figure 5-5 shows an example of
this feature.

e
evjen@yahoo.com

Figure 5-5

A great new addition to ASP.NET 2.0 is the AutoCompleteType attribute, which enables you to apply
the auto-completion feature to your own forms. You have to help the text boxes on your form to recog-
nize the type of information that they should be looking for. What does that mean? Well, first take a look
at the possible values of the AutoCompleteType attribute:

BusinessCity Disabled HomeStreetAddress
BusinessCountryRegion DisplayName HomeZipCode
BusinessFax Email JobTitle
BusinessPhone FirstName LastName
BusinessState Gender MiddleName

138



ASP.NET Web Server Controls

BusinessStateAddress HomeCity None
BusinessUrl HomeCountryRegion Notes
BusinessZipCode HomeFax Office
Cellular Homepage Pager
Company HomePhone Search
Department HomeState

From this list, you can see that if your text box is asking for the end user’s home street address, you
want to use the following in your TextBox control:

<asp:TextBox ID="TextBoxl" Runat="server"
AutoCompleteType="HomeStreetAddress"></asp:TextBox>

As you view the source of the text box you created, you can see that the following construction has
occurred:

<input name="TextBoxl" type="text" vcard_name="vCard.Home.StreetAddress"
id="TextBoxl" />

This feature makes your forms easier to work with. Yes, it is a simple thing, but sometimes it is the little
things that keep the viewers coming back again and again to your Web site.

The Button Server Control

Another common control for your Web forms is a button that can be constructed using the Button server
control. Buttons are the usual element used to submit forms. Most of the time you are simply dealing with
items contained in your forms through the Button control’s onclick event, as illustrated in Listing 5-5.

Listing 5-5: The Button control’s OnClick event

VB

Protected Sub Buttonl_Click(ByVal sender As Object, ByVal e As System.EventArgs)
' Code here
End Sub

C#
protected void Buttonl_Click(object sender, EventArgs e)
{
// Code here
}

The Button control is one of the easier controls to use, but there are a couple of properties of which you
must be aware: CausesvValidation and CommandName. They are discussed in the following sections.

The CausesValidation Property

If you have more than one button on your Web page and you are working with the validation server con-
trols, you don’t want to fire the validation for each button on the form. Setting the Causesvalidation
property to False is a way to use a button that will not fire the validation process. This is explained in
more detail in Chapter 7.

139



Chapter 5

The CommandName Property

You can have multiple buttons on your form all working from a single event. The nice thing is that you
can also tag the buttons so that the code can make logical decisions based on which button on the form
was clicked. You must construct your Button controls in the manner illustrated in Listing 5-6 to take
advantage of this behavior.

Listing 5-6: Constructing multiple Button controls to work from a single function

<asp:Button ID="Buttonl" Runat="server" Text="Button 1"
OnCommand="Button_Command" CommandName="DoSomethingl" />
<asp:Button ID="Button2" Runat="server" Text="Button 2"
OnCommand="Button_Command" CommandName="DoSomething2" />

Looking at these two instances of the Button control, you should pay attention to several things. The first
thing to notice is what isn’t present —any attribute mention of an onclick event. Instead you use the
OnCommand event, which points to an event called Button_Command. You can see that both Button con-
trols are working from the same event. How does the event differentiate between the two buttons being
clicked? Through the value placed in the CommandName property. In this case, they are indeed separate
values—DoSomethingl and DoSomething?2.

The next step is to create the Button_Command event to deal with both these buttons by simply typing
one out or by selecting the Command event from the drop-down list of available events for the Button
control from the code view of Visual Studio. In either case, you should end up with an event like the one
shown in Listing 5-7.

Listing 5-7: The Button_Command event

VB
Protected Sub Button_Command(ByVal sender As Object, _
ByVal e As System.Web.UI.WebControls.CommandEventArgs)

Select Case e.CommandName
Case "DoSomethingl"
Response.Write("Button 1 was selected")
Case "DoSomething2"
Response.Write("Button 2 was selected")
End Select

End Sub

C#
protected void Button_Command (Object sender,
System.Web.UI.WebControls.CommandEventArgs e)
{
switch (e.CommandName)
{
case ("DoSomethingl") :
Response.Write("Button 1 was selected");
break;
case ("DoSomething2") :
Response.Write("Button 2 was selected");

140



ASP.NET Web Server Controls

break;

}

Notice that this method uses System.Web.UI.WebControls.CommandEventArgs instead of the typical
System.EventArgs. This gives you access to the member CommandName used in the Select Case
(switch) statement as e. CommandName. Using this object, you can check for the value of the
CommandName property used by the button that was clicked on the form and take a specific action

based upon the value passed.

You can add some parameters to be passed in to the Command event beyond what is defined in the
CommandName property. You do this by using the Button control’s CommandArgument property. Adding
values to the property enables you to define items a bit more granularly if you want. You can get at this
value via server-side code using e . CommandArgument from the CommandEventArgs object.

Buttons That Work with Client-Side JavaScript

Buttons are frequently used for submitting information and causing actions to occur on a Web page.
Before ASPNET 1.0/1.1, people intermingled quite a bit of JavaScript in their pages to fire JavaScript
events when a button was clicked. The process became more cumbersome in ASP.NET 1.0/1.1, but now
with ASP.NET 2.0, it is much easier.

You can create a page that has a JavaScript event, as well as a server-side event, triggered when the but-
ton is clicked, as illustrated in Listing 5-8.

Listing 5-8: Two types of events for the button

VB
<%@ Page Language="VB" %>

<script runat="server">
Protected Sub Buttonl_Click(ByVal sender As Object, _
ByVal e As System.EventArgs)

Response.Write ("Postback!")
End Sub
</script>

<script language="javascript">
function AlertHello()
{
alert('Hello ASP.NET') ;
}

</script>

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">

<title>Button Server Control</title>
</head>
<body>

<form id="forml" runat="server">

(continued)

141



Chapter 5

Listing 5-8: (continued)

<asp:Button ID="Buttonl" Runat="server" Text="Button"
OnClientClick="AlertHello()" OnClick="Buttonl Click" />
</form>
</body>
</html>

C#
<%@ Page Language="C#" %>

<script runat="server">
protected void Buttonl_Click(object sender, EventArgs e)
{
Response.Write("Postback!") ;
}

</script>

The first thing to notice is the new attribute for the Button server control: onclientClick. It points to
the client-side function, unlike the onC1lick attribute that points to the server-side event. This example
uses a JavaScript function called AlertHello ().

One cool thing about Visual Studio 2005 is that now it can work with server-side script tags that are right
alongside client-side script tags. It all works together seamlessly. In the example, after the JavaScript
alert dialog is issued (see Figure 5-6) and the end user clicks OK, the page posts back as the server-side
event is triggered.

€] Button Server Control - Microsoft Internet Explorer =g
File Edit View Favorites Tools Help ﬁ'
p —~ »
Qbiack - O - [{ [&) @ | P search FrFavorites @ Meda € | v s B [
Address @ http:/localhost: 17324/ wWebApplication 1/Default. aspx M Go Links *

Microsoft Internet Explorer &)
!} Hello ASP_NET

@ Done ‘:J Local intranet
Figure 5-6

Another new and exciting attribute for the button controls is PostBackUr1l. It enables you to perform
cross-page posting, instead of simply posting your ASP.NET pages back to the same page, as shown in
the following example:

<asp:Button ID="Button2" Runat="server" Text="Submit page to Page2.aspx"
PostBackUrl="Page2.aspx" />

Cross-page posting is covered in greater detail in Chapter 3.

142



ASP.NET Web Server Controls

The LinkButton Server Control

The LinkButton server control is a variation of the Button control. It is basically the same except that the
LinkButton control takes the form of a hyperlink. But, it isn’t a typical hyperlink. When the end user
clicks the link, it behaves like a button. This is an ideal control to use if you have a large number of but-
tons on your Web form.

A LinkButton server control is constructed as follows:

<asp:LinkButton ID="LinkButtonl" Runat="server" OnClick="LinkButtonl_ Click">
Submit your name to our database
</asp:LinkButton>

Using the LinkButton control gives you the results shown in Figure 5-7.

& Untitled Page - Microsoft Internet Explorer =/aE
File Edit View Favorites Tools Help o
- — n B
> > Iﬂ \ELI ..‘J y, ! Search ‘:\?’ Favorites wer Media 6“3
Address @j http:/flocalhost: 42252/ServerControls/Default.aspx il . Go Links

Submit vour name to our database

&] Done & Local intranet

Figure 5-7

The ImageButton Server Control

The ImageButton control is also a variation of the Button control. It is almost exactly the same as the
Button control except that it enables you to use a custom image as the form’s button instead of the typi-
cal buttons used on most forms. This means that you can create your own buttons as images and the end
users can click the images to submit form data. A typical construction of the ImageButton is as follows:

<asp:ImageButton ID="ImageButtonl" Runat="server"
OnClick="ImageButtonl_ Click" ImageUrl="MyButton.jpg" />

The ImageButton control specifies the location of the image used by using the ImageUrl property. From
this example, you can see that the ImageUr1l points to MyButton. jpg. The big difference between the
ImageButton control and the LinkButton or Button controls is that ImageButton takes a different con-
struction for the onCclick event. It is shown in Listing 5-9.

143



Chapter b

Listing 5-9: The Click event for the ImageButton control

VB

Protected Sub ImageButtonl_Click(ByVal sender As Object,
ByVal e As System.Web.UI.WebControls.ImageClickEventArgs)
' Code here

End Sub

C#
protected void ImageButtonl Click(object sender,
System.Web.UI.WebControls.ImageClickEventArgs e)

// Code here

The construction uses the ImageClickEventArgs object instead of the System.EventArgs object usu-
ally used with the LinkButton and Button controls. You can use this object to determine where in the

image the end user clicked by using both e.x and e. Y coordinates.

The GO and PLAY buttons on the page shown in Figure 5-8 are image buttons.

(€1 Latest News and Financial Informati

-

| Reuters.com - Microsoft | Explorer SO
File Edit View Favorites Tools Help '.,'.
A | = e ) & \ g
Q- ©Q MR G P Joroes @ - FLJE B
Agcress [§] http:/ftoday.reuters. comjnews/defauit. aspx A1 ERE R
-~
REUTERS :59 About Reuters | Products & Services | Customer Zone | Careers
KNOW. NOW.
PICTURE STORIES EYES ON THE WORLD 3
ON
REUTERS.COM
@) change Edition Quote | [EE) symbol Lookun | | Search (co) Login/Register | Help & tnfo | W
Updsted: Thu 12 May 2008 | 11:84 AM ET Gat your wasther foracast
ECTTRME, Dissidents seek to spiit  ETTWETCNICTETY pepremmmn
ESEUICRNNE Morgan Stanley TR THE
hu May 12, 2 25 AN
_ N 10295.38 1976.12 1170.09 ws
Business By Joseph A
Giannone R oM
u.s.
International NEW YORK ONLY ON REUTERS REUTERS‘COMI
Politics (Reuters) - A group of retired EXCHANGES & TRADING v VISIT TODAY!
Morgan Stanley executives .
Entert nt ° ; ; . L needs
e lobbying Chief Executve Philip 1 b rafonatead and comaolted
Todmology & Sceaco Purcell's ouster on Thursday _ NYSE CEQ dehn Thain
Sports called for the company's
Health institutional securities division to MORE >
= - be spun off and led by many
Workd Criwoe exacutives that recently resigned R
Oddly Enough from the firm. Full Article Video AMERITRADE ‘A
Life & Leisure
The News Room NEWS
Vieather { Retailers Post Strong
- Europeans warn Iran not Sales
e to resume nuclear work |
Pictures Thu May 12. 2005 %:04 AM ET ‘\ [w]
& D Intermet
Figure 5-8

144



ASP.NET Web Server Controls

The HyperLink Server Control

The HyperLink server control enables you to programmatically work with any hyperlinks on your Web
pages. Hyperlinks are links that allow end users to transfer from one page to another. You can set the
text of a hyperlink using the control’s Text attribute:

<asp:HyperLink ID="HyperLinkl" Runat="server" Text="Go to this page here"
NavigateUrl="~/Default2.aspx"></asp:HyperLink>

This server control creates a hyperlink on your page with the text Go to this page here. When the link
is clicked, the user is redirected to the value that is placed in the NavigateUr1l property (in this case, the
Default2.aspx page).

The interesting thing about the HyperLink server control is that it can be used for images as well as text.
Instead of using the Text attribute, it uses the ImageUr1l property:

<asp:HyperLink ID="HyperLinkl" Runat="server" ImageUrl="~/MyLinkImage.gif"
NavigateUrl="~/Default2.aspx"></asp:HyperLink>

The HyperLink control is a great way to dynamically place hyperlinks on a Web page based either upon
user input in a form or on database values that are retrieved when the page is loaded.

The DropDownlList Server Control

The DropDownlList server control enables you to place an HTML select box on your Web page and pro-
gram against it. It’s ideal when you have a large collection of items from which you want the end user to
select a single item. It is usually used for a medium-to-large-sized collection. If the collection size is rela-
tively small, consider using the RadioButtonList server control (described later in this chapter).

The select box generated by the DropDownlList control displays a single item and allows the end user to
make a selection from a larger list of items. Depending on the number of choices available in the select
box, the end user may have to scroll through a list of items. Note that the appearance of the scroll bar in
the drop-down list is automatically created by the browser depending on the browser version and the
number of items contained in the list.

Here’s the code for DropDownList control:

<asp:DropDownList ID="DropDownListl" Runat="server">
<asp:ListItem>Car</asp:ListItem>
<asp:ListItem>Airplane</asp:ListItem>
<asp:ListItem>Train</asp:ListItem>
</asp:DropDownList>

This code generates a drop-down list in the browser, as shown in Figure 5-9.

Nﬁﬁ& ............
Train

Figure 59

145



Chapter 5

The DropDownlList control comes in handy when you start binding it to various data stores. The data
stores can either be arrays, database values, XMLfile values, or values found elsewhere. For an example
of binding the DropDownList control, look at dynamically generating a DropDownList control to one of
two available arrays, as shown in Listing 5-10.

Listing 5-10: Dynamically generating a DropDownlList control from an array

VB
<%@ Page Language="VB" %>

<script runat="server">
Protected Sub DropDownListl_ SelectedIndexChanged(ByVal sender As Object,
ByVal e As System.EventArgs)
Dim CarArray() As String = {"Ford", "Honda", "BMW", "Dodge"}
Dim AirplaneArray() As String = {"Boeing 777", "Boeing 747", "Boeing 737"}
Dim TrainArray() As String = {"Bullet Train", "Amtrack", "Tram"}

If DropDownListl.SelectedvValue = "Car" Then
DropDownList2.DataSource = CarArray

ElseIf DropDownListl.SelectedValue = "Airplane" Then
DropDownList2.DataSource = AirplaneArray

Else
DropDownList2.DataSource = TrainArray

End If

DropDownList2.DataBind ()
DropDownList2.Visible = True
End Sub

Protected Sub Buttonl_Click(ByVal sender As Object,
ByVal e As System.EventArgs)

Response.Write("You selected <b>" & _
DropDownListl.SelectedValue.ToString() & ": " &
DropDownList2.SelectedValue.ToString () & "</b>")

End Sub
</script>

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>DropDownList Page</title>
</head>
<body>
<form id="forml" runat="server">
<div>
Select transportation type:<br />
<asp:DropDownList ID="DropDownListl" Runat="server"
OnSelectedIndexChanged="DropDownListl_SelectedIndexChanged"
AutoPostBack="true">
<asp:ListItem>Select an Item</asp:ListItem>
<asp:ListItem>Car</asp:ListItem>
<asp:ListItem>Airplane</asp:ListItem>
<asp:ListItem>Train</asp:ListItem>
</asp:DropDownList>&nbsp;

146



ASP.NET Web Server Controls

<asp:DropDownList ID="DropDownList2" Runat="server" Visible="false">
</asp:DropDownList>

<asp:Button ID="Buttonl" Runat="server" Text="Select Options"
OnClick="Buttonl_Click" />

</div>
</form>

</body>
</html>

C#

<%@ Page Language="C#" %>

<script runat="server">
protected void DropDownListl_SelectedIndexChanged(object sender, EventArgs e)

{

string[] CarArray = new string[4] {"Ford", "Honda", "BMW", "Dodge"};

string[] AirplaneArray = new string[3] {"Boeing 777", "Boeing 747",
"Boeing 737"};

string[] TrainArray = new string[3] {"Bullet Train", "Amtrack", "Tram"};

if (DropDownListl.SelectedvValue == "Car") {
DropDownList2.DataSource = CarArray; }

else if (DropDownListl.SelectedValue == "Airplane") {
DropDownList2.DataSource = AirplaneArray; }

else {

DropDownList2.DataSource = TrainArray;

DropDownList2.DataBind() ;
DropDownList2.Visible = true;

protected void Buttonl_Click(object sender, EventArgs e)

{

}

Response.Write("You selected <b>" +
DropDownListl.SelectedvValue.ToString() + ": " +
DropDownList2.Selectedvalue.ToString() + "</b>");

</script>

In this example, the second drop-down list is generated based upon the value selected from the first
drop-down list. For instance, selecting Car from the first drop-down list dynamically creates a second
drop-down list on the form that includes a list of available car selections.

This is possible because of the use of the AutoPostBack feature of the DropDownList control. When the
AutoPostBack property is set to True, the method provided through the onselectedIndexChanged
event is fired when a selection is made. In the example, the DropDownList1_SelectedIndexChanged
event is fired, dynamically creating the second drop-down list.

In this method, the content of the second drop-down list is created in a string array and then bound to
the second DropDownList control through the use of the DataSource property and the bataBind ()
method.

147



Chapter 5

When built and run, this page looks like the one shown in Figure 5-10.

&1 DropDownList Page - Microsoft Internet Explorer =J@Ed
Eile Edit View Favorites Tools Help o
. - e ) ) . »
e Back - 2} ﬂ \ELI ..‘J 7 ! Search ‘:__/_\.:/ Favorites @Medla -6:‘1 T
address @] http:/flocalhost: 42252/ServerCantrols/Default. aspx v . Go |Links *

You selected Airplane: Boeing 777

Select transportation type:

Airplane |v| |Boeing 777 V Select Options

&] Done % Local intranet

Figure 5-10

Visually Removing Items from a Collection

The DropDownlList, ListBox, CheckBoxList, and RadioButtonList server controls give you the capability
to visually remove items from the collection displayed in the control, although you can still work with
the items that aren’t displayed in your server-side code.

The ListBox, CheckBoxList, and RadioButtonList controls are discussed shortly in this chapter.
For a quick example of removing items, create a drop-down list with three items, including one that you

won't display. On the postback, however, you can still work with the ListItem’s Value or Text prop-
erty, as illustrated in Listing 5-11.

Listing 5-11: Disabling certain Listitems from a collection

VB
<%@ page language="VB" %>

<script runat="server">
Protected Sub DropDownListl_ SelectedIndexChanged(ByVal sender As Object, _
ByVal e As System.EventArgs)
Response.Write("You selected item number " & _
DropDownListl.SelectedValue & "<br>")
Response.Write("You didn't select item number " & _
DropDownListl.Items (1) .Value)
End Sub
</script>

<html>
<head runat="server">

<title>DropDownList Server Control</title>
</head>

148



ASP.NET Web Server Controls

<body>
<form id="forml" runat="server">
<asp:DropDownList ID="DropDownListl" Runat="server" AutoPostBack="True"
OnSelectedIndexChanged="DropDownListl_SelectedIndexChanged">
<asp:ListItem Value="1">First Choice</asp:ListItem>
<asp:ListItem Value="2" Enabled="False">Second Choice</asp:ListItem>
<asp:ListItem Value="3">Third Choice</asp:ListItem>
</asp:DropDownList>
</form>
</body>
</html>

C#
<%@ Page Language="C#" %>

<script runat="server">
protected void DropDownListl_ SelectedIndexChanged(object sender, EventArgs e)
{
Response.Write("You selected item number " +
DropDownListl.Selectedvalue + "<br>");
Response.Write("You didn't select item number " +
DropDownListl.Items[1].Value) ;

}
</script>

From the code, you can see that the <asp:ListItem> element has a new attribute: Enabled. The
Boolean value given to this element dictates whether an item in the collection is displayed. If you use
Enabled="False", the item is not displayed, but you still have the capability to work with the item in
the server-side code displayed in the DropDownList1_SelectedIndexChanged event. The result of the
output from these Response .Write statements is shown in Figure 5-11.

&1 DropDownList Server Control - Microsoft Internet Explorer =Ed
File Edit View Favorites Tools Help :,'
Qoack - © - [ &) @0 | P search FrFavoites @ Meda € | v i B ) =
Address |:§| http: /localhost: 17924/ WebApplication 1/Default. aspx M Go Links >

You selected item number 3
You didn't select item number 2

@ Done ‘-'J Local intranet

Figure 5-11

149



Chapter 5

The ListBox Server Control

The ListBox server control has a function similar to the DropDownList control. It displays a collection
of items. The ListBox control behaves differently from the DropDownList control in that it displays
more of the collection to the end user, and it enables the end user to make multiple selections from the
collection —something that isn’t possible with the DropDownList control.

A typical ListBox control appears in code as follows:

<asp:ListBox ID="ListBoxl" Runat="server">
<asp:ListItem>Hematite</asp:ListItem>
<asp:ListItem>Halite</asp:ListItem>
<asp:ListItem>Limonite</asp:ListItem>
<asp:ListItem>Magnetite</asp:ListItem>
</asp:ListBox>

This generates the browser display illustrated in Figure 5-12.

Hematite
Halite
Limonite
Magnetite

Figure 5-12

Allowing Users to Select Multiple Items

You can use the SelectionMode attribute to let your end users make multiple selections from what is
displayed by the ListBox control. Here’s an example:

<asp:ListBox ID="ListBoxl" Runat="server" SelectionMode="Multiple">
<asp:ListItem>Hematite</asp:ListItem>
<asp:ListItem>Halite</asp:ListItem>
<asp:ListItem>Limonite</asp:ListItem>
<asp:ListItem>Magnetite</asp:ListItem>

</asp:ListBox>

The possible values of the SelectionMode property include Single and Multiple. Setting the value
toMultiple allows the end user to make multiple selections in the list box. The user must hold down
either the Ctrl or Shift keys while making selections. Holding down the Ctrl key enables the user to
make a single selection from the list while maintaining previous selections. Holding down the Shift key
enables a range of multiple selections.

An Example of Using the ListBox Control

The ListBox control shown in Listing 5-12 allows multiple selections to be displayed in the browser
when a user clicks the Submit button. The form should also have an additional text box and button at
the top that enables the end user to add additional items to the ListBox.

150



ASP.NET Web Server Controls

Listing 5-12: Using the ListBox control

VB
<%@ Page Language="VB" %>

<script runat="server">
Protected Sub Buttonl_Click(ByVal sender As Object,
ByVal e As System.EventArgs)

ListBoxl.Items.Add (TextBoxl.Text.ToString())
End Sub

Protected Sub Button2_Click(ByVal sender As Object,
ByVal e As System.EventArgs)

Labell.Text = "You selected from the ListBox:<br>"
For Each 1i As ListItem In ListBoxl.Items
If 1li.Selected = True Then
labell.Text += 1li.Text & "<br>"
End If
Next
End Sub
</script>

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>Using the ListBox</title>
</head>
<body>
<form id="forml" runat="server">
<div>
<asp:TextBox ID="TextBoxl" Runat="server"></asp:TextBox>
<asp:Button ID="Buttonl" Runat="server" Text="Add an additional item"
OnClick="Buttonl_Click" />
<br />
<br />

<asp:ListBox ID="ListBoxl" Runat="server" SelectionMode="multiple">
<asp:ListItem>Hematite</asp:ListItem>
<asp:ListItem>Halite</asp:ListItem>
<asp:ListItem>Limonite</asp:ListItem>
<asp:ListItem>Magnetite</asp:ListItem>
</asp:ListBox>
<br />
<br />
<asp:Button ID="Button2" Runat="server" Text="Submit"
OnClick="Button2_ Click" />
<br />
<br />
<asp:Label ID="Labell" Runat="server"></asp:Label>
</div>
</form>
</body>
</html>

(continued)

151



Chapter 5

Listing 5-12: (continued)

C#
<%@ Page Language="C#" %>

<script runat="server">
protected void Buttonl_Click(object sender, EventArgs e)
{
ListBoxl.Items.Add(TextBoxl.Text.ToString());
}

protected void Button2_Click(object sender, EventArgs e)
{

Labell.Text = "You selected from the ListBox:<br>";
foreach (ListItem 1i in ListBoxl.Items) {
if (li.Selected == true) {

Labell.Text += 1li.Text + "<br>";

}
}

</script>

This is an interesting example. First, some default items (four common minerals) are already placed
inside the ListBox control. However, the text box and button at the top of the form allow the end user to
add additional minerals to the list. Users can then make one or more selections from the ListBox, includ-
ing selections from the items that they dynamically added to the collection. After a user makes his selec-
tion and clicks the button, the Button2_Click event iterates through the ListItem instances in the
collection and displays only the items that have been selected.

This control works by creating an instance of a ListItem object and using its Selected property to see
if a particular item in the collection has been selected. The use of the ListItem object is not limited to
the ListBox control (although that is what is used here). You can dynamically add or remove items from
a collection and get at items and their values through the use of the ListItem object in the
DropDownlList, CheckBoxList, and RadioButtonList controls as well. It is a list-control feature.

When this page is built and run, you get the results presented in Figure 5-13.

Adding Items to a Collection

To add items to the collection, you can use the following short syntax:
ListBoxl.Items.Add(TextBoxl.Text)

Look at the source code created in the browser, and you should see something similar to the following
generated dynamically:

<select size="4" name="ListBoxl" multiple="multiple" id="ListBoxl">
<option value="Hematite">Hematite</option>
<option value="Halite">Halite</option>
<option value="Limonite">Limonite</option>
<option value="Magnetite">Magnetite</option>
<option value="0Olivine">0Olivine</option>
</select>

152



ASP.NET Web Server Controls

1 Using the ListBox - Microsoft Internet Explorer B[=)]]
T
"

File Edit View Favorites Tools Help

A = L ) . A
eBack M \ﬂ Igl | S Search .[ Favorites @Medla 6:“ =

Address Ej http:/flocalhost: 42252 /ServerControls/Default. aspx ] . Go Links **

2

Pica |___ Add an additional item |

Hematite ||
Halite

Limonite
Magnetite v |

You selected from the ListBox:
Hematite

Limonite

Pica

&] Done & Local intranet

Figure 5-13

You can see that the dynamically added value is a text item, and you can see its value. You can also add
instances of the ListItem object to get different values for the item name and value:

VB
ListBoxl.Items.Add(New ListItem("Olivine", "MG2SIO4"))

C#
ListBoxl.Items.Add(new ListItem("Olivine", "MG2SIO4"));

This example adds a new instance of the ListItem object—adding not only the textual name of the
item, but the value of the item (its chemical formula). It produces the following results in the browser:

<option value="MG2SIO4">0Olivine</option>

The CheckBox Server Control

Check boxes on a Web form enable your users to either make selections from a collection of items or
specify a value of an item to be yes/no, on/off, or true/false. Use either the CheckBox control or the
CheckBoxList control to include check boxes in your Web forms.

The CheckBox control allows you to place single check boxes on a form; the CheckBoxList control allows
you to place collections of check boxes on the form. You can use multiple CheckBox controls on your
ASP.NET pages, but then you are treating each check box as its own element with its own associated
events. On the other hand, the CheckBoxList control allows you to take multiple check boxes and create
specific events for the entire group.

153



Chapter 5

Listing 5-13 shows an example of using the CheckBox control.

Listing 5-13: Using a single instance of the CheckBox control

VB
<%@ Page Language="VB" %>

<script runat="server">
Protected Sub CheckBoxl_CheckedChanged (ByVal sender As Object,
ByVal e As System.EventArgs)
Response.Write("Thanks for your donation!")
End Sub
</script>

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>CheckBox control</title>
</head>
<body>
<form id="forml" runat="server">
<div>
<asp:CheckBox ID="CheckBoxl" Runat="server" Text="Donate $10 to our cause!"
OnCheckedChanged="CheckBoxl_CheckedChanged" AutoPostBack="true" />
</div>
</form>
</body>
</html>

C#
<%@ Page Language="C#" %>

<script runat="server">
protected void CheckBoxl_CheckedChanged (object sender, EventArgs e)
{
Response.Write("Thanks for your donation!");

}

</script>

This produces a page that contains a single check box asking for a monetary donation. Using the
CheckedChanged event, OnCheckedChanged is used within the CheckBox control. The attribute’s value
points to the CheckBox1_CheckedChanged event, which fires when the user checks the check box. It
occurs only if the AutoPostBack property is set to True (this property is set to False by default).
Running this page produces the results shown in Figure 5-14.

How to Determine If Check Boxes Are Checked

You might not want to use the AutoPostBack feature of the check box, but instead want to determine if
the check box is checked after the form is posted back to the server. You can make this check through an
If Then statement, as illustrated in the following example:

VB

If (CheckBoxl.Checked = True) Then
Response.Write ("CheckBox is checked!")

End If

154



ASP.NET Web Server Controls

C#
if (CheckBoxl.Checked == true) {
Response.Write("Checkbox is checked!");

}

This check is done on the CheckBox value using the control’s Checked property. The property’s value is
a Boolean value, so it is either True (checked) or False (not checked).

&7 CheckBox control - Microsoft Internet Explorer =B
File Edit View Favorites Tools Help wr

" — ". 5 3
eBack . = ) \ﬂ I§| | S ! Search [ Favorites @Medla '6-& -

Address Qj http:/localhost: 42252 ServerControls [Default. aspx d . Go =

nks

Thanks for your donation!

Donate $10 to our canse!

@'] Done

Figure 5-14

‘_{ Local intranet

Assigning a Value to a Check Box

You can also use the Checked property to make sure a check box is checked based on other dynamic
values:

VB
If (Member = True) Then
CheckBox1.Checked = True

End If
C#
if (Member == true) {

CheckBox1.Checked = true;
}

Aligning Text Around the Check Box

In the previous check box example, the text appears to the right of the actual check box, as shown in
Figure 5-15.

Donate $10 to our cause!

Figure 5-15

155



Chapter 5

Using the CheckBox control’s TextAlign property, you can realign the text so that it appears on the
other side of the check box:

<asp:CheckBox ID="CheckBoxl" Runat="server" Text="Donate $10 to our cause!"
OnCheckedChanged="CheckBox1_CheckedChanged" AutoPostBack="true"
TextAlign="Left" />

The possible values of the TextAlign property are either Right (the default setting) or Left. This prop-
erty is also available to the CheckBoxList, RadioButton, and RadioButtonList controls. Assigning the
value Left produces the result shown in Figure 5-16.

Donate $10 to our canse!

Figure 5-16

The CheckBoxList Server Control

The CheckBoxList server control is quite similar to the CheckBox control, except that the former enables
you to work with a collection of items rather than a single item. The idea is that a CheckBoxList server
control instance is a collection of related items, each being a check box unto itself.

To see the CheckBoxList control in action, you can build an example that uses Microsoft’s SQL Server
to pull information from the Customers table of the Northwind example database. An example is pre-
sented in Listing 5-14.

Listing 5-14: Dynamically populating a CheckBoxList

VB
<%@ Page Language="VB" %>

<script runat="server">
Protected Sub Buttonl_Click(ByVal sender As Object, _
ByVal e As System.EventArgs)

Labell.Text = "You selected:<br>"

For Each 1i As ListItem In CheckBoxListl.Items
If li.Selected = True Then

Labell.Text += 1li.Text & "<br>"

End If

Next

End Sub
</script>

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>CheckBox control</title>
</head>
<body>
<form id="forml" runat="server">

156



ASP.NET Web Server Controls

<div>
<asp:Button ID="Buttonl" Runat="server" Text="Submit Choices"
OnClick="Buttonl Click" />
<br />
<br />
<asp:Label ID="Labell" Runat="server"></asp:Label>
<br />
<asp:CheckBoxList ID="CheckBoxListl" Runat="server"
DataSourceID="SglDataSourcel" DataTextField="CompanyName"
RepeatColumns="3" BorderColor="Black"
BorderStyle="Solid" BorderWidth="1px">
</asp:CheckBoxList>
<asp:SglDataSource ID="SglDataSourcel" Runat="server"
SelectCommand="SELECT [CompanyName] FROM [Customers]"

ConnectionString="<%$ ConnectionStrings:AppConnectionStringl %>">

</asp:SglDataSource>

</div>

</form>

</body>
</html>

C#
<%@ Page Language="C#" %>

<script runat="server">
protected void Buttonl_Click(object sender, EventArgs e)
{
Labell.Text = "You selected:<br>";
foreach (ListItem 1i in CheckBoxListl.Items) {
if (li.Selected == true) {
Labell.Text += 1li.Text + "<br>";

}
}

</script>

This ASP.NET page has a SqlDataSource control on the page that pulls the information you need from
the Northwind database. From the SELECT statement used in this control, you can see that you are
retrieving the CompanyName field from each of the listings in the Customers table.

The CheckBoxList control binds itself to the SqlDataSource control using a few properties:

<asp:CheckBoxList ID="CheckBoxListl" Runat="server"
DataSourceID="SglDataSourcel" DataTextField="CompanyName"
RepeatColumns="3" BorderColor="Black"

BorderStyle="Solid" BorderWidth="1px">
</asp:CheckBoxList>

The DataSourceID property is used to associate the CheckBoxList control with the results that come
back from the SqlDataSource control. Then the DataTextField property is used to retrieve the name of
the field you want to work with from the results. In this example, it is the only one that is available: the
CompanyName. That’s it! CheckBoxList generates the results you want.

157



Chapter 5

The remaining code consists of styling properties, which.are pretty interesting. The BorderColor,
BordersStyle, and BorderWidth properties enable you to put a border around the entire check box list.
The most interesting property is the RepeatColumns property, which specifies how many columns
(three in this example) can be used to display the results.

When you run the page, you get the results shown in Figure 5-17.

The RepeatDirection property instructs the CheckBoxList control about how to lay out the items
bound to the control on the Web page. Possible values include vertical and Horizontal. The default
value is Vertical. Setting it to Vertical with a RepeatColumn setting of 3 gives the following results:

CheckBox1
CheckBox2
CheckBox3
CheckBox4

CheckBox5
CheckBox6
CheckBox7
CheckBox8

CheckBox9

CheckBox10
CheckBox11
CheckBox12

When the RepeatDirection property is set to Horizontal, you get the check box items laid out in a

horizontal fashion:

CheckBox1l CheckBox2 CheckBox3
CheckBox4 CheckBox5 CheckBox6
CheckBox7 CheckBox8 CheckBox9
CheckBox10 CheckBox11 CheckBox12
&7 CheckBox control - Microsoft Intarnet Explorer &)%)
File Edit View Favorites JTools Help ;',‘"
Qe - © - [¥] [B] €0 Osearch Slpraves @redn € 3~ 2 F | E B
Aess (] htpsflocalost: 42252 ServerContrals Defauit.aspx 7] Go =
. o]
Submit Choices
You selected:
Berghnds snabbkap
Kaniglich Essen
Lazy K Kountry Store =
Pericles Comidas clasicas
Simons bistro
[[] Alfreds Futterkiste [[] Gourmet Lanchonetes [[] Que Delicia
[ Ana Trujillo Emparedados v helados [] Great Lakes Food Marlket [0 Queen Cozinha
[] Antonio Moreno Taqueria 1 GROSELLA.-Restaurante [ QUICK-Stop
[J Around the Hom [Hanari Carnes [ORancho grande
Berglunds snabbkap [CJHILARION-Abastos [JRattlesnake Canyon Grocery
[[] Blauer See Delikatessen [[JHungry Coyote Import Store  [] Reggiani Caseifici
[ Blondesddsl pere et fils []Hungry Owl All-Night Grocers [[] Ricardo Adocicados
[IBslido Comidas preparadas [Island Trading [JRichter Supermarkt
[JBon app' [ Kéniglich Essen [JRomero y tomillo
[ Bottom-Dollar Markets [JLa corne d'abondance [ Santé Gourmet
[[]B's Beverages [ La maison d'Asie [[] Save-a-lot Markets
[ Ty Ly S - FT i Db Wl il 1 €y € T - v
&] Done & Local intranst
Figure 5-17

158



ASP.NET Web Server Controls

The RadioButton Server Control

The RadioButton server control is quite similar to the CheckBox server control. It places a radio button
on your Web page. Unlike a check box, however, a single radio button on a form doesn’t make much
sense. Radio buttons are generally form elements that require at least two options. A typical set of
RadioButton controls on a page takes the following construction:

<asp:RadioButton ID="RadioButtonl" Runat="server" Text="Yes" GroupName="Setl" />
<asp:RadioButton ID="RadioButton2" Runat="server" Text="No" GroupName="Setl"/>

Figure 5-18 shows the result.

Figure 5-18

When you look at the code for the RadioButton control, note the standard Text property that places the
text next to the radio button on the Web form. The more important property here is GroupName, which
can be set in one of the RadioButton controls to match what it is set to in the other. This enables the radio
buttons on the Web form to work together for the end user. How do they work together? Well, when one
of the radio buttons on the form is checked, the circle associated with the item selected appears filled in.
Any other filled-in circle from the same group in the collection is removed, ensuring that only one of the
radio buttons in the collection is selected.

Listing 5-15 shows an example of using the RadioButton control.

Listing 5-15: Using the RadioButton server control

VB
<%@ Page Language="VB" %>

<script runat="server">
Protected Sub RadioButton_CheckedChanged (ByVal sender As Object, _
ByVal e As System.EventArgs)
If RadioButtonl.Checked = True Then
Response.Write("You selected Visual Basic 2005")
Else
Response.Write("You selected Visual C# 2005")
End If
End Sub
</script>

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>RadioButton control</title>
</head>
<body>
<form id="forml" runat="server">
<div>
<asp:RadioButton ID="RadioButtonl" Runat="server" Text="Visual Basic 2005"
GroupName="LanguageChoice" OnCheckedChanged="RadioButton_CheckedChanged"

(continued)

159



Chapter 5

Listing 5-15: (continued)

AutoPostBack="True" />
<asp:RadioButton ID="RadioButton2" Runat="server" Text="Visual C# 2005"
GroupName="LanguageChoice" OnCheckedChanged="RadioButton_CheckedChanged"
AutoPostBack="True" />
</div>
</form>
</body>
</html>

C#
<%@ Page Language="C#" %>

<script runat="server">
protected void RadioButton_CheckedChanged (object sender, EventArgs e)

{
if (RadioButtonl.Checked == true) {
Response.Write("You selected Visual Basic 2005");
}
else {
Response.Write("You selected Visual C# 2005");
}
}
</script>

Like the CheckBox, the RadioButton control has a CheckedChanged event that puts an
OonCheckedChanged attribute in the control. The attribute’s value points to the server-side event that
is fired when a selection is made using one of the two radio buttons on the form. Remember that the
AutoPostBack property needs to be set to True for this to work correctly.

Figure 5-19 shows the results.

1 RadioButton control - Microsoft Internet Explorer == x|
File Edit View Favorites Tools Help ;'f
" — 1 5 B2
. . \ \ < ) ] <
@ Back > | \i'.l \ELI W | Search ‘__/_\(:’ Favorites @Medla {i T @
Address ] http://localhost: 42252/ServerControls /Default. aspx v . Go |Llinks *

You selected Visual Basic 2005

® Visual Basic 2005 O Visual C# 2005

&] Done & Local intranet

Figure 5-19

One advantage that the RadioButton control has over a RadioButtonList control (which is discussed
next) is that it enables you to place other items (text, controls, or images) between the RadioButton con-
trols themselves. RadioButtonList, however, is always a straight list of radio buttons on your Web page.

160



ASP.NET Web Server Controls

The RadioButtonList Server Control

The RadioButtonList server control lets you display a collection of radio buttons on a Web page. The
RadioButtonList control is quite similar to the CheckBoxList and other list controls in that it allows you
to iterate through to see what the user selected, to make counts, or to perform other actions.

A typical RadioButtonList control is written to the page in the following manner:

<asp:RadioButtonList ID="RadioButtonListl" Runat="server">
<asp:ListItem Selected="True">English</asp:ListItem>
<asp:ListItem>Russian</asp:ListItem>
<asp:ListItem>Finnish</asp:ListItem>
<asp:ListItem>Swedish</asp:ListItem>
</asp:RadioButtonList>

Like the other list controls, this one uses instances of the ListItem object for each of the items contained
in the collection. From the example, you can see that if the Selected property is set to True, one of the
ListItem objects is selected by default when the page is generated for the first time. This produces the
results shown in Figure 5-20.

® English
O Russian
O Finnish
O Swedish

Figure 5-20

The selected property is not required, but it is a good idea if you want the end user to make some sort
of selection from this collection. Using it makes it impossible to leave the collection blank.

You can use the RadioButtonList control to check for the value selected by the end user in any of your
page methods. Listing 5-16 shows a Buttonl_Click event that pushes out the value selected in the
RadioButtonList collection.

Listing 5-16: Checking the value of the item selected from a RadioButtonList control

VB
<%@ Page Language="VB" %>

<script runat="server">
Protected Sub Buttonl_Click(ByVal sender As Object, _
ByVal e As System.EventArgs)

Labell.Text = "You selected: " & _
RadioButtonListl.SelectedItem.ToString ()
End Sub
</script>

(continued)

161



Chapter 5

Listing 5-16: (continued)

C#
<%@ Page Language="C#" %>

<script runat="server">
protected void Buttonl_Click(object sender, EventArgs e)
{
Labell.Text = "You selected: " +
RadioButtonListl.SelectedItem.ToString() ;
}

</script>

This bit of code gets at the item selected from the RadioButtonList collection of ListItem objects. It is
how you work with other list controls that are provided in ASP.NET. The RadioButtonList also affords
you access to the RepeatColumns and RepeatDirection properties (these were explained in the
CheckBoxList section). You can bind this control to items that come from any of the data source controls
so that you can dynamically create radio button lists on your Web pages.

Image Server Control

The Image server control enables you to work with the images that appear on your Web page from the
server-side code. It’s a simple server control, but it can give you the power to determine how your
images are displayed on the browser screen. A typical Image control is constructed in the following
manner:

<asp:Image ID="Imagel" Runat="server" ImageUrl="~/MyImagel.gif" />

The important property here is ImageUr1l. It points to the file location of the image. In this case, the loca-
tion is specified as the MyImage.gif file.

Listing 5-17 shows an example of how to dynamically change the ImageUr1l property.

Listing 5-17: Changing the ImageUrl property dynamically

VB
<%@ Page Language="VB" %>

<script runat="server">
Protected Sub Buttonl_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Imagel.ImageUrl = "~/MyImage2.gif"
End Sub
</script>

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>Image control</title>
</head>
<body>
<form id="forml" runat="server">

162



ASP.NET Web Server Controls

<div>
<asp:Image ID="Imagel" Runat="server" ImageUrl="~/MyImagel.gif" /><br />
<br />

<asp:Button ID="Buttonl" Runat="server" Text="Change Image"
OnClick="Buttonl Click" />
</div>
</form>
</body>
</html>

C#
<%@ Page Language="C#" %>

<script runat="server">
protected void Buttonl_Click(object sender, EventArgs e)
{
Imagel.ImageUrl = "~/MyImage2.gif";
}

</script>

In this example, an image (MyImagel.gif) is shown in the browser when the page is loaded for the first
time. When the end user clicks the button on the page, a new image (MyImage2.gif) is loaded in the
postback process.

Special circumstances can prevent end users from viewing an image that is part of your Web page. They
might be physically unable to see the image, or they might be using a text-only browser. In these cases,
their browsers look for the <img> element’s 1ongdesc attribute that points to a file containing a long
description of the image that is displayed.
For these cases, the Image server control now includes a new DescriptionUrl attribute. The value
assigned to it is a text file that contains a thorough description of the image with which it is associated.
Here’s how to use it:

<asp:Image ID="Imagel" Runat="server" DescriptionUrl="~/Imagell.txt" />
This code produces the following results in the browser:

<img id="Imagel" src="INETA.jpg" longdesc="ImageOl.txt" alt="" />

Remember that the image does not support the user clicking the image. If you want to program events
based on button clicks, use the ImageButton server control discussed earlier in this chapter.

Table Server Control

Tables are one of the Web page’s more common elements because the HTML <table> element is
ideal for controlling the layout of your Web page. The typical construction of the Table server control
is as follows:

163



Chapter 5

<asp:Table ID="Tablel" Runat="server">
<asp:TableRow Runat="server" Font-Bold="True"
ForeColor="Black" BackColor="Silver">
<asp:TableHeaderCell>First Name</asp:TableHeaderCell>
<asp:TableHeaderCell>Last Name</asp:TableHeaderCell>
</asp:TableRow>
<asp:TableRow>
<asp:TableCell>Bill</asp:TableCell>
<asp:TableCell>Evjen</asp:TableCell>
</asp:TableRow>
<asp:TableRow>
<asp:TableCell>Devin</asp:TableCell>
<asp:TableCell>Rader</asp:TableCell>
</asp:TableRow>
</asp:Table>

This produces the simple three-rowed table shown in Figure 5-21.

First Name Last Name
Bill Evijen
Devin Rader

Figure 5-21

You can do a lot with the Table server control. For example, you can dynamically add rows to the table,
as illustrated in Listing 5-18.

Listing 5-18: Dynamically adding rows to the table

VB
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Dim tr As New TableRow ()

Dim fname As New TableCell ()
fname.Text = "Scott"
tr.Cells.Add (fname)

Dim lname As New TableCell ()
Iname.Text = "Hanselman"
tr.Cells.Add(lname)

Tablel.Rows.Add(tr)
End Sub

C#
protected void Page_Load(object sender, EventArgs e)

{
TableRow tr = new TableRow() ;

TableCell fname = new TableCell();
fname.Text = "Scott";

164



ASP.NET Web Server Controls

tr.Cells.Add (fname) ;

TableCell lname = new TableCell();
lname.Text = "Hanselman";
tr.Cells.Add (1lname) ;

Tablel.Rows.Add(tr) ;

To add a single row to a Table control, you have to create new instances of the TableRow and TableCell
objects. You create the TableCell objects first and then place them within a TableRow object that is
added to a Table object.

The Table server control is enhanced with some extra features in ASPNET 2.0. One of the simpler new
features is the capability to add captions to the tables on Web pages. Figure 5-22 shows a table with a
caption.

] Table Server Control - Microsoft Internet Explorer |B|=]*]
File Edit View Favorites Tools Help ﬁ"

3

P Back ] EIRE o | O search 7 Favorites @ Media 8 | (v i B
Address @ http: /localhost: 17924/ WebApplication 1/Default.aspx M Go Links ¥

Table 1: This is an example of a caption above a table.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis vel justo. Aliquam
adipiscing. In mattis volutpat urna. Donec adipiscing, nisl eget dictum egestas, felis
mulla ornare ligula, ut bibendum pede augue eu augue. Sed vel risus nec urna
pharetra imperdiet. Aenean semper. Sed ullamcorper auctor sapien. Suspendisse
luctus. Ut ac nibh. Nam lorem. Aliquam dictum aliquam purus.

@ Done ‘-3 Local intranet

Figure 5-22

To give your table a caption, simply use the new Caption attribute in the Table control, as illustrated in
Listing 5-19.

Listing 5-19: Using the new Caption attribute
<%@ Page Language="VB" %>

<html xmlns="http://www.w3.0rg/1999/xhtml" ><head runat="server">
<title>Table Server Control</title>
</head>
<body>
<form id="forml" runat="server">
<asp:Table ID="Tablel" Runat="server"
Caption="<b>Table 1:</b> This is an example of a caption above a table."
BackColor="Gainsboro">

(continued)

165



Chapter 5

Listing 5-19: (continued)

<asp:TableRow ID="Tablerowl" Runat=server>
<asp:TableCell ID="Tablecelll" Runat="server">Lorem ipsum dolor sit
amet, consectetuer adipiscing elit. Duis vel justo. Aliguam
adipiscing. In mattis volutpat urna. Donec adipiscing, nisl eget
dictum egestas, felis nulla ornare ligula, ut bibendum pede augue
eu augue. Sed vel risus nec urna pharetra imperdiet. Aenean
semper. Sed ullamcorper auctor sapien. Suspendisse luctus. Ut ac
nibh. Nam lorem. Aliquam dictum aliquam purus.</asp:TableCell>
</asp:TableRow>
</asp:Table>
</form>
</body>
</html>

By default, the caption is placed at the top center of the table, but you can control where it is placed by
using another new attribute — Captionalign. Its possible settings include Bottom, Left, NotSet,
Right, and Top.

In the past, an <asp: Table> element contained any number of <asp: TableRow> elements. Now you
have some additional elements that can be nested within the <asp: Table> element. These new ele-
ments include <asp: TableHeaderRow> and <asp:TableFooterRow>. They add either a header or
footer to your table, enabling you to use the Table server control to page through lots of data but still
retain some text in place to indicate the type of data being handled. This is quite a powerful feature
when you work with mobile applications that dictate that sometimes end users can move through only
a few records at a time.

The Calendar Server Control

The Calendar server control is a rich control that enables you to place a full-featured calendar directly
on your Web pages. It allows for a high degree of customization to ensure that it looks and behaves in a
unique manner. The Calendar control, in its simplest form, is coded in the following manner:

<asp:Calendar ID="Calendarl" Runat="server">
</asp:Calendar>

This code produces a calendar on your Web page without any styles added, as shown in Figure 5-23.

= January 2006 =
Sun Mon Tue Wed Thu Fri Sat
25 26 27 28 29 30 31
1 2 3 4 35 6 1
g 9 10 1 12 13 14
15 16 17 18 19 20 21
22 13 M4 25 26 27 18
29 30 31 1 2 3 4

Figure 5-23

166



ASP.NET Web Server Controls

Making a Date Selection from the Calendar Control

The calendar allows you to scroll through the months of the year and to select specific days in the
exposed month. A simple application that enables the user to select a day of the month is shown in
Listing 5-20.

Listing 5-20: Selecting a single day in the Calendar control

VB
<%@ Page Language="VB" %>

<script runat="server">
Protected Sub Calendarl_SelectionChanged (ByVal sender As Object,
ByVal e As System.EventArgs)

Response.Write("You selected: " & _
Calendarl.SelectedDate.ToShortDateString())
End Sub
</script>

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head id="Headl" runat="server">
<title>Using the Calendar Control</title>

</head>
<body>
<form id="forml" runat="server">
<div>
<asp:Calendar ID="Calendarl" Runat="server"
OnSelectionChanged="Calendarl_SelectionChanged">
</asp:Calendar>
</div>
</form>
</body>
</html>
C#

<%@ Page Language="C#" %>

<script runat="server">
protected void Calendarl_SelectionChanged(object sender, EventArgs e)
{
Response.Write("You selected: " +
Calendarl.SelectedDate.ToShortDateString()) ;
}

</script>

Running this application pulls up the calendar in the browser. The end user can then select a single
date in it. After a date is selected, the Calendarl_selectionChanged event is triggered, using the
OnSelectionChange attribute. This event writes the value of the selected date to the screen. The result
is shown in Figure 5-24.

167



Chapter 5

&7 Using the Calendar Control - Microsoft Internet Explorer 2=
File Edit View Favorites Tools Help s
Qe - ©Q - [¥] [B] €0 Osexar g ravortes £2) -r2FLUE 3
Address JB http:fflocalhost: 1296 firox Default. aspy v: Go ks ¥
You selected: 1/25/2006
< Jamary 2006 2
Sun Mon Tue Wed Thu Fn Sat
25 26 27 28 29 30 31
1 2 3 4 3 6 1
& 9 10 11 12 13 14
15 16 17 18 19 20 21
2 13 M 6 27 28
29 30 31 1 2 3 4
2] & Local intranet
Figure 5-24

Choosing a Date Format to Output from the Calendar

When you use the Calendarl_SelectionChanged event, the selected date is written out using the
ToShortDateString () method. The Calendar control also allows you to write out the date in a number
of other formats, as detailed in the following list:

Q

Q

168

ToFileTime: Converts the selection to the local operating system file time:
127473912000000000.

ToFileTimeUtc: Converts the selection to the operating system file time, but instead of using
the local time zone, the UTC time is used: 127473696000000000.

ToLocalTime: Converts the current coordinated universal time (UTC) to local time:
12/12/2004 6:00:00 PM.

ToLongDateString: Converts the selection to a human-readable string in a long format:
Monday, December 13, 2004.

ToLongTimeString: Converts the selection to a time value (no date is included) of a long for-
mat: 12:00:00 AM.

ToOADate: Converts the selection to an OLE Automation date equivalent: 38334.

ToShortDateString: Converts the selection to a human-readable string in a short format:
12/13/2004.

ToShortTimeString: Converts the selection to a time value (no date is included) in a short for-
mat: 12:00 AM.

ToString: Converts the selection to the following: 12/13/2004 12:00:00 AM.

ToUniversalTime: Converts the selection to universal time (UTC): 12/13/2004 6:00:00 AM.



ASP.NET Web Server Controls

Making Day, Week, or Month Selections

By default, the Calendar control enables you to make single day selections. You can use the
SelectionMode property to change this behavior to allow your users to make week or month selections
from the calendar instead. The possible values of this property include Day, DayWeek, DayWeekMonth,
and None.

The Day setting enables you to click a specific day in the calendar to highlight it (this is the default).
Using the setting of DayWeek still lets you make individual day selections, but it also enables you to click
the arrow next to the week (see Figure 5-25) to make selections that consist of an entire week. Using the
setting of DayWeekMonth lets users make individual day selections or week selections. A new arrow
appears in the upper-left corner of the calendar that enables users to select an entire month (also shown
in Figure 5-25). A setting of None means that it is impossible for the end user to make any selections,
which is useful for calendars on your site that are informational only.

= January 2006 = |= Jamuary 2006 >
Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat
5 26 27 28 19 30 31 = 25 26 27 28 29 30 31
1 2 3 4 5 6 1 = 1 2 3 4 35 6 17
8§ 9 10 11 12 13 14 = 8 9§ 10 11 12 13 14
15 16 17 18 19 20 21 = 15 16 17 18 19 20 21
22 23 24 6 27 28 =
29 30 31 1 2 3 4 > 29 30 31 1 2 3 4

= Jamary 2006 =

>> Son Mon Tue Wed Thu Fri Sat

= 25 26 27 28 19 30 31

=

>

= 1 2 3 4
Figure 5-25

Working with Date Ranges

Even if an end user makes a selection that encompasses an entire week or an entire month, you get back
from the selection only the first date of this range. If, for example, you allow users to select an entire
month and one selects the month of July 2005, what you get back (using ToShortbateString()) is
7/1/2005 — the first date in the date range of the selection. That might work for you, but if you require
all the dates in the selected range, Listing 5-21 shows you how to get them.

169



Chapter 5

Listing 5-21: Retrieving a range of dates from a selection

VB
<%@ Page Language="VB" %>

<script runat="server">
Protected Sub Calendarl_SelectionChanged (ByVal sender As Object,
ByVal e As System.EventArgs)
Labell.Text = "<b><u>You selected the following date/dates:</u></b><br>"

For 1 As Integer = 0 To (Calendarl.SelectedDates.Count - 1)
Labell.Text += Calendarl.SelectedDates.Item(i).ToShortDateString() &
n <br> n

Next
End Sub
</script>

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head id="Headl" runat="server">
<title>Using the Calendar Control</title>
</head>
<body>
<form id="forml" runat="server">
<div>
<asp:Calendar ID="Calendarl" Runat="server"
OnSelectionChanged="Calendarl_SelectionChanged"
SelectionMode="DayWeekMonth">
</asp:Calendar><p>
<asp:Label ID="Labell" Runat="server"></asp:Label></p>
</div>
</form>
</body>
</html>

C#
<%@ Page Language="C#" %>

<script runat="server">
protected void Calendarl_SelectionChanged(object sender, EventArgs e)

{
Labell.Text = "<b><u>You selected the following date/dates:</u></b><br>";
for (int i=0; i<Calendarl.SelectedDates.Count; i++) {

Labell.Text += Calendarl.SelectedDates[i].ToShortDateString() +
"<br>";

}

}

</script>

170



ASP.NET Web Server Controls

In this example, the Calendar control lets users make selections that can be an individual day, a week,
or even a month. Using a For Next loop, you iterate through a selection by using the SelectedDates

.Count property. The code produces the results shown in Figure 5-26.

&7 Using the Calendar Control - Microsoft Internet Explorer B[]
File Edit View Favorites Tools Help ;';"
A ) < " "\ ] £y o
Qoo - © - [x [ G Pserr Joraones @ (2 1 JE 3
Address iﬂ http:fflocalhost: 1296 \WroxDefault. aspx T_lGo L4
= Jamuary 2006 =
=> Sun Mon Tue Wed Thu Fri Sat
> 25 26 27 28 29 30 31
= 1 2 3 4 i 6 I
> 8 9 10 U 12 1B 1
> 15 16 17 18 19 20 21
Ed
> 20 30 31 1 2 3 4
You selected the following date/dates:
1/22/2006
& % Local transt
Figure 5-26

You can get just the first day of the selection by using the following:

VB
Calendarl.SelectedDates.Item(0) .ToShortDateString ()

C#
Calendarl.SelectedDates[0] .ToShortDateString() ;

And you can get the last date in the selected range by using;:

VB

Calendarl.SelectedDates.Item(Calendarl.SelectedDates.Count-1).ToShortDateString ()

C#

Calendarl.SelectedDates[Calendarl.SelectedDates.Count-1].ToShortDateString() ;

As you can see, this is possible using the Count property of the SelectedDates object.




Chapter 5

Modifying the Style and Behavior of Your Calendar

There is a lot to the Calendar control — definitely more than can be covered in this chapter. One nice
thing about the Calendar control is the ease of extensibility that it offers. Begin exploring new ways to
customize this control further by looking at one of the easiest ways to change it—applying a style to
the control.

Using Visual Studio, you can give the controls a new look-and-feel from the Design view of the page you
are working with. Highlight the Calendar control and open the control’s smart tag to see the Auto

Format link. That gives you a list of available styles that can be applied to your Calendar control.

The Calendar control isn’t alone in this capability. Many other rich controls offer a list of styles. You
can always find this capability in the control’s smart tag.

Some of the styles are shown in Figure 5-27.

February 2006
<  February 2006 > January Y March
Su Mo Tu We Th Fr 5Sa Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 1 2 3 4
5 & 7 a8 9 10 11 5 =} 7 g8 9 10 11
12 13 14 15 16 17 18 12 13 14 15 16 17 18
19 20 21 22 23 24 25 19 20 21 22 23 24 25
26 27 28 1 3 4 26 27 28
Jan February 2006 Mar [l < February 2006 >
Sun  Mon Tue Wed Thu Fri Sat Su Mo Tu We Th Fr Sa
1 2 3 4 5 le g
s | & alla | amls
3 <] 7 8 9 10 11
13 | 14 | 15 16 17 18
13 14 15 16 17 18 19 |20 21 22 23 24 25
19 20 21 22 23 24 25 26 | 27 28
26 27 28

January February < February 2006
Su Mo Tu We ™ Er 5a Su Mo Tu We Th Fr Sa
1 2 3 4 1 2 3 4
5 6 3 9 10 m 5 s 7 8 9 10|11
13 15 1 17 |18

Figure 5-27

172



ASP.NET Web Server Controls

In addition to changing the style of the Calendar control, you can work with the control during its ren-
dering process. The Calendar control includes an event called DayRender that allows you to control how
a single date or all the dates in the calendar are rendered. Listing 5-22 shows an example of how to
change one of the dates being rendered in the calendar.

Listing 5-22: Controlling how a day is rendered in the Calendar

VB
<%@ Page Language="VB" %>

<script runat="server">
Protected Sub Calendarl_DayRender (ByVal sender As Object,
ByVal e As System.Web.UI.WebControls.DayRenderEventArgs)
e.Cell.VerticalAlign = VerticalAlign.Top

If (e.Day.DayNumberText = "25") Then
e.Cell.Controls.Add(New LiteralControl ("<p>User Group Meeting!</p>"))
e.Cell.BorderColor = Drawing.Color.Black
e.Cell.BorderWidth = 1
e.Cell.BorderStyle = BorderStyle.Solid
e.Cell.BackColor = Drawing.Color.LightGray

End If

End Sub
</script>

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head id="Headl" runat="server">
<title>Using the Calendar Control</title>
</head>
<body>
<form id="forml" runat="server">
<div>
<asp:Calendar ID="Calendarl" Runat="server"
OnDayRender="Calendarl_DayRender" Height="190px" BorderColor="White"
Width="350px" ForeColor="Black" BackColor="White" BorderWidth="1px"
NextPrevFormat="FullMonth" Font-Names="Verdana" Font-Size="9pt">
<SelectedDayStyle ForeColor="White"
BackColor="#333399"></SelectedDayStyle>
<OtherMonthDayStyle ForeColor="#999999"></OtherMonthDayStyle>
<TodayDayStyle BackColor="#CCCCCC"></TodayDayStyle>
<NextPrevStyle ForeColor="#333333" VerticalAlign="Bottom"
Font-Size="8pt" Font-Bold="True"></NextPrevStyle>
<DayHeaderStyle Font-Size="8pt" Font-Bold="True"></DayHeaderStyle>
<TitleStyle ForeColor="#333399" BorderColor="Black" Font-Size="12pt"
Font-Bold="True" BackColor="White" BorderWidth="4px">
</TitleStyle>
</asp:Calendar>
</div>
</form>
</body>
</html>

(continued)

173



Chapter 5

Listing 5-22: (continued)

C#
<%@ Page Language="C#" %>

<script runat="server">
protected void Calendarl_DayRender (object sender, DayRenderEventArgs e)

{
e.Cell.VerticalAlign = VerticalAlign.Top;
if (e.Day.DayNumberText == "25")
{
e.Cell.Controls.Add (new LiteralControl ("<p>User Group Meeting!</p>"));
e.Cell.BorderColor = System.Drawing.Color.Black;
e.Cell.BorderWidth = 1;
e.Cell.BorderStyle = BorderStyle.Solid;
e.Cell.BackColor = System.Drawing.Color.LightGray;
}
}
</script>

In this example, you use a Calendar control with a little style to it. When the page is built and run in the
browser, you can see that the 25th of every month in the calendar has been changed by the code in the
Calendarl_DayRender event. The calendar is shown in Figure 5-28.

&7 Using the Calendar Control - Microsoft Internet Explorer B[]
File Edit View Favorites Tools Help ;'F
A ) e £ ] £
Qu - @  [x @ G Psowar Joroos @ - L= K B
Address iﬂ http:/flocalhost: 1296 Arox Default. zspx 7| & o ks @
March April 2006 May
Sun Mon Tue Wed Thu Fri Sat
26 27 28 29 20 21 1
2 E] 4 3 5 z g
2 10 11 1z 13 14 i3
15 p 18 12 20 21 22
23 24 25 26 27 28 29
User
Group
Meeting!
20 1 2
&] & Local intranet

Figure 5-28

174



ASP.NET Web Server Controls

The Calendar control in this example adds an OnDayRender attribute that points to the
Calendarl_DayRender event. The method is run for each of the days rendered in the calendar. The
class constructor shows that you are not working with the typical System. EventArgs class, but instead
with the DayRenderEventArgs class. It gives you access to each of the days rendered in the calendar.

The two main properties from the DayRenderEventArgs class are Cell and Day. The Cell property
gives you access to the space in which the day is being rendered, and the Day property gives you access
to the specific date being rendered in the cell.

From the actions being taken in the Calendarl_DayRender event, you can see that both properties are
used. First, the Cell property sets the vertical alignment of the cell to Top. If it didn’t, the table might
look a little strange when one of the cells has content. Next, a check is made to see if the day being ren-
dered (checked with the Day property) is the 25th of the month. If it is, the If Then statement runs using
the Cell property to change the styling of just that cell. The styling change adds a control, as well as
makes changes to the border and color of the cell.

As you can see, working with individual dates in the calendar is fairly straightforward. You can easily
give them the content and appearance you want.

A nice feature of the Day property is that you can turn off the option to select a particular date or range
of dates by setting the Day property’s IsSelectable property to False:

VB

If (e.Day.Date < DateTime.Now) Then
e.Day.IsSelectable = False

End If

C#
if (e.Day.Date < DateTime.Now) {
e.Day.IsSelectable = false;

AdRotator Server Control

Although Web users find ads rather annoying, advertising continues to be prevalent everywhere on the
Web. With the AdRotator control, you can now use advertisement data from sources other than the stan-
dard XML file that was used with the previous versions of this control.

If you're using an XML source for the ad information, first create an XML advertisement file. The adver-
tisement file is quite similar to the previous advertisement file, but you can now incorporate some new
elements that give you even more control over the appearance and behavior of your ads. Listing 5-23
shows an example of an XML advertisement file.

Listing 5-23: The XML advertisement file

<?xml version="1.0" encoding="utf-8" ?>
<Advertisements
xmlns="http://schemas.microsoft.com/AspNet/AdRotator-Schedule-File">

(continued)

175



Chapter 5

Listing 5-23: (continued)

<Ad>
<ImageUrl>bookl.gif</ImageUrl>
<NavigateUrl>http://www.wrox.com</NavigateUrl>
<AlternateText>Visit Wrox Today!</AlternateText>
<Impressions>50</Impressions>
<Keyword>VB.NET</Keyword>

</Ad>

<Ad>
<ImageUrl>book2.gif</ImageUrl>
<NavigateUrl>http://www.wrox.com</NavigateUrl>
<AlternateText>Visit Wrox Today!</AlternateText>
<Impressions>50</Impressions>
<Keyword>XML< /Keyword>

</Ad>

</Advertisements>

This XML file, used for storing information about the advertisements that appear in your application,
has just a few elements detailed in the following table. Remember that all elements are optional.

Element Description

ImageUrl Takes a string value that indicatesthe location of the image to use.

NavigateUrl Takes a string value that indicates the URL to post to when the image
is clicked.

AlternateText Takes a string value that is used for display if images are either turned

off in the client’s browser or if the image is not found.

Impressions Takes a numerical value that indicates the likelihood of the image get-
ting selected for display.

Keyword Takes a string value that sets the category of the image in order to
allow for the filtering of ads.

Now that the XML advertisement file is in place, you can simply use the AdRotator control to read from
this file. Listing 5-24 shows an example of this in action.

Listing 5-24: Using the AdRotator control as a banner ad
<%@ Page Language="VB" %>

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>AdRotator Page</title>
</head>
<body>
<form id="forml" runat="server">
<asp:AdRotator ID="AdRotatorl" Runat="server"
AdvertisementFile="MyAds.xml" />

176



ASP.NET Web Server Controls

<p>Lorem ipsum dolor sit
amet, consectetuer adipiscing elit. Duis vel justo. Aligquam
adipiscing. In mattis volutpat urna. Donec adipiscing, nisl eget
dictum egestas, felis nulla ornare ligula, ut bibendum pede augue
eu augue. Sed vel risus nec urna pharetra imperdiet. Aenean
semper. Sed ullamcorper auctor sapien. Suspendisse luctus. Ut ac
nibh. Nam lorem. Aliquam dictum aliquam purus.</p>
</form>
</body>
</html>

The example shows the ad specified in the XML advertisement file as a banner ad at the top of the page.

You are not required to place all your ad information in the XML advertisement file. Instead, you can
use another data source to which you bind the AdRotator. For instance, you bind the AdRotator to a
SglDataSource object that is retrieving the ad information from SQL Server in the following fashion:

<asp:AdRotator ID="AdRotatorl" Runat="server"
DataSourceId="SglDataSourcel" AlternateTextField="AlternateTF"
ImageUrlField="Image" NavigateUrlField="NavigateUrl" />

The AlternateTextField, ImageUrlField, and NavigateUrlField properties point to the column
names that are used in SQL Server for those items.

The Xml Server Control

The Xml server control provides a means of getting XML and transforming it using an XSL style sheet.
The Xml control can work with your XML in a couple of different ways. The simplest method is by using
the construction shown in Listing 5-25. This control is covered in more detail in Chapter 13.

Listing 5-25: Displaying an XML document

<asp:Xml ID="Xmll" Runat="server" DocumentSource="~/MyXMLFile.xml"
TransformSource="MyXSLFile.xslt"></asp:Xml>

This method takes only a couple of attributes to make it work: DocumentSource, which points to the
path of the XML file, and TransformSource, which provides the XSLT file to use in transforming the
XML document.

The other way to use the Xml server control is to load the XML into an object and then pass the object to
the Xml control, as illustrated in Listing 5-26.

Listing 5-26: Loading the XML file to an object before providing it to the Xml control
VB
Dim MyXmlDoc as XmlDocument = New XmlDocument ()
MyXmlDoc.Load (Server.MapPath ("Customers.xml"))

Dim MyXslDoc As XslTransform = New XslTransform()

(continued)

177



Chapter 5

Listing 5-26: (continued)
MyXslDoc.Load (Server.MapPath ("CustomersSchema.xslt"))

Xmll.Document = MyXmlDoc
Xmll.Transform = MyXslDoc

C#
XmlDocument MyXmlDoc = new XmlDocument () ;
MyXmlDoc.Load (Server.MapPath ("Customers.xml")) ;

XslTransform MyXsltDoc = new XslTransform();
MyXsltDoc.Load (Server.MapPath ("CustomersSchema.xslt")) ;

Xmll.Document = MyXmlDoc;
Xmll.Transform = MyXslDoc;

To make this work, you have to ensure that the System.xml and System.Xml.Xs1 namespaces are
imported into your page. The example loads both the XML and XSL files and then assigns these files as
the values of the Document and Transform properties.

Panel Server Control

The Panel server control encapsulates a set of controls you can use to manipulate or lay out your
ASPNET pages. It is basically a wrapper for other controls, enabling you to take a group of server
controls along with other elements (such as HTML and images) and turn them into a single unit.

The advantage of using the Panel control to encapsulate a set of other elements is that you can manipu-
late these elements as a single unit using one attribute set in the Panel control itself. For example, setting
the Font-Bold attribute to True causes each item within the Panel control to adopt this attribute.

The new addition to the Panel control is the capability to scroll with scrollbars that appear automatically
depending on the amount of information that Panel control holds. You can even specify how the scroll-
bars should appear.

For an example of using scrollbars, look at a long version of the Lorem Ipsum text (found at www
.lipsum.com) and place that text within the Panel control, as shown in Listing 5-27.

Listing 5-27: Using the new scrollbar feature with the Panel server control
<%@ Page Language="VB" %>

<html>
<head runat="server">
<title>Panel Server Control Page</title>
</head>
<body>
<form id="forml" runat="server">
<asp:Panel ID="Panell" Runat="server" Height="300" Width="300"

178



ASP.NET Web Server Controls

ScrollBars="auto">
<p>Lorem ipsum dolor sit amet...</p>
</asp:Panel>
</form>
</body>
</html>

By assigning values to the Height and width attributes of the Panel server control and using the
ScrollBars attribute (in this case, set to Auto), you can display the information it contains within the
defined area using scrollbars (see Figure 5-29).

As you can see, a single vertical scrollbar has been added to the set area of 300 x 300 pixels. The Panel
control wraps the text by default as required. To change this behavior, use the new wrap attribute, which
takes a Boolean value:

<asp:Panel ID="Panell" Runat="server"
Height="300" Width="300" ScrollBars="Auto"
Wrap="False" />

Turning off wrapping may cause the horizontal scrollbar to turn on (depending on what is contained in
the panel section).

&7 Panel Server Control Page - Microsoft Internet Explorer =@E
Eile Edit View Favorites Tools Help }F
) Back 9 - [® [@ €| PO search FrFavorites @ Meda £ | (v a e
Address |@ http:/flocalhost: 17924/ \WebApplication 1/Default. aspx M Go Links *
Lorem ipsum dolor sit amet, consectetuer ~

adipiscing elit. Aenean mattis pede at sapien.
Phasellus feugiat odio eu augue. Aenean
dictum tortor id arcu. Maecenas condimentum
congue lorem. Suspendisse laoreet porttitor
sem. Etiam odio. Sed tristique risus ac nulla.
Cras et nulla sed dolor condimentum wehicula.
Duis varius nibh eget risus. Nulla consectetuer
suscipit augue. Proin ante diam, mollis sed,
varius ut, tincidunt ut, ibero. Fusce aliquam.
Nunc vulputate, odio quis sodales varius, urna
velit rhoncus est, vel vehicula felis purus in est.
Pellentesque habitant morbi tristique senectus
et netus et malesuada fames ac turpis egestas.
Praesent sit amet wisi ut nunc laoreet lobortis.
Morbi gravida tortor id odio. [v]

@ Done ‘-J Local intranet

Figure 5-29

179



Chapter 5

If you don’t want to let the ASP.NET engine choose which scrollbars to activate, you can actually make
that decision through the use of the ScrollBars attribute. In addition to Auto, its values include None,
Horizontal, Vertical, and Both.

Another interesting attribute that enables you to change the behavior of the Panel control is
HorizontalAlign. It enables you to set how the content in the Panel control is horizontally aligned.
The possible values of this attribute include NotSet, Center, Justify, Left, and Right. Figure 5-30
shows a collection of Panel controls with different horizontal alignments.

Lorem ipsum dolor sit amet, [#] Lorem ipsum dolor sit amet. | Lorem ipsum dolor sit amet, | 4] Lorem ipsum dolor sit amet,|#

consectetuer adipiscing elit. = consectetuer adipiscing elit = consectetuer adipiscing elit. = consectetuer adipiscing clit =
Aenean mathis pede at sapien. Aenean maths pede at sapien. Aenean mattis pede at sapien. Aenean mattis pede at sapien
Phasellus feugiat odio eu Phasellus  feuziat odio en Phasellus feugiat odio eu Phaselius feugiat odio eu
augue. Aencan dictum tortor augue. Aencan dictum tortor augue. Aenecan dictum tortor augue. Aenean dictum tortor
id arcu. Maecenas id arcu. Maecenas id arcu. Maecenas id arcu. Maecenas
condimentum congue lorem condimentum congue lorem condimentum congue lorem condimentum congue lorem
Suspendisse laoreet porttitor Suspendisse laorest porttitor Suspendisse lacreet porttitor Suspendisse laorest porttitor
sem. Etiam odio. Sed tistique sem. Etiam odio. Sed tristique sem. Etiam odio. Sed tristique sem. Etiam odio. Sed tristique
risus ac nulla. Cras etnulla | risus ac mulla Cras et nulla | risus ac nulla, Cras etnulla risus ac alla. Cras et nulla

cad dolow o d: [w . dote | TR .| BT R | v a4 a [

Center aligned Justified Left align Right align
Figure 5-30

It is also possible to move the vertical scrollbar to the left side of the Panel control by using the
Direction attribute. Direction can be set to NotSet, LeftToRight, and RightToLeft. A setting of
RightToLeft is ideal when you are dealing with languages that are written from right to left (some
Asian languages, for example). However, that setting also moves the scrollbar to the left side of the Panel
control. If the scrollbar is moved to the left side and the HorizontalAlign attribute is set to Left, your
content resembles Figure 5-31.

&1 Panel Server Control Page - Microsoft Internet Explorer == x|
File Edit View Favorites Tools Help %'
& Eack ) |ﬂ @ _/:‘_ ,'j Search :',‘? Favorites @ Media 2 | I~ >

Address |@ http: /flocalhost: 17324/ webApplication 1/Default. aspx I:I Go Links *

#| Lorem ipsum dolor sit amet,
consectetuer adipiscing elit.
Aenean mattis pede at sapien.
Phasellus feugiat odio en
augue. Aenean dictum tortor
id arcu. Maecenas
condimentum congue lorem.
Suspendisse laoreet porttitor
sem. Etiam odio. Sed tristique

™) risus ac mulla. Cras et nulla

B I T B

@ Done ‘ﬂ Local intranet
Figure 5-31

180



ASP.NET Web Server Controls

The PlaceHolder Server Control

The PlaceHolder server control works just as its name implies —it is a placeholder for you to interject
objects dynamically into your page. Think of it as a marker with which you can add other controls. The
capability to add controls to a page at a specific point also works with the Panel control.

To see how it works, insert a PlaceHolder control into your page and then add controls to it from your
server-side code in the manner shown in Listing 5-28.

Listing 5-28: Using PlaceHolder to add controls to a page dynamically

VB
Dim NewLabelControl As New Label ()
NewLabelControl.Text = "Hello there"

PlaceHolderl.Controls.Add (NewLabelControl)

C#
Label NewLabelControl = new Label () ;
NewLabelControl.Text = "Hello there";

PlaceHolderl.Controls.Add (NewLabelControl) ;

This example creates a new instance of a Label control and populates it with a value before it is added to
the PlaceHolder control. You can add more than one control to a single instance of a PlaceHolder control.

Summary

This chapter explored numerous server controls, their capabilities, and the features they provide. With
ASP.NET 2.0, you have more than 50 new server controls at your disposal, besides some great changes to
the server controls from ASPNET 1.0/1.1 that you already use on a day-to-day basis.

Because you have so many server controls at your disposal when you are creating your ASPNET appli-
cations, you have to think carefully about which is the best control for the task. Many controls seem sim-
ilar, but they offer different features. These controls guarantee that you can build the best possible
applications for all browsers.

This chapter also covered some of the changes ASPNET 2.0 brings to the classic server controls. The
new features added to classic server controls are, in many ways, just as outstanding as the new controls
that appear in ASPNET 2.0. The new features make it easy to extend the capabilities of your ASPNET
applications.

181






ASP.NET 2.0
Web Server Controls

When I sat in one of the first review sessions for ASPNET 2.0 on the Microsoft campus in Redmond,
Washington, I remember being amazed by the number of new server controls (in addition to many
other new and exciting features) this newest release offered. The core infrastructure was already in
place with ASPNET 1.0/1.1; but with the much-improved 2.0 release, the ASP.NET team was mak-
ing the lives of developers even simpler.

The purpose of the large collection of new controls is to make you more productive. These controls
give you advanced functionality that, in the past, you would have had to laboriously program or
simply omit. In the classic ASP days, for example, few calendars were used on Internet Web sites.
With the introduction of the Calendar server control in ASP.NET 1.0, calendar creation on a site
became a trivial task. Building an image map on top of an image was another task that was diffi-
cult to achieve in ASPNET 1.x. Through the use of a new server control, however, this capability is
now built into ASPNET 2.0.

This chapter takes a look at some of these new server controls and explains how to use them in
ASPNET 2.0 applications. It doesn’t cover all of the new controls, many of which are discussed in
other chapters of this book.

BulletedList Server Control

One common HTML Web page element is a collection of items in a bulleted list. The BulletedList
server control is meant to display a bulleted list of items easily in an ordered (using the HTML
<ol> element) or unordered (using the HTML <ul> element) fashion. In addition, the control can
determine the style used for displaying the list.




Chapter 6

The BulletedList control can be constructed of any number of <asp:ListItem> controls or can be data-
bound to a data source of some kind and populated based upon the contents retrieved. Listing 6-1 shows

a bulleted list in its simplest form.

Listing 6-1: A simple BulletedList control
<%@ Page Language="VB" %>

<html xmlns="http://www.w3.o0rg/1999/xhtml" >
<head runat="server">

<title>BulletedList Server Control</title>
</head>
<body>

<form id="forml" runat="server">

<asp:BulletedList ID="Bulletedlistl" Runat="server">

<asp:
<asp:
<asp:ListItem>Finland</asp:ListItem>
<asp:ListItem>Russia</asp:ListItem>
<asp:ListItem>Sweden</asp:ListItem>
<asp:ListItem>Estonia</asp:ListItem>

</asp:BulletedList>
</form>
</body>
</html>

ListItem>United States</asp:ListItem>
ListItem>United Kingdom</asp:ListItem>

The use of the <asp:BulletedList> element, along with <asp:ListItem> elements, produces a sim-

ple bulleted list output like the one shown in Figure 6-1.

& BulletedList Server Control - Microsoft Internet Explorer =Tl
File Edit View Favorites Tools Help ?}'
) Back 3] ¥ @ #h| Psearch drravorites @Meda @ 2 B @&

Address |@ http:/localhost: 2065 /myWebApplication/Default. aspx

OBE

Links

o United States

s United Kingdom
« Finland

o Russia

o Sweden

» Estonia

@ Done

‘-'J Local intranst

Figure 6-1

The BulletedList control also enables you to easily change the style of the list with just one or two
attributes. The BulletStyle attribute changes the style of the bullet that precedes each line of the list. It
has possible values of Numbered, LowerAlpha, UpperAlpha, LowerRoman, UpperRoman, Disc, Circle,
Square, NotSet, and CustomImage. Figure 6-2 shows examples of these styles (minus the CustomImage

setting that enables you to use any image of your choice).

184



ASP.NET 2.0 Web Server Controls

B BulletedList Server Control - Microsoft Int Explorer E0E
File Edit View Favorites Tools Help ﬁ'
- x = = »
O - Q MR G Puwa frrae @reae @ 25 B
agdeess @] http:fflocalhost: 25102/ WebApplcation 1/ Defaut, aspx ﬂ Go ks >
|
Numbered LowerAlpha UpperAlpha
1. United States a. United States A United States
2. United Kingdom b. United Kingdom B. United Kingdom
3. Finland c. Finland C. Finland
4. Russia d. Russia D. Russia
5. Sweden e Sweden E. Sweden
6. Estonia f. Estonia F. Estonia
LowerRoman UpperRoman Disc
i United States 1. United States » United States
i. United Kingdom II. United Kingdom » United Kinzgdom =
. Finland 1I. Finland « Finland
. Russia IV. Russia « Russia
v. Sweden /. Sweden * Sweden
+i. Estonia V1. Estonia « Estonia
Circle Square NotSet
o United States w United States « United States
o United Kingdom » United Kingdom « United Kingdom
o Finland = Finland « Finland
o Russia = Russia « Russia
o Sweden » Sweden « Sweaden
o Estonia = Estonia « Estonia
vl
I_-?_JDOHR & Local intranst
Figure 6-2

You can change the starting value of the first item in any of the numbered styles (Numbered, LowerAlpha,
UpperAlpha, LowerRoman, UpperRoman) by using the FirstBulletNumber attribute. If you set the
attribute’s value to 5 when you use the UpperRoman setting, for example, you get the format illustrated

in Figure 6-3.

B e e e
%i BulletedList Server Control - Microsoft Internet Explorer ; E E

Eile

Edit

& Back
Address @ http: /localhost: 2065/myWebApplication/Default, aspx

View Favorites

O - [€ R | Psearch Frravorites @ Meda 8 2 2 B @&

Tools Help

[

E' Go |links ®

V.
VL
VIL
VIIL
X
X

United States
United Kingdom
Finland

Russia

Sweden

Estonia

@ Done

'a Local intranet

Figure 6-3

185



Chapter 6

To employ images as bullets, use the CustomImage setting in the BulletedList control. You must also use
the BulletImageUrl attribute in the following manner:

<asp:BulletedList ID="Bulletedlistl" Runat="server"
BulletStyle="CustomImage" BulletImageUrl="~/myImage.gif">

Figure 6-4 shows an example of image bullets.

%] BulletedList Server Control - Microsoft Internet Explorer ==
File Edit View Favorites Tools Help ﬁ.’
u — n >
<) ? ) |£| \ELI _'\] P ! Search S'\'( Favorites @Media 6-“

Address @ http:/localhost: 42252 ServerControls/Default. aspx il . Go Links **

& United States
& United Kingdom
&S Finland
©SRussia

&2 Sweden
ESEstonia

&] Done & Local intranet

Figure 6-4

The BulletedList control has an attribute called DisplayMode, which has three possible values: Text,
HyperLink, and LinkButton. Text is the default and has been used so far in the examples. Using Text
means that the items in the bulleted list are laid out only as text. HyperLink means that each of the
items is turned into a hyperlink —any user clicking the link is redirected to another page, which is speci-
fied by the <asp:ListItem> control’s Value attribute. A value of LinkButton turns each bulleted list
item into a hyperlink that posts back to the same page. It enables you to retrieve the selection that the
end user makes, as illustrated in Listing 6-2.

Listing 6-2: Using the LinkButton value for the DisplayMode attribute

VB
<%@ Page Language="VB"%>

<script runat="server">
Protected Sub BulletedListl Click(ByVal sender As Object, _
ByVal e As System.Web.UI.WebControls.BulletedListEventArgs)

Labell.Text = "The index of item you selected: " & e.Index & _
"<br>The value of the item selected: " & _
BulletedListl.Items (e.Index) .Text
End Sub
</script>

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">

186



ASP.NET 2.0 Web Server Controls

<title>BulletedList Server Control</title>
</head>
<body>
<form id="forml" runat="server">
<asp:BulletedList ID="BulletedListl" Runat="server"
OnClick="BulletedListl_Click" DisplayMode="LinkButton">
<asp:ListItem>United States</asp:ListItem>
<asp:ListItem>United Kingdom</asp:ListItem>
<asp:ListItem>Finland</asp:ListItem>
<asp:ListItem>Russia</asp:ListItem>
<asp:ListItem>Sweden</asp:ListItem>
<asp:ListItem>Estonia</asp:ListItem>
</asp:BulletedList>
<asp:Label ID="Labell" Runat="server">
</asp:Label>
</form>
</body>
</html>

C#
<script runat="server">
protected void BulletedListl_ Click(object sender,
System.Web.UI.WebControls.BulletedListEventArgs e)
{
Labell.Text = "The index of item you selected: " + e.Index +
"<br>The value of the item selected: " +
BulletedListl.Items[e.Index].Text;
}

</script>

In this example, the DisplayMode attribute is set to LinkButton, and the onClick attribute is used to
point to the BulletedListl_Click event. BulletedListl_Click uses the BulletedListEventArgs
object, which only exposes the Index property. Using that, you can determine the index number of the
item selected.

You can directly access the Text value of a selected item by using the Items property, or you can use the
same property to populate an instance of the ListItem object. You do that as shown here:

VB
Dim blSelectedvValue As ListItem = BulletedListl.Items (e.Index)

C#
ListItem blSelectedValue = BulletedListl.Items[e.Index];

Now that you have seen how to create bulleted lists with items that you declaratively place in the code,
take a look at how to create dynamic bulleted lists from items that are stored in a data store. The follow-
ing example shows how to use the BulletedList control to data-bind to results coming from a data store;

in it, all information is retrieved from an XML file.

The first step is to create the XML in Listing 6-3.

187



Chapter 6

Listing 6-3: FilmChoices.xml

<?xml version="1.0" encoding="utf-8"?>
<FilmChoices>
<Film
Title="Close Encounters of the Third Kind"
Year="1977"
Director="Steven Spielberg" />
<Film
Title="Grease"
Year="1978"
Director="Randal Kleiser" />
<Film
Title="Lawrence of Arabia"
Year="1962"
Director="David Lean" />
</FilmChoices>

To populate the BulletedList server control with the Title attribute from the FileChoices.xml file,
use an XmlDataSource control to access the file, as illustrated in Listing 6-4.

Listing 6-4: Dynamically populating a BulletedList server control
<%@ Page Language="VB" %>

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>BulletedList Server Control</title>
</head>
<body>
<form id="forml" runat="server">
<asp:BulletedList ID="BulletedListl" Runat="server"
DataSourceID="XmlDataSourcel" DataTextField="Title">
</asp:BulletedList>
<asp:XmlDataSource ID="XmlDataSourcel" Runat="server"
DataFile="~/FilmChoices.xml" XPath="FilmChoices/Film">
</asp:XmlDataSource>
</form>
</body>
</html>

In this example, you use the DataSourceID attribute to point to the XmlDataSource control (as you
would with any control that can be bound to one of the data source controls). After you are connected to
the data source control, you specifically point to the Title attribute using the DataTextField attribute.
After the two server controls are connected and the page is run, you get a bulleted list that is completely
generated from the contents of the XML file. Figure 6-5 shows the result.

The XmlDataSource server control has some limitations in that the binding to the BulletedList server con-
trol worked in the previous example only because the Tit1le value was an XML attribute and not a sub-
element. The XmlDataSource control only exposes XML attributes as properties when databinding. If you
are going to want to work with sub-elements, then you are going to have to perform an XSLT transform
using the XmlDataSource control’s TransformFile attribute to turn elements into attributes.

188



ASP.NET 2.0 Web Server Controls

&1 BulletedList Server Control - Microsoft Internet Explorer =)ol
File Edit View Favorites Tools Help f,'
) Back 3] EYRE) o | P search ¢ Favorites @ Media £ | (v fa B [ i
Address @ http:/localhost: 2065/myvebApplicationDefault. aspx M Go Links **

s Close Encounters of the Third Kind

+ Grease

+ Lawrence of Arabia
Géj Done ‘-'J Local intranet
Figure 6-5

HiddenField Server Control

For many years now, developers have been using hidden fields in their Web pages to work with state
management. The <input type="hidden"> element is ideal for storing items that have no security con-
text to them. These items are simply placeholders for data points that you want to store in the page itself
instead of using the Session object or intermingling the data with the view state of the page. View state
is another great way to store information in a page, but many developers turn off this feature to avoid
corruption of the view state or possibly degradation of page performance.

Any time a hidden field is placed within a Web page, it is not interpreted in the browser in any fashion,
although it is completely viewable by end users if they look at the source of the HTML page.

Listing 6-5 is an example of using the HiddenField server control to hold a GUID that can be used from
page to page simply by carrying over its value as the end user navigates through your application.

Listing 6-5: Working with the HiddenField server control

VB
<%@ Page Language="VB" %>

<script runat="server" language="vb">
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
HiddenFieldl.Value = System.Guid.NewGuid () .ToString/()
End Sub
</script>

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>HiddenField Server Control</title>
</head>
<body>
<form id="forml" runat="server">
<asp:HiddenField ID="HiddenFieldl" Runat="Server" />
</form>
</body>
</html>

(continued)

189



Chapter 6

Listing 6-5: (continued)

C#
<%@ Page Language="C#"%>

<script runat="server">
protected void Page_Load(object sender, EventArgs e)
{
HiddenFieldl.Value = System.Guid.NewGuid() .ToString() ;
}
</script>

In this example, the Page_Load event populates the HiddenFieldl control with a GUID. You can see the
hidden field and its value by looking at the source of the blank HTML page that is created. You should see
a result similar to the following (the GUID will have a different value, of course):

<input type="hidden" name="HiddenFieldl" id="HiddenFieldl"
value="a031e77c-379b-4bda-887c-244ee695844d5" />

On the page postback, ASP.NET can detect whether the HiddenField server control has changed its
value since the last post. This enables you to change the HiddenField value with client-side script and
then work with the changes in a page event.

The HiddenField server control has an event called ValueChanged that you can use when the value is
changed:

VB
Protected Sub HiddenFieldl_ValueChanged (ByVal sender As Object, _
ByVal e As System.EventArgs)
' Handle event here
End Sub

C#
protected void HiddenFieldl ValueChanged(object sender, EventArgs e)
{

// Handle event here

}

The valueChanged event is triggered when the ASPNET page is posted back to the server if the value
of the HiddenField server control has changed since the last time the page was drawn. If the value has
not changed, the method is never triggered. Therefore, the method is useful to act upon any changes to
the HiddenField control —such as recording a value to the database or changing a value in the user’s
profile.

FileUpload Server Control

In ASP.NET 1.0/1.1, you could upload files using the HTML FileUpload server control. This control put
an <input type="file"> element on your Web page to enable the end user to upload files to the server.
To use the file, however, you had to make a couple of modifications to the page. For example, you were
required to add enctype="multipart/form-data" to the page’s <form> element.

190



ASP.NET 2.0 Web Server Controls

ASP.NET 2.0 introduces a new FileUpload server control that makes the process of uploading files to

a server even simpler. When giving a page the capability to upload files, you simply include the new
<asp:FileUpload> control and ASP.NET takes care of the rest, including adding the enctype attribute
to the page’s <form> element.

Uploading Files Using the FileUpload Control

After the file is uploaded to the server, you can also take hold of the uploaded file’s properties and either
display them to the end user or use these values yourself in your page’s code behind. Listing 6-6 shows
an example of using the new FileUpload control. The page contains a single FileUpload control, plus a
Button and a Label control.

Listing 6-6: Uploading files using the new FileUpload control

VB
<%@ Page Language="VB"%>

<script runat="server">
Protected Sub Buttonl_Click(ByVal sender As Object, ByVal e As System.EventArgs)
If FileUploadl.HasFile Then
Try
FileUploadl.SaveAs ("C:\Uploads\" & _
FileUploadl.FileName)

Labell.Text = "File name: " & _
FileUploadl.PostedFile.FileName & "<br>" & _
"File Size: " & _
FileUploadl.PostedFile.ContentLength & " kb<br>" & _
"Content type: " & _

FileUploadl.PostedFile.ContentType
Catch ex As Exception

Labell.Text = "ERROR: " & ex.Message.ToString/()
End Try
Else
Labell.Text = "You have not specified a file."
End If
End Sub
</script>

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>FileUpload Server Control</title>
</head>
<body>
<form id="forml" runat="server">
<asp:FileUpload ID="FileUploadl" Runat="server" />
<p>
<asp:Button ID="Buttonl" Runat="server" Text="Upload"
OnClick="Buttonl_Click" /></p>
<p>
<asp:Label ID="Labell" Runat="server"></asp:Label></p>
</form>
</body>
</html>

(continued)

191



Chapter 6

Listing 6-6: (continued)

C#
<%@ Page Language="C#"%>

<script runat="server">
protected void Buttonl_Click(object sender, EventArgs e)
{
if (FileUploadl.HasFile)

try {
FileUploadl.SaveAs ("C:\\Uploads\\" + FileUploadl.FileName) ;
Labell.Text = "File name: " +

FileUploadl.PostedFile.FileName + "<br>" +
FileUploadl.PostedFile.ContentLength + " kb<br>" +
"Content type: " +
FileUploadl.PostedFile.ContentType;

}

catch (Exception ex) {

Labell.Text = "ERROR: " + ex.Message.ToString();
}

else

{
Labell.Text = "You have not specified a file.";
}
}
</script>

From this example, you can see that the entire process is rather simple. The single button on the page ini-
tiates the upload process. The FileUpload control itself does not initiate the uploading process. You must
initiate it through another event such as Button_Click.

After the file is uploaded, the first check examines whether a file reference was actually placed within
the <input type="file"> element. If a file was specified, an attempt is made to upload the referenced
file to the server using the saveAs method of the FileUpload control. That method takes a single String
parameter, which should include the location where you want to save the file. In the String parameter
used in Listing 6-6, you can see that the file is being saved to a folder called Uploads, which is located in
the ¢:\ drive.

The PostedFile.FileName attribute is used to give the saved file the same name as the file it was
copied from. If you want to name the file something else, simply use the saveAs method in the follow-
ing manner:

FileUploadl.SaveAs ("C:\Uploads\UploadedFile.txt")

You could also give the file a name that specifies the time it was uploaded:

FileUploadl.SaveAs ("C:\Uploads\" & System.DateTime.Now.ToFileTimeUtc() & ".txt")

192



ASP.NET 2.0 Web Server Controls

After the upload is successfully completed, the Label control on the page is populated with metadata of
the uploaded file. In the example, the file’s name, size, and content type are retrieved and displayed on
the page for the end user. When the file is uploaded to the server, the page generated is similar to that
shown in Figure 6-6.

&1 FileUpload Server Control - Microsoft Internet Explorer =@
Eile Edit View Favorites Tools Help 1',"
QBak - O EIRE)] o | O Search 7 Favorites @ Media £ ~ & B L) o}
Address Ej http:/localhost: 206 5/myWebapplication/Default. aspx M Go Links >

File name: C:Documents and Settings'Billy' My Documents MyWordDocument.doc
File Size: 10732 kb
Content tvpe: application‘'msword

@ Done ‘-J Local intranet

Figure 6-6

Uploading files to another server can be an error-prone affair. It is vital to upload files in your code using
proper exception handling. That’s why the file in the example is uploaded using a Try Catch statement.

Giving ASPNET Proper Permissions to Upload Files

You might receive errors when your end users upload files to your Web server through the FileUpload
control in your application. These might occur because the destination folder on the server is not
writable for the account used by ASP.NET. If ASP.NET is not enabled to write to the folder you want,
you can enable it using the folder’s properties.

First, right-click the folder into which the ASP.NET files should be uploaded. The Properties dialog for
the selected folder opens. Click the Security tab to make sure the ASPNET Machine Account is included
in the list and has the proper permissions to write to disk. If it is enabled, you see something similar to
what is presented in Figure 6-7.

If you don’t see the ASP.NET Machine Account in the list of users allowed to access the folder, add
ASP.NET by clicking the Add button and entering ASPNET (without the period) in the text area pro-
vided (see Figure 6-8).

Click OK, and you can then click the appropriate check boxes to provide the permissions needed for
your application.

193



Chapter 6

Uploads Properties B %]

General | Sharing | Securty | Web Sharing | Customize

QI'OLID Qr user names:
ﬁ ‘Admiristrator (REUTERS-EVJEN"Administrator)
!ﬁ Administrators (REUTERS-EVJEN \Administrators)
€7 CREATOR OWNER
€5 SYSTEM
€7 Users (REUTERS-EVJEN! Users)

[ Add... ] [ Bemove ]
Pemissions for Administrator Allow Deny
Full Contrl O O I
Mody | O
Read & Exeoute O O
List Folder Contents O O
Read O O
Write O O [+

For special permissions or for advanced settings,
click Advanced. e

[ ok J[ canca |

Figure 6-7

Select Users or Groups ]|

Select this object type:

Users, Groups, or Builtin security principals Object Types...

From this location:

REUTERS-EVJEN

Enterthe object names to select (=xa

aspnet Check Names

o) (e )

Figure 6-8

Understanding File Size Limitations

Your end users might never encounter an issue with the file upload process in your application, but you
should be aware that some limitations exist. When users work through the process of uploading files, a
size restriction is actually sent to the server for uploading. The default size limitation is 4MB (4096kb);
the transfer fails if a user tries to upload a file that is larger than 4096kb.

A size restriction protects your application. You want to prevent malicious users from uploading numer-
ous large files to your Web server in an attempt to tie up all the available processes on the server. Such
an occurrence is called a denial of service attack. It ties up the Web server’s resources so that legitimate
users are denied responses from the server.

194



ASP.NET 2.0 Web Server Controls

The default allowable file size is dictated by the actual request size permitted to the Web server (4096KB).
You can change this setting in the web. config file, as shown in Listing 6-7.

Listing 6-7: Changing the file-size limitation setting in the web.config file

<httpRuntime
idleTime="15"
executionTimeout="90"
maxRequestLength="4096"
useFullyQualifiedRedirectUrl="False"
minFreeThreads="8"
minLocalRequestFreeThreads="4"
appRequestQueueLimit="100"

/>

You can do a lot with the <httpRuntime> section of the web. config file, but two properties — the
maxRequestLength and executionTimeout properties —are especially interesting.

The maxRequestLength property is the setting that dictates the size of the request made to the Web
server. When you upload files, the file is included in the request; you alter the size allowed to be
uploaded by changing the value of this property. The value presented is in kilobytes. To allow files
larger than the default of 4MB, change the maxRequestLength property as in the following:

maxRequestLength="11000"

This example changes the maxRequestLength property’s value to 11,000KB (around 10MB).

With this setting in place, your end users can upload 10MB files to the server. When changing the
maxRequestLength property, be aware of the setting provided for the executionTimeout property.
This property sets the time (in seconds) for a request to attempt to execute to the server before ASP.NET
shuts down the request (whether or not it is finished). The default setting is 90 seconds. The end user
receives a timeout error notification in the browser if the time limit is exceeded. If you are going to per-
mit larger requests, remember that they take longer to execute than smaller ones. If you increase the size
of the maxRequestLength property, you should examine whether to increase the executionTimeout
property as well.

If you are working with smaller files, it’s advisable to reduce the size allotted for the request to the Web
server by decreasing the value of the maxRequestLength property. This helps safeguard your applica-
tion from a denial of service attack.

Placing the Uploaded File into a Stream Object

One nice feature of the FileUpload control is that it not only gives you the capability to save the file to
disk, but it also lets you place the contents of the file into a Stream object. You do this by using the
FileContent property, as demonstrated in Listing 6-8.

Listing 6-8: Uploading the file contents into a Stream object

VB
Dim myStream As System.IO.Stream
myStream = FileUploadl.FileContent

(continued)

195



Chapter 6

Listing 6-8: (continued)

C#
System.IO.Stream myStream;
myStream = FileUploadl.FileContent;

In this short example, an instance of the Stream object is created. Then, using the FileUpload control’s
FileContent property, the content of the uploaded file is placed into the object. This is possible because
the FileContent property returns a Stream object.

Moving File Contents from a Stream
Object to a Byte Array

Because you have the capability to move the file contents to a Stream object of some kind, it is also
fairly simple to move the contents of the file to a Byte array. To do so, first move the file contents to a
MemoryStream object and then convert the object to the necessary Byte array object. Listing 6-9 shows
the process.

Listing 6-9: Uploading the file contents into a Byte array

VB
Dim myByteArray () As Byte
Dim myStream As System.IO.MemoryStream

myStream = FileUploadl.FileContent
myByteArray = myStream.ToArray ()

C#
Byte myByteArrayl(];
System.IO.Stream myStream;

myStream = FileUploadl.FileContent;
myByteArray = myStream.ToArray () ;

In this example, instances of a Byte array and a MemoryStream object are created. First the
MemoryStream object is created using the FileUpload control’s FileContent property as you did
previously. Then it’s fairly simple to use the MemoryStream object’s ToArray () method to populate
the myByteArray () instance. After the file is placed into a Byte array, you can work with the file con-
tents as necessary.

MultiView and View Server Controls

The MultiView and View server controls work together to give you the capability to turn on/off sections
of an ASP.NET page. Turning sections on and off, which means activating or deactivating a series of

196



ASP.NET 2.0 Web Server Controls

View controls within a MultiView control, is similar to changing the visibility of Panel controls. For cer-
tain operations, however, you may find that the MultiView control is easier to manage and work with.

The sections, or views, do not change on the client-side; rather, they change with a postback to the
server. You can put any number of elements and controls in each view, and the end user can work
through the views based upon the sequence numbers that you assign to the views.

You can build these controls (like all server controls) from the source view or design view. If working
with Visual Studio 2005, you can drag and drop a MultiView control onto the design surface and then
drag and drop any number of View controls inside the MultiView control. Place the elements you want
within the View controls. When you're finished, you have something like the view shown in Figure 6-9.

You also can create your controls directly in the code, as shown in Listing 6-10.

[ Wiirox - Microsoft Visual Studio oEg|
Fle Edit Wew Webgite Build Debug Dgta Format Layout Tooks Window Community Help

iRl dli ol loetesoolr oo -4

E| '| '.| '|B[Ui.* '|;'|::|---a

Teolbox ~ & X Defaultaspx| ~ x |[Soutan Explorer -0 x
- Standard o 1 _ Bl sl )

R Pointer MultiViewl P €\ \Wrox),

A L ! Viewl 5 App_Data

R Billy's Famous Pan Pancakes — D‘Eh‘"'am‘

ity | web. config

LinkButton \Heat 1/2 tsp of butter in cast iron pan.

(E) mmagesutton \Heat oven to 430 degrees Fahrenheir.

A Hyperlink

| DropOowmList L ® Next Step
L]

. ListBox View2
Ched@ox

Ched@oxlist

Billv's Famous Pan Pancakes

© RadioButton Mix 142 cup flowr, 1/2 cup milk and 2 eggs in bowl.

= RadioButtonlist Pour in cast iron pan. Place in oven. 5] Solufon Ex... ¥ Datbase ../

3] i 2

1@ ImageMap Next Step |H’DD€rt4:s - o
Table 13} - DOCUMENT -

'_.'I Bulletedlist View3 @z A

= 5 5a] £

- Billy's Famous Pan Pancakes EEPAMNE|

250 HiddenField ° e

B 1 _ |

:‘! —— Cook for 20 minures and enjoy!

| Calendar Strict

= AdRotator StylesheetThem

L) FileUpload 1T'hwe

4+ Wizard race

- TraceMode

&l xml UlCuture

T Multiview S Body

71 panel Aink -

] PlaceHolder | s

0 View <] Ll [E3 Color of all active finks in the document.

5] substitution [w] @ Deson | @ Source

Ttem(s) Saved

Figure 6-9

197



Chapter 6

Listing 6-10: Using the MultiView and View server controls

VB
<%@ Page Language="VB"%>

<script runat="server">
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
If Not Page.IsPostBack Then
MultivViewl.ActiveViewIndex = 0
End If
End Sub

Sub NextView(ByVal sender As Object, ByVal e As System.EventArgs)
MultiViewl.ActiveViewIndex += 1
End Sub
</script>

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>MultiView Server Control</title>
</head>
<body>
<form id="forml" runat="server">
<asp:Multiview ID="MultiViewl" Runat="server">
<asp:View ID="Viewl" Runat="Server">
Billy's Famous Pan Pancakes<p />
<i>Heat 1/2 tsp of butter in cast iron pan.<br />
Heat oven to 450 degrees Fahrenheit.<br />
</i><p />
<asp:Button ID="Buttonl" Runat="Server" Text="Next Step"
OnClick="NextView" />
</asp:View>
<asp:View ID="View2" Runat="Server">
Billy's Famous Pan Pancakes<p />
<i>Mix 1/2 cup flour, 1/2 cup milk and 2 eggs in bowl.<br />
Pour in cast iron pan. Place in oven.</i><p />
<asp:Button ID="Button2" Runat="Server" Text="Next Step"
OnClick="NextView" />
</asp:View>
<asp:View ID="View3" Runat="Server">
Billy's Famous Pan Pancakes<p />
<i>Cook for 20 minutes and enjoy!<br />
</i><p />
</asp:View>
</asp:Multiview>
</form>
</body>
</html>

C#
<%@ Page Language="C#"%>

<script runat="server">
protected void Page_Load(object sender, EventArgs e)
{
if (!Page.IsPostBack)

198



ASP.NET 2.0 Web Server Controls

MultiViewl.ActiveViewIndex = 0;

}

void NextView (object sender, EventArgs e)

{
MultiViewl.ActiveViewIndex += 1;

}

</script>

This example shows three views expressed in the MultiView control. Each view is constructed with an
<asp:View> server control that also needs ID and Runat attributes. A button is added to each of the first
two views (Viewl and View2) of the MultiView control. The buttons point to a server-side event that
triggers the MultiView control to progress onto the next view within the series of views.

Before either of the buttons can be clicked, the MultiView control’s ActiveViewIndex attribute is
assigned a value. By default, the ActiveviewIndex, which describes the view that should be showing,
is set to -1. This means that no view shows when the page is generated. To start on the first view when
the page is drawn, set the ActiveViewIndex property to 0, which is the first view because this is a zero-
based index. Therefore, the code from Listing 6-10 first checks to see if the page is in a postback situation
and if not, the ActivevViewIndex is assigned to the first View control.

Each of the buttons in the MultiView control triggers the Nextview method. NextView simply adds one
to the ActiveviewIndex value, thereby showing the next view in the series until the last view is shown.
The view series is illustrated in Figure 6-10.

In addition to the Next Step button on the first and second views, you could place a button in the second
and third views to enable the user to navigate backward through the views. To do this, create two buttons
titled Previous Step in the last two views and point them to the following method in their onCc1lick events:

VB
Sub PreviousView(ByVal sender As Object, ByVal e As System.EventArgs)
MultiViewl.ActiveViewIndex -= 1
End Sub
C#

void PreviousView(object sender, EventArgs e)

{

MultiViewl.ActiveViewIndex -= 1;

}

Here, the PreviousvView method subtracts one from the ActiveviewIndex value, thereby showing the
previous view in the view series.

Another option is to spice up the MultiView control by adding a step counter that displays (to a Label
control) which step in the series the end user is currently performing. In the Page_PreRender event,
you add the following line:

VB
Labell.Text = "Step " & (MultiViewl.ActiveViewIndex + 1).ToString() &
" of " & MultiViewl.Views.Count.ToString ()

199



Chapter 6

C#

Labell.Text = "Step " + (MultiViewl.ActiveViewIndex + 1).ToString() +
" of " + MultiViewl.Views.Count.ToString() ;

Now when working through the MultiView control, the end user sees Step 1 of 3 on the first view,
which changes to Step 2 of 3 on the next view, and so on.

—
@j MultiView Server Control - Microsoft Internet Explorer [B[E)]x]
Eile Edit View Favorites Tools Help :#'

& Back ] M [ | P search 7Favorites @ Media £
Address @ http: /flocalhost: 2065/myWebApplication/Default. aspx Go Links **

2

Billy's Famous Pan Pancakes

Haat 1/2 tsp of butter in cast iron pan.
Heat oven to 430 degreas Falhrenheit.

a Done 'Q Local intranet

—
@j MultiView Server Control - Microsoft Internet Explorer [B[E)]x]
FEile Edit View Favorites Tools Help -#'

QBak - O EIRE) .Q O search <7 Favorites ¥ Media 2
Address @htm:fﬂocalhost:206Sfmy'\“a'eb.ﬁ.pplicaﬁonfDefauIt.aspx Go Links **

>

Billy's Famous Pan Pancakes

Mix 1/2 cup flour, 172 cup millc and 2 eggs in bowl,
Pour in cast iron pan. Place in oven,

a Done 'Q Local intranet

-——
@j MultiView Server Control - Microsoft Internet Explorer B[E)]x]
Eile Edit View Favorites Tools Help -#'

QBak - O & .Q S search <7 Favorites ¥ Media 2
Address @htm:fﬂocalhost:206Sfmy'\“a'eb.ﬁ.pplicaﬁonfDefauIt.aspx Go Links **

>

Billy's Famous Pan Pancakes

Coolk for 20 minutes and enjoy!

a Done 'Q Local intranet
Figure 6-10

200



ASP.NET 2.0 Web Server Controls

Wizard Server Control

Much like the MultiView control, the Wizard server control enables you to build a sequence of steps that
is displayed to the end user. Web pages are all about either displaying or gathering information and, in
many cases, you don’t want to display all the information at once—nor do you always want to gather
everything from the end user at once. Sometimes, you want to trickle the information in from or out to
the end user.

When you are constructing a step-by-step process that includes logic on the steps taken, use the Wizard
control to manage the entire process. The first time you use the Wizard control, notice that it allows for a
far greater degree of customization than does the MultiView control.

In its simplest form, the Wizard control can be just an <asp :Wizard> element with any number of
<asp:WizardStep> elements. Listing 6-11 creates a Wizard control that works through three steps.

Listing 6-11: A simple Wizard control
<%@ Page Language="VB"%>

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>Wizard server control</title>
</head>
<body>
<form id="forml" runat="server">
<asp:Wizard ID="Wizardl" Runat="server" SideBarEnabled="true"
ActiveStepIndex="0">
<WizardSteps>
<asp:WizardStep Runat="server" Title="Step 1">
This is the first step.</asp:WizardStep>
<asp:WizardStep Runat="server" Title="Step 2">
This is the second step.</asp:WizardStep>
<asp:WizardStep Runat="server" Title="Step 3">
This is the third and final step.</asp:WizardStep>
</WizardSteps>
</asp:Wizard>
</form>
</body>
</html>

In this example, three steps are defined with the <asp:WizardsSteps> control. Each step contains con-
tent—simply text in this case, although you can put in anything you want, such as other Web server
controls or even user controls. The order in which the wizardsSteps are defined is based completely on
the order in which they appear within the <wizardSteps> element.

The <asp:Wizard> element itself contains a couple of important attributes. The first is
SideBarEnabled. In this example, it is set to True —meaning that a side navigation system in

the displayed control enables the end user to quickly navigate to other steps in the process. The
ActiveStepIndex attribute of the Wizard control defines the first wizard step. In this case, it is the
first step — 0.

The three steps of the example Wizard control are shown in Figure 6-11.

201



Chapter 6

The side navigation allows for easy access to the defined steps. The Wizard control adds appropriate
buttons to the steps in the process. The first step has simply a Next button, the middle step has Previous
and Next buttons, and the final step has Previous and Finish buttons. The user can navigate through the
steps using either the side navigation or the buttons on each of the steps. You can customize the Wizard
control in so many ways that it tends to remind me of the other rich Web server controls from ASP.NET,
such as the Calendar control. Because so much is possible, only a few of the basics are covered — the

E i Wizard server control - Microsoft Internet Explorer L;.]m

File Edit View Favorites Tools Help ?’
& Back (3 ] BRE .Q S search <7 Favorites @ Media 2 Ef-_._ﬁv
Address @ hittp:/flocalhost: 206 5/myWebaApplication/Default.aspx M Go  Links *

»

Step 1 This is the first step.

Step?  (Tam
—

@ Done ‘d Local intranet
———————————eeeeeeeeeeeeereeea
@ i Wizard server control - Microsoft Internet Explorer B[=[x]
File Edit View Favorites Tools Help ?

»

@Back A > | B @ .ﬁ ,OSearch ‘;"? Favorites @ Media € [E'jv

Address |@ hittps/flocalhost: 206 5/myWebApplication/Default.aspx M Go |Llinks ®

Step 1 Thisis the second step.
Step 2 [ <Previous | [ Next> |

Step 3
@ Done ‘d Local intranet
f— e
% i Wizard server control - Microsoft Internet Explorer B[]
Eile Edit View Favorites Tools Help #

>

QBack - O ENE .ﬁ S search 57 Favorites @ Media 2 [EI_QV
Address @htm:fﬂocalhost: 2065/myWebApplication/Default.aspx M Go Links **

Step 1 This is the third and final step.

Step 2 [ < Previous ] ’Finish]
Step 3

@ Done ‘d Local intranet

Figure 6-11

ones you are most likely to employ in some of the Wizard controls you build.

202



ASP.NET 2.0 Web Server Controls

Customizing the Side Navigation

The steps in the Figure 6-11 example are defined as Step 1, Step 2, and Step 3. The links are created based
on the Title property’s value that you give to each of the <asp:WizardsStep> elements in the Wizard
control:

<asp:WizardStep Runat="server" Title="Step 1">
This is the first step.</asp:WizardStep>

By default, each wizard step created in Design view is titled Step X (with X being the number in the
sequence). You can easily change the value of the Title attributes of each of the wizard steps to define
the steps as you see fit. Figure 6-12 shows the side navigation of the Wizard control with renamed titles.

%] Wizard server control - Microsoft Internet Explorer 2= %]
File Edit View Favorites Tools Help ﬂ"
3 Back D ¥ [@) @ | Osearch 7% Favorites @ Media &) ~ & B o

Address @ http: flocalhost: 2065/ my\WebApplication /Default. aspx M Go Links *

The very first step  1his is the first step.

Oh. the second step too
-Next =
This is the last one!

&] Done & Local intranet

Figure 6-12

Examining the AllowReturn Attribute

Another interesting point of customization for the side navigation piece of the Wizard control is the
AllowReturn attribute. By setting this attribute on one of the wizard steps to False, you can remove
the capability for end users to go back to this step after they have viewed it. The end user cannot navi-
gate backward to any viewed steps that contain the attribute, but he would be able to return to any steps
that do not contain the attribute or that have it set to True:

<asp:WizardStep Runat="server" Title="Step 1" AllowReturn="False">
This is the first step.</asp:WizardStep>

Working with the StepType Attribute

Another interesting attribute in the <asp:WizardStep> element is StepType. The StepType attribute
defines the structure of the buttons used on the steps. By default, the Wizard control places only a Next
button on the first step. It understands that you don’t need the Previous button there. It also knows to
use a Next and Previous button on the middle step, and it uses Previous and Finish buttons on the last
step. It draws the buttons in this fashion because, by default, the StepType attribute is set to Auto,

203



Chapter 6

meaning that the Wizard control determines the placement of buttons. You can, however, take control
of the StepType attribute in the <asp:Wizardstep> element to make your own determination about
which buttons are used for which steps.

In addition to Auto, StepType value options include Start, Step, Finish, and Complete. Start
means that the step defined has only a Next button. It simply allows the user to proceed to the next step
in the series. A value of Step means that the wizard step has Next and Previous buttons. A value of
Finish means that the step includes a Previous and a Finish button. Complete enables you to give
some final message to the end user who is working through the steps of your Wizard control. In the
Wizard control shown in Listing 6-11, for example, when the end user gets to the last step and clicks the
Finish button, nothing happens and the user just stays on the last page. You can add a final step to give
an ending message, as shown in Listing 6-12.

Listing 6-12: Having a complete step in the wizard step collection

<WizardSteps>
<asp:WizardStep Runat="server" Title="Step 1">
This is the first step.</asp:WizardStep>
<asp:WizardStep Runat="server" Title="Step 2">
This is the second step.</asp:WizardStep>
<asp:WizardStep Runat="server" Title="Step 3">
This is the third and final step.</asp:WizardStep>
<asp:WizardStep Runat="server" Title="Final Step" StepType="Complete">
Thanks for working through the steps.</asp:WizardStep>
</WizardSteps>

When you run this Wizard control in a page, you still see only the first three steps in the side navigation.
Because the last step has a StepType set to Complete, it does not appear in the side navigation list.
When the end user clicks the Finish button in Step 3, the last step—Final Step—is shown and no but-
tons are shown with it.

Adding a Header to the Wizard Control

The Wizard control enables you to place a header at the top of the control by means of the HeaderText
attribute in the main <asp:Wizard> element. Listing 6-13 provides an example.

Listing 6-13: Working with the HeaderText attribute

<asp:Wizard ID="Wizardl" Runat="server" SideBarEnabled="true" ActiveStepIndex="0"
HeaderText="&nbsp; Step by Step with the Wizard control&nbsp;"
HeaderStyle-BackColor="DarkGray" HeaderStyle-Font-Bold="true"
HeaderStyle-Font-Size="20">

</asp:Wizard>

This code creates a header that appears on each of the steps in the wizard. The result of this snippet is
shown in Figure 6-13.

204



ASP.NET 2.0 Web Server Controls

&1 Wizard server control - Microsoft Internet Explorer ==
Eile Edit View Favorites Tools Help 1-'
(3 Back Q- [® 2] | Psearch Frravoites @ Meda & | v i B L @
Address @ http:/localhost: 2065/myWebApplication/Default. aspx Ill Go Links **

tep 2
Step 2 This is the first step.

Step 3
-

1 Step by Step with the Wizard control

@ Done

H Local intranet

Figure 6-13

Working with the Wizard’s Navigation System

As stated earlier, the Wizard control allows for a very high degree of customization — especially in the
area of style. You can customize every single aspect of the process, as well as how every element appears

to the end user.

Pay particular attention to the options that are available for customization of the navigation buttons. By
default, the wizard steps use Next, Previous, and Finish buttons throughout the entire series of steps. From
the main <asp:Wizard> element, you can change everything about these buttons and how they work.

First, if you look through the long list of attributes available for this element, notice that one available
button isn’t shown by default: the Cancel button. Set the value of the DisplayCancelButton attribute
to True, and a Cancel button appears within the navigation created for each and every step, including

the final step in the series. Figure 6-14 shows a Cancel button in a step.

E_Wizard server control - Microsoft Internet Explorer

S[E%}

File Edit
& Back

Address @ http:/localhost: 2065 /myWebApplication/Default. aspx

View Favorites Tools

] ¥ @ #| P search F¢Favorites @ Media £
M Go

Help

"

2

Links

Step 1 This is the first step.

Step

@ Downloading from site: http:/localhost: 2065/myy

H Local intranet

Figure 6-14

After you decide which buttons to use within the Wizard navigation, you can choose their style. By
default, regular buttons appear; you can change the button style with the CancelButtonType,
FinishStepButtonType, FinishStepPreviousButtonType, NextStepButtonType,

205



Chapter 6

PreviousStepButtonType, and StartStepNextButtonType attributes. If you use any of these button
types and want all the buttons consistently styled, you must change each attribute to the same value.
The possible values of these button-specific elements include Button, Image, and Link. Button is the
default and means that the navigation system uses buttons. A value of Image enables you to use image
buttons, and Link turns a selected item in the navigation system into a hyperlink.

In addition to these button-specific attributes of the <asp:Wizard> element, you can also specify
a URL to which the user is directed when the he clicks either the Cancel or Finish buttons. To
redirect the user with one of these buttons, you use the CancelDestinationPageUrl or the
FinishDestinationPageUrl attributes and set the appropriate URL as the destination.

Finally, you are not required to use the default text included with the buttons in the navigation
system. You can change the text of each of the buttons with the use of the CancelButtonText,
FinishStepButtonText, FinishStepPreviousButtonText, NextStepButtonText,
PreviousStepButtonText, and the StartStepNextButtonText attributes.

Utilizing Wizard Control Events

One of the most convenient capabilities of the Wizard control is that it enables you to divide large forms
into logical pieces. The end user can then work step-by-step through each section of the form. The devel-
oper, dealing with the inputted values of the form, has a few options because of the various events that
are available in the Wizard control.

The Wizard control exposes events for each of the possible steps that an end user might take when work-
ing with the control. The following table describes each of the available events.

Event Description

ActiveStepChanged Triggers when the end user moves from one step to the
next It doesn’t matter if the step is the middle or final step
in the series. This event simply covers each step change
generically.

CancelButtonClick Triggers when the end user clicks the Cancel button in the
navigation system.

FinishButtonClick Triggers when the end user clicks the Finish button in the
navigation system.

NextButtonClick Triggers when the end user clicks the Next button in the
navigation system.

PreviousButtonClick Triggers when the end user clicks the Previous button in the
navigation system.

SideBarButtonClick Triggers when the end user clicks one of the links contained
within the sidebar navigation of the Wizard control.

By working with these events, you can create a multi-step form that saves all the end user’s input infor-
mation when he changes from one step to the next. You can also use the FinishButtonClick event to
save everything that was stored in each of the steps at the end of the process. The Wizard control

206



ASP.NET 2.0 Web Server Controls

remembers all the end user’s input in each of the steps by means of the view state in the page, which
enables you to work with all these values in the last step. It also gives the end user the capability to go
back to previous steps and change values before those values are saved to a data store.

The event appears in your code behind or inline code as shown in Listing 6-14.

Listing 6-14: The FinishButtonClick event

VB
<script runat="server">
Sub Wizardl_FinishButtonClick (ByVal sender As Object, _
ByVal e As System.Web.UI.WebControls.WizardNavigationEventArgs)

End Sub
</script>

C#
<script runat="server">
void Wizardl_FinishButtonClick (object sender, WizardNavigationEventArgs e)

{

}
</script>

The OnFinishButtonClick attribute should be added to the main <asp:Wizard> element to point at
the new Wizardl_FinishButtonClick event. Listing 6-15 shows how to do this.

Listing 6-15: The <asp:Wizard> Element Changes

<asp:Wizard ID="Wizardl" Runat="server" SideBarEnabled="true" ActiveStepIndex="0"
OnFinishButtonClick="Wizardl FinishButtonClick">

The Wizard control is one of the great new controls that enables you to break up longer workflows into
more manageable pieces for your end users. By separating longer Web forms into various wizard steps,
you can effectively make your forms easy to understand and less daunting to the end user.

Using the Wizard Control to Show Form Elements

So far, you've learned how to work with each of the Wizard control steps, including how to add steps to
the process and how to work with the styling of the control. Now take a look at how you put form ele-
ments into the Wizard control to collect information from the end user in a stepped process. This is just
as simple as the first examples of the Wizard control that used only text in each of the steps.

One nice thing about putting form elements in the Wizard step process is that the Wizard control
remembers each input into the form elements from step to step, enabling you to save the results of the
entire form at the last step. It also means that when the end user presses the Previous button, the data
that he entered into the form previously is still there and can be changed.

Work through a stepped process that enters form information by building a registration process. The last

step of the process saves the results to a database of your choice, although in this example, you just push
the results to a Label control on the page. Listing 6-16 shows the first part of the process.

207



Chapter 6

Listing 6-16: Building the form in the Wizard control

<asp:Wizard ID="Wizardl" runat="Server">
<WizardSteps>
<asp:WizardStep ID="WizardStepl" runat="server"
Title="Provide Personal Info">
First name:<br />
<asp:TextBox ID="fnameTextBox" runat="server"></asp:TextBox><br />
Last name:<br />
<asp:TextBox ID="lnameTextBox" runat="server"></asp:TextBox><br />
Email:<br />
<asp:TextBox ID="emailTextBox" runat="server"></asp:TextBox><br />
</asp:WizardStep>
<asp:WizardStep ID="WizardStep2" runat="server"
Title="Membership Information">
Are you already a member of our group?<br />
<asp:RadioButton ID="RadioButtonl" runat="server" Text="Yes"
GroupName="Member" />
<asp:RadioButton ID="RadioButton2" runat="server" Text="No"
GroupName="Member" />
</asp:WizardStep>
<asp:WizardStep ID="WizardStep3" runat="server" Title="Provided Information"
StepType="Complete" OnActivate="WizardStep3_Activate">
<asp:Label ID="Labell" runat="server" />
</asp:WizardStep>
</WizardSteps>
</asp:Wizard>

This Wizard control has three steps. The first step asks for the user’s personal information, and the sec-
ond asks for the user’s membership information. The third step contains a Label control that pushes out
all the information that was input. This is done through the Activate event that is specific for the
WizardStep object on the third WizardStep control. The code for the WizardStep3_Activate event is
shown in Listing 6-17.

Listing 6-17: Adding an Activate event to a WizardStep object
VB
Protected Sub WizardStep3_Activate (ByVal sender As Object,
ByVal e As System.EventArgs)

' You could save the inputted data to the database here instead

Labell.Text = "First name: " & fnameTextBox.Text.ToString() & "<br>" & _
"Last name: " & lnameTextBox.Text.ToString() & "<br>" & _
"Email: " & emailTextBox.Text.ToString ()
End Sub

208



ASP.NET 2.0 Web Server Controls

C#
protected void WizardStep3_Activate (object sender, EventArgs e)
{
Labell.Text = "First name: " + fnameTextBox.Text.ToString() + "<br>" +
"Last name: " + lnameTextBox.Text.ToString() + "<br>" +
"Email: " + emailTextBox.Text.ToString() ;

When the end user comes to the third step in the display, the Wwizardstep3_Activate method from
Listing 6-17 is invoked. Using the OnActivate attribute in the third WizardStep control, the content pro-
vided by the end user in earlier steps is used to populate a Label control. The three steps are shown in
Figure 6-15.

This example is simple and straightforward, but you can increase the complexity a little bit. Imagine you
want to add another WizardStep control to the process, and you want to display it only if a user specifies
that he is a member in WwizardsStep2. If he answers from the radio button selection that he is not a mem-
ber, you have him skip the new step and go straight to the final step where the results are displayed in
the Label control. First, add an additional wizardstep to the Wizard control, as shown in Listing 6-18.

&7 Untitled Page - Microsoft Internet Explorer o
File Edit View Favorites Tools Help .’,‘
Pk - © |x'] |z'] ) ) search h,j( Favorites (@ Meda )
Agdress —Ej http:fflocalhost: 42252/ServerControls Default. asox M Go Links ®
3
Ei_ﬁt - #] Untitled Page - Microsoft | Explorer =EE
Bil File Edit View Favorites Tools Help ;';'
Last name: NI - =
Provide Personal Info  Evien @Bad‘ M 7 ) 1] & € 7 Sewch 5. Favorites e\ma et
Membership Information Email Adiress | 8] https/ focaihost: 42252/Server Controls/Defauit.aspx ml- BN
evien@yahoo.com
Are you already a member of owr group?
Provide Personal Info ®Yes ONo
- Membership Information =
=
€] Untitled Page - Microsoft Internet Explorer |B|=(=]
File Edit View Favorites Tools Help ;'f
Qo - ) [x] B @0 O seweh Slpravantes @reda £2)
Ag &1 s focahost:42252/5erver Controis Default. spy v B ks &3 Local ntranet
First name: Bill
Last name: Evjen
Email: evjen/@yahoo.com
] Done & Local inwranet

Figure 6-15

209



Chapter 6

Listing 6-18: Adding an additional WizardStep

<asp:Wizard ID="Wizardl" runat="Server">
<WizardSteps>

<asp:WizardStep ID="WizardStepl" runat="server"

Title="Provide Personal Info">
First name:<br />
<asp:TextBox ID="fnameTextBox" runat="server"></asp:TextBox><br />
Last name:<br />
<asp:TextBox ID="lnameTextBox" runat="server"></asp:TextBox><br />
Email:<br />
<asp:TextBox ID="emailTextBox" runat="server"></asp:TextBox><br />

</asp:WizardStep>

<asp:WizardStep ID="WizardStep2" runat="server"

Title="Membership Information">
Are you already a member of our group?<br />
<asp:RadioButton ID="RadioButtonl" runat="server" Text="Yes"
GroupName="Member" />
<asp:RadioButton ID="RadioButton2" runat="server" Text="No"
GroupName="Member" />

</asp:WizardStep>

<asp:WizardStep ID="MemberStep" runat="server"

Title="Provide Membership Number">
Membership Number:<br />
<asp:TextBox ID="mNumberTextBox" runat="server"></asp:TextBox>

</asp:WizardStep>

<asp:WizardStep ID="WizardStep3" runat="server" Title="Provided Information"

StepType="Complete" OnActivate="WizardStep3_Activate">

<asp:Label ID="Labell" runat="server" />

</asp:WizardStep>

</WizardSteps>
</asp:Wizard>

A single step was added to the workflow — one that simply asks the member for his membership
number. Because you want to show this step only if the end user specifies that he is a member in
WizardStep2, you add an event (shown in Listing 6-19) designed to check for that specification.

Listing 6-19: Applying logical checks on whether to show a step

VB
Sub Wizardl NextButtonClick (ByVal sender As Object,
ByVal e As System.Web.UI.WebControls.WizardNavigationEventArgs)

If e.NextStepIndex = 2 Then
If RadioButtonl.Checked = True Then
Wizardl.ActiveStepIndex = 2
Else
Wizardl.ActiveStepIndex = 3
End If
End If
End Sub

210



ASP.NET 2.0 Web Server Controls

C#
void Wizardl_ NextButtonClick(object sender, WizardNavigationEventArgs e)
{
if (e.NextStepIndex == 2) {
if (RadioButtonl.Checked == true)
Wizardl.ActiveStepIndex = 2; }
else {
Wizardl.ActiveStepIndex = 3; }

{

}
}

To check whether you should show a specific step in the process, use the NextButtonClick event
from the Wizard control. The event uses the WizardNavigationEventArgs class instead of the
typical EventArgs class that gives you access to the NextStepIndex number, as well as to the
CurrentStepIndex number.

In the example from Listing 6-19, you check whether the next step to be presented in the process is 2.
Remember that this is index 2 from a zero-based index (0, 1, 2, and so on). If it is Step 2 in the index, you
check which radio button is selected from the previous WizardStep. If the RadioButtonl control is
checked (meaning that the user is a member), the next step in the process is assigned as index 2. If the
RadioButton2 control is selected, the user is not a member, and the index is then assigned as 3 (the final
step), thereby bypassing the membership step in the process.

ImageMap Server Control

The ImageMap server control is new to ASP.NET 2.0. It enables you to turn an image into a navigation
menu. In the past, many developers would break an image into multiple pieces and put it together again
in a table, reassembling the pieces into one image. When the end user clicked a particular piece of the
overall image, the application picked out which piece of the image was chosen and based actions upon
that particular selection.

With the new ImageMap control, you can take a single image and specify particular hotspots on the
image using coordinates. An example is shown in Listing 6-20.

Listing 6-20: Specifying sections of an image that are clickable

VB
<%@ Page Language="VB"%>

<script runat="server">
Protected Sub Imagemapl_Click(ByVal sender As Object, _
ByVal e As System.Web.UI.WebControls.ImageMapEventArgs)

Response.Write("You selected: " & e.PostBackValue)
End Sub

</script>

<html xmlns="http://www.w3.0rg/1999/xhtml" >
(continued)

211



Chapter 6

Listing 6-20: (continued)

<head runat="server">
<title>ImageMap Control</title>
</head>
<body>
<form id="forml" runat="server">
<asp:ImageMap ID="Imagemapl" Runat="server" ImageUrl="kids.jpg"
Width="300" OnClick="Imagemapl Click" HotSpotMode="PostBack">
<asp:RectangleHotSpot Top="0" Bottom="225" Left="0" Right="150"
AlternateText="Henri" PostBackValue="Henri">
</asp:RectangleHotSpot>
<asp:RectangleHotSpot Top="0" Bottom="225" Left="151" Right="300"
AlternateText="Sofia" PostBackValue="Sofia">
</asp:RectangleHotSpot>
</asp: ImageMap>
</form>
</body>
</html>

C#
<%@ page language="C#"%>

<script runat="server">
protected void Imagemapl_Click(object sender,
System.Web.UI.WebControls.ImageMapEventArgs e) {

Response.Write("You selected: " + e.PostBackValue) ;
}

</script>

This page brings up an image of my children. If you click the left side of the image, you select Henri, and
if you click the right side of the image, you select Sofia. You know which child you selected through a
Response.Write statement, as shown in Figure 6-16.

The ImageMap control enables you to specify hotspots in a couple of different ways. From the
example in Listing 6-16, you can see that hotspots are placed in a rectangular fashion using the
<asp:RectangleHotSpot> element. The control takes the Top, Bottom, Left, and Right coordinates
of the rectangle that is to be the hotspot. Besides the <asp:RectangleHotSpot> control, you can also
use the <asp:CircleHotSpot> and the <asp:PolygonHotSpot> controls. Each control takes coordi-
nates appropriate to its shape.

After you define the hotspots on the image, you can respond to the end-user click of the hotspot in sev-
eral ways. You first specify how to deal with the hotspot clicks in the root <asp : ImageMap> element
with the use the Hot SpotMode attribute.

The HotSpotMode attribute can take the values PostBack, Navigate, or InActive. In the previous

example, the Hot SpotMode value is set to PostBack —meaning that after the end user clicks the
hotspot, you want to postback to the server and deal with the click at that point.

212



ASP.NET 2.0 Web Server Controls

| Dynamiclmage Server Control - Microsoft Internet Explorer =[=]x)
File Edit View Favorites Tools Help ?
& Back 5] EIRE) |‘/‘._. D search 57 Favorites @ Media  42) @A w E 0 i

Address @ht'u::,.",l"localhost:206S,E'm\,r'.f-s'ebAppIicaﬁonfDefault.aspx M Go Links **

@ Done ‘3) Local intranet
Figure 6-16

Because the Hot SpotMode is set to PostBack and you have created several hotspots, you must
determine which hotspot is selected. You make this determination by giving each hotspot
(<asp:RectangleHotSpot>) a postback value with the PostBackvalue attribute. The example
uses Henr1i as the value of the first hotspot, and Sofia as the value for the second.

The PostBackvValue attribute is also the helper text that appears in the browser (in the yellow box)
directly below the mouse cursor when the end user hovers the mouse over the hotspot.

After the user clicks one of the hotspots, the event procedure displays the value that was selected in a
Response.Write statement.

Instead of posting back to the server, you can also navigate to an entirely different URL when a
particular hotspot is selected. To accomplish this, change the Hot SpotMode attribute in the main
<asp:ImageMap> element to the value Navigate. Then, within the <asp:RectangleHotSpot> ele-
ments, simply use the NavigateUr1 attribute and assign the location to which the end user should be
directed if that particular hotspot is clicked:

<asp:ImageMap ID="Imagemapl" Runat="server" ImageUrl="kids.jpg"

HotSpotMode="Navigate">
<asp:RectangleHotSpot Top="0" Bottom="225" Left="0" Right="150"
AlternateText="Henri" NavigateUrl="HenriPage.aspx">
</asp:RectangleHotSpot>
<asp:RectangleHotSpot Top="0" Bottom="225" Left="151" Right="300"
AlternateText="Sofia" NavigateUrl="SofiaPage.aspx">
</asp:RectangleHotSpot>

</asp:ImageMap>

213



Chapter 6

Summary

New server controls are fun. They’re also useful and can save you a lot of time. This chapter introduced
you to some of these new controls and to the different ways you might incorporate them into your next
projects.

The BulletedList control enables you to create all sorts of bulleted lists either directly from inline items
or from items contained in a data store of some kind. The HiddenField control allows for server-side
access to a very important HTML element that was formerly far more difficult to work with. Other con-
trols discussed include the FileUpload control, which enables you to upload files easily to the server; the
MultiView and View controls for working through processes; the Wizard control for advanced process
work; and the ImageMap control for creating hotspots on an image. All these controls are wonderful
options to use on any of your ASPNET pages and make it much easier to develop the functionality that
your pages require.

214



Validation Server Controls

When you look at the Toolbox window in Visual Studio 2005 — especially if you've read Chapters
5 and 6, which cover the various server controls at your disposal —you may be struck by the num-
ber of server controls that come with ASPNET 2.0. This chapter takes a look at a specific type of
server control you find in the Toolbox window: the validation server control.

Validation server controls are a series of controls that enable you to work with the information
your end users input into the form elements of the applications you build. These controls work to
ensure the validity of the data being placed in the form.

Before learning how to use these controls, however, take a look at the process of validation to learn
what it’s all about.

Understanding Validation

People have been constructing Web applications for a number of years. Usually the motivation is
to provide or gather information. In this chapter, you focus on the information-gathering aspect of
Web applications. If you collect data with your applications, collecting valid data should be impor-
tant to you. If the information isn’t valid, there really isn’t much point in collecting it.

Validation comes in degrees. Validation is a set of rules that you apply to the data you collect.
These rules can be many or few and enforced either strictly or in a lax manner: It really depends
on you. No perfect validation process exists because some users may find a way cheat to some
degree, no matter what rules you establish. The trick is to find the right balance of the fewest rules
and the proper strictness, without compromising the usability of the application.

The data you collect for validation comes from the Web forms you provide in your applications.
Web forms are made up of different types of HTML elements that are constructed using raw
HTML form elements, ASPNET HTML server controls, or ASPNET Web Form server controls.




Chapter 7

In the end, your forms are made up of many different types of HTML elements, such as text boxes, radio
buttons, check boxes, drop-down lists, and more.

As you work through this chapter, you see the different types of validation rules that you can apply to
your form elements. Remember that you have no way to validate the fruthfulness of the information you
collect; instead, you apply rules that respond to such questions as

Q  Is something entered in the text box?

O  Is the data entered in the text box in the form of an e-mail address?

Notice from these questions that you can apply more than a single validation rule to an HTML form ele-
ment (you'll see examples of this later in this chapter). In fact, you can apply as many rules to a single
element as you want. Applying more rules to elements increases the strictness of the validation applied
to the data.

Just remember, data collection on the Internet is one of the Internet’s most important features, so you
must make sure that the data you collect has value and meaning. You ensure this by eliminating any
chance that the information collected does not abide by the rules you outline.

Client-Side versus Server-Side Validation

If you are new to Web application development, you might not be aware of the difference between
client-side and server-side validation. Suppose that the end user clicks the Submit button on a form after
filling out some information. What happens in ASP.NET is that this form is packaged in a request and
sent to the server where the application resides. At this point in the request/response cycle, you can run
validation checks on the information submitted. If you do this, it is called server-side validation because it
occurs on the server.

On the other hand, it is also possible to supply a script (usually in the form of JavaScript) in the page
that is posted to the end user’s browser to perform validations on the data entered in the form before
the form is posted back to the originating server. If this is the case, client-side validation has occurred.

Both types of validation have their pros and cons. Active Server Pages 2.0/3.0 developers are quite
aware of these pros and cons because they have probably performed all the validation chores them-
selves. Many developers spent a considerable amount of their classic ASP programming days coding
various validation techniques for performance and security.

Client-side validation is quick and responsive for the end user. It is something end users expect of the
forms that they work with. If something is wrong with the form, using client-side validation ensures that
the end user knows this as soon as possible. Client-side validation also pushes the processing power
required of validation to the client meaning that you don’t need to spin CPU cycles on the server to pro-
cess the same information because the client can do the work for you.

With this said, client-side validation is the more insecure form of validation. When a page is generated in
an end user’s browser, this end user can look at the code of the page quite easily (simply by right-clicking
his mouse in the browser and selecting View Code). When he does this, in addition to seeing the HTML
code for the page, he can also see all the JavaScript that is associated with the page. If you are validating
your form client-side, it doesn’t take much for the crafty hacker to repost a form (containing the values

216



Validation Server Controls

he wants in it) to your server as valid. There are also the cases in which clients have simply disabled the
client-scripting capabilities in their browsers — thereby making your validations useless. Therefore,
client-side validation should be looked on as a convenience and a courtesy to the end user and never as
a security mechanism.

The more secure form of validation is server-side validation. Server-side validation means that the vali-
dation checks are performed on the server instead of on the client. It is more secure because these checks
cannot be easily bypassed. Instead, the form data values are checked using server code (C# or VB) on the
server. If the form isn’t valid, the page is posted back to the client as invalid. Although it is more secure,
server-side validation can be slow. It is sluggish simply because the page has to be posted to a remote
location and checked. Your end user might not be the happiest surfer in the world if, after waiting 20
seconds for a form to post, he is told his e-mail address isn’t in the correct format.

So what is the correct path? Well, actually, both! The best approach is always to perform client-side vali-
dation first and then, after the form passes and is posted to the server, to perform the validation checks
again using server-side validation This approach provides the best of both worlds. It is secure because
hackers can’t simply bypass the validation. They may bypass the client-side validation, but they quickly
find that their form data is checked once again on the server after it is posted. This validation technique
is also highly effective — giving you both the quickness and snappiness of client-side validation.

ASP.NET Validation Server Controls

In the classic ASP days, developers could spend a great deal of their time dealing with different form
validation schemes. For this reason, with the initial release of ASP.NET, the ASPNET team introduced a
series of validation server controls meant to make it a snap to implement sound validation for forms.

ASP.NET not only introduces form validations as server controls, but it also makes these controls rather
smart. As stated earlier, one of the tasks of classic ASP developers was to determine where to perform
form validation — either on the client or on the server. The ASPNET validation server controls eliminate
this dilemma because ASPNET performs browser detection when generating the ASPNET page and
makes decisions based on the information it gleans.

This means that if the browser can support the JavaScript that ASP.NET can send its way, the validation
occurs on the client-side. If the client cannot support the JavaScript meant for client-side validation, this
JavaScript is omitted and the validation occurs on the server.

The best part about this scenario is that even if client-side validation is initiated on a page, ASP.NET still
performs the server-side validation when it receives the submitted page, thereby ensuring security won’t
be compromised. This decisive nature of the validation server controls means that you can build your
ASP.NET Web pages to be the best they can possibly be —rather than dumbing-down your Web applica-
tions for the lowest common denominator.

Presently, six validation controls are available to you in ASP.NET 2.0. No new validation server controls
have been added to ASP.NET since the initial release of the technology, but the ASPNET 2.0 validation
server controls do have some new features, such as validation groups and new JavaScript capabilities.
Both these features are discussed in this chapter. The available validation server controls include

217



Chapter 7

RequiredField Validator
CompareValidator
RangeValidator
RegularExpressionValidator

CustomValidator

L T T SR S

ValidationSummary

Working with ASP.NET validation server controls is no different from working with any other ASPNET
server controls. Each of these controls allows you to drag and drop it onto a design surface or to work
with it directly from the code of your ASP.NET page. These controls can also be modified so that they
appear exactly as you wish—ensuring the visual uniqueness that your applications might require. You
see some aspects of this throughout this chapter.

If the ASP.NET Validation controls don’t meet your needs, you can certainly write
your own custom validation controls. However, there are third-party controls
available such as Peter Blum’s Validation and More (VAM) from http: //www.
peterblum.com/VAM, which includes over 40 ASP.NET validation controls.

The following table describes the functionality of each of the available validation server controls.

Validation Server Control Description
RequiredFieldValidator Ensures that the user does not skip a form entry field
CompareValidator Allows for comparisons between the user’s input and

another item using a comparison operator (equals, greater
than, less than, and so on)

RangeValidator Checks the user’s input based upon a lower- and upper-
level range of numbers or characters

RegularExpressionValidator Checks that the user’s entry matches a pattern defined by a
regular expression. This is a good control to use to check
e-mail addresses and phone numbers.

CustomValidator Checks the user’s entry using custom-coded validation logic

ValidationSummary Displays all the error messages from the validators in one
specific spot on the page

Validation Causes

Validation doesn’t just happen; it occurs in response to an event. In most cases, it is a button click event.
The Button, LinkButton, and ImageButton server controls all have the capability to cause a page’s form
validation to initiate. This is the default behavior. Dragging and dropping a Button server control onto
your form will give you the following initial result:

<asp:Button ID="Buttonl" Runat="server" Text="Button" />

218



Validation Server Controls

If you look through the properties of the Button control, you can notice that the Causesvalidation
property is set to True. As stated, this is the default behavior —all buttons on the page, no matter how
many there are, cause the form validation to fire.

If you have multiple buttons on an ASPNET page, and you don’t want each and every button to initiate
the form validation, you can set the Causesvalidation property to False for all the buttons you want

to ignore the validation process (for example, a form’s Cancel button):

<asp:Button ID="Buttonl" Runat="server" Text="Cancel" CausesValidation="False" />

The RequiredFieldValidator Server Control

The RequiredField Validator control simply checks to see if something was entered into the HTML form
element. It is a simple validation control, but it is one of the most frequently used. You must have a
RequiredFieldValidator control for each form element on which you wish to enforce a value-required rule.

Listing 7-1 shows a simple use of the RequiredField Validator control.

Listing 7-1: A simple use of the RequiredFieldValidator server control

VB
<%@ Page Language="VB" %>

<script runat="server">
Protected Sub Buttonl_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Labell.Text = "Page is valid!"
End Sub
</script>

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>RequiredFieldvValidator</title>

</head>
<body>
<form id="forml" runat="server">
<div>
<asp:TextBox ID="TextBoxl" Runat="server"></asp:TextBox>
<asp:RequiredFieldvalidator ID="RequiredFieldvalidatorl"
Runat="server" ErrorMessage="Required!" ControlToValidate="TextBoxl">
</asp:RequiredFieldvalidator>
<br />
<asp:Button ID="Buttonl" Runat="server" Text="Submit"
OnClick="Buttonl_Click" />
<br />
<br />
<asp:Label ID="Labell" Runat="server"></asp:Label>
</div>
</form>
</body>
</html>

(continued)

219



Chapter 7

Listing 7-1: (continued)

C#
<%@ Page Language="C#" %>

<script runat="server">
protected void Buttonl_Click(Object sender, EventArgs e) {
Labell.Text = "Page is valid!";
}

</script>

Build and run this page. You are presented with a simple text box and button on the page. Don’t enter
any value inside the text box, and click the Submit button. The result is shown in Figure 7-1.

# RequiredFieldValidator - Microsoft Internet Explorer == ]
e
n

File Edit View Favorites Tools Help

J > |£| \ELI ;\] /-.-‘: Search ‘il_j'\':(Favorites @Media e\l - \._';'_

Address ﬁi]htm:fﬂocalhost: 54028 validation/Default.aspx v Go Links **

33

Required!

&] Done & Local intranet

Figure 7-1

Now look at the code from this example. First, nothing is different about the TextBox, Button, or Label
controls. They are constructed just as they would be if you were not using any type of form validation.
This page does contain a simple RequiredFieldValidator control however. Several properties of this con-
trol are especially notable because you will use them in most of the validation server controls you create.

The first property to look at is the ErrorMessage property. This property is the value that is shown to
the end user via the Web page if the validation fails. In this case, it is a simple Required! string. The
second property to look at is the ControlTovalidate property. This property is used to make an asso-
ciation between this validation server control and the ASPNET form element that requires the valida-
tion. In this case, the value specifies the only element in the form — the text box.

As you can see from this example, the error message ID is constructed from an attribute within the
<asp:RequiredFieldvalidator> control. You can also accomplish this same task by using the Text
attribute, as shown in Listing 7-2.

Listing 7-2: Using the Text attribute

<asp:RequiredFieldvValidator ID="RequiredFieldvalidatorl"
Runat="server" Text="Required!" ControlToValidate="TextBoxl">
</asp:RequiredFieldvalidator>

220



Validation Server Controls

You can also express this error message between the <asp:RequiredFieldvalidator> opening and
closing nodes as shown in Listing 7-3.

Listing 7-3: Placing values between nodes

<asp:RequiredFieldvalidator ID="RequiredFieldvValidatorl"
Runat="server" ControlToValidate="TextBoxl">

Required!

</asp:RequiredFieldvalidator>

Looking at the Results Generated

Again, the RequiredField Validator control uses client-side validation if the browser allows for such an
action. You can see the client-side validation for yourself (if your browser allows for this) by right-clicking
on the page and selecting View Source from the menu. In the page code, you see the JavaScript shown
in Listing 7-4. Note that your JavaScript may be slightly different than what is presented in this listing
because ASP.NET sends the JavaScript to the appropriate browsers and your browser may be of a differ-
ent type.

Listing 7-4: The generated JavaScript
. page markup removed for clarity here

<script type="text/javascript">

El[==

function WebForm_OnSubmit () {

if (ValidatorOnSubmit () == false) return false;
return true;

}

/] ==>

</script>

. page markup removed for clarity here

<script type="text/javascript">

<!--

var Page_Validators = new

Array (document .getElementById("RequiredFieldvalidatorl"));// -->
</script>

<script type="text/javascript">
<€l==
var RequiredFieldvValidatorl = document.all ?
document.all["RequiredFieldvalidatorl"]
document .getElementById("RequiredFieldvalidatorl") ;
RequiredFieldvalidatorl.controltovalidate = "TextBoxl";
RequiredFieldvalidatorl.errormessage = "Required!";
RequiredFieldvValidatorl.evaluationfunction =
"RequiredFieldvValidatorEvaluateIsvValid";
RequiredFieldvalidatorl.initialvalue = "";
/] ==>
</script>

(continued)

221



Chapter 7

Listing 7-4: (continued)
. page markup removed for clarity here ...

<script type="text/javascript">

2=

var Page_ValidationActive = false;

if (typeof (ValidatorOnLoad) == "function") {
ValidatorOnLoad() ;

}

function ValidatorOnSubmit () {
if (Page_ValidationActive) {
return ValidatorCommonOnSubmit () ;
}
else {
return true;
}
}
/] ==>
</script>

In the page code, you may also notice some changes to the form elements (the former server controls)
that deal with the submission of the form and the associated validation requirements.

Using the InitialValue Property

Another important property when working with the RequireFieldValidator control is the Initialvalue
property. Sometimes you have form elements that are populated with some default properties (for exam-
ple, from a data store), and these form elements might present the end user with values that require
changes before the form can be submitted to the server.

When using the Initialvalue property, you specify to the RequiredField Validator control the initial
text of the element. The end user is then required to change that text value before he can submit the
form. Listing 7-5 shows an example of using this property.

Listing 7-5: Working with the InitialValue property

<asp:TextBox ID="TextBoxl" Runat="server">My Initial Value</asp:TextBox>
&nbsp;

<asp:RequiredFieldvalidator ID="RequiredFieldvalidatorl"

Runat="server" ErrorMessage="Please change the value of the textbox!"
ControlToValidate="TextBoxl" InitialValue="My Initial Value">
</asp:RequiredFieldvalidator>

In this case, you can see that the Initialvalue property contains a value of My Initial Value. When

the page is built and run, the text box contains this value as well. The RequiredField Validator control
requires a change in this value for the page to be considered valid.

222



Validation Server Controls

Disallowing Blank Entries and Requiring Changes at the Same Time

In the preceding example of the use of the Initialvalue property, an interesting problem arises. First,
if you run the associated example, one thing the end user can do to get past the form validation is to
submit the page with no value entered in this particular text box. A blank text box does not fire a valida-
tion error because the RequiredFieldValidator control is now reconstructed to force the end user only to
change the default value of the text box (which he did when he removed the old value). When you recon-
struct the RequiredField Validator control in this manner, nothing in the validation rule requires that
something be entered in the text box —just that the initial value be changed. It is possible for the user to
completely bypass the form validation process by just removing anything entered in this text box.

There is a way around this, however, and it goes back to what we were saying earlier about how a
form is made up of multiple validation rules —some of which are assigned to the same form element.
To both require a change to the initial value of the text box and to disallow a blank entry (thereby mak-
ing the element a required element), you must put an additional RequiredFieldValidator control on
the page. This second RequiredFieldValidator control is associated with the same text box as the first
RequiredFieldValidator control. This is illustrated in the example shown in Listing 7-6.

Listing 7-6: Using two RequiredFieldValidator controls for one form element
<asp:TextBox ID="TextBoxl" Runat="server">My Initial Value</asp:TextBox>&nbsp;

<asp:RequiredFieldvValidator ID="RequiredFieldValidatorl" Runat="server"
ErrorMessage="Please change value" ControlToValidate="TextBoxl"
InitialValue="My Initial Value"></asp:RequiredFieldValidator>

<asp:RequiredFieldvalidator ID="RequiredFieldvValidator2" Runat="server"
ErrorMessage="Do not leave empty" ControlToValidate="TextBoxl">
</asp:RequiredFieldvalidator>

In this example, you can see that the text box does indeed have two RequiredFieldValidator controls
associated with it. The first, RequiredFieldvalidatorl, requires a change to the default value of the
text box through the use of the Initialvalue property. The second RequiredFieldValidator control,
RequiredFieldvalidator2, simply makes the TextBox1 control a form element that requires a value.
You get the behavior you want by applying two validation rules to a single form element.

Validating Drop-Down Lists with the RequiredFieldValidator Control

So far, you have seen a lot of examples of using the RequiredField Validator control with a series of text
boxes, but you can just as easily use this validation control with other form elements as well.

For example, you can use the RequiredField Validator control with an <asp : DropDownList> server con-
trol. To see this, suppose that you have a drop-down list that requires the end user to select her profes-
sion from a list of items. The first line of the drop-down list includes instructions to the end user about
what to select, and you want to make this a required form element as well. The code to do this is shown
in Listing 7-7.

223



Chapter 7

Listing 7-7: Drop-down list validations

<asp:DropDownList id="DropDownListl" runat="server">
<asp:ListItem Selected="True">Select a profession</asp:ListItem>
<asp:ListItem>Programmer</asp:ListItem>
<asp:ListItem>Lawyer</asp:ListItem>
<asp:ListItem>Doctor</asp:ListItem>
<asp:ListItem>Artist</asp:ListItem>
</asp:DropDownList>
&nbsp;
<asp:RequiredFieldvValidator id="RequiredFieldvValidatorl"
runat="server" ErrorMessage="Please make a selection"
ControlToValidate="DropDownListl"
InitialValue="Select a profession">
</asp:RequiredFieldvalidator>

Just as when you work with the text box, the RequiredFieldValidator control in this example associates
itself with the DropDownList control through the use of the ControlTovalidate property. The drop-
down list to which the validation control is bound has an initial value — Select a profession. You
obviously don’t want your end user to retain that value when she posts the form back to the server. So
again, you use to the Initialvalue property of the RequiredFieldValidator control. The value of this
property is assigned to the initial selected value of the drop-down list. This forces the end user to select
one of the provided professions in the drop-down list before she is able to post the form.

The CompareValidator Server Control

The CompareValidator control allows you to make comparisons between two form elements as well as
to compare values contained within form elements to constants that you specify. For instance, you can
specify that a form element’s value must be an integer and greater than a specified number. You can also
state that values must be strings, dates, or other data types that are at your disposal.

Validating against Other Controls

One of the more common ways of using the CompareValidator control is to make a comparison between
two form elements. For example, suppose that you have an application which requires users to have
passwords in order to access the site. You create one text box asking for the user’s password and a sec-
ond text box which asks the user to confirm the password. Because the text box is in password mode, the
end user cannot see what she is typing —just the number of characters that she has typed. To reduce the
chances of the end user mistyping her password and inputting this incorrect password into the system,
you ask her to confirm the password. After the form is input into the system, you simply have to make a
comparison between the two text boxes to see if they match. If they match, it is likely that the end user
typed the password correctly, and you can input the password choice into the system. If the two text
boxes do not match, you want the form to be invalid. The following example, in Listing 7-8, demon-
strates this situation.

Listing 7-8: Using the CompareValidator to test values against other control values
VB
<%@ Page Language="VB" %>

<script runat="server">

Protected Sub Buttonl_Click(sender As Object, e As EventArgs)

224



Validation Server Controls

Labell.Text = "Passwords match"
End Sub

</script>
<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>CompareFieldvalidator</title>
</head>
<body>
<form runat="server">
<p>
Password<br>
<asp:TextBox ID="TextBoxl" Runat="server"
TextMode="Password"></asp:TextBox>
&nbsp;
<asp:CompareValidator ID="CompareValidatorl"
Runat="server" ErrorMessage="Passwords do not match!"
ControlToValidate="TextBox2"
ControlToCompare="TextBoxl"></asp:CompareValidator>
</p>
<p>
Confirm Password<br>
<asp:TextBox ID="TextBox2" Runat="server"
TextMode="Password"></asp:TextBox>
</p>
<p>
<asp:Button ID="Buttonl" OnClick="Buttonl_ Click"
Runat="server" Text="Login"></asp:Button>
</p>
<p>
<asp:Label ID="Labell" Runat="server"></asp:Label>
</p>
</form>
</body>
</html>

C#
<%@ Page Language="C#" %>
<script runat="server">

protected void Buttonl_Click(Object sender, EventArgs e) {
Labell.Text = "Passwords match";

</script>

Looking at the CompareValidator control on the form, you can see that it is similar to the
RequiredFieldValidator control. The CompareValidator control has a property called
ControlToValidate that associates itself with one of the form elements on the page. In this case,
you need only a single CompareValidator control on the page because a single comparison is made.
In this example, you are making a comparison between the value of TextBox2 and that of TextBox1.
Therefore, you use the ControlToCompare property. This specifies what value is compared to
TextBox2. In this case, the value is TextBox1.

225



Chapter 7

It’s as simple as that. If the two text boxes do not match after the page is posted by the end user, the
value of the ErrorMessage property from the CompareValidator control is displayed in the browser.
An example of this is shown in Figure 7-2.

&1 CompareFieldValidator - Microsoft Internet Explorer =EE
File Edit View Favorites Tools Help aﬂ'
- — a £
> ?) |£| \ELI .'\J pE Search ‘L'\'( Favorites @ Media 6;“ v g
Address | @] http:/flocalhost: 54028 Validation/Default. aspx v . Go | Links **
Password
[ Passwords do not match!
Confirm Password

&] Done &J | ocal intranet

Figure 7-2

Validating against Constants

Besides being able to validate values against values in other controls, you can also use the
CompareValidator control to make comparisons against constants of specific data types. For example,
suppose you have a text box on your registration form that asks for the age of the user. In most cases,
you want to get back an actual number and not something such as aa or bb as a value. Listing 7-9 shows
you how to ensure that you get back an actual number.

Listing 7-9: Using the CompareValidator to validate against constants

Age:

<asp:TextBox ID="TextBoxl" Runat="server" MaxLength="3">

</asp:TextBox>

&nbsp;

<asp:CompareValidator ID="CompareValidatorl" Runat="server"
ErrorMessage="You must enter a number"
ControlToValidate="TextBoxl" Type="Integer"
Operator="DataTypeCheck"></asp:CompareValidator>

In this example, the end user is required to enter in a number into the text box. If she attempts to bypass
the validation by entering a fake value that contains anything other than a number, the page is identified
as invalid, and the CompareValidator control displays the value of the ErrorMessage property.

To specify the data types that you want to use in these comparisons, you simply use the Type property.
The Type property can take the following values:

a Currency

a Date

226



Validation Server Controls

a Double

a Integer

a String
Not only can you make sure that what is entered is of a specific data type, but you can also make sure
that what is entered is valid when compared to specific constants. For instance, you can make sure what

is entered in a form element is greater than, less than, equal to, greater than or equal to, or less than or
equal to a specified value. An example of this is illustrated in Listing 7-10.

Listing 7-10: Making comparisons with the CompareValidator control

Age:
<asp:TextBox ID="TextBoxl" Runat="server"></asp:TextBox>
&nbsp;
<asp:CompareValidator ID="CompareValidatorl" Runat="server"
Operator="GreaterThan" ValueToCompare="18"
ControlToValidate="TextBoxl"
ErrorMessage="You must be older than 18 to join" Type="Integer">
</asp:CompareValidator>

In this case, the CompareValidator control not only associates itself with the TextBox1 control and
requires that the value must be an integer, but it also uses the Operator and the valueToCompare prop-
erties to ensure that the number is greater than 18. Therefore, if the end user enters a value of 18 or less,
the validation fails, and the page is considered invalid.

The Operator property can take one of the following values:

a Equal

NotEqual
GreaterThan
GreaterThanEqual
LessThan

LessThanEqual

0O 0000 0o

DataTypeCheck

The valueToCompare property is where you place the constant value used in the comparison. In the
preceding example, it is the number 18.

The RangeValidator Server Control

The RangeValidator control is quite similar to that of the CompareValidator control, but it makes sure
that the end user value or selection provided is between a specified range as opposed to being just
greater than or less than a specified constant. For an example of this, go back to the text-box element that
asks for the age of the end user and performs a validation on the value provided. This is illustrated in
Listing 7-11.

227



Chapter 7

Listing 7-11: Using the RangeValidator control to test an integer value

Age:

<asp:TextBox ID="TextBoxl" Runat="server"></asp:TextBox>
&nbsp;

<asp:RangeValidator ID="RangeValidatorl" Runat="server"
ControlToValidate="TextBoxl" Type="Integer"
ErrorMessage="You must be between 30 and 40"
MaximumValue="40" MinimumValue="30"></asp:RangeValidator>

In this example, this page consists of a text box asking for the age of the end user. The RangeValidator
control makes an analysis of the value provided and makes sure the value is somewhere in the range of
30 to 40. This is done through the use of the MaximumValue and MinimumvValue properties. The
RangeValidator control also makes sure what is entered is an integer data type. It uses the Type prop-
erty, which is set to Integer. The collection of screenshots in Figure 7-3 shows this example in action.

&7 CompareField\ - Microsoft | Explorer 9= %]
File Edit View Favorites Tools Help a',"
= - »
O ol D [¥) [ €n Osewcr lprmvones @reda €2 (I~ L
agdress ] http:ffocalhost: 54028 Validation/Default.asox ﬂ Go | Links *
Age: 25 You must be between 30 and 40
[ Submit ] |@ CompareFi - Microsoft Internet Explorer =@t
File Edit View Favorites Tools Help l’{
-'#J Done A - - . w
@m - ."1 2 ) search P Favorites (@ veda &) [ Lo
Address | @] hitp: flocahost: 54028 Validation /De fault, aspx lv| Go Links *
Age:| 1 You mmst be between 30 and 40
[ Submit ] &1 CompareFieldValid - Microsoft | Explorer o
File Edit View Favorites Tools Help ;','"
& Done » . - L »
Qui - © ¥ [A % P Jrrome @rese @ (37
address | ] hitp: Mocalhost: 54028 Valdation/Default. aspx V] Gu Links
Age: M
Submit
&] Done & Local intranet
Figure 7-3

As you can see from the screenshots in Figure 7-3, a value of less than 30 causes the RangeValidator con-
trol to fire as does a number greater than 40. A value that is somewhere between 30 and 40 (in this case 34)
conforms to the validation rule of the control.

The RangeValidator control is not only about validating numbers (although it is most often used in this
fashion). It can also be about validating a range of string characters as well as other items, including

228



Validation Server Controls

calendar dates. By default, the Type property of any of the validation controls is set to String. You can
use the RangeValidator control to make sure what is entered in another server control (such as a calen-
dar control) is within a certain range of dates.

For example, suppose that you are building a Web form that asks for a customer’s arrival date, and the
arrival date needs to be within two weeks of the current date. You can use the RangeValidator control to
test for these scenarios quite easily.

Since the date range that you want to check is dynamically generated, you assign the Maximumvalue
and Minimumvalue attribute programmatically in the Page_Load event. In the Designer, your sample
page for this example should look like Figure 7-4.

The idea is that the end user will select a date from the Calendar control, which will then populate the
TextBox control. Then, when the end user clicks the form’s button, he is notified if the date selected is
invalid. If the date selected is valid, that date is presented through the Label control on the page. The
code for this example is presented in Listing 7-12.

Default.aspx - X

. 3] o
Arrival Date: ¥ ou must only select a date within the next two weeks|

Select vour arrival date:
% May 2005 -

Sun Mon Tue Wed Thu Fri Sat

24 25 26 27 28 29 30
1 2 3 4 5 6 7
g 9 10 11 12 13 14
15 16 17 19 20 21
22 23 24 25 26 27 28
20 30 31 2 3 4
[Labell]

L4 Design | [l Source
Figure 7-4

229



Chapter 7

Listing 7-12: Using the RangeValidator control to test a string date value

230

VB
<%@ Page Language="VB" %>

<script runat="server">
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
RangeValidatorl.MinimumValue = DateTime.Now.ToShortDateString ()
RangeValidatorl.MaximumValue = DateTime.Now.AddDays (14) .ToShortDateString()
End Sub

Protected Sub Calendarl_SelectionChanged(ByVal sender As Object,
ByVal e As System.EventArgs)
TextBoxl.Text = Calendarl.SelectedDate.ToShortDateString/()
End Sub

Protected Sub Buttonl_Click(ByVal sender As Object,
ByVal e As System.EventArgs)
If Page.IsValid Then
Labell.Text = "You are set to arrive on: " & TextBoxl.Text
End If
End Sub
</script>

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head id="Headl" runat="server">
<title>Date Validation Check</title>
</head>
<body>
<form id="forml" runat="server">
Arrival Date:
<asp:TextBox ID="TextBoxl" runat="server"></asp:TextBox>&nbsp;
<asp:RangeValidator ID="RangeValidatorl" runat="server"
ErrorMessage="You must only select a date within the next two weeks."
ControlToValidate="TextBoxl" Type="Date"></asp:RangeValidator><br />
<br />
Select your arrival date:<br />
<asp:Calendar ID="Calendarl" runat="server"
OnSelectionChanged="Calendarl_SelectionChanged"></asp:Calendar>
&nbsp;
<br />
<asp:Button ID="Buttonl" runat="server" Text="Button"
OnClick="Buttonl_ Click" />
<br />
<br />
<asp:Label ID="Labell" runat="server"></asp:Label>
</form>
</body>
</html>

C#
<%@ Page Language="C#" %>

<script runat="server">
protected void Page_Load(object sender, EventArgs e)



Validation Server Controls

RangeValidatorl.MinimumValue
RangeValidatorl.MaximumValue
DateTime.Now.AddDays (14) .ToShortDateString() ;

DateTime.Now.ToShortDateString() ;

protected void Calendarl_SelectionChanged(object sender, EventArgs e)
{
TextBoxl.Text = Calendarl.SelectedDate.ToShortDateString() ;

protected void Buttonl_Click(object sender, EventArgs e)
{

if (Page.IsValid)

{

Labell.Text = "You are set to arrive on: " + TextBoxl.Text.ToString();

}

</script>

From this code, you can see that when the page is loaded, the MinimumvValue and MaximumvValue
attributes are assigned a dynamic value. In this case, the Minimumvalue gets the DateTime . Now
.ToShortDateString () value, while the MaximumvValue gets a date of 14 days later.

After the end user selects a date, the selected date is populated in the TextBox1 control using the
Calendarl_SelectionChanged event. After a date is selected and the button on the page is clicked,
the Buttonl_Click event is fired and the page is checked for form validity using the Page.Isvalid
property. An invalid page will give you the result shown in Figure 7-5.

&1 Date Validation Check - Microsoft Internet Explorer E0E
File Edit View Favorites Tools Help ;',’
N [al A 7y 3 ’ 3 1 &4 =
@ Bk -~ ) - (%] ] € - search 5 Favorites £ v iz = L) 3;1 “Q
Address JE http:/flocalhost: 1296 wirox Default, aspx v £ so ks @
-~
Arrival Date: | 2/22/2008 You must only select a date within the next two weeks.

Select vour armval date:

< February 2006 B

Sun Mon Tue Wed Thu Fri Sat

29 31 1 2 3 4

3 I 8 98 10 1

12 4 15 16 17 18

19 21 3 24 25

26 28 1 2 3 4

5 708 9 101

=

& % Local transt
Figure 7-5

231



Chapter 7

The RegularExpressionValidator Server Control

One exciting control that developers like to use is the RegularExpressionValidator control. This
control offers a lot of flexibility when you apply validation rules to your Web forms. Using the
RegularExpressionValidator control, you can check a user’s input based on a pattern that you define
using a regular expression.

This means that you can define a structure that a user’s input will be applied against to see if its struc-
ture matches the one that you define. For instance, you can define that the structure of the user input
must be in the form of an e-mail address or an Internet URL; if it doesn’t match this definition, the page
is considered invalid. Listing 7-13 shows you how to validate what is input into a text box by making
sure it is in the form of an e-mail address.

Listing 7-13: Making sure the text-box value is an e-mail address

Email:
<asp:TextBox ID="TextBoxl" Runat="server"></asp:TextBox>
&nbsp;
<asp:RegularExpressionValidator ID="RegularExpressionValidatorl"
Runat="server" ControlToValidate="TextBoxl"
ErrorMessage="You must enter an email address"
ValidationExpression="\w+ ([-+.]\w+) *@\w+ ([-.]\w+) *\ . \w+ ([-.]\w+) *">
</asp:RegularExpressionValidator>

Just like the other validation server controls, the RegularExpressionValidator control uses the
ControlToValidate property to bind itself to the TextBox control, and it includes an ErrorMessage
property to push out the error message to the screen if the validation test fails. The unique property of
this validation control is the ValidationExpression property. This property takes a string value,
which is the regular expression you are going to apply to the input value.

Visual Studio 2005 makes it a little easier to use regular expressions by introducing the Regular
Expression Editor. This editor provides a few commonly used regular expressions that you might want
to apply to your RegularExpressionValidator. To get at this editor, you work with your page from Design
view. Be sure to highlight the RegularExpressionvalidatorl server control in this Design view to see
the control’s properties. In the Property window of Visual Studio, click the button found next to the
ValidationExpression property to launch the Regular Expression Editor. This editor is shown in
Figure 7-6.

Regular Expression Editor

Standard Expressions:

German Phone Number -~
German Postal Code b |
Internet E-mail Address

Internet URL

Japanese Phone Mumber

Japanese Postal Code sl

alidationExpression:
W+ T =@+ W) =) -1 )™

[ 0K H Cancel H Help

Figure 7-6

232



Validation Server Controls

Using this editor, you can find regular expressions for things like e-mail addresses, Internet URLSs, zip
codes, phone numbers, and social security numbers. In addition to working with the Regular Expression
Editor to help you with these sometimes complicated regular expression strings, you can also find a
good-sized collection of them at an Internet site called RegExLib found at www.regexlib.com.

The CustomValidator Server Control

So far, you have seen a wide variety of validation controls that are at your disposal. In many cases, these
validation controls address many of the validation rules that you want to apply to your Web forms.
Sometime, however, none of these controls work for you, and you have to go beyond what they offer.
This is where the CustomValidator control comes into play.

The CustomValidator control allows you to build your own client-side or server-side validations that can
then be easily applied to your Web forms. Doing so allows you to make validation checks against values
or calculations performed in the data tier (for example, in a database), or to make sure that the user’s
input validates against some arithmetic validation (for example, determining if a number is even or
odd). You can do quite a bit with the CustomValidator control.

Using Client-Side Validation

One of the worthwhile functions of the CustomValidator control is its capability to easily provide cus-
tom client-side validations. Many developers have their own collections of JavaScript functions they
employ in their applications, and using the CustomValidator control is one easy way of getting these
functions implemented.

For example, look at a simple form that asks for a number from the end user. This form uses the
CustomValidator control to perform a custom client-side validation on the user input to make sure that
the number provided is divisible by 5. This is illustrated in Listing 7-14.

Listing 7-14: Using the CustomValidator control to perform client-side validations

VB
<%@ Page Language="VB" %>

<script runat="server">
Protected Sub Buttonl_ Click(ByVal sender As Object, ByVal e As System.EventArgs)
Labell.Text = "VALID NUMBER!"
End Sub
</script>

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>CustomValidator</title>

<script language="JavaScript">
function validateNumber (oSrc, args) {
args.IsValid = (args.Value % 5 == 0);
}

</script>

</head>

(continued)

233



Chapter 7

Listing 7-14: (continued)

<body>
<form id="forml" runat="server">
<div>
<p>
Number :
<asp:TextBox ID="TextBoxl"
Runat="server"></asp:TextBox>
&nbsp;
<asp:CustomValidator ID="CustomValidatorl"
Runat="server" ControlToValidate="TextBoxl"
ErrorMessage="Number must be divisible by 5"
ClientValidationFunction="validateNumber">
</asp:CustomvValidator>
</p>
<p>
<asp:Button ID="Buttonl" OnClick="Buttonl Click"
Runat="server" Text="Button"></asp:Button>
</p>
<p>
<asp:Label ID="Labell" Runat="server"></asp:Label>
</p>
</div>
</form>
</body>
</html>

C#
<%@ Page Language="C#" %>
<script runat="server">

protected void Buttonl_Click(Object sender, EventArgs e) {
Labell.Text = "VALID NUMBER!";
}

</script>

Looking over this Web form, you can see a couple of things happening. First, it is a simple form with
only a single text box requiring user input. The user clicks the button that triggers the Buttonl_Click
event that, in turn, populates the Labell control on the page. It carries out this simple operation only if
all the validation checks are performed and the user input passes these tests.

One item that is different about this page is the inclusion of the second <script> block found within the
<head> section. This is the custom JavaScript. Note that Visual Studio 2005 is now very friendly toward
these kinds of constructions, even when you are switching between the Design and Code views of the
page —something the two previous Visual Studio editions were rather poor at dealing with. This
JavaScript function —validateNumber —is shown here:

<script language="JavaScript">
function validateNumber (oSrc, args) {
args.IsValid = (args.Value % 5 == 0);
}

</script>

234



Validation Server Controls

This second <script> section is the client-side JavaScript that you want the CustomValidator control to
use when making its validation checks on the information entered into the text box. The JavaScript func-
tions you employ are going to use the args . Isvalid property and set this property to either true or
false depending on the outcome of the validation check. In this case, the user input (args.value) is
checked to see if it is divisible by 5. The Boolean value returned is then assigned to the args.Isvalid
property, which is then used by the CustomValidator control.

The CustomValidator control, like the other controls before it, uses the ControlTovalidate property to
associate itself with a particular element on the page. The property that you are interested in here is the
ClientValidationFunction property. The string value provided to this property is the name of the
client-side function that you want this validation check to employ when the CustomValidator control is
triggered. In this case, it is validateNumber:

ClientValidationFunction="validateNumber"

If you run this page and make an invalid entry, you produce the result illustrated in Figure 7-7.

& CustomValidator - Microsoft Internet Explorer =EE
File Edit View Favorites Tools Help aﬂ'
. — i >
> ? ) \ﬂ \Ehl _"J 7 ! Search i'\'/ Favorites @Media 6-‘{ ==
Address | ] http:/flocalhost: 54028 Validation Default. aspx v . Go |Llinks *
Number: |34 Number must be divisible by 3

&] Done &J | ocal intranet

Figure 7-7

Using Server-Side Validation

Now let’s move this same validation check from the client to the server. The CustomValidator control
allows you to make custom server-side validations a reality as well. You will find that creating your
server-side validations is just as easy as creating client-side validations.

If you create your own server-side validations, you can make them as complex as your applications
require. For instance, using the CustomValidator for server-side validations is something you do if you
want to check the user’s input against dynamic values coming from XML files, databases, or elsewhere.

For an example of using the CustomValidator control for some custom server-side validation, you can

work with the same example as you did when creating the client-side validation. Now, create a server-
side check that makes sure a user-input number is divisible by 5. This is illustrated in Listing 7-15.

235



Chapter 7

Listing 7-15: Using the CustomValidator control to perform server-side validations

VB
<%@ Page Language="VB" %>

<script runat="server">
Protected Sub Buttonl_Click(ByVal sender As Object, ByVal e As System.EventArgs)
If Page.IsValid Then
Labell.Text = "VALID ENTRY!"
End If
End Sub

Sub ValidateNumber (sender As Object, args As ServerValidateEventArgs)
Try
Dim num As Integer = Integer.Parse(args.Value)
args.IsValid = ((num mod 5) = 0)
Catch ex As Exception
args.IsValid = False
End Try
End Sub
</script>

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>CustomvValidator</title>

</head>
<body>
<form id="forml" runat="server">
<div>
<p>
Number :
<asp:TextBox ID="TextBoxl"
Runat="server"></asp:TextBox>
&nbsp;
<asp:CustomValidator ID="CustomvValidatorl"
Runat="server" ControlToValidate="TextBoxl"
ErrorMessage="Number must be divisible by 5"
OnServerValidate="ValidateNumber"></asp:CustomValidator>
</p>
<p>
<asp:Button ID="Buttonl" OnClick="Buttonl_ Click"
Runat="server" Text="Button"></asp:Button>
</p>
<p>
<asp:Label ID="Labell" Runat="server"></asp:Label>
</p>
</div>
</form>
</body>
</html>
C#

<%@ Page Language="C#" %>

236



Validation Server Controls

<script runat="server">

protected void Buttonl_Click(Object sender, EventArgs e) {
if (Page.IsValid) {
Labell.Text = "VALID ENTRY!";

}

void ValidateNumber (object source, ServerValidateEventArgs args)
{
try
{
int num = int.Parse(args.Value) ;
args.IsvValid = ((num%5) == 0);
}

catch (Exception ex)
{
args.IsValid = false;
}
}

</script>

Instead of a client-side JavaScript function in the code, this example includes a server-side function —
validateNumber. The ValidateNumber function, as well as all functions that are being constructed to
work with the CustomValidator control, must use the ServervalidateEventArgs object as one of the
parameters in order to get the data passed to the function for the validation check. The validateNumber
function itself is nothing fancy. It simply checks to see if the provided number is divisible by 5.

From within your custom function, which is designed to work with the CustomValidator control, you
actually get at the value coming from the form element through the args.value object. Then you set the
args.IsValid property to either True or False depending on your validation checks. From the pre-
ceding example, you can see that the args.Isvalid is set to False if the number is not divisible by 5
and also that an exception is thrown (which would occur if a string value was input into the form ele-
ment). After the custom function is established, the next step is to apply it to the CustomValidator con-
trol, as shown in the following example:

<asp:CustomValidator ID="CustomValidatorl"

Runat="server" ControlToValidate="TextBoxl"
ErrorMessage="Number must be divisible by 5"
OnServerValidate="ValidateNumber"></asp:CustomValidator>

To make the association between a CustomValidator control and a function that you have in your server-
side code, you simply use the OnServervalidate property. The value assigned to this property is the
name of the function —in this case, ValidateNumber.

Running this example causes the postback to come back to the server and the validation check (based on
the validateNumber function) to be performed. From here, the page reloads and the Page_Load event
is called. In the example from Listing 7-15, you can see that a check is done to see whether the page is
valid. This is done using the Page . IsValid property.

If Page.IsValid Then
Labell.Text = "VALID ENTRY!"
End If

237



Chapter 7

Using Client-Side and Server-Side Validation Together

As stated earlier in this chapter, you have to think about the security of your forms and to ensure that
the data you are collecting from the forms is valid data. For this reason, when you decide to employ
client-side validations (as you did in Listing 7-14), you should take steps to also reconstruct the client-
side function as a server-side function. When you have done this, you should associate the
CustomValidator control to both the client-side and server-side functions. In the case of the number
check validation from Listings 7-14 and 7-15, you can use both validation functions in your page and
then change the CustomValidator control to point to both of these functions as shown in Listing 7-16.

Listing 7-16: The CustomValidator control with client- and server-side validations

<asp:CustomValidator ID="CustomValidatorl"
Runat="server" ControlToValidate="TextBoxl"
ErrorMessage="Number must be divisible by 5"
ClientValidationFunction="validateNumber"
OnServerValidate="ValidateNumber"></asp:CustomValidator>

From this example, you can see it is simply a matter of using both the ClientvalidationFunction
and the OnServervalidate properties at the same time.

The ValidationSummary Server Control

The ValidationSummary control is not a control that performs validations on the content input into your
Web forms. Instead, this control is the reporting control, which is used by the other validation controls
on a page. You can use this validation control to consolidate error reporting for all the validation errors
that occur on a page instead of leaving this up to each and every individual validation control.

You might want this capability for larger forms, which have a comprehensive form validation process. If
this is the case, you may find it rather user-friendly to have all the possible validation errors reported to
the end user in a single and easily identifiable manner. These error messages can be displayed in a list,
bulleted list, or paragraph.

By default, the ValidationSummary control shows the list of validation errors as a bulleted list. This is
illustrated in Listing 7-17.

Listing 7-17: A partial page example of the ValidationSummary control

<p>First name
<asp:TextBox ID="TextBoxl" Runat="server"></asp:TextBox>
&nbsp;
<asp:RequiredFieldvValidator ID="RequiredFieldValidatorl"
Runat="server" ErrorMessage="You must enter your first name"
ControlToValidate="TextBoxl"></asp:RequiredFieldvalidator>
</p>
<p>Last name
<asp:TextBox ID="TextBox2" Runat="server"></asp:TextBox>
&nbsp;
<asp:RequiredFieldvalidator ID="RequiredFieldvValidator2"
Runat="server" ErrorMessage="You must enter your last name"
ControlToValidate="TextBox2"></asp:RequiredFieldvValidator>

238



Validation Server Controls

</p>
<p>
<asp:Button ID="Buttonl" OnClick="Buttonl_Click" Runat="server"
Text="Submit"></asp:Button>
</p>
<p>
<asp:ValidationSummary ID="ValidationSummaryl" Runat="server"
HeaderText="You received the following errors:">
</asp:ValidationSummary>
</p>
<p>
<asp:Label ID="Labell" Runat="server"></asp:Label>
</p>

This example asks the end user for her first and last name. Each text box in the form has an associated
RequiredFieldValidator control assigned to it. When the page is built and run, if the user clicks the

Submit button with no values placed in either of the text boxes, it causes both validation errors to fire.
This result is shown in Figure 7-8.

&7 CustomValidator . Microsoft Internet Explorer ===
Eile Edit View Favorites Tools Help "
" - n £
] le] Izl] o ) search ¢ Favorites @ veda £2) - iz =
Adress | @) hitps/flocalhost: 54028 Validation Default. asx | B ks *
First name You must enter vour first name
Last name You must enter your last name

You recerved the following errors
« You must enter vour first name
« You must enter vour last name
&] Done & Local intranst
Figure 7-8

As in earlier examples of validation controls on the form, these validation errors appear next to each of
the text boxes. You can see, however, that the ValidationSummary control also displays the validation
errors as a bulleted list in red at the location of the control on the Web form. In most cases, you do not
want these errors to appear twice on a page for the end user. You can change this behavior by using the
Text property of the validation controls, in addition to the ErrorMessage property, as you have typi-
cally done throughout this chapter. This approach is shown in Listing 7-18.

Listing 7-18: Using the Text property of a validation control

<asp:RequiredFieldvValidator ID="RequiredFieldvalidatorl"
Runat="server" ErrorMessage="You must enter your first name" Text="*"
ControlToValidate="TextBoxl"></asp:RequiredFieldvValidator>

or

(continued)

239



Chapter 7

Listing 7-18: (continued)

<asp:RequiredFieldvValidator ID="RequiredFieldValidatorl"
Runat="server" ErrorMessage="You must enter your first name"
ControlToValidate="TextBoxl">*</asp:RequiredFieldvalidator>

Listing 7-18 shows two ways to accomplish the same task. The first is to use the Text property and the sec-
ond option is to place the provided output between the nodes of the <asp:RequiredFieldvalidator>
elements. Making this type of change to the validation controls produces the results shown in Figure 7-9.

@ CustomValidator - Microsoft Internet Explorer |S]@]x]
File Edit View Favorites JTools Help w
N — i\ 3 »
J |xL| |zl'| § - search 2 Favorites wmedia £o v @ E—-
Agdress 48] hitp:/localhost: 54028 Validation Default.asx zl 4 50 ks »
First name *
Last name =

You received the followmng errors

« Voumust enter vour first name
« You must enter your last name

&] Done & Local intranet

Figure 79

To get this result, just remember that the ValidationSummary control uses the validation control’s
ErrorMessage property for displaying the validation errors if they occur. The Text property is used
by the validation control and is not utilized at all by the ValidationSummary control.

In addition to bulleted lists, you can use the DisplayMode property of the ValidationSummary control to
change the display of the results to other types of formats. This control has the following possible values:

O  BulletList
O  List

Q  SingleParagraph

You can also utilize a dialog box instead of displaying the results to the Web page. Listing 7-19 shows an
example of this behavior.

Listing 7-19: Using a dialog box to report validation errors

<asp:ValidationSummary ID="ValidationSummaryl" Runat="server"
ShowMessageBox="True" ShowSummary="False"></asp:ValidationSummary>

240



Validation Server Controls

From this code example, you can see that the ShowSummary property is set to False —meaning that
the bulleted list of validation errors are not shown on the actual Web page. However, because the
ShowMessageBox property is set to True, you now get these errors reported in a message box, as illus-
trated in Figure 7-10.

wﬁj':.lb['\':l Validator - Microsoft Internet Explorer

L
o

lel Id] ;‘, /. Search '}j‘(l'=a-:ori'.es @ veda £2) - iz =

address @] http:/flocalhost: 54028 Validation Default.aspx V: &3 6o ks
First name *

Last name =

| Microsoft Internet Explorer %]

1 - You must enter your first name
. - You must enter your last name

&] Done & Local intranet

Figure 7-10

Turning Off Client-Side Validation

Because validation server controls provide clients with client-side validations automatically (if the
requesting container can properly handle the JavaScript produced), you might, at times, want a way
to control this behavior.

It is quite possible to turn off the client-side capabilities of these controls so that they don’t independently
send client-side capabilities to the requestors. For instance, you might want all validations done on the
server, no matter what capabilities the requesting containers offer. You can take a couple of approaches to
turning off this functionality.

The first is at the control level. Each of the validation server controls has a property called
EnableClientScript. This property is set to True by default, but setting it to False prevents the
control from sending out a JavaScript function for validation on the client. Instead, the validation check
is done on the server. The use of this property is shown in Listing 7-20.

Listing 7-20: Disabling client-side validations in a validation control

<asp:RequiredFieldvValidator ID="RequiredFieldvValidatorl" Runat="server"
ErrorMessage="*" ControlToValidate="TextBoxl" EnableClientScript="false">

You can also remove a validation control’s client-side capability programmatically (shown in Listing 7-21).

241



Chapter 7

Listing 7-21: Removing the client-side capabilities programmatically

VB

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
RequiredFieldvalidatorl.EnableClientScript = False

End Sub

C#

protected void Page_Load(Object sender, EventArgs e) {
RequiredFieldvalidatorl.EnableClientScript = false;

}

Another option is to turn off the client-side script capabilities for all the validation controls on a page
from within the Page_Load event. This can be rather helpful if you want to dynamically decide not to
allow client-side validation. This is illustrated in Listing 7-22.

Listing 7-22: Disabling all client-side validations from the Page_Load event

VB
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
For Each bv As BaseValidator In Page.Validators
bv.EnableClientScript = False
Next
End Sub

C#
protected void Page_Load(Object sender, EventArgs e) {
foreach (BaseValidator bv in Page.Validators)

{
bv.EnableClientScript = false;

}

Looking for each instance of a Basevalidator object in the validators contained on an ASP.NET page,
this For Each loop turns off client-side validation capabilities for each and every validation control the
page contains.

Using Images and Sounds
for Error Notifications

So far, we have been displaying simple textual messages for the error notifications that come from the vali-
dation server controls. In most instances, you are going to do just that—display some simple textual mes-
sages to inform end users that they input something into the form that doesn’t pass your validation rules.

An interesting tip regarding the validation controls is that you are not limited to just text— you can also
use images and sounds for error notifications.

242



Validation Server Controls

To do this, you use the ErrorMessage property of any of the validation controls. To use an image for the
error, you can simply place some appropriate HTML as the value of this property. This is illustrated in
Listing 7-23.

Listing 7-23: Using images for error notifications

<asp:RequiredFieldvalidator ID="RequiredFieldValidatorl"
Runat="server" ErrorMessage='<img src="error.gif">'
ControlToValidate="TextBoxl"></asp:RequiredFieldvalidator>

As you can see from this example, instead of some text being output to the Web page, the value of the
ErrorMessage property is an HTML string. This bit of HTML is used to display an image. Be sure to
notice the use of the single and double quotation marks so you won’t get any errors when the page is
generated in the browser. This example produces something similar to what is shown in Figure 7-11.

&1 CustomValidator - Microsoft Internet Explorer SOt

Eile Edit View Favorites Tools Help ;';'
0 — n »
J le] |zl] ) 7/ ! search 5.f Favorites wmedia {‘_? v &P E
Aciess ] hitp:localhost: 54028 /validaton Default. 2o 7 & o ks »
Name
ERROR!
&] Done 4 Local intranst
Figure 7-11

The other interesting twist you can create is to add a sound notification when the end user errs. You can
do this the same way you display an image for error notifications. Listing 7-24 shows an example of this.

Listing 7-24: Using sound for error notifications

<asp:RequiredFieldvValidator ID="RequiredFieldValidatorl"

Runat="server" ErrorMessage='<bgsource src="C:\Windows\Media\tada.wav">"
ControlToValidate="TextBoxl" EnableClientScript="False">
</asp:RequiredFieldvalidator>

You can find a lot of the Windows system sounds in the C: \Windows\Media directory. In this example,
the ErrorMessage uses the <bgsource> element to place a sound on the Web form. The sound is
played only when the end user triggers the validation control.

When working with sounds for error notifications, you have to disable the client-side script capability

for that particular control because if you do not, the sound plays when the page is loaded in the browser,
whether or not a validation error has been triggered.

243



Chapter 7

Working with Validation Groups

In many instances, developers want to place more than one form on a single page. This was always pos-
sible in ASP.NET 1.0/1.1 because different button clicks could be used to perform different server-side
events. Some issues related to this type of construction were problematic, however.

One of these issues was the difficulty of having validation controls for each of the forms on the page.
Different validation controls were often assigned to two distinct forms on the page. When the end user
submitted one form, the validation controls in the other form were fired (because the user was not work-
ing with that form), thereby stopping the first form from being submitted.

Figure 7-12, for example, shows a basic page for the St. Louis .NET User Group that includes two forms.

&7 Validation Groups - Microsoft Internet Explorer B[]
File Edit View Favorites JTools Help ;’,’
, BB G P Foroons @uen @3- BELIE B
Adess @] https/flocalhost: 54028 validation/Default. aspx v|Eso ks ?
St. Louis .NET User Group
Username: Password:

Our main meeting is almost always held on the last Mondav of the month. Sometimes due to holidavs or other extreme
circumstances, we move it to another night but that is very rare. Check the home page of the web site for details. The special
interest groups meet at other times during the month. Check the S1G page and visit their individual sites for more information.
You can also check our calendar page for a summary of events.

Sign-up for the newsletter!

Email: Sign-up
&] Done & Local intranst
Figure 7-12

One of the forms is for members of the site to supply their usernames and passwords to log into the
Members Only section of the site. The second form on the page is for anyone who wishes to sign up for
the user group’s newsletter. Each form has its own button and some validation controls associated with
it. The problem arises when someone submits information for one of the forms. For instance, if you are a
member of the group, you would supply your username and password, and click the Login button. The
validation controls for the newsletter form would fire because no e-mail address was placed in that par-
ticular form. If someone interested in getting the newsletter places an e-mail address in the last text box
and clicks the Sign-up button, the validation controls in the first form fire because no username and
password were input in that form.

ASP.NET 2.0 now provides you with a ValidationGroup property that enables you to separate the vali-
dation controls into separate groups. It enables you to activate only the required validation controls
when an end user clicks a button on the page. Listing 7-25 shows an example of separating the valida-
tion controls on a user group page into different buckets.

244



Validation Server Controls

Listing 7-25: Using the ValidationGroup property
<%@ Page Language="VB" %>
<html xmlns="http://www.w3.0rg/1999/xhtml" >

<head runat="server">
<title>Validation Groups</title>

</head>
<body>
<form id="forml" runat="server">
<div>
<hl>St. Louis .NET User Group</hl>
<p>Username:

<asp:TextBox ID="TextBoxl" Runat="server"></asp:TextBox>&nbsp; Password:
<asp:TextBox ID="TextBox2" Runat="server"
TextMode="Password"></asp:TextBox>&nbsp;
<asp:Button ID="Buttonl" Runat="server" Text="Login"
ValidationGroup="Login" />
<br />
<asp:RequiredFieldvValidator ID="RequiredFieldvValidatorl" Runat="server"
ErrorMessage="* You must submit a username!"
ControlToValidate="TextBoxl" ValidationGroup="Login">
</asp:RequiredFieldvalidator>
<br />
<asp:RequiredFieldvValidator ID="RequiredFieldValidator2" Runat="server"
ErrorMessage="* You must submit a password!"
ControlToValidate="TextBox2" ValidationGroup="Login">
</asp:RequiredFieldvalidator>
<p>
Our main meeting is almost always held on the last Monday of the month.
Sometimes due to holidays or other extreme circumstances,
we move it to another night but that is very rare. Check the home page
of the web site for details. The special
interest groups meet at other times during the month. Check the SIG
page and visit their individual sites for more information.
You can also check our calendar page for a summary of events.<br />
</p>
<h2>Sign-up for the newsletter!</h2>
<p>Email:
<asp:TextBox ID="TextBox3" Runat="server"></asp:TextBox>&nbsp;
<asp:Button ID="Button2" Runat="server" Text="Sign-up"
ValidationGroup="Newsletter" />&nbsp;
<br />
<asp:RegularExpressionValidator ID="RegularExpressionValidatorl"
Runat="server"
ErrorMessage="* You must submit a correctly formatted email address!"
ControlToValidate="TextBox3" ValidationGroup="Newsletter"

ValidationExpression="\w+ ([-+.]1\w+) *@\w+ ([-.]\w+) *\ . \w+ ([-.]\w+) *">
</asp:RegularExpressionValidator>
<br />

<asp:RequiredFieldvalidator ID="RequiredFieldvValidator3" Runat="server"
ErrorMessage="* You forgot your email address!"
ControlToValidate="TextBox3" ValidationGroup="Newsletter">

(continued)

245



Chapter 7

Listing 7-25: (continued)

</asp:RequiredFieldvalidator>
</p>
</div>
</form>
</body>
</html>

The validationGroup property on this page is shown in bold. You can see that this property takes a
String value. Also note that not only validation controls have this new property. The core server con-
trols also have the validationGroup property because things like button clicks must be associated with
specific validation groups.

In this example, each of the buttons has a distinct validation group assignment. The first button on the
form uses Login as a value, and the second button on the form uses Newsletter as a value. Then each
of the validation controls is associated with one of these validation groups. Because of this, when the
end user clicks the Login button on the page, ASPNET recognizes that it should work only with the vali-
dation server controls that have the same validation group name. ASP.NET ignores the validation con-
trols assigned to other validation groups.

Using this enhancement, you can now have multiple sets of validation rules that fire only when you
want them to fire (see Figure 7-13).

&1 Validation Groups - Microsoft Internet Explorer (S]]

File Edit View Favorites JTools Help l'a"
- ) ] B o Oseacr Slpraoites @Pieda €2 ~r2F A B3

Agdress '.aj hittp: (flocakost: 59028 Validation Default. aspx T Gﬁ Lrks

St. Louis .NET User Group

Username: Password:

Our main meeting is almost always held on the last Monday of the month. Sometimes due to holidavs or other extreme
circumstances, we move it to another night but that is very rare. Check the home page of the web site for details. The special
interest groups meet at other times during the month. Check the S1G page and visit their individual sites for more information.
You can also check our calendar page for a summary of events.

Sign-up for the newsletter!

Emat

* You forgot vour email address!

&] Done & Local intranst

Figure 7-13

Another great feature that has been added to validation controls is a property called SetFocusOnError.
This property takes a Boolean value and, if a validation error is thrown when the form is submitted, the
property places the page focus on the form element that receives the error. The SetFocusOnError prop-
erty is used in the following example:

246



Validation Server Controls

<asp:RequiredFieldvalidator ID="RequiredFieldvValidatorl" Runat="server"
ErrorMessage="* You must submit a username!"

ControlToValidate="TextBoxl" ValidationGroup="Login" SetFocusOnError="True">
</asp:RequiredFieldvalidator>

If RequiredFieldvalidatorl throws an error because the end user didn’t place a value in TextBox1,
the page is redrawn with the focus on TextBox1, as shown in Figure 7-14.

&7 Validation Groups - Microsoft Internet Explorer == %]

File Edit View Favorites Tools Help !',:'
) ) X B @ P oo @ueee @ (3- LB L E B

agcress | @] hitp:/fiocalhost: 54028 validation Default.aspx v @ e ™

St. Louis .NET User Group

Username: | Password: Login
* You must submit a username!
* You must submit a password!

Our main meeting is almost always held on the last Mondav of the month. Sometimes due to holidavs or other extreme
circumstances, we move it to another night but that is very rare. Check the home page of the web site for details. The special

interest groups meet at other times during the month. Check the S1G page and visit their individual sites for more information.
You can also check our calendar page for a summary of events.

Sign-up for the newsletter!

&] Done &4 Local intranst

Figure 7-14

Note that if you have multiple validation controls on your page with the SetFocusOnError property
set to True, and more than one validation error occurs, the uppermost form element that has a valida-
tion error gets the focus. In the previous example, if both the username text box (TextBox1) and the
password text box (TextBox2) have validation errors associated with them, the page focus is assigned
to the username text box because it is the first control on the form with an error.

Summary

Validation controls are a welcome addition for those developers moving from Active Server Pages to
ASP.NET. They bring a lot of functionality in a simple-to-use package and, like most things in the .NET
world, you can easily get them to look and behave exactly as you want them to.

Remember that the purpose of having forms in your applications is to collect data, but this data collec-

tion has no meaning if the data is not valid. This means that you are must establish validation rules that
can be implemented in your forms through a series of different controls — the validation server controls.

247



Chapter 7

This chapter took a good look at the various validation controls, including

Q  RequiredFieldValidator
QO  CompareValidator

Q  RangeValidator

Q  RegularExpressionValidator
Q  CustomValidator

Q  ValidationSummary

In addition to looking at the base validation controls, this chapter also discussed how to apply client-
side and server-side validations.

248



Working with Master Pages

Visual inheritance is a great new enhancement to your Web pages provided by new additions to
ASP.NET 2.0. In effect, you can create a single template page that can be used as a foundation for
any number of ASP.NET content pages in your application. These templates, called master pages,
increase your productivity by making your applications easier to build and easier to manage after
they are built. Visual Studio 2005 includes full designer support for master pages, making the
developer experience richer than ever before. This chapter takes a close look at how to utilize mas-
ter pages to the fullest extent in your applications and begins by explaining the advantages of
master pages.

Why Do You Need Master Pages?

Most Web sites today have common elements used throughout the entire application or on a
majority of the pages within the application. For instance, if you look at the main page of the
Reuters News Web site (found at www. reuters. com), you see common elements that are used
throughout the entire Web site. These common areas are labeled in Figure 8-1.

In this screen shot, notice a header section, a navigation section, and a footer section on the page.
In fact, nearly every page within the entire application uses these same elements. Even before mas-
ter pages, you had ways to put these elements into every page; but in most cases, doing so posed
difficulties.

Some developers simply copy and paste the code for these common sections to each and every
page that requires them. This works, but it’s rather labor intensive. But, if you use the copy-and-
paste method, whenever a change is required to one of these common sections of the application,
you have to go into each and every page and duplicate the change. That’s not much fun and an
ineffective use of your time!




Chapter 8

Header »

Secondary
Navigation

Common
Page
Items »

Footer p
Figure 8-1
250

REUTERS D

KRG FRCAA,
FINANCE

Haw Toak Collebyaiws The o
B Tl

Pape Rk Far Mo Pasce
Meauimes

Sl M ensed
Bapisa Pl

GET THE NEW
REUTERS NEWS
DESKTOP TICKER!

REUTERS MESSAGING
FELITIR. O 5

Lo Chsage
oma a2
200037
I
TiTaEs

Chasss a ity ming iy code,
peatal cadda, ca oty iz
=

Intide Reuters Finande
Prorifole - Chek hurs o buld
your gwn poriabo covering
cash, Sk ard g

bt - LS Mariat Flupods,
15 Mararty Snapehek Market
Comerantany, and'Ward
Indicey.

Fimmiad Mawn - Kol Black,
Company Reiuits, Warpar §
ArgpathEan, Bond his,
Mewe Issues £ PO

Cumrencies - U5 Dollar Repar
e AT C ORI

ik €11 & bt Tk
Anniusl Fapans, Anshe
Fesrarch, and Comparion
Charing

CURREMCES

U.5. Hot Seen Worried About Dollar
Drop

Thw ey 1, 10-20 A ET

By Glgrn Somanale

VOASHIMOTOM (Rluutars) - T LS 8005rS Shidy Sochi
IrVVRhe v T EUITS 00 DAY kI CUTTENEHE MY
R ey i Euttpiean apiials but Bwie b e sign i
is rising o B level of & malar policy concem in

Immml_

Ml Do il Cill Prisad T Baal Elei &
Stk il B 61 Paallhm Yol S 1905

Pros sl irveatihal o i Fldeli Tod i Piah
Micas Nop Benaers Hews 5

THE REUTERS EDGE
U.5, Grass-Fed Cattle Hot After Mad

Cow Case
Ths Sancsayr 1, #0028 AWET
By it CRfbE

SN FRANCIBCD Ritarsh - Son CORIUMTIE, feifng
Bl the SrEt LS can of mad oo SRR 15 nok 3 uke,
are buying mees prass-id ey - even i much
higher price s Fian corvendional Des’ Mare..,

Prepare bo Save Mose im
Aol

i

Ciuistians Secend Clavs in Wi Losds - Condinal
Way+ Posea s Edge Maws =

LIS Wi bt bl

LT, pheckn el TH H paaltive e e THOR
Oecovntar 39, 0005 04 42 P ET
Mpdries: Jo close) By Eizabe®h Lacaowiz More..

Lomcden Mool Feper!

FUSE e vk 2903 willh boiogirst §ally i slix yohi &

By Lowiid Hikirrrd LONDON, Dt 11 (Riutirs) - Brtlir'y
1 SR INEFars OUE 2003 W £ Krgecs
uniderrupled rally in more han sicyears on Wednesdry
41 QILAIND LS it Misw Yiear sdll ushas in o Rt
TECTVRIY I B SEONOMY 800 CIMROTIE prosty. MOl

Ny B et Fitpsil

Kl Sk mn it chonad i Maw Tl halilay
TOkND, Dae 31 (Foauters) - Tobyo Sock Exchange i
claned for e M Fear holidars:. A will reopen on Monday,
ity 5, fof @ ROy SHE-HAN 13 ATk G Fati
oy of 2004 M.,

Moaw M ket Rapaity >

Baw Bsiies SIS Fumsli s
Laingimn’ Raialls Bt Mo
Mot g s & Acqmidiens Bt omiric Hews
Hat Saschs Pl sl oy Mews.

U.5. Ushers in 2004 with Tight Security
Th Jdasury 1, 0230 AM ET

HEWY FORK (Rleutans) - | PR
heiped uther in 2004 in an unpresedenisd operabion Ta Bt any Isror allack
on e brarbons T hiiw Yiork 1 Lid Vegad Mere_

Lag In

ared of podice

Up to 8 Killed in Baghdad Blast, U.S.

The Jenvasy 1, CED0 AN ET
By Susbwiman s Ehalidl

BAGHDAD [Fpulnrs] - Up'o sight
Pl W bl i R Y

Eve bamb sk on 2 Baghedad
LTI B T VD 3
wrarded, LG, miltary

it aBputon Sakd Thirsday & thiry
hurdled far chue s among the nibbile

LS, Priajsates Bof Risky g Tlaop Rstatn
st Flot bl Tam 1 coonpt B dar P Dad

g Dl By iiehy Al oy Sl of Washingdon Aeperd
Mate Top Haws >

Haany Secwity bar (abal Mew Yo Talsieations
el Ry L Blockade sn West Bank Dity

Pakindan's Ml 1l Wins Vele of Coafldence
i W M >

US NEWS
Bepomi s Do By ifish Al s Jod of Washinglen Aperi
el At Eiats Come et om Saineircing

iy Pk Mo b Leng Campaign Process
o i UG s =

Diiniact it Cliaies Do D S sach i
el Arstice Blrsts Comgp s om Sortencing

um iy Fands Mok Leng Campaign Process
Tiow o Prolitic s Hewes >

Apphe Prers The eaten to Sue Oves Bosk, Pod
W B iy sy foa Canpupirscy Laves e

Bt Sy 51 (el ek AL RLTy B il
Moie Tichmodigy Haw >

) [eattin IR Epbieamic Ll LS,
Dy Helps Beckace GendalHerpes Spread i Cumples

Hew Heal Bypass Methed Shews Moae Clagaing - Shidy
Micaw Health Hews >

of REgister Now

Financial

F Y

= \
TLTHRS WESLT R
e

Ad Space A




Working with Master Pages

In the days of Classic Active Server Pages, one popular option was to put all the common sections into
what was called an include file. You could then place this file within your page like this:

<!-- #include virtual="/myIncludes/header.asp" -->

The problem with using include files was that you had to take into account the newly opened HTML tags
in the header include file. These tags had to be closed in the main document or in the footer include file.
It was usually difficult to keep all the HTML tags in order, especially if multiple people worked on a pro-
ject. Web pages sometimes displayed strange results because of inappropriate or nonexistent tag closings or
openings. It was also difficult to work with include files in a visual designer. Using include files didn’t
allow the developer to see the entire page as it would appear in a browser. The developer ended up devel-
oping the page in sections and hoping that the pieces would come together as planned. Many hours were
wasted “chasing tables” opened in an include file and possibly closed later!

With the introduction of ASP.NET 1.0 in 2000, developers started using user controls to encapsulate com-
mon sections of their Web pages. For instance, you could build a Web page that included header, naviga-
tion, and footer sections by simply dragging and dropping these sections of code onto each page that
required them.

This technique worked, but it also raised some issues. Before Visual Studio 2005, user controls caused
problems similar to those related to include files. When you worked in the design view of your Web
page, the common areas of the page displayed only as gray boxes in Visual Studio .NET 2002 and 2003.
This made it harder to build a page. You could not visualize what the page you were building actually
looked like until you compiled and ran the completed page in a browser. User controls also suffered
from the same problem as include files—you had to match up the opening and closing of your HTML
tags in two separate files. Personally, we prefer user controls over include files, but user controls aren’t
perfect template pieces for use throughout an application. Visual Studio 2005 corrects some of the prob-
lems by rendering user-control content in the design view. User controls are ideal if you are including
only small sections on a Web page; they are still rather cumbersome, however, when working with larger
page templates.

In light of the issues with include files and user controls, the ASPNET team developed the idea of mas-
ter pages — an outstanding new way of applying templates to your applications. They inverted the way
the developer attacks the problem. Master pages live outside the pages you develop, while user controls
live within your pages and are doomed to duplication. These master pages draw a more distinct line
between the common areas that you carry over from page to page and the content areas that are unique
on each page. Working with master pages is easy and fun. Look at some of the basics of master pages in
ASPNET 2.0.

The Basics of Master Pages

Master pages are an easy way to provide a template that can be used by any number of ASPNET pages
in your application. In working with master pages, you create a master file that is the template refer-
enced by a subpage or content page. Master pages use a .master file extension, whereas content pages use
the . aspx file extension you're used to; but content pages are declared as such within the file’s page
directive.

251



Chapter 8

Put anything you want to share within the template in the .master file. This can include the header,
navigation, and footer sections used across the Web application. The content page then contains all the
page content except for the master page’s elements. At runtime, the ASPNET engine combines these ele-
ments into a single page for the end user. Figure 8-2 shows a diagram of how this process works.

One of the nice things about working with master pages is that you can visually see the template in the
IDE when you are creating the content pages. Because you can see the entire page while you are working
on it, it is much easier to develop content pages that use a template. While you are working on the con-
tent page, all the templated items are shaded gray and are not editable. The only items that are alterable
are clearly shown in the template. These workable areas, called content areas, originally are defined in the
master page itself. Within the master page, you specify the areas of the page that the content pages can
use. You can have more than one content area in your master page if you want. Figure 8-3 shows the
master page with a couple of content areas shown.

With the release of ASPNET 2.0, master pages are possible because the .NET Framework 2.0 now sup-
ports partial classes. This is the capability to take two classes and merge them into a single class at run-
time. Using this new capability, the ASP.NET engine takes two page classes and brings them together
into a single page class at runtime.

Master Page Content Page
MyMaster .master Default.aspx

M C

MC

Combined Page
Default.aspx

Figure 8-2

252



Working with Master Pages

[=] Wirox - Visual Web Developer 2005 Express Edition oEg|
Eile Edit Wew Webgte Build Debug Data Format  Layout Tools  Window Community Hslp
R A= N- I L9 -t Bl L) | @ CustomerReady =
H 7 TmesMewRomen » 120t = | B I U |A &2 |= .| i= | &
Toakbax - 3 x\| Wrox.master| + 3 | Solution Explorer - 3 x
:ks;..:.d Al i | i'l C] = | B @
In’ r
_ 1P Gl \Wrox)|
A L My Company Home Page 5 L Aon_Data
ab] TextBox =] Default.aspx
Button = 3 Web.Config
LinkEuttan ContentPlaceHolder - ContentPlaceHolderl ContentPlaceHolder - ContentPlaceHolder2 [ wrex master
(&) ImageSutton
A Hypertini
=4 DropDownlist
=1 ListBox
[¥] ched@ox
= CheckBoxList
'i?:. ::::::::Ligt 5 ‘-‘; Solution Ex :?’g_' Database E
J Image  Properties » 1 X
il ImageMap DOCUMENT =
. 2z | A
fl == Copyright 2004 - My Company GEEA W |
= Bulleteduist El ASP.NET |
ot HiddenField Debug
B Literal EnableSessions L
7 calendar Explict
= AdRotator
) FileUpioad St
4+ Vizard El Body
& mil ALink
5] Multiviews Background
BgColor =
<] PlaceHolder AI.:: = =
I View Color of al active links in the document.
[ ContentPlaceHolder (||| @ Design | [= Source
Ready
Figure 8-3

Companies and organizations will find using master pages ideal, as the technology closely models their
typical business requirements. Many companies have a common look and feel that they apply across
their intranet. They can now provide the divisions of their company with a .master file to use when
creating a department’s section of the intranet. This process makes it quite easy for the company to keep
a consistent look and feel across its entire intranet.

Coding a Master Page

Now look at building the master page shown in Figure 8-3. You can create one in any text-based editor,
such as Notepad or Visual Web Developer Express Edition, or you can use the new Visual Studio 2005.
In this chapter, you see how to use Visual Web Developer.

Master pages are added to your projects in the same way as regular . aspx pages — choose the Master
Page option when you add a new file to your application, as shown in Figure 8-4.

253



Chapter 8

Add New Item - C:\Doc and Settings\A My Doc I Studio 2005\Web5i... EIE
Templates: E|
Visual Studio installed templates “
=] web Form [E] web User Control
| 9] HTML Page #] '] Class
AjjStyle Sheet ] Global Application Class |y Web Configuration Fle
[ ¥ML Fle ] ¥ML schema =] Text File
(aAssembly Resource File |8l 5QL Database |&] Dataset
k] Generic Handler || Site: Map 52" Mobile Web Form
B VEScript Fle ;\_g_lJS:npr Fie d-‘\Mnhlle ‘Wb User Control
=4 Mobile Web Configuration File (24 ¥5LT File |5 Skin File
& Browser Fie
My Templates
i d5earch Online Templates. ., -
A Master Page for Web Applications
Mame: MasterPage. master
Language: Visual Basic | [eiace code in separate fie
Figure 8-4

Because it’s just like any other . aspx page, the Add New Item dialog enables you to choose from a mas-
ter page using the inline coding model or a master page that places its code in a separate file. Not plac-
ing your server code in a separate file means that you use the inline code model for the page you are
creating. This option creates a single .master page. Choosing the option to place your code in a sepa-
rate file means that you use the new code-behind model with the page you are creating. Selecting the
check box Place Code In Separate File creates a single .master page, along with an associated .master

.vbor .master.cs file.

A sample master page that uses the inline-coding model is shown in Listing 8-1.

Listing 8-1: A sample master page
<%@ Master Language="VB" %>
<script runat="server">
</script>

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>My Company Master Page</title>
</head>
<body>
<form id="forml" runat="server">
<table cellpadding="3" border="1">
<tr bgcolor="silver">
<td colspan="2">
<hl>My Company Home Page</hl>
</td>
</tr>
<tr>

254



Working with Master Pages

<td>
<asp:ContentPlaceHolder ID="ContentPlaceHolderl"
Runat="server">
</asp:ContentPlaceHolder>
</td>
<td>
<asp:ContentPlaceHolder ID="ContentPlaceHolder2"
Runat="server">
</asp:ContentPlaceHolder>
</td>
</tr>
<tr>
<td colspan="2">
Copyright 2006 - My Company
</td>
</tr>
</table>
</form>
</body>
</html>

This is a simple master page. The great thing about creating master pages in Visual Studio 2005 is that
you can work with the master page in code view, but you can also switch over to design view to create
your master pages.

Start by reviewing the code for the master page. The first line is the directive:
<%@ Master Language="VB" %>

Instead of using the Page directive, as you would with a typical . aspx page, you use the Master direc-
tive for a master page. This master page uses only a single attribute, Language. The Language attribute’s
value here is VB, but of course, you could also use C# if you are building a C# master page.

You code the rest of the master page just as you would any other . aspx page. You can use server con-
trols, raw HTML and text, images, events, or anything else you normally would use for any . aspx page.
This means that your master page can have a Page_Load event as well or any other event that you deem
appropriate.

In the code shown in Listing 8-1, notice the use of a new server control — the
<asp:ContentPlaceHolder> control. This control defines the areas of the template where
the content page can place its content:

<tr>
<td>
<asp:ContentPlaceHolder ID="ContentPlaceHolderl"
Runat="server">
</asp:ContentPlaceHolder>
</td>
<td>
<asp:ContentPlaceHolder ID="ContentPlaceHolder2"
Runat="server">
</asp:ContentPlaceHolder>
</td>
</tr>

255



Chapter 8

In the case of this master page, two defined areas exist where the content page can place content. Our
master page contains a header and a footer area. It also defines two areas in the page where any inherit-
ing content page can place its own content. Look at how a content page uses this master page.

Coding a Content Page

Now that you have a master page in place in your application, you can use this new template for any
content pages in your application. Right-click the application in the Solution Explorer and choose Add
New Item to create a new content page within your application.

To create a content page or a page that uses this master page as its template, you select a typical Web
Form from the list of options in the Add New Item dialog. Instead of creating a typical Web Form, how-
ever, you check the Select Master Page check box. This gives you the option of associating this Web Form
later to some master page. The Add New Item dialog is shown in Figure 8-5.

Add New Item - C:\Doc and Settings\Admi \My Doc I Studio 2005\Web5i... 23
(]
Templates: BE
Visual Studio installed templates “:
2] wieb Form [CMaster Page [E] web User Control
|#] HTML Page #i] Web Service '] Class
AjjStyle Sheet ] Global Application Class |1z Web Configuration File
[ ¥ML Fle ] ¥ML schema =] Text File
(aAssembly Resource File |8l 5QL Database |&] Dataset
k] Generic Handler 25| Site Map J"’Mobile \Web Form
B VEScript Fle ;\_g_lJS:npr Fie d-‘\Mnhlle ‘Wb User Control
=4 Mobile Web Configuration File (af' ¥SLT File |5 Skin File
& JBrowser Fle
My Templates

\search Online Templates. .,

A form for Web Applications
Mame: Default.aspx
Language: Visual Basic w|  [eiace code in separate file
[]5ekc el
s
Figure 85

After you name your content page and click the Add button in the Add New Item dialog, you are pre-
sented with the Select A Master Page dialog, as shown in Figure 8-6.

This dialog allows you to choose the master page from which you want to build your content page. You
choose from the available master pages that are contained within your application. For this example,
select the new master page that you created in Listing 8-1 and click the OK button. This creates the con-
tent page. The created page is a simple . aspx page with only a single line of code contained in the file,
as shown in Listing 8-2.

256



Working with Master Pages

Listing 8-2: The created content page

<%@ Page Language="VB" MasterPageFile="~/Wrox.master" Title="Untitled Page" %>

Select a Master Page B3] %]
Project folders: Contents of folder:
= [P CWwroxy Wrox.master

+-{_3 App_Data

oK. | [ Cancel

Figure 8-6

This content page is not much different from the typical . aspx page you coded in the past. The big
difference is the inclusion of the MasterPageFile attribute within the Page directive. The use of this
attribute indicates that this particular . aspx page inherits from another page. The location of the master
page within the application is specified as the value of the MasterPageFile attribute.

The other big difference is that it contains neither the <form id="forml" runat="server"> tag nor
any opening or closing HTML tags that would normally be included in a typical . aspx page.

This content page may seem simple, but if you switch to the design view within Visual Studio 2005, you
see the power of using content pages. What you get with visual inheritance is shown in Figure 8-7.

In this screen shot, you can see that just by using the MasterFilePage attribute in the Page directive,
you are able to visually inherit everything that the Wrox.master file exposes. All the common areas
defined in the master page are shown in gray, whereas the content areas that you specified in the master
page using the <asp:ContentPlaceHolder> server control are shown clearly and available for addi-
tional content in the content page. You can add any content to these defined content areas as if you were
working with a regular . aspx page. An example of using this .master page for a content page is shown
in Listing 8-3.

257



Chapter 8

E Wrox - Visual Web Developer 2005 Express Edition [B[E]=]

Ble Edit Vew Webgite Quld Debug Data Format  Layout Tools Window Community Help

=R AT RN~ - - N | = 4o Dl- 0| b 6] | [ Customerfieady VH

] ] T lslalidlEalsclo]

Toakbax = 1 || Defaultaspx Wrox.master + 3 | Solution Explorer - 0 x
:Sla.ndald ~ E||E.J.E| Zl@p
Gl S . . 1P C\\Wrox\

A Lebel : #- [ Aoo_Data

bl TextBox : | Default.aspx

Button 3 Web.Config

3] I W

LinkButton Content - Contentl (Custom) | [ Content - Content2 (Custom) O Wronc master

(@) 1mageBution

A HyperLink =

=8 DropDowmlist

=1 ListBox

[¥] cheddox

i= ChedkBontist

Q) =2 EEr i ', 6] Solution Ex.... /T Database£... /
%= RadioButtonList . -

Properties >« 1 X

il Image

fid ImageMap DOCUMENT -
3 Table Blsl =

= Bulleteduist Explict »|
- HiddenField

B Literal MasterPagefie ~/Wrox.master

"7 calendar Strict E
= AdRotator StyleSheetTher N
t Theme

] FileUpioad Trace

4+ Vizard TraceMaode

& mil UICulture
A5 Multiview B Body
= ALink
E'-"I Foe Dlmrdeme ms s :
] PlaceHolder ALink
0 View Color of &l active links in the document.
35| substitution | (3 Design | [=] Source
Ready

Figure 8-7

Listing 8-3: The content page that uses Wrox.master

VB
<%@ Page Language="VB" MasterPageFile="~/Wrox.master" %>

<script runat="server" language="vb">

Protected Sub Buttonl_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Labell.Text = "<b>Hello " & TextBoxl.Text & "!</b>"
End Sub

</script>

<asp:Content ID="Contentl" ContentPlaceHolderId="ContentPlaceHolderl"
Runat="server">

<b>Enter your name:</b><br />

<asp:Textbox ID="TextBoxl" Runat="server" />
<br />

<br />

<asp:Button ID="Buttonl" Runat="server" Text="Submit"

258



Working with Master Pages

OnClick="Buttonl_ Click" /><br />

<br />

<asp:Label ID="Labell" Runat="server" />
</asp:Content>

<asp:Content ID="Content2" ContentPlaceHolderId="ContentPlaceHolder2"
Runat="server">

<asp:Image ID="Imagel" Runat="server" ImageUrl="wrox.gif" />
</asp:content>

C#
<%@ Page Language="C#" MasterPageFile="~/Wrox.master" %>

<script runat="server" language="c#">
protected void Buttonl_Click(object sender, System.EventArgs e)
{
Labell.Text = "<b>Hello " + TextBoxl.Text + "!</b>";
}

</script>

Right away you see some differences. As stated before, this page has no <form id="forml"
runat="server"> tag nor any opening or closing HTML tags. These tags are not included because they
are located in the master page. Also notice a new server control —the <asp:Content> server control.

<asp:Content ID="Contentl" ContentPlaceHolderId="ContentPlaceHolderl"
Runat="server">

</asp:Content>

The <asp:Content> server control is a defined content area that maps to a specific
<asp:ContentPlaceHolder> server control on the master page. In this example, you can see that the
<asp:Content> server control maps itself to the <asp:ContentPlaceHolder> server control in the
master page that has the ID of ContentPlaceHolderl. Within the content page, you don’t have to
worry about specifying the location of the content because this is already defined within the master
page. Therefore, your only concern is to place the appropriate content within the provided content sec-
tions, allowing the master page to do most of the work for you.

Just as when you work with any typical . aspx page, you can create any event handlers for your content
page. In this case, you are using just a single event handler — the button-click when the end user sub-
mits the form. The created . aspx page that includes the master page and content page material is shown
in Figure 8-8.

Mixing Page Types and Languages

One interesting point: When you use master pages, you are not tying yourself to a specific coding model
(inline or code-behind), nor are you tying yourself to the use of a specific language. You can feel free to
mix these elements within your application knowing that they all work well.

259



Chapter 8

] My Company Master Page - Microsoft Internet Explorer =)alEd
Eile Edit View Fawvorites Tools Help ?,.
@Back - ) B [ | P search drFavorites @Meda £ 2 B L E
Address |Q http:fflocalhost: 9223 MasterPages/Default, aspix M Go Links **

My Company Home Page

Enter your name:
Bill Evjen

ay

Hello Bill Evjen!
|Copyright 2004 - My Cornpany

] Done % Local intranet

Figure 8-8

You could use the master page created earlier, knowing that it was created using the inline-coding
model, and then build your content pages using the code-behind model. Listing 8-4 shows a content
page created using a Web Form that uses the code-behind option.

Listing 8-4: A content page that uses that code-behind model

.aspx (VB)
<%@ Page Language="VB" MasterPageFile="~/Wrox.master" AutoEventWireup="false"
CodeFile="MyContentPage.aspx.vb" Inherits="MyContentPage" %>

<asp:Content ID="Contentl" ContentPlaceHolderId="ContentPlaceHolderl"
Runat="server">

<b>Enter your name:</b><br />

<asp:Textbox ID="TextBoxl" Runat="server" />

<br />

<br />

<asp:Button ID="Buttonl" Runat="server" Text="Submit"

OnClick="Buttonl_ Click" /><br />

<br />

<asp:Label ID="Labell" Runat="server" />
</asp:Content>

<asp:Content ID="Content2" ContentPlaceHolderId="ContentPlaceHolder2"

Runat="server">
<asp:Image ID="Imagel" Runat="server" ImageUrl="ineta.JPG" />

</asp:Content>

260



Working with Master Pages

VB Code-Behind
Partial Class MyContentPage
Inherits System.Web.UI.Page

Protected Sub Buttonl_ Click(ByVal sender As Object, ByVal e As System.EventArgs)
Labell.Text = "<b>Hello " & TextBoxl.Text & "!</b>"
End Sub

End Class

C# Code-Behind
public partial class MyContentPage : System.Web.UI.Page

{
protected void Buttonl_Click (object sender, System.EventArgs e)

{
Labell.Text = "<b>Hello " + TextBoxl.Text + "!</b>";

}

Even though the master page is using the inline-coding model, you can easily create content pages (such
as the page shown in Listing 8-4) that use the code-behind model. The pages will still work perfectly.

Not only can you mix the coding models when using master pages, you can also mix the programming
languages you use for the master or content pages. Just because you build a master page in C# doesn’t
mean that you are required to use C# for all the content pages that use this master page. You can also
build content pages in Visual Basic. For a good example, create a master page in C# that uses the
Page_Load event handler and then create a content page in Visual Basic. Once it’s complete, run the
page. It works perfectly well. This means that even though you might have a master page in one of the
available .NET languages, the programming teams that build applications from the master page can use
whatever .NET language they want. You have to love the openness that the .NET Framework offers!

Specifying Which Master Page to Use

You just observed that it is pretty easy to specify at page level which master page to use. In the Page
directive of the content page, you simply use the MasterPageFile attribute:

<%@ Page Language="VB" MasterPageFile="~/Wrox.master" %>
Besides specifying the master page that you want to use at the page level, you have a second way to

specify which master page you want to use in the Web . config file of the application. This is shown in
Listing 8-5.

Listing 8-5: Specifying the master page in the Web.config file

<configuration>
<system.web>
<pages masterPageFile="~/Wrox.master" />
</system.web>
</configuration>

261



Chapter 8

Specifying the master page in the Web. config file causes every single content page you create in

the application to inherit from the specified master page. If you declare your master page in the
Web.config file, you can create any number of content pages that use this master page. Once specified
in this manner, the content page’s Page directive can then be constructed in the following manner:

<%@ Page Language="VB" %>

You can easily override the application-wide master page specification by simply declaring a different
master page within your content page:

<%@ Page Language="VB" MasterPageFile="~/MyOtherCompany.master" %>

By specifying the master page in the Web. config, you are really not saying that you want all the . aspx
pages to use this master page. If you create a normal Web Form and run it, ASP.NET will know that the
page is not a content page and will run the page as a normal . aspx page.

If you want to apply the master page template to only a specific subset of pages (such as pages con-
tained within a specific folder of your application), you can use the <location> element within the
Web.config file, as illustrated in Listing 8-6.

Listing 8-6: Specifying the master page for a specific folder in the Web.config file
<configuration>

<location path="AdministrationArea">
<system.web>
<pages masterPageFile="~/WroxAdmin.master" />
</system.web>
</location>

</configuration>

With the addition of this <location> section in the Web. config file, you have now specified that a spe-
cific folder (AdministrationArea) will use a different master file template. This is done using the path
attribute of the <location> element. The value of the path attribute can be a folder name as shown, or
it can even be a specific page —such as AdminPage . aspx.

Working with the Page Title

When you create content pages in your application, by default all the content pages automatically use
the title that is declared in the master page. For instance, you have primarily been using a master page
with the title My Company Master Page. Every content page that is created using this particular master
page also uses the same My Company Master Page title. You can avoid this by specifying the page’s title
using the Title attribute in the @Page directive in the content page. You can also work with the page
title programmatically in your content pages. To accomplish this, in the code of the content page, you
use the Master object. The Master object conveniently has a property called Title. The value of this
property is the page title that is used for the content page. You code it as shown in Listing 8-7.

262



Working with Master Pages

Listing 8-7: Coding a custom page title for the content page

VB
<%@ Page Language="VB" MasterPageFile="~/Wrox.master" %>

<script runat="server" language="vb">
Protected Sub Page_LoadComplete (ByVal sender As Object, _
ByVal e As System.EventArgs)

Master.Page.Title = "This page was generated on: " & _
DateTime.Now.ToString ()
End Sub
</script>

C#
<%@ Page Language="C#" MasterPageFile="~/wrox.master" %>

<script runat="server">
protected void Page_LoadComplete (object sender, EventArgs e)
{
Master.Page.Title = "This page was generated on: " +
DateTime.Now.ToString () ;
}

</script>

Working with Controls and Properties
from the Master Page

When working with master pages from a content page, you actually have good access to the controls
and the properties that the master page exposes. The master page, when inherited by the content page,
exposes a property called Master. You use this property to get at control values or custom properties
that are contained in the master page itself.

To see an example of this, create a GUID (unique identifier) in the master page that you can retrieve on
the content page that is using the master. For this example, use the master page that was created in
Listing 8-1, but add a Label server control and the Page_ILoad event (see Listing 8-8).

Listing 8-8: A master page that creates a GUID on the first request

VB
<%@ Master Language="VB" %>

<script runat="server">
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
If Not Page.IsPostBack Then
Labell.Text = System.Guid.NewGuid () .ToString/()
End If
End Sub
</script>

<html xmlns="http://www.w3.0rg/1999/xhtml" >

(continued)

263



Chapter 8

Listing 8-8: (continued)

<head runat="server">
<title>My Company Master Page</title>
</head>
<body>
<form id="forml" runat="server">
<table cellpadding="3" border="1">
<tr bgcolor="silver">
<td colspan="2">
<hl>My Company Home Page</hl>
<b>User's GUID:&nbsp; &nbsp;
<asp:Label ID="Labell" Runat="server" /></b>
</td>
</tr>
<tr>
<td>
<asp:ContentPlaceHolder ID="ContentPlaceHolderl"
Runat="server">
</asp:ContentPlaceHolder>
</td>
<td>
<asp:ContentPlaceHolder ID="ContentPlaceHolder2"
Runat="server">
</asp:ContentPlaceHolder>
</td>
</tr>
<tr>
<td colspan="2">
Copyright 2006 - My Company
</td>
</tr>
</table>
</form>
</body>
</html>

C#
protected void Page_Load(object sender, EventArgs e)
{
if (!Page.IsPostBack)
{
Labell.Text = System.Guid.NewGuid () .ToString() ;

Now you have a Label control on the master page that you can access from the content page. You have a
couple of ways to accomplish this task. The first is to use the FindControl method that the master page
exposes. This approach is shown in Listing 8-9.

264



Working with Master Pages

Listing 8-9: Getting at the Label’s Text value in the content page

VB
<%@ Page Language="VB" MasterPageFile="~/Wrox.master" %>

<script runat="server" language="vb">
Protected Sub Page_LoadComplete (ByVal sender As Object,
ByVal e As System.EventArgs)

Labell.Text = CType (Master.FindControl ("Labell"), Label) .Text
End Sub

Protected Sub Buttonl_Click(ByVal sender As Object,
ByVal e As System.EventArgs)

Label2.Text = "<b>Hello " & TextBoxl.Text & "!</b>"
End Sub
</script>

<asp:Content ID="Contentl" ContentPlaceHolderId="ContentPlaceHolderl"
Runat="server">
<b>Your GUID number from the master page is:<br />
<asp:Label ID="Labell" Runat="server" /></b><p>
<b>Enter your name:</b><br />
<asp:Textbox ID="TextBoxl" Runat="server" />
<br />
<br />
<asp:Button ID="Buttonl" Runat="server" Text="Submit"
OnClick="Buttonl_ Click" /><br />
<br />
<asp:Label ID="Label2" Runat="server" />
</asp:content>

<asp:Content ID="Content2" ContentPlaceHolderId="ContentPlaceHolder2"
Runat="server">

<asp:Image ID="Imagel" Runat="server" ImageUrl="Wrox.gif" />
</asp:Content>

C#
<%@ Page Language="C#" MasterPageFile="~/wrox.master" %>

<script runat="server">

protected void Page_LoadComplete (object sender, EventArgs e)
{
Labell.Text = (Master.FindControl ("Labell") as Label) .Text;

protected void Buttonl_Click(object sender, EventArgs e)
{
Label2.Text = "<b>Hello " + TextBoxl.Text + "!</b>";
}
</script>

265



Chapter 8

In this example, the master page in Listing 8-8 first creates a GUID that it stores as a text value in a Label
server control on the master page itself. The ID of this Label control is Label1l. The master page gener-
ates this GUID only on the first request for this particular content page. From here, you then populate
one of the content page’s controls with this value.

The interesting thing about the content page is that you put code in the Page_LoadComplete event han-
dler so that you can get at the GUID value that is on the master page. This new event in ASP.NET 2.0
fires immediately after the Page_Load event fires. Event ordering is covered later, but the Page_Load
event in the content page always fires before the Page_Load event in the master page. In order to get at
the newly created GUID (if it is created in the master page’s Page_Load event), you have to get the
GUID in an event that comes after the Page_Load event— and that is where the Page_lLoadComplete
comes into play. So within the content page’s Page_LoadComplete event, you populate a Label server
control within the content page itself. Note that the Label control in the content page has the same ID as
the Label control in the master page, but this doesn’t make a difference. You can differentiate between
them with the use of the Master property.

Not only can you get at the server controls that are in the master page in this way, you can get at any
custom properties that the master page might expose as well. Look at the master page shown in Listing
8-10; it uses a custom property for the <h1> section of the page.

Listing 8-10: A master page that exposes a custom property

VB
<%@ Master Language="VB" %>

<script runat="server">
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
If Not Page.IsPostBack Then
Labell.Text = Guid.NewGuid() .ToString/()
End If
End Sub

Dim m_PageHeadingTitle As String = "My Company"

Public Property PageHeadingTitle() As String
Get
Return m_PageHeadingTitle
End Get
Set (ByVal Value As String)
m_PageHeadingTitle = Value
End Set
End Property
</script>

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head id="Headl" runat="server">
<title>My Company Master Page</title>
</head>
<body>
<form id="Forml" runat="server">
<table cellpadding="3" border="1">
<tr bgcolor="silver">
<td colspan="2">

266



Working with Master Pages

<h1l><%= PageHeadingTitle() %></hl>
<b>User's GUID:&nbsp;&nbsp;
<asp:Label ID="Labell" Runat="server" /></b>
</td>
</tr>
<tr>
<td>
<asp:ContentPlaceHolder ID="ContentPlaceHolderl"
Runat="server">
</asp:ContentPlaceHolder>
</td>
<td>
<asp:ContentPlaceHolder ID="ContentPlaceHolder2"
Runat="server">
</asp:ContentPlaceHolder>
</td>
</tr>
<tr>
<td colspan="2">
Copyright 2004 - My Company
</td>
</tr>
</table>
</form>
</body>
</html>

C#
<%@ Master Language="C#" %>

<script runat="server">
protected void Page_Load(object sender, EventArgs e)
{
if (!Page.IsPostBack)
{
Labell.Text = System.Guid.NewGuid() .ToString() ;

string m_PageHeadingTitle = "My Company";

public string PageHeadingTitle
{

get

{

return m_PageHeadingTitle;

}
set
{
m_PageHeadingTitle = value;
}
}
</script>

267



Chapter 8

In this master page example, the master page is exposing the property you created called
PageHeadingTitle (). A default value of "My Company" is assigned to this property. You then place it
within the HTML of the master page file between some <h1> elements. This makes the default value
become the heading used on the page within the master page template. Although the master page
already has a value it uses for the heading, any content page that is using this master page can override
the <h1> title heading. The process is shown in Listing 8-11.

Listing 8-11: A content page that overrides the property from the master page

VB
<%@ Page Language="VB" MasterPageFile="~/Wrox.master" $%>
<%@ MasterType VirtualPath="~/Wrox.master" %>

<script runat="server" language="vb">
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Master.PageHeadingTitle = "My Company - Division X"
End Sub
</script>

C#
<%@ Page Language="C#" MasterPageFile="~/Wrox.master" %>
<%@ MasterType VirtualPath="~/Wrox.master" %>

<script runat="server">
protected void Page_Load(object sender, EventArgs e)
{
Master.PageHeadingTitle = "My Company - Division X";
}
</script>

From the content page, you can assign a value to the property that is exposed from the master page by
the use of the Master property. As you can see, this is quite simple to do. Remember that not only can
you get at any public properties that the master page might expose, but you can also retrieve any meth-
ods that the master page contains as well.

Earlier, we showed you how to get at the server controls that are on the master page by using the
FindControl method. The FindControl method works fine, but it is a late-bound approach, and as
such, the method call may fail if the control was removed from markup. Use defensive coding practices
and always check for null when returning objects from FindControl. Using the mechanics just illus-
trated (with the use of public properties shown in Listing 8-10), you have another approach to expose
any server controls on the master page. You may find this approach to be more effective.

To do this, you simply expose the server control as a public property as shown in Listing 8-12.

Listing 8-12: Exposing a server control from a master page as a public property

VB
<%@ Master Language="VB" %>

<script runat="server" language="vb">

Public Property MasterPageLabell() As Label
Get

268



Working with Master Pages

Return Labell
End Get
Set (ByVal Value As Label)
Labell = Value
End Set
End Property
</script>

C#
<%@ Master Language="VB" %>

<script runat="server" language="C#">
public Label MasterPageLabel
{
get
{

return Labell;

Labell = value;

}

</script>

In this case, a public property called MasterPageLabell returns an instance of the Label control that
uses the ID of Labell. You can now create an instance of the MasterPageLabell property on the con-
tent page and override any of the attributes of the Label server control. So if you want to increase the
size of the GUID that the master page creates and displays in the Labell server control, you can simply
override the Font . Size attribute of the Label control as shown in Listing 8-13.

Listing 8-13: Overriding an attribute from the Label control that is on the master page

VB
<%@ Page Language="VB" MasterPageFile="~/Wrox.master" %>
<%@ MasterType VirtualPath="~/Wrox.master" %>

<script runat="server" language="vb">
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Master.MasterPageLabell.Font.Size = 25
End Sub
</script>

C#
<%@ Page Language="C#" MasterPageFile="~/Wrox.master" %>
<%@ MasterType VirtualPath="~/Wrox.master" %>

<script runat="server" language="C#">
protected void Page_Load(object sender, EventArgs e)
{
Master.MasterPageLabell.Font.Size = 25;
}

</script>

269



Chapter 8

This approach may be the most effective way to get at any server controls that the master page exposes
to the content pages.

Specifying Default Content
in the Master Page

As you have seen, the master page enables you to specify content areas that the content page can use.
Master pages can consist of just one content area, or they can be made up of multiple content areas. The
nice thing about content areas is that when you create a master page, you can specify default content for
the content area. This default content can then be left in place and utilized by the content page if you
choose not to override it. Listing 8-14 shows a master page that specifies some default content within a
content area.

Listing 8-14: Specifying default content in the master page
<%@ Master Language="VB" %>

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>My Company</title>
</head>
<body>
<form id="forml" runat="server">
<asp:ContentPlaceHolder ID="ContentPlaceHolderl" Runat="server">
Here is some default content
</asp:ContentPlaceHolder><p>
<asp:ContentPlaceHolder ID="ContentPlaceHolder2" Runat="server">
Here is some more default content
</asp:ContentPlaceHolder></p>
</form>
</body>
</html>

To place default content within one of the content areas of the master page, you simply put it in the
ContentPlaceHolder server control on the master page itself. Any content page that inherits this master
page also inherits the default content. Listing 8-15 shows a content page that overrides just one of the
content areas from this master page.

Listing 8-15: Overriding some default content in the content page
<%@ Page Language="VB" MasterPageFile="~/MasterPage.master" %>
<asp:Content ID="Content2" ContentPlaceHolderId="ContentPlaceHolder2"
Runat="server">

This is new content
</asp:Content>

This code creates a page with one content area that shows content coming from the master page itself, in
addition to other content that comes from the content page (see Figure 8-9).

270



Working with Master Pages

&1 My Company - Microsoft Internet Explorer

SE%)

File Edit
& Back

View Favorites Tools Help

) ENE .i’b O Search <7 Favarites @ Media 42 ﬁﬂv & 5 L) i

»

Address @ http:fflocalhost: 9223 /MasterPagesiDef ault, aspx

Links >

ODE

Here is some default content

Ths 15 new content

@ Done

'Q Local inkranst

Figure 89

The other interesting point when you work with content areas in the design mode of Visual Studio 2005
is that the smart tag allows you to work easily with the default content (shown in Figure 8-10).

When you first start working with the content page, the option in the smart tag is to create new content.
This option enables you to override the master page content and insert your own defined content. After
you have placed some custom content inside the content area, the smart tag shows a different option —
Default to Master’s Content. This option enables you to return the default content that the master page
exposes to the content area and to erase whatever content you have already placed in the content area—
thereby simply returning to the default content.

@ Wrox - Visual Web Developer 2005 Express Edition
Fle Edit Wew Webgite Build Debug Data Format Layout Tooks Window Community Hep

oEg|

s @b s s S b 8 | custmerRendy

'Il 'll B L U |&

Toolbax

= Standard
I Pointer

A Label

sl TextBox
Button
LinkButton
(&) tmageButton
A HyperLink
=8 DropDowmlist
=] ListBox
ChedkBox
= CheckBontist
(%) RadioButton

3= ist

- 1|
(]

Default.aspx

- X

[Here is some default content

Content - Content2 (Custom)

Solution Explorer

- [] masterPage. master
iy Web.Config

', &) Solution Ex... 5 Database ...

ﬁlmag!

|This is new content

Properties >« 1 X
il ImageMap DOCUMENT =
1 Table gals) =
= Bulleteduist El ASP.NET ~
“ HiddenField Culture ¥
B Literal Debug 3
7] calendar EnableSessions 0|
5 AdRotator Explit
t 1
‘_] FileUpload MasterPageFie ~MasterPage.m:
W Wizard Strict
= ¥ml StyleSheetTher
5] Multiview Theme
£ paned B— ™
] PlaceHolder ALink
T View Color of &l active links in the document.
32| Substitution v||| 3 Design | [ source q 3
Ready

Figure 8-10

271



Chapter 8

Programmatically Assigning
the Master Page

From any content page, you can easily assign a master page programmatically. You assign the master
page to the content page through the use of the Page . MasterpPageFile property. This can be used
regardless of whether another master page is already assigned in the @page directive.

To accomplish this, you use this property through the Page_PreInit event. The Page_PreInit eventis
the earliest point in which you can access the Page lifecycle. For this reason, this is where you need to
assign any master page that is used by any content pages. The Page_PreInit is an important event to
make note of when you are working with master pages, as this is the only point where you can affect
both the master and content page before they are combined into a single instance. Listing 8-16 illustrates
how to assign the master page programmatically from the content page.

Listing 8-16: Using Page_Prelnit to assign the master page programmatically

VB
<%@ Page Language="VB" %>

<script runat="server">
Protected Sub Page_PreInit (ByVal sender As Object, ByVal e As System.EventArgs)
Page.MasterPageFile = "~/MyMasterPage.master"
End Sub
</script>

C#
<%@ Page Language="C#" %>

<script runat="server">
protected void Page_PreInit (object sender, EventArgs e)

{

Page.MasterPageFile = "~/MyMasterPage.master";

}

</script>

In this case, when the page is dynamically being generated, the master page is assigned to the content
page in the beginning of the page construction process. It is important to note that the content page must
have the expected Content controls; otherwise an error is thrown.

Nesting Master Pages

I'hope you see the power that master pages provide to help you create templated Web applications. So
far, you have been creating a single master page that the content page can use. Most companies and
organizations, however, are not just two layers. Many divisions and groups exist within the organization
that might want to use variations of the master by, in effect, having a master page within a master page.
With ASP.NET 2.0, this is quite possible.

272



Working with Master Pages

For example, imagine that Reuters is creating a master page to be used throughout the entire company
intranet. Not only does the Reuters enterprise want to implement this master page company-wide, but
various divisions within Reuters also want to provide templates for the subsections of the intranet
directly under their control. Reuters Europe and Reuters America, for example, each wants its own

unique master page, as illustrated in Figure 8-11.

Master Page
Reuters.master

Reuters America
ReutersAmerica.master

RA

Reuters Europe
ReutersEurope.master

RE

RAC1 RAC2

REC1 REC2

Content Page Content Page
Default.aspx Default2.aspx
Figure 8-11

Content Page Content Page
Default.aspx Default2.aspx

273



Chapter 8

To do this, the creators of the Reuters Europe and Reuters America master pages simply create a master
page that inherits from the global master page. All the files are shown here, starting with Listing 8-17.

Listing 8-17: The main master page

ReutersMain.master
<%@ Master Language="VB" %>

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>Reuters</title>
</head>
<body>
<form id="forml" runat="server">
<p><asp:Label ID="Labell" Runat="server" BackColor="LightGray"
BorderColor="Black" BorderWidth="1px" BorderStyle="Solid"
Font-Size="XX-Large">Reuters</asp:Label></p>
<asp:ContentPlaceHolder ID="ContentPlaceHolderl" Runat="server">
</asp:ContentPlaceHolder>
</form>
</body>
</html>

This is a simple master page, but excellent for showing you how this nesting capability works. The main
master page is the master page used globally in the company. It has the ContentPlaceHolder server con-

trol with the ID of ContentPlaceHolderl.

Listing 8-18 illustrates how you can work with this main master from a sub-master file.

Listing 8-18: The sub-master page

ReutersEurope.master
<%@ Master MasterPageFile="~/ReutersMain.master" %>

<asp:Content ID="Contentl" ContentPlaceHolderId="ContentPlaceHolderl"
Runat="server">
<asp:Label ID="Labell" Runat="server" BackColor="#EOEOEO" BorderColor="Black"
BorderStyle="Dotted" BorderWidth="2px" Font-Size="Large">
Reuters Europe</asp:Label><br /><hr />

<asp:ContentPlaceHolder ID="ContentPlaceHolder2" Runat="server">
</asp:ContentPlaceHolder>
</asp:Content>

When creating the submaster page, notice that Visual Studio 2005 isn’t as friendly when it creates this file

for you. This is because Visual Studio 2005 is not expecting the creation of a submaster page. Therefore, to
create your submaster page, first create a normal master page and remove all the content in the file except
for the directive line. Then you create a Content server control.

The objects that you place in the content area defined with this Content control are actually placed in the
defined content area within the master page. You can see this by using the ContentPlaceHolderId

274



Working with Master Pages

attribute of the Content control. This attribute is tying this content area to the content area
ContentPlaceHolderl, which is defined in the master page.

Within this submaster page, you can also now use as many ContentPlaceHolder server controls as you
want. Any content page that uses this master can use these controls. Listing 8-19 shows a content page
that uses this submaster page, ReutersEurope.master.

Listing 8-19: The content page

Default.aspx
<%@ Page Language="VB" MasterPageFile="~/ReutersEurope.master" %>

<asp:Content ID="Contentl" ContentPlaceHolderId="ContentPlaceHolder2"
Runat="server">

Hello World
</asp:Content>

As you can see, in this content page the value of the MasterPageFile attribute in the Page directive is
the sub-master page that you created. Inheriting the ReutersEurope master page actually combines
both master pages (ReutersMain.master and ReutersEurope.master) into a single master page. The
Content control in this content page points to the content area defined in the submaster page as well.
You can see this with the use of the ContentPlaceHolderId attribute. In the end, you get a very non-
artistic page, as shown in Figure 8-12.

&1 Untitled Page - Microsoft Internet Explorer =@
File Edit View Favorites Tools Help ?,.
QobBak + & - [¥ 2] | P search FrFavoites @Meda & | D> i B L @
address |5§| http:fflacalhast: 9223 MasterPages Default, asps: M Go | Links

Hello World

&] Done %J | ocal intranet

Figure 8-12

Creating a content page that uses a submaster page works pretty well. One negative point is that Visual
Studio 2005 has issues with this construct, and you cannot work in the design mode when creating your
content page.

275



Chapter 8

Container-Specific Master Pages

In many cases, developers are building applications that will be viewed in a multitude of different con-
tainers. Some viewers may view the application in Microsoft Internet Explorer and some might view it
using Opera or Netscape Navigator. And still other viewers may call up the application on a Pocket PC
or Nokia cell phone.

For this reason, ASPNET 2.0 allows you to use multiple master pages within your content page.
Depending on the viewing container used by the end user, the ASP.NET engine pulls the appropriate
master file. Therefore, you want to build container-specific master pages to provide your end users with
the best possible viewing experience by taking advantage of the features that a specific container pro-
vides. The capability to use multiple master pages is demonstrated in Listing 8-20.

Listing 8-20: A content page that can work with more than one master page

<%@ Page Language="VB" MasterPageFile="~/Wrox.master"
Mozilla:MasterPageFile="~/WroxMozilla.master"
Opera:MasterPageFile="~/WroxOpera.master" %>

<asp:Content ID="Contentl" ContentPlaceHolderId="ContentPlaceHolderl"
Runat="server">

Hello World
</asp:Content>

As you can see from this example content page, it can work with three different master page files. The
first one uses the attribute MasterpageFile. This is the default setting used for any page that doesn’t fit
the criteria for any of the other options. This means that if the requestor is not a Mozilla or Opera
browser, the default master page, Wrox.master, is used. However, if the requestor is an Opera browser,
WroxOpera.master is used instead. This is illustrated in Figure 8-13.

4 My Company Master Page - Opera (S]]
(3 File Edit View Navigation Bookmarks Mail Window Help -8 x

= . O BUY OPERA TODAY! e

And make this banner go away. software

£3 Cpera @ Opera Community [§ Operaail 5 S dy Fri mpanson se E \mazon.com search

B My Cor

as.

O hupifocalhost:37128MasterPagesDefault aspx vw & search - lQ,. 100% =

My Company Home Page - Opera Version
Hello Werld
Copynght 2004 - My Compary

Figure 8-13

You can find a list of available browsers on the production server where the application will be hosted at
C:\Windows\Microsoft .NET\Framework\v2 . 0xxxxx\CONFIG\Browsers. Some of the available
options include the following:

276



Working with Master Pages

o 00000 00 0O

avantgo o MME
cassio O  mozilla
Default d  netscape
docomo O nokia
ericsson 4  openwave
EZWap 0 opera
gateway Q  palm
generic 0  panasonic
goAmerica a  pie

ie 0 webtv
Jataayu d  winwap
jphone 0  xiino
legend

Of course, you can also add any additional . browser files that you deem necessary.

Event Ordering

When you work with master pages and content pages, both can use the same events (such as Page_Load).
Be sure you know which events come before others. You are bringing two classes together to create a sin-
gle page class, and a specific order is required. When an end user requests a content page in the browser,
the event ordering is the following:

a

Master page child controls initialization: All server controls contained within the master page
are first initialized.

Content page child controls initialization: All server controls contained in the content page are
initialized.

Master page initialization: The master page itself is initialized.

Content page initialization: The content page is initialized.

Content page load: The content page is loaded (this is the Page_Load event followed by the
Page_LoadComplete event).

Master page load: The master page is loaded (this is also the Page_Load event followed by the
Page_LoadComplete event).

Master page child controls load: The server controls on the master page are loaded onto
the page.

Content page child controls load: The server controls on the content page are loaded onto
the page.

277



Chapter 8

Pay attention to this event ordering when building your applications. If you want to use server control
values that are contained on the master page within a specific content page, for example, you can’t
retrieve the values of these server controls from within the content page’s Page_Load event. This is
because this event is triggered before the master page’s Page_Load event. This problem prompted the
creation of the new Page_LoadComplete event. The content page’s Page_LoadComplete event follows
the master page’s Page_Load event. You can, therefore, use this ordering to get at values from the mas-
ter page even though it isn’t populated when the content page’s Page_Load event is triggered.

Caching with Master Pages

When working with typical . aspx pages, you can apply output caching to the page by using the follow-
ing construct (or variation thereof):

<%@ OutputCache Duration="10" Varybyparam="None" %>

This caches the page in the server’s memory for 10 seconds. Many developers use output caching to
increase the performance of their ASP.NET pages. It also makes a lot of sense for use on pages with data
that doesn’t become stale too quickly.

How do you go about applying output caching to ASPNET pages when working with master pages?
First, you cannot apply caching to just the master page. You cannot put the OutputCache directive on
the master page itself. If you do so, on the page’s second retrieval, you get an error because the applica-
tion cannot find the cached page.

To work with output caching when using a master page, stick the outputcCache directive in the content
page. This caches both the contents of the content page as well as the contents of the master page
(remember, it is just a single page at this point). The outputCache directive placed in the master page
does not cause the master page to produce an error, but it won’t be cached. This directive works in the
content page only.

Summary

When you create applications that use a common header, footer, or navigation section on pretty much
every page of the application, master pages are a great solution. Master pages are easy to implement and
enable you to make changes to each and every page of your application by changing a single file.
Imagine how much easier this makes managing large applications that contain thousands of pages.

This chapter described master pages in ASP.NET 2.0 and explained how you build and use master pages
within your Web applications. In addition to the basics, the chapter covered master page event ordering,
caching, and specific master pages for specific containers. In the end, when you are working with tem-
plated applications, master pages should be your first option — the power of this approach is immense.

278



Themes and Skins

When you build a Web application, it usually has a similar look-and-feel across all its pages.
Not too many applications are designed with each page dramatically different from the next.
Generally, for your applications, you use similar fonts, colors, and server control styles across
all the pages.

You can apply these common styles individually to each and every server control or object on each
page, or you can use a new capability provided by ASPNET 2.0 to centrally specify these styles.
All pages or parts of pages in the application can then access them.

Themes are the text-based style definitions in ASP.NET 2.0 that are the focus of this chapter.

Using ASP.NET 2.0 Themes

Themes are similar to Cascading Style Sheets (CSS) in that they enable you to define visual styles
for your Web pages. Themes go further than CSS, however, in that they allow you to apply styles,
graphics, and even CSS files themselves to the pages of your applications. You can apply ASP.NET
themes at the application, page, or server control level.

Applying a Theme to a Single ASPNET Page

In order to see how to use one of these themes, create a basic page, which includes some text, a
text box, a button, and a calendar. This is shown in Listing 9-1.




Chapter 9

Listing 9-1: An ASP.NET page that does not use themes
<%@ Page Language="VB" %>

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>INETA</title>
</head>
<body>
<form id="forml" runat="server">
<hl>International .NET Association
<asp:Textbox ID="TextBoxl" Runat="server"
<br />
<asp:Calendar ID="Calendarl" Runat="server"

</form>
</body>
</html>

(INETA)</hl><br />
/><br />

/><br />
<asp:Button ID="Buttonl" Runat="server" Text="Button"

/>

This simple page shows some default server controls that appear just as you would expect, but that you
can change with one of these new ASP.NET themes. When this theme-less page is called in the browser,

it should look like Figure 9-1.

&7 INETA - Microsoft Internet Explorer E0E
File Edit View Favorites Jools Help ;',"
Ou- O BB G P frroe @3- 5 - B
Agdress I.aj hittp: {localhost: 3394 \Wrox Default, aspx T Go i
International .NET Association (INETA)
= February 2006 =

Sun Mon Tue Wed Thu Fr Sat

9 03 31 1 2 3 4

5 6 1 08 9 0 1

12 13 14 15 16 17 18

19020 21 2 23 1 25

6 27 28 1 12 3 4

5 06 1 8 9 101
& % Local intranst
Figure 9-1

You can instantly change the appearance of this page without changing the style of each server control
on the page. From within the page directive, you simply apply an ASP.NET theme that you have either

built (shown later in this chapter) or downloaded from the Internet:

<%@ Page Language="VB" Theme="SmokeAndGlass" %>

280



Themes and Skins

Adding the Theme attribute to the Page directive changes the appearance of everything on the page that
is defined in an example SmokeAndGlass theme file. Using this theme, when I invoked the page in the

browser, I got the result shown in Figure 9-2.

&7 INETA - Microsoft Internet Explorer (S]]
File Edit View Favorites Tools Help l'a'
OQus - © [ B 6 Lo rrown @3- 5 - JE B

akess @] http:/ocalhost: 394 rox/oeFault 2spx B> EET

International .NET Association (INETA)
|

= February 2006 >

Sun Mon Tue Wed Thu Fri Sat
i 2 3 3

2 & z i g 10 u

1z 13 14 15 16 17 18

19 20 21 22 23 24 iS5

26 27 28

Button
2] & Local intranet
Figure 9-2

From here, you can see that everything —including the font, font color, text box, button, and more —has
changed appearance. If you have multiple pages, you may find that it’s nice not to have to think about
applying styles to everything you do as you build because the styles are already centrally defined for you.

Applying a Theme to an Entire Application

In addition to applying an ASP.NET 2.0 theme to your ASP.NET pages using the Theme attribute within
the Page directive, you can also apply it at an application level from the Web. config file. This is illus-

trated in Listing 9-2.

Listing 9-2: Applying a theme application-wide from the Web.config file
<?xml version="1.0" encoding="UTF-8" ?>

<configuration>

<gsystem.web>
<pages theme="SmokeAndGlass" />

</system.web>
</configuration>

If you specify the theme in the Web. config file, you don’t need to define the theme again in the page
directive of your ASP.NET pages. This theme is applied automatically to each and every page within

your application.

281



Chapter 9

Removing Themes from Server Controls

Whether themes are set at the application level or on a page, at times you want an alternative to the
theme that has been defined. For example, change the text box server control that you have been work-
ing with (from Listing 9-1) by making its background black and using white text:

<asp:Textbox ID="TextBoxl" Runat="server"
BackColor="#000000" ForeColor="#ffffff" />

The black background color and the color of the text in the text box are specified directly in the control
itself with the use of the BackColor and ForeColor attributes. If you have applied a theme to the page
where this text box control is located, however, you won't see this black background or white text
because these changes are overridden by the theme itself.

To apply a theme to your ASPNET page but not to this text box control, you simply use the
EnableTheming property of the text box server control:

<asp:Textbox ID="TextBoxl" Runat="server"
BackColor="#000000" ForeColor="#ffffff" EnableTheming="false" />

If you apply this property to the text box server control from Listing 9-1 while the SmokeAndGlass
theme is still applied to the entire page, the theme is applied to every control on the page except the text
box. This result is shown in Figure 9-3.

&7 INETA - Microsoft Internet Explorer E0E
File Edit View Favorites Tools Help U}

Ous- © & B G| Lo e @3- 5 - UK B

agdress | ] http:/flocalhost: 3394 irox [Default. aspx v| s ks ?

International .NET Association (INETA)
I

= February 2006
Sun Mon Tue Wed Thu

-n
3
W
]
= v

i 2 3 4

5 &6 72 8 8 10 1

12 13 14 15 16 17 18

19 20 21 22 23 24 25

26 27 28

Button
2] 4 Local intranst
Figure 9-3

If you want to turn off theming for multiple controls within a page, consider using the Panel control to
encapsulate a collection of controls and then set the EnableTheming attribute of the Panel control to
False. This disables theming for each control contained within the Panel control.

282



Themes and Skins

Removing Themes from Web Pages

Now what if, when you set the theme for an entire application in the Web. config file, you want to
exclude a single ASP.NET page? It is quite possible to remove a theme setting at the page level, just as
it is at the server control level.

The page directive includes an EnableTheming attribute that can be used to remove theming from your
ASP.NET pages. To remove the theme that would be applied by the theme setting in the Web.config,
you simply construct your Page directive in the following manner:

<%@ Page Language="VB" EnableTheming="False" %>

This construct sets the theme to nothing — thereby removing any settings that were specified in the
Web. config file. When this directive is set to False at the page or control level, the Theme directory
is not searched, and no . skin files are applied. When it is set to True at the page or control level, the
Theme directory is searched and . skin files are applied.

If themes are disabled because the EnableTheming attribute is set to False at the page level, you can
still enable theming for specific controls on this page by setting the EnableTheming property for the
control to True and applying a specific theme at the same time, as illustrated here:

<asp:Textbox ID="TextBoxl" Runat="server"
BackColor="#000000" ForeColor="#ffffff" EnableTheming="true" Theme="Summer" />

Understanding the StyleSheetTheme Attribute

The page directive also includes the attribute StylesheetTheme that you can use to apply themes to a
page. So, the big question is: If you have a Theme attribute and a StylesheetTheme attribute for the
Page directive, what is the difference between the two?

<%@ Page Language="VB" StylesheetTheme="Summer" %>

The StylesheetTheme attribute works the same as the Theme attribute in that it can be used to apply a

theme to a page. The difference is that the when attributes are set locally on the page within a particular

control, the attributes are overridden by the theme if you use the Theme attribute. They are kept in place,
however, if you apply the page’s theme using the StylesheetTheme attribute. Suppose you have a text

box control like the following:

<asp:Textbox ID="TextBoxl" Runat="server"
BackColor="#000000" ForeColor="#ffffff" />

In this example, the BackColor and ForeColor settings are overridden by the theme if you have
applied it using the Theme attribute in the Page directive. If, instead, you applied the theme using the
StylesheetTheme attribute in the Page directive, the BackColor and ForeColor settings remain in
place, even if they are explicitly defined in the theme.

283



Chapter 9

Creating Your Own Themes

You will find that creating themes in ASP.NET is a rather simple process —although sometimes it does
require some artistic capabilities. The themes you create can be applied at the application, page, or
server control level. Themes are a great way to easily apply a consistent look-and-feel across your entire
application.

Creating the proper folder structure

In order to create your own themes for an application, you first need to create the proper folder structure in
your application. To do this, right-click your project and add a new folder. Name the folder App_Themes.
You can also create this folder by right-clicking on your project in Visual Studio and selecting Add Folder =
Theme Folder. Notice when you do this that the App_Themes folder does not have the typical folder icon
next to it, but instead has a folder icon that includes a paint brush. This is shown in Figure 9-4.

Solution Explorer > 1 X

_P Gl \WroxThemes)
3 App_Data
=l |_7 App_Themes
A Fall
= Spring
= Summer
= Winter
+ _j Default.aspx

.:j;l Solution Explorer "-"'5 Database Explorer

Figure 9-4

Within the App_Themes folder, you create an additional theme folder for each and every theme that you
might use in your application. For instance, if you are going to have four themes —Summer, Fall, Winter,
and Spring — then you create four folders that are named appropriately.

You might use more than one theme in your application for many reasons —season changes, day/night
changes, different business units, category of user, or even user preferences.

Each theme folder must contain the elements of the theme, which can include the following:

Q  Asingle skin file
Q  CSSfiles
QO  Images

284



Themes and Skins

Creating a Skin

A skin is a definition of styles applied to the server controls in your ASP.NET page. Skins can work in
conjunction with CSS files or images. To create a theme to use in your ASP.NET applications, you use
just a single skin file in the theme folder. The skin file can have any name, but it must have a . skin file
extension.

Even though you have four theme folders in your application, concentrate on the creation of the Summer
theme for the purposes of this chapter. Right-click the Summer folder, select Add New Item, and select
Skin File from the listed options. Name the file Summer.skin. Then complete the skin file as shown in
Listing 9-3.

Listing 9-3: The Summer.skin file

<asp:Label Runat="server" ForeColor="#004000" Font-Names="Verdana"
Font-Size="X-Small" />

<asp:Textbox Runat="server" ForeColor="#004000" Font-Names="Verdana"
Font-Size="X-Small" BorderStyle="Solid" BorderWidth="1px"
BorderColor="#004000" Font-Bold="True" />

<asp:Button Runat="server" ForeColor="#004000" Font-Names="Verdana"
Font-Size="X-Small" BorderStyle="Solid" BorderWidth="1px"
BorderColor="#004000" Font-Bold="True" BackColor="#FFEOCO" />

This is just a sampling of what the Summer . skin file should contain. To use it in a real application, you
should actually make a definition for each and every server control option. In this case, you have a defi-
nition in place for three different types of server controls: Label, TextBox, and Button. After saving the
Summer . skin file in the Summer folder, your file structure should resemble Figure 9-5 from the Solution
Explorer of Visual Studio 2005.

Solution Explorer > 1 X

= | F)e] B @
_P C\.-.\WroxThemes),
3 App_Data
= |5 App_Themes
& Fall
& Spring
= | Summer
5 Summer.skin
& Winter
+ j Default. aspx

.:j Solution Explorer -:-’.5 Database Explorer

Figure 9-5

285



Chapter 9

Just like the regular server control definitions that you put on a typical . aspx page, these control defini-
tions must contain the Runat="server" attribute. If you specify this attribute in the skinned version of
the control, you also include it in the server control you put on an . aspx page that uses this theme. Also
notice is that no ID attribute is specified in the skinned version of the control. If you specify an 1D
attribute here, you get an error when a page tries to use this theme.

As you can see, you supply a lot of different visual definitions to these three controls, and this should
give the page a summery look and feel. An ASPNET page in this project can simply use this custom
theme as was shown earlier in this chapter (see Listing 9-4).

Listing 9-4: Using the Summer theme in an ASP.NET page

286

VB
<%@ Page Language="VB" Theme="Summer" $%>

<script runat="server">
Protected Sub Buttonl_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Labell.Text = "Hello " & Textboxl.Text
End Sub
</script>

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>INETA</title>
</head>
<body>
<form id="forml" runat="server">
<asp:Textbox ID="TextBoxl" Runat="server">
</asp:Textbox>
<br />
<br />
<asp:Button ID="Buttonl" Runat="server" Text="Submit Your Name"
OnClick="Buttonl Click" />
<br />
<br />
<asp:Label ID="Labell" Runat="server" />
</form>
</body>
</html>

C#
<%@ Page Language="C#" Theme="Summer" %>

<script runat="server">
protected void Buttonl_Click(object sender, System.EventArgs e)
{
Labell.Text = "Hello " + TextBoxl.Text.ToString() ;
}
</script>



Themes and Skins

Looking at the server controls on this . aspx page, you can see that no styles are associated with them.
These are just the default server controls that you drag and drop onto the design surface of Visual Studio
2005. There is, however, the style that you defined in the Summer . skin file, as shown in Figure 9-6.

1 IMETA - Microsoft Internet Explorer =@/
Eile Edit Wiew Favorites Tools Help ':,'
Qeack - ) - €] [2) (8| ) search o Favorites @ Media £ - BOD®
Address é:l http: fflocalhost: 43018/ Themes Def ault, aspx M Go Links **
[Bill Evjen |

| Submit Your Name |

Hella Bill Evjen

&] Done %J | ocal intranet

Figure 9-6

Including CSS Files in Your Themes

In addition to the server control definitions that you create from within a . skin file, you can make fur-
ther definitions using Cascading Style Sheets (CSS). You might have noticed, when using a . skin file,
that you could define only the styles associated with server controls and nothing else. But developers
usually use quite a bit more than server controls in their ASPNET pages. For instance, ASP.NET pages
are routinely made up of HTML server controls, raw HTML, or even raw text. At present, the Summer
theme has only a Summer . skin file associated with it. Any other items have no style whatsoever applied
to them.

For a theme that goes beyond the server controls, you must further define the theme style so that HTML
server controls, HTML, and raw text are all changed according to the theme. You achieve this with a CSS
file within your Themes folder.

It is rather easy to create CSS files for your themes when using Visual Studio 2005. Right-click the
Summer theme folder and select Add New Item. In the list of options, select the option Style Sheet and
name it Summer . css. The Summer . css file should be sitting right next to your Summer . skin file. This
creates an empty . css file for your theme. I won’t go into the details of how to make a CSS file using
Visual Studio 2005 and the CSS creation tool because this was covered earlier in the book. The process is
the same as in previous versions of Visual Studio. Just remember that the dialog that comes with Visual
Studio 2005 enables you to completely define your CSS page with no need to actually code anything. A
sample dialog is shown in Figure 9-7.

287



Chapter 9

@ WroxThemes - Microsoft Visual Studio =11
File Edit View Website Buld Debug Tools Stes Window  Community Help
PN R R A= LN =8
\t | CS5 Outiine - C:\Doc... » & X App_Th: St | | App_Themes/S...r/Summer.skin | Default.asox ¥
|| () style Sheet 1 body
2 | @[3 Sements 2t 3
& i3 Classes : P G\..\WroxThemes\
& [ Blement IDs : _Uxﬁ:]
O3 @Bk = & _Themes
= - [ ral
4 Spring
Add Style Rule B[] - Bt Summer
Define a new style e by adding at least one element, dass, or ID'd element. Additional AZ Summer.css
elements, classes, and ID'd elements can be combined to create & hierarchy. 5f Summer. skin
[ winter
(#- =] Default.aspx
(%) Element: Style rule hierarchy:
.Y
() Class name:
al cleme = | ', &3] Solution Explorer /% Database Explorer /
| Properties 1 X
() Element ID: Style rule preview: body [C555electon -
! AN
B Misc
Ste Sty
Misc
(]
< ul [iad
Figure 9-7

To create a comprehensive theme with this dialog, you define each HTML element that might appear in
the ASPNET page. This can be a lot of work, but it’s worth it in the end. For now, create a small CSS file
that changes some of the non-server control items on your ASP.NET page. This CSS file is shown in
Listing 9-5.

Listing 9-5: A CSS file with some definitions

body

{
font-size: x-small;
font-family: Verdana;
color: #004000;

}

A:1link {
color: Blue;
text-decoration: none;

}

A:visited
{
color: Blue;

288



Themes and Skins

text-decoration: none;

}

A:hover {
COLOR: Red;
text-decoration: underline overline;

}

In this CSS file, four things are defined. First, you define text that is found within the <body> tag of the
page (basically all the text). Plenty of text appears in a typical ASP.NET page that is not placed inside an
<asp:Label> or <asp:Literal> tag. Therefore, you define how your text should appear; otherwise,
your Web page may appear quite odd at times. In this case, a definition is in place for the size, the font
family, and the color of the text. You make this definition the same as the one for the <asp:Label>
server control in the Summer . skin file.

The next three definitions in this CSS file revolve around the <a> element (for hyperlinks). One cool
feature that many Web pages use is responsive hyperlinks — or hyperlinks that change when you hover
a mouse over them. The A: 1ink definition defines what a typical link looks like on the page. The
A:visited definition defines the look of the link if the end user has clicked on the link previously
(without this definition, it is typically purple in IE). Then the A:hover definition defines the appearance
of the hyperlink when the end user hovers the mouse over the link. You can see that not only are these
three definitions changing the color of the hyperlink, but they are also changing how the underline is
used. In fact, when the end user hovers the mouse over a hyperlink on a page using this CSS file, an
underline and an overline appear on the link itself.

In CSS files, the order in which the style definitions appear in the . css file is important. This is an inter-
preted file — the first definition in the CSS file is applied first to the page, next the second definition is
applied, and so forth. Some styles might change previous styles, so make sure your style definitions are
in the proper order. For instance, if you put the A:hover style definition first, you would never see it.
The A:1ink and A:visited definitions would supersede it because they are defined after it.

In working with your themes that include . css files, you must understand what they can and cannot do
for you. For instance, examine an . aspx file that contains two text boxes — one text box created using a
server control and another text box created using a typical <input> HTML element:

<asp:Textbox ID="TextBoxl" Runat="server" />&nbsp;
<input type="text" />

Suppose you have a definition for the TextBox server control in the . skin file:

<asp:Textbox Runat="server" ForeColor="#004000" Font-Names="Verdana"
BackColor="#ffffff" Font-Size="X-Small" BorderStyle="Solid" BorderWidth="1px"
BorderColor="#004000" Font-Bold="True" />

But, what if you also have a definition in your . css file for each <input> element in the ASP.NET page
as shown here:

INPUT
{

background-color: black;

}

289



Chapter 9

When you run the . aspx page with these kinds of style conflicts, the . skin file takes precedence over
styles applied to every HTML element that is created using ASPNET server controls regardless of what
the . css file says. In fact, this sort of scenario gives you a page in which the <input> element that is cre-
ated from the server control is white as defined in the . skin file and the second text box is black as
defined in the . css file. This is shown in Figure 9-8.

€] INETA - Microsoft Internet Explorer (=] ==
File Edit Yiew Favorites Tools Help :,'
Qoack ~ & - [ [2] o | Prsearch FrFavorites @ Media &) > B 0B

address |éj http:/ localhost: 43018/ Themes Default, aspx BI Go | Links *

@1 Done ‘-J Local intranet:

Figure 9-8

Having Your Themes Include Images

Probably one of the coolest reasons why themes, rather than CSS, are the better approach for applying a
consistent style to your Web page is that themes enable you to incorporate actual images into the style
definitions.

Alot of controls use images to create a better visual appearance. The first step in incorporating images
into your server controls that consistently use themes is to create an Images folder within the Themes
folder itself, as illustrated in Figure 9-9.

Solution Explorer * 3 X

2| 2]d] @
2 C\..\WroxThemes\
_3 App_Data
=I- | App_Themes
= Fall
& Spring
=l | & Summer
|1 Images
A3 summer.css
iS¢ summer.skin
= Winter
+ ,j Default.aspx

.:_ﬂ Solution Explorer -?‘ﬁ Database Explorer

Figure 9-9

290



Themes and Skins

You have a couple of easy ways to use the images that you might place in this folder. The first is to incor-
porate the images directly from the . skin file itself. You can do this with the TreeView server control.
The TreeView control can contain images used to open and close nodes for navigation purposes. You can
place images in your theme for each and every TreeView control in your application. If you do so, you
can then define the TreeView server control in the . skin file, as shown in Listing 9-6.

Listing 9-6: Using images from the theme folder in a TreeView server control

<asp:TreeView runat="server" BorderColor="#FFFFFF" BackColor="#FFFFFF"
ForeColor="#585880" Font-Size=".9em" Font-Names="Verdana"
LeafNodeImageURL="images\summer_iconlevel.gif"
RootNodeImageURL="images\summer_ iconmain.gif"
ParentNodeImageURL="images\summer_iconmain.gif" NodeIndent="30"
CollapseImageURL="images\summer_minus.gif"
ExpandImageURL="images\summer_plus.gif">

</asp:TreeView>

When you run a page containing a TreeView server control, it is populated with the images held in the
Images folder of the theme.

It’s easy to incorporate images into the TreeView control. The control even specifically asks for an image
location as an attribute. The new WebParts controls are used to build portals. Listing 9-7 is an example of
a Web Part definition from a . skin file that incorporates images from the Images folder of the theme.

Listing 9-7: Using images from the theme folder in a WebPartZone server control

<asp:WebPartZone ID="WebPartZonel" runat="server"
DragHighlightColor="#6464FE" BorderStyle="double"
BorderColor="#E7E5DB" BorderWidth="2pt" BackColor="#F8F8FC"
cssclass="theme_fadeblue" Font-Size=".9em" Font-Names="Verdana">
<FooterStyle ForeColor="#585880" BackColor="#CCCCCC"></FooterStyle>
<HelpVerb ImageURL="images/SmokeAndGlass_help.gif"
checked="False" enabled="True" visible="True"></HelpVerb>
<CloseVerb ImageURL="images/SmokeAndGlass_close.gif"
checked="False" enabled="True" visible="True"></CloseVerb>
<RestoreVerb ImageURL="images/SmokeAndGlass_restore.gif"
checked="False" enabled="True" visible="True"></RestoreVerb>
<MinimizeVerb ImageURL="images/SmokeAndGlass_minimize.gif"
checked="False" enabled="True" visible="True"></MinimizeVerb>
<EditVerb ImageURL="images/SmokeAndGlass_edit.gif"
checked="False" enabled="True" visible="True"></EditVerb>
</asp:WebPartZone>

As you can see here, this series of toolbar buttons, which is contained in a WebPartZone control, now
uses images that come from the aforementioned SmokeAndGlass theme. When this WebPartZone is then
generated, the style is defined directly from the . skin file, but the images specified in the . skin file are
retrieved from the Images folder in the theme itself.

Not all server controls enable you to work with images directly from the Themes folder by giving you an
image attribute to work with. If you don’t have this capability, you must work with the . skin file and
the CSS file together. If you do, you can place your theme-based images in any element you want. Next
is a good example of how to do this.

291



Chapter 9

Place the image that you want to use in the Images folder just as you normally would. Then define the
use of the images in the . css file. The continued SmokeAndGlass example in Listing 9-8 demonstrates
this.

Listing 9-8: Part of the CSS file from SmokeAndGlass.css

theme_header {
background-image :url( images/smokeandglass_brownfadetop.gif) ;

}

.theme_highlighted {
background-image :url( images/smokeandglass_blueandwhitef.gif) ;

}

.theme_fadeblue {
background-image :url( images/smokeandglass_fadeblue.gif) ;

}

These are not styles for a specific HTML element; instead, they are CSS classes that you can put into any
HTML element that you want. In this case, each CSS class mentioned here is defining a specific back-
ground image to use for the element.

After it is defined in the CSS file, you can utilize this CSS class in the . skin file when defining your
server controls. Listing 9-9 shows you how.

Listing 9-9: Using the CSS class in one of the server controls defined in the .skin file

<asp:Calendar runat="server" BorderStyle="double" BorderColor="#E7E5DB"
BorderWidth="2" BackColor="#F8F7F4" Font-Size=".9em" Font-Names="Verdana">
<TodayDayStyle BackColor="#F8F7F4" BorderWidth="1" BorderColor="#585880"
ForeColor="#585880" />
<OtherMonthDayStyle BackColor="transparent" ForeColor="#CCCCCC" />
<SelectedDayStyle ForeColor="#6464FE" BackColor="transparent"
CssClass="theme_highlighted" />
<TitleStyle Font-Bold="True" BackColor="#CCCCCC" ForeColor="#585880"
BorderColor="#CCCCCC" BorderWidth="1pt" CssClass="theme_header" />
<NextPrevStyle Font-Bold="True" ForeColor="#585880"
BorderColor="transparent" BackColor="transparent" />
<DayStyle ForeColor="#000000"
BorderColor="transparent" BackColor="transparent" />
<SelectorStyle Font-Bold="True" ForeColor="#696969" BackColor="#F8F7F4" />
<WeekendDayStyle Font-Bold="False" ForeColor="#000000"
BackColor="transparent" />
<DayHeaderStyle Font-Bold="True" ForeColor="#585880"
BackColor="Transparent" />
</asp:Calendar>

This Calendar server control definition from a . skin file uses one of the earlier CSS classes in its defini-
tion. It actually uses an image that is specified in the CSS file in two different spots within the control
(shown in bold). It is first specified in the <SelectedDayStyle> element. Here you see the attribute and
value CssClass="theme_highlighted". The other spot is within the <TitleStyle> element. In this
case, it is using theme_header. When the control is rendered, these CSS classes are referenced and
finally point to the images that are defined in the CSS file.

292



Themes and Skins

It is interesting that the images used here for the header of the Calendar control don’t really have much
to them. For instance, the smokeandglass_brownfadetop.gif image that we are using for this exam-
ple is simply a thin, gray sliver, as shown in Figure 9-10.

Figure 9-10

This very small image (in this case, very thin) is actually repeated as often as necessary to make it equal
the length of the header in the Calendar control. The image is lighter at the top and darkens toward the
bottom. Repeated horizontally, this gives a three-dimensional effect to the control. Try it out, and you get
the result shown in Figure 9-11.

< February 2006

Sun Mon Tue Wed Thu

_n
a
w
al
=V

i1 2 3 4
= & Z 8 8 10 1
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28

Figure 9-11

Defining Multiple Skin Options

Using the themes technology in ASP.NET 2.0, you can have a single theme; but also, within the theme’s
.skin file, you can have specific controls that are defined in multiple ways. You can frequently take
advantage of this feature within your themes. For instance, you might have text box elements scattered
throughout your application, but you might not want each and every text box to have the same visual
appearance. In this case, you can create multiple versions of the <asp: Textbox> server control within
your . skin file. In Listing 9-10 you see how to create multiple versions of the <asp: Textbox> control in
the . skin file from Listing 9-3.

Listing 9-10: The Summer.skin file, which contains multiple versions of the
<asp:Textbox> server control

<asp:Label Runat="server" ForeColor="#004000" Font-Names="Verdana"
Font-Size="X-Small" />

<asp:Textbox Runat="server" ForeColor="#004000" Font-Names="Verdana"
Font-Size="X-Small" BorderStyle="Solid" BorderWidth="1px"
BorderColor="#004000" Font-Bold="True" />

<asp:Textbox Runat="server" ForeColor="#000000" Font-Names="Verdana"
(continued)

293



Chapter 9

Listing 9-10: (continued)

Font-Size="X-Small" BorderStyle="Dotted" BorderWidth="5px"
BorderColor="#000000" Font-Bold="False" SkinID="TextboxDotted" />

<asp:Textbox Runat="server" ForeColor="#000000" Font-Names="Arial"
Font-Size="X-Large" BorderStyle="Dashed" BorderWidth="3px"
BorderColor="#000000" Font-Bold="False" SkinID="TextboxDashed" />

<asp:Button Runat="server" ForeColor="#004000" Font-Names="Verdana"
Font-Size="X-Small" BorderStyle="Solid" BorderWidth="1px"
BorderColor="#004000" Font-Bold="True" BackColor="#FFEOCO" />

In this . skin file, you can see three definitions in place for the TextBox server control. The first one is the
same as before. Although the second and third definitions have a different style, they also contain a new
attribute in the definition — Skin1D. To create multiple definitions of a single element, you use the
SkinID attribute to differentiate among the definitions. The value used in the SkinID can be anything
you want. In this case, it is TextboxDotted and TextboxDashed.

Note that no skinID attribute is used for the first <asp: Textbox> definition. By not using one, you are
saying that this is the default style definition to use for each <asp: Textbox> control on an ASPNET

page that uses this theme but has no pointer to a SkinID.

Take a look at a sample . aspx page that uses this . skin file in Listing 9-11.

Listing 9-11: A simple .aspx page that uses the Summer.skin file with multiple text-
box style definitions

<%@ Page Language="VB" Theme="Summer" %>

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>Different SkinIDs</title>
</head>
<body>
<form id="forml" runat="server">
<p>
<asp:Textbox ID="TextBoxl" Runat="server">Textboxl</asp:Textbox>
</p><p>
<asp:Textbox ID="TextBox2" Runat="server"
SkinId="TextboxDotted">Textbox2</asp:Textbox>
</p><p>
<asp:Textbox ID="TextBox3" Runat="server"
SkinId="TextboxDashed">Textbox3</asp:Textbox>
</p>
</form>
</body>
</html>

This small . aspx page shows three text boxes, each of a different style. When you run this page, you get
the results shown in Figure 9-12.

294



Themes and Skins

& Different SkinlDs - Microsoft Internet Explorer =&
File Edit View Favorites Tools Help :,'
QBack - ) [ [@ @ O search <7 Favorites @ Media ) - BO&

Address |®j http: i flocalhost: 4301 8/ Themes/Def ault, aspx [V] Go | Links *
+ +
* *

&] Done % Local intranet

Figure 9-12

The first text box doesn’t point to any particular SkinID in the . skin file. Therefore, the default skin is
used. As stated before, the default skin is the one in the . skin file that doesn’t have a SkinID attribute
in it. The second text box then contains skinid="TextboxDotted" and, therefore, inherits the style def-
inition defined in the TextboxDotted skin in the Summer . skin file. The third text box takes the SkinID
TextboxDashed and is also changed appropriately.

As you can see, it is quite simple to define multiple versions of a control that can be used throughout
your entire application.

Programmatically Working with Themes

So far, you have seen examples of working with ASP.NET 2.0 themes in a declarative fashion, but you
can also work with themes programmatically.

Assigning the Page’s Theme Programmatically

To programmatically assign the theme to the page, use the construct shown in Listing 9-12.

Listing 9-12: Assigning the theme of the page programmatically

VB
<script runat="server" language="vb">
Protected Sub Page_Prelnit (ByVal sender As Object, ByVal e As System.EventArgs)
Page.Theme = Request.QueryString ("ThemeChange")
End Sub
</script>

(continued)

295



Chapter 9

Listing 9-12: (continued)

C#
<script runat="server">
protected void Page_PreInit (object sender, System.EventArgs e)

{
Page.Theme = Request.QueryString["ThemeChange"];

}

</script>
You must set the Theme of the Page property in or before the Page_PreInit event for any static controls

that are on the page. If you are working with dynamic controls, set the Theme property before adding it
to the Controls collection.

Assigning a Control’s SkinlD Programmatically

Another option is to assign a specific server control’s SkinID property programmatically (see Listing 9-13).

Listing 9-13: Assigning the server control’s SkinIlD property programmatically

VB
<script runat="server" language="vb">
Protected Sub Page_PrelInit (ByVal sender As Object, ByVal e As System.EventArgs)
TextBoxl.SkinID = "TextboxDashed"
End Sub
</script>

C#
<script runat="server">
protected void Page_PreInit (object sender, System.EventArgs e)

{
TextBox1l.SkinID = "TextboxDashed";

}
</script>

Again, you assign this property before or in the Page_PreInit event in your code.

Themes and Custom Controls

If you are building custom controls in an ASPNET 2.0 world, understand that end users can also apply
themes to the controls that they use in their pages. By default, your custom controls are theme-enabled
whether your custom control inherits from Control or WebControl.

To disable theming for your control, you can simply use the Themeable attribute on your class. This is
illustrated in Listing 9-14.

296



Themes and Skins

Listing 9-14: Disabling theming for your custom controls

VB
Imports System.Web.UI

Namespace Wrox.ServerControls

<Themeable (False)> _
Public Class SimpleHello
Inherits System.Web.UI.Control

Private _name As String

Public Property Name() As String
Get
Return _name
End Get
Set (ByVal Value As String)
_name = Value
End Set
End Property

Protected Overrides Sub Render (ByVal controlOutput As _
HtmlTextWriter)
controlOutput.Write("Hello " + Name)
End Sub

End Class
End Namespace

C#
using System.Web.UI;

namespace Wrox.ServerControls

{
[Themeable (false) ]
public class SimpleHello : Control
{

private string _name;

public string Name

{
get { return _name; }
set { _name = value; }

protected override void Render (HtmlTextWriter controlOutput)
{

controlOutput.Write ("Hello " + Name) ;

You can also disable theming for the individual properties that might be in your custom controls. You do
this as illustrated in Listing 9-15.

297



Chapter 9

Listing 9-15: Disabling theming for properties in your custom controls

VB
Imports System.Web.UI

Namespace Wrox.ServerControls

Public Class SimpleHello
Inherits System.Web.UI.Control

Private _myValue As String

<Themeable (False)> _
Public Property MyCustomProperty() As String
Get
Return _myValue
End Get
Set (ByVal Value As String)
_myValue = Value
End Set
End Property

End Class
End Namespace

C#
using System.Web.UI;

namespace Wrox.ServerControls

{
public class SimpleHello : Control
{

private string _myValue;

[Themeable (false) ]
public string Name

{
get { return _myValue; }
set { _myValue = value; }

Summary

With the addition of themes and skins in ASP.NET 2.0, it has become quite easy to apply a consistent
look and feel across your entire application. Remember that themes can contain only simple server con-
trol definitions in a . skin file or elaborate style definitions, which include not only . skin files, but also
CSS style definitions and even images!

As you will see later in the book, you can use themes in conjunction with the new personalization fea-
tures that ASP.NET 2.0 provides. This can enable your end users to customize their experiences by select-
ing their own themes. Your application can present a theme just for them, and it can remember their
choices through the APIs that are offered in ASPNET 2.0.

298



10

Collections and Lists

Object-oriented programming (OOP) has been successful because it gives programmers a way to
model physical reality in code. The easiest systems to understand are those that effectively model
a familiar reality. If you're trying to represent a person in real-life, for example, you might create a
class Person. After you create a Person class, what's the next most obvious thing for that person
to do? Well, have a party and congregate with other persons, of course! As soon as you have more
than one Person, you need a place to put them all — that’s where lists, arrays, hash tables, and
other collections come in.

This chapter explains the collections made available to you in the .NET Framework 2.0. Although
the concept of collections is not specific to ASP.NET, this chapter shows you how to use them in the
context of an ASPNET 2.0 application. It also looks at the differences between strongly typed col-
lections and generics, as well as exploring the unusual Microsoft.VisualBasic.Collection
class and contrasting it with the System.Collections namespace.

Arrays

Most folks would say that the simplest collection of objects is an array. Create some objects and put
them into an array. Start with a basic Person class with a simple constructor that initializes the
Person’s first and surname (last name), as well as a public property that returns the full name (see
Listing 10-1).

Listing 10-1: A simple Person class

VB

Public Class Person
Dim FirstName As String
Dim LastName As String

Public Sub New(ByVal First As String, ByVal Last As String)

(continued)




Chapter 10

Listing 10-1: (continued)

FirstName = First
LastName = Last
End Sub

Public ReadOnly Property FullName() As String
Get
Return FirstName & " " & LastName
End Get
End Property
End Class

C#

public class Person

{
string FirstName;
string LastName;

public Person(string first, string last)

{
FirstName = first;
LastName = last;

public string FullName
{

get

{

return FirstName + " " + LastName;

In Listing 10-2 you put a few of these people into an array, iterate over them, and print their names. You
iterate twice: once using the For Each form, and once using the traditional For technique. Then you can
put your code in the Page_Load of the Default page in a new Web-based project.

Note that these examples use Response.lirite for the purpose of illustration. In the
next chapter, you see far more appropriate ways to print your collections.

Listing 10-2: Printing people in an array

VB
Partial Class _Default
Inherits System.Web.UI.Page

Protected Sub Page_Load(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Load

Dim scott As New Person("Scott", "Hanselman")
Dim bill As New Person("Bill", "Evjen")

300



Collections and Lists

Dim srini As New Person("Srinivasa", "Sivakumar")

Dim people() As Person = {bill, scott, srini}

Response.Write("We used foreach.<BR/>")

For Each p As Person In people
Response.Write(p.FullName & "<BR/>")

Next

Response.Write("We used a for loop.<BR/>")
For 1 As Integer = 0 To (people.Length - 1)
Response.Write(people (i) .FullName + "<BR/>")
Next
End Sub
End Class

C#

public partial class _Default : System.Web.UI.Page

{
protected void Page_Load(object sender, EventArgs e)
{

Person scott = new Person("Scott", "Hanselman");
Person bill = new Person("Bill", "Evjen");
Person srini = new Person("Srinivasa", "Sivakumar");

Person[] people = { bill, scott, srini };

Response.Write("We used foreach.<BR/>");
foreach(Person p in people)
{

Response.Write(p.FullName + "<BR/>");

Response.Write("We used a for loop.<BR/>");
for (int i = 0; i < people.Length; i++)
{
Response.Write (people[i] .FullName + "<BR/>");

The result of this very simple code from Listing 10-2 is, as expected, a list of the names in the array,

printed in the browser:

We used foreach.
Bill Evjen

Scott Hanselman
Srinivasa Sivakumar

We used a for loop.
Bill Evjen

Scott Hanselman
Srinivasa Sivakumar

Note that the results are the same for both For and For Each. The For loop syntax, although familiar to
many, is certainly more difficult to read or write. While writing this sample, we forgot to subtract one

301



Chapter 10

from people.Length. It was an immediately obvious mistake, but it could have been avoided by using
For Each.

When you use For Each with an array, as you did here, the compiled Intermediate
Language (IL) code is identical to the code you wrote as a For. Unless you require
more complex behavior, such as iterating in reverse or iterating over every other
item, always be sure to use For Each to iterate over arrays and most collections. The
language-specific compiler handles this expansion and you reap the benefit. Your
code will be less prone to off-by-one bugs, and it will be much easier to read.

Resizing Arrays

VB can resize an array and keep the existing values using the ReDim statement. Here you double the size
of the people array. Note the use of ReDim to redimension the array that has elements 0 through 5, so
this array can hold six Person objects:

ReDim Preserve people(5)

C# doesn’t support a convenient array-resizing statement such as ReDim. Instead, you copy people to a
new, larger array. Again, note the syntax here as you create an array with a length of six. It can hold ele-
ments 0 through 5:

Person[] people2 = new Person[6];
Array.Copy (people, people2, people.Length);

Finding Objects in Arrays

Arrays are the simplest form of collection. Indexing into an array is the fastest way to get access to your
data — if you know the index of the item you want! If you don’t know the index of an item in your array,
you go looking for it. However, what does it mean to ask an array, “Where is this object?”

Object Identity versus Object Equivalence

Two objects can be compared based on their identity —are these the same objects? Or based on equiva-
lence —do these objects contain the same values? When you look through a collection, you typically
already have a reference to that object, and you want to find that same object. Ask yourself whether you
are looking for that identical object reference or just an object with values equivalent to yours?

Next, modify Listing 10-2 and look for Bill and Scott in the array. You can add your search right after the
initialization of the people array (see Listing 10-3).

Listing 10-3: Looking for an object in an array by reference

VB
Dim people() As Person = {bill, scott, srini}

Dim indexOfBill As Integer = Array.IndexOf (people, bill)
Response.Write("Bill is at " & indexOfBill & "<BR/>")

302



Collections and Lists

Dim indexOfScott As Integer = Array.IndexOf (people, scott)
Response.Write("Scott is at " & indexOfScott & "<BR/>")

C#
Person[] people = { bill, scott, srini };

int indexOfBill = Array.IndexOf (people, bill);
Response.Write("Bill is at " + indexOfBill + "<BR/>");

int indexOfScott = Array.IndexOf (people, scott);
Response.Write("Scott is at " + indexOfScott + "<BR/>");

The output of Listing 10-3 in the Web browser makes sense. Bill is at the zero-eth position in the array,
and Scott is at the first position. Remember that arrays are zero-based.

Bill is at 0
Scott is at 1

Now, look for Scott again, but this time using another object reference in Listing 10-4 that contains the
same information as our current scott object reference. The scott2 object is certainly equivalent to the
scott object because they contain the same information.

Listing 10-4: Searching for a object in an array by reference

VB

Dim scott2 As New Person("Scott", "Hanselman")

Dim indexOfScott2 As Integer = Array.IndexOf (people, scott2)
Response.Write("Scott #2 is at " & indexOfScott2 & "<BR/>")

C#

Person scott2 = new Person("Scott", "Hanselman");

int indexOfScott2 = Array.IndexOf (people, scott2);
Response.Write("Scott #2 is at " + indexOfScott2 + "<BR/>");

That’s interesting! The output may not be what you expected:

Bill is at 1
Scott is at 0
Scott #2 is at -1

Listing 10-4 makes sense, however, as scott2 is not in the array because it is not identical to the object
scott. They may be equivalent objects, but they are not the same object. If, instead, you want to retrieve
the index of the scott object while still using scott2 as the object to search for, just provide a method
on the Person class that the system can use to establish equivalence.

Overriding Equals

When you have created an object like Person that is composed of simple types, you can override the
Equals method that all objects inherit from System.Object and provide an implementation that evalu-
ates object equivalence.

303



Chapter 10

public override bool Equals (object obj)
{
Person other = obj as Person;
return (other.LastName == this.LastName &&_
other.FirstName == this.FirstName) ;

Now, two Person instances can be compared for equivalence. Add an Equals implementation to the
code in Listing 10-4 and see how the results change. IndexOf searches for objects linearly and compares
them using their implementation of Equals.

The Importance of Implementing IComparable

In order to find objects that are like other objects and perform operations like sorting, the Person class
must be comparable. Specifically, you implement the IComparable interface that consists of one method,
CompareTo (). Return zero from CompareTo if the objects are equivalent. Fortunately, thePerson object
has only two string fields, FirstName and LastName. These fields are both System. String objects and,
because strings implement IComparable themselves, you can aggregate the return CompareTo values of
the properties. In Listing 10-5, Last Name is more important than First Name because it’s reasonable to
sort people with their last names first. Additionally, you may want to use this IComparable implementa-
tion later to put a Person into other collections, and it can also be used when sorting.

Listing 10-5: Adding IComparable to the Person class

VB
Public Class Person
Implements IComparable
'...The rest of our class here...

Public Function CompareTo (ByVal obj As Object)
As Integer Implements IComparable.CompareTo

If Not TypeOf (obj) Is Person Then
Throw New ArgumentException("Object is not a Person!")
End If

Dim p2 As Person = CType (obj, Person)
Dim lastNameResult As Integer = Me.LastName.CompareTo (p2.LastName)

If lastNameResult = 0 Then
Dim firstNameResult As Integer = Me.FirstName.CompareTo (p2.FirstName)
Return firstNameResult
Else
Return lastNameResult
End If
End Function

End Class
C#

public class Person : IComparable

{

304



Collections and Lists

//...The rest of our class here...

int IComparable.CompareTo (object obj)
{
Person p2 = obj as Person;
if (p2 == null) throw new ArgumentException ("Object is not a Person!");

int lastNameResult = this.LastName.CompareTo (p2.LastName) ;

if (lastNameResult == 0)

{
int firstNameResult = this.FirstName.CompareTo (p2.FirstName) ;
return firstNameResult;

}
else

{
return lastNameResult;

}

Now Person objects can be compared to each other in order to determine if they are less than, greater
than, or equal to each other. Note that Listing 10-5 checks the FirstName only if the LastName is the
same. Otherwise, it just returns the comparison value of the LastName.

Additionally, since no support exists for comparing the Person class with other kinds of objects, Listing
10-5 throws an ArgumentException to alert the developer of this decision. If you choose, you can
support comparisons of Person to other objects, but it’s up to you to decide the semantics of such a
comparison.

You can use the IComparable Person class with any method that takes an IComparable object as a
parameter. An example is System.Array’s static BinarySearch method that takes in an array of
IComparable implementations, along with an object to find within the array, and returns the index
where that object was found. BinarySearch is just one method among dozens that your IComparable
implementations can take advantage of.

Using BinarySearch to Find Like Objects in Arrays

The Array class includes a BinarySearch method with a series of overloads. This method uses the
IComparable interface of each object to determine if the object you've asked it to look for is the same
one it has found. However, BinarySearch requires that the array be presorted. Fortunately, this small
example array is presorted for Listing 10-6. You'll see alternative ways to retrieve objects from collections
later in the chapter.

Listing 10-6: Searching for an equivalent object with Array.BinarySearch

VB
Dim indexOfEquivalentScott As Integer = Array.BinarySearch (people, scott2)
Response.Write("An Equivalent Scott is at " & indexOfEquivalentScott & "<BR/>")

C#

int indexOfEquivalentScott = Array.BinarySearch (people, scott2);
Response.Write("An Equivalent Scott is at " + indexOfEquivalentScott + "<BR/>");

305



Chapter 10

Now run the page again and look at the Web browser’s output for Listing 10-6:

Bill is at 0

Scott is at 1

Scott #2 is at -1

An Equivalent Scott is at 1

When you look for the scott2 object reference using index0f from Listing 10-4, you find nothing and
-1 is returned. Now that you can compare Person objects and also search for objects that are equivalent
but not the same as scott2, you find an equivalent at index 1. That’s the index of the first scott object.

It’s useful to spend time on these concepts of equivalence versus identity so that you, as a programmer,
can successfully express your intent in code. Later, when you retrieve objects from more complex collec-
tions such as Hashtables, you can see what power it gives you to know if the object you're returning is
the same reference (and hence the same object) or just an equivalent object (and a different reference).

So far, you have put objects in arrays and iterated over those objects with both the For loop and the For
Each syntax. You've resized arrays both in VB and C#, retrieved the index of an object reference from an
array, and searched for equivalent objects in a sorted array.

Note that the BinarySearch works only with presorted arrays. If you are going to
search the array only once, then just iterate over the array checking each object. It is
less expensive than sorting the array and then calling BinarySearch. However, if
you call BinarySearch many times on the same array, it may be worth your while to
perform the sort. Remember, be sure to measure all your performance assumptions.
Don’t take the word of anyone (even this book) as the final truth.

Sorting Objects in Arrays

Now, change the currently hard-coded sort order of the array to a random sort order. Then use the new
IComparable implementation to sort the array. Also change the initial sort order in the array initializer and
add a For Each loop just before the sort so that you can see the before and after results of Listing 10-7.

Listing 10-7: Sorting arrays of Person

VB
Dim people() As Person = {scott, bill, srini}

Response.Write("Unsorted. We used foreach.<BR/>")

For Each p As Person In people
Response.Write(p.FullName & "<BR/>")

Next

Response.Write("Sort...<BR/>")
Array.Sort (people)

Response.Write("Sorted. We used foreach.<BR/>")

For Each p As Person In people
Response.Write(p.FullName & "<BR/>")

Next

306



Collections and Lists

C#
Person[] people = { scott, bill, srini };

Response.Write ("Unsorted. We used foreach.<BR/>");
foreach (Person p in people)
{
Response.Write(p.FullName + "<BR/>");
}

Response.Write("Sort...<BR/>");
Array.Sort (people) ;

Response.Write("Sorted. We used foreach.<BR/>");
foreach(Person p in people)
{
Response.Write(p.FullName + "<BR/>");
}

Look at the partial output of Listing 10-7 in the Web browser:

Unsorted. We used foreach.
Scott Hanselman

Bill Evjen

Srinivasa Sivakumar

Sort...
Sorted. We used foreach.
Bill Evjen

Scott Hanselman
Srinivasa Sivakumar

The Array. Sort method is a Shared method (static in C#) that returns a void. That means that it
sorts the array that you passed in as a parameter in place; the method doesn’t return the array. Notice
that after the call to the sort method, the list is correctly sorted by Last Name because that’s how you
wrote the Person class’s implementation of IComparable.

As you can see, arrays can be tricky and a bit of a hassle. You find yourself worrying about issues like
the size of the array and the indexes of items in the array. Now explore some higher-level kinds of collec-
tions to see how they are more powerful than a simple array.

The System.Collections Namespace

The System.Array class is the very core of the NET Framework and serves as the base class for all sim-
ple arrays in the Common Language Runtime. However, the System.Collection namespace contains
most of the classes and interfaces that you are interested in, and builds on the concepts you learned by
examining the simple array.

ArraylList

Think of an ArrayList as everything that is good about an array PLUS automatic sizing, Add, Insert,
Remove, Sort, BinarySearch—you get the idea. All these great helper methods are added when

307



Chapter 10

implementing the IList interface, the specifics of which are explored in the next section. The downside
of an ArrayList is the need to cast objects upon retrieval. New solutions introduced in .NET 2.0 will be
covered a little later in this chapter

The ArrayList class keeps an array of objects internally but takes care of housekeeping chores such as
ensuring there is enough capacity in the array. For example, if you add an item to an ArrayList, but
there’s no room in its internal array, the ArrayList doubles the size of the internal array to make room.

Now, reconsider and modify the code from Listings 10-1 through Listing 10-7 using an ArrayList
instead of an array. Start with a statement including the System.Collections namespace, and change
the way you add Person objects to the collection. Also change the calls to the Sort and BinarySearch
methods (see Listing 10-8).

Listing 10-8: Using an ArrayList instead of an array

vB
Imports System
Imports System.Collections

Partial Class _Default
Inherits System.Web.UI.Page

Protected Sub Page_Load(ByVal sender As Object,
ByVal e As System.EventArgs) Handles Me.Load

Dim scott As New Person("Scott", "Hanselman")
Dim bill As New Person("Bill", "Evjen")
Dim srini As New Person("Srinivasa", "Sivakumar")

Dim people As New ArrayList()
people.Add (scott)
people.Add (bill)
people.Add (srini)

Response.Write("Unsorted. We used foreach.<BR/>")

For Each p As Person In people
Response.Write(p.FullName & "<BR/>")

Next

Response.Write("Sort...<BR/>")
people.Sort ()

Response.Write("Sorted. We used foreach.<BR/>")

For Each p As Person In people
Response.Write(p.FullName & "<BR/>")

Next

Dim scott2 As New Person("Scott", "Hanselman")
Dim indexOfScott2 As Integer = people.IndexOf (scott2)
Response.Write("Scott #2 is at " & indexOfScott2 & "<BR/>")

Dim indexOfEquivalentScott As Integer = people.BinarySearch(scott2)
Response.Write("An Equivalent Scott is at " & _

308



Collections and Lists

indexOfEquivalentScott & "<BR/>")

Response.Write("We used a for loop.<BR/>")
For i As Integer = 0 To people.Count - 1
Response.Write (CType (people (i), Person).FullName & "<BR/>")
Next
End Sub
End Class

C#
using System;
using System.Collections;

public partial class _Default : System.Web.UI.Page
{
protected void Page_Load(object sender, EventArgs e)

{

Person scott = new Person("Scott", "Hanselman");
Person bill = new Person("Bill", "Evjen");
Person srini = new Person("Srinivasa", "Sivakumar");

ArrayList people = new ArrayList();
people.Add (scott) ;
people.Add (bill) ;
people.Add (srini) ;

Response.Write("We used foreach.<BR/>");
foreach (Person p in people)
{

Response.Write(p.FullName + "<BR/>");

Response.Write("Sort...<BR/>");
people.Sort () ;

Response.Write("We used foreach.<BR/>");
foreach (Person p in people)
{

Response.Write(p.FullName + "<BR/>");

Person scott2 = new Person("Scott", "Hanselman");
int indexOfScott2 = people.IndexOf (scott2);
Response.Write("Scott #2 is at " + indexOfScott2 + "<BR/>");

int indexOfEquivalentScott = people.BinarySearch(scott2);
Response.Write("An Equivalent Scott is at " + indexOfEquivalentScott +
"<BR/>") ;

Response.Write("We used a for loop.<BR/>");
for (int 1 = 0; i < people.Count; i++)
{
Response.Write(( (Person)people[i]) .FullName + "<BR/>");

309



Chapter 10

Listing 10-8 includes the System.Collections namespace and creates a new ArrayList. Then you
add the objects to the ArrayList with the very intuitive ArrayList.2dd. The calls to the Shared meth-
ods (static in C#) Array.Sort, and Array.BinarySearch turn into more natural calls to instance
methods on the people ArrayList.

It is interesting that you don’t have to change the For Each loop, but you must change the For loop.
The ArrayList holds Person objects, but ultimately it holds objects of the root type from which all
objects derive, namely System.Object. (Remember that our Person class derives automatically from
System.Object). Because you can store other kinds of objects, not just Person, in an ArrayList, you
have to tell the system what kind of object you expect to get out of the ArrayList. You let the system
know the object’s type via casting. Some people find casting to be a confusing concept; so this book
examines how generics —a new feature of the NET Framework 2.0 —helps solve this problem (see the
section “System.Collections.Generics” later in this chapter). Until then, you can avoid casting by using
For Each.

Additionally, an ArrayList doesn’t have a Length property; it has a Count property. You change the
upper bound expression from Length to Count in the For loop. Your first reaction to this odd semantic
change might be negative, but it makes sense when you remember that the intent of your code is to ask
the ArrayList for the Count of Person objects, not the Length of the ArrayList’s internal array! The
array’s length may well be considerably larger than the number of Person objects. You see where this
Count property comes from in the next section.

Notice that you can index into an ArrayList just like an array. Here you pull out the Ful1Name of the
Person at index 2 (the third Person in the ArrayList):

VB
CType (people(2), Person) .FullName

C#
((Person)people[2]) .FullName

Next, we show you how the ArrayList and other collections can be everything an array is and more —
using interfaces that make the For Each statement and array-like indexing possible. You also learn about
dictionaries, a whole new kind of collection that lets you specify the index or key.

IEnumerable and IEnumerator

The System.Collections namespace has many useful classes. But before digging any farther, you
should examine the core interfaces that make all the different collections possible.

When you have a collection of something, inevitably you want to enumerate —move forward over —all
the objects in that collection. A collection implements IEnumerable if its contents can be enumerated.
IEnumerable does more than inform you of the collection’s capabilities; it gives you access via its one
method, GetEnumerator, returning that collection’s implementation of IEnumerator.

IEnumerator exposes these capabilities via this interface:

Public Interface IEnumerator
' Methods
Function MoveNext () As Boolean
Sub Reset ()

310



Collections and Lists

' Properties
ReadOnly Property Current As Object
End Interface

It is so simple, it’s brilliant. MoveNext returns True if the move succeeded and False if not. Reset
resets the internal “cursor” to the beginning of the collection, and the Current property always returns
the current object. If you create your own custom collection, that collection can support the very useful
For Each keyword in VB or foreach in C# by implementing these interfaces.

You were able to use the For Each statement seamlessly with your ArrayList in
Listing 10-8 because the ArrayList class is IEnumerable!

ICollection

IEnumerable and IEnumerator let you loop over your collections, but you would probably like to
know the count of items in your collection without having to count them yourself. The ICollection
interface cleverly derives from IEnumerable and includes a few new ideas in its interface definition:

Public Interface ICollection
Implements IEnumerable

' Methods
Sub CopyTo (ByVal array As Array, ByVal index As Integer)

' Properties
ReadOnly Property Count As Integer
ReadOnly Property IsSynchronized As Boolean
ReadOnly Property SyncRoot As Object
End Interface

Looks like ICollection added a Count property that gets the number of items in a collection. Because
you know an ArrayList implements ICollection, you know it also implements IEnumerable.
Immediately, then, you see that you can enumerate over an ArrayList with ForEach and easily retrieve
the count of items.

Many threads within a multithreaded application may want access to a collection. ICollection has
chosen to recognize that fact by including a SyncRoot object and the IsSynchronized property to get
a value indicating whether that collection can safely be used by multiple threads.

ICollection also adds a CopyTo method that bridges the gap between an array of objects and an
ICollection of objects. A one-dimensional array is passed in along with an index indicating where to
start copying items.

To recap, the ICollection interface extends IEnumerable. Collections keep a count of items, whereas
classes that implement Ienumerable are iterated again with ForEach.

You were able to use the count Property in Listing 10-8 because the ArrayList class
is an ICollection.

311



Chapter 10

IDictionary and IList are specific, dedicated interfaces that extend ICollection. An IDictionary
implementation is a collection of key/value pairs, like Hashtable. An IList is a collection of values,
and its members are accessed by index and also by many helper methods, such as the ArrayList class.

Lists and IList

The IList interface extends ICollection, which extends IEnumerable. Classes that implement IList
are easy to use and very powerful. The IList interface adds the intuitive methods such as Add, Remove,
Insert, and Clear, among others, to its interface definition:

Public Interface IList
Implements ICollection, IEnumerable

' Methods

Function Add(ByVal value As Object) As Integer

Sub Clear ()

Function Contains (ByVal value As Object) As Boolean
Function IndexOf (ByVal value As Object) As Integer

Sub Insert (ByVal index As Integer, ByVal value As Object)
Sub Remove (ByVal value As Object)

Sub RemoveAt (ByVal index As Integer)

' Properties

ReadOnly Property IsFixedSize As Boolean

ReadOnly Property IsReadOnly As Boolean

Property Item(ByVal index As Integer) As Object
End Interface

Lists (ILists) come in three flavors:

Q  Read-only Ilist:Does not allow modification of its elements after the collection has been cre-
ated. IsReadOnly always returns True after the collection’s initial creation.

Q  Fixed-size I1ist: Allows the modification of elements, but not adding or removing them.

Q  Variable 11ist: Allows adding, removing, and modifying of elements.

The 1List interface includes the very powerful Item property that allows you to index into the collec-
tion exactly as if it were an array. When you combine that capability with the Count property that
ICollection includes, you can now use a For statement to iterate forward, backward, or by steps
through collections.

For most medium-size collections, an ArrayList is a great way to go. Later, you learn how to make
strongly typed ILists. You do this using a new .NET Framework 2.0 feature called generics that,
ironically, makes your Lists specific to the classes they contain. Standard ArrayLists from System
.Collections can contain any object at all. You can have ArrayLists containing different kinds of
objects, but when you want to retrieve a reference to an object in an ArrayList, or any standard collec-
tion, you must cast that object to the specific type it is. We had to cast (or use CType in VB) in Listing
10-8. Here’s an example of a cast:

312



Collections and Lists

VB
Dim p as Person = CType (peopleList(l), Person)

C#
Person p = (Person)peopleList([1];

You know that when you put an object of type Person in your ArrayList, you have to tell the compiler
what type the object is every time it’s retrieved at runtime. Generics enables you to tell the compiler
what type of object your ArrayList contains up-front at the time you create and compile it; then you
don’t have to tell the system every time it’s retrieved. You hear more about generics a little later.

You can add objects easily to the ArrayList in Listing 10-8 because an ArrayList is
an IList. You indexed into the ArrayList as if it were an array because IList
implements an Item indexing property, and the ArrayList class is an IList!

So far, you have worked with collections that are either ordered or indexed. Arrays and ArrayLists
(and anything that implements IList or ICollection) contain other objects in a specific order. Those
objects can be retrieved either by iterating over the collection or by a zero-based numeric index. Now,
look at how to store objects in a collection with a unique key that can be used to access the objects later.

Dictionaries and IDictionary

Collections that implement IEnumerable let the programmer iterate over them with the For Each state-
ment. The ICollection interface extends IEnumerable by including the Count property. IList
extends ICollection and adds public methods such as 2dd, Insert, Remove, and Contains. IList
also adds the Item property, enabling you to access objects in the list as if it were an array.

IDictionary extends ICollection; but rather than representing a list of objects that can be indexed, it
represents a collection of key/value pairs. Notice that the Add method includes both a key and a value
as parameters. The Contains method, rather than checking for a particular object, checks for a particu-
lar key; the Item property indexer indexes by key as well:

Public Interface IDictionary
Implements ICollection, IEnumerable

' Methods

Sub Add(ByVal key As Object, ByVal value As Object)
Sub Clear ()

Function Contains (ByVal key As Object) As Boolean
Function GetEnumerator () As IDictionaryEnumerator
Sub Remove (ByVal key As Object)

' Properties
ReadOnly Property IsFixedSize As Boolean
ReadOnly Property IsReadOnly As Boolean
Property Item(ByVal key As Object) As Object
ReadOnly Property Keys As ICollection
ReadOnly Property Values As ICollection

End Interface

313



Chapter 10

A number of NET Framework classes implement IDictionary; the ones you should be concerned with
are the Hashtable and the SortedList. Later, IDictionary is also used by the specialized
ListDictionary and HybridDictionary. This base hierarchy of interfaces is presented in Figure 10-1.

IEnumerable

ICollection

IDictionary IList
Figure 10-1

Hashtables

Take a few instances of the Person class and add them to a Hashtable. Person is the value, but you
must decide on a key. The Hashtable class calls the GetHashCode method on each object used as a key.
All objects have a default implementation of GetHashCode that they inherit from the ultimate base class,
object. GetHashCode returns an integer, but that integer isn’t a unique identifier for an object refer-
ence. The MSDN Documentation says this about GetHashCode:

If two objects of the same type represent the same value, the hash function must return the
same constant value for either object. Therefore, two String objects return the same hash
code if they represent the same string value.

Here’s a powerful tip to amaze your friends and family. The newest version of
Microsoft’s online MSDN documentation is called MSDN2 and offers hackable
URLs for the first time. Hackable URLs mean that you can guess at the URL for
most MSDN documentation. For example, the link to the System.Collections
.Hashtable documentation is http: //msdn2.microsoft.com/library/system
.collections.hashtable.aspx. This convention applies to namespaces, class
names, members, and methods.

You'll be using strings as keys to index into the values contained by your Hashtable and, for this exam-
ple, the string keys contain the initials of Person. In Listing 10-9, you retrieve the Person objects by
using the IDictionary Item property indexer and casting the objects to type Person, as shown in
Listing 10-8.

Listing 10-9: Retrieving Person objects from a Hashtable
VB
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
Handles Me.Load

Dim scott As New Person("Scott", "Hanselman")

314



Collections and Lists

Dim bill As New Person("Bill", "Evjen")
Dim srini As New Person("Srinivasa", "Sivakumar")

Dim peopleHashtable As New Hashtable()
peopleHashtable.Add ("sh", scott)
peopleHashtable.Add("be", bill)
peopleHashtable.Add("ss", srini)

Dim found As Person = CType (peopleHashtable("sh"), Person)
Response.Write(found.FullName & "<BR/>")

found = CType (peopleHashtable("be"), Person)
Response.Write (found.FullName & "<BR/>")

found = CType (peopleHashtable("sh"), Person)
Response.Write(found.FullName & "<BR/>")

End Sub
C#

protected void Page_Load(object sender, EventArgs e)

{

Person scott = new Person("Scott", "Hanselman");
Person bill = new Person("Bill", "Evjen");
Person srini = new Person("Srinivasa", "Sivakumar");

Hashtable peopleHashtable = new Hashtable() ;
peopleHashtable.Add ("sh", scott);
peopleHashtable.Add ("be", bill);
peopleHashtable.Add("ss", srini);

Person found = (Person)peopleHashtable["sh"];
Response.Write (found.FullName + "<BR/>");
found = (Person)peopleHashtable["be"];
Response.Write (found.FullName + "<BR/>");
found = (Person)peopleHashtable["sh"];

Response.Write (found.FullName + "<BR/>");

Notice that you are reusing the object reference named found. In Listing 10-9, each time you retrieve
a Person from the Hashtable using a key, you retrieve a reference to the same object added to the
Hashtable a few lines earlier. Here is the output in the browser:

Scott Hanselman
Bill Evjen
Scott Hanselman

An Important Point about Hashtables

Inevitably, every programmer runs into a little gotcha with hashtables. You've spent this chapter becom-
ing familiar with System.Collections and the interfaces that make them work. Hashtable imple-
ments IDictionary, which ultimately inherits from IEnumerable. IEnumerable is the interface that
enables For Each behavior, so you may want to iterate over your Hashtable and dump its contents.
However, when you foreach over a Hashtable, you're not iterating over the values the Hashtable
contains, but rather a strange new composite object.

315



Chapter 10

For example, you might try something like this:

VB

For Each p As Person In peopleHashtable ' Will compile but not run!
Response.Write(p.FullName & "<BR/>")

Next

C#
foreach(Person p in peopleHashtable) // Will compile but not run!
{
Response.Write(p.FullName + "<BR/>");
}

This code snippet compiles happily, but it won’t run. You are greeted with a potentially confusing
error message stating that the Specified cast is not valid. The important point is that you should
think of Hashtables as containing DictionaryEntry objects. Hashtable implements IEnumerable
and returns an IEnumerator to the For Each statement, but that TEnumerator returns a
DictionaryEntry. That DictionaryEntry then has a Key property and a value Property.

The Hashtable default implementation of IEnumerator returns DictionaryEntry
objects, not objects of your type. However, you can also iterate over both the Keys
collection and Values collection exposed by Hashtable.

Armed with this new knowledge, you can output the Person objects and the keys with which they are
stored, as shown in Listing 10-10. Remember that Hashtables can contain any objects as their values—you
just need to tell the system via a cast (CType in VB) that the Hashtable contains objects of type Person.

Listing 10-10: Using For Each with a Hashtable’s default IEnumerator implementation

VB
For Each de As DictionaryEntry In peopleHashtable
Response.Write (de.Key.ToString() & ":" & CType(de.Value, Person) .FullName & _
"<BR/>")
Next
C#

foreach (DictionaryEntry de in peopleHashtable)
{
Response.Write(de.Key.ToString() + ":" + ((Person)de.Value).FullName +
"<BR/>") ;

The output in the browser includes both the key and the value for each DictionaryEntry. Note that
you have no control over how the Hashtable chooses to order your objects:

ss:Srinivasa Sivakumar

sh:Scott Hanselman
be:Bill Evjen

In Listing 10-10, you iterated directly over the Hashtable; however, Hashtable also exposes two
ICollections: one for Keys and one for Values. Because these properties are Icollections, you

316



Collections and Lists

can iterate over them with For Each, giving you two more ways to access data from a Hashtable (see
Listing 10-11).

Listing 10-11.: Using For Each with a Hashtable’s Keys and Values member collections

VB

For Each s As String In peopleHashtable.Keys
Response.Write(s & "<BR/>")

Next

For Each p As Person In peopleHashtable.Values
Response.Write(p.FullName & "<BR/>")
Next

C#
foreach (string s in peopleHashtable.Keys)
{
Response.Write(s + "<BR/>");
}

foreach (Person p in peopleHashtable.Values)
{

Response.Write(p.FullName + "<BR/>");
}

In Listing 10-11, you iterate twice, once over the Keys and once over the values. Here’s the browser’s
output:

ss

sh

be

Srinivasa Sivakumar
Scott Hanselman
Bill Evjen

Note again that you have no control over the ordering of these Keys and values. In the next section,
you look at another potentially more useful collection that has characteristics of both a Hashtable and
an ArrayList: SortedList.

SortedList

A sortedList is a collection of key/value pairs like a Hashtable, except that it’s sorted by its keys and
the values can be manipulated via a numeric index, like an array.

Like many of the collections in System.Collections, SortedList includes a number of overloaded
constructors that make creation more convenient. You can take advantage of SortedList’s overloaded
constructor, which takes an IDictionary. You could certainly create an empty SortedList and then
manually iterate over the Hashtable’s DictionaryEntries and add them to the SortedList. But why
not take advantage of the careful design and expertise that have been put into the .NET Framework?

You've been using initials as the key, so you’d expect Srinivas to sort last in a SortedList because his
initials are ss. The expected sort order would then be be, sh, and ss. Listing 10-12 outputs the Values
collection of the new SortedList and then checks the index of Srinivas as if it were an array.

317



Chapter 10

Listing 10-12: Using a SortedList to sort by values by key

VB
Dim peopleSortedList As SortedList = New SortedList (peopleHashtable)
For Each p As Person In peopleSortedList.Values
Response.Write(p.FullName & "<BR/>")
Next
Response.Write("Index of Srinivasa: " & peopleSortedList.IndexOfKey("ss"))

C#
SortedList peopleSortedList = new SortedList (peopleHashtable) ;
foreach (Person p in peopleSortedList.Values)
{
Response.Write(p.FullName + "<BR/>");
}
Response.Write("Index of Srinivasa: " + peopleSortedList.IndexOfKey("ss"));

If you compare the output of Listing 10-12 to the output of values from Listing 10-11, notice that the list
is sorted and Srinivas is at index 2 (the third item in a zero-based array):

Bill Evjen

Scott Hanselman
Srinivasa Sivakumar
Index of Srinivas: 2

A SortedList can give you the best of both worlds if you need something that’s like a Hashtable but
is also ordered. The next section looks at the final two collections that round out System.Collections:
Queues and Stacks. They just happen to emphasize the order in which their values are stored.
Remember that like a Hashtable, the keys in a SortedList have to be unique, or a duplicate’s addition
will result in a runtime exception.

Queues and Stacks

Queues and Stacks are almost the inverse of each other. Queues are great for storing objects in the
order in which they arrive, whereas a Stack is a first-in, last-out structure. Listings 10-13 and 10-14 are
two small examples; if you put instances of a Person class in each structure, note the order as you
remove them.

Both stack and Queue implement ICollection and IEnumerable but not IList; that means that each
has a count and can be iterated over with For Each, but they aren’t as flexible as IList implementa-
tions. Each collection has very explicit behavior as seen in Listing 10-13 that should be appended to the
previous listings.

Listing 10-13: Queuing Person objects

VB

Dim peopleQueue As New Queue ()
peopleQueue.Enqueue (scott)
peopleQueue.Enqueue (bill)
peopleQueue.Enqueue (srini)

Dim x As Person = CType (peopleQueue.Dequeue(), Person)

318



Collections and Lists

Response.Write(x.FullName & "<BR/>")

x = CType (peopleQueue.Dequeue (), Person)
Response.Write(x.FullName & "<BR/>")

x = CType (peopleQueue.Dequeue (), Person)
Response.Write(x.FullName & "<BR/>")

C#

Queue peopleQueue = new Queue() ;
peopleQueue.Enqueue (scott) ;
peopleQueue.Enqueue (bill) ;
peopleQueue.Enqueue (srini) ;

Person x = (Person)peopleQueue.Dequeue () ;
Response.Write(x.FullName + "<BR/>");

x = (Person)peopleQueue.Dequeue () ;
Response.Write(x.FullName + "<BR/>");

x = (Person)peopleQueue.Dequeue () ;
Response.Write(x.FullName + "<BR/>");

Because a Queue is a first-in, first-out structure, the Person objects print in the same order that they
were enquetied into the Queue. Here’s the output of Listing 10-13:

Scott Hanselman
Bill Evjen
Srinivasa Sivakumar

Stacks are first in, last out. One pushes objects onto a stack and pops them off the stack. If you imagine
literally stacking objects on top of each other, you see that the analogy works. stacks also include an
extra useful function, Peek, that lets you see the object at the top of the Stack without removing it.

In Listing 10-14, you pop two objects, being sure to cast them to objects of type Person; then you peek at
an object without changing the stack. Having peeked at the final object, you pop it off the stack.

Listing 10-14: Pushing, popping, and peeking Person objects in a Stack

VB

Dim peopleStack As New Stack()
peopleStack.Push(scott)
peopleStack.Push(bill)
peopleStack.Push (srini)

Dim x As Person = CType (peopleStack.Pop(), Person)
Response.Write(x.FullName & "<BR/>")

x = CType (peopleStack.Pop(), Person)
Response.Write(x.FullName & "<BR/>")

x = CType (peopleStack.Peek(), Person) 'Peek, not Pop

(continued)

319



Chapter 10

Listing 10-14: (continued)
Response.Write(x.FullName & "<BR/>")

x = CType (peopleStack.Pop(), Person)
Response.Write(x.FullName & "<BR/>")

C#

Stack peopleStack = new Stack();
peopleStack.Push(scott) ;
peopleStack.Push(bill) ;
peopleStack.Push(srini) ;

Person x = (Person)peopleStack.Pop() ;
Response.Write(x.FullName + "<BR/>");

x = (Person)peopleStack.Pop() ;
Response.Write(x.FullName + "<BR/>");

X = (Person)peopleStack.Peek(); //Peek, not Pop
Response.Write(x.FullName + "<BR/>");

x = (Person)peopleStack.Pop() ;
Response.Write(x.FullName + "<BR/>");

The output in the browser of Listing 10-14 is the opposite of the output from Listing 10-13, plus it
includes the extra output from the call to Peek:

Srinivasa Sivakumar
Bill Evjen

Scott Hanselman
Scott Hanselman

You'll probably use Stack and Queue less often than Hashtable and ArrayList, but when you do
need them, it’s good to know they are waiting.

Specialized Collections

The MSDN Documentation at http://msdn2 .microsoft.com/library/system.collections
.specialized.aspx says that System.Collections.Specialized contains “specialized and
strongly-typed collections.” For that reason, this section talks about System.Collection.BitArray
because it is certainly a very specific kind of collection. The other collections in System.Collections
.Specialized are strongly typed collections that contain only strings, as well as another bit-related col-
lection and an IDictionary implementation for tiny collections.

HybridDictionary and ListDictionary

The ListDictionary is an implementation of IDictionary that works very quickly for lists of items
composed of 10 or less. It is not performant for large numbers of items. The HybridDictionaryisa
great compromise that uses a ListDictionary until the collection gets larger than 10 items, and then it
switches internally to use a Hashtable.

320



Collections and Lists

Note, however, that none of these collections implements IList, and, therefore, the order of the objects
is not guaranteed, like a HashTable. If you need keys and to maintain ordering, refer to the
OrderedDictionary in the Specialized namespace.

If you code to the methods IDictionary provides, implementations of
IDictionary are interchangeable. Some of the implementations you can choose
from are Hashtable, SortedList, ListDictionary, and HybridDictionary
(among others).

StringCollection, StringDictionary,
and NameValueCollection

The stringCollection is like a strongly typed ArrayList that contains only strings. Because it is
strongly typed for string, no casting is required when you retrieve strings from it. It implements IList,
ICollection, and IEnumerable, so you can iterate over it with For Each and access strings via a
numeric index.

The stringDictionary is a Hashtable with the keys and values both strongly typed as strings. Both
the Keys and Values collection properties are strings, and the indexing property accessor requires no
casting or calls to CType.

A NameValueCollection is a sorted collection of string keys and string values. It behaves like a
Hashtable with string keys, and its values can be accessed by numeric index. Its property accessor is
overloaded to take both a string and an integer.

BitArray

The BitArray is a very specialized collection that manages a compact list of bit values, but presents
those values as Booleans to the programmer. BitArray also includes methods for applying And, Or,
and Not methods to other BitArrays. It is very efficient in its use of memory, so if you find yourself
managing an array or collection of Booleans, consider using a BitArray instead.

The Microsoft.VisualBasic.Collection Class

The Microsoft.VisualBasic.Collection is a strange animal. It implements both IList and
ICollection and usually behaves like an ArrayList. However, its Add method includes optional key
parameters that are typed as strings. This Collection class has behavior and method signatures identical
to the Visual Basic 6 Collection object, but it cannot be passed over COM interop boundaries. When
new .NET code interoperates with legacy VB6 code, data types must be “marshaled,” or translated,
between the world of .NET and the world of VB6. The space between these two worlds is often called the
COM interoperability boundary. Some collections lend themselves for easy marshaling and some do not.

If you are attempting to upgrade code from Visual Basic 6 or earlier to Visual Basic 2005 (now called just
VB), any automated upgrading your tools are using will map the VB6 Collection to this Microsoft
.VisualBasic.Collection. However, stay away from this class for any new .NET development.
Think of this collection as a helper for upgrade and COM interop scenarios only.

321



Chapter 10

Strongly Typed Collections

So far, in this chapter, you call CType (or cast in C#) every time you retrieve an object from a
System.Collection. Sometimes you might like a collection called PersonList that holds only objects
of type Person and that can retrieve Person references without casting.

There are many different ways to create a strongly typed collection class. In Listing 10-15, you use an
ArrayList internally, but you present only the Person class to the public. You create your own Add and
Remove methods that take a Person class as a parameter, and then you expose the internal ArrayList’s
IEnumerable implementation in order to support the For Each keyword.

Listing 10-15: A strongly typed PersonList with an internal ArrayList

322

Imports System.Collections
Public Class PersonList

Implements System.Collections.IEnumerable
Private innerList As ArrayList = New ArrayList()

Public Sub Add(ByVal aPerson As Person)
innerList.Add (aPerson)
End Sub

Public Sub Remove (ByVal aPerson As Person)
innerList.Remove (aPerson)
End Sub

Public ReadOnly Property Count() As Integer
Get
Return innerList.Count
End Get
End Property

'Get/set element at given index
Default Public Property Item(ByVal index As Integer) As Person
Get
Return CType (innerList (index), Person)
End Get
Set (ByVal Value As Person)
innerList (index) = Value
End Set
End Property

Public Function GetEnumerator () As IEnumerator
Implements IEnumerable.GetEnumerator
Return innerList.GetEnumerator ()
End Function

End Class



Collections and Lists

C#

using System.Collections;

public class PersonList : System.Collections.IEnumerable
{

private ArraylList innerList = new ArrayList();

public void Add(Person aPerson)
{

innerList.Add (aPerson) ;

public void Remove (Person aPerson)
{

innerList.Remove (aPerson) ;

public int Count
{

get { return innerList.Count; }

// Get/set element at given index

public Person this[int index]

{
get { return (Person)innerList[index]; }
set { innerList[index] = value; }

public IEnumerator GetEnumerator ()
{

return innerList.GetEnumerator () ;

Listing 10-16 uses the custom PersonList instead of an ArrayList, as you saw earlier in Listing 10-8.

Listing 10-16: Using a custom strongly typed PersonList

VB
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.Load

Dim scott As New Person("Scott", "Hanselman")
Dim bill As New Person("Bill", "Evjen")
Dim srini As New Person("Srinivasa", "Sivakumar")

Dim people As New PersonList ()
people.Add (scott)
people.Add(bill)

people.Add (srini)

For Each p As Person In people
Response.Write(p.FullName & "<BR/>")

(continued)

323



Chapter 10

Listing 10-16: (continued)
Next

For 1 As Integer = 0 To people.Count -1
Response.Write (people (i) .FullName & "<BR/>")
Next
End Sub

C#
protected void Page_Load(object sender, EventArgs e)

{

Person scott = new Person("Scott", "Hanselman");
Person bill = new Person("Bill", "Evjen");
Person srini = new Person("Srinivasa", "Sivakumar");

PersonList people = new PersonList();
people.Add (scott) ;
people.Add (bill) ;
people.Add(srini) ;

foreach (Person p in people)
{

Response.Write(p.FullName + "<BR/>");
}

for (int i = 0; i1 < people.Count; i++)
{

Response.Write (people[i] .FullName + "<BR/>");
}

The For Each syntax is the same for the custom collection as it is for the ArrayList because this custom
collection implements IEnumerable.

The For loop construct becomes even simpler with the removal of the call to CType (or casting in C#).
Note the use of the Default keyword for the VB property accessor and the use of this for the C# prop-
erty accessor. You can see (in Listing 10-15) that the cast is hidden in the property accessor and the return
value of the property is strongly typed.

VB
Default Public Property Item(ByVal index As Integer) As Person

C#
public Person this[int index]

These constructs enable array-style indexing into the strongly typed collection. Strongly typed custom
collections can be extended and customized to your heart’s desire. You can create strongly typed
HashMaps that enable lookup of objects by both key and value, or chains and networks of objects. The
public face of your custom collections is up to you.

324



Collections and Lists

However, when you just want a simple PersonHashtable or PersonList, it is a real hassle to write a
custom strongly typed collection. In order to help with this problem, the .NET Framework 2.0 has intro-
duced a concept called generics.

System.Collections.Generics

Strongly typed collections written by hand are verbose and tied to one type of object by their nature. The
PersonList, although convenient to use, is inadequate if you introduce an Employee class or Vehicle
class; in those situations, you should write a custom EmployeeList and VehicleList.

What Are Generics?

When you use generics, you are creating classes or methods that use a generic type, rather than a specific
type. For example, rather than creating a type-specific (and, therefore, nonreusable) PersonList, as
shown in Listing 10-16, you could create a reusable List class using generics. How is that different from
the ArrayList class you have already? The System.Collection.ArrayList can be used with any
object, including Person, but no type checking is done when instances of Person are passed to meth-
ods. You have to manually cast objects back to type Person when retrieving; which makes the code not
only harder to read, but more fragile at runtime.

Generics aim to promote the following:

0  Binary code reuse: You can use an ArrayList with any object, but the custom PersonList
(from Listing 10-16) can’t be easily reused. Generic classes can be used with any type.

Q  Performance: You are paying a performance price every time you cast an object during a
retrieve, and you pay a price for boxing up value types such as int (Integer in VB) and bool
(Boolean in VB) when they are put into collections. This isn’t the case with generics because the
knowledge of generics is built directly into the runtime.

O  Ease of reading: Handwritten, strongly typed collections can be tricky to write and hard to
read. Generic syntax is intuitive, easy to read, and reduces code bloat.

Q  Type safety: A standard ArrayList takes any object in as a parameter to its Add method. The
compiler doesn’t care, and you won't know if anything has gone wrong until a cast fails when
pulling an object out of the collection. Generics have built-in type safety; the compiler complains
if any type checking rules are broken going into or coming out of a generic collection class.

Generics are often compared directly to C++ templates and the proposed generics equivalent in the Java
language. However, these additions to C++ and Java are largely features of their respective compilers.
These compilers construct “extra” code at compile time for each referenced template type. Generics in
the .NET 2.0 CLR work differently.

Generics in .NET 2.0 are a first-class feature of the Common Language Runtime and are created and
JIT’ed at runtime. Each instance of a generic type, such as List<Person> or Hashtable<int>, is a first
class entity and can be reused by the CLR. If these generic types are referenced in another assembly, they
share type equivalency and can be passed back and forth.

325



Chapter 10

Additionally, these types can be used between languages. A List<Person> in C#is a List (Of Person)
in VB, but they are the same type and can be shared and treated as such. This first class treatment of
generics, along with the unique runtime typing and type equivalence, makes .NET 2.0’s implementation
of generics fantastically powerful.

Generic Lists

All the Generic collections are in System.Collections.Generic. Listing 10-17 creates a Person-specific
list using generics in order to illustrate the new generic syntax.

Amazingly, the code from Listing 10-16 works using generics by simply changing a single line in Listing
10-17 and deleting all the custom collection code from Listing 10-15! Instead of creating a specialized and
custom PersonList, generics allow us to use a template and create a strongly typed and generic List
of type Person that can be operated on exactly as before in Listing 10-15.

Listing 10-17: Creating a list of Person objects using generics

VB

Imports System.Collections.Generic

Protected Sub Page_Load(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Load

Dim scott As New Person("Scott", "Hanselman")
Dim bill As New Person("Bill", "Evjen")
Dim srini As New Person("Srinivasa", "Sivakumar")

Dim people As New List (Of Person)
people.Add (scott)
people.Add (bill)
people.Add (srini)

For Each p As Person In people
Response.Write(p.FullName & "<BR/>")
Next

For 1 As Integer = 0 To people.Count - 1
Response.Write(people(i).FullName & "<BR/>")
Next
End Sub

C#

using System.Collections.Generic;

protected void Page_Load(object sender, EventArgs e)
{

Person scott = new Person("Scott", "Hanselman");
Person bill = new Person("Bill", "Evjen");
Person srini = new Person("Srinivasa", "Sivakumar");

List<Person> people = new List<Person>();
people.Add (scott) ;
people.Add (bill);

326



Collections and Lists

people.Add(srini) ;

foreach (Person p in people)
{
Response.Write(p.FullName + "<BR/>");

for (int i = 0; i < people.Count; i++)
{
Response.Write(people[i] .FullName + "<BR/>");

Notice the new syntax used for generics. VB adds the intuitive 0f keyword to enable you to create a
List (Of Person), whereas C# uses the C++-like angle-bracket syntax to create a List<Person>. The
documentation shows type declarations for generic types like List<T> in C#and List (Of T) in VB,
where T means Type. Dictionaries that take type parameters as a key and a value use K and v, respec-
tively, to represent those types, as in Dictionary<K, V> for C# and Dictionary (Of K, V) for VB.

VB
Public Class List(Of T) 'Class Definition

Dim people As New List (Of Person) 'Instance Declaration

C#

Public Class List< T> //Class Definition

/...

List<Person> people = new List<Person>(); //Instance Declaration

You can use this syntax for all generics, including those that take multiple generic type parameters.
Listing 10-18 extends this concept to create a hashtable-like structure using generics.

Generic Dictionary

Hashtables are dictionaries, and the generic version of a hashtable is Dictionary (Of K, V). As shown
in Listing 10-18, you can change Listing 10-9 to use a generic Dictionary instead of a Hashtable.
You'll also need to add the System.Collections.Generics namespace.

Listing 10-18: Using a generic Dictionary instead of a non-generic Hashtable

VB

Dim peopleHashtable As New Dictionary(Of String, Person)
peopleHashtable.Add("sh", scott)
peopleHashtable.Add("be", bill)
peopleHashtable.Add("ss", srini)

Dim found As Person = peopleHashtable("sh")
Response.Write(found.FullName & "<BR/>")
found = peopleHashtable("be")
Response.Write(found.FullName & "<BR/>")
found = peopleHashtable("sh")
Response.Write(found.FullName & "<BR/>")

(continued)

327



Chapter 10

Listing 10-18: (continued)

C#

Dictionary<String, Person> peopleHashtable = new Dictionary<string, Person>();
peopleHashtable.Add("sh", scott);

peopleHashtable.Add ("be", bill);

peopleHashtable.Add("ss", srini);

Person found = peopleHashtable["sh"];
Response.Write(found.FullName + "<BR/>");
found = peopleHashtable["be"];
Response.Write(found.FullName + "<BR/>");
found = peopleHashtable["sh"];
Response.Write(found.FullName + "<BR/>");

Notice that the one-line type declaration changed from Listing 10-9 to Listing 10-18, and you were also
able to remove all the casting during retrieval in both languages!

Generics are completely Common Language Specification (CLS) compliant. They
were not in early betas, but the final release of .NET 2.0 finds the C# and VB compil-
ers treating generics as fully supported CLS-compliant code. The CLS dictates what
features a .NET language must support — the lowest common denominator, if you
will. The capability to consume CLS-compliant types is the minimum that all NET
languages targeting the CLR must meet, not only to use APIs from the Base Class
Library, but also for interoperability between each other. This new addition has
nothing but upside for the developer. You will be able to use many elegant new
generics-based APIs from Microsoft, as well as CLS-compliant libraries from third-
party developers. Additionally, third-party languages such as Delphi or Python that
choose to target the .NET 2.0 CLR will include generics in their updated language
implementation.

Other Generic Collections

There are Queue (0f T), Stack (0f T), and SortedDictionary (Of T) generic classes as well. A new col-
lection type addition to the .NET Framework is the LinkedList (0f T) class. It is a strongly typed, dou-
bly linked list where each node points both forward to the next node and backward to the previous node.

Collection Changes from
.NET 1.1 to .NET 2.0

The big change in the .NET Framework 2.0 is the addition of Generics support in the runtime and the
many classes in the System.Collections.Generics namespace. However, a few small things have
been changed or added in System.Collections and .Specialized that you should be aware of if
you are porting collection-related code from .NET 1.1:

328



Collections and Lists

O  Anew interface, System.Collections.Specialized.IOrderedDictionary derives from
IDictionary, butit adds a property indexer that takes an integer, as well as RemoveAt and
overloads for Insert.

O  All collections, except BitVector, are now marked with the [Serializable] attribute.

0  IKeyComparer is a new interface, and constructor overloads have been added to Hashtable.
If IKeyComparer is provided, the key objects in the Hashtable do not need to override
GetHashCode. This clever addition means that key comparison is completely pluggable and
multiple-key comparison implementations can be provided for the same kind of key object.

QO  The CollectionBase class now includes a property called Capacity.

Collections and List Guidance

The following table summarizes the collections discussed in this chapter, as well as a few others for you

to explore.
Collection Interfaces Why It’s Special What It’s Useful for
System.Array IList, ICollection, Most basic collection  Collections of
IEnumerable type; indexing is fixed size
wickedly fast
System.Collections. IList, ICollection, Numeric indexing is ~ Ordered lists of
ArrayList IEnumerable fast as Array; grows  varying kinds of
internal array objects
automatically
System.Collections. IDictionary, Objects are indexed Whenever you need
Hashtable ICollection, by key; increases size a non-ordered,
IEnumerable automatically keyed collection
System.Collections. ICollection, First in, first out Implementing
Queue IEnumerable Queue-like behavior
System.Collections. ICollection, First in, last out Implementing
Stack IEnumerable Stack-like behavior
System.Collections. IDictionary, Hybrid of Hashtable Smaller
SortedList ICollection, and ArrayList; Hashtables where
IEnumerable sorts keys with order of keys
IComparable or matters
IComparer
System.Collections. ICollection, Tiny and very fast Instead of an array
BitArray IEnumerable of Booleans for
efficiency
System.Collections. ICollection, Faster than Very small
Specialized. IEnumerable Hashtable for small collections, less than
ListDictionary numbers of items 10 items

Table continued on following page

329



Chapter 10

Collection Interfaces Why It’s Special What It’s Useful for
System.Collections. IDictionary, Stores objects in a Key collections that
Specialized. ICollection, ListDictionary Inaygetkwge
HybridDictionary IEnumerable until it gets too big;

System.Collections.

Specialized.
StringCollection

System.Collections.

Specialized.
StringDictionary

System.Collections.

Specialized.

NameValueCollection

Microsoft.
VisualBasic.
Collection

System.Collections.

Generic.
Dictionary<K, V>

System.Collections.

Generic.List<T>

System.Collections.

Generic.
Queue<T>

IList, ICollection,
IEnumerable

IEnumerable

ICollection,
IEnumerable

IList, ICollection,
IEnumerable

IDictionary,
ICollection,
IEnumerable,
IDictionary<K, V>,
ICollection<
KeyValuePair<K,V>>,
ICollection<
IEnumerable<K,V>>,

IList<T>,
ICollection<T>,
IEnumerable<T>,
IList, ICollection,
IEnumerable

ICollection,
IEnumerable,
ICollection<T>,
IEnumerable<T>

then switches to a
Hashtable

A strongly typed
ArrayList-like
structure for strings

A strongly typed
Hashtable for
Strings

A Hashtable where
the keys are strings

An indexable array
of items that is also
keyed with a string
like a Hashtable

Generic version of
a Hashtable

Generic version of
an ArrayList

Generic version of
a Queue

Instead of an
ArrayList when
you're storing
strings

Instead of a
Hashtable when
both key and value
are strings

Instead of a
Hashtable when
the key is a string
and the value is an
object

Visual Basic 6
upgrade
compatibility

Strongly typed
Hashtable of
objects of the same
type or with a
shared base class
with key objects of
the same type, or
with a shared base
class

Strongly typed
ordered List of
objects of the same
type, or with a
shared base class

Strongly typed
queue of objects of
the same type, or
with a shared base
class




Collections and Lists

Collection Interfaces Why It’s Special What It’s Useful for
System.Collections. ICollection, Generic version Strongly typed
Generic.Stack<T> IEnumerable, of a Stack Stack of objects of
ICollection<T>, the same type, or
IEnumerable<T> with a shared base
class
System.Collections. IDictionary, Generic version of Strongly typed
Generic. ICollection, a Hashtable with Hashtable of
SortedDictionary<K,V> IEnumerable, Keys sorted using objects of the same

System.Collections. IList<T>, An extended version  Acts as a base class
Generic. ICollection<T>, of List<T> template for custom
Collection<T> IEnumerable<T>, collections that you
IList, ICollection, create via derivation
IEnumerable
System.Collections. Ilist<T>, Derives from Similar to a
Generic. ICollection<T>, Collection<T>, Hashtable
KeyedCollection<K,T> IEnumerable<T>, adds Hashtable-like
IList, ICollection,  support for keys
IEnumerable
System.Collections. ICollection<T>, Like a collection, Strongly typed
Generic. IEnumerable<T>, but each node knows LinkedList
LinkedList<T> and ICollection, about the previous
System.Collections. Ienumerable and next nodes

Generic.
LinkedListNode<T>

IDictionary<K, V>, Icomparer type, or with a
ICollection< shared base class,
KeyValuePair<K,V>>, with sorted key
ICollection<T> objects of the same

IEnumerable<K, V>>

type, or with a
shared base class

Summary

When you understand the building block interfaces ITEnumerable, Ilist, and IDictionary that make
up System.Collections, you can use any collection class comfortably.

In this chapter, you learned how to store objects in standard System.Arrays. You stored objects in tradi-

tional collections from the System.Collection namespace but cast them back to their specific type
upon retrieval. You also explored the advanced techniques available in the specialized collections, and

331



Chapter 10

you created custom strongly typed collections that can hide the casting internally and expand the collec-
tions with additional functionality. Finally, you delved into System.Collections.Generic and dis-
covered how you can have the best of both worlds with strongly typed classes via generics, as well as
less code, compile-time checking, and a syntax that is simpler to read.

As you continue to investigate collections, remember that IEnumerable and IEnumerator enable the
For Each statement, and ICollection adds support for the Count property. IList adds Add, Remove,
Contains, and other helpful methods, whereas IDictionary extends the ICollection with a default
property accessor that takes a key object and a few other methods to support key/value pairs. A clear
understanding of the responsibilities of these elemental interfaces will serve you well.

332



11

Data Binding in ASP.NET 2.0

One of the most exciting features of ASP.NET 1.0/1.1 was its capability to bind entire collections of
data to controls at runtime without requiring you to write large amounts of code. The controls
understood they were data-bound and would render the appropriate HTML for each item in the
data collection. Additionally, you could bind the controls to any type of data sources, from simple
arrays to complex Oracle database query results. This was a huge step forward from ASP, in which
each developer was responsible for writing all the data access code, looping through a RecordSet,
and manually rendering the appropriate HTML code for each record of data.

In ASPNET 2.0, Microsoft has taken the concept of data binding and expanded it to make data
binding even easier to understand and use. ASP.NET 2.0 introduces a new layer of data abstraction
called data source controls. This chapter explores all the provided data source controls, as well as
describing other ASPNET 2.0 data-binding changes. It shows how you can use the data source
controls to easily and quickly bind data to data-bound controls. This chapter also focuses on the
power of the new data-bound List controls included in ASP.NET 2.0, such as the GridView,
DetailsView, and FormView controls. Finally, you take a look at changes in the inline data binding
syntax and inline XML data binding.

Data Source Controls

In ASP.NET 1.0/1.1, you typically performed a data-binding operation by writing some data
access code to retrieve a DataReader or a DataSet object; then you bound that data object to a
server control such as a DataGrid, DropDownlList, or ListBox. If you wanted to update or delete
the bound data, you were then responsible for writing the data access code to do that. Listing 11-1
shows a typical example of a data-binding operation in ASPNET 1.0/1.1.




Chapter 11

Listing 11-1: Typical data-binding operation in ASP.NET 1.0/1.1

VB
Dim conn As New SglConnection ()
Dim cmd As New SglCommand ("SELECT * FROM Customers", conn)

Dim da As New SglDataAdapter (cmd)

Dim ds As New DataSet ()
da.Fill (ds)

DataGridl.DataSource = ds
DataGridl.DataBind ()

C#
SglConnection conn = new SglConnection() ;
SglCommand cmd = new SglCommand ("SELECT * FROM Customers", conn);

SglDataAdapter da = new SglDataAdapter (cmd) ;

DataSet ds = new DataSet();
da.Fill (ds) ;

DataGridl.DataSource = ds;
DataGridl.DataBind() ;

ASPNET 2.0 introduces an additional layer of abstraction through the use of data source controls. As
shown in Figure 11-1, these controls abstract the use of an underlying data provider, such as the SQL Data
Provider or the OLE DB Data Provider. This means you no longer need to concern yourself with the hows
and whys of using the data providers. Instead, the data source controls do all the heavy lifting for you.
You need to know only where your data is and, if necessary, how to construct a query for performing
CRUD (Create, Retrieve, Update, and Delete) operations.

Additionally, because the data source controls all derive from the Control class, you can use them much
as you would any other Web Server control. For instance, you can define and control the behavior of the
data source control either declaratively in your HTML or programmatically. This means you can perform
all manner of data access and manipulation without ever having to write one line of code. In fact,
although you certainly can control the data source controls from code, the samples in this chapter show
you how to perform powerful database queries using nothing more than the Visual Studio 2005 wizards
and declarative syntax.

334



T-TT 2in8i4

$90In0S eleq

0'C LANGSY u!

paonpo.jul Jahe
|0JJU0D 92IN0S
e1eQ MaU 8yl

'l [301bs || 0gao0 |[agaio] | D | swelqo  |! !| eveq ispinoid |
| oros | eeasaw D emea x| gooieng || dewens |
: apelo o o o Lo !
i |bs . . n n m
|| s;opimoid e1e@ 13NOQY |1 ! o o o m
22IN0S 22In0S 22IN0S 20IN0S 22In0S
m ered 10S | || eeassecoy |1 i eledIWX | i eedelqo |i il eleq deweus |:

(Joyuoppunogeleq Wol paaLIap)

|011U0) punog

S|0U0) punog JaYy10

(JouoppuNogeIRg WOoJ PAALISP) S|0U0D punog

S|0J1U0D punog 1sI7




Chapter 11

The five built-in data source controls in ASP.NET 2.0 are each used for a specific type of data access. The
following table lists and describes each data source control included in ASP.NET 2.0.

Control Name Description

SglDataSource control Provides access to any data source that has an
ADO.NET Data Provider available; by default, the
control has access to the ODBC, OLE DB, SQL Server,
Oracle, and SQL Server CE providers

ObjectDataSource control Provides specialized data access to business objects or
other classes that return data

XmlDataSource control Provides specialized data access to XML documents,
either physically or in-memory

SiteMapDataSource control Provides specialized access to site map data for a Web
site that is stored by the site map provider

All the data source controls are derived from the DataSourceControl class, which is derived from
Control and implements the IDataSource and IListSource interfaces. This means that although
each control is designed for use with specific data sources, all data source controls share a basic set of
core functionality. It also means that it is easy for you to create your own custom data source controls
based on the structure of your specific data sources.

SqlDataSource Control

The SqlDataSource control is the data source control to use if your data is stored in a SQL Server, Oracle
Server, ODBC data source, OLE DB data source, or Windows SQL CE Database. The control provides an
easy-to-use wizard that walks you through the configuration process, or you can modify the control
manually by changing the control attributes directly in Source view. In the example presented in this
section, you walk through creating a SqlDataSource control and configuring it using the wizard. After
you complete the configuration, you examine the source code it generates.

Begin using the control by opening an . aspx page inside a Visual Studio Web site project and dragging
the SqlDataSource control from the toolbox onto the form. The Visual Studio toolbox has been divided
into functional groups so you find all the data-related controls located under the Data section.

Configuring a Data Connection

After the control has been dropped onto the Web page, you tell it what connection it should use. The
easiest way to do this is by using the Configure Data Source Wizard, shown in Figure 11-2. Launch this
wizard by selecting the Configure Data Source option from the data source control’s smart tag menu.

Once the wizard opens, you should create a connection to the Northwind database in SQL Server or
MSDE. You will use this connection for most of the demonstrations in this chapter. After the wizard
opens, you can select an existing connection from the drop-down list or create a new connection. If you
click the New Connection button, the Connection Properties dialog, shown in Figure 11-3, appears. From
here, you can set all the properties of a new database connection.

336



Data Binding in ASP.NET 2.0

Configure Data Source - SqlDataSource1

Choose Your Data Connection

Which data connection should your application use to connect to the database?

| wim-xpclean.Morthwind, dbol

V| [ New Connection, ..

[=] Connection string

Daka Source=localhost;Initial Catalog=Morthwind;User ID=sa;Password=password

Figure 11-2
Add Connection 2&3
Enter information ko connect to the selected data source or dick
"Change" to choose a different data source andfor provider.
Data source;
Microsoft SQL Server (SglClient)
SErvEr Name:
| [V] [ Refresh ]
Lag on ko the server
() Use 'Windows Authentication
O Use SOL Server Authentication
Connect ko a database
Test Connection
Figure 11-3

337



Chapter 11

Click the Change button. From here, you can choose the specific data provider you want this connection
to use. By default, the control uses the ADO.NET SQL Data Provider; also available are Oracle, OLE DB,
ODBC, and SQL Server Mobile Edition providers.

The list of providers is generated from the data contained in the DbProviderFactory node of the
machine.config file. If you have additional providers to display in the wizard you can modify
your machine. config file to include specific providers” information.

Next, simply fill in the appropriate information for your database connection. Click the Test Connection
button to verify that your connection information is correct, and then click OK to return to the wizard.

After you have returned to the Data Source Configuration wizard, notice that the connection you created
is now listed in the available connections drop-down list. After you select a connection string from the
drop-down, the connection information shows in the Data Connection info area. This allows you to easily
review the connection information for the Connection selected in the drop-down list.

Click the Next button to continue through the wizard. The next step allows you to choose to have the
wizard save your connection information in your web. config file to make maintenance and deployment of
your application easier. This screen allows you to specify the key under which the connection information
should be stored in the configuration file. Should you choose not to store your connection information in the
web. config file, it is stored in the actual . aspx page as a property of the SqlDataSource control.

The next step in the wizard allows you to configure the SELECT statement your data source control will
use to retrieve data from the database. This screen, shown in Figure 11-4, gives you a drop-down list of
all the tables and views available in the database that you specified in your connection information.
After you select a table or view, the list box allows you to select the column you want to include in the
query. You can select all columns available using an asterisk (*), or you can choose specific columns by
marking the check box located next to each column name. By clicking the WHERE or ORDER BY button,
it is also possible to specify WHERE clause parameters and ORDER BY parameters for your query. For now,
do not enter any additional WHERE or ORDER BY parameters.

Finally, the Advanced button contains two advanced options. You can have the wizard generate INSERT,
UPDATE, and DELETE statements for your data, based on the SELECT statement you created. You can also

configure the data source control to use Optimistic Concurrency to prevent data concurrency issues.

The final screen of the wizard allows you to preview the data selected by your data source control to
verify the query is working as you expect it to. Simply click the Finish button to complete the wizard.

338



Data Binding in ASP.NET 2.0

Configure Data Source - SqlDataSource1 E]El

jl:‘_/ Configure the Select Statement
| —

How would you like to retrieve data from your database?
() Specify a custom SGQL skatement or stored procedure

(%) specify columns From a table or view

Marne:

|Cust0mers -

Columnns:

= [ ity [ return anky unique rows
[] CustomerID [] Region WHERE...

[ Companyhame [ PostalCade

[ Cantacthame [ Cauntry ORDER BY...

[] ContactTitle [ Phone

[ Address [ Fax
SELECT statement:

Figure 11-4

When you are done configuring your data connection, you can see exactly what the configured
SqlDataSource control looks like. Change to Source view in Visual Studio to see how the wizard has gen-
erated the appropriate attributes for your control. It should look something like the code in Listing 11-2.

Listing 11-2: Typical SqlDataSource control generated by Visual Studio

<asp:SglDataSource ID="SglDataSourcel" Runat="server"
SelectCommand="SELECT * FROM [Customers]"

ConnectionString="<%$ ConnectionStrings:AppConnectionStringl %>">
</asp:SglDataSource>

You can see that the control uses a declarative syntax to configure which connection it should use by
creating a ConnectionString attribute, and what query to execute by creating a SelectCommand
attribute. A little later in the chapter, you look at how to configure the SglDataSource control to execute
INSERT, UPDATE and DELETE commands as this data changes.

339



Chapter 11

Data Source Mode Property

One of many important properties of the SqlDataSource control is the DataSourceMode property. This
property enables you to tell the control if it should use a DataSet or a DataReader internally when
retrieving the data. This is important when you are designing data-driven ASPNET pages. If you choose
to use a DataReader, data is retrieved using what is commonly known as fire hose mode, or a forward-
only, read-only cursor. This is the fastest way to read data from your data source because a DataReader
does not have the memory and processing overhead of a DatasSet. But choosing to use a DataSet
makes the data source control more powerful by enabling the control to perform other operations such
as inserting, updating, or deleting data as it is changed in the Dataset. It also enables the built-in
caching capabilities of the control. Each option offers distinct advantages and disadvantages, so consider
this property carefully when designing your Web site. The default value for this property is to use a
DatasSet to retrieve data. The code in Listing 11-3 shows how to add the DataSourceMode property to
your SqlDataSource control.

Listing 11-3: Adding the DataSourceMode property to a SqlDataSource control

<asp:SglDataSource ID="SglDataSourcel" Runat="server"
SelectCommand="SELECT * FROM [Customers]"
ConnectionString="<%$ ConnectionStrings:AppConnectionStringl %>"
DataSourceMode="DataSet">

</asp:SglDataSource>

Filtering Data Using SelectParameters

Of course, when selecting data from your data source, you may not want to get every single row of data
from a view or table. You want to be able to specify parameters in your query to limit the data that is
returned. The data source control allows you to do this by using the SelectParameters collection to
create parameters that it can use at runtime to alter the data that is returned from a query.

The SelectParameters collection consists of controls that derive from the Parameters class. You can
combine any number of parameter controls in the collection. The data source control then uses these to
create a dynamic SQL query. The following table lists and describes the available parameter controls.

Parameter Description

ControlParameter Uses the value of the specified control
CookieParameter Uses the key value of a cookie

FormParameter Uses the key value from the Forms collection
QuerystringParameter Uses a key value from the Querystring collection
pProfileParameter Uses a key value from the user’s profile
SessionParameter Uses a key value from the current user’s session

340



Data Binding in ASP.NET 2.0

Because all the parameter controls derive from the Parameters class, they all contain several useful
common properties. These properties are shown in the following table.

Property Description

Type Allows you to strongly type the value of the
parameter

ConvertEmptyToNull Indicates the control should convert the value

assigned to it to Null if it is equal to
System.String.Empty

DefaultValue Allows you to specify a default value for the
parameter if it is evaluated as Null

The code in Listing 11-4 shows an example of adding a QueryStringParameter control to the
SelectParameters collection of your SqlDataSource control. As you can see, the SelectCommand
query has been modified to include a WHERE clause. When you run this code, the value of the query
string field ID is bound to the @CustomerID field in your SelectCommand, allowing you to select only
those customers whose CustomerID field matches the value of the query string field.

Listing 11-4: Filtering select data using SelectParameter controls

<asp:SglDataSource ID="SglDataSourcel" Runat="server"
SelectCommand="SELECT * FROM [Customers] WHERE ([CustomerID] = @QCustomerID)"
ConnectionString="<%$ ConnectionStrings:AppConnectionStringl %>"
DataSourceMode="DataSet">
<SelectParameters>
<asp:QueryStringParameter Name="CustomerID"
QueryStringField="ID" Type="String">
</asp:QueryStringParameter>
</SelectParameters>
</asp:SglDataSource>

In addition to hand-coding your SelectParameters collection, you can create parameters using the
Command and Parameter Editor dialog, which can be accessed by modifying the SelectCommand property
of the SqlDataSource control while you are viewing the Web page in design mode. Figure 11-5 shows the
Command and Parameter Editor dialog.

This dialog gives you a fast and friendly way to create SelectParameters for your query. Simply select
the Parameter source from the drop-down list and enter the required parameter data. Figure 11-5
demonstrates how to add the ControlParameter (based on the value of the querystring Field ID) to
your SqlDataSource control.

341



Chapter 11

Command and Parameter Editor B[]

SELECT command:
SELECT * FROM [Customers] WHERE ([CustomerID] = @CustomerID)

Refresh Parameters Query Builder ..,

Parameters: Parameter source:
Marmne alue i QueryString [

CuskomerID Request. QueryString(”. .. % | QueryStringrield:

ID

Defaultyalue:

Show advanced properties

Add Parameter

l Ok ] [ Cancel

Figure 11-5

Conflict Detection Property

The conflictDetection property allows you to tell the SqlDataSource control what style of conflict
detection to use when updating the data. When the value is set to OverwriteChanges, the control uses
a Last in Wins style of updating data. In this style, the control overwrites any changes to data that have
been made between the time the data was retrieved by the control and the time the update is made.

If the value is set to CompareaAllvalues, the control compares the original data values (what was
retrieved) to the data values currently in the data store. If the data has not changed since it was
retrieved, the control allows the changes to be implemented. If the control detects differences between
the original data that was retrieved from the data store and what is currently in the data store, it does
not allow the update to continue. This could potentially occur when you have multiple users accessing
the data store and making changes to the data. In this case, another user could possibly retrieve and
change the data well before you send your own changes to the data store. If you don’t want to override
the previous user’s changes, you need to use the CompareAllvalues value. Listing 11-5 shows how to
add the ConflictDetection property to the SqlDataSource control.

Listing 11-5: Adding the ConflictDetection property to a SqiDataSource control

<asp:SglDataSource ID="SglDataSourcel" Runat="server"
SelectCommand="SELECT * FROM [Customers] WHERE ([CustomerID] = @CustomerID)"
ConnectionString="<%$ ConnectionStrings:AppConnectionStringl %>"
DataSourceMode="DataSet"

342



Data Binding in ASP.NET 2.0

ConflictDetection="CompareAllValues">
<SelectParameters>
<asp:QueryStringParameter Name="CustomerID"
QueryStringField="id" Type="String">
</asp:QueryStringParameter>
</SelectParameters>
</asp:SglDataSource>

One way to determine whether your update has encountered a concurrency error is by testing the
Af fectedRows property in the SqlDataSources Updated event. Listing 11-6 shows one way to do this.

Listing 11-6: Detecting concurrency errors after updating data
VB
Protected Sub SglDataSourcel_Updated(ByVal sender as Object, _
ByVal e As System.Web.UI.WebControls.SglDataSourceStatusEventArgs)

If (e.AffectedRows > 0) Then

Message.Text = "The record has been updated"
Else
Message.Text = "Possible concurrency violation"
End If
End Sub
C#

protected void SglDataSourcel_Updated(object sender,
SglDataSourceStatusEventArgs e)
{
if (e.AffectedRows > 0)
Message.Text = "The record has been updated";
else
Message.Text = "Possible concurrency violation";

Although the Sql data source control is powerful, there are a number of other data source controls that
might better suite your specific data access scenario.

XmIDataSource Control

The XmlDataSource control provides you with a simple way of binding XML documents, either in-memory
or located on a physical drive. The control provides you with a number of properties that make it easy to
specify an XML file containing data and an XSLT transform file for converting the source XML into a more
suitable format. You can also provide an XPath query to select only a certain subset of data.

You can use the XmlDataSource control’s Configure Data Wizard, shown in Figure 11-6, to configure the
control.

343



Chapter 11

Configure Data Source - XmlDataSourcel [B2[=]

Specify the ¥ML data file to use as the source for this control. You can optionally specify additional files
that will be used to modify the XML before it is used by the control.

Diata File:

| Browse,..
Transform file:
Brawse, ..

& transform file describes how the structure of the XML file should be converted to a different structure,
%Path expression:

An ¥Path expression allows vou ta Filker the data in the %ML file and return only a subset of the File,

Ok H Cancel ]

Figure 11-6

Listing 11-7 shows how you might consume an RSS feed from the MSDN Web site, selecting all the item
nodes within it for binding to a bound list control such as the GridView.

Listing 11-7: Using the XmIDataSource control to consume an RSS feed

<asp:XmlDataSource ID="XmlDataSourcel" Runat="server"
DataFile="http://msdn.microsoft.com/rss.xml"
XPath="rss/channel/item"

</asp:XmlDataSource>

ObjectDataSource Control

The ObjectDataSource control is one of the most anticipated new data source controls in ASP.NET 2.0. It
gives you the power to bind data controls to middle-layer business objects that can be generated from
programs like O/R mappers. This was always difficult to achieve in ASPNET 1.0/1.1, but the
ObjectDataSource control makes it easy —while maintaining the powerful features of the data source
controls such as caching and paging.

To demonstrate how to use the ObjectDataSource control, create a class in the project that represents a
customer. Listing 11-8 shows a class that you can use for this demonstration.

Listing 11-8: Creating a Customer class to demonstrate the ObjectDataSource control

VB

Public Class Customer
Private _customerID As Integer
Private _companyName As String
Private _contactName As String
Private _contactTitle As String

Public Property CustomerID() As Integer
Get

344



Data Binding in ASP.NET 2.0

Return _customerID
End Get
Set
_customerID = value
End Set
End Property

Public Property CompanyName () As Integer

Get

Return _companyName
End Get
Set

_companyName = value
End Set
End Property

Public Property ContactName() As Integer

Get

Return _contactName
End Get
Set

_contactName = value
End Set
End Property

Public Property ContactTitle() As Integer

Get

Return _contactTitle
End Get
Set

_contactTitle = value
End Set
End Property

Public Function [Select] (ByVal customerID As Integer) As System.Data.DataSet

You would implement logic here to reterive

' Customer data based on the customerID parameter

Dim ds As New System.Data.DataSet ()

ds.Tables.Add (New System.Data.DataTable())

Return ds
End Function

Public Sub Insert (ByVal c As Customer)
' Implement Insert logic
End Sub

Public Sub Update(ByVal c¢ As Customer)
' Implement Update logic

(continued)

345



Chapter 11

Listing 11-8: (continued)
End Sub

Public Sub Delete(ByVal ¢ As Customer)
' Implement Delete logic
End Sub

End Class

C#

public class Customer

{
private int _customerID;
private string _companyName;
private string _contactName;
private string _contactTitle;

public int CustomerID
{

get

{

return _customerID;

_customerID = value;

public string CompanyName
{

get

{

return _companyName;

_companyName = value;

public string ContactName
{

get

{

return _contactName;

set

_contactName = value;

346



Data Binding in ASP.NET 2.0

}

public string ContactTitle
{

get

{

return _contactTitle;

_contactTitle = value;
}

public Customer ()
{
}

public System.Data.DataSet Select (Int32 customerId)
{

// Implement logic here to retrieve the Customer
// data based on the methods customerId parameter

System.Data.DataSet ds = new System.Data.DataSet();
ds.Tables.Add (new System.Data.DataTable());
return new ds;

}
public void Insert (Customer c)
{ // Implement Insert logic
}
public void Update (Customer c)

// Implement Update logic

public void Delete(Customer c)

// Implement Delete logic

To start using the ObjectDataSource, drag the control onto the designer surface. Using the control’s
smart tag, load the configuration wizard by selecting the Configure Data Source option. After the wizard
opents, it asks you to select the business object you want to use as your data source. The drop-down list
shows all the classes located in the App_Code folder of your Web site that can be successfully compiled.
In this case, you want to use the Customer class shown in Listing 11-8.

347



Chapter 11

Click the Next button, and the wizard asks you to specify which methods it should use for the CRUD
operations it can perform: SELECT, INSERT, UPDATE and DELETE. Each tab lets you select a specific
method located in your business class to perform the specific action. Figure 11-7 shows that you want
the control to use a method called select () to retrieve data.

Configure Data Source - ObjectDataSourcel [B[%]

| Define Data Methods

SELECT | UPDATE | INSERT | DELETE

Choose a method of the business object that returns data to associate with the SELECT operation. The
method can return a DataSet, DataReader, or strongly-tyvped collection,

Exarple: GetProducts(Int32 categoryId), returns a DataSet,

Choose a method:
SeleckiInt32 customerID), returns Dataset v
Methad signature:

SelectiInt3Z customerID), rekurns Dataset

< Previous ] [ Mewxt =

Figure 11-7

The methods the ObjectDataSource uses to perform CRUD operations must follow certain rules in order
for the control to understand. For instance, the control’s SELECT method must return a DataSet,
DataReader, or a strongly typed collection. Each of the control’s operation tabs explains what the control
expects of the method you specify for it to use. Additionally, if a method does not conform to the rules
that specific operation expects, it is not listed in the drop-down list on that tab.

Finally, if your SELECT method contains parameters, the wizard lets you create SelectParameters you
can use to provide the method parameter data.

When you have completed configuring the ObjectDataSource, you should have code in your page source
like that shown in Listing 11-9.

Listing 11-9: The ObjectDataSource code generated by the configuration wizard

<asp:0bjectDataSource ID="ObjectDataSourcel" runat="server" DeleteMethod="Delete"
InsertMethod="Insert" SelectMethod="Select" TypeName="Customer"
UpdateMethod="Update">
<SelectParameters>
<asp:QueryStringParameter Name="customerID" QueryStringField="ID"
Type="Int32" />
</SelectParameters>
</asp:0bjectDataSource>

348



Data Binding in ASP.NET 2.0

As you can see, the wizard has generated the attributes for the SELECT, UPDATE, INSERT and DELETE
methods you specified in the wizard. Also notice that it has added the Select parameter. Depending on
your application, you could change this to any of the Parameter objects discussed earlier, such as a
ControlParameterorQuerystringParameterobpct

SiteMapDataSource Control

The SiteMapDataSource enables you to work with data stored in your Web site’s SiteMap configuration
file if you have one. This can be useful if you are changing your site map data at runtime, perhaps based
on user privilege or status.

Note two items regarding the SiteMapDataSource control. First, it does not support any of the data caching
options that exist in the other data source controls provided, so you cannot natively cache your sitemap
data. Second, the SiteMapDataSource control does not have any configuration wizards like the other data
source controls. This is because the SiteMap control can be bound only to the SiteMap configuration data
file of your Web site, so no other configuration is possible.

Listing 11-10 shows an example of using the SiteMap control.

Listing 11-10: Using the SiteMapDataSource control
<asp:SiteMapDataSource ID="SiteMapDataSourcel" Runat="server" />

Using the SiteMapDataSource control is discussed in greater detail in Chapter 14.

Configuring Data Source Control Caching

Caching is now automatically built into all the data source controls except the SiteMapDataSource
Control. This means that you can easily configure and control data caching using the same declarative
syntax. All data source controls (except the SiteMap control) enable you to create basic caching policies
including a cache direction, expiration policies, and key dependencies.

Remember that the SqlDataSource control’s caching features are available only if you have set the
DataSourceMode property to DataSet. If it is set to DataReader, the control throws a
NotSupportedException.

Cache duration can be set to a specific length of time, such as 3600 seconds (60 minutes), or you can set it
to Infinite to force the cached data never to expire. Listing 11-11 shows how you can easily add
caching features to a data source control.

Listing 11-11: Enabling caching on a SqiDataSource control

<asp:SglDataSource ID="SglDataSourcel" Runat="server"
SelectCommand="SELECT * FROM [Customers]"
ConnectionString="<%$ ConnectionStrings:AppConnectionStringl %>"
DataSourceMode="DataSet"
ConflictDetection="CompareAllValues"
EnableCaching="True" CacheKeyDependency="SomeKey" CacheDuration="Infinite">

349



Chapter 11

<SelectParameters>
<asp:QueryStringParameter Name="CustomerID"
QueryStringField="id" Type="String"></asp:QueryStringParameter>
</SelectParameters>
</asp:SglDataSource>

Some controls also extend this core set of caching features with additional caching functionality specific
to their data sources. For instance, if you are using the SqlDataSource control, you can use the
SglCacheDependacy property to create SQL dependencies. You can learn more about ASP.NET 2.0
caching features in Chapter 20.

Storing Connection Information

In ASPNET 1.0/1.1, Microsoft introduced the web . config file as a way of storing application configuration
data in a readable and portable format. Many people quickly decided that the web. config file was a great
place to store things like the database connection information their applications use. It was easy to access
from within the application, created a single central location for the configuration data, and it was a cinch to
change just by editing the XML.

Although all those advantages were great, several drawbacks existed. First, none of the information in
the web. config file can be strongly typed. It was, therefore, difficult to find data type problems within
the application until a runtime error occurred. It also meant that developers were unable to use the
power of IntelliSense to facilitate development. A second problem was that although the web. config
file was secured from access by browsers (it cannot be served up by Internet Information Server), the
data within the file was clearly visible to anyone who had file access to the Web server.

In ASP.NET 2.0, Microsoft has tried to address these shortcomings in the web. config file. Because
database connection information is so frequently stored in the web. config file, you now have an entirely
new configuration section in that file, <connectionStrings>, specifically for storing the connection
string information.

If you examine your web . config file, you should see at least one connection string already in the
<connectionStrings> section because our example told the Data Connection Wizard to store connections
in the web. config file. Listing 11-12 shows how ASPNET stores a connection string.

Listing 11-12: A typical connection string saved in the web.config file

<connectionStrings>
<add name="AppConnectionStringl" connectionString="Server=localhost;
User ID=sa;Password=password;Database=Northwind;
Persist Security Info=True" providerName="System.Data.SglClient" />
</connectionStrings>

350



Data Binding in ASP.NET 2.0

Using a separate configuration section has several advantages. First, NET 2.0 now exposes the
ConnectionString section using the ConnectionStringSettings class. This class contains a collection
of all the connection strings entered in your web. config file and allows you to add, modify, or remove
connection strings at runtime. Listing 11-13 shows how you can access and modify connection strings at
runtime.

Listing 11-13: Modifying connection string properties at runtime

VB
<%@ Page Language="VB" %>

<script runat="server">
Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)

If (Not Page.IsPostBack) Then
' Create a new ConnectionStringSettings object and populate it
Dim conn As New ConnectionStringSettings ()
conn.ConnectionString = _
"Server=localhost;User ID=sa;Password=password" & _
"Database=Northwind; Persist Security Info=True"
conn.Name = "AppConnectionStringl"
conn.ProviderName = "System.Data.SglClient"

' Add the new connection string to the web.config
ConfigurationManager.ConnectionStrings.Add (conn)
End If

End Sub
</script>

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>Modifying the Connection String</title>
</head>
<body>
<form id="forml" runat="server">
<div>
<asp:SglDataSource ID="SglDataSourcel" Runat="server">
</asp:SqglDataSource>
</div>
</form>
</body>
</html>

C#
<%@ Page Language="C#" %>

<script runat="server">

protected void Page_Load(object sender, EventArgs e)

(continued)

351



Chapter 11

Listing 11-13: (continued)

if (!Page.IsPostBack)

// Create a new ConnectionStringSettings object and populate it
ConnectionStringSettings conn = new ConnectionStringSettings();
conn.ConnectionString =

"Server=1localhost;User ID=sa;Password=password; " +
"Database=Northwind;Persist Security Info=True";
conn.Name = "AppConnectionStringl";
conn.ProviderName = "System.Data.SglClient";

// Add the new connection string to the web.config
ConfigurationManager.ConnectionStrings.Add (conn) ;

}

</script>

As you can see, the ConfigurationManager class now has a ConnectionStrings collection property in
addition to the AppSettings collection used in ASPNET 1.0. This new collection contains all the connection
strings for your application.

Additionally, ASPNET 2.0 makes it much easier to build connection strings using strongly typed properties
at runtime, and easier to add them to the web. config file. Using the new SglConnectionStringBuilder
class, you can build connection strings and then add them to your ConnectionStringSettings collection.
Listing 11-14 shows how you can use the ConnectionStringBuilder class to dynamically assemble
connection strings at runtime and save them to your web. config file.

Listing 11-14: Building connection strings using ConnectionStringBuilder

VB

' Retrieve an existing connection string into a Connection String Builder
Dim builder As New System.Data.SglClient.SglConnectionStringBuilder ()

' Change the connection string properties
builder.DataSource = "localhost"
builder.InitialCatalog = "Northwindl"
builder.UserID = "sa"

builder.Password = "password"
builder.PersistSecurityInfo = true

' Save the connection string back to the web.config
ConfigurationManager.ConnectionStrings ("AppConnectionStringl") .ConnectionString = _
builder.ConnectionString

C#
// Retrieve an existing connection string into a Connection String Builder
System.Data.SglClient.SglConnectionStringBuilder builder = new

352



Data Binding in ASP.NET 2.0

System.Data.SglClient.SqglConnectionStringBuilder () ;

// Change the connection string properties
builder.DataSource = "localhost";
builder.InitialCatalog = "Northwindl";
builder.UserID = "sa";

builder.Password = "password";
builder.PersistSecurityInfo = true;

// Save the connection string back to the web.config
ConfigurationManager.ConnectionStrings["AppConnectionStringl"].ConnectionString =
builder.ConnectionString;

Using Bound List Controls with Data Source
Controls

The new data source controls really shine when you combine them with the Bound List controls
included in ASP.NET 2.0. This combination allows you to declaratively bind your data source to a
bound control without ever writing a single line of C# or VB code.

Fear not, those of you who like to write code. You can still use the familiar DataBind () method to bind
data to the list controls. In fact, that method has even been enhanced to include a Boolean overload that
allows you to turn the data-binding events on or off. This enables you improve the performance of your
application if you are not using any of the binding events.

GridView

With ASPNET 1.0/1.1, Microsoft introduced a new set of server controls designed to make developers
more productive. One of the most popular controls was the DataGrid. With this one control, you could
display an entire collection of data, easily add sorting and paging, and perform inline editing. Although
this new functionality was great, many of the tasks still required that the developer write a significant
amount of code to take advantage of this advanced functionality.

With ASP.NET 2.0, Microsoft has taken the basic DataGrid and enhanced it, creating a new server control
called the GridView. This new control makes it even easier to use those advanced DataGrid features, mostly
without having to write one line of code. It even adds a number of new features.

Displaying Data with the GridView

Start using the GridView by dragging the control onto the designer surface of an ASP.NET Web page.
You are prompted to select a data source control to bind to the grid. In this sample, you use the
SqlDataSource control created earlier in the chapter.

After you assign the GridView a data source, notice a number of changes. First, the GridView changes its
design-time display to reflect the data exposed by the data source control assigned to it. Should the schema
of the data behind the data source control ever change, you can use the GridView’s Refresh Schema option
to force the grid to redraw itself based on the new data schema. Second, the GridView’s smart tag now has
additional options for formatting, paging, sorting, and selection.

353



Chapter 11

Switch the page to Source view in Visual Studio to examine GridView’s code. Listing 11-15 shows the
code generated by Visual Studio.

Listing 11-15: Using the GridView control in an ASP.NET Web page

<html>
<head runat="server">
<title>Using the GridView server control</title>
</head>
<body>
<form id="forml" runat="server">
<div>
<asp:GridvView ID="GridViewl" Runat="server" DataSourceID="SglDataSourcel"
DataKeyNames="CustomerID" AutoGenerateColumns="False">
<Columns>
<asp:BoundField ReadOnly="True" HeaderText="CustomerID"
DataField="CustomerID"
SortExpression="CustomerID"></asp:BoundField>
<asp:BoundField HeaderText="CompanyName" DataField="CompanyName"
SortExpression="CompanyName"></asp:BoundField>
<asp:BoundField HeaderText="ContactName" DataField="ContactName"
SortExpression="ContactName"></asp:BoundField>
<asp:BoundField HeaderText="ContactTitle" DataField="ContactTitle"
SortExpression="ContactTitle"></asp:BoundField>
<asp:BoundField HeaderText="Address" DataField="Address"
SortExpression="Address"></asp:BoundField>
<asp:BoundField HeaderText="City" DataField="City"
SortExpression="City"></asp:BoundField>
<asp:BoundField HeaderText="Region" DataField="Region"
SortExpression="Region"></asp:BoundField>
<asp:BoundField HeaderText="PostalCode" DataField="PostalCode"
SortExpression="PostalCode"></asp:BoundField>
<asp:BoundField HeaderText="Country" DataField="Country"
SortExpression="Country"></asp:BoundField>
<asp:BoundField HeaderText="Phone" DataField="Phone"
SortExpression="Phone"></asp:BoundField>
<asp:BoundField HeaderText="Fax" DataField="Fax"
SortExpression="Fax"></asp:BoundField>
</Columns>
</asp:GridvView>

<asp:SglDataSource ID="SglDataSourcel" Runat="server"
SelectCommand="SELECT * FROM [Customers]"
ConnectionString="<%$ ConnectionStrings:AppConnectionStringl %>"
DataSourceMode="DataSet"
ConflictDetection="CompareAllValues" EnableCaching="True"
CacheKeyDependency="MyKey" CacheDuration="Infinite">
</asp:SglDataSource>
</div>
</form>
</body>
</html>

354



Data Binding in ASP.NET 2.0

Figure 11-8 shows what your Web page looks like when you execute the code in the browser.

&7 Untitled Page - Microsoft Internet Explorer f:n@]@
File Edit View Favorites Tools Help -
) B < i E ;\| - Search *j‘? Favorkes e\l"lsdia {-ﬂ v i3
Address | ] betpsjflacalhost: 6404/ websited [Default3,aspe [v] B0 ks *
~
CustomerTD CompanyName Contactlame — ContactTitle Address City Region PostalCode Comntry Phone Fax B
Alfreds . Sales . 030- 030-
ALFKL  popetiore i Anders |p resentative | -0o° o 0! [Berdin 12208 GemEY goga3n1 0076545 -
Ana Trujlle Avda dela
AMATE Emparedados vy Ana Trujille Crwner Consticidn Mémce DUE. 05021 Mexico (3) 555- (3) 555
4729 3745
helados 2222
awon  Antoric Moreno  Antonio Owner Mataderos 2312 México D.F. 05023 Mexico L0
Tacuetia Iferenc 3932
Sales (171) 555-  (171) 555-
AROUT Around the Homn  Themas Hardy Fepresentative 120 Hanover 5q. Londen WAL IDE UK 1738 £750
Eerglunds Christing Order 0921-12 34 0921-12 34
BEEGS snabblap Bergund Administrator Berguvsvagen 8 Luled 3-558 22 Sweden 65 67
Blauer See Sales .
ELAUS Delikatessen Hanna Moos Representative Forsterstr. 57 Mannheim 68306 Germany  0621-08460 0621-08524
BLONp  Dlondesddslpére Frédéngue  Markefing 24, place Kléber Strasbourg 67000 France 88601531 88601532
et fils Citeauz Manager
poLm  Délide Comidas p o v s ormmer Owner Cf Araquil, 67 Madrid 23023 Spain  C139322 B1) 33591
preparadas 82 a8
\ Laurence 12, rue des
BONAP Bon app Lebihan Crwmer Boachers Marseidle 13008 France 91244540 91244541
Bottom-Dollar  Elizabeth Accounting 23 Tsawassen (604) 555-  (604) 555-
BOTIM Idarkets Lncoln Manager Blwd, Tsawassen, |BC [T2F 8M4  (Canada 4729 3745
- \ Victoria Sales . . (171) 555-
ESEEV B's Beverages Achrorth Representative Fauntleroy Circus London EC25NT UK 1212
Cactus Comidas  Patricio . Buenos . (13 135- (13 135-
CACTT para levar Simpson Sales Agent Cerrite 333 hires 1010 Argentina 455 A8
Centre comercial Francisco Marketing Sierras de : . (3) 355- (5) 555-
CENTC i octeruma Chang Manager Granada 0993 Mo DE. 05022 Mewco  zio, 7293
Chop-suey ) 0452-
CHOPS Chinese Tang Wang Crwner Hauptstr. 29 Eem 3012 Swatzerland 076545 =
-ﬁ] Done ‘I-_i Local intranet
Figure 11-8

Enabling GridView Column Sorting

The capability to sort data is one of the most basic tools users have to navigate through a significant amount
of data. The DataGrid control made sorting columns in a grid a relatively easy task, but the GridView
control takes it one step further. Unlike using the DataGrid, where you are responsible for coding the sort
routine, to enable column sorting in this grid, you just set the A11lowSorting attribute to True. The control
takes care of all the sorting logic for you internally. Listing 11-16 shows how to add this attribute to your grid.

Listing 11-16: Adding sorting to the GridView control

<asp:GridvView ID="GridViewl" Runat="server" DataSourceID="SglDataSourcel"
DataKeyNames="CustomerID" AutoGenerateColumns="False"
AllowSorting="True">

After enabling sorting, you see that all grid columns have now become hyperlinks. Clicking a column
header sorts that specific column. Figure 11-9 shows your grid after the data has been sorted by country.

355



Chapter 11

E] Untitled Page - Microsoft Internet Explorer f:i[‘-l]@
File Edit View Favorites Tools Help i
(€L .ﬂ ﬂ N ) search “;.\.’ Favaries @ Media £2) (v g =
Adir=ss (8] hitpe [fiocabost e404/ WebGibel [Defaults, aspx |z| Go  Links ®

l
CustomerIld CompanvMNane ContactMName — ContactTitle Adldvess City Begion PostalCode Coumtry Phone Fax
Cactus Comidas  Patricio . EBuenos . (13 135- (13 135-
CACTU para levar Simpson Sales Agent Cerite 333 ires 1010 Argenting fice PR L
. Gustave
Océane Atlantico Twvonne Ing Buenos ) (13 135- (13 135-
OCEAN Lada Moncada Sales Agent M.oncada 8385 Bires 1010 Argenting 5333 5535
Piso 20-A
. Sales Ay del Buenos . (13123- (1) 123-
RANCH  Ranchogrande  Sergo GWEMSz g osemaive  Libertador 900 Aires 010 Aegestina 5o55°  5ssg
EEINEH Ernst Handel Eeoland Mendel Sales Manager — Eachgasse 6 Graz 2010 Austria T675-3425 T675-3426
FICCO Piccolo und mebr Georg Pipps  Sales Manager  Geislweg 14 Salzburg 5020 Austria 6562-9722 6562-9723
. Catherine Fue Joseph-Bens } ; (02) 201 24 (02) 201 24
MAISD Idaison Dewey o Sales Agent 232 Bruzelles E-1180 Eelaum 7 i
. - . Accounting Boulevard Twou, E . (071) 23 67 (071) 23 67
SUFED Suprémes délices Pascale CmmMmagcr 555 Chatleret E-6000 Eelgum 9 30 3991
e . Aw. dos . (11) 555-
COMMI Comércic Mineire Pedre Afonse  Sales Associate . Sao Paule  SP 05432-043 Brazl
Lusiadas, 23 647
Familia - Marketing . . (11) 555-
FANTA Arquibaldo Ana Cruz hssistant Fua Orde, 92 Sao Paule  SP 05442-030 Brazl 9557
GOURL ~ Fevmet André Fonseca Sales Assoriate  Av Brasi, 442 Compinas  SP 04876786 Brasl =~ C.0 70
Lanchonetes ' . 9482
. . Accounting Rio de . (21) 555- (21) 555-
HAMAE Hanati Cames  MMario Pontes Manager Eua do Pago, 67 Janeiro ET 05454-876 Brazil 0091 8765
. Bemardo Accounting Eua da Eio de . . (21) 555-  (21) 555-
QUEDE  Que Delicia Batista Manager Danficadora, 12 Janeiwo 10 023807673 Bradl o5 4545
X . Marketing Alameda dos B (11) 555-
QUEEN Cueen Cozinha  Licia Carvalho A esistant Canirios, 991 Sao Paule  SP 05427-020 Brazil 1180
Eicardo . Agsistant Sales  Av. Copacabana, Rio de . (21) 555-
RICAR  ydocicados  Jmetelimers ooy 267 Janeiwo o 02389890 Bradl o,
TRAT Tradigio Anabela Sales Av Ings de . (11) 555-  (11) 555-
H Hipermercados  Domingues Eepresentatve  Castro, 414 SaoPaulo 5P 05634-030 Brazil 2167 2168 )
-EI] Stark downloading From ske: http: | flocalhost ;6404 WebSite 1 Default3, aspx ‘-_j Local intranet
Figure 11-9

GridView sorting has also been enhanced in a number of other ways. The grid can handle both ascending
and descending sorting. If you repeatedly click the column head, you cause the sort order to switch back
and forth between ascending and descending. The GridView’s Sort method can also accept multiple
SortExpressions to enable multicolumn sorting. Listing 11-17 shows how you can use the GridView’s
sorting event to implement a multicolumn sort.

Listing 11-17: Adding multicolumn sorting to the GridView

VB
<script runat="server">
Protected Sub GridvViewl_Sorting(ByVal sender As Object,
ByVal e As GridvViewSortEventArgs)

Gridviewl.SortExpression
e.SortExpression

Dim oldExpression As String =
Dim newExpression As String =

If (oldExpression.IndexOf (newExpression) < 0) Then

356



Data Binding in ASP.NET 2.0

If (oldeExpression.Length > 0) Then

e.SortExpression = newExpression & "," & oldExpression
Else
e.SortExpression = newExpression
End If
Else
e.SortExpression = oldExpression
End If
End Sub
</script>

C#
<script runat="server">
protected void GridViewl_Sorting (object sender, GridviewSortEventArgs e)
{
string oldExpression = GridViewl.SortExpression;
string newExpression = e.SortExpression;

if (oldExpression.IndexOf (newExpression) < 0)

{
if (oldExpression.Length > 0)

e.SortExpression = newExpression + "," + oldExpression;
else
e.SortExpression = newExpression;
}
else
{
e.SortExpression = oldExpression;
}
}
</script>

Enabling the GridView Pager

Another common grid navigation feature that the GridView greatly improves on is paging. Although
implementing paging using a DataGrid greatly simplified paging (especially in comparison to paging in
ASP), the GridView makes it even easier with its Al1owPaging attribute. This attribute can be set either
by adding the attribute to the GridView control in HTML mode or by checking the Enable Paging check
box in the GridView’s smart tag. Enabling paging in the GridView control defaults to a page size of 10
records and adds the Pager to the bottom of the grid. Listing 11-18 shows an example of modifying your
grid to enable paging.

Listing 11-18: Enabling paging on the GridView control

<asp:GridvView ID="GridvViewl" Runat="server" DataSourcelID="SglDataSourcel"
DataKeyNames="CustomerID" AutoGenerateColumns="False"
AllowSorting="True" AllowPaging="True">

357



Chapter 11

Enabling paging in your GridView creates a page that looks like Figure 11-10.

E] Untitled Page - Microsoft Internet Explorer f:][‘-“_]ﬂ
File Edit View Favorites Tools Help i
O > .ﬂ E‘ ;\ 7/ Search \ ¢ Favorites wmedla .(‘\ v ,; ’E
Adir=ss (8] hitpe [fiocabost e404/ WebGibel [Defaults, aspx |ﬂ Go  Links ®
CustomerIld  CompanvMName  ContactName ContactTitle Address City  Begion PostalCede Commtiy - Phone Fax
Sales . 030- 030-
ALFEI Alfreds Futterkists Mana Anders Representative Obere Str. 57 Eetlin 12209 Germany 0074391 076545
Ana Tradle .
. Avda dela Mexico . (%) 555- (5) 555-
AMATE Emparedados v Ana Truglle Cwmer Constibucidn 2227 D.F. 05021 Mexice 4159 3745
helados
Antonio Moreno Antonio Méxice . (3555
ANTON O Iulatad 312 05023 Il
Tacueria Moreno s alaceres DF 7 3932
Sales (171)555- (1713 555-
AROUT Around the Homn Thomas Hardy Representative 120 Hanever 3q. London WAL IDP UE 88 £750
. Christina Order . 2 . 0921-12 34 0%21-12 34
BEEGS Eerglunds snabblop Berghind A drministrator Berguvsvigen 8 Luled 3-95822  Sweden 65 67
BLAUS ~ DlawerSee HamaMoos o Forsterstw 57 Manheim 68306 Germeny 0621-08460 0621-08924
Delikatessen Eepresentative
sLowp  Dlondesddslplrect  Frédergue  Marketng 24, place Klgber  Strasbourg 67000 France 23.60.15.31 8260.15.32
fils Citeaus Manager
poLp  DoldeComidas e Sommer Owmer O Arauil, 67 Madiid 28023 Span OV 2722 135391
preparadas 22 99
. Laurence 12, rue des
BOLMAR Bon app Lebihan Crwner Pouchers Ilarseille 13008 France 91244540 91244541
EBottom-Dollar Elizabeth Accounting 23 Teawassen (604) 555-  (604) 555-
BOTTM 3 peers Lincoln Manager Bivd. Toawassen BC T2 M4 Canade o0, 3745
12345678910
€] Dore ‘-_j Local intranet
Figure 11-10

As with the DataGrid, the GridView allows most of the paging options to be customized. For instance,
the PagersSettings-Mode attribute allows you to dictate how the grid’s Pager is displayed using the
various Pager modes including NextPrevious, NextPreviousFirstLast, Numeric (the default
value), or NumericFirstLast. Additionally, by specifying the Pagerstyle element in the GridView,
you can customize how the grid displays the Pager text, including font color, size, and type, as well as
text alignment and a variety of other style options. Listing 11-19 shows how you might customize
your GridView control to use the NextPrevious mode and style the Pager text using the PagerStyle
element. Also, you can control the number of records displayed on the page using the GridView’s
PageSize attribute.

358



Data Binding in ASP.NET 2.0

Listing 11-19: Using the PagerStyle and PagerSettings objects in the GridView control

<asp:Gridview ID="GridViewl" Runat="server" DataSourceID="SglDataSourcel"

DataKeyNames="CustomerID" AutoGenerateColumns="False"
AllowSorting="True" AllowPaging="True" PageSize="10">
<PagerStyle HorizontalAlign="Center"></PagerStyle>
<PagerSettings Position="TopAndBottom"

FirstPageText="Go to the first page"

LastPageText="Go to the last page" Mode="NextPreviousFirstLast">
</PagerSettings>

Figure 11-11 shows the grid after you change several style options and set the PagerSettings-Mode to
NextPreviousFirstlLast

1 Untitled Page - Microsoft Internet Explorer E@E‘
File Edit View Favorites Tools Help i
Qo= - O .ﬂ ﬂ N ) search < Favarites @ e £ v g =
Adir=ss (8] hitpe [fiocabost 6404/ WebGibal [Defaults, aspx |z| Go  Links ®

Go to the first page = = Go to the last page
CustomerTD  CompanyName ContactName ContactTitle Address Ciry Region PostalCode Comtry  Phone Fax
Gourmet ; . . . g . (11) 555-
GOTERL Lanchonetes André Fonseca Sales Associate Av. Brasil, 442 Campinas 5P 04376-786 Brazl 09492
Great Lakes Food Howard Marketng (503) 555-
GEEAL 2732 Baker Blvd. E CF. 97403 TSA
Tfarket Snyder Manager £f Sle. Zugens 7555
GEOSELLA- . 5* Awe. Los Pales (2) 283- (2) 283-
GROSE Restanrante Manuel Pereira Owner Grandes Caracas LF 1081 '\Tcncmclazgs,l 3397
. . Accounting Rio de - (21) 555-  (21) 555-
HAMAE H: C Idatic Ponte: Euado P 67 . ET 03454-876 Brazi
et tamee O TOMEE Manager 1 G0 T 0T Taneiro i 0031 8765
Catrera 22 con
HILARION- Carlos Sales San - (5) 555- (5) 555-
HILAA Abastos Hemnandez Eepresentative e, Carlols Cristébal Tachira 5022 eneziela 1340 1348
Soublette #8-35
Hungry Covote o Sales City Center Plaza (503) 555- (503) 555-
HUNMGC Toshi L . . Elgin OF. 97827 TSA
Import Store oshl Latimer Eepresentative 516 hain St. 6874 2376
Hungry Owl All- - Patricia . Co.
HIUMGO Wight Grocers MeFenna Sales Associate 8 Johnstown Road Corke Clotke Ireland 2967 542 2967 3333
) Marketng Garden House Isle of (198) 555-
ISLAT Teland Ti Helen B C ; POZ1TPI UE
sland Trading Bl ) onsger  CrowtherWay 0" Wight 2883
EOENE Koniglich Essen Phiip Cramer  Sales Associate Maubelstr. 30 EBrandenburg 14776 Germany 0555-09876
Lacorne . .. Sales 67, avenue de )
LACOER Daniel T . ’ Versall TE000 F 30.5% 8410 30598511
d'abendance anies Lonn Eepresentative ['Europe Freates rance
Go to the first page = > Go to the last page
&) ‘-_j Local intranet
Figure 11-11

359



Chapter 11

The GridView has a multitude of other Pager and Pager style options that we encourage you to experi-
ment with. Because the list of Pagersetting and PagerStyle options is so long, all options are not
listed here. You can find a full list of the options in the Visual Studio Help documents.

Another interesting feature of column generation is the capability to specify what the GridView should
display when it encounters a Null value within the column. For an example of this, add a column using
an additional <asp: BoundField> control, as shown in Listing 11-20.

Listing 11-20: Using the Null value

<asp:BoundField HeaderText="Region" NullDisplayText="N/A"
DataField="Region" SortExpression="Region"></asp:BoundField>

In this example, the <asp:BoundField> element displays the Region column from the Customers table.
As you look through the data in the Region section, notice that not every row has a value in it. If you
don’t want to display just a blank box to show an empty value, you can use some text in place of the
empty items in the column. For this, you utilize the Nul1DisplayText attribute. The String value it
provides is used for each and every row that doesn’t have a Region value. This construct produces the
results illustrated in Figure 11-12.

£ Untitled Page - Microsoft Internet Explorer f:][‘-“_]@
File Edit View Favorites Tools Help i

Qo= - O .ﬂ ﬂ . ) search \:__I._-.\:'Fa\nnrltes @ veda £4) > .'_’;, =

fddress | ] httpe fflocahost £404)WebSibal [Def a3, asp |:] B s

»

= Go to the last page

CustomerTD  ComnpanylTame  ContactMName  ContactTitde Address City  Region PostalC'ode Commniy  Phone Fax
- ) Sales . 030- 020-
ALFEI Alfreds Futterkaste Mana Anders Representative Chbere Str. 57 Eerlin A 12209 Germany 00743221 0076545
Ana Trujlle .
N Avda dela Ménico . (3)555- (5) 555-
AMNATE ngda::dados i Ana Trille Cwmer Constituciin 2292 DE. A 05021 Mexico 4720 3745
Antonie Mereno Antonie Mémco . (31535
ANTON Taguetia Moreno Owner Mataderos 2312 DE M/A 05023 Mezxico 2032
- Sales (171) 555- (171) 555-
AROUT Around the Horn Thomas Hardy Representative 120 Hanover 3g. Londen  IM/A WAL IDP UK 738 £750
. Christina Order . 2 0921-12 34 0%21-1234
EBEEGS EBerglunds snabbkap Berglund A demiristrator Berguvsvagen 8 Luled M4 3-958 22  Sweden ps 7
BLayg ~ DlaverSee HannaMoos  S4%° _ Forsterstr. 57 Mannheim MfA 68306 Germany 0621-03460 0621-02924
Delikatessen Eepresentative
EBlondesdds] pére et Frédérigque Mariceting :
BLONP s Clireaus Manager 24, place Kléber  Strasbourg M/A 67000 France 88.60.15.31 88.60.15.32
BOLID Bélido Comidas Martin Soramer Owner Cf Araquil, 67 Madrid 14 28023 Span D335 22 (155591
preparadas 82 99
. Laurence 12, rue des
BONAP EBon app Lebihan COramer Bouchers Marsedle MN/A& 13008 France 91.244540 91244541
- \ Victoria Sales . (171) 555-
BSBEV B's Beverages A shwrarth Representative Fauntleroy Circus London  M/A  ECZSNT UK 1212
= (Go to the last page
-ﬁ] ‘-_i Local intranet

Figure 11-12

360



Data Binding in ASP.NET 2.0

Customizing Columns in the GridView

Frequently, the data in your grid is not simply text data, but data that you either want to display using
other types of controls or don’t want to display at all. For instance, you have been retrieving the
CustomerID as part of your SELECT query and displaying it in your grid. By default, the GridView control
displays all columns returned as part of a query. But rather than automatically displaying the
CustomerID, it might be better to hide that data from the end user. Or perhaps you are also storing the
corporate URL for all your customers and want the CustomerName column to hyperlink directly to their
Web sites. The GridView gives you great flexibility and power regarding how you display the data in
your grid.

The GridView automatically converts columns with a data type of bit or Boolean to a CheckBoxField.

You can edit your GridView columns in two ways. You can select the Edit Columns option from the
GridView smart tag. This link allows you to edit any existing columns in your grid using the Fields
dialog window, shown in Figure 11-13. From here you can change a column’s visibility, header text,
the usual style options, and many other properties of the column.

Fields )%
Available fields: BoundField properties:
=] BoundField Bz ﬁl |
CheckBoxField - 1
5] HyperLinkField = 2
‘Ej ImageField AccessibleHeaderTe:
&1 ButtanField S
-5 CommandField FooterText
=] TemplateField HeaderImagel |
HeaderText CustomerID
5
Selected fields: ApplyFormatInEditM False
=] CustomeriD ~ ConvertEmplySkring True

=] CompanyName HemlEncode True

=] contactiiams Insertvisible True w

it
=] ContactTitle HeaderText

=] Address Thee text within the header of this field.

= _.. iV
>
[[] Auta-generate ficlds Conwvert this Field inko a TemplateFisld
Refresh Schema [ oK ] [ cancel
Figure 11-13

361



Chapter 11

Selecting the Add New Column link from the GridView control’s smart tag displays another easy form —
the Add Field dialog (shown in Figure 11-14) —with options allowing you to add completely new columns
to your grid. Depending on which column field type you select from the drop-down list, the dialog pre-
sents you with the appropriate options for that column type. In this case, you want to add a hyperlink; so
you select the HyperLinkField from the drop-down list. The Add Field dialog changes and lets you enter in
the hyperlink information, including the URL, the data field, and a formatter string for the column.

Add Field

Choose a field type:
HyperLinkField 54

Fi BoundField
CheckBoxField
HyperLinkField
ButtanField
CommandField
ImageField
TemplateField

() et Text from Data Field:
Texk Format String:

Example: Wiew Details For {0} ..

Hyperlink LIFL
() Specify URL:

() et URL from Data Field:
URL Format String:

Example: Details, aspxzfield={0}

Refresh Schema [ oK ] [ Cancel

Figure 11-14

The Add Field dialog lets you select one of the Field types described in the following table.

Field Control Description

BoundField Displays the value of a field in a data source. This is the default
column type of the GridView control.

CheckBoxField Displays a check box for each item in the GridView control.
This column field type is commonly used to display fields with
a Boolean value.

HyperLinkField Displays the value of a field in a data source as a hyperlink.
This column field type allows you to bind a second field to the
hyperlink’s URL.

ButtonField Displays a command button for each item in the GridView con-

trol. This allows you to create a column of custom button con-
trols, such as the Add or the Remove button.

362



Data Binding in ASP.NET 2.0

Field Control Description

CommandField Represents a special field that displays command buttons to
perform select, edit, insert, or delete operations in a data-
bound control.

ImageField Automatically displays an image when the data in the field
represents an image.

TemplateField Displays user-defined content for each item in the GridView
control according to a specified template. This column field
type allows you to create a custom column field.

You can also change the grid columns in the Source view. Listing 11-21 shows how you can add a
HyperLinkField. Note that by providing a comma-delimited list of data field names, you can actually
specify multiple data fields to bind to this column. You can then use these fields in your formatting
string to pass two query string parameters, which is a new feature in ASP.NET 2.0.

Listing 11-21: Adding a HyperlinkField control to the GridView

<asp:HyperLinkField HeaderText="CompanyName"
DataNavigateUrlFields="CustomerID, Country" SortExpression="CompanyName"
DataNavigateUrlFormatString=
"http://www.foo.com/Customer.aspx?id={0}&country={1}"
DataTextField="CompanyName" >
</asp:HyperLinkField>

Editing GridView Row Data

Not only do users want to view the data in their browser, but they also want to be able to edit the data
and save changes back to the data store. Adding editing capabilities to the DataGrid was never easy, but
it was important enough that developers frequently attempted to do so.

The GridView control makes it very easy to edit the data contained in the grid. To demonstrate just how
easy it is, you can modify the existing grid so you can edit the customer data it contains. First, modify
your existing SqlDataSource control by adding an UpdateCommand attribute. This tells the data source
control what SQL it should execute when it is requested to perform an update. Listing 11-22 shows the
code to add the UpdateCommand attribute.

Listing 11-22: Adding an UpdateCommand to a SqiDataSource control

<asp:SglDataSource ID="SglDataSourcel" Runat="server"

SelectCommand="SELECT * FROM [Customers]"

ConnectionString="<%$ ConnectionStrings:AppConnectionStringl %>"

DataSourceMode="DataSet"

UpdateCommand="UPDATE [Customers] SET [CompanyName] = @CompanyName,
[ContactName] = @ContactName, [ContactTitle] = @ContactTitle,
[Address] = @Address, [City] = @City, [Region] = @Region,
[PostalCode] = @PostalCode, [Country] = @Country, [Phone] = @Phone,
[Fax] = @Fax WHERE [CustomerID] = @original_CustomerID">

363



Chapter 11

Notice that the UpdateCommand includes a number of parameters like @CompanyName, @Country,
@Region, and @CustomerID. These are placeholders for the corresponding information that will come
from the selected row in GridView. In order to use the parameters, you must define them using the
UpdateParameters element of the SqlDataSource control. The UpdateParameters element, shown in
Listing 11-23, works much like the SelectParameters element discussed earlier in the chapter.

Listing 11-23: Adding UpdateParameters to the SqiDataSource control

<asp:SqglDataSource ID="SglDataSourcel" Runat="server"

SelectCommand="SELECT * FROM

[Customers]"

ConnectionString="<%$ ConnectionStrings:AppConnectionStringl %>"
DataSourceMode="DataSet"

UpdateCommand="UPDATE [Customers] SET [CompanyName] = @CompanyName,
[ContactName] = @ContactName, [ContactTitle] = @ContactTitle,
[Address] = @Address, [City] = @City, [Region] = @Region,
[PostalCode] @PostalCode, [Country] = @Country, [Phone] = @Phone,
[Fax] = @Fax WHERE [CustomerID] = @original_CustomerID">

<UpdateParameters>

<asp:Parameter Type="String" Name="CompanyName"></asp:Parameter>
<asp:Parameter Type="String" Name="ContactName"></asp:Parameter>
<asp:Parameter Type="String" Name="ContactTitle"></asp:Parameter>
<asp:Parameter Type="String" Name="Address"></asp:Parameter>
<asp:Parameter Type="String" Name="City"></asp:Parameter>
<asp:Parameter Type="String" Name="Region"></asp:Parameter>
<asp:Parameter Type="String" Name="PostalCode"></asp:Parameter>
<asp:Parameter Type="String" Name="Country"></asp:Parameter>
<asp:Parameter Type="String" Name="Phone"></asp:Parameter>
<asp:Parameter Type="String" Name="Fax"></asp:Parameter>
<asp:Parameter Type="String" Name="CustomerID"></asp:Parameter>

</UpdateParameters>

</asp:SglDataSource>

Within the UpdateParameters element, each named parameter is defined using the <asp: Parameter>
element. This element uses two attributes that define the name and the data type of the parameter. In
this case, all the parameters are of type String. Remember that you can also use any of the Parameter
controls mentioned earlier in the chapter, such as the ControlParameter or QuerystringParameter
in the UpdateParameters element.

Next, you give the grid a column it can use to trigger editing of a data row. You can do this in several
ways. First, you can use the GridView’s AutoGenerateEditButton attribute. When set to True, this
attribute tells the grid to add to itself a ButtonField column with an Edit button for each data row.

Listing 11-24 shows how to add the AutoGenerateEditButton attribute to the GridView control.

Listing 11-24: Adding the AutoGenerateEditButton attribute to a SqlDataSource control

<asp:Gridview ID="GridViewl" Runat="server" DataSourceID="SglDataSourcel"
DataKeyNames="CustomerID" AutoGenerateColumns="False"
AllowSorting="True" AllowPaging="True"
AutoGenerateEditButton="true">

The GridView control also includes AutoGenerateSelectButton and AutoGenerateDeleteButton
attributes, which allow you to easily add Row Selection and Row Deletion capabilities to the grid.

364



Data Binding in ASP.NET 2.0

A second way to add an Edit button is to add a CommandField column. This is shown in Listing 11-25.

Listing 11-25: Adding edit functionality using a CommandField control

<asp:CommandField ShowHeader="True" HeaderText="Command"
ShowEditButton="True"></asp:CommandField>

Notice that you add the ShowEditButton attribute to the Commandrield to indicate that you want to
display the Edit command in this column. You can control how the command is displayed in the grid
using the But tonType attribute, which allows you to display the command as a link, a button, or even
an image. Figure 11-15 shows what the grid looks like after adding the CommandrField with the Edit
command displayed.

6]

1

[E7 Untitled Page - Microsoft Internet Explorer 5@]@
File Edit View Favorites Tools Help i
(€L .ﬂ ﬂ N ) search < Favarites @ veda £4) - ==
Adir=ss (8] hitpe [fiocabost 6404/ WebGibal [Defaults, aspx |ﬂ Go  Links ®

= Goto the last page
Command  CustomerTD Company¥ame ContactName ContactTitle Address Clity
Update Cancel ALFET Alfreds Futterkiste Maria Anders Sales Representative Obere Str. 57 Berin
. Ana Trllo . Avda. dela Constbucién .,
Edit ATTATE Az Trujdl Cram 4 DF. I0is
= Emparedados v helades & trte =t 2222 eHee
Edi ANTON ?’a’;‘:{’a”"”“° Artorio Moreno Owner Mataderos 2312 Mésico DF. i
Edit AROUT Around the Horn Thomas Hardy Zales Bepresentative 120 Hanover Sq. Lendon IR A
Edit BERGSE EBerglinds snabblop Christina Bergund Order Administrater Berguvsvagen 8 Luled T2
Edit ELAUS Elauer See Delkatessen  Harma Moos Zales Bepresentative Forsterstr. 57 Ifannheim i
Edit ELONF Blondesdds] pére etfils  Frédénque Citeaux Iarketing Manager 24, place Eléber Strasheurg T2
Edi poLp ~ Déhido Comdas Manin Sommer Ovwner O Aracuil, 67 Madrid 7
preparadas
BONAP Bon app' Laurence Lebihan Crwmer 12, rue des Bouchers Idfarseille 1i:
EBOTTIM EBottom-Dollar Markets Elizabeth Lincoln Accounting Manager 23 Tsawassen Elvd. Tsawassen EC

= Go to the last page

‘-_j Local intranet

2

Figure 11-15

365



Chapter 11

Now if you browse to your Web page, you see that a new Edit column has been added. Clicking the Edit
link allows the user to edit the contents of that particular data row.

The CommandField element also has attributes that allow you to control exactly what is shown in the
column. You can dictate whether the column displays commands like Cancel, Delete, Edit, Insert, and
Select.

With the Edit CommandField enabled, you still have one more attribute to be set in order to enable the
grid to perform the UPDATE SQL command. You tell the grid which SQL columns are serving as your pri-
mary keys. You can accomplish this by using the DatakeyNames attribute, as illustrated in Listing 11-26.

Listing 11-26: Turning off AutoGenerateColumns in the GridView control

<asp:Gridview ID="GridvViewl" Runat="server" DataSourceID="SglDataSourcel"
DataKeyNames="CustomerID" AutoGenerateColumns="False"
AllowSorting="True" AllowPaging="True"
AutoGenerateEditButton="true">

You can specify more than one primary key column by setting the attribute to a comma-delimited list.

Notice that when you add the edit capabilities to the grid, by default it allows all displayed columns to
be edited. You probably won't always want this to be the case. You can control which columns the grid
allows to be edited by adding the Readonly attribute to the columns that you do not want users to edit.
Listing 11-27 shows how you can add the Readonly attribute to the ID column.

Listing 11-27: Adding the ReadOnly attribute to a BoundField

<asp:BoundField ReadOnly="True" HeaderText="CustomerID" DataField="CustomerID"
SortExpression="CustomerID" Visible="False"></asp:BoundField>

Now if you browse to the Web page again and click the Edit button, you should see that the ID column
is not editable. This is shown in Figure 11-16.

Handling Errors When Updating Data

As much as you try to prevent them, errors happen when you save data. If you allow your users to
update data in your GridView control, you should implement a bit of error trapping to make sure errors
do not bubble up to the user.

366



Data Binding in ASP.NET 2.0

1 Untitled Page - Microsoft Internet Explorer E@E‘
File Edit View Favorites Tools Help i
Qo= - O .ﬂ ﬂ N ) search < Favarites @ e £ v g =
Adir=ss (8] hitpe [fiocabost 6404/ WebGibal [Defaults, aspx |z| Go  Links ®

= (o to the last page
Command  CompanyName ContactMName ContactTitle Address Ciry Region

- Alfreds - . -
T ol
Update Cancel Futterkiste Maria Anders Sales Representative Obere Str. 57 Berlin

Ana Trille .,

i Awda. de la Constia )

Edit Emparedados vy Ana Trujille Orwmer 2;2; ®2 LOnSEMERE | ftice DF. A

helados
Edit dintonio Moreno u orio Moreno Ovwner Mataderos 2312 Mésico DF. NiA

Tarueria
Edit Around the Hom Themas Hardy Sales Bepresentative 120 Hanower Sq. Lendon RN
Edi Beghinds oy e Berghnd  Order Admiswator  Berzwsvagen § Liled WA

snabbleép
Edit Blapcr See Hanna Moos Sales RBepresentative Forsterstr. 57 Mannheim A
— Delkatessen
Edit ?éi:i:ﬁfl Fredéngue Citeaux Marketing Manager 24, place Eléber Strashourg HiA
Edit Bolido Comidas e oornmner Owner Cf raquil, 67 Madrid T4
— preparadas
Edit EBon app’ Lanrence Lebihan Ownet 12, tue des Bouchers Marseile A
Edit Bottom-Dollar Elizabeth Lincoln Accounting Manager 23 Tsawassen Blvd, Tsawassen EC I
= Markets

= (3o to the last page

£ 1 2

&1 ‘-_j Local intranet

Figure 11-16

To check for errors when updating data through the GridView, you can use the RowUpdated event.
Listing 11-28 shows how to check for errors after a user has attempted to update data. In this scenario, if
an error does occur, you simply display a message to the user in a Label.

Listing 11-28: Checking for Update errors using the RowUpdated event

VB
<script runat="server">
Protected Sub GridViewl_RowUpdated (ByVal sender As Object,
ByVal e As System.Web.UI.WebControls.GridViewUpdatedEventArgs)

If (Not IsDBNull (e.Exception)) Then

(continued)

367



Chapter 11

Listing 11-28: (continued)

Me.lblErrorMessage.Text = e.Exception.Message
End If
End Sub
</script>

C#
<script runat="server">
protected void GridViewl_RowUpdated (object sender, GridViewUpdatedEventArgs e)
{
if (e.Exception != null)
{
this.lblErrorMessage.Text = e.Exception.Message;
}
}
</script>

Deleting GridView Data

Deleting data from the table produced by the GridView is even easier than editing data. Just a few additions
to the code enable you to delete an entire row of data from the table. Much like with the Edit buttons you
added earlier, you can easily add a Delete button to the grid by setting the AutoGenerateDeleteButton
attribute to True. This is shown in Listing 11-29.

Listing 11-29: Adding a delete link to the GridView

<asp:Gridview ID="GridvViewl" Runat="server" DataSourceID="SglDataSourcel"
DataKeyNames="CustomerID" AutoGenerateColumns="False"
AllowSorting="True" AllowPaging="True"
AutoGenerateEditButton="true" AutoGenerateDeleteButton="true">

The addition of the AutoGenerateDeleteButton attribute to the GridView is the only change you
make to this control. Now look at the SqlDataSource control. Listing 11-30 shows you the root element
of this control.

Listing 11-30: Adding delete functionality to the SqiDataSource Control

<asp:SglDataSource ID="SglDataSourcel" Runat="server"

SelectCommand="SELECT * FROM [Customers]"

ConnectionString="<%$ ConnectionStrings:AppConnectionStringl %>"

DataSourceMode="DataSet"

DeleteCommand="DELETE From Customers WHERE (CustomerID = @CustomerID)"

UpdateCommand="UPDATE [Customers] SET [CompanyName] = @CompanyName,
[ContactName] = @ContactName, [ContactTitle] = @ContactTitle,
[Address] = @Address, [City] = @City, [Region] = @Region,
[PostalCode] = @PostalCode, [Country] = @Country, [Phone] = @Phone,
[Fax] = @Fax WHERE [CustomerID] = @Qoriginal_CustomerID">

368



Data Binding in ASP.NET 2.0

In addition to the SelectCommand and UpdateCommand attributes, you also add the DeleteCommand
attribute to the SqlDataSource and provide the SQL command that deletes the specified row. Just like
the UpdateCommand attribute, the DeleteCommand attribute makes use of named parameters. Because
of this, you define this parameter from within the SqlDataSource control. To do this, add a
<DeleteParameters> section to the SqlDataSource control. This is shown in Listing 11-31.

Listing 11-31: Adding a <DeleteParameters> section to the SqlDataSource control

<DeleteParameters>
<asp:Parameter Name="CustomerID" Type="String">
</asp:Parameter>

</DeleteParameters>

This is the only parameter definition needed for the <DeleteParameters> section because the SQL
command for this deletion requires only the CustomerID from the row to delete the entire row.

When you run the example with this code in place, you see a Delete link next to the Edit link. Clicking the
Delete link completely deletes the selected row. Remember that it is a good idea to check for database
errors after you complete the deletion. Listing 11-32 shows how you can use the GridViews RowDeleted
event and the SqlDataSources Deleted event to check for errors that might have occurred during the
Delete.

Notice that both events provide Exception properties to you as part of the event arguments. If the properties
are not empty, then an exception occurred that you can handle. If you do choose to handle the exception,
then you should set the ExceptionHandled property to True; otherwise, the Exception will continue to
bubble up to the end user.

Listing 11-32: Using the RowDeleted event to catch SQL errors

VB
<script runat="server">
Protected Sub GridViewl_RowDeleted (ByVal sender As Object, _
ByVal e As GridViewDeletedEventArgs)

If (Not IsDBNull (e.Exception)) Then
Me.lblErrorMessage.Text = e.Exception.Message
e.ExceptionHandled = True

End If

End Sub

Protected Sub SglDataSourcel_Deleted(ByVal sender As Object, _
ByVal e As System.Web.UI.WebControls.SglDataSourceStatusEventArgs)

If (e.Exception IsNot Nothing) Then
Me.lblErrorMessage.Text = e.Exception.Message
e.ExceptionHandled = True

End If

End Sub
</script>

(continued)

369



Chapter 11

Listing 11-32: (continued)

C#
<script runat="server">
protected void GridViewl_RowDeleted (object sender, GridViewDeletedEventArgs e)
{
if (e.Exception != null)
{
this.lblErrorMessage.Text = e.Exception.Message;
e.ExceptionHandled = true;

}

protected void SglDataSourcel_Deleted (object sender,
SglDataSourceStatusEventArgs e)
{
if (e.Exception != null)
{
this.lblErrorMessage.Text = e.Exception.Message;
e.ExceptionHandled = true;
}
}

</script>

DetailsView

The DetailsView server control is a new data-bound control that enables you to view a single data
record at a time. Although the GridView control is an excellent control for viewing a collection of data,
many scenarios demand that you be able to drill down into an individual record. The DetailsView con-
trol allows you to do this and provides many of the same data manipulation and display capabilities as
the GridView. It allows you to do things such as paging, updating, inserting, and deleting data.

To start using the DetailsView, drag the control onto the design surface. Like the GridView, you can use the
DetailsView’s smart tag to create and set the data source for the control. For this sample, just use the
SqlDataSource control you used for the DataGrid. If you run the page at this point, you see that the control
displays one record, the first record returned by your query. Figure 11-17 shows you what the DetailsView
looks like in a Web page.

370



Data Binding in ASP.NET 2.0

] Untitled Page - Microsoft Internet Explorer =

File Edit View Favorites Tools Help "
J > \ﬂ @ ;‘J /- ) Search ::1\'/ Favorites 6-4 -

Address féj http:fflocalhost: 1035 WebSite 2 /Def ault2, aspx V . Go Links *
CustomerID ATFEI
Companyiame Alfreds Futterkiste
ContactlName Mlaria Anders1111
ContactTitle Zales Representative
Address Chere Str. 57
City Eetlin
Eegion
PostalCode 1220%
Country Germany
Phene 020-0074321
Fax 030-0076545

@;‘] Daone ‘3 Local intranet

Figure 11-17

If this is all the functionality you want, you probably want to create a new SqlDataSource control and
modify the SelectCommand so that it returns only one record, rather than returning all records as our
query does. For this example, however, you want to be able to page through all the Customer data
returned by your query. To do this, simply turn on paging by setting the DetailsView’s A11lowPaging
attribute to True. You can either check the Enable Paging check box in the DetailsView smart tag or add
the attribute to the control in HTML View. Listing 11-33 shows the DetailsView code for the control.

Listing 11-33: Enabling paging on the DetailsView control

<asp:DetailsView ID="DetailsViewl" Runat="server" DataSourceID="SglDataSourcel"
AutoGenerateRows="False" DataKeyNames="CustomerID"></asp:DetailsView>

Like the GridView, the DetailsView control enables you to customize the control’s Pager using the

PagerSettings-Mode, as well as the Pager style.

Customizing the DetailsView Display

You can customize the appearance of the DetailsView control by picking and choosing which fields the
control displays. By default, the control displays each column from the table it is working with. Much
like the GridView control, however, the DetailsView control enables you to specify that only certain

selected columns be displayed, as illustrated in Listing 11-34.

371



Chapter 11

Listing 11-34: Customizing the display of the DetailsView control

<asp:DetailsView ID="DetailsViewl" Runat="server" DataSourceID="SglDataSourcel"
AutoGenerateRows="False" DataKeyNames="CustomerID">
<Fields>
<asp:BoundField ReadOnly="True" HeaderText="CustomerID"
DataField="CustomerID" SortExpression="CustomerID"
Visible="False" />
<asp:BoundField ReadOnly="True" HeaderText="CompanyName"
DataField="CompanyName" SortExpression="CompanyName" />
<asp:BoundField HeaderText="ContactName" DataField="ContactName"
SortExpression="ContactName" />
<asp:BoundField HeaderText="ContactTitle" DataField="ContactTitle"
SortExpression="ContactTitle" />
</Fields>
</asp:DetailsView>

Using the DetailsView and GridView Together

This section looks at a common scenario using both the GridView and the DetailsView. In this example,
you use the GridView to display a master view of the data and the DetailsView to show the details of
the selected GridView row. The Customers table is the data source. Listing 11-35 shows the code needed
for this.

Listing 11-35: Using the GridView and DetailsView together

<html>
<head id="Headl" runat="server">
<title>Gridview & DetailsView Controls</title>
</head>
<body>
<form id="forml" runat="server">
<p>
<asp:Gridview ID="GridViewl" runat="server"
DataSourceId="SglDataSourcel" AllowPaging="True"
BorderColor="#DEBA84" BorderStyle="None" BorderWidth="1px"
BackColor="#DEBA84" CellSpacing="2" CellPadding="3"
DataKeyNames="CustomerID" AutoGenerateSelectButton="True"
AutoGenerateColumns="False" PageSize="5">
<FooterStyle ForeColor="#8C4510"
BackColor="#F7DFB5"></FooterStyle>
<PagerStyle ForeColor="#8C4510"
HorizontalAlign="Center"></PagerStyle>
<HeaderStyle ForeColor="White" BackColor="#A55129"
Font-Bold="True"></HeaderStyle>
<Columns>
<asp:BoundField ReadOnly="True" HeaderText="CustomerID"
DataField="CustomerID" SortExpression="CustomerID">
</asp:BoundField>

372



Data Binding in ASP.NET 2.0

<asp:BoundField HeaderText="CompanyName"
DataField="CompanyName" SortExpression="CompanyName">
</asp:BoundField>
<asp:BoundField HeaderText="ContactName"
DataField="ContactName" SortExpression="ContactName">
</asp:BoundField>
<asp:BoundField HeaderText="ContactTitle"
DataField="ContactTitle" SortExpression="ContactTitle">
</asp:BoundField>
<asp:BoundField HeaderText="Address" DataField="Address"
SortExpression="Address"></asp:BoundField>
<asp:BoundField HeaderText="City" DataField="City"
SortExpression="City"></asp:BoundField>
<asp:BoundField HeaderText="Region" DataField="Region"
SortExpression="Region"></asp:BoundField>
<asp:BoundField HeaderText="PostalCode" DataField="PostalCode"
SortExpression="PostalCode"></asp:BoundField>
<asp:BoundField HeaderText="Country" DataField="Country"
SortExpression="Country"></asp:BoundField>
<asp:BoundField HeaderText="Phone" DataField="Phone"
SortExpression="Phone"></asp:BoundField>
<asp:BoundField HeaderText="Fax" DataField="Fax"
SortExpression="Fax"></asp:BoundField>

</Columns>
<SelectedRowStyle ForeColor="White" BackColor="#738A9C"

Font-Bold="True"></SelectedRowStyle>

<RowStyle ForeColor="#8C4510" BackColor="#FFF7E7"></RowStyle>
</asp:Gridview>

</p>

<p><b>Customer Details:</b></p>

<asp:DetailsView ID="DetailsViewl" runat="server"
DataSourceId="SglDataSource2"
BorderColor="#DEBA84" BorderStyle="None" BorderWidth="1px"
BackColor="#DEBA84" CellSpacing="2" CellPadding="3"
AutoGenerateRows="False" DataKeyNames="CustomerID">
<FooterStyle ForeColor="#8C4510" BackColor="#F7DFB5"></FooterStyle>
<RowStyle ForeColor="#8C4510" BackColor="#FFF7E7"></RowStyle>
<PagerStyle ForeColor="#8C4510" HorizontalAlign="Center"></PagerStyle>

<Fields>
<asp:

BoundField ReadOnly="True" HeaderText="CustomerID"
DataField="CustomerID" SortExpression="CustomerID">

</asp:BoundField>

<asp:

<asp:

<asp

<asp:

<asp:

<asp:

BoundField HeaderText="CompanyName" DataField="CompanyName"
SortExpression="CompanyName"></asp:BoundField>
BoundField HeaderText="ContactName" DataField="ContactName"
SortExpression="ContactName"></asp:BoundField>

:BoundField HeaderText="ContactTitle" DataField="ContactTitle"

SortExpression="ContactTitle"></asp:BoundField>
BoundField HeaderText="Address" DataField="Address"
SortExpression="Address"></asp:BoundField>
BoundField HeaderText="City" DataField="City"
SortExpression="City"></asp:BoundField>

BoundField HeaderText="Region" DataField="Region"
SortExpression="Region"></asp:BoundField>

(continued)

373



Chapter 11

Listing 11-35: (continued)

<asp:BoundField HeaderText="PostalCode" DataField="PostalCode"
SortExpression="PostalCode"></asp:BoundField>
<asp:BoundField HeaderText="Country" DataField="Country"
SortExpression="Country"></asp:BoundField>
<asp:BoundField HeaderText="Phone" DataField="Phone"
SortExpression="Phone"></asp:BoundField>
<asp:BoundField HeaderText="Fax" DataField="Fax"
SortExpression="Fax"></asp:BoundField>
</Fields>
<HeaderStyle ForeColor="White" BackColor="#A55129"
Font-Bold="True"></HeaderStyle>
<EditRowStyle ForeColor="White" BackColor="#738A9C"
Font-Bold="True"></EditRowStyle>
</asp:DetailsView>
<asp:SglDataSource ID="SglDataSourcel" runat="server"
SelectCommand="SELECT * FROM [Customers]"
ConnectionString="<%$ ConnectionStrings:AppConnectionStringl %>" />
<asp:SglDataSource ID="SglDataSource2" runat="server"
SelectCommand="SELECT * FROM [Customers]"
FilterExpression="CustomerID="'{0}'"
ConnectionString="<%$ ConnectionStrings:AppConnectionStringl %>">
<FilterParameters>
<asp:ControlParameter Name="CustomerID" ControlId="GridViewl"
PropertyName="SelectedValue"></asp:ControlParameter>
</FilterParameters>
</asp:SglDataSource>
</form>
</body>
</html>

When this code is run in your browser, you get the results shown in Figure 11-18.

In this figure, one of the rows in the GridView has been selected (noticeable because of the gray
highlighting). The details of the selected row are shown in the DetailsView control directly below
the GridView control.

To see how this works, look at the changes that were made to the second SqlDataSource control,
SqlDataSource2. Notice that a FilterExpression attribute has been added, which is used to modify
the SelectCommand attribute.

The value given to the FilterExpression attribute expresses how you want the SqlDataSource control
to filter its Select command. In this case, the value of the FilterExpressionis
CustomerID=@CustomerID. This tells the SqlDataSource control to filter records that it returns by the
CustomerID given to it, as shown in Listing 11-36.

374



Data Binding in ASP.NET 2.0

Listing 11-36: Filtering SqlDataSource data with a FilterExpression

<asp:SglDataSource ID="SglDataSource2" runat="server"
SelectCommand="SELECT * FROM [Customers]"
FilterExpression="CustomerID='@CustomerID'"
ConnectionString="<%$ ConnectionStrings:AppConnectionStringl %>">
<FilterParameters>

<asp:ControlParameter Name="CustomerID" ControlId="GridViewl"
PropertyName="SelectedValue"></asp:ControlParameter>

</FilterParameters>

</asp:SglDataSource>

The parameter specified in the FilterExpression attribute, @CustomerID, is defined within the
SqlDataSource control through the use of the <FilterParameters> element. This sample uses an
<asp:ControlParameter> to specify the name of the parameter, the control that the parameter value
is coming from (the GridView control), and the property name that is used to populate the parameter
value.

[ET GridView & DetailsView Controls - Microsoft Internet Explorer U@
File Edit View Favorites Tools Help b
Qi - © R B G| Pt Frrowin @ @3- 5 B L
Address |ﬂ betpf localhosk: 6404 WebSite 1 /Def aultd aspx E| Go  Links *

~
e ConerD] Compyame |Coeiame] CelTite | Adirse | Ciy | Rein| PesCote Comiy] T | Fox |
. . Sales = . = 030- 030-
Select | ALFEL Alfreds Futterliste | Mana Anders T Obere Str. 57 |Berlin 12209 Germany 0074321 10076545
Ana Trujillo Awda dela M .
Select |AMATE. Emparedadosy | Ana Trujille Cwmer Constimcién |1 £ 05021 Mexico 215.})25;55' [3?45555'
| helados 2222 o
ANT Antonio Moreno | Antonio Mataderos | México (5) 555-
Tagueria Moreno 2312 DF. 3932
R amn a7
Select |AROUT | Around the Hom | Thomas Hardy |28 WERTET | b o Wal1DP |UR 555- 555-
Eepresentative | Sq.
TIBE 6750
| Bergiunds Christina Order Berguvsvagen | ' 0921-12 [0921-12
elect |BERGS | abbop Berglind | Administrator |8 bl ‘ ‘5'958 22 |Sweden ‘34 65 |3467
12345678310
Customer Details:
| CustomerID | ADTTONT
:Comps.uyNamc |.Antom0 Iforenc Taqueria
_ComacrName |Antonio Mereno
| ContactTitle | COwmer |
Address Mataderos 2312
| City Mézico DF
Eegion | el
= — - 1)
&) ‘d Local intranet
Figure 11-18

375



Chapter 11

Finally, be sure to include the DataKeyNames attribute in the GridView control. In this case supply
CustomerID as the value. This tells the GridView which column(s) are to be used as a primary key.
When a user selects a row, the value of that column is then provided to the DetailsView control via the
SelectValue property. The procedure for adding the DataKeyNames to the GridView is shown in
Listing 11-37.

Listing 11-37: Adding the DataKeyNames attribute to the GridView

<asp:Gridview ID="GridViewl" runat="server"
DataSourcelId="SglDataSourcel" AllowPaging="True"
BorderColor="#DEBA84" BorderStyle="None" BorderWidth="1px"
BackColor="#DEBA84" CellSpacing="2" CellPadding="3"
DataKeyNames="CustomerID" AutoGenerateSelectButton="True"
AutoGenerateColumns="False" PageSize="5">

SelectParameters versus FilterParameters

You might have noticed in our last example that the FilterParameters seem to provide the same
functionality as the SelectParameters. Although both produce essentially the same result, they use
very different methods. Using a SelectParameters modifies the query that is executed against the
SQL server by dynamically adding a WHERE clause to the SelectCommand. This limits the rows that are
returned from the SQL Server and held in memory by the data source control. The advantage is that by
limiting the amount of data returned from SQL, you can make your application faster and reduce the
amount of memory it consumes. The disadvantage is that you are confined to working with the limited
subset of data returned by the SQL query.

FilterParameters, on the other hand, do not alter the SelectCommand, allowing all the data to be
returned from the SQL server. The filter is applied to the data source control’s in-memory data. The
advantage here is that if you are performing many filters of one large chunk of data (for instance, to
enable paging in the DetailView), you do not have to call out to SQL Server each time you need the next
record. All the data is stored in memory by the data source control.

Inserting, Updating, and Deleting Data Using DetailsView

Inserting data using the DetailsView is similar to all the other data functions that you have performed.
To insert data using the DetailsView, simply add the AutoGenerateInsertButton attribute to the
DetailsView control as shown in Listing 11-38.

Listing 11-38: Adding an AutoGeneratelnsertButton attribute to the DetailsView

<asp:DetailsView ID="DetailsViewl" runat="server"
DataSourceId="SglDataSource2"
BorderColor="#DEBA84" BorderStyle="None" BorderWidth="1px"
BackColor="#DEBA84" CellSpacing="2" CellPadding="3"
AutoGenerateRows="False" AutoGenerateInsertButton="true"
DataKeyNames="CustomerID">

376



Data Binding in ASP.NET 2.0

Then add the InsertCommand and corresponding InsertParameter elements to the SqlDataSource
control, as shown in Listing 11-39.

Listing 11-39: Adding an InsertCommand to the SqlDataSource control

<asp:SglDataSource ID="sglDataSource2" runat="server"

SelectCommand="SELECT * FROM [Customers]"

InsertCommand="INSERT INTO [Customers] ([CustomerID], [CompanyName],
[ContactName], [ContactTitle], [Address], [City], [Region], [PostalCode],
[Country], [Phone], [Fax]) VALUES (@CustomerID, @CompanyName,
@ContactName, @ContactTitle, @Address, @City, @Region, @PostalCode,
@Country, @Phone, @Fax)" DeleteCommand="DELETE FROM [Customers] WHERE
[CustomerID] = @original_CustomerID"

FilterExpression="CustomerID='@CustomerID"'"

ConnectionString="<%$ ConnectionStrings:AppConnectionStringl %>">

<FilterParameters>
<asp:ControlParameter Name="CustomerID" ControlId="GridvViewl"

PropertyName="SelectedValue"></asp:ControlParameter>

</FilterParameters>

<InsertParameters>

<asp

<asp

<asp

:Parameter
<asp:
<asp:
<asp:
<asp:
:Parameter
<asp:
<asp:
<asp:
<asp:
:Parameter

</InsertParameters>

Parameter
Parameter
Parameter
Parameter

Parameter
Parameter
Parameter
Parameter

</asp:SglDataSource>

Type="String"
Type="String"
Type="String"
Type="String"
Type="String"
Type="String"
Type="String"
Type="String"
Type="String"
Type="String"
Type="String"

Name="CustomerID"></asp:Parameter>
Name="CompanyName"></asp:Parameter>
Name="ContactName"></asp:Parameter>
Name="ContactTitle"></asp:Parameter>
Name="Address"></asp:Parameter>
Name="City"></asp:Parameter>
Name="Region"></asp:Parameter>
Name="PostalCode"></asp:Parameter>
Name="Country"></asp:Parameter>
Name="Phone"></asp:Parameter>
Name="Fax"></asp:Parameter>

Figure 11-19 shows the DetailsView control page loaded in the browser in Insert mode, ready to add a

new record.

Figure 11-20 shows the DetailsView control after a new record has been inserted.

Updating and deleting data using the DetailsView control are similar to deleting data from the GridView.
Simply specify the UpdateCommand or DeleteCommand attributes in the Detail View control; then provide
the proper UpdateParameters and DeleteParameters elements.

377



Chapter 11

378

&1 Untitled Page - Microsoft Internet Explorer

S]=[%]

File Edit

View Favorites

Tools Help

eBack > | |£| @ ;\J /.._\JSearch \51'\'( Favorites {‘}

Address |5§| http:fflacalhost: 1035 WebSite2/Def aulk2, aspx

BOE

:!r.

»

Links

CustomerID
CompanylTarme
ContactMame
ContactTitle
Address

City

Eegion
PostalCode
Country
Phone

Fax

Insert Cancel

L

[

ﬂj Done

‘3 Local intranet

Figure 11-19

&1 Untitled Page - Microsoft Internet Explorer

2oa

File Edit

View Favorites

Tools Help

eBack - _) |£| \E‘ _;\J /.._\JSearch \‘}':‘\'( Favorites {‘3

:!r.

»

address 2:[ http: flocalhost: 1035/ WebSite2/Def ault2, aspsx [V] Go | Links
-~
CustomerID WEBGTD
Companylame Acme Industries
ContactIame Wiley Coyote
ContactTitle CEO
Address 123 Mlain Street
City Anywhere
Eegion WA
PostalCode 12345 =
Country JUTS
Phone 555-555-5555
Fax 555-555-5556
Hew
..B586878389 909192 9394
v/
@j ‘:J Local inkranet
Figue 11-20




Data Binding in ASP.NET 2.0

FormView

The FormView control is a new control included with the ASP.NET 2.0 toolbox. It basically functions like
the DetailsView control in that it displays a single data item from a bound data source control and
allows adding, editing, and deleting data. What makes it unique is that it displays the data in custom
templates, which gives much greater control over how the data is displayed and edited. Figure 11-21
shows a FormView control ItemTemplate being edited in Visual Studio. You can see that you have com-
plete control over how your data is displayed. The FormView control also contains an EditTemplate that
allows you to determine how the control displays when entering Edit or Insert mode.

|25 WebSite1 - Microsoft Develop Envil BEE
Fle Edt View ‘Webske Buld Debug  Formak  Layouk  Tools  Window  Help
ACRAEERN" N IR RAER PR R AL -
: + TimesNewRomar » 120t - | B I U |A 7| = - :;;;|__E
Toelbo: » 0 X | Default7.aspx 5 X | Properties - 0 %
sl BERISTL o [~]| Form¥iew1 System.web.LILwebContra +
3
-
w1 - TtemTemplate == 2 =
A Label R =R A=
Iabi] TextBox TemTemplate ;‘a.;;lemewsrace True |
. . Cust: piny nip
e Customer Information Pos us]]"jrf;; ol ToolTip
Linksitton - stotmer sisble Trus
IrnageBuitton A CormpanyMTame; [ CompanylTameLabel] Hip
A Hyperlink 1 ContactlTame; [ContactMameLabel] {Expressions)
‘TE DropDowrlist ContactTitle: [ContactTitleLabel] Diakakeyhlames CustomerlD
=3 ListBox DakaMerber b
CheckBox FAddn:ssLabc]] E:;:f::gm ;jq ataSourcel
o B B o =
4= ChedBoxlist CityLabel] [EegonLabel] [PostalCodeLabel] A
(%) RadioButton | '[Counu'ylabel] p— CellPadding -1
©~ RacioButtonlist [PhopeLabel] CellSpacing 0
il Image Fax [FaxLabel] e
ﬁ DynarmicImage mf:nta [Akign MotSet
= L
I8 tagevep o
3 Table {I0) FormViewl
3% Buletedi B Paginc
<5l HiddenFigld SqlDataSource - SglDataSource] Alloweaging True
B Likeral k| gPduchcttinus =
- lv' B EdtR.oaMSt )
[2 calendar (4 Design | (=] Source: |chtmi> || <bady>| | <div> o] myDut:RowShde
5 Adrotator UL » 0 % B Foctersyle
L) FileUpkoad =tow aubpat Froms — | » % | E| B HeadersStyle
4 pheneink el = Stvle
i B pagerstie
ConbentP:
i U Rowstyie v
4 WWizard —
2 sl Misc
T4 Multiviews
[ panel . : :
7] Pla der vll (& Error List | 5] Output '_ﬂﬁn\_tm Explorer |57 Properties
| Ready

Figure 11-21

379



Chapter 11

Figures 11-20 and 11-21 show the FormView control in action. Figure 11-22 shows the control displaying
its ItemTemplate, reflecting the custom layout that was designed in Visual Studio.

In Figure 11-23, you see the control in Edit mode, showing the standard EditTemplate layout.

&] Untitled Page - Microsoft Internet Explorer D=
File Edit View Favorites Tools Help Ly

" ~ n »
<) > Iﬂ \ELI _'\J 7/ ! Search ‘?;_'\':(Favorites @Media 6’-“ v |

address | @] httpflocalhost 6404/ wWebSite 1 /Default 7 aspx 4 .Go Links >

Customer Information CustomerID: ALFKI

Companylatme: Alfreds Futterliste
ContactMName: Mana Anders
ContactTitle: Sales Eepresentative

Cbere Str. 57

Berlin 12209

Germany Phone:030-
0074321
Fax: 030-
0076545

@;I] Done & J Local intranet

Figure 11-22

380



Data Binding in ASP.NET 2.0

& Untitled Page - Microsoft Internet Explorer ==
File Edit View Favorites Tools Help "

A _‘: b " . -9
eBack M | \ﬂ \ELI v, Search :_/_\:(Favorltes @Medla ‘6-44’ T i

Address @j http:f flocalhost ;6404 iebSitel (Default?  aspx Il . Go Links **

»

CustomerID: ATFEI
CompanyMame: Alfreds Futterkiste
Contactt ame: | Maria Anders
ContactTitle: | Sales Representative
Address: [Obere Str. 57

City: |Berlin

Eegion:

PostalCode: 12209

Country: | Germany

Phone: 030-0074321

Fax |030-0076545

12345678910 ..

@:I Done &J Local intranet

Figure 11-23

Listing 11-40 shows the code that Visual Studio generates when designing the FormView control’s cus-
tomized ItemTemplate.

Listing 11-40: Using a FormView control to display and edit data

<%@ Page Language="C#" %>

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>Using the FormView control</title>
</head>
<body>
<form id="forml" runat="server">
<div>
<asp:FormView ID="FormViewl" Runat="server" DataSourceID="SglDataSourcel"
DataKeyNames="CustomerID" AllowPaging="True">
<EditItemTemplate>
CustomerID:
<asp:Label Text='<%# Eval ("CustomerID") %>' Runat="server"
ID="CustomerIDLabell">

(continued)

381



Chapter 11

Listing 11-40: (continued)

</asp:Label><br />
CompanyName :
<asp:TextBox Text='<%# Bind("CompanyName") %>' Runat="server"
ID="CompanyNameTextBox"></asp:TextBox><br />
ContactName:
<asp:TextBox Text='<%# Bind("ContactName") %>' Runat="server"
ID="ContactNameTextBox"></asp:TextBox><br />
ContactTitle:
<asp:TextBox Text='<%# Bind("ContactTitle") %>' Runat="server"
ID="ContactTitleTextBox"></asp:TextBox><br />
Address:
<asp:TextBox Text='<%# Bind("Address") %>' Runat="server"
ID="AddressTextBox"></asp:TextBox><br />
City:
<asp:TextBox Text='<%# Bind("City") %>' Runat="server"
ID="CityTextBox"></asp:TextBox><br />
Region:
<asp:TextBox Text='<%# Bind("Region") %>' Runat="server"
ID="RegionTextBox"></asp:TextBox><br />
PostalCode:
<asp:TextBox Text='<%# Bind("PostalCode") %>' Runat="server"
ID="PostalCodeTextBox"></asp:TextBox><br />
Country:
<asp:TextBox Text='<%$# Bind("Country") %>' Runat="server"
ID="CountryTextBox"></asp:TextBox><br />
Phone:
<asp:TextBox Text='<%# Bind("Phone") $%>' Runat="server"
ID="PhoneTextBox"></asp:TextBox><br />
Fax:
<asp:TextBox Text='<%# Bind("Fax") %>' Runat="server"
ID="FaxTextBox"></asp:TextBox><br />
<br />
<asp:Button ID="Button2" Runat="server" Text="Button"
CommandName="update" />
<asp:Button ID="Button3" Runat="server" Text="Button"
CommandName="cancel" />
</EditItemTemplate>
<ItemTemplate>
<table width="100%">
<tr>
<td style="width: 439px">
<b>
<span style="font-size: l4pt">Customer Information</span>
</b>
</td>
<td style="width: 439px" align="right">
CustomerID:
<asp:Label ID="CustomerIDLabel" Runat="server"
Text='<%# Bind("CustomerID") %>'>
</asp:Label></td>
</tr>
<tr>
<td colspan="2">
CompanyName :

382



Data Binding in ASP.NET 2.0

<asp:Label ID="CompanyNameLabel" Runat="server"
Text="'<%# Bind("CompanyName") %>'>
</asp:Label><br />
ContactName:
<asp:Label ID="ContactNameLabel" Runat="server"
Text='<%# Bind("ContactName") %>'>
</asp:Label><br />
ContactTitle:
<asp:Label ID="ContactTitleLabel" Runat="server"
Text='<%# Bind("ContactTitle") %>'>
</asp:Label><br />
<br />
<table width="100%"><tr>
<td colspan="3">
<asp:Label ID="AddressLabel" Runat="server"
Text='<%# Bind("Address") %>'>
</asp:Label></td>
</tr>
<tr>
<td style="width: 100px">
<asp:Label ID="CityLabel" Runat="server"
Text="'<%# Bind("City") %>'>
</asp:Label></td>
<td style="width: 100px">
<asp:Label ID="RegionLabel" Runat="server"
Text='<%# Bind("Region") %>'>
</asp:Label></td>
<td style="width: 100px">
<asp:Label ID="PostalCodeLabel"
Runat="server"
Text='<%# Bind("PostalCode") %>'>
</asp:Label>
</td>
</tr>
<tr>
<td style="width: 100px" valign="top">
<asp:Label ID="CountryLabel" Runat="server"
Text='<%# Bind("Country") %>'>
</asp:Label></td>
<td style="width: 100px"></td>
<td style="width: 100px">
Phone:
<asp:Label ID="PhoneLabel" Runat="server"
Text='<%# Bind("Phone") %>'>
</asp:Label><br />
Fax:
<asp:Label ID="FaxLabel" Runat="server"
Text='<%# Bind("Fax") %>'>
</asp:Label><br />
</td>
</tr></table>
<asp:Button ID="Buttonl" Runat="server"
Text="Button" CommandName="edit" />
</td>
</tr></table>

(continued)

383



Chapter 11

Listing 11-40: (continued)

</ItemTemplate>
</asp:FormView>
<asp:SglDataSource ID="SglDataSourcel" Runat="server"
SelectCommand="SELECT * FROM [Customers]"
ConnectionString="<%$ ConnectionStrings:AppConnectionStringl %>">
</asp:SglDataSource>

</div>

</form>
</body>
</html>

Other Databound Controls

ASP.NET 1.0/1.1 contained many other controls that could be bound to data sources. ASP.NET 2.0
retains these controls, enhances some, and adds several new bound controls to the toolbox.

DropDownlist, ListBox, RadioButtonList and
CheckBoxList

Although the DropDownlList, ListBox and CheckBoxList controls have largely remained the same from
ASP.NET 1.0/1.1 to ASP.NET 2.0, they contain several new properties that you might find useful.
Additionally ASP.NET 2.0 contains the new RadioButtonList and BulletedList controls.

One of the new properties available in all these controls is the AppendDataBoundItems property. Setting
this property to True tells the DropDownList control to append data-bound list items to any existing
statically declared items, rather then overwriting them as the ASPNET 1.0/1.1 version would have done.

Another useful new property available to all these controls is the DataTextFormatString, which
allows you to specify a string format for the display text of the DropDownList items.

TreeView

Another exciting new control included in the ASP.NET 2.0 toolbox is the new TreeView control.
Because the TreeView can display only hierarchical data, it can be bound only to the XmlDataSource
and the SiteMapDataSource controls. Listing 11-41 shows a sample SiteMap file you can use for your
SiteMapDataSource control.

Listing 11-41: A SiteMap file for your samples

<siteMap>
<siteMapNode url="page3.aspx" title="Home" description="" roles="">
<siteMapNode url="page2.aspx" title="Content" description="" roles="" />
<siteMapNode url="paged.aspx" title="Links" description="" roles="" />
<siteMapNode url="pagel.aspx" title="Comments" description="" roles="" />
</siteMapNode>
</siteMap>

384



Data Binding in ASP.NET 2.0

Listing 11-42 shows how you can bind a TreeView control to a SiteMapDataSource control to generate
navigation for your Web site.

Listing 11-42: Using the TreeView with a SqlDataSource control
<%@ Page Language="C#" %>

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
<title>Using the TreeView control</title>
</head>
<body>
<form id="forml" runat="server">
<div>
<asp:TreeView ID="TreeViewl" Runat="server"
DataSourceID="SiteMapDataSourcel">
</asp:TreeView>
<asp:SiteMapDataSource ID="SiteMapDataSourcel" Runat="server" />

</div>

</form>
</body>
</html>

Ad Rotator

The familiar Ad Rotator control has been greatly enhanced in ASP.NET 2.0. You can see the control by
using the SqlDataSource or XmlDataSource controls. Listing 11-43 shows an example of binding the Ad
Rotator to a SqlDataSource control.

Listing 11-43: Using the AdRotator with a SqiDataSource control

<asp:AdRotator ID="AdRotatorl" runat="server"
DataSourceId="SglDataSourcel" AlternateTextField="AlternateTF"
ImageUrlField="Image" NavigateUrlField="NavigateUrl" />

For more information on the Ad Rotator control, see Chapter 5.

Menu

The last control in this section is the new Menu control. Like the TreeView control, it is capable of
displaying hierarchical data in a vertical pop-out style menu. Also like the TreeView control, it can be
bound only to the XmlDataSource and the SiteMapDataSource controls. Listing 11-44 shows how you
can use the same SiteMap data used earlier in the TreeView control sample, and modify it to display
using the new Menu control.

385



Chapter 11

Listing 11-44: Using the Menu control with a SiteMap
<%@ Page Language="C#" %>

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>Using the Menu control</title>
</head>
<body>
<form id="forml" runat="server">
<div>
<asp:Menu ID="Menul" Runat="server" DataSourceID="SiteMapDataSourcel">
</asp:Menu>
<asp:SiteMapDataSource ID="SiteMapDataSourcel" Runat="server" />
</div>
</form>
</body>
</html>

For more information on using the Menu control, see Chapter 14.

Inline Data-Binding Syntax

Another feature of data binding that has greatly improved in ASPNET 2.0 is inline data-binding syntax.
Inline syntax in ASP.NET 1.0/1.1 was primarily relegated to templated controls such as the DataList or
the Repeater controls, and even then it was sometimes difficult and confusing to make it work as you
wanted it to. In ASP.NET 1.0/1.1, if you needed to use inline data binding, you might have created
something like the procedure shown in Listing 11-45.

Listing 11-45: Using DataBinders in ASP.NET 1.0

<asp:Repeater id=Repeaterl runat="server">
<HeaderTemplate>
<table>
</HeaderTemplate>
<ItemTemplate>
<tr>
<td>
<%# Container.Dataltem("Name") %><BR/>
<%# Container.Dataltem("Department") %><BR/>
<%# DataBinder.Eval (
Container.Dataltem, "HireDate", "{O:mm dd yyyy}") %><BR/>
</td>
</tr>
</ItemTemplate>
<FooterTemplate>
</table>
</FooterTemplate>
</asp:Repeater>

386



Data Binding in ASP.NET 2.0

As you can see in this sample, you are using a Repeater control to display a series of Employees. Because
the Repeater control is a template control, you use data binding to output the employee-specific data in
the proper location of the template. Using the Eval method also allows you to provide formatting infor-
mation such as Date or Currency formatting at render-time.

In ASPNET 2.0, the content of inline data binding remains basically the same, but you are given a simpler
syntax and several powerful new binding tools to use.

DataBinder Syntax Changes

ASP.NET 2.0 contains three different ways to perform data binding. First, you can continue to use the
existing method of binding, using the Container.DataItem syntax:

<%# Container.Dataltem("Name") %>

This is good because it means you won't have to change your existing Web pages if you are migrating
from ASPNET 1.0/1.1 to ASP.NET 2.0. But if you are creating new Web pages, you should probably use
the simplest form of binding, using the Eval method directly:

<%# Eval ("Name") %>
You can also continue to format data using the formatter overload of the Eval method:
<%# Eval ("HireDate", "{0:mm dd yyyy}" ) %>

In addition to these changes, ASPNET 2.0 introduces a new form of data binding called two-way data binding.
In ASPNET 1.0/1.1, using the binding syntax was essentially a read-only form of accessing data. In
ASPNET 2.0, two-way data binding allows you to support both read and write operations for bound data.
This is done using the Bind method, which, other than using a different method name, works just like the
Eval method:

<%# Bind("Name") %>

The new Bind method should be used in new controls like the GridView, DetailsView, or FormView,
where auto-updates to the data source are implemented.

XML Data Binders

Because XML is becoming ever more prevalent in applications, ASP.NET 2.0 also introduces several new
ways to bind specifically to XML data sources, called XML Data Binders. These new binders give you
powerful ways of working with the hierarchical format of XML. Additionally, except for the different
method names, these binding methods work exactly the same as the Eval and Bind methods discussed
earlier. These binders should be used when you are using the XmlDataSource control. The first binding
format that uses the XPathBinder class is shown in the following code.

[}

<% XPathBinder.Eval (Container.Dataltem, "employees/employee/Name") %>

387



Chapter 11

Notice that rather than specifying a column name as in the Eval method, the XPathBinder binds the
result of an XPath query. Like the standard Eval binder, the XML binder also has a shorthand format:

<% XPath("employees/employee/Name") %>
Also, like the Eval method, the XPath binder supports applying formatting to the data:
<% XPath ("employees/employee/HireDate", "{0:mm dd yyyy}") %>

The xpPathBinder returns a single node using the XPath query provided. Should you want to return
multiple nodes from the XmlDataSource Control, you can use the class’s Select method. This method
returns a list of nodes that match the supplied XPath query:

<% XPathBinder.Select (Container.Dataltem, "employees/employee") %>

Or use the shorthand syntax:

Q

<% XpathSelect ("employees/employee") %>

Summary

In this chapter, you examined how data binding in ASP.NET 2.0 has been significantly enhanced and
improved. The introduction of data source controls like the SqlDataSource control or the XmlDataSource
control makes querying and displaying data from any number of data sources an almost trivial task.
Using the data source controls’ own wizards, you learned how easy it is to generate powerful data
access functionality with almost no code required.

You examined how even a beginning developer can easily combine the data source controls with the new
GridView and DetailsView controls to create powerful data manipulation applications with a minimal
amount of coding.

You saw how ASP.NET includes a multitude of controls that can be data-bound, specifically examining
how many ASP.NET 1.0/1.1 controls have been enhanced, and examining the features of the new Data

Bound controls that are included in ASPNET 2.0, such as the TreeView and Menu controls.

Finally, you looked at how the inline data-binding syntax has been improved and strengthened with the
addition of the XML-specific Data Binders.

388



|

Data Management with
ADO.NET

This chapter provides information on programming with data management features that are part
of ADO.NET. The discussion begins with the basics of ADO.NET and later dives into the ways
you can use the newly added advanced ADO.NET features to manage data contained in a rela-
tional database.

ADO.NET was first introduced in version 1.0 of the .NET Framework and provided an extensive
array of features to handle data either live —while connected to the database — or when
disconnected. With the introduction of ADO.NET 2.0, the already-extensive features list has grown
even larger. Some of the newly added features include the capability to bulk load large quantities of
data from a variety of sources, to batch process updates to the database with fewer round trips back
to the database server, to reuse the same live connection for multiple operations, as well as to achieve
asynchronous access to the database.

Basic ADO.NET Features

This chapter covers the basics of ADO.NET and then provides an overview of basic ADO.NET
namespaces and classes. It also shows you how to work with Connection, Command,
DataAdapter, DataSet, and DataReader objects.

Basic ADO.NET Namespaces and Classes

The six basic ADO.NET namespaces are shown in the following table. In addition to these names-
paces, each new data provider can have its own namespace. As an example, the Oracle .NET data
provider adds a namespace of Microsoft.Data.OracleClient.




Chapter 12

Namespace Description

System.Data This namespace is the core of ADO.NET. It contains classes
used by all data providers. It contains classes to represent
tables, columns, rows, and the DatasSet. It also contains
several very useful interfaces, such as IDbCommand,
IDbConnection, and IDbDataAdapter. These interfaces
are used by all managed providers, enabling them to plug
into the core of ADO.NET.

System.Data.Common This namespace defines common classes that are used as
base classes for data providers. All data providers share
these classes. A few examples are DbConnection and
DbDataAdapter.

System.Data.0leDb This namespace defines classes that work with OLE-DB
data sources using the .NET OleDb data provider. It
contains classes such as OleDbConnection and
OleDbCommand.

System.Data.Odbc This namespace defines classes that work with the ODBC
data sources using the NET ODBC data provider. It
contains classes such as 0OdbcConnection and
OdbcCommand.

System.Data.SqglClient This namespace defines a data provider for the SQL
Server 7.0 or higher database. It contains classes such as
SglConnection and SglCommand.

System.Data.SqglTypes This namespace defines a few classes that represent specific
data types for the SQL Server database.

ADO.NET has three distinct types of classes commonly referred to as Disconnected, Shared, and Data
providers. The Disconnected classes provide the basic structure for the ADO.NET framework. A good
example of this type of class is the DataTable class. The objects of this class are capable of storing data
without any dependency on a specific data provider. The shared classes form the base classes for data
providers and are shared among all data providers. The Data Provider classes are meant to work with
different kinds of data sources. They are used to perform all data-management operations on specific
databases. The sglclient data provider, for example, works only with the SQL Server database.

A data provider contains Connection, Command, DataAdapter, and DataReader objects. In a typical
ADO.NET programming, you first create the Connection object and provide it with the necessary
information, such as the connection string. You then create a Command object and provide it with the details
of the SQL command that is to be executed. This command can be an inline SQL text command, a stored
procedure, or direct table access. You can also provide parameters to these commands if needed. After you
create the Connection and the Command objects, you must decide whether the command returns a result
set. If the command doesn’t return a result set, you can simply execute the command by calling one of its
several Execute methods. On the other hand, if the command returns a result set, you must make a

390



Data Management with ADO.NET

decision about whether you want to retain the result set for future uses without maintaining the connection
to the database. If you want to retain the result set, you must create a DataAdapter object and use it to fill a
DataSet or a DataTable object. These objects are capable of maintaining their information in a discon-
nected mode. However, if you don’t want to retain the result set, but rather to simply process the command
in a swift fashion, you can use the Command object to create a DataReader object. The DataReader object
needs a live connection to the database, and it works as a forward-only, read-only cursor.

Using the Connection Object

The Connection object creates a link to the data source. This object needs the necessary information to
discover the data source and to log in to it properly. This information is provided via a connection string.

The properties for the SglConnection class are shown in the following table. The SqlConnectionisa
class that is specific to the Sglclient provider. As discussed earlier in this chapter, the SglClient
provider is built for working with the SQL Server 7.0 and higher databases.

Property Description

Datasource This read-only property returns the name of the instance of
the SQL Server database used by the SglConnection
object.

Database This read-only property returns the name of the database to

use after the connection is opened.

State This read-only property returns the current state of the con-
nection. The possible values are Broken, Closed, Connect-
ing, Executing, Fetching, and Open.

ConnectionString This property allows you to read or provide the connection
string that should be used by the SqlConnection object.

Using the Command Object

The Command object uses the Connection object to execute SQL queries. These queries can be in the
form of inline text, a stored procedure, or direct table access. If the SQL query uses the SELECT clause,
the result set it returns is usually stored in either a DataSet or a DataReader object. The command

object provides a number of Execute methods that can be used to perform the SQL queries in a variety
of fashions.

391



Chapter 12

First take a look at some useful properties of the SglCommand class, as shown in the following table.

Property

Description

CommandText

CommandTimeout

CommandType

Connection

This read-write property allows you to set or retrieve
either the T-SQL statement or the stored procedure
name.

This read-write property gets or sets the number of
seconds to wait while attempting to execute a
command. The command is aborted after it times out
and an exception is thrown. The default is 30 seconds.

This read-write property indicates the way the
CommandText property should be interpreted. The
possible values are StoredProcedure, TableDirect,
and Text.

This read-write property gets or sets the SqglConnec-
tion object that should be used by this command
object.

Now look at the various Execute methods that can be called on a Command object.

Property

Description

ExecuteNonQuery

ExecuteReader

ExecuteRow

ExecuteScalar

ExecuteXmlReader

This method executes the command and returns the
number of rows affected.

This method executes the command and returns an
object of sglDataReader class. The data reader is a
read-only and forward-only cursor.

This method executes the command and returns an
object of the SqglRecord class. This object contains a
single returned row.

This method executes the command and returns the
first column of the first row in the form of a generic
object. The remaining rows and columns are ignored.

This method executes the command and returns an
object of the xm1Reader class. This method enables
you to use a command that returns the results set in
the form of an XML document.

392




Data Management with ADO.NET

Using the DataReader Object

The DataReader object is a simple forward-only and read-only cursor. It requires a live connection
with the data source and provides a very efficient way of looping and consuming all or part of the
result set. This object cannot be directly instantiated. Instead, you must call the ExecuteReader
method of the Command object to obtain a valid DataReader object. Be sure to close the connection
when you are done using the data reader. Otherwise, the connection stays alive until it is explicitly
closed. You can close the connection after using the data reader in one of two ways. One way is to pro-
vide the CommandBehavior.CloseConnection enumeration while calling the ExecuteMethod of the
Command object. This approach works only if you loop through the data reader until you reach the end
of file, at which point the reader object automatically closes the connection for you. However, if you
don’t want to keep reading the data reader until the end of file, you can call the Close method of the
Connection object yourself.

Listing 12-1 shows the Connection, Command, and DataReader objects in action. It shows how to connect
with the Northwind database, read the Customers table, and show the results in a GridView control.

Listing 12-1: The SqlConnection, SqiCommand, and SqiDataReader objects

VB

<%@ Page Language="VB" %>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.SglClient" %>
<%@ Import Namespace="System.Configuration" %>

<script runat="server">
Protected Sub Page_Load(ByVal sender As Object, _
ByVal e As System.EventArgs)

If Not Page.IsPostBack Then
Dim MyConnection As SglConnection
Dim MyCommand As SqglCommand
Dim MyReader As SglDataReader

MyConnection = New SglConnection ()
MyConnection.ConnectionString = _
ConfigurationManager.ConnectionStrings ("DSN_Northwind") .ConnectionString

MyCommand = New SglCommand ()

MyCommand .CommandText = "SELECT TOP 3 * FROM CUSTOMERS"
MyCommand . CommandType = CommandType.Text
MyCommand.Connection = MyConnection

MyCommand .Connection.Open ()
MyReader = MyCommand.ExecuteReader (CommandBehavior.CloseConnection)

gvCustomers.DataSource = MyReader
gvCustomers.DataBind ()

MyCommand .Dispose ()
MyConnection.Dispose ()

(continued)

393



Chapter 12

Listing 12-1: (continued)

394

End If
End Sub
</script>

<html>
<body>
<form id="forml" runat="server">
<div>
<asp:Gridview ID="gvCustomers" runat="server">
</asp:Gridview>
</div>
</form>
</body>
</html>

C#

<%@ Page Language="C#" %>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.SglClient" %>
<%@ Import Namespace="System.Configuration" %>

<script runat="server">
protected void Page_Load(object sender, EventArgs e)
{
if (!Page.IsPostBack)
{
SglConnection MyConnection;
SglCommand MyCommand ;
SglDataReader MyReader;

MyConnection = new SglConnection();
MyConnection.ConnectionString =
ConfigurationManager.ConnectionStrings|["DSN_Northwind"] .ConnectionString;

MyCommand = new SglCommand () ;

MyCommand .CommandText = " SELECT TOP 3 * FROM CUSTOMERS ";
MyCommand .CommandType = CommandType.Text;
MyCommand.Connection = MyConnection;

MyCommand .Connection.Open () ;
MyReader = MyCommand.ExecuteReader (CommandBehavior.CloseConnection) ;

gvCustomers.DataSource = MyReader;
gvCustomers.DataBind () ;

MyCommand.Dispose () ;
MyConnection.Dispose() ;

</script>



Data Management with ADO.NET

The code shown in Listing 12-1 uses the SqglConnection class to create a connection with the
Northwind database using the connection string stored in the Web. config file. It then creates a
Command object using the SqlCommand class and provides it with command text, command type, and
connection properties. After the command and the connection are created, the code opens the connection
and executes the command by calling the ExecuteReader method of the MyCommand object. After
receiving the data reader from the Command object, you simply data bind it to a GridView control. The
result of the code is shown in Figure 12-1.

&1 Untitled Page . Microsoft Internet Explorer =
File Edit View Favorites Tools Help ;’,'
IMI] |d] |\J /- ! Sesrch :“\' Favarites -{“ - - J :‘i Links ?
CustomerID) CompanyName ContactName ContactTitle Address City  Region PostalCode Conntry  Phone Fax
. . Sales . 030- 030-
ALFEL Alfreds Futterkiste  Iaria And . Obere Str. 57 Berlin 12209 Germany
¢ erste ana e Fepresentative stE == © 0074321 0076545
Ana Trjille Avda dela "
AMATE Emparedados v Ana Tryglle Owmer Constiucién MEzico 05021 Memco (3) 353~ (3) 535-
DF 4729 3745
helades 2222
Antome Moreno Antono Mataderos Iémico . (5) 555-
ANTON Cramer 05023 Iles
Tadueria Moreno 2312 DF e 3932
] Done & Local intranet
Figure 12-1

Using Data Adapter

The SqlDataAdapter is a special class whose purpose is to bridge the gap between the disconnected
DataTable objects and the physical data source. The SqlDataAdapter provides a two-day data transfer
mechanism. It is capable of executing a SELECT statement on a data source and transferring the result set
into a DataTable object. It is also capable of executing INSERT, UPDATE, and DELETE statements and
extracting the input data from a DataTable object.

The commonly used properties offered by the SqlDataAdapter class are shown in the following table.

Property Description

SelectCommand This read-write property sets or gets an object of type
SqlCommand. This command is automatically executed
to fill a DataTable with the result set.

InsertCommand This read-write property sets or gets an object of type
SqlCommand. This command is automatically executed
to insert a new record to the SQL Server database.

UpdateCommand This read-write property sets or gets an object of type
SqlCommand. This command is automatically executed
to update an existing record on the SQL Server database.

DeleteCommand This read-write property sets or gets an object of type
SqlCommand. This command is automatically executed
to delete an existing record on the SQL Server database.

395



Chapter 12

The SqlDataAdapter class also provides a method called Fi11. Calling the Fi11 method automatically
executes the command provided in the SelectCommand property, receives the result set, and copies it to
a DataTable object.

The code example in Listing 12-2 illustrates how to use an object of SqlDataAdapter class to fill a
DataTable object.

Listing 12-2: Using an object of SqiDataAdapter to fill a DataTable

VB

<%@ Page Language="VB" %>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.SglClient" %>
<%@ Import Namespace="System.Configuration" %>

<script runat="server">
Protected Sub Page_Load(ByVal sender As Object,
ByVal e As System.EventArgs)

If Not Page.IsPostBack Then
Dim MyConnection As SglConnection
Dim MyCommand As SglCommand
Dim MyAdapter As SglDataAdapter
Dim MyTable As DataTable = New DataTable()

MyConnection = New SglConnection/()
MyConnection.ConnectionString = _
ConfigurationManager.ConnectionStrings ("DSN_Northwind") .ConnectionString

MyCommand = New SglCommand ()

MyCommand.CommandText = " SELECT TOP 5 * FROM CUSTOMERS "
MyCommand .CommandType = CommandType.Text
MyCommand.Connection = MyConnection

MyAdapter = New SglDataAdapter ()
MyAdapter.SelectCommand = MyCommand
MyAdapter.Fill (MyTable)

gvCustomers.DataSource = MyTable.DefaultView
gvCustomers.DataBind ()

MyAdapter.Dispose ()
MyCommand .Dispose ()
MyConnection.Dispose()

End If

End Sub
</script>

396



Data Management with ADO.NET

C#

<%@ Page Language="C#" %>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.SglClient" %>
<%@ Import Namespace="System.Configuration" %>

<script runat="server">
protected void Page_Load(object sender, EventArgs e)
{
if (!Page.IsPostBack)
{
SglConnection MyConnection;
SglCommand MyCommand;
SglDataAdapter MyAdapter;
DataTable MyTable = new DataTable() ;

MyConnection = new SglConnection();
MyConnection.ConnectionString =
ConfigurationManager.ConnectionStrings|["DSN_Northwind"].ConnectionString;

MyCommand = new SglCommand () ;

MyCommand.CommandText = " SELECT TOP 5 * FROM CUSTOMERS ";
MyCommand.CommandType = CommandType.Text;
MyCommand.Connection = MyConnection;

MyAdapter = new SglDataAdapter();
MyAdapter.SelectCommand = MyCommand;
MyAdapter.Fill (MyTable) ;

gvCustomers.DataSource = MyTable.DefaultView;
gvCustomers.DataBind() ;

MyAdapter.Dispose () ;
MyCommand.Dispose () ;
MyConnection.Dispose() ;

</script>

The code shown in Listing 12-2 creates a Connection and Command object and then proceeds to create
an object of the SglDataAdapter class. It then fills the SelectCommand property of the DataAdapter
object with the Command object it had previously created. After the DataAdapter object is ready for exe-
cuting, the code executes the Fi11 method, passing it an object of the DataTable class. The Fill
method returns a populated DataTable object. Figure 12-2 shows the result of executing this code.

397



Chapter 12

&7 Untitled Page - Microsoft Internet Explorer [B[=]]
File Edit View Favorites Tools Help ;','
- ) - [¥] B €0 O sewen :L Favorites <) =S -1LJ) B Links
CustomerID) CompanyName ContactName ContactTitle Address City Region PostalCode Countty  Phone Fax
. . Sales 030- 030-
ALFEI Alfreds Futterldiste  Iaria Anders Representative Obere Str. 57 Berln 12209 Getmany 0074321 0076545
Ana Trgille Avda. dela L
ANATR  Emparedadosy  AnaTruille  Owner Constiturién 11040 05021 Mesco 00007 0553
DF. 4729 3745
helados 2222
Antomo Moreno  Antoruo México . (5)555-
AMTTON Crostu Dfatad 2312 03023 I
Taqueria Morens e alaceros DF FEES 353
Sales 120 Hanover (1713 (171)
AROUT Around the Horn© Thomas Hardy Representative Sq London WAT1DP TE 555.7798 5556750
, .. Christina Order : N 0821-12 0921-12
BEEGE B il L L E 2 Lule: 5-958 22  Sweds
wglinds s0abOOP b fiund  Adminiswrator oo e vage : TR 3465 3467
] Done & Local intranet

Figure 12-2

Using Parameters

Most serious database programming, regardless of how simple it might be, requires you to configure
SQL statements using parameters. Obviously, a discussion on the basics of ADO.NET programming is
not complete without covering the use of parameterized SQL statements.

Creating a parameter is as simple as declaring an object of the SqlParameter class and providing it the
necessary information, such as parameter name, type, size, direction, and so on. The following table
shows the properties of the SqlParameter class.

Property Description

ParameterName This read-write property gets or sets the name of the
parameter.

SqlDbType This read-write property gets or sets the SQL Server
database type of the parameter value.

Size This read-write property sets or gets the size of the parameter
value.

Direction This read-write property sets or gets the direction of the

parameter, such as Input, Output, or Both

SourceColumn This read-write property maps a column from a DataTable
to the parameter. It enables you to execute multiple com-
mands using the SqlDataAdapter object and pick the cor-
rect parameter value from a DataTable column during the
command execution.

Value This read-write property sets or gets the value provided to
the parameter object. This value is passed to the parameter
defined in the command during runtime.

398



Data Management with ADO.NET

Listing 12-3 modifies the code shown in Listing 12-1 to use two parameters while retrieving the list of
customers from the database.

Listing 12-3: The use of a parameterized SQL statement

B

<%@ Page Language="VB" %>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.SglClient" %>
<%@ Import Namespace="System.Configuration" %>

<script runat="server">
Protected Sub Page_Load(ByVal sender As Object,
ByVal e As System.EventArgs)
If Not Page.IsPostBack Then

Dim MyConnection As SglConnection

Dim MyCommand As SqglCommand

Dim MyReader As SglDataReader

Dim CityParam As SqglParameter

Dim ContactParam As SglParameter

MyConnection = New SglConnection /()
MyConnection.ConnectionString = _

ConfigurationManager.ConnectionStrings ("DSN_Northwind") .ConnectionString

MyCommand = New SglCommand ()
MyCommand.CommandText = _
" SELECT * FROM CUSTOMERS WHERE CITY = @CITY AND CONTACTNAME = @CONTACT "
MyCommand . CommandType = CommandType.Text
MyCommand.Connection = MyConnection

CityParam = New SglParameter ()
CityParam.ParameterName = "@CITY"
CityParam.SglDbType = SglDbType.VarChar
CityParam.Size = 15

CityParam.Direction = ParameterDirection.Input
CityParam.Value = "Berlin"

ContactParam = New SqlParameter ()
ContactParam.ParameterName = "@CONTACT"
ContactParam.SglDbType = SglDbType.VarChar
ContactParam.Size = 15

ContactParam.Direction = ParameterDirection.Input
ContactParam.Value = "Maria Anders"

MyCommand . Parameters.Add (CityParam)
MyCommand . Parameters.Add (ContactParam)

MyCommand.Connection.Open ()
MyReader = MyCommand.ExecuteReader (CommandBehavior.CloseConnection)

gvCustomers.DataSource = MyReader

(continued)

399



Chapter 12

Listing 12-3: (continued)
gvCustomers.DataBind ()

MyCommand.Dispose ()
MyConnection.Dispose ()

End If

End Sub
</script>

C#

<%@ Page Language="C#" %>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.SqglClient" %>
<%@ Import Namespace="System.Configuration" %>

<script runat="server">
protected void Page_Load(object sender, EventArgs e)
{
if (!Page.IsPostBack)
{
SglConnection MyConnection;
SglCommand MyCommand;
SglDataReader MyReader;
SglParameter CityParam;
SglParameter ContactParam;

MyConnection = new SglConnection();
MyConnection.ConnectionString =

ConfigurationManager.ConnectionStrings["DSN_Northwind"].ConnectionString;

MyCommand = new SglCommand() ;
MyCommand.CommandText =
" SELECT * FROM CUSTOMERS WHERE CITY = @QCITY AND CONTACTNAME = @QCONTACT ";
MyCommand .CommandType = CommandType.Text;
MyCommand.Connection = MyConnection;

400



Data Management with ADO.NET

CityParam = new SglParameter () ;
CityParam.ParameterName = "@CITY";
CityParam.SglDbType = SqglDbType.VarChar;
CityParam.Size = 15;

CityParam.Direction = ParameterDirection.Input;
CityParam.Value = "Berlin";

ContactParam = new SglParameter();
ContactParam.ParameterName = "@CONTACT";
ContactParam.SglDbType = SglDbType.VarChar;
ContactParam.Size = 15;

ContactParam.Direction = ParameterDirection.Input;
ContactParam.Value = "Maria Anders";

MyCommand.Parameters.Add (CityParam) ;
MyCommand.Parameters.Add (ContactParam) ;

MyCommand.Connection.Open() ;
MyReader = MyCommand.ExecuteReader (CommandBehavior.CloseConnection) ;

gvCustomers.DataSource = MyReader;
gvCustomers.DataBind() ;

MyCommand.Dispose () ;
MyConnection.Dispose() ;

}

</script>

The code shown in Listing 12-3 uses a parameterized SQL statement that receives the name of the city
and the contact person to narrow the result set. These parameters are provided by declaring the objects
of sqlParameter class and filling in the name, type, size, direction, and value properties for each object
of sqlParameter class. You then add the parameters to the Command object by calling the Add method
of the Parameters collection. The result of executing this code is shown in Figure 12-3.

& Untitled Page - Microsoft Internet Explorer 2=
File Edit View Favorites Tools Help !’a'
ISI] |d] ;‘J /-:Se:erch Favarites  {6<) = - | 3 ks -
CustomerID CompanyName ContactName ContactTitle Address City RegionPostalCode Coomtiy  Phone Fax
ALFEI  Alfreds Fubterkiste Maria Anders Is{f;:esemam %bere ST Beriin 12209 Gemsnygggagzl gggé sas
&] Done % Local intranet
Figure 12-3

401



Chapter 12

Understanding DataSet and DataTable

Most programmers agree that the DatasSet class is the most commonly used part of ADO.NET in real-
world, database-driven applications. This class provides mechanisms for managing data when it is dis-
connected from the data source. This capability to handle data in a disconnected state was first intro-
duced in .NET during the 1.0 version of ADO.NET. The current 2.0 version of ADO.NET retains all the
features of its predecessors and provides a few newer, much-needed features.

An object created from the DataSet class works as a container for other objects that are created from the
DataTable class. The DataTable object represents a logical table in memory. It contains rows, columns,
primary keys, constraints, and relations with other DataTable objects. Most of the disconnected data-
driven programming is actually done using one or more DataTable objects. However, the previous ver-
sions of ADO.NET didn’t allow you to work directly with the DataTable object for some very important
tasks, such as reading and writing data to and from an XML file. It didn’t even allow you to serialize
the DataTable object independently. This limitation required you to always use the DataSet object to
perform any operation on a DataTable. The current version of ADO.NET removes this limitation and
enables you to work directly with the DataTable for all your needs. In fact, we recommend that you
don’t use the DataSet object unless you need to work with multiple DataTable objects and need a
container object to manage them.

The current version of ADO.NET provides the capability to load a DataTable in memory by consuming
a data source using a DataReader. In the past, you were sometimes restricted to creating multiple over-
loads of the same method just to work with both the DatarReader and the DataTable objects. Now you
have the flexibility to write the data access code one time and reuse the DataReader — either directly or
to fill a DataTable, as shown in Listing 12-4.

Listing 12-4: How to load a DataTable from a DataReader

VB

<%@ Page Language="VB" %>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.SglClient" %>
<%@ Import Namespace="System.Configuration" %>

<script runat="server">
Protected Sub Page_Load(ByVal sender As Object,
ByVal e As System.EventArgs)

If Not Page.IsPostBack Then
Dim MyConnection As SglConnection
Dim MyCommand As SglCommand
Dim MyDataTable As DataTable
Dim MyReader As SglDataReader
Dim CityParam As SglParameter

MyConnection = New SglConnection/()

402



Data Management with ADO.NET

MyConnection.ConnectionString = _

ConfigurationManager.ConnectionStrings ("DSN_Northwind") .ConnectionString

End
End Sub
</script>

C#

MyCommand = New SglCommand ()
MyCommand.CommandText = _

" SELECT * FROM CUSTOMERS WHERE CITY = @QCITY "
MyCommand .CommandType = CommandType.Text
MyCommand.Connection = MyConnection

CityParam = New SglParameter ()
CityParam.ParameterName = "@CITY"
CityParam.SqglDbType SglDbType.VarChar
CityParam.Size = 15

CityParam.Direction = ParameterDirection.Input
CityParam.Value = "London"

MyCommand.Parameters.Add (CityParam)

MyCommand.Connection.Open /()
MyReader = MyCommand.ExecuteReader (CommandBehavior.CloseConnection)

MyDataTable = New DataTable ()

' Loading DataTable using a DataReader
MyDataTable.Load (MyReader)

gvCustomers.DataSource = MyDataTable
gvCustomers.DataBind ()

MyDataTable.Dispose ()
MyCommand.Dispose ()
MyConnection.Dispose ()
If

<%@ Page Language="C#" %>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.SglClient" %>
<%@ Import Namespace="System.Configuration" %>

<script runat="server">
protected void Page_Load(object sender, EventArgs e)

{

(continued)

403



Chapter 12

Listing 12-4: (continued)

if (!Page.IsPostBack )

{
SglConnection MyConnection;
SglCommand MyCommand ;
DataTable MyDataTable;
SglDataReader MyReader;
SglParameter CityParam;

MyConnection = new SglConnection() ;
MyConnection.ConnectionString =
ConfigurationManager.ConnectionStrings|["DSN_Northwind"].ConnectionString;

MyCommand = new SglCommand () ;
MyCommand .CommandText =

" SELECT * FROM CUSTOMERS WHERE CITY = @QCITY ";
MyCommand .CommandType = CommandType.Text;
MyCommand.Connection = MyConnection;

CityParam = new SglParameter();
CityParam.ParameterName = "@QCITY";
CityParam.SglDbType = SqglDbType.VarChar;
CityParam.Size = 15;

CityParam.Direction = ParameterDirection.Input;
CityParam.Value = "London";

MyCommand . Parameters.Add (CityParam) ;

MyCommand.Connection.Open /() ;
MyReader = MyCommand.ExecuteReader (CommandBehavior.CloseConnection) ;

MyDataTable = new DataTable() ;

// Loading DataTable using a DataReader
MyDataTable.Load (MyReader) ;

gvCustomers.DataSource = MyDataTable;
gvCustomers.DataBind () ;

MyDataTable.Dispose() ;
MyCommand.Dispose () ;
MyConnection.Dispose() ;

</script>

Not only can you load a DataTable object from a DataReader object, you can also retrieve a
DataTableReader (new to the .NET Framework 2.0) from an existing DataTable object. This is accom-
plished by calling the CreateDataReader method of the DataTable class. This method returns an
instance of the DataTableReader object that can be passed to any method that expects to receive a
DataReader.

404



Data Management with ADO.NET
Newly Added ADO.NET Features

Now that you have seen the basic features of ADO.NET, let’s dig deeper into the advanced features.
These advanced features are added to the 2.0 version of ADO.NET and provide a plethora of functional-
ity that simply wasn’t available in previous versions.

These features are specific to the database server, and the discussion in this chapter focuses on the SQL
Server database server. As we point out in the text, some of these features rely on the 9.0 version of the
Microsoft Data Access Components (MDAC).

An exciting feature added to ADO.NET 2.0 enables you to bulk load large quantities of data from virtu-
ally any source into a SQL Server database swiftly and easily. If you write code long enough, you are
bound to find yourself digging through the trenches of the SQL Server Data Transformation Service
(DTS) in order to move bulk quantities of data from one place to another. Although DTS works for most
tasks, programmers have always wished for a way to write custom code that retrieves data in custom
formats, processes it while applying business rules, and eventually transfers it to a database server. You
can certainly write such code with previous versions of ASP.NET, but you are restricted to using the
Update method of the DataaAdapter object that makes a roundtrip to the database server for every
record to be inserted. You can also write a custom command to insert or update these records without
using the DataAdapter object, but your program must then make roundtrip calls to the database server
for every record. Moving over a 100KB records can easily take hours and can also flood your network
with traffic. When your database server is so busy, you lose productivity as you endlessly wait for the
update process to finish.

The new Bulk Copy feature of ADO.NET makes it a snap to load large quantities of data to a SQL Server
database. This process works so fast that we didn’t believe our eyes when we first ran performance tests.
After all, it’s not every day that programmers like us get to see large quantities of data copied to a
database server in mere seconds.

Bulk Loading of Data from a Variety of Sources

Database administrators have been accustomed to a variety of data transfer mechanisms such as DTS,
which is a graphical environment, and BCP (Bulk Copy Program), which is a command-line utility. With
the advent of ADO.NET 2.0, programmers can now write complete managed code to retrieve data from
a variety of sources. They can also bulk copy the data to a SQL Server database —all in the program-
mer’s favorite language.

The sQLClient namespace provides several new classes that help you bulk copy data by consuming
either a DataTable or DataReader object. The data source can be virtually any media from a relational
database, to an XML file, to the result of a Web service call. Now that you can write managed code, you
can utilize all available features in the .NET Framework to access the data source, retrieve the informa-
tion, process business rules, and clean up the data. After you have processed the data and it is ready to
be stored in its destination table on a SQL Server database, you simply use the Sq1BulkCopy class to
transfer the data to its destination.

SqlBulkCopy class

The sqlBulkCopy class exposes a set of properties and methods that enable you to customize the bulk
copy operation by providing information such as the destination table names, batch sizes, time outs, and
the column mappings.

405



Chapter 12

Properties

The properties of the Sq1BulkCopy class are shown in the following table. These properties define the
details of various copy operations, such as the batch size and time outs.

Property Description

BatchSize Sets or returns an Integer value specifying the number of records to
be copied in each batch. The default value is 0 which indicates that
all records will be done in one batch. If the database server supports
batch updates, the Sqg1BulkCopy class leverages the database server
to perform batch updates. If the database server doesn’t support
batch updates, the Sqg1BulkCopy class manages and executes each
batch individually.

BulkCopyTimeOut Sets or returns an Integer value indicating the time the SqlBulkCopy
class will wait for the updates to process before it times out and
throws an exception. In the event of a time out, the transaction is not
committed, and all copied rows are removed from the server.

ColumnMappings Returns a reference to a SqlBulkCopyColumnMappingsCollection
object. This object is a collection object that maintains a list of column
mappings in the form of instances of SqlBulkCopyColumnMapping
objects. This property can be used to map the columns from the
source data table or data reader with the destination table.

DestinationTableName Sets or returns a String value indicating the table name of the desti-
nation table in the SQL Server database.

NotifyAfter Sets or returns an Integer value indicating the time after which a
SglRowsCopied event is raised. This event can be used for a variety
of purposes, such as showing the progress of the bulk copy operation
to the end user.

The sglBulkCopy class also exposes a few constructors and methods that enable you to alter its behavior
to meet your data processing needs. By using one of several overloaded constructors, you can provide a
connection to your destination database along with a custom transaction, if one is needed. You can also
select from a list of copy options that allow you to check constraints, keep identity fields, keep null values,
and use table-level locking.

Constructors

The details of various overloaded constructors of the Sq1BulkCopy class are shown in the following
table. You can use these constructors to instantiate an object of the Sq1BulkCopy class by specifying the
connection, copy options, and external transactions.

406



Data Management with ADO.NET

Constructor Description

SqglBulkCopy (connectionString) Takes a String object containing a connection
string to the destination SQL Server database.

SalBulkCopy (connection) Takes an instance of the SglConnection object to
access the destination SQL Server database.

SglBulkCopy Takes a String object containing the connection

(connectionString, copyOptions) string for the destination SQL Server as the first

parameter. The second parameter is a combination
of values from the Sg1BulkCopyOptions enumer-
ation. Here are the details of this enumeration:

— Default: None of the following rules is applied.
— CheckConstraints: Constraints defined in the
destination table are enforced during the copy
operation. If any of the constraints fail, the update
process is rolled back, and a Sql1Exception is
thrown specifying that a constraint is violated.

— Keepldentity: This option is helpful if you want
to preserve the identity fields defined in the source
column; otherwise, the update operation creates
new identity fields provided that the destination
column is marked as type Identity. If this option is
used and a destination column already consists of
a value that conflicts with the source, the update
process is rolled back and a SglException is
thrown. It specifies that a duplicate key cannot be
entered in the table.

— KeepNulls: This option forces the null values to
be stored in the destination table even if a default
value is specified. If this option is not specified, all
null values are replaced by the column’s default
value if the column has a default value specified.
— TableLock: This option causes the update pro-
cess to obtain a lock on the entire table for the
duration of the bulk copy process. If this option is
not used, row-level locking is used by default.

SqglBulkCopy Takes an instance of the SglConnection class, a

(connection, copyOptions, set of copy options, and a reference to an existing

externalTransactions) transaction object. All the bulk copy through the
update process uses the provided transaction
object.

407



Chapter 12

Methods

The sq1BulkCopy class provides one method to process the copy operation, as shown in the following
table. This method has overloads, which can be used to process a DataReader, DataTable, or an array
of DataRow objects.

Method Description

WriteToServer (reader) This overloaded method copies records from an open
DataReader object. The DataReader doesn’t have to
be SQL Server specific. The method receives a refer-
ence to the IDataReader interface, which enables you
to use any database server as the source of the data.

WriteToServer (table) This overloaded method copies records from a
DataTable object.

WriteToServer (table, rowState) This overloaded method copies records from a
DataTable object but uses only those records that are
marked by the given RowState flag. For example, if
you want to copy only those records that are updated
in the data table after they are retrieved from the
source, you pass DataRowState.Modified as the
value of the second parameter.

WriteToServer (rows()) This overloaded method copies records from an array
of DataRow objects.

While you are trying to bulk copy large quantities of data from one place to another, you may need to
map the columns from source to destination. The Sq1BulkCopy class provides this capability by expos-
ing the ColumnMappings property that allows you to specify column-level mappings.

SqiBulkCopyColumnMapping

The sq1BulkCopyColumnMapping class enables you to map the columns between the source and the
destination tables. It provides a series of overloaded constructors and a list of properties that allow you
to specify source and destination columns either by their names or by their indexes. After objects of this
class have been instantiated, they can be added to or removed from the object of the
SglBulkCopyColumnMappingsCollection class by calling its Add method

Properties

The properties of SqlBulkCopyColumnMapping class are shown in the following table. These properties
allow you to specify the source and column mapping.

408



Data Management with ADO.NET

Property Description

SourceColumn Sets or returns the source column for this
mapping using the column name speci-
fied as String.

SourceOrdinal Sets or returns the source column for this

mapping using the column index speci-
fied as Integer.

Sets or returns the destination column for
this mapping using the column name
specified as String.

DestinationColumn

DestinationOrdinal Sets or returns the destination column for
this mapping using the column index

specified as Integer.

Constructors

The SglBulkCopyColumnMapping class provides five overloaded constructors, as shown in the follow-
ing table. You can use these constructors instead of or in conjunction with the properties to provide map-
pings between the source and destination columns.

Constructor

Description

SglBulkCopyColumnMapping ( )

SglBulkCopyColumnMapping
(sourceColumn, destinationColumn )

SglBulkCopyColumnMapping
(sourceColumn, destinationColumnOrdinal )

SglBulkCopyColumnMapping
(sourceColumnOrdinal, destinationColumn )

SglBulkCopyColumnMapping
(sourceColumnOrdinal,
destinationColumnOrdinal )

Creates an instance of the class without
any column mapping.

Receives column names of both source
and destination columns.

Receives the name of the source column
and the index of the destination column.

Receives the index of the source column
and the name of the destination column.

Receives the indexes of source and
destination columns.

409



Chapter 12

Method

The methods for adding column mappings to the bulk copy operation are provided in the
SglBulkCopyColumnMappingsCollection class, as shown in the following table. These overloaded
methods allow you to provide either the objects of the Sqg1BulkCopyColumnMapping class or simply the
source and destination column names or indexes. If you provide the column names or indexes, the
method automatically creates an object of the Sqg1BulkCopyColumnMapping class and adds that object

to its internal collection.

Method

Description

Add (bulkCopyColumnMapping)

Add (sourceColumn,
destinationColumn)

Add (sourceColumnIndex,
destinationColumn)

Add (sourceColumn,
destinationColumnIndex)

Add (sourceColumnIndex,
destinationColumnIndex)

RemoveAt (index)

Clear ()

Receives an object of the Sq1BulkCopy-
ColumnMapping class and adds it to the
internal collection.

Receives source and destination column
names. It then creates an object of the sg1-
BulkCopyColumnMapping class and adds it
to the internal collection.

Receives source column index and
destination column names. It then creates an
object of the SglBulkCopyColumnMapping
class and adds it to the internal collection.

Receives source column name and
destination column index. It then creates an
object of the SglBulkCopyColumnMapping
class and adds it to the internal collection.

Receives source and destination column
indexes. It then creates an object of the
SglBulkCopyColumnMapping class and
adds it to the internal collection.

Removes an object of the Sq1BulkCopy-
ColumnMapping at a specified index from
the internal collection.

Clears the internal collection.

Now that you have learned the intricacies of the bulk loading feature of ADO.NET 2.0, you can put your
knowledge to the test by attempting to load a relatively large quantity of data from a source SQL Server
database to a destination table inside another SQL Server database.

A Bulk Copy Example Using a Data Reader

The code shown in Listing 12-5 connects with a database of employees containing over 100KB records. It
uses a simple SELECT statement to read all employee data from the source database using an object of
type sQLDataReader. After the SELECT statement has been processed successfully, you declare column
mappings between the source and the destination tables. While creating these column mappings, you

410




Data Management with ADO.NET

are tasked with storing the name of the data source in the Title column of the destination table. This
information can be used later to sort out the records retrieved from various sources that end up being in
the same destination table. You satisfy this requirement by creating a dummy column in the source
result set and mapping it with the Title column of the destination table.

Note that column mappings are completely optional. If your source and destination tables use the exact
same schema, you can simply skip the steps related to creating column-mapping objects. The
SglBulkCopy object, in the absence of column mappings, automatically attempts to map the source
and destination columns by their names.

This example uses a custom-developed ERP database as a source of employee information and uses the
Northwind database as the destination.

On the Wrox.com site you will find an Excel file containing the custom data source
used in Listing 12-5. Load this into your SQL Server database and use it to run this
sample. You can find the steps for loading this data source into SQL Server in the
Readme.txt file bundled with the code for this chapter (Chapter12.zip).

Listing 12-5: Code for bulk loading large quantities of data from a custom source table
to the Northwind database

VB

<%@ Page Language="VB" %>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.SglClient" %>
<%@ Import Namespace="System.Configuration" %>

<script runat="server">
Sub btnBulkCopy Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles btnBulkCopy.Click

Dim ShajarConString As String

Dim NorthWindConString As String

Dim ShajarCon As SglConnection = New SglConnection()
Dim NorthwindCon As SglConnection = New SglConnection ()

Dim ShajarCom As SglCommand = New SglCommand ()
Dim ShajarReader As SglDataReader

ShajarConString = _
ConfigurationManager.ConnectionStrings ("DSN_Shajar") .ConnectionString
NorthWindConString = _
ConfigurationManager.ConnectionStrings ("DSN_Northwind") .ConnectionString

ShajarCon.ConnectionString = ShajarConString
ShajarCom.Connection = ShajarCon
ShajarCom.CommandText = " SELECT ID, First_Name, Last_Name, " & _
" 'Shajar' as Source FROM MailingList_Temp "

(continued)

411



Chapter 12

Listing 12-5: (continued)

End

ShajarCom.CommandType = CommandType.Text
ShajarCom.Connection.Open ()

Dim NorthWindBulkOp As SglBulkCopy
NorthWindBulkOp = New SglBulkCopy (NorthWindConString,
SglBulkCopyOptions.UseInternalTransaction)

NorthWindBulkOp.DestinationTableName = "Employees"
NorthWindBulkOp.ColumnMappings.Add ("Id", "EmployeeID")
NorthWindBulkOp.ColumnMappings.Add ("First_Name", "FirstName")
NorthWindBulkOp.ColumnMappings.Add ("Last_Name", "LastName")

Dim JobTitleColMap As SglBulkCopyColumnMapping
JobTitleColMap = New SglBulkCopyColumnMapping ("Source", "Title")

NorthWindBulkOp.ColumnMappings .Add (JobTitleColMap)
NorthWindBulkOp.BulkCopyTimeout = 500000000

AddHandler NorthWindBulkOp.SglRowsCopied,
New SglRowsCopiedEventHandler (AddressOf OnSglRowsCopied)

NorthWindBulkOp.NotifyAfter = 1000
ShajarReader = ShajarCom.ExecuteReader ()

Try
NorthWindBulkOp.WriteToServer (ShajarReader)
Catch ex As Exception
' Write error handling code here
1blResult.Text = ex.Message
Finally
ShajarReader.Close ()
End Try

Sub

Private Sub OnSglRowsCopied(ByVal sender As Object,

End

ByVal args As SglRowsCopiedEventArgs)

1blCounter.Text += args.RowsCopied.ToString() + " rows are copied<Br>"
Sub

</script>

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head id="Headl" runat="server">
<title>Bulk Loading Large Volume Data</title>

</head>
<body>

<form id="forml" runat="server">
<div>

412

<asp:Button ID="btnBulkCopy" Runat="server" Text="Start Bulk Copy" />&nbsp;



Data Management with ADO.NET

<br />
<br />

<asp:Label ID="lblResult" Runat="server"></asp:Label>
<br />
<br />
<asp:Label ID="lblCounter" Runat="server"></asp:Label>
</div>
</form>
</body>
</html>

C#

<%@ Page Language="C#" %>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.SglClient" %>
<%@ Import Namespace="System.Configuration" %>

<script runat="server">
protected void btnBulkCopy_Click(object sender, EventArgs e)
{
String ShajarConString;
String NorthWindConString;
SglConnection ShajarCon = new SglConnection();
SglConnection NorthwindCon = new SglConnection() ;

SglCommand ShajarCom = new SglCommand() ;
SglDataReader ShajarReader;

ShajarConString =
ConfigurationManager.ConnectionStrings|["DSN_Shajar"].ConnectionString;

NorthWindConString =
ConfigurationManager.ConnectionStrings["DSN_Northwind"].ConnectionString;

ShajarCon.ConnectionString = ShajarConString;
ShajarCom.Connection = ShajarCon;
ShajarCom.CommandText = " SELECT ID, First_Name, Last_Name, " +
" 'Shajar' as Source FROM MailingList_Temp ";
ShajarCom.CommandType = CommandType.Text;

ShajarCom.Connection.Open () ;

SglBulkCopy NorthWindBulkOp;

NorthWindBulkOp = new SglBulkCopy (NorthWindConString,
SglBulkCopyOptions.UseInternalTransaction) ;

NorthWindBulkOp.DestinationTableName = "Employees";

NorthWindBulkOp.ColumnMappings.Add("Id", "EmployeeID");

NorthWindBulkOp.ColumnMappings .Add ("First_Name", "FirstName") ;

NorthWindBulkOp.ColumnMappings .Add ("Last_Name", "LastName");

SglBulkCopyColumnMapping JobTitleColMap;

(continued)

413



Chapter 12

Listing 12-5: (continued)
JobTitleColMap = new SglBulkCopyColumnMapping ("Source", "Title");

NorthWindBulkOp.ColumnMappings .Add (JobTitleColMap) ;
NorthWindBulkOp.BulkCopyTimeout = 500000000;

NorthWindBulkOp.SglRowsCopied +=
new SglRowsCopiedEventHandler (OnRowsCopied) ;

NorthWindBulkOp.NotifyAfter = 1000;
ShajarReader = ShajarCom.ExecuteReader () ;

try
{
NorthWindBulkOp.WriteToServer (ShajarReader) ;
}
catch (Exception ex)
{
1blResult.Text = ex.Message;
}
finally
{
ShajarReader.Close() ;

}

private void OnRowsCopied(object sender, SglRowsCopiedEventArgs args)
{

1blCounter.Text += args.RowsCopied.ToString() + " rows are copied<Br>";

}

</script>

The code example shown in Listing 12-5 uses an internal transaction to process all records. If the bulk
operation fails before all records are processed, the transaction is rolled back and all records that were
added prior to the failure are retracted from the destination table.

To make sure that you commit all records that were processed successfully before the error occurred,
you must provide a custom transaction object to the constructor of the Sq1BulkCopy object. In this case,
you commit the transaction manually using the Finally clause, as shown in Listing 12-6.

Listing 12-6: Committing a transaction after successfully completing the bulk copy
operation

VB
Dim Transaction As SglTransaction
Transaction = ShajarCom.Connection.BeginTransaction ()

Dim NorthWindBulkOp As SglBulkCopy

NorthWindBulkOp = New SglBulkCopy (New SglConnection (NorthWindConString), _
SglBulkCopyOptions.Default,
Transaction)

414



Data Management with ADO.NET

' ...Code removed for clarity...
ShajarReader = ShajarCom.ExecuteReader ()

Try
NorthWindBulkOp.WriteToServer (ShajarReader)
Catch ex As Exception
' Write error handling code here
Finally
Transaction.Commit ()
ShajarReader.Close ()
End Try

C#
SglTransaction Transaction;
Transaction = ShajarCom.Connection.BeginTransaction() ;

SglBulkCopy NorthWindBulkOp;

NorthWindBulkOp = new SglBulkCopy (new SglConnection (NorthWindConString),
SglBulkCopyOptions.Default,
Transaction) ;

// ...Code removed for clarity...
ShajarReader = ShajarCom.ExecuteReader () ;

try
{
NorthWindBulkOp.WriteToServer (ShajarReader) ;
}
catch (Exception ex)
{
// Write error handling code here
}
finally
{
Transaction.Commit () ;
ShajarReader.Close() ;

The advantage of committing the transaction in the Finally clause is that the transaction gets commit-
ted regardless of whether the error occurs.

SqlRowsCopied Event

Listing 12-5 shows the OnRowsCopied event handler. It simply updates a label control to show progress.
It is not necessary to do this. However, this event is a good way to show progress while the user is wait-
ing for a large volume of data to finish loading.

The big advantage of using this bulk copy method is that it reduces the number of times the database is
accessed during the copy operation. The code shown in Listing 12-5 processes large volumes of data at a
very rapid pace. You can see the database trace log in Figure 12-4. This trace log clearly shows that the
database copied all records with a few requests. In fact, the number of requests made to the database is
affected only by the size of the batch that you specify in the code.

415



Chapter 12

! SOL Profiler - [Untitled - 3 (ILM-VSZ005VPC)] B[]

@ File Edit View Replay Tools Window Help =3 x
. - - .

=R ol Y ne  BEDE AmE @

EventClass |Textnara |spplicarionNane NTUserWane |Loginfane CPU|Reads Writes Duracion| I::J.Lenc,Proce{
Audic Login —- network protocol: LPC sen guoted... Net Sglcli... =a 3Fzoo
SQL:BacchConpleted select BRorancount; SET FATONLY ON ... .Nev SgqlCli... EEY 10 7 o 10 3z00
EQL:BatchConpleted SET TRANSACTION IZ0LATION LEVEL REA... _Net SglCli... =a o o o &0 3zoo
SQL:Batchlonpleted SELECT ID, First MName, Lost Mame, ... _Met SglCli... sa 10 70 o 432 3zo0
SQL:Batchlonplatad insart bulk Employess ([LastMama] N... .Net SglCli... sa 271 Z0DEEZ 42 972 3z00
50L: BatchConpleted COMMIT TRANSACTION -Met SqglCli... =8 o o o 70 3z00

al,

COMMIT TRANSACTION ~

~
<] >

Trace is running Ln 6, Col 1 Rows: &

Connections: 2

Figure 12-4

Batch Processing Multiple Updates

Even though the bulk copy operation provides the most efficient way of loading data into the destination database, it
also provides the fewest opportunities for the customization of the database update processes. For instance, the bulk
copy operation is capable of loading the data only to a single table in the destination database. In many real-world
cases, the destination database uses multiple tables and data updates that often require executing either a custom SQL
statement or a custom Stored Procedure.

ADO.NET provides the DataAdapter object for just such cases. You can use the DataAdapter object to
provide custom Update, Insert, and Delete commands and to consume a DataTable. When the
Update method is called on a Dataadapter, it simply iterates through all rows in a DataTable and fires
the appropriate Update, Insert, or Delete command depending on the RowState flag set on each row.

The only problem with using DataAdapter in the previous version of ADO.NET was that it was unable
to process batch updates. The Dataadapter object was capable of executing only one command at a
time, and this caused a very significant performance slowdown if you were processing a large volume of
updates. This lack of batch processing also put a much greater load on the database server because it had
to process each command in a separate request.

With the introduction of ADO.NET 2.0, the DataAdapter object now provides a new property called
UpdateBatchSize. Using the value provided to this property, the DataAdapter object is now capable of
sending a group of commands to the database server in one batch. As a result, this feature significantly
improves performance when compared to the previous processing mechanism that handled each com-
mand separately.

The batch updates feature, however, relies on the target database or data source to support batch com-
mand execution. If the data source does not, the DataAdapter object ignores the UpdateBatchSize
property and proceeds with processing each command separately.

If you don’t provide any value to the UpdateBatchsize property, it defaults to a value of 1, which
causes the DataAdapter to process each command individually. If the UpdateBatchSize property is
set to 0, the DataAdapter processes all commands as one batch. Be careful about making the batch sizes
too large because different databases can handle only up to a certain batch size. If the batch size is larger
than the capability of the destination database, the DataAdapter throws an exception.

416



Data Management with ADO.NET

Listing 12-7 shows a code example that retrieves all employee records from the Northwind database,
updates their addresses, and saves the changes back to the same table. It uses a batch size of 3 to process
three commands in each batch. You can change this number to a larger one if you want to process a
larger batch of records later. Currently, the Employees table in the Northwind database contains only
nine records, and setting a batch size of 3 accomplishes updates to these nine records in three requests to
the database server.

Listing 12-7: Batch processing multiple updates to the Northwind database

VB

<%@ Page Language="VB" %>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.SglClient" %>
<%@ Import Namespace="System.Configuration" %>

<script runat="server">
Sub btnUpdateAddress_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnUpdateAddress.Click

Dim EmpAdapter As SglDataAdapter = New SglDataAdapter ()
Dim EmpDT As DataTable = New DataTable ()

Dim DBConSelect As SglConnection = New SglConnection ()
Dim DBConUpdate As SglConnection = New SqglConnection ()
Dim SelectCommand As SglCommand = New SglCommand ()

Dim UpdateCommand As SglCommand = New SglCommand ()

' Using different connection objects for select and updates from the

' Northwind database.

DBConSelect.ConnectionString = _
ConfigurationManager.ConnectionStrings ("DSN_NorthWind") .ConnectionString

DBConUpdate.ConnectionString = _
ConfigurationManager.ConnectionStrings ("DSN_NorthWind") .ConnectionString

' Reading all records from the Employees table
SelectCommand.CommandText = "SELECT top 500 * FROM EMPLOYEES"
SelectCommand.CommandType = CommandType.Text
SelectCommand.Connection = DBConSelect

UpdateCommand.CommandText = _
" UPDATE EMPLOYEES SET Address=@Address, " + _
"City=@City, Region=@Region, Country=@Country"

UpdateCommand.CommandType = CommandType.Text
UpdateCommand.Connection = DBConUpdate

Dim AddressParam As SglParameter
AddressParam = New SglParameter ("@QAddress",
SglDbType.VarChar, 15, "Address")

Dim CityParam As SqglParameter
CityParam = New SglParameter ("@City", SqglDbType.VarChar, 15, "City")

Dim RegionParam As SglParameter

(continued)

417



Chapter 12

Listing 12-7: (continued)

418

RegionParam = New SglParameter ("@Region", SglDbType.VarChar, 15,

Dim CountryParam As SglParameter
CountryParam = New SglParameter ("@Country",
SglDbType.VarChar, 15, "Country")

UpdateCommand . Parameters.Add
UpdateCommand . Parameters.Add
UpdateCommand. Parameters.Add
UpdateCommand . Parameters.Add

AddressParam)
CityParam)
RegionParam)
CountryParam)

' Setting up Data Adapter with the Select and Update Commands

' The Select command will be used to retrieve all employee

' information from the Northwind database and the Update command
' will be used to save changes back to the database
EmpAdapter.SelectCommand = SelectCommand
EmpAdapter.UpdateCommand = UpdateCommand

EmpAdapter.Fill (EmpDT)

DBConSelect.Close()

' Looping through all employee records and assigning them the new

' address
For Each DR As DataRow In EmpDT.Rows
DR ("Address") = "4445 W 77th Street, Suite 140"
DR("City") = "Edina"
DR("Region") = "Minnesota"
DR("Country") = "USA"
Next

' Adding an event handler to listen to the RowUpdated event.
' This event will will fire after each batch is executed
AddHandler EmpAdapter.RowUpdated, _

New SglRowUpdatedEventHandler (AddressOf OnRowUpdated)

1blCounter.Text = ""
EmpAdapter.UpdateBatchSize = 100
Dim Watch As Diagnostics.Stopwatch = New Diagnostics.Stopwatch ()

' It is important to set this property for batch processing of
' updated records since batch updates are incapable of updating
' the source with changes from the database
UpdateCommand.UpdatedRowSource = UpdateRowSource.None

Try
DBConUpdate.Open ()
EmpAdapter.Update (EmpDT)
Catch ex As Exception
1blCounter.Text += ex.Message + "<Br>"

"Region")



Data Management with ADO.NET

Finally
If DBConUpdate.State = ConnectionState.Open Then
DBConUpdate.Close()
End If
End Try

End Sub

Private Sub OnRowUpdated (ByVal sender As Object, ByVal args As _
SglRowUpdatedEventArgs)

1blCounter.Text += "Batch is processed for " + args.RowCount.ToString() +
" rows<br>"

End Sub
</script>
<html xmlns="http://www.w3.0rg/1999/xhtml" >

<head id="Headl" runat="server">
<title>Batch Processing Multiple Updates</title>

</head>
<body>
<form id="forml" runat="server">
<div>
<asp:Button ID="btnUpdateAddress" Runat="server" Text="Update Address"
OnClick="btnUpdateAddress_Click" />
<br />
<br />
<asp:Label ID="1lblCounter" Runat="server"></asp:Label>&nbsp;<br />
<br />
<br />
</div>
</form>
</body>
</html>
C#

<%@ Page Language="C#" %>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.SglClient" %>
<%@ Import Namespace="System.Configuration" %>

<script runat="server">
protected void btnUpdateAddress_Click (object sender, EventArgs e)
{
SglDataAdapter EmpAdapter = new SglDataAdapter();
DataTable EmpDT = new DataTable() ;
SglConnection DBConSelect = new SglConnection() ;
SglConnection DBConUpdate = new SglConnection() ;
SglCommand SelectCommand = new SglCommand() ;

(continued)

419



Chapter 12

Listing 12-7: (continued)

420

SglCommand UpdateCommand = new SglCommand () ;

// Using different connection objects for select and updates from the

// Northwind database.

DBConSelect.ConnectionString =
ConfigurationManager.ConnectionStrings|["DSN_NorthWind"] .ConnectionString;

DBConUpdate.ConnectionString =
ConfigurationManager.ConnectionStrings|["DSN_NorthWind"] .ConnectionString;

// Reading all records from the Employees table
SelectCommand.CommandText = "SELECT top 500 * FROM EMPLOYEES";
SelectCommand.CommandType = CommandType.Text;
SelectCommand.Connection = DBConSelect;

UpdateCommand.CommandText = " UPDATE EMPLOYEES SET Address=@Address, " +
"City=@City, Region=@Region, Country=@Country";

UpdateCommand.CommandType = CommandType.Text;
UpdateCommand.Connection = DBConUpdate;

SglParameter AddressParam;
AddressParam = new SglParameter ("@Address",
SglDbType.VarChar, 15, "Address");

SglParameter CityParam;
CityParam = new SglParameter ("@City", SglDbType.VarChar, 15, "City");

SglParameter RegionParam;
RegionParam = new SglParameter ("@Region", SglDbType.VarChar, 15, "Region");

SglParameter CountryParam;
CountryParam = new SglParameter ("@Country",
SglDbType.VarChar, 15, "Country");

UpdateCommand. Parameters.Add (AddressParam) ;
UpdateCommand. Parameters.Add (CityParam) ;

UpdateCommand. Parameters.Add (RegionParam) ;
UpdateCommand. Parameters.Add (CountryParam) ;

// Setting up Data Adapter with the Select and Update Commands

// The Select command will be used to retrieve all employee

// information from the Northwind database and the Update command
// will be used to save changes back to the database
EmpAdapter.SelectCommand = SelectCommand;
EmpAdapter.UpdateCommand = UpdateCommand;

EmpAdapter.Fill (EmpDT) ;
DBConSelect.Close() ;

// Looping through all employee records and assigning them the new



Data Management with ADO.NET

// address
foreach (DataRow DR in EmpDT.Rows)
{

DR["Address"] = "4445 W 77th Street, Suite 140";
DR["City"] = "Edina";

DR["Region"] = "Minnesota";

DR["Country"] = "USA";

// Adding an event handler to listen to the RowUpdated event.
// This event will will fire after each batch is executed
EmpAdapter.RowUpdated += new SglRowUpdatedEventHandler (OnRowUpdated) ;

lblCounter.Text = "";
EmpAdapter.UpdateBatchSize = 100;

// It is important to set this property for batch processing of
// updated records since batch updates are incapable of

// updating the source with changes from the database
UpdateCommand.UpdatedRowSource = UpdateRowSource.None;

try
{
DBConUpdate.Open () ;
EmpAdapter.Update (EmpDT) ;
}
catch (Exception ex)
{
1blCounter.Text += ex.Message + "<Br>";
}
finally
{
if (DBConUpdate.State == ConnectionState.Open)

{
DBConUpdate.Close() ;

private void OnRowUpdated (object sender, SglRowUpdatedEventArgs args)
{
1blCounter.Text += "Batch is processed till row number = " +
args.RowCount.ToString () + "<br>";

</script>

The batch update operation runs one SQL command for each operation, thereby causing significant
performance overhead. The trace log shown in Figure 12-5 shows this fact.

The ADO.NET classes introduced in version 1.0 provided a mechanism for developing cutting-edge,
database-driven applications. The features introduced to help manage data in a disconnected manner

421



Chapter 12

especially paved the way for creating highly efficient and scalable applications. At the same time, the
features for processing data in a connected state using a fast-forward read-only cursor let you create
applications that consumed larger quantities of data at a rapid pace.

{1 SOL Profiler - [Untitled - 1 (ILM-VS2005VP ()] [B]=]]
&1 File Edit View Replay Tools Window Help NEE
PRSI MR > - EIERY )
EventClass TextData ApplicacionName NTUserNane LoginName CPU|Reads Writes Duracion CliencProl#a
G0L:BacchConpleced SELECT top 500 * FROM EMPLOVEES JHer HglCli... sa 30 143 o G40 FZO0
Audit Login -- network protocol: LPC set guoted. .. _Net SqlCli. .. =a 3200
Audic Login -- network protocel: LPC set guoted... _Net SglCli... za 3zo0
TPC: Completad enac sp_ewecutesgl N' UPDATE EMDLOY... _MNat SqglCli... za 370 21077 178 d0ze 2200
PRC: Completad susc sp_suecutesgl M' UPDATE EMPLOY,.. . Net SqlCli... =a Z41 ZOOEE O 60 3200
RPC: Completed snec sp_swecutesql N' UPDATE EMPLOY... _Net SqlCli... sa 270 20055 0 230 3200
RPC: Completed enec sp_specutesgl N' UPDATE EMPLOY... _Net SglCli... sa ZZ0 20055 0 300 3200
RPC: Completed eiec sp_siecutesql N' UPDATE EMPLOT... et SqlCli... sa Z51 20055 0 z70 3200
RPC: Completed enec sp_enecutesql N' UPDATE EMPLOT... _Net SqlCli... =a Z60 ZOOEE 0 343 3z00
TPC: Completed enec sp_enecutesgl N' UPDATE EMPLOY... _Net SqglCli.. . za 321 ZOOEE O 450 3z00
RPC: Complatad anac sp_swscutesgl N' UPDATE EMDLOY... _Nat SqglCli... za 250 ZO0EE O 220 3200
RRC: Completad suec sp_swecutesgl M' UPDATE EMPLOY... . Net SqlCli... =a 240 ZOOEE O 80 3200
RPC: Completed snec sp_swecutesgl N' UPDATE EMPLOY... _Net SqlCli... sa Z51 20055 0 280 3200
RPC: Completed enec sp_specutesgl N' UPDATE EMPLOY... _Net SglCli... sa Z60 ZOOSS 0 300 3200
RPC: Completed eiec sp_eiecutesql N' UPDATE EMPLOT... et SqlCli. .. sa z50 20055 0 FEF 3200
RPC: Completed enec sp_enecutesgl N' UPDATE EMPLOT... et SqlCli... =a z4l ZOOEE O z70 3z00
TPC: Completed enec sp_ewecutesgl N' UPDATE EMPLOY... _Net SqglCli... za zd0 ZOOEE O z20 3200
RPC: Complatad suac sp_suscutesgl N' UPDATE EMPLOY... . Nat SglCli... sa Z40 ZOOEE O 210 2200
BOC- Commndatad awar own avarntacel MY TIIHATRE FMDLOY Mat Seli™14 ca 1al FANEE N A= aFnn i
£ [ *|
~
x|
< w >
Trace is stopped Ln 275, Cal 1 Raows: 275
Connections: 0

Figure 12-5

Surpassing even these advancements, the latest 2.0 version of ADO.NET provides a newer capability
that enables you to create a database-driven application in a manner that was impossible in previous
versions. The capability to process Multiple Active Result Sets (MARS) over the same connection not
only reduces programming tasks but also significantly enhances performance.

Multiple Active Result Sets

MARS provides the capability to open more than one result set over the same connection and lets you access
them all concurrently. MARS is helpful in the scenarios where the application uses a single data source for its
needs. You have probably written code where you executed a command to retrieve a result set and then had
to execute other commands for each record in the result set to retrieve detailed information related to those
records.

A typical master and detailed information scenario is a perfect example of how MARS can provide an

elegant programming model and enhance code performance at the same time. In this scenario, your
code executes a command to retrieve a set of records such as list of orders for a given day. While you are

422



Data Management with ADO.NET

retrieving orders, you also want to retrieve detailed line items for each order so that you can present a
complete report to the user. It is quite common in a relational database to execute a separate command to
retrieve all the detailed line items for a given order. When we have found ourselves in such a scenario,
we ended up writing code that executed the command for retrieving the detailed information using one
loop for each record.

This type of scenario is still programmable in the older versions of ADO.NET. In older versions, how-
ever, programmers were limited to opening and closing separate connections for each request to the
database servers. Even though the programs ran successfully and produced desired results, program-
mers often wished for a more elegant mechanism that would enable them to reuse the same connection
and reduce the overhead associated with accessing the database. The release of ADO.NET 2.0 and sup-
port for MARS allow users to do just that.

Now you can write some code to access the Northwind database that produces a Web report showing all
the orders and item details of each order. As some of you already know, the Northwind database provides
two tables with the names Order and Order Details. The Orders table contains all the orders ever made
and the Order Details table shows the merchandise included as part of each order.

Listing 12-8 shows a GridView control that uses BoundField columns to show selected columns from the
database on the screen. The GridView control also uses a template column containing a Label control
whose value gets populated with a list of order details when you run a separate SQL query against the
Order Details table for each Order record.

The OnRowDataBound event of the GridView control is what executes the SQL query
for retrieving order details.

Listing 12-8: GridView control declaration for displaying Orders and Order Details from
the Northwind database

VB

<%@ Page Language="VB" %>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.SglClient" %>
<%@ Import Namespace="System.Configuration" %>

<script runat="server">
' Declaring connection here allows us to use it inside all methods
' of this class
Dim DBCon As SglConnection

Protected Sub Page_Load(ByVal sender As Object, _
ByVal e As System.EventArgs)

Dim Command As SglCommand = New SglCommand ()
Dim OrdersReader As SglDataReader

DBCon = New SglConnection()
DBCon.ConnectionString = _

(continued)

423



Chapter 12

Listing 12-8: (continued)

ConfigurationManager.ConnectionStrings ("DSN_NorthWind") .ConnectionString

Command.CommandText = _

SELECT TOP 5 Customers.CompanyName, Customers.ContactName, " &
" Orders.OrderID, Orders.OrderDate, " & _
Orders.RequiredDate, Orders.ShippedDate " &
" FROM Orders, Customers " & _

" WHERE Orders.CustomerID = Customers.CustomerID " & _
ORDER BY Customers.CompanyName, Customers.ContactName "

Command.CommandType = CommandType.Text
Command.Connection = DBCon

' Opening the connection and executing the SQL query.
DBCon.Open ()
OrdersReader = Command.ExecuteReader ()

' Binding the Data Reader to the Gridview control
gvOrders.DataSource = OrdersReader
gvOrders.DataBind ()

' Closing connection after we are done processing all order records
DBCon.Close ()

End Sub

' This event handler is called for each record being bound to the
' Gridview control
Protected Sub gvOrders_RowDataBound (ByVal sender As Object, _
ByVal e As System.Web.UI.WebControls.GridViewRowEventArgs)

Dim OrderRecord As IDataRecord
Dim 1blOrderDetail As Label

' Retrieving the currently bound record from the Data Reader
' using the IDataRecord interface
OrderRecord = CType(e.Row.DataItem, IDataRecord)

' Retrieving reference to the Label Control inside the current
' Gridview row. This Label will be populated with Order Details
1blOrderDetail = CType (e.Row.FindControl ("lblOrderDetail"), Label)

If OrderRecord Is Nothing Or 1lblOrderDetail Is Nothing Then
Return
End If

Dim Command As SglCommand = New SglCommand ()
Dim OrderDetailReader As SglDataReader

' Creating an SQL query to retrieve details

' for the currently processed order
Command.CommandText = _

424



Data Management with ADO.NET

"SELECT Products.ProductName, [Order Details].UnitPrice, " & _
" [Order Details].Quantity, [Order Details].Discount " & _

" FROM [Order Details], Products " & _

" WHERE [Order Details].ProductID = Products.ProductID " & _
" AND [Order Details].OrderID = " + _

Convert.ToString (OrderRecord ("OrderID"))

Command.CommandType = CommandType.Text

' Reusing the same connection object that was used in retrieving
' allorder records from the Orders table
Command.Connection = DBCon

' Executing SQL query without passing CommandBehavior.CloseConnection

' as parameter to ExecuteReader. We don't want the connection

' to automatically close because we want to reuse it for more operations
OrderDetailReader = Command.ExecuteReader ()

While OrderDetailReader.Read()
' Populating the lable control with the product name field
1blOrderDetail .Text += OrderDetailReader (0).ToString() + "<Br>"
End While

End Sub
</script>
<html xmlns="http://www.w3.0rg/1999/xhtml" >

<head id="Headl" runat="server">
<title>Multiple Active Result Sets</title>

</head>
<body>
<form id="forml" runat="server">
<div>
<asp:Label ID="lblCounter" Runat="server"></asp:Label>
<br />

<asp:GridvView ID="gvOrders" Runat="server" AutoGenerateColumns="False"

OnRowDataBound="gvOrders_RowDataBound" Width="100%">
<Columns>

<asp:BoundField HeaderText="Company Name"
DataField="CompanyName"></asp:BoundField>

<asp:BoundField HeaderText="Contact Name"
DataField="ContactName"></asp:BoundField>

<asp:TemplateField>

<HeaderTemplate>
Order Detail

</HeaderTemplate>

<ItemTemplate>
<asp:Label ID="1blOrderDetail" runat="server"></asp:Label>

</ItemTemplate>

</asp:TemplateField>
<asp:BoundField HeaderText="Order Date" DataField="orderdate"
DataFormatString="{0:d}"></asp:BoundField>

(continued)

425



Chapter 12

Listing 12-8: (continued)

426

<asp:BoundField HeaderText="Required Date" DataField="requireddate"
DataFormatString="{0:d}"></asp:BoundField>
<asp:BoundField HeaderText="Shipped Date" DataField="shippeddate"
DataFormatString="{0:d}"></asp:BoundField>
</Columns>
</asp:Gridview><br />
<br />

</div>
</form>

</body>
</html>

C#

<%@ Page Language="C#" %>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.SqglClient" %>
<%@ Import Namespace="System.Configuration" %>

<script runat="server">
// Declaring connection here allows us to use it inside all methods
// of this class
SglConnection DBCon;

protected void Page_Load(object sender, EventArgs e)

{

SglCommand Command = new SglCommand() ;
SglDataReader OrdersReader;

DBCon = new SglConnection() ;
DBCon.ConnectionString =
ConfigurationManager.ConnectionStrings|["DSN_NorthWind"] .ConnectionString;

Command . CommandText =
" SELECT TOP 5 Customers.CompanyName, Customers.ContactName, " +
" Orders.OrderID, Orders.OrderDate, " +
" Orders.RequiredDate, Orders.ShippedDate " +
" FROM Orders, Customers " +
" WHERE Orders.CustomerID = Customers.CustomerID " +
" ORDER BY Customers.CompanyName, Customers.ContactName "
Command.CommandType = CommandType.Text;
Command.Connection = DBCon;

// Opening the connection and executing the SQL query.
DBCon.Open () ;
OrdersReader = Command.ExecuteReader () ;

// Binding the Data Reader to the GridvView control
gvOrders.DataSource = OrdersReader;



Data Management with ADO.NET

gvOrders.DataBind() ;

// Closing connection after we are done processing all order records
DBCon.Close() ;

protected void gvOrders_RowDataBound (object sender, GridvViewRowEventArgs e)
{

IDataRecord OrderRecord;

Label 1blOrderDetail;

// Retrieving the currently bound record from the Data Reader
// using the IDataRecord interface
OrderRecord = e.Row.Dataltem as IDataRecord;

// Retrieving reference to the Label Control inside the current
// GridView row. This Label will be populated with Order Details
1blOrderDetail = e.Row.FindControl ("1blOrderDetail") as Label;

if ((OrderRecord == null) || (lblOrderDetail == null))
return;

SglCommand Command = new SglCommand () ;
SaglDataReader OrderDetailReader;

// Creating an SQL query to retrieve details
// for the currently processed order
Command.CommandText =
"SELECT Products.ProductName, [Order Details].UnitPrice, " +
" [Order Details].Quantity, [Order Details].Discount " +
" FROM [Order Details], Products " +
" WHERE [Order Details].ProductID = Products.ProductID " +
" AND [Order Details].OrderID = " +
Convert.ToString (OrderRecord["OrderID"]) ;

Command.CommandType = CommandType.Text;

// Reusing the same connection object that was used in retrieving
// allorder records from the Orders table
Command.Connection = DBCon;

// Executing SQL query without passing CommandBehavior.CloseConnection

// as parameter to ExecuteReader. We don't want the connection

// to automatically close because we want to reuse it for more operations
OrderDetailReader = Command.ExecuteReader () ;

while (OrderDetailReader.Read())

{
// Populating the lable control with the product name field

1blOrderDetail.Text += OrderDetailReader[0].ToString() + "<Br>";

}

</script>

427



Chapter 12

Listing 12-8 show a sample of code that runs an inline SQL statement to retrieve all orders from the
Orders table. It retrieves the result set using a SqglDataReader object and binds the DataReader to a
GridView control. When the GridView control starts to bind the DataReader, it starts firing an
OnRowDataBound event for each record. The code listens to this event using an event handler. The
parameters automatically passed to this event handler contain the record that is currently being bound
to the GridView control. To get reference to this record, use the IDataRecord interface. You can use its
properties to access the OrderID column for the order record that is currently being data bound. After
you know the OrderID, you execute an SQL query against the Order Details table and retrieve items
details for the order.

When executing the code shown in the Listings 12-4 and 12-5, you see the result on the screen showing
the five orders from the Orders table (see Figure 12-6). Pay close attention to the Order Detail column
that shows the list of products within each order. This list is retrieved by running separate SQL query for
each order using the same connection to the database.

&1 Untitled Page - Microsoft Internet Explorer =)l
File Edit View Favorites Tools Help l'}'
0 — i »
) ) ﬂ lELI o / ) Search ‘:\?’ Favarites 6-‘“ v i ] -
Company Contact o . Order Required Shipped
Name Naime Order Detail Date Date Date
. Réssle Saverkraut
Alfreds Maria Chartreuse verte B/25/1997 9/22/1997  9/2/1997
Futterkiste Anders .
Spegesild
Alfreds Iara .
Futterkicte nders WVegie-spread 10431997  10/31/1997 1071371957
Alfteds Iaria Arizeed Syrup

Futterkiste Anders L ek alile s 10713719597 11/24/1997  10/21/1997

Raclette Courdavault

Alfreds Iara .

Futterkiste Anders O@nﬂPrmﬁMer 1151998 2/12/1998 142141998
griine Sofe
Grandma's

Alfreds Marna

Futterkiste Anders Boysenberry Spread  3/16/1958  4/27/1998  3/24/1998

Réssle Saverkraut

&] pone &J Local intranet

Figure 12-6

One of the disadvantages of the previous versions of ADO.NET was its lack of support for asynchronous
processing. Each command had to finish executing before the user could issue more commands to the
database. Support for asynchronous processing would have allowed users to make multiple, unrelated
updates to the database in a parallel fashion. This was especially true if multiple databases were involved.
With the release of ADO.NET 2.0, you are now able to process database commands asynchronously, as
discussed in the following section.

428



Data Management with ADO.NET

Asynchronous Command Execution

When you process data using ADO or previous versions of ADO.NET, each command is executed
sequentially. The code waits for each command to complete before the next one is processed. When you
use a single database, the sequential processing enables you to reuse the same connection object for all
commands. However, with the introduction of MARS, you can now use a single connection for
multiple, concurrent database access. The 2.0 version of ADO.NET also enables you to process database
commands asynchronously. This enables you to not only use same connection, but also to use it in a
parallel manner. The real advantage of asynchronous processing becomes apparent when you are
accessing multiple data sources —especially when the data access queries across these databases aren’t
dependent on each other. You can now open a connection to the database in an asynchronous manner.
When you are working with multiple databases, you can now open connections to them in a parallel
fashion as well.

The use of asynchronous processing with ADO.NET 2.0 requires that MDAC 9.0 be
installed on the machine. Be sure to download and install MDAC 9.0 before attempt-
ing to use this feature. Also, be sure to add Asynchronous Processing=true; to
the connection string.

Asynchronous Methods of the SqICommand Class

The sqlcommand class provides a few additional methods that facilitate executing commands asyn-
chronously. These new methods are summarized in the following table.

Method Description

BeginExecuteNonQuery () This method expects a query that doesn’t return
any results and starts it asynchronously. The
return value is a reference to an object of
the sglasyncResult class that implements the
IAsyncResult interface. The returned object
can be used to monitor the process as it runs
and when it is completed.

BeginExecuteNonQuery This overloaded method also starts the process

(callback, stateObject ) asynchronously, and it expects to receive an
object of the Asynchcallback instance. The
callback method is called after the process is
finished running so that you can proceed with
other tasks. The second parameter receives any
custom-defined object. This object is passed to
the callback automatically. It provides an
excellent mechanism for passing parameters to
the callback method. The callback method can
retrieve the custom-defined state object by using
the AsyncState property of the IAsyncResult
interface.

Table continued on following page

429



Chapter 12

Method

Description

EndExecuteNonQuery (asyncResult )

BeginExecuteReader

BeginExecuteReader (commandBehavior)

BeginExecuteReader
(callback, stateObject)

BeginExecuteReader
(callback, stateObject,
commandBehavior)

This method is used to access the results from the
BeginExecuteNonQuery method. This should
be called after the process has finished running;
otherwise, an exception is thrown. When calling
this method, you are required to pass the same
SalAsyncResult object that you received when
you called the BeginExecuteNonQuery method.
This method returns an Integer value containing
the number of rows affected.

This method expects a query that returns a
result set and starts it asynchronously. The
return value is a reference to an object of
SglAasyncResult class that implements
IAsyncResult interface. The returned object
can be used to monitor the process as it runs
and as it is completed.

This overloaded method works the same way
as the one described previously. It also takes a
parameter containing a command behavior
enumeration just like the synchronous
ExecuteReader method.

This overloaded method starts the
asynchronous process and it expects to receive
an object of AsyncCallback instance. The call-
back method is called after the process finishes
running so that you can proceed with other tasks.
The second parameter receives any custom-
defined object. This object is passed to the
callback automatically. It provides an excellent
mechanism for passing parameters to the callback
method. The callback method can retrieve the
custom-defined state object by using the
AsyncState property of the IAsyncResult
interface.

This overloaded method takes an instance of the
AsyncCallback class and uses it to fire a
callback method when the process has finished
running. The second parameter receives a custom
object to be passed to the callback method, and
the third parameter uses the command behavior
enumeration in the same way as the synchronous
ExecuteReader method.

430




Data Management with ADO.NET

Method

Description

EndExecuteReader

BeginExecuteXmlReader

BeginExecuteXmlReader
(callback, stateObject)

EndExecuteXmlReader

This method is used to access the results from
the BeginExecuteReader method. This should
be called after the process has finished running;
otherwise, an exception is thrown. When calling
this method, you are required to pass the same
SglAsyncResult object that you receive when
you called the BeginExecuteReader method.
This method returns a SqlDataReader object
containing the result of the SQL query.

This method expects a query that returns the
result set as XML. The return value is a reference
to an object of SqlAsyncResult class that
implements IAsyncResult interface. The
returned object can be used to monitor the
process as it runs and as it is completed.

This overloaded method starts the
asynchronous process, and it expects to receive an
object of AsyncCallback instance. The callback
method is called after the process has finished
running so that you can proceed with other tasks.
The second parameter receives any custom-
defined object. This object is passed to the call-
back automatically. It provides an excellent
mechanism for passing parameters to the callback
method. The callback method can retrieve the
custom-defined state object by using the
AsyncState property of the IAsyncResult
interface.

This method is used to access the results from
the BeginExecuteXmlReader method. It
should be called after the process has finished
running; otherwise, an exception is thrown.
When calling this method, you are required to
pass the same SglAsyncResult object that you
received when you called the BeginExecu-
texmlReader method. This method returns an
XML Reader object containing the result of the
SQL query.

431




Chapter 12

IAsyncResult Interface

All the asynchronous methods for the SglCommand class return a reference to an object that exposes the
IAsyncResult interface. The properties of this interface are shown in the following table.

Property Description

AsyncState This read-only property returns an object that
describes the state of the process.

AsyncWaitHandle This read-only property returns an instance of
WaitHandle that can be used to set the time
out, test whether the process has completed,
and force the code to wait for completion.

CompletedSynchronously This read-only property returns a Boolean value
that indicates whether the process was executed
synchronously.

IsCompleted This read-only property returns a Boolean value

indicating whether the process has completed.

AsyncCallback

Some of the asynchronous methods of the SglCommand class receive an instance of the AsyncCallback
class. This class is not specific to ADO.NET and is used by many objects in the .NET Framework. It is used to
specify those methods that you want to execute after the asynchronous process has finished running. This
class uses its constructor to receive the address of the method that you want to use for call-back purposes.

WaitHandle Class

This class is an abstract class used for multiple purposes such as causing the execution to wait for any or all
asynchronous processes to finish. To process more than one database command asynchronously, you can
simply create an array containing wait handles for each asynchronous process. Using the static properties
of WaitHandle class, you can cause the execution to wait for either any or all wait handles in the array to
finish processing.

The waitHandle class exposes a single property with the name wWaitTimeout, and it is used to provide
an Integer value representing the number of milliseconds the asynchronous has to finish running.

The waitHandle class also exposes a few methods, as shown in the following table.

Method Description

WaitOne This method waits for a single asynchronous
process to complete or time out. It returns a
Boolean value containing True if the process
completed successfully and False if it timed out.

432



Data Management with ADO.NET

Method

Description

WaitOne (milliseconds, exitContext)

WaitOne (timeSpan, exitContext)

WaitAny (waitHandles)

WaitAny (waitHandles, milliseconds,
exitContext)

WaitAny (waitHandles, timeSpan,
exitContext

WaitAll (waitHandles)

WaitAll (waitHandles, milliseconds,
exitContext)

WaitAll (waitHandles, timeSpan,
exitContext)

Close ()

This overloaded method receives an Integer value
as the first parameter. This value represents the
time out in milliseconds. The second parameter
receives a Boolean value specifying whether the
method requires asynchronous context and should
be set to False for asynchronous processing.

This overloaded method received a TimeSpan
object to represent the time-out value. The sec-
ond parameter receives a Boolean value specify-
ing whether the method requires asynchronous
context and should be set to False for Asyn-
chronous processing.

This is a Static method used if you are manag-
ing more than one Wait Handle in the form of
an array. Using this method causes the execu-
tion to wait for any of the asynchronous pro-
cesses that have been started and whose wait
handles are in the array being passed to it. The
WaitAny method must be called repeatedly —
once for each Wait Handle you want to process.

This overloaded method receives the time-out
value in the form of milliseconds and a Boolean
value specifying whether the method requires
asynchronous context. It should be set to False
for asynchronous processing.

This overloaded method receives the time-out
value in the form of Time Span object. The second
parameter receives a Boolean value specifying
whether the method requires asynchronous context.
It should be set to False for asynchronous processing.

This is a Static method and is used to wait for
all asynchronous processes to finish running.

This overloaded method receives the tim