
TEAM LinG

Professional
ASP.NET 2.0

01_576100 ffirs.qxd 10/6/05 7:54 PM Page i

01_576100 ffirs.qxd 10/6/05 7:54 PM Page ii

Professional
ASP.NET 2.0

Bill Evjen
Scott Hanselman

Farhan Muhammad
Srinivasa Sivakumar

Devin Rader

01_576100 ffirs.qxd 10/6/05 7:54 PM Page iii

Professional ASP.NET 2.0
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2006 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN-13: 978-0-7645-7610-2
ISBN-10: 0-7645-7610-0

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/SR/RQ/QV/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal Department,
Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESEN-
TATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF
THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WAR-
RANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY
SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE
SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS
NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFES-
SIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE
SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HERE-
FROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION
AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE
PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOM-
MENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN
THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND
WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Department within the
United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. All other trademarks are the property of their respective owners. Wiley
Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Library of Congress Cataloging-in-Publication Data

Professional ASP.NET 2.0 / Bill Evjen ... [et al.].
p. cm.

Includes index.
ISBN-13: 978-0-7645-7610-2 (paper/website)
ISBN-10: 0-7645-7610-0 (paper/website)

1. Active server pages 2. Microsoft.NET. 3. Web sites—Design. 4. Web servers. 5. Web site development. 6. Internet
programming. I. Evjen, Bill.

TK5105.8885.A26P787 2005
005.2'76—dc22

2005020484

01_576100 ffirs.qxd 10/6/05 7:54 PM Page iv

www.wiley.com

About the Authors

Bill Evjen
Bill Evjen is an active proponent of .NET technologies and community-based learning initiatives for
.NET. He has been actively involved with .NET since the first bits were released in 2000. In the same
year, Bill founded the St. Louis .NET User Group (www.stlnet.org), one of the world’s first such
groups. Bill is also the founder and executive director of the International .NET Association
(www.ineta.org), which represents more than 375,000 members worldwide.

Based in St. Louis, Missouri, USA, Bill is an acclaimed author and speaker on ASP.NET and XML Web
services. He has written or co-written Professional C#, Third Edition; Professional VB.NET, Third Edition;
and ASP.NET 2.0 Beta Preview (all Wrox titles), as well as ASP.NET Professional Secrets, XML Web Services
for ASP.NET, Web Services Enhancements: Understanding the WSE for Enterprise Applications, Visual Basic
.NET Bible, and ASP.NET Professional Secrets (all published by Wiley). In addition to writing, Bill is a
speaker at numerous conferences, including DevConnections, VSLive, and TechEd.

Bill is a Technical Director for Reuters, the international news and financial services company, and he
travels the world speaking to major financial institutions about the future of the IT industry. He was
graduated from Western Washington University in Bellingham, Washington, with a Russian language
degree. When he isn’t tinkering on the computer, he can usually be found at his summer house in
Toivakka, Finland. You can reach Bill at evjen@yahoo.com. He presently keeps his weblog at
www.geekswithblogs.net/evjen.

Scott Hanselman
Scott Hanselman is currently the Chief Architect at the Corillian Corporation (NASDAQ: CORI), an
eFinance enabler. He has more than 13 years’ experience developing software in C, C++, VB, COM, and
certainly in VB.NET and C#. Scott is proud to be both a Microsoft RD as well as an MVP for both
ASP.NET and Solutions Architecture. Scott has spoken at dozens of conferences worldwide, including
three TechEds and the North African DevCon. He is a primary contributor to “newtelligence DasBlog
Community Edition 1.7,” the most popular open-source ASP.NET blogging software hosted on
SourceForge.

This is the third book Scott has worked on for Wrox and certainly the most fun. His thoughts on the Zen
of .NET, programming, and Web Services can be found on his blog at www.computerzen.com. He wel-
comes email and PayPal’ed money at scott@hanselman.com.

01_576100 ffirs.qxd 10/6/05 7:54 PM Page v

Farhan Muhammad
Farhan Muhammad is the Chief Architect of ILM Professional Service. He is also the Microsoft Regional
Director (RD) for the U.S. North Central region. As an RD, he focuses on providing the vital link
between Microsoft and the developer community. He has been a board member at the International
.NET Association (INETA), where he actively helped support developers’ communities worldwide. He
leads the Twin Cities .NET User Group, a developers’ community of more than 1,200 members in
Minnesota dedicated to sharing .NET knowledge among developers. He has also written Real World
ASP.NET Best Practices (Apress, 2003).

S. Srinivasa Sivakumar
S. Srinivasa Sivakumar is a Solution Architect for Microsoft India. Srinivasa has co-written more than
15 books and more than 40 technical articles for major publications. A list of his published materials is
available at www3.brinkster.com/webguru/.

Devin Rader
Devin Rader is an Infragistics Technology Evangelist and is responsible for writing Infragistics reference
applications and .NET technology articles, as well as the worldwide delivery of Infragistics’ technology
demonstrations. Devin is an active member and leader for the International .NET Association (INETA)
and believes strongly in the software development community. He helped found the St. Louis .NET
Users Group in November 2000 and is a frequent speaker at community events nationwide. Devin
writes the monthly ASP.NET Tips & Tricks column for ASP.NET Pro magazine, as well as .NET technol-
ogy articles for MSDN Online. He has served as the sole technical editor for a number of works, includ-
ing Web Services Enhancements: Understanding the WSE for Enterprise Applications, ASP.NET Professional
Secrets, and ASP.NET 2.0 Beta Preview (all published by Wiley).

01_576100 ffirs.qxd 10/6/05 7:54 PM Page vi

Credits
Senior Acquisitions Editor
Jim Minatel

Senior Development Editor
Jodi Jensen

Technical Editors
Derek Comingore
Hal Levy
Farhan Muhammad
Jeffrey Palermo
Richard Purchas
Devin Rader
Patrick Santry
Srinivasa Sivakumar
Scott Spradlin

Copy Editor
Mary Lagu

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Graphics and Production Specialists
Lauren Goddard
Denny Hager
Barbara Moore
Melanee Prendergast
Heather Ryan
Alicia B. South

Quality Control Technicians
Leeann Harney
Jessica Kramer
Carl William Pierce

Proofreading and Indexing
TECHBOOKS Production Services

01_576100 ffirs.qxd 10/6/05 7:54 PM Page vii

To Kalle—welcome to the family! —Bill Evjen

I dedicate this book to my lovely wife, Luna, whose continuous support and encouragement made this book
possible. I also dedicate this book to my parents, who taught me to do my best in everything I start. —Farhan
Muhammad

I dedicate my work in this book to my dear late father, Mr. V. Sathyanarayanan, whom I miss most in this
world. —S. Srinivasa Sivakumar

01_576100 ffirs.qxd 10/6/05 7:54 PM Page viii

Acknowledgments

Bill Evjen
I have said it before, and I’ll say it again: Writing a book may seem like the greatest of solo endeavors,
but it requires a large team of people working together to get technical books out the door—and this
book is no exception. This time around, the team was incredible. First, and foremost, I thank Jim Minatel
of Wrox for giving me the opportunity to work on such a great project. There is nothing better than get-
ting the opportunity to write about your favorite topic for the world’s best publisher!

Besides Jim, I dealt with the book’s development editor, Jodi Jensen, on a weekly, if not daily, basis.
Much of the quality of this book is because of Jodi’s attention to detail and her targeted corrections and
queries. Jodi was just so dang good that Wiley has decided to promote her to bigger and better things. So
I am sad to say that after so many books, this is the last book Jodi and I will be working on together.
Good luck, Jodi, in the new job!

I worked closely with both Scott Hanselman and Devin Rader, and these guys deserve a lot of thanks. I
appreciate your help and advice throughout this process. Thanks, guys!

I also thank the various editors who worked on the book—Mary Lagu, Tom Dinse, Brian Herrmann,
Sara Shlaer, and Maryann Steinhart—as well as the contributing authors Srinivasa Sivakumar, Farhan
Muhammad, and Devin Rader (who also worked as technical editors).

Big and ongoing thanks go to the Wrox/Wiley gang, including Joe Wikert (publisher), Katie Mohr
(acquisitions editor), and David Mayhew (marketing).

Writing books while the product is still in an alpha or beta format is a difficult task. For this reason, I
also thank specific members of the ASP.NET team who helped me immeasurably. Thanks to Kent
Sharkey, Thomas Lewis, Brian Goldfarb, and Scott Guthrie. You guys were very helpful!

Finally, thanks to my entire family. I had a new son come into this world while I was writing the book,
so things got rather hectic from time to time. The biggest thanks go to my wife, Tuija, who keeps my
world together. Thanks, also, to my outstanding children—Sofia, Henri, and now Kalle! You guys are
my sunshine.

Scott Hanselman
I want to thank my wife, Ntombenhle (“Mo”), for her infinite patience and understanding as I poked
away on the computer into the wee hours when I should have been hanging with her. Thanks to ScottGu
and the ASP.NET 2.0 team for making a rocking sweet development platform. Thanks to Ben Miller, the
ASP.NET MVP Lead, for brokering my questions all over Redmond and beyond. I thank all the folks at
Corillian, including my CTO, Chris Brooks, for his constant mentoring, and especially Patrick Cauldwell
for his friendship and technical wisdom over the years. Thanks to Jodi Jensen and Jim Minatel at Wiley/
Wrox for all their hard work. Thanks to the folks who read my blog and allow me to bounce code and
thoughts off them. Finally, I thank Bill Evjen for his ongoing support, ideas, guidance, and tutelage
about the book-writing process.

01_576100 ffirs.qxd 10/6/05 7:54 PM Page ix

Contents

Acknowledgments ix

Introduction xxvii

What You Need for ASP.NET 2.0 xxvii
Who Should Read This Book? xxviii
What This Book Covers xxviii
Conventions xxxii
Source Code xxxiii
Errata xxxiv
p2p.wrox.com xxxiv

Chapter 1: Hello ASP.NET 2.0! 1

A Little Bit of History 1
The Goals of ASP.NET 2.0 3

Developer Productivity 3
Administration and Management 6
Performance and Scalability 9

Additional New Features of ASP.NET 2.0 9
New Developer Infrastructures 9
New Compilation System 14
Additions to the Page Framework 15
New Objects for Accessing Data 17
New Server Controls 17

A New IDE for Building ASP.NET 2.0 Pages 18
Summary 20

Chapter 2: Visual Studio 2005 21

The Start Page 22
The Document Window 22

Views in the Document Window 23
The Tag Navigator 24
Page Tabs 24
Code Change Status Notifications 26
Error Notifications and Assistance 26

02_576100 ftoc.qxd 10/6/05 7:55 PM Page x

The Toolbox 28
The Solution Explorer 30
The Server Explorer 32
The Properties Window 32
Lost Windows 33
Other Common Visual Studio Activities 33

Creating New Projects 34
Making References to Other Objects 34
Using Smart Tags 36
Saving and Importing Visual Studio Settings 37
Validating Your HTML 39
Reaching Out to the Community 41
Working with Snippets 41

Summary 43

Chapter 3: Application and Page Frameworks 45

Application Location Options 45
Built-In Web Server 46
IIS 47
FTP 48
Web Site Requiring FrontPage Extensions 48

The ASP.NET Page Structure Options 50
Inline Coding 51
New Code-Behind Model 53

ASP.NET 2.0 Page Directives 56
@Page 57
@Master 59
@Control 60
@Import 62
@Implements 63
@Register 63
@Assembly 64
@PreviousPageType 64
@MasterType 65
@OutputCache 65
@Reference 66

ASP.NET Page Events 66
Dealing with PostBacks 68
Cross-Page Posting 69
ASP.NET Application Folders 75

\App_Code Folder 75
\App_Data Folder 80

Contents

02_576100 ftoc.qxd 10/6/05 7:55 PM Page xi

\App_Themes Folder 81
\App_GlobalResources Folder 81
\App_LocalResources 84
\App_WebReferences 85
\App_Browsers 85

Compilation 85
Global.asax 89
Summary 90

Chapter 4: ASP.NET Server Controls and Client-Side Scripts 93

ASP.NET Server Controls 93
Types of Server Controls 94
Building with Server Controls 95
Working with Server Control Events 98

Applying Styles to Server Controls 100
Examining the Controls’ Common Properties 100
Changing Styles Using Cascading Style Sheets 102

HTML Server Controls 108
Looking at the HtmlControl Base Class 110
Looking at the HtmlContainerControl Class 111
Looking at All the HTML Classes 111
Using the HtmlGenericControl Class 113

Manipulating Pages and Server Controls with JavaScript 114
Using Page.ClientScript.RegisterClientScriptBlock 115
Using Page.ClientScript.RegisterStartupScript 117
Using Page.ClientScript.RegisterClientScriptInclude 119

Client-Side Callback 120
Comparing a Typical Postback to a Callback 120
Using the Callback Feature — A Simple Approach 123
Using the Callback Feature with Parameters 127

Summary 130

Chapter 5: ASP.NET Web Server Controls 131

An Overview of Web Server Controls 131
The Label Server Control 132
The Literal Server Control 134
The TextBox Server Control 135

Using the Focus() Method 136
Using AutoPostBack 137
Using AutoCompleteType 138

Contents

02_576100 ftoc.qxd 10/6/05 7:55 PM Page xii

The Button Server Control 139
The CausesValidation Property 139
The CommandName Property 140
Buttons That Work with Client-Side JavaScript 141

The LinkButton Server Control 143
The ImageButton Server Control 143
The HyperLink Server Control 145
The DropDownList Server Control 145
Visually Removing Items from a Collection 148
The ListBox Server Control 150

Allowing Users to Select Multiple Items 150
An Example of Using the ListBox Control 150
Adding Items to a Collection 152

The CheckBox Server Control 153
How to Determine If Check Boxes Are Checked 154
Assigning a Value to a Check Box 155
Aligning Text Around the Check Box 155

The CheckBoxList Server Control 156
The RadioButton Server Control 159
The RadioButtonList Server Control 161
Image Server Control 162
Table Server Control 163
The Calendar Server Control 166

Making a Date Selection from the Calendar Control 167
Choosing a Date Format to Output from the Calendar 168
Making Day, Week, or Month Selections 169
Working with Date Ranges 169
Modifying the Style and Behavior of Your Calendar 172

AdRotator Server Control 175
The Xml Server Control 177
Panel Server Control 178
The PlaceHolder Server Control 181
Summary 181

Chapter 6: ASP.NET 2.0 Web Server Controls 183

BulletedList Server Control 183
HiddenField Server Control 189
FileUpload Server Control 190

Uploading Files Using the FileUpload Control 191
Giving ASP.NET Proper Permissions to Upload Files 193
Understanding File Size Limitations 194

Contents

02_576100 ftoc.qxd 10/6/05 7:55 PM Page xiii

Placing the Uploaded File into a Stream Object 195
Moving File Contents from a Stream Object to a Byte Array 196

MultiView and View Server Controls 196
Wizard Server Control 201

Customizing the Side Navigation 203
Examining the AllowReturn Attribute 203
Working with the StepType Attribute 203
Adding a Header to the Wizard Control 204
Working with the Wizard’s Navigation System 205
Utilizing Wizard Control Events 206
Using the Wizard Control to Show Form Elements 207

ImageMap Server Control 211
Summary 214

Chapter 7: Validation Server Controls 215

Understanding Validation 215
Client-Side versus Server-Side Validation 216
ASP.NET Validation Server Controls 217

Validation Causes 218
The RequiredFieldValidator Server Control 219
The CompareValidator Server Control 224
The RangeValidator Server Control 227
The RegularExpressionValidator Server Control 232
The CustomValidator Server Control 233
The ValidationSummary Server Control 238

Turning Off Client-Side Validation 241
Using Images and Sounds for Error Notifications 242
Working with Validation Groups 244
Summary 247

Chapter 8: Working with Master Pages 249

Why Do You Need Master Pages? 249
The Basics of Master Pages 251
Coding a Master Page 253
Coding a Content Page 256

Mixing Page Types and Languages 259
Specifying Which Master Page to Use 261
Working with the Page Title 262
Working with Controls and Properties from the Master Page 263

Specifying Default Content in the Master Page 270

Contents

02_576100 ftoc.qxd 10/6/05 7:55 PM Page xiv

Programmatically Assigning the Master Page 272
Nesting Master Pages 272
Container-Specific Master Pages 276
Event Ordering 277
Caching with Master Pages 278
Summary 278

Chapter 9: Themes and Skins 279

Using ASP.NET 2.0 Themes 279
Applying a Theme to a Single ASP.NET Page 279
Applying a Theme to an Entire Application 281
Removing Themes from Server Controls 282
Removing Themes from Web Pages 283
Understanding the StyleSheetTheme Attribute 283

Creating Your Own Themes 284
Creating the proper folder structure 284
Creating a Skin 285
Including CSS Files in Your Themes 287
Having Your Themes Include Images 290

Defining Multiple Skin Options 293
Programmatically Working with Themes 295

Assigning the Page’s Theme Programmatically 295
Assigning a Control’s SkinID Programmatically 296

Themes and Custom Controls 296
Summary 298

Chapter 10: Collections and Lists 299

Arrays 299
Resizing Arrays 302
Finding Objects in Arrays 302
Sorting Objects in Arrays 306

The System.Collections Namespace 307
ArrayList 307
IEnumerable and IEnumerator 310
ICollection 311
Lists and IList 312
Dictionaries and IDictionary 313
Hashtables 314
SortedList 317
Queues and Stacks 318

Contents

02_576100 ftoc.qxd 10/6/05 7:55 PM Page xv

Specialized Collections 320
HybridDictionary and ListDictionary 320
StringCollection, StringDictionary, and NameValueCollection 321
BitArray 321

The Microsoft.VisualBasic.Collection Class 321
Strongly Typed Collections 322
System.Collections.Generics 325

What Are Generics? 325
Generic Lists 326
Generic Dictionary 327
Other Generic Collections 328

Collection Changes from .NET 1.1 to .NET 2.0 328
Collections and List Guidance 329
Summary 331

Chapter 11: Data Binding in ASP.NET 2.0 333

Data Source Controls 333
SqlDataSource Control 336
XmlDataSource Control 343
ObjectDataSource Control 344
SiteMapDataSource Control 349

Configuring Data Source Control Caching 349
Storing Connection Information 350
Using Bound List Controls with Data Source Controls 353

GridView 353
Editing GridView Row Data 363
Deleting GridView Data 368
DetailsView 370
Inserting, Updating, and Deleting Data Using DetailsView 376
FormView 378

Other Databound Controls 383
DropDownList, ListBox, RadioButtonList and CheckBoxList 383
TreeView 383
Ad Rotator 384
Menu 384

Inline Data-Binding Syntax 385
DataBinder Syntax Changes 386
XML Data Binders 386

Summary 387

Contents

02_576100 ftoc.qxd 10/6/05 7:55 PM Page xvi

Chapter 12: Data Management with ADO.NET 389

Basic ADO.NET Features 389
Basic ADO.NET Namespaces and Classes 389
Using the Connection Object 391
Using the Command Object 391
Using the DataReader Object 393
Using Data Adapter 395
Using Parameters 398
Understanding DataSet and DataTable 401

Newly Added ADO.NET Features 405
Bulk Loading of Data from a Variety of Sources 405
Batch Processing Multiple Updates 416
Multiple Active Result Sets 422
Asynchronous Command Execution 429
Asynchronous Connections 451

Summary 452

Chapter 13: Working with XML 453

The Basics of XML 454
The XML InfoSet 456
XSD–XML Schema Definition 457
Editing XML and XML Schema in Visual Studio .NET 2005 458

XmlReader and XmlWriter 461
Using Schema with XmlTextReader 464
Including NameTable Optimization 466
Retrieving .NET CLR Types from XML 468
ReadSubtree and XmlSerialization 470
Creating Xml with XmlWriter 472
Improvements for XmlReader and XmlWriter in 2.0 474

XmlDocument and XPathDocument 474
Problems with the DOM 475
XPath, the XPathDocument, and XmlDocument 475

DataSets 479
Persisting DataSets to XML 479
XmlDataDocument 480

The XmlDataSource Control 482
XSLT 486

XslCompiledTransform 488
XML Web Server Control 489
XSLT Debugging 491

Contents

02_576100 ftoc.qxd 10/6/05 7:55 PM Page xvii

Databases and XML 492
FOR XML AUTO 493
SQL Server Yukon 2005 and the XML DataType 497

Summary 498

Chapter 14: Site Navigation 499

XML-Based Site Maps 500
SiteMapPath Server Control 502

The PathSeparator Property 504
The PathDirection Property 506
The ParentLevelsDisplayed Property 507
The ShowToolTips Property 507
The SiteMapPath Control’s Child Elements 508

TreeView Server Control 509
Identifying the TreeView Control’s Built-In Styles 511
Examining the Parts of the TreeView Control 512
Binding the TreeView Control to an XML File 512
Selecting Multiple Options in a TreeView 514
Specifying Custom Icons in the TreeView Control 518
Specifying Lines Used to Connect Nodes 520
Working with the TreeView Control Programmatically 522

Menu Server Control 527
Applying Different Styles to the Menu Control 529
Menu Events 535
Binding the Menu Control to an XML File 536

SiteMap Data Provider 538
ShowStartingNode 538
StartFromCurrentNode 539
StartingNodeOffset 540
StartingNodeUrl 541

SiteMap API 541
URL Mapping 544
Sitemap Localization 545

Structuring the Web.sitemap File for Localization 545
Making Modifications to the Web.config File 546
Creating Assembly Resource (.resx) Files 547
Testing the Results 549

Summary 550

Contents

02_576100 ftoc.qxd 10/6/05 7:55 PM Page xviii

Chapter 15: Personalization 551

The Personalization Model 551
Creating Personalization Properties 552

Adding a Simple Personalization Property 553
Using Personalization Properties 554
Adding a Group of Personalization Properties 558
Using Grouped Personalization Properties 559
Defining Types for Personalization Properties 559
Using Custom Types 560
Providing Default Values 563
Making Personalization Properties Read-Only 563

Anonymous Personalization 563
Enabling Anonymous Identification of the End User 563
Working with Anonymous Identification Events 566
Anonymous Options for Personalization Properties 567

Programmatic Access to Personalization 567
Migrating Anonymous Users 568
Personalizing Profiles 569
Determining Whether to Continue with Automatic Saves 570

Personalization Providers 571
Working with SQL Server Express Edition 571
Working with Microsoft’s SQL Server 573
Using Multiple Providers 581

Summary 581

Chapter 16: Membership and Role Management 583

Authentication 584
Authorization 584
ASP.NET 2.0 Authentication 584

Setting Up Your Web Site for Membership 584
Adding Users 587
Asking for Credentials 599
Working with Authenticated Users 604
Showing the Number of Users Online 607
Dealing with Passwords 608

ASP.NET 2.0 Authorization 613
Using the LoginView Server Control 613
Setting Up Your Web Site for Role Management 615
Adding and Retrieving Application Roles 619
Deleting Roles 621

Contents

02_576100 ftoc.qxd 10/6/05 7:55 PM Page xix

Adding Users to Roles 622
Getting All the Users of a Particular Role 622
Getting All the Roles of a Particular User 624
Removing Users from Roles 625
Checking Users in Roles 625
Understanding How Roles Are Cached 627

Using the Web Site Administration Tool 628
Public Methods of the Membership API 628
Public Methods of the Roles API 629
Summary 630

Chapter 17: Portal Frameworks and Web Parts 631

Introducing Web Parts 631
Building Dynamic and Modular Web Sites 633

Introducing the WebPartManager Control 633
Working with Zone Layouts 634
Understanding the WebPartZone Control 638
Allowing the User to Change the Mode of the Page 640
Modifying Zones 652

Working with Classes in the Portal Framework 658
Creating Custom Web Parts 663
Summary 668

Chapter 18: Security 669

Authentication and Authorization 670
Applying Authentication Measures 670

The <authentication> Node 671
Windows-Based Authentication 672
Forms-Based Authentication 679
Passport Authentication 689

Authenticating Specific Files and Folders 689
Programmatic Authorization 690

Working with User.Identity 691
Working with User.IsInRole() 692
Pulling More Information with WindowsIdentity 693

Identity and Impersonation 696
Securing Through IIS 699

IP Address and Domain Name Restrictions 699
Working with File Extensions 700
Using the New ASP.NET MMC Snap-In 702

Summary 703

Contents

02_576100 ftoc.qxd 10/6/05 7:55 PM Page xx

Chapter 19: State Management 705

What Are Your Choices? 706
Understanding the Session Object in ASP.NET 2.0 708

Sessions and the Event Model 709
Configuring Session State Management 710
In-Process Session State 711
Out-of-Process Session State 719
SQL-Backed Session State 724
Extending Session State with Other Providers 728
Cookieless Session State 729
Choosing the Correct Way to Maintain State 730

The Application Object 731
QueryStrings 732
Cookies 732
PostBacks and Cross-Page PostBacks 733
Hidden Fields, ViewState, and ControlState 735
Using HttpContext.Current.Items for Very Short-Term Storage 739
Summary 740

Chapter 20: Caching 741

Caching 741
Output Caching 742
Partial Page (UserControl) Caching 744
Post-Cache Substitution 745
HttpCachePolicy and Client-Side Caching 747

Caching Programmatically 750
Data Caching Using the Cache Object 750
Cache Dependencies 750

Using the SQL Server Cache Dependency 756
Enabling Databases for SQL Server Cache Invalidation 757
Enabling Tables for SQL Server Cache Invalidation 758
Looking at SQL Server 758
Looking at the Tables That Are Enabled 759
Disabling a Table for SQL Server Cache Invalidation 760
Disabling a Database for SQL Server Cache Invalidation 760
SQL Server 2005 Cache Invalidation 760

Configuring Your ASP.NET Application 761
Testing SQL Server Cache Invalidation 763

Adding More Than One Table to a Page 765
Attaching SQL Server Cache Dependencies to the Request Object 766
Attaching SQL Server Cache Dependencies to the Cache Object 766

Summary 770

Contents

02_576100 ftoc.qxd 10/6/05 7:55 PM Page xxi

Chapter 21: Debugging and Error Handling Techniques 771

Design-Time Support 771
Syntax Notifications 772
Immediate and Command Window 774
Task List 774

Tracing 775
System.Diagnostics.Trace and ASP.NET’s Page.Trace 776
Page-Level Tracing 776
Application Tracing 776
Viewing Trace Data 777
Tracing from Components 781
Trace Forwarding 782
TraceListeners 783
Diagnostic Switches 787
Web Events 788

Debugging 790
What’s Required 790
IIS versus ASP.NET Development Server 792
Starting a Debugging Session 793
New Tools to Help You with Debugging 796
SQL Stored Proc Debugging 798

Exception and Error Handling 800
Handling Exceptions on a Page 800
Handling Application Exceptions 801
Http Status Codes 802

Summary 804

Chapter 22: File I/O and Streams 805

Working with Drives, Directories, and Files 806
The DriveInfo Class 806
The Directory and DirectoryInfo Classes 809
File and FileInfo 816
Working with Paths 820
File and Directory Properties, Attributes, and Access Control Lists 824

Reading and Writing Files 832
Streams 832
Readers and Writers 837
Compressing Streams 842

Working with Serial Ports 847
Network Communications 848

Contents

02_576100 ftoc.qxd 10/6/05 7:55 PM Page xxii

WebRequest and WebResponse 848
Sending Mail 855

Summary 856

Chapter 23: User Controls, Server Controls, Modules, and HttpHandlers 857

User Controls 858
Creating User Controls 858
Interacting with User Controls 861

Server Controls 862
Project Setup 863
Control Attributes 867
Control Rendering 869
Adding Tag Attributes 873
Styling HTML 875
Themes and Skins 877
Adding Client-Side Features 878
Detecting and Reacting to Browser Capabilities 887
Using ViewState 890
Raising PostBack Events 895
Handling PostBack Data 899
Composite Controls 901
Templated Controls 903
Creating Control Design-Time Experiences 910

Modules and Handlers 929
HttpModules 930
HttpHandlers 940

Summary 947

Chapter 24: Using Business Objects 949

Using Business Objects in ASP.NET 2.0 949
Creating Precompiled .NET Business Objects 950
Using Precompiled Business Objects in Your ASP.NET Applications 952

COM Interop: Using COM within .NET 954
The Runtime Callable Wrapper 954
Using COM objects in ASP.NET code 955
Error Handling 960
Deploying COM Components with .NET Applications 963

Using .NET from Unmanaged Code 965
The COM-Callable Wrapper 965
Using .NET Components within COM Objects 968

Contents

02_576100 ftoc.qxd 10/6/05 7:55 PM Page xxiii

Early versus Late Binding 971
Error Handling 972
Deploying .NET Components with COM Applications 974

Summary 975

Chapter 25: Mobile Development 977

Creating a NEW ASP.NET Mobile Web Application 977
Views of an ASP.NET Mobile Web Form 980

Using Control Containers 981
The Form Control 982
The Panel Control 982

Using StyleSheets 983
Creating a Single StyleSheet Control for All Mobile Web Forms 985

Using ASP.NET Mobile Controls 985
The AdRotator Control 985
The Calendar Control 988
The Label Control 990
The TextBox Control 991
The TextView Control 993
The Command Control 994
The Image Control 994
The PhoneCall Control 996
The Link Control 997
The List Control 999
The ObjectList Control 1003
The SelectionList Control 1004

Using Validation Controls 1008
Navigating between Mobile Web Forms 1010
The Mobile Web User Control 1010
Using Emulators 1014
Understanding Devices Filters 1015
State Management in ASP.NET Mobile Applications 1017

ViewState in Mobile Web Controls 1017
Managing Session State 1019
Hidden Fields 1019

Summary 1021

Chapter 26: Building and Consuming XML Web Services 1023

Communication Between Disparate Systems 1023
Building a Simple XML Web Service 1025

The WebService Page Directive 1026
Looking at the Base Web Service Class File 1027

Contents

02_576100 ftoc.qxd 10/6/05 7:55 PM Page xxiv

Exposing Custom Datasets as SOAP 1028
The XML Web Service Interface 1031

Consuming a Simple XML Web Service 1034
Adding a Web Reference 1035
Invoking the Web Service from the Client Application 1036

Transport Protocols for Web Services 1039
HTTP-GET 1040
HTTP-POST 1043
SOAP 1044

Overloading WebMethods 1044
Caching Web Service Responses 1047
SOAP Headers 1048

Building a Web Service with SOAP Headers 1049
Consuming a Web Service Using SOAP Headers 1051
Requesting Web Services Using SOAP 1.2 1053

Consuming Web Services Asynchronously 1055
Summary 1058

Chapter 27: Configuration 1059

Configuration Overview 1059
Server Configuration File 1060
Application Configuration File 1061
How Configuration Is Applied 1061
Detecting Configuration File Changes 1062
Configuration File Format 1062

Common Configuration Settings 1063
Connecting Strings 1063
Configuring Session State 1064
Compilation Configuration 1068
Browser Capabilities 1070
Custom Errors 1072
Authentication 1073
Anonymous Identity 1075
Authorization 1076
Locking-Down Configuration Settings 1078
ASP.NET Page Configuration 1078
Include Files 1080
Configuring ASP.NET Runtime Settings 1081
Configuring ASP.NET Worker Process 1084
Storing Application-Specific Settings 1087
Programming Configuration Files 1087
Protecting Configuration Settings 1095
Editing Configuration Files 1095

Summary 1097

Contents

02_576100 ftoc.qxd 10/6/05 7:55 PM Page xxv

Chapter 28: Administration and Management 1099

The Web Site Administration Tool 1099
The Home Tab 1101
The Security Tab 1101
The Application Tab 1114
The Provider Tab 1118

The MMC ASP.NET Snap-In 1120
General 1123
Custom Errors 1124
Authorization 1125
Authentication 1126
Application 1128
State Management 1129
Locations 1131

Summary 1132

Chapter 29: Packaging and Deploying ASP.NET Applications 1133

Deployment Pieces 1133
Steps to Take before Deploying 1134
Methods of Deploying Web Applications 1135

Using XCopy 1135
Using the VS Copy Web Site Option 1138
Deploying a Precompiled Web Application 1142
Building an Installer Program 1144

Looking More Closely at Installer Options 1155
Working with the Deployment Project Properties 1155
The File System Editor 1160
The Registry Editor 1164
The File Types Editor 1165
The User Interface Editor 1166
The Custom Actions Editor 1168
The Launch Conditions Editor 1169

Summary 1170

Appendix A: Visual Basic 8.0 and C# 2.0 Language Enhancements 1171

Appendix B: ASP.NET Online Resources 1193

Index 1195

Contents

02_576100 ftoc.qxd 10/6/05 7:55 PM Page xxvi

Introduction

Simply put, ASP.NET 2.0 is an amazing release! When ASP.NET 1.0 was introduced in 2000, many consid-
ered it a revolutionary leap forward in the area of Web application development. We believe ASP.NET 2.0
is just as exciting and revolutionary. Although the foundation of ASP.NET was laid with the release of
ASP.NET 1.0, ASP.NET 2.0 builds on this foundation by focusing on the area of developer productivity.

ASP.NET 2.0 brings with it a staggering number of new technologies built into the ASP.NET framework.
After reading this book, you will see just how busy the ASP.NET team has been in the past few years.
The number of classes inside ASP.NET has more than doubled, and this release contains more than 50
new server controls!

This book covers these new built-in technologies. It not only introduces new topics, it also shows you
examples of these new technologies in action. So sit back, pull up that keyboard, and let’s have some fun!

What You Need for ASP.NET 2.0
You might find it best to install Visual Studio 2005 to work through the examples in this book; you can,
however, just use Microsoft’s Notepad and the command-line compilers that come with the .NET
Framework 2.0. To work through every example in this book, you need the following:

❑ Windows Server 2003, Windows 2000, or Windows XP

❑ Visual Studio 2005

❑ SQL Server 2000 or 2005

❑ Microsoft Access or SQL Server Express Edition

The nice thing is that you are not required to have Microsoft Internet Information Services (IIS) to work
with ASP.NET 2.0 because this release of ASP.NET includes a built-in Web server based on the previ-
ously released Microsoft Cassini technology. And if you don’t have SQL Server, don’t be alarmed. Many
examples that use this database can be altered to work with Microsoft Access.

Who Should Read This Book?
This book was written to introduce you to the new features and capabilities that ASP.NET 2.0 offers, as
well as to give you an explanation of the foundation that ASP.NET provides. We assume you have a gen-
eral understanding of Web technologies, such as previous versions of ASP.NET, Active Server Pages 2.0/
3.0, or JavaServer Pages. If you understand the basics of Web programming, you shouldn’t have much
trouble following along with this book’s content.

03_576100 flast.qxd 10/6/05 7:56 PM Page xxvii

If you are brand new to ASP.NET, be sure to check out Beginning ASP.NET 2.0 by Chris Hart, John
Kauffman, Dave Sussman, and Chris Ullman (published by Wiley; ISBN: 0-7645-8850-8) to help you
understand the basics.

In addition to working with Web technologies, we also assume that you understand basic programming
constructs, such as variables, For Each loops, and object-oriented programming.

You may also be wondering whether this book is for the Visual Basic developer or the C# developer.
We’re happy to say that it’s for both! When the code differs substantially, this book provides examples in
both VB and C#.

What This Book Covers
This book spends its time reviewing the big changes that have occurred in the 2.0 release of ASP.NET.
Each major new feature included in ASP.NET 2.0 is covered in detail. The following list tells you some-
thing about the content of each chapter.

❑ Chapter 1, “Hello ASP.NET 2.0.” This first chapter gives a good grounding in the new
features of ASP.NET 2.0 by taking a look at some of the major new features and capabili-
ties. It starts by providing you with a little bit of the history of ASP.NET and moves on to
some of the exciting new additions that this latest version of the technology offers.

❑ Chapter 2, “Visual Studio 2005.” This chapter introduces the next generation of the major
IDE for developing .NET applications: Visual Studio 2005. Previous releases of this IDE
included Visual Studio .NET 2003 and Visual Studio .NET 2002. This chapter focuses on
the Visual Studio 2005 release and how you can use it to build better ASP.NET applica-
tions more quickly.

❑ Chapter 3, “Application and Page Frameworks.” The third chapter covers the frame-
works of ASP.NET applications as well as the structure and frameworks provided for sin-
gle ASP.NET pages. This chapter shows you how to build ASP.NET applications using IIS
or the built-in Web server that now comes with Visual Studio 2005. This chapter also
shows you the new folders and files that have been added to ASP.NET. It discusses new
ways to compile code and shows you how to perform cross-page posting.

❑ Chapters 4, 5, 6, and 7. These four chapters are grouped here because they all deal with
server controls. This batch of chapters starts by examining the idea of the server control and
its pivotal role in ASP.NET development. In addition to looking at the server control frame-
work, these chapters delve into the plethora of server controls that are at your disposal for
ASP.NET development projects. Chapter 4, “Developing with ASP.NET Server Controls
and Client-Side Scripts,” looks at the basics of working with server controls. Chapter 5,
“ASP.NET Web Server Controls,” covers the controls that have been part of the ASP.NET
technology since its initial release. Chapter 6, “ASP.NET 2.0 Web Server Controls,” on the
other hand, looks at the new controls that have been added with the 2.0 release. Chapter 7,
“Validation Server Controls,” describes a special group of server controls: those for valida-
tion. You can use these controls to create beginning-to-advanced form validations.

❑ Chapter 8, “Master Pages.” Master pages are a great new addition to the ASP.NET 2.0
technology. They provide a means of creating templated pages that enable you to work

Introduction

03_576100 flast.qxd 10/6/05 7:56 PM Page xxviii

with the entire application, as opposed to single pages. This chapter examines the creation
of these templates and how to apply them to your content pages throughout an ASP.NET
application.

❑ Chapter 9, “Themes and Skins.” The Cascading Style Sheet files you are allowed to use in
ASP.NET 1.0/1.1 are simply not adequate in many regards, especially in the area of server
controls. When using these early versions, the developer can never be sure of the HTML
output these files might generate. This chapter takes a look at how to deal with the styles
that your applications require and shows you how to create a centrally managed look-
and-feel for all the pages of your application by using themes and the skin files that are
part of a theme.

❑ Chapters 10 and 11. One of the more important tasks of ASP.NET is presenting data, and
these two chapters show you how to do that. ASP.NET provides a number of controls to
which you can attach data and present it to the end user. Chapter 10, “Collections and
Lists,” shows you how to take data and attach it to various ASP.NET server controls.
Chapter 11, “Data Binding in ASP.NET 2.0,” looks at the underlying capabilities that
enable you to work with the data programmatically before issuing the data to a control.

❑ Chapter 12, “Data Management with ADO.NET.” ADO.NET incorporates some radical
changes in this release of ASP.NET. This chapter presents the new data model provided by
ASP.NET, which allows you to handle the retrieval, updating, and deleting of data quickly
and logically. This new data model enables you to use one or two lines of code to get at
data stored in everything from SQL Server to XML files.

❑ Chapter 13, “Working with XML.” Without a doubt, XML has become one of the leading
technologies used for data representation. For this reason, the .NET Framework and
ASP.NET 2.0 have many capabilities built into their frameworks that enable you to easily
extract, create, manipulate, and store XML. This chapter takes a close look at the XML
technologies built into ASP.NET and the underlying .NET Framework.

❑ Chapter 14, “Site Navigation.” It is quite apparent that many developers do not simply
develop single pages—they build applications. Therefore, they need mechanics that deal
with functionality throughout the entire application, not just the pages. One of the new
application capabilities provided by ASP.NET 2.0 is the site navigation system covered in
this chapter. The underlying navigation system enables you to define your application’s
navigation structure through an XML file, and it introduces a whole series of new naviga-
tion server controls that work with the data from these XML files.

❑ Chapter 15, “Personalization.” Developers are always looking for ways to store informa-
tion pertinent to the end user. After it is stored, this personalization data has to be per-
sisted for future visits or for grabbing other pages within the same application. The
ASP.NET team developed a way to store this information—the ASP.NET personalization
system. The great thing about this system is that you configure the entire behavior of the
system from the web.config file.

❑ Chapter 16, “Membership and Role Management.” This chapter covers the new mem-
bership and role management system developed to simplify adding authentication and
authorization to your ASP.NET applications. These two new systems are extensive; they
make some of the more complicated authentication and authorization implementations of
the past a distant memory. This chapter focuses on using the web.config file for control-
ling how these systems are applied, as well as on the new server controls that work with
the underlying systems.

Introduction

03_576100 flast.qxd 10/6/05 7:56 PM Page xxix

❑ Chapter 17, “Portal Frameworks and Web Parts.” This chapter explains Web Parts—a
new way of encapsulating pages into smaller and more manageable objects. The great
thing about Web Parts is that they can be made of a larger Portal Framework, which can
then enable end users to completely modify how the Web Parts are constructed on the
page—including their appearance and layout.

❑ Chapter 18, “Security.” Chapter 18 discusses security beyond the membership and role
management features provided by ASP.NET 2.0. This chapter provides an in-depth look at
the authentication and authorization mechanics inherent in the ASP.NET technology, as
well as HTTP access types and impersonations.

❑ Chapter 19, “State Management.” Because ASP.NET is a request-response–based technol-
ogy, state management and the performance of requests and responses take on significant
importance. This chapter introduces these two separate but important areas of ASP.NET
development.

❑ Chapter 20, “Caching.” Because of the request-response nature of ASP.NET, caching (stor-
ing previous generated results, images, and pages) on the server becomes rather impor-
tant to the performance of your ASP.NET applications. This chapter takes a look at some
of the advanced caching capabilities provided by ASP.NET, including the new SQL cache
invalidation feature introduced by ASP.NET 2.0.

❑ Chapter 21, “Debugging and Error Handling Techniques.” Being able to handle unantic-
ipated errors in your ASP.NET applications is vital for any application that you build. This
chapter tells you how to properly structure error handling within your applications. It
also shows you how to use various debugging techniques to find errors that your applica-
tions might contain.

❑ Chapter 22, “File I/O and Streams.” More often than not, you want your ASP.NET appli-
cations to work with items that are outside the base application. Examples include files
and streams. This chapter takes a close look at working with various file types and
streams that might come into your ASP.NET applications.

❑ Chapter 23, “User Controls, Server Controls, Modules, and HttpHandlers.” Not only can
you use the plethora of server controls that come with ASP.NET 2.0, but you can also uti-
lize the same framework these controls use and build your own. This chapter describes
building your own server controls and how to use them within your applications. The
chapter also delves into building your own HttpHandlers.

❑ Chapter 24, “Using Business Objects.” Invariably, you are going to have components
created with previous technologies that you don’t want to rebuild but that you do want
to integrate into new ASP.NET applications. If this is the case, the .NET Framework makes
it fairly simple and straightforward to incorporate your previous COM components
into your applications. Beyond showing you how to integrate your COM components into
your applications, this chapter also shows you how to build newer style .NET components
instead of turning to the previous COM component architecture.

❑ Chapter 25, “Mobile Development.” Many people forget that ASP.NET development is
not only about building applications for the browser; it is also a great technology for
mobile development. This chapter discusses using ASP.NET 2.0 for your mobile applica-
tion development projects and how ASP.NET can make this process quite simple.

Introduction

03_576100 flast.qxd 10/6/05 7:56 PM Page xxx

❑ Chapter 26, “Building and Consuming XML Web Services.” XML Web services have
monopolized all the hype for the past few years, and a major aspect of the Web services
model within .NET is part of ASP.NET. This chapter reveals the ease not only of building
XML Web services, but consuming them in an ASP.NET application. This chapter then
ventures further by describing how to build XML Web services that utilize SOAP headers
and how to consume this particular type of service.

❑ Chapter 27, “Configuration.” Configuration in ASP.NET can be a big topic because the
ASP.NET team is not into building black boxes; instead, it is building the underlying capa-
bilities of ASP.NET in a fashion that can easily be expanded on later. This chapter teaches
you to modify the capabilities and behaviors of ASP.NET using the various configuration
files at your disposal.

❑ Chapter 28, “Administration and Management.” Besides making it easier for the devel-
oper to be more productive in building ASP.NET applications, the ASP.NET team also put
considerable effort into making it easier to manage applications. In the past, using
ASP.NET 1.0/1.1, you managed ASP.NET applications by changing values in an XML con-
figuration file. This chapter provides an overview of the new GUI tools that come with
this latest release that enable you to manage your Web applications easily and effectively.

❑ Chapter 29, “Packaging and Deploying ASP.NET Applications.” So you’ve built an
ASP.NET application—now what? This chapter takes the building process one step fur-
ther and shows you how to package your ASP.NET applications for easy deployment.
Many options are available for working with the installers and compilation model to
change what you are actually giving your customers.

❑ Appendix A, “Visual Basic 8.0 and C# 2.0 Language Enhancements.” In addition to
major changes to ASP.NET, considerable change has occurred in Visual Basic 8.0 and C#
2.0. The changes to these two languages, the primary languages used for ASP.NET devel-
opment, are discussed in this appendix.

❑ Appendix B, “ASP.NET Resources.” This small appendix points you to some of the more
valuable online resources for enhancing your understanding of ASP.NET.

Conventions
This book uses a number of different styles of text and layout to help differentiate among various types
of information. Here are examples of the styles used and an explanation of what they mean:

❑ New words being defined are shown in italics.

Introduction

03_576100 flast.qxd 10/6/05 7:56 PM Page xxxi

❑ Keys that you press on the keyboard, such as Ctrl and Enter, are shown in initial caps and
spelled as they appear on the keyboard.

❑ File and folder names, file extensions, URLs, and code that appears in regular paragraph
text are shown in a monospaced typeface.

When we show a block of code that you can type as a program and run, it’s shown on separate lines, like
this:

public static void Main()
{

AFunc(1,2,”abc”);
}

or like this:

public static void Main()
{

AFunc(1,2,”abc”);
}

Sometimes you see code in a mixture of styles, like this:

// If we haven’t reached the end, return true, otherwise
// set the position to invalid, and return false.
pos++;
if (pos < 4)

return true;
else {

pos = -1;
return false;

}
When mixed code is shown like this, the code with no background represents code that has been shown
previously and that you don’t need to examine further. Code with the gray background is what you
should focus on in the current example.

We demonstrate the syntactical usage of methods, properties, and so on using the following format:

SqlDependency=”database:table”

Here, the italicized parts indicate placeholder text: object references, variables, or parameter values that
you need to insert.

Most of the code examples throughout the book are presented as numbered listings that have descriptive
titles, like this:

Listing 1-3: Targeting WML devices in your ASP.NET pages

Each listing is numbered (for example: 1-3) where the first number represents the chapter number and
the number following the hyphen represents a sequential number that indicates where that listing falls
within the chapter. Downloadable code from the Wrox Web site (www.wrox.com) also uses this number-
ing system so that you can easily locate the examples you are looking for.

Introduction

03_576100 flast.qxd 10/6/05 7:56 PM Page xxxii

All code is shown in both VB and C#, when warranted. The exception is for code in which the only dif-
ference is, for example, the value given to the Language attribute in the Page directive. In such situa-
tions, we don’t repeat the code for the C# version; the code is shown only once, as in the following
example:

<%@ Page Language=”VB”%>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>

<title>DataSetDataSource</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:DropDownList ID=”Dropdownlist1” Runat=”server” DataTextField=”name”
DataSourceID=”XmlDataSource1”>

</asp:DropDownList>

<asp:XmlDataSource ID=”XmlDataSource1” Runat=”server”
DataFile=”~/Painters.xml”>

</asp:DataSetDataSource>
</form>

</body>
</html>

Source Code
As you work through the examples in this book, you may choose either to type all the code manually or
to use the source code files that accompany the book. All the source code used in this book is available
for download at www.wrox.com. When you get to the site, simply locate the book’s title (either by using
the Search box or one of the topic lists) and click the Download Code link. You can then choose to down-
load all the code from the book in one large zip file or download just the code you need for a particular
chapter.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
0-7645-7610-0 (changing to 978-0-7645-7610-2 as the new industry-wide 13-digit ISBN numbering
system is phased in by January 2007).

After you download the code, just decompress it with your favorite compression tool. Alternatively, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books. Remember, you can easily find the code
you are looking for by referencing the listing number of the code example from the book, such as
“Listing 1-3.” We used these listing numbers when naming the downloadable code files.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, such as a spelling mistake or faulty

Introduction

03_576100 flast.qxd 10/6/05 7:56 PM Page xxxiii

piece of code, we would be very grateful if you’d tell us about it. By sending in errata, you may spare
another reader hours of frustration; at the same time, you are helping us provide even higher-quality
information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or one
of the title lists. Then, on the book details page, click the Book Errata link. On this page, you can view all
errata that have been submitted for this book and posted by Wrox editors. A complete book list including
links to each book’s errata is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error already on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll check
the information and, if appropriate, post a message to the book’s errata page and fix the problem in sub-
sequent editions of the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based sys-
tem for you to post messages relating to Wrox books and technologies and to interact with other readers
and technology users. The forums offer a subscription feature that enables you to receive e-mail on top-
ics of interest when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are represented in these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as
you read this book but also as you develop your own applications. To join the forums, just follow these
steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Supply the information required to join, as well as any optional information you want to pro-
vide, and click Submit.

You will receive an e-mail with information describing how to verify your account and complete the
joining process.

You can read messages in the forums without joining P2P, but you must join in order to post messages.

After you join, you can post new messages and respond to other users’ posts. You can read messages at
any time on the Web. If you would like to have new messages from a particular forum e-mailed to you,
click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how the forum software works, as well as answers to many common ques-
tions specific to P2P and Wrox books, be sure to read the P2P FAQs. Simply click the FAQ link on any
P2P page.

Introduction

03_576100 flast.qxd 10/6/05 7:56 PM Page xxxiv

xxxv

Professional
ASP.NET 2.0

03_576100 flast.qxd 10/6/05 7:56 PM Page xxxv

03_576100 flast.qxd 10/6/05 7:56 PM Page xxxvi

Hello ASP.NET 2.0!

The evolution of ASP.NET continues! The progression from Active Server Pages 3.0 to ASP.NET 1.0
was revolutionary, to say the least; and we are here to tell you that the evolution from ASP.NET
1.0/1.1 to ASP.NET 2.0 is just as exciting and dramatic.

The introduction of ASP.NET 1.0/1.1 changed the Web programming model; but ASP.NET 2.0 is
just as revolutionary in the way it increases productivity. The primary goal of ASP.NET 2.0 is to
enable you to build powerful, secure, and dynamic applications using the least possible amount of
code. Although this book covers the new features provided by ASP.NET 2.0, it also covers most of
what the ASP.NET technology offers.

A Little Bit of History
Before organizations were even thinking about developing applications for the Internet, much of
the application development focused on thick desktop applications. These thick-client applications
were used for everything from home computing and gaming to office productivity and more. No
end was in sight for the popularity of this application model.

During that time, Microsoft developed its thick-client applications using mainly Visual Basic (VB).
Visual Basic was not only a programming language; it was tied to an IDE that allowed for easy
thick-client application development. In the Visual Basic model, developers could drop controls
onto a form, set properties for these controls, and provide code behind them to manipulate the
events of the control. For example, when an end user clicked a button on one of the Visual Basic
forms, the code behind the form handled the event.

Then, in the mid-1990s, the Internet arrived on the scene. Microsoft was unable to move the Visual
Basic model to the development of Internet-based applications. The Internet definitely had a lot of
power, and right away the problems facing the thick-client application model were revealed.
Internet-based applications created a single instance of the application that everyone could access.
Having one instance of an application meant that when the application was upgraded or patched,

04_576100 ch01.qxd 10/6/05 9:10 PM Page 1

the changes made to this single instance were immediately available to each and every user visiting the
application through a browser.

To participate in the Web application world, Microsoft developed Active Server Pages (ASP). ASP was a
quick and easy way to develop Web pages. ASP pages consisted of a single page that contained a mix of
markup and languages. The power of ASP was that you could include VBScript or JScript code instruc-
tions in the page executed on the Web server before the page was sent to the end user’s Web browser.
This was an easy way to create dynamic Web pages customized based on parameters dictated by the
developer.

ASP used script between brackets and percentage signs —<% %>— to control server-side behaviors. A
developer could then build an ASP page by starting with a set of static HTML. Any dynamic element
needed by the page was defined using a scripting language (such as VBScript or JScript). When a user
requested the page from the server by using a browser, the asp.dll (an ISAPI application that provided
a bridge between the scripting language and the Web server) would take hold of the page and define all
the dynamic aspects of the page on-the-fly based on the programming logic specified in the script. After
all the dynamic aspects of the page were defined, the result was an HTML page output to the browser of
the requesting client.

As the Web application model developed, more and more languages mixed in with the static HTML to
help manipulate the behavior and look of the output page. Over time, such a large number of languages,
scripts, and plain text could be placed in a typical ASP page that developers began to refer to pages that
utilized these features as spaghetti code. For example, it was quite possible to have a page that used HTML,
VBScript, JavaScript, Cascading Style Sheets, T-SQL, and more. In certain instances, it became a manage-
ability nightmare.

ASP evolved and new versions were released. ASP 2.0 and 3.0 were popular because the technology
made it relatively straightforward and easy to create Web pages. Their popularity was enhanced because
they appeared in the late ’90s, just as the dotcom era was born. During this time, a mountain of new Web
pages and portals were developed, and ASP was one of the leading technologies individuals and compa-
nies used to build them. Even today, you can still find a lot of .asp pages on the Internet — including
some of Microsoft’s own Web pages.

But even at the time of the final release of Active Server Pages in late 1998, Microsoft employees Marc
Anders and Scott Guthrie had other ideas. Their ideas generated what they called XSP (an abbreviation
with no meaning) — a new way of creating Web applications in an object-oriented manner instead of the
procedural manner of ASP 3.0. They showed their idea to many different groups within Microsoft, and
were well received. In the summer of 2000, the beta of what was then called ASP+ was released at
Microsoft’s Professional Developers Conference. The attendees eagerly started working with it. When
the technology became available (with the final release of the .NET Framework 1.0), it was renamed
ASP.NET — receiving the .NET moniker that most of Microsoft’s new products were receiving at that
time.

Before the introduction of .NET, the model that classic ASP provided and what developed in Visual Basic
were so different that few VB developers also developed Web applications — and few Web application
developers also developed the thick-client applications of the VB world. There was a great divide.
ASP.NET bridged this gap. ASP.NET brought a Visual Basic–style eventing model to Web application
development, providing much-needed state management techniques over stateless HTTP. Its model is
much like the earlier Visual Basic model in that a developer can drag and drop a control onto a design

2

Chapter 1

04_576100 ch01.qxd 10/6/05 9:10 PM Page 2

surface or form, manipulate the control’s properties, and even work with the code behind these controls
to act on certain events that occur during their lifecycles. What ASP.NET created is really the best of both
models, as you will see throughout this book.

I know you’ll enjoy working with this latest release of ASP.NET — 2.0. Nothing is better than getting
your hands on a new technology and seeing what’s possible. The following section discusses the goals of
ASP.NET 2.0 so you can find out what to expect from this new offering!

The Goals of ASP.NET 2.0
ASP.NET 2.0 is a major release of the product and is an integral part of the .NET Framework 2.0. This
release of the Framework was code-named Whidbey internally at Microsoft. You might hear others refer-
ring to this release of ASP.NET as ASP.NET Whidbey. ASP.NET 2.0 heralds a new wave of development
that should eliminate any of the remaining barriers to adopting this new way of coding Web applications.

When the ASP.NET team started working on ASP.NET 2.0, it had specific goals to achieve. These goals
focused around developer productivity, administration and management, as well as performance and
scalability. These goals are achieved with this milestone product release. The next sections look at each of
these goals.

Developer Productivity
Much of the focus of ASP.NET 2.0 is on productivity. Huge productivity gains were made with the
release of ASP.NET 1.x — could it be possible to expand further on those gains?

One goal the development team had for ASP.NET 2.0 was to eliminate much of the tedious coding that
ASP.NET originally required and to make common ASP.NET tasks easier. The ASP.NET team developing
ASP.NET 2.0 had the goal of reducing by two-thirds the number of lines of code required for an ASP.NET
application! It succeeded in this release; you will be amazed at how quickly you can create your applica-
tions in ASP.NET 2.0.

The new developer productivity capabilities are presented throughout this book. First, take a look at the
older ASP.NET technology. Listing 1-1 provides an example of using ASP.NET 1.0 to build a table in a
Web page that includes the capability to perform simple paging of the data provided.

Listing 1-1: Showing data in a DataGrid server control with paging enabled (VB only)

<%@ Page Language=”VB” AutoEventWireup=”True” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>

<script runat=”server”>

Private Sub Page_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs)

If Not Page.IsPostBack Then
BindData()

End If

(continued)

3

Hello ASP.NET 2.0!

04_576100 ch01.qxd 10/6/05 9:10 PM Page 3

Listing 1-1: (continued)

End Sub

Private Sub BindData()
Dim conn As SqlConnection = New SqlConnection(“server=’localhost’;

trusted_connection=true; Database=’Northwind’”)
Dim cmd As SqlCommand = New SqlCommand(“Select * From Customers”, conn)
conn.Open()

Dim da As SqlDataAdapter = New SqlDataAdapter(cmd)
Dim ds As New DataSet

da.Fill(ds, “Customers”)

DataGrid1.DataSource = ds
DataGrid1.DataBind()

End Sub

Private Sub DataGrid1_PageIndexChanged(ByVal source As Object, _
ByVal e As System.Web.UI.WebControls.DataGridPageChangedEventArgs)

DataGrid1.CurrentPageIndex = e.NewPageIndex
BindData()

End Sub

</script>
<html>
<head>
</head>
<body>

<form runat=”server”>
<asp:DataGrid id=”DataGrid1” runat=”server” AllowPaging=”True”
OnPageIndexChanged=”DataGrid1_PageIndexChanged”></asp:DataGrid>

</form>
</body>
</html>

Although quite a bit of code is used here, this is a dramatic improvement over the amount of code
required to accomplish this task using classic Active Server Pages 3.0. We won’t go into the details of this
older code; we just want to demonstrate that in order to add any additional common functionality (such
as paging) for the data shown in a table, the developer had to create custom code.

This is one area where the new developer productivity gains are most evident. ASP.NET 2.0 now pro-
vides a new control called the GridView server control. This control is much like the DataGrid server
control that you may already know and love, but the GridView server control (besides offering many
other new features) contains the built-in capability to apply paging, sorting, and editing of data with
relatively little work on your part. Listing 1-2 shows you an example of the GridView server control.
This example builds a table of data from the Customers table in the Northwind database that includes
paging.

4

Chapter 1

04_576100 ch01.qxd 10/6/05 9:10 PM Page 4

Listing 1-2: Viewing a paged dataset with the new GridView server control

<%@ Page Language=”VB” %>

<script runat=”server”>

</script>

<html xmlns=http://www.w3.org/1999/xhtml>
<head runat=”server”>

<title>GridView Demo</title>
</head>
<body>

<form runat=”server”>
<asp:GridView ID=”GridView1” Runat=”server” AllowPaging=”True”
DataSourceId=”Sqldatasource1” />

<asp:SqlDataSource ID=”SqlDataSource1” Runat=”server”
SelectCommand=”Select * From Customers”
ProviderName=”System.Data.OleDb”
ConnectionString=”Provider=SQLOLEDB;Server=localhost;uid=sa;
pwd=password;database=Northwind” />

</form>
</body>
</html>

That’s it! You can apply paging by using a couple of new server controls. You turn on this capability
using a server control attribute, the AllowPaging attribute of the GridView control:

<asp:GridView ID=”GridView1” Runat=”server” AllowPaging=”True”
DataSourceId=”SqlDataSource1” />

The other interesting event occurs in the code section of the document:

<script runat=”server”>

</script>

These two lines of code aren’t actually needed to run the file. They are included here to make a point —
you don’t need to write any server-side code to make this all work! You have to include only some server con-
trols: one control to get the data and one control to display the data. Then the controls are wired
together. Running this page produces the results shown in Figure 1-1.

This is just one of thousands of possible examples, so at this point you likely can’t grasp how much more
productive you can be with ASP.NET 2.0. As you work through the book, however, you will see plenty
of examples that demonstrate this new level of productivity.

5

Hello ASP.NET 2.0!

04_576100 ch01.qxd 10/6/05 9:10 PM Page 5

Figure 1-1

Administration and Management
The initial release of ASP.NET focused on the developer, and little thought was given to the people who
had to administer and manage all the ASP.NET applications that were built and deployed. Instead of
working with consoles and wizards as they did in the past, administrators and managers of these new
applications now had to work with unfamiliar XML configuration files such as machine.config and
web.config.

To remedy this situation, ASP.NET 2.0 now includes a Microsoft Management Console (MMC) snap-in
that enables Web application administrators to edit configuration settings easily on the fly. Figure 1-2
shows the ASP.NET Configuration Settings dialog open on one of the available tabs.

This dialog allows system administrators to edit the contents of the machine.config and the web.
config files directly from the dialog instead of having them examine the contents of an XML file.

In addition to this dialog, Web or system administrators have a web-based way to administer their
ASP.NET 2.0 applications — using the new Web Administration Tool shown in Figure 1-3.

6

Chapter 1

04_576100 ch01.qxd 10/6/05 9:10 PM Page 6

Figure 1-2

Figure 1-3

7

Hello ASP.NET 2.0!

04_576100 ch01.qxd 10/6/05 9:10 PM Page 7

You might be asking yourself how you can access these new tools programmatically. Well, that’s the
exciting part. These tools build off new APIs that are now part of the .NET Framework 2.0 and that are
open to developers. These new APIs give you programmatic access to many of the configurations of
your Web applications such as reading and writing to .config files. They enable you to create similar
tools or even deployment and management scripts.

In addition to these new capabilities, you can now easily encrypt sections of your configuration files. In
the past, many programmers stored vital details — such as usernames, passwords, or even their SQL
connection strings — directly in the web.config file. With the capability to easily encrypt sections of
these files, you can now store these items in a more secure manner. As an example, suppose you have a
<connectionStrings> section in your web.config file, like this:

<connectionStrings>
<add name=”Northwind”
connectionString=”Server=localhost;Integrated Security=True;Database=Northwind”
providerName=”System.Data.SqlClient” />

</connectionStrings>

You could then use the new Configuration class to encrypt this portion of the web.config file. Doing
this causes the <connectionStrings> section of the web.config file to be changed to something simi-
lar to the following:

<protectedData>
<protectedDataSections>

<add name=”connectionStrings”
provider=”DataProtectionConfigurationProvider” />

</protectedDataSections>
</protectedData>
<connectionStrings>

<EncryptedData>
<CipherData>

<CipherValue>
AQAAANCMnd8BFdERjHoAwE/Cl+sBAAAzIdfS2PzIdfS
8JLaXDcYEOCilNp5tSAvgQAAAACAAAAAAADZgAAqAAA
ABAAAACm8OcYwzIdfS2PZsFtKLfwAAAAAASAAACgAAA
AEAAAAHkRqsmwUgN8zAWQ9GZ/QYmAAQAAm91T+uDJXA
czcH+qalaaBpw0QBQggDfH3qpF+nXhaQuqLJio/1Cp2
Sx7a7N3K9i+gnMTKO1O1fxIMwSBKva11qX+iFdurku7
Y5KhdAQAAANCMnd8BFdERjHoAwE/Cl+sBAAAAx8JLaX
DcYEOCilNp5tSAvgQAAAACAAAAAAADZgAAqAAAABAAA
ACm8OcYwzIdfS2PZsFtKLfwAAAAAASAAACgAAAAEAAA
AHkRqsmwUgN8zAWQ9GZ/QYmAAQAAm91T+uDJXAczcH+
qalaaBpw0QBQggDfH3qpF+nXhaQuqLJio/1Cp2Sx7a7
N3K9i+gnMTKO1O1fxIMwSBKva11qX+iFdurku7Y5Khd
AQAAANCMnd8BFdERjHoAwE/Cl+sBAAAAx8JLaXDcYEO
smwUgN8zAWQ9GZ/QYmAAQAAm91T+uDJXAczcH+qalaa
Bpw0QBQggDfH3qpF+nXhaQuqLJio/1Cp2Sx7a7N3K9i
+gnMTKO1O1fxIMwSBKva11qX+iFdurku7Y5Khd

</CipherValue>
</CipherData>

</EncryptedData>
</connectionStrings>

8

Chapter 1

04_576100 ch01.qxd 10/6/05 9:10 PM Page 8

Now if some malicious user illegally gets into your machine and gets his hands on your application’s
web.config file, you could prevent him from getting much of value — such as the connection string of
your database.

Performance and Scalability
One of the goals for ASP.NET 2.0 set by the Microsoft team was to provide the world’s fastest Web appli-
cation server. This book also addresses a number of performance enhancements available in ASP.NET 2.0.

One of the most exciting performance enhancements is the new caching capability aimed at exploiting
Microsoft’s SQL Server. ASP.NET 2.0 now includes a feature called SQL cache invalidation. Before
ASP.NET 2.0, it was possible to cache the results that came from SQL Server and to update the cache
based on a time interval — for example, every 15 seconds or so. This meant that the end user might see
stale data if the result set changed sometime during that 15-second period.

In some cases, this time interval result set is unacceptable. In an ideal situation, the result set stored
in the cache is destroyed if any underlying change occurs in the source from which the result set is
retrieved — in this case, SQL Server. With ASP.NET 2.0, you can make this happen with the use of SQL
cache invalidation. This means that when the result set from SQL Server changes, the output cache is
triggered to change, and the end user always sees the latest result set. The data presented is never stale.

Another big area of change in ASP.NET is in the area of performance and scalability. ASP.NET 2.0 now
provides 64-bit support. This means that you can now run your ASP.NET applications on 64-bit Intel or
AMD processors.

Because ASP.NET 2.0 is fully backward compatible with ASP.NET 1.0 and 1.1, you can now take any for-
mer ASP.NET application, recompile the application on the .NET Framework 2.0, and run it on a 64-bit
processor.

Additional New Features of ASP.NET 2.0
You just learned some of the main goals of the ASP.NET team that built ASP.NET 2.0. To achieve these
goals, the team built a mountain of new features into ASP.NET. A few of them are described in the fol-
lowing sections.

New Developer Infrastructures
An exciting advancement in ASP.NET 2.0 is that new infrastructures are in place for you to use in your
applications. The ASP.NET team selected some of the most common programming operations performed
with ASP.NET 1.0 to be built directly into ASP.NET. This saves you considerable time and coding.

Membership and Role Management
In earlier versions, if you were developing a portal that required users to log in to the application to gain
privileged access, invariably you had to create it yourself. It can be tricky to create applications with
areas that are accessible only to select individuals.

9

Hello ASP.NET 2.0!

04_576100 ch01.qxd 10/6/05 9:10 PM Page 9

With ASP.NET 2.0, this capability is now built in. You can now validate users as shown in Listing 1-3.

Listing 1-3: Validating a user in code

VB
If (Membership.ValidateUser (Username.Text, Password.Text)) Then

‘ Allow access code here
End If

C#
if (Membership.ValidateUser (Username.Text, Password.Text)) {

// Allow access code here
}

A new series of APIs, controls, and providers in ASP.NET 2.0 enable you to control an application’s user
membership and role management. Using these APIs, you can easily manage users and their complex
roles — creating, deleting, and editing them. You get all this capability by using the APIs or a built-in
Web tool called the Web Site Administration Tool.

As far as storing users and their roles, ASP.NET 2.0 uses an .mdb file (the file type for the new SQL Server
Express Edition, not to be confused with Microsoft Access) for storing all users and roles. You are in no
way limited to just this data store, however. You can expand everything offered to you by ASP.NET and
build your own providers using whatever you fancy as a data store. For example, if you want to build
your user store in LDAP or within an Oracle database, you can do so quite easily.

Personalization
One advanced feature that portals love to offer their membership base is the capability to personalize
their offerings so that end users can make the site look and function however they want. The capability
to personalize an application and store the personalization settings is now completely built into the
ASP.NET framework.

Because personalization usually revolves around a user and possibly a role that this user participates in,
the personalization architecture can be closely tied to the membership and role infrastructures. You have
a couple of options for storing the created personalization settings. The capability to store these settings
in either Microsoft Access or in SQL Server is built into ASP.NET 2.0. As with the capabilities of the
membership and role APIs, you can use the flexible provider model, and then either change how the
built-in provider uses the available data store or build your own custom data provider to work with a
completely new data store. The personalization API also supports a union of data stores, meaning that
you can use more than one data store if you want.

Because it is so easy to create a site for customization using these new APIs, this feature is quite a value-
add for any application you build.

The ASP.NET Portal Framework
During the days of ASP.NET 1.0, developers could go to the ASP.NET team’s site (found at http://
www.asp.net) and download some Web application demos called IBuySpy., These demos were known
as Developer Solution Kits and are used as the basis for many of the Web sites on the Internet today.
Some were even extended into Open Source frameworks such as DotNetNuke.

10

Chapter 1

04_576100 ch01.qxd 10/6/05 9:10 PM Page 10

The nice thing about IBuySpy was that you could use the code it provided as a basis to build either a
Web store or a portal. You simply took the base code as a starting point and extended it. For example,
you could change the look and feel of the presentation part of the code or introduce advanced function-
ality into its modular architecture. Developer Solution Kits were quite popular because they made per-
forming these types of operations so easy. Figure 1-4 shows the INETA (International .NET Association)
Web site, which builds on the IBuySpy portal framework.

Because of the popularity of frameworks such as IBuySpy, ASP.NET 2.0 offers built-in capability for
using Web Parts to easily build portals. The possibilities for what you can build using the new Portal
Framework is astounding. The power of building using Web Parts is that it easily enables end users to
completely customize the portal for their own preferences. Figure 1-5 shows an example application
built using Web Parts.

Figure 1-4

11

Hello ASP.NET 2.0!

04_576100 ch01.qxd 10/6/05 9:10 PM Page 11

Figure 1-5

Site Navigation
The ASP.NET team members realize that end users want to navigate through applications with ease. The
mechanics to make this work in a logical manner is sometimes hard to code. The team solved the prob-
lem in ASP.NET 2.0 with a series of navigation-based server controls.

First, you can build a site map for your application in an XML file that specific controls can inherently
work from. Listing 1-4 shows a sample site map file.

Listing 1-4: An example of a site map file

<?xml version=”1.0” encoding=”utf-8” ?>

<siteMap xmlns=”http://schemas.microsoft.com/AspNet/SiteMap-File-1.0”>
<siteMapNode title=”Home” description=”Home Page” url=”default.aspx”>

<siteMapNode title=”News” description=”The Latest News” url=”News.aspx”>
<siteMapNode title=”U.S.” description=”U.S. News”
url=”News.aspx?cat=us” />

<siteMapNode title=”World” description=”World News”
url=”News.aspx?cat=world” />

12

Chapter 1

04_576100 ch01.qxd 10/6/05 9:10 PM Page 12

<siteMapNode title=”Technology” description=”Technology News”
url=”News.aspx?cat=tech” />

<siteMapNode title=”Sports” description=”Sports News”
url=”News.aspx?cat=sport” />

</siteMapNode>
<siteMapNode title=”Finance” description=”The Latest Financial Information”

url=”Finance.aspx”>
<siteMapNode title=”Quotes” description=”Get the Latest Quotes”
url=”Quotes.aspx” />

<siteMapNode title=”Markets” description=”The Latest Market Information”
url=”Markets.aspx”>

<siteMapNode title=”U.S. Market Report”
description=”Looking at the U.S. Market” url=”MarketsUS.aspx” />

<siteMapNode title=”NYSE”
description=”The New York Stock Exchange” url=”NYSE.aspx” />

</siteMapNode>
<siteMapNode title=”Funds” description=”Mutual Funds”
url=”Funds.aspx” />

</siteMapNode>
<siteMapNode title=”Weather” description=”The Latest Weather”
url=”Weather.aspx” />

</siteMapNode>
</siteMap>

After you have a site map in place, you can use this file as the data source behind a couple of new site
navigation server controls, such as the TreeView and the SiteMapPath server controls. The TreeView
server control enables you to place an expandable site navigation system in your application. Figure 1-6
shows you an example of one of the many looks you can give the TreeView server control.

Figure 1-6

The SiteMapPath is a control that provides the capability to place what some call navigation bread-
crumbs in your application so that the end user can see the path that he has taken in the application and
can easily navigate to higher levels in the tree. Figure 1-7 shows you an example of the SiteMapPath
server control at work.

13

Hello ASP.NET 2.0!

04_576100 ch01.qxd 10/6/05 9:10 PM Page 13

Figure 1-7

These new site navigation capabilities provide a great way to get programmatic access to the site layout
and even to take into account things like end-user roles to determine which parts of the site to show.

New Compilation System
In ASP.NET 2.0, the code is constructed and compiled in a new way. Compilation in ASP.NET 1.0 was
always a tricky scenario. With ASP.NET 1.0, you could build an application’s code-behind files using
ASP.NET and Visual Studio, deploy it, and then watch as the .aspx files were compiled page by page as
each was requested. If you made any changes to the code-behind file in ASP.NET 1.0, it was not reflected
in your application until the entire application was rebuilt. That meant that the same page-by-page
request had to be done again before the entire application was recompiled.

Everything about how ASP.NET 1.0 worked with classes and compilation changed with the release of
ASP.NET 2.0. The mechanics of the new compilation system actually begin with how a page is struc-
tured in ASP.NET 2.0. In ASP.NET 1.0, you either constructed your pages using the code-behind model
or by placing all the server code inline between <script> tags on your .aspx page. Most pages were
constructed using the code-behind model because this was the default when using Visual Studio .NET
2002 or 2003. It was quite difficult to create your page using the inline style in these IDEs. If you did, you
were deprived of the use of IntelliSense, which can be quite the lifesaver when working with the tremen-
dously large collection of classes that the .NET Framework offers.

ASP.NET 2.0 offers a new code-behind model because the .NET Framework 2.0 offers the capability to
work with partial classes (also called partial types). Upon compilation, the separate files are combined
into a single offering. This gives you much cleaner code-behind pages. The code that was part of the Web
Form Designer Generated section of your classes is separated from the code-behind classes that you
create yourself. Contrast this with the ASP.NET 1.0 .aspx file’s need to derive from its own code-behind
file to represent a single logical page.

ASP.NET 2.0 applications can include an \App_Code directory where you place your class’s source. Any
class placed here is dynamically compiled and reflected in the application. You do not use a separate
build process when you make changes as you did with ASP.NET 1.0. This is a just save and hit deploy-
ment model like the one in classic ASP 3.0. Visual Studio Web Developer also automatically provides
IntelliSense for any objects that are placed in the \App_Code directory, whether you are working with
the code-behind model or are coding inline.

ASP.NET 2.0 also provides you with tools that enable you to precompile your ASP.NET applications,
both .aspx pages and code behind so that no page within your application has latency when it is
retrieved for the first time. It is also a great way to figure out if you have made any errors in the pages
without invoking every page yourself.

Precompiling your ASP.NET 2.0 applications is as simple as calling the precompile.axd imaginary file
in the application root of your application after it has been deployed. This one call causes your entire
application to be precompiled. You receive an error notification if any errors are found anywhere within
your application. It is also possible to precompile your application and deliver only the created assembly

14

Chapter 1

04_576100 ch01.qxd 10/6/05 9:10 PM Page 14

to the deployment server, thereby protecting your code from snooping, change, and tampering after
deployment. You see examples of both of these scenarios later in this book.

Additions to the Page Framework
The ASP.NET page framework has some dramatic new additions that you can include in your applica-
tions. One of the most striking ones is the capability to build ASP.NET pages based upon visual inheri-
tance. This was possible in the Windows Forms world, but it was harder to achieve with ASP.NET. You
also gain the capability to easily apply a consistent look and feel to the pages of your application by
using themes. Many of the difficulties in working with ADO.NET in the past have now been removed
with the addition of a new series of data source controls that take care of accessing and retrieving data
from a large collection of data stores. Although these are not the only new controls, the many new server
controls create a larger ASP.NET page framework.

Master Pages
With the introduction of master pages in ASP.NET 2.0, you can now use visual inheritance within your
ASP.NET applications. Because many ASP.NET applications have a similar structure throughout their
pages, it is logical to build a page template once and use that same template throughout the application.

In ASP.NET 2.0, you do this by creating a .master page, as shown in Figure 1-8.

Figure 1-8

15

Hello ASP.NET 2.0!

04_576100 ch01.qxd 10/6/05 9:10 PM Page 15

An example master page might include a header, footer, and any other elements that all the pages can
share. Besides these core elements, which you might want on every page that inherits and uses this tem-
plate, you can place <asp:ContentPlaceHolder> server controls within the master page itself for the
subpages (or content pages) to use in order to change specific regions of the master page template. The
editing of the subpage is shown in Figure 1-9.

When an end user invokes one of the subpages, he is actually looking at a single page compiled from
both the subpage and the master page that the particular subpage inherited from. This also means that
the server and client code from both pages are enabled on the new single page.

The nice thing about master pages is that you now have a single place to make any changes that affect
the entire site. This eliminates making changes to each and every page within an application.

Themes
The introduction of themes in ASP.NET 2.0 has made it quite simple to provide a consistent look and feel
across your entire site. Themes are simple text files where you define the appearance of server controls
that can be applied across the site, to a single page, or to a specific server control. You can also easily
incorporate graphics and Cascading Style Sheets, in addition to server control definitions.

Figure 1-9

16

Chapter 1

04_576100 ch01.qxd 10/6/05 9:10 PM Page 16

Themes are stored in the /App_Theme directory within the application root for use within that particular
application. One cool capability of themes is that you can dynamically apply them based on settings that
use the new personalization service provided by ASP.NET 2.0. Each unique user of your portal or appli-
cation can have her own personalized look and feel that she has chosen from your offerings.

New Objects for Accessing Data
One of the more code-intensive tasks in ASP.NET 1.0 was the retrieval of data. In many cases, this meant
working with a number of objects. If you have been working with ASP.NET for a while, you know that it
was an involved process to display data from a Microsoft SQL Server table within a DataGrid server
control. For instance, you first had to create a number of new objects. They included a SqlConnection
object followed by a SqlCommand object. When those objects were in place, you then created a
SqlDataReader to populate your DataGrid by binding the result to the DataGrid. In the end, a table
appeared containing the contents of the data you were retrieving (such as the Customers table from the
Northwind database).

ASP.NET 2.0 eliminates this intensive procedure with the introduction of a new set of objects that work
specifically with data access and retrieval. These new data controls are so easy to use that you access and
retrieve data to populate your ASP.NET server controls without writing any code. You saw an example
of this in Listing 1-2, where an <asp:SqlDataSource> server control retrieved rows of data from the
Customers table in the Northwind database from SQL Server. This SqlDataSource server control was
then bound to the new GridView server control via the use of simple attributes within the GridView con-
trol itself. It really couldn’t be any easier!

The great news about this new functionality is that it is not limited to just Microsoft’s SQL Server. In
fact, several data source server controls are at your disposal. You also have the capability to create your
own. In addition to the SqlDataSource server control, ASP.NET 2.0 introduces the AccessDataSource,
XmlDataSource, ObjectDataSource, and SiteMapDataSource server controls. You use all these new data
controls later in this book.

New Server Controls
So far, you have seen a number of new server controls that you can use when building your ASP.NET 2.0
pages. For example, the preceding section talked about all the new data source server controls that you
can use to access different kinds of data stores. You also saw the use of the new GridView server control,
which is an enhanced version of the previous DataGrid control that you used in ASP.NET 1.0.

Besides the controls presented thus far in this chapter, ASP.NET 2.0 provides more than 50 additional
new server controls! In fact, so many new server controls have been introduced that the next IDE for
building ASP.NET applications, Visual Studio 2005, had to reorganize the Toolbox where all the server
controls are stored. They are now separated into categories instead of being displayed in a straight list-
ing as they were in Visual Studio .NET or the ASP.NET Web Matrix. The new Visual Studio 2005 Toolbox
is shown in Figure 1-10.

17

Hello ASP.NET 2.0!

04_576100 ch01.qxd 10/6/05 9:10 PM Page 17

Figure 1-10

A New IDE for Building ASP.NET 2.0 Pages
With ASP.NET 1.0/1.1, you can build your ASP.NET application using Notepad, Visual Studio .NET
2002 and 2003, as well as the hobbyist-focused ASP.NET Web Matrix. ASP.NET 2.0 comes with another
IDE to the Visual Studio family — Visual Studio 2005.

Visual Studio 2005 offers some dramatic enhancements that completely change the way in which you
build your ASP.NET applications. Figure 1-11 shows you a screen shot of the new Visual Studio 2005.

The most exciting change to the IDE is that Visual Studio 2005 builds applications using a file-based sys-
tem, not the project-based system used by Visual Studio .NET. When using Visual Studio .NET, you had
to create new projects (for example, an ASP.NET Web Application project). This process created a num-
ber of project files in your application. Because everything was based on a singular project, it became
very difficult to develop applications in a team environment.

Web projects in Visual Studio 2005, on the other hand, are based on a file system approach. No project
files are included in your project, and this makes it very easy for multiple developers to work on a single
application together without bumping into each other. Other changes are those to the compilation sys-
tem discussed earlier. You can now build your ASP.NET pages using the inline model or the new code-
behind model. Whether you build pages inline or with the new code-behind model, you have full
IntelliSense capabilities. This, in itself, is powerful and innovative. Figure 1-12 shows IntelliSense run-
ning from an ASP.NET page that is being built using the inline model.

18

Chapter 1

04_576100 ch01.qxd 10/6/05 9:10 PM Page 18

Figure 1-11

Figure 1-12

19

Hello ASP.NET 2.0!

04_576100 ch01.qxd 10/6/05 9:10 PM Page 19

Another feature of Visual Studio 2005 that has come over from the ASP.NET Web Matrix is that you
don’t need IIS on your development machine. Visual Studio 2005 has a built-in Web server that enables
you to launch pages from any folder in your system with relative ease. Chapter 2 discusses the new
Visual Studio 2005 in detail.

Summary
This whirlwind tour briefly introduced some of the new features in ASP.NET 2.0. This release offers so
much that we can’t come close to covering it all in this chapter. The new ways of working with data and
presentation and the new infrastructure provide effective means to create powerful and secure applica-
tions. But this book also gets down and dirty in the underlying architecture and features that have been
included in ASP.NET since it was initially released.

ASP.NET 2.0 is so powerful and has so much capability built in that its tremendous benefits to produc-
tivity really shine through. Pull up your keyboard and have some fun as you take the journey through
this book and this powerful technology.

20

Chapter 1

04_576100 ch01.qxd 10/6/05 9:10 PM Page 20

Visual Studio 2005

When you use ASP.NET 2.0, I recommend you also work with Visual Studio 2005 — the latest IDE
from Microsoft — to facilitate building .NET components and applications. Visual Studio 2005,
building on Visual Studio .NET 2003, provides one of the best development environments for cod-
ing your ASP.NET applications.

When learning a new programming language or technology, you spend a lot of time learning the
details of the language, as well as how it is structured and used. You must also learn about the
environment in which you will code this new language or technology. Understanding the environ-
ment is just as important as understanding the programming language itself.

In the past, it seemed that Microsoft had just as many development environments as it had lan-
guages or technologies. For example, before the introduction of Visual Studio .NET 2002, Web
development required one environment, Visual Basic development another, and C++ development
yet another. You had to choose the appropriate development environment for the specific type of
programming you were trying to accomplish. With the release of the new Visual Studio Integrated
Development Environments (IDEs), you can now build all the possible .NET classes, components,
and applications from a single environment — Visual Studio!

Visual Studio 2005 enables you to build any type of .NET component or application. When you
use this tool, you can choose any of the Microsoft .NET–compliant languages for building your
applications; plus it allows you to create Windows Forms, XML Web services, .NET components,
mobile applications, ASP.NET applications, and more. Included in this version are a large number
of new wizards and smart tags that simplify the development process for you.

When you pull up Visual Studio 2005 for the first time on your computer, you select the environ-
ment in which you wish the IDE to open. This chapter assumes you have selected Web Developer
Settings because that environment is the focus of this book.

The next section provides a quick tour of the new Visual Studio 2005 IDE.

05_576100 ch02.qxd 10/6/05 7:57 PM Page 21

The Star t Page
The Start Page is the first page you see when you pull up Visual Studio 2005 for the first time. This page
guides you as you start projects, as well as search for help or resources.

The Start Page is shown in Figure 2-1.

From this figure, you can see that the latest projects you have worked on are presented in the Recent
Projects box. From this box on the Start Page, you can also create a new project or open a project that is
not listed. The MSDN: Visual Studio 2005 box shows some of the latest articles available on the public
MSDN Web site. The Getting Started box allows you to create new projects from existing code, create
new Web sites, import or export Visual Studio settings, or pull up the MSDN help application.

If you close the Start Page from the document window, you can reactivate the Start Page by selecting
View ➪ Start Page from the Visual Studio menu.

The Document Window
The document window is where you create your ASP.NET pages. This section of the IDE enables you to
create ASP.NET pages either by dragging and dropping elements onto a design surface or by directly
coding them yourself.

Figure 2-1

22

Chapter 2

05_576100 ch02.qxd 10/6/05 7:57 PM Page 22

Views in the Document Window
Visual Studio .NET 2002 and 2003 both had a Design view and an HTML view of the ASP.NET page.
Visual Studio 2005 offers two views of a page: Design and Source. Figure 2-2 shows the document win-
dow in Visual Studio 2005.

The document window contains two tabs at the bottom that enable you to switch the view of your page:
Design and Source. The Design tab enables you to view your ASP.NET page as it would appear in the
browser. You use Design view to create your ASP.NET page visually in a WYSIWYG fashion. Dragging
and dropping controls onto the design surface causes Visual Studio to generate code in the page. This is
not very different from older versions of Visual Studio. The Source tab shows the complete source of the
file and is the default view used by Visual Studio 2005.

By using the Options dialog, you can change the default view Visual Studio uses when a page is opened
for the first time. Choose Tools ➪ Options and navigate to the HTML Designer section. If you highlight
this node, you see the option to open pages in either the Design or Source view. Select the view you want
and click OK.

Figure 2-2

23

Visual Studio 2005

05_576100 ch02.qxd 10/6/05 7:57 PM Page 23

If you don’t see the HTML Designer section in the list of options, be sure to check the Show all settings
checkbox in the dialog. By default, this checkbox is unchecked.

Although the document Window is basically the same as in earlier versions of Visual Studio, this section
of the IDE does have some new functionality that I describe in the following sections.

The Tag Navigator
When you’re working visually with an ASP.NET page, notice that a list of the elements appears on your
page at the bottom of the document window. This list of elements is called the tag navigator and is illus-
trated in Figure 2-3.

Figure 2-3

Instead of requiring you to select the element from the design surface or from within Source view, the
tag navigator enables you to right-click an element to select it and display the properties for that control
in the Properties window (discussed shortly). You can also select the content of the element by using this
approach (see Figure 2-4).

Figure 2-4

When you have many elements on your page, the tag navigator is quite helpful. To use its capabilities,
simply place your cursor in the document window and use the arrow buttons associated with the dis-
play to scroll quickly through elements to find what you are looking for. The tag navigator shows all
the controls from the element you selected, as well as all the selected control’s child controls. When
working in Source view, you can use the same mechanics to jump quickly to the content of the control.
This new functionality is a quick and powerful way of navigating your page. You can also use this new
functionality to highlight specific sections of code. To highlight everything inside a table, for example,
select the <asp:Table> element from the tag navigator, right-click the option, and select the content of
the control. All the code between the opening <asp:Table> and the closing </asp:Table> elements is
highlighted.

Page Tabs
Another new and interesting feature of the Document Window is how the page tabs work. Whenever
you have a page open in the document window, a tab for that page appears at the top of the window.
When you have multiple documents open, this tabbed view of the pages enables you to switch quickly
from one page to another simply by clicking the tab of the page you want to view. Although page tabs
are not new to the IDE, the functionality these tabs provide is certainly new. The following paragraphs
explain this new functionality.

24

Chapter 2

05_576100 ch02.qxd 10/6/05 7:57 PM Page 24

Right-clicking the page tab gives you the new options illustrated in Figure 2-5.

Figure 2-5

By right-clicking the page tab, you can save the file, close the file, close every open document but the one
selected, display the full path of the file (such as C:\Documents and Settings\Billy\My Documents\
Visual Studio 2005\WebSites\Wrox\Default.aspx), and open the containing folder in Windows
Explorer (shown in Figure 2-6).

Figure 2-6

25

Visual Studio 2005

05_576100 ch02.qxd 10/6/05 7:57 PM Page 25

Code Change Status Notifications
Some other changes to the document window include a new code-change notification system. When you
work with code on your pages, notice that line numbers are now included by default. Clicking any num-
ber highlights that line of code. Next to the line numbers is a changing color bar, illustrated in Figure 2-7.

This color bar notifies you of code changes that have occurred on your ASP.NET pages. If no color bar
appears on a particular line of code, you have not yet made any changes to that particular line. After you
make a change to a particular line of code, a yellow bar appears at the head of that line. After the file is
saved, this line changes to green. Yellow code lines indicate that changes have been made but not yet
saved to the file. Although you can’t see the yellow bar next to lines 13, 14, and 15 in the black-and-white
screen shot shown in Figure 2-7, you may be able to see the shading difference. The color difference
(when compared to the bar’s color next to the rest of the lines of code) indicates that these lines have
recently been changed.

Error Notifications and Assistance
In previous versions of Visual Studio, design-time error checking was a great feature of the IDE. As you
typed code, Visual Studio checked the code for errors. For instance, if you wrote an If Then statement
(in Visual Basic) that didn’t include an End If statement, the IDE underlined the If Then statement to
remind you that the block of code was not complete. The line disappeared after you corrected the error.
With Visual Studio 2005, if you make any design-time errors, a small square appears to the right of the
underline (as shown in Figure 2-8).

Figure 2-7

26

Chapter 2

05_576100 ch02.qxd 10/6/05 7:57 PM Page 26

Figure 2-8

Hovering your cursor over the square causes an error sign to appear. Clicking the error sign opens a dia-
log that gives you options for fixing the error. For example, if you are using an If Then statement with-
out the closing End If statement in Visual Basic, clicking the Error Notification button provides you
with a fix from the IDE, as shown in Figure 2-9.

This pop-up dialog first states the issue. In this case, it says that any opening If statement must include
a closing End If statement. Below this error notification is a link that enables you to apply the fix. Below
the link is a code sample showing how the fix will affect your code.

Sometimes, more than one option exists for fixing a design-time error. For example, you might have the
following code in your ASP.NET page:

Dim x As Integr

Figure 2-9

27

Visual Studio 2005

05_576100 ch02.qxd 10/6/05 7:57 PM Page 27

In this case, Integr is spelled incorrectly; the correct spelling, of course, is Integer. The IDE notifies
you of this error and opens up the associated error dialog. You have three options for fixing the error
(shown in Figure 2-10). To fix it, you simply scroll to the appropriate fix option and click that link.

Figure 2-10

The Toolbox
One of the first changes you notice when you open this latest release of Visual Studio is a change in the
Toolbox. The controls in the IDE are now presented in a hierarchical manner. This change was made
because of the tremendous number of new controls in ASP.NET 2.0. The Toolbox is shown in Figure 2-11.

Figure 2-11

28

Chapter 2

05_576100 ch02.qxd 10/6/05 7:57 PM Page 28

Because of the number of new controls (somewhere around 50), they have been organized into sections
in the Toolbox. The following table shows what all is included in the new control sections.

Control Section Controls Included in the Section

General There is nothing in this section, although you are free to use this sec-
tion for your own custom developed controls. (You can also create a
completely new control section if you choose.)

HTML Includes the HTML server controls that have been a part of ASP.NET
since the beginning. The names of these controls, however, have
changed.

WebParts Includes all the controls that deal with the new personalization fea-
tures provided by ASP.NET 2.0, including all the WebPart controls
such as WebPartManager and WebPartZone.

Login Contains all controls that deal with adding user login and password
capabilities to your ASP.NET applications, such as Login, LoginView,
and LoginStatus.

Navigation Includes controls that enable end users to work through a collection of
ASP.NET pages, including SiteMapPath, Menu, and TreeView.

Validation Includes all the validation controls that have always been a part of
ASP.NET, such as RequiredFieldValidator and RegularExpressionVal-
idator.

Data Includes all the controls that deal with the retrieval and display of
data that comes from a data store of some kind. Therefore, this section
includes all the data source controls (SqlDataSource, AccessDataSource,
and more), as well as the data display controls, such as GridView and
DetailsView.

Standard Contains the standard <asp:> controls, such as TextBox, Button, and
other core controls.

One feature that has always been present in Visual Studio, but makes more sense now that so many new
controls have been added, enables you to turn off the List View of the controls. Doing this causes the
Toolbox to show the controls simply as icons (see Figure 2-12).

Right-click in the section of the Toolbox you want to change and deselect List View. This changes the
view for only those controls in the section where you right-clicked. Each section in the Toolbox main-
tains its own settings.

Also by right-clicking on the Toolbox, you can select the Show All option. This shows all the possible cat-
egories available through the Visual Studio IDE. It is usually not the best option to enable when working
with ASP.NET projects because most of the object categories have nothing to do with ASP.NET and,
therefore, are not controls you would use in your projects.

29

Visual Studio 2005

05_576100 ch02.qxd 10/6/05 7:57 PM Page 29

Figure 2-12

The Solution Explorer
The Solution Explorer is still located where it was in previous versions of Visual Studio. The Solution
Explorer, shown in Figure 2-13, provides you with an organized view of the projects in your application.

Figure 2-13

The toolbar at the top of the Solution Explorer still enables you to do many of the same tasks that you
could perform in previous versions of Visual Studio, but this latest release of Visual Studio has some
additional buttons on the toolbar. Figure 2-14 shows you the toolbar with a description of the items it
contains.

30

Chapter 2

05_576100 ch02.qxd 10/6/05 7:57 PM Page 30

Figure 2-14

The Un-nest/Nest Related Files button is a new feature in the Solution Explorer that enables you to
undo the nesting found in ASP.NET pages developed using code-behind files. By default, when working
with code-behind files, you can click the plus sign next to the .aspx page to expose the code-behind file
(.aspx.vb or .aspx.cs). Un-nesting these files puts them all on the same hierarchical level. Once un-
nested, you can then re-nest these files by clicking the same button.

Another new button in the Solution Explorer is the Copy Web Site button. This opens up a new dialog in
the document window that enables you to copy your application from one point to another. This dialog
is shown in Figure 2-15.

Figure 2-15

Copy Web Site
View
CodeRefresh

ASP.NET
Configuration

View
Designer

Nest
Related

Files

Properties

31

Visual Studio 2005

05_576100 ch02.qxd 10/6/05 7:57 PM Page 31

Using this dialog, you can copy your projects to a different place on the same server or to an entirely dif-
ferent server. You can now enjoy easy file movements and synchronization between two projects.

A final new button in the toolbar is the ASP.NET Configuration button that pulls up the ASP.NET config-
uration page for your selected application within the document window. This configuration system is
discussed in detail in Chapter 27.

The Server Explorer
The Server Explorer is one of the more valuable windows within Visual Studio. This window can now
be found on a separate tab next to the Solution Explorer. The Server Explorer (shown in Figure 2-16)
enables you to perform a number of functions such as working with database connectivity, monitoring
performance, and interacting with event logs.

Figure 2-16

The Properties Window
The Properties window is also relatively unchanged from the previous versions of Visual Studio. This
window (shown in Figure 2-17) enables you to work with and control the properties of any item that is
part of your application. After you select an item or focus the cursor on the item in the Code view of
your ASP.NET page, the properties of that particular item are shown in the Properties window.

32

Chapter 2

05_576100 ch02.qxd 10/6/05 7:57 PM Page 32

Figure 2-17

Lost Windows
In the Visual Studio 2005 release, you may not be able to find some familiar windows that were up front
in previous versions of Visual Studio. For example, when you open one of your ASP.NET applications in
Visual Studio 2005, you do not see the Class View and Dynamic Help windows. Although they are not
visible in the default view when the IDE first opens, these windows are still available for use with your
applications.

You can find the Class View by choosing View ➪ Other Windows ➪ Class View from the Visual Studio
menu. The Class View window opens directly next to the Server Explorer. You can move the window
wherever you want within the IDE.

You can find the Dynamic Help window by choosing Help ➪ Dynamic Help. Selecting this option opens
the Dynamic Help window next to the Properties window.

Other Common Visual Studio Activities
Visual Studio 2005 is so packed with functionality that it deserves a book of its own. This IDE is mam-
moth and enables you to do almost anything in the construction and management of your ASP.NET
applications. This section takes a look at some of the common tasks that are done somewhat differently
or in an altogether new manner in this latest release of Visual Studio.

33

Visual Studio 2005

05_576100 ch02.qxd 10/6/05 7:57 PM Page 33

Creating New Projects
The process of creating new files and projects within Visual Studio 2005 is different from the process
using Visual Studio 2002 or 2003. In this latest release of Visual Studio, the focus on project-based appli-
cations is gone. Now projects are created in a page-based manner. This means that when you create an
ASP.NET application in Visual Studio, you don’t find solution or project files. In fact, when you first cre-
ate the application, the only items created for you by the IDE are the project folder and a single .aspx
file. If you are creating an ASP.NET page using the code-behind model, you also have an .aspx.vb or
.aspx.cs file.

Visual Studio allows you to create either a new single .aspx page or a Web site. To create a single page,
simply go to the menu and choose File ➪ New File. To work on a previous file, choose File ➪ Open File.
To create a new ASP.NET application, choose File ➪ New Web Site. You can see the dialog of options in
Figure 2-18.

Figure 2-18

In most cases, you select the first option — ASP.NET Web Site. This creates a single folder for your appli-
cation and a default .aspx page.

Making References to Other Objects
When you look at the Solution Explorer of your ASP.NET application, notice that the References and Web
References folders are not present. How do you add these references to your file-based applications?

You can add them in a couple of ways, and both ways bring you to the same dialog within the IDE. The
first way to add a reference to your application is to highlight the project in the Solution Explorer and
then choose Web Site ➪ Add Reference or Add Web Reference from the Visual Studio menu.

The second option is to right-click the project name in the Solution Explorer and select Property Pages
from the list of options (the last option in the menu). This brings up the Property Pages dialog shown in
Figure 2-19.

34

Chapter 2

05_576100 ch02.qxd 10/6/05 7:57 PM Page 34

Figure 2-19

The Property Pages dialog allows you to make many modifications to your ASP.NET applications. For
now, however, focus only on the first item within the dialog — the References tab. When you have the
References item highlighted, two enabled buttons appear in the right-hand portion of the dialog — Add
Reference and Add Web Reference.

The Add Reference button invokes the Add Reference dialog so that you can make a reference to a DLL
to use in your project. Again in this version of Visual Studio, the objects are divided into categories such
as .NET, COM, and others, as shown in Figure 2-20.

Figure 2-20

35

Visual Studio 2005

05_576100 ch02.qxd 10/6/05 7:57 PM Page 35

The Add Web References button invokes the Add Web Reference dialog (shown in Figure 2-21). Here
you can make references to other Web services or .wsdl files found either in the same solution, on the
same server, or on some remote server.

Figure 2-21

Be aware that these buttons have been added because no References or Web References folder appears in
the Solution Explorer, which shows the referenced objects.

Using Smart Tags
The visual designer of Visual Studio now includes smart tags. Smart tags are a great enhancement to the
development experience because they enable you to quickly program common tasks. Each smart tag is
different and depends on the server control that it works with. For instance, the smart tag that appears
for the GridView server control enables you to apply paging and sorting of the data that the GridView
displays. Other controls, however, may have different capabilities exposed through their respective
smart tags.

Not every server control has a smart tag associated with it. If a server control has this extra capability,
you notice it after you drag and drop the control onto the design surface. After it is on the design sur-
face, an arrow appears in the upper-right-hand corner of the control if a smart tag exists for that particu-
lar control. Clicking the arrow opens the smart tag and all the options that the smart tag contains. This is
illustrated in the GridView server control shown in Figure 2-22.

From the smart tag, you can select items either to add or alter by clicking one of the available links or
by checking one of the available check boxes. When you have completed either of these actions, Visual
Studio changes the code in the background — adding the capabilities that you want. You can also see the
additions and modifications to the IDE if you change your view to the Code view of the page.

36

Chapter 2

05_576100 ch02.qxd 10/6/05 7:57 PM Page 36

Figure 2-22

Saving and Importing Visual Studio Settings
Visual Studio 2005 allows for a tremendous number of customizations and modifications to the develop-
ment environment and the development experience. You can do a lot to change Visual Studio either by
dragging elements and components to new locations within the IDE, or by choosing Tools ➪ Options in
the Visual Studio menu bar to bring up the Options dialog shown in Figure 2-23.

The number of options you can work with from this dialog are staggering and impossible to cover com-
pletely in this chapter. In fact, at first you won’t see this extensive list of options; the list you see will be
rather limited. To see the extensive list presented in Figure 2-23, you must check the Show All Settings
check box found in the lower left-hand corner of the dialog. You will find that this Options dialog has
many of the same options you worked with in the past, plus some new ones.

After you have Visual Studio set up as you want, you should save these settings so that they can be used
again if you rebuild your computer, if you are working with an another instance of Visual Studio else-
where, or if you want to share your settings with others. To save your settings, choose Tools ➪ Import
and Export Settings in the IDE. This pulls up the Import/Export Settings Wizard shown in Figure 2-24.

37

Visual Studio 2005

05_576100 ch02.qxd 10/6/05 7:57 PM Page 37

Figure 2-23

Figure 2-24

38

Chapter 2

05_576100 ch02.qxd 10/6/05 7:57 PM Page 38

From this wizard, you can either save your settings to a file that can be used elsewhere or you can import
settings that are stored in the same type of file. You can also just reset Visual Studio to return the settings
to the default that existed when Visual Studio was first installed and run.

If you are going to export your settings, select Export Selected Environment Settings. This shows a list of
exportable settings in the left-hand pane of the dialog. By default, almost everything is selected. Feel free
to uncheck the settings you don’t want to export. When this is set up the way you want it, choose the
name of the file and the location where you want to save the file. The file has a .vssettings extension.
If you go back and look at the file, notice that Visual Studio saves the settings as an XML file.

Importing the settings is simply the process of making reference through the Import and Export Settings
Wizard to a file of the same type.

Validating Your HTML
When coding your pages in Visual Studio, this IDE provides you with design-time errors it sees in the
code you construct. One thing being checked is the structure you apply to the HTML code in your pages.
By default, Visual Studio 2005 checks your ASP.NET pages to make sure they are compliant so that they
work with Microsoft’s Internet Explorer 6.0.

Visual Studio enables you to change this behavior through the use of a drop-down list of available
schemas. This drop-down list, found at the top of the document window, is shown in Figure 2-25.

Figure 2-25

The available list of schemas includes the following:

❑ Internet Explorer 6.0

❑ Internet Explorer 3.02/Netscape Navigator 3.0

❑ Netscape Navigator 4.0

❑ HTML 4.01

❑ XHTML 1.0 Transitional (Netscape 7, Opera 7, Internet Explorer 6)

❑ XHTML 1.0 Frameset

❑ XHTML 1.1 Strict

39

Visual Studio 2005

05_576100 ch02.qxd 10/6/05 7:57 PM Page 39

From this, you get different errors for your HTML depending on the schema you are trying to adhere to
when developing. For instance, you may be trying to adhere to the XHTML 1.1 schema using a break
tag, as shown here:

You see a red squiggly line underneath this bit of HTML and an error notification placed in the Error
List, which specifies that you should construct the break tag as
.

In addition to these specified schemas, by using Visual Studio you can also make sure you follow spe-
cific accessibility standards for how the HTML is structured. This is meant for Web surfers with disabili-
ties when it comes to browsing content online. These end users might not be able to see, hear, or move.
Therefore, they have special programs on their computers to help them browse Internet content. It is eas-
ier to accomplish this, however, if these programs work with pages that follow certain schematic rules.

You can validate your HTML pages using WCAG Priority 1, WCAG Priority 2, or the Access Board
Section 508 schemas. You can get to this validation process by clicking the Check Page For Accessibility
button in the Visual Studio menu (see Figure 2-26) or by selecting Website ➪ Check Accessibility in
Visual Studio.

Figure 2-26

You can get more information on these schemas at the following locations: WCAG Priority 1 —
http://www.w3.org/TR/WAI-WEBCONTENT/; WCAG Priority2 —
http://www.w3.org/TR/WAI-WEBCONTENT/full-checklist.html; Access Board Section
508 —http://www.access-board.gov/508.htm.

From Visual Studio, clicking the Check Page For Accessibility button gives you the following dialog
where you can check the schemas against which you are validating your page (shown here in Figure
2-27).

Figure 2-27

Check the schemas you are interested in working with and click the Validate button to start the valida-
tion process. If there are any errors, you see a list of them in the Error List dialog of Visual Studio. A sam-
ple page that I ran through this validation process is presented in Figure 2-28.

40

Chapter 2

05_576100 ch02.qxd 10/6/05 7:57 PM Page 40

Figure 2-28

Reaching Out to the Community
The Community section adds a new menu bar item in Visual Studio 2005. This section allows you to
reach beyond your local computer and your Visual Studio instance to get help and use resources on the
Internet. The available options for this menu include the following:

❑ Ask a Question: A link to the MSDN Forums

❑ Send Feedback: A link to the MSDN Product Feedback Center

❑ Check Question Status: A link to the MSDN Forums

❑ Developer Center: A link to the Visual Studio 2005 MSDN Developer Center support page

❑ Codezone Community: A link to a Microsoft page that describes the Codezone Community

❑ Community Search: Perhaps the most useful link from the Community menu. The Community
Search section enables you to search for Starter Kits, Item Templates, Code Snippets, Samples,
and Controls from your local MSDN, various Microsoft properties, and from the associated
member sites.

Working with Snippets
In an effort to help you become a more productive developer, Visual Studio 2005 now includes a rather
large collection of code snippets for you to use freely within your code. Snippets are little pieces of code
that perform a specific task. Here are some examples of tasks you can perform with snippets:

❑ Generating a random number

❑ Iterating a Hashtable using For Each

❑ Encrypting a String

❑ Determining if a folder exists

And the list goes on and on. To get at the list of available snippets, simply place your cursor in the page
of code you are working with and right-click directly in the Code view of the page. You are presented
with a menu in which you will find the option called Insert Snippet. Selecting this option opens a drop-
down list of snippet categories (as shown in Figure 2-29).

41

Visual Studio 2005

05_576100 ch02.qxd 10/6/05 7:57 PM Page 41

Figure 2-29

To select a snippet, double-click the appropriate folder. Doing this either presents a selection of subfold-
ers, snippets, or both to choose from. You also see the breadcrumb navigation showing where you are in
the snippet selection above the drop-down list of items (shown here in Figure 2-30). A single click on one
of the linked categories brings you back to this section of the snippets catalog.

Figure 2-30

For an example of using snippets, navigate to and choose Math ➪ Get a Random Number using the
Random class. This produces the following results in your page:

Dim generator As New Random
Dim randomValue As Integer
randomValue = generator.Next(10, 100)

From here, you can modify this code snippet to get it to perform as you want. In addition to adding code
snippets in this manner, all code snippets include a shortcut (found from the ToolTip box when high-
lighting the snippet). For instance, the previous random number snippet has a shortcut word —
mathrandom. If you type this word in the IDE and press the Tab key, the snippet appears in your code.

You can also manage the snippets made available to you through Visual Studio. The Visual Studio
IDE includes a Code Snippets Manager, which you can find at Tools ➪ Code Snippets Manager (see
Figure 2-31).

42

Chapter 2

05_576100 ch02.qxd 10/6/05 7:57 PM Page 42

Figure 2-31

From this dialog, you can add or remove snippets used by Visual Studio. Visual Studio includes a My
Snippets folder in which you can place your own snippets or snippets you have downloaded from other
locations. A snippet is a single .snippet file. You can find the .snippet files at C:\Program Files\
Microsoft Visual Studio 8\Vb\Snippets\1033.

From this location, you can add your own categories, but you must be sure you add this new folder to
the SnippetIndex.xml file found at the same location in order for your folder to be recognized by
Visual Studio.

Summary
This chapter took a quick look at the best possible tool for creating ASP.NET 2.0 applications — Visual
Studio 2005. This tool is unquestionably packed with functionality and makes you a more productive
developer.

Included in this IDE are a number of wizards that make quick work of common programming tasks
and allow you to concentrate on getting your applications live as soon as possible. Visual Studio 2005
expands on allowing developers to code to the database, to classes, and to the presentation layer — all
from the same IDE.

Illustrated in this chapter were such features as snippets, validations of code, finding answers to problems
from the community, and more. This chapter is in no way meant to fully explain this IDE; the intention
was to show you some of the newer features you might utilize when building your applications. Delve
more deeply into what is shown in the chapter, and you will find new features around every corner.

43

Visual Studio 2005

05_576100 ch02.qxd 10/6/05 7:57 PM Page 43

05_576100 ch02.qxd 10/6/05 7:57 PM Page 44

Application and Page
Frameworks

If you are new to ASP.NET and building your first set of applications in ASP.NET 2.0, you may be
amazed by all the wonderful new server controls it provides. You may marvel at how it enables
you to work with data more effectively using the new data providers. You may be impressed at
how easily you can build in security and personalization.

The outstanding capabilities of ASP.NET 2.0 don’t end there, however. This chapter takes a look at
many exciting additions that facilitate working with ASP.NET pages and applications. One of the
first steps you, the developer, should take when starting a project is to become familiar with the
foundation you are building on and the options available for customizing that foundation.

Application Location Options
With ASP.NET 2.0, you have the option — using Visual Studio 2005 — to create an application with
a virtual directory mapped to IIS or a standalone application outside the confines of IIS. Whereas
Visual Studio .NET forced developers to use IIS for all Web applications, Visual Studio 2005 (and
Visual Web Developer Express Edition, for that matter) includes a built-in Web server that you can
use for development, much like the one used in the past with the ASP.NET Web Matrix.

This built-in Web server was previously presented to developers as a code sample called Cassini.
In fact, the code for this mini Web server is freely downloadable from the ASP.NET team Web site
found at http://www.asp.net.

06_576100 ch03.qxd 10/6/05 9:12 PM Page 45

The following section shows you how to use this new built-in Web server that comes with ASP.NET 2.0.

Built-In Web Server
By default, Visual Studio 2005 builds applications without the use of IIS. You can see this when
you select New Web Site in the IDE. By default, the location provided for your application is in
C:\Documents and Settings\[user]\My Documents\Visual Studio 2005\WebSites (shown in
Figure 3-1). It is not C:\Inetpub\wwwroot\ as it would have been in Visual Studio .NET 2003/2002. By
default, any site that you build and host inside C:\Documents and Settings\[user]\My Documents\
Visual Studio 2005\WebSites (or any other folder you create) uses the built-in Web server that is part
of Visual Studio 2005. If you use the built-in Web server from Visual Studio 2005, you are not locked into
the Websites folder; you can create any folder you want in your system.

Figure 3-1

To change from this default, you have a handful of options. Click the Browse button in the New Web Site
dialog. This brings up the Choose Location dialog, shown in Figure 3-2.

If you continue to use the built-in Web server that Visual Studio 2005 provides, you can choose a new
location for your Web application from this dialog. To choose a new location, select a new folder and
save your .aspx pages and any other associated files to this directory. When using Visual Studio 2005,
you can run your application completely from this location. This new way of working with the ASP.NET
pages you create is ideal if you don’t have access to a Web server because it enables you to build applica-
tions that don’t reside on a machine with IIS. This means that you can even develop ASP.NET applica-
tions on operating systems such as Windows XP Home Edition.

46

Chapter 3

06_576100 ch03.qxd 10/6/05 9:12 PM Page 46

Figure 3-2

IIS
From the Choose Location dialog, you can also change where your application is saved and which type
of Web server your application employs. To use IIS (as you probably did when you used Visual Studio
.NET 2003/2002), select the Local IIS button in the dialog. This changes the results in the text area to
show you a list of all the virtual application roots on your machine.

To create a new virtual root for your application, highlight Default Web Site. Two accessible buttons
appear at the top of the dialog (see Figure 3-3). When you look from left to right, the first button in the
upper-right corner of the dialog is for creating a new Web application — or a virtual root. This button is
shown as a globe inside a box. The second button enables you to create virtual roots for any of the vir-
tual directories you created. The third button is a Delete button, which allows you to delete any selected
virtual directories or virtual roots on the server.

After you have created the virtual directory you want, click the Open button. Visual Studio 2005 then
goes through the standard process to create your application. Now, however, instead of depending on
the built-in Web server from ASP.NET 2.0, your application will use IIS. When you invoke your applica-
tion, the URL now consists of something like http://localhost/myweb/default.aspx, which means
it is using IIS.

47

Application and Page Frameworks

06_576100 ch03.qxd 10/6/05 9:12 PM Page 47

Figure 3-3

FTP
Not only can you decide on the type of Web server for your Web application when you create it using
the Choose Location dialog, but you can also decide where your application is going to be located. With
the previous options, you built applications that resided on your local server. The FTP option enables
you to actually store and even code your applications while they reside on a server somewhere else in
your enterprise — or on the other side of the planet. You can also use the FTP capabilities to work on dif-
ferent locations within the same server. Using this new capability provides a wide range of possible
options.

The built-in capability giving FTP access to your applications is a major enhancement to the IDE.
Although formerly difficult to accomplish, this task is now quite simple, as you can see from Figure 3-4.

To create your application on a remote server using FTP, simply provide the server name, the port to use,
and the directory — as well as any required credentials. If the correct information is provided, Visual
Studio 2005 reaches out to the remote server and creates the appropriate files for the start of your appli-
cation, just as if it were doing the job locally. From this point on, you can open your project and connect
to the remote server using FTP.

Web Site Requiring FrontPage Extensions
The last option in the Choose Location dialog is the Remote Sites option. Clicking this button provides a
dialog that enables you to connect to a remote or local server that utilizes FrontPage Extensions. This
option is displayed in Figure 3-5.

48

Chapter 3

06_576100 ch03.qxd 10/6/05 9:12 PM Page 48

Figure 3-4

Figure 3-5

49

Application and Page Frameworks

06_576100 ch03.qxd 10/6/05 9:12 PM Page 49

The ASP.NET Page Structure Options
ASP.NET 2.0 provides two paths for structuring the code of your ASP.NET pages. The first path utilizes
the code-inline model. This model should be familiar to ASP 2.0/3.0 developers because all the code is
contained within a single .aspx page. The second path uses ASP.NET’s code-behind model, which
allows for code separation of the page’s business logic from its presentation logic. In this model, the pre-
sentation logic for the page is stored in an .aspx page, whereas the logic piece is stored in a separate
class file: .aspx.vb or .aspx.cs.

One of the major complaints about Visual Studio .NET 2002 and 2003 is that it forced you to use the
code-behind model when developing your ASP.NET pages because it did not understand the code-inline
model. The code-behind model in ASP.NET was introduced as a new way to separate the presentation
code and business logic. Listing 3-1 shows a typical .aspx page generated using Visual Studio .NET
2002 or 2003.

Listing 3-1: A typical .aspx page from ASP.NET 1.0/1.1

<%@ Page Language=”vb” AutoEventWireup=”false” Codebehind=”WebForm1.aspx.vb”
Inherits=”WebApplication.WebForm1”%>

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN”>
<HTML>
<HEAD>

<title>WebForm1</title>
<meta name=”GENERATOR” content=”Microsoft Visual Studio .NET 7.1”>
<meta name=”CODE_LANGUAGE” content=”Visual Basic .NET 7.1”>
<meta name=”vs_defaultClientScript” content=”JavaScript”>
<meta name=”vs_targetSchema”

content=”http://schemas.microsoft.com/intellisense/ie5”>
</HEAD>
<body>

<form id=”Form1” method=”post” runat=”server”>
<P>What is your name?

<asp:TextBox id=”TextBox1” runat=”server”></asp:TextBox>

<asp:Button id=”Button1” runat=”server” Text=”Submit”></asp:Button></P>
<P><asp:Label id=”Label1” runat=”server”></asp:Label></P>

</form>
</body>

</HTML>

The code-behind file created within Visual Studio .NET 2002/2003 for the .aspx page is shown in
Listing 3-2.

Listing 3-2: A typical .aspx.vb/.aspx.cs page from ASP.NET 1.0/1.1

Public Class WebForm1
Inherits System.Web.UI.Page

#Region “ Web Form Designer Generated Code “

‘This call is required by the Web Form Designer.
<System.Diagnostics.DebuggerStepThrough()> Private Sub InitializeComponent()

End Sub

50

Chapter 3

06_576100 ch03.qxd 10/6/05 9:12 PM Page 50

Protected WithEvents TextBox1 As System.Web.UI.WebControls.TextBox
Protected WithEvents Button1 As System.Web.UI.WebControls.Button
Protected WithEvents Label1 As System.Web.UI.WebControls.Label

‘NOTE: The following placeholder declaration is required by the Web Form
Designer.

‘Do not delete or move it.
Private designerPlaceholderDeclaration As System.Object

Private Sub Page_Init(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Init

‘CODEGEN: This method call is required by the Web Form Designer
‘Do not modify it using the code editor.
InitializeComponent()

End Sub

#End Region

Private Sub Page_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

‘Put user code to initialize the page here
End Sub

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click

Label1.Text = “Hello “ & TextBox1.Text
End Sub

End Class

In this code-behind page from ASP.NET 1.0/1.1, you can see that a lot of the code that developers never
have to deal with is hidden in the #Region section of the page. Because ASP.NET 2.0 is built on top of
.NET 2.0, it can now take advantage of the new .NET Framework capability of partial classes. Partial
classes enable you to separate your classes into multiple class files, which are then combined into a sin-
gle class when the application is compiled. Because ASP.NET 2.0 combines all this page code for you
behind the scenes when the application is compiled, the code-behind files you work with in ASP.NET 2.0
are simpler in appearance and the model is easier to use. You are presented with only the pieces of the class
that you need. Next, we will take a look at both the inline and code-behind models from ASP.NET 2.0.

Inline Coding
With the .NET Framework 1.0/1.1, developers went out of their way (and outside Visual Studio .NET)
to build their ASP.NET pages inline and avoid the code-behind model that was so heavily promoted by
Microsoft and others. Visual Studio 2005 (as well as Visual Web Developer 2005 Express Edition) allows
you to build your pages easily using this coding style. To build an ASP.NET page inline instead of using
the code-behind model, you simply select the page type from the Add New Item dialog and make sure
that the Place Code in Separate File check box is unchecked. You can get at this dialog by right-clicking
the project or the solution in the Solution Explorer and selecting Add New Item (see Figure 3-6).

51

Application and Page Frameworks

06_576100 ch03.qxd 10/6/05 9:12 PM Page 51

Figure 3-6

From here, you can see the check box you need to unselect if you want to build your ASP.NET pages
inline. In fact, many page types have options for both inline and code-behind styles. The following table
shows your inline options when selecting files from this dialog.

File Options Using Inline Coding File Created

Web Form .aspx file

Master Page .master file

Web User Control .ascx file

Web Service .asmx file

By using the Web Form option with a few controls, you get a page that encapsulates not only the presen-
tation logic, but the business logic as well. This is illustrated in Listing 3-3.

Listing 3-3: A simple page that uses the inline coding model

VB
<%@ Page Language=”VB” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<script runat=”server”>
Protected Sub Button1_Click(ByVal sender As Object, _

ByVal e As System.EventArgs)

Label1.Text = “Hello “ & Textbox1.Text
End Sub

52

Chapter 3

06_576100 ch03.qxd 10/6/05 9:12 PM Page 52

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Simple Page</title>
</head>
<body>

<form runat=”server”>
What is your name?

<asp:Textbox ID=”Textbox1” Runat=”server”></asp:Textbox>

<asp:Button ID=”Button1” Runat=”server” Text=”Submit”
OnClick=”Button1_Click” />

<p><asp:Label ID=”Label1” Runat=”server”></asp:Label></p>
</form>

</body>
</html>

C#
<%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<script runat=”server”>
protected void Button1_Click(object sender, System.EventArgs e)
{

Label1.Text = “Hello “ + Textbox1.Text;
}

</script>

From this example, you can see that all the business logic is encapsulated in between <script> tags.
The nice feature of the inline model is that the business logic and the presentation logic are contained
within the same file. Some developers find that having everything in a single viewable instance makes
working with the ASP.NET page easier. Another great thing is that Visual Studio 2005 now provides
IntelliSense when working with the inline coding model and ASP.NET 2.0. In the past, this capability
didn’t exist. Visual Studio forced you to use the code-behind model and, even if you rigged it so your
pages were using the inline model, you lost all IntelliSense capabilities.

New Code-Behind Model
The other option for constructing your ASP.NET 2.0 pages is to build your files using the new code-
behind model. We say new because, even though the idea of the code-behind model is the same as it was
in previous versions of ASP.NET, the way in which the code-behind model is used in ASP.NET 2.0 is
quite a bit different.

To create a new page in your ASP.NET solution that uses the code-behind model, select the page type
you want from the New File dialog. To build a page that uses the code-behind model, you first select the
page in the Add New Item dialog and make sure the Place Code in Separate File check box is checked.
The following table shows you the options for pages that use the code-behind model.

53

Application and Page Frameworks

06_576100 ch03.qxd 10/6/05 9:12 PM Page 53

File Options Using Code-Behind File Created

Web Form .aspx file
.aspx.vb or .aspx.cs file

Master Page .master file
.master.vb or .master.cs file

Web User Control .ascx file
.ascx.vb or .ascx.cs file

Web Service .asmx file
.asmx.vb or .asmx.cs file

The idea of using the code-behind model is to separate the business logic and presentation logic into
separate files. Doing this makes it easier to work with your pages, especially if you are working in a
team environment where visual designers work on the UI of the page and coders work on the business
logic that sits behind the presentation pieces. In the earlier Listings 3-1 and 3-2, you saw how pages
using the code-behind model in ASP.NET 1.0/1.1 were constructed. To see the difference in ASP.NET 2.0,
take a look at how its code-behind pages are constructed. This is illustrated in Listing 3-4 for the presen-
tation piece and Listing 3-5 for the code-behind piece.

Listing 3-4: An .aspx page that uses the ASP.NET 2.0 code-behind model

VB
<%@ Page Language=”VB” AutoEventWireup=”false” CodeFile=”Default.aspx.vb”

Inherits=”_Default” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Simple Page</title>
</head>
<body>

<form runat=”server”>
What is your name?

<asp:Textbox ID=”Textbox1” Runat=”server”></asp:Textbox>

<asp:Button ID=”Button1” Runat=”server” Text=”Submit”
OnClick=”Button1_Click” />

<p><asp:Label ID=”Label1” Runat=”server”></asp:Label></p>
</form>

</body>
</html>

C#
<%@ Page Language=”C#” CodeFile=”Default.aspx.cs” Inherits=”Default_aspx” %>

54

Chapter 3

06_576100 ch03.qxd 10/6/05 9:12 PM Page 54

Listing 3-5: A code-behind page

VB
Partial Class _Default

Inherits System.Web.UI.Page

Protected Sub Button1_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Label1.Text = “Hello “ & TextBox1.Text
End Sub

End Class

C#
using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class _Default : System.Web.UI.Page
{

protected void Button1_Click(object sender, EventArgs e)
{

Label1.Text = “Hello “ + Textbox1.Text;
}

}

The .aspx page using this new ASP.NET 2.0 code-behind model has some attributes in the Page
directive different from those you are familiar with from previous versions of ASP.NET. The first is
the CodeFile attribute. This is a new attribute in the Page directive and is meant to point to the
code-behind page that is used with this presentation page. In this case, the value assigned is Default
.aspx.vb or Default.aspx.cs. The second attribute needed is the Inherits attribute. This attribute
was available in previous versions of ASP.NET, but was little used. This attribute specifies the name of
the class that is bound to the page when the page is compiled. The directives are simple enough in
ASP.NET 2.0. Take another look at the code-behind page from Listing 3-5.

The new code-behind page is rather simple in appearance because of the partial class capabilities that
.NET 2.0 provides. You can see that the class created in the code-behind file uses partial classes, employ-
ing the new Partial keyword in Visual Basic 2005 and the partial keyword from C# 2.0. This enables
you to simply place the methods that you need in your page class. In this case, you have a button-click
event and nothing else.

Later in this chapter, we look at the compilation process for both of these models.

55

Application and Page Frameworks

06_576100 ch03.qxd 10/6/05 9:12 PM Page 55

ASP.NET 2.0 Page Directives
ASP.NET directives are something that is a part of every ASP.NET page. You can control the behavior of
your ASP.NET pages by using these directives. Here’s an example of the Page directive:

<%@ Page Language=”VB” AutoEventWireup=”false” CodeFile=”Default.aspx.vb”
Inherits=”_Default” %>

Eleven directives are at your disposal in your ASP.NET pages or user controls. You use these directives
in your applications whether the page uses the code-behind model or the inline coding model.

Basically, these directives are commands that the compiler uses when the page is compiled. Directives
are simple to incorporate into your pages. A directive is written in the following format:

<%@ [Directive] [Attribute=Value] %>

From this, you can see that a directive is opened with a <%@ and closed with a %>. It is best to put these
directives at the top of your pages or controls because this is traditionally where developers expect to see
them (although the page still compiles if the directives are located at a different place). Of course, you
can also add more than a single attribute to your directive statements, as shown in the following:

<%@ [Directive] [Attribute=Value] [Attribute=Value] %>

The following table describes the directives at your disposal in ASP.NET 2.0.

Directive Description

Assembly Links an assembly to the Page or user control for which it is associated.

Control Page directive meant for use with user controls (.ascx).

Implements Implements a specified .NET Framework interface.

Import Imports specified namespaces into the Page or user control.

Master Enables you to specify master page–specific attributes and values to use
when the page parses or compiles. This directive can be used only with
master pages (.master).

MasterType Associates a class name to a Page in order to get at strongly typed refer-
ences or members contained within the specified master page.

OutputCache Controls the output caching policies of a Page or user control.

Page Enables you to specify page specific attributes and values to use when the
page parses or compiles. This directive can be used only with ASP.NET
pages (.aspx).

PreviousPageType Enables an ASP.NET page to work with a postback from another page in
the application.

Reference Links a Page or user control to the current Page or user control.

Register Associates aliases with namespaces and class names for notation in cus-
tom server control syntax.

56

Chapter 3

06_576100 ch03.qxd 10/6/05 9:12 PM Page 56

The following sections provide a quick review of each of these directives.

@Page
The @Page directive enables you to specify attributes and values for an ASP.NET page (.aspx) to be
used when the page is parsed or compiled. This is the most frequently used directive of the bunch.
Because the ASP.NET page is such an important part of ASP.NET, you have quite a few attributes at your
disposal. The following table summarizes the attributes available through the @Page directive.

Attribute Description

AspCompat Permits the page to be executed on a single-threaded apart-
ment thread when given a value of True. The default setting
for this attribute is False.

Async Specifies whether the ASP.NET page is processed syn-
chronously or asynchronously.

AutoEventWireUp Specifies whether the page events are autowired when set to
True. The default setting for this attribute is True.

Buffer Enables HTTP response buffering when set to True. The
default setting for this attribute is True.

ClassName Specifies the name of the class that is bound to the page
when the page is compiled.

CodeFile References the code-behind file with which the page is
associated.

CodePage Indicates the code page value for the response.

CompilerOptions Compiler string that indicates compilation options for
the page.

CompileWith Takes a String value that points to the code-behind file used.

ContentType Defines the HTTP content type of the response as a standard
MIME type.

Culture Specifies the culture setting of the page. ASP.NET 2.0 now
includes the capability to give the Culture attribute a value
of Auto to enable automatic detection of the culture required.

Debug Compiles the page with debug symbols in place when set
to True.

Description Provides a text description of the page. The ASP.NET parser
ignores this attribute and its assigned value.

EnableSessionState Session state for the page is enabled when set to True. The
default setting is True.

EnableTheming Page is enabled to use theming when set to True. The
default setting for this attribute is False.

Table continued on following page

57

Application and Page Frameworks

06_576100 ch03.qxd 10/6/05 9:12 PM Page 57

Attribute Description

EnableViewState View state is maintained across the page when set to True.
The default value is True.

EnableViewStateMac Page runs a machine-authentication check on the page’s
view state when the page is posted back from the user when
set to True. The default value is False.

ErrorPage Specifies a URL to post to for all unhandled page exceptions.

Explicit Visual Basic Explicit option is enabled when set to True.
The default setting is False.

Language Defines the language being used for any inline rendering
and script blocks.

LCID Defines the locale identifier for the Web Form’s page.

LinePragmas Boolean value that specifies whether line pragmas are used
with the resulting assembly.

MasterPageFile Takes a String value that points to the location of the mas-
ter page used with the page. This attribute is used with con-
tent pages.

MaintainScrollPositionOn Takes a Boolean value, which indicates whether the page
Postback should be positioned exactly in the same scroll position or if

the page should be regenerated in the uppermost position
for when the page is posted back to itself.

PersonalizationProvider Takes a String value that specifies the name of the personal-
ization provider used in applying personalization to the page.

ResponseEncoding Specifies the response encoding of the page content.

SmartNavigation Specifies whether to activate the ASP.NET Smart Navigation
feature for richer browsers. This returns the postback to the
current position on the page. The default value is False.

Src Points to the source file of the class used for the code behind
of the page being rendered.

Strict Compiles the page using the Visual Basic Strict mode
when set to True. The default setting is False.

Theme Applies the specified theme to the page using the ASP.NET
2.0 themes feature.

Title Applies a page’s title. This is an attribute mainly meant for
content pages that must apply a page title other than what is
specified in the master page.

Trace Page tracing is enabled when set to True. The default setting
is False.

58

Chapter 3

06_576100 ch03.qxd 10/6/05 9:12 PM Page 58

Attribute Description

TraceMode Specifies how the trace messages are displayed when tracing
is enabled. The settings for this attribute include SortByTime
or SortByCategory. The default setting is SortByTime.

Transaction Specifies whether transactions are supported on the
page. The settings for this attribute are NotSupported,
Supported, Required, and RequiresNew. The default
setting is NotSupported.

UICulture The value of the UICulture attribute specifies what UI Cul-
ture to use for the ASP.NET page. ASP.NET 2.0 now includes
the capability to give the UICulture attribute a value of
Auto to enable automatic detection of the UICulture.

ValidateRequest When this attribute is set to True, the form input values are
checked against a list of potentially dangerous values. This
helps protect your Web application from harmful attacks
such as JavaScript attacks. The default value is True.

WarningLevel Specifies the compiler warning level at which to stop compi-
lation of the page. Possible values are 0 through 4.

Here is an example of how to use the @Page directive:

<%@ Page Language=”VB” AutoEventWireup=”false” CodeFile=”Default.aspx.vb”
Inherits=”_Default” %>

@Master
The @Master directive is quite similar to the @Page directive except that the @Master directive is meant
for master pages (.master). In using the @Master directive, you specify properties of the templated
page that you will be using in conjunction with any number of content pages on your site. Any content
pages (built using the @Page directive) can then inherit from the master page all the master content
(defined in the master page using the @Master directive). Although they are similar, the @Master direc-
tive has fewer attributes available to it than does the @Page directive. The available attributes for the
@Master directive are shown in the following table.

Attribute Description

AutoEventWireUp Specifies whether the master page’s events are autowired when set to
True. Default setting is True.

ClassName Specifies the name of the class that is bound to the master page when
compiled.

CodeFile References the code-behind file with which the page is associated.

CompilerOptions Compiler string that indicates compilation options for the master page.

Table continued on following page

59

Application and Page Frameworks

06_576100 ch03.qxd 10/6/05 9:12 PM Page 59

Attribute Description

CompileWith Takes a String value that points to the code-behind file used for the
master page.

Debug Compiles the master page with debug symbols in place when set
to True.

Description Provides a text description of the master page. The ASP.NET parser
ignores this attribute and its assigned value.

EnableTheming Indicates the master page is enabled to use theming when set to True.
The default setting for this attribute is False.

EnableViewState Maintains view state for the master page when set to True. The default
value is True.

Explicit Indicates that the Visual Basic Explicit option is enabled when set to
True. The default setting is False.

Inherits Specifies the CodeBehind class for the master page to inherit.

Language Defines the language that is being used for any inline rendering and
script blocks.

LinePragmas Boolean value that specifies whether line pragmas are used with the
resulting assembly.

MasterPageFile Takes a String value that points to the location of the master page
used with the master page. It is possible to have a master page use
another master page, which creates a nested master page.

Src Points to the source file of the class used for the code behind of the
master page being rendered.

Strict Compiles the master page using the Visual Basic Strict mode when
set to True. The default setting is False.

WarningLevel Specifies the compiler warning level at which you want to abort com-
pilation of the page. Possible values are from 0 to 4.

Here is an example of how to use the @Master directive:

<%@ Master Language=”VB” CodeFile=”MasterPage1.master.vb”
AutoEventWireup=”false” Inherits=”MasterPage” %>

@Control
The @Control directive is similar to the @Page directive except that @Control is used when you build
an ASP.NET user control. The @Control directive allows you to define the properties to be inherited by
the user control. These values are assigned to the user control as the page is parsed and compiled. The
available attributes are fewer than those of the @Page directive, but quite a few of them allow for the
modifications you need when building user controls. The following table details the available attributes.

60

Chapter 3

06_576100 ch03.qxd 10/6/05 9:12 PM Page 60

Attribute Description

AutoEventWireUp Specifies whether the user control’s events are autowired when set to
True. Default setting is True.

ClassName Specifies the name of the class that is bound to the user control when
the page is compiled.

CodeFile References the code-behind file with which the user control is
associated.

CompilerOptions Compiler string that indicates compilation options for the user control.

CompileWith Takes a String value that points to the code-behind file used for the
user control.

Debug Compiles the user control with debug symbols in place when set
to True.

Description Provides a text description of the user control. The ASP.NET parser
ignores this attribute and its assigned value.

EnableTheming User control is enabled to use theming when set to True. The default
setting for this attribute is False.

EnableViewState View state is maintained for the user control when set to True. The
default value is True.

Explicit Visual Basic Explicit option is enabled when set to True. The default
setting is False.

Inherits Specifies the CodeBehind class for the user control to inherit.

Language Defines the language used for any inline rendering and script blocks.

LinePragmas Boolean value that specifies whether line pragmas are used with the
resulting assembly.

Src Points to the source file of the class used for the code behind of the
user control being rendered.

Strict Compiles the user control using the Visual Basic Strict mode when
set to True. The default setting is False.

WarningLevel Specifies the compiler warning level at which to stop compilation of
the user control. Possible values are 0 through 4.

The @Control directive is meant to be used with an ASP.NET user control. The following is an example
of how to use the directive:

<%@ Control Language=”VB” Explicit=”True”
CodeFile=”WebUserControl.ascx.vb” Inherits=”WebUserControl”
Description=”This is the registration user control.” %>

61

Application and Page Frameworks

06_576100 ch03.qxd 10/6/05 9:12 PM Page 61

@Import
The @Import directive allows you to specify a namespace to be imported into the ASP.NET page or user
control. By importing, all the classes and interfaces of the namespace are made available to the page or
user control. This directive supports only a single attribute: Namespace.

The Namespace attribute takes a String value that specifies the namespace to be imported. The
@Import directive cannot contain more than one attribute/value pair. Because of this, you must place
multiple namespace imports in multiple lines as shown in the following example:

<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>

Several assemblies are already being referenced by your application. You can find a list of these imported
namespaces by looking in the web.config.comments file found at C:\Windows\Microsoft.NET\
Framework\v2.0xxxxx\CONFIG. You can find this list of assemblies being referenced from the
<assemblies> child element of the <compilation> element. The settings in the web.config.comments
file are as follows:

<assemblies>
<add assembly=”mscorlib” />
<add assembly=”System, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089” />

<add assembly=”System.Web, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a” />

<add assembly=”System.Data, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089” />

<add assembly=”System.Web.Services, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a” />

<add assembly=”System.Xml, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089” />

<add assembly=”System.Drawing, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a” />

<add assembly=”System.EnterpriseServices, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a” />

<add assembly=”System.Web.Mobile, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a” />

<add assembly=”*” />
</assemblies>

Because of this reference in the web.config.comments file, these assemblies need not be referenced in a
References folder, as you would have done in ASP.NET 1.0/1.1. You can actually add or delete assem-
blies that are referenced from this list. For example, if you have a custom assembly referenced continu-
ously by each and every application on the server, you can simply add a similar reference to your
custom assembly next to these others. Note that you can perform this same task through the web
.config file of your application as well.

Even though assemblies might be referenced, you must still import the namespaces of these assemblies
into your pages. The same web.config.comments file contains a list of namespaces automatically
imported into each and every page of your application. This is specified through the <namespaces>
child element of the <pages> element.

62

Chapter 3

06_576100 ch03.qxd 10/6/05 9:12 PM Page 62

<namespaces>
<add namespace=”System” />
<add namespace=”System.Collections” />
<add namespace=”System.Collections.Specialized” />
<add namespace=”System.Configuration” />
<add namespace=”System.Text” />
<add namespace=”System.Text.RegularExpressions” />
<add namespace=”System.Web” />
<add namespace=”System.Web.Caching” />
<add namespace=”System.Web.SessionState” />
<add namespace=”System.Web.Security” />
<add namespace=”System.Web.Profile” />
<add namespace=”System.Web.UI” />
<add namespace=”System.Web.UI.Imaging” />
<add namespace=”System.Web.UI.WebControls” />
<add namespace=”System.Web.UI.WebControls.WebParts” />
<add namespace=”System.Web.UI.HtmlControls” />

</namespaces>

From this XML list, you can see that quite a number of namespaces are imported into each and every
one of your ASP.NET pages. Again, you can feel free to modify this selection in the web.config
.comments file or even make a similar selection of namespaces from within your application’s web
.config file.

Remember that importing a namespace into your ASP.NET page or user control gives you the opportu-
nity to use the classes without fully identifying the class name. For example, by importing the names-
pace System.Data.OleDB into the ASP.NET page, you can refer to classes within this namespace by
using the singular class name (OLEDBConnection instead of System.Data.OleDB.OLEDBConnection).

@Implements
The @Implements directive gets the ASP.NET page to implement a specified .NET Framework interface.
This directive supports only a single attribute: Interface.

The Interface attribute directly specifies the .NET Framework interface. When the ASP.NET page or
user control implements an interface, it has direct access to all its events, methods, and properties.

Here is an example of the @Implements directive:

<%@ Implements Interface=”System.Web.UI.IValidator” %>

@Register
The @Register directive associates aliases with namespaces and class names for notation in custom
server control syntax. You can see the use of the @Register directive when you drag and drop a user
control onto any of your .aspx pages. Dragging a user control onto the .aspx page causes Visual Studio
2005 to create an @Register directive at the top of the page. This registers your user control on the page
so that the control can then be accessed on the .aspx page by a specific name.

The @Register directive supports five attributes, as described in the following table.

63

Application and Page Frameworks

06_576100 ch03.qxd 10/6/05 9:12 PM Page 63

Attribute Description

Assembly The assembly you are associating with the TagPrefix.

Namespace The namespace to relate with TagPrefix.

Src The location of the user control.

TagName The alias to relate to the class name.

TagPrefix The alias to relate to the namespace.

Here’s an example of how to use the @Register directive to import a user control to an ASP.NET page:

<%@ Register TagPrefix=”MyTag” Namespace=”MyName:MyNamespace”
Assembly=”MyAssembly” %>

@Assembly
The @Assembly directive attaches assemblies, the building blocks of .NET applications, to an ASP.NET
page or user control as it compiles, thereby making all the assembly’s classes and interfaces available to
the page. This directive supports two attributes: Name and Src.

❑ Name: Enables you to specify the name of an assembly used to attach to the page files. The name
of the assembly should include the filename only, not the file’s extension. For instance, if the file
is MyAssembly.vb, the value of the name attribute should be MyAssembly.

❑ Src: Enables you to specify the source of the assembly file to use in compilation.

The following provides some examples of how to use the @Assembly directive:

<%@ Assembly Name=”MyAssembly” %>
<%@ Assembly Src=”MyAssembly.vb” %>

@PreviousPageType
This directive is used to specify the page from which any cross-page postings originate. Cross-page
posting between ASP.NET pages is explained later in the section “Cross-Page Posting” and again in
Chapter 19.

The @PreviousPageType directive is a new directive that works with the new cross-page posting capa-
bility that ASP.NET 2.0 provides. This simple directive contains only two possible attributes: TypeName
and VirtualPath:

❑ TypeName: Sets the name of the derived class from which the postback will occur.

❑ VirtualPath: Sets the location of the posting page from which the postback will occur.

64

Chapter 3

06_576100 ch03.qxd 10/6/05 9:12 PM Page 64

@MasterType
The @MasterType directive associates a class name to an ASP.NET page in order to get at strongly typed
references or members contained within the specified master page. This directive supports two attributes:

❑ TypeName: Sets the name of the derived class from which to get strongly typed references or
members.

❑ VirtualPath: Sets the location of the page from which these strongly typed references and
members will be retrieved.

Details of how to use the @MasterType directive are shown in Chapter 8. Here is an example of its use:

<%@ MasterType VirtualPath=”~/Wrox.master” %>

@OutputCache
The @OutputCache directive controls the output caching policies of an ASP.NET page or user control.
This directive supports the ten attributes described in the following table.

Attribute Description

CacheProfile Allows for a central way to manage an application’s cache profile. Use
the CacheProfile attribute to specify the name of the cache profile
detailed in the web.config.

DiskCacheable Specifies whether the cache can be stored to disk.

Duration The duration of time in seconds that the ASP.NET page or user control
is cached.

Location Location enumeration value. The default is Any. This is valid for
.aspx pages only and does not work with user controls (.ascx).
Other possible values include Client, Downstream, None, Server,
and ServerAndClient.

NoStore Specifies whether to send a no-store header with the page.

SqlDependency Enables a particular page to use SQL Server cache invalidation — a
new feature of ASP.NET 2.0.

VaryByControl Semicolon-separated list of strings used to vary the output cache of a
user control.

VaryByCustom String specifying the custom output caching requirements.

VaryByHeader Semicolon-separated list of HTTP headers used to vary the output
cache.

VaryByParam Semicolon-separated list of strings used to vary the output cache.

65

Application and Page Frameworks

06_576100 ch03.qxd 10/6/05 9:12 PM Page 65

Here is an example of how to use the @OutputCache directive:

<%@ OutputCache Duration=”180” VaryByParam=”None” %>

Remember that the Duration attribute specifies the amount of time in seconds during which this page is
to be stored in the system cache.

@Reference
The @Reference directive declares that another ASP.NET page or user control should be compiled along
with the active page or control. This directive supports just two attributes:

❑ TypeName: Sets the name of the derived class from which the active page will be referenced.

❑ VirtualPath: Sets the location of the page or user control from which the active page will be
referenced.

Here is an example of how to use the @Reference directive:

<%@ Reference VirtualPath=”~/MyControl.ascx” %>

ASP.NET Page Events
ASP.NET developers consistently work with various events in their server-side code. Many of the events
that they work with pertain to specific server controls. For instance, if you want to initiate some action
when the end user clicks a button on your Web page, you create a button-click event in your server-side
code, as shown in Listing 3-6.

Listing 3-6: A sample button-click event shown in VB

Protected Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click
Label1.Text = TextBox1.Text

End Sub

In addition to the server controls, developers also want to initiate actions at specific moments when
the ASP.NET page is being either created or destroyed. The ASP.NET page itself has always had a num-
ber of events for these instances. The following list shows you all the page events you could use in
ASP.NET 1.0/1.1:

❑ AbortTransaction

❑ CommitTransaction

❑ DataBinding

❑ Disposed

❑ Error

❑ Init

66

Chapter 3

06_576100 ch03.qxd 10/6/05 9:12 PM Page 66

❑ Load

❑ PreRender

❑ Unload

One of the more popular page events from this list is the Load event, which is used in VB as shown in
Listing 3-7.

Listing 3-7: Using the Page_Load event

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.Load

Response.Write(“This is the Page_Load event”)
End Sub

Besides the page events just shown, ASP.NET 2.0 adds the following new events:

❑ InitComplete: Indicates the initialization of the page is completed.

❑ LoadComplete: Indicates the page has been completely loaded into memory.

❑ PreInit: Indicates the moment immediately before a page is initialized.

❑ PreLoad: Indicates the moment before a page has been loaded into memory.

❑ PreRenderComplete: Indicates the moment directly before a page has been rendered in the
browser.

You construct these new page events just as you did the previously shown page events. For example,
you use the PreInit event as shown in Listing 3-8.

Listing 3-8: Using the new page events

VB
<script runat=”server” language=”vb”>

Protected Sub Page_PreInit(ByVal sender As Object, ByVal e As System.EventArgs)
Page.Theme = Request.QueryString(“ThemeChange”)

End Sub
</script>

C#
<script runat=”server”>

protected void Page_PreInit(object sender, System.EventArgs e)
{

Page.Theme = Request.QueryString[“ThemeChange”];
}

</script>

If you create an ASP.NET 2.0 page and turn on tracing, you can see the order in which the main page
events are initiated. They are fired in the following order:

67

Application and Page Frameworks

06_576100 ch03.qxd 10/6/05 9:12 PM Page 67

1. PreInit

2. Init

3. InitComplete

4. PreLoad

5. Load

6. LoadComplete

7. PreRender

8. PreRenderComplete

9. Unload

With the addition of these new choices, you can now work with the page and the controls on the page at
many different points in the page-compilation process. You see these useful new page events in code
examples throughout the book.

Dealing with PostBacks
When you’re working with ASP.NET pages, be sure you understand the page events just listed. They are
important because you place a lot of your page behavior inside these events at specific points in a page
lifecycle.

In Active Server Pages 3.0, developers had their pages post to other pages within the application. ASP.NET
pages typically post back to themselves in order to process events (such as a button-click event).

For this reason, you must differentiate between posts for the first time a page is loaded by the end user
and postbacks. A postback is just that — a posting back to the same page. The postback contains all the
form information collected on the initial page for processing if required.

Because of all the postbacks that can occur with an ASP.NET page, you want to know whether a request
is the first instance for a particular page or is a postback from the same page. You can make this check by
using the IsPostBack property of the Page class, as shown in the following example:

VB
If Page.IsPostBack = True Then

‘ Do processing
End If

C#
if (Page.IsPostBack == true) {

// Do processing
}

In addition to checking against a True or False value, you can also find out if the request is not a post-
back in the following manner:

68

Chapter 3

06_576100 ch03.qxd 10/6/05 9:12 PM Page 68

VB
If Not Page.IsPostBack Then

‘ Do processing
End If

C#
if (!Page.IsPostBack) {

// Do processing
}

Cross-Page Posting
One common feature in ASP 3.0 that is difficult to achieve in ASP.NET 1.0/1.1 is the capability to do
cross-page posting. Cross-page posting enables you to submit a form (say, Page1.aspx) and have this
form and all the control values post themselves to another page (Page2.aspx).

Traditionally, any page created in ASP.NET 1.0/1.1 simply posted to itself, and you handled the control
values within this page instance. You could differentiate between the page’s first request and any post-
backs by using the Page.IsPostBack property, as shown here:

If Page.IsPostBack Then
‘ deal with control values

End If

Even with this capability, many developers still wanted to be able to post to another page and deal with
the first page’s control values on that page. This is now possible in ASP.NET 2.0, and it is quite a simple
process.

For an example, create a page called Page1.aspx that contains a simple form. This page is shown in
Listing 3-9.

Listing 3-9: Page1.aspx

VB
<%@ Page Language=”VB” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<script runat=”server”>
Protected Sub Button1_Click(ByVal sender As Object, _

ByVal e As System.EventArgs)

Label1.Text = “Hello “ & TextBox1.Text & “
” & _
“Date Selected: “ & Calendar1.SelectedDate.ToShortDateString()

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

(continued)

69

Application and Page Frameworks

06_576100 ch03.qxd 10/6/05 9:12 PM Page 69

Listing 3-9: (continued)

<title>First Page</title>
</head>
<body>

<form id=”form1” runat=”server”>
Enter your name:

<asp:Textbox ID=”TextBox1” Runat=”server”>
</asp:Textbox>
<p>
When do you want to fly?

<asp:Calendar ID=”Calendar1” Runat=”server”></asp:Calendar></p>

<asp:Button ID=”Button1” Runat=”server” Text=”Submit page to itself”
OnClick=”Button1_Click” />

<asp:Button ID=”Button2” Runat=”server” Text=”Submit page to Page2.aspx”
PostBackUrl=”Page2.aspx” />

<p>
<asp:Label ID=”Label1” Runat=”server”></asp:Label></p>

</form>
</body>
</html>

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
protected void Button1_Click (object sender, System.EventArgs e)
{

Label1.Text = “Hello “ + TextBox1.Text + “
” +
“Date Selected: “ + Calendar1.SelectedDate.ToShortDateString();

}
</script>

The code from Page1.aspx, as shown in Listing 3-9, is quite interesting. First, two buttons are shown on
the page. Both buttons submit the form, but each submits the form to a different location. The first but-
ton submits the form to itself. This is the behavior that has been the default for ASP.NET 1.0/1.1. In fact,
nothing is different about Button1. It submits to Page1.aspx as a postback because of the use of the
OnClick property in the button control. A Button1_Click event on Page1.aspx handles the values
that are contained within the server controls on the page.

The second button, Button2, works quite differently. This button does not contain an OnClick event as
the first button did. Instead, it uses the PostBackUrl property. This property takes a string value that
points to the location of the file to which this page should post. In this case, it is Page2.aspx. This
means that Page2.aspx now receives the postback and all the values contained in the Page1.aspx con-
trols. Look at the code for Page2.aspx, shown in Listing 3-10.

Listing 3-10: Page2.aspx

VB
<%@ Page Language=”VB” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

70

Chapter 3

06_576100 ch03.qxd 10/6/05 9:12 PM Page 70

<script runat=”server”>
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Dim pp_Textbox1 As TextBox
Dim pp_Calendar1 As Calendar

pp_Textbox1 = CType(PreviousPage.FindControl(“Textbox1”), TextBox)
pp_Calendar1 = CType(PreviousPage.FindControl(“Calendar1”), Calendar)

Label1.Text = “Hello “ & pp_Textbox1.Text & “
” & _
“Date Selected: “ & pp_Calendar1.SelectedDate.ToShortDateString()

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Second Page</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:Label ID=”Label1” Runat=”server”></asp:Label>

</form>
</body>
</html>

C#
<%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<script runat=”server”>
protected void Page_Load(object sender, System.EventArgs e)
{

TextBox pp_Textbox1;
Calendar pp_Calendar1;

pp_Textbox1 = (TextBox)PreviousPage.FindControl(“Textbox1”);
pp_Calendar1 = (Calendar)PreviousPage.FindControl(“Calendar1”);

Label1.Text = “Hello “ + pp_Textbox1.Text + “
” + “Date Selected: “ +
pp_Calendar1.SelectedDate.ToShortDateString();

}
</script>

You have a couple of ways of getting at the values of the controls that are exposed from Page1.aspx
from the second page. The first option is displayed in Listing 3-10. To get at a particular control’s value
that is carried over from the previous page, you simply create an instance of that control type and popu-
late this instance using the FindControl method from the PreviousPage property. The String value
assigned to the FindControl method is the Id value, which is used for the server control from the pre-
vious page. After this is assigned, you can work with the server control and its carried-over values just
as if it had originally resided on the current page. You can see from the example that you can extract the
Text and SelectedDate properties from the controls without any problem.

Another way of exposing the control values from the first page (Page1.aspx) is to create a Property
for the control. This is shown in Listing 3-11.

71

Application and Page Frameworks

06_576100 ch03.qxd 10/6/05 9:12 PM Page 71

Listing 3-11: Exposing the values of the control from a Property

VB
<%@ Page Language=”VB” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<script runat=”server”>
Public ReadOnly Property pp_TextBox1() As TextBox

Get
Return TextBox1

End Get
End Property

Public ReadOnly Property pp_Calendar1() As Calendar
Get

Return Calendar1
End Get

End Property

Protected Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Label1.Text = “Hello “ & TextBox1.Text & “
” & _

“Date Selected: “ & Calendar1.SelectedDate.ToShortDateString()
End Sub

</script>

C#
<%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<script runat=”server”>
public TextBox pp_TextBox1
{

get
{

return TextBox1;
}

}

public Calendar pp_Calendar1
{

get
{

return Calendar1;
}

}

protected void Button1_Click (object sender, System.EventArgs e)
{

Label1.Text = “Hello “ + TextBox1.Text + “
” +
“Date Selected: “ + Calendar1.SelectedDate.ToShortDateString();

}
</script>

72

Chapter 3

06_576100 ch03.qxd 10/6/05 9:12 PM Page 72

Now that these properties are exposed on the posting page, the second page (Page2.aspx) can more
easily work with the server control properties that are exposed from the first page. Listing 3-12 shows
you how Page2.aspx works with these exposed properties.

Listing 3-12: Consuming the exposed properties from the first page

VB
<%@ Page Language=”VB” %>
<%@ PreviousPageType VirtualPath=”Page1.aspx” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<script runat=”server”>
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Label1.Text = “Hello “ & PreviousPage.pp_Textbox1.Text & “
” & _
“Date Selected: “ & _
PreviousPage.pp_Calendar1.SelectedDate.ToShortDateString()

End Sub
</script>

C#
<%@ Page Language=”C#” %>
<%@ PreviousPageType VirtualPath=”Page1.aspx” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<script runat=”server”>
protected void Page_Load(object sender, System.EventArgs e)
{

Label1.Text = “Hello “ + PreviousPage.pp_TextBox1.Text + “
” +
“Date Selected: “ +
PreviousPage.pp_Calendar1.SelectedDate.ToShortDateString();

}
</script>

In order to be able to work with the properties that Page1.aspx exposes, you have to strongly type the
PreviousPage property to Page1.aspx. To do this, you use the PreviousPageType directive. This
new directive allows you to specifically point to Page1.aspx with the use of the VirtualPath attribute.
When that is in place, notice that you can see the properties that Page1.aspx exposes through IntelliSense
from the PreviousPage property. This is illustrated in Figure 3-7.

As you can see, working with cross-page posting is straightforward. Notice that, when you are cross-
posting from one page to another, you aren’t restricted to working only with the postback on the second
page. In fact, you can still create methods on Page1.aspx that work with the postback before moving
onto Page2.aspx. To do this, you simply add an OnClick event for the button in Page1.aspx and a
method. You also assign a value for the PostBackUrl property. You can then work with the postback on
Page1.aspx and then again on Page2.aspx.

73

Application and Page Frameworks

06_576100 ch03.qxd 10/6/05 9:12 PM Page 73

Figure 3-7

What happens if someone requests Page2.aspx before she works her way through Page1.aspx? It is
actually quite easy to determine if the request is coming from Page1.aspx or if someone just hit
Page2.aspx directly. You can work with the request through the use of the IsCrossPagePostBack
property that is quite similar to the IsPostBack property from ASP.NET 1.0/1.1. The
IsCrossPagePostBack property enables you to check whether the request is from Page1.aspx. Listing
3-13 shows an example of this.

Listing 3-13: Using the IsCrossPagePostBack property

VB
<%@ Page Language=”VB” %>
<%@ PreviousPageType VirtualPath=”Page1.aspx” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<script runat=”server”>
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

If Page.IsCrossPagePostBack Then
Label1.Text = “Hello “ & PreviousPage.pp_Textbox1.Text & “
” & _

74

Chapter 3

06_576100 ch03.qxd 10/6/05 9:12 PM Page 74

“Date Selected: “ & _
PreviousPage.pp_Calendar1.SelectedDate.ToShortDateString()

Else
Response.Redirect(“Page1.aspx”)

End If
End Sub

</script>

C#
<%@ Page Language=”C#” %>
<%@ PreviousPageType VirtualPath=”Page1.aspx” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<script runat=”server”>
protected void Page_Load(object sender, System.EventArgs e)
{

if (Page.IsCrossPagePostBack) {
Label1.Text = “Hello “ + PreviousPage.pp_Textbox1.Text + “
” +

“Date Selected: “ +
PreviousPage.pp_Calendar1.SelectedDate.ToShortDateString();

}
else
{

Response.Redirect(“Page1.aspx”);
}

}
</script>

ASP.NET Application Folders
When you create ASP.NET applications, notice that ASP.NET 2.0 now uses a file-based approach. When
working with ASP.NET 2.0, you can add as many files and folders as you want within your application
without recompiling each and every time a new file is added to the overall solution. ASP.NET 2.0 now
includes the capability to automatically precompile your ASP.NET applications dynamically.

ASP.NET 1.0/1.1 compiled everything in your solution into a DLL. This is no longer necessary because
ASP.NET 2.0 applications have a defined folder structure. By using the ASP.NET 2.0 defined folders, you
can have your code automatically compiled for you, your application themes accessible throughout your
application, and your globalization resources available whenever you need them. Take a look at each of
these defined folders to see how they work. The first is the \App_Code folder.

\App_Code Folder
The \App_Code folder is meant to store your classes, .wsdl files, and typed datasets. Any of these items
stored in this folder are then automatically available to all the pages within your solution. The nice thing
about the \App_Code folder is that when you place something inside this folder, Visual Studio 2005
automatically detects this and compiles it if it is a class (.vb or .cs), automatically creates your XML

75

Application and Page Frameworks

06_576100 ch03.qxd 10/6/05 9:12 PM Page 75

Web service proxy class (from the .wsdl file), or automatically creates a typed dataset for you from your
.xsd files. After the files are automatically compiled, these items are then instantaneously available to
any of your ASP.NET pages that are in the same solution. Look at how to employ a simple class in your
solution using the \App_Code folder.

The first step is to create an \App_Code folder. To do this, simply right-click the solution and choose Add
Folder ➪ App_Code Folder. Right away you will notice that Visual Studio 2005 treats this folder differ-
ently than the other folders in your solution. The \App_Code folder is shown in a different color (gray)
with a document pictured next to the folder icon. See Figure 3-8.

Figure 3-8

After the \App_Code folder is in place, right-click the folder and select Add New Item. The Add New
Item dialog that appears doesn’t give you many options for the types of files that you can place within
this folder. The available options include a Class file, a Text file, a DataSet, a Report, and a Class
Diagram if you are using Visual Studio 2005. Visual Web Developer 2005 Express Edition offers only the
Class file, Text file, and DataSet file. For the first example, select the file of type Class and name the class
Calculator.vb or Calculator.cs. Listing 3-14 shows how the Calculator class should appear.

Listing 3-14: The Calculator class

VB
Imports Microsoft.VisualBasic

Public Class Calculator
Public Function Add(ByVal a As Integer, ByVal b As Integer) As Integer

Return (a + b)
End Function

End Class

76

Chapter 3

06_576100 ch03.qxd 10/6/05 9:12 PM Page 76

C#
using System;

public class Calculator
{

public int Add(int a, int b)
{

return (a + b);
}

}

What’s next? Just save this file, and it is now available to use in any pages that are in your solution. To
see this in action, create a simple .aspx page that has just a single Label server control. Listing 3-15
shows you the code to place within the Page_Load event to make this new class available to the page.

Listing 3-15: An .aspx page that uses the Calculator class

VB
<%@ Page Language=”VB” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<script runat=”server”>
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Dim myCalc As New Calculator
Label1.Text = myCalc.Add(12, 12)

End Sub
</script>

C#
<%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<script runat=”server”>
protected void Page_Load(object sender, System.EventArgs e)
{

Calculator myCalc = new Calculator();
Label1.Text = myCalc.Add(12, 12).ToString();

}
</script>

When you run this .aspx page, notice that it utilizes the Calculator class without any problem, with
no need to compile the class before use. In fact, right after saving the Calculator class in your solution
or moving the class to the \App_Code folder, you also instantaneously receive IntelliSense capability on
the methods that the class exposes (as illustrated in Figure 3-9).

77

Application and Page Frameworks

06_576100 ch03.qxd 10/6/05 9:12 PM Page 77

Figure 3-9

To see how Visual Studio 2005 works with the \App_Code folder, open the Calculator class again in
the IDE and add a Subtract method. Your class should now appear as shown in Listing 3-16.

Listing 3-16: Adding a Subtract method to the Calculator class

VB
Imports Microsoft.VisualBasic

Public Class Calculator
Public Function Add(ByVal a As Integer, ByVal b As Integer) As Integer

Return (a + b)
End Function

Public Function Subtract(ByVal a As Integer, ByVal b As Integer) As Integer
Return (a - b)

End Function
End Class

C#
using System;

public class Calculator

78

Chapter 3

06_576100 ch03.qxd 10/6/05 9:12 PM Page 78

{
public int Add(int a, int b)
{

return (a + b);
}

public int Subtract(int a, int b)
{

return (a - b);
}

}

After you have added the Subtract method to the Calculator class, save the file and go back to your
.aspx page. Notice that the class has been recompiled by the IDE, and the new method is now available
to your page. You see this directly in IntelliSense. Figure 3-10 shows this in action.

Everything placed in the \App_Code folder is compiled into a single assembly. The class files placed
within the \App_Code folder are not required to use a specific language. This means that even if all the
pages of the solution are written in Visual Basic 2005, the Calculator class in the \App_Code folder of
the solution can be built in C# (Calculator.cs).

Figure 3-10

79

Application and Page Frameworks

06_576100 ch03.qxd 10/6/05 9:12 PM Page 79

Because all the classes contained in this folder are built into a single assembly, you cannot have classes of
different languages sitting in the root \App_Code folder, as in the following example:

\App_Code
Calculator.cs
AdvancedMath.vb

Having two classes made up of different languages in the \App_Code folder (as shown here) causes
an error to be thrown. It is impossible for the assigned compiler to work with two different languages.
Therefore, in order to be able to work with multiple languages in your \App_Code folder, you must
make some changes to the folder structure and to the web.config file.

The first step is to add two new subfolders to the \App_Code folder — a \VB folder and a \CS folder.
This gives you the following folder structure:

\App_Code
\VB

Add.vb
\CS

Subtract.cs

This still won’t correctly compile these class files into separate assemblies, at least not until you make
some additions to the web.config file. Most likely, you don’t have a web.config file in your solution
at this moment, so add one through the Solution Explorer. After it is added, change the <compilation>
node so that it is structured as shown in Listing 3-17.

Listing 3-17: Structuring the web.config file so that classes in the \App_Code folder
can use different languages

<compilation>
<codeSubDirectories>

<add directoryName=”VB”></add>
<add directoryName=”CS”></add>

</codeSubDirectories>
</compilation>

Now that this is in place in your web.config file, you can work with each of the classes in your ASP.NET
pages. Also, any C# class placed in the CS folder is now automatically compiled just like any of the classes
placed in the VB folder. Because you can add these directories in the web.config file, you are not required
to name them VB and CS as we did; you can use whatever name tickles your fancy.

\App_Data Folder
The \App_Data folder holds the data stores utilized by the application. It is a good spot to centrally
store all the data stores your application might use. The \App_Data folder can contain Microsoft SQL
Express files (.mdf files), Microsoft Access files (.mdb files), XML files, and more.

80

Chapter 3

06_576100 ch03.qxd 10/6/05 9:12 PM Page 80

The user account utilized by your application will have read and write access to any of the files con-
tained within the \App_Data folder. By default, this is the ASPNET account. Another reason for storing
all your data files in this folder is that much of the ASP.NET system — from the membership and role
management systems to the GUI tools such as the ASP.NET MMC snap-in and ASP.NET Web Site
Administration Tool — is built to work with the \App_Data folder.

\App_Themes Folder
Themes are a new way of providing a common look-and-feel to your site across every page. You imple-
ment a theme by using a .skin file, CSS files, and images used by the server controls of your site. All
these elements can make a theme, which is then stored in the \App_Themes folder of your solution. By
storing these elements within the \App_Themes folder, you ensure that all the pages within the solution
can take advantage of the theme and easily apply its elements to the controls and markup of the page.
Themes are discussed in great detail in Chapter 9 of this book.

\App_GlobalResources Folder
Resource files are string tables that can serve as data dictionaries for your applications when these appli-
cations require changes to content based on things such as changes in culture. You can add Assembly
Resource Files (.resx) to this folder, and they are dynamically compiled and made part of the solution
for use by all your .aspx pages in the application. When using ASP.NET 1.0/1.1, you had to use the
resgen.exe tool and also had to compile your resource files to a .dll or .exe for use within your solu-
tion. Now it is considerably easier to deal with resource files in ASP.NET 2.0.

In addition to strings, you can also add images and other files to your resource files. For an example
of how to use resource files to create a multilingual ASP.NET 2.0 application, first create the
\App_GlobalResources folder in your application. For this example, create two resource files in this
folder: Resource.resx and Resource.fi-FI.resx. The first file, Resource.resx, is the default lan-
guage file using American English. The second file is for the same text, but in the Finnish language.
Hence, this file uses fi-FI in its name. When someone with a browser culture of fi-FI invokes the
page, he sees the information that comes from this file (Resource.fi-FI.resx). Everyone else who
comes to the site gets the information that comes from the other file (Resource.resx).

Notice (as shown in Figure 3-11) that you can actually do a lot with .resx files. The idea is to create a
table of the items to be localized (such as text, images, and files). For this example, you can stick to text.

The Resource.resx file should have the following structure:

Name Value

Answer Hello there
PageTitle Sample Page
Question What is your name?

For the Resource.fi-FI.resx file, use the following structure:

Name Value

Answer Hei
PageTitle Näytesivu
Question Mikä sinun nimi on?

81

Application and Page Frameworks

06_576100 ch03.qxd 10/6/05 9:12 PM Page 81

Figure 3-11

To use these files, create a simple .aspx page with the code from Listing 3-18.

Listing 3-18: A simple ASP.NET page that uses resource files

VB
<%@ Page Language=”VB” Culture=”Auto” UICulture=”Auto” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<script runat=”server”>
Protected Sub Page_Load(ByVal sender As Object, _

ByVal e As System.EventArgs)

Page.Title = Resources.Resource.PageTitle
End Sub

Protected Sub Button1_Click(ByVal sender As Object, _
ByVal e As System.EventArgs)

Label1.Text = Resources.Resource.Answer & “ “ & Textbox1.Text
End Sub

82

Chapter 3

06_576100 ch03.qxd 10/6/05 9:12 PM Page 82

</script>
<html xmlns=”http://www.w3.org/1999/xhtml” >
<head id=”Head1” runat=”server”>

<title></title>
</head>
<body>

<form id=”Form1” runat=”server”>
<p><%= Resources.Resource.Question %></p>

<asp:TextBox ID=”Textbox1” Runat=”server”></asp:TextBox>

<asp:Button ID=”Button1” Runat=”server” Text=”Submit”
OnClick=”Button1_Click” />

<p><asp:Label ID=”Label1” Runat=”server”></asp:Label></p>
</form>

</body>
</html>

C#
<%@ Page Language=”C#” Culture=”Auto” UICulture=”Auto” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<script runat=”server”>
protected void Page_Load(object sender, System.EventArgs e)
{

Page.Title = Resources.Resource.PageTitle;
}

protected void Button1_Click(object sender, System.EventArgs e)
{

Label1.Text = Resources.Resource.Answer + “ “ + Textbox1.Text;
}

</script>

When this is run, you get the appropriate text based upon the culture setting in your browser. If this set-
ting is not fi-FI, you get the American English text. The page output is shown in Figure 3-12.

Figure 3-12

83

Application and Page Frameworks

06_576100 ch03.qxd 10/6/05 9:12 PM Page 83

In order to see the Finnish text, change your preferred culture in the Microsoft Internet Explorer browser
by choosing Tools ➪ Internet Options. This pulls up the Internet Options dialog. From the first tab,
General, you can click the Languages button to pull up a dialog that enables you to specify the Finnish
language as your preferred language choice. After you have added the Finnish language to the list, be
sure that it is the uppermost choice in the dialog. You can do this by highlighting this choice and press-
ing the Move Up button until it is the uppermost choice.

After this is in place, run the page. You see the Finnish language output shown in Figure 3-13.

Figure 3-13

\App_LocalResources
As you saw with the \App_GlobalResources folder, it is now pretty simple to incorporate resources
that can be used application-wide. If you are not interested in constructing application-wide resources,
however, but instead are interested in resources that can be used for a single .aspx page only, you want
to turn to the \App_LocalResources folder.

You can add resource files that are page-specific to the \App_LocalResources folder by constructing
the name of the .resx file in the following manner:

❑ Default.aspx.resx

❑ Default.aspx.fi.resx

❑ Default.aspx.ja.resx

❑ Default.aspx.en-gb.resx

Now, the resource declarations used on the Default.aspx page will be retrieved from the appropriate
file found in the \App_LocalResources folder. By default, the Default.aspx.resx resource file will
be used if another match is not found. If the client is using a culture specification of fi-FI (Finnish),
however, the Default.aspx.fi.resx file will be used instead.

84

Chapter 3

06_576100 ch03.qxd 10/6/05 9:12 PM Page 84

\App_WebReferences
The \App_WebReferences folder is a new name for the previous Web References folder used in previ-
ous versions of ASP.NET. Now you can use the \App_WebReferences folder and have automatic access
to the remote Web services referenced from your application. Web services in ASP.NET are covered in
Chapter 26.

\App_Browsers
The \App_Browsers folder holds .browser files, which are XML files used to identity the browsers
making requests to the application and understanding the capabilities these browsers have. You can find
a list of globally accessible .browser files at C:\Windows\Microsoft.NET\Framework\v2.0xxxxx\
CONFIG\Browsers. In addition, if you want to change any part of these default browser definition files,
just copy the appropriate .browser file from the Browsers folder to your application’s \App_Browsers
folder and change the definition.

Compilation
You already saw how Visual Studio 2005 compiles pieces of your application as you work with them
(for instance, by placing a class in the \App_Code folder). The other parts of the application, such as
the .aspx pages, can be compiled just as they were in ASP.NET 1.0/1.1 by referencing the pages in the
browser.

When an ASP.NET page is referenced in the browser for the first time, the request is passed to the
ASP.NET parser that creates the class file in the language of the page. It is passed to the ASP.NET parser
based on the file’s extension (.aspx) because ASP.NET realizes that this file extension type is meant for
its handling and processing. After the class file has been created, the class file is compiled into a DLL and
then written to the disk of the Web server. At this point, the DLL is instantiated and processed, and an
output is generated for the initial requester of the ASP.NET page. This is detailed in Figure 3-14.

Figure 3-14

Request

Response

Parse Generate

Compile

Instantiate,
process, and
render

ASP.NET
Engine

Page
Class

Code-
Behind
Class

Generated
Page
Class

.ASPX
File

85

Application and Page Frameworks

06_576100 ch03.qxd 10/6/05 9:12 PM Page 85

On the next request, great things happen. Instead of going through the entire process again for the sec-
ond and respective requests, the request simply causes an instantiation of the already-created DLL,
which sends out a response to the requester. This is illustrated in Figure 3-15.

Figure 3-15

Because of the mechanics of this process, if you made changes to your .aspx code-behind pages, you
found it necessary to recompile your application. This was quite a pain if you had a larger site and didn’t
want your end users to experience the extreme lag that occurs when an .aspx page is referenced for the
first time after compilation. Many developers, consequently, began to develop their own tools that auto-
matically go out and hit every single page within their application to remove this first-time lag hit from
the end user’s browsing experience.

ASP.NET 2.0 introduces the technology to precompile your entire application with a single command
that you can issue directly in the browser. This type of compilation is referred to as in-place precompilation.
In order to precompile your entire ASP.NET application, pull up one of the pages in the browser and
replace the page name with precompile.axd. So, if you are working with the Web server that is built
into Visual Studio 2005, your request is structured in the following format:

http://[host]:[port]/[Application Name]/precompile.axd

If you are using IIS as the Web server, your request is structured in the following format:

http://[host]/[Application Name]/precompile.axd

You get a message stating that the precompilation was successful. The other great thing about this pre-
compilation capability is that you can also use it to find any errors on any of the ASP.NET pages in your

Request

Response

Parse Generate

Compile

Instantiate,
process, and
render

ASP.NET
Engine

Page
Class

Code-
Behind
Class

Generated
Page
Class

.ASPX
File

2nd Request
Instantiation

2nd Request

86

Chapter 3

06_576100 ch03.qxd 10/6/05 9:12 PM Page 86

application. Because it hits each and every page, if one of the pages contains an error that won’t be trig-
gered until runtime, you get notification of the error immediately as you invoke precompile.axd.

The next precompilation option is commonly referred to as precompilation for deployment. This is an out-
standing new addition to ASP.NET that enables you to compile your application down to some DLLs,
which can then be deployed to customers, partners, or elsewhere for your own use. Not only are mini-
mal steps required to do this, but after your application is compiled, you only have to move around the
DLL and some placeholder files for the site to work. This means that your Web site code is completely
removed and placed in the DLL when deployed.

To precompile your application for deployment, you must use the aspnet_compiler.exe tool that now
comes with ASP.NET 2.0. You navigate to the tool using the Command window. Open the Command
window and navigate to C:\Windows\Microsoft.NET\Framework\v2.0.xxxxx\. When you are
there, you can work with the aspnet_compiler tool.

Before you do, however, create a folder in your root drive called, for example, Wrox. This folder is the
one you ask the compiler to output to. When it is in place, you can return to the compiler tool and give
the following command:

aspnet_compiler -v [Application Name] –p [Physical Location] [Target]

So, if you have an application called INETA located at C:\Websites\INETA, you use the following com-
mands:

aspnet_compiler –v /INETA –p C:\Websites\INETA C:\Wrox

Press the Enter key, and the compiler either tells you that it has a problem with one of the command
parameters or that it was successful (shown in Figure 3-16). If it was successful, you can see the output
placed in the target directory.

Figure 3-16

In the example just shown, -v is a command for the virtual path of the application — which is provided
by using /INETA. The next command is –p, which is pointing to the physical path of the application. In
this case, it is C:\Websites\INETA. Finally, the last bit, C:\Wrox, is the location of the compiler output.
The following table describes the possible commands for the aspnet_compiler.exe tool.

87

Application and Page Frameworks

06_576100 ch03.qxd 10/6/05 9:12 PM Page 87

Command Description

-m Specifies the full IIS metabase path of the application. If you use the -m
command, you cannot use the -v or -p command.

-v Specifies the virtual path of the application to be compiled. If you also
use the -p command, the physical path is used to find the location of
the application.

-p Specifies the physical path of the application to be compiled. If this is
not specified, the IIS metabase is used to find the application.

targetDir Specifies the target directory where the compiled files should be
placed. If this is not specified, the output files are placed in the appli-
cation directory.

After compiling the application, you can go to C:\Wrox to see the output. Here, you see all the files and
the file structures that were in the original application. But if you look at the content of one of the files,
notice that the file is simply a placeholder. In the actual file, you find the following comment:

This is a marker file generated by the precompilation tool
and should not be deleted!

In fact, you find a Code.dll file in the bin folder where all the page code is located. Because it is in a
DLL file, it provides great code obfuscation as well. From here on, all you do is move these files to
another server using FTP or Windows Explorer, and you can run the entire Web application from these
files. When you have an update to the application, you simply provide a new set of compiled files. A
sample output is displayed in Figure 3-17.

Figure 3-17

Note that this compilation process doesn’t compile every type of Web file. In fact, it compiles only the
ASP.NET-specific file types and leaves out of the compilation process the following types of files:

88

Chapter 3

06_576100 ch03.qxd 10/6/05 9:12 PM Page 88

❑ HTML files

❑ XML files

❑ XSD files

❑ web.config files

❑ Text files

You can’t do much to get around this, except in the case of the HTML files and the text files. For these
file types, just change the file extension of these file types to .aspx; they are then compiled into the
Code.dll like all the other ASP.NET files.

Global.asax
If you add a new item to your ASP.NET application, you get the Add New Item dialog. From here,
you can see that you can add a Global Application Class to your applications. This adds a Global.asax
file. This file is used by the application to hold application-level events, objects, and variables — all of
which are accessible application-wide. Active Server Pages developers had something similar with the
Global.asa file.

Your ASP.NET applications can have only a single Global.asax file. This file supports a number of
items. When it is created, you are given the following template:

<%@ Application Language=”VB” %>

<script runat=”server”>

Sub Application_Start(ByVal sender As Object, ByVal e As EventArgs)
‘ Code that runs on application startup

End Sub

Sub Application_End(ByVal sender As Object, ByVal e As EventArgs)
‘ Code that runs on application shutdown

End Sub

Sub Application_Error(ByVal sender As Object, ByVal e As EventArgs)
‘ Code that runs when an unhandled error occurs

End Sub

Sub Session_Start(ByVal sender As Object, ByVal e As EventArgs)
‘ Code that runs when a new session is started

End Sub

Sub Session_End(ByVal sender As Object, ByVal e As EventArgs)
‘ Code that runs when a session ends.
‘ Note: The Session_End event is raised only when the sessionstate mode
‘ is set to InProc in the Web.config file. If session mode is
‘ set to StateServer
‘ or SQLServer, the event is not raised.

End Sub

</script>

89

Application and Page Frameworks

06_576100 ch03.qxd 10/6/05 9:12 PM Page 89

Just as you can work with page-level events in your .aspx pages, you can work with overall application
events from the Global.asax file. In addition to the events listed in this code example, the following list
details some of the events you can structure inside this file:

❑ Application_Start: Called when the application receives its very first request. It is an ideal
spot in your application to assign any application-level variables or state that must be main-
tained across all users.

❑ Session_Start: Similar to the Application_Start event except that this event is fired when an
individual user accesses the application for the first time. For instance, the Application_Start
event fires once when the first request comes in, which gets the application going, but the
Session_Start is invoked for each end user who requests something from the application for
the first time.

❑ Application_BeginRequest: Although it not listed in the preceding template provided by
Visual Studio 2005, the Application_BeginRequest event is triggered before each and every
request that comes its way. This means that when a request comes into the server, before this
request is processed, the Application_BeginRequest is triggered and dealt with before any
processing of the request occurs.

❑ Application_AuthenticateRequest: Triggered for each request and enables you to set up
custom authentications for a request.

❑ Application_Error: Triggered when an error is thrown anywhere in the application by any
user of the application. This is an ideal spot to provide application-wide error handling or an
event recording the errors to the server’s event logs.

❑ Session_End: When running in InProc mode, this event is triggered when an end user leaves
the application.

❑ Application_End: Triggered when the application comes to an end. This is an event that most
ASP.NET developers won’t use that often because ASP.NET does such a good job of closing and
cleaning up any objects that are left around.

In addition to the global application events that the Global.asax file provides access to, you can also
use directives in this file as you can with other ASP.NET pages. The Global.asax file allows for the
following directives:

❑ @Application

❑ @Assembly

❑ @Import

These attributes perform in the same way when they are used with other ASP.NET page types.

Summary
This chapter covered a lot of ground. It discussed some of the issues concerning ASP.NET applications as
a whole and the choices you have when building and deploying these new applications. With the help of
Visual Studio 2005, you now have options about which Web server to use when building your applica-
tion and whether to work locally or remotely through the new built-in FTP capabilities.

90

Chapter 3

06_576100 ch03.qxd 10/6/05 9:12 PM Page 90

ASP.NET 2.0 and Visual Studio 2005 make it easy to build your pages using an inline coding model or to
select a new and better code-behind model that is simpler to use and easier to deploy. You also learned
about the new cross-posting capabilities and the new fixed folders that ASP.NET 2.0 has incorporated to
make your life easier. These folders make their resources available dynamically with no work on your
part. Finally, you saw some of the outstanding new compilation options that you have at your disposal.

As you worked through some of the examples, you may have been thinking, “WOW!” But wait . . .
there’s plenty more to come!

91

Application and Page Frameworks

06_576100 ch03.qxd 10/6/05 9:12 PM Page 91

06_576100 ch03.qxd 10/6/05 9:12 PM Page 92

ASP.NET Server Controls
and Client-Side Scripts

As you already know from earlier chapters, ASP.NET evolved from Microsoft’s earlier Web tech-
nology called Active Server Pages (referred to as ASP then and classic ASP today). This model was
completely different from today’s ASP.NET. Classic ASP used interpreted languages to accomplish
the construction of the final HTML document before it was sent to the browser. ASP.NET, on the
other hand, uses true compiled languages to accomplish the same task. The idea of building Web
pages based on objects in a compiled environment is one of the main focuses of this chapter.

This chapter looks at how to use a particular type of object in ASP.NET pages called a server con-
trol, and how you can profit from using this control. We also introduce a particular type of server
control — the HTML server control. The chapter also demonstrates how you can use JavaScript in
ASP.NET pages to modify the behavior of server controls.

The rest of this chapter shows you how to use and manipulate server controls, both visually and
programmatically, to help with the creation of your ASP.NET pages.

ASP.NET Server Controls
In the past, one of the difficulties of working with classic ASP was that you were completely in
charge of the entire HTML output from the browser by virtue of the server-side code you wrote.
Although this might seem ideal, it created a problem because each browser interpreted the HTML
given to it in a slightly different manner.

The two main browsers out there at the time were Microsoft’s Internet Explorer and Netscape
Navigator. This meant that not only did developers have to be cognizant of the browser type to
which that they were outputting HTML, but they also had to take into account which versions of
those particular browsers might be making a request to their application. Some developers resolved
the issue by creating two separate applications. When an end user made an initial request to the
application, the code made a browser check to see what browser type was making the request.

07_576100 ch04.qxd 10/6/05 9:15 PM Page 93

Then, the ASP page would redirect the request down one path for an IE user, or down another path for a
Netscape user.

Because requests came from so many different versions of the same browser, the developer often
designed for the lowest possible version that might be used to visit the site. Essentially, everyone lost out
by using the lowest common denominator as the target. This technique ensured that the page was ren-
dered properly in most browsers making a request, but it also forced the developer to dummy-down his
application. If applications were always built for the lowest common denominator, the developer could
never take advantage of some of the more advanced features offered by newer browser versions.

ASP.NET server controls overcome these obstacles. When using the server controls provided by
ASP.NET, you are not specifying the HTML to be output from your server-side code. Rather, you are
specifying the functionality you want to see in the browser and letting the ASP.NET decide for you on
the output to be sent to the browser.

When a request comes in, ASP.NET examines the request to see which browser type is making the
request, as well as the version of the browser, and then it produces HTML output specific to that
browser. This process is accomplished by a User Agent retrieved from the header of the HTTP Request
to sniff the browser. This means that you can now build for the best browsers out there without worrying
about whether features will work in the browsers making requests to your applications. Because of the
previously described capabilities, you will often hear these controls referred to as smart controls.

Types of Server Controls
ASP.NET provides two distinct types of server controls — HTML server controls and Web server con-
trols. Each type of control is quite different and, as you work with ASP.NET, you will see that much of
the focus is on the Web server controls. This doesn’t mean that HTML server controls have no value.
They do provide you with many capabilities — some that Web server controls do not give you.

You might be asking yourself which is the better control type to use. The answer is that it really depends
on what you are trying to achieve. HTML server controls map to specific HTML elements. You can place
an HtmlTable server control on your ASP.NET page that works dynamically with a <table> element.
On the other hand, Web server controls map to specific functionality that you want on your ASP.NET
pages. This means an <asp:Panel> control might use a <table> or an <IFrame> element — it really
depends on the capability of the browser making the request.

The following table summarizes some advice on when to use HTML server controls and when to use
Web server controls.

Control Type When to Use This Control Type

HTML Server When converting traditional ASP 3.0 Web pages to ASP.NET Web pages
and speed of completion is a concern. It is a lot easier to change your HTML
elements to HTML server controls than it is to change them to Web server
controls.

When you prefer a more HTML-type programming model.

When you want to explicitly control the code that is generated for the
browser.

94

Chapter 4

07_576100 ch04.qxd 10/6/05 9:15 PM Page 94

Control Type When to Use This Control Type

Web Server When you require a richer set of functionality to perform complicated page
requirements.

When you are developing Web pages that will be viewed by a multitude of
browser types and that require different code based upon these types.

When you prefer a more Visual Basic-–type programming model that is
based on the use of controls and control properties.

Of course, some developers like to separate certain controls from the rest and place them in their own
categories. For instance, you may see references to the following types of controls:

❑ List controls: These control types allow data to be bound to them for display purposes of
some kind.

❑ Rich controls: Controls, such as the Calendar control, that display richer content and capabili-
ties than other controls.

❑ Validation controls: Controls that interact with other form controls to validate the data that
they contain.

❑ Mobile controls: Controls that are specific for output to devices such as mobile phones, PDAs,
and more.

❑ User controls: These are not really controls, but page templates that you can work with as you
would a control on your ASP.NET page.

❑ Custom controls: Controls that you build yourself and use in the same manner as the supplied
ASP.NET server controls that come with the default install of ASP.NET 2.0.

When you are deciding between HTML server controls and Web server controls, remember that no hard
and fast rules exist about which type to use. You might find yourself working with one control type
more than another, but certain features are available in one control type that might not be available in
the other. If you are trying to accomplish a specific task and you don’t see a solution with the control
type you are using, take a look at the other control type because it may very well hold the answer. Also
realize that you can mix and match these control types. Nothing says that you cannot use both HTML
server controls and Web server controls on the same page or within the same application.

Building with Server Controls
You have a couple of ways to use server controls to construct your ASP.NET pages. You can actually use
tools that are specifically designed to work with ASP.NET 2.0 that enable you to visually drag and drop
controls onto a design surface and manipulate the behavior of the control. You can also work with server
controls directly through code input.

95

ASP.NET Server Controls and Client-Side Scripts

07_576100 ch04.qxd 10/6/05 9:15 PM Page 95

Working with Server Controls on a Design Surface
Visual Studio 2005 enables you to visually create an ASP.NET page by dragging and dropping visual
controls onto a design surface. You can get to this visual design option by clicking the Design tab at the
bottom of the IDE when viewing your ASP.NET page. In this view, you also can place the cursor on the
page in the location where you want the control to appear and then double-click the control you want in
the Toolbox window of Visual Studio. Unlike previous versions of Visual Studio, Visual Studio 2005 does
a really good job of not touching your code when switching between the Design and Source tabs.

In the Design view of your page, you can highlight a control and the properties for the control appear in
the Properties window. For example, Figure 4-1 shows a Button control selected in the design panel, and
its properties are displayed in the Properties window on the lower right.

Changing the properties in the window changes the appearance or behavior of the highlighted control.
Because all controls inherit from a specific base class (WebControl), you can also highlight multiple con-
trols at the same time and change the base properties of all the controls at once. You do this by holding
down the Ctrl key as you make your control selections.

Figure 4-1

96

Chapter 4

07_576100 ch04.qxd 10/6/05 9:15 PM Page 96

Coding Server Controls
You also can work from the Code page directly. Because many developers prefer this, it is the default
when you first create your ASP.NET page. Hand-coding your own ASP.NET pages may seem to be a
slower approach than simply dragging and dropping controls onto a design surface, but it isn’t as slow
as you might think. You get plenty of assistance in coding your applications from Visual Studio 2005. As
you start typing in Visual Studio, the IntelliSense features kick in and help you with code auto-completion.
Figure 4-2, for example, shows an IntelliSense drop-down list of possible code completion statements
that appeared as the code was typed.

The IntelliSense focus is on the most commonly used attribute or statement for the control or piece of
code that you are working with. Using IntelliSense effectively as you work is a great way to code with
great speed.

As with Design view, the Source view of your page lets you drag and drop controls from the Toolbox
onto the code page itself. For example, dragging and dropping a TextBox control onto the code page pro-
duces the same results as dropping it on the design page:

<asp:TextBox ID=”TextBox1” Runat=”server”></asp:TextBox>

Figure 4-2

97

ASP.NET Server Controls and Client-Side Scripts

07_576100 ch04.qxd 10/6/05 9:15 PM Page 97

You can also highlight a control in Source view or simply place your cursor in the code statement of the
control, and the Properties window displays the properties of the control. Now, you can apply proper-
ties directly in the Properties window of Visual Studio, and these properties are dynamically added to
the code of your control.

Working with Server Control Events
As discussed in Chapter 1, ASP.NET uses more of a traditional Visual Basic event model than classic
ASP. Instead of working with interpreted code, you are actually coding an event-based structure for
your pages. Classic ASP used an interpreted model — when the server processed the Web page, the code
of the page was interpreted line-by-line in a linear fashion where the only “event” implied was the page
loading. This meant that occurrences you wanted to get initiated early in the process were placed at the
top of the page.

Today, ASP.NET uses an event-driven model. Items or coding tasks get initiated only when a particular
event occurs. A common event in the ASP.NET programming model is Page_Load, which is illustrated
in Listing 4-1.

Listing 4-1: Working with specific page events

VB
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

‘ Code actions here
End Sub

C#
protected void Page_Load(object sender, EventArgs e)
{

// Code actions here
}

Not only can you work with the overall page — as well as its properties and methods at particular
moments in time through page events — but you can also work with the server controls contained on
the page through particular control events. For example, one common event for a button on a form is
Button_Click, which is illustrated in Listing 4-2.

Listing 4-2: Working with a Button Click event

VB
Protected Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)

‘ Code actions here
End Sub

C#
protected void Button1_Click(object sender, EventArgs e)
{

// Code actions here
}

The event shown in Listing 4-2 is fired only when the end user actually clicks the button on the form that
has an OnClick attribute value of Button1_Click. So, not only does the event handler exist in the

98

Chapter 4

07_576100 ch04.qxd 10/6/05 9:15 PM Page 98

server-side code of the ASP.NET page, but that handler is also hooked up using the OnClick property of
the server control in the associated ASP.NET page markup as illustrated in the following code:

<asp:Button ID=”Button1” Runat=”server” Text=”Button” OnClick=”Button1_Click” />

How do you fire these events for server controls? You have a couple of ways to go about it. The first way
is to pull up your ASP.NET page in the Design view and double-click the control for which you want to
create a server-side event. For instance, double-clicking a Button server control in Design view creates
the structure of the Button1_Click event within your server-side code, whether the code is in a code-
behind file or inline. This creates a stub handler for that server control’s most popular event.

With that said, be aware that a considerable number of additional events are available to the Button con-
trol that you cannot get at by double-clicking the control. To access them, pull up the page that contains
the server-side code, select the control from the first drop-down list at the top of the IDE, and then
choose the particular event you want for that control in the second drop-down list. Figure 4-3 shows
the event drop-down list displayed. You might, for example, want to work with the Button control’s
PreRender event rather than its Click event. The handler for the event you choose is placed in your
server-side code.

Figure 4-3

99

ASP.NET Server Controls and Client-Side Scripts

07_576100 ch04.qxd 10/6/05 9:15 PM Page 99

The second way is to create server-side events for your server controls from the Properties window of
Visual Studio. This works only from Design view of the page. In Design view, highlight the server con-
trol that you want to work with. The properties for the control then appear in the Properties window,
along with an icon menu. One of the icons, the Events icon, is represented by a lightning bolt (shown in
Figure 4-4).

Figure 4-4

Clicking the Events icon pulls up a list of events available for the control. You simply double-click one of
the events to get that event structure created in your server-side code.

After you have an event structure in place, you can program specific actions that you want to occur
when the event is fired.

Applying Styles to Server Controls
More often than not, you want to change the default style (which is basically no style) to the server con-
trols you implement in your applications. You most likely want to build your Web applications so that
they reflect your own look-and-feel. One way to customize the appearance of the controls in your pages
is to change the controls’ properties.

As stated earlier in this chapter, to get at the properties of a particular control you simply highlight the
control in the Design view of the page from Visual Studio. If you are working from the Source view,
place the cursor in the code of the control. The properties presented in the Properties window allow you
to control the appearance and behavior of the selected control.

Examining the Controls’ Common Properties
Many of the default server controls that come with ASP.NET 2.0 are derived from the WebControl class
and share similar properties that enable you to alter their appearance and behavior. Not all the derived

Events

100

Chapter 4

07_576100 ch04.qxd 10/6/05 9:15 PM Page 100

controls use all the available properties (although many are implemented). Another important point is
that not all server controls are implemented from the WebControl class. For instance, the Literal,
PlaceHolder, Repeater, and XML server controls do not derive from the WebControl base class, but
instead the Control class.

HTML server controls also do not derive from the WebControl base class because they are more focused
on the set attributes of particular HTML elements. The following table lists the common properties the
server controls share.

Property Description

AccessKey Enables you to assign a character to be associated with the Alt key so
that the end user can activate the control using quick-keys on the key-
board. For instance, you can assign a Button control an AccessKey
property value of K. Now, instead of clicking the button on the
ASP.NET page (using a pointer controlled by the mouse), the end user
can simply press Alt+K.

Attributes Enables you to define additional attributes for a Web server control
that are not defined by a public property.

BackColor Controls the color shown behind the control’s layout on the
ASP.NET page.

BorderColor Assigns a color that is shown around the physical edge of the server
control.

BorderWidth Assigns a value to the width of the line that makes up the border of
the control. Placing a number as the value assigns the number as
a pixel-width of the border. The default border color is black if
the BorderColor property is not used in conjunction with the
BorderWidth property setting.

BorderStyle Enables you to assign the design of the border that is placed around
the server control. By default, the border is created as a straight line,
but a number of different styles can be used for your borders. Other
possible values for the BorderStyle property include Dotted,
Dashed, Solid, Double, Groove, Ridge, Inset, and Outset.

CssClass Assigns a custom CSS (Cascading Style Sheet) class file to the control.

Enabled Enables you to turn off the functionality of the control by setting the
value of this property to False. By default, the Enabled property is
set to True.

EnableTheming Enables you to turn on theming capabilities for the selected server con-
trol. The default value is True. This is a new property in the .NET
Framework 2.0.

Font Sets the font for all the text that appears anywhere in the control.

ForeColor Sets the color of all the text that appears anywhere in the control.

Table continued on following page

101

ASP.NET Server Controls and Client-Side Scripts

07_576100 ch04.qxd 10/6/05 9:15 PM Page 101

Property Description

Height Sets the height of the control.

SkinID Sets the skin to use when theming the control. This is a new property
in the .NET Framework 2.0.

Style Enables you to apply CSS styles to the control.

TabIndex Sets the control’s tab position in the ASP.NET page. This property
works in conjunction with other controls on the page.

ToolTip Assigns text that appears in a yellow box in the browser when a mouse
pointer is held over the control for a short length of time. This can be
used to add more instructions for the end user.

Width Sets the width of the control.

You can see these common properties in many of the server controls you work with. New properties of
the WebControl class in the .NET Framework 2.0 include the EnableTheming and SkinID properties.
These properties are covered in more detail in Chapter 9. You also see additional properties that are spe-
cific to the control you are viewing. Learning about the properties from the preceding table enables you
to quickly work with Web server controls and to modify them to your needs.

Now take a look at some additional methods of customizing the look-and-feel of your server controls.

Changing Styles Using Cascading Style Sheets
One method of changing the look-and-feel of specific elements on your ASP.NET page is to apply a style
to the element. The most rudimentary method of applying a defined look-and-feel to your page ele-
ments is to use various style-changing HTML elements such as , , and <i> directly.

All ASP.NET developers should have a good understanding of HTML. For more information on
HTML, please read Wrox’s Beginning Web Programming with HTML, XHTML, and CSS
(published by Wiley; ISBN 0-7645-7078-1).

Using various HTML elements, you can change the appearance of many items contained on your pages.
For instance, you can change a string’s style as follows:

<i>Pork chops and applesauce</i>

You can go through an entire application and change the style of page elements using any of the appro-
priate HTML elements. You’ll quickly find that this method works, but it is tough to maintain. To make
any global style changes to your application, this method requires that you go through your application
line-by-line to change each item individually. This can get cumbersome very fast!

102

Chapter 4

07_576100 ch04.qxd 10/6/05 9:15 PM Page 102

Besides applying HTML elements to items to change their style, you can use another method known
as Cascading Style Sheets (CSS). This alternative, but greatly preferred, styling technique allows you to
assign formatting properties to HTML tags throughout your document in a couple of different ways.
One way is to apply these styles directly to the HTML elements in your pages using inline styles. The
other way involves placing these styles in an external stylesheet that can be placed either directly in an
ASP.NET page or kept in a separate document that is simply referenced in the ASP.NET page. You
explore these methods in the following sections.

Applying Styles Directly to HTML Elements
The first method of using CSS is to apply the styles directly to the tags contained in your ASP.NET
pages. For instance, you apply a style to a string, as shown in Listing 4-3.

Listing 4-3: Applying CSS styles directly to HTML elements

<p style=”color:blue; font-weight:bold”>
Pork chops and applesauce

</p>

This text string is changed by the CSS included in the <p> element so that the string appears bold and
blue. Using the style attribute of the <p> element, you can change everything that appears between the
opening and closing <p> elements. When the page is generated, the first style change applied is to the
text between the <p> elements. In this example, the text has changed to the color blue because of the
color:blue command, and then the font-weight:bold command is applied. You can separate the
styling commands using semicolons, and you can apply as many styles as you want to your elements.

Applying CSS styles in this manner presents the same problem as simply applying various HTML style
elements — this is a tough structure to maintain. If styles are scattered throughout your pages, making
global style changes can be rather time consuming. Putting all the styles together in a stylesheet is the
best approach. A couple of methods can be used to build your stylesheets.

Working with the Visual Studio Style Builder
Visual Studio 2005 includes Style Builder, a tool that makes the building of CSS styles fairly simple. It
can be quite a time saver because so many possible CSS definitions are available to you. If you are new
to CSS, this tool can make all the difference.

The Visual Studio Style Builder enables you to apply CSS styles to individual elements or to construct
your own stylesheets. To access the Style Builder tool when applying a style to a single page element,
highlight the page element and then right-click it. From the menu that appears, select Style. Style Builder
is shown in Figure 4-5.

You can use Style Builder to change quite a bit about your selected item. After making all the changes
you want and clicking OK, you see the styles you chose applied to the selected element.

Now take a look at how to create styles in a stylesheet.

103

ASP.NET Server Controls and Client-Side Scripts

07_576100 ch04.qxd 10/6/05 9:15 PM Page 103

Figure 4-5

Creating External Style Sheets
You can use a couple of different methods to create stylesheets. The most common method is to create an
external stylesheet — a separate stylesheet file that is referenced in the pages that employ the defined
styles. To begin the creation of your external stylesheet, add a new item to your project. From the Add
New Item dialog, create a style sheet called StyleSheet.css. Add the file to your project by pressing
the Add button. Figure 4-6 shows the result.

Figure 4-6

Using Visual Studio’s CSS Outline window (in the left pane in Figure 4-6), you can apply style rules in
any of three ways:

104

Chapter 4

07_576100 ch04.qxd 10/6/05 9:15 PM Page 104

❑ By element: You apply styles to specific HTML elements, such as the <p>, <a>, or <table>.

❑ By class: You bring your style definitions together as a package, otherwise known as a class.
Then you apply the selected classes to either specific page elements or to an entire page.

❑ By element IDs: This method enables you to say that the selected styles should be applied only
to controls with specific ID names, such as Table1 or Button1.

Using Visual Studio, you can construct a stylesheet that looks similar to what is shown in Listing 4-4.

Listing 4-4: An external stylesheet

body {
font-weight: normal;
font-family: Verdana, Helvetica, sans-serif;
font-size: .8em;
letter-spacing: normal;
text-transform: none;
word-spacing: normal;
background-color: white;

}

H1, H2, H3, H4, TH, THEAD, TFOOT {
color: #003366;

}

H1 {
font-family: Verdana, Arial, Helvetica, sans-serif;
font-size: 2em;
font-weight: 700;
font-style: normal;
text-decoration: none;
word-spacing: normal;
letter-spacing: normal;
text-transform: none;

}

A stylesheet can go on for quite awhile until each and every possible HTML element is defined (though
not required). The first definition in this example is for the entire body of the page (everything between
the opening and closing <body> elements). The styles are applied in the order in which they appear in
the stylesheet. So first, a style is applied to the entire document; then the style is further defined by spe-
cific HTML elements. All style definitions follow this pattern:

Definition: Value;

The name of the CSS property is applied first, followed by a colon, and then the value to apply to this
property. The definition ends with a semicolon.

The CSS file in Listing 4-4 also shows that it is possible to apply a style to many different elements at the
same time by separating the element names with a comma as is done with H1, H2, H3, H4, TH, THEAD,
TFOOT.

One wonderful addition to working with CSS files in Visual Studio is that even these allow for
IntelliSense features, as illustrated in Figure 4-7.

105

ASP.NET Server Controls and Client-Side Scripts

07_576100 ch04.qxd 10/6/05 9:15 PM Page 105

Figure 4-7

After your style file is created, even though it is contained in your project, it is not applied to anything
unless you specifically apply the stylesheet to the page itself. You have a couple of approaches to accom-
plish this task.

One option is to pull up the DOCUMENT properties in the Properties window of Visual Studio and
assign a value to the StyleSheet property. Assigning the stylesheet shown earlier, StyleSheet.css, as
a value of the StyleSheet property adds the following line to your ASP.NET page within the <head>
section:

<head runat=”server”>
<title>My ASP.NET page</title>
<link type=”text/css” rel=”stylesheet” href=”StyleSheet.css” />

</head>

After this line is added to your page, the ASP.NET page applies the styles that are defined in
StyleSheet.css.

The other method of getting this line into your page is simply to drag and drop the StyleSheet.css
file from the Solution Explorer to the Design or Source view of the page in the Document window of
Visual Studio. The exact same <link> element used previously is applied.

106

Chapter 4

07_576100 ch04.qxd 10/6/05 9:15 PM Page 106

Using an external stylesheet within your application enables you to make global changes to the look-
and-feel of your application quickly. Simply making a change at this central point cascades the change as
defined by the stylesheet to your entire application.

Creating Internal Stylesheets
The second method for applying a stylesheet to a particular ASP.NET page is to bring the defined
stylesheet into the actual document by creating an internal stylesheet. Instead of making a reference to
an external stylesheet file, you bring the style definitions into the document. Note, however, that it is
considered best practice to use external, rather than internal, stylesheets.

Consider using an internal stylesheet only if you are applying certain styles to a small number of pages
within your application. Listing 4-5 shows the use of an internal stylesheet.

Listing 4-5: Using an internal stylesheet

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>My ASP.NET Page</title>

<style type=”text/css”>
<!--

body {
font-family: Verdana;

}

a:link {
text-decoration: none;
color: blue;

}

a:hover {
text-decoration: underline;
color: red;

}

a:visited {
text-decoration: none;
color: blue;

}
-->

</style>

</head>
<body>

<form id=”form1” runat=”server”>
<div>

Home
</div>
</form>

</body>
</html>

107

ASP.NET Server Controls and Client-Side Scripts

07_576100 ch04.qxd 10/6/05 9:15 PM Page 107

In this document, the internal stylesheet is set inside the opening and closing <head> elements. Although
this is not a requirement, it is considered best practice. The stylesheet itself is placed between <script>
tags with a type attribute defined as text/css.

HTML comment tags are included because not all browsers support internal stylesheets (it is generally
the older browsers that do not accept them). Putting HTML comments around the style definitions hides
these definitions from very old browsers. Except for the comment tags, the style definitions are handled
in the same way they are done in an external stylesheet.

HTML Server Controls
ASP.NET enables you to take HTML elements and, with relatively little work on your part, turn them
into server-side controls. Afterward, you can use them to control the behavior and actions of elements
implemented in your ASP.NET pages.

Of course, you can place any HTML you want in your pages. You have the option of using the HTML
placed in the page as a server-side control. You can also find a list of HTML elements contained in the
Toolbox of Visual Studio (shown in Figure 4-8).

Figure 4-8

Dragging and dropping any of these HTML elements from the Toolbox to the Design or Source view of
your ASP.NET page in the Document window simply produces the appropriate HTML element. For
instance, placing an HTML Button control on your page produces the following results in your code:

<input id=”Button1” type=”button” value=”button” />

108

Chapter 4

07_576100 ch04.qxd 10/6/05 9:15 PM Page 108

In this state, the Button control is not a server-side control. It is simply an HTML element and nothing
more. You can turn this into an HTML server control in a couple of different ways. In Design view, you
can right-click the element and select Run As Server Control from the menu. This causes a few things to
happen. The first thing is that a small green triangle appears on the visual element. The Button element,
after it has been turned into an HTML server control, looks like Figure 4-9.

Figure 4-9

In Source view, you simply change the HTML element by adding a runat=”server” to the control:

<input id=”Button1” type=”button” value=”button” runat=”server” />

After it is converted to a server control, you can work with the selected element as you would work with
any of the Web server controls. For instance, double-clicking the button from the Design view of the
page generates a button-click event for the control. Listing 4-6 shows an example of some HTML server
controls.

Listing 4-6: Working with HTML server controls

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Protected Sub Button1_ServerClick(ByVal sender As Object, _

ByVal e As System.EventArgs)
Response.Write(“Hello “ & Text1.Value)

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Using HTML Server Controls</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

What is your name?

<input id=”Text1” type=”text” runat=”server” />
<input id=”Button1” type=”button” value=”Submit” runat=”server”
onserverclick=”Button1_ServerClick” />

</div>
</form>

</body>
</html>

(continued)

Green triangle

109

ASP.NET Server Controls and Client-Side Scripts

07_576100 ch04.qxd 10/6/05 9:15 PM Page 109

Listing 4-6: (continued)

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
protected void Button1_ServerClick(object sender, EventArgs e)
{

Response.Write(“Hello “ + Text1.Value);
}

</script>

In this example, you can see two HTML server controls on the page. Both are simply typical HTML ele-
ments with the additional runat=”server” attribute added. If you are working with HTML elements
as server controls, you must include an id attribute so that the server control can be identified in the
server-side code.

The Button control includes a reference to a server-side event using the OnServerClick attribute. This
attribute points to the server-side event that is triggered when an end user clicks the button — in this
case, Button1_ServerClick. Within the Button1_ServerClick event, the value placed in the text box
is output by using the Value property.

Looking at the HtmlControl Base Class
All the HTML server controls use a class that is derived from the HtmlControl base class (fully quali-
fied as System.Web.UI.HtmlControls). These classes expose many properties from the control’s
derived class. The following table details some of the properties available from this base class. Some of
these items are themselves derived from the base Control class.

Method or Property Description

Attributes Provides a collection of name/value of all the available attributes spec-
ified in the control, including custom attributes.

Disabled Allows you to get or set whether the control is disabled using a
Boolean value.

EnableTheming Enables you, using a Boolean value, to get or set whether the control
takes part in the page theming capabilities.

EnableViewState Allows you to get or set a Boolean value that indicates whether the
control participates in the page’s view state capabilities.

ID Allows you to get or set the unique identifier for the control.

Page Allows you to gets a reference to the Page object that contains the
specified server control.

Parent Gets a reference to the parent control in the page control hierarchy.

Site Provides information about the Web site for which the server control
belongs.

110

Chapter 4

07_576100 ch04.qxd 10/6/05 9:15 PM Page 110

Method or Property Description

SkinID When the EnableTheming property is set to True, the SkinID prop-
erty specifies the skin file that should be used in setting a theme.

Style Makes references to the CSS style collection that applies to the speci-
fied control.

TagName Provides the name of the element that is generated from the specified
control.

Visable Specifies whether the control is visible on the generated page.

You can find a more comprehensive list in the SDK.

Looking at the HtmlContainerControl Class
The HtmlContainerControl base class is used for those HTML classes that are focused on HTML
elements that can be contained within a single node. For instance, the , <input>, and <link>
elements work from classes derived from the HtmlControl class.

Other HTML elements such as <a>, <form>, and <select>, require an opening and closing set of tags.
These elements use classes that are derived from the HtmlContainerControl class — a class specifi-
cally designed to work with HTML elements that require a closing tag.

Because the HtmlContainerControl class is derived from the HtmlControl class, you have all the
HtmlControl class’s properties and methods available to you as well as some new items that have been
declared in the HtmlContainerControl class itself. The most important of these are the InnerText
and InnerHtml properties:

❑ InnerHtml: Enables you to specify content that can include HTML elements to be placed
between the opening and closing tags of the specified control.

❑ InnerText: Enables you to specify raw text to be placed between the opening and closing tags
of the specified control.

Looking at All the HTML Classes
It is quite possible to work with every HTML element because a corresponding class is available for each
one of them. The .NET Framework documentation shows the following classes for working with your
HTML server controls:

❑ HtmlAnchor controls the <a> element.

❑ HtmlButton controls the <button> element.

❑ HtmlForm controls the <form> element.

❑ HtmlHead controls the <head> element. This is new to the .NET Framework 2.0.

❑ HtmlImage controls the element.

111

ASP.NET Server Controls and Client-Side Scripts

07_576100 ch04.qxd 10/6/05 9:15 PM Page 111

❑ HtmlInputButton controls the <input type=”button”> element.

❑ HtmlInputCheckBox controls the <input type=”checkbox”> element.

❑ HtmlInputFile controls the <input type=”file”> element.

❑ HtmlInputHidden controls the <input type=”hidden”> element.

❑ HtmlInputImage controls the <input type=”image”> element.

❑ HtmlInputPassword controls the <input type=”password”> element. This is new to the
.NET Framework 2.0.

❑ HtmlInputRadioButton controls the <input type=”radio”> element.

❑ HtmlInputReset controls the <input type=”reset”> element. This is new to the .NET
Framework 2.0.

❑ HtmlInputSubmit controls the <input type=”submit”> element. This is new to the .NET
Framework 2.0.

❑ HtmlInputText controls the <input type=”text”> element.

❑ HtmlLink controls the <link> element. This is new to the .NET Framework 2.0.

❑ HtmlSelect controls the <select> element.

❑ HtmlTable controls the <table> element.

❑ HtmlTableCell controls the <td> element.

❑ HtmlTableRow controls the <tr> element.

❑ HtmlTextArea controls the <textarea> element.

❑ HtmlTitle controls the <title> element. This is new to the .NET Framework 2.0.

You gain access to one of these classes when you convert an HTML element to an HTML server control.
For example, convert the <title> element to a server control this way:

<title id=”Title1” runat=”Server”/>

That gives you access to the HtmlTitle class for this particular HTML element. Using this class
instance, you can perform a number of tasks including providing a text value for the page title
dynamically:

VB
Title1.Text = DateTime.Now.ToString()

C#
Title1.Text = DateTime.Now.ToString();

You can get most of the HTML elements you need by using these classes, but a considerable number of
other HTML elements are at your disposal that are not explicitly covered by one of these HTML classes. For
example, the HtmlGenericControl class provides server-side access to any HTML element you want.

112

Chapter 4

07_576100 ch04.qxd 10/6/05 9:15 PM Page 112

Using the HtmlGenericControl Class
You should be aware of the importance of the HtmlGenericControl class; it gives you some capabili-
ties that you do not get from any other server control offered by ASP.NET. For instance, using the
HtmlGenericControl class, you can get server-side access to the <meta>, <p>, , or other ele-
ments that would otherwise be unreachable.

Listing 4-7 shows you how to change the <meta> element in your page using the HtmlGenericControl
class.

Listing 4-7: Changing the <meta> element using the HtmlGenericControl class

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Meta1.Attributes(“Name”) = “description”
Meta1.Attributes(“CONTENT”) = “Generated on: “ & DateTime.Now.ToString()

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Using the HtmlGenericControl class</title>
<meta id=”Meta1” runat=”server” />

</head>
<body>

<form id=”form1” runat=”server”>
<div>

The rain in Spain stays mainly in the plains.
</div>
</form>

</body>
</html>

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
protected void Page_Load(object sender, EventArgs e)
{

Meta1.Attributes[“Name”] = “description”;
Meta1.Attributes[“CONTENT”] = “Generated on: “ + DateTime.Now.ToString();

}
</script>

In this example, the page’s <meta> element is turned into an HTML server control with the addition of
the id and runat attributes. Because the HtmlGenericControl class can work with a wide range of
HTML elements, you cannot assign values to HTML attributes in the same manner as you do when
working with the other HTML classes (such as HtmlInputButton). You assign values to the attributes of
an HTML element through the use of the HtmlGenericControl class’s Attributes property, specify-
ing the attribute you are working with as a string value.

113

ASP.NET Server Controls and Client-Side Scripts

07_576100 ch04.qxd 10/6/05 9:15 PM Page 113

The following is a partial result of running the example page:

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head>

<meta id=”Meta1” Name=”description”
CONTENT=”Generated on: 6/5/2006 2:42:52 PM”></meta>

<title>Using the HtmlGenericControl class</title>
</head>

By using the HtmlGenericControl class, along with the other HTML classes, you can manipulate every
element of your ASP.NET pages from your server-side code.

Manipulating Pages and Server
Controls with JavaScript

Developers generally like to include some of their own custom JavaScript functions in their ASP.NET
pages. You have a couple of ways to do this. The first is to apply JavaScript directly to the controls on
your ASP.NET pages. For example, look at a simple Label server control, shown in Listing 4-8, which
displays the current date and time.

Listing 4-8: Showing the current date and time

VB
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

TextBox1.Text = DateTime.Now.ToString()
End Sub

C#
protected void Page_Load(object sender, EventArgs e) {

TextBox1.Text = DateTime.Now.ToString();
}

This little bit of code displays the current date and time on the page of the end user. The problem is that
the date and time displayed are correct for the Web server that generated the page. If someone sits in the
Pacific time zone (PST), and the Web server is in the Eastern time zone (EST), the page won’t be correct
for that viewer. If you want the time to be correct for anyone visiting the site, regardless of where they
reside in the world, you can employ JavaScript to work with the TextBox control, as illustrated in
Listing 4-9.

Listing 4-9: Using JavaScript to show the current time for the end user

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Using JavaScript</title>
</head>

114

Chapter 4

07_576100 ch04.qxd 10/6/05 9:15 PM Page 114

<body onload=”javascript:document.forms[0][‘TextBox1’].value=Date();”>
<form id=”form1” runat=”server”>
<div>

<asp:TextBox ID=”TextBox1” Runat=”server” Width=”300”></asp:TextBox>
</div>
</form>

</body>
</html>

In this example, even though you are using a standard TextBox server control from the Web server con-
trol family, you can get at this control using JavaScript that is planted in the onload attribute of the
<body> element. The value of the onload attribute actually points to the specific server control by using
the value of the ID attribute from the server control: TextBox1. You can get at other server controls on
your page by employing the same methods. This bit of code produces the result illustrated in Figure 4-10.

Figure 4-10

ASP.NET uses the new Page.ClientScript property to register and place JavaScript functions on your
ASP.NET pages. Three of these methods are reviewed here. More methods and properties than just these
two are available through the ClientScript object, but these are the more useful ones. You can find the
rest in the SDK documentation.

The Page.RegisterStartupScript and the Page.RegisterClientScriptBlock methods
from the .NET Framework 1.0/1.1 are now considered obsolete. Both of these possibilities for registering
scripts required a key/script set of parameters. Because two separate methods were involved, there was
an extreme possibility that some key name collisions would occur. The Page.ClientScript property
is meant to bring all the script registrations under one umbrella, making your code less error prone.

Using Page.ClientScript.RegisterClientScriptBlock
The RegisterClientScriptBlock method allows you to place a JavaScript function at the top of the
page. This means that the script is in place for the startup of the page in the browser. Its use is illustrated
in Listing 4-10.

115

ASP.NET Server Controls and Client-Side Scripts

07_576100 ch04.qxd 10/6/05 9:15 PM Page 115

Listing 4-10: Using the RegisterClientScriptBlock method

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Dim myScript As String = “function AlertHello() { alert(‘Hello ASP.NET’); }”
Page.ClientScript.RegisterClientScriptBlock(Me.GetType(), “MyScript”, _

myScript, True)
End Sub

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Adding JavaScript</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:Button ID=”Button1” Runat=”server” Text=”Button”
OnClientClick=”AlertHello()” />

</div>
</form>

</body>
</html>

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
protected void Page_Load(object sender, EventArgs e)
{

string myScript = @”function AlertHello() { alert(‘Hello ASP.NET’); }”;
Page.ClientScript.RegisterClientScriptBlock(this.GetType(),

“MyScript”, myScript, true);
}

</script>

From this example, you can see that you create the JavaScript function AlertHello() as a string called
myScript. Then using the Page.ClientScript.RegisterClientScriptBlock method, you program
the script to be placed on the page. The two possible constructions of the
RegisterClientScriptBlock method are the following:

❑ RegisterClientScriptBlock (type, key, script)

❑ RegisterClientScriptBlock (type, key, script, script tag specification)

In the example from Listing 4-10, you are specifying the type as Me.GetType(), the key, the script to
include, and then a Boolean value setting of True so that .NET places the script on the ASP.NET page
with <script> tags automatically. When running the page, you can view the source code for the page to
see the results:

116

Chapter 4

07_576100 ch04.qxd 10/6/05 9:15 PM Page 116

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head><title>

Adding JavaScript
</title></head>
<body>

<form method=”post” action=”JavaScriptPage.aspx” id=”form1”>
<div>
<input type=”hidden” name=”__VIEWSTATE”
value=”/wEPDwUKMTY3NzE5MjIyMGRkiyYSRMg+bcXi9DiawYlbxndiTDo=” />

</div>

<script type=”text/javascript”>
<!--
function AlertHello() { alert(‘Hello ASP.NET’); }// -->
</script>

<div>
<input type=”submit” name=”Button1” value=”Button” onclick=”AlertHello();”
id=”Button1” />

</div>
</form>

</body>
</html>

From this, you can see that the script specified was indeed included on the ASP.NET page before the
page code. Not only were the <script> tags included, but the proper comment tags were added around
the script (so older browsers won’t break).

Using Page.ClientScript.RegisterStartupScript
The RegisterStartupScript method is not too much different from the RegisterClientScriptBlock
method. The big difference is that the RegisterStartupScript places the script at the bottom of the
ASP.NET page instead of at the top. In fact, the RegisterStartupScript method even takes the same
constructors as the RegisterClientScriptBlock method:

❑ RegisterStartupScript (type, key, script)

❑ RegisterStartupScript (type, key, script, script tag specification)

So what difference does it make where the script is registered on the page? A lot, actually!

If you have a bit of JavaScript that is working with one of the controls on your page, in most cases you
want to use the RegisterStartupScript method instead of RegisterClientScriptBlock. For
example, you’d use the following code to create a page that includes a simple <asp:TextBox> control
that contains a default value of Hello ASP.NET.

<asp:TextBox ID=”TextBox1” Runat=”server”>Hello ASP.NET</asp:TextBox>

Then use the RegisterClientScriptBlock method to place a script on the page that utilizes the value
in the TextBox1 control, as illustrated in Listing 4-11.

117

ASP.NET Server Controls and Client-Side Scripts

07_576100 ch04.qxd 10/6/05 9:15 PM Page 117

Listing 4-11: Improperly using the RegisterClientScriptBlock method

VB
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Dim myScript As String = “alert(document.forms[0][‘TextBox1’].value);”
Page.ClientScript.RegisterClientScriptBlock(Me.GetType(), “myKey”, myScript, _

True)
End Sub

C#
protected void Page_Load(object sender, EventArgs e)
{

string myScript = @”alert(document.forms[0][‘TextBox1’].value);”;
Page.ClientScript.RegisterClientScriptBlock(this.GetType(),

“MyScript”, myScript, true);
}

Running this page gives you a JavaScript error, as shown in Figure 4-11.

Figure 4-11

The reason for the error is that the JavaScript function fired before the text box was even placed on the
screen. Therefore, the JavaScript function did not find TextBox1, and that caused an error to be thrown
by the page. Now try the RegisterStartupScript method shown in Listing 4-12.

Listing 4-12: Using the RegisterStartupScript method

VB
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Dim myScript As String = “alert(document.forms[0][‘TextBox1’].value);”
Page.ClientScript.RegisterStartupScript(Me.GetType(), “myKey”, myScript, _

True)
End Sub

118

Chapter 4

07_576100 ch04.qxd 10/6/05 9:15 PM Page 118

C#
protected void Page_Load(object sender, EventArgs e)
{

string myScript = @”alert(document.forms[0][‘TextBox1’].value);”;
Page.ClientScript.RegisterStartupScript(this.GetType(),

“MyScript”, myScript, true);
}

This approach puts the JavaScript function at the bottom of the ASP.NET page, so when the JavaScript
actually starts, it finds the TextBox1 element and works as planned. The result is shown in Figure 4-12.

Figure 4-12

Using Page.ClientScript.RegisterClientScriptInclude
The final method is RegisterClientScriptInclude. Many developers place their JavaScript inside a
.js file, which is considered a best practice because it makes it very easy to make global JavaScript
changes to the application. You can register the script files on your ASP.NET pages through the use of
the RegisterClientScriptInclude method illustrated in Listing 4-13.

Listing 4-13: Using the RegisterClientScriptInclude method

VB
Dim myScript As String = “myJavaScriptCode.js”
Page.ClientScript.RegisterClientScriptInclude(“myKey”, myScript)

C#
string myScript = “myJavaScriptCode.js”
Page.ClientScript.RegisterClientScriptInclude(“myKey”, myScript);

This creates the following construction on the ASP.NET page:

<script src=”myJavaScriptCode.js” type=”text/javascript”></script>

119

ASP.NET Server Controls and Client-Side Scripts

07_576100 ch04.qxd 10/6/05 9:15 PM Page 119

Client-Side Callback
ASP.NET 2.0 includes a new client callback feature that enables you to retrieve page values and populate
them to an already-generated page without regenerating the page. This makes it possible to change val-
ues on a page without going through the entire postback cycle; that means you can update your pages
without completely redrawing the page. End users will not see the page flicker and reposition, and the
pages will have a flow more like the flow of a thick-client application.

To work with the new callback capability, you have to know a little about working with JavaScript. This
book does not attempt to teach you JavaScript. If you need to get up to speed on this rather large topic,
check out Wrox’s Beginning JavaScript, Second Edition, by Paul Wilton (ISBN: 0-7645-5587-1).

Comparing a Typical Postback to a Callback
Before you jump into some examples of the new callback feature, first look at a comparison to the cur-
rent postback feature of a typical ASP.NET page.

When a page event is triggered on an ASP.NET page that is working with a typical postback scenario, a
lot is going on. The diagram in Figure 4-13 illustrates the process.

In a normal postback situation, an event of some kind triggers an HTTP Post request to be sent to the
Web server. An example of such an event might be the end user clicking a button on the form. This
sends the HTTP Post request to the Web server, which then processes the request with the
IPostbackEventHandler and runs the request through a series of page events. These events include
loading the state (as found in the view state of the page), processing data, processing postback events,
and finally rendering the page to be interpreted by the consuming browser once again. The process com-
pletely reloads the page in the browser, which is what causes the flicker and the realignment to the top
of the page.

On the other hand, you have the alternative of using the new callback capabilities, as shown in the dia-
gram in Figure 4-14.

In this case, an event (again, such as a button click) causes the event to be posted to a script event han-
dler (a JavaScript function) that sends off an asynchronous request to the Web server for processing.
ICallbackEventHandler runs the request through a pipeline similar to what is used with the postback —
but you notice that some of the larger steps (such as rendering the page) are excluded from the process
chain. After the information is loaded, the result is returned to the script callback object. The script code
then pushes this data into the Web page using JavaScript’s capabilities to do this without refreshing the
page. To understand how this all works, look at the simple example in the following section.

120

Chapter 4

07_576100 ch04.qxd 10/6/05 9:15 PM Page 120

Figure 4-13

Init

Load State

Process Postback Data

Load

Postback Events

Save State

PreRender

Render

Unload

Response

Page event
triggers postback
as POST Request

121

ASP.NET Server Controls and Client-Side Scripts

07_576100 ch04.qxd 10/6/05 9:15 PM Page 121

Figure 4-14

Init

Load State

Process Postback Data

Load

Callback Event

Unload

Script Callback

Script Event Handler

Result
of callback
returned

Async
request

Event triggers
callback to
script event
handler

122

Chapter 4

07_576100 ch04.qxd 10/6/05 9:15 PM Page 122

Using the Callback Feature — A Simple Approach
Begin examining the callback feature by looking at how a simple ASP.NET page uses it. For this exam-
ple, you have only an HTML button control and a TextBox server control (the Web server control ver-
sion). The idea is that when the end user clicks the button on the form, the callback service is initiated
and a random number is populated into the text box. Listing 4-14 shows an example of this in action.

Listing 4-14: Using the callback feature to populate a random value to a Web page

.aspx page (VB version)
<%@ Page Language=”VB” AutoEventWireup=”false” CodeFile=”RandomNumber.aspx.vb”

Inherits=”RandomNumber” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Callback Page</title>

<script type=”text/javascript”>
function GetNumber(){

UseCallback();
}

function GetRandomNumberFromServer(TextBox1, context){
document.forms[0].TextBox1.value = TextBox1;

}
</script>

</head>
<body>

<form id=”form1” runat=”server”>
<div>

<input id=”Button1” type=”button” value=”Get Random Number”
onclick=”GetNumber()” />

<asp:TextBox ID=”TextBox1” Runat=”server”></asp:TextBox>

</div>
</form>

</body>
</html>

VB (code-behind)
Partial Class RandomNumber

Inherits System.Web.UI.Page
Implements System.Web.UI.ICallbackEventHandler

Dim _callbackResult As String = Nothing;

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
Handles Me.Load

Dim cbReference As String = Page.ClientScript.GetCallbackEventReference(
Me, “arg”, “GetRandomNumberFromServer”, “context”)

Dim cbScript As String = “function UseCallback(arg, context)” & _

(continued)

123

ASP.NET Server Controls and Client-Side Scripts

07_576100 ch04.qxd 10/6/05 9:15 PM Page 123

Listing 4-14: (continued)

“{“ & cbReference & “;” & “}”

Page.ClientScript.RegisterClientScriptBlock(Me.GetType(), _
“UseCallback”, cbScript, True)

End Sub

Public Sub RaiseCallbackEvent(ByVal eventArgument As String) _
Implements System.Web.UI.ICallbackEventHandler.RaiseCallbackEvent

_callbackResult = Rnd().ToString()
End Function

Public Function GetCallbackResult() As String _
Implements System.Web.UI.ICallbackEventHandler.GetCallbackResult

Return _callbackResult
End Function

End Class

C# (code-behind)
using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class RandomNumber : System.Web.UI.Page,
System.Web.UI.ICallbackEventHandler

{
private string _callbackResult = null;

protected void Page_Load(object sender, EventArgs e)
{

string cbReference = Page.ClientScript.GetCallbackEventReference(this,
“arg”, “GetRandomNumberFromServer”, “context”);

string cbScript = “function UseCallback(arg, context)” +
“{“ + cbReference + “;” + “}”;

Page.ClientScript.RegisterClientScriptBlock(this.GetType(),
“UseCallback”, cbScript, true);

}

public void RaiseCallbackEvent(string eventArg)
{

Random rnd = new Random();
_callbackResult = rnd.Next().ToString();

}

public string GetCallbackResult()

124

Chapter 4

07_576100 ch04.qxd 10/6/05 9:15 PM Page 124

{
return _callbackResult;

}
}

}

When this page is built and run in the browser, you get the results shown in Figure 4-15.

Figure 4-15

Clicking the button on the page invokes the client callback capabilities of the page, and the page then
makes an asynchronous request to the code behind of the same page. After getting a response from this
part of the page, the client script takes the retrieved value and places it inside the text box — all without
doing a page refresh!

Now take a look at the .aspx page, which simply contains an HTML button control and a TextBox
server control. Notice that a standard HTML button control is used because a typical <asp:button>
control does not work here. No worries. When you work with the HTML button control, just be sure to
include an onclick event to point to the JavaScript function that initiates this entire process:

<input id=”Button1” type=”button” value=”Get Random Number”
onclick=”GetNumber()” />

You don’t have to do anything else with the controls themselves. The final thing to include in the page is
the client-side JavaScript functions to take care of the callback to the server-side functions. GetNumber()
is the first JavaScript function that’s instantiated. It starts the entire process by calling the name of the
client script handler that is defined in the page’s code behind. A string type result from GetNumber()is
retrieved using the GetRandomNumberFromServer() function. GetRandomNumberFromServer() sim-
ply populates the string value retrieved and makes that the value of the Textbox control — specified by
the value of the ID attribute of the server control (TextBox1):

<script type=”text/javascript”>
function GetNumber(){

UseCallback();
}

function GetRandomNumberFromServer(TextBox1, context){

125

ASP.NET Server Controls and Client-Side Scripts

07_576100 ch04.qxd 10/6/05 9:15 PM Page 125

document.forms[0].TextBox1.value = TextBox1;
}

</script>

Now turn your attention to the code behind.

The Page class of the Web page implements the System.Web.UI.ICallbackEventHandler interface:

Partial Class RandomNumber
Inherits System.Web.UI.Page
Implements System.Web.UI.ICallbackEventHandler

‘ Code here

End Class

This interface requires you to implement a couple of methods—the RaiseCallbackEvent and the
GetCallbackResult methods, both of which work with the client script request.
RaiseCallbackEvent enables you to do the work of retrieving the value from the page, but the value
can be only of type string:

Public Sub RaiseCallbackEvent(ByVal eventArgument As String) _
Implements System.Web.UI.ICallbackEventHandler.RaiseCallbackEvent

_callbackResult = Rnd().ToString()
End Function

The GetCallbackResult is the method that actually grabs the returned value to be used:

Public Function GetCallbackResult() As String _
Implements System.Web.UI.ICallbackEventHandler.GetCallbackResult

Return _callbackResult
End Function

In addition, the Page_Load event includes the creation and placement of the client callback script man-
ager (the function that will manage requests and responses) on the client:

Dim cbReference As String = Page.GetCallbackEventReference(Me, “arg”, _
“GetRandomNumberFromServer”, “context”)

Dim cbScript As String = “function UseCallback(arg, context)” & _
“{“ & cbReference & “;” & “}”

Page.ClientScript.RegisterClientScriptBlock(Me.GetType(), _
“UseCallback”, cbScript, True)

The function placed on the client for the callback capabilities is called UseCallback(). This string is
then populated to the Web page itself using the Page.ClientScript.RegisterClientScripBlock
that also puts <script> tags around the function on the page. Make sure that the name you use here is
the same name you use in the client-side JavaScript function presented earlier.

In the end, you have a page that refreshes content without refreshing the overall page. This opens the
door to a whole new area of possibilities. One caveat is that the callback capabilities described here

126

Chapter 4

07_576100 ch04.qxd 10/6/05 9:15 PM Page 126

use XmlHTTP and, therefore, the client browser needs to support XmlHTTP (Microsoft’s Internet
Explorer and FireFox do support this feature). Because of this, the .NET Framework 2.0 introduces the
SupportsCallBack and the SupportsXmlHTTP properties. To ensure this support, you could put a
check in the page’s code behind when the initial page is being generated. It might look similar to the
following:

VB
If (Page.Request.Browser.SupportsXmlHTTP) Then

End If

C#
if (Page.Request.Browser.SupportsXmlHTTP == true) {

}

Using the Callback Feature with Parameters
Now you’ll build a Web page that utilizes the callback feature but requires a parameter to retrieve a
returned value. At the top of the page, place a text box that gathers input from the end user, a button,
and another text box to populate the page with the result from the callback.

The page asks for a ZIP Code from the user and then uses the callback feature to instantiate an XML Web
service request on the server. The Web service returns the latest weather for that particular ZIP Code in a
string format. Listing 4-15 shows an example of the page.

Listing 4-15: Using the callback feature with a Web service

.aspx page (VB version)
<%@ Page Language=”VB” AutoEventWireup=”false” CodeFile=”WSCallback.aspx.vb”

Inherits=”WSCallback” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Web Service Callback</title>

<script type=”text/javascript”>
function GetTemp(){

var zipcode = document.forms[0].TextBox1.value;
UseCallback(zipcode, “”);

}

function GetTempFromServer(TextBox2, context){
document.forms[0].TextBox2.value = “Zipcode: “ +
document.forms[0].TextBox1.value + “ | Temp: “ + TextBox2;

}
</script>

</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:TextBox ID=”TextBox1” Runat=”server”></asp:TextBox>

(continued)

127

ASP.NET Server Controls and Client-Side Scripts

07_576100 ch04.qxd 10/6/05 9:15 PM Page 127

Listing 4-15: (continued)

<input id=”Button1” type=”button” value=”Get Temp” onclick=”GetTemp()” />

<asp:TextBox ID=”TextBox2” Runat=”server” Width=”398px”
Height=”22px”></asp:TextBox>

</div>
</form>

</body>
</html>

VB (code-behind)
Partial Class WSCallback

Inherits System.Web.UI.Page
Implements System.Web.UI.ICallbackEventHandler

Dim _callbackResult As String = Nothing

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
Handles Me.Load

Dim cbReference As String = Page.ClientScript.GetCallbackEventReference(
Me, “arg”, “GetTempFromServer”, “context”)

Dim cbScript As String = “function UseCallback(arg, context)” & _
“{“ & cbReference & “;” & “}”

Page.ClientScript.RegisterClientScriptBlock(Me.GetType(), _
“UseCallback”, cbScript, True)

End Sub

Public Sub RaiseCallbackEvent(ByVal eventArgument As String) _
Implements System.Web.UI.ICallbackEventHandler.RaiseCallbackEvent

Dim ws As New Weather.TemperatureService
_callbackResult = ws.GetTemp(eventArgument).ToString()

End Sub
Public Function GetCallbackResult() As String _

Implements System.Web.UI.ICallbackEventHandler.GetCallbackResult

Return _callbackResult
End Function

End Class

C# (code-behind)
using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;

128

Chapter 4

07_576100 ch04.qxd 10/6/05 9:15 PM Page 128

using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class WSCallback : System.Web.UI.Page,
System.Web.UI.ICallbackEventHandler

{
protected void Page_Load(object sender, EventArgs e)
{

string cbReference = Page.ClientScript.GetCallbackEventReference(this,
“arg”, “GetTempFromServer”, “context”);

string cbScript = “function UseCallback(arg, context)” +
“{“ + cbReference + “;” + “}”;

Page.ClientScript.RegisterClientScriptBlock(this.GetType(),
“UseCallback”, cbScript, true);

}

public void RaiseCallbackEvent(string eventArg)
{

Weather.TemperatureService ws = new Weather.TemperatureService();
_callbackResult = ws.GetTemp(eventArg).ToString();

}

public string GetCallbackResult()
{

return _callbackResult;

}

What you don’t see on this page from the listing is that a Web reference has been made to a remote Web
service that returns the latest weather to the application based on a ZIP Code the user supplied.

To get at the Web service used in this demo, the location of the WSDL file at the time of this writing is
http://services.xmethods.net:80/soap/servlet/rpcrouter. For more information on
working with Web services in your ASP.NET applications, check out Chapter 26.

After building and running this page, you get the results illustrated in Figure 4-16.

Figure 4-16

129

ASP.NET Server Controls and Client-Side Scripts

07_576100 ch04.qxd 10/6/05 9:15 PM Page 129

The big difference with the client callback feature is that this example sends in a required parameter.
That is done in the GetTemp() JavaScript function on the .aspx part of the page:

function GetTemp(){
var zipcode = document.forms[0].TextBox1.value;
UseCallback(zipcode, “”);

}

The JavaScript function shows the population that the end user input into TextBox1 and places its value
in a variable called zipcode that is sent as a parameter in the UseCallback() method.

This example, like the previous one, updates the page without doing a complete page refresh.

Summary
This chapter gave you one of the core building blocks of an ASP.NET page — the server control. The
server control is an object-oriented approach to page development that encapsulates page elements into
modifiable and expandable components.

The chapter also showed you how to customize the look-and-feel of your server controls using
Cascading Style Sheets (CSS). Working with CSS in ASP.NET 2.0 is easy and quick, especially if you
have Visual Studio 2005 to assist you. Finally, this chapter looked at both HTML server controls and
adding JavaScript to your pages to modify the behaviors of your controls.

130

Chapter 4

07_576100 ch04.qxd 10/6/05 9:15 PM Page 130

ASP.NET
Web Server Controls

Of the two types of server controls, HTML server controls and Web server controls, the second is
considered the more powerful and flexible. The previous chapter looked at how to use HTML
server controls in applications. HTML server controls enable you to manipulate HTML elements
from your server-side code. On the other hand, Web server controls are powerful because they are
not explicitly tied to specific HTML elements; rather, they are more closely aligned to the specific
functionality that you want to generate. As you will see throughout this chapter, Web server con-
trols can be very simple or rather complex depending on the control you are working with.

This chapter introduces some of the available Web server controls. It concentrates on the Web server
controls that were around during the ASP.NET 1.0/1.1 days; Chapter 6 explores the server controls
that are newly available in ASP.NET 2.0. These chapters do not discuss every possible control
because some server controls are introduced and covered in other chapters throughout the book.

The controls that were originally introduced with ASP.NET 1.0/1.1 still work as they did before.
ASP.NET 2.0 is backward compatible with the previous two versions of ASP.NET. This means that
the control code you wrote in those past versions will work in ASP.NET 2.0, but some of the con-
trols you originally used may now have some additional functionality you may choose to take
advantage of. This chapter also looks at some of the new features that make these controls even
better today. Some of the improvements are minor, but others are quite dramatic.

An Overview of Web Server Controls
The ASP.NET Web server control is its most-used component. Although you may have been pretty
excited by the HTML server controls shown in the previous chapter, Web server controls are defi-
nitely a notch higher in capability. They allow for a higher level of functionality that becomes more
apparent as you work with them.

08_576100 ch05.qxd 10/6/05 9:17 PM Page 131

The HTML server controls provided by ASP.NET work in that they map to specific HTML elements. You
control the output by working with the HTML attributes that the HTML element provides. The attributes
can be changed dynamically on the server side before they are finally output to the client. There is a lot of
power in this, and you have some HTML server control capabilities that you simply do not have when
you work with Web server controls.

Web server controls work differently. They don’t map to specific HTML elements, but instead enable
you to define functionality, capability, and appearance without the attributes that are available to you
through a collection of HTML elements. When constructing a Web page that is made up of Web server
controls, you are describing the functionality, the look-and-feel, and the behavior of your page elements.
You then let ASP.NET decide how to output this construction. The output, of course, is based on the
capabilities of the container that is making the request. This means that each requestor might see a dif-
ferent HTML output because each is requesting the same page with a different browser type or version.
ASP.NET takes care of all the browser detection and the work associated with it on your behalf.

Unlike HTML server controls, Web server controls are not only available for working with common Web
page form elements (such as text boxes and buttons), but they can also bring some advanced capabilities
and functionality to your Web pages. For instance, one common feature of many Web applications is a
calendar. No HTML form element places a calendar on your Web forms, but a Web server control from
ASP.NET can provide your application with a full-fledged calendar, including some advanced capabili-
ties. In the past, adding calendars to your Web pages was not a small programming task. Today, adding
calendars with ASP.NET is rather simple and is achieved with a single line of code!

Remember that when you are constructing your Web server controls, you are actually constructing a
control — a set of instructions — that is meant for the server (not the client). By default, all Web server con-
trols provided by ASP.NET use an asp: at the beginning of the control declaration. The following is a
typical Web server control:

<asp:Label ID=”Label1” runat=”server” Text=”Hello World”></asp:Label>

Like HTML server controls, Web server controls require an ID attribute to reference the control in the
server-side code, as well as a Runat=”server” attribute declaration. As you do for other XML-based
elements, you need to properly open and close Web server controls. In the preceding example, you can
see the <asp:Label> control has a closing </asp:Label> element associated with it. You could have
also closed this element using the following syntax:

<asp:Label ID=”Label1” Runat=”server” Text=”Hello World” />

The rest of this chapter examines some of the Web server controls available to you in ASP.NET.

The Label Server Control
The Label server control is used to display text in the browser. Because this is a server control, you can
dynamically alter the text from your server-side code. As you saw from the preceding examples of using
the <asp:Label> control, the control uses the Text attribute to assign the content of the control as
shown here:

<asp:Label ID=”Label1” Runat=”server” Text=”Hello World” />

132

Chapter 5

08_576100 ch05.qxd 10/6/05 9:17 PM Page 132

Instead of using the Text attribute, however, you can place the content to be displayed between the
<asp:Label> elements like this:

<asp:Label ID=”Label1” Runat=”server”>Hello World</asp:Label>

You can also provide content for the control through programmatic means, as illustrated in Listing 5-1.

Listing 5-1: Programmatically providing text to the Label control

VB
Label1.Text = “Hello ASP.NET”

C#
Label1.Text = “Hello ASP.NET”;

The Label server control has always been a control that simply showed text. Now with ASP.NET 2.0, it
has a little bit of extra functionality. The big change is that you can now give items in your form hot-key
functionality (also known as accelerator keys). This causes the page to focus on a particular server control
that you declaratively assign to a specific hot-key press (for example, using Alt+N to focus on the first
text box on the form).

A hot key is a quick way for the end user to initiate an action on the page. For instance, if you use
Microsoft Internet Explorer, you can press Ctrl+N to open a new instance of IE. Hot keys have always
been quite common in thick-client applications (Windows Forms), and now you can use them in
ASP.NET. Listing 5-2 shows an example of how to give hot-key functionality to two text boxes on a form.

Listing 5-2: Using the Label server control to provide hot-key functionality

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Label Server Control</title>
</head>
<body>

<form id=”form1” runat=”server”>
<p>

<asp:Label ID=”Label1” Runat=”server” AccessKey=”N”
AssociatedControlID=”Textbox1”>User<u>n</u>ame</asp:Label>

<asp:Textbox ID=”TextBox1” Runat=”server”></asp:Textbox></p>
<p>

<asp:Label ID=”Label2” Runat=”server” AccessKey=”P”
AssociatedControlID=”Textbox2”><u>P</u>assword</asp:Label>

<asp:Textbox ID=”TextBox2” Runat=”server”></asp:Textbox></p>
<p>

<asp:Button ID=”Button1” Runat=”server” Text=”Submit” />
</p>

</form>
</body>
</html>

133

ASP.NET Web Server Controls

08_576100 ch05.qxd 10/6/05 9:17 PM Page 133

Hot keys are assigned with the AccessKey attribute. In this case, Label1 uses N, and Label2 uses P. The
second new attribute for the Label control is the AssociatedControlID attribute. The String value
placed here associates the Label control with another server control on the form. The value must be one
of the other server controls on the form. If not, the page gives you an error when invoked.

With these two controls in place, when the page is called in the browser, you can press Alt+N or Alt+P to
automatically focus on a particular text box in the form. In Figure 5-1, HTML-declared underlines indi-
cate the letters to be pressed along with the Alt key to create focus on the control adjoining the text. This
is not required, but we highly recommend it because it is what the end user expects when working with
hot keys. In this example, the letter n in Username and the letter P in Password. are underlined.

Figure 5-1

When working with hot keys, be aware that not all letters are available to use with the Alt key. Microsoft
Internet Explorer already uses Alt+F, E, V, I, O, T, A, W, and H. If you use any of these letters, IE actions
supersede any actions you place on the page.

The Literal Server Control
The Literal server control works very much like the Label server control. This control was always used
in the past for text that you wanted to push out to the browser, but keep unchanged in the process (a lit-
eral state). A Label control alters the output by placing elements around the text as shown:

Here is some text

The Literal control just outputs the text without the elements. In ASP.NET 2.0, it includes the
new attribute Mode that enables you to dictate how the text assigned to the control is interpreted by the
ASP.NET engine.

If you place some HTML code in the string that is output (for instance, Here is some text), the
Literal control outputs just that and the consuming browser shows the text as bold:

Here is some text

134

Chapter 5

08_576100 ch05.qxd 10/6/05 9:17 PM Page 134

Try using the Mode attribute as illustrated here:

<asp:Literal ID=”Literal1” Runat=”server” Mode=”Encode”
Text=”Here is some text”></asp:Literal>

Adding Mode=”Encode” encodes the output before it is received by the consuming application:

Label

Now, instead of the text being converted to a bold font, the elements are displayed:

Here is some text

This is ideal if you want to display code in your application. Other values for the Mode attribute include
Transform and PassThrough. Transform looks at the consumer and includes or removes elements as
needed. For instance, not all devices accept HTML elements so, if the value of the Mode attribute is set to
Transform, these elements are removed from the string before it is sent to the consuming application. A
value of PassThrough for the Mode property means that the text is sent to the consuming application
without any changes being made to the string.

The TextBox Server Control
One of the main features of Web pages is to offer forms that end users can use to submit their informa-
tion for collection. The TextBox server control is one of the most used controls in this space. As its name
suggests, the control provides a text box on the form that enables the end user to input text. You can map
the TextBox control to three different HTML elements used in your forms.

First, the TextBox control can be used as a standard HTML text box, as shown in the following code
snippet:

<asp:TextBox ID=”TextBox1” Runat=”server”></asp:TextBox>

This code creates a text box on the form that looks like the one shown in Figure 5-2.

Figure 5-2

Second, the TextBox control can allow end users to input their passwords into a form. This is done by
changing the TextMode attribute of the TextBox control to Password, as illustrated here:

<asp:TextBox ID=”TextBox1” Runat=”server” TextMode=”Password”></asp:TextBox>

When asking end users for their passwords through the browser, it is best practice to provide a
text box that encodes the content placed in this form element. Using an attribute and value of
TextMode=”Password” ensures that the text is encoded with either a star (*) or a dot, as shown in
Figure 5-3.

135

ASP.NET Web Server Controls

08_576100 ch05.qxd 10/6/05 9:17 PM Page 135

Figure 5-3

Third, the TextBox server control can be used as a multiline text box. The code for accomplishing this
task is shown in the following example:

<asp:TextBox ID=”TextBox1” Runat=”server” TextMode=”MultiLine”
Width=”300px” Height=”150px”></asp:TextBox>

Giving the TextMode attribute a value of MultiLine creates a multilined text box in which the end user
can enter a larger amount of text in the form. The Width and Height attributes set the size of the text
area, but these are optional attributes — without them, the text area is produced in its smallest size.
Figure 5-4 shows the use of the preceding code.

Figure 5-4

When working with a multilined text box, be aware of the Wrap attribute. When set to True (which is
the default), the text entered into the text area wraps to the next line if needed. When set to False, the
end user can type continuously in a single line until she presses the Enter key, which brings the cursor
down to the next line.

Using the Focus() Method
Because the TextBox server control is derived from the base class of WebControl, one of the methods
available to it is Focus()— a new method introduced in version 2.0 of ASP.NET. The Focus() method
enables you to dynamically place the end user’s cursor in an appointed form element (not just the
TextBox control, but in any of the server controls derived from the WebControl class). With that said, it
is probably most often used with the TextBox control, as illustrated in Listing 5-3.

Listing 5-3: Using the Focus() method with the TextBox control

VB
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

TextBox1.Focus()
End Sub

C#
protected void Page_Load(object sender, EventArgs e)
{

TextBox1.Focus();
}

136

Chapter 5

08_576100 ch05.qxd 10/6/05 9:17 PM Page 136

When the page using this method is loaded in the browser, the cursor is already placed inside of the text
box, ready for you to start typing. There’s no need to move your mouse to get the cursor in place so you
can start entering information in the form. This is ideal for those folks who take a keyboard approach to
working with forms.

Using AutoPostBack
ASP.NET pages work in an event-driven way. When an action on a Web page triggers an event, server-
side code is initiated. One of the more common events is an end user clicking a button on the form. If
you double-click the button in Design view of Visual Studio 2005, you can see the code page with the
structure of the Button1_Click event already in place. This is because OnClick is the most common
event of the Button control. Double-clicking the TextBox control constructs an OnTextChanged event.
This event is triggered when the end user moves the cursor focus outside the text box, either by clicking
another element on the page after entering something into a text box, or by simply tabbing out of the
text box. The use of this event is shown in Listing 5-4.

Listing 5-4: Triggering an event when a TextBox change occurs

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Protected Sub TextBox1_TextChanged(ByVal sender As Object, _

ByVal e As System.EventArgs)

Response.Write(“OnTextChanged event triggered”)
End Sub

Protected Sub Button1_Click(ByVal sender As Object, _
ByVal e As System.EventArgs)

Response.Write(“OnClick event triggered”)
End Sub

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>OnTextChanged Page</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:TextBox ID=”TextBox1” Runat=”server” AutoPostBack=”True”
OnTextChanged=”TextBox1_TextChanged”></asp:TextBox>

<asp:Button ID=”Button1” Runat=”server” Text=”Button”
OnClick=”Button1_Click” />

</div>
</form>

</body>
</html>

(continued)

137

ASP.NET Web Server Controls

08_576100 ch05.qxd 10/6/05 9:17 PM Page 137

Listing 5-4: (continued)

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
protected void TextBox1_TextChanged(object sender, EventArgs e)
{

Response.Write(“OnTextChanged event triggered”);
}

protected void Button1_Click(object sender, EventArgs e)
{

Response.Write(“OnClick event triggered”);
}

</script>

As you build and run this page, notice that you can type something in the text box; but once you tab out
of it, the OnTextChanged event is triggered and the code contained in the TextBox1_TextChanged
event runs. To make this work, you must add the AutoPostBack attribute to the TextBox control and set
it to True. This causes the Web page to look for any text changes prior to an actual page postback. For
the AutoPostBack feature to work, the browser viewing the page must support ECMAScript.

Using AutoCompleteType
You want the forms you build for your Web applications to be as simple to use as possible. You want to
make them easy and quick for the end user to fill out the information and proceed. If you make a form
too time consuming, the people who come to your site may leave without completing it.

One of the great capabilities for any Web form is smart auto-completion. You may have seen this your-
self when you visited a site for the first time. As you start to fill out information in a form, a drop-down
list appears below the text box as you type showing you a value that you have typed in a previous form.
The plain text box you were working with has become a smart text box. Figure 5-5 shows an example of
this feature.

Figure 5-5

A great new addition to ASP.NET 2.0 is the AutoCompleteType attribute, which enables you to apply
the auto-completion feature to your own forms. You have to help the text boxes on your form to recog-
nize the type of information that they should be looking for. What does that mean? Well, first take a look
at the possible values of the AutoCompleteType attribute:

BusinessCity Disabled HomeStreetAddress
BusinessCountryRegion DisplayName HomeZipCode
BusinessFax Email JobTitle
BusinessPhone FirstName LastName
BusinessState Gender MiddleName

138

Chapter 5

08_576100 ch05.qxd 10/6/05 9:17 PM Page 138

BusinessStateAddress HomeCity None
BusinessUrl HomeCountryRegion Notes
BusinessZipCode HomeFax Office
Cellular Homepage Pager
Company HomePhone Search
Department HomeState

From this list, you can see that if your text box is asking for the end user’s home street address, you
want to use the following in your TextBox control:

<asp:TextBox ID=”TextBox1” Runat=”server”
AutoCompleteType=”HomeStreetAddress”></asp:TextBox>

As you view the source of the text box you created, you can see that the following construction has
occurred:

<input name=”TextBox1” type=”text” vcard_name=”vCard.Home.StreetAddress”
id=”TextBox1” />

This feature makes your forms easier to work with. Yes, it is a simple thing, but sometimes it is the little
things that keep the viewers coming back again and again to your Web site.

The Button Server Control
Another common control for your Web forms is a button that can be constructed using the Button server
control. Buttons are the usual element used to submit forms. Most of the time you are simply dealing with
items contained in your forms through the Button control’s OnClick event, as illustrated in Listing 5-5.

Listing 5-5: The Button control’s OnClick event

VB
Protected Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)

‘ Code here
End Sub

C#
protected void Button1_Click(object sender, EventArgs e)
{

// Code here
}

The Button control is one of the easier controls to use, but there are a couple of properties of which you
must be aware: CausesValidation and CommandName. They are discussed in the following sections.

The CausesValidation Property
If you have more than one button on your Web page and you are working with the validation server con-
trols, you don’t want to fire the validation for each button on the form. Setting the CausesValidation
property to False is a way to use a button that will not fire the validation process. This is explained in
more detail in Chapter 7.

139

ASP.NET Web Server Controls

08_576100 ch05.qxd 10/6/05 9:17 PM Page 139

The CommandName Property
You can have multiple buttons on your form all working from a single event. The nice thing is that you
can also tag the buttons so that the code can make logical decisions based on which button on the form
was clicked. You must construct your Button controls in the manner illustrated in Listing 5-6 to take
advantage of this behavior.

Listing 5-6: Constructing multiple Button controls to work from a single function

<asp:Button ID=”Button1” Runat=”server” Text=”Button 1”
OnCommand=”Button_Command” CommandName=”DoSomething1” />

<asp:Button ID=”Button2” Runat=”server” Text=”Button 2”
OnCommand=”Button_Command” CommandName=”DoSomething2” />

Looking at these two instances of the Button control, you should pay attention to several things. The first
thing to notice is what isn’t present — any attribute mention of an OnClick event. Instead you use the
OnCommand event, which points to an event called Button_Command. You can see that both Button con-
trols are working from the same event. How does the event differentiate between the two buttons being
clicked? Through the value placed in the CommandName property. In this case, they are indeed separate
values —DoSomething1 and DoSomething2.

The next step is to create the Button_Command event to deal with both these buttons by simply typing
one out or by selecting the Command event from the drop-down list of available events for the Button
control from the code view of Visual Studio. In either case, you should end up with an event like the one
shown in Listing 5-7.

Listing 5-7: The Button_Command event

VB
Protected Sub Button_Command(ByVal sender As Object, _

ByVal e As System.Web.UI.WebControls.CommandEventArgs)

Select Case e.CommandName
Case “DoSomething1”

Response.Write(“Button 1 was selected”)
Case “DoSomething2”

Response.Write(“Button 2 was selected”)
End Select

End Sub

C#
protected void Button_Command(Object sender,

System.Web.UI.WebControls.CommandEventArgs e)
{

switch (e.CommandName)
{

case(“DoSomething1”):
Response.Write(“Button 1 was selected”);
break;

case(“DoSomething2”):
Response.Write(“Button 2 was selected”);

140

Chapter 5

08_576100 ch05.qxd 10/6/05 9:17 PM Page 140

break;
}

}

Notice that this method uses System.Web.UI.WebControls.CommandEventArgs instead of the typical
System.EventArgs. This gives you access to the member CommandName used in the Select Case
(switch) statement as e.CommandName. Using this object, you can check for the value of the
CommandName property used by the button that was clicked on the form and take a specific action
based upon the value passed.

You can add some parameters to be passed in to the Command event beyond what is defined in the
CommandName property. You do this by using the Button control’s CommandArgument property. Adding
values to the property enables you to define items a bit more granularly if you want. You can get at this
value via server-side code using e.CommandArgument from the CommandEventArgs object.

Buttons That Work with Client-Side JavaScript
Buttons are frequently used for submitting information and causing actions to occur on a Web page.
Before ASP.NET 1.0/1.1, people intermingled quite a bit of JavaScript in their pages to fire JavaScript
events when a button was clicked. The process became more cumbersome in ASP.NET 1.0/1.1, but now
with ASP.NET 2.0, it is much easier.

You can create a page that has a JavaScript event, as well as a server-side event, triggered when the but-
ton is clicked, as illustrated in Listing 5-8.

Listing 5-8: Two types of events for the button

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Protected Sub Button1_Click(ByVal sender As Object, _

ByVal e As System.EventArgs)

Response.Write(“Postback!”)
End Sub

</script>

<script language=”javascript”>
function AlertHello()
{

alert(‘Hello ASP.NET’);
}

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Button Server Control</title>
</head>
<body>

<form id=”form1” runat=”server”>

(continued)

141

ASP.NET Web Server Controls

08_576100 ch05.qxd 10/6/05 9:17 PM Page 141

Listing 5-8: (continued)

<asp:Button ID=”Button1” Runat=”server” Text=”Button”
OnClientClick=”AlertHello()” OnClick=”Button1_Click” />

</form>
</body>
</html>

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
protected void Button1_Click(object sender, EventArgs e)
{

Response.Write(“Postback!”);
}

</script>

The first thing to notice is the new attribute for the Button server control: OnClientClick. It points to
the client-side function, unlike the OnClick attribute that points to the server-side event. This example
uses a JavaScript function called AlertHello().

One cool thing about Visual Studio 2005 is that now it can work with server-side script tags that are right
alongside client-side script tags. It all works together seamlessly. In the example, after the JavaScript
alert dialog is issued (see Figure 5-6) and the end user clicks OK, the page posts back as the server-side
event is triggered.

Figure 5-6

Another new and exciting attribute for the button controls is PostBackUrl. It enables you to perform
cross-page posting, instead of simply posting your ASP.NET pages back to the same page, as shown in
the following example:

<asp:Button ID=”Button2” Runat=”server” Text=”Submit page to Page2.aspx”
PostBackUrl=”Page2.aspx” />

Cross-page posting is covered in greater detail in Chapter 3.

142

Chapter 5

08_576100 ch05.qxd 10/6/05 9:17 PM Page 142

The LinkButton Server Control
The LinkButton server control is a variation of the Button control. It is basically the same except that the
LinkButton control takes the form of a hyperlink. But, it isn’t a typical hyperlink. When the end user
clicks the link, it behaves like a button. This is an ideal control to use if you have a large number of but-
tons on your Web form.

A LinkButton server control is constructed as follows:

<asp:LinkButton ID=”LinkButton1” Runat=”server” OnClick=”LinkButton1_Click”>
Submit your name to our database

</asp:LinkButton>

Using the LinkButton control gives you the results shown in Figure 5-7.

Figure 5-7

The ImageButton Server Control
The ImageButton control is also a variation of the Button control. It is almost exactly the same as the
Button control except that it enables you to use a custom image as the form’s button instead of the typi-
cal buttons used on most forms. This means that you can create your own buttons as images and the end
users can click the images to submit form data. A typical construction of the ImageButton is as follows:

<asp:ImageButton ID=”ImageButton1” Runat=”server”
OnClick=”ImageButton1_Click” ImageUrl=”MyButton.jpg” />

The ImageButton control specifies the location of the image used by using the ImageUrl property. From
this example, you can see that the ImageUrl points to MyButton.jpg. The big difference between the
ImageButton control and the LinkButton or Button controls is that ImageButton takes a different con-
struction for the OnClick event. It is shown in Listing 5-9.

143

ASP.NET Web Server Controls

08_576100 ch05.qxd 10/6/05 9:17 PM Page 143

Listing 5-9: The Click event for the ImageButton control

VB
Protected Sub ImageButton1_Click(ByVal sender As Object, _

ByVal e As System.Web.UI.WebControls.ImageClickEventArgs)
‘ Code here

End Sub

C#
protected void ImageButton1_Click(object sender,

System.Web.UI.WebControls.ImageClickEventArgs e)
{

// Code here
}

The construction uses the ImageClickEventArgs object instead of the System.EventArgs object usu-
ally used with the LinkButton and Button controls. You can use this object to determine where in the
image the end user clicked by using both e.X and e.Y coordinates.

The GO and PLAY buttons on the page shown in Figure 5-8 are image buttons.

Figure 5-8

144

Chapter 5

08_576100 ch05.qxd 10/6/05 9:17 PM Page 144

The HyperLink Server Control
The HyperLink server control enables you to programmatically work with any hyperlinks on your Web
pages. Hyperlinks are links that allow end users to transfer from one page to another. You can set the
text of a hyperlink using the control’s Text attribute:

<asp:HyperLink ID=”HyperLink1” Runat=”server” Text=”Go to this page here”
NavigateUrl=”~/Default2.aspx”></asp:HyperLink>

This server control creates a hyperlink on your page with the text Go to this page here. When the link
is clicked, the user is redirected to the value that is placed in the NavigateUrl property (in this case, the
Default2.aspx page).

The interesting thing about the HyperLink server control is that it can be used for images as well as text.
Instead of using the Text attribute, it uses the ImageUrl property:

<asp:HyperLink ID=”HyperLink1” Runat=”server” ImageUrl=”~/MyLinkImage.gif”
NavigateUrl=”~/Default2.aspx”></asp:HyperLink>

The HyperLink control is a great way to dynamically place hyperlinks on a Web page based either upon
user input in a form or on database values that are retrieved when the page is loaded.

The DropDownList Server Control
The DropDownList server control enables you to place an HTML select box on your Web page and pro-
gram against it. It’s ideal when you have a large collection of items from which you want the end user to
select a single item. It is usually used for a medium-to-large-sized collection. If the collection size is rela-
tively small, consider using the RadioButtonList server control (described later in this chapter).

The select box generated by the DropDownList control displays a single item and allows the end user to
make a selection from a larger list of items. Depending on the number of choices available in the select
box, the end user may have to scroll through a list of items. Note that the appearance of the scroll bar in
the drop-down list is automatically created by the browser depending on the browser version and the
number of items contained in the list.

Here’s the code for DropDownList control:

<asp:DropDownList ID=”DropDownList1” Runat=”server”>
<asp:ListItem>Car</asp:ListItem>
<asp:ListItem>Airplane</asp:ListItem>
<asp:ListItem>Train</asp:ListItem>

</asp:DropDownList>

This code generates a drop-down list in the browser, as shown in Figure 5-9.

Figure 5-9

145

ASP.NET Web Server Controls

08_576100 ch05.qxd 10/6/05 9:17 PM Page 145

The DropDownList control comes in handy when you start binding it to various data stores. The data
stores can either be arrays, database values, XMLfile values, or values found elsewhere. For an example
of binding the DropDownList control, look at dynamically generating a DropDownList control to one of
two available arrays, as shown in Listing 5-10.

Listing 5-10: Dynamically generating a DropDownList control from an array

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Protected Sub DropDownList1_SelectedIndexChanged(ByVal sender As Object, _

ByVal e As System.EventArgs)
Dim CarArray() As String = {“Ford”, “Honda”, “BMW”, “Dodge”}
Dim AirplaneArray() As String = {“Boeing 777”, “Boeing 747”, “Boeing 737”}
Dim TrainArray() As String = {“Bullet Train”, “Amtrack”, “Tram”}

If DropDownList1.SelectedValue = “Car” Then
DropDownList2.DataSource = CarArray

ElseIf DropDownList1.SelectedValue = “Airplane” Then
DropDownList2.DataSource = AirplaneArray

Else
DropDownList2.DataSource = TrainArray

End If

DropDownList2.DataBind()
DropDownList2.Visible = True

End Sub

Protected Sub Button1_Click(ByVal sender As Object, _
ByVal e As System.EventArgs)

Response.Write(“You selected ” & _
DropDownList1.SelectedValue.ToString() & “: “ & _
DropDownList2.SelectedValue.ToString() & “”)

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>DropDownList Page</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

Select transportation type:

<asp:DropDownList ID=”DropDownList1” Runat=”server”
OnSelectedIndexChanged=”DropDownList1_SelectedIndexChanged”
AutoPostBack=”true”>

<asp:ListItem>Select an Item</asp:ListItem>
<asp:ListItem>Car</asp:ListItem>
<asp:ListItem>Airplane</asp:ListItem>
<asp:ListItem>Train</asp:ListItem>

</asp:DropDownList>

146

Chapter 5

08_576100 ch05.qxd 10/6/05 9:17 PM Page 146

<asp:DropDownList ID=”DropDownList2” Runat=”server” Visible=”false”>
</asp:DropDownList>
<asp:Button ID=”Button1” Runat=”server” Text=”Select Options”
OnClick=”Button1_Click” />

</div>
</form>

</body>
</html>

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
protected void DropDownList1_SelectedIndexChanged(object sender, EventArgs e)
{

string[] CarArray = new string[4] {“Ford”, “Honda”, “BMW”, “Dodge”};
string[] AirplaneArray = new string[3] {“Boeing 777”, “Boeing 747”,

“Boeing 737”};
string[] TrainArray = new string[3] {“Bullet Train”, “Amtrack”, “Tram”};

if (DropDownList1.SelectedValue == “Car”) {
DropDownList2.DataSource = CarArray; }

else if (DropDownList1.SelectedValue == “Airplane”) {
DropDownList2.DataSource = AirplaneArray; }

else {
DropDownList2.DataSource = TrainArray;

}

DropDownList2.DataBind();
DropDownList2.Visible = true;

}

protected void Button1_Click(object sender, EventArgs e)
{

Response.Write(“You selected ” +
DropDownList1.SelectedValue.ToString() + “: “ +
DropDownList2.SelectedValue.ToString() + “”);

}
</script>

In this example, the second drop-down list is generated based upon the value selected from the first
drop-down list. For instance, selecting Car from the first drop-down list dynamically creates a second
drop-down list on the form that includes a list of available car selections.

This is possible because of the use of the AutoPostBack feature of the DropDownList control. When the
AutoPostBack property is set to True, the method provided through the OnSelectedIndexChanged
event is fired when a selection is made. In the example, the DropDownList1_SelectedIndexChanged
event is fired, dynamically creating the second drop-down list.

In this method, the content of the second drop-down list is created in a string array and then bound to
the second DropDownList control through the use of the DataSource property and the DataBind()
method.

147

ASP.NET Web Server Controls

08_576100 ch05.qxd 10/6/05 9:17 PM Page 147

When built and run, this page looks like the one shown in Figure 5-10.

Figure 5-10

Visually Removing Items from a Collection
The DropDownList, ListBox, CheckBoxList, and RadioButtonList server controls give you the capability
to visually remove items from the collection displayed in the control, although you can still work with
the items that aren’t displayed in your server-side code.

The ListBox, CheckBoxList, and RadioButtonList controls are discussed shortly in this chapter.

For a quick example of removing items, create a drop-down list with three items, including one that you
won’t display. On the postback, however, you can still work with the ListItem’s Value or Text prop-
erty, as illustrated in Listing 5-11.

Listing 5-11: Disabling certain ListItems from a collection

VB
<%@ page language=”VB” %>

<script runat=”server”>
Protected Sub DropDownList1_SelectedIndexChanged(ByVal sender As Object, _

ByVal e As System.EventArgs)
Response.Write(“You selected item number “ & _

DropDownList1.SelectedValue & “
”)
Response.Write(“You didn’t select item number “ & _

DropDownList1.Items(1).Value)
End Sub

</script>

<html>
<head runat=”server”>

<title>DropDownList Server Control</title>
</head>

148

Chapter 5

08_576100 ch05.qxd 10/6/05 9:17 PM Page 148

<body>
<form id=”form1” runat=”server”>

<asp:DropDownList ID=”DropDownList1” Runat=”server” AutoPostBack=”True”
OnSelectedIndexChanged=”DropDownList1_SelectedIndexChanged”>

<asp:ListItem Value=”1”>First Choice</asp:ListItem>
<asp:ListItem Value=”2” Enabled=”False”>Second Choice</asp:ListItem>
<asp:ListItem Value=”3”>Third Choice</asp:ListItem>

</asp:DropDownList>
</form>

</body>
</html>

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
protected void DropDownList1_SelectedIndexChanged(object sender, EventArgs e)
{

Response.Write(“You selected item number “ +
DropDownList1.SelectedValue + “
”);

Response.Write(“You didn’t select item number “ +
DropDownList1.Items[1].Value);

}
</script>

From the code, you can see that the <asp:ListItem> element has a new attribute: Enabled. The
Boolean value given to this element dictates whether an item in the collection is displayed. If you use
Enabled=”False”, the item is not displayed, but you still have the capability to work with the item in
the server-side code displayed in the DropDownList1_SelectedIndexChanged event. The result of the
output from these Response.Write statements is shown in Figure 5-11.

Figure 5-11

149

ASP.NET Web Server Controls

08_576100 ch05.qxd 10/6/05 9:17 PM Page 149

The ListBox Server Control
The ListBox server control has a function similar to the DropDownList control. It displays a collection
of items. The ListBox control behaves differently from the DropDownList control in that it displays
more of the collection to the end user, and it enables the end user to make multiple selections from the
collection — something that isn’t possible with the DropDownList control.

A typical ListBox control appears in code as follows:

<asp:ListBox ID=”ListBox1” Runat=”server”>
<asp:ListItem>Hematite</asp:ListItem>
<asp:ListItem>Halite</asp:ListItem>
<asp:ListItem>Limonite</asp:ListItem>
<asp:ListItem>Magnetite</asp:ListItem>

</asp:ListBox>

This generates the browser display illustrated in Figure 5-12.

Figure 5-12

Allowing Users to Select Multiple Items
You can use the SelectionMode attribute to let your end users make multiple selections from what is
displayed by the ListBox control. Here’s an example:

<asp:ListBox ID=”ListBox1” Runat=”server” SelectionMode=”Multiple”>
<asp:ListItem>Hematite</asp:ListItem>
<asp:ListItem>Halite</asp:ListItem>
<asp:ListItem>Limonite</asp:ListItem>
<asp:ListItem>Magnetite</asp:ListItem>

</asp:ListBox>

The possible values of the SelectionMode property include Single and Multiple. Setting the value
to Multiple allows the end user to make multiple selections in the list box. The user must hold down
either the Ctrl or Shift keys while making selections. Holding down the Ctrl key enables the user to
make a single selection from the list while maintaining previous selections. Holding down the Shift key
enables a range of multiple selections.

An Example of Using the ListBox Control
The ListBox control shown in Listing 5-12 allows multiple selections to be displayed in the browser
when a user clicks the Submit button. The form should also have an additional text box and button at
the top that enables the end user to add additional items to the ListBox.

150

Chapter 5

08_576100 ch05.qxd 10/6/05 9:17 PM Page 150

Listing 5-12: Using the ListBox control

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Protected Sub Button1_Click(ByVal sender As Object, _

ByVal e As System.EventArgs)

ListBox1.Items.Add(TextBox1.Text.ToString())
End Sub

Protected Sub Button2_Click(ByVal sender As Object, _
ByVal e As System.EventArgs)

Label1.Text = “You selected from the ListBox:
”
For Each li As ListItem In ListBox1.Items

If li.Selected = True Then
label1.Text += li.Text & “
”

End If
Next

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Using the ListBox</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:TextBox ID=”TextBox1” Runat=”server”></asp:TextBox>
<asp:Button ID=”Button1” Runat=”server” Text=”Add an additional item”
OnClick=”Button1_Click” />

<asp:ListBox ID=”ListBox1” Runat=”server” SelectionMode=”multiple”>
<asp:ListItem>Hematite</asp:ListItem>
<asp:ListItem>Halite</asp:ListItem>
<asp:ListItem>Limonite</asp:ListItem>
<asp:ListItem>Magnetite</asp:ListItem>

</asp:ListBox>

<asp:Button ID=”Button2” Runat=”server” Text=”Submit”
OnClick=”Button2_Click” />

<asp:Label ID=”Label1” Runat=”server”></asp:Label>

</div>
</form>

</body>
</html>

(continued)

151

ASP.NET Web Server Controls

08_576100 ch05.qxd 10/6/05 9:17 PM Page 151

Listing 5-12: (continued)

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
protected void Button1_Click(object sender, EventArgs e)
{

ListBox1.Items.Add(TextBox1.Text.ToString());
}

protected void Button2_Click(object sender, EventArgs e)
{

Label1.Text = “You selected from the ListBox:
”;
foreach (ListItem li in ListBox1.Items) {

if (li.Selected == true) {
Label1.Text += li.Text + “
”;

}
}

}
</script>

This is an interesting example. First, some default items (four common minerals) are already placed
inside the ListBox control. However, the text box and button at the top of the form allow the end user to
add additional minerals to the list. Users can then make one or more selections from the ListBox, includ-
ing selections from the items that they dynamically added to the collection. After a user makes his selec-
tion and clicks the button, the Button2_Click event iterates through the ListItem instances in the
collection and displays only the items that have been selected.

This control works by creating an instance of a ListItem object and using its Selected property to see
if a particular item in the collection has been selected. The use of the ListItem object is not limited to
the ListBox control (although that is what is used here). You can dynamically add or remove items from
a collection and get at items and their values through the use of the ListItem object in the
DropDownList, CheckBoxList, and RadioButtonList controls as well. It is a list-control feature.

When this page is built and run, you get the results presented in Figure 5-13.

Adding Items to a Collection
To add items to the collection, you can use the following short syntax:

ListBox1.Items.Add(TextBox1.Text)

Look at the source code created in the browser, and you should see something similar to the following
generated dynamically:

<select size=”4” name=”ListBox1” multiple=”multiple” id=”ListBox1”>
<option value=”Hematite”>Hematite</option>
<option value=”Halite”>Halite</option>
<option value=”Limonite”>Limonite</option>
<option value=”Magnetite”>Magnetite</option>
<option value=”Olivine”>Olivine</option>

</select>

152

Chapter 5

08_576100 ch05.qxd 10/6/05 9:17 PM Page 152

Figure 5-13

You can see that the dynamically added value is a text item, and you can see its value. You can also add
instances of the ListItem object to get different values for the item name and value:

VB
ListBox1.Items.Add(New ListItem(“Olivine”, “MG2SIO4”))

C#
ListBox1.Items.Add(new ListItem(“Olivine”, “MG2SIO4”));

This example adds a new instance of the ListItem object — adding not only the textual name of the
item, but the value of the item (its chemical formula). It produces the following results in the browser:

<option value=”MG2SIO4”>Olivine</option>

The CheckBox Server Control
Check boxes on a Web form enable your users to either make selections from a collection of items or
specify a value of an item to be yes/no, on/off, or true/false. Use either the CheckBox control or the
CheckBoxList control to include check boxes in your Web forms.

The CheckBox control allows you to place single check boxes on a form; the CheckBoxList control allows
you to place collections of check boxes on the form. You can use multiple CheckBox controls on your
ASP.NET pages, but then you are treating each check box as its own element with its own associated
events. On the other hand, the CheckBoxList control allows you to take multiple check boxes and create
specific events for the entire group.

153

ASP.NET Web Server Controls

08_576100 ch05.qxd 10/6/05 9:17 PM Page 153

Listing 5-13 shows an example of using the CheckBox control.

Listing 5-13: Using a single instance of the CheckBox control

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Protected Sub CheckBox1_CheckedChanged(ByVal sender As Object, _

ByVal e As System.EventArgs)
Response.Write(“Thanks for your donation!”)

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>CheckBox control</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:CheckBox ID=”CheckBox1” Runat=”server” Text=”Donate $10 to our cause!”
OnCheckedChanged=”CheckBox1_CheckedChanged” AutoPostBack=”true” />

</div>
</form>

</body>
</html>

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
protected void CheckBox1_CheckedChanged(object sender, EventArgs e)
{

Response.Write(“Thanks for your donation!”);
}

</script>

This produces a page that contains a single check box asking for a monetary donation. Using the
CheckedChanged event, OnCheckedChanged is used within the CheckBox control. The attribute’s value
points to the CheckBox1_CheckedChanged event, which fires when the user checks the check box. It
occurs only if the AutoPostBack property is set to True (this property is set to False by default).
Running this page produces the results shown in Figure 5-14.

How to Determine If Check Boxes Are Checked
You might not want to use the AutoPostBack feature of the check box, but instead want to determine if
the check box is checked after the form is posted back to the server. You can make this check through an
If Then statement, as illustrated in the following example:

VB
If (CheckBox1.Checked = True) Then

Response.Write(“CheckBox is checked!”)
End If

154

Chapter 5

08_576100 ch05.qxd 10/6/05 9:17 PM Page 154

C#
if (CheckBox1.Checked == true) {

Response.Write(“Checkbox is checked!”);
}

This check is done on the CheckBox value using the control’s Checked property. The property’s value is
a Boolean value, so it is either True (checked) or False (not checked).

Figure 5-14

Assigning a Value to a Check Box
You can also use the Checked property to make sure a check box is checked based on other dynamic
values:

VB
If (Member = True) Then

CheckBox1.Checked = True
End If

C#
if (Member == true) {

CheckBox1.Checked = true;
}

Aligning Text Around the Check Box
In the previous check box example, the text appears to the right of the actual check box, as shown in
Figure 5-15.

Figure 5-15

155

ASP.NET Web Server Controls

08_576100 ch05.qxd 10/6/05 9:17 PM Page 155

Using the CheckBox control’s TextAlign property, you can realign the text so that it appears on the
other side of the check box:

<asp:CheckBox ID=”CheckBox1” Runat=”server” Text=”Donate $10 to our cause!”
OnCheckedChanged=”CheckBox1_CheckedChanged” AutoPostBack=”true”
TextAlign=”Left” />

The possible values of the TextAlign property are either Right (the default setting) or Left. This prop-
erty is also available to the CheckBoxList, RadioButton, and RadioButtonList controls. Assigning the
value Left produces the result shown in Figure 5-16.

Figure 5-16

The CheckBoxList Server Control
The CheckBoxList server control is quite similar to the CheckBox control, except that the former enables
you to work with a collection of items rather than a single item. The idea is that a CheckBoxList server
control instance is a collection of related items, each being a check box unto itself.

To see the CheckBoxList control in action, you can build an example that uses Microsoft’s SQL Server
to pull information from the Customers table of the Northwind example database. An example is pre-
sented in Listing 5-14.

Listing 5-14: Dynamically populating a CheckBoxList

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Protected Sub Button1_Click(ByVal sender As Object, _

ByVal e As System.EventArgs)

Label1.Text = “You selected:
”
For Each li As ListItem In CheckBoxList1.Items

If li.Selected = True Then
Label1.Text += li.Text & “
”

End If
Next

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>CheckBox control</title>
</head>
<body>

<form id=”form1” runat=”server”>

156

Chapter 5

08_576100 ch05.qxd 10/6/05 9:17 PM Page 156

<div>
<asp:Button ID=”Button1” Runat=”server” Text=”Submit Choices”
OnClick=”Button1_Click” />

<asp:Label ID=”Label1” Runat=”server”></asp:Label>

<asp:CheckBoxList ID=”CheckBoxList1” Runat=”server”
DataSourceID=”SqlDataSource1” DataTextField=”CompanyName”
RepeatColumns=”3” BorderColor=”Black”
BorderStyle=”Solid” BorderWidth=”1px”>

</asp:CheckBoxList>
<asp:SqlDataSource ID=”SqlDataSource1” Runat=”server”
SelectCommand=”SELECT [CompanyName] FROM [Customers]”

ConnectionString=”<%$ ConnectionStrings:AppConnectionString1 %>”>
</asp:SqlDataSource>

</div>
</form>

</body>
</html>

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
protected void Button1_Click(object sender, EventArgs e)
{

Label1.Text = “You selected:
”;
foreach (ListItem li in CheckBoxList1.Items) {

if (li.Selected == true) {
Label1.Text += li.Text + “
”;

}
}

}
</script>

This ASP.NET page has a SqlDataSource control on the page that pulls the information you need from
the Northwind database. From the SELECT statement used in this control, you can see that you are
retrieving the CompanyName field from each of the listings in the Customers table.

The CheckBoxList control binds itself to the SqlDataSource control using a few properties:

<asp:CheckBoxList ID=”CheckBoxList1” Runat=”server”
DataSourceID=”SqlDataSource1” DataTextField=”CompanyName”
RepeatColumns=”3” BorderColor=”Black”
BorderStyle=”Solid” BorderWidth=”1px”>

</asp:CheckBoxList>

The DataSourceID property is used to associate the CheckBoxList control with the results that come
back from the SqlDataSource control. Then the DataTextField property is used to retrieve the name of
the field you want to work with from the results. In this example, it is the only one that is available: the
CompanyName. That’s it! CheckBoxList generates the results you want.

157

ASP.NET Web Server Controls

08_576100 ch05.qxd 10/6/05 9:17 PM Page 157

The remaining code consists of styling properties, which.are pretty interesting. The BorderColor,
BorderStyle, and BorderWidth properties enable you to put a border around the entire check box list.
The most interesting property is the RepeatColumns property, which specifies how many columns
(three in this example) can be used to display the results.

When you run the page, you get the results shown in Figure 5-17.

The RepeatDirection property instructs the CheckBoxList control about how to lay out the items
bound to the control on the Web page. Possible values include Vertical and Horizontal. The default
value is Vertical. Setting it to Vertical with a RepeatColumn setting of 3 gives the following results:

CheckBox1 CheckBox5 CheckBox9
CheckBox2 CheckBox6 CheckBox10
CheckBox3 CheckBox7 CheckBox11
CheckBox4 CheckBox8 CheckBox12

When the RepeatDirection property is set to Horizontal, you get the check box items laid out in a
horizontal fashion:

CheckBox1 CheckBox2 CheckBox3
CheckBox4 CheckBox5 CheckBox6
CheckBox7 CheckBox8 CheckBox9
CheckBox10 CheckBox11 CheckBox12

Figure 5-17

158

Chapter 5

08_576100 ch05.qxd 10/6/05 9:17 PM Page 158

The RadioButton Server Control
The RadioButton server control is quite similar to the CheckBox server control. It places a radio button
on your Web page. Unlike a check box, however, a single radio button on a form doesn’t make much
sense. Radio buttons are generally form elements that require at least two options. A typical set of
RadioButton controls on a page takes the following construction:

<asp:RadioButton ID=”RadioButton1” Runat=”server” Text=”Yes” GroupName=”Set1” />
<asp:RadioButton ID=”RadioButton2” Runat=”server” Text=”No” GroupName=”Set1”/>

Figure 5-18 shows the result.

Figure 5-18

When you look at the code for the RadioButton control, note the standard Text property that places the
text next to the radio button on the Web form. The more important property here is GroupName, which
can be set in one of the RadioButton controls to match what it is set to in the other. This enables the radio
buttons on the Web form to work together for the end user. How do they work together? Well, when one
of the radio buttons on the form is checked, the circle associated with the item selected appears filled in.
Any other filled-in circle from the same group in the collection is removed, ensuring that only one of the
radio buttons in the collection is selected.

Listing 5-15 shows an example of using the RadioButton control.

Listing 5-15: Using the RadioButton server control

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Protected Sub RadioButton_CheckedChanged(ByVal sender As Object, _

ByVal e As System.EventArgs)
If RadioButton1.Checked = True Then

Response.Write(“You selected Visual Basic 2005”)
Else

Response.Write(“You selected Visual C# 2005”)
End If

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>RadioButton control</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:RadioButton ID=”RadioButton1” Runat=”server” Text=”Visual Basic 2005”
GroupName=”LanguageChoice” OnCheckedChanged=”RadioButton_CheckedChanged”

(continued)

159

ASP.NET Web Server Controls

08_576100 ch05.qxd 10/6/05 9:17 PM Page 159

Listing 5-15: (continued)

AutoPostBack=”True” />
<asp:RadioButton ID=”RadioButton2” Runat=”server” Text=”Visual C# 2005”
GroupName=”LanguageChoice” OnCheckedChanged=”RadioButton_CheckedChanged”
AutoPostBack=”True” />

</div>
</form>

</body>
</html>

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
protected void RadioButton_CheckedChanged(object sender, EventArgs e)
{

if (RadioButton1.Checked == true) {
Response.Write(“You selected Visual Basic 2005”);

}
else {

Response.Write(“You selected Visual C# 2005”);
}

}
</script>

Like the CheckBox, the RadioButton control has a CheckedChanged event that puts an
OnCheckedChanged attribute in the control. The attribute’s value points to the server-side event that
is fired when a selection is made using one of the two radio buttons on the form. Remember that the
AutoPostBack property needs to be set to True for this to work correctly.

Figure 5-19 shows the results.

Figure 5-19

One advantage that the RadioButton control has over a RadioButtonList control (which is discussed
next) is that it enables you to place other items (text, controls, or images) between the RadioButton con-
trols themselves. RadioButtonList, however, is always a straight list of radio buttons on your Web page.

160

Chapter 5

08_576100 ch05.qxd 10/6/05 9:17 PM Page 160

The RadioButtonList Server Control
The RadioButtonList server control lets you display a collection of radio buttons on a Web page. The
RadioButtonList control is quite similar to the CheckBoxList and other list controls in that it allows you
to iterate through to see what the user selected, to make counts, or to perform other actions.

A typical RadioButtonList control is written to the page in the following manner:

<asp:RadioButtonList ID=”RadioButtonList1” Runat=”server”>
<asp:ListItem Selected=”True”>English</asp:ListItem>
<asp:ListItem>Russian</asp:ListItem>
<asp:ListItem>Finnish</asp:ListItem>
<asp:ListItem>Swedish</asp:ListItem>

</asp:RadioButtonList>

Like the other list controls, this one uses instances of the ListItem object for each of the items contained
in the collection. From the example, you can see that if the Selected property is set to True, one of the
ListItem objects is selected by default when the page is generated for the first time. This produces the
results shown in Figure 5-20.

Figure 5-20

The Selected property is not required, but it is a good idea if you want the end user to make some sort
of selection from this collection. Using it makes it impossible to leave the collection blank.

You can use the RadioButtonList control to check for the value selected by the end user in any of your
page methods. Listing 5-16 shows a Button1_Click event that pushes out the value selected in the
RadioButtonList collection.

Listing 5-16: Checking the value of the item selected from a RadioButtonList control

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Protected Sub Button1_Click(ByVal sender As Object, _

ByVal e As System.EventArgs)

Label1.Text = “You selected: “ & _
RadioButtonList1.SelectedItem.ToString()

End Sub
</script>

(continued)

161

ASP.NET Web Server Controls

08_576100 ch05.qxd 10/6/05 9:17 PM Page 161

Listing 5-16: (continued)

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
protected void Button1_Click(object sender, EventArgs e)
{

Label1.Text = “You selected: “ +
RadioButtonList1.SelectedItem.ToString();

}
</script>

This bit of code gets at the item selected from the RadioButtonList collection of ListItem objects. It is
how you work with other list controls that are provided in ASP.NET. The RadioButtonList also affords
you access to the RepeatColumns and RepeatDirection properties (these were explained in the
CheckBoxList section). You can bind this control to items that come from any of the data source controls
so that you can dynamically create radio button lists on your Web pages.

Image Server Control
The Image server control enables you to work with the images that appear on your Web page from the
server-side code. It’s a simple server control, but it can give you the power to determine how your
images are displayed on the browser screen. A typical Image control is constructed in the following
manner:

<asp:Image ID=”Image1” Runat=”server” ImageUrl=”~/MyImage1.gif” />

The important property here is ImageUrl. It points to the file location of the image. In this case, the loca-
tion is specified as the MyImage.gif file.

Listing 5-17 shows an example of how to dynamically change the ImageUrl property.

Listing 5-17: Changing the ImageUrl property dynamically

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Protected Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)

Image1.ImageUrl = “~/MyImage2.gif”
End Sub

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Image control</title>
</head>
<body>

<form id=”form1” runat=”server”>

162

Chapter 5

08_576100 ch05.qxd 10/6/05 9:17 PM Page 162

<div>
<asp:Image ID=”Image1” Runat=”server” ImageUrl=”~/MyImage1.gif” />

<asp:Button ID=”Button1” Runat=”server” Text=”Change Image”
OnClick=”Button1_Click” />

</div>
</form>

</body>
</html>

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
protected void Button1_Click(object sender, EventArgs e)
{

Image1.ImageUrl = “~/MyImage2.gif”;
}

</script>

In this example, an image (MyImage1.gif) is shown in the browser when the page is loaded for the first
time. When the end user clicks the button on the page, a new image (MyImage2.gif) is loaded in the
postback process.

Special circumstances can prevent end users from viewing an image that is part of your Web page. They
might be physically unable to see the image, or they might be using a text-only browser. In these cases,
their browsers look for the element’s longdesc attribute that points to a file containing a long
description of the image that is displayed.

For these cases, the Image server control now includes a new DescriptionUrl attribute. The value
assigned to it is a text file that contains a thorough description of the image with which it is associated.
Here’s how to use it:

<asp:Image ID=”Image1” Runat=”server” DescriptionUrl=”~/Image01.txt” />

This code produces the following results in the browser:

Remember that the image does not support the user clicking the image. If you want to program events
based on button clicks, use the ImageButton server control discussed earlier in this chapter.

Table Server Control
Tables are one of the Web page’s more common elements because the HTML <table> element is
ideal for controlling the layout of your Web page. The typical construction of the Table server control
is as follows:

163

ASP.NET Web Server Controls

08_576100 ch05.qxd 10/6/05 9:17 PM Page 163

<asp:Table ID=”Table1” Runat=”server”>
<asp:TableRow Runat=”server” Font-Bold=”True”
ForeColor=”Black” BackColor=”Silver”>

<asp:TableHeaderCell>First Name</asp:TableHeaderCell>
<asp:TableHeaderCell>Last Name</asp:TableHeaderCell>

</asp:TableRow>
<asp:TableRow>

<asp:TableCell>Bill</asp:TableCell>
<asp:TableCell>Evjen</asp:TableCell>

</asp:TableRow>
<asp:TableRow>

<asp:TableCell>Devin</asp:TableCell>
<asp:TableCell>Rader</asp:TableCell>

</asp:TableRow>
</asp:Table>

This produces the simple three-rowed table shown in Figure 5-21.

Figure 5-21

You can do a lot with the Table server control. For example, you can dynamically add rows to the table,
as illustrated in Listing 5-18.

Listing 5-18: Dynamically adding rows to the table

VB
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Dim tr As New TableRow()

Dim fname As New TableCell()
fname.Text = “Scott”
tr.Cells.Add(fname)

Dim lname As New TableCell()
lname.Text = “Hanselman”
tr.Cells.Add(lname)

Table1.Rows.Add(tr)
End Sub

C#
protected void Page_Load(object sender, EventArgs e)
{

TableRow tr = new TableRow();

TableCell fname = new TableCell();
fname.Text = “Scott”;

164

Chapter 5

08_576100 ch05.qxd 10/6/05 9:17 PM Page 164

tr.Cells.Add(fname);

TableCell lname = new TableCell();
lname.Text = “Hanselman”;
tr.Cells.Add(lname);

Table1.Rows.Add(tr);
}

To add a single row to a Table control, you have to create new instances of the TableRow and TableCell
objects. You create the TableCell objects first and then place them within a TableRow object that is
added to a Table object.

The Table server control is enhanced with some extra features in ASP.NET 2.0. One of the simpler new
features is the capability to add captions to the tables on Web pages. Figure 5-22 shows a table with a
caption.

Figure 5-22

To give your table a caption, simply use the new Caption attribute in the Table control, as illustrated in
Listing 5-19.

Listing 5-19: Using the new Caption attribute

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” ><head runat=”server”>
<title>Table Server Control</title>

</head>
<body>

<form id=”form1” runat=”server”>
<asp:Table ID=”Table1” Runat=”server”
Caption=”Table 1: This is an example of a caption above a table.”
BackColor=”Gainsboro”>

(continued)

165

ASP.NET Web Server Controls

08_576100 ch05.qxd 10/6/05 9:17 PM Page 165

Listing 5-19: (continued)

<asp:TableRow ID=”Tablerow1” Runat=server>
<asp:TableCell ID=”Tablecell1” Runat=”server”>Lorem ipsum dolor sit
amet, consectetuer adipiscing elit. Duis vel justo. Aliquam
adipiscing. In mattis volutpat urna. Donec adipiscing, nisl eget
dictum egestas, felis nulla ornare ligula, ut bibendum pede augue
eu augue. Sed vel risus nec urna pharetra imperdiet. Aenean
semper. Sed ullamcorper auctor sapien. Suspendisse luctus. Ut ac
nibh. Nam lorem. Aliquam dictum aliquam purus.</asp:TableCell>

</asp:TableRow>
</asp:Table>

</form>
</body>
</html>

By default, the caption is placed at the top center of the table, but you can control where it is placed by
using another new attribute —CaptionAlign. Its possible settings include Bottom, Left, NotSet,
Right, and Top.

In the past, an <asp:Table> element contained any number of <asp:TableRow> elements. Now you
have some additional elements that can be nested within the <asp:Table> element. These new ele-
ments include <asp:TableHeaderRow> and <asp:TableFooterRow>. They add either a header or
footer to your table, enabling you to use the Table server control to page through lots of data but still
retain some text in place to indicate the type of data being handled. This is quite a powerful feature
when you work with mobile applications that dictate that sometimes end users can move through only
a few records at a time.

The Calendar Server Control
The Calendar server control is a rich control that enables you to place a full-featured calendar directly
on your Web pages. It allows for a high degree of customization to ensure that it looks and behaves in a
unique manner. The Calendar control, in its simplest form, is coded in the following manner:

<asp:Calendar ID=”Calendar1” Runat=”server”>
</asp:Calendar>

This code produces a calendar on your Web page without any styles added, as shown in Figure 5-23.

Figure 5-23

166

Chapter 5

08_576100 ch05.qxd 10/6/05 9:17 PM Page 166

Making a Date Selection from the Calendar Control
The calendar allows you to scroll through the months of the year and to select specific days in the
exposed month. A simple application that enables the user to select a day of the month is shown in
Listing 5-20.

Listing 5-20: Selecting a single day in the Calendar control

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Protected Sub Calendar1_SelectionChanged(ByVal sender As Object, _

ByVal e As System.EventArgs)
Response.Write(“You selected: “ & _

Calendar1.SelectedDate.ToShortDateString())
End Sub

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head id=”Head1” runat=”server”>

<title>Using the Calendar Control</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:Calendar ID=”Calendar1” Runat=”server”
OnSelectionChanged=”Calendar1_SelectionChanged”>

</asp:Calendar>
</div>
</form>

</body>
</html>

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
protected void Calendar1_SelectionChanged(object sender, EventArgs e)
{

Response.Write(“You selected: “ +
Calendar1.SelectedDate.ToShortDateString());

}
</script>

Running this application pulls up the calendar in the browser. The end user can then select a single
date in it. After a date is selected, the Calendar1_SelectionChanged event is triggered, using the
OnSelectionChange attribute. This event writes the value of the selected date to the screen. The result
is shown in Figure 5-24.

167

ASP.NET Web Server Controls

08_576100 ch05.qxd 10/6/05 9:17 PM Page 167

Figure 5-24

Choosing a Date Format to Output from the Calendar
When you use the Calendar1_SelectionChanged event, the selected date is written out using the
ToShortDateString() method. The Calendar control also allows you to write out the date in a number
of other formats, as detailed in the following list:

❑ ToFileTime: Converts the selection to the local operating system file time:
127473912000000000.

❑ ToFileTimeUtc: Converts the selection to the operating system file time, but instead of using
the local time zone, the UTC time is used: 127473696000000000.

❑ ToLocalTime: Converts the current coordinated universal time (UTC) to local time:
12/12/2004 6:00:00 PM.

❑ ToLongDateString: Converts the selection to a human-readable string in a long format:
Monday, December 13, 2004.

❑ ToLongTimeString: Converts the selection to a time value (no date is included) of a long for-
mat: 12:00:00 AM.

❑ ToOADate: Converts the selection to an OLE Automation date equivalent: 38334.

❑ ToShortDateString: Converts the selection to a human-readable string in a short format:
12/13/2004.

❑ ToShortTimeString: Converts the selection to a time value (no date is included) in a short for-
mat: 12:00 AM.

❑ ToString: Converts the selection to the following: 12/13/2004 12:00:00 AM.

❑ ToUniversalTime: Converts the selection to universal time (UTC): 12/13/2004 6:00:00 AM.

168

Chapter 5

08_576100 ch05.qxd 10/6/05 9:17 PM Page 168

Making Day, Week, or Month Selections
By default, the Calendar control enables you to make single day selections. You can use the
SelectionMode property to change this behavior to allow your users to make week or month selections
from the calendar instead. The possible values of this property include Day, DayWeek, DayWeekMonth,
and None.

The Day setting enables you to click a specific day in the calendar to highlight it (this is the default).
Using the setting of DayWeek still lets you make individual day selections, but it also enables you to click
the arrow next to the week (see Figure 5-25) to make selections that consist of an entire week. Using the
setting of DayWeekMonth lets users make individual day selections or week selections. A new arrow
appears in the upper-left corner of the calendar that enables users to select an entire month (also shown
in Figure 5-25). A setting of None means that it is impossible for the end user to make any selections,
which is useful for calendars on your site that are informational only.

Figure 5-25

Working with Date Ranges
Even if an end user makes a selection that encompasses an entire week or an entire month, you get back
from the selection only the first date of this range. If, for example, you allow users to select an entire
month and one selects the month of July 2005, what you get back (using ToShortDateString()) is
7/1/2005— the first date in the date range of the selection. That might work for you, but if you require
all the dates in the selected range, Listing 5-21 shows you how to get them.

169

ASP.NET Web Server Controls

08_576100 ch05.qxd 10/6/05 9:17 PM Page 169

Listing 5-21: Retrieving a range of dates from a selection

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Protected Sub Calendar1_SelectionChanged(ByVal sender As Object, _

ByVal e As System.EventArgs)
Label1.Text = “<u>You selected the following date/dates:</u>
”

For i As Integer = 0 To (Calendar1.SelectedDates.Count - 1)
Label1.Text += Calendar1.SelectedDates.Item(i).ToShortDateString() & _

“
”
Next

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head id=”Head1” runat=”server”>

<title>Using the Calendar Control</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:Calendar ID=”Calendar1” Runat=”server”
OnSelectionChanged=”Calendar1_SelectionChanged”
SelectionMode=”DayWeekMonth”>

</asp:Calendar><p>
<asp:Label ID=”Label1” Runat=”server”></asp:Label></p>

</div>
</form>

</body>
</html>

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
protected void Calendar1_SelectionChanged(object sender, EventArgs e)
{

Label1.Text = “<u>You selected the following date/dates:</u>
”;

for (int i=0; i<Calendar1.SelectedDates.Count; i++) {
Label1.Text += Calendar1.SelectedDates[i].ToShortDateString() +

“
”;
}

}
</script>

170

Chapter 5

08_576100 ch05.qxd 10/6/05 9:17 PM Page 170

In this example, the Calendar control lets users make selections that can be an individual day, a week,
or even a month. Using a For Next loop, you iterate through a selection by using the SelectedDates
.Count property. The code produces the results shown in Figure 5-26.

Figure 5-26

You can get just the first day of the selection by using the following:

VB
Calendar1.SelectedDates.Item(0).ToShortDateString()

C#
Calendar1.SelectedDates[0].ToShortDateString();

And you can get the last date in the selected range by using:

VB
Calendar1.SelectedDates.Item(Calendar1.SelectedDates.Count-1).ToShortDateString()

C#
Calendar1.SelectedDates[Calendar1.SelectedDates.Count-1].ToShortDateString();

As you can see, this is possible using the Count property of the SelectedDates object.

171

ASP.NET Web Server Controls

08_576100 ch05.qxd 10/6/05 9:17 PM Page 171

Modifying the Style and Behavior of Your Calendar
There is a lot to the Calendar control — definitely more than can be covered in this chapter. One nice
thing about the Calendar control is the ease of extensibility that it offers. Begin exploring new ways to
customize this control further by looking at one of the easiest ways to change it — applying a style to
the control.

Using Visual Studio, you can give the controls a new look-and-feel from the Design view of the page you
are working with. Highlight the Calendar control and open the control’s smart tag to see the Auto
Format link. That gives you a list of available styles that can be applied to your Calendar control.

The Calendar control isn’t alone in this capability. Many other rich controls offer a list of styles. You
can always find this capability in the control’s smart tag.

Some of the styles are shown in Figure 5-27.

Figure 5-27

172

Chapter 5

08_576100 ch05.qxd 10/6/05 9:17 PM Page 172

In addition to changing the style of the Calendar control, you can work with the control during its ren-
dering process. The Calendar control includes an event called DayRender that allows you to control how
a single date or all the dates in the calendar are rendered. Listing 5-22 shows an example of how to
change one of the dates being rendered in the calendar.

Listing 5-22: Controlling how a day is rendered in the Calendar

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Protected Sub Calendar1_DayRender(ByVal sender As Object, _

ByVal e As System.Web.UI.WebControls.DayRenderEventArgs)
e.Cell.VerticalAlign = VerticalAlign.Top

If (e.Day.DayNumberText = “25”) Then
e.Cell.Controls.Add(New LiteralControl(“<p>User Group Meeting!</p>”))
e.Cell.BorderColor = Drawing.Color.Black
e.Cell.BorderWidth = 1
e.Cell.BorderStyle = BorderStyle.Solid
e.Cell.BackColor = Drawing.Color.LightGray

End If
End Sub

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head id=”Head1” runat=”server”>

<title>Using the Calendar Control</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:Calendar ID=”Calendar1” Runat=”server”
OnDayRender=”Calendar1_DayRender” Height=”190px” BorderColor=”White”
Width=”350px” ForeColor=”Black” BackColor=”White” BorderWidth=”1px”
NextPrevFormat=”FullMonth” Font-Names=”Verdana” Font-Size=”9pt”>

<SelectedDayStyle ForeColor=”White”
BackColor=”#333399”></SelectedDayStyle>

<OtherMonthDayStyle ForeColor=”#999999”></OtherMonthDayStyle>
<TodayDayStyle BackColor=”#CCCCCC”></TodayDayStyle>
<NextPrevStyle ForeColor=”#333333” VerticalAlign=”Bottom”
Font-Size=”8pt” Font-Bold=”True”></NextPrevStyle>

<DayHeaderStyle Font-Size=”8pt” Font-Bold=”True”></DayHeaderStyle>
<TitleStyle ForeColor=”#333399” BorderColor=”Black” Font-Size=”12pt”

Font-Bold=”True” BackColor=”White” BorderWidth=”4px”>
</TitleStyle>

</asp:Calendar>
</div>
</form>

</body>
</html>

(continued)

173

ASP.NET Web Server Controls

08_576100 ch05.qxd 10/6/05 9:17 PM Page 173

Listing 5-22: (continued)

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
protected void Calendar1_DayRender(object sender, DayRenderEventArgs e)
{

e.Cell.VerticalAlign = VerticalAlign.Top;

if (e.Day.DayNumberText == “25”)
{

e.Cell.Controls.Add(new LiteralControl(“<p>User Group Meeting!</p>”));
e.Cell.BorderColor = System.Drawing.Color.Black;
e.Cell.BorderWidth = 1;
e.Cell.BorderStyle = BorderStyle.Solid;
e.Cell.BackColor = System.Drawing.Color.LightGray;

}

}
</script>

In this example, you use a Calendar control with a little style to it. When the page is built and run in the
browser, you can see that the 25th of every month in the calendar has been changed by the code in the
Calendar1_DayRender event. The calendar is shown in Figure 5-28.

Figure 5-28

174

Chapter 5

08_576100 ch05.qxd 10/6/05 9:17 PM Page 174

The Calendar control in this example adds an OnDayRender attribute that points to the
Calendar1_DayRender event. The method is run for each of the days rendered in the calendar. The
class constructor shows that you are not working with the typical System.EventArgs class, but instead
with the DayRenderEventArgs class. It gives you access to each of the days rendered in the calendar.

The two main properties from the DayRenderEventArgs class are Cell and Day. The Cell property
gives you access to the space in which the day is being rendered, and the Day property gives you access
to the specific date being rendered in the cell.

From the actions being taken in the Calendar1_DayRender event, you can see that both properties are
used. First, the Cell property sets the vertical alignment of the cell to Top. If it didn’t, the table might
look a little strange when one of the cells has content. Next, a check is made to see if the day being ren-
dered (checked with the Day property) is the 25th of the month. If it is, the If Then statement runs using
the Cell property to change the styling of just that cell. The styling change adds a control, as well as
makes changes to the border and color of the cell.

As you can see, working with individual dates in the calendar is fairly straightforward. You can easily
give them the content and appearance you want.

A nice feature of the Day property is that you can turn off the option to select a particular date or range
of dates by setting the Day property’s IsSelectable property to False:

VB
If (e.Day.Date < DateTime.Now) Then

e.Day.IsSelectable = False
End If

C#
if (e.Day.Date < DateTime.Now) {

e.Day.IsSelectable = false;
}

AdRotator Server Control
Although Web users find ads rather annoying, advertising continues to be prevalent everywhere on the
Web. With the AdRotator control, you can now use advertisement data from sources other than the stan-
dard XML file that was used with the previous versions of this control.

If you’re using an XML source for the ad information, first create an XML advertisement file. The adver-
tisement file is quite similar to the previous advertisement file, but you can now incorporate some new
elements that give you even more control over the appearance and behavior of your ads. Listing 5-23
shows an example of an XML advertisement file.

Listing 5-23: The XML advertisement file

<?xml version=”1.0” encoding=”utf-8” ?>
<Advertisements
xmlns=”http://schemas.microsoft.com/AspNet/AdRotator-Schedule-File”>

(continued)

175

ASP.NET Web Server Controls

08_576100 ch05.qxd 10/6/05 9:17 PM Page 175

Listing 5-23: (continued)

<Ad>
<ImageUrl>book1.gif</ImageUrl>
<NavigateUrl>http://www.wrox.com</NavigateUrl>
<AlternateText>Visit Wrox Today!</AlternateText>
<Impressions>50</Impressions>
<Keyword>VB.NET</Keyword>

</Ad>
<Ad>

<ImageUrl>book2.gif</ImageUrl>
<NavigateUrl>http://www.wrox.com</NavigateUrl>
<AlternateText>Visit Wrox Today!</AlternateText>
<Impressions>50</Impressions>
<Keyword>XML</Keyword>

</Ad>
</Advertisements>

This XML file, used for storing information about the advertisements that appear in your application,
has just a few elements detailed in the following table. Remember that all elements are optional.

Element Description

ImageUrl Takes a string value that indicatesthe location of the image to use.

NavigateUrl Takes a string value that indicates the URL to post to when the image
is clicked.

AlternateText Takes a string value that is used for display if images are either turned
off in the client’s browser or if the image is not found.

Impressions Takes a numerical value that indicates the likelihood of the image get-
ting selected for display.

Keyword Takes a string value that sets the category of the image in order to
allow for the filtering of ads.

Now that the XML advertisement file is in place, you can simply use the AdRotator control to read from
this file. Listing 5-24 shows an example of this in action.

Listing 5-24: Using the AdRotator control as a banner ad

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>AdRotator Page</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:AdRotator ID=”AdRotator1” Runat=”server”
AdvertisementFile=”MyAds.xml” />

176

Chapter 5

08_576100 ch05.qxd 10/6/05 9:17 PM Page 176

<p>Lorem ipsum dolor sit
amet, consectetuer adipiscing elit. Duis vel justo. Aliquam
adipiscing. In mattis volutpat urna. Donec adipiscing, nisl eget
dictum egestas, felis nulla ornare ligula, ut bibendum pede augue
eu augue. Sed vel risus nec urna pharetra imperdiet. Aenean
semper. Sed ullamcorper auctor sapien. Suspendisse luctus. Ut ac
nibh. Nam lorem. Aliquam dictum aliquam purus.</p>

</form>
</body>
</html>

The example shows the ad specified in the XML advertisement file as a banner ad at the top of the page.

You are not required to place all your ad information in the XML advertisement file. Instead, you can
use another data source to which you bind the AdRotator. For instance, you bind the AdRotator to a
SqlDataSource object that is retrieving the ad information from SQL Server in the following fashion:

<asp:AdRotator ID=”AdRotator1” Runat=”server”
DataSourceId=”SqlDataSource1” AlternateTextField=”AlternateTF”
ImageUrlField=”Image” NavigateUrlField=”NavigateUrl” />

The AlternateTextField, ImageUrlField, and NavigateUrlField properties point to the column
names that are used in SQL Server for those items.

The Xml Server Control
The Xml server control provides a means of getting XML and transforming it using an XSL style sheet.
The Xml control can work with your XML in a couple of different ways. The simplest method is by using
the construction shown in Listing 5-25. This control is covered in more detail in Chapter 13.

Listing 5-25: Displaying an XML document

<asp:Xml ID=”Xml1” Runat=”server” DocumentSource=”~/MyXMLFile.xml”
TransformSource=”MyXSLFile.xslt”></asp:Xml>

This method takes only a couple of attributes to make it work: DocumentSource, which points to the
path of the XML file, and TransformSource, which provides the XSLT file to use in transforming the
XML document.

The other way to use the Xml server control is to load the XML into an object and then pass the object to
the Xml control, as illustrated in Listing 5-26.

Listing 5-26: Loading the XML file to an object before providing it to the Xml control

VB
Dim MyXmlDoc as XmlDocument = New XmlDocument()
MyXmlDoc.Load(Server.MapPath(“Customers.xml”))

Dim MyXslDoc As XslTransform = New XslTransform()

(continued)

177

ASP.NET Web Server Controls

08_576100 ch05.qxd 10/6/05 9:17 PM Page 177

Listing 5-26: (continued)

MyXslDoc.Load(Server.MapPath(“CustomersSchema.xslt”))

Xml1.Document = MyXmlDoc
Xml1.Transform = MyXslDoc

C#
XmlDocument MyXmlDoc = new XmlDocument();
MyXmlDoc.Load(Server.MapPath(“Customers.xml”));

XslTransform MyXsltDoc = new XslTransform();
MyXsltDoc.Load(Server.MapPath(“CustomersSchema.xslt”));

Xml1.Document = MyXmlDoc;
Xml1.Transform = MyXslDoc;

To make this work, you have to ensure that the System.Xml and System.Xml.Xsl namespaces are
imported into your page. The example loads both the XML and XSL files and then assigns these files as
the values of the Document and Transform properties.

Panel Server Control
The Panel server control encapsulates a set of controls you can use to manipulate or lay out your
ASP.NET pages. It is basically a wrapper for other controls, enabling you to take a group of server
controls along with other elements (such as HTML and images) and turn them into a single unit.

The advantage of using the Panel control to encapsulate a set of other elements is that you can manipu-
late these elements as a single unit using one attribute set in the Panel control itself. For example, setting
the Font-Bold attribute to True causes each item within the Panel control to adopt this attribute.

The new addition to the Panel control is the capability to scroll with scrollbars that appear automatically
depending on the amount of information that Panel control holds. You can even specify how the scroll-
bars should appear.

For an example of using scrollbars, look at a long version of the Lorem Ipsum text (found at www
.lipsum.com) and place that text within the Panel control, as shown in Listing 5-27.

Listing 5-27: Using the new scrollbar feature with the Panel server control

<%@ Page Language=”VB” %>

<html>
<head runat=”server”>

<title>Panel Server Control Page</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:Panel ID=”Panel1” Runat=”server” Height=”300” Width=”300”

178

Chapter 5

08_576100 ch05.qxd 10/6/05 9:17 PM Page 178

ScrollBars=”auto”>
<p>Lorem ipsum dolor sit amet...</p>

</asp:Panel>
</form>

</body>
</html>

By assigning values to the Height and Width attributes of the Panel server control and using the
ScrollBars attribute (in this case, set to Auto), you can display the information it contains within the
defined area using scrollbars (see Figure 5-29).

As you can see, a single vertical scrollbar has been added to the set area of 300 × 300 pixels. The Panel
control wraps the text by default as required. To change this behavior, use the new Wrap attribute, which
takes a Boolean value:

<asp:Panel ID=”Panel1” Runat=”server”
Height=”300” Width=”300” ScrollBars=”Auto”
Wrap=”False” />

Turning off wrapping may cause the horizontal scrollbar to turn on (depending on what is contained in
the panel section).

Figure 5-29

179

ASP.NET Web Server Controls

08_576100 ch05.qxd 10/6/05 9:17 PM Page 179

If you don’t want to let the ASP.NET engine choose which scrollbars to activate, you can actually make
that decision through the use of the ScrollBars attribute. In addition to Auto, its values include None,
Horizontal, Vertical, and Both.

Another interesting attribute that enables you to change the behavior of the Panel control is
HorizontalAlign. It enables you to set how the content in the Panel control is horizontally aligned.
The possible values of this attribute include NotSet, Center, Justify, Left, and Right. Figure 5-30
shows a collection of Panel controls with different horizontal alignments.

Figure 5-30

It is also possible to move the vertical scrollbar to the left side of the Panel control by using the
Direction attribute. Direction can be set to NotSet, LeftToRight, and RightToLeft. A setting of
RightToLeft is ideal when you are dealing with languages that are written from right to left (some
Asian languages, for example). However, that setting also moves the scrollbar to the left side of the Panel
control. If the scrollbar is moved to the left side and the HorizontalAlign attribute is set to Left, your
content resembles Figure 5-31.

Figure 5-31

Center aligned Justified Left align Right align

180

Chapter 5

08_576100 ch05.qxd 10/6/05 9:17 PM Page 180

The PlaceHolder Server Control
The PlaceHolder server control works just as its name implies — it is a placeholder for you to interject
objects dynamically into your page. Think of it as a marker with which you can add other controls. The
capability to add controls to a page at a specific point also works with the Panel control.

To see how it works, insert a PlaceHolder control into your page and then add controls to it from your
server-side code in the manner shown in Listing 5-28.

Listing 5-28: Using PlaceHolder to add controls to a page dynamically

VB
Dim NewLabelControl As New Label()
NewLabelControl.Text = “Hello there”
PlaceHolder1.Controls.Add(NewLabelControl)

C#
Label NewLabelControl = new Label();
NewLabelControl.Text = “Hello there”;
PlaceHolder1.Controls.Add(NewLabelControl);

This example creates a new instance of a Label control and populates it with a value before it is added to
the PlaceHolder control. You can add more than one control to a single instance of a PlaceHolder control.

Summary
This chapter explored numerous server controls, their capabilities, and the features they provide. With
ASP.NET 2.0, you have more than 50 new server controls at your disposal, besides some great changes to
the server controls from ASP.NET 1.0/1.1 that you already use on a day-to-day basis.

Because you have so many server controls at your disposal when you are creating your ASP.NET appli-
cations, you have to think carefully about which is the best control for the task. Many controls seem sim-
ilar, but they offer different features. These controls guarantee that you can build the best possible
applications for all browsers.

This chapter also covered some of the changes ASP.NET 2.0 brings to the classic server controls. The
new features added to classic server controls are, in many ways, just as outstanding as the new controls
that appear in ASP.NET 2.0. The new features make it easy to extend the capabilities of your ASP.NET
applications.

181

ASP.NET Web Server Controls

08_576100 ch05.qxd 10/6/05 9:17 PM Page 181

08_576100 ch05.qxd 10/6/05 9:17 PM Page 182

ASP.NET 2.0
Web Server Controls

When I sat in one of the first review sessions for ASP.NET 2.0 on the Microsoft campus in Redmond,
Washington, I remember being amazed by the number of new server controls (in addition to many
other new and exciting features) this newest release offered. The core infrastructure was already in
place with ASP.NET 1.0/1.1; but with the much-improved 2.0 release, the ASP.NET team was mak-
ing the lives of developers even simpler.

The purpose of the large collection of new controls is to make you more productive. These controls
give you advanced functionality that, in the past, you would have had to laboriously program or
simply omit. In the classic ASP days, for example, few calendars were used on Internet Web sites.
With the introduction of the Calendar server control in ASP.NET 1.0, calendar creation on a site
became a trivial task. Building an image map on top of an image was another task that was diffi-
cult to achieve in ASP.NET 1.x. Through the use of a new server control, however, this capability is
now built into ASP.NET 2.0.

This chapter takes a look at some of these new server controls and explains how to use them in
ASP.NET 2.0 applications. It doesn’t cover all of the new controls, many of which are discussed in
other chapters of this book.

BulletedList Server Control
One common HTML Web page element is a collection of items in a bulleted list. The BulletedList
server control is meant to display a bulleted list of items easily in an ordered (using the HTML
 element) or unordered (using the HTML element) fashion. In addition, the control can
determine the style used for displaying the list.

09_576100 ch06.qxd 10/6/05 9:17 PM Page 183

The BulletedList control can be constructed of any number of <asp:ListItem> controls or can be data-
bound to a data source of some kind and populated based upon the contents retrieved. Listing 6-1 shows
a bulleted list in its simplest form.

Listing 6-1: A simple BulletedList control

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>BulletedList Server Control</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:BulletedList ID=”Bulletedlist1” Runat=”server”>

<asp:ListItem>United States</asp:ListItem>
<asp:ListItem>United Kingdom</asp:ListItem>
<asp:ListItem>Finland</asp:ListItem>
<asp:ListItem>Russia</asp:ListItem>
<asp:ListItem>Sweden</asp:ListItem>
<asp:ListItem>Estonia</asp:ListItem>

</asp:BulletedList>
</form>

</body>
</html>

The use of the <asp:BulletedList> element, along with <asp:ListItem> elements, produces a sim-
ple bulleted list output like the one shown in Figure 6-1.

Figure 6-1

The BulletedList control also enables you to easily change the style of the list with just one or two
attributes. The BulletStyle attribute changes the style of the bullet that precedes each line of the list. It
has possible values of Numbered, LowerAlpha, UpperAlpha, LowerRoman, UpperRoman, Disc, Circle,
Square, NotSet, and CustomImage. Figure 6-2 shows examples of these styles (minus the CustomImage
setting that enables you to use any image of your choice).

184

Chapter 6

09_576100 ch06.qxd 10/6/05 9:17 PM Page 184

Figure 6-2

You can change the starting value of the first item in any of the numbered styles (Numbered, LowerAlpha,
UpperAlpha, LowerRoman, UpperRoman) by using the FirstBulletNumber attribute. If you set the
attribute’s value to 5 when you use the UpperRoman setting, for example, you get the format illustrated
in Figure 6-3.

Figure 6-3

185

ASP.NET 2.0 Web Server Controls

09_576100 ch06.qxd 10/6/05 9:18 PM Page 185

To employ images as bullets, use the CustomImage setting in the BulletedList control. You must also use
the BulletImageUrl attribute in the following manner:

<asp:BulletedList ID=”Bulletedlist1” Runat=”server”
BulletStyle=”CustomImage” BulletImageUrl=”~/myImage.gif”>

Figure 6-4 shows an example of image bullets.

Figure 6-4

The BulletedList control has an attribute called DisplayMode, which has three possible values: Text,
HyperLink, and LinkButton. Text is the default and has been used so far in the examples. Using Text
means that the items in the bulleted list are laid out only as text. HyperLink means that each of the
items is turned into a hyperlink — any user clicking the link is redirected to another page, which is speci-
fied by the <asp:ListItem> control’s Value attribute. A value of LinkButton turns each bulleted list
item into a hyperlink that posts back to the same page. It enables you to retrieve the selection that the
end user makes, as illustrated in Listing 6-2.

Listing 6-2: Using the LinkButton value for the DisplayMode attribute

VB
<%@ Page Language=”VB”%>

<script runat=”server”>
Protected Sub BulletedList1_Click(ByVal sender As Object, _

ByVal e As System.Web.UI.WebControls.BulletedListEventArgs)

Label1.Text = “The index of item you selected: “ & e.Index & _
“
The value of the item selected: “ & _
BulletedList1.Items(e.Index).Text

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

186

Chapter 6

09_576100 ch06.qxd 10/6/05 9:18 PM Page 186

<title>BulletedList Server Control</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:BulletedList ID=”BulletedList1” Runat=”server”
OnClick=”BulletedList1_Click” DisplayMode=”LinkButton”>

<asp:ListItem>United States</asp:ListItem>
<asp:ListItem>United Kingdom</asp:ListItem>
<asp:ListItem>Finland</asp:ListItem>
<asp:ListItem>Russia</asp:ListItem>
<asp:ListItem>Sweden</asp:ListItem>
<asp:ListItem>Estonia</asp:ListItem>

</asp:BulletedList>
<asp:Label ID=”Label1” Runat=”server”>
</asp:Label>

</form>
</body>
</html>

C#
<script runat=”server”>

protected void BulletedList1_Click(object sender,
System.Web.UI.WebControls.BulletedListEventArgs e)

{
Label1.Text = “The index of item you selected: “ + e.Index +

“
The value of the item selected: “ +
BulletedList1.Items[e.Index].Text;

}
</script>

In this example, the DisplayMode attribute is set to LinkButton, and the OnClick attribute is used to
point to the BulletedList1_Click event. BulletedList1_Click uses the BulletedListEventArgs
object, which only exposes the Index property. Using that, you can determine the index number of the
item selected.

You can directly access the Text value of a selected item by using the Items property, or you can use the
same property to populate an instance of the ListItem object. You do that as shown here:

VB
Dim blSelectedValue As ListItem = BulletedList1.Items(e.Index)

C#
ListItem blSelectedValue = BulletedList1.Items[e.Index];

Now that you have seen how to create bulleted lists with items that you declaratively place in the code,
take a look at how to create dynamic bulleted lists from items that are stored in a data store. The follow-
ing example shows how to use the BulletedList control to data-bind to results coming from a data store;
in it, all information is retrieved from an XML file.

The first step is to create the XML in Listing 6-3.

187

ASP.NET 2.0 Web Server Controls

09_576100 ch06.qxd 10/6/05 9:18 PM Page 187

Listing 6-3: FilmChoices.xml

<?xml version=”1.0” encoding=”utf-8”?>
<FilmChoices>

<Film
Title=”Close Encounters of the Third Kind”
Year=”1977”
Director=”Steven Spielberg” />

<Film
Title=”Grease”
Year=”1978”
Director=”Randal Kleiser” />

<Film
Title=”Lawrence of Arabia”
Year=”1962”
Director=”David Lean” />

</FilmChoices>

To populate the BulletedList server control with the Title attribute from the FileChoices.xml file,
use an XmlDataSource control to access the file, as illustrated in Listing 6-4.

Listing 6-4: Dynamically populating a BulletedList server control

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>BulletedList Server Control</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:BulletedList ID=”BulletedList1” Runat=”server”
DataSourceID=”XmlDataSource1” DataTextField=”Title”>

</asp:BulletedList>
<asp:XmlDataSource ID=”XmlDataSource1” Runat=”server”
DataFile=”~/FilmChoices.xml” XPath=”FilmChoices/Film”>

</asp:XmlDataSource>
</form>

</body>
</html>

In this example, you use the DataSourceID attribute to point to the XmlDataSource control (as you
would with any control that can be bound to one of the data source controls). After you are connected to
the data source control, you specifically point to the Title attribute using the DataTextField attribute.
After the two server controls are connected and the page is run, you get a bulleted list that is completely
generated from the contents of the XML file. Figure 6-5 shows the result.

The XmlDataSource server control has some limitations in that the binding to the BulletedList server con-
trol worked in the previous example only because the Title value was an XML attribute and not a sub-
element. The XmlDataSource control only exposes XML attributes as properties when databinding. If you
are going to want to work with sub-elements, then you are going to have to perform an XSLT transform
using the XmlDataSource control’s TransformFile attribute to turn elements into attributes.

188

Chapter 6

09_576100 ch06.qxd 10/6/05 9:18 PM Page 188

Figure 6-5

HiddenField Server Control
For many years now, developers have been using hidden fields in their Web pages to work with state
management. The <input type=”hidden”> element is ideal for storing items that have no security con-
text to them. These items are simply placeholders for data points that you want to store in the page itself
instead of using the Session object or intermingling the data with the view state of the page. View state
is another great way to store information in a page, but many developers turn off this feature to avoid
corruption of the view state or possibly degradation of page performance.

Any time a hidden field is placed within a Web page, it is not interpreted in the browser in any fashion,
although it is completely viewable by end users if they look at the source of the HTML page.

Listing 6-5 is an example of using the HiddenField server control to hold a GUID that can be used from
page to page simply by carrying over its value as the end user navigates through your application.

Listing 6-5: Working with the HiddenField server control

VB
<%@ Page Language=”VB” %>

<script runat=”server” language=”vb”>
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

HiddenField1.Value = System.Guid.NewGuid().ToString()
End Sub

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>HiddenField Server Control</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:HiddenField ID=”HiddenField1” Runat=”Server” />

</form>
</body>
</html>

(continued)

189

ASP.NET 2.0 Web Server Controls

09_576100 ch06.qxd 10/6/05 9:18 PM Page 189

Listing 6-5: (continued)

C#
<%@ Page Language=”C#”%>

<script runat=”server”>
protected void Page_Load(object sender, EventArgs e)
{

HiddenField1.Value = System.Guid.NewGuid().ToString();
}

</script>

In this example, the Page_Load event populates the HiddenField1 control with a GUID. You can see the
hidden field and its value by looking at the source of the blank HTML page that is created. You should see
a result similar to the following (the GUID will have a different value, of course):

<input type=”hidden” name=”HiddenField1” id=”HiddenField1”
value=”a031e77c-379b-4b4a-887c-244ee69584d5” />

On the page postback, ASP.NET can detect whether the HiddenField server control has changed its
value since the last post. This enables you to change the HiddenField value with client-side script and
then work with the changes in a page event.

The HiddenField server control has an event called ValueChanged that you can use when the value is
changed:

VB
Protected Sub HiddenField1_ValueChanged(ByVal sender As Object, _

ByVal e As System.EventArgs)
‘ Handle event here

End Sub

C#
protected void HiddenField1_ValueChanged(object sender, EventArgs e)
{

// Handle event here
}

The ValueChanged event is triggered when the ASP.NET page is posted back to the server if the value
of the HiddenField server control has changed since the last time the page was drawn. If the value has
not changed, the method is never triggered. Therefore, the method is useful to act upon any changes to
the HiddenField control — such as recording a value to the database or changing a value in the user’s
profile.

FileUpload Server Control
In ASP.NET 1.0/1.1, you could upload files using the HTML FileUpload server control. This control put
an <input type=”file”> element on your Web page to enable the end user to upload files to the server.
To use the file, however, you had to make a couple of modifications to the page. For example, you were
required to add enctype=”multipart/form-data” to the page’s <form> element.

190

Chapter 6

09_576100 ch06.qxd 10/6/05 9:18 PM Page 190

ASP.NET 2.0 introduces a new FileUpload server control that makes the process of uploading files to
a server even simpler. When giving a page the capability to upload files, you simply include the new
<asp:FileUpload> control and ASP.NET takes care of the rest, including adding the enctype attribute
to the page’s <form> element.

Uploading Files Using the FileUpload Control
After the file is uploaded to the server, you can also take hold of the uploaded file’s properties and either
display them to the end user or use these values yourself in your page’s code behind. Listing 6-6 shows
an example of using the new FileUpload control. The page contains a single FileUpload control, plus a
Button and a Label control.

Listing 6-6: Uploading files using the new FileUpload control

VB
<%@ Page Language=”VB”%>

<script runat=”server”>
Protected Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)

If FileUpload1.HasFile Then
Try

FileUpload1.SaveAs(“C:\Uploads\” & _
FileUpload1.FileName)

Label1.Text = “File name: “ & _
FileUpload1.PostedFile.FileName & “
” & _
“File Size: “ & _
FileUpload1.PostedFile.ContentLength & “ kb
” & _
“Content type: “ & _
FileUpload1.PostedFile.ContentType

Catch ex As Exception
Label1.Text = “ERROR: “ & ex.Message.ToString()

End Try
Else

Label1.Text = “You have not specified a file.”
End If

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>FileUpload Server Control</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:FileUpload ID=”FileUpload1” Runat=”server” />
<p>
<asp:Button ID=”Button1” Runat=”server” Text=”Upload”
OnClick=”Button1_Click” /></p>

<p>
<asp:Label ID=”Label1” Runat=”server”></asp:Label></p>

</form>
</body>
</html>

(continued)

191

ASP.NET 2.0 Web Server Controls

09_576100 ch06.qxd 10/6/05 9:18 PM Page 191

Listing 6-6: (continued)

C#
<%@ Page Language=”C#”%>

<script runat=”server”>
protected void Button1_Click(object sender, EventArgs e)
{

if (FileUpload1.HasFile)
try {

FileUpload1.SaveAs(“C:\\Uploads\\” + FileUpload1.FileName);
Label1.Text = “File name: “ +

FileUpload1.PostedFile.FileName + “
” +
FileUpload1.PostedFile.ContentLength + “ kb
” +
“Content type: “ +
FileUpload1.PostedFile.ContentType;

}
catch (Exception ex) {

Label1.Text = “ERROR: “ + ex.Message.ToString();
}

else
{

Label1.Text = “You have not specified a file.”;
}

}
</script>

From this example, you can see that the entire process is rather simple. The single button on the page ini-
tiates the upload process. The FileUpload control itself does not initiate the uploading process. You must
initiate it through another event such as Button_Click.

After the file is uploaded, the first check examines whether a file reference was actually placed within
the <input type=”file”> element. If a file was specified, an attempt is made to upload the referenced
file to the server using the SaveAs method of the FileUpload control. That method takes a single String
parameter, which should include the location where you want to save the file. In the String parameter
used in Listing 6-6, you can see that the file is being saved to a folder called Uploads, which is located in
the C:\ drive.

The PostedFile.FileName attribute is used to give the saved file the same name as the file it was
copied from. If you want to name the file something else, simply use the SaveAs method in the follow-
ing manner:

FileUpload1.SaveAs(“C:\Uploads\UploadedFile.txt”)

You could also give the file a name that specifies the time it was uploaded:

FileUpload1.SaveAs(“C:\Uploads\” & System.DateTime.Now.ToFileTimeUtc() & “.txt”)

192

Chapter 6

09_576100 ch06.qxd 10/6/05 9:18 PM Page 192

After the upload is successfully completed, the Label control on the page is populated with metadata of
the uploaded file. In the example, the file’s name, size, and content type are retrieved and displayed on
the page for the end user. When the file is uploaded to the server, the page generated is similar to that
shown in Figure 6-6.

Figure 6-6

Uploading files to another server can be an error-prone affair. It is vital to upload files in your code using
proper exception handling. That’s why the file in the example is uploaded using a Try Catch statement.

Giving ASP.NET Proper Permissions to Upload Files
You might receive errors when your end users upload files to your Web server through the FileUpload
control in your application. These might occur because the destination folder on the server is not
writable for the account used by ASP.NET. If ASP.NET is not enabled to write to the folder you want,
you can enable it using the folder’s properties.

First, right-click the folder into which the ASP.NET files should be uploaded. The Properties dialog for
the selected folder opens. Click the Security tab to make sure the ASP.NET Machine Account is included
in the list and has the proper permissions to write to disk. If it is enabled, you see something similar to
what is presented in Figure 6-7.

If you don’t see the ASP.NET Machine Account in the list of users allowed to access the folder, add
ASP.NET by clicking the Add button and entering ASPNET (without the period) in the text area pro-
vided (see Figure 6-8).

Click OK, and you can then click the appropriate check boxes to provide the permissions needed for
your application.

193

ASP.NET 2.0 Web Server Controls

09_576100 ch06.qxd 10/6/05 9:18 PM Page 193

Figure 6-7

Figure 6-8

Understanding File Size Limitations
Your end users might never encounter an issue with the file upload process in your application, but you
should be aware that some limitations exist. When users work through the process of uploading files, a
size restriction is actually sent to the server for uploading. The default size limitation is 4MB (4096kb);
the transfer fails if a user tries to upload a file that is larger than 4096kb.

A size restriction protects your application. You want to prevent malicious users from uploading numer-
ous large files to your Web server in an attempt to tie up all the available processes on the server. Such
an occurrence is called a denial of service attack. It ties up the Web server’s resources so that legitimate
users are denied responses from the server.

194

Chapter 6

09_576100 ch06.qxd 10/6/05 9:18 PM Page 194

The default allowable file size is dictated by the actual request size permitted to the Web server (4096KB).
You can change this setting in the web.config file, as shown in Listing 6-7.

Listing 6-7: Changing the file-size limitation setting in the web.config file

<httpRuntime
idleTime=”15”
executionTimeout=”90”
maxRequestLength=”4096”
useFullyQualifiedRedirectUrl=”False”
minFreeThreads=”8”
minLocalRequestFreeThreads=”4”
appRequestQueueLimit=”100”

/>

You can do a lot with the <httpRuntime> section of the web.config file, but two properties — the
maxRequestLength and executionTimeout properties — are especially interesting.

The maxRequestLength property is the setting that dictates the size of the request made to the Web
server. When you upload files, the file is included in the request; you alter the size allowed to be
uploaded by changing the value of this property. The value presented is in kilobytes. To allow files
larger than the default of 4MB, change the maxRequestLength property as in the following:

maxRequestLength=”11000”

This example changes the maxRequestLength property’s value to 11,000KB (around 10MB).
With this setting in place, your end users can upload 10MB files to the server. When changing the
maxRequestLength property, be aware of the setting provided for the executionTimeout property.
This property sets the time (in seconds) for a request to attempt to execute to the server before ASP.NET
shuts down the request (whether or not it is finished). The default setting is 90 seconds. The end user
receives a timeout error notification in the browser if the time limit is exceeded. If you are going to per-
mit larger requests, remember that they take longer to execute than smaller ones. If you increase the size
of the maxRequestLength property, you should examine whether to increase the executionTimeout
property as well.

If you are working with smaller files, it’s advisable to reduce the size allotted for the request to the Web
server by decreasing the value of the maxRequestLength property. This helps safeguard your applica-
tion from a denial of service attack.

Placing the Uploaded File into a Stream Object
One nice feature of the FileUpload control is that it not only gives you the capability to save the file to
disk, but it also lets you place the contents of the file into a Stream object. You do this by using the
FileContent property, as demonstrated in Listing 6-8.

Listing 6-8: Uploading the file contents into a Stream object

VB
Dim myStream As System.IO.Stream
myStream = FileUpload1.FileContent

(continued)

195

ASP.NET 2.0 Web Server Controls

09_576100 ch06.qxd 10/6/05 9:18 PM Page 195

Listing 6-8: (continued)

C#
System.IO.Stream myStream;
myStream = FileUpload1.FileContent;

In this short example, an instance of the Stream object is created. Then, using the FileUpload control’s
FileContent property, the content of the uploaded file is placed into the object. This is possible because
the FileContent property returns a Stream object.

Moving File Contents from a Stream
Object to a Byte Array

Because you have the capability to move the file contents to a Stream object of some kind, it is also
fairly simple to move the contents of the file to a Byte array. To do so, first move the file contents to a
MemoryStream object and then convert the object to the necessary Byte array object. Listing 6-9 shows
the process.

Listing 6-9: Uploading the file contents into a Byte array

VB
Dim myByteArray() As Byte
Dim myStream As System.IO.MemoryStream

myStream = FileUpload1.FileContent
myByteArray = myStream.ToArray()

C#
Byte myByteArray[];
System.IO.Stream myStream;

myStream = FileUpload1.FileContent;
myByteArray = myStream.ToArray();

In this example, instances of a Byte array and a MemoryStream object are created. First the
MemoryStream object is created using the FileUpload control’s FileContent property as you did
previously. Then it’s fairly simple to use the MemoryStream object’s ToArray() method to populate
the myByteArray() instance. After the file is placed into a Byte array, you can work with the file con-
tents as necessary.

MultiView and View Server Controls
The MultiView and View server controls work together to give you the capability to turn on/off sections
of an ASP.NET page. Turning sections on and off, which means activating or deactivating a series of

196

Chapter 6

09_576100 ch06.qxd 10/6/05 9:18 PM Page 196

View controls within a MultiView control, is similar to changing the visibility of Panel controls. For cer-
tain operations, however, you may find that the MultiView control is easier to manage and work with.

The sections, or views, do not change on the client-side; rather, they change with a postback to the
server. You can put any number of elements and controls in each view, and the end user can work
through the views based upon the sequence numbers that you assign to the views.

You can build these controls (like all server controls) from the source view or design view. If working
with Visual Studio 2005, you can drag and drop a MultiView control onto the design surface and then
drag and drop any number of View controls inside the MultiView control. Place the elements you want
within the View controls. When you’re finished, you have something like the view shown in Figure 6-9.

You also can create your controls directly in the code, as shown in Listing 6-10.

Figure 6-9

197

ASP.NET 2.0 Web Server Controls

09_576100 ch06.qxd 10/6/05 9:18 PM Page 197

Listing 6-10: Using the MultiView and View server controls

VB
<%@ Page Language=”VB”%>

<script runat=”server”>
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

If Not Page.IsPostBack Then
MultiView1.ActiveViewIndex = 0

End If
End Sub

Sub NextView(ByVal sender As Object, ByVal e As System.EventArgs)
MultiView1.ActiveViewIndex += 1

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>MultiView Server Control</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:MultiView ID=”MultiView1” Runat=”server”>

<asp:View ID=”View1” Runat=”Server”>
Billy’s Famous Pan Pancakes<p />
<i>Heat 1/2 tsp of butter in cast iron pan.

Heat oven to 450 degrees Fahrenheit.

</i><p />
<asp:Button ID=”Button1” Runat=”Server” Text=”Next Step”
OnClick=”NextView” />

</asp:View>
<asp:View ID=”View2” Runat=”Server”>

Billy’s Famous Pan Pancakes<p />
<i>Mix 1/2 cup flour, 1/2 cup milk and 2 eggs in bowl.

Pour in cast iron pan. Place in oven.</i><p />
<asp:Button ID=”Button2” Runat=”Server” Text=”Next Step”
OnClick=”NextView” />

</asp:View>
<asp:View ID=”View3” Runat=”Server”>

Billy’s Famous Pan Pancakes<p />
<i>Cook for 20 minutes and enjoy!

</i><p />

</asp:View>
</asp:MultiView>

</form>
</body>
</html>

C#
<%@ Page Language=”C#”%>

<script runat=”server”>
protected void Page_Load(object sender, EventArgs e)
{

if (!Page.IsPostBack)

198

Chapter 6

09_576100 ch06.qxd 10/6/05 9:18 PM Page 198

{
MultiView1.ActiveViewIndex = 0;

}
}

void NextView(object sender, EventArgs e)
{

MultiView1.ActiveViewIndex += 1;
}

</script>

This example shows three views expressed in the MultiView control. Each view is constructed with an
<asp:View> server control that also needs ID and Runat attributes. A button is added to each of the first
two views (View1 and View2) of the MultiView control. The buttons point to a server-side event that
triggers the MultiView control to progress onto the next view within the series of views.

Before either of the buttons can be clicked, the MultiView control’s ActiveViewIndex attribute is
assigned a value. By default, the ActiveViewIndex, which describes the view that should be showing,
is set to -1. This means that no view shows when the page is generated. To start on the first view when
the page is drawn, set the ActiveViewIndex property to 0, which is the first view because this is a zero-
based index. Therefore, the code from Listing 6-10 first checks to see if the page is in a postback situation
and if not, the ActiveViewIndex is assigned to the first View control.

Each of the buttons in the MultiView control triggers the NextView method. NextView simply adds one
to the ActiveViewIndex value, thereby showing the next view in the series until the last view is shown.
The view series is illustrated in Figure 6-10.

In addition to the Next Step button on the first and second views, you could place a button in the second
and third views to enable the user to navigate backward through the views. To do this, create two buttons
titled Previous Step in the last two views and point them to the following method in their OnClick events:

VB
Sub PreviousView(ByVal sender As Object, ByVal e As System.EventArgs)

MultiView1.ActiveViewIndex -= 1
End Sub

C#
void PreviousView(object sender, EventArgs e)
{

MultiView1.ActiveViewIndex -= 1;
}

Here, the PreviousView method subtracts one from the ActiveViewIndex value, thereby showing the
previous view in the view series.

Another option is to spice up the MultiView control by adding a step counter that displays (to a Label
control) which step in the series the end user is currently performing. In the Page_PreRender event,
you add the following line:

VB
Label1.Text = “Step “ & (MultiView1.ActiveViewIndex + 1).ToString() & _

“ of “ & MultiView1.Views.Count.ToString()

199

ASP.NET 2.0 Web Server Controls

09_576100 ch06.qxd 10/6/05 9:18 PM Page 199

C#
Label1.Text = “Step “ + (MultiView1.ActiveViewIndex + 1).ToString() +

“ of “ + MultiView1.Views.Count.ToString();

Now when working through the MultiView control, the end user sees Step 1 of 3 on the first view,
which changes to Step 2 of 3 on the next view, and so on.

Figure 6-10

200

Chapter 6

09_576100 ch06.qxd 10/6/05 9:18 PM Page 200

Wizard Server Control
Much like the MultiView control, the Wizard server control enables you to build a sequence of steps that
is displayed to the end user. Web pages are all about either displaying or gathering information and, in
many cases, you don’t want to display all the information at once — nor do you always want to gather
everything from the end user at once. Sometimes, you want to trickle the information in from or out to
the end user.

When you are constructing a step-by-step process that includes logic on the steps taken, use the Wizard
control to manage the entire process. The first time you use the Wizard control, notice that it allows for a
far greater degree of customization than does the MultiView control.

In its simplest form, the Wizard control can be just an <asp:Wizard> element with any number of
<asp:WizardStep> elements. Listing 6-11 creates a Wizard control that works through three steps.

Listing 6-11: A simple Wizard control

<%@ Page Language=”VB”%>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Wizard server control</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:Wizard ID=”Wizard1” Runat=”server” SideBarEnabled=”true”
ActiveStepIndex=”0”>

<WizardSteps>
<asp:WizardStep Runat=”server” Title=”Step 1”>

This is the first step.</asp:WizardStep>
<asp:WizardStep Runat=”server” Title=”Step 2”>

This is the second step.</asp:WizardStep>
<asp:WizardStep Runat=”server” Title=”Step 3”>

This is the third and final step.</asp:WizardStep>
</WizardSteps>

</asp:Wizard>
</form>

</body>
</html>

In this example, three steps are defined with the <asp:WizardSteps> control. Each step contains con-
tent — simply text in this case, although you can put in anything you want, such as other Web server
controls or even user controls. The order in which the WizardSteps are defined is based completely on
the order in which they appear within the <WizardSteps> element.

The <asp:Wizard> element itself contains a couple of important attributes. The first is
SideBarEnabled. In this example, it is set to True— meaning that a side navigation system in
the displayed control enables the end user to quickly navigate to other steps in the process. The
ActiveStepIndex attribute of the Wizard control defines the first wizard step. In this case, it is the
first step —0.

The three steps of the example Wizard control are shown in Figure 6-11.

201

ASP.NET 2.0 Web Server Controls

09_576100 ch06.qxd 10/6/05 9:18 PM Page 201

Figure 6-11

The side navigation allows for easy access to the defined steps. The Wizard control adds appropriate
buttons to the steps in the process. The first step has simply a Next button, the middle step has Previous
and Next buttons, and the final step has Previous and Finish buttons. The user can navigate through the
steps using either the side navigation or the buttons on each of the steps. You can customize the Wizard
control in so many ways that it tends to remind me of the other rich Web server controls from ASP.NET,
such as the Calendar control. Because so much is possible, only a few of the basics are covered — the
ones you are most likely to employ in some of the Wizard controls you build.

202

Chapter 6

09_576100 ch06.qxd 10/6/05 9:18 PM Page 202

Customizing the Side Navigation
The steps in the Figure 6-11 example are defined as Step 1, Step 2, and Step 3. The links are created based
on the Title property’s value that you give to each of the <asp:WizardStep> elements in the Wizard
control:

<asp:WizardStep Runat=”server” Title=”Step 1”>
This is the first step.</asp:WizardStep>

By default, each wizard step created in Design view is titled Step X (with X being the number in the
sequence). You can easily change the value of the Title attributes of each of the wizard steps to define
the steps as you see fit. Figure 6-12 shows the side navigation of the Wizard control with renamed titles.

Figure 6-12

Examining the AllowReturn Attribute
Another interesting point of customization for the side navigation piece of the Wizard control is the
AllowReturn attribute. By setting this attribute on one of the wizard steps to False, you can remove
the capability for end users to go back to this step after they have viewed it. The end user cannot navi-
gate backward to any viewed steps that contain the attribute, but he would be able to return to any steps
that do not contain the attribute or that have it set to True:

<asp:WizardStep Runat=”server” Title=”Step 1” AllowReturn=”False”>
This is the first step.</asp:WizardStep>

Working with the StepType Attribute
Another interesting attribute in the <asp:WizardStep> element is StepType. The StepType attribute
defines the structure of the buttons used on the steps. By default, the Wizard control places only a Next
button on the first step. It understands that you don’t need the Previous button there. It also knows to
use a Next and Previous button on the middle step, and it uses Previous and Finish buttons on the last
step. It draws the buttons in this fashion because, by default, the StepType attribute is set to Auto,

203

ASP.NET 2.0 Web Server Controls

09_576100 ch06.qxd 10/6/05 9:18 PM Page 203

meaning that the Wizard control determines the placement of buttons. You can, however, take control
of the StepType attribute in the <asp:WizardStep> element to make your own determination about
which buttons are used for which steps.

In addition to Auto, StepType value options include Start, Step, Finish, and Complete. Start
means that the step defined has only a Next button. It simply allows the user to proceed to the next step
in the series. A value of Step means that the wizard step has Next and Previous buttons. A value of
Finish means that the step includes a Previous and a Finish button. Complete enables you to give
some final message to the end user who is working through the steps of your Wizard control. In the
Wizard control shown in Listing 6-11, for example, when the end user gets to the last step and clicks the
Finish button, nothing happens and the user just stays on the last page. You can add a final step to give
an ending message, as shown in Listing 6-12.

Listing 6-12: Having a complete step in the wizard step collection

<WizardSteps>
<asp:WizardStep Runat=”server” Title=”Step 1”>
This is the first step.</asp:WizardStep>

<asp:WizardStep Runat=”server” Title=”Step 2”>
This is the second step.</asp:WizardStep>

<asp:WizardStep Runat=”server” Title=”Step 3”>
This is the third and final step.</asp:WizardStep>

<asp:WizardStep Runat=”server” Title=”Final Step” StepType=”Complete”>
Thanks for working through the steps.</asp:WizardStep>

</WizardSteps>

When you run this Wizard control in a page, you still see only the first three steps in the side navigation.
Because the last step has a StepType set to Complete, it does not appear in the side navigation list.
When the end user clicks the Finish button in Step 3, the last step —Final Step— is shown and no but-
tons are shown with it.

Adding a Header to the Wizard Control
The Wizard control enables you to place a header at the top of the control by means of the HeaderText
attribute in the main <asp:Wizard> element. Listing 6-13 provides an example.

Listing 6-13: Working with the HeaderText attribute

<asp:Wizard ID=”Wizard1” Runat=”server” SideBarEnabled=”true” ActiveStepIndex=”0”
HeaderText=” Step by Step with the Wizard control ”
HeaderStyle-BackColor=”DarkGray” HeaderStyle-Font-Bold=”true”
HeaderStyle-Font-Size=”20”>

...

</asp:Wizard>

This code creates a header that appears on each of the steps in the wizard. The result of this snippet is
shown in Figure 6-13.

204

Chapter 6

09_576100 ch06.qxd 10/6/05 9:18 PM Page 204

Figure 6-13

Working with the Wizard’s Navigation System
As stated earlier, the Wizard control allows for a very high degree of customization — especially in the
area of style. You can customize every single aspect of the process, as well as how every element appears
to the end user.

Pay particular attention to the options that are available for customization of the navigation buttons. By
default, the wizard steps use Next, Previous, and Finish buttons throughout the entire series of steps. From
the main <asp:Wizard> element, you can change everything about these buttons and how they work.

First, if you look through the long list of attributes available for this element, notice that one available
button isn’t shown by default: the Cancel button. Set the value of the DisplayCancelButton attribute
to True, and a Cancel button appears within the navigation created for each and every step, including
the final step in the series. Figure 6-14 shows a Cancel button in a step.

Figure 6-14

After you decide which buttons to use within the Wizard navigation, you can choose their style. By
default, regular buttons appear; you can change the button style with the CancelButtonType,
FinishStepButtonType, FinishStepPreviousButtonType, NextStepButtonType,

205

ASP.NET 2.0 Web Server Controls

09_576100 ch06.qxd 10/6/05 9:18 PM Page 205

PreviousStepButtonType, and StartStepNextButtonType attributes. If you use any of these button
types and want all the buttons consistently styled, you must change each attribute to the same value.
The possible values of these button-specific elements include Button, Image, and Link. Button is the
default and means that the navigation system uses buttons. A value of Image enables you to use image
buttons, and Link turns a selected item in the navigation system into a hyperlink.

In addition to these button-specific attributes of the <asp:Wizard> element, you can also specify
a URL to which the user is directed when the he clicks either the Cancel or Finish buttons. To
redirect the user with one of these buttons, you use the CancelDestinationPageUrl or the
FinishDestinationPageUrl attributes and set the appropriate URL as the destination.

Finally, you are not required to use the default text included with the buttons in the navigation
system. You can change the text of each of the buttons with the use of the CancelButtonText,
FinishStepButtonText, FinishStepPreviousButtonText, NextStepButtonText,
PreviousStepButtonText, and the StartStepNextButtonText attributes.

Utilizing Wizard Control Events
One of the most convenient capabilities of the Wizard control is that it enables you to divide large forms
into logical pieces. The end user can then work step-by-step through each section of the form. The devel-
oper, dealing with the inputted values of the form, has a few options because of the various events that
are available in the Wizard control.

The Wizard control exposes events for each of the possible steps that an end user might take when work-
ing with the control. The following table describes each of the available events.

Event Description

ActiveStepChanged Triggers when the end user moves from one step to the
next It doesn’t matter if the step is the middle or final step
in the series. This event simply covers each step change
generically.

CancelButtonClick Triggers when the end user clicks the Cancel button in the
navigation system.

FinishButtonClick Triggers when the end user clicks the Finish button in the
navigation system.

NextButtonClick Triggers when the end user clicks the Next button in the
navigation system.

PreviousButtonClick Triggers when the end user clicks the Previous button in the
navigation system.

SideBarButtonClick Triggers when the end user clicks one of the links contained
within the sidebar navigation of the Wizard control.

By working with these events, you can create a multi-step form that saves all the end user’s input infor-
mation when he changes from one step to the next. You can also use the FinishButtonClick event to
save everything that was stored in each of the steps at the end of the process. The Wizard control

206

Chapter 6

09_576100 ch06.qxd 10/6/05 9:18 PM Page 206

remembers all the end user’s input in each of the steps by means of the view state in the page, which
enables you to work with all these values in the last step. It also gives the end user the capability to go
back to previous steps and change values before those values are saved to a data store.

The event appears in your code behind or inline code as shown in Listing 6-14.

Listing 6-14: The FinishButtonClick event

VB
<script runat=”server”>

Sub Wizard1_FinishButtonClick(ByVal sender As Object, _
ByVal e As System.Web.UI.WebControls.WizardNavigationEventArgs)

End Sub
</script>

C#
<script runat=”server”>

void Wizard1_FinishButtonClick(object sender, WizardNavigationEventArgs e)
{

}
</script>

The OnFinishButtonClick attribute should be added to the main <asp:Wizard> element to point at
the new Wizard1_FinishButtonClick event. Listing 6-15 shows how to do this.

Listing 6-15: The <asp:Wizard> Element Changes

<asp:Wizard ID=”Wizard1” Runat=”server” SideBarEnabled=”true” ActiveStepIndex=”0”
OnFinishButtonClick=”Wizard1_FinishButtonClick”>

The Wizard control is one of the great new controls that enables you to break up longer workflows into
more manageable pieces for your end users. By separating longer Web forms into various wizard steps,
you can effectively make your forms easy to understand and less daunting to the end user.

Using the Wizard Control to Show Form Elements
So far, you’ve learned how to work with each of the Wizard control steps, including how to add steps to
the process and how to work with the styling of the control. Now take a look at how you put form ele-
ments into the Wizard control to collect information from the end user in a stepped process. This is just
as simple as the first examples of the Wizard control that used only text in each of the steps.

One nice thing about putting form elements in the Wizard step process is that the Wizard control
remembers each input into the form elements from step to step, enabling you to save the results of the
entire form at the last step. It also means that when the end user presses the Previous button, the data
that he entered into the form previously is still there and can be changed.

Work through a stepped process that enters form information by building a registration process. The last
step of the process saves the results to a database of your choice, although in this example, you just push
the results to a Label control on the page. Listing 6-16 shows the first part of the process.

207

ASP.NET 2.0 Web Server Controls

09_576100 ch06.qxd 10/6/05 9:18 PM Page 207

Listing 6-16: Building the form in the Wizard control

<asp:Wizard ID=”Wizard1” runat=”Server”>
<WizardSteps>

<asp:WizardStep ID=”WizardStep1” runat=”server”
Title=”Provide Personal Info”>

First name:

<asp:TextBox ID=”fnameTextBox” runat=”server”></asp:TextBox>

Last name:

<asp:TextBox ID=”lnameTextBox” runat=”server”></asp:TextBox>

Email:

<asp:TextBox ID=”emailTextBox” runat=”server”></asp:TextBox>

</asp:WizardStep>
<asp:WizardStep ID=”WizardStep2” runat=”server”
Title=”Membership Information”>

Are you already a member of our group?

<asp:RadioButton ID=”RadioButton1” runat=”server” Text=”Yes”
GroupName=”Member” />

<asp:RadioButton ID=”RadioButton2” runat=”server” Text=”No”
GroupName=”Member” />

</asp:WizardStep>
<asp:WizardStep ID=”WizardStep3” runat=”server” Title=”Provided Information”
StepType=”Complete” OnActivate=”WizardStep3_Activate”>

<asp:Label ID=”Label1” runat=”server” />
</asp:WizardStep>

</WizardSteps>
</asp:Wizard>

This Wizard control has three steps. The first step asks for the user’s personal information, and the sec-
ond asks for the user’s membership information. The third step contains a Label control that pushes out
all the information that was input. This is done through the Activate event that is specific for the
WizardStep object on the third WizardStep control. The code for the WizardStep3_Activate event is
shown in Listing 6-17.

Listing 6-17: Adding an Activate event to a WizardStep object

VB
Protected Sub WizardStep3_Activate(ByVal sender As Object, _

ByVal e As System.EventArgs)

‘ You could save the inputted data to the database here instead
Label1.Text = “First name: “ & fnameTextBox.Text.ToString() & “
” & _

“Last name: “ & lnameTextBox.Text.ToString() & “
” & _
“Email: “ & emailTextBox.Text.ToString()

End Sub

208

Chapter 6

09_576100 ch06.qxd 10/6/05 9:18 PM Page 208

C#
protected void WizardStep3_Activate(object sender, EventArgs e)
{

Label1.Text = “First name: “ + fnameTextBox.Text.ToString() + “
” +
“Last name: “ + lnameTextBox.Text.ToString() + “
” +
“Email: “ + emailTextBox.Text.ToString();

}

When the end user comes to the third step in the display, the WizardStep3_Activate method from
Listing 6-17 is invoked. Using the OnActivate attribute in the third WizardStep control, the content pro-
vided by the end user in earlier steps is used to populate a Label control. The three steps are shown in
Figure 6-15.

This example is simple and straightforward, but you can increase the complexity a little bit. Imagine you
want to add another WizardStep control to the process, and you want to display it only if a user specifies
that he is a member in WizardStep2. If he answers from the radio button selection that he is not a mem-
ber, you have him skip the new step and go straight to the final step where the results are displayed in
the Label control. First, add an additional WizardStep to the Wizard control, as shown in Listing 6-18.

Figure 6-15

209

ASP.NET 2.0 Web Server Controls

09_576100 ch06.qxd 10/6/05 9:18 PM Page 209

Listing 6-18: Adding an additional WizardStep

<asp:Wizard ID=”Wizard1” runat=”Server”>
<WizardSteps>

<asp:WizardStep ID=”WizardStep1” runat=”server”
Title=”Provide Personal Info”>

First name:

<asp:TextBox ID=”fnameTextBox” runat=”server”></asp:TextBox>

Last name:

<asp:TextBox ID=”lnameTextBox” runat=”server”></asp:TextBox>

Email:

<asp:TextBox ID=”emailTextBox” runat=”server”></asp:TextBox>

</asp:WizardStep>
<asp:WizardStep ID=”WizardStep2” runat=”server”
Title=”Membership Information”>

Are you already a member of our group?

<asp:RadioButton ID=”RadioButton1” runat=”server” Text=”Yes”
GroupName=”Member” />

<asp:RadioButton ID=”RadioButton2” runat=”server” Text=”No”
GroupName=”Member” />

</asp:WizardStep>
<asp:WizardStep ID=”MemberStep” runat=”server”
Title=”Provide Membership Number”>

Membership Number:

<asp:TextBox ID=”mNumberTextBox” runat=”server”></asp:TextBox>

</asp:WizardStep>
<asp:WizardStep ID=”WizardStep3” runat=”server” Title=”Provided Information”
StepType=”Complete” OnActivate=”WizardStep3_Activate”>

<asp:Label ID=”Label1” runat=”server” />
</asp:WizardStep>

</WizardSteps>
</asp:Wizard>

A single step was added to the workflow — one that simply asks the member for his membership
number. Because you want to show this step only if the end user specifies that he is a member in
WizardStep2, you add an event (shown in Listing 6-19) designed to check for that specification.

Listing 6-19: Applying logical checks on whether to show a step

VB
Sub Wizard1_NextButtonClick(ByVal sender As Object, _

ByVal e As System.Web.UI.WebControls.WizardNavigationEventArgs)

If e.NextStepIndex = 2 Then
If RadioButton1.Checked = True Then

Wizard1.ActiveStepIndex = 2
Else

Wizard1.ActiveStepIndex = 3
End If

End If
End Sub

210

Chapter 6

09_576100 ch06.qxd 10/6/05 9:18 PM Page 210

C#
void Wizard1_NextButtonClick(object sender, WizardNavigationEventArgs e)
{

if (e.NextStepIndex == 2) {
if (RadioButton1.Checked == true) {

Wizard1.ActiveStepIndex = 2; }
else {

Wizard1.ActiveStepIndex = 3; }
}

}
}

To check whether you should show a specific step in the process, use the NextButtonClick event
from the Wizard control. The event uses the WizardNavigationEventArgs class instead of the
typical EventArgs class that gives you access to the NextStepIndex number, as well as to the
CurrentStepIndex number.

In the example from Listing 6-19, you check whether the next step to be presented in the process is 2.
Remember that this is index 2 from a zero-based index (0, 1, 2, and so on). If it is Step 2 in the index, you
check which radio button is selected from the previous WizardStep. If the RadioButton1 control is
checked (meaning that the user is a member), the next step in the process is assigned as index 2. If the
RadioButton2 control is selected, the user is not a member, and the index is then assigned as 3 (the final
step), thereby bypassing the membership step in the process.

ImageMap Server Control
The ImageMap server control is new to ASP.NET 2.0. It enables you to turn an image into a navigation
menu. In the past, many developers would break an image into multiple pieces and put it together again
in a table, reassembling the pieces into one image. When the end user clicked a particular piece of the
overall image, the application picked out which piece of the image was chosen and based actions upon
that particular selection.

With the new ImageMap control, you can take a single image and specify particular hotspots on the
image using coordinates. An example is shown in Listing 6-20.

Listing 6-20: Specifying sections of an image that are clickable

VB
<%@ Page Language=”VB”%>

<script runat=”server”>
Protected Sub Imagemap1_Click(ByVal sender As Object, _

ByVal e As System.Web.UI.WebControls.ImageMapEventArgs)

Response.Write(“You selected: “ & e.PostBackValue)
End Sub

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >

(continued)

211

ASP.NET 2.0 Web Server Controls

09_576100 ch06.qxd 10/6/05 9:18 PM Page 211

Listing 6-20: (continued)

<head runat=”server”>
<title>ImageMap Control</title>

</head>
<body>

<form id=”form1” runat=”server”>
<asp:ImageMap ID=”Imagemap1” Runat=”server” ImageUrl=”kids.jpg”
Width=”300” OnClick=”Imagemap1_Click” HotSpotMode=”PostBack”>

<asp:RectangleHotSpot Top=”0” Bottom=”225” Left=”0” Right=”150”
AlternateText=”Henri” PostBackValue=”Henri”>

</asp:RectangleHotSpot>
<asp:RectangleHotSpot Top=”0” Bottom=”225” Left=”151” Right=”300”
AlternateText=”Sofia” PostBackValue=”Sofia”>

</asp:RectangleHotSpot>
</asp:ImageMap>

</form>
</body>
</html>

C#
<%@ page language=”C#”%>

<script runat=”server”>
protected void Imagemap1_Click(object sender,

System.Web.UI.WebControls.ImageMapEventArgs e) {

Response.Write(“You selected: “ + e.PostBackValue);
}

</script>

This page brings up an image of my children. If you click the left side of the image, you select Henri, and
if you click the right side of the image, you select Sofia. You know which child you selected through a
Response.Write statement, as shown in Figure 6-16.

The ImageMap control enables you to specify hotspots in a couple of different ways. From the
example in Listing 6-16, you can see that hotspots are placed in a rectangular fashion using the
<asp:RectangleHotSpot> element. The control takes the Top, Bottom, Left, and Right coordinates
of the rectangle that is to be the hotspot. Besides the <asp:RectangleHotSpot> control, you can also
use the <asp:CircleHotSpot> and the <asp:PolygonHotSpot> controls. Each control takes coordi-
nates appropriate to its shape.

After you define the hotspots on the image, you can respond to the end-user click of the hotspot in sev-
eral ways. You first specify how to deal with the hotspot clicks in the root <asp:ImageMap> element
with the use the HotSpotMode attribute.

The HotSpotMode attribute can take the values PostBack, Navigate, or InActive. In the previous
example, the HotSpotMode value is set to PostBack— meaning that after the end user clicks the
hotspot, you want to postback to the server and deal with the click at that point.

212

Chapter 6

09_576100 ch06.qxd 10/6/05 9:18 PM Page 212

Figure 6-16

Because the HotSpotMode is set to PostBack and you have created several hotspots, you must
determine which hotspot is selected. You make this determination by giving each hotspot
(<asp:RectangleHotSpot>) a postback value with the PostBackValue attribute. The example
uses Henri as the value of the first hotspot, and Sofia as the value for the second.

The PostBackValue attribute is also the helper text that appears in the browser (in the yellow box)
directly below the mouse cursor when the end user hovers the mouse over the hotspot.

After the user clicks one of the hotspots, the event procedure displays the value that was selected in a
Response.Write statement.

Instead of posting back to the server, you can also navigate to an entirely different URL when a
particular hotspot is selected. To accomplish this, change the HotSpotMode attribute in the main
<asp:ImageMap> element to the value Navigate. Then, within the <asp:RectangleHotSpot> ele-
ments, simply use the NavigateUrl attribute and assign the location to which the end user should be
directed if that particular hotspot is clicked:

<asp:ImageMap ID=”Imagemap1” Runat=”server” ImageUrl=”kids.jpg”
HotSpotMode=”Navigate”>

<asp:RectangleHotSpot Top=”0” Bottom=”225” Left=”0” Right=”150”
AlternateText=”Henri” NavigateUrl=”HenriPage.aspx”>

</asp:RectangleHotSpot>
<asp:RectangleHotSpot Top=”0” Bottom=”225” Left=”151” Right=”300”
AlternateText=”Sofia” NavigateUrl=”SofiaPage.aspx”>

</asp:RectangleHotSpot>
</asp:ImageMap>

213

ASP.NET 2.0 Web Server Controls

09_576100 ch06.qxd 10/6/05 9:18 PM Page 213

Summary
New server controls are fun. They’re also useful and can save you a lot of time. This chapter introduced
you to some of these new controls and to the different ways you might incorporate them into your next
projects.

The BulletedList control enables you to create all sorts of bulleted lists either directly from inline items
or from items contained in a data store of some kind. The HiddenField control allows for server-side
access to a very important HTML element that was formerly far more difficult to work with. Other con-
trols discussed include the FileUpload control, which enables you to upload files easily to the server; the
MultiView and View controls for working through processes; the Wizard control for advanced process
work; and the ImageMap control for creating hotspots on an image. All these controls are wonderful
options to use on any of your ASP.NET pages and make it much easier to develop the functionality that
your pages require.

214

Chapter 6

09_576100 ch06.qxd 10/6/05 9:18 PM Page 214

Validation Server Controls

When you look at the Toolbox window in Visual Studio 2005 — especially if you’ve read Chapters
5 and 6, which cover the various server controls at your disposal — you may be struck by the num-
ber of server controls that come with ASP.NET 2.0. This chapter takes a look at a specific type of
server control you find in the Toolbox window: the validation server control.

Validation server controls are a series of controls that enable you to work with the information
your end users input into the form elements of the applications you build. These controls work to
ensure the validity of the data being placed in the form.

Before learning how to use these controls, however, take a look at the process of validation to learn
what it’s all about.

Understanding Validation
People have been constructing Web applications for a number of years. Usually the motivation is
to provide or gather information. In this chapter, you focus on the information-gathering aspect of
Web applications. If you collect data with your applications, collecting valid data should be impor-
tant to you. If the information isn’t valid, there really isn’t much point in collecting it.

Validation comes in degrees. Validation is a set of rules that you apply to the data you collect.
These rules can be many or few and enforced either strictly or in a lax manner: It really depends
on you. No perfect validation process exists because some users may find a way cheat to some
degree, no matter what rules you establish. The trick is to find the right balance of the fewest rules
and the proper strictness, without compromising the usability of the application.

The data you collect for validation comes from the Web forms you provide in your applications.
Web forms are made up of different types of HTML elements that are constructed using raw
HTML form elements, ASP.NET HTML server controls, or ASP.NET Web Form server controls.

10_576100 ch07.qxd 10/6/05 9:16 PM Page 215

In the end, your forms are made up of many different types of HTML elements, such as text boxes, radio
buttons, check boxes, drop-down lists, and more.

As you work through this chapter, you see the different types of validation rules that you can apply to
your form elements. Remember that you have no way to validate the truthfulness of the information you
collect; instead, you apply rules that respond to such questions as

❑ Is something entered in the text box?

❑ Is the data entered in the text box in the form of an e-mail address?

Notice from these questions that you can apply more than a single validation rule to an HTML form ele-
ment (you’ll see examples of this later in this chapter). In fact, you can apply as many rules to a single
element as you want. Applying more rules to elements increases the strictness of the validation applied
to the data.

Just remember, data collection on the Internet is one of the Internet’s most important features, so you
must make sure that the data you collect has value and meaning. You ensure this by eliminating any
chance that the information collected does not abide by the rules you outline.

Client-Side versus Server-Side Validation
If you are new to Web application development, you might not be aware of the difference between
client-side and server-side validation. Suppose that the end user clicks the Submit button on a form after
filling out some information. What happens in ASP.NET is that this form is packaged in a request and
sent to the server where the application resides. At this point in the request/response cycle, you can run
validation checks on the information submitted. If you do this, it is called server-side validation because it
occurs on the server.

On the other hand, it is also possible to supply a script (usually in the form of JavaScript) in the page
that is posted to the end user’s browser to perform validations on the data entered in the form before
the form is posted back to the originating server. If this is the case, client-side validation has occurred.

Both types of validation have their pros and cons. Active Server Pages 2.0/3.0 developers are quite
aware of these pros and cons because they have probably performed all the validation chores them-
selves. Many developers spent a considerable amount of their classic ASP programming days coding
various validation techniques for performance and security.

Client-side validation is quick and responsive for the end user. It is something end users expect of the
forms that they work with. If something is wrong with the form, using client-side validation ensures that
the end user knows this as soon as possible. Client-side validation also pushes the processing power
required of validation to the client meaning that you don’t need to spin CPU cycles on the server to pro-
cess the same information because the client can do the work for you.

With this said, client-side validation is the more insecure form of validation. When a page is generated in
an end user’s browser, this end user can look at the code of the page quite easily (simply by right-clicking
his mouse in the browser and selecting View Code). When he does this, in addition to seeing the HTML
code for the page, he can also see all the JavaScript that is associated with the page. If you are validating
your form client-side, it doesn’t take much for the crafty hacker to repost a form (containing the values

216

Chapter 7

10_576100 ch07.qxd 10/6/05 9:16 PM Page 216

he wants in it) to your server as valid. There are also the cases in which clients have simply disabled the
client-scripting capabilities in their browsers — thereby making your validations useless. Therefore,
client-side validation should be looked on as a convenience and a courtesy to the end user and never as
a security mechanism.

The more secure form of validation is server-side validation. Server-side validation means that the vali-
dation checks are performed on the server instead of on the client. It is more secure because these checks
cannot be easily bypassed. Instead, the form data values are checked using server code (C# or VB) on the
server. If the form isn’t valid, the page is posted back to the client as invalid. Although it is more secure,
server-side validation can be slow. It is sluggish simply because the page has to be posted to a remote
location and checked. Your end user might not be the happiest surfer in the world if, after waiting 20
seconds for a form to post, he is told his e-mail address isn’t in the correct format.

So what is the correct path? Well, actually, both! The best approach is always to perform client-side vali-
dation first and then, after the form passes and is posted to the server, to perform the validation checks
again using server-side validation This approach provides the best of both worlds. It is secure because
hackers can’t simply bypass the validation. They may bypass the client-side validation, but they quickly
find that their form data is checked once again on the server after it is posted. This validation technique
is also highly effective — giving you both the quickness and snappiness of client-side validation.

ASP.NET Validation Server Controls
In the classic ASP days, developers could spend a great deal of their time dealing with different form
validation schemes. For this reason, with the initial release of ASP.NET, the ASP.NET team introduced a
series of validation server controls meant to make it a snap to implement sound validation for forms.

ASP.NET not only introduces form validations as server controls, but it also makes these controls rather
smart. As stated earlier, one of the tasks of classic ASP developers was to determine where to perform
form validation — either on the client or on the server. The ASP.NET validation server controls eliminate
this dilemma because ASP.NET performs browser detection when generating the ASP.NET page and
makes decisions based on the information it gleans.

This means that if the browser can support the JavaScript that ASP.NET can send its way, the validation
occurs on the client-side. If the client cannot support the JavaScript meant for client-side validation, this
JavaScript is omitted and the validation occurs on the server.

The best part about this scenario is that even if client-side validation is initiated on a page, ASP.NET still
performs the server-side validation when it receives the submitted page, thereby ensuring security won’t
be compromised. This decisive nature of the validation server controls means that you can build your
ASP.NET Web pages to be the best they can possibly be — rather than dumbing-down your Web applica-
tions for the lowest common denominator.

Presently, six validation controls are available to you in ASP.NET 2.0. No new validation server controls
have been added to ASP.NET since the initial release of the technology, but the ASP.NET 2.0 validation
server controls do have some new features, such as validation groups and new JavaScript capabilities.
Both these features are discussed in this chapter. The available validation server controls include

217

Validation Server Controls

10_576100 ch07.qxd 10/6/05 9:16 PM Page 217

❑ RequiredFieldValidator

❑ CompareValidator

❑ RangeValidator

❑ RegularExpressionValidator

❑ CustomValidator

❑ ValidationSummary

Working with ASP.NET validation server controls is no different from working with any other ASP.NET
server controls. Each of these controls allows you to drag and drop it onto a design surface or to work
with it directly from the code of your ASP.NET page. These controls can also be modified so that they
appear exactly as you wish — ensuring the visual uniqueness that your applications might require. You
see some aspects of this throughout this chapter.

The following table describes the functionality of each of the available validation server controls.

Validation Server Control Description

RequiredFieldValidator Ensures that the user does not skip a form entry field

CompareValidator Allows for comparisons between the user’s input and
another item using a comparison operator (equals, greater
than, less than, and so on)

RangeValidator Checks the user’s input based upon a lower- and upper-
level range of numbers or characters

RegularExpressionValidator Checks that the user’s entry matches a pattern defined by a
regular expression. This is a good control to use to check
e-mail addresses and phone numbers.

CustomValidator Checks the user’s entry using custom-coded validation logic

ValidationSummary Displays all the error messages from the validators in one
specific spot on the page

Validation Causes
Validation doesn’t just happen; it occurs in response to an event. In most cases, it is a button click event.
The Button, LinkButton, and ImageButton server controls all have the capability to cause a page’s form
validation to initiate. This is the default behavior. Dragging and dropping a Button server control onto
your form will give you the following initial result:

<asp:Button ID=”Button1” Runat=”server” Text=”Button” />

If the ASP.NET Validation controls don’t meet your needs, you can certainly write
your own custom validation controls. However, there are third-party controls
available such as Peter Blum’s Validation and More (VAM) from http://www.
peterblum.com/VAM, which includes over 40 ASP.NET validation controls.

218

Chapter 7

10_576100 ch07.qxd 10/6/05 9:16 PM Page 218

If you look through the properties of the Button control, you can notice that the CausesValidation
property is set to True. As stated, this is the default behavior — all buttons on the page, no matter how
many there are, cause the form validation to fire.

If you have multiple buttons on an ASP.NET page, and you don’t want each and every button to initiate
the form validation, you can set the CausesValidation property to False for all the buttons you want
to ignore the validation process (for example, a form’s Cancel button):

<asp:Button ID=”Button1” Runat=”server” Text=”Cancel” CausesValidation=”False” />

The RequiredFieldValidator Server Control
The RequiredFieldValidator control simply checks to see if something was entered into the HTML form
element. It is a simple validation control, but it is one of the most frequently used. You must have a
RequiredFieldValidator control for each form element on which you wish to enforce a value-required rule.

Listing 7-1 shows a simple use of the RequiredFieldValidator control.

Listing 7-1: A simple use of the RequiredFieldValidator server control

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Protected Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)

Label1.Text = “Page is valid!”
End Sub

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>RequiredFieldValidator</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:TextBox ID=”TextBox1” Runat=”server”></asp:TextBox>
<asp:RequiredFieldValidator ID=”RequiredFieldValidator1”
Runat=”server” ErrorMessage=”Required!” ControlToValidate=”TextBox1”>

</asp:RequiredFieldValidator>

<asp:Button ID=”Button1” Runat=”server” Text=”Submit”
OnClick=”Button1_Click” />

<asp:Label ID=”Label1” Runat=”server”></asp:Label>

</div>
</form>

</body>
</html>

(continued)

219

Validation Server Controls

10_576100 ch07.qxd 10/6/05 9:16 PM Page 219

Listing 7-1: (continued)

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
protected void Button1_Click(Object sender, EventArgs e) {

Label1.Text = “Page is valid!”;
}

</script>

Build and run this page. You are presented with a simple text box and button on the page. Don’t enter
any value inside the text box, and click the Submit button. The result is shown in Figure 7-1.

Figure 7-1

Now look at the code from this example. First, nothing is different about the TextBox, Button, or Label
controls. They are constructed just as they would be if you were not using any type of form validation.
This page does contain a simple RequiredFieldValidator control however. Several properties of this con-
trol are especially notable because you will use them in most of the validation server controls you create.

The first property to look at is the ErrorMessage property. This property is the value that is shown to
the end user via the Web page if the validation fails. In this case, it is a simple Required! string. The
second property to look at is the ControlToValidate property. This property is used to make an asso-
ciation between this validation server control and the ASP.NET form element that requires the valida-
tion. In this case, the value specifies the only element in the form — the text box.

As you can see from this example, the error message ID is constructed from an attribute within the
<asp:RequiredFieldValidator> control. You can also accomplish this same task by using the Text
attribute, as shown in Listing 7-2.

Listing 7-2: Using the Text attribute

<asp:RequiredFieldValidator ID=”RequiredFieldValidator1”
Runat=”server” Text=”Required!” ControlToValidate=”TextBox1”>

</asp:RequiredFieldValidator>

220

Chapter 7

10_576100 ch07.qxd 10/6/05 9:16 PM Page 220

You can also express this error message between the <asp:RequiredFieldValidator> opening and
closing nodes as shown in Listing 7-3.

Listing 7-3: Placing values between nodes

<asp:RequiredFieldValidator ID=”RequiredFieldValidator1”
Runat=”server” ControlToValidate=”TextBox1”>
Required!

</asp:RequiredFieldValidator>

Looking at the Results Generated
Again, the RequiredFieldValidator control uses client-side validation if the browser allows for such an
action. You can see the client-side validation for yourself (if your browser allows for this) by right-clicking
on the page and selecting View Source from the menu. In the page code, you see the JavaScript shown
in Listing 7-4. Note that your JavaScript may be slightly different than what is presented in this listing
because ASP.NET sends the JavaScript to the appropriate browsers and your browser may be of a differ-
ent type.

Listing 7-4: The generated JavaScript

... page markup removed for clarity here ...

<script type=”text/javascript”>
<!--
function WebForm_OnSubmit() {
if (ValidatorOnSubmit() == false) return false;
return true;
}
// -->
</script>

... page markup removed for clarity here ...

<script type=”text/javascript”>
<!--
var Page_Validators = new
Array(document.getElementById(“RequiredFieldValidator1”));// -->
</script>

<script type=”text/javascript”>
<!--
var RequiredFieldValidator1 = document.all ?

document.all[“RequiredFieldValidator1”] :
document.getElementById(“RequiredFieldValidator1”);

RequiredFieldValidator1.controltovalidate = “TextBox1”;
RequiredFieldValidator1.errormessage = “Required!”;
RequiredFieldValidator1.evaluationfunction =

“RequiredFieldValidatorEvaluateIsValid”;
RequiredFieldValidator1.initialvalue = “”;
// -->
</script>

(continued)

221

Validation Server Controls

10_576100 ch07.qxd 10/6/05 9:16 PM Page 221

Listing 7-4: (continued)

... page markup removed for clarity here ...

<script type=”text/javascript”>
<!--
var Page_ValidationActive = false;
if (typeof(ValidatorOnLoad) == “function”) {

ValidatorOnLoad();
}

function ValidatorOnSubmit() {
if (Page_ValidationActive) {

return ValidatorCommonOnSubmit();
}
else {

return true;
}

}
// -->
</script>

In the page code, you may also notice some changes to the form elements (the former server controls)
that deal with the submission of the form and the associated validation requirements.

Using the InitialValue Property
Another important property when working with the RequireFieldValidator control is the InitialValue
property. Sometimes you have form elements that are populated with some default properties (for exam-
ple, from a data store), and these form elements might present the end user with values that require
changes before the form can be submitted to the server.

When using the InitialValue property, you specify to the RequiredFieldValidator control the initial
text of the element. The end user is then required to change that text value before he can submit the
form. Listing 7-5 shows an example of using this property.

Listing 7-5: Working with the InitialValue property

<asp:TextBox ID=”TextBox1” Runat=”server”>My Initial Value</asp:TextBox>

<asp:RequiredFieldValidator ID=”RequiredFieldValidator1”
Runat=”server” ErrorMessage=”Please change the value of the textbox!”
ControlToValidate=”TextBox1” InitialValue=”My Initial Value”>

</asp:RequiredFieldValidator>

In this case, you can see that the InitialValue property contains a value of My Initial Value. When
the page is built and run, the text box contains this value as well. The RequiredFieldValidator control
requires a change in this value for the page to be considered valid.

222

Chapter 7

10_576100 ch07.qxd 10/6/05 9:16 PM Page 222

Disallowing Blank Entries and Requiring Changes at the Same Time
In the preceding example of the use of the InitialValue property, an interesting problem arises. First,
if you run the associated example, one thing the end user can do to get past the form validation is to
submit the page with no value entered in this particular text box. A blank text box does not fire a valida-
tion error because the RequiredFieldValidator control is now reconstructed to force the end user only to
change the default value of the text box (which he did when he removed the old value). When you recon-
struct the RequiredFieldValidator control in this manner, nothing in the validation rule requires that
something be entered in the text box — just that the initial value be changed. It is possible for the user to
completely bypass the form validation process by just removing anything entered in this text box.

There is a way around this, however, and it goes back to what we were saying earlier about how a
form is made up of multiple validation rules — some of which are assigned to the same form element.
To both require a change to the initial value of the text box and to disallow a blank entry (thereby mak-
ing the element a required element), you must put an additional RequiredFieldValidator control on
the page. This second RequiredFieldValidator control is associated with the same text box as the first
RequiredFieldValidator control. This is illustrated in the example shown in Listing 7-6.

Listing 7-6: Using two RequiredFieldValidator controls for one form element

<asp:TextBox ID=”TextBox1” Runat=”server”>My Initial Value</asp:TextBox>

<asp:RequiredFieldValidator ID=”RequiredFieldValidator1” Runat=”server”
ErrorMessage=”Please change value” ControlToValidate=”TextBox1”
InitialValue=”My Initial Value”></asp:RequiredFieldValidator>

<asp:RequiredFieldValidator ID=”RequiredFieldValidator2” Runat=”server”
ErrorMessage=”Do not leave empty” ControlToValidate=”TextBox1”>

</asp:RequiredFieldValidator>

In this example, you can see that the text box does indeed have two RequiredFieldValidator controls
associated with it. The first, RequiredFieldValidator1, requires a change to the default value of the
text box through the use of the InitialValue property. The second RequiredFieldValidator control,
RequiredFieldValidator2, simply makes the TextBox1 control a form element that requires a value.
You get the behavior you want by applying two validation rules to a single form element.

Validating Drop-Down Lists with the RequiredFieldValidator Control
So far, you have seen a lot of examples of using the RequiredFieldValidator control with a series of text
boxes, but you can just as easily use this validation control with other form elements as well.

For example, you can use the RequiredFieldValidator control with an <asp:DropDownList> server con-
trol. To see this, suppose that you have a drop-down list that requires the end user to select her profes-
sion from a list of items. The first line of the drop-down list includes instructions to the end user about
what to select, and you want to make this a required form element as well. The code to do this is shown
in Listing 7-7.

223

Validation Server Controls

10_576100 ch07.qxd 10/6/05 9:16 PM Page 223

Listing 7-7: Drop-down list validations

<asp:DropDownList id=”DropDownList1” runat=”server”>
<asp:ListItem Selected=”True”>Select a profession</asp:ListItem>
<asp:ListItem>Programmer</asp:ListItem>
<asp:ListItem>Lawyer</asp:ListItem>
<asp:ListItem>Doctor</asp:ListItem>
<asp:ListItem>Artist</asp:ListItem>

</asp:DropDownList>

<asp:RequiredFieldValidator id=”RequiredFieldValidator1”
runat=”server” ErrorMessage=”Please make a selection”
ControlToValidate=”DropDownList1”
InitialValue=”Select a profession”>

</asp:RequiredFieldValidator>

Just as when you work with the text box, the RequiredFieldValidator control in this example associates
itself with the DropDownList control through the use of the ControlToValidate property. The drop-
down list to which the validation control is bound has an initial value —Select a profession. You
obviously don’t want your end user to retain that value when she posts the form back to the server. So
again, you use to the InitialValue property of the RequiredFieldValidator control. The value of this
property is assigned to the initial selected value of the drop-down list. This forces the end user to select
one of the provided professions in the drop-down list before she is able to post the form.

The CompareValidator Server Control
The CompareValidator control allows you to make comparisons between two form elements as well as
to compare values contained within form elements to constants that you specify. For instance, you can
specify that a form element’s value must be an integer and greater than a specified number. You can also
state that values must be strings, dates, or other data types that are at your disposal.

Validating against Other Controls
One of the more common ways of using the CompareValidator control is to make a comparison between
two form elements. For example, suppose that you have an application which requires users to have
passwords in order to access the site. You create one text box asking for the user’s password and a sec-
ond text box which asks the user to confirm the password. Because the text box is in password mode, the
end user cannot see what she is typing — just the number of characters that she has typed. To reduce the
chances of the end user mistyping her password and inputting this incorrect password into the system,
you ask her to confirm the password. After the form is input into the system, you simply have to make a
comparison between the two text boxes to see if they match. If they match, it is likely that the end user
typed the password correctly, and you can input the password choice into the system. If the two text
boxes do not match, you want the form to be invalid. The following example, in Listing 7-8, demon-
strates this situation.

Listing 7-8: Using the CompareValidator to test values against other control values

VB
<%@ Page Language=”VB” %>
<script runat=”server”>

Protected Sub Button1_Click(sender As Object, e As EventArgs)

224

Chapter 7

10_576100 ch07.qxd 10/6/05 9:16 PM Page 224

Label1.Text = “Passwords match”
End Sub

</script>
<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>CompareFieldValidator</title>
</head>
<body>

<form runat=”server”>
<p>

Password

<asp:TextBox ID=”TextBox1” Runat=”server”
TextMode=”Password”></asp:TextBox>

<asp:CompareValidator ID=”CompareValidator1”
Runat=”server” ErrorMessage=”Passwords do not match!”
ControlToValidate=”TextBox2”
ControlToCompare=”TextBox1”></asp:CompareValidator>

</p>
<p>

Confirm Password

<asp:TextBox ID=”TextBox2” Runat=”server”
TextMode=”Password”></asp:TextBox>

</p>
<p>

<asp:Button ID=”Button1” OnClick=”Button1_Click”
Runat=”server” Text=”Login”></asp:Button>

</p>
<p>

<asp:Label ID=”Label1” Runat=”server”></asp:Label>
</p>

</form>
</body>
</html>

C#
<%@ Page Language=”C#” %>
<script runat=”server”>

protected void Button1_Click(Object sender, EventArgs e) {
Label1.Text = “Passwords match”;

}

</script>

Looking at the CompareValidator control on the form, you can see that it is similar to the
RequiredFieldValidator control. The CompareValidator control has a property called
ControlToValidate that associates itself with one of the form elements on the page. In this case,
you need only a single CompareValidator control on the page because a single comparison is made.
In this example, you are making a comparison between the value of TextBox2 and that of TextBox1.
Therefore, you use the ControlToCompare property. This specifies what value is compared to
TextBox2. In this case, the value is TextBox1.

225

Validation Server Controls

10_576100 ch07.qxd 10/6/05 9:16 PM Page 225

It’s as simple as that. If the two text boxes do not match after the page is posted by the end user, the
value of the ErrorMessage property from the CompareValidator control is displayed in the browser.
An example of this is shown in Figure 7-2.

Figure 7-2

Validating against Constants
Besides being able to validate values against values in other controls, you can also use the
CompareValidator control to make comparisons against constants of specific data types. For example,
suppose you have a text box on your registration form that asks for the age of the user. In most cases,
you want to get back an actual number and not something such as aa or bb as a value. Listing 7-9 shows
you how to ensure that you get back an actual number.

Listing 7-9: Using the CompareValidator to validate against constants

Age:
<asp:TextBox ID=”TextBox1” Runat=”server” MaxLength=”3”>
</asp:TextBox>

<asp:CompareValidator ID=”CompareValidator1” Runat=”server”

ErrorMessage=”You must enter a number”
ControlToValidate=”TextBox1” Type=”Integer”
Operator=”DataTypeCheck”></asp:CompareValidator>

In this example, the end user is required to enter in a number into the text box. If she attempts to bypass
the validation by entering a fake value that contains anything other than a number, the page is identified
as invalid, and the CompareValidator control displays the value of the ErrorMessage property.

To specify the data types that you want to use in these comparisons, you simply use the Type property.
The Type property can take the following values:

❑ Currency

❑ Date

226

Chapter 7

10_576100 ch07.qxd 10/6/05 9:16 PM Page 226

❑ Double

❑ Integer

❑ String

Not only can you make sure that what is entered is of a specific data type, but you can also make sure
that what is entered is valid when compared to specific constants. For instance, you can make sure what
is entered in a form element is greater than, less than, equal to, greater than or equal to, or less than or
equal to a specified value. An example of this is illustrated in Listing 7-10.

Listing 7-10: Making comparisons with the CompareValidator control

Age:
<asp:TextBox ID=”TextBox1” Runat=”server”></asp:TextBox>

<asp:CompareValidator ID=”CompareValidator1” Runat=”server”

Operator=”GreaterThan” ValueToCompare=”18”
ControlToValidate=”TextBox1”
ErrorMessage=”You must be older than 18 to join” Type=”Integer”>

</asp:CompareValidator>

In this case, the CompareValidator control not only associates itself with the TextBox1 control and
requires that the value must be an integer, but it also uses the Operator and the ValueToCompare prop-
erties to ensure that the number is greater than 18. Therefore, if the end user enters a value of 18 or less,
the validation fails, and the page is considered invalid.

The Operator property can take one of the following values:

❑ Equal

❑ NotEqual

❑ GreaterThan

❑ GreaterThanEqual

❑ LessThan

❑ LessThanEqual

❑ DataTypeCheck

The ValueToCompare property is where you place the constant value used in the comparison. In the
preceding example, it is the number 18.

The RangeValidator Server Control
The RangeValidator control is quite similar to that of the CompareValidator control, but it makes sure
that the end user value or selection provided is between a specified range as opposed to being just
greater than or less than a specified constant. For an example of this, go back to the text-box element that
asks for the age of the end user and performs a validation on the value provided. This is illustrated in
Listing 7-11.

227

Validation Server Controls

10_576100 ch07.qxd 10/6/05 9:16 PM Page 227

Listing 7-11: Using the RangeValidator control to test an integer value

Age:
<asp:TextBox ID=”TextBox1” Runat=”server”></asp:TextBox>

<asp:RangeValidator ID=”RangeValidator1” Runat=”server”
ControlToValidate=”TextBox1” Type=”Integer”
ErrorMessage=”You must be between 30 and 40”
MaximumValue=”40” MinimumValue=”30”></asp:RangeValidator>

In this example, this page consists of a text box asking for the age of the end user. The RangeValidator
control makes an analysis of the value provided and makes sure the value is somewhere in the range of
30 to 40. This is done through the use of the MaximumValue and MinimumValue properties. The
RangeValidator control also makes sure what is entered is an integer data type. It uses the Type prop-
erty, which is set to Integer. The collection of screenshots in Figure 7-3 shows this example in action.

Figure 7-3

As you can see from the screenshots in Figure 7-3, a value of less than 30 causes the RangeValidator con-
trol to fire as does a number greater than 40. A value that is somewhere between 30 and 40 (in this case 34)
conforms to the validation rule of the control.

The RangeValidator control is not only about validating numbers (although it is most often used in this
fashion). It can also be about validating a range of string characters as well as other items, including

228

Chapter 7

10_576100 ch07.qxd 10/6/05 9:16 PM Page 228

calendar dates. By default, the Type property of any of the validation controls is set to String. You can
use the RangeValidator control to make sure what is entered in another server control (such as a calen-
dar control) is within a certain range of dates.

For example, suppose that you are building a Web form that asks for a customer’s arrival date, and the
arrival date needs to be within two weeks of the current date. You can use the RangeValidator control to
test for these scenarios quite easily.

Since the date range that you want to check is dynamically generated, you assign the MaximumValue
and MinimumValue attribute programmatically in the Page_Load event. In the Designer, your sample
page for this example should look like Figure 7-4.

The idea is that the end user will select a date from the Calendar control, which will then populate the
TextBox control. Then, when the end user clicks the form’s button, he is notified if the date selected is
invalid. If the date selected is valid, that date is presented through the Label control on the page. The
code for this example is presented in Listing 7-12.

Figure 7-4

229

Validation Server Controls

10_576100 ch07.qxd 10/6/05 9:16 PM Page 229

Listing 7-12: Using the RangeValidator control to test a string date value

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

RangeValidator1.MinimumValue = DateTime.Now.ToShortDateString()
RangeValidator1.MaximumValue = DateTime.Now.AddDays(14).ToShortDateString()

End Sub

Protected Sub Calendar1_SelectionChanged(ByVal sender As Object, _
ByVal e As System.EventArgs)

TextBox1.Text = Calendar1.SelectedDate.ToShortDateString()
End Sub

Protected Sub Button1_Click(ByVal sender As Object, _
ByVal e As System.EventArgs)

If Page.IsValid Then
Label1.Text = “You are set to arrive on: “ & TextBox1.Text

End If
End Sub

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head id=”Head1” runat=”server”>

<title>Date Validation Check</title>
</head>
<body>

<form id=”form1” runat=”server”>
Arrival Date:
<asp:TextBox ID=”TextBox1” runat=”server”></asp:TextBox>
<asp:RangeValidator ID=”RangeValidator1” runat=”server”
ErrorMessage=”You must only select a date within the next two weeks.”
ControlToValidate=”TextBox1” Type=”Date”></asp:RangeValidator>

Select your arrival date:

<asp:Calendar ID=”Calendar1” runat=”server”
OnSelectionChanged=”Calendar1_SelectionChanged”></asp:Calendar>

<asp:Button ID=”Button1” runat=”server” Text=”Button”
OnClick=”Button1_Click” />

<asp:Label ID=”Label1” runat=”server”></asp:Label>

</form>
</body>
</html>

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
protected void Page_Load(object sender, EventArgs e)

230

Chapter 7

10_576100 ch07.qxd 10/6/05 9:16 PM Page 230

{
RangeValidator1.MinimumValue = DateTime.Now.ToShortDateString();
RangeValidator1.MaximumValue =

DateTime.Now.AddDays(14).ToShortDateString();
}

protected void Calendar1_SelectionChanged(object sender, EventArgs e)
{

TextBox1.Text = Calendar1.SelectedDate.ToShortDateString();
}

protected void Button1_Click(object sender, EventArgs e)
{

if (Page.IsValid)
{

Label1.Text = “You are set to arrive on: “ + TextBox1.Text.ToString();
}

}
</script>

From this code, you can see that when the page is loaded, the MinimumValue and MaximumValue
attributes are assigned a dynamic value. In this case, the MinimumValue gets the DateTime.Now
.ToShortDateString() value, while the MaximumValue gets a date of 14 days later.

After the end user selects a date, the selected date is populated in the TextBox1 control using the
Calendar1_SelectionChanged event. After a date is selected and the button on the page is clicked,
the Button1_Click event is fired and the page is checked for form validity using the Page.IsValid
property. An invalid page will give you the result shown in Figure 7-5.

Figure 7-5

231

Validation Server Controls

10_576100 ch07.qxd 10/6/05 9:16 PM Page 231

The RegularExpressionValidator Server Control
One exciting control that developers like to use is the RegularExpressionValidator control. This
control offers a lot of flexibility when you apply validation rules to your Web forms. Using the
RegularExpressionValidator control, you can check a user’s input based on a pattern that you define
using a regular expression.

This means that you can define a structure that a user’s input will be applied against to see if its struc-
ture matches the one that you define. For instance, you can define that the structure of the user input
must be in the form of an e-mail address or an Internet URL; if it doesn’t match this definition, the page
is considered invalid. Listing 7-13 shows you how to validate what is input into a text box by making
sure it is in the form of an e-mail address.

Listing 7-13: Making sure the text-box value is an e-mail address

Email:
<asp:TextBox ID=”TextBox1” Runat=”server”></asp:TextBox>

<asp:RegularExpressionValidator ID=”RegularExpressionValidator1”

Runat=”server” ControlToValidate=”TextBox1”
ErrorMessage=”You must enter an email address”
ValidationExpression=”\w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*”>

</asp:RegularExpressionValidator>

Just like the other validation server controls, the RegularExpressionValidator control uses the
ControlToValidate property to bind itself to the TextBox control, and it includes an ErrorMessage
property to push out the error message to the screen if the validation test fails. The unique property of
this validation control is the ValidationExpression property. This property takes a string value,
which is the regular expression you are going to apply to the input value.

Visual Studio 2005 makes it a little easier to use regular expressions by introducing the Regular
Expression Editor. This editor provides a few commonly used regular expressions that you might want
to apply to your RegularExpressionValidator. To get at this editor, you work with your page from Design
view. Be sure to highlight the RegularExpressionValidator1 server control in this Design view to see
the control’s properties. In the Property window of Visual Studio, click the button found next to the
ValidationExpression property to launch the Regular Expression Editor. This editor is shown in
Figure 7-6.

Figure 7-6

232

Chapter 7

10_576100 ch07.qxd 10/6/05 9:16 PM Page 232

Using this editor, you can find regular expressions for things like e-mail addresses, Internet URLs, zip
codes, phone numbers, and social security numbers. In addition to working with the Regular Expression
Editor to help you with these sometimes complicated regular expression strings, you can also find a
good-sized collection of them at an Internet site called RegExLib found at www.regexlib.com.

The CustomValidator Server Control
So far, you have seen a wide variety of validation controls that are at your disposal. In many cases, these
validation controls address many of the validation rules that you want to apply to your Web forms.
Sometime, however, none of these controls work for you, and you have to go beyond what they offer.
This is where the CustomValidator control comes into play.

The CustomValidator control allows you to build your own client-side or server-side validations that can
then be easily applied to your Web forms. Doing so allows you to make validation checks against values
or calculations performed in the data tier (for example, in a database), or to make sure that the user’s
input validates against some arithmetic validation (for example, determining if a number is even or
odd). You can do quite a bit with the CustomValidator control.

Using Client-Side Validation
One of the worthwhile functions of the CustomValidator control is its capability to easily provide cus-
tom client-side validations. Many developers have their own collections of JavaScript functions they
employ in their applications, and using the CustomValidator control is one easy way of getting these
functions implemented.

For example, look at a simple form that asks for a number from the end user. This form uses the
CustomValidator control to perform a custom client-side validation on the user input to make sure that
the number provided is divisible by 5. This is illustrated in Listing 7-14.

Listing 7-14: Using the CustomValidator control to perform client-side validations

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Protected Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)

Label1.Text = “VALID NUMBER!”
End Sub

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>CustomValidator</title>

<script language=”JavaScript”>
function validateNumber(oSrc, args) {

args.IsValid = (args.Value % 5 == 0);
}

</script>

</head>

(continued)

233

Validation Server Controls

10_576100 ch07.qxd 10/6/05 9:16 PM Page 233

Listing 7-14: (continued)

<body>
<form id=”form1” runat=”server”>
<div>

<p>
Number:
<asp:TextBox ID=”TextBox1”
Runat=”server”></asp:TextBox>

<asp:CustomValidator ID=”CustomValidator1”
Runat=”server” ControlToValidate=”TextBox1”
ErrorMessage=”Number must be divisible by 5”
ClientValidationFunction=”validateNumber”>

</asp:CustomValidator>
</p>
<p>

<asp:Button ID=”Button1” OnClick=”Button1_Click”
Runat=”server” Text=”Button”></asp:Button>

</p>
<p>

<asp:Label ID=”Label1” Runat=”server”></asp:Label>
</p>

</div>
</form>

</body>
</html>

C#
<%@ Page Language=”C#” %>
<script runat=”server”>

protected void Button1_Click(Object sender, EventArgs e) {
Label1.Text = “VALID NUMBER!”;

}

</script>

Looking over this Web form, you can see a couple of things happening. First, it is a simple form with
only a single text box requiring user input. The user clicks the button that triggers the Button1_Click
event that, in turn, populates the Label1 control on the page. It carries out this simple operation only if
all the validation checks are performed and the user input passes these tests.

One item that is different about this page is the inclusion of the second <script> block found within the
<head> section. This is the custom JavaScript. Note that Visual Studio 2005 is now very friendly toward
these kinds of constructions, even when you are switching between the Design and Code views of the
page — something the two previous Visual Studio editions were rather poor at dealing with. This
JavaScript function —validateNumber— is shown here:

<script language=”JavaScript”>
function validateNumber(oSrc, args) {

args.IsValid = (args.Value % 5 == 0);
}

</script>

234

Chapter 7

10_576100 ch07.qxd 10/6/05 9:16 PM Page 234

This second <script> section is the client-side JavaScript that you want the CustomValidator control to
use when making its validation checks on the information entered into the text box. The JavaScript func-
tions you employ are going to use the args.IsValid property and set this property to either true or
false depending on the outcome of the validation check. In this case, the user input (args.Value) is
checked to see if it is divisible by 5. The Boolean value returned is then assigned to the args.IsValid
property, which is then used by the CustomValidator control.

The CustomValidator control, like the other controls before it, uses the ControlToValidate property to
associate itself with a particular element on the page. The property that you are interested in here is the
ClientValidationFunction property. The string value provided to this property is the name of the
client-side function that you want this validation check to employ when the CustomValidator control is
triggered. In this case, it is validateNumber:

ClientValidationFunction=”validateNumber”

If you run this page and make an invalid entry, you produce the result illustrated in Figure 7-7.

Figure 7-7

Using Server-Side Validation
Now let’s move this same validation check from the client to the server. The CustomValidator control
allows you to make custom server-side validations a reality as well. You will find that creating your
server-side validations is just as easy as creating client-side validations.

If you create your own server-side validations, you can make them as complex as your applications
require. For instance, using the CustomValidator for server-side validations is something you do if you
want to check the user’s input against dynamic values coming from XML files, databases, or elsewhere.

For an example of using the CustomValidator control for some custom server-side validation, you can
work with the same example as you did when creating the client-side validation. Now, create a server-
side check that makes sure a user-input number is divisible by 5. This is illustrated in Listing 7-15.

235

Validation Server Controls

10_576100 ch07.qxd 10/6/05 9:16 PM Page 235

Listing 7-15: Using the CustomValidator control to perform server-side validations

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Protected Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)

If Page.IsValid Then
Label1.Text = “VALID ENTRY!”

End If
End Sub

Sub ValidateNumber(sender As Object, args As ServerValidateEventArgs)
Try

Dim num As Integer = Integer.Parse(args.Value)
args.IsValid = ((num mod 5) = 0)

Catch ex As Exception
args.IsValid = False

End Try
End Sub

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>CustomValidator</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<p>
Number:
<asp:TextBox ID=”TextBox1”
Runat=”server”></asp:TextBox>

<asp:CustomValidator ID=”CustomValidator1”
Runat=”server” ControlToValidate=”TextBox1”
ErrorMessage=”Number must be divisible by 5”
OnServerValidate=”ValidateNumber”></asp:CustomValidator>

</p>
<p>

<asp:Button ID=”Button1” OnClick=”Button1_Click”
Runat=”server” Text=”Button”></asp:Button>

</p>
<p>

<asp:Label ID=”Label1” Runat=”server”></asp:Label>
</p>

</div>
</form>

</body>
</html>

C#
<%@ Page Language=”C#” %>

236

Chapter 7

10_576100 ch07.qxd 10/6/05 9:16 PM Page 236

<script runat=”server”>

protected void Button1_Click(Object sender, EventArgs e) {
if (Page.IsValid) {

Label1.Text = “VALID ENTRY!”;
}

}

void ValidateNumber(object source, ServerValidateEventArgs args)
{

try
{

int num = int.Parse(args.Value);
args.IsValid = ((num%5) == 0);

}
catch(Exception ex)
{

args.IsValid = false;
}

}

</script>

Instead of a client-side JavaScript function in the code, this example includes a server-side function —
ValidateNumber. The ValidateNumber function, as well as all functions that are being constructed to
work with the CustomValidator control, must use the ServerValidateEventArgs object as one of the
parameters in order to get the data passed to the function for the validation check. The ValidateNumber
function itself is nothing fancy. It simply checks to see if the provided number is divisible by 5.

From within your custom function, which is designed to work with the CustomValidator control, you
actually get at the value coming from the form element through the args.Value object. Then you set the
args.IsValid property to either True or False depending on your validation checks. From the pre-
ceding example, you can see that the args.IsValid is set to False if the number is not divisible by 5
and also that an exception is thrown (which would occur if a string value was input into the form ele-
ment). After the custom function is established, the next step is to apply it to the CustomValidator con-
trol, as shown in the following example:

<asp:CustomValidator ID=”CustomValidator1”
Runat=”server” ControlToValidate=”TextBox1”
ErrorMessage=”Number must be divisible by 5”
OnServerValidate=”ValidateNumber”></asp:CustomValidator>

To make the association between a CustomValidator control and a function that you have in your server-
side code, you simply use the OnServerValidate property. The value assigned to this property is the
name of the function — in this case, ValidateNumber.

Running this example causes the postback to come back to the server and the validation check (based on
the ValidateNumber function) to be performed. From here, the page reloads and the Page_Load event
is called. In the example from Listing 7-15, you can see that a check is done to see whether the page is
valid. This is done using the Page.IsValid property.

If Page.IsValid Then
Label1.Text = “VALID ENTRY!”

End If

237

Validation Server Controls

10_576100 ch07.qxd 10/6/05 9:16 PM Page 237

Using Client-Side and Server-Side Validation Together
As stated earlier in this chapter, you have to think about the security of your forms and to ensure that
the data you are collecting from the forms is valid data. For this reason, when you decide to employ
client-side validations (as you did in Listing 7-14), you should take steps to also reconstruct the client-
side function as a server-side function. When you have done this, you should associate the
CustomValidator control to both the client-side and server-side functions. In the case of the number
check validation from Listings 7-14 and 7-15, you can use both validation functions in your page and
then change the CustomValidator control to point to both of these functions as shown in Listing 7-16.

Listing 7-16: The CustomValidator control with client- and server-side validations

<asp:CustomValidator ID=”CustomValidator1”
Runat=”server” ControlToValidate=”TextBox1”
ErrorMessage=”Number must be divisible by 5”
ClientValidationFunction=”validateNumber”
OnServerValidate=”ValidateNumber”></asp:CustomValidator>

From this example, you can see it is simply a matter of using both the ClientValidationFunction
and the OnServerValidate properties at the same time.

The ValidationSummary Server Control
The ValidationSummary control is not a control that performs validations on the content input into your
Web forms. Instead, this control is the reporting control, which is used by the other validation controls
on a page. You can use this validation control to consolidate error reporting for all the validation errors
that occur on a page instead of leaving this up to each and every individual validation control.

You might want this capability for larger forms, which have a comprehensive form validation process. If
this is the case, you may find it rather user-friendly to have all the possible validation errors reported to
the end user in a single and easily identifiable manner. These error messages can be displayed in a list,
bulleted list, or paragraph.

By default, the ValidationSummary control shows the list of validation errors as a bulleted list. This is
illustrated in Listing 7-17.

Listing 7-17: A partial page example of the ValidationSummary control

<p>First name
<asp:TextBox ID=”TextBox1” Runat=”server”></asp:TextBox>

<asp:RequiredFieldValidator ID=”RequiredFieldValidator1”
Runat=”server” ErrorMessage=”You must enter your first name”
ControlToValidate=”TextBox1”></asp:RequiredFieldValidator>

</p>
<p>Last name

<asp:TextBox ID=”TextBox2” Runat=”server”></asp:TextBox>

<asp:RequiredFieldValidator ID=”RequiredFieldValidator2”
Runat=”server” ErrorMessage=”You must enter your last name”
ControlToValidate=”TextBox2”></asp:RequiredFieldValidator>

238

Chapter 7

10_576100 ch07.qxd 10/6/05 9:16 PM Page 238

</p>
<p>

<asp:Button ID=”Button1” OnClick=”Button1_Click” Runat=”server”
Text=”Submit”></asp:Button>

</p>
<p>

<asp:ValidationSummary ID=”ValidationSummary1” Runat=”server”
HeaderText=”You received the following errors:”>

</asp:ValidationSummary>
</p>
<p>

<asp:Label ID=”Label1” Runat=”server”></asp:Label>
</p>

This example asks the end user for her first and last name. Each text box in the form has an associated
RequiredFieldValidator control assigned to it. When the page is built and run, if the user clicks the
Submit button with no values placed in either of the text boxes, it causes both validation errors to fire.
This result is shown in Figure 7-8.

Figure 7-8

As in earlier examples of validation controls on the form, these validation errors appear next to each of
the text boxes. You can see, however, that the ValidationSummary control also displays the validation
errors as a bulleted list in red at the location of the control on the Web form. In most cases, you do not
want these errors to appear twice on a page for the end user. You can change this behavior by using the
Text property of the validation controls, in addition to the ErrorMessage property, as you have typi-
cally done throughout this chapter. This approach is shown in Listing 7-18.

Listing 7-18: Using the Text property of a validation control

<asp:RequiredFieldValidator ID=”RequiredFieldValidator1”
Runat=”server” ErrorMessage=”You must enter your first name” Text=”*”
ControlToValidate=”TextBox1”></asp:RequiredFieldValidator>

or

(continued)

239

Validation Server Controls

10_576100 ch07.qxd 10/6/05 9:16 PM Page 239

Listing 7-18: (continued)

<asp:RequiredFieldValidator ID=”RequiredFieldValidator1”
Runat=”server” ErrorMessage=”You must enter your first name”
ControlToValidate=”TextBox1”>*</asp:RequiredFieldValidator>

Listing 7-18 shows two ways to accomplish the same task. The first is to use the Text property and the sec-
ond option is to place the provided output between the nodes of the <asp:RequiredFieldValidator>
elements. Making this type of change to the validation controls produces the results shown in Figure 7-9.

Figure 7-9

To get this result, just remember that the ValidationSummary control uses the validation control’s
ErrorMessage property for displaying the validation errors if they occur. The Text property is used
by the validation control and is not utilized at all by the ValidationSummary control.

In addition to bulleted lists, you can use the DisplayMode property of the ValidationSummary control to
change the display of the results to other types of formats. This control has the following possible values:

❑ BulletList

❑ List

❑ SingleParagraph

You can also utilize a dialog box instead of displaying the results to the Web page. Listing 7-19 shows an
example of this behavior.

Listing 7-19: Using a dialog box to report validation errors

<asp:ValidationSummary ID=”ValidationSummary1” Runat=”server”
ShowMessageBox=”True” ShowSummary=”False”></asp:ValidationSummary>

240

Chapter 7

10_576100 ch07.qxd 10/6/05 9:16 PM Page 240

From this code example, you can see that the ShowSummary property is set to False— meaning that
the bulleted list of validation errors are not shown on the actual Web page. However, because the
ShowMessageBox property is set to True, you now get these errors reported in a message box, as illus-
trated in Figure 7-10.

Figure 7-10

Turning Off Client-Side Validation
Because validation server controls provide clients with client-side validations automatically (if the
requesting container can properly handle the JavaScript produced), you might, at times, want a way
to control this behavior.

It is quite possible to turn off the client-side capabilities of these controls so that they don’t independently
send client-side capabilities to the requestors. For instance, you might want all validations done on the
server, no matter what capabilities the requesting containers offer. You can take a couple of approaches to
turning off this functionality.

The first is at the control level. Each of the validation server controls has a property called
EnableClientScript. This property is set to True by default, but setting it to False prevents the
control from sending out a JavaScript function for validation on the client. Instead, the validation check
is done on the server. The use of this property is shown in Listing 7-20.

Listing 7-20: Disabling client-side validations in a validation control

<asp:RequiredFieldValidator ID=”RequiredFieldValidator1” Runat=”server”
ErrorMessage=”*” ControlToValidate=”TextBox1” EnableClientScript=”false”>

You can also remove a validation control’s client-side capability programmatically (shown in Listing 7-21).

241

Validation Server Controls

10_576100 ch07.qxd 10/6/05 9:16 PM Page 241

Listing 7-21: Removing the client-side capabilities programmatically

VB
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

RequiredFieldValidator1.EnableClientScript = False
End Sub

C#
protected void Page_Load(Object sender, EventArgs e) {

RequiredFieldValidator1.EnableClientScript = false;
}

Another option is to turn off the client-side script capabilities for all the validation controls on a page
from within the Page_Load event. This can be rather helpful if you want to dynamically decide not to
allow client-side validation. This is illustrated in Listing 7-22.

Listing 7-22: Disabling all client-side validations from the Page_Load event

VB
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

For Each bv As BaseValidator In Page.Validators
bv.EnableClientScript = False

Next
End Sub

C#
protected void Page_Load(Object sender, EventArgs e) {

foreach(BaseValidator bv in Page.Validators)
{

bv.EnableClientScript = false;
}

}

Looking for each instance of a BaseValidator object in the validators contained on an ASP.NET page,
this For Each loop turns off client-side validation capabilities for each and every validation control the
page contains.

Using Images and Sounds
for Error Notifications

So far, we have been displaying simple textual messages for the error notifications that come from the vali-
dation server controls. In most instances, you are going to do just that — display some simple textual mes-
sages to inform end users that they input something into the form that doesn’t pass your validation rules.

An interesting tip regarding the validation controls is that you are not limited to just text — you can also
use images and sounds for error notifications.

242

Chapter 7

10_576100 ch07.qxd 10/6/05 9:16 PM Page 242

To do this, you use the ErrorMessage property of any of the validation controls. To use an image for the
error, you can simply place some appropriate HTML as the value of this property. This is illustrated in
Listing 7-23.

Listing 7-23: Using images for error notifications

<asp:RequiredFieldValidator ID=”RequiredFieldValidator1”
Runat=”server” ErrorMessage=’’
ControlToValidate=”TextBox1”></asp:RequiredFieldValidator>

As you can see from this example, instead of some text being output to the Web page, the value of the
ErrorMessage property is an HTML string. This bit of HTML is used to display an image. Be sure to
notice the use of the single and double quotation marks so you won’t get any errors when the page is
generated in the browser. This example produces something similar to what is shown in Figure 7-11.

Figure 7-11

The other interesting twist you can create is to add a sound notification when the end user errs. You can
do this the same way you display an image for error notifications. Listing 7-24 shows an example of this.

Listing 7-24: Using sound for error notifications

<asp:RequiredFieldValidator ID=”RequiredFieldValidator1”
Runat=”server” ErrorMessage=’<bgsource src=”C:\Windows\Media\tada.wav”>’
ControlToValidate=”TextBox1” EnableClientScript=”False”>

</asp:RequiredFieldValidator>

You can find a lot of the Windows system sounds in the C:\Windows\Media directory. In this example,
the ErrorMessage uses the <bgsource> element to place a sound on the Web form. The sound is
played only when the end user triggers the validation control.

When working with sounds for error notifications, you have to disable the client-side script capability
for that particular control because if you do not, the sound plays when the page is loaded in the browser,
whether or not a validation error has been triggered.

243

Validation Server Controls

10_576100 ch07.qxd 10/6/05 9:16 PM Page 243

Working with Validation Groups
In many instances, developers want to place more than one form on a single page. This was always pos-
sible in ASP.NET 1.0/1.1 because different button clicks could be used to perform different server-side
events. Some issues related to this type of construction were problematic, however.

One of these issues was the difficulty of having validation controls for each of the forms on the page.
Different validation controls were often assigned to two distinct forms on the page. When the end user
submitted one form, the validation controls in the other form were fired (because the user was not work-
ing with that form), thereby stopping the first form from being submitted.

Figure 7-12, for example, shows a basic page for the St. Louis .NET User Group that includes two forms.

Figure 7-12

One of the forms is for members of the site to supply their usernames and passwords to log into the
Members Only section of the site. The second form on the page is for anyone who wishes to sign up for
the user group’s newsletter. Each form has its own button and some validation controls associated with
it. The problem arises when someone submits information for one of the forms. For instance, if you are a
member of the group, you would supply your username and password, and click the Login button. The
validation controls for the newsletter form would fire because no e-mail address was placed in that par-
ticular form. If someone interested in getting the newsletter places an e-mail address in the last text box
and clicks the Sign-up button, the validation controls in the first form fire because no username and
password were input in that form.

ASP.NET 2.0 now provides you with a ValidationGroup property that enables you to separate the vali-
dation controls into separate groups. It enables you to activate only the required validation controls
when an end user clicks a button on the page. Listing 7-25 shows an example of separating the valida-
tion controls on a user group page into different buckets.

244

Chapter 7

10_576100 ch07.qxd 10/6/05 9:16 PM Page 244

Listing 7-25: Using the ValidationGroup property

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Validation Groups</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<h1>St. Louis .NET User Group</h1>
<p>Username:
<asp:TextBox ID=”TextBox1” Runat=”server”></asp:TextBox> Password:
<asp:TextBox ID=”TextBox2” Runat=”server”
TextMode=”Password”></asp:TextBox>

<asp:Button ID=”Button1” Runat=”server” Text=”Login”
ValidationGroup=”Login” />

<asp:RequiredFieldValidator ID=”RequiredFieldValidator1” Runat=”server”
ErrorMessage=”* You must submit a username!”
ControlToValidate=”TextBox1” ValidationGroup=”Login”>

</asp:RequiredFieldValidator>

<asp:RequiredFieldValidator ID=”RequiredFieldValidator2” Runat=”server”
ErrorMessage=”* You must submit a password!”
ControlToValidate=”TextBox2” ValidationGroup=”Login”>

</asp:RequiredFieldValidator>
<p>

Our main meeting is almost always held on the last Monday of the month.
Sometimes due to holidays or other extreme circumstances,
we move it to another night but that is very rare. Check the home page
of the web site for details. The special
interest groups meet at other times during the month. Check the SIG
page and visit their individual sites for more information.
You can also check our calendar page for a summary of events.

</p>
<h2>Sign-up for the newsletter!</h2>
<p>Email:
<asp:TextBox ID=”TextBox3” Runat=”server”></asp:TextBox>
<asp:Button ID=”Button2” Runat=”server” Text=”Sign-up”
ValidationGroup=”Newsletter” />

<asp:RegularExpressionValidator ID=”RegularExpressionValidator1”
Runat=”server”
ErrorMessage=”* You must submit a correctly formatted email address!”
ControlToValidate=”TextBox3” ValidationGroup=”Newsletter”
ValidationExpression=”\w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*”>

</asp:RegularExpressionValidator>

<asp:RequiredFieldValidator ID=”RequiredFieldValidator3” Runat=”server”
ErrorMessage=”* You forgot your email address!”
ControlToValidate=”TextBox3” ValidationGroup=”Newsletter”>

(continued)

245

Validation Server Controls

10_576100 ch07.qxd 10/6/05 9:16 PM Page 245

Listing 7-25: (continued)

</asp:RequiredFieldValidator>
</p>

</div>
</form>

</body>
</html>

The ValidationGroup property on this page is shown in bold. You can see that this property takes a
String value. Also note that not only validation controls have this new property. The core server con-
trols also have the ValidationGroup property because things like button clicks must be associated with
specific validation groups.

In this example, each of the buttons has a distinct validation group assignment. The first button on the
form uses Login as a value, and the second button on the form uses Newsletter as a value. Then each
of the validation controls is associated with one of these validation groups. Because of this, when the
end user clicks the Login button on the page, ASP.NET recognizes that it should work only with the vali-
dation server controls that have the same validation group name. ASP.NET ignores the validation con-
trols assigned to other validation groups.

Using this enhancement, you can now have multiple sets of validation rules that fire only when you
want them to fire (see Figure 7-13).

Figure 7-13

Another great feature that has been added to validation controls is a property called SetFocusOnError.
This property takes a Boolean value and, if a validation error is thrown when the form is submitted, the
property places the page focus on the form element that receives the error. The SetFocusOnError prop-
erty is used in the following example:

246

Chapter 7

10_576100 ch07.qxd 10/6/05 9:16 PM Page 246

<asp:RequiredFieldValidator ID=”RequiredFieldValidator1” Runat=”server”
ErrorMessage=”* You must submit a username!”
ControlToValidate=”TextBox1” ValidationGroup=”Login” SetFocusOnError=”True”>

</asp:RequiredFieldValidator>

If RequiredFieldValidator1 throws an error because the end user didn’t place a value in TextBox1,
the page is redrawn with the focus on TextBox1, as shown in Figure 7-14.

Figure 7-14

Note that if you have multiple validation controls on your page with the SetFocusOnError property
set to True, and more than one validation error occurs, the uppermost form element that has a valida-
tion error gets the focus. In the previous example, if both the username text box (TextBox1) and the
password text box (TextBox2) have validation errors associated with them, the page focus is assigned
to the username text box because it is the first control on the form with an error.

Summary
Validation controls are a welcome addition for those developers moving from Active Server Pages to
ASP.NET. They bring a lot of functionality in a simple-to-use package and, like most things in the .NET
world, you can easily get them to look and behave exactly as you want them to.

Remember that the purpose of having forms in your applications is to collect data, but this data collec-
tion has no meaning if the data is not valid. This means that you are must establish validation rules that
can be implemented in your forms through a series of different controls — the validation server controls.

247

Validation Server Controls

10_576100 ch07.qxd 10/6/05 9:16 PM Page 247

This chapter took a good look at the various validation controls, including

❑ RequiredFieldValidator

❑ CompareValidator

❑ RangeValidator

❑ RegularExpressionValidator

❑ CustomValidator

❑ ValidationSummary

In addition to looking at the base validation controls, this chapter also discussed how to apply client-
side and server-side validations.

248

Chapter 7

10_576100 ch07.qxd 10/6/05 9:16 PM Page 248

Working with Master Pages

Visual inheritance is a great new enhancement to your Web pages provided by new additions to
ASP.NET 2.0. In effect, you can create a single template page that can be used as a foundation for
any number of ASP.NET content pages in your application. These templates, called master pages,
increase your productivity by making your applications easier to build and easier to manage after
they are built. Visual Studio 2005 includes full designer support for master pages, making the
developer experience richer than ever before. This chapter takes a close look at how to utilize mas-
ter pages to the fullest extent in your applications and begins by explaining the advantages of
master pages.

Why Do You Need Master Pages?
Most Web sites today have common elements used throughout the entire application or on a
majority of the pages within the application. For instance, if you look at the main page of the
Reuters News Web site (found at www.reuters.com), you see common elements that are used
throughout the entire Web site. These common areas are labeled in Figure 8-1.

In this screen shot, notice a header section, a navigation section, and a footer section on the page.
In fact, nearly every page within the entire application uses these same elements. Even before mas-
ter pages, you had ways to put these elements into every page; but in most cases, doing so posed
difficulties.

Some developers simply copy and paste the code for these common sections to each and every
page that requires them. This works, but it’s rather labor intensive. But, if you use the copy-and-
paste method, whenever a change is required to one of these common sections of the application,
you have to go into each and every page and duplicate the change. That’s not much fun and an
ineffective use of your time!

11_576100 ch08.qxd 10/6/05 9:22 PM Page 249

Figure 8-1

250

Chapter 8

11_576100 ch08.qxd 10/6/05 9:22 PM Page 250

In the days of Classic Active Server Pages, one popular option was to put all the common sections into
what was called an include file. You could then place this file within your page like this:

<!-- #include virtual=”/myIncludes/header.asp” -->

The problem with using include files was that you had to take into account the newly opened HTML tags
in the header include file. These tags had to be closed in the main document or in the footer include file.
It was usually difficult to keep all the HTML tags in order, especially if multiple people worked on a pro-
ject. Web pages sometimes displayed strange results because of inappropriate or nonexistent tag closings or
openings. It was also difficult to work with include files in a visual designer. Using include files didn’t
allow the developer to see the entire page as it would appear in a browser. The developer ended up devel-
oping the page in sections and hoping that the pieces would come together as planned. Many hours were
wasted “chasing tables” opened in an include file and possibly closed later!

With the introduction of ASP.NET 1.0 in 2000, developers started using user controls to encapsulate com-
mon sections of their Web pages. For instance, you could build a Web page that included header, naviga-
tion, and footer sections by simply dragging and dropping these sections of code onto each page that
required them.

This technique worked, but it also raised some issues. Before Visual Studio 2005, user controls caused
problems similar to those related to include files. When you worked in the design view of your Web
page, the common areas of the page displayed only as gray boxes in Visual Studio .NET 2002 and 2003.
This made it harder to build a page. You could not visualize what the page you were building actually
looked like until you compiled and ran the completed page in a browser. User controls also suffered
from the same problem as include files — you had to match up the opening and closing of your HTML
tags in two separate files. Personally, we prefer user controls over include files, but user controls aren’t
perfect template pieces for use throughout an application. Visual Studio 2005 corrects some of the prob-
lems by rendering user-control content in the design view. User controls are ideal if you are including
only small sections on a Web page; they are still rather cumbersome, however, when working with larger
page templates.

In light of the issues with include files and user controls, the ASP.NET team developed the idea of mas-
ter pages — an outstanding new way of applying templates to your applications. They inverted the way
the developer attacks the problem. Master pages live outside the pages you develop, while user controls
live within your pages and are doomed to duplication. These master pages draw a more distinct line
between the common areas that you carry over from page to page and the content areas that are unique
on each page. Working with master pages is easy and fun. Look at some of the basics of master pages in
ASP.NET 2.0.

The Basics of Master Pages
Master pages are an easy way to provide a template that can be used by any number of ASP.NET pages
in your application. In working with master pages, you create a master file that is the template refer-
enced by a subpage or content page. Master pages use a .master file extension, whereas content pages use
the .aspx file extension you’re used to; but content pages are declared as such within the file’s Page
directive.

251

Working with Master Pages

11_576100 ch08.qxd 10/6/05 9:22 PM Page 251

Put anything you want to share within the template in the .master file. This can include the header,
navigation, and footer sections used across the Web application. The content page then contains all the
page content except for the master page’s elements. At runtime, the ASP.NET engine combines these ele-
ments into a single page for the end user. Figure 8-2 shows a diagram of how this process works.

One of the nice things about working with master pages is that you can visually see the template in the
IDE when you are creating the content pages. Because you can see the entire page while you are working
on it, it is much easier to develop content pages that use a template. While you are working on the con-
tent page, all the templated items are shaded gray and are not editable. The only items that are alterable
are clearly shown in the template. These workable areas, called content areas, originally are defined in the
master page itself. Within the master page, you specify the areas of the page that the content pages can
use. You can have more than one content area in your master page if you want. Figure 8-3 shows the
master page with a couple of content areas shown.

With the release of ASP.NET 2.0, master pages are possible because the .NET Framework 2.0 now sup-
ports partial classes. This is the capability to take two classes and merge them into a single class at run-
time. Using this new capability, the ASP.NET engine takes two page classes and brings them together
into a single page class at runtime.

Figure 8-2

Combined Page
Default.aspx

M C

Master Page
MyMaster.master

Content Page
Default.aspx

M C

252

Chapter 8

11_576100 ch08.qxd 10/6/05 9:22 PM Page 252

Figure 8-3

Companies and organizations will find using master pages ideal, as the technology closely models their
typical business requirements. Many companies have a common look and feel that they apply across
their intranet. They can now provide the divisions of their company with a .master file to use when
creating a department’s section of the intranet. This process makes it quite easy for the company to keep
a consistent look and feel across its entire intranet.

Coding a Master Page
Now look at building the master page shown in Figure 8-3. You can create one in any text-based editor,
such as Notepad or Visual Web Developer Express Edition, or you can use the new Visual Studio 2005.
In this chapter, you see how to use Visual Web Developer.

Master pages are added to your projects in the same way as regular .aspx pages — choose the Master
Page option when you add a new file to your application, as shown in Figure 8-4.

253

Working with Master Pages

11_576100 ch08.qxd 10/6/05 9:22 PM Page 253

Figure 8-4

Because it’s just like any other .aspx page, the Add New Item dialog enables you to choose from a mas-
ter page using the inline coding model or a master page that places its code in a separate file. Not plac-
ing your server code in a separate file means that you use the inline code model for the page you are
creating. This option creates a single .master page. Choosing the option to place your code in a sepa-
rate file means that you use the new code-behind model with the page you are creating. Selecting the
check box Place Code In Separate File creates a single .master page, along with an associated .master
.vb or .master.cs file.

A sample master page that uses the inline-coding model is shown in Listing 8-1.

Listing 8-1: A sample master page

<%@ Master Language=”VB” %>

<script runat=”server”>

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>My Company Master Page</title>
</head>
<body>

<form id=”form1” runat=”server”>
<table cellpadding=”3” border=”1”>

<tr bgcolor=”silver”>
<td colspan=”2”>

<h1>My Company Home Page</h1>
</td>

</tr>
<tr>

254

Chapter 8

11_576100 ch08.qxd 10/6/05 9:22 PM Page 254

<td>
<asp:ContentPlaceHolder ID=”ContentPlaceHolder1”
Runat=”server”>

</asp:ContentPlaceHolder>
</td>
<td>

<asp:ContentPlaceHolder ID=”ContentPlaceHolder2”
Runat=”server”>

</asp:ContentPlaceHolder>
</td>

</tr>
<tr>

<td colspan=”2”>
Copyright 2006 - My Company

</td>
</tr>

</table>
</form>

</body>
</html>

This is a simple master page. The great thing about creating master pages in Visual Studio 2005 is that
you can work with the master page in code view, but you can also switch over to design view to create
your master pages.

Start by reviewing the code for the master page. The first line is the directive:

<%@ Master Language=”VB” %>

Instead of using the Page directive, as you would with a typical .aspx page, you use the Master direc-
tive for a master page. This master page uses only a single attribute, Language. The Language attribute’s
value here is VB, but of course, you could also use C# if you are building a C# master page.

You code the rest of the master page just as you would any other .aspx page. You can use server con-
trols, raw HTML and text, images, events, or anything else you normally would use for any .aspx page.
This means that your master page can have a Page_Load event as well or any other event that you deem
appropriate.

In the code shown in Listing 8-1, notice the use of a new server control — the
<asp:ContentPlaceHolder> control. This control defines the areas of the template where
the content page can place its content:

<tr>
<td>

<asp:ContentPlaceHolder ID=”ContentPlaceHolder1”
Runat=”server”>

</asp:ContentPlaceHolder>
</td>
<td>

<asp:ContentPlaceHolder ID=”ContentPlaceHolder2”
Runat=”server”>

</asp:ContentPlaceHolder>
</td>

</tr>

255

Working with Master Pages

11_576100 ch08.qxd 10/6/05 9:22 PM Page 255

In the case of this master page, two defined areas exist where the content page can place content. Our
master page contains a header and a footer area. It also defines two areas in the page where any inherit-
ing content page can place its own content. Look at how a content page uses this master page.

Coding a Content Page
Now that you have a master page in place in your application, you can use this new template for any
content pages in your application. Right-click the application in the Solution Explorer and choose Add
New Item to create a new content page within your application.

To create a content page or a page that uses this master page as its template, you select a typical Web
Form from the list of options in the Add New Item dialog. Instead of creating a typical Web Form, how-
ever, you check the Select Master Page check box. This gives you the option of associating this Web Form
later to some master page. The Add New Item dialog is shown in Figure 8-5.

Figure 8-5

After you name your content page and click the Add button in the Add New Item dialog, you are pre-
sented with the Select A Master Page dialog, as shown in Figure 8-6.

This dialog allows you to choose the master page from which you want to build your content page. You
choose from the available master pages that are contained within your application. For this example,
select the new master page that you created in Listing 8-1 and click the OK button. This creates the con-
tent page. The created page is a simple .aspx page with only a single line of code contained in the file,
as shown in Listing 8-2.

256

Chapter 8

11_576100 ch08.qxd 10/6/05 9:22 PM Page 256

Listing 8-2: The created content page

<%@ Page Language=”VB” MasterPageFile=”~/Wrox.master” Title=”Untitled Page” %>

Figure 8-6

This content page is not much different from the typical .aspx page you coded in the past. The big
difference is the inclusion of the MasterPageFile attribute within the Page directive. The use of this
attribute indicates that this particular .aspx page inherits from another page. The location of the master
page within the application is specified as the value of the MasterPageFile attribute.

The other big difference is that it contains neither the <form id=”form1” runat=”server”> tag nor
any opening or closing HTML tags that would normally be included in a typical .aspx page.

This content page may seem simple, but if you switch to the design view within Visual Studio 2005, you
see the power of using content pages. What you get with visual inheritance is shown in Figure 8-7.

In this screen shot, you can see that just by using the MasterFilePage attribute in the Page directive,
you are able to visually inherit everything that the Wrox.master file exposes. All the common areas
defined in the master page are shown in gray, whereas the content areas that you specified in the master
page using the <asp:ContentPlaceHolder> server control are shown clearly and available for addi-
tional content in the content page. You can add any content to these defined content areas as if you were
working with a regular .aspx page. An example of using this .master page for a content page is shown
in Listing 8-3.

257

Working with Master Pages

11_576100 ch08.qxd 10/6/05 9:22 PM Page 257

Figure 8-7

Listing 8-3: The content page that uses Wrox.master

VB
<%@ Page Language=”VB” MasterPageFile=”~/Wrox.master” %>

<script runat=”server” language=”vb”>
Protected Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)

Label1.Text = “Hello “ & TextBox1.Text & “!”
End Sub

</script>

<asp:Content ID=”Content1” ContentPlaceHolderId=”ContentPlaceHolder1”
Runat=”server”>

Enter your name:

<asp:Textbox ID=”TextBox1” Runat=”server” />

<asp:Button ID=”Button1” Runat=”server” Text=”Submit”

258

Chapter 8

11_576100 ch08.qxd 10/6/05 9:22 PM Page 258

OnClick=”Button1_Click” />

<asp:Label ID=”Label1” Runat=”server” />

</asp:Content>

<asp:Content ID=”Content2” ContentPlaceHolderId=”ContentPlaceHolder2”
Runat=”server”>

<asp:Image ID=”Image1” Runat=”server” ImageUrl=”wrox.gif” />
</asp:content>

C#
<%@ Page Language=”C#” MasterPageFile=”~/Wrox.master” %>

<script runat=”server” language=”c#”>
protected void Button1_Click(object sender, System.EventArgs e)
{

Label1.Text = “Hello “ + TextBox1.Text + “!”;
}

</script>

Right away you see some differences. As stated before, this page has no <form id=”form1”
runat=”server”> tag nor any opening or closing HTML tags. These tags are not included because they
are located in the master page. Also notice a new server control — the <asp:Content> server control.

<asp:Content ID=”Content1” ContentPlaceHolderId=”ContentPlaceHolder1”
Runat=”server”>

...
</asp:Content>

The <asp:Content> server control is a defined content area that maps to a specific
<asp:ContentPlaceHolder> server control on the master page. In this example, you can see that the
<asp:Content> server control maps itself to the <asp:ContentPlaceHolder> server control in the
master page that has the ID of ContentPlaceHolder1. Within the content page, you don’t have to
worry about specifying the location of the content because this is already defined within the master
page. Therefore, your only concern is to place the appropriate content within the provided content sec-
tions, allowing the master page to do most of the work for you.

Just as when you work with any typical .aspx page, you can create any event handlers for your content
page. In this case, you are using just a single event handler — the button-click when the end user sub-
mits the form. The created .aspx page that includes the master page and content page material is shown
in Figure 8-8.

Mixing Page Types and Languages
One interesting point: When you use master pages, you are not tying yourself to a specific coding model
(inline or code-behind), nor are you tying yourself to the use of a specific language. You can feel free to
mix these elements within your application knowing that they all work well.

259

Working with Master Pages

11_576100 ch08.qxd 10/6/05 9:22 PM Page 259

Figure 8-8

You could use the master page created earlier, knowing that it was created using the inline-coding
model, and then build your content pages using the code-behind model. Listing 8-4 shows a content
page created using a Web Form that uses the code-behind option.

Listing 8-4: A content page that uses that code-behind model

.aspx (VB)
<%@ Page Language=”VB” MasterPageFile=”~/Wrox.master” AutoEventWireup=”false”

CodeFile=”MyContentPage.aspx.vb” Inherits=”MyContentPage” %>

<asp:Content ID=”Content1” ContentPlaceHolderId=”ContentPlaceHolder1”
Runat=”server”>

Enter your name:

<asp:Textbox ID=”TextBox1” Runat=”server” />

<asp:Button ID=”Button1” Runat=”server” Text=”Submit”
OnClick=”Button1_Click” />

<asp:Label ID=”Label1” Runat=”server” />

</asp:Content>

<asp:Content ID=”Content2” ContentPlaceHolderId=”ContentPlaceHolder2”
Runat=”server”>

<asp:Image ID=”Image1” Runat=”server” ImageUrl=”ineta.JPG” />
</asp:Content>

260

Chapter 8

11_576100 ch08.qxd 10/6/05 9:22 PM Page 260

VB Code-Behind
Partial Class MyContentPage

Inherits System.Web.UI.Page

Protected Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Label1.Text = “Hello “ & TextBox1.Text & “!”

End Sub

End Class

C# Code-Behind
public partial class MyContentPage : System.Web.UI.Page
{

protected void Button1_Click (object sender, System.EventArgs e)
{

Label1.Text = “Hello “ + TextBox1.Text + “!”;
}

}

Even though the master page is using the inline-coding model, you can easily create content pages (such
as the page shown in Listing 8-4) that use the code-behind model. The pages will still work perfectly.

Not only can you mix the coding models when using master pages, you can also mix the programming
languages you use for the master or content pages. Just because you build a master page in C# doesn’t
mean that you are required to use C# for all the content pages that use this master page. You can also
build content pages in Visual Basic. For a good example, create a master page in C# that uses the
Page_Load event handler and then create a content page in Visual Basic. Once it’s complete, run the
page. It works perfectly well. This means that even though you might have a master page in one of the
available .NET languages, the programming teams that build applications from the master page can use
whatever .NET language they want. You have to love the openness that the .NET Framework offers!

Specifying Which Master Page to Use
You just observed that it is pretty easy to specify at page level which master page to use. In the Page
directive of the content page, you simply use the MasterPageFile attribute:

<%@ Page Language=”VB” MasterPageFile=”~/Wrox.master” %>

Besides specifying the master page that you want to use at the page level, you have a second way to
specify which master page you want to use in the Web.config file of the application. This is shown in
Listing 8-5.

Listing 8-5: Specifying the master page in the Web.config file

<configuration>
<system.web>

<pages masterPageFile=”~/Wrox.master” />
</system.web>

</configuration>

261

Working with Master Pages

11_576100 ch08.qxd 10/6/05 9:22 PM Page 261

Specifying the master page in the Web.config file causes every single content page you create in
the application to inherit from the specified master page. If you declare your master page in the
Web.config file, you can create any number of content pages that use this master page. Once specified
in this manner, the content page’s Page directive can then be constructed in the following manner:

<%@ Page Language=”VB” %>

You can easily override the application-wide master page specification by simply declaring a different
master page within your content page:

<%@ Page Language=”VB” MasterPageFile=”~/MyOtherCompany.master” %>

By specifying the master page in the Web.config, you are really not saying that you want all the .aspx
pages to use this master page. If you create a normal Web Form and run it, ASP.NET will know that the
page is not a content page and will run the page as a normal .aspx page.

If you want to apply the master page template to only a specific subset of pages (such as pages con-
tained within a specific folder of your application), you can use the <location> element within the
Web.config file, as illustrated in Listing 8-6.

Listing 8-6: Specifying the master page for a specific folder in the Web.config file

<configuration>

<location path=”AdministrationArea”>
<system.web>

<pages masterPageFile=”~/WroxAdmin.master” />
</system.web>

</location>

</configuration>

With the addition of this <location> section in the Web.config file, you have now specified that a spe-
cific folder (AdministrationArea) will use a different master file template. This is done using the path
attribute of the <location> element. The value of the path attribute can be a folder name as shown, or
it can even be a specific page — such as AdminPage.aspx.

Working with the Page Title
When you create content pages in your application, by default all the content pages automatically use
the title that is declared in the master page. For instance, you have primarily been using a master page
with the title My Company Master Page. Every content page that is created using this particular master
page also uses the same My Company Master Page title. You can avoid this by specifying the page’s title
using the Title attribute in the @Page directive in the content page. You can also work with the page
title programmatically in your content pages. To accomplish this, in the code of the content page, you
use the Master object. The Master object conveniently has a property called Title. The value of this
property is the page title that is used for the content page. You code it as shown in Listing 8-7.

262

Chapter 8

11_576100 ch08.qxd 10/6/05 9:22 PM Page 262

Listing 8-7: Coding a custom page title for the content page

VB
<%@ Page Language=”VB” MasterPageFile=”~/Wrox.master” %>

<script runat=”server” language=”vb”>
Protected Sub Page_LoadComplete(ByVal sender As Object, _

ByVal e As System.EventArgs)

Master.Page.Title = “This page was generated on: “ & _
DateTime.Now.ToString()

End Sub
</script>

C#
<%@ Page Language=”C#” MasterPageFile=”~/wrox.master” %>

<script runat=”server”>
protected void Page_LoadComplete(object sender, EventArgs e)
{

Master.Page.Title = “This page was generated on: “ +
DateTime.Now.ToString();

}
</script>

Working with Controls and Properties
from the Master Page

When working with master pages from a content page, you actually have good access to the controls
and the properties that the master page exposes. The master page, when inherited by the content page,
exposes a property called Master. You use this property to get at control values or custom properties
that are contained in the master page itself.

To see an example of this, create a GUID (unique identifier) in the master page that you can retrieve on
the content page that is using the master. For this example, use the master page that was created in
Listing 8-1, but add a Label server control and the Page_Load event (see Listing 8-8).

Listing 8-8: A master page that creates a GUID on the first request

VB
<%@ Master Language=”VB” %>

<script runat=”server”>
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

If Not Page.IsPostBack Then
Label1.Text = System.Guid.NewGuid().ToString()

End If
End Sub

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >

(continued)

263

Working with Master Pages

11_576100 ch08.qxd 10/6/05 9:22 PM Page 263

Listing 8-8: (continued)

<head runat=”server”>
<title>My Company Master Page</title>

</head>
<body>

<form id=”form1” runat=”server”>
<table cellpadding=”3” border=”1”>

<tr bgcolor=”silver”>
<td colspan=”2”>

<h1>My Company Home Page</h1>
User’s GUID:

<asp:Label ID=”Label1” Runat=”server” />
</td>

</tr>
<tr>

<td>
<asp:ContentPlaceHolder ID=”ContentPlaceHolder1”
Runat=”server”>

</asp:ContentPlaceHolder>
</td>
<td>

<asp:ContentPlaceHolder ID=”ContentPlaceHolder2”
Runat=”server”>

</asp:ContentPlaceHolder>
</td>

</tr>
<tr>

<td colspan=”2”>
Copyright 2006 - My Company

</td>
</tr>

</table>
</form>

</body>
</html>

C#
protected void Page_Load(object sender, EventArgs e)
{

if (!Page.IsPostBack)
{

Label1.Text = System.Guid.NewGuid().ToString();
}

}

Now you have a Label control on the master page that you can access from the content page. You have a
couple of ways to accomplish this task. The first is to use the FindControl method that the master page
exposes. This approach is shown in Listing 8-9.

264

Chapter 8

11_576100 ch08.qxd 10/6/05 9:22 PM Page 264

Listing 8-9: Getting at the Label’s Text value in the content page

VB
<%@ Page Language=”VB” MasterPageFile=”~/Wrox.master” %>

<script runat=”server” language=”vb”>
Protected Sub Page_LoadComplete(ByVal sender As Object, _

ByVal e As System.EventArgs)

Label1.Text = CType(Master.FindControl(“Label1”), Label).Text
End Sub

Protected Sub Button1_Click(ByVal sender As Object, _
ByVal e As System.EventArgs)

Label2.Text = “Hello “ & TextBox1.Text & “!”
End Sub

</script>

<asp:Content ID=”Content1” ContentPlaceHolderId=”ContentPlaceHolder1”
Runat=”server”>

Your GUID number from the master page is:

<asp:Label ID=”Label1” Runat=”server” /><p>
Enter your name:

<asp:Textbox ID=”TextBox1” Runat=”server” />

<asp:Button ID=”Button1” Runat=”server” Text=”Submit”
OnClick=”Button1_Click” />

<asp:Label ID=”Label2” Runat=”server” />

</asp:content>

<asp:Content ID=”Content2” ContentPlaceHolderId=”ContentPlaceHolder2”
Runat=”server”>

<asp:Image ID=”Image1” Runat=”server” ImageUrl=”Wrox.gif” />
</asp:Content>

C#
<%@ Page Language=”C#” MasterPageFile=”~/wrox.master” %>

<script runat=”server”>

protected void Page_LoadComplete(object sender, EventArgs e)
{

Label1.Text = (Master.FindControl(“Label1”) as Label).Text;
}

protected void Button1_Click(object sender, EventArgs e)
{

Label2.Text = “Hello “ + TextBox1.Text + “!”;
}

</script>

265

Working with Master Pages

11_576100 ch08.qxd 10/6/05 9:22 PM Page 265

In this example, the master page in Listing 8-8 first creates a GUID that it stores as a text value in a Label
server control on the master page itself. The ID of this Label control is Label1. The master page gener-
ates this GUID only on the first request for this particular content page. From here, you then populate
one of the content page’s controls with this value.

The interesting thing about the content page is that you put code in the Page_LoadComplete event han-
dler so that you can get at the GUID value that is on the master page. This new event in ASP.NET 2.0
fires immediately after the Page_Load event fires. Event ordering is covered later, but the Page_Load
event in the content page always fires before the Page_Load event in the master page. In order to get at
the newly created GUID (if it is created in the master page’s Page_Load event), you have to get the
GUID in an event that comes after the Page_Load event — and that is where the Page_LoadComplete
comes into play. So within the content page’s Page_LoadComplete event, you populate a Label server
control within the content page itself. Note that the Label control in the content page has the same ID as
the Label control in the master page, but this doesn’t make a difference. You can differentiate between
them with the use of the Master property.

Not only can you get at the server controls that are in the master page in this way, you can get at any
custom properties that the master page might expose as well. Look at the master page shown in Listing
8-10; it uses a custom property for the <h1> section of the page.

Listing 8-10: A master page that exposes a custom property

VB
<%@ Master Language=”VB” %>

<script runat=”server”>
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

If Not Page.IsPostBack Then
Label1.Text = Guid.NewGuid().ToString()

End If
End Sub

Dim m_PageHeadingTitle As String = “My Company”

Public Property PageHeadingTitle() As String
Get

Return m_PageHeadingTitle
End Get
Set(ByVal Value As String)

m_PageHeadingTitle = Value
End Set

End Property
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head id=”Head1” runat=”server”>

<title>My Company Master Page</title>
</head>
<body>

<form id=”Form1” runat=”server”>
<table cellpadding=”3” border=”1”>

<tr bgcolor=”silver”>
<td colspan=”2”>

266

Chapter 8

11_576100 ch08.qxd 10/6/05 9:22 PM Page 266

<h1><%= PageHeadingTitle() %></h1>
User’s GUID:

<asp:Label ID=”Label1” Runat=”server” />
</td>

</tr>
<tr>

<td>
<asp:ContentPlaceHolder ID=”ContentPlaceHolder1”
Runat=”server”>

</asp:ContentPlaceHolder>
</td>
<td>

<asp:ContentPlaceHolder ID=”ContentPlaceHolder2”
Runat=”server”>

</asp:ContentPlaceHolder>
</td>

</tr>
<tr>

<td colspan=”2”>
Copyright 2004 - My Company

</td>
</tr>

</table>
</form>

</body>
</html>

C#
<%@ Master Language=”C#” %>

<script runat=”server”>
protected void Page_Load(object sender, EventArgs e)
{

if (!Page.IsPostBack)
{

Label1.Text = System.Guid.NewGuid().ToString();
}

}

string m_PageHeadingTitle = “My Company”;

public string PageHeadingTitle
{

get
{

return m_PageHeadingTitle;
}
set
{

m_PageHeadingTitle = value;
}

}
</script>

267

Working with Master Pages

11_576100 ch08.qxd 10/6/05 9:22 PM Page 267

In this master page example, the master page is exposing the property you created called
PageHeadingTitle(). A default value of “My Company” is assigned to this property. You then place it
within the HTML of the master page file between some <h1> elements. This makes the default value
become the heading used on the page within the master page template. Although the master page
already has a value it uses for the heading, any content page that is using this master page can override
the <h1> title heading. The process is shown in Listing 8-11.

Listing 8-11: A content page that overrides the property from the master page

VB
<%@ Page Language=”VB” MasterPageFile=”~/Wrox.master” %>
<%@ MasterType VirtualPath=”~/Wrox.master” %>

<script runat=”server” language=”vb”>
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Master.PageHeadingTitle = “My Company – Division X”
End Sub

</script>

C#
<%@ Page Language=”C#” MasterPageFile=”~/Wrox.master” %>
<%@ MasterType VirtualPath=”~/Wrox.master” %>

<script runat=”server”>
protected void Page_Load(object sender, EventArgs e)
{

Master.PageHeadingTitle = “My Company – Division X”;
}

</script>

From the content page, you can assign a value to the property that is exposed from the master page by
the use of the Master property. As you can see, this is quite simple to do. Remember that not only can
you get at any public properties that the master page might expose, but you can also retrieve any meth-
ods that the master page contains as well.

Earlier, we showed you how to get at the server controls that are on the master page by using the
FindControl method. The FindControl method works fine, but it is a late-bound approach, and as
such, the method call may fail if the control was removed from markup. Use defensive coding practices
and always check for null when returning objects from FindControl. Using the mechanics just illus-
trated (with the use of public properties shown in Listing 8-10), you have another approach to expose
any server controls on the master page. You may find this approach to be more effective.

To do this, you simply expose the server control as a public property as shown in Listing 8-12.

Listing 8-12: Exposing a server control from a master page as a public property

VB
<%@ Master Language=”VB” %>

<script runat=”server” language=”vb”>
Public Property MasterPageLabel1() As Label

Get

268

Chapter 8

11_576100 ch08.qxd 10/6/05 9:22 PM Page 268

Return Label1
End Get
Set(ByVal Value As Label)

Label1 = Value
End Set

End Property
</script>

C#
<%@ Master Language=”VB” %>

<script runat=”server” language=”C#”>
public Label MasterPageLabel
{

get
{

return Label1;
}
set
{

Label1 = value;
}

}
</script>

In this case, a public property called MasterPageLabel1 returns an instance of the Label control that
uses the ID of Label1. You can now create an instance of the MasterPageLabel1 property on the con-
tent page and override any of the attributes of the Label server control. So if you want to increase the
size of the GUID that the master page creates and displays in the Label1 server control, you can simply
override the Font.Size attribute of the Label control as shown in Listing 8-13.

Listing 8-13: Overriding an attribute from the Label control that is on the master page

VB
<%@ Page Language=”VB” MasterPageFile=”~/Wrox.master” %>
<%@ MasterType VirtualPath=”~/Wrox.master” %>

<script runat=”server” language=”vb”>
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Master.MasterPageLabel1.Font.Size = 25
End Sub

</script>

C#
<%@ Page Language=”C#” MasterPageFile=”~/Wrox.master” %>
<%@ MasterType VirtualPath=”~/Wrox.master” %>

<script runat=”server” language=”C#”>
protected void Page_Load(object sender, EventArgs e)
{

Master.MasterPageLabel1.Font.Size = 25;
}

</script>

269

Working with Master Pages

11_576100 ch08.qxd 10/6/05 9:22 PM Page 269

This approach may be the most effective way to get at any server controls that the master page exposes
to the content pages.

Specifying Default Content
in the Master Page

As you have seen, the master page enables you to specify content areas that the content page can use.
Master pages can consist of just one content area, or they can be made up of multiple content areas. The
nice thing about content areas is that when you create a master page, you can specify default content for
the content area. This default content can then be left in place and utilized by the content page if you
choose not to override it. Listing 8-14 shows a master page that specifies some default content within a
content area.

Listing 8-14: Specifying default content in the master page

<%@ Master Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>My Company</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:ContentPlaceHolder ID=”ContentPlaceHolder1” Runat=”server”>
Here is some default content
</asp:ContentPlaceHolder><p>
<asp:ContentPlaceHolder ID=”ContentPlaceHolder2” Runat=”server”>
Here is some more default content
</asp:ContentPlaceHolder></p>

</form>
</body>
</html>

To place default content within one of the content areas of the master page, you simply put it in the
ContentPlaceHolder server control on the master page itself. Any content page that inherits this master
page also inherits the default content. Listing 8-15 shows a content page that overrides just one of the
content areas from this master page.

Listing 8-15: Overriding some default content in the content page

<%@ Page Language=”VB” MasterPageFile=”~/MasterPage.master” %>

<asp:Content ID=”Content2” ContentPlaceHolderId=”ContentPlaceHolder2”
Runat=”server”>

This is new content
</asp:Content>

This code creates a page with one content area that shows content coming from the master page itself, in
addition to other content that comes from the content page (see Figure 8-9).

270

Chapter 8

11_576100 ch08.qxd 10/6/05 9:22 PM Page 270

Figure 8-9

The other interesting point when you work with content areas in the design mode of Visual Studio 2005
is that the smart tag allows you to work easily with the default content (shown in Figure 8-10).

When you first start working with the content page, the option in the smart tag is to create new content.
This option enables you to override the master page content and insert your own defined content. After
you have placed some custom content inside the content area, the smart tag shows a different option —
Default to Master’s Content. This option enables you to return the default content that the master page
exposes to the content area and to erase whatever content you have already placed in the content area —
thereby simply returning to the default content.

Figure 8-10
271

Working with Master Pages

11_576100 ch08.qxd 10/6/05 9:22 PM Page 271

Programmatically Assigning
the Master Page

From any content page, you can easily assign a master page programmatically. You assign the master
page to the content page through the use of the Page.MasterPageFile property. This can be used
regardless of whether another master page is already assigned in the @Page directive.

To accomplish this, you use this property through the Page_PreInit event. The Page_PreInit event is
the earliest point in which you can access the Page lifecycle. For this reason, this is where you need to
assign any master page that is used by any content pages. The Page_PreInit is an important event to
make note of when you are working with master pages, as this is the only point where you can affect
both the master and content page before they are combined into a single instance. Listing 8-16 illustrates
how to assign the master page programmatically from the content page.

Listing 8-16: Using Page_PreInit to assign the master page programmatically

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Protected Sub Page_PreInit(ByVal sender As Object, ByVal e As System.EventArgs)

Page.MasterPageFile = “~/MyMasterPage.master”
End Sub

</script>

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
protected void Page_PreInit(object sender, EventArgs e)
{

Page.MasterPageFile = “~/MyMasterPage.master”;
}

</script>

In this case, when the page is dynamically being generated, the master page is assigned to the content
page in the beginning of the page construction process. It is important to note that the content page must
have the expected Content controls; otherwise an error is thrown.

Nesting Master Pages
I hope you see the power that master pages provide to help you create templated Web applications. So
far, you have been creating a single master page that the content page can use. Most companies and
organizations, however, are not just two layers. Many divisions and groups exist within the organization
that might want to use variations of the master by, in effect, having a master page within a master page.
With ASP.NET 2.0, this is quite possible.

272

Chapter 8

11_576100 ch08.qxd 10/6/05 9:22 PM Page 272

For example, imagine that Reuters is creating a master page to be used throughout the entire company
intranet. Not only does the Reuters enterprise want to implement this master page company-wide, but
various divisions within Reuters also want to provide templates for the subsections of the intranet
directly under their control. Reuters Europe and Reuters America, for example, each wants its own
unique master page, as illustrated in Figure 8-11.

Figure 8-11

Reuters America
ReutersAmerica.master

Reuters Europe
ReutersEurope.master

RA RE

Content Page
Default.aspx

RAC1

Content Page
Default2.aspx

RAC2

Content Page
Default.aspx

REC1

Content Page
Default2.aspx

REC2

Master Page
Reuters.master

R

273

Working with Master Pages

11_576100 ch08.qxd 10/6/05 9:22 PM Page 273

To do this, the creators of the Reuters Europe and Reuters America master pages simply create a master
page that inherits from the global master page. All the files are shown here, starting with Listing 8-17.

Listing 8-17: The main master page

ReutersMain.master
<%@ Master Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Reuters</title>
</head>
<body>

<form id=”form1” runat=”server”>
<p><asp:Label ID=”Label1” Runat=”server” BackColor=”LightGray”

BorderColor=”Black” BorderWidth=”1px” BorderStyle=”Solid”
Font-Size=”XX-Large”>Reuters</asp:Label></p>

<asp:ContentPlaceHolder ID=”ContentPlaceHolder1” Runat=”server”>
</asp:ContentPlaceHolder>

</form>
</body>
</html>

This is a simple master page, but excellent for showing you how this nesting capability works. The main
master page is the master page used globally in the company. It has the ContentPlaceHolder server con-
trol with the ID of ContentPlaceHolder1.

Listing 8-18 illustrates how you can work with this main master from a sub-master file.

Listing 8-18: The sub-master page

ReutersEurope.master
<%@ Master MasterPageFile=”~/ReutersMain.master” %>

<asp:Content ID=”Content1” ContentPlaceHolderId=”ContentPlaceHolder1”
Runat=”server”>

<asp:Label ID=”Label1” Runat=”server” BackColor=”#E0E0E0” BorderColor=”Black”
BorderStyle=”Dotted” BorderWidth=”2px” Font-Size=”Large”>
Reuters Europe</asp:Label>
<hr />

<asp:ContentPlaceHolder ID=”ContentPlaceHolder2” Runat=”server”>
</asp:ContentPlaceHolder>

</asp:Content>

When creating the submaster page, notice that Visual Studio 2005 isn’t as friendly when it creates this file
for you. This is because Visual Studio 2005 is not expecting the creation of a submaster page. Therefore, to
create your submaster page, first create a normal master page and remove all the content in the file except
for the directive line. Then you create a Content server control.

The objects that you place in the content area defined with this Content control are actually placed in the
defined content area within the master page. You can see this by using the ContentPlaceHolderId

274

Chapter 8

11_576100 ch08.qxd 10/6/05 9:22 PM Page 274

attribute of the Content control. This attribute is tying this content area to the content area
ContentPlaceHolder1, which is defined in the master page.

Within this submaster page, you can also now use as many ContentPlaceHolder server controls as you
want. Any content page that uses this master can use these controls. Listing 8-19 shows a content page
that uses this submaster page, ReutersEurope.master.

Listing 8-19: The content page

Default.aspx
<%@ Page Language=”VB” MasterPageFile=”~/ReutersEurope.master” %>

<asp:Content ID=”Content1” ContentPlaceHolderId=”ContentPlaceHolder2”
Runat=”server”>

Hello World
</asp:Content>

As you can see, in this content page the value of the MasterPageFile attribute in the Page directive is
the sub-master page that you created. Inheriting the ReutersEurope master page actually combines
both master pages (ReutersMain.master and ReutersEurope.master) into a single master page. The
Content control in this content page points to the content area defined in the submaster page as well.
You can see this with the use of the ContentPlaceHolderId attribute. In the end, you get a very non-
artistic page, as shown in Figure 8-12.

Figure 8-12

Creating a content page that uses a submaster page works pretty well. One negative point is that Visual
Studio 2005 has issues with this construct, and you cannot work in the design mode when creating your
content page.

275

Working with Master Pages

11_576100 ch08.qxd 10/6/05 9:22 PM Page 275

Container-Specific Master Pages
In many cases, developers are building applications that will be viewed in a multitude of different con-
tainers. Some viewers may view the application in Microsoft Internet Explorer and some might view it
using Opera or Netscape Navigator. And still other viewers may call up the application on a Pocket PC
or Nokia cell phone.

For this reason, ASP.NET 2.0 allows you to use multiple master pages within your content page.
Depending on the viewing container used by the end user, the ASP.NET engine pulls the appropriate
master file. Therefore, you want to build container-specific master pages to provide your end users with
the best possible viewing experience by taking advantage of the features that a specific container pro-
vides. The capability to use multiple master pages is demonstrated in Listing 8-20.

Listing 8-20: A content page that can work with more than one master page

<%@ Page Language=”VB” MasterPageFile=”~/Wrox.master”
Mozilla:MasterPageFile=”~/WroxMozilla.master”
Opera:MasterPageFile=”~/WroxOpera.master” %>

<asp:Content ID=”Content1” ContentPlaceHolderId=”ContentPlaceHolder1”
Runat=”server”>

Hello World
</asp:Content>

As you can see from this example content page, it can work with three different master page files. The
first one uses the attribute MasterPageFile. This is the default setting used for any page that doesn’t fit
the criteria for any of the other options. This means that if the requestor is not a Mozilla or Opera
browser, the default master page, Wrox.master, is used. However, if the requestor is an Opera browser,
WroxOpera.master is used instead. This is illustrated in Figure 8-13.

Figure 8-13

You can find a list of available browsers on the production server where the application will be hosted at
C:\Windows\Microsoft.NET\Framework\v2.0xxxxx\CONFIG\Browsers. Some of the available
options include the following:

276

Chapter 8

11_576100 ch08.qxd 10/6/05 9:22 PM Page 276

Of course, you can also add any additional .browser files that you deem necessary.

Event Ordering
When you work with master pages and content pages, both can use the same events (such as Page_Load).
Be sure you know which events come before others. You are bringing two classes together to create a sin-
gle page class, and a specific order is required. When an end user requests a content page in the browser,
the event ordering is the following:

❑ Master page child controls initialization: All server controls contained within the master page
are first initialized.

❑ Content page child controls initialization: All server controls contained in the content page are
initialized.

❑ Master page initialization: The master page itself is initialized.

❑ Content page initialization: The content page is initialized.

❑ Content page load: The content page is loaded (this is the Page_Load event followed by the
Page_LoadComplete event).

❑ Master page load: The master page is loaded (this is also the Page_Load event followed by the
Page_LoadComplete event).

❑ Master page child controls load: The server controls on the master page are loaded onto
the page.

❑ Content page child controls load: The server controls on the content page are loaded onto
the page.

277

Working with Master Pages

❑ avantgo

❑ cassio

❑ Default

❑ docomo

❑ ericsson

❑ EZWap

❑ gateway

❑ generic

❑ goAmerica

❑ ie

❑ Jataayu

❑ jphone

❑ legend

❑ MME

❑ mozilla

❑ netscape

❑ nokia

❑ openwave

❑ opera

❑ palm

❑ panasonic

❑ pie

❑ webtv

❑ winwap

❑ xiino

11_576100 ch08.qxd 10/6/05 9:22 PM Page 277

Pay attention to this event ordering when building your applications. If you want to use server control
values that are contained on the master page within a specific content page, for example, you can’t
retrieve the values of these server controls from within the content page’s Page_Load event. This is
because this event is triggered before the master page’s Page_Load event. This problem prompted the
creation of the new Page_LoadComplete event. The content page’s Page_LoadComplete event follows
the master page’s Page_Load event. You can, therefore, use this ordering to get at values from the mas-
ter page even though it isn’t populated when the content page’s Page_Load event is triggered.

Caching with Master Pages
When working with typical .aspx pages, you can apply output caching to the page by using the follow-
ing construct (or variation thereof):

<%@ OutputCache Duration=”10” Varybyparam=”None” %>

This caches the page in the server’s memory for 10 seconds. Many developers use output caching to
increase the performance of their ASP.NET pages. It also makes a lot of sense for use on pages with data
that doesn’t become stale too quickly.

How do you go about applying output caching to ASP.NET pages when working with master pages?
First, you cannot apply caching to just the master page. You cannot put the OutputCache directive on
the master page itself. If you do so, on the page’s second retrieval, you get an error because the applica-
tion cannot find the cached page.

To work with output caching when using a master page, stick the OutputCache directive in the content
page. This caches both the contents of the content page as well as the contents of the master page
(remember, it is just a single page at this point). The OutputCache directive placed in the master page
does not cause the master page to produce an error, but it won’t be cached. This directive works in the
content page only.

Summary
When you create applications that use a common header, footer, or navigation section on pretty much
every page of the application, master pages are a great solution. Master pages are easy to implement and
enable you to make changes to each and every page of your application by changing a single file.
Imagine how much easier this makes managing large applications that contain thousands of pages.

This chapter described master pages in ASP.NET 2.0 and explained how you build and use master pages
within your Web applications. In addition to the basics, the chapter covered master page event ordering,
caching, and specific master pages for specific containers. In the end, when you are working with tem-
plated applications, master pages should be your first option — the power of this approach is immense.

278

Chapter 8

11_576100 ch08.qxd 10/6/05 9:22 PM Page 278

Themes and Skins

When you build a Web application, it usually has a similar look-and-feel across all its pages.
Not too many applications are designed with each page dramatically different from the next.
Generally, for your applications, you use similar fonts, colors, and server control styles across
all the pages.

You can apply these common styles individually to each and every server control or object on each
page, or you can use a new capability provided by ASP.NET 2.0 to centrally specify these styles.
All pages or parts of pages in the application can then access them.

Themes are the text-based style definitions in ASP.NET 2.0 that are the focus of this chapter.

Using ASP.NET 2.0 Themes
Themes are similar to Cascading Style Sheets (CSS) in that they enable you to define visual styles
for your Web pages. Themes go further than CSS, however, in that they allow you to apply styles,
graphics, and even CSS files themselves to the pages of your applications. You can apply ASP.NET
themes at the application, page, or server control level.

Applying a Theme to a Single ASP.NET Page
In order to see how to use one of these themes, create a basic page, which includes some text, a
text box, a button, and a calendar. This is shown in Listing 9-1.

12_576100 ch09.qxd 10/6/05 9:23 PM Page 279

Listing 9-1: An ASP.NET page that does not use themes

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>INETA</title>
</head>
<body>

<form id=”form1” runat=”server”>
<h1>International .NET Association (INETA)</h1>

<asp:Textbox ID=”TextBox1” Runat=”server” />

<asp:Calendar ID=”Calendar1” Runat=”server” />

<asp:Button ID=”Button1” Runat=”server” Text=”Button” />

</form>
</body>
</html>

This simple page shows some default server controls that appear just as you would expect, but that you
can change with one of these new ASP.NET themes. When this theme-less page is called in the browser,
it should look like Figure 9-1.

Figure 9-1

You can instantly change the appearance of this page without changing the style of each server control
on the page. From within the Page directive, you simply apply an ASP.NET theme that you have either
built (shown later in this chapter) or downloaded from the Internet:

<%@ Page Language=”VB” Theme=”SmokeAndGlass” %>

280

Chapter 9

12_576100 ch09.qxd 10/6/05 9:23 PM Page 280

Adding the Theme attribute to the Page directive changes the appearance of everything on the page that
is defined in an example SmokeAndGlass theme file. Using this theme, when I invoked the page in the
browser, I got the result shown in Figure 9-2.

Figure 9-2

From here, you can see that everything — including the font, font color, text box, button, and more — has
changed appearance. If you have multiple pages, you may find that it’s nice not to have to think about
applying styles to everything you do as you build because the styles are already centrally defined for you.

Applying a Theme to an Entire Application
In addition to applying an ASP.NET 2.0 theme to your ASP.NET pages using the Theme attribute within
the Page directive, you can also apply it at an application level from the Web.config file. This is illus-
trated in Listing 9-2.

Listing 9-2: Applying a theme application-wide from the Web.config file

<?xml version=”1.0” encoding=”UTF-8” ?>

<configuration>
<system.web>

<pages theme=”SmokeAndGlass” />
</system.web>

</configuration>

If you specify the theme in the Web.config file, you don’t need to define the theme again in the Page
directive of your ASP.NET pages. This theme is applied automatically to each and every page within
your application.

281

Themes and Skins

12_576100 ch09.qxd 10/6/05 9:23 PM Page 281

Removing Themes from Server Controls
Whether themes are set at the application level or on a page, at times you want an alternative to the
theme that has been defined. For example, change the text box server control that you have been work-
ing with (from Listing 9-1) by making its background black and using white text:

<asp:Textbox ID=”TextBox1” Runat=”server”
BackColor=”#000000” ForeColor=”#ffffff” />

The black background color and the color of the text in the text box are specified directly in the control
itself with the use of the BackColor and ForeColor attributes. If you have applied a theme to the page
where this text box control is located, however, you won’t see this black background or white text
because these changes are overridden by the theme itself.

To apply a theme to your ASP.NET page but not to this text box control, you simply use the
EnableTheming property of the text box server control:

<asp:Textbox ID=”TextBox1” Runat=”server”
BackColor=”#000000” ForeColor=”#ffffff” EnableTheming=”false” />

If you apply this property to the text box server control from Listing 9-1 while the SmokeAndGlass
theme is still applied to the entire page, the theme is applied to every control on the page except the text
box. This result is shown in Figure 9-3.

Figure 9-3

If you want to turn off theming for multiple controls within a page, consider using the Panel control to
encapsulate a collection of controls and then set the EnableTheming attribute of the Panel control to
False. This disables theming for each control contained within the Panel control.

282

Chapter 9

12_576100 ch09.qxd 10/6/05 9:23 PM Page 282

Removing Themes from Web Pages
Now what if, when you set the theme for an entire application in the Web.config file, you want to
exclude a single ASP.NET page? It is quite possible to remove a theme setting at the page level, just as
it is at the server control level.

The Page directive includes an EnableTheming attribute that can be used to remove theming from your
ASP.NET pages. To remove the theme that would be applied by the theme setting in the Web.config,
you simply construct your Page directive in the following manner:

<%@ Page Language=”VB” EnableTheming=”False” %>

This construct sets the theme to nothing — thereby removing any settings that were specified in the
Web.config file. When this directive is set to False at the page or control level, the Theme directory
is not searched, and no .skin files are applied. When it is set to True at the page or control level, the
Theme directory is searched and .skin files are applied.

If themes are disabled because the EnableTheming attribute is set to False at the page level, you can
still enable theming for specific controls on this page by setting the EnableTheming property for the
control to True and applying a specific theme at the same time, as illustrated here:

<asp:Textbox ID=”TextBox1” Runat=”server”
BackColor=”#000000” ForeColor=”#ffffff” EnableTheming=”true” Theme=”Summer” />

Understanding the StyleSheetTheme Attribute
The Page directive also includes the attribute StylesheetTheme that you can use to apply themes to a
page. So, the big question is: If you have a Theme attribute and a StylesheetTheme attribute for the
Page directive, what is the difference between the two?

<%@ Page Language=”VB” StylesheetTheme=”Summer” %>

The StylesheetTheme attribute works the same as the Theme attribute in that it can be used to apply a
theme to a page. The difference is that the when attributes are set locally on the page within a particular
control, the attributes are overridden by the theme if you use the Theme attribute. They are kept in place,
however, if you apply the page’s theme using the StylesheetTheme attribute. Suppose you have a text
box control like the following:

<asp:Textbox ID=”TextBox1” Runat=”server”
BackColor=”#000000” ForeColor=”#ffffff” />

In this example, the BackColor and ForeColor settings are overridden by the theme if you have
applied it using the Theme attribute in the Page directive. If, instead, you applied the theme using the
StylesheetTheme attribute in the Page directive, the BackColor and ForeColor settings remain in
place, even if they are explicitly defined in the theme.

283

Themes and Skins

12_576100 ch09.qxd 10/6/05 9:23 PM Page 283

Creating Your Own Themes
You will find that creating themes in ASP.NET is a rather simple process — although sometimes it does
require some artistic capabilities. The themes you create can be applied at the application, page, or
server control level. Themes are a great way to easily apply a consistent look-and-feel across your entire
application.

Creating the proper folder structure
In order to create your own themes for an application, you first need to create the proper folder structure in
your application. To do this, right-click your project and add a new folder. Name the folder App_Themes.
You can also create this folder by right-clicking on your project in Visual Studio and selecting Add Folder ➪

Theme Folder. Notice when you do this that the App_Themes folder does not have the typical folder icon
next to it, but instead has a folder icon that includes a paint brush. This is shown in Figure 9-4.

Figure 9-4

Within the App_Themes folder, you create an additional theme folder for each and every theme that you
might use in your application. For instance, if you are going to have four themes — Summer, Fall, Winter,
and Spring — then you create four folders that are named appropriately.

You might use more than one theme in your application for many reasons — season changes, day/night
changes, different business units, category of user, or even user preferences.

Each theme folder must contain the elements of the theme, which can include the following:

❑ A single skin file

❑ CSS files

❑ Images

284

Chapter 9

12_576100 ch09.qxd 10/6/05 9:23 PM Page 284

Creating a Skin
A skin is a definition of styles applied to the server controls in your ASP.NET page. Skins can work in
conjunction with CSS files or images. To create a theme to use in your ASP.NET applications, you use
just a single skin file in the theme folder. The skin file can have any name, but it must have a .skin file
extension.

Even though you have four theme folders in your application, concentrate on the creation of the Summer
theme for the purposes of this chapter. Right-click the Summer folder, select Add New Item, and select
Skin File from the listed options. Name the file Summer.skin. Then complete the skin file as shown in
Listing 9-3.

Listing 9-3: The Summer.skin file

<asp:Label Runat=”server” ForeColor=”#004000” Font-Names=”Verdana”
Font-Size=”X-Small” />

<asp:Textbox Runat=”server” ForeColor=”#004000” Font-Names=”Verdana”
Font-Size=”X-Small” BorderStyle=”Solid” BorderWidth=”1px”
BorderColor=”#004000” Font-Bold=”True” />

<asp:Button Runat=”server” ForeColor=”#004000” Font-Names=”Verdana”
Font-Size=”X-Small” BorderStyle=”Solid” BorderWidth=”1px”
BorderColor=”#004000” Font-Bold=”True” BackColor=”#FFE0C0” />

This is just a sampling of what the Summer.skin file should contain. To use it in a real application, you
should actually make a definition for each and every server control option. In this case, you have a defi-
nition in place for three different types of server controls: Label, TextBox, and Button. After saving the
Summer.skin file in the Summer folder, your file structure should resemble Figure 9-5 from the Solution
Explorer of Visual Studio 2005.

Figure 9-5

285

Themes and Skins

12_576100 ch09.qxd 10/6/05 9:23 PM Page 285

Just like the regular server control definitions that you put on a typical .aspx page, these control defini-
tions must contain the Runat=”server” attribute. If you specify this attribute in the skinned version of
the control, you also include it in the server control you put on an .aspx page that uses this theme. Also
notice is that no ID attribute is specified in the skinned version of the control. If you specify an ID
attribute here, you get an error when a page tries to use this theme.

As you can see, you supply a lot of different visual definitions to these three controls, and this should
give the page a summery look and feel. An ASP.NET page in this project can simply use this custom
theme as was shown earlier in this chapter (see Listing 9-4).

Listing 9-4: Using the Summer theme in an ASP.NET page

VB
<%@ Page Language=”VB” Theme=”Summer” %>

<script runat=”server”>
Protected Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)

Label1.Text = “Hello “ & Textbox1.Text
End Sub

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>INETA</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:Textbox ID=”TextBox1” Runat=”server”>
</asp:Textbox>

<asp:Button ID=”Button1” Runat=”server” Text=”Submit Your Name”
OnClick=”Button1_Click” />

<asp:Label ID=”Label1” Runat=”server” />

</form>
</body>
</html>

C#
<%@ Page Language=”C#” Theme=”Summer” %>

<script runat=”server”>
protected void Button1_Click(object sender, System.EventArgs e)
{

Label1.Text = “Hello “ + TextBox1.Text.ToString();
}

</script>

286

Chapter 9

12_576100 ch09.qxd 10/6/05 9:23 PM Page 286

Looking at the server controls on this .aspx page, you can see that no styles are associated with them.
These are just the default server controls that you drag and drop onto the design surface of Visual Studio
2005. There is, however, the style that you defined in the Summer.skin file, as shown in Figure 9-6.

Figure 9-6

Including CSS Files in Your Themes
In addition to the server control definitions that you create from within a .skin file, you can make fur-
ther definitions using Cascading Style Sheets (CSS). You might have noticed, when using a .skin file,
that you could define only the styles associated with server controls and nothing else. But developers
usually use quite a bit more than server controls in their ASP.NET pages. For instance, ASP.NET pages
are routinely made up of HTML server controls, raw HTML, or even raw text. At present, the Summer
theme has only a Summer.skin file associated with it. Any other items have no style whatsoever applied
to them.

For a theme that goes beyond the server controls, you must further define the theme style so that HTML
server controls, HTML, and raw text are all changed according to the theme. You achieve this with a CSS
file within your Themes folder.

It is rather easy to create CSS files for your themes when using Visual Studio 2005. Right-click the
Summer theme folder and select Add New Item. In the list of options, select the option Style Sheet and
name it Summer.css. The Summer.css file should be sitting right next to your Summer.skin file. This
creates an empty .css file for your theme. I won’t go into the details of how to make a CSS file using
Visual Studio 2005 and the CSS creation tool because this was covered earlier in the book. The process is
the same as in previous versions of Visual Studio. Just remember that the dialog that comes with Visual
Studio 2005 enables you to completely define your CSS page with no need to actually code anything. A
sample dialog is shown in Figure 9-7.

287

Themes and Skins

12_576100 ch09.qxd 10/6/05 9:23 PM Page 287

Figure 9-7

To create a comprehensive theme with this dialog, you define each HTML element that might appear in
the ASP.NET page. This can be a lot of work, but it’s worth it in the end. For now, create a small CSS file
that changes some of the non-server control items on your ASP.NET page. This CSS file is shown in
Listing 9-5.

Listing 9-5: A CSS file with some definitions

body
{
font-size: x-small;
font-family: Verdana;
color: #004000;

}

A:link {
color: Blue;
text-decoration: none;

}

A:visited
{
color: Blue;

288

Chapter 9

12_576100 ch09.qxd 10/6/05 9:23 PM Page 288

text-decoration: none;
}

A:hover {
COLOR: Red;
text-decoration: underline overline;

}

In this CSS file, four things are defined. First, you define text that is found within the <body> tag of the
page (basically all the text). Plenty of text appears in a typical ASP.NET page that is not placed inside an
<asp:Label> or <asp:Literal> tag. Therefore, you define how your text should appear; otherwise,
your Web page may appear quite odd at times. In this case, a definition is in place for the size, the font
family, and the color of the text. You make this definition the same as the one for the <asp:Label>
server control in the Summer.skin file.

The next three definitions in this CSS file revolve around the <a> element (for hyperlinks). One cool
feature that many Web pages use is responsive hyperlinks — or hyperlinks that change when you hover
a mouse over them. The A:link definition defines what a typical link looks like on the page. The
A:visited definition defines the look of the link if the end user has clicked on the link previously
(without this definition, it is typically purple in IE). Then the A:hover definition defines the appearance
of the hyperlink when the end user hovers the mouse over the link. You can see that not only are these
three definitions changing the color of the hyperlink, but they are also changing how the underline is
used. In fact, when the end user hovers the mouse over a hyperlink on a page using this CSS file, an
underline and an overline appear on the link itself.

In CSS files, the order in which the style definitions appear in the .css file is important. This is an inter-
preted file — the first definition in the CSS file is applied first to the page, next the second definition is
applied, and so forth. Some styles might change previous styles, so make sure your style definitions are
in the proper order. For instance, if you put the A:hover style definition first, you would never see it.
The A:link and A:visited definitions would supersede it because they are defined after it.

In working with your themes that include .css files, you must understand what they can and cannot do
for you. For instance, examine an .aspx file that contains two text boxes — one text box created using a
server control and another text box created using a typical <input> HTML element:

<asp:Textbox ID=”TextBox1” Runat=”server” />
<input type=”text” />

Suppose you have a definition for the TextBox server control in the .skin file:

<asp:Textbox Runat=”server” ForeColor=”#004000” Font-Names=”Verdana”
BackColor=”#ffffff” Font-Size=”X-Small” BorderStyle=”Solid” BorderWidth=”1px”
BorderColor=”#004000” Font-Bold=”True” />

But, what if you also have a definition in your .css file for each <input> element in the ASP.NET page
as shown here:

INPUT
{
background-color: black;

}

289

Themes and Skins

12_576100 ch09.qxd 10/6/05 9:23 PM Page 289

When you run the .aspx page with these kinds of style conflicts, the .skin file takes precedence over
styles applied to every HTML element that is created using ASP.NET server controls regardless of what
the .css file says. In fact, this sort of scenario gives you a page in which the <input> element that is cre-
ated from the server control is white as defined in the .skin file and the second text box is black as
defined in the .css file. This is shown in Figure 9-8.

Figure 9-8

Having Your Themes Include Images
Probably one of the coolest reasons why themes, rather than CSS, are the better approach for applying a
consistent style to your Web page is that themes enable you to incorporate actual images into the style
definitions.

A lot of controls use images to create a better visual appearance. The first step in incorporating images
into your server controls that consistently use themes is to create an Images folder within the Themes
folder itself, as illustrated in Figure 9-9.

Figure 9-9

290

Chapter 9

12_576100 ch09.qxd 10/6/05 9:23 PM Page 290

You have a couple of easy ways to use the images that you might place in this folder. The first is to incor-
porate the images directly from the .skin file itself. You can do this with the TreeView server control.
The TreeView control can contain images used to open and close nodes for navigation purposes. You can
place images in your theme for each and every TreeView control in your application. If you do so, you
can then define the TreeView server control in the .skin file, as shown in Listing 9-6.

Listing 9-6: Using images from the theme folder in a TreeView server control

<asp:TreeView runat=”server” BorderColor=”#FFFFFF” BackColor=”#FFFFFF”
ForeColor=”#585880” Font-Size=”.9em” Font-Names=”Verdana”
LeafNodeImageURL=”images\summer_iconlevel.gif”
RootNodeImageURL=”images\summer_iconmain.gif”
ParentNodeImageURL=”images\summer_iconmain.gif” NodeIndent=”30”
CollapseImageURL=”images\summer_minus.gif”
ExpandImageURL=”images\summer_plus.gif”>

...
</asp:TreeView>

When you run a page containing a TreeView server control, it is populated with the images held in the
Images folder of the theme.

It’s easy to incorporate images into the TreeView control. The control even specifically asks for an image
location as an attribute. The new WebParts controls are used to build portals. Listing 9-7 is an example of
a Web Part definition from a .skin file that incorporates images from the Images folder of the theme.

Listing 9-7: Using images from the theme folder in a WebPartZone server control

<asp:WebPartZone ID=”WebPartZone1” runat=”server”
DragHighlightColor=”#6464FE” BorderStyle=”double”
BorderColor=”#E7E5DB” BorderWidth=”2pt” BackColor=”#F8F8FC”
cssclass=”theme_fadeblue” Font-Size=”.9em” Font-Names=”Verdana”>

<FooterStyle ForeColor=”#585880” BackColor=”#CCCCCC”></FooterStyle>
<HelpVerb ImageURL=”images/SmokeAndGlass_help.gif”
checked=”False” enabled=”True” visible=”True”></HelpVerb>

<CloseVerb ImageURL=”images/SmokeAndGlass_close.gif”
checked=”False” enabled=”True” visible=”True”></CloseVerb>

<RestoreVerb ImageURL=”images/SmokeAndGlass_restore.gif”
checked=”False” enabled=”True” visible=”True”></RestoreVerb>

<MinimizeVerb ImageURL=”images/SmokeAndGlass_minimize.gif”
checked=”False” enabled=”True” visible=”True”></MinimizeVerb>

<EditVerb ImageURL=”images/SmokeAndGlass_edit.gif”
checked=”False” enabled=”True” visible=”True”></EditVerb>

</asp:WebPartZone>

As you can see here, this series of toolbar buttons, which is contained in a WebPartZone control, now
uses images that come from the aforementioned SmokeAndGlass theme. When this WebPartZone is then
generated, the style is defined directly from the .skin file, but the images specified in the .skin file are
retrieved from the Images folder in the theme itself.

Not all server controls enable you to work with images directly from the Themes folder by giving you an
image attribute to work with. If you don’t have this capability, you must work with the .skin file and
the CSS file together. If you do, you can place your theme-based images in any element you want. Next
is a good example of how to do this.

291

Themes and Skins

12_576100 ch09.qxd 10/6/05 9:23 PM Page 291

Place the image that you want to use in the Images folder just as you normally would. Then define the
use of the images in the .css file. The continued SmokeAndGlass example in Listing 9-8 demonstrates
this.

Listing 9-8: Part of the CSS file from SmokeAndGlass.css

theme_header {
background-image :url(images/smokeandglass_brownfadetop.gif);

}

.theme_highlighted {
background-image :url(images/smokeandglass_blueandwhitef.gif);

}

.theme_fadeblue {
background-image :url(images/smokeandglass_fadeblue.gif);

}

These are not styles for a specific HTML element; instead, they are CSS classes that you can put into any
HTML element that you want. In this case, each CSS class mentioned here is defining a specific back-
ground image to use for the element.

After it is defined in the CSS file, you can utilize this CSS class in the .skin file when defining your
server controls. Listing 9-9 shows you how.

Listing 9-9: Using the CSS class in one of the server controls defined in the .skin file

<asp:Calendar runat=”server” BorderStyle=”double” BorderColor=”#E7E5DB”
BorderWidth=”2” BackColor=”#F8F7F4” Font-Size=”.9em” Font-Names=”Verdana”>

<TodayDayStyle BackColor=”#F8F7F4” BorderWidth=”1” BorderColor=”#585880”
ForeColor=”#585880” />

<OtherMonthDayStyle BackColor=”transparent” ForeColor=”#CCCCCC” />
<SelectedDayStyle ForeColor=”#6464FE” BackColor=”transparent”
CssClass=”theme_highlighted” />

<TitleStyle Font-Bold=”True” BackColor=”#CCCCCC” ForeColor=”#585880”
BorderColor=”#CCCCCC” BorderWidth=”1pt” CssClass=”theme_header” />

<NextPrevStyle Font-Bold=”True” ForeColor=”#585880”
BorderColor=”transparent” BackColor=”transparent” />

<DayStyle ForeColor=”#000000”
BorderColor=”transparent” BackColor=”transparent” />

<SelectorStyle Font-Bold=”True” ForeColor=”#696969” BackColor=”#F8F7F4” />
<WeekendDayStyle Font-Bold=”False” ForeColor=”#000000”
BackColor=”transparent” />

<DayHeaderStyle Font-Bold=”True” ForeColor=”#585880”
BackColor=”Transparent” />

</asp:Calendar>

This Calendar server control definition from a .skin file uses one of the earlier CSS classes in its defini-
tion. It actually uses an image that is specified in the CSS file in two different spots within the control
(shown in bold). It is first specified in the <SelectedDayStyle> element. Here you see the attribute and
value CssClass=”theme_highlighted”. The other spot is within the <TitleStyle> element. In this
case, it is using theme_header. When the control is rendered, these CSS classes are referenced and
finally point to the images that are defined in the CSS file.

292

Chapter 9

12_576100 ch09.qxd 10/6/05 9:23 PM Page 292

It is interesting that the images used here for the header of the Calendar control don’t really have much
to them. For instance, the smokeandglass_brownfadetop.gif image that we are using for this exam-
ple is simply a thin, gray sliver, as shown in Figure 9-10.

Figure 9-10

This very small image (in this case, very thin) is actually repeated as often as necessary to make it equal
the length of the header in the Calendar control. The image is lighter at the top and darkens toward the
bottom. Repeated horizontally, this gives a three-dimensional effect to the control. Try it out, and you get
the result shown in Figure 9-11.

Figure 9-11

Defining Multiple Skin Options
Using the themes technology in ASP.NET 2.0, you can have a single theme; but also, within the theme’s
.skin file, you can have specific controls that are defined in multiple ways. You can frequently take
advantage of this feature within your themes. For instance, you might have text box elements scattered
throughout your application, but you might not want each and every text box to have the same visual
appearance. In this case, you can create multiple versions of the <asp:Textbox> server control within
your .skin file. In Listing 9-10 you see how to create multiple versions of the <asp:Textbox> control in
the .skin file from Listing 9-3.

Listing 9-10: The Summer.skin file, which contains multiple versions of the
<asp:Textbox> server control

<asp:Label Runat=”server” ForeColor=”#004000” Font-Names=”Verdana”
Font-Size=”X-Small” />

<asp:Textbox Runat=”server” ForeColor=”#004000” Font-Names=”Verdana”
Font-Size=”X-Small” BorderStyle=”Solid” BorderWidth=”1px”
BorderColor=”#004000” Font-Bold=”True” />

<asp:Textbox Runat=”server” ForeColor=”#000000” Font-Names=”Verdana”

(continued)

293

Themes and Skins

12_576100 ch09.qxd 10/6/05 9:23 PM Page 293

Listing 9-10: (continued)

Font-Size=”X-Small” BorderStyle=”Dotted” BorderWidth=”5px”
BorderColor=”#000000” Font-Bold=”False” SkinID=”TextboxDotted” />

<asp:Textbox Runat=”server” ForeColor=”#000000” Font-Names=”Arial”
Font-Size=”X-Large” BorderStyle=”Dashed” BorderWidth=”3px”
BorderColor=”#000000” Font-Bold=”False” SkinID=”TextboxDashed” />

<asp:Button Runat=”server” ForeColor=”#004000” Font-Names=”Verdana”
Font-Size=”X-Small” BorderStyle=”Solid” BorderWidth=”1px”
BorderColor=”#004000” Font-Bold=”True” BackColor=”#FFE0C0” />

In this .skin file, you can see three definitions in place for the TextBox server control. The first one is the
same as before. Although the second and third definitions have a different style, they also contain a new
attribute in the definition —SkinID. To create multiple definitions of a single element, you use the
SkinID attribute to differentiate among the definitions. The value used in the SkinID can be anything
you want. In this case, it is TextboxDotted and TextboxDashed.

Note that no SkinID attribute is used for the first <asp:Textbox> definition. By not using one, you are
saying that this is the default style definition to use for each <asp:Textbox> control on an ASP.NET
page that uses this theme but has no pointer to a SkinID.

Take a look at a sample .aspx page that uses this .skin file in Listing 9-11.

Listing 9-11: A simple .aspx page that uses the Summer.skin file with multiple text-
box style definitions

<%@ Page Language=”VB” Theme=”Summer” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Different SkinIDs</title>
</head>
<body>

<form id=”form1” runat=”server”>
<p>

<asp:Textbox ID=”TextBox1” Runat=”server”>Textbox1</asp:Textbox>
</p><p>

<asp:Textbox ID=”TextBox2” Runat=”server”
SkinId=”TextboxDotted”>Textbox2</asp:Textbox>

</p><p>
<asp:Textbox ID=”TextBox3” Runat=”server”
SkinId=”TextboxDashed”>Textbox3</asp:Textbox>

</p>
</form>

</body>
</html>

This small .aspx page shows three text boxes, each of a different style. When you run this page, you get
the results shown in Figure 9-12.

294

Chapter 9

12_576100 ch09.qxd 10/6/05 9:23 PM Page 294

Figure 9-12

The first text box doesn’t point to any particular SkinID in the .skin file. Therefore, the default skin is
used. As stated before, the default skin is the one in the .skin file that doesn’t have a SkinID attribute
in it. The second text box then contains skinid=”TextboxDotted” and, therefore, inherits the style def-
inition defined in the TextboxDotted skin in the Summer.skin file. The third text box takes the SkinID
TextboxDashed and is also changed appropriately.

As you can see, it is quite simple to define multiple versions of a control that can be used throughout
your entire application.

Programmatically Working with Themes
So far, you have seen examples of working with ASP.NET 2.0 themes in a declarative fashion, but you
can also work with themes programmatically.

Assigning the Page’s Theme Programmatically
To programmatically assign the theme to the page, use the construct shown in Listing 9-12.

Listing 9-12: Assigning the theme of the page programmatically

VB
<script runat=”server” language=”vb”>

Protected Sub Page_PreInit(ByVal sender As Object, ByVal e As System.EventArgs)
Page.Theme = Request.QueryString(“ThemeChange”)

End Sub
</script>

(continued)

295

Themes and Skins

12_576100 ch09.qxd 10/6/05 9:23 PM Page 295

Listing 9-12: (continued)

C#
<script runat=”server”>

protected void Page_PreInit(object sender, System.EventArgs e)
{

Page.Theme = Request.QueryString[“ThemeChange”];
}

</script>

You must set the Theme of the Page property in or before the Page_PreInit event for any static controls
that are on the page. If you are working with dynamic controls, set the Theme property before adding it
to the Controls collection.

Assigning a Control’s SkinID Programmatically
Another option is to assign a specific server control’s SkinID property programmatically (see Listing 9-13).

Listing 9-13: Assigning the server control’s SkinID property programmatically

VB
<script runat=”server” language=”vb”>

Protected Sub Page_PreInit(ByVal sender As Object, ByVal e As System.EventArgs)
TextBox1.SkinID = “TextboxDashed”

End Sub
</script>

C#
<script runat=”server”>

protected void Page_PreInit(object sender, System.EventArgs e)
{

TextBox1.SkinID = “TextboxDashed”;
}

</script>

Again, you assign this property before or in the Page_PreInit event in your code.

Themes and Custom Controls
If you are building custom controls in an ASP.NET 2.0 world, understand that end users can also apply
themes to the controls that they use in their pages. By default, your custom controls are theme-enabled
whether your custom control inherits from Control or WebControl.

To disable theming for your control, you can simply use the Themeable attribute on your class. This is
illustrated in Listing 9-14.

296

Chapter 9

12_576100 ch09.qxd 10/6/05 9:23 PM Page 296

Listing 9-14: Disabling theming for your custom controls

VB
Imports System.Web.UI

Namespace Wrox.ServerControls

<Themeable(False)> _
Public Class SimpleHello

Inherits System.Web.UI.Control

Private _name As String

Public Property Name() As String
Get

Return _name
End Get
Set(ByVal Value As String)

_name = Value
End Set

End Property

Protected Overrides Sub Render(ByVal controlOutput As _
HtmlTextWriter)

controlOutput.Write(“Hello “ + Name)
End Sub

End Class

End Namespace

C#
using System.Web.UI;

namespace Wrox.ServerControls
{

[Themeable(false)]
public class SimpleHello : Control
{

private string _name;

public string Name
{

get { return _name; }
set { _name = value; }

}

protected override void Render(HtmlTextWriter controlOutput)
{

controlOutput.Write (“Hello “ + Name);
}

}
}

You can also disable theming for the individual properties that might be in your custom controls. You do
this as illustrated in Listing 9-15.

297

Themes and Skins

12_576100 ch09.qxd 10/6/05 9:23 PM Page 297

Listing 9-15: Disabling theming for properties in your custom controls

VB
Imports System.Web.UI

Namespace Wrox.ServerControls

Public Class SimpleHello
Inherits System.Web.UI.Control

Private _myValue As String

<Themeable(False)> _
Public Property MyCustomProperty() As String

Get
Return _myValue

End Get
Set(ByVal Value As String)

_myValue = Value
End Set

End Property

End Class

End Namespace

C#
using System.Web.UI;

namespace Wrox.ServerControls
{

public class SimpleHello : Control
{

private string _myValue;

[Themeable(false)]
public string Name
{

get { return _myValue; }
set { _myValue = value; }

}
}

}

Summary
With the addition of themes and skins in ASP.NET 2.0, it has become quite easy to apply a consistent
look and feel across your entire application. Remember that themes can contain only simple server con-
trol definitions in a .skin file or elaborate style definitions, which include not only .skin files, but also
CSS style definitions and even images!

As you will see later in the book, you can use themes in conjunction with the new personalization fea-
tures that ASP.NET 2.0 provides. This can enable your end users to customize their experiences by select-
ing their own themes. Your application can present a theme just for them, and it can remember their
choices through the APIs that are offered in ASP.NET 2.0.

298

Chapter 9

12_576100 ch09.qxd 10/6/05 9:23 PM Page 298

Collections and Lists

Object-oriented programming (OOP) has been successful because it gives programmers a way to
model physical reality in code. The easiest systems to understand are those that effectively model
a familiar reality. If you’re trying to represent a person in real-life, for example, you might create a
class Person. After you create a Person class, what’s the next most obvious thing for that person
to do? Well, have a party and congregate with other persons, of course! As soon as you have more
than one Person, you need a place to put them all — that’s where lists, arrays, hash tables, and
other collections come in.

This chapter explains the collections made available to you in the .NET Framework 2.0. Although
the concept of collections is not specific to ASP.NET, this chapter shows you how to use them in the
context of an ASP.NET 2.0 application. It also looks at the differences between strongly typed col-
lections and generics, as well as exploring the unusual Microsoft.VisualBasic.Collection
class and contrasting it with the System.Collections namespace.

Arrays
Most folks would say that the simplest collection of objects is an array. Create some objects and put
them into an array. Start with a basic Person class with a simple constructor that initializes the
Person’s first and surname (last name), as well as a public property that returns the full name (see
Listing 10-1).

Listing 10-1: A simple Person class

VB
Public Class Person

Dim FirstName As String
Dim LastName As String

Public Sub New(ByVal First As String, ByVal Last As String)

(continued)

13_576100 ch10.qxd 10/6/05 9:20 PM Page 299

Listing 10-1: (continued)

FirstName = First
LastName = Last

End Sub

Public ReadOnly Property FullName() As String
Get

Return FirstName & “ “ & LastName
End Get

End Property
End Class

C#
public class Person
{

string FirstName;
string LastName;

public Person(string first, string last)
{

FirstName = first;
LastName = last;

}

public string FullName
{

get
{

return FirstName + “ “ + LastName;
}

}
}

In Listing 10-2 you put a few of these people into an array, iterate over them, and print their names. You
iterate twice: once using the For Each form, and once using the traditional For technique. Then you can
put your code in the Page_Load of the Default page in a new Web-based project.

Listing 10-2: Printing people in an array

VB
Partial Class _Default

Inherits System.Web.UI.Page

Protected Sub Page_Load(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Load

Dim scott As New Person(“Scott”, “Hanselman”)
Dim bill As New Person(“Bill”, “Evjen”)

Note that these examples use Response.Write for the purpose of illustration. In the
next chapter, you see far more appropriate ways to print your collections.

300

Chapter 10

13_576100 ch10.qxd 10/6/05 9:20 PM Page 300

Dim srini As New Person(“Srinivasa”, “Sivakumar”)

Dim people() As Person = {bill, scott, srini}
Response.Write(“We used foreach.
”)
For Each p As Person In people

Response.Write(p.FullName & “
”)
Next

Response.Write(“We used a for loop.
”)
For i As Integer = 0 To (people.Length – 1)

Response.Write(people(i).FullName + “
”)
Next

End Sub
End Class

C#
public partial class _Default : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{

Person scott = new Person(“Scott”, “Hanselman”);
Person bill = new Person(“Bill”, “Evjen”);
Person srini = new Person(“Srinivasa”, “Sivakumar”);

Person[] people = { bill, scott, srini };

Response.Write(“We used foreach.
”);
foreach(Person p in people)
{

Response.Write(p.FullName + “
”);
}

Response.Write(“We used a for loop.
”);
for (int i = 0; i < people.Length; i++)
{

Response.Write(people[i].FullName + “
”);
}

}
}

The result of this very simple code from Listing 10-2 is, as expected, a list of the names in the array,
printed in the browser:

We used foreach.
Bill Evjen
Scott Hanselman
Srinivasa Sivakumar

We used a for loop.
Bill Evjen
Scott Hanselman
Srinivasa Sivakumar

Note that the results are the same for both For and For Each. The For loop syntax, although familiar to
many, is certainly more difficult to read or write. While writing this sample, we forgot to subtract one

301

Collections and Lists

13_576100 ch10.qxd 10/6/05 9:20 PM Page 301

from people.Length. It was an immediately obvious mistake, but it could have been avoided by using
For Each.

Resizing Arrays
VB can resize an array and keep the existing values using the ReDim statement. Here you double the size
of the people array. Note the use of ReDim to redimension the array that has elements 0 through 5, so
this array can hold six Person objects:

ReDim Preserve people(5)

C# doesn’t support a convenient array-resizing statement such as ReDim. Instead, you copy people to a
new, larger array. Again, note the syntax here as you create an array with a length of six. It can hold ele-
ments 0 through 5:

Person[] people2 = new Person[6];
Array.Copy(people, people2, people.Length);

Finding Objects in Arrays
Arrays are the simplest form of collection. Indexing into an array is the fastest way to get access to your
data — if you know the index of the item you want! If you don’t know the index of an item in your array,
you go looking for it. However, what does it mean to ask an array, “Where is this object?”

Object Identity versus Object Equivalence
Two objects can be compared based on their identity — are these the same objects? Or based on equiva-
lence — do these objects contain the same values? When you look through a collection, you typically
already have a reference to that object, and you want to find that same object. Ask yourself whether you
are looking for that identical object reference or just an object with values equivalent to yours?

Next, modify Listing 10-2 and look for Bill and Scott in the array. You can add your search right after the
initialization of the people array (see Listing 10-3).

Listing 10-3: Looking for an object in an array by reference

VB
Dim people() As Person = {bill, scott, srini}

Dim indexOfBill As Integer = Array.IndexOf(people, bill)
Response.Write(“Bill is at “ & indexOfBill & “
”)

When you use For Each with an array, as you did here, the compiled Intermediate
Language (IL) code is identical to the code you wrote as a For. Unless you require
more complex behavior, such as iterating in reverse or iterating over every other
item, always be sure to use For Each to iterate over arrays and most collections. The
language-specific compiler handles this expansion and you reap the benefit. Your
code will be less prone to off-by-one bugs, and it will be much easier to read.

302

Chapter 10

13_576100 ch10.qxd 10/6/05 9:20 PM Page 302

Dim indexOfScott As Integer = Array.IndexOf(people, scott)
Response.Write(“Scott is at “ & indexOfScott & “
”)

C#
Person[] people = { bill, scott, srini };

int indexOfBill = Array.IndexOf(people, bill);
Response.Write(“Bill is at “ + indexOfBill + “
”);

int indexOfScott = Array.IndexOf(people, scott);
Response.Write(“Scott is at “ + indexOfScott + “
”);

The output of Listing 10-3 in the Web browser makes sense. Bill is at the zero-eth position in the array,
and Scott is at the first position. Remember that arrays are zero-based.

Bill is at 0
Scott is at 1

Now, look for Scott again, but this time using another object reference in Listing 10-4 that contains the
same information as our current scott object reference. The scott2 object is certainly equivalent to the
scott object because they contain the same information.

Listing 10-4: Searching for a object in an array by reference

VB
Dim scott2 As New Person(“Scott”, “Hanselman”)
Dim indexOfScott2 As Integer = Array.IndexOf(people, scott2)
Response.Write(“Scott #2 is at “ & indexOfScott2 & “
”)

C#
Person scott2 = new Person(“Scott”, “Hanselman”);
int indexOfScott2 = Array.IndexOf(people, scott2);
Response.Write(“Scott #2 is at “ + indexOfScott2 + “
”);

That’s interesting! The output may not be what you expected:

Bill is at 1
Scott is at 0
Scott #2 is at -1

Listing 10-4 makes sense, however, as scott2 is not in the array because it is not identical to the object
scott. They may be equivalent objects, but they are not the same object. If, instead, you want to retrieve
the index of the scott object while still using scott2 as the object to search for, just provide a method
on the Person class that the system can use to establish equivalence.

Overriding Equals
When you have created an object like Person that is composed of simple types, you can override the
Equals method that all objects inherit from System.Object and provide an implementation that evalu-
ates object equivalence.

303

Collections and Lists

13_576100 ch10.qxd 10/6/05 9:20 PM Page 303

public override bool Equals(object obj)
{

Person other = obj as Person;
return (other.LastName == this.LastName &&_

other.FirstName == this.FirstName) ;
}

Now, two Person instances can be compared for equivalence. Add an Equals implementation to the
code in Listing 10-4 and see how the results change. IndexOf searches for objects linearly and compares
them using their implementation of Equals.

The Importance of Implementing IComparable
In order to find objects that are like other objects and perform operations like sorting, the Person class
must be comparable. Specifically, you implement the IComparable interface that consists of one method,
CompareTo(). Return zero from CompareTo if the objects are equivalent. Fortunately, thePerson object
has only two string fields, FirstName and LastName. These fields are both System.String objects and,
because strings implement IComparable themselves, you can aggregate the return CompareTo values of
the properties. In Listing 10-5, Last Name is more important than First Name because it’s reasonable to
sort people with their last names first. Additionally, you may want to use this IComparable implementa-
tion later to put a Person into other collections, and it can also be used when sorting.

Listing 10-5: Adding IComparable to the Person class

VB
Public Class Person

Implements IComparable
‘...The rest of our class here...

Public Function CompareTo(ByVal obj As Object) _
As Integer Implements IComparable.CompareTo

If Not TypeOf (obj) Is Person Then
Throw New ArgumentException(“Object is not a Person!”)

End If

Dim p2 As Person = CType(obj, Person)
Dim lastNameResult As Integer = Me.LastName.CompareTo(p2.LastName)

If lastNameResult = 0 Then
Dim firstNameResult As Integer = Me.FirstName.CompareTo(p2.FirstName)
Return firstNameResult

Else
Return lastNameResult

End If
End Function

End Class

C#
public class Person : IComparable
{

304

Chapter 10

13_576100 ch10.qxd 10/6/05 9:20 PM Page 304

//...The rest of our class here...

int IComparable.CompareTo(object obj)
{

Person p2 = obj as Person;
if (p2 == null) throw new ArgumentException(“Object is not a Person!”);

int lastNameResult = this.LastName.CompareTo(p2.LastName);

if (lastNameResult == 0)
{

int firstNameResult = this.FirstName.CompareTo(p2.FirstName);
return firstNameResult;

}
else
{

return lastNameResult;
}

}
}

Now Person objects can be compared to each other in order to determine if they are less than, greater
than, or equal to each other. Note that Listing 10-5 checks the FirstName only if the LastName is the
same. Otherwise, it just returns the comparison value of the LastName.

Additionally, since no support exists for comparing the Person class with other kinds of objects, Listing
10-5 throws an ArgumentException to alert the developer of this decision. If you choose, you can
support comparisons of Person to other objects, but it’s up to you to decide the semantics of such a
comparison.

You can use the IComparable Person class with any method that takes an IComparable object as a
parameter. An example is System.Array’s static BinarySearch method that takes in an array of
IComparable implementations, along with an object to find within the array, and returns the index
where that object was found. BinarySearch is just one method among dozens that your IComparable
implementations can take advantage of.

Using BinarySearch to Find Like Objects in Arrays
The Array class includes a BinarySearch method with a series of overloads. This method uses the
IComparable interface of each object to determine if the object you’ve asked it to look for is the same
one it has found. However, BinarySearch requires that the array be presorted. Fortunately, this small
example array is presorted for Listing 10-6. You’ll see alternative ways to retrieve objects from collections
later in the chapter.

Listing 10-6: Searching for an equivalent object with Array.BinarySearch

VB
Dim indexOfEquivalentScott As Integer = Array.BinarySearch(people, scott2)
Response.Write(“An Equivalent Scott is at “ & indexOfEquivalentScott & “
”)

C#
int indexOfEquivalentScott = Array.BinarySearch(people, scott2);
Response.Write(“An Equivalent Scott is at “ + indexOfEquivalentScott + “
”);

305

Collections and Lists

13_576100 ch10.qxd 10/6/05 9:20 PM Page 305

Now run the page again and look at the Web browser’s output for Listing 10-6:

Bill is at 0
Scott is at 1
Scott #2 is at -1
An Equivalent Scott is at 1

When you look for the scott2 object reference using indexOf from Listing 10-4, you find nothing and
-1 is returned. Now that you can compare Person objects and also search for objects that are equivalent
but not the same as scott2, you find an equivalent at index 1. That’s the index of the first scott object.

It’s useful to spend time on these concepts of equivalence versus identity so that you, as a programmer,
can successfully express your intent in code. Later, when you retrieve objects from more complex collec-
tions such as Hashtables, you can see what power it gives you to know if the object you’re returning is
the same reference (and hence the same object) or just an equivalent object (and a different reference).

So far, you have put objects in arrays and iterated over those objects with both the For loop and the For
Each syntax. You’ve resized arrays both in VB and C#, retrieved the index of an object reference from an
array, and searched for equivalent objects in a sorted array.

Sorting Objects in Arrays
Now, change the currently hard-coded sort order of the array to a random sort order. Then use the new
IComparable implementation to sort the array. Also change the initial sort order in the array initializer and
add a For Each loop just before the sort so that you can see the before and after results of Listing 10-7.

Listing 10-7: Sorting arrays of Person

VB
Dim people() As Person = {scott, bill, srini}

Response.Write(“Unsorted. We used foreach.
”)
For Each p As Person In people

Response.Write(p.FullName & “
”)
Next

Response.Write(“Sort...
”)
Array.Sort(people)

Response.Write(“Sorted. We used foreach.
”)
For Each p As Person In people

Response.Write(p.FullName & “
”)
Next

Note that the BinarySearch works only with presorted arrays. If you are going to
search the array only once, then just iterate over the array checking each object. It is
less expensive than sorting the array and then calling BinarySearch. However, if
you call BinarySearch many times on the same array, it may be worth your while to
perform the sort. Remember, be sure to measure all your performance assumptions.
Don’t take the word of anyone (even this book) as the final truth.

306

Chapter 10

13_576100 ch10.qxd 10/6/05 9:20 PM Page 306

C#
Person[] people = { scott, bill, srini };

Response.Write(“Unsorted. We used foreach.
”);
foreach (Person p in people)
{

Response.Write(p.FullName + “
”);
}

Response.Write(“Sort...
”);
Array.Sort(people);

Response.Write(“Sorted. We used foreach.
”);
foreach(Person p in people)
{

Response.Write(p.FullName + “
”);
}

Look at the partial output of Listing 10-7 in the Web browser:

Unsorted. We used foreach.
Scott Hanselman
Bill Evjen
Srinivasa Sivakumar

Sort...
Sorted. We used foreach.
Bill Evjen
Scott Hanselman
Srinivasa Sivakumar

The Array.Sort method is a Shared method (static in C#) that returns a void. That means that it
sorts the array that you passed in as a parameter in place; the method doesn’t return the array. Notice
that after the call to the sort method, the list is correctly sorted by Last Name because that’s how you
wrote the Person class’s implementation of IComparable.

As you can see, arrays can be tricky and a bit of a hassle. You find yourself worrying about issues like
the size of the array and the indexes of items in the array. Now explore some higher-level kinds of collec-
tions to see how they are more powerful than a simple array.

The System.Collections Namespace
The System.Array class is the very core of the .NET Framework and serves as the base class for all sim-
ple arrays in the Common Language Runtime. However, the System.Collection namespace contains
most of the classes and interfaces that you are interested in, and builds on the concepts you learned by
examining the simple array.

ArrayList
Think of an ArrayList as everything that is good about an array PLUS automatic sizing, Add, Insert,
Remove, Sort, BinarySearch— you get the idea. All these great helper methods are added when

307

Collections and Lists

13_576100 ch10.qxd 10/6/05 9:20 PM Page 307

implementing the IList interface, the specifics of which are explored in the next section. The downside
of an ArrayList is the need to cast objects upon retrieval. New solutions introduced in .NET 2.0 will be
covered a little later in this chapter

The ArrayList class keeps an array of objects internally but takes care of housekeeping chores such as
ensuring there is enough capacity in the array. For example, if you add an item to an ArrayList, but
there’s no room in its internal array, the ArrayList doubles the size of the internal array to make room.

Now, reconsider and modify the code from Listings 10-1 through Listing 10-7 using an ArrayList
instead of an array. Start with a statement including the System.Collections namespace, and change
the way you add Person objects to the collection. Also change the calls to the Sort and BinarySearch
methods (see Listing 10-8).

Listing 10-8: Using an ArrayList instead of an array

VB
Imports System
Imports System.Collections

Partial Class _Default
Inherits System.Web.UI.Page

Protected Sub Page_Load(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Load

Dim scott As New Person(“Scott”, “Hanselman”)
Dim bill As New Person(“Bill”, “Evjen”)
Dim srini As New Person(“Srinivasa”, “Sivakumar”)

Dim people As New ArrayList()
people.Add(scott)
people.Add(bill)
people.Add(srini)

Response.Write(“Unsorted. We used foreach.
”)
For Each p As Person In people

Response.Write(p.FullName & “
”)
Next

Response.Write(“Sort...
”)
people.Sort()

Response.Write(“Sorted. We used foreach.
”)
For Each p As Person In people

Response.Write(p.FullName & “
”)
Next

Dim scott2 As New Person(“Scott”, “Hanselman”)
Dim indexOfScott2 As Integer = people.IndexOf(scott2)
Response.Write(“Scott #2 is at “ & indexOfScott2 & “
”)

Dim indexOfEquivalentScott As Integer = people.BinarySearch(scott2)
Response.Write(“An Equivalent Scott is at “ & _

308

Chapter 10

13_576100 ch10.qxd 10/6/05 9:20 PM Page 308

indexOfEquivalentScott & “
”)

Response.Write(“We used a for loop.
”)
For i As Integer = 0 To people.Count - 1

Response.Write(CType(people(i), Person).FullName & “
”)
Next

End Sub
End Class

C#
using System;
using System.Collections;

public partial class _Default : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{

Person scott = new Person(“Scott”, “Hanselman”);
Person bill = new Person(“Bill”, “Evjen”);
Person srini = new Person(“Srinivasa”, “Sivakumar”);

ArrayList people = new ArrayList();
people.Add(scott);
people.Add(bill);
people.Add(srini);

Response.Write(“We used foreach.
”);
foreach (Person p in people)
{

Response.Write(p.FullName + “
”);
}

Response.Write(“Sort...
”);
people.Sort();

Response.Write(“We used foreach.
”);
foreach (Person p in people)
{

Response.Write(p.FullName + “
”);
}

Person scott2 = new Person(“Scott”, “Hanselman”);
int indexOfScott2 = people.IndexOf(scott2);
Response.Write(“Scott #2 is at “ + indexOfScott2 + “
”);

int indexOfEquivalentScott = people.BinarySearch(scott2);
Response.Write(“An Equivalent Scott is at “ + indexOfEquivalentScott +
“
”);

Response.Write(“We used a for loop.
”);
for (int i = 0; i < people.Count; i++)
{

Response.Write(((Person)people[i]).FullName + “
”);
}

}
}

309

Collections and Lists

13_576100 ch10.qxd 10/6/05 9:20 PM Page 309

Listing 10-8 includes the System.Collections namespace and creates a new ArrayList. Then you
add the objects to the ArrayList with the very intuitive ArrayList.Add. The calls to the Shared meth-
ods (static in C#) Array.Sort, and Array.BinarySearch turn into more natural calls to instance
methods on the people ArrayList.

It is interesting that you don’t have to change the For Each loop, but you must change the For loop.
The ArrayList holds Person objects, but ultimately it holds objects of the root type from which all
objects derive, namely System.Object. (Remember that our Person class derives automatically from
System.Object). Because you can store other kinds of objects, not just Person, in an ArrayList, you
have to tell the system what kind of object you expect to get out of the ArrayList. You let the system
know the object’s type via casting. Some people find casting to be a confusing concept; so this book
examines how generics — a new feature of the .NET Framework 2.0 — helps solve this problem (see the
section “System.Collections.Generics” later in this chapter). Until then, you can avoid casting by using
For Each.

Additionally, an ArrayList doesn’t have a Length property; it has a Count property. You change the
upper bound expression from Length to Count in the For loop. Your first reaction to this odd semantic
change might be negative, but it makes sense when you remember that the intent of your code is to ask
the ArrayList for the Count of Person objects, not the Length of the ArrayList’s internal array! The
array’s length may well be considerably larger than the number of Person objects. You see where this
Count property comes from in the next section.

Notice that you can index into an ArrayList just like an array. Here you pull out the FullName of the
Person at index 2 (the third Person in the ArrayList):

VB
CType(people(2), Person).FullName

C#
((Person)people[2]).FullName

Next, we show you how the ArrayList and other collections can be everything an array is and more —
using interfaces that make the For Each statement and array-like indexing possible. You also learn about
dictionaries, a whole new kind of collection that lets you specify the index or key.

IEnumerable and IEnumerator
The System.Collections namespace has many useful classes. But before digging any farther, you
should examine the core interfaces that make all the different collections possible.

When you have a collection of something, inevitably you want to enumerate — move forward over — all
the objects in that collection. A collection implements IEnumerable if its contents can be enumerated.
IEnumerable does more than inform you of the collection’s capabilities; it gives you access via its one
method, GetEnumerator, returning that collection’s implementation of IEnumerator.

IEnumerator exposes these capabilities via this interface:

Public Interface IEnumerator
‘ Methods
Function MoveNext() As Boolean
Sub Reset()

310

Chapter 10

13_576100 ch10.qxd 10/6/05 9:20 PM Page 310

‘ Properties
ReadOnly Property Current As Object

End Interface

It is so simple, it’s brilliant. MoveNext returns True if the move succeeded and False if not. Reset
resets the internal “cursor” to the beginning of the collection, and the Current property always returns
the current object. If you create your own custom collection, that collection can support the very useful
For Each keyword in VB or foreach in C# by implementing these interfaces.

ICollection
IEnumerable and IEnumerator let you loop over your collections, but you would probably like to
know the count of items in your collection without having to count them yourself. The ICollection
interface cleverly derives from IEnumerable and includes a few new ideas in its interface definition:

Public Interface ICollection
Implements IEnumerable

‘ Methods
Sub CopyTo(ByVal array As Array, ByVal index As Integer)

‘ Properties
ReadOnly Property Count As Integer
ReadOnly Property IsSynchronized As Boolean
ReadOnly Property SyncRoot As Object

End Interface

Looks like ICollection added a Count property that gets the number of items in a collection. Because
you know an ArrayList implements ICollection, you know it also implements IEnumerable.
Immediately, then, you see that you can enumerate over an ArrayList with ForEach and easily retrieve
the count of items.

Many threads within a multithreaded application may want access to a collection. ICollection has
chosen to recognize that fact by including a SyncRoot object and the IsSynchronized property to get
a value indicating whether that collection can safely be used by multiple threads.

ICollection also adds a CopyTo method that bridges the gap between an array of objects and an
ICollection of objects. A one-dimensional array is passed in along with an index indicating where to
start copying items.

To recap, the ICollection interface extends IEnumerable. Collections keep a count of items, whereas
classes that implement Ienumerable are iterated again with ForEach.

You were able to use the Count Property in Listing 10-8 because the ArrayList class
is an ICollection.

You were able to use the For Each statement seamlessly with your ArrayList in
Listing 10-8 because the ArrayList class is IEnumerable!

311

Collections and Lists

13_576100 ch10.qxd 10/6/05 9:20 PM Page 311

IDictionary and IList are specific, dedicated interfaces that extend ICollection. An IDictionary
implementation is a collection of key/value pairs, like Hashtable. An IList is a collection of values,
and its members are accessed by index and also by many helper methods, such as the ArrayList class.

Lists and IList
The IList interface extends ICollection, which extends IEnumerable. Classes that implement IList
are easy to use and very powerful. The IList interface adds the intuitive methods such as Add, Remove,
Insert, and Clear, among others, to its interface definition:

Public Interface IList
Implements ICollection, IEnumerable

‘ Methods
Function Add(ByVal value As Object) As Integer
Sub Clear()
Function Contains(ByVal value As Object) As Boolean
Function IndexOf(ByVal value As Object) As Integer
Sub Insert(ByVal index As Integer, ByVal value As Object)
Sub Remove(ByVal value As Object)
Sub RemoveAt(ByVal index As Integer)

‘ Properties
ReadOnly Property IsFixedSize As Boolean
ReadOnly Property IsReadOnly As Boolean
Property Item(ByVal index As Integer) As Object

End Interface

Lists (ILists) come in three flavors:

❑ Read-only Ilist: Does not allow modification of its elements after the collection has been cre-
ated. IsReadOnly always returns True after the collection’s initial creation.

❑ Fixed-size Ilist: Allows the modification of elements, but not adding or removing them.

❑ Variable Ilist: Allows adding, removing, and modifying of elements.

The IList interface includes the very powerful Item property that allows you to index into the collec-
tion exactly as if it were an array. When you combine that capability with the Count property that
ICollection includes, you can now use a For statement to iterate forward, backward, or by steps
through collections.

For most medium-size collections, an ArrayList is a great way to go. Later, you learn how to make
strongly typed ILists. You do this using a new .NET Framework 2.0 feature called generics that,
ironically, makes your Lists specific to the classes they contain. Standard ArrayLists from System
.Collections can contain any object at all. You can have ArrayLists containing different kinds of
objects, but when you want to retrieve a reference to an object in an ArrayList, or any standard collec-
tion, you must cast that object to the specific type it is. We had to cast (or use CType in VB) in Listing
10-8. Here’s an example of a cast:

312

Chapter 10

13_576100 ch10.qxd 10/6/05 9:20 PM Page 312

VB
Dim p as Person = CType(peopleList(1), Person)

C#
Person p = (Person)peopleList[1];

You know that when you put an object of type Person in your ArrayList, you have to tell the compiler
what type the object is every time it’s retrieved at runtime. Generics enables you to tell the compiler
what type of object your ArrayList contains up-front at the time you create and compile it; then you
don’t have to tell the system every time it’s retrieved. You hear more about generics a little later.

So far, you have worked with collections that are either ordered or indexed. Arrays and ArrayLists
(and anything that implements IList or ICollection) contain other objects in a specific order. Those
objects can be retrieved either by iterating over the collection or by a zero-based numeric index. Now,
look at how to store objects in a collection with a unique key that can be used to access the objects later.

Dictionaries and IDictionary
Collections that implement IEnumerable let the programmer iterate over them with the For Each state-
ment. The ICollection interface extends IEnumerable by including the Count property. IList
extends ICollection and adds public methods such as Add, Insert, Remove, and Contains. IList
also adds the Item property, enabling you to access objects in the list as if it were an array.

IDictionary extends ICollection; but rather than representing a list of objects that can be indexed, it
represents a collection of key/value pairs. Notice that the Add method includes both a key and a value
as parameters. The Contains method, rather than checking for a particular object, checks for a particu-
lar key; the Item property indexer indexes by key as well:

Public Interface IDictionary
Implements ICollection, IEnumerable

‘ Methods
Sub Add(ByVal key As Object, ByVal value As Object)
Sub Clear()
Function Contains(ByVal key As Object) As Boolean
Function GetEnumerator() As IDictionaryEnumerator
Sub Remove(ByVal key As Object)

‘ Properties
ReadOnly Property IsFixedSize As Boolean
ReadOnly Property IsReadOnly As Boolean
Property Item(ByVal key As Object) As Object
ReadOnly Property Keys As ICollection
ReadOnly Property Values As ICollection

End Interface

You can add objects easily to the ArrayList in Listing 10-8 because an ArrayList is
an IList. You indexed into the ArrayList as if it were an array because IList
implements an Item indexing property, and the ArrayList class is an IList!

313

Collections and Lists

13_576100 ch10.qxd 10/6/05 9:20 PM Page 313

A number of .NET Framework classes implement IDictionary; the ones you should be concerned with
are the Hashtable and the SortedList. Later, IDictionary is also used by the specialized
ListDictionary and HybridDictionary. This base hierarchy of interfaces is presented in Figure 10-1.

Figure 10-1

Hashtables
Take a few instances of the Person class and add them to a Hashtable. Person is the value, but you
must decide on a key. The Hashtable class calls the GetHashCode method on each object used as a key.
All objects have a default implementation of GetHashCode that they inherit from the ultimate base class,
object. GetHashCode returns an integer, but that integer isn’t a unique identifier for an object refer-
ence. The MSDN Documentation says this about GetHashCode:

If two objects of the same type represent the same value, the hash function must return the
same constant value for either object. Therefore, two String objects return the same hash
code if they represent the same string value.

You’ll be using strings as keys to index into the values contained by your Hashtable and, for this exam-
ple, the string keys contain the initials of Person. In Listing 10-9, you retrieve the Person objects by
using the IDictionary Item property indexer and casting the objects to type Person, as shown in
Listing 10-8.

Listing 10-9: Retrieving Person objects from a Hashtable

VB
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _

Handles Me.Load

Dim scott As New Person(“Scott”, “Hanselman”)

Here’s a powerful tip to amaze your friends and family. The newest version of
Microsoft’s online MSDN documentation is called MSDN2 and offers hackable
URLs for the first time. Hackable URLs mean that you can guess at the URL for
most MSDN documentation. For example, the link to the System.Collections
.Hashtable documentation is http://msdn2.microsoft.com/library/system
.collections.hashtable.aspx. This convention applies to namespaces, class
names, members, and methods.

IEnumerable

ICollection

IDictionary IList

314

Chapter 10

13_576100 ch10.qxd 10/6/05 9:20 PM Page 314

Dim bill As New Person(“Bill”, “Evjen”)
Dim srini As New Person(“Srinivasa”, “Sivakumar”)

Dim peopleHashtable As New Hashtable()
peopleHashtable.Add(“sh”, scott)
peopleHashtable.Add(“be”, bill)
peopleHashtable.Add(“ss”, srini)

Dim found As Person = CType(peopleHashtable(“sh”), Person)
Response.Write(found.FullName & “
”)
found = CType(peopleHashtable(“be”), Person)
Response.Write(found.FullName & “
”)
found = CType(peopleHashtable(“sh”), Person)
Response.Write(found.FullName & “
”)

End Sub

C#
protected void Page_Load(object sender, EventArgs e)
{

Person scott = new Person(“Scott”, “Hanselman”);
Person bill = new Person(“Bill”, “Evjen”);
Person srini = new Person(“Srinivasa”, “Sivakumar”);

Hashtable peopleHashtable = new Hashtable();
peopleHashtable.Add(“sh”, scott);
peopleHashtable.Add(“be”, bill);
peopleHashtable.Add(“ss”, srini);

Person found = (Person)peopleHashtable[“sh”];
Response.Write(found.FullName + “
”);
found = (Person)peopleHashtable[“be”];
Response.Write(found.FullName + “
”);
found = (Person)peopleHashtable[“sh”];
Response.Write(found.FullName + “
”);

}

Notice that you are reusing the object reference named found. In Listing 10-9, each time you retrieve
a Person from the Hashtable using a key, you retrieve a reference to the same object added to the
Hashtable a few lines earlier. Here is the output in the browser:

Scott Hanselman
Bill Evjen
Scott Hanselman

An Important Point about Hashtables
Inevitably, every programmer runs into a little gotcha with hashtables. You’ve spent this chapter becom-
ing familiar with System.Collections and the interfaces that make them work. Hashtable imple-
ments IDictionary, which ultimately inherits from IEnumerable. IEnumerable is the interface that
enables For Each behavior, so you may want to iterate over your Hashtable and dump its contents.
However, when you foreach over a Hashtable, you’re not iterating over the values the Hashtable
contains, but rather a strange new composite object.

315

Collections and Lists

13_576100 ch10.qxd 10/6/05 9:20 PM Page 315

For example, you might try something like this:

VB
For Each p As Person In peopleHashtable ‘ Will compile but not run!

Response.Write(p.FullName & “
”)
Next

C#
foreach(Person p in peopleHashtable) // Will compile but not run!
{

Response.Write(p.FullName + “
”);
}

This code snippet compiles happily, but it won’t run. You are greeted with a potentially confusing
error message stating that the Specified cast is not valid. The important point is that you should
think of Hashtables as containing DictionaryEntry objects. Hashtable implements IEnumerable
and returns an IEnumerator to the For Each statement, but that IEnumerator returns a
DictionaryEntry. That DictionaryEntry then has a Key property and a Value Property.

Armed with this new knowledge, you can output the Person objects and the keys with which they are
stored, as shown in Listing 10-10. Remember that Hashtables can contain any objects as their values — you
just need to tell the system via a cast (CType in VB) that the Hashtable contains objects of type Person.

Listing 10-10: Using For Each with a Hashtable’s default IEnumerator implementation

VB
For Each de As DictionaryEntry In peopleHashtable

Response.Write(de.Key.ToString() & “:” & CType(de.Value, Person).FullName & _
“
”)

Next

C#
foreach (DictionaryEntry de in peopleHashtable)
{

Response.Write(de.Key.ToString() + “:” + ((Person)de.Value).FullName +
“
”);

}

The output in the browser includes both the key and the value for each DictionaryEntry. Note that
you have no control over how the Hashtable chooses to order your objects:

ss:Srinivasa Sivakumar
sh:Scott Hanselman
be:Bill Evjen

In Listing 10-10, you iterated directly over the Hashtable; however, Hashtable also exposes two
ICollections: one for Keys and one for Values. Because these properties are Icollections, you

The Hashtable default implementation of IEnumerator returns DictionaryEntry
objects, not objects of your type. However, you can also iterate over both the Keys
collection and Values collection exposed by Hashtable.

316

Chapter 10

13_576100 ch10.qxd 10/6/05 9:20 PM Page 316

can iterate over them with For Each, giving you two more ways to access data from a Hashtable (see
Listing 10-11).

Listing 10-11: Using For Each with a Hashtable’s Keys and Values member collections

VB
For Each s As String In peopleHashtable.Keys

Response.Write(s & “
”)
Next

For Each p As Person In peopleHashtable.Values
Response.Write(p.FullName & “
”)

Next

C#
foreach (string s in peopleHashtable.Keys)
{

Response.Write(s + “
”);
}

foreach (Person p in peopleHashtable.Values)
{

Response.Write(p.FullName + “
”);
}

In Listing 10-11, you iterate twice, once over the Keys and once over the Values. Here’s the browser’s
output:

ss
sh
be
Srinivasa Sivakumar
Scott Hanselman
Bill Evjen

Note again that you have no control over the ordering of these Keys and Values. In the next section,
you look at another potentially more useful collection that has characteristics of both a Hashtable and
an ArrayList: SortedList.

SortedList
A SortedList is a collection of key/value pairs like a Hashtable, except that it’s sorted by its keys and
the values can be manipulated via a numeric index, like an array.

Like many of the collections in System.Collections, SortedList includes a number of overloaded
constructors that make creation more convenient. You can take advantage of SortedList’s overloaded
constructor, which takes an IDictionary. You could certainly create an empty SortedList and then
manually iterate over the Hashtable’s DictionaryEntries and add them to the SortedList. But why
not take advantage of the careful design and expertise that have been put into the .NET Framework?

You’ve been using initials as the key, so you’d expect Srinivas to sort last in a SortedList because his
initials are ss. The expected sort order would then be be, sh, and ss. Listing 10-12 outputs the Values
collection of the new SortedList and then checks the index of Srinivas as if it were an array.

317

Collections and Lists

13_576100 ch10.qxd 10/6/05 9:20 PM Page 317

Listing 10-12: Using a SortedList to sort by values by key

VB
Dim peopleSortedList As SortedList = New SortedList(peopleHashtable)
For Each p As Person In peopleSortedList.Values

Response.Write(p.FullName & “
”)
Next
Response.Write(“Index of Srinivasa: “ & peopleSortedList.IndexOfKey(“ss”))

C#
SortedList peopleSortedList = new SortedList(peopleHashtable);
foreach (Person p in peopleSortedList.Values)
{

Response.Write(p.FullName + “
”);
}
Response.Write(“Index of Srinivasa: “ + peopleSortedList.IndexOfKey(“ss”));

If you compare the output of Listing 10-12 to the output of values from Listing 10-11, notice that the list
is sorted and Srinivas is at index 2 (the third item in a zero-based array):

Bill Evjen
Scott Hanselman
Srinivasa Sivakumar
Index of Srinivas: 2

A SortedList can give you the best of both worlds if you need something that’s like a Hashtable but
is also ordered. The next section looks at the final two collections that round out System.Collections:
Queues and Stacks. They just happen to emphasize the order in which their values are stored.
Remember that like a Hashtable, the keys in a SortedList have to be unique, or a duplicate’s addition
will result in a runtime exception.

Queues and Stacks
Queues and Stacks are almost the inverse of each other. Queues are great for storing objects in the
order in which they arrive, whereas a Stack is a first-in, last-out structure. Listings 10-13 and 10-14 are
two small examples; if you put instances of a Person class in each structure, note the order as you
remove them.

Both Stack and Queue implement ICollection and IEnumerable but not IList; that means that each
has a Count and can be iterated over with For Each, but they aren’t as flexible as IList implementa-
tions. Each collection has very explicit behavior as seen in Listing 10-13 that should be appended to the
previous listings.

Listing 10-13: Queuing Person objects

VB
Dim peopleQueue As New Queue()
peopleQueue.Enqueue(scott)
peopleQueue.Enqueue(bill)
peopleQueue.Enqueue(srini)

Dim x As Person = CType(peopleQueue.Dequeue(), Person)

318

Chapter 10

13_576100 ch10.qxd 10/6/05 9:20 PM Page 318

Response.Write(x.FullName & “
”)

x = CType(peopleQueue.Dequeue(), Person)
Response.Write(x.FullName & “
”)

x = CType(peopleQueue.Dequeue(), Person)
Response.Write(x.FullName & “
”)

C#
Queue peopleQueue = new Queue();
peopleQueue.Enqueue(scott);
peopleQueue.Enqueue(bill);
peopleQueue.Enqueue(srini);

Person x = (Person)peopleQueue.Dequeue();
Response.Write(x.FullName + “
”);

x = (Person)peopleQueue.Dequeue();
Response.Write(x.FullName + “
”);

x = (Person)peopleQueue.Dequeue();
Response.Write(x.FullName + “
”);

Because a Queue is a first-in, first-out structure, the Person objects print in the same order that they
were enqueued into the Queue. Here’s the output of Listing 10-13:

Scott Hanselman
Bill Evjen
Srinivasa Sivakumar

Stacks are first in, last out. One pushes objects onto a stack and pops them off the stack. If you imagine
literally stacking objects on top of each other, you see that the analogy works. Stacks also include an
extra useful function, Peek, that lets you see the object at the top of the Stack without removing it.

In Listing 10-14, you pop two objects, being sure to cast them to objects of type Person; then you peek at
an object without changing the stack. Having peeked at the final object, you pop it off the stack.

Listing 10-14: Pushing, popping, and peeking Person objects in a Stack

VB
Dim peopleStack As New Stack()
peopleStack.Push(scott)
peopleStack.Push(bill)
peopleStack.Push(srini)

Dim x As Person = CType(peopleStack.Pop(), Person)
Response.Write(x.FullName & “
”)

x = CType(peopleStack.Pop(), Person)
Response.Write(x.FullName & “
”)

x = CType(peopleStack.Peek(), Person) ‘Peek, not Pop

(continued)

319

Collections and Lists

13_576100 ch10.qxd 10/6/05 9:20 PM Page 319

Listing 10-14: (continued)

Response.Write(x.FullName & “
”)

x = CType(peopleStack.Pop(), Person)
Response.Write(x.FullName & “
”)

C#
Stack peopleStack = new Stack();
peopleStack.Push(scott);
peopleStack.Push(bill);
peopleStack.Push(srini);

Person x = (Person)peopleStack.Pop();
Response.Write(x.FullName + “
”);

x = (Person)peopleStack.Pop();
Response.Write(x.FullName + “
”);

x = (Person)peopleStack.Peek(); //Peek, not Pop
Response.Write(x.FullName + “
”);

x = (Person)peopleStack.Pop();
Response.Write(x.FullName + “
”);

The output in the browser of Listing 10-14 is the opposite of the output from Listing 10-13, plus it
includes the extra output from the call to Peek:

Srinivasa Sivakumar
Bill Evjen
Scott Hanselman
Scott Hanselman

You’ll probably use Stack and Queue less often than Hashtable and ArrayList, but when you do
need them, it’s good to know they are waiting.

Specialized Collections
The MSDN Documentation at http://msdn2.microsoft.com/library/system.collections
.specialized.aspx says that System.Collections.Specialized contains “specialized and
strongly-typed collections.” For that reason, this section talks about System.Collection.BitArray
because it is certainly a very specific kind of collection. The other collections in System.Collections
.Specialized are strongly typed collections that contain only strings, as well as another bit-related col-
lection and an IDictionary implementation for tiny collections.

HybridDictionary and ListDictionary
The ListDictionary is an implementation of IDictionary that works very quickly for lists of items
composed of 10 or less. It is not performant for large numbers of items. The HybridDictionary is a
great compromise that uses a ListDictionary until the collection gets larger than 10 items, and then it
switches internally to use a Hashtable.

320

Chapter 10

13_576100 ch10.qxd 10/6/05 9:20 PM Page 320

Note, however, that none of these collections implements IList, and, therefore, the order of the objects
is not guaranteed, like a HashTable. If you need keys and to maintain ordering, refer to the
OrderedDictionary in the Specialized namespace.

StringCollection, StringDictionary,
and NameValueCollection

The StringCollection is like a strongly typed ArrayList that contains only strings. Because it is
strongly typed for string, no casting is required when you retrieve strings from it. It implements IList,
ICollection, and IEnumerable, so you can iterate over it with For Each and access strings via a
numeric index.

The StringDictionary is a Hashtable with the keys and values both strongly typed as strings. Both
the Keys and Values collection properties are strings, and the indexing property accessor requires no
casting or calls to CType.

A NameValueCollection is a sorted collection of string keys and string values. It behaves like a
Hashtable with string keys, and its values can be accessed by numeric index. Its property accessor is
overloaded to take both a string and an integer.

BitArray
The BitArray is a very specialized collection that manages a compact list of bit values, but presents
those values as Booleans to the programmer. BitArray also includes methods for applying And, Or,
and Not methods to other BitArrays. It is very efficient in its use of memory, so if you find yourself
managing an array or collection of Booleans, consider using a BitArray instead.

The Microsoft.VisualBasic.Collection Class
The Microsoft.VisualBasic.Collection is a strange animal. It implements both IList and
ICollection and usually behaves like an ArrayList. However, its Add method includes optional key
parameters that are typed as strings. This Collection class has behavior and method signatures identical
to the Visual Basic 6 Collection object, but it cannot be passed over COM interop boundaries. When
new .NET code interoperates with legacy VB6 code, data types must be “marshaled,” or translated,
between the world of .NET and the world of VB6. The space between these two worlds is often called the
COM interoperability boundary. Some collections lend themselves for easy marshaling and some do not.

If you are attempting to upgrade code from Visual Basic 6 or earlier to Visual Basic 2005 (now called just
VB), any automated upgrading your tools are using will map the VB6 Collection to this Microsoft
.VisualBasic.Collection. However, stay away from this class for any new .NET development.
Think of this collection as a helper for upgrade and COM interop scenarios only.

If you code to the methods IDictionary provides, implementations of
IDictionary are interchangeable. Some of the implementations you can choose
from are Hashtable, SortedList, ListDictionary, and HybridDictionary
(among others).

321

Collections and Lists

13_576100 ch10.qxd 10/6/05 9:20 PM Page 321

Strongly Typed Collections
So far, in this chapter, you call CType (or cast in C#) every time you retrieve an object from a
System.Collection. Sometimes you might like a collection called PersonList that holds only objects
of type Person and that can retrieve Person references without casting.

There are many different ways to create a strongly typed collection class. In Listing 10-15, you use an
ArrayList internally, but you present only the Person class to the public. You create your own Add and
Remove methods that take a Person class as a parameter, and then you expose the internal ArrayList’s
IEnumerable implementation in order to support the For Each keyword.

Listing 10-15: A strongly typed PersonList with an internal ArrayList

VB
Imports System.Collections
Public Class PersonList

Implements System.Collections.IEnumerable

Private innerList As ArrayList = New ArrayList()

Public Sub Add(ByVal aPerson As Person)
innerList.Add(aPerson)

End Sub

Public Sub Remove(ByVal aPerson As Person)
innerList.Remove(aPerson)

End Sub

Public ReadOnly Property Count() As Integer
Get

Return innerList.Count
End Get

End Property

‘Get/set element at given index
Default Public Property Item(ByVal index As Integer) As Person

Get
Return CType(innerList(index), Person)

End Get
Set(ByVal Value As Person)

innerList(index) = Value
End Set

End Property

Public Function GetEnumerator() As IEnumerator _
Implements IEnumerable.GetEnumerator

Return innerList.GetEnumerator()
End Function

End Class

322

Chapter 10

13_576100 ch10.qxd 10/6/05 9:20 PM Page 322

C#
using System.Collections;
public class PersonList : System.Collections.IEnumerable
{

private ArrayList innerList = new ArrayList();

public void Add(Person aPerson)
{

innerList.Add(aPerson);
}

public void Remove(Person aPerson)
{

innerList.Remove(aPerson);
}

public int Count
{

get { return innerList.Count; }
}

// Get/set element at given index
public Person this[int index]
{

get { return (Person)innerList[index]; }
set { innerList[index] = value; }

}

public IEnumerator GetEnumerator()
{

return innerList.GetEnumerator();
}

}

Listing 10-16 uses the custom PersonList instead of an ArrayList, as you saw earlier in Listing 10-8.

Listing 10-16: Using a custom strongly typed PersonList

VB
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _

Handles Me.Load

Dim scott As New Person(“Scott”, “Hanselman”)
Dim bill As New Person(“Bill”, “Evjen”)
Dim srini As New Person(“Srinivasa”, “Sivakumar”)

Dim people As New PersonList()
people.Add(scott)
people.Add(bill)
people.Add(srini)

For Each p As Person In people
Response.Write(p.FullName & “
”)

(continued)

323

Collections and Lists

13_576100 ch10.qxd 10/6/05 9:20 PM Page 323

Listing 10-16: (continued)

Next

For i As Integer = 0 To people.Count -1
Response.Write(people(i).FullName & “
”)

Next
End Sub

C#
protected void Page_Load(object sender, EventArgs e)
{

Person scott = new Person(“Scott”, “Hanselman”);
Person bill = new Person(“Bill”, “Evjen”);
Person srini = new Person(“Srinivasa”, “Sivakumar”);

PersonList people = new PersonList();
people.Add(scott);
people.Add(bill);
people.Add(srini);

foreach (Person p in people)
{

Response.Write(p.FullName + “
”);
}

for (int i = 0; i < people.Count; i++)
{

Response.Write(people[i].FullName + “
”);
}

}

The For Each syntax is the same for the custom collection as it is for the ArrayList because this custom
collection implements IEnumerable.

The For loop construct becomes even simpler with the removal of the call to CType (or casting in C#).
Note the use of the Default keyword for the VB property accessor and the use of this for the C# prop-
erty accessor. You can see (in Listing 10-15) that the cast is hidden in the property accessor and the return
value of the property is strongly typed.

VB
Default Public Property Item(ByVal index As Integer) As Person

C#
public Person this[int index]

These constructs enable array-style indexing into the strongly typed collection. Strongly typed custom
collections can be extended and customized to your heart’s desire. You can create strongly typed
HashMaps that enable lookup of objects by both key and value, or chains and networks of objects. The
public face of your custom collections is up to you.

324

Chapter 10

13_576100 ch10.qxd 10/6/05 9:20 PM Page 324

However, when you just want a simple PersonHashtable or PersonList, it is a real hassle to write a
custom strongly typed collection. In order to help with this problem, the .NET Framework 2.0 has intro-
duced a concept called generics.

System.Collections.Generics
Strongly typed collections written by hand are verbose and tied to one type of object by their nature. The
PersonList, although convenient to use, is inadequate if you introduce an Employee class or Vehicle
class; in those situations, you should write a custom EmployeeList and VehicleList.

What Are Generics?
When you use generics, you are creating classes or methods that use a generic type, rather than a specific
type. For example, rather than creating a type-specific (and, therefore, nonreusable) PersonList, as
shown in Listing 10-16, you could create a reusable List class using generics. How is that different from
the ArrayList class you have already? The System.Collection.ArrayList can be used with any
object, including Person, but no type checking is done when instances of Person are passed to meth-
ods. You have to manually cast objects back to type Person when retrieving; which makes the code not
only harder to read, but more fragile at runtime.

Generics aim to promote the following:

❑ Binary code reuse: You can use an ArrayList with any object, but the custom PersonList
(from Listing 10-16) can’t be easily reused. Generic classes can be used with any type.

❑ Performance: You are paying a performance price every time you cast an object during a
retrieve, and you pay a price for boxing up value types such as int (Integer in VB) and bool
(Boolean in VB) when they are put into collections. This isn’t the case with generics because the
knowledge of generics is built directly into the runtime.

❑ Ease of reading: Handwritten, strongly typed collections can be tricky to write and hard to
read. Generic syntax is intuitive, easy to read, and reduces code bloat.

❑ Type safety: A standard ArrayList takes any object in as a parameter to its Add method. The
compiler doesn’t care, and you won’t know if anything has gone wrong until a cast fails when
pulling an object out of the collection. Generics have built-in type safety; the compiler complains
if any type checking rules are broken going into or coming out of a generic collection class.

Generics are often compared directly to C++ templates and the proposed generics equivalent in the Java
language. However, these additions to C++ and Java are largely features of their respective compilers.
These compilers construct “extra” code at compile time for each referenced template type. Generics in
the .NET 2.0 CLR work differently.

Generics in .NET 2.0 are a first-class feature of the Common Language Runtime and are created and
JIT’ed at runtime. Each instance of a generic type, such as List<Person> or Hashtable<int>, is a first
class entity and can be reused by the CLR. If these generic types are referenced in another assembly, they
share type equivalency and can be passed back and forth.

325

Collections and Lists

13_576100 ch10.qxd 10/6/05 9:20 PM Page 325

Additionally, these types can be used between languages. A List<Person> in C# is a List(Of Person)
in VB, but they are the same type and can be shared and treated as such. This first class treatment of
generics, along with the unique runtime typing and type equivalence, makes .NET 2.0’s implementation
of generics fantastically powerful.

Generic Lists
All the Generic collections are in System.Collections.Generic. Listing 10-17 creates a Person-specific
list using generics in order to illustrate the new generic syntax.

Amazingly, the code from Listing 10-16 works using generics by simply changing a single line in Listing
10-17 and deleting all the custom collection code from Listing 10-15! Instead of creating a specialized and
custom PersonList, generics allow us to use a template and create a strongly typed and generic List
of type Person that can be operated on exactly as before in Listing 10-15.

Listing 10-17: Creating a list of Person objects using generics

VB
Imports System.Collections.Generic
Protected Sub Page_Load(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles Me.Load

Dim scott As New Person(“Scott”, “Hanselman”)
Dim bill As New Person(“Bill”, “Evjen”)
Dim srini As New Person(“Srinivasa”, “Sivakumar”)

Dim people As New List(Of Person)
people.Add(scott)
people.Add(bill)
people.Add(srini)

For Each p As Person In people
Response.Write(p.FullName & “
”)

Next

For i As Integer = 0 To people.Count - 1
Response.Write(people(i).FullName & “
”)

Next
End Sub

C#
using System.Collections.Generic;
protected void Page_Load(object sender, EventArgs e)
{

Person scott = new Person(“Scott”, “Hanselman”);
Person bill = new Person(“Bill”, “Evjen”);
Person srini = new Person(“Srinivasa”, “Sivakumar”);

List<Person> people = new List<Person>();
people.Add(scott);
people.Add(bill);

326

Chapter 10

13_576100 ch10.qxd 10/6/05 9:20 PM Page 326

people.Add(srini);

foreach (Person p in people)
{

Response.Write(p.FullName + “
”);
}

for (int i = 0; i < people.Count; i++)
{

Response.Write(people[i].FullName + “
”);
}

}

Notice the new syntax used for generics. VB adds the intuitive Of keyword to enable you to create a
List(Of Person), whereas C# uses the C++-like angle-bracket syntax to create a List<Person>. The
documentation shows type declarations for generic types like List<T> in C# and List(Of T) in VB,
where T means Type. Dictionaries that take type parameters as a key and a value use K and V, respec-
tively, to represent those types, as in Dictionary<K, V> for C# and Dictionary(Of K, V) for VB.

VB
Public Class List(Of T) ‘Class Definition
‘...
Dim people As New List(Of Person) ‘Instance Declaration

C#
Public Class List< T> //Class Definition
//...
List<Person> people = new List<Person>(); //Instance Declaration

You can use this syntax for all generics, including those that take multiple generic type parameters.
Listing 10-18 extends this concept to create a hashtable-like structure using generics.

Generic Dictionary
Hashtables are dictionaries, and the generic version of a hashtable is Dictionary(Of K, V). As shown
in Listing 10-18, you can change Listing 10-9 to use a generic Dictionary instead of a Hashtable.
You’ll also need to add the System.Collections.Generics namespace.

Listing 10-18: Using a generic Dictionary instead of a non-generic Hashtable

VB
Dim peopleHashtable As New Dictionary(Of String, Person)
peopleHashtable.Add(“sh”, scott)
peopleHashtable.Add(“be”, bill)
peopleHashtable.Add(“ss”, srini)

Dim found As Person = peopleHashtable(“sh”)
Response.Write(found.FullName & “
”)
found = peopleHashtable(“be”)
Response.Write(found.FullName & “
”)
found = peopleHashtable(“sh”)
Response.Write(found.FullName & “
”)

(continued)

327

Collections and Lists

13_576100 ch10.qxd 10/6/05 9:20 PM Page 327

Listing 10-18: (continued)

C#
Dictionary<String, Person> peopleHashtable = new Dictionary<string, Person>();
peopleHashtable.Add(“sh”, scott);
peopleHashtable.Add(“be”, bill);
peopleHashtable.Add(“ss”, srini);

Person found = peopleHashtable[“sh”];
Response.Write(found.FullName + “
”);
found = peopleHashtable[“be”];
Response.Write(found.FullName + “
”);
found = peopleHashtable[“sh”];
Response.Write(found.FullName + “
”);

Notice that the one-line type declaration changed from Listing 10-9 to Listing 10-18, and you were also
able to remove all the casting during retrieval in both languages!

Other Generic Collections
There are Queue(Of T), Stack(Of T), and SortedDictionary(Of T) generic classes as well. A new col-
lection type addition to the .NET Framework is the LinkedList(Of T) class. It is a strongly typed, dou-
bly linked list where each node points both forward to the next node and backward to the previous node.

Collection Changes from
.NET 1.1 to .NET 2.0

The big change in the .NET Framework 2.0 is the addition of Generics support in the runtime and the
many classes in the System.Collections.Generics namespace. However, a few small things have
been changed or added in System.Collections and .Specialized that you should be aware of if
you are porting collection-related code from .NET 1.1:

Generics are completely Common Language Specification (CLS) compliant. They
were not in early betas, but the final release of .NET 2.0 finds the C# and VB compil-
ers treating generics as fully supported CLS-compliant code. The CLS dictates what
features a .NET language must support — the lowest common denominator, if you
will. The capability to consume CLS-compliant types is the minimum that all .NET
languages targeting the CLR must meet, not only to use APIs from the Base Class
Library, but also for interoperability between each other. This new addition has
nothing but upside for the developer. You will be able to use many elegant new
generics-based APIs from Microsoft, as well as CLS-compliant libraries from third-
party developers. Additionally, third-party languages such as Delphi or Python that
choose to target the .NET 2.0 CLR will include generics in their updated language
implementation.

328

Chapter 10

13_576100 ch10.qxd 10/6/05 9:20 PM Page 328

❑ A new interface, System.Collections.Specialized.IOrderedDictionary derives from
IDictionary, but it adds a property indexer that takes an integer, as well as RemoveAt and
overloads for Insert.

❑ All collections, except BitVector, are now marked with the [Serializable] attribute.

❑ IKeyComparer is a new interface, and constructor overloads have been added to Hashtable.
If IKeyComparer is provided, the key objects in the Hashtable do not need to override
GetHashCode. This clever addition means that key comparison is completely pluggable and
multiple-key comparison implementations can be provided for the same kind of key object.

❑ The CollectionBase class now includes a property called Capacity.

Collections and List Guidance
The following table summarizes the collections discussed in this chapter, as well as a few others for you
to explore.

Collection Interfaces Why It’s Special What It’s Useful for

System.Array IList, ICollection, Most basic collection Collections of
IEnumerable type; indexing is fixed size

wickedly fast

System.Collections. IList, ICollection, Numeric indexing is Ordered lists of
ArrayList IEnumerable fast as Array; grows varying kinds of

internal array objects
automatically

System.Collections. IDictionary, Objects are indexed Whenever you need
Hashtable ICollection, by key; increases size a non-ordered,

IEnumerable automatically keyed collection

System.Collections. ICollection, First in, first out Implementing
Queue IEnumerable Queue-like behavior

System.Collections. ICollection, First in, last out Implementing
Stack IEnumerable Stack-like behavior

System.Collections. IDictionary, Hybrid of Hashtable Smaller
SortedList ICollection, and ArrayList; Hashtables where

IEnumerable sorts keys with order of keys
IComparable or matters
IComparer

System.Collections. ICollection, Tiny and very fast Instead of an array
BitArray IEnumerable of Booleans for

efficiency

System.Collections. ICollection, Faster than Very small
Specialized. IEnumerable Hashtable for small collections, less than
ListDictionary numbers of items 10 items

Table continued on following page

329

Collections and Lists

13_576100 ch10.qxd 10/6/05 9:20 PM Page 329

Collection Interfaces Why It’s Special What It’s Useful for

System.Collections. IDictionary, Stores objects in a Key collections that
Specialized. ICollection, ListDictionary may get large
HybridDictionary IEnumerable until it gets too big;

then switches to a
Hashtable

System.Collections. IList, ICollection, A strongly typed Instead of an
Specialized. IEnumerable ArrayList-like ArrayList when
StringCollection structure for strings you’re storing

strings

System.Collections. IEnumerable A strongly typed Instead of a
Specialized. Hashtable for Hashtable when
StringDictionary Strings both key and value

are strings

System.Collections. ICollection, A Hashtable where Instead of a
Specialized. IEnumerable the keys are strings Hashtable when
NameValueCollection the key is a string

and the value is an
object

Microsoft. IList, ICollection, An indexable array Visual Basic 6
VisualBasic. IEnumerable of items that is also upgrade
Collection keyed with a string compatibility

like a Hashtable

System.Collections. IDictionary, Generic version of Strongly typed
Generic. ICollection, a Hashtable Hashtable of
Dictionary<K,V> IEnumerable, objects of the same

IDictionary<K,V>, type or with a
ICollection< shared base class
KeyValuePair<K,V>>, with key objects of
ICollection< the same type, or
IEnumerable<K,V>>, with a shared base

class

System.Collections. IList<T>, Generic version of Strongly typed
Generic.List<T> ICollection<T>, an ArrayList ordered List of

IEnumerable<T>, objects of the same
IList, ICollection, type, or with a
IEnumerable shared base class

System.Collections. ICollection, Generic version of Strongly typed
Generic. IEnumerable, a Queue queue of objects of
Queue<T> ICollection<T>, the same type, or

IEnumerable<T> with a shared base
class

330

Chapter 10

13_576100 ch10.qxd 10/6/05 9:20 PM Page 330

Collection Interfaces Why It’s Special What It’s Useful for

System.Collections. ICollection, Generic version Strongly typed
Generic.Stack<T> IEnumerable, of a Stack Stack of objects of

ICollection<T>, the same type, or
IEnumerable<T> with a shared base

class

System.Collections. IDictionary, Generic version of Strongly typed
Generic. ICollection, a Hashtable with Hashtable of
SortedDictionary<K,V> IEnumerable, Keys sorted using objects of the same

IDictionary<K,V>, Icomparer type, or with a
ICollection< shared base class,
KeyValuePair<K,V>>, with sorted key
ICollection<T> objects of the same
IEnumerable<K,V>> type, or with a

shared base class

System.Collections. IList<T>, An extended version Acts as a base class
Generic. ICollection<T>, of List<T> template for custom
Collection<T> IEnumerable<T>, collections that you

IList, ICollection, create via derivation
IEnumerable

System.Collections. Ilist<T>, Derives from Similar to a
Generic. ICollection<T>, Collection<T>, Hashtable
KeyedCollection<K,T> IEnumerable<T>, adds Hashtable-like

IList, ICollection, support for keys
IEnumerable

System.Collections. ICollection<T>, Like a collection, Strongly typed
Generic. IEnumerable<T>, but each node knows LinkedList
LinkedList<T> and ICollection, about the previous
System.Collections. Ienumerable and next nodes
Generic.
LinkedListNode<T>

Summary
When you understand the building block interfaces IEnumerable, Ilist, and IDictionary that make
up System.Collections, you can use any collection class comfortably.

In this chapter, you learned how to store objects in standard System.Arrays. You stored objects in tradi-
tional collections from the System.Collection namespace but cast them back to their specific type
upon retrieval. You also explored the advanced techniques available in the specialized collections, and

331

Collections and Lists

13_576100 ch10.qxd 10/6/05 9:20 PM Page 331

you created custom strongly typed collections that can hide the casting internally and expand the collec-
tions with additional functionality. Finally, you delved into System.Collections.Generic and dis-
covered how you can have the best of both worlds with strongly typed classes via generics, as well as
less code, compile-time checking, and a syntax that is simpler to read.

As you continue to investigate collections, remember that IEnumerable and IEnumerator enable the
For Each statement, and ICollection adds support for the Count property. IList adds Add, Remove,
Contains, and other helpful methods, whereas IDictionary extends the ICollection with a default
property accessor that takes a key object and a few other methods to support key/value pairs. A clear
understanding of the responsibilities of these elemental interfaces will serve you well.

332

Chapter 10

13_576100 ch10.qxd 10/6/05 9:20 PM Page 332

Data Binding in ASP.NET 2.0

One of the most exciting features of ASP.NET 1.0/1.1 was its capability to bind entire collections of
data to controls at runtime without requiring you to write large amounts of code. The controls
understood they were data-bound and would render the appropriate HTML for each item in the
data collection. Additionally, you could bind the controls to any type of data sources, from simple
arrays to complex Oracle database query results. This was a huge step forward from ASP, in which
each developer was responsible for writing all the data access code, looping through a RecordSet,
and manually rendering the appropriate HTML code for each record of data.

In ASP.NET 2.0, Microsoft has taken the concept of data binding and expanded it to make data
binding even easier to understand and use. ASP.NET 2.0 introduces a new layer of data abstraction
called data source controls. This chapter explores all the provided data source controls, as well as
describing other ASP.NET 2.0 data-binding changes. It shows how you can use the data source
controls to easily and quickly bind data to data-bound controls. This chapter also focuses on the
power of the new data-bound List controls included in ASP.NET 2.0, such as the GridView,
DetailsView, and FormView controls. Finally, you take a look at changes in the inline data binding
syntax and inline XML data binding.

Data Source Controls
In ASP.NET 1.0/1.1, you typically performed a data-binding operation by writing some data
access code to retrieve a DataReader or a DataSet object; then you bound that data object to a
server control such as a DataGrid, DropDownList, or ListBox. If you wanted to update or delete
the bound data, you were then responsible for writing the data access code to do that. Listing 11-1
shows a typical example of a data-binding operation in ASP.NET 1.0/1.1.

14_576100 ch11.qxd 10/6/05 9:19 PM Page 333

Listing 11-1: Typical data-binding operation in ASP.NET 1.0/1.1

VB
Dim conn As New SqlConnection()
Dim cmd As New SqlCommand(“SELECT * FROM Customers”, conn)

Dim da As New SqlDataAdapter(cmd)

Dim ds As New DataSet()
da.Fill(ds)

DataGrid1.DataSource = ds
DataGrid1.DataBind()

C#
SqlConnection conn = new SqlConnection();
SqlCommand cmd = new SqlCommand(“SELECT * FROM Customers”, conn);

SqlDataAdapter da = new SqlDataAdapter(cmd);

DataSet ds = new DataSet();
da.Fill(ds);

DataGrid1.DataSource = ds;
DataGrid1.DataBind();

ASP.NET 2.0 introduces an additional layer of abstraction through the use of data source controls. As
shown in Figure 11-1, these controls abstract the use of an underlying data provider, such as the SQL Data
Provider or the OLE DB Data Provider. This means you no longer need to concern yourself with the hows
and whys of using the data providers. Instead, the data source controls do all the heavy lifting for you.
You need to know only where your data is and, if necessary, how to construct a query for performing
CRUD (Create, Retrieve, Update, and Delete) operations.

Additionally, because the data source controls all derive from the Control class, you can use them much
as you would any other Web Server control. For instance, you can define and control the behavior of the
data source control either declaratively in your HTML or programmatically. This means you can perform
all manner of data access and manipulation without ever having to write one line of code. In fact,
although you certainly can control the data source controls from code, the samples in this chapter show
you how to perform powerful database queries using nothing more than the Visual Studio 2005 wizards
and declarative syntax.

334

Chapter 11

14_576100 ch11.qxd 10/6/05 9:19 PM Page 334

Li
st

 B
ou

nd
 C

on
tr

ol
s

O
th

er
 B

ou
nd

 C
on

tr
ol

s

B
ou

nd
 C

on
tr

ol
s

(d
er

iv
ed

 f
ro

m
 D

at
aB

ou
nd

C
on

tr
ol

)

S
ite

M
ap

 D
at

a
S

ou
rc

e
O

bj
ec

t
D

at
a

S
ou

rc
e

XM
L

D
at

a
S

ou
rc

e
Ac

ce
ss

 D
at

a
S

ou
rc

e
S

Q
L

D
at

a
S

ou
rc

e

S
ite

M
ap

Pr
ov

id
er

 D
at

a
B

us
in

es
s

O
bj

ec
ts

XM
L

D
at

a
M

D
B

 D
at

a

B
ou

nd
 C

on
tr

ol
s

(d
er

iv
ed

 f
ro

m
 D

at
aB

ou
nd

C
on

tr
ol

)

D
at

a
S

ou
rc

es

O
le

D
b

O
D

B
C

S
ql

C
E

O
ra

de
S

ql
S

er
ve

r

AD
O
.N

ET
 D

at
a

Pr
ov

id
er

s

Th
e

ne
w

 D
at

a
S

ou
rc

e
C

on
tr

ol
la

ye
r

in
tr

od
uc

ed
in

 A
S

P.N
ET

 2
.0

Fi
gu

re
 1

1
-1

14_576100 ch11.qxd 10/6/05 9:19 PM Page 335

The five built-in data source controls in ASP.NET 2.0 are each used for a specific type of data access. The
following table lists and describes each data source control included in ASP.NET 2.0.

Control Name Description

SqlDataSource control Provides access to any data source that has an
ADO.NET Data Provider available; by default, the
control has access to the ODBC, OLE DB, SQL Server,
Oracle, and SQL Server CE providers

ObjectDataSource control Provides specialized data access to business objects or
other classes that return data

XmlDataSource control Provides specialized data access to XML documents,
either physically or in-memory

SiteMapDataSource control Provides specialized access to site map data for a Web
site that is stored by the site map provider

All the data source controls are derived from the DataSourceControl class, which is derived from
Control and implements the IDataSource and IListSource interfaces. This means that although
each control is designed for use with specific data sources, all data source controls share a basic set of
core functionality. It also means that it is easy for you to create your own custom data source controls
based on the structure of your specific data sources.

SqlDataSource Control
The SqlDataSource control is the data source control to use if your data is stored in a SQL Server, Oracle
Server, ODBC data source, OLE DB data source, or Windows SQL CE Database. The control provides an
easy-to-use wizard that walks you through the configuration process, or you can modify the control
manually by changing the control attributes directly in Source view. In the example presented in this
section, you walk through creating a SqlDataSource control and configuring it using the wizard. After
you complete the configuration, you examine the source code it generates.

Begin using the control by opening an .aspx page inside a Visual Studio Web site project and dragging
the SqlDataSource control from the toolbox onto the form. The Visual Studio toolbox has been divided
into functional groups so you find all the data-related controls located under the Data section.

Configuring a Data Connection
After the control has been dropped onto the Web page, you tell it what connection it should use. The
easiest way to do this is by using the Configure Data Source Wizard, shown in Figure 11-2. Launch this
wizard by selecting the Configure Data Source option from the data source control’s smart tag menu.

Once the wizard opens, you should create a connection to the Northwind database in SQL Server or
MSDE. You will use this connection for most of the demonstrations in this chapter. After the wizard
opens, you can select an existing connection from the drop-down list or create a new connection. If you
click the New Connection button, the Connection Properties dialog, shown in Figure 11-3, appears. From
here, you can set all the properties of a new database connection.

336

Chapter 11

14_576100 ch11.qxd 10/6/05 9:19 PM Page 336

Figure 11-2

Figure 11-3

337

Data Binding in ASP.NET 2.0

14_576100 ch11.qxd 10/6/05 9:19 PM Page 337

Click the Change button. From here, you can choose the specific data provider you want this connection
to use. By default, the control uses the ADO.NET SQL Data Provider; also available are Oracle, OLE DB,
ODBC, and SQL Server Mobile Edition providers.

The list of providers is generated from the data contained in the DbProviderFactory node of the
machine.config file. If you have additional providers to display in the wizard you can modify
your machine.config file to include specific providers’ information.

Next, simply fill in the appropriate information for your database connection. Click the Test Connection
button to verify that your connection information is correct, and then click OK to return to the wizard.

After you have returned to the Data Source Configuration wizard, notice that the connection you created
is now listed in the available connections drop-down list. After you select a connection string from the
drop-down, the connection information shows in the Data Connection info area. This allows you to easily
review the connection information for the Connection selected in the drop-down list.

Click the Next button to continue through the wizard. The next step allows you to choose to have the
wizard save your connection information in your web.config file to make maintenance and deployment of
your application easier. This screen allows you to specify the key under which the connection information
should be stored in the configuration file. Should you choose not to store your connection information in the
web.config file, it is stored in the actual .aspx page as a property of the SqlDataSource control.

The next step in the wizard allows you to configure the SELECT statement your data source control will
use to retrieve data from the database. This screen, shown in Figure 11-4, gives you a drop-down list of
all the tables and views available in the database that you specified in your connection information.
After you select a table or view, the list box allows you to select the column you want to include in the
query. You can select all columns available using an asterisk (*), or you can choose specific columns by
marking the check box located next to each column name. By clicking the WHERE or ORDER BY button,
it is also possible to specify WHERE clause parameters and ORDER BY parameters for your query. For now,
do not enter any additional WHERE or ORDER BY parameters.

Finally, the Advanced button contains two advanced options. You can have the wizard generate INSERT,
UPDATE, and DELETE statements for your data, based on the SELECT statement you created. You can also
configure the data source control to use Optimistic Concurrency to prevent data concurrency issues.

The final screen of the wizard allows you to preview the data selected by your data source control to
verify the query is working as you expect it to. Simply click the Finish button to complete the wizard.

338

Chapter 11

14_576100 ch11.qxd 10/6/05 9:19 PM Page 338

Figure 11-4

When you are done configuring your data connection, you can see exactly what the configured
SqlDataSource control looks like. Change to Source view in Visual Studio to see how the wizard has gen-
erated the appropriate attributes for your control. It should look something like the code in Listing 11-2.

Listing 11-2: Typical SqlDataSource control generated by Visual Studio

<asp:SqlDataSource ID=”SqlDataSource1” Runat=”server”
SelectCommand=”SELECT * FROM [Customers]”
ConnectionString=”<%$ ConnectionStrings:AppConnectionString1 %>”>

</asp:SqlDataSource>

You can see that the control uses a declarative syntax to configure which connection it should use by
creating a ConnectionString attribute, and what query to execute by creating a SelectCommand
attribute. A little later in the chapter, you look at how to configure the SqlDataSource control to execute
INSERT, UPDATE and DELETE commands as this data changes.

339

Data Binding in ASP.NET 2.0

14_576100 ch11.qxd 10/6/05 9:19 PM Page 339

Data Source Mode Property
One of many important properties of the SqlDataSource control is the DataSourceMode property. This
property enables you to tell the control if it should use a DataSet or a DataReader internally when
retrieving the data. This is important when you are designing data-driven ASP.NET pages. If you choose
to use a DataReader, data is retrieved using what is commonly known as fire hose mode, or a forward-
only, read-only cursor. This is the fastest way to read data from your data source because a DataReader
does not have the memory and processing overhead of a DataSet. But choosing to use a DataSet
makes the data source control more powerful by enabling the control to perform other operations such
as inserting, updating, or deleting data as it is changed in the DataSet. It also enables the built-in
caching capabilities of the control. Each option offers distinct advantages and disadvantages, so consider
this property carefully when designing your Web site. The default value for this property is to use a
DataSet to retrieve data. The code in Listing 11-3 shows how to add the DataSourceMode property to
your SqlDataSource control.

Listing 11-3: Adding the DataSourceMode property to a SqlDataSource control

<asp:SqlDataSource ID=”SqlDataSource1” Runat=”server”
SelectCommand=”SELECT * FROM [Customers]”
ConnectionString=”<%$ ConnectionStrings:AppConnectionString1 %>”
DataSourceMode=”DataSet”>

</asp:SqlDataSource>

Filtering Data Using SelectParameters
Of course, when selecting data from your data source, you may not want to get every single row of data
from a view or table. You want to be able to specify parameters in your query to limit the data that is
returned. The data source control allows you to do this by using the SelectParameters collection to
create parameters that it can use at runtime to alter the data that is returned from a query.

The SelectParameters collection consists of controls that derive from the Parameters class. You can
combine any number of parameter controls in the collection. The data source control then uses these to
create a dynamic SQL query. The following table lists and describes the available parameter controls.

Parameter Description

ControlParameter Uses the value of the specified control

CookieParameter Uses the key value of a cookie

FormParameter Uses the key value from the Forms collection

QuerystringParameter Uses a key value from the Querystring collection

ProfileParameter Uses a key value from the user’s profile

SessionParameter Uses a key value from the current user’s session

340

Chapter 11

14_576100 ch11.qxd 10/6/05 9:19 PM Page 340

Because all the parameter controls derive from the Parameters class, they all contain several useful
common properties. These properties are shown in the following table.

Property Description

Type Allows you to strongly type the value of the
parameter

ConvertEmptyToNull Indicates the control should convert the value
assigned to it to Null if it is equal to
System.String.Empty

DefaultValue Allows you to specify a default value for the
parameter if it is evaluated as Null

The code in Listing 11-4 shows an example of adding a QueryStringParameter control to the
SelectParameters collection of your SqlDataSource control. As you can see, the SelectCommand
query has been modified to include a WHERE clause. When you run this code, the value of the query
string field ID is bound to the @CustomerID field in your SelectCommand, allowing you to select only
those customers whose CustomerID field matches the value of the query string field.

Listing 11-4: Filtering select data using SelectParameter controls

<asp:SqlDataSource ID=”SqlDataSource1” Runat=”server”
SelectCommand=”SELECT * FROM [Customers] WHERE ([CustomerID] = @CustomerID)”
ConnectionString=”<%$ ConnectionStrings:AppConnectionString1 %>”
DataSourceMode=”DataSet”>
<SelectParameters>

<asp:QueryStringParameter Name=”CustomerID”
QueryStringField=”ID” Type=”String”>

</asp:QueryStringParameter>
</SelectParameters>

</asp:SqlDataSource>

In addition to hand-coding your SelectParameters collection, you can create parameters using the
Command and Parameter Editor dialog, which can be accessed by modifying the SelectCommand property
of the SqlDataSource control while you are viewing the Web page in design mode. Figure 11-5 shows the
Command and Parameter Editor dialog.

This dialog gives you a fast and friendly way to create SelectParameters for your query. Simply select
the Parameter source from the drop-down list and enter the required parameter data. Figure 11-5
demonstrates how to add the ControlParameter (based on the value of the querystring Field ID) to
your SqlDataSource control.

341

Data Binding in ASP.NET 2.0

14_576100 ch11.qxd 10/6/05 9:19 PM Page 341

Figure 11-5

Conflict Detection Property
The ConflictDetection property allows you to tell the SqlDataSource control what style of conflict
detection to use when updating the data. When the value is set to OverwriteChanges, the control uses
a Last in Wins style of updating data. In this style, the control overwrites any changes to data that have
been made between the time the data was retrieved by the control and the time the update is made.

If the value is set to CompareAllValues, the control compares the original data values (what was
retrieved) to the data values currently in the data store. If the data has not changed since it was
retrieved, the control allows the changes to be implemented. If the control detects differences between
the original data that was retrieved from the data store and what is currently in the data store, it does
not allow the update to continue. This could potentially occur when you have multiple users accessing
the data store and making changes to the data. In this case, another user could possibly retrieve and
change the data well before you send your own changes to the data store. If you don’t want to override
the previous user’s changes, you need to use the CompareAllValues value. Listing 11-5 shows how to
add the ConflictDetection property to the SqlDataSource control.

Listing 11-5: Adding the ConflictDetection property to a SqlDataSource control

<asp:SqlDataSource ID=”SqlDataSource1” Runat=”server”
SelectCommand=”SELECT * FROM [Customers] WHERE ([CustomerID] = @CustomerID)”
ConnectionString=”<%$ ConnectionStrings:AppConnectionString1 %>”
DataSourceMode=”DataSet”

342

Chapter 11

14_576100 ch11.qxd 10/6/05 9:19 PM Page 342

ConflictDetection=”CompareAllValues”>
<SelectParameters>

<asp:QueryStringParameter Name=”CustomerID”
QueryStringField=”id” Type=”String”>

</asp:QueryStringParameter>
</SelectParameters>

</asp:SqlDataSource>

One way to determine whether your update has encountered a concurrency error is by testing the
AffectedRows property in the SqlDataSources Updated event. Listing 11-6 shows one way to do this.

Listing 11-6: Detecting concurrency errors after updating data

VB
Protected Sub SqlDataSource1_Updated(ByVal sender as Object, _

ByVal e As System.Web.UI.WebControls.SqlDataSourceStatusEventArgs)

If (e.AffectedRows > 0) Then
Message.Text = “The record has been updated”

Else
Message.Text = “Possible concurrency violation”

End If
End Sub

C#
protected void SqlDataSource1_Updated(object sender,

SqlDataSourceStatusEventArgs e)
{

if (e.AffectedRows > 0)
Message.Text = “The record has been updated”;

else
Message.Text = “Possible concurrency violation”;

}

Although the Sql data source control is powerful, there are a number of other data source controls that
might better suite your specific data access scenario.

XmlDataSource Control
The XmlDataSource control provides you with a simple way of binding XML documents, either in-memory
or located on a physical drive. The control provides you with a number of properties that make it easy to
specify an XML file containing data and an XSLT transform file for converting the source XML into a more
suitable format. You can also provide an XPath query to select only a certain subset of data.

You can use the XmlDataSource control’s Configure Data Wizard, shown in Figure 11-6, to configure the
control.

343

Data Binding in ASP.NET 2.0

14_576100 ch11.qxd 10/6/05 9:20 PM Page 343

Figure 11-6

Listing 11-7 shows how you might consume an RSS feed from the MSDN Web site, selecting all the item
nodes within it for binding to a bound list control such as the GridView.

Listing 11-7: Using the XmlDataSource control to consume an RSS feed

<asp:XmlDataSource ID=”XmlDataSource1” Runat=”server”
DataFile=”http://msdn.microsoft.com/rss.xml”
XPath=”rss/channel/item”

</asp:XmlDataSource>

ObjectDataSource Control
The ObjectDataSource control is one of the most anticipated new data source controls in ASP.NET 2.0. It
gives you the power to bind data controls to middle-layer business objects that can be generated from
programs like O/R mappers. This was always difficult to achieve in ASP.NET 1.0/1.1, but the
ObjectDataSource control makes it easy — while maintaining the powerful features of the data source
controls such as caching and paging.

To demonstrate how to use the ObjectDataSource control, create a class in the project that represents a
customer. Listing 11-8 shows a class that you can use for this demonstration.

Listing 11-8: Creating a Customer class to demonstrate the ObjectDataSource control

VB
Public Class Customer

Private _customerID As Integer
Private _companyName As String
Private _contactName As String
Private _contactTitle As String

Public Property CustomerID() As Integer
Get

344

Chapter 11

14_576100 ch11.qxd 10/6/05 9:20 PM Page 344

Return _customerID
End Get
Set

_customerID = value
End Set

End Property

Public Property CompanyName() As Integer
Get

Return _companyName
End Get
Set

_companyName = value
End Set

End Property

Public Property ContactName() As Integer
Get

Return _contactName
End Get
Set

_contactName = value
End Set

End Property

Public Property ContactTitle() As Integer
Get

Return _contactTitle
End Get
Set

_contactTitle = value
End Set

End Property

Public Function [Select](ByVal customerID As Integer) As System.Data.DataSet
‘ You would implement logic here to reterive
‘ Customer data based on the customerID parameter

Dim ds As New System.Data.DataSet()
ds.Tables.Add(New System.Data.DataTable())
Return ds

End Function

Public Sub Insert(ByVal c As Customer)
‘ Implement Insert logic

End Sub

Public Sub Update(ByVal c As Customer)
‘ Implement Update logic

(continued)

345

Data Binding in ASP.NET 2.0

14_576100 ch11.qxd 10/6/05 9:20 PM Page 345

Listing 11-8: (continued)

End Sub

Public Sub Delete(ByVal c As Customer)
‘ Implement Delete logic

End Sub

End Class

C#
public class Customer
{

private int _customerID;
private string _companyName;
private string _contactName;
private string _contactTitle;

public int CustomerID
{

get
{

return _customerID;
}

set
{

_customerID = value;
}

}

public string CompanyName
{

get
{

return _companyName;
}

set
{

_companyName = value;
}

}

public string ContactName
{

get
{

return _contactName;
}

set
{

_contactName = value;

346

Chapter 11

14_576100 ch11.qxd 10/6/05 9:20 PM Page 346

}
}

public string ContactTitle
{

get
{

return _contactTitle;
}

set
{

_contactTitle = value;
}

}

public Customer()
{
}

public System.Data.DataSet Select(Int32 customerId)
{

// Implement logic here to retrieve the Customer
// data based on the methods customerId parameter

System.Data.DataSet ds = new System.Data.DataSet();
ds.Tables.Add(new System.Data.DataTable());
return new ds;

}

public void Insert(Customer c)
{

// Implement Insert logic
}

public void Update(Customer c)
{

// Implement Update logic
}

public void Delete(Customer c)
{

// Implement Delete logic
}

}

To start using the ObjectDataSource, drag the control onto the designer surface. Using the control’s
smart tag, load the configuration wizard by selecting the Configure Data Source option. After the wizard
opens, it asks you to select the business object you want to use as your data source. The drop-down list
shows all the classes located in the App_Code folder of your Web site that can be successfully compiled.
In this case, you want to use the Customer class shown in Listing 11-8.

347

Data Binding in ASP.NET 2.0

14_576100 ch11.qxd 10/6/05 9:20 PM Page 347

Click the Next button, and the wizard asks you to specify which methods it should use for the CRUD
operations it can perform: SELECT, INSERT, UPDATE and DELETE. Each tab lets you select a specific
method located in your business class to perform the specific action. Figure 11-7 shows that you want
the control to use a method called Select() to retrieve data.

Figure 11-7

The methods the ObjectDataSource uses to perform CRUD operations must follow certain rules in order
for the control to understand. For instance, the control’s SELECT method must return a DataSet,
DataReader, or a strongly typed collection. Each of the control’s operation tabs explains what the control
expects of the method you specify for it to use. Additionally, if a method does not conform to the rules
that specific operation expects, it is not listed in the drop-down list on that tab.

Finally, if your SELECT method contains parameters, the wizard lets you create SelectParameters you
can use to provide the method parameter data.

When you have completed configuring the ObjectDataSource, you should have code in your page source
like that shown in Listing 11-9.

Listing 11-9: The ObjectDataSource code generated by the configuration wizard

<asp:ObjectDataSource ID=”ObjectDataSource1” runat=”server” DeleteMethod=”Delete”
InsertMethod=”Insert” SelectMethod=”Select” TypeName=”Customer”
UpdateMethod=”Update”>
<SelectParameters>

<asp:QueryStringParameter Name=”customerID” QueryStringField=”ID”
Type=”Int32” />

</SelectParameters>
</asp:ObjectDataSource>

348

Chapter 11

14_576100 ch11.qxd 10/6/05 9:20 PM Page 348

As you can see, the wizard has generated the attributes for the SELECT, UPDATE, INSERT and DELETE
methods you specified in the wizard. Also notice that it has added the Select parameter. Depending on
your application, you could change this to any of the Parameter objects discussed earlier, such as a
ControlParameter or QuerystringParameter object.

SiteMapDataSource Control
The SiteMapDataSource enables you to work with data stored in your Web site’s SiteMap configuration
file if you have one. This can be useful if you are changing your site map data at runtime, perhaps based
on user privilege or status.

Note two items regarding the SiteMapDataSource control. First, it does not support any of the data caching
options that exist in the other data source controls provided, so you cannot natively cache your sitemap
data. Second, the SiteMapDataSource control does not have any configuration wizards like the other data
source controls. This is because the SiteMap control can be bound only to the SiteMap configuration data
file of your Web site, so no other configuration is possible.

Listing 11-10 shows an example of using the SiteMap control.

Listing 11-10: Using the SiteMapDataSource control

<asp:SiteMapDataSource ID=”SiteMapDataSource1” Runat=”server” />

Using the SiteMapDataSource control is discussed in greater detail in Chapter 14.

Configuring Data Source Control Caching
Caching is now automatically built into all the data source controls except the SiteMapDataSource
Control. This means that you can easily configure and control data caching using the same declarative
syntax. All data source controls (except the SiteMap control) enable you to create basic caching policies
including a cache direction, expiration policies, and key dependencies.

Remember that the SqlDataSource control’s caching features are available only if you have set the
DataSourceMode property to DataSet. If it is set to DataReader, the control throws a
NotSupportedException.

Cache duration can be set to a specific length of time, such as 3600 seconds (60 minutes), or you can set it
to Infinite to force the cached data never to expire. Listing 11-11 shows how you can easily add
caching features to a data source control.

Listing 11-11: Enabling caching on a SqlDataSource control

<asp:SqlDataSource ID=”SqlDataSource1” Runat=”server”
SelectCommand=”SELECT * FROM [Customers]”
ConnectionString=”<%$ ConnectionStrings:AppConnectionString1 %>”
DataSourceMode=”DataSet”
ConflictDetection=”CompareAllValues”
EnableCaching=”True” CacheKeyDependency=”SomeKey” CacheDuration=”Infinite”>

349

Data Binding in ASP.NET 2.0

14_576100 ch11.qxd 10/6/05 9:20 PM Page 349

<SelectParameters>
<asp:QueryStringParameter Name=”CustomerID”

QueryStringField=”id” Type=”String”></asp:QueryStringParameter>
</SelectParameters>

</asp:SqlDataSource>

Some controls also extend this core set of caching features with additional caching functionality specific
to their data sources. For instance, if you are using the SqlDataSource control, you can use the
SqlCacheDependacy property to create SQL dependencies. You can learn more about ASP.NET 2.0
caching features in Chapter 20.

Storing Connection Information
In ASP.NET 1.0/1.1, Microsoft introduced the web.config file as a way of storing application configuration
data in a readable and portable format. Many people quickly decided that the web.config file was a great
place to store things like the database connection information their applications use. It was easy to access
from within the application, created a single central location for the configuration data, and it was a cinch to
change just by editing the XML.

Although all those advantages were great, several drawbacks existed. First, none of the information in
the web.config file can be strongly typed. It was, therefore, difficult to find data type problems within
the application until a runtime error occurred. It also meant that developers were unable to use the
power of IntelliSense to facilitate development. A second problem was that although the web.config
file was secured from access by browsers (it cannot be served up by Internet Information Server), the
data within the file was clearly visible to anyone who had file access to the Web server.

In ASP.NET 2.0, Microsoft has tried to address these shortcomings in the web.config file. Because
database connection information is so frequently stored in the web.config file, you now have an entirely
new configuration section in that file, <connectionStrings>, specifically for storing the connection
string information.

If you examine your web.config file, you should see at least one connection string already in the
<connectionStrings> section because our example told the Data Connection Wizard to store connections
in the web.config file. Listing 11-12 shows how ASP.NET stores a connection string.

Listing 11-12: A typical connection string saved in the web.config file

<connectionStrings>
<add name=”AppConnectionString1” connectionString=”Server=localhost;

User ID=sa;Password=password;Database=Northwind;
Persist Security Info=True” providerName=”System.Data.SqlClient” />

</connectionStrings>

350

Chapter 11

14_576100 ch11.qxd 10/6/05 9:20 PM Page 350

Using a separate configuration section has several advantages. First, .NET 2.0 now exposes the
ConnectionString section using the ConnectionStringSettings class. This class contains a collection
of all the connection strings entered in your web.config file and allows you to add, modify, or remove
connection strings at runtime. Listing 11-13 shows how you can access and modify connection strings at
runtime.

Listing 11-13: Modifying connection string properties at runtime

VB
<%@ Page Language=”VB” %>

<script runat=”server”>

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)

If (Not Page.IsPostBack) Then
‘ Create a new ConnectionStringSettings object and populate it
Dim conn As New ConnectionStringSettings()
conn.ConnectionString = _

“Server=localhost;User ID=sa;Password=password” & _
“Database=Northwind;Persist Security Info=True”

conn.Name = “AppConnectionString1”
conn.ProviderName = “System.Data.SqlClient”

‘ Add the new connection string to the web.config
ConfigurationManager.ConnectionStrings.Add(conn)

End If

End Sub

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Modifying the Connection String</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:SqlDataSource ID=”SqlDataSource1” Runat=”server”>
</asp:SqlDataSource>

</div>
</form>

</body>
</html>

C#
<%@ Page Language=”C#” %>

<script runat=”server”>

protected void Page_Load(object sender, EventArgs e)

(continued)

351

Data Binding in ASP.NET 2.0

14_576100 ch11.qxd 10/6/05 9:20 PM Page 351

Listing 11-13: (continued)

{

if (!Page.IsPostBack)

{
// Create a new ConnectionStringSettings object and populate it
ConnectionStringSettings conn = new ConnectionStringSettings();
conn.ConnectionString =

“Server=localhost;User ID=sa;Password=password; “ +
“Database=Northwind;Persist Security Info=True”;

conn.Name = “AppConnectionString1”;
conn.ProviderName = “System.Data.SqlClient”;

// Add the new connection string to the web.config
ConfigurationManager.ConnectionStrings.Add(conn);

}
}

</script>

As you can see, the ConfigurationManager class now has a ConnectionStrings collection property in
addition to the AppSettings collection used in ASP.NET 1.0. This new collection contains all the connection
strings for your application.

Additionally, ASP.NET 2.0 makes it much easier to build connection strings using strongly typed properties
at runtime, and easier to add them to the web.config file. Using the new SqlConnectionStringBuilder
class, you can build connection strings and then add them to your ConnectionStringSettings collection.
Listing 11-14 shows how you can use the ConnectionStringBuilder class to dynamically assemble
connection strings at runtime and save them to your web.config file.

Listing 11-14: Building connection strings using ConnectionStringBuilder

VB
‘ Retrieve an existing connection string into a Connection String Builder
Dim builder As New System.Data.SqlClient.SqlConnectionStringBuilder()

‘ Change the connection string properties
builder.DataSource = “localhost”
builder.InitialCatalog = “Northwind1”
builder.UserID = “sa”
builder.Password = “password”
builder.PersistSecurityInfo = true

‘ Save the connection string back to the web.config
ConfigurationManager.ConnectionStrings(“AppConnectionString1”).ConnectionString = _

builder.ConnectionString

C#
// Retrieve an existing connection string into a Connection String Builder
System.Data.SqlClient.SqlConnectionStringBuilder builder = new

352

Chapter 11

14_576100 ch11.qxd 10/6/05 9:20 PM Page 352

System.Data.SqlClient.SqlConnectionStringBuilder();

// Change the connection string properties
builder.DataSource = “localhost”;
builder.InitialCatalog = “Northwind1”;
builder.UserID = “sa”;
builder.Password = “password”;
builder.PersistSecurityInfo = true;

// Save the connection string back to the web.config
ConfigurationManager.ConnectionStrings[“AppConnectionString1”].ConnectionString =

builder.ConnectionString;

Using Bound List Controls with Data Source
Controls

The new data source controls really shine when you combine them with the Bound List controls
included in ASP.NET 2.0. This combination allows you to declaratively bind your data source to a
bound control without ever writing a single line of C# or VB code.

Fear not, those of you who like to write code. You can still use the familiar DataBind() method to bind
data to the list controls. In fact, that method has even been enhanced to include a Boolean overload that
allows you to turn the data-binding events on or off. This enables you improve the performance of your
application if you are not using any of the binding events.

GridView
With ASP.NET 1.0/1.1, Microsoft introduced a new set of server controls designed to make developers
more productive. One of the most popular controls was the DataGrid. With this one control, you could
display an entire collection of data, easily add sorting and paging, and perform inline editing. Although
this new functionality was great, many of the tasks still required that the developer write a significant
amount of code to take advantage of this advanced functionality.

With ASP.NET 2.0, Microsoft has taken the basic DataGrid and enhanced it, creating a new server control
called the GridView. This new control makes it even easier to use those advanced DataGrid features, mostly
without having to write one line of code. It even adds a number of new features.

Displaying Data with the GridView
Start using the GridView by dragging the control onto the designer surface of an ASP.NET Web page.
You are prompted to select a data source control to bind to the grid. In this sample, you use the
SqlDataSource control created earlier in the chapter.

After you assign the GridView a data source, notice a number of changes. First, the GridView changes its
design-time display to reflect the data exposed by the data source control assigned to it. Should the schema
of the data behind the data source control ever change, you can use the GridView’s Refresh Schema option
to force the grid to redraw itself based on the new data schema. Second, the GridView’s smart tag now has
additional options for formatting, paging, sorting, and selection.

353

Data Binding in ASP.NET 2.0

14_576100 ch11.qxd 10/6/05 9:20 PM Page 353

Switch the page to Source view in Visual Studio to examine GridView’s code. Listing 11-15 shows the
code generated by Visual Studio.

Listing 11-15: Using the GridView control in an ASP.NET Web page

<html>
<head runat=”server”>

<title>Using the GridView server control</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:GridView ID=”GridView1” Runat=”server” DataSourceID=”SqlDataSource1”
DataKeyNames=”CustomerID” AutoGenerateColumns=”False”>

<Columns>
<asp:BoundField ReadOnly=”True” HeaderText=”CustomerID”

DataField=”CustomerID”
SortExpression=”CustomerID”></asp:BoundField>

<asp:BoundField HeaderText=”CompanyName” DataField=”CompanyName”
SortExpression=”CompanyName”></asp:BoundField>

<asp:BoundField HeaderText=”ContactName” DataField=”ContactName”
SortExpression=”ContactName”></asp:BoundField>

<asp:BoundField HeaderText=”ContactTitle” DataField=”ContactTitle”
SortExpression=”ContactTitle”></asp:BoundField>

<asp:BoundField HeaderText=”Address” DataField=”Address”
SortExpression=”Address”></asp:BoundField>

<asp:BoundField HeaderText=”City” DataField=”City”
SortExpression=”City”></asp:BoundField>

<asp:BoundField HeaderText=”Region” DataField=”Region”
SortExpression=”Region”></asp:BoundField>

<asp:BoundField HeaderText=”PostalCode” DataField=”PostalCode”
SortExpression=”PostalCode”></asp:BoundField>

<asp:BoundField HeaderText=”Country” DataField=”Country”
SortExpression=”Country”></asp:BoundField>

<asp:BoundField HeaderText=”Phone” DataField=”Phone”
SortExpression=”Phone”></asp:BoundField>

<asp:BoundField HeaderText=”Fax” DataField=”Fax”
SortExpression=”Fax”></asp:BoundField>

</Columns>
</asp:GridView>

<asp:SqlDataSource ID=”SqlDataSource1” Runat=”server”
SelectCommand=”SELECT * FROM [Customers]”
ConnectionString=”<%$ ConnectionStrings:AppConnectionString1 %>”
DataSourceMode=”DataSet”
ConflictDetection=”CompareAllValues” EnableCaching=”True”
CacheKeyDependency=”MyKey” CacheDuration=”Infinite”>

</asp:SqlDataSource>
</div>
</form>

</body>
</html>

354

Chapter 11

14_576100 ch11.qxd 10/6/05 9:20 PM Page 354

Figure 11-8 shows what your Web page looks like when you execute the code in the browser.

Figure 11-8

Enabling GridView Column Sorting
The capability to sort data is one of the most basic tools users have to navigate through a significant amount
of data. The DataGrid control made sorting columns in a grid a relatively easy task, but the GridView
control takes it one step further. Unlike using the DataGrid, where you are responsible for coding the sort
routine, to enable column sorting in this grid, you just set the AllowSorting attribute to True. The control
takes care of all the sorting logic for you internally. Listing 11-16 shows how to add this attribute to your grid.

Listing 11-16: Adding sorting to the GridView control

<asp:GridView ID=”GridView1” Runat=”server” DataSourceID=”SqlDataSource1”
DataKeyNames=”CustomerID” AutoGenerateColumns=”False”
AllowSorting=”True”>

After enabling sorting, you see that all grid columns have now become hyperlinks. Clicking a column
header sorts that specific column. Figure 11-9 shows your grid after the data has been sorted by country.

355

Data Binding in ASP.NET 2.0

14_576100 ch11.qxd 10/6/05 9:20 PM Page 355

Figure 11-9

GridView sorting has also been enhanced in a number of other ways. The grid can handle both ascending
and descending sorting. If you repeatedly click the column head, you cause the sort order to switch back
and forth between ascending and descending. The GridView’s Sort method can also accept multiple
SortExpressions to enable multicolumn sorting. Listing 11-17 shows how you can use the GridView’s
sorting event to implement a multicolumn sort.

Listing 11-17: Adding multicolumn sorting to the GridView

VB
<script runat=”server”>

Protected Sub GridView1_Sorting(ByVal sender As Object, _
ByVal e As GridViewSortEventArgs)

Dim oldExpression As String = GridView1.SortExpression
Dim newExpression As String = e.SortExpression

If (oldExpression.IndexOf(newExpression) < 0) Then

356

Chapter 11

14_576100 ch11.qxd 10/6/05 9:20 PM Page 356

If (oldExpression.Length > 0) Then
e.SortExpression = newExpression & “,” & oldExpression

Else
e.SortExpression = newExpression

End If
Else

e.SortExpression = oldExpression
End If

End Sub
</script>

C#
<script runat=”server”>

protected void GridView1_Sorting(object sender, GridViewSortEventArgs e)
{

string oldExpression = GridView1.SortExpression;
string newExpression = e.SortExpression;

if (oldExpression.IndexOf(newExpression) < 0)
{

if (oldExpression.Length > 0)
e.SortExpression = newExpression + “,” + oldExpression;

else
e.SortExpression = newExpression;

}
else
{

e.SortExpression = oldExpression;
}

}
</script>

Enabling the GridView Pager
Another common grid navigation feature that the GridView greatly improves on is paging. Although
implementing paging using a DataGrid greatly simplified paging (especially in comparison to paging in
ASP), the GridView makes it even easier with its AllowPaging attribute. This attribute can be set either
by adding the attribute to the GridView control in HTML mode or by checking the Enable Paging check
box in the GridView’s smart tag. Enabling paging in the GridView control defaults to a page size of 10
records and adds the Pager to the bottom of the grid. Listing 11-18 shows an example of modifying your
grid to enable paging.

Listing 11-18: Enabling paging on the GridView control

<asp:GridView ID=”GridView1” Runat=”server” DataSourceID=”SqlDataSource1”
DataKeyNames=”CustomerID” AutoGenerateColumns=”False”
AllowSorting=”True” AllowPaging=”True”>

357

Data Binding in ASP.NET 2.0

14_576100 ch11.qxd 10/6/05 9:20 PM Page 357

Enabling paging in your GridView creates a page that looks like Figure 11-10.

Figure 11-10

As with the DataGrid, the GridView allows most of the paging options to be customized. For instance,
the PagersSettings-Mode attribute allows you to dictate how the grid’s Pager is displayed using the
various Pager modes including NextPrevious, NextPreviousFirstLast, Numeric (the default
value), or NumericFirstLast. Additionally, by specifying the PagerStyle element in the GridView,
you can customize how the grid displays the Pager text, including font color, size, and type, as well as
text alignment and a variety of other style options. Listing 11-19 shows how you might customize
your GridView control to use the NextPrevious mode and style the Pager text using the PagerStyle
element. Also, you can control the number of records displayed on the page using the GridView’s
PageSize attribute.

358

Chapter 11

14_576100 ch11.qxd 10/6/05 9:20 PM Page 358

Listing 11-19: Using the PagerStyle and PagerSettings objects in the GridView control

<asp:GridView ID=”GridView1” Runat=”server” DataSourceID=”SqlDataSource1”
DataKeyNames=”CustomerID” AutoGenerateColumns=”False”
AllowSorting=”True” AllowPaging=”True” PageSize=”10”>
<PagerStyle HorizontalAlign=”Center”></PagerStyle>
<PagerSettings Position=”TopAndBottom”

FirstPageText=”Go to the first page”
LastPageText=”Go to the last page” Mode=”NextPreviousFirstLast”>

</PagerSettings>

Figure 11-11 shows the grid after you change several style options and set the PagerSettings-Mode to
NextPreviousFirstLast.

Figure 11-11

359

Data Binding in ASP.NET 2.0

14_576100 ch11.qxd 10/6/05 9:20 PM Page 359

The GridView has a multitude of other Pager and Pager style options that we encourage you to experi-
ment with. Because the list of PagerSetting and PagerStyle options is so long, all options are not
listed here. You can find a full list of the options in the Visual Studio Help documents.

Another interesting feature of column generation is the capability to specify what the GridView should
display when it encounters a Null value within the column. For an example of this, add a column using
an additional <asp:BoundField> control, as shown in Listing 11-20.

Listing 11-20: Using the Null value

<asp:BoundField HeaderText=”Region” NullDisplayText=”N/A”
DataField=”Region” SortExpression=”Region”></asp:BoundField>

In this example, the <asp:BoundField> element displays the Region column from the Customers table.
As you look through the data in the Region section, notice that not every row has a value in it. If you
don’t want to display just a blank box to show an empty value, you can use some text in place of the
empty items in the column. For this, you utilize the NullDisplayText attribute. The String value it
provides is used for each and every row that doesn’t have a Region value. This construct produces the
results illustrated in Figure 11-12.

Figure 11-12

360

Chapter 11

14_576100 ch11.qxd 10/6/05 9:20 PM Page 360

Customizing Columns in the GridView
Frequently, the data in your grid is not simply text data, but data that you either want to display using
other types of controls or don’t want to display at all. For instance, you have been retrieving the
CustomerID as part of your SELECT query and displaying it in your grid. By default, the GridView control
displays all columns returned as part of a query. But rather than automatically displaying the
CustomerID, it might be better to hide that data from the end user. Or perhaps you are also storing the
corporate URL for all your customers and want the CustomerName column to hyperlink directly to their
Web sites. The GridView gives you great flexibility and power regarding how you display the data in
your grid.

The GridView automatically converts columns with a data type of bit or Boolean to a CheckBoxField.

You can edit your GridView columns in two ways. You can select the Edit Columns option from the
GridView smart tag. This link allows you to edit any existing columns in your grid using the Fields
dialog window, shown in Figure 11-13. From here you can change a column’s visibility, header text,
the usual style options, and many other properties of the column.

Figure 11-13

361

Data Binding in ASP.NET 2.0

14_576100 ch11.qxd 10/6/05 9:20 PM Page 361

Selecting the Add New Column link from the GridView control’s smart tag displays another easy form —
the Add Field dialog (shown in Figure 11-14) — with options allowing you to add completely new columns
to your grid. Depending on which column field type you select from the drop-down list, the dialog pre-
sents you with the appropriate options for that column type. In this case, you want to add a hyperlink; so
you select the HyperLinkField from the drop-down list. The Add Field dialog changes and lets you enter in
the hyperlink information, including the URL, the data field, and a formatter string for the column.

Figure 11-14

The Add Field dialog lets you select one of the Field types described in the following table.

Field Control Description

BoundField Displays the value of a field in a data source. This is the default
column type of the GridView control.

CheckBoxField Displays a check box for each item in the GridView control.
This column field type is commonly used to display fields with
a Boolean value.

HyperLinkField Displays the value of a field in a data source as a hyperlink.
This column field type allows you to bind a second field to the
hyperlink’s URL.

ButtonField Displays a command button for each item in the GridView con-
trol. This allows you to create a column of custom button con-
trols, such as the Add or the Remove button.

362

Chapter 11

14_576100 ch11.qxd 10/6/05 9:20 PM Page 362

Field Control Description

CommandField Represents a special field that displays command buttons to
perform select, edit, insert, or delete operations in a data-
bound control.

ImageField Automatically displays an image when the data in the field
represents an image.

TemplateField Displays user-defined content for each item in the GridView
control according to a specified template. This column field
type allows you to create a custom column field.

You can also change the grid columns in the Source view. Listing 11-21 shows how you can add a
HyperLinkField. Note that by providing a comma-delimited list of data field names, you can actually
specify multiple data fields to bind to this column. You can then use these fields in your formatting
string to pass two query string parameters, which is a new feature in ASP.NET 2.0.

Listing 11-21: Adding a HyperlinkField control to the GridView

<asp:HyperLinkField HeaderText=”CompanyName”
DataNavigateUrlFields=”CustomerID,Country” SortExpression=”CompanyName”
DataNavigateUrlFormatString=

“http://www.foo.com/Customer.aspx?id={0}&country={1}”
DataTextField=”CompanyName”>

</asp:HyperLinkField>

Editing GridView Row Data
Not only do users want to view the data in their browser, but they also want to be able to edit the data
and save changes back to the data store. Adding editing capabilities to the DataGrid was never easy, but
it was important enough that developers frequently attempted to do so.

The GridView control makes it very easy to edit the data contained in the grid. To demonstrate just how
easy it is, you can modify the existing grid so you can edit the customer data it contains. First, modify
your existing SqlDataSource control by adding an UpdateCommand attribute. This tells the data source
control what SQL it should execute when it is requested to perform an update. Listing 11-22 shows the
code to add the UpdateCommand attribute.

Listing 11-22: Adding an UpdateCommand to a SqlDataSource control

<asp:SqlDataSource ID=”SqlDataSource1” Runat=”server”
SelectCommand=”SELECT * FROM [Customers]”
ConnectionString=”<%$ ConnectionStrings:AppConnectionString1 %>”
DataSourceMode=”DataSet”
UpdateCommand=”UPDATE [Customers] SET [CompanyName] = @CompanyName,

[ContactName] = @ContactName, [ContactTitle] = @ContactTitle,
[Address] = @Address, [City] = @City, [Region] = @Region,
[PostalCode] = @PostalCode, [Country] = @Country, [Phone] = @Phone,
[Fax] = @Fax WHERE [CustomerID] = @original_CustomerID”>

363

Data Binding in ASP.NET 2.0

14_576100 ch11.qxd 10/6/05 9:20 PM Page 363

Notice that the UpdateCommand includes a number of parameters like @CompanyName, @Country,
@Region, and @CustomerID. These are placeholders for the corresponding information that will come
from the selected row in GridView. In order to use the parameters, you must define them using the
UpdateParameters element of the SqlDataSource control. The UpdateParameters element, shown in
Listing 11-23, works much like the SelectParameters element discussed earlier in the chapter.

Listing 11-23: Adding UpdateParameters to the SqlDataSource control

<asp:SqlDataSource ID=”SqlDataSource1” Runat=”server”
SelectCommand=”SELECT * FROM [Customers]”
ConnectionString=”<%$ ConnectionStrings:AppConnectionString1 %>”
DataSourceMode=”DataSet”
UpdateCommand=”UPDATE [Customers] SET [CompanyName] = @CompanyName,

[ContactName] = @ContactName, [ContactTitle] = @ContactTitle,
[Address] = @Address, [City] = @City, [Region] = @Region,
[PostalCode] = @PostalCode, [Country] = @Country, [Phone] = @Phone,
[Fax] = @Fax WHERE [CustomerID] = @original_CustomerID”>

<UpdateParameters>
<asp:Parameter Type=”String” Name=”CompanyName”></asp:Parameter>
<asp:Parameter Type=”String” Name=”ContactName”></asp:Parameter>
<asp:Parameter Type=”String” Name=”ContactTitle”></asp:Parameter>
<asp:Parameter Type=”String” Name=”Address”></asp:Parameter>
<asp:Parameter Type=”String” Name=”City”></asp:Parameter>
<asp:Parameter Type=”String” Name=”Region”></asp:Parameter>
<asp:Parameter Type=”String” Name=”PostalCode”></asp:Parameter>
<asp:Parameter Type=”String” Name=”Country”></asp:Parameter>
<asp:Parameter Type=”String” Name=”Phone”></asp:Parameter>
<asp:Parameter Type=”String” Name=”Fax”></asp:Parameter>
<asp:Parameter Type=”String” Name=”CustomerID”></asp:Parameter>

</UpdateParameters>
</asp:SqlDataSource>

Within the UpdateParameters element, each named parameter is defined using the <asp:Parameter>
element. This element uses two attributes that define the name and the data type of the parameter. In
this case, all the parameters are of type String. Remember that you can also use any of the Parameter
controls mentioned earlier in the chapter, such as the ControlParameter or QuerystringParameter
in the UpdateParameters element.

Next, you give the grid a column it can use to trigger editing of a data row. You can do this in several
ways. First, you can use the GridView’s AutoGenerateEditButton attribute. When set to True, this
attribute tells the grid to add to itself a ButtonField column with an Edit button for each data row.
Listing 11-24 shows how to add the AutoGenerateEditButton attribute to the GridView control.

Listing 11-24: Adding the AutoGenerateEditButton attribute to a SqlDataSource control

<asp:GridView ID=”GridView1” Runat=”server” DataSourceID=”SqlDataSource1”
DataKeyNames=”CustomerID” AutoGenerateColumns=”False”
AllowSorting=”True” AllowPaging=”True”
AutoGenerateEditButton=”true”>

The GridView control also includes AutoGenerateSelectButton and AutoGenerateDeleteButton
attributes, which allow you to easily add Row Selection and Row Deletion capabilities to the grid.

364

Chapter 11

14_576100 ch11.qxd 10/6/05 9:20 PM Page 364

A second way to add an Edit button is to add a CommandField column. This is shown in Listing 11-25.

Listing 11-25: Adding edit functionality using a CommandField control

<asp:CommandField ShowHeader=”True” HeaderText=”Command”
ShowEditButton=”True”></asp:CommandField>

Notice that you add the ShowEditButton attribute to the CommandField to indicate that you want to
display the Edit command in this column. You can control how the command is displayed in the grid
using the ButtonType attribute, which allows you to display the command as a link, a button, or even
an image. Figure 11-15 shows what the grid looks like after adding the CommandField with the Edit
command displayed.

Figure 11-15

365

Data Binding in ASP.NET 2.0

14_576100 ch11.qxd 10/6/05 9:20 PM Page 365

Now if you browse to your Web page, you see that a new Edit column has been added. Clicking the Edit
link allows the user to edit the contents of that particular data row.

The CommandField element also has attributes that allow you to control exactly what is shown in the
column. You can dictate whether the column displays commands like Cancel, Delete, Edit, Insert, and
Select.

With the Edit CommandField enabled, you still have one more attribute to be set in order to enable the
grid to perform the UPDATE SQL command. You tell the grid which SQL columns are serving as your pri-
mary keys. You can accomplish this by using the DataKeyNames attribute, as illustrated in Listing 11-26.

Listing 11-26: Turning off AutoGenerateColumns in the GridView control

<asp:GridView ID=”GridView1” Runat=”server” DataSourceID=”SqlDataSource1”
DataKeyNames=”CustomerID” AutoGenerateColumns=”False”
AllowSorting=”True” AllowPaging=”True”
AutoGenerateEditButton=”true”>

You can specify more than one primary key column by setting the attribute to a comma-delimited list.

Notice that when you add the edit capabilities to the grid, by default it allows all displayed columns to
be edited. You probably won’t always want this to be the case. You can control which columns the grid
allows to be edited by adding the ReadOnly attribute to the columns that you do not want users to edit.
Listing 11-27 shows how you can add the ReadOnly attribute to the ID column.

Listing 11-27: Adding the ReadOnly attribute to a BoundField

<asp:BoundField ReadOnly=”True” HeaderText=”CustomerID” DataField=”CustomerID”
SortExpression=”CustomerID” Visible=”False”></asp:BoundField>

Now if you browse to the Web page again and click the Edit button, you should see that the ID column
is not editable. This is shown in Figure 11-16.

Handling Errors When Updating Data
As much as you try to prevent them, errors happen when you save data. If you allow your users to
update data in your GridView control, you should implement a bit of error trapping to make sure errors
do not bubble up to the user.

366

Chapter 11

14_576100 ch11.qxd 10/6/05 9:20 PM Page 366

Figure 11-16

To check for errors when updating data through the GridView, you can use the RowUpdated event.
Listing 11-28 shows how to check for errors after a user has attempted to update data. In this scenario, if
an error does occur, you simply display a message to the user in a Label.

Listing 11-28: Checking for Update errors using the RowUpdated event

VB
<script runat=”server”>

Protected Sub GridView1_RowUpdated(ByVal sender As Object, _
ByVal e As System.Web.UI.WebControls.GridViewUpdatedEventArgs)

If (Not IsDBNull(e.Exception)) Then

(continued)

367

Data Binding in ASP.NET 2.0

14_576100 ch11.qxd 10/6/05 9:20 PM Page 367

Listing 11-28: (continued)

Me.lblErrorMessage.Text = e.Exception.Message
End If

End Sub
</script>

C#
<script runat=”server”>

protected void GridView1_RowUpdated(object sender, GridViewUpdatedEventArgs e)
{

if (e.Exception != null)
{

this.lblErrorMessage.Text = e.Exception.Message;
}

}
</script>

Deleting GridView Data
Deleting data from the table produced by the GridView is even easier than editing data. Just a few additions
to the code enable you to delete an entire row of data from the table. Much like with the Edit buttons you
added earlier, you can easily add a Delete button to the grid by setting the AutoGenerateDeleteButton
attribute to True. This is shown in Listing 11-29.

Listing 11-29: Adding a delete link to the GridView

<asp:GridView ID=”GridView1” Runat=”server” DataSourceID=”SqlDataSource1”
DataKeyNames=”CustomerID” AutoGenerateColumns=”False”
AllowSorting=”True” AllowPaging=”True”
AutoGenerateEditButton=”true” AutoGenerateDeleteButton=”true”>

The addition of the AutoGenerateDeleteButton attribute to the GridView is the only change you
make to this control. Now look at the SqlDataSource control. Listing 11-30 shows you the root element
of this control.

Listing 11-30: Adding delete functionality to the SqlDataSource Control

<asp:SqlDataSource ID=”SqlDataSource1” Runat=”server”
SelectCommand=”SELECT * FROM [Customers]”
ConnectionString=”<%$ ConnectionStrings:AppConnectionString1 %>”
DataSourceMode=”DataSet”
DeleteCommand=”DELETE From Customers WHERE (CustomerID = @CustomerID)”
UpdateCommand=”UPDATE [Customers] SET [CompanyName] = @CompanyName,

[ContactName] = @ContactName, [ContactTitle] = @ContactTitle,
[Address] = @Address, [City] = @City, [Region] = @Region,
[PostalCode] = @PostalCode, [Country] = @Country, [Phone] = @Phone,
[Fax] = @Fax WHERE [CustomerID] = @original_CustomerID”>

368

Chapter 11

14_576100 ch11.qxd 10/6/05 9:20 PM Page 368

In addition to the SelectCommand and UpdateCommand attributes, you also add the DeleteCommand
attribute to the SqlDataSource and provide the SQL command that deletes the specified row. Just like
the UpdateCommand attribute, the DeleteCommand attribute makes use of named parameters. Because
of this, you define this parameter from within the SqlDataSource control. To do this, add a
<DeleteParameters> section to the SqlDataSource control. This is shown in Listing 11-31.

Listing 11-31: Adding a <DeleteParameters> section to the SqlDataSource control

<DeleteParameters>
<asp:Parameter Name=”CustomerID” Type=”String”>
</asp:Parameter>

</DeleteParameters>

This is the only parameter definition needed for the <DeleteParameters> section because the SQL
command for this deletion requires only the CustomerID from the row to delete the entire row.

When you run the example with this code in place, you see a Delete link next to the Edit link. Clicking the
Delete link completely deletes the selected row. Remember that it is a good idea to check for database
errors after you complete the deletion. Listing 11-32 shows how you can use the GridViews RowDeleted
event and the SqlDataSources Deleted event to check for errors that might have occurred during the
Delete.

Notice that both events provide Exception properties to you as part of the event arguments. If the properties
are not empty, then an exception occurred that you can handle. If you do choose to handle the exception,
then you should set the ExceptionHandled property to True; otherwise, the Exception will continue to
bubble up to the end user.

Listing 11-32: Using the RowDeleted event to catch SQL errors

VB
<script runat=”server”>

Protected Sub GridView1_RowDeleted(ByVal sender As Object, _
ByVal e As GridViewDeletedEventArgs)

If (Not IsDBNull(e.Exception)) Then
Me.lblErrorMessage.Text = e.Exception.Message
e.ExceptionHandled = True

End If
End Sub

Protected Sub SqlDataSource1_Deleted(ByVal sender As Object, _
ByVal e As System.Web.UI.WebControls.SqlDataSourceStatusEventArgs)

If (e.Exception IsNot Nothing) Then
Me.lblErrorMessage.Text = e.Exception.Message
e.ExceptionHandled = True

End If
End Sub

</script>

(continued)

369

Data Binding in ASP.NET 2.0

14_576100 ch11.qxd 10/6/05 9:20 PM Page 369

Listing 11-32: (continued)

C#
<script runat=”server”>

protected void GridView1_RowDeleted(object sender, GridViewDeletedEventArgs e)
{

if (e.Exception != null)
{

this.lblErrorMessage.Text = e.Exception.Message;
e.ExceptionHandled = true;

}
}

protected void SqlDataSource1_Deleted(object sender,
SqlDataSourceStatusEventArgs e)

{
if (e.Exception != null)
{

this.lblErrorMessage.Text = e.Exception.Message;
e.ExceptionHandled = true;

}
}

</script>

DetailsView
The DetailsView server control is a new data-bound control that enables you to view a single data
record at a time. Although the GridView control is an excellent control for viewing a collection of data,
many scenarios demand that you be able to drill down into an individual record. The DetailsView con-
trol allows you to do this and provides many of the same data manipulation and display capabilities as
the GridView. It allows you to do things such as paging, updating, inserting, and deleting data.

To start using the DetailsView, drag the control onto the design surface. Like the GridView, you can use the
DetailsView’s smart tag to create and set the data source for the control. For this sample, just use the
SqlDataSource control you used for the DataGrid. If you run the page at this point, you see that the control
displays one record, the first record returned by your query. Figure 11-17 shows you what the DetailsView
looks like in a Web page.

370

Chapter 11

14_576100 ch11.qxd 10/6/05 9:20 PM Page 370

Figure 11-17

If this is all the functionality you want, you probably want to create a new SqlDataSource control and
modify the SelectCommand so that it returns only one record, rather than returning all records as our
query does. For this example, however, you want to be able to page through all the Customer data
returned by your query. To do this, simply turn on paging by setting the DetailsView’s AllowPaging
attribute to True. You can either check the Enable Paging check box in the DetailsView smart tag or add
the attribute to the control in HTML View. Listing 11-33 shows the DetailsView code for the control.

Listing 11-33: Enabling paging on the DetailsView control

<asp:DetailsView ID=”DetailsView1” Runat=”server” DataSourceID=”SqlDataSource1”
AutoGenerateRows=”False” DataKeyNames=”CustomerID”></asp:DetailsView>

Like the GridView, the DetailsView control enables you to customize the control’s Pager using the
PagerSettings-Mode, as well as the Pager style.

Customizing the DetailsView Display
You can customize the appearance of the DetailsView control by picking and choosing which fields the
control displays. By default, the control displays each column from the table it is working with. Much
like the GridView control, however, the DetailsView control enables you to specify that only certain
selected columns be displayed, as illustrated in Listing 11-34.

371

Data Binding in ASP.NET 2.0

14_576100 ch11.qxd 10/6/05 9:20 PM Page 371

Listing 11-34: Customizing the display of the DetailsView control

<asp:DetailsView ID=”DetailsView1” Runat=”server” DataSourceID=”SqlDataSource1”
AutoGenerateRows=”False” DataKeyNames=”CustomerID”>
<Fields>

<asp:BoundField ReadOnly=”True” HeaderText=”CustomerID”
DataField=”CustomerID” SortExpression=”CustomerID”
Visible=”False” />

<asp:BoundField ReadOnly=”True” HeaderText=”CompanyName”
DataField=”CompanyName” SortExpression=”CompanyName” />

<asp:BoundField HeaderText=”ContactName” DataField=”ContactName”
SortExpression=”ContactName” />

<asp:BoundField HeaderText=”ContactTitle” DataField=”ContactTitle”
SortExpression=”ContactTitle” />

</Fields>
</asp:DetailsView>

Using the DetailsView and GridView Together
This section looks at a common scenario using both the GridView and the DetailsView. In this example,
you use the GridView to display a master view of the data and the DetailsView to show the details of
the selected GridView row. The Customers table is the data source. Listing 11-35 shows the code needed
for this.

Listing 11-35: Using the GridView and DetailsView together

<html>
<head id=”Head1” runat=”server”>

<title>GridView & DetailsView Controls</title>
</head>
<body>

<form id=”form1” runat=”server”>
<p>

<asp:GridView ID=”GridView1” runat=”server”
DataSourceId=”SqlDataSource1” AllowPaging=”True”
BorderColor=”#DEBA84” BorderStyle=”None” BorderWidth=”1px”
BackColor=”#DEBA84” CellSpacing=”2” CellPadding=”3”
DataKeyNames=”CustomerID” AutoGenerateSelectButton=”True”
AutoGenerateColumns=”False” PageSize=”5”>
<FooterStyle ForeColor=”#8C4510”

BackColor=”#F7DFB5”></FooterStyle>
<PagerStyle ForeColor=”#8C4510”

HorizontalAlign=”Center”></PagerStyle>
<HeaderStyle ForeColor=”White” BackColor=”#A55129”

Font-Bold=”True”></HeaderStyle>
<Columns>

<asp:BoundField ReadOnly=”True” HeaderText=”CustomerID”
DataField=”CustomerID” SortExpression=”CustomerID”>

</asp:BoundField>

372

Chapter 11

14_576100 ch11.qxd 10/6/05 9:20 PM Page 372

<asp:BoundField HeaderText=”CompanyName”
DataField=”CompanyName” SortExpression=”CompanyName”>

</asp:BoundField>
<asp:BoundField HeaderText=”ContactName”

DataField=”ContactName” SortExpression=”ContactName”>
</asp:BoundField>
<asp:BoundField HeaderText=”ContactTitle”

DataField=”ContactTitle” SortExpression=”ContactTitle”>
</asp:BoundField>
<asp:BoundField HeaderText=”Address” DataField=”Address”

SortExpression=”Address”></asp:BoundField>
<asp:BoundField HeaderText=”City” DataField=”City”

SortExpression=”City”></asp:BoundField>
<asp:BoundField HeaderText=”Region” DataField=”Region”

SortExpression=”Region”></asp:BoundField>
<asp:BoundField HeaderText=”PostalCode” DataField=”PostalCode”

SortExpression=”PostalCode”></asp:BoundField>
<asp:BoundField HeaderText=”Country” DataField=”Country”

SortExpression=”Country”></asp:BoundField>
<asp:BoundField HeaderText=”Phone” DataField=”Phone”

SortExpression=”Phone”></asp:BoundField>
<asp:BoundField HeaderText=”Fax” DataField=”Fax”

SortExpression=”Fax”></asp:BoundField>
</Columns>
<SelectedRowStyle ForeColor=”White” BackColor=”#738A9C”

Font-Bold=”True”></SelectedRowStyle>
<RowStyle ForeColor=”#8C4510” BackColor=”#FFF7E7”></RowStyle>

</asp:GridView>
</p>
<p>Customer Details:</p>
<asp:DetailsView ID=”DetailsView1” runat=”server”

DataSourceId=”SqlDataSource2”
BorderColor=”#DEBA84” BorderStyle=”None” BorderWidth=”1px”
BackColor=”#DEBA84” CellSpacing=”2” CellPadding=”3”
AutoGenerateRows=”False” DataKeyNames=”CustomerID”>
<FooterStyle ForeColor=”#8C4510” BackColor=”#F7DFB5”></FooterStyle>
<RowStyle ForeColor=”#8C4510” BackColor=”#FFF7E7”></RowStyle>
<PagerStyle ForeColor=”#8C4510” HorizontalAlign=”Center”></PagerStyle>
<Fields>

<asp:BoundField ReadOnly=”True” HeaderText=”CustomerID”
DataField=”CustomerID” SortExpression=”CustomerID”>

</asp:BoundField>
<asp:BoundField HeaderText=”CompanyName” DataField=”CompanyName”

SortExpression=”CompanyName”></asp:BoundField>
<asp:BoundField HeaderText=”ContactName” DataField=”ContactName”

SortExpression=”ContactName”></asp:BoundField>
<asp:BoundField HeaderText=”ContactTitle” DataField=”ContactTitle”

SortExpression=”ContactTitle”></asp:BoundField>
<asp:BoundField HeaderText=”Address” DataField=”Address”

SortExpression=”Address”></asp:BoundField>
<asp:BoundField HeaderText=”City” DataField=”City”

SortExpression=”City”></asp:BoundField>
<asp:BoundField HeaderText=”Region” DataField=”Region”

SortExpression=”Region”></asp:BoundField>

(continued)

373

Data Binding in ASP.NET 2.0

14_576100 ch11.qxd 10/6/05 9:20 PM Page 373

Listing 11-35: (continued)

<asp:BoundField HeaderText=”PostalCode” DataField=”PostalCode”
SortExpression=”PostalCode”></asp:BoundField>

<asp:BoundField HeaderText=”Country” DataField=”Country”
SortExpression=”Country”></asp:BoundField>

<asp:BoundField HeaderText=”Phone” DataField=”Phone”
SortExpression=”Phone”></asp:BoundField>

<asp:BoundField HeaderText=”Fax” DataField=”Fax”
SortExpression=”Fax”></asp:BoundField>

</Fields>
<HeaderStyle ForeColor=”White” BackColor=”#A55129”

Font-Bold=”True”></HeaderStyle>
<EditRowStyle ForeColor=”White” BackColor=”#738A9C”

Font-Bold=”True”></EditRowStyle>
</asp:DetailsView>
<asp:SqlDataSource ID=”SqlDataSource1” runat=”server”

SelectCommand=”SELECT * FROM [Customers]”
ConnectionString=”<%$ ConnectionStrings:AppConnectionString1 %>” />

<asp:SqlDataSource ID=”SqlDataSource2” runat=”server”
SelectCommand=”SELECT * FROM [Customers]”
FilterExpression=”CustomerID=’{0}’”
ConnectionString=”<%$ ConnectionStrings:AppConnectionString1 %>”>
<FilterParameters>

<asp:ControlParameter Name=”CustomerID” ControlId=”GridView1”
PropertyName=”SelectedValue”></asp:ControlParameter>

</FilterParameters>
</asp:SqlDataSource>

</form>
</body>
</html>

When this code is run in your browser, you get the results shown in Figure 11-18.

In this figure, one of the rows in the GridView has been selected (noticeable because of the gray
highlighting). The details of the selected row are shown in the DetailsView control directly below
the GridView control.

To see how this works, look at the changes that were made to the second SqlDataSource control,
SqlDataSource2. Notice that a FilterExpression attribute has been added, which is used to modify
the SelectCommand attribute.

The value given to the FilterExpression attribute expresses how you want the SqlDataSource control
to filter its Select command. In this case, the value of the FilterExpression is
CustomerID=@CustomerID. This tells the SqlDataSource control to filter records that it returns by the
CustomerID given to it, as shown in Listing 11-36.

374

Chapter 11

14_576100 ch11.qxd 10/6/05 9:20 PM Page 374

Listing 11-36: Filtering SqlDataSource data with a FilterExpression

<asp:SqlDataSource ID=”SqlDataSource2” runat=”server”
SelectCommand=”SELECT * FROM [Customers]”
FilterExpression=”CustomerID=’@CustomerID’”
ConnectionString=”<%$ ConnectionStrings:AppConnectionString1 %>”>
<FilterParameters>

<asp:ControlParameter Name=”CustomerID” ControlId=”GridView1”
PropertyName=”SelectedValue”></asp:ControlParameter>

</FilterParameters>
</asp:SqlDataSource>

The parameter specified in the FilterExpression attribute, @CustomerID, is defined within the
SqlDataSource control through the use of the <FilterParameters> element. This sample uses an
<asp:ControlParameter> to specify the name of the parameter, the control that the parameter value
is coming from (the GridView control), and the property name that is used to populate the parameter
value.

Figure 11-18

375

Data Binding in ASP.NET 2.0

14_576100 ch11.qxd 10/6/05 9:20 PM Page 375

Finally, be sure to include the DataKeyNames attribute in the GridView control. In this case supply
CustomerID as the value. This tells the GridView which column(s) are to be used as a primary key.
When a user selects a row, the value of that column is then provided to the DetailsView control via the
SelectValue property. The procedure for adding the DataKeyNames to the GridView is shown in
Listing 11-37.

Listing 11-37: Adding the DataKeyNames attribute to the GridView

<asp:GridView ID=”GridView1” runat=”server”
DataSourceId=”SqlDataSource1” AllowPaging=”True”
BorderColor=”#DEBA84” BorderStyle=”None” BorderWidth=”1px”
BackColor=”#DEBA84” CellSpacing=”2” CellPadding=”3”
DataKeyNames=”CustomerID” AutoGenerateSelectButton=”True”
AutoGenerateColumns=”False” PageSize=”5”>

SelectParameters versus FilterParameters
You might have noticed in our last example that the FilterParameters seem to provide the same
functionality as the SelectParameters. Although both produce essentially the same result, they use
very different methods. Using a SelectParameters modifies the query that is executed against the
SQL server by dynamically adding a WHERE clause to the SelectCommand. This limits the rows that are
returned from the SQL Server and held in memory by the data source control. The advantage is that by
limiting the amount of data returned from SQL, you can make your application faster and reduce the
amount of memory it consumes. The disadvantage is that you are confined to working with the limited
subset of data returned by the SQL query.

FilterParameters, on the other hand, do not alter the SelectCommand, allowing all the data to be
returned from the SQL server. The filter is applied to the data source control’s in-memory data. The
advantage here is that if you are performing many filters of one large chunk of data (for instance, to
enable paging in the DetailView), you do not have to call out to SQL Server each time you need the next
record. All the data is stored in memory by the data source control.

Inserting, Updating, and Deleting Data Using DetailsView
Inserting data using the DetailsView is similar to all the other data functions that you have performed.
To insert data using the DetailsView, simply add the AutoGenerateInsertButton attribute to the
DetailsView control as shown in Listing 11-38.

Listing 11-38: Adding an AutoGenerateInsertButton attribute to the DetailsView

<asp:DetailsView ID=”DetailsView1” runat=”server”
DataSourceId=”SqlDataSource2”
BorderColor=”#DEBA84” BorderStyle=”None” BorderWidth=”1px”
BackColor=”#DEBA84” CellSpacing=”2” CellPadding=”3”
AutoGenerateRows=”False” AutoGenerateInsertButton=”true”
DataKeyNames=”CustomerID”>

376

Chapter 11

14_576100 ch11.qxd 10/6/05 9:20 PM Page 376

Then add the InsertCommand and corresponding InsertParameter elements to the SqlDataSource
control, as shown in Listing 11-39.

Listing 11-39: Adding an InsertCommand to the SqlDataSource control

<asp:SqlDataSource ID=”sqlDataSource2” runat=”server”
SelectCommand=”SELECT * FROM [Customers]”
InsertCommand=”INSERT INTO [Customers] ([CustomerID], [CompanyName],

[ContactName], [ContactTitle], [Address], [City], [Region], [PostalCode],
[Country], [Phone], [Fax]) VALUES (@CustomerID, @CompanyName,
@ContactName, @ContactTitle, @Address, @City, @Region, @PostalCode,
@Country, @Phone, @Fax)” DeleteCommand=”DELETE FROM [Customers] WHERE
[CustomerID] = @original_CustomerID”

FilterExpression=”CustomerID=’@CustomerID’”
ConnectionString=”<%$ ConnectionStrings:AppConnectionString1 %>”>
<FilterParameters>

<asp:ControlParameter Name=”CustomerID” ControlId=”GridView1”
PropertyName=”SelectedValue”></asp:ControlParameter>

</FilterParameters>
<InsertParameters>

<asp:Parameter Type=”String” Name=”CustomerID”></asp:Parameter>
<asp:Parameter Type=”String” Name=”CompanyName”></asp:Parameter>
<asp:Parameter Type=”String” Name=”ContactName”></asp:Parameter>
<asp:Parameter Type=”String” Name=”ContactTitle”></asp:Parameter>
<asp:Parameter Type=”String” Name=”Address”></asp:Parameter>
<asp:Parameter Type=”String” Name=”City”></asp:Parameter>
<asp:Parameter Type=”String” Name=”Region”></asp:Parameter>
<asp:Parameter Type=”String” Name=”PostalCode”></asp:Parameter>
<asp:Parameter Type=”String” Name=”Country”></asp:Parameter>
<asp:Parameter Type=”String” Name=”Phone”></asp:Parameter>
<asp:Parameter Type=”String” Name=”Fax”></asp:Parameter>

</InsertParameters>
</asp:SqlDataSource>

Figure 11-19 shows the DetailsView control page loaded in the browser in Insert mode, ready to add a
new record.

Figure 11-20 shows the DetailsView control after a new record has been inserted.

Updating and deleting data using the DetailsView control are similar to deleting data from the GridView.
Simply specify the UpdateCommand or DeleteCommand attributes in the DetailView control; then provide
the proper UpdateParameters and DeleteParameters elements.

377

Data Binding in ASP.NET 2.0

14_576100 ch11.qxd 10/6/05 9:20 PM Page 377

Figure 11-19

Figue 11-20

378

Chapter 11

14_576100 ch11.qxd 10/6/05 9:20 PM Page 378

FormView
The FormView control is a new control included with the ASP.NET 2.0 toolbox. It basically functions like
the DetailsView control in that it displays a single data item from a bound data source control and
allows adding, editing, and deleting data. What makes it unique is that it displays the data in custom
templates, which gives much greater control over how the data is displayed and edited. Figure 11-21
shows a FormView control ItemTemplate being edited in Visual Studio. You can see that you have com-
plete control over how your data is displayed. The FormView control also contains an EditTemplate that
allows you to determine how the control displays when entering Edit or Insert mode.

Figure 11-21

379

Data Binding in ASP.NET 2.0

14_576100 ch11.qxd 10/6/05 9:20 PM Page 379

Figures 11-20 and 11-21 show the FormView control in action. Figure 11-22 shows the control displaying
its ItemTemplate, reflecting the custom layout that was designed in Visual Studio.

In Figure 11-23, you see the control in Edit mode, showing the standard EditTemplate layout.

Figure 11-22

380

Chapter 11

14_576100 ch11.qxd 10/6/05 9:20 PM Page 380

Figure 11-23

Listing 11-40 shows the code that Visual Studio generates when designing the FormView control’s cus-
tomized ItemTemplate.

Listing 11-40: Using a FormView control to display and edit data

<%@ Page Language=”C#” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Using the FormView control</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:FormView ID=”FormView1” Runat=”server” DataSourceID=”SqlDataSource1”
DataKeyNames=”CustomerID” AllowPaging=”True”>

<EditItemTemplate>
CustomerID:
<asp:Label Text=’<%# Eval(“CustomerID”) %>’ Runat=”server”

ID=”CustomerIDLabel1”>

(continued)

381

Data Binding in ASP.NET 2.0

14_576100 ch11.qxd 10/6/05 9:20 PM Page 381

Listing 11-40: (continued)

</asp:Label>

CompanyName:
<asp:TextBox Text=’<%# Bind(“CompanyName”) %>’ Runat=”server”

ID=”CompanyNameTextBox”></asp:TextBox>

ContactName:
<asp:TextBox Text=’<%# Bind(“ContactName”) %>’ Runat=”server”

ID=”ContactNameTextBox”></asp:TextBox>

ContactTitle:
<asp:TextBox Text=’<%# Bind(“ContactTitle”) %>’ Runat=”server”

ID=”ContactTitleTextBox”></asp:TextBox>

Address:
<asp:TextBox Text=’<%# Bind(“Address”) %>’ Runat=”server”

ID=”AddressTextBox”></asp:TextBox>

City:
<asp:TextBox Text=’<%# Bind(“City”) %>’ Runat=”server”

ID=”CityTextBox”></asp:TextBox>

Region:
<asp:TextBox Text=’<%# Bind(“Region”) %>’ Runat=”server”

ID=”RegionTextBox”></asp:TextBox>

PostalCode:
<asp:TextBox Text=’<%# Bind(“PostalCode”) %>’ Runat=”server”

ID=”PostalCodeTextBox”></asp:TextBox>

Country:
<asp:TextBox Text=’<%# Bind(“Country”) %>’ Runat=”server”

ID=”CountryTextBox”></asp:TextBox>

Phone:
<asp:TextBox Text=’<%# Bind(“Phone”) %>’ Runat=”server”

ID=”PhoneTextBox”></asp:TextBox>

Fax:
<asp:TextBox Text=’<%# Bind(“Fax”) %>’ Runat=”server”

ID=”FaxTextBox”></asp:TextBox>

<asp:Button ID=”Button2” Runat=”server” Text=”Button”

CommandName=”update” />
<asp:Button ID=”Button3” Runat=”server” Text=”Button”

CommandName=”cancel” />
</EditItemTemplate>
<ItemTemplate>

<table width=”100%”>
<tr>

<td style=”width: 439px”>

Customer Information

</td>
<td style=”width: 439px” align=”right”>

CustomerID:
<asp:Label ID=”CustomerIDLabel” Runat=”server”

Text=’<%# Bind(“CustomerID”) %>’>
</asp:Label></td>

</tr>
<tr>

<td colspan=”2”>
CompanyName:

382

Chapter 11

14_576100 ch11.qxd 10/6/05 9:20 PM Page 382

<asp:Label ID=”CompanyNameLabel” Runat=”server”
Text=’<%# Bind(“CompanyName”) %>’>
</asp:Label>

ContactName:
<asp:Label ID=”ContactNameLabel” Runat=”server”

Text=’<%# Bind(“ContactName”) %>’>
</asp:Label>

ContactTitle:
<asp:Label ID=”ContactTitleLabel” Runat=”server”

Text=’<%# Bind(“ContactTitle”) %>’>
</asp:Label>

<table width=”100%”><tr>

<td colspan=”3”>
<asp:Label ID=”AddressLabel” Runat=”server”

Text=’<%# Bind(“Address”) %>’>
</asp:Label></td>

</tr>
<tr>

<td style=”width: 100px”>
<asp:Label ID=”CityLabel” Runat=”server”

Text=’<%# Bind(“City”) %>’>
</asp:Label></td>

<td style=”width: 100px”>
<asp:Label ID=”RegionLabel” Runat=”server”

Text=’<%# Bind(“Region”) %>’>
</asp:Label></td>

<td style=”width: 100px”>
<asp:Label ID=”PostalCodeLabel”

Runat=”server”
Text=’<%# Bind(“PostalCode”) %>’>
</asp:Label>

</td>
</tr>
<tr>

<td style=”width: 100px” valign=”top”>
<asp:Label ID=”CountryLabel” Runat=”server”

Text=’<%# Bind(“Country”) %>’>
</asp:Label></td>

<td style=”width: 100px”></td>
<td style=”width: 100px”>

Phone:
<asp:Label ID=”PhoneLabel” Runat=”server”

Text=’<%# Bind(“Phone”) %>’>
</asp:Label>

Fax:
<asp:Label ID=”FaxLabel” Runat=”server”

Text=’<%# Bind(“Fax”) %>’>
</asp:Label>

</td>
</tr></table>

<asp:Button ID=”Button1” Runat=”server”
Text=”Button” CommandName=”edit” />

</td>
</tr></table>

(continued)

383

Data Binding in ASP.NET 2.0

14_576100 ch11.qxd 10/6/05 9:20 PM Page 383

Listing 11-40: (continued)

</ItemTemplate>
</asp:FormView>
<asp:SqlDataSource ID=”SqlDataSource1” Runat=”server”

SelectCommand=”SELECT * FROM [Customers]”
ConnectionString=”<%$ ConnectionStrings:AppConnectionString1 %>”>

</asp:SqlDataSource>

</div>
</form>

</body>
</html>

Other Databound Controls
ASP.NET 1.0/1.1 contained many other controls that could be bound to data sources. ASP.NET 2.0
retains these controls, enhances some, and adds several new bound controls to the toolbox.

DropDownList, ListBox, RadioButtonList and
CheckBoxList

Although the DropDownList, ListBox and CheckBoxList controls have largely remained the same from
ASP.NET 1.0/1.1 to ASP.NET 2.0, they contain several new properties that you might find useful.
Additionally ASP.NET 2.0 contains the new RadioButtonList and BulletedList controls.

One of the new properties available in all these controls is the AppendDataBoundItems property. Setting
this property to True tells the DropDownList control to append data-bound list items to any existing
statically declared items, rather then overwriting them as the ASP.NET 1.0/1.1 version would have done.

Another useful new property available to all these controls is the DataTextFormatString, which
allows you to specify a string format for the display text of the DropDownList items.

TreeView
Another exciting new control included in the ASP.NET 2.0 toolbox is the new TreeView control.
Because the TreeView can display only hierarchical data, it can be bound only to the XmlDataSource
and the SiteMapDataSource controls. Listing 11-41 shows a sample SiteMap file you can use for your
SiteMapDataSource control.

Listing 11-41: A SiteMap file for your samples

<siteMap>
<siteMapNode url=”page3.aspx” title=”Home” description=”” roles=””>

<siteMapNode url=”page2.aspx” title=”Content” description=”” roles=”” />
<siteMapNode url=”page4.aspx” title=”Links” description=”” roles=”” />
<siteMapNode url=”page1.aspx” title=”Comments” description=”” roles=”” />

</siteMapNode>
</siteMap>

384

Chapter 11

14_576100 ch11.qxd 10/6/05 9:20 PM Page 384

Listing 11-42 shows how you can bind a TreeView control to a SiteMapDataSource control to generate
navigation for your Web site.

Listing 11-42: Using the TreeView with a SqlDataSource control

<%@ Page Language=”C#” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Using the TreeView control</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:TreeView ID=”TreeView1” Runat=”server”
DataSourceID=”SiteMapDataSource1”>

</asp:TreeView>
<asp:SiteMapDataSource ID=”SiteMapDataSource1” Runat=”server” />

</div>
</form>

</body>
</html>

Ad Rotator
The familiar Ad Rotator control has been greatly enhanced in ASP.NET 2.0. You can see the control by
using the SqlDataSource or XmlDataSource controls. Listing 11-43 shows an example of binding the Ad
Rotator to a SqlDataSource control.

Listing 11-43: Using the AdRotator with a SqlDataSource control

<asp:AdRotator ID=”AdRotator1” runat=”server”
DataSourceId=”SqlDataSource1” AlternateTextField=”AlternateTF”
ImageUrlField=”Image” NavigateUrlField=”NavigateUrl” />

For more information on the Ad Rotator control, see Chapter 5.

Menu
The last control in this section is the new Menu control. Like the TreeView control, it is capable of
displaying hierarchical data in a vertical pop-out style menu. Also like the TreeView control, it can be
bound only to the XmlDataSource and the SiteMapDataSource controls. Listing 11-44 shows how you
can use the same SiteMap data used earlier in the TreeView control sample, and modify it to display
using the new Menu control.

385

Data Binding in ASP.NET 2.0

14_576100 ch11.qxd 10/6/05 9:20 PM Page 385

Listing 11-44: Using the Menu control with a SiteMap

<%@ Page Language=”C#” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Using the Menu control</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:Menu ID=”Menu1” Runat=”server” DataSourceID=”SiteMapDataSource1”>
</asp:Menu>
<asp:SiteMapDataSource ID=”SiteMapDataSource1” Runat=”server” />

</div>
</form>

</body>
</html>

For more information on using the Menu control, see Chapter 14.

Inline Data-Binding Syntax
Another feature of data binding that has greatly improved in ASP.NET 2.0 is inline data-binding syntax.
Inline syntax in ASP.NET 1.0/1.1 was primarily relegated to templated controls such as the DataList or
the Repeater controls, and even then it was sometimes difficult and confusing to make it work as you
wanted it to. In ASP.NET 1.0/1.1, if you needed to use inline data binding, you might have created
something like the procedure shown in Listing 11-45.

Listing 11-45: Using DataBinders in ASP.NET 1.0

<asp:Repeater id=Repeater1 runat=”server”>
<HeaderTemplate>

<table>
</HeaderTemplate>
<ItemTemplate>

<tr>
<td>

<%# Container.DataItem(“Name”) %>

<%# Container.DataItem(“Department”) %>

<%# DataBinder.Eval(

Container.DataItem, “HireDate”, “{0:mm dd yyyy}”) %>

</td>

</tr>
</ItemTemplate>
<FooterTemplate>

</table>
</FooterTemplate>

</asp:Repeater>

386

Chapter 11

14_576100 ch11.qxd 10/6/05 9:20 PM Page 386

As you can see in this sample, you are using a Repeater control to display a series of Employees. Because
the Repeater control is a template control, you use data binding to output the employee-specific data in
the proper location of the template. Using the Eval method also allows you to provide formatting infor-
mation such as Date or Currency formatting at render-time.

In ASP.NET 2.0, the content of inline data binding remains basically the same, but you are given a simpler
syntax and several powerful new binding tools to use.

DataBinder Syntax Changes
ASP.NET 2.0 contains three different ways to perform data binding. First, you can continue to use the
existing method of binding, using the Container.DataItem syntax:

<%# Container.DataItem(“Name”) %>

This is good because it means you won’t have to change your existing Web pages if you are migrating
from ASP.NET 1.0/1.1 to ASP.NET 2.0. But if you are creating new Web pages, you should probably use
the simplest form of binding, using the Eval method directly:

<%# Eval(“Name”) %>

You can also continue to format data using the formatter overload of the Eval method:

<%# Eval(“HireDate”, “{0:mm dd yyyy}”) %>

In addition to these changes, ASP.NET 2.0 introduces a new form of data binding called two-way data binding.
In ASP.NET 1.0/1.1, using the binding syntax was essentially a read-only form of accessing data. In
ASP.NET 2.0, two-way data binding allows you to support both read and write operations for bound data.
This is done using the Bind method, which, other than using a different method name, works just like the
Eval method:

<%# Bind(“Name”) %>

The new Bind method should be used in new controls like the GridView, DetailsView, or FormView,
where auto-updates to the data source are implemented.

XML Data Binders
Because XML is becoming ever more prevalent in applications, ASP.NET 2.0 also introduces several new
ways to bind specifically to XML data sources, called XML Data Binders. These new binders give you
powerful ways of working with the hierarchical format of XML. Additionally, except for the different
method names, these binding methods work exactly the same as the Eval and Bind methods discussed
earlier. These binders should be used when you are using the XmlDataSource control. The first binding
format that uses the XPathBinder class is shown in the following code.

<% XPathBinder.Eval(Container.DataItem, “employees/employee/Name”) %>

387

Data Binding in ASP.NET 2.0

14_576100 ch11.qxd 10/6/05 9:20 PM Page 387

Notice that rather than specifying a column name as in the Eval method, the XPathBinder binds the
result of an XPath query. Like the standard Eval binder, the XML binder also has a shorthand format:

<% XPath(“employees/employee/Name”) %>

Also, like the Eval method, the XPath binder supports applying formatting to the data:

<% XPath(“employees/employee/HireDate”, “{0:mm dd yyyy}”) %>

The XPathBinder returns a single node using the XPath query provided. Should you want to return
multiple nodes from the XmlDataSource Control, you can use the class’s Select method. This method
returns a list of nodes that match the supplied XPath query:

<% XPathBinder.Select(Container.DataItem,”employees/employee”) %>

Or use the shorthand syntax:

<% XpathSelect(“employees/employee”) %>

Summary
In this chapter, you examined how data binding in ASP.NET 2.0 has been significantly enhanced and
improved. The introduction of data source controls like the SqlDataSource control or the XmlDataSource
control makes querying and displaying data from any number of data sources an almost trivial task.
Using the data source controls’ own wizards, you learned how easy it is to generate powerful data
access functionality with almost no code required.

You examined how even a beginning developer can easily combine the data source controls with the new
GridView and DetailsView controls to create powerful data manipulation applications with a minimal
amount of coding.

You saw how ASP.NET includes a multitude of controls that can be data-bound, specifically examining
how many ASP.NET 1.0/1.1 controls have been enhanced, and examining the features of the new Data
Bound controls that are included in ASP.NET 2.0, such as the TreeView and Menu controls.

Finally, you looked at how the inline data-binding syntax has been improved and strengthened with the
addition of the XML-specific Data Binders.

388

Chapter 11

14_576100 ch11.qxd 10/6/05 9:20 PM Page 388

Data Management with
ADO.NET

This chapter provides information on programming with data management features that are part
of ADO.NET. The discussion begins with the basics of ADO.NET and later dives into the ways
you can use the newly added advanced ADO.NET features to manage data contained in a rela-
tional database.

ADO.NET was first introduced in version 1.0 of the .NET Framework and provided an extensive
array of features to handle data either live — while connected to the database — or when
disconnected. With the introduction of ADO.NET 2.0, the already-extensive features list has grown
even larger. Some of the newly added features include the capability to bulk load large quantities of
data from a variety of sources, to batch process updates to the database with fewer round trips back
to the database server, to reuse the same live connection for multiple operations, as well as to achieve
asynchronous access to the database.

Basic ADO.NET Features
This chapter covers the basics of ADO.NET and then provides an overview of basic ADO.NET
namespaces and classes. It also shows you how to work with Connection, Command,
DataAdapter, DataSet, and DataReader objects.

Basic ADO.NET Namespaces and Classes
The six basic ADO.NET namespaces are shown in the following table. In addition to these names-
paces, each new data provider can have its own namespace. As an example, the Oracle .NET data
provider adds a namespace of Microsoft.Data.OracleClient.

15_576100 ch12.qxd 10/6/05 9:21 PM Page 389

Namespace Description

System.Data This namespace is the core of ADO.NET. It contains classes
used by all data providers. It contains classes to represent
tables, columns, rows, and the DataSet. It also contains
several very useful interfaces, such as IDbCommand,
IDbConnection, and IDbDataAdapter. These interfaces
are used by all managed providers, enabling them to plug
into the core of ADO.NET.

System.Data.Common This namespace defines common classes that are used as
base classes for data providers. All data providers share
these classes. A few examples are DbConnection and
DbDataAdapter.

System.Data.OleDb This namespace defines classes that work with OLE-DB
data sources using the .NET OleDb data provider. It
contains classes such as OleDbConnection and
OleDbCommand.

System.Data.Odbc This namespace defines classes that work with the ODBC
data sources using the .NET ODBC data provider. It
contains classes such as OdbcConnection and
OdbcCommand.

System.Data.SqlClient This namespace defines a data provider for the SQL
Server 7.0 or higher database. It contains classes such as
SqlConnection and SqlCommand.

System.Data.SqlTypes This namespace defines a few classes that represent specific
data types for the SQL Server database.

ADO.NET has three distinct types of classes commonly referred to as Disconnected, Shared, and Data
Providers. The Disconnected classes provide the basic structure for the ADO.NET framework. A good
example of this type of class is the DataTable class. The objects of this class are capable of storing data
without any dependency on a specific data provider. The Shared classes form the base classes for data
providers and are shared among all data providers. The Data Provider classes are meant to work with
different kinds of data sources. They are used to perform all data-management operations on specific
databases. The SqlClient data provider, for example, works only with the SQL Server database.

A data provider contains Connection, Command, DataAdapter, and DataReader objects. In a typical
ADO.NET programming, you first create the Connection object and provide it with the necessary
information, such as the connection string. You then create a Command object and provide it with the details
of the SQL command that is to be executed. This command can be an inline SQL text command, a stored
procedure, or direct table access. You can also provide parameters to these commands if needed. After you
create the Connection and the Command objects, you must decide whether the command returns a result
set. If the command doesn’t return a result set, you can simply execute the command by calling one of its
several Execute methods. On the other hand, if the command returns a result set, you must make a

390

Chapter 12

15_576100 ch12.qxd 10/6/05 9:21 PM Page 390

decision about whether you want to retain the result set for future uses without maintaining the connection
to the database. If you want to retain the result set, you must create a DataAdapter object and use it to fill a
DataSet or a DataTable object. These objects are capable of maintaining their information in a discon-
nected mode. However, if you don’t want to retain the result set, but rather to simply process the command
in a swift fashion, you can use the Command object to create a DataReader object. The DataReader object
needs a live connection to the database, and it works as a forward-only, read-only cursor.

Using the Connection Object
The Connection object creates a link to the data source. This object needs the necessary information to
discover the data source and to log in to it properly. This information is provided via a connection string.

The properties for the SqlConnection class are shown in the following table. The SqlConnection is a
class that is specific to the SqlClient provider. As discussed earlier in this chapter, the SqlClient
provider is built for working with the SQL Server 7.0 and higher databases.

Property Description

Datasource This read-only property returns the name of the instance of
the SQL Server database used by the SqlConnection
object.

Database This read-only property returns the name of the database to
use after the connection is opened.

State This read-only property returns the current state of the con-
nection. The possible values are Broken, Closed, Connect-
ing, Executing, Fetching, and Open.

ConnectionString This property allows you to read or provide the connection
string that should be used by the SqlConnection object.

Using the Command Object
The Command object uses the Connection object to execute SQL queries. These queries can be in the
form of inline text, a stored procedure, or direct table access. If the SQL query uses the SELECT clause,
the result set it returns is usually stored in either a DataSet or a DataReader object. The command
object provides a number of Execute methods that can be used to perform the SQL queries in a variety
of fashions.

391

Data Management with ADO.NET

15_576100 ch12.qxd 10/6/05 9:21 PM Page 391

First take a look at some useful properties of the SqlCommand class, as shown in the following table.

Property Description

CommandText This read-write property allows you to set or retrieve
either the T-SQL statement or the stored procedure
name.

CommandTimeout This read-write property gets or sets the number of
seconds to wait while attempting to execute a
command. The command is aborted after it times out
and an exception is thrown. The default is 30 seconds.

CommandType This read-write property indicates the way the
CommandText property should be interpreted. The
possible values are StoredProcedure, TableDirect,
and Text.

Connection This read-write property gets or sets the SqlConnec-
tion object that should be used by this command
object.

Now look at the various Execute methods that can be called on a Command object.

Property Description

ExecuteNonQuery This method executes the command and returns the
number of rows affected.

ExecuteReader This method executes the command and returns an
object of SqlDataReader class. The data reader is a
read-only and forward-only cursor.

ExecuteRow This method executes the command and returns an
object of the SqlRecord class. This object contains a
single returned row.

ExecuteScalar This method executes the command and returns the
first column of the first row in the form of a generic
object. The remaining rows and columns are ignored.

ExecuteXmlReader This method executes the command and returns an
object of the XmlReader class. This method enables
you to use a command that returns the results set in
the form of an XML document.

392

Chapter 12

15_576100 ch12.qxd 10/6/05 9:21 PM Page 392

Using the DataReader Object
The DataReader object is a simple forward-only and read-only cursor. It requires a live connection
with the data source and provides a very efficient way of looping and consuming all or part of the
result set. This object cannot be directly instantiated. Instead, you must call the ExecuteReader
method of the Command object to obtain a valid DataReader object. Be sure to close the connection
when you are done using the data reader. Otherwise, the connection stays alive until it is explicitly
closed. You can close the connection after using the data reader in one of two ways. One way is to pro-
vide the CommandBehavior.CloseConnection enumeration while calling the ExecuteMethod of the
Command object. This approach works only if you loop through the data reader until you reach the end
of file, at which point the reader object automatically closes the connection for you. However, if you
don’t want to keep reading the data reader until the end of file, you can call the Close method of the
Connection object yourself.

Listing 12-1 shows the Connection, Command, and DataReader objects in action. It shows how to connect
with the Northwind database, read the Customers table, and show the results in a GridView control.

Listing 12-1: The SqlConnection, SqlCommand, and SqlDataReader objects

VB
<%@ Page Language=”VB” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>
<%@ Import Namespace=”System.Configuration” %>

<script runat=”server”>
Protected Sub Page_Load(ByVal sender As Object, _

ByVal e As System.EventArgs)

If Not Page.IsPostBack Then
Dim MyConnection As SqlConnection
Dim MyCommand As SqlCommand
Dim MyReader As SqlDataReader

MyConnection = New SqlConnection()
MyConnection.ConnectionString = _

ConfigurationManager.ConnectionStrings(“DSN_Northwind”).ConnectionString

MyCommand = New SqlCommand()
MyCommand.CommandText = “SELECT TOP 3 * FROM CUSTOMERS”
MyCommand.CommandType = CommandType.Text
MyCommand.Connection = MyConnection

MyCommand.Connection.Open()
MyReader = MyCommand.ExecuteReader(CommandBehavior.CloseConnection)

gvCustomers.DataSource = MyReader
gvCustomers.DataBind()

MyCommand.Dispose()
MyConnection.Dispose()

(continued)

393

Data Management with ADO.NET

15_576100 ch12.qxd 10/6/05 9:21 PM Page 393

Listing 12-1: (continued)

End If
End Sub

</script>

<html>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:GridView ID=”gvCustomers” runat=”server”>
</asp:GridView>

</div>
</form>

</body>
</html>

C#
<%@ Page Language=”C#” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>
<%@ Import Namespace=”System.Configuration” %>

<script runat=”server”>
protected void Page_Load(object sender, EventArgs e)
{

if (!Page.IsPostBack)
{

SqlConnection MyConnection;
SqlCommand MyCommand;
SqlDataReader MyReader;

MyConnection = new SqlConnection();
MyConnection.ConnectionString =

ConfigurationManager.ConnectionStrings[“DSN_Northwind”].ConnectionString;

MyCommand = new SqlCommand();
MyCommand.CommandText = “ SELECT TOP 3 * FROM CUSTOMERS “;
MyCommand.CommandType = CommandType.Text;
MyCommand.Connection = MyConnection;

MyCommand.Connection.Open();
MyReader = MyCommand.ExecuteReader(CommandBehavior.CloseConnection);

gvCustomers.DataSource = MyReader;
gvCustomers.DataBind();

MyCommand.Dispose();
MyConnection.Dispose();

}
}

</script>

394

Chapter 12

15_576100 ch12.qxd 10/6/05 9:21 PM Page 394

The code shown in Listing 12-1 uses the SqlConnection class to create a connection with the
Northwind database using the connection string stored in the Web.config file. It then creates a
Command object using the SqlCommand class and provides it with command text, command type, and
connection properties. After the command and the connection are created, the code opens the connection
and executes the command by calling the ExecuteReader method of the MyCommand object. After
receiving the data reader from the Command object, you simply data bind it to a GridView control. The
result of the code is shown in Figure 12-1.

Figure 12-1

Using Data Adapter
The SqlDataAdapter is a special class whose purpose is to bridge the gap between the disconnected
DataTable objects and the physical data source. The SqlDataAdapter provides a two-day data transfer
mechanism. It is capable of executing a SELECT statement on a data source and transferring the result set
into a DataTable object. It is also capable of executing INSERT, UPDATE, and DELETE statements and
extracting the input data from a DataTable object.

The commonly used properties offered by the SqlDataAdapter class are shown in the following table.

Property Description

SelectCommand This read-write property sets or gets an object of type
SqlCommand. This command is automatically executed
to fill a DataTable with the result set.

InsertCommand This read-write property sets or gets an object of type
SqlCommand. This command is automatically executed
to insert a new record to the SQL Server database.

UpdateCommand This read-write property sets or gets an object of type
SqlCommand. This command is automatically executed
to update an existing record on the SQL Server database.

DeleteCommand This read-write property sets or gets an object of type
SqlCommand. This command is automatically executed
to delete an existing record on the SQL Server database.

395

Data Management with ADO.NET

15_576100 ch12.qxd 10/6/05 9:21 PM Page 395

The SqlDataAdapter class also provides a method called Fill. Calling the Fill method automatically
executes the command provided in the SelectCommand property, receives the result set, and copies it to
a DataTable object.

The code example in Listing 12-2 illustrates how to use an object of SqlDataAdapter class to fill a
DataTable object.

Listing 12-2: Using an object of SqlDataAdapter to fill a DataTable

VB
<%@ Page Language=”VB” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>
<%@ Import Namespace=”System.Configuration” %>

<script runat=”server”>
Protected Sub Page_Load(ByVal sender As Object, _

ByVal e As System.EventArgs)

If Not Page.IsPostBack Then
Dim MyConnection As SqlConnection
Dim MyCommand As SqlCommand
Dim MyAdapter As SqlDataAdapter
Dim MyTable As DataTable = New DataTable()

MyConnection = New SqlConnection()
MyConnection.ConnectionString = _

ConfigurationManager.ConnectionStrings(“DSN_Northwind”).ConnectionString

MyCommand = New SqlCommand()
MyCommand.CommandText = “ SELECT TOP 5 * FROM CUSTOMERS “
MyCommand.CommandType = CommandType.Text
MyCommand.Connection = MyConnection

MyAdapter = New SqlDataAdapter()
MyAdapter.SelectCommand = MyCommand
MyAdapter.Fill(MyTable)

gvCustomers.DataSource = MyTable.DefaultView
gvCustomers.DataBind()

MyAdapter.Dispose()
MyCommand.Dispose()
MyConnection.Dispose()

End If

End Sub
</script>

396

Chapter 12

15_576100 ch12.qxd 10/6/05 9:21 PM Page 396

C#
<%@ Page Language=”C#” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>
<%@ Import Namespace=”System.Configuration” %>

<script runat=”server”>
protected void Page_Load(object sender, EventArgs e)
{

if (!Page.IsPostBack)
{

SqlConnection MyConnection;
SqlCommand MyCommand;
SqlDataAdapter MyAdapter;
DataTable MyTable = new DataTable();

MyConnection = new SqlConnection();
MyConnection.ConnectionString =

ConfigurationManager.ConnectionStrings[“DSN_Northwind”].ConnectionString;

MyCommand = new SqlCommand();
MyCommand.CommandText = “ SELECT TOP 5 * FROM CUSTOMERS “;
MyCommand.CommandType = CommandType.Text;
MyCommand.Connection = MyConnection;

MyAdapter = new SqlDataAdapter();
MyAdapter.SelectCommand = MyCommand;
MyAdapter.Fill(MyTable);

gvCustomers.DataSource = MyTable.DefaultView;
gvCustomers.DataBind();

MyAdapter.Dispose();
MyCommand.Dispose();
MyConnection.Dispose();

}
}

</script>

The code shown in Listing 12-2 creates a Connection and Command object and then proceeds to create
an object of the SqlDataAdapter class. It then fills the SelectCommand property of the DataAdapter
object with the Command object it had previously created. After the DataAdapter object is ready for exe-
cuting, the code executes the Fill method, passing it an object of the DataTable class. The Fill
method returns a populated DataTable object. Figure 12-2 shows the result of executing this code.

397

Data Management with ADO.NET

15_576100 ch12.qxd 10/6/05 9:21 PM Page 397

Figure 12-2

Using Parameters
Most serious database programming, regardless of how simple it might be, requires you to configure
SQL statements using parameters. Obviously, a discussion on the basics of ADO.NET programming is
not complete without covering the use of parameterized SQL statements.

Creating a parameter is as simple as declaring an object of the SqlParameter class and providing it the
necessary information, such as parameter name, type, size, direction, and so on. The following table
shows the properties of the SqlParameter class.

Property Description

ParameterName This read-write property gets or sets the name of the
parameter.

SqlDbType This read-write property gets or sets the SQL Server
database type of the parameter value.

Size This read-write property sets or gets the size of the parameter
value.

Direction This read-write property sets or gets the direction of the
parameter, such as Input, Output, or Both

SourceColumn This read-write property maps a column from a DataTable
to the parameter. It enables you to execute multiple com-
mands using the SqlDataAdapter object and pick the cor-
rect parameter value from a DataTable column during the
command execution.

Value This read-write property sets or gets the value provided to
the parameter object. This value is passed to the parameter
defined in the command during runtime.

398

Chapter 12

15_576100 ch12.qxd 10/6/05 9:21 PM Page 398

Listing 12-3 modifies the code shown in Listing 12-1 to use two parameters while retrieving the list of
customers from the database.

Listing 12-3: The use of a parameterized SQL statement

B
<%@ Page Language=”VB” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>
<%@ Import Namespace=”System.Configuration” %>

<script runat=”server”>
Protected Sub Page_Load(ByVal sender As Object, _

ByVal e As System.EventArgs)
If Not Page.IsPostBack Then

Dim MyConnection As SqlConnection
Dim MyCommand As SqlCommand
Dim MyReader As SqlDataReader
Dim CityParam As SqlParameter
Dim ContactParam As SqlParameter

MyConnection = New SqlConnection()
MyConnection.ConnectionString = _

ConfigurationManager.ConnectionStrings(“DSN_Northwind”).ConnectionString

MyCommand = New SqlCommand()
MyCommand.CommandText = _

“ SELECT * FROM CUSTOMERS WHERE CITY = @CITY AND CONTACTNAME = @CONTACT “
MyCommand.CommandType = CommandType.Text
MyCommand.Connection = MyConnection

CityParam = New SqlParameter()
CityParam.ParameterName = “@CITY”
CityParam.SqlDbType = SqlDbType.VarChar
CityParam.Size = 15
CityParam.Direction = ParameterDirection.Input
CityParam.Value = “Berlin”

ContactParam = New SqlParameter()
ContactParam.ParameterName = “@CONTACT”
ContactParam.SqlDbType = SqlDbType.VarChar
ContactParam.Size = 15
ContactParam.Direction = ParameterDirection.Input
ContactParam.Value = “Maria Anders”

MyCommand.Parameters.Add(CityParam)
MyCommand.Parameters.Add(ContactParam)

MyCommand.Connection.Open()
MyReader = MyCommand.ExecuteReader(CommandBehavior.CloseConnection)

gvCustomers.DataSource = MyReader

(continued)

399

Data Management with ADO.NET

15_576100 ch12.qxd 10/6/05 9:21 PM Page 399

Listing 12-3: (continued)

gvCustomers.DataBind()

MyCommand.Dispose()
MyConnection.Dispose()

End If

End Sub
</script>

C#
<%@ Page Language=”C#” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>
<%@ Import Namespace=”System.Configuration” %>

<script runat=”server”>
protected void Page_Load(object sender, EventArgs e)
{

if (!Page.IsPostBack)
{

SqlConnection MyConnection;
SqlCommand MyCommand;
SqlDataReader MyReader;
SqlParameter CityParam;
SqlParameter ContactParam;

MyConnection = new SqlConnection();
MyConnection.ConnectionString =

ConfigurationManager.ConnectionStrings[“DSN_Northwind”].ConnectionString;

MyCommand = new SqlCommand();
MyCommand.CommandText =

“ SELECT * FROM CUSTOMERS WHERE CITY = @CITY AND CONTACTNAME = @CONTACT “;
MyCommand.CommandType = CommandType.Text;
MyCommand.Connection = MyConnection;

400

Chapter 12

15_576100 ch12.qxd 10/6/05 9:21 PM Page 400

CityParam = new SqlParameter();
CityParam.ParameterName = “@CITY”;
CityParam.SqlDbType = SqlDbType.VarChar;
CityParam.Size = 15;
CityParam.Direction = ParameterDirection.Input;
CityParam.Value = “Berlin”;

ContactParam = new SqlParameter();
ContactParam.ParameterName = “@CONTACT”;
ContactParam.SqlDbType = SqlDbType.VarChar;
ContactParam.Size = 15;
ContactParam.Direction = ParameterDirection.Input;
ContactParam.Value = “Maria Anders”;

MyCommand.Parameters.Add(CityParam);
MyCommand.Parameters.Add(ContactParam);

MyCommand.Connection.Open();
MyReader = MyCommand.ExecuteReader(CommandBehavior.CloseConnection);

gvCustomers.DataSource = MyReader;
gvCustomers.DataBind();

MyCommand.Dispose();
MyConnection.Dispose();

}
}

</script>

The code shown in Listing 12-3 uses a parameterized SQL statement that receives the name of the city
and the contact person to narrow the result set. These parameters are provided by declaring the objects
of SqlParameter class and filling in the name, type, size, direction, and value properties for each object
of SqlParameter class. You then add the parameters to the Command object by calling the Add method
of the Parameters collection. The result of executing this code is shown in Figure 12-3.

Figure 12-3

401

Data Management with ADO.NET

15_576100 ch12.qxd 10/6/05 9:21 PM Page 401

Understanding DataSet and DataTable
Most programmers agree that the DataSet class is the most commonly used part of ADO.NET in real-
world, database-driven applications. This class provides mechanisms for managing data when it is dis-
connected from the data source. This capability to handle data in a disconnected state was first intro-
duced in .NET during the 1.0 version of ADO.NET. The current 2.0 version of ADO.NET retains all the
features of its predecessors and provides a few newer, much-needed features.

An object created from the DataSet class works as a container for other objects that are created from the
DataTable class. The DataTable object represents a logical table in memory. It contains rows, columns,
primary keys, constraints, and relations with other DataTable objects. Most of the disconnected data-
driven programming is actually done using one or more DataTable objects. However, the previous ver-
sions of ADO.NET didn’t allow you to work directly with the DataTable object for some very important
tasks, such as reading and writing data to and from an XML file. It didn’t even allow you to serialize
the DataTable object independently. This limitation required you to always use the DataSet object to
perform any operation on a DataTable. The current version of ADO.NET removes this limitation and
enables you to work directly with the DataTable for all your needs. In fact, we recommend that you
don’t use the DataSet object unless you need to work with multiple DataTable objects and need a
container object to manage them.

The current version of ADO.NET provides the capability to load a DataTable in memory by consuming
a data source using a DataReader. In the past, you were sometimes restricted to creating multiple over-
loads of the same method just to work with both the DataReader and the DataTable objects. Now you
have the flexibility to write the data access code one time and reuse the DataReader— either directly or
to fill a DataTable, as shown in Listing 12-4.

Listing 12-4: How to load a DataTable from a DataReader

VB
<%@ Page Language=”VB” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>
<%@ Import Namespace=”System.Configuration” %>

<script runat=”server”>
Protected Sub Page_Load(ByVal sender As Object, _

ByVal e As System.EventArgs)

If Not Page.IsPostBack Then
Dim MyConnection As SqlConnection
Dim MyCommand As SqlCommand
Dim MyDataTable As DataTable
Dim MyReader As SqlDataReader
Dim CityParam As SqlParameter

MyConnection = New SqlConnection()

402

Chapter 12

15_576100 ch12.qxd 10/6/05 9:21 PM Page 402

MyConnection.ConnectionString = _
ConfigurationManager.ConnectionStrings(“DSN_Northwind”).ConnectionString

MyCommand = New SqlCommand()
MyCommand.CommandText = _

“ SELECT * FROM CUSTOMERS WHERE CITY = @CITY “
MyCommand.CommandType = CommandType.Text
MyCommand.Connection = MyConnection

CityParam = New SqlParameter()
CityParam.ParameterName = “@CITY”
CityParam.SqlDbType = SqlDbType.VarChar
CityParam.Size = 15
CityParam.Direction = ParameterDirection.Input
CityParam.Value = “London”

MyCommand.Parameters.Add(CityParam)

MyCommand.Connection.Open()
MyReader = MyCommand.ExecuteReader(CommandBehavior.CloseConnection)

MyDataTable = New DataTable()

‘ Loading DataTable using a DataReader
MyDataTable.Load(MyReader)

gvCustomers.DataSource = MyDataTable
gvCustomers.DataBind()

MyDataTable.Dispose()
MyCommand.Dispose()
MyConnection.Dispose()

End If

End Sub

</script>

C#
<%@ Page Language=”C#” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>
<%@ Import Namespace=”System.Configuration” %>

<script runat=”server”>
protected void Page_Load(object sender, EventArgs e)
{

(continued)

403

Data Management with ADO.NET

15_576100 ch12.qxd 10/6/05 9:21 PM Page 403

Listing 12-4: (continued)

if (!Page.IsPostBack)
{

SqlConnection MyConnection;
SqlCommand MyCommand;
DataTable MyDataTable;
SqlDataReader MyReader;
SqlParameter CityParam;

MyConnection = new SqlConnection();
MyConnection.ConnectionString =

ConfigurationManager.ConnectionStrings[“DSN_Northwind”].ConnectionString;

MyCommand = new SqlCommand();
MyCommand.CommandText =

“ SELECT * FROM CUSTOMERS WHERE CITY = @CITY “;
MyCommand.CommandType = CommandType.Text;
MyCommand.Connection = MyConnection;

CityParam = new SqlParameter();
CityParam.ParameterName = “@CITY”;
CityParam.SqlDbType = SqlDbType.VarChar;
CityParam.Size = 15;
CityParam.Direction = ParameterDirection.Input;
CityParam.Value = “London”;

MyCommand.Parameters.Add(CityParam);

MyCommand.Connection.Open();
MyReader = MyCommand.ExecuteReader(CommandBehavior.CloseConnection);

MyDataTable = new DataTable();

// Loading DataTable using a DataReader
MyDataTable.Load(MyReader);

gvCustomers.DataSource = MyDataTable;
gvCustomers.DataBind();

MyDataTable.Dispose();
MyCommand.Dispose();
MyConnection.Dispose();

}
}

</script>

Not only can you load a DataTable object from a DataReader object, you can also retrieve a
DataTableReader (new to the .NET Framework 2.0) from an existing DataTable object. This is accom-
plished by calling the CreateDataReader method of the DataTable class. This method returns an
instance of the DataTableReader object that can be passed to any method that expects to receive a
DataReader.

404

Chapter 12

15_576100 ch12.qxd 10/6/05 9:21 PM Page 404

Newly Added ADO.NET Features
Now that you have seen the basic features of ADO.NET, let’s dig deeper into the advanced features.
These advanced features are added to the 2.0 version of ADO.NET and provide a plethora of functional-
ity that simply wasn’t available in previous versions.

These features are specific to the database server, and the discussion in this chapter focuses on the SQL
Server database server. As we point out in the text, some of these features rely on the 9.0 version of the
Microsoft Data Access Components (MDAC).

An exciting feature added to ADO.NET 2.0 enables you to bulk load large quantities of data from virtu-
ally any source into a SQL Server database swiftly and easily. If you write code long enough, you are
bound to find yourself digging through the trenches of the SQL Server Data Transformation Service
(DTS) in order to move bulk quantities of data from one place to another. Although DTS works for most
tasks, programmers have always wished for a way to write custom code that retrieves data in custom
formats, processes it while applying business rules, and eventually transfers it to a database server. You
can certainly write such code with previous versions of ASP.NET, but you are restricted to using the
Update method of the DataAdapter object that makes a roundtrip to the database server for every
record to be inserted. You can also write a custom command to insert or update these records without
using the DataAdapter object, but your program must then make roundtrip calls to the database server
for every record. Moving over a 100KB records can easily take hours and can also flood your network
with traffic. When your database server is so busy, you lose productivity as you endlessly wait for the
update process to finish.

The new Bulk Copy feature of ADO.NET makes it a snap to load large quantities of data to a SQL Server
database. This process works so fast that we didn’t believe our eyes when we first ran performance tests.
After all, it’s not every day that programmers like us get to see large quantities of data copied to a
database server in mere seconds.

Bulk Loading of Data from a Variety of Sources
Database administrators have been accustomed to a variety of data transfer mechanisms such as DTS,
which is a graphical environment, and BCP (Bulk Copy Program), which is a command-line utility. With
the advent of ADO.NET 2.0, programmers can now write complete managed code to retrieve data from
a variety of sources. They can also bulk copy the data to a SQL Server database — all in the program-
mer’s favorite language.

The SQLClient namespace provides several new classes that help you bulk copy data by consuming
either a DataTable or DataReader object. The data source can be virtually any media from a relational
database, to an XML file, to the result of a Web service call. Now that you can write managed code, you
can utilize all available features in the .NET Framework to access the data source, retrieve the informa-
tion, process business rules, and clean up the data. After you have processed the data and it is ready to
be stored in its destination table on a SQL Server database, you simply use the SqlBulkCopy class to
transfer the data to its destination.

SqlBulkCopy class
The SqlBulkCopy class exposes a set of properties and methods that enable you to customize the bulk
copy operation by providing information such as the destination table names, batch sizes, time outs, and
the column mappings.

405

Data Management with ADO.NET

15_576100 ch12.qxd 10/6/05 9:21 PM Page 405

Properties
The properties of the SqlBulkCopy class are shown in the following table. These properties define the
details of various copy operations, such as the batch size and time outs.

Property Description

BatchSize Sets or returns an Integer value specifying the number of records to
be copied in each batch. The default value is 0 which indicates that
all records will be done in one batch. If the database server supports
batch updates, the SqlBulkCopy class leverages the database server
to perform batch updates. If the database server doesn’t support
batch updates, the SqlBulkCopy class manages and executes each
batch individually.

BulkCopyTimeOut Sets or returns an Integer value indicating the time the SqlBulkCopy
class will wait for the updates to process before it times out and
throws an exception. In the event of a time out, the transaction is not
committed, and all copied rows are removed from the server.

ColumnMappings Returns a reference to a SqlBulkCopyColumnMappingsCollection
object. This object is a collection object that maintains a list of column
mappings in the form of instances of SqlBulkCopyColumnMapping
objects. This property can be used to map the columns from the
source data table or data reader with the destination table.

DestinationTableName Sets or returns a String value indicating the table name of the desti-
nation table in the SQL Server database.

NotifyAfter Sets or returns an Integer value indicating the time after which a
SqlRowsCopied event is raised. This event can be used for a variety
of purposes, such as showing the progress of the bulk copy operation
to the end user.

The SqlBulkCopy class also exposes a few constructors and methods that enable you to alter its behavior
to meet your data processing needs. By using one of several overloaded constructors, you can provide a
connection to your destination database along with a custom transaction, if one is needed. You can also
select from a list of copy options that allow you to check constraints, keep identity fields, keep null values,
and use table-level locking.

Constructors
The details of various overloaded constructors of the SqlBulkCopy class are shown in the following
table. You can use these constructors to instantiate an object of the SqlBulkCopy class by specifying the
connection, copy options, and external transactions.

406

Chapter 12

15_576100 ch12.qxd 10/6/05 9:21 PM Page 406

Constructor Description

SqlBulkCopy(connectionString) Takes a String object containing a connection
string to the destination SQL Server database.

SqlBulkCopy(connection) Takes an instance of the SqlConnection object to
access the destination SQL Server database.

SqlBulkCopy Takes a String object containing the connection
(connectionString, copyOptions) string for the destination SQL Server as the first

parameter. The second parameter is a combination
of values from the SqlBulkCopyOptions enumer-
ation. Here are the details of this enumeration:
— Default: None of the following rules is applied.
— CheckConstraints: Constraints defined in the
destination table are enforced during the copy
operation. If any of the constraints fail, the update
process is rolled back, and a SqlException is
thrown specifying that a constraint is violated.
— KeepIdentity: This option is helpful if you want
to preserve the identity fields defined in the source
column; otherwise, the update operation creates
new identity fields provided that the destination
column is marked as type Identity. If this option is
used and a destination column already consists of
a value that conflicts with the source, the update
process is rolled back and a SqlException is
thrown. It specifies that a duplicate key cannot be
entered in the table.
— KeepNulls: This option forces the null values to
be stored in the destination table even if a default
value is specified. If this option is not specified, all
null values are replaced by the column’s default
value if the column has a default value specified.
— TableLock: This option causes the update pro-
cess to obtain a lock on the entire table for the
duration of the bulk copy process. If this option is
not used, row-level locking is used by default.

SqlBulkCopy Takes an instance of the SqlConnection class, a
(connection, copyOptions, set of copy options, and a reference to an existing
externalTransactions) transaction object. All the bulk copy through the

update process uses the provided transaction
object.

407

Data Management with ADO.NET

15_576100 ch12.qxd 10/6/05 9:21 PM Page 407

Methods
The SqlBulkCopy class provides one method to process the copy operation, as shown in the following
table. This method has overloads, which can be used to process a DataReader, DataTable, or an array
of DataRow objects.

Method Description

WriteToServer(reader) This overloaded method copies records from an open
DataReader object. The DataReader doesn’t have to
be SQL Server specific. The method receives a refer-
ence to the IDataReader interface, which enables you
to use any database server as the source of the data.

WriteToServer(table) This overloaded method copies records from a
DataTable object.

WriteToServer(table, rowState) This overloaded method copies records from a
DataTable object but uses only those records that are
marked by the given RowState flag. For example, if
you want to copy only those records that are updated
in the data table after they are retrieved from the
source, you pass DataRowState.Modified as the
value of the second parameter.

WriteToServer(rows()) This overloaded method copies records from an array
of DataRow objects.

While you are trying to bulk copy large quantities of data from one place to another, you may need to
map the columns from source to destination. The SqlBulkCopy class provides this capability by expos-
ing the ColumnMappings property that allows you to specify column-level mappings.

SqlBulkCopyColumnMapping
The SqlBulkCopyColumnMapping class enables you to map the columns between the source and the
destination tables. It provides a series of overloaded constructors and a list of properties that allow you
to specify source and destination columns either by their names or by their indexes. After objects of this
class have been instantiated, they can be added to or removed from the object of the
SqlBulkCopyColumnMappingsCollection class by calling its Add method

Properties
The properties of SqlBulkCopyColumnMapping class are shown in the following table. These properties
allow you to specify the source and column mapping.

408

Chapter 12

15_576100 ch12.qxd 10/6/05 9:21 PM Page 408

Property Description

SourceColumn Sets or returns the source column for this
mapping using the column name speci-
fied as String.

SourceOrdinal Sets or returns the source column for this
mapping using the column index speci-
fied as Integer.

DestinationColumn Sets or returns the destination column for
this mapping using the column name
specified as String.

DestinationOrdinal Sets or returns the destination column for
this mapping using the column index
specified as Integer.

Constructors
The SqlBulkCopyColumnMapping class provides five overloaded constructors, as shown in the follow-
ing table. You can use these constructors instead of or in conjunction with the properties to provide map-
pings between the source and destination columns.

Constructor Description

SqlBulkCopyColumnMapping() Creates an instance of the class without
any column mapping.

SqlBulkCopyColumnMapping Receives column names of both source
(sourceColumn, destinationColumn) and destination columns.

SqlBulkCopyColumnMapping Receives the name of the source column
(sourceColumn, destinationColumnOrdinal) and the index of the destination column.

SqlBulkCopyColumnMapping Receives the index of the source column
(sourceColumnOrdinal, destinationColumn) and the name of the destination column.

SqlBulkCopyColumnMapping Receives the indexes of source and
(sourceColumnOrdinal, destination columns.
destinationColumnOrdinal)

409

Data Management with ADO.NET

15_576100 ch12.qxd 10/6/05 9:21 PM Page 409

Method
The methods for adding column mappings to the bulk copy operation are provided in the
SqlBulkCopyColumnMappingsCollection class, as shown in the following table. These overloaded
methods allow you to provide either the objects of the SqlBulkCopyColumnMapping class or simply the
source and destination column names or indexes. If you provide the column names or indexes, the
method automatically creates an object of the SqlBulkCopyColumnMapping class and adds that object
to its internal collection.

Method Description

Add (bulkCopyColumnMapping) Receives an object of the SqlBulkCopy-
ColumnMapping class and adds it to the
internal collection.

Add (sourceColumn, Receives source and destination column
destinationColumn) names. It then creates an object of the Sql-

BulkCopyColumnMapping class and adds it
to the internal collection.

Add (sourceColumnIndex, Receives source column index and
destinationColumn) destination column names. It then creates an

object of the SqlBulkCopyColumnMapping
class and adds it to the internal collection.

Add (sourceColumn, Receives source column name and
destinationColumnIndex) destination column index. It then creates an

object of the SqlBulkCopyColumnMapping
class and adds it to the internal collection.

Add (sourceColumnIndex, Receives source and destination column
destinationColumnIndex) indexes. It then creates an object of the

SqlBulkCopyColumnMapping class and
adds it to the internal collection.

RemoveAt (index) Removes an object of the SqlBulkCopy-
ColumnMapping at a specified index from
the internal collection.

Clear () Clears the internal collection.

Now that you have learned the intricacies of the bulk loading feature of ADO.NET 2.0, you can put your
knowledge to the test by attempting to load a relatively large quantity of data from a source SQL Server
database to a destination table inside another SQL Server database.

A Bulk Copy Example Using a Data Reader
The code shown in Listing 12-5 connects with a database of employees containing over 100KB records. It
uses a simple SELECT statement to read all employee data from the source database using an object of
type SQLDataReader. After the SELECT statement has been processed successfully, you declare column
mappings between the source and the destination tables. While creating these column mappings, you

410

Chapter 12

15_576100 ch12.qxd 10/6/05 9:21 PM Page 410

are tasked with storing the name of the data source in the Title column of the destination table. This
information can be used later to sort out the records retrieved from various sources that end up being in
the same destination table. You satisfy this requirement by creating a dummy column in the source
result set and mapping it with the Title column of the destination table.

Note that column mappings are completely optional. If your source and destination tables use the exact
same schema, you can simply skip the steps related to creating column-mapping objects. The
SqlBulkCopy object, in the absence of column mappings, automatically attempts to map the source
and destination columns by their names.

This example uses a custom-developed ERP database as a source of employee information and uses the
Northwind database as the destination.

Listing 12-5: Code for bulk loading large quantities of data from a custom source table
to the Northwind database

VB
<%@ Page Language=”VB” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>
<%@ Import Namespace=”System.Configuration” %>

<script runat=”server”>
Sub btnBulkCopy_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles btnBulkCopy.Click

Dim ShajarConString As String
Dim NorthWindConString As String
Dim ShajarCon As SqlConnection = New SqlConnection()
Dim NorthwindCon As SqlConnection = New SqlConnection()

Dim ShajarCom As SqlCommand = New SqlCommand()
Dim ShajarReader As SqlDataReader

ShajarConString = _
ConfigurationManager.ConnectionStrings(“DSN_Shajar”).ConnectionString

NorthWindConString = _
ConfigurationManager.ConnectionStrings(“DSN_Northwind”).ConnectionString

ShajarCon.ConnectionString = ShajarConString
ShajarCom.Connection = ShajarCon
ShajarCom.CommandText = “ SELECT ID, First_Name, Last_Name, “ & _

“ ‘Shajar’ as Source FROM MailingList_Temp “

(continued)

On the Wrox.com site you will find an Excel file containing the custom data source
used in Listing 12-5. Load this into your SQL Server database and use it to run this
sample. You can find the steps for loading this data source into SQL Server in the
Readme.txt file bundled with the code for this chapter (Chapter12.zip).

411

Data Management with ADO.NET

15_576100 ch12.qxd 10/6/05 9:21 PM Page 411

Listing 12-5: (continued)

ShajarCom.CommandType = CommandType.Text

ShajarCom.Connection.Open()

Dim NorthWindBulkOp As SqlBulkCopy
NorthWindBulkOp = New SqlBulkCopy(NorthWindConString, _

SqlBulkCopyOptions.UseInternalTransaction)

NorthWindBulkOp.DestinationTableName = “Employees”
NorthWindBulkOp.ColumnMappings.Add(“Id”, “EmployeeID”)
NorthWindBulkOp.ColumnMappings.Add(“First_Name”, “FirstName”)
NorthWindBulkOp.ColumnMappings.Add(“Last_Name”, “LastName”)

Dim JobTitleColMap As SqlBulkCopyColumnMapping
JobTitleColMap = New SqlBulkCopyColumnMapping(“Source”, “Title”)

NorthWindBulkOp.ColumnMappings.Add(JobTitleColMap)
NorthWindBulkOp.BulkCopyTimeout = 500000000

AddHandler NorthWindBulkOp.SqlRowsCopied, _
New SqlRowsCopiedEventHandler(AddressOf OnSqlRowsCopied)

NorthWindBulkOp.NotifyAfter = 1000

ShajarReader = ShajarCom.ExecuteReader()

Try
NorthWindBulkOp.WriteToServer(ShajarReader)

Catch ex As Exception
‘ Write error handling code here
lblResult.Text = ex.Message

Finally
ShajarReader.Close()

End Try

End Sub

Private Sub OnSqlRowsCopied(ByVal sender As Object, _
ByVal args As SqlRowsCopiedEventArgs)

lblCounter.Text += args.RowsCopied.ToString() + “ rows are copied
”
End Sub

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head id=”Head1” runat=”server”>

<title>Bulk Loading Large Volume Data</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:Button ID=”btnBulkCopy” Runat=”server” Text=”Start Bulk Copy” />

412

Chapter 12

15_576100 ch12.qxd 10/6/05 9:21 PM Page 412

<asp:Label ID=”lblResult” Runat=”server”></asp:Label>

<asp:Label ID=”lblCounter” Runat=”server”></asp:Label>

</div>
</form>

</body>
</html>

C#
<%@ Page Language=”C#” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>
<%@ Import Namespace=”System.Configuration” %>

<script runat=”server”>
protected void btnBulkCopy_Click(object sender, EventArgs e)
{

String ShajarConString;
String NorthWindConString;
SqlConnection ShajarCon = new SqlConnection();
SqlConnection NorthwindCon = new SqlConnection();

SqlCommand ShajarCom = new SqlCommand();
SqlDataReader ShajarReader;

ShajarConString =
ConfigurationManager.ConnectionStrings[“DSN_Shajar”].ConnectionString;

NorthWindConString =
ConfigurationManager.ConnectionStrings[“DSN_Northwind”].ConnectionString;

ShajarCon.ConnectionString = ShajarConString;
ShajarCom.Connection = ShajarCon;
ShajarCom.CommandText = “ SELECT ID, First_Name, Last_Name, “ +

“ ‘Shajar’ as Source FROM MailingList_Temp “;
ShajarCom.CommandType = CommandType.Text;

ShajarCom.Connection.Open();

SqlBulkCopy NorthWindBulkOp;
NorthWindBulkOp = new SqlBulkCopy(NorthWindConString,

SqlBulkCopyOptions.UseInternalTransaction);

NorthWindBulkOp.DestinationTableName = “Employees”;

NorthWindBulkOp.ColumnMappings.Add(“Id”, “EmployeeID”);
NorthWindBulkOp.ColumnMappings.Add(“First_Name”, “FirstName”);
NorthWindBulkOp.ColumnMappings.Add(“Last_Name”, “LastName”);

SqlBulkCopyColumnMapping JobTitleColMap;

(continued)

413

Data Management with ADO.NET

15_576100 ch12.qxd 10/6/05 9:21 PM Page 413

Listing 12-5: (continued)

JobTitleColMap = new SqlBulkCopyColumnMapping(“Source”, “Title”);

NorthWindBulkOp.ColumnMappings.Add(JobTitleColMap);
NorthWindBulkOp.BulkCopyTimeout = 500000000;

NorthWindBulkOp.SqlRowsCopied +=
new SqlRowsCopiedEventHandler(OnRowsCopied);

NorthWindBulkOp.NotifyAfter = 1000;

ShajarReader = ShajarCom.ExecuteReader();

try
{

NorthWindBulkOp.WriteToServer(ShajarReader);
}
catch (Exception ex)
{

lblResult.Text = ex.Message;
}
finally
{

ShajarReader.Close();
}

}

private void OnRowsCopied(object sender, SqlRowsCopiedEventArgs args)
{

lblCounter.Text += args.RowsCopied.ToString() + “ rows are copied
”;
}

</script>

The code example shown in Listing 12-5 uses an internal transaction to process all records. If the bulk
operation fails before all records are processed, the transaction is rolled back and all records that were
added prior to the failure are retracted from the destination table.

To make sure that you commit all records that were processed successfully before the error occurred,
you must provide a custom transaction object to the constructor of the SqlBulkCopy object. In this case,
you commit the transaction manually using the Finally clause, as shown in Listing 12-6.

Listing 12-6: Committing a transaction after successfully completing the bulk copy
operation

VB
Dim Transaction As SqlTransaction
Transaction = ShajarCom.Connection.BeginTransaction()

Dim NorthWindBulkOp As SqlBulkCopy
NorthWindBulkOp = New SqlBulkCopy(New SqlConnection(NorthWindConString), _

SqlBulkCopyOptions.Default, _
Transaction)

414

Chapter 12

15_576100 ch12.qxd 10/6/05 9:21 PM Page 414

‘ ...Code removed for clarity...

ShajarReader = ShajarCom.ExecuteReader()

Try
NorthWindBulkOp.WriteToServer(ShajarReader)

Catch ex As Exception
‘ Write error handling code here

Finally
Transaction.Commit()
ShajarReader.Close()

End Try

C#
SqlTransaction Transaction;
Transaction = ShajarCom.Connection.BeginTransaction();

SqlBulkCopy NorthWindBulkOp;
NorthWindBulkOp = new SqlBulkCopy(new SqlConnection(NorthWindConString),

SqlBulkCopyOptions.Default,
Transaction);

// ...Code removed for clarity...

ShajarReader = ShajarCom.ExecuteReader();

try
{

NorthWindBulkOp.WriteToServer(ShajarReader);
}
catch (Exception ex)
{

// Write error handling code here
}
finally
{

Transaction.Commit();
ShajarReader.Close();

}

The advantage of committing the transaction in the Finally clause is that the transaction gets commit-
ted regardless of whether the error occurs.

SqlRowsCopied Event
Listing 12-5 shows the OnRowsCopied event handler. It simply updates a label control to show progress.
It is not necessary to do this. However, this event is a good way to show progress while the user is wait-
ing for a large volume of data to finish loading.

The big advantage of using this bulk copy method is that it reduces the number of times the database is
accessed during the copy operation. The code shown in Listing 12-5 processes large volumes of data at a
very rapid pace. You can see the database trace log in Figure 12-4. This trace log clearly shows that the
database copied all records with a few requests. In fact, the number of requests made to the database is
affected only by the size of the batch that you specify in the code.

415

Data Management with ADO.NET

15_576100 ch12.qxd 10/6/05 9:21 PM Page 415

Figure 12-4

Batch Processing Multiple Updates
Even though the bulk copy operation provides the most efficient way of loading data into the destination database, it
also provides the fewest opportunities for the customization of the database update processes. For instance, the bulk
copy operation is capable of loading the data only to a single table in the destination database. In many real-world
cases, the destination database uses multiple tables and data updates that often require executing either a custom SQL
statement or a custom Stored Procedure.

ADO.NET provides the DataAdapter object for just such cases. You can use the DataAdapter object to
provide custom Update, Insert, and Delete commands and to consume a DataTable. When the
Update method is called on a DataAdapter, it simply iterates through all rows in a DataTable and fires
the appropriate Update, Insert, or Delete command depending on the RowState flag set on each row.

The only problem with using DataAdapter in the previous version of ADO.NET was that it was unable
to process batch updates. The DataAdapter object was capable of executing only one command at a
time, and this caused a very significant performance slowdown if you were processing a large volume of
updates. This lack of batch processing also put a much greater load on the database server because it had
to process each command in a separate request.

With the introduction of ADO.NET 2.0, the DataAdapter object now provides a new property called
UpdateBatchSize. Using the value provided to this property, the DataAdapter object is now capable of
sending a group of commands to the database server in one batch. As a result, this feature significantly
improves performance when compared to the previous processing mechanism that handled each com-
mand separately.

The batch updates feature, however, relies on the target database or data source to support batch com-
mand execution. If the data source does not, the DataAdapter object ignores the UpdateBatchSize
property and proceeds with processing each command separately.

If you don’t provide any value to the UpdateBatchSize property, it defaults to a value of 1, which
causes the DataAdapter to process each command individually. If the UpdateBatchSize property is
set to 0, the DataAdapter processes all commands as one batch. Be careful about making the batch sizes
too large because different databases can handle only up to a certain batch size. If the batch size is larger
than the capability of the destination database, the DataAdapter throws an exception.

416

Chapter 12

15_576100 ch12.qxd 10/6/05 9:21 PM Page 416

Listing 12-7 shows a code example that retrieves all employee records from the Northwind database,
updates their addresses, and saves the changes back to the same table. It uses a batch size of 3 to process
three commands in each batch. You can change this number to a larger one if you want to process a
larger batch of records later. Currently, the Employees table in the Northwind database contains only
nine records, and setting a batch size of 3 accomplishes updates to these nine records in three requests to
the database server.

Listing 12-7: Batch processing multiple updates to the Northwind database

VB
<%@ Page Language=”VB” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>
<%@ Import Namespace=”System.Configuration” %>

<script runat=”server”>
Sub btnUpdateAddress_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles btnUpdateAddress.Click

Dim EmpAdapter As SqlDataAdapter = New SqlDataAdapter()
Dim EmpDT As DataTable = New DataTable()
Dim DBConSelect As SqlConnection = New SqlConnection()
Dim DBConUpdate As SqlConnection = New SqlConnection()
Dim SelectCommand As SqlCommand = New SqlCommand()
Dim UpdateCommand As SqlCommand = New SqlCommand()

‘ Using different connection objects for select and updates from the
‘ Northwind database.
DBConSelect.ConnectionString = _

ConfigurationManager.ConnectionStrings(“DSN_NorthWind”).ConnectionString

DBConUpdate.ConnectionString = _
ConfigurationManager.ConnectionStrings(“DSN_NorthWind”).ConnectionString

‘ Reading all records from the Employees table
SelectCommand.CommandText = “SELECT top 500 * FROM EMPLOYEES”
SelectCommand.CommandType = CommandType.Text
SelectCommand.Connection = DBConSelect

UpdateCommand.CommandText = _
“ UPDATE EMPLOYEES SET Address=@Address, “ + _
“City=@City, Region=@Region, Country=@Country”

UpdateCommand.CommandType = CommandType.Text
UpdateCommand.Connection = DBConUpdate

Dim AddressParam As SqlParameter
AddressParam = New SqlParameter(“@Address”, _

SqlDbType.VarChar, 15, “Address”)

Dim CityParam As SqlParameter
CityParam = New SqlParameter(“@City”, SqlDbType.VarChar, 15, “City”)

Dim RegionParam As SqlParameter

(continued)

417

Data Management with ADO.NET

15_576100 ch12.qxd 10/6/05 9:21 PM Page 417

Listing 12-7: (continued)

RegionParam = New SqlParameter(“@Region”, SqlDbType.VarChar, 15, “Region”)

Dim CountryParam As SqlParameter
CountryParam = New SqlParameter(“@Country”, _

SqlDbType.VarChar, 15, “Country”)

UpdateCommand.Parameters.Add(AddressParam)
UpdateCommand.Parameters.Add(CityParam)
UpdateCommand.Parameters.Add(RegionParam)
UpdateCommand.Parameters.Add(CountryParam)

‘ Setting up Data Adapter with the Select and Update Commands
‘ The Select command will be used to retrieve all employee
‘ information from the Northwind database and the Update command
‘ will be used to save changes back to the database
EmpAdapter.SelectCommand = SelectCommand
EmpAdapter.UpdateCommand = UpdateCommand

EmpAdapter.Fill(EmpDT)

DBConSelect.Close()

‘ Looping through all employee records and assigning them the new
‘ address
For Each DR As DataRow In EmpDT.Rows

DR(“Address”) = “4445 W 77th Street, Suite 140”
DR(“City”) = “Edina”
DR(“Region”) = “Minnesota”
DR(“Country”) = “USA”

Next

‘ Adding an event handler to listen to the RowUpdated event.
‘ This event will will fire after each batch is executed
AddHandler EmpAdapter.RowUpdated, _
New SqlRowUpdatedEventHandler(AddressOf OnRowUpdated)

lblCounter.Text = “”

EmpAdapter.UpdateBatchSize = 100

Dim Watch As Diagnostics.Stopwatch = New Diagnostics.Stopwatch()

‘ It is important to set this property for batch processing of
‘ updated records since batch updates are incapable of updating
‘ the source with changes from the database
UpdateCommand.UpdatedRowSource = UpdateRowSource.None

Try
DBConUpdate.Open()
EmpAdapter.Update(EmpDT)

Catch ex As Exception
lblCounter.Text += ex.Message + “
”

418

Chapter 12

15_576100 ch12.qxd 10/6/05 9:21 PM Page 418

Finally
If DBConUpdate.State = ConnectionState.Open Then

DBConUpdate.Close()
End If

End Try

End Sub

Private Sub OnRowUpdated(ByVal sender As Object, ByVal args As _
SqlRowUpdatedEventArgs)

lblCounter.Text += “Batch is processed for “ + args.RowCount.ToString() + _
“ rows
”

End Sub

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head id=”Head1” runat=”server”>

<title>Batch Processing Multiple Updates</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:Button ID=”btnUpdateAddress” Runat=”server” Text=”Update Address”
OnClick=”btnUpdateAddress_Click” />

<asp:Label ID=”lblCounter” Runat=”server”></asp:Label>

</div>
</form>

</body>
</html>

C#
<%@ Page Language=”C#” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>
<%@ Import Namespace=”System.Configuration” %>

<script runat=”server”>
protected void btnUpdateAddress_Click(object sender, EventArgs e)
{

SqlDataAdapter EmpAdapter = new SqlDataAdapter();
DataTable EmpDT = new DataTable();
SqlConnection DBConSelect = new SqlConnection();
SqlConnection DBConUpdate = new SqlConnection();
SqlCommand SelectCommand = new SqlCommand();

(continued)

419

Data Management with ADO.NET

15_576100 ch12.qxd 10/6/05 9:21 PM Page 419

Listing 12-7: (continued)

SqlCommand UpdateCommand = new SqlCommand();

// Using different connection objects for select and updates from the
// Northwind database.
DBConSelect.ConnectionString =

ConfigurationManager.ConnectionStrings[“DSN_NorthWind”].ConnectionString;
DBConUpdate.ConnectionString =

ConfigurationManager.ConnectionStrings[“DSN_NorthWind”].ConnectionString;

// Reading all records from the Employees table
SelectCommand.CommandText = “SELECT top 500 * FROM EMPLOYEES”;
SelectCommand.CommandType = CommandType.Text;
SelectCommand.Connection = DBConSelect;

UpdateCommand.CommandText = “ UPDATE EMPLOYEES SET Address=@Address, “ +
“City=@City, Region=@Region, Country=@Country”;

UpdateCommand.CommandType = CommandType.Text;
UpdateCommand.Connection = DBConUpdate;

SqlParameter AddressParam;
AddressParam = new SqlParameter(“@Address”,

SqlDbType.VarChar, 15, “Address”);

SqlParameter CityParam;
CityParam = new SqlParameter(“@City”, SqlDbType.VarChar, 15, “City”);

SqlParameter RegionParam;
RegionParam = new SqlParameter(“@Region”, SqlDbType.VarChar, 15, “Region”);

SqlParameter CountryParam;
CountryParam = new SqlParameter(“@Country”,

SqlDbType.VarChar, 15, “Country”);

UpdateCommand.Parameters.Add(AddressParam);
UpdateCommand.Parameters.Add(CityParam);
UpdateCommand.Parameters.Add(RegionParam);
UpdateCommand.Parameters.Add(CountryParam);

// Setting up Data Adapter with the Select and Update Commands
// The Select command will be used to retrieve all employee
// information from the Northwind database and the Update command
// will be used to save changes back to the database
EmpAdapter.SelectCommand = SelectCommand;
EmpAdapter.UpdateCommand = UpdateCommand;

EmpAdapter.Fill(EmpDT);

DBConSelect.Close();

// Looping through all employee records and assigning them the new

420

Chapter 12

15_576100 ch12.qxd 10/6/05 9:21 PM Page 420

// address
foreach (DataRow DR in EmpDT.Rows)
{

DR[“Address”] = “4445 W 77th Street, Suite 140”;
DR[“City”] = “Edina”;
DR[“Region”] = “Minnesota”;
DR[“Country”] = “USA”;

}

// Adding an event handler to listen to the RowUpdated event.
// This event will will fire after each batch is executed
EmpAdapter.RowUpdated += new SqlRowUpdatedEventHandler(OnRowUpdated);

lblCounter.Text = “”;

EmpAdapter.UpdateBatchSize = 100;

// It is important to set this property for batch processing of
// updated records since batch updates are incapable of
// updating the source with changes from the database
UpdateCommand.UpdatedRowSource = UpdateRowSource.None;

try
{

DBConUpdate.Open();
EmpAdapter.Update(EmpDT);

}
catch (Exception ex)
{

lblCounter.Text += ex.Message + “
”;
}
finally
{

if (DBConUpdate.State == ConnectionState.Open)
{

DBConUpdate.Close();
}

}
}

private void OnRowUpdated(object sender, SqlRowUpdatedEventArgs args)
{

lblCounter.Text += “Batch is processed till row number = “ +
args.RowCount.ToString() + “
”;

}

</script>

The batch update operation runs one SQL command for each operation, thereby causing significant
performance overhead. The trace log shown in Figure 12-5 shows this fact.

The ADO.NET classes introduced in version 1.0 provided a mechanism for developing cutting-edge,
database-driven applications. The features introduced to help manage data in a disconnected manner

421

Data Management with ADO.NET

15_576100 ch12.qxd 10/6/05 9:21 PM Page 421

especially paved the way for creating highly efficient and scalable applications. At the same time, the
features for processing data in a connected state using a fast-forward read-only cursor let you create
applications that consumed larger quantities of data at a rapid pace.

Figure 12-5

Surpassing even these advancements, the latest 2.0 version of ADO.NET provides a newer capability
that enables you to create a database-driven application in a manner that was impossible in previous
versions. The capability to process Multiple Active Result Sets (MARS) over the same connection not
only reduces programming tasks but also significantly enhances performance.

Multiple Active Result Sets
MARS provides the capability to open more than one result set over the same connection and lets you access
them all concurrently. MARS is helpful in the scenarios where the application uses a single data source for its
needs. You have probably written code where you executed a command to retrieve a result set and then had
to execute other commands for each record in the result set to retrieve detailed information related to those
records.

A typical master and detailed information scenario is a perfect example of how MARS can provide an
elegant programming model and enhance code performance at the same time. In this scenario, your
code executes a command to retrieve a set of records such as list of orders for a given day. While you are

422

Chapter 12

15_576100 ch12.qxd 10/6/05 9:21 PM Page 422

retrieving orders, you also want to retrieve detailed line items for each order so that you can present a
complete report to the user. It is quite common in a relational database to execute a separate command to
retrieve all the detailed line items for a given order. When we have found ourselves in such a scenario,
we ended up writing code that executed the command for retrieving the detailed information using one
loop for each record.

This type of scenario is still programmable in the older versions of ADO.NET. In older versions, how-
ever, programmers were limited to opening and closing separate connections for each request to the
database servers. Even though the programs ran successfully and produced desired results, program-
mers often wished for a more elegant mechanism that would enable them to reuse the same connection
and reduce the overhead associated with accessing the database. The release of ADO.NET 2.0 and sup-
port for MARS allow users to do just that.

Now you can write some code to access the Northwind database that produces a Web report showing all
the orders and item details of each order. As some of you already know, the Northwind database provides
two tables with the names Order and Order Details. The Orders table contains all the orders ever made
and the Order Details table shows the merchandise included as part of each order.

Listing 12-8 shows a GridView control that uses BoundField columns to show selected columns from the
database on the screen. The GridView control also uses a template column containing a Label control
whose value gets populated with a list of order details when you run a separate SQL query against the
Order Details table for each Order record.

Listing 12-8: GridView control declaration for displaying Orders and Order Details from
the Northwind database

VB
<%@ Page Language=”VB” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>
<%@ Import Namespace=”System.Configuration” %>

<script runat=”server”>
‘ Declaring connection here allows us to use it inside all methods
‘ of this class
Dim DBCon As SqlConnection

Protected Sub Page_Load(ByVal sender As Object, _
ByVal e As System.EventArgs)

Dim Command As SqlCommand = New SqlCommand()
Dim OrdersReader As SqlDataReader

DBCon = New SqlConnection()
DBCon.ConnectionString = _

(continued)

The OnRowDataBound event of the GridView control is what executes the SQL query
for retrieving order details.

423

Data Management with ADO.NET

15_576100 ch12.qxd 10/6/05 9:21 PM Page 423

Listing 12-8: (continued)

ConfigurationManager.ConnectionStrings(“DSN_NorthWind”).ConnectionString

Command.CommandText = _
“ SELECT TOP 5 Customers.CompanyName, Customers.ContactName, “ & _
“ Orders.OrderID, Orders.OrderDate, “ & _
“ Orders.RequiredDate, Orders.ShippedDate “ & _
“ FROM Orders, Customers “ & _
“ WHERE Orders.CustomerID = Customers.CustomerID “ & _
“ ORDER BY Customers.CompanyName, Customers.ContactName “

Command.CommandType = CommandType.Text
Command.Connection = DBCon

‘ Opening the connection and executing the SQL query.
DBCon.Open()
OrdersReader = Command.ExecuteReader()

‘ Binding the Data Reader to the GridView control
gvOrders.DataSource = OrdersReader
gvOrders.DataBind()

‘ Closing connection after we are done processing all order records
DBCon.Close()

End Sub

‘ This event handler is called for each record being bound to the
‘ GridView control
Protected Sub gvOrders_RowDataBound(ByVal sender As Object, _

ByVal e As System.Web.UI.WebControls.GridViewRowEventArgs)

Dim OrderRecord As IDataRecord
Dim lblOrderDetail As Label

‘ Retrieving the currently bound record from the Data Reader
‘ using the IDataRecord interface
OrderRecord = CType(e.Row.DataItem, IDataRecord)

‘ Retrieving reference to the Label Control inside the current
‘ GridView row. This Label will be populated with Order Details
lblOrderDetail = CType(e.Row.FindControl(“lblOrderDetail”), Label)

If OrderRecord Is Nothing Or lblOrderDetail Is Nothing Then
Return

End If

Dim Command As SqlCommand = New SqlCommand()
Dim OrderDetailReader As SqlDataReader

‘ Creating an SQL query to retrieve details
‘ for the currently processed order
Command.CommandText = _

424

Chapter 12

15_576100 ch12.qxd 10/6/05 9:21 PM Page 424

“SELECT Products.ProductName, [Order Details].UnitPrice, “ & _
“ [Order Details].Quantity, [Order Details].Discount “ & _
“ FROM [Order Details], Products “ & _
“ WHERE [Order Details].ProductID = Products.ProductID “ & _
“ AND [Order Details].OrderID = “ + _
Convert.ToString(OrderRecord(“OrderID”))

Command.CommandType = CommandType.Text

‘ Reusing the same connection object that was used in retrieving
‘ allorder records from the Orders table
Command.Connection = DBCon

‘ Executing SQL query without passing CommandBehavior.CloseConnection
‘ as parameter to ExecuteReader. We don’t want the connection
‘ to automatically close because we want to reuse it for more operations
OrderDetailReader = Command.ExecuteReader()

While OrderDetailReader.Read()
‘ Populating the lable control with the product name field
lblOrderDetail.Text += OrderDetailReader(0).ToString() + “
”

End While

End Sub

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head id=”Head1” runat=”server”>

<title>Multiple Active Result Sets</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:Label ID=”lblCounter” Runat=”server”></asp:Label>

<asp:GridView ID=”gvOrders” Runat=”server” AutoGenerateColumns=”False”

OnRowDataBound=”gvOrders_RowDataBound” Width=”100%”>
<Columns>

<asp:BoundField HeaderText=”Company Name”
DataField=”CompanyName”></asp:BoundField>

<asp:BoundField HeaderText=”Contact Name”
DataField=”ContactName”></asp:BoundField>

<asp:TemplateField>
<HeaderTemplate>

Order Detail
</HeaderTemplate>
<ItemTemplate>

<asp:Label ID=”lblOrderDetail” runat=”server”></asp:Label>
</ItemTemplate>

</asp:TemplateField>
<asp:BoundField HeaderText=”Order Date” DataField=”orderdate”

DataFormatString=”{0:d}”></asp:BoundField>

(continued)

425

Data Management with ADO.NET

15_576100 ch12.qxd 10/6/05 9:21 PM Page 425

Listing 12-8: (continued)

<asp:BoundField HeaderText=”Required Date” DataField=”requireddate”
DataFormatString=”{0:d}”></asp:BoundField>

<asp:BoundField HeaderText=”Shipped Date” DataField=”shippeddate”
DataFormatString=”{0:d}”></asp:BoundField>

</Columns>
</asp:GridView>

</div>
</form>

</body>
</html>

C#
<%@ Page Language=”C#” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>
<%@ Import Namespace=”System.Configuration” %>

<script runat=”server”>
// Declaring connection here allows us to use it inside all methods
// of this class
SqlConnection DBCon;

protected void Page_Load(object sender, EventArgs e)
{

SqlCommand Command = new SqlCommand();
SqlDataReader OrdersReader;

DBCon = new SqlConnection();
DBCon.ConnectionString =

ConfigurationManager.ConnectionStrings[“DSN_NorthWind”].ConnectionString;

Command.CommandText =
“ SELECT TOP 5 Customers.CompanyName, Customers.ContactName, “ +
“ Orders.OrderID, Orders.OrderDate, “ +
“ Orders.RequiredDate, Orders.ShippedDate “ +
“ FROM Orders, Customers “ +
“ WHERE Orders.CustomerID = Customers.CustomerID “ +
“ ORDER BY Customers.CompanyName, Customers.ContactName “

Command.CommandType = CommandType.Text;
Command.Connection = DBCon;

// Opening the connection and executing the SQL query.
DBCon.Open();
OrdersReader = Command.ExecuteReader();

// Binding the Data Reader to the GridView control
gvOrders.DataSource = OrdersReader;

426

Chapter 12

15_576100 ch12.qxd 10/6/05 9:21 PM Page 426

gvOrders.DataBind();

// Closing connection after we are done processing all order records
DBCon.Close();

}

protected void gvOrders_RowDataBound(object sender, GridViewRowEventArgs e)
{

IDataRecord OrderRecord;
Label lblOrderDetail;

// Retrieving the currently bound record from the Data Reader
// using the IDataRecord interface
OrderRecord = e.Row.DataItem as IDataRecord;

// Retrieving reference to the Label Control inside the current
// GridView row. This Label will be populated with Order Details
lblOrderDetail = e.Row.FindControl(“lblOrderDetail”) as Label;

if ((OrderRecord == null) || (lblOrderDetail == null))
return;

SqlCommand Command = new SqlCommand();
SqlDataReader OrderDetailReader;

// Creating an SQL query to retrieve details
// for the currently processed order
Command.CommandText =

“SELECT Products.ProductName, [Order Details].UnitPrice, “ +
“ [Order Details].Quantity, [Order Details].Discount “ +
“ FROM [Order Details], Products “ +
“ WHERE [Order Details].ProductID = Products.ProductID “ +
“ AND [Order Details].OrderID = “ +
Convert.ToString(OrderRecord[“OrderID”]);

Command.CommandType = CommandType.Text;

// Reusing the same connection object that was used in retrieving
// allorder records from the Orders table
Command.Connection = DBCon;

// Executing SQL query without passing CommandBehavior.CloseConnection
// as parameter to ExecuteReader. We don’t want the connection
// to automatically close because we want to reuse it for more operations
OrderDetailReader = Command.ExecuteReader();

while (OrderDetailReader.Read())
{

// Populating the lable control with the product name field
lblOrderDetail.Text += OrderDetailReader[0].ToString() + “
”;

}
}

</script>

427

Data Management with ADO.NET

15_576100 ch12.qxd 10/6/05 9:21 PM Page 427

Listing 12-8 show a sample of code that runs an inline SQL statement to retrieve all orders from the
Orders table. It retrieves the result set using a SqlDataReader object and binds the DataReader to a
GridView control. When the GridView control starts to bind the DataReader, it starts firing an
OnRowDataBound event for each record. The code listens to this event using an event handler. The
parameters automatically passed to this event handler contain the record that is currently being bound
to the GridView control. To get reference to this record, use the IDataRecord interface. You can use its
properties to access the OrderID column for the order record that is currently being data bound. After
you know the OrderID, you execute an SQL query against the Order Details table and retrieve items
details for the order.

When executing the code shown in the Listings 12-4 and 12-5, you see the result on the screen showing
the five orders from the Orders table (see Figure 12-6). Pay close attention to the Order Detail column
that shows the list of products within each order. This list is retrieved by running separate SQL query for
each order using the same connection to the database.

Figure 12-6

One of the disadvantages of the previous versions of ADO.NET was its lack of support for asynchronous
processing. Each command had to finish executing before the user could issue more commands to the
database. Support for asynchronous processing would have allowed users to make multiple, unrelated
updates to the database in a parallel fashion. This was especially true if multiple databases were involved.
With the release of ADO.NET 2.0, you are now able to process database commands asynchronously, as
discussed in the following section.

428

Chapter 12

15_576100 ch12.qxd 10/6/05 9:21 PM Page 428

Asynchronous Command Execution
When you process data using ADO or previous versions of ADO.NET, each command is executed
sequentially. The code waits for each command to complete before the next one is processed. When you
use a single database, the sequential processing enables you to reuse the same connection object for all
commands. However, with the introduction of MARS, you can now use a single connection for
multiple, concurrent database access. The 2.0 version of ADO.NET also enables you to process database
commands asynchronously. This enables you to not only use same connection, but also to use it in a
parallel manner. The real advantage of asynchronous processing becomes apparent when you are
accessing multiple data sources — especially when the data access queries across these databases aren’t
dependent on each other. You can now open a connection to the database in an asynchronous manner.
When you are working with multiple databases, you can now open connections to them in a parallel
fashion as well.

Asynchronous Methods of the SqlCommand Class
The SqlCommand class provides a few additional methods that facilitate executing commands asyn-
chronously. These new methods are summarized in the following table.

Method Description

BeginExecuteNonQuery () This method expects a query that doesn’t return
any results and starts it asynchronously. The
return value is a reference to an object of
the SqlAsyncResult class that implements the
IAsyncResult interface. The returned object
can be used to monitor the process as it runs
and when it is completed.

BeginExecuteNonQuery This overloaded method also starts the process
(callback, stateObject) asynchronously, and it expects to receive an

object of the AsynchCallback instance. The
callback method is called after the process is
finished running so that you can proceed with
other tasks. The second parameter receives any
custom-defined object. This object is passed to
the callback automatically. It provides an
excellent mechanism for passing parameters to
the callback method. The callback method can
retrieve the custom-defined state object by using
the AsyncState property of the IAsyncResult
interface.

Table continued on following page

The use of asynchronous processing with ADO.NET 2.0 requires that MDAC 9.0 be
installed on the machine. Be sure to download and install MDAC 9.0 before attempt-
ing to use this feature. Also, be sure to add Asynchronous Processing=true; to
the connection string.

429

Data Management with ADO.NET

15_576100 ch12.qxd 10/6/05 9:21 PM Page 429

Method Description

EndExecuteNonQuery (asyncResult) This method is used to access the results from the
BeginExecuteNonQuery method. This should
be called after the process has finished running;
otherwise, an exception is thrown. When calling
this method, you are required to pass the same
SqlAsyncResult object that you received when
you called the BeginExecuteNonQuery method.
This method returns an Integer value containing
the number of rows affected.

BeginExecuteReader This method expects a query that returns a
result set and starts it asynchronously. The
return value is a reference to an object of
SqlAsyncResult class that implements
IAsyncResult interface. The returned object
can be used to monitor the process as it runs
and as it is completed.

BeginExecuteReader (commandBehavior) This overloaded method works the same way
as the one described previously. It also takes a
parameter containing a command behavior
enumeration just like the synchronous
ExecuteReader method.

BeginExecuteReader This overloaded method starts the
(callback, stateObject) asynchronous process and it expects to receive

an object of AsyncCallback instance. The call-
back method is called after the process finishes
running so that you can proceed with other tasks.
The second parameter receives any custom-
defined object. This object is passed to the
callback automatically. It provides an excellent
mechanism for passing parameters to the callback
method. The callback method can retrieve the
custom-defined state object by using the
AsyncState property of the IAsyncResult
interface.

BeginExecuteReader This overloaded method takes an instance of the
(callback, stateObject, AsyncCallback class and uses it to fire a
commandBehavior) callback method when the process has finished

running. The second parameter receives a custom
object to be passed to the callback method, and
the third parameter uses the command behavior
enumeration in the same way as the synchronous
ExecuteReader method.

430

Chapter 12

15_576100 ch12.qxd 10/6/05 9:21 PM Page 430

Method Description

EndExecuteReader This method is used to access the results from
the BeginExecuteReader method. This should
be called after the process has finished running;
otherwise, an exception is thrown. When calling
this method, you are required to pass the same
SqlAsyncResult object that you receive when
you called the BeginExecuteReader method.
This method returns a SqlDataReader object
containing the result of the SQL query.

BeginExecuteXmlReader This method expects a query that returns the
result set as XML. The return value is a reference
to an object of SqlAsyncResult class that
implements IAsyncResult interface. The
returned object can be used to monitor the
process as it runs and as it is completed.

BeginExecuteXmlReader This overloaded method starts the
(callback, stateObject) asynchronous process, and it expects to receive an

object of AsyncCallback instance. The callback
method is called after the process has finished
running so that you can proceed with other tasks.
The second parameter receives any custom-
defined object. This object is passed to the call-
back automatically. It provides an excellent
mechanism for passing parameters to the callback
method. The callback method can retrieve the
custom-defined state object by using the
AsyncState property of the IAsyncResult
interface.

EndExecuteXmlReader This method is used to access the results from
the BeginExecuteXmlReader method. It
should be called after the process has finished
running; otherwise, an exception is thrown.
When calling this method, you are required to
pass the same SqlAsyncResult object that you
received when you called the BeginExecu-
teXmlReader method. This method returns an
XML Reader object containing the result of the
SQL query.

431

Data Management with ADO.NET

15_576100 ch12.qxd 10/6/05 9:21 PM Page 431

IAsyncResult Interface
All the asynchronous methods for the SqlCommand class return a reference to an object that exposes the
IAsyncResult interface. The properties of this interface are shown in the following table.

Property Description

AsyncState This read-only property returns an object that
describes the state of the process.

AsyncWaitHandle This read-only property returns an instance of
WaitHandle that can be used to set the time
out, test whether the process has completed,
and force the code to wait for completion.

CompletedSynchronously This read-only property returns a Boolean value
that indicates whether the process was executed
synchronously.

IsCompleted This read-only property returns a Boolean value
indicating whether the process has completed.

AsyncCallback
Some of the asynchronous methods of the SqlCommand class receive an instance of the AsyncCallback
class. This class is not specific to ADO.NET and is used by many objects in the .NET Framework. It is used to
specify those methods that you want to execute after the asynchronous process has finished running. This
class uses its constructor to receive the address of the method that you want to use for call-back purposes.

WaitHandle Class
This class is an abstract class used for multiple purposes such as causing the execution to wait for any or all
asynchronous processes to finish. To process more than one database command asynchronously, you can
simply create an array containing wait handles for each asynchronous process. Using the static properties
of WaitHandle class, you can cause the execution to wait for either any or all wait handles in the array to
finish processing.

The WaitHandle class exposes a single property with the name WaitTimeout, and it is used to provide
an Integer value representing the number of milliseconds the asynchronous has to finish running.

The WaitHandle class also exposes a few methods, as shown in the following table.

Method Description

WaitOne This method waits for a single asynchronous
process to complete or time out. It returns a
Boolean value containing True if the process
completed successfully and False if it timed out.

432

Chapter 12

15_576100 ch12.qxd 10/6/05 9:21 PM Page 432

Method Description

WaitOne (milliseconds, exitContext) This overloaded method receives an Integer value
as the first parameter. This value represents the
time out in milliseconds. The second parameter
receives a Boolean value specifying whether the
method requires asynchronous context and should
be set to False for asynchronous processing.

WaitOne (timeSpan, exitContext) This overloaded method received a TimeSpan
object to represent the time-out value. The sec-
ond parameter receives a Boolean value specify-
ing whether the method requires asynchronous
context and should be set to False for Asyn-
chronous processing.

WaitAny (waitHandles) This is a Static method used if you are manag-
ing more than one Wait Handle in the form of
an array. Using this method causes the execu-
tion to wait for any of the asynchronous pro-
cesses that have been started and whose wait
handles are in the array being passed to it. The
WaitAny method must be called repeatedly —
once for each Wait Handle you want to process.

WaitAny (waitHandles, milliseconds, This overloaded method receives the time-out
exitContext) value in the form of milliseconds and a Boolean

value specifying whether the method requires
asynchronous context. It should be set to False
for asynchronous processing.

WaitAny (waitHandles, timeSpan, This overloaded method receives the time-out
exitContext value in the form of Time Span object. The second

parameter receives a Boolean value specifying
whether the method requires asynchronous context.
It should be set to False for asynchronous processing.

WaitAll (waitHandles) This is a Static method and is used to wait for
all asynchronous processes to finish running.

WaitAll (waitHandles, milliseconds, This overloaded method receives the time-out
exitContext) value in the form of milliseconds and a Boolean

value specifying whether the method requires
asynchronous context. It should be set to False
for asynchronous processing.

WaitAll (waitHandles, timeSpan, This overloaded method receives the time-out
exitContext) value in the form of Time Span object. The second

parameter receives a Boolean value specifying
whether the method requires asynchronous con-
text. It should be set to False for asynchronous
processing.

Close () This method releases all wait handles and
reclaims their resources.

433

Data Management with ADO.NET

15_576100 ch12.qxd 10/6/05 9:21 PM Page 433

Now that you understand asynchronous methods added to the SqlCommand and how to properly inter-
act with them, you can write some code to see the asynchronous processing in action.

Approaches of Asynchronous Processing in ADO.NET
You can process asynchronous commands in three distinct ways. One approach is to start the asyn-
chronous process and start polling the IAsyncResult object to see when the process has finished. The
second approach is to provide a callback method while starting the asynchronous process. This
approach enables you to perform other tasks in parallel. When the asynchronous process finishes, it fires
the callback method that cleans up after the process and notifies other parts of the program that the
asynchronous process has finished. The third and most elegant method is to associate a wait handle with
the asynchronous process. Using this approach, you can start all the asynchronous processing you want
and then wait for all or any of them to finish so that you can process them accordingly.

The Poll Approach
The code shown in Listing 12-9 creates an inline SQL statement to retrieve the top five records from
the Orders table of the Northwind database. It starts the asynchronous process by calling the
BeginExecuteReader. After the asynchronous process has started, it uses a while loop to wait
for the process to finish. While waiting, the main thread sleeps for 10 milliseconds after checking the
status of the asynchronous process. After the process has finished, it retrieves the result using
the EndExecuteReader method.

Listing 12-9: The Poll approach of working with asynchronous commands

VB
<%@ Page Language=”VB” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>
<%@ Import Namespace=”System.Configuration” %>

<script runat=”server”>

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Dim DBCon As SqlConnection
Dim Command As SqlCommand = New SqlCommand()
Dim OrdersReader As SqlDataReader
Dim ASyncResult As IAsyncResult

DBCon = New SqlConnection()
DBCon.ConnectionString = _

ConfigurationManager.ConnectionStrings(“DSN_NorthWind”).ConnectionString

Command.CommandText = _
“SELECT TOP 5 Customers.CompanyName, Customers.ContactName, “ & _
“ Orders.OrderID, Orders.OrderDate, “ & _
“ Orders.RequiredDate, Orders.ShippedDate “ & _
“ FROM Orders, Customers “ & _
“ WHERE Orders.CustomerID = Customers.CustomerID “ & _
“ ORDER BY Customers.CompanyName, Customers.ContactName “

Command.CommandType = CommandType.Text

434

Chapter 12

15_576100 ch12.qxd 10/6/05 9:21 PM Page 434

Command.Connection = DBCon

DBCon.Open()

‘ Starting the asynchronous processing
ASyncResult = Command.BeginExecuteReader()

‘ This loop with keep the main thread waiting until the
‘ asynchronous process is finished
While Not ASyncResult.IsCompleted

‘ Sleeping current thread for 10 milliseconds
System.Threading.Thread.Sleep(10)

End While

‘ Retrieving result from the asynchronous process
OrdersReader = Command.EndExecuteReader(ASyncResult)

‘ Displaying result on the screen
gvOrders.DataSource = OrdersReader
gvOrders.DataBind()

‘ Closing connection
DBCon.Close()

End Sub

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head id=”Head1” runat=”server”>

<title>The Poll Approach</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:GridView ID=”gvOrders” Runat=”server”

AutoGenerateColumns=”False” Width=”100%”>
<Columns>

<asp:BoundField HeaderText=”Company Name”
DataField=”CompanyName”></asp:BoundField>

<asp:BoundField HeaderText=”Contact Name”
DataField=”ContactName”></asp:BoundField>

<asp:BoundField HeaderText=”Order Date”
DataField=”orderdate” DataFormatString=”{0:d}”></asp:BoundField>

<asp:BoundField HeaderText=”Required Date” DataField=”requireddate”
DataFormatString=”{0:d}”></asp:BoundField>

<asp:BoundField HeaderText=”Shipped Date” DataField=”shippeddate”
DataFormatString=”{0:d}”></asp:BoundField>

</Columns>
</asp:GridView>

</div>
</form>

</body>
</html>

(continued)

435

Data Management with ADO.NET

15_576100 ch12.qxd 10/6/05 9:21 PM Page 435

Listing 12-9: (continued)

C#
<%@ Page Language=”C#” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>
<%@ Import Namespace=”System.Configuration” %>

<script runat=”server”>

protected void Page_Load(object sender, EventArgs e)
{

SqlConnection DBCon;
SqlCommand Command = new SqlCommand();
SqlDataReader OrdersReader;
IAsyncResult ASyncResult;

DBCon = new SqlConnection();
DBCon.ConnectionString =

ConfigurationManager.ConnectionStrings[“DSN_NorthWind”].ConnectionString;

Command.CommandText =
“SELECT TOP 5 Customers.CompanyName, Customers.ContactName, “ +
“ Orders.OrderID, Orders.OrderDate, “ +
“ Orders.RequiredDate, Orders.ShippedDate “ +
“ FROM Orders, Customers “ +
“ WHERE Orders.CustomerID = Customers.CustomerID “ +
“ ORDER BY Customers.CompanyName, Customers.ContactName “

Command.CommandType = CommandType.Text;
Command.Connection = DBCon;

DBCon.Open();

// Starting the asynchronous processing
ASyncResult = Command.BeginExecuteReader();

// This loop with keep the main thread waiting until the
// asynchronous process is finished
while (!ASyncResult.IsCompleted)
{

// Sleeping current thread for 10 milliseconds
System.Threading.Thread.Sleep(10);

}

// Retrieving result from the asynchronous process
OrdersReader = Command.EndExecuteReader(ASyncResult);

// Displaying result on the screen
gvOrders.DataSource = OrdersReader;
gvOrders.DataBind();

// Closing connection
DBCon.Close();

}
</script>

436

Chapter 12

15_576100 ch12.qxd 10/6/05 9:21 PM Page 436

If you set a break point at the while loop, you will be able to see that the code execution continues after
calling the BeginExecuteReader method. The code then continues to loop until the asynchronous
execution has finished.

The Wait Approach
The most elegant of the three approaches is neither the poll approach nor the callback approach. The
approach that provides the highest level of flexibility, efficiency, and (admittedly) a bit more complexity is
the wait approach. Using this approach, you can write code that starts multiple asynchronous processes
and waits for any or all the processes to finish running. This approach allows you to wait for only those
processes that are dependent on each other and to proceed with the ones that don’t. This approach, by its
design, requires you to think about asynchronous processes in great detail. You must pick a good candidate
for running in parallel and, most importantly, determine how different processes depend on each other.
The complexity of this approach requires you to understand its details and design the code accordingly.
The end result is, typically, a very elegant code design that makes the best use of synchronous and
asynchronous processing models.

The code shown in Listing 12-10 uses the WaitOne method of the WaitHandle class. This method causes
the program execution to wait until the asynchronous process has finished running.

Listing 12-10: The wait approach of handling a single asynchronous process

VB
<%@ Page Language=”VB” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>
<%@ Import Namespace=”System.Configuration” %>

<script runat=”server”>
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Dim DBCon As SqlConnection
Dim Command As SqlCommand = New SqlCommand()
Dim OrdersReader As SqlDataReader
Dim ASyncResult As IAsyncResult
Dim WHandle As Threading.WaitHandle

DBCon = New SqlConnection()
DBCon.ConnectionString = _

ConfigurationManager.ConnectionStrings(“DSN_NorthWind”).ConnectionString

Command.CommandText = _
“SELECT TOP 5 Customers.CompanyName, Customers.ContactName, “ & _
“ Orders.OrderID, Orders.OrderDate, “ & _
“ Orders.RequiredDate, Orders.ShippedDate “ & _
“ FROM Orders, Customers “ & _
“ WHERE Orders.CustomerID = Customers.CustomerID “ & _
“ ORDER BY Customers.CompanyName, Customers.ContactName “;

Command.CommandType = CommandType.Text

(continued)

437

Data Management with ADO.NET

15_576100 ch12.qxd 10/6/05 9:21 PM Page 437

Listing 12-10: (continued)

Command.Connection = DBCon

DBCon.Open()

‘ Starting the asynchronous processing
ASyncResult = Command.BeginExecuteReader()

WHandle = ASyncResult.AsyncWaitHandle

If WHandle.WaitOne = True Then
‘ Retrieving result from the asynchronous process
OrdersReader = Command.EndExecuteReader(ASyncResult)

‘ Displaying result on the screen
gvOrders.DataSource = OrdersReader
gvOrders.DataBind()

‘ Closing connection
DBCon.Close()

Else
‘ Asynchronous process has timed out. Handle this
‘ situation here.

End If
End Sub

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head id=”Head1” runat=”server”>

<title>The Wait Approach</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:GridView ID=”gvOrders” Runat=”server”

AutoGenerateColumns=”False” Width=”100%”>
<Columns>

<asp:BoundField HeaderText=”Company Name”
DataField=”CompanyName”></asp:BoundField>

<asp:BoundField HeaderText=”Contact Name”
DataField=”ContactName”></asp:BoundField>

<asp:BoundField HeaderText=”Order Date”
DataField=”orderdate” DataFormatString=”{0:d}”></asp:BoundField>

<asp:BoundField HeaderText=”Required Date” DataField=”requireddate”
DataFormatString=”{0:d}”></asp:BoundField>

<asp:BoundField HeaderText=”Shipped Date” DataField=”shippeddate”
DataFormatString=”{0:d}”></asp:BoundField>

</Columns>
</asp:GridView>

</div>
</form>

</body>
</html>

438

Chapter 12

15_576100 ch12.qxd 10/6/05 9:21 PM Page 438

C#
<%@ Page Language=”C#” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>
<%@ Import Namespace=”System.Configuration” %>

<script runat=”server”>
protected void Page_Load(object sender, EventArgs e)
{

SqlConnection DBCon;
SqlCommand Command = new SqlCommand();
SqlDataReader OrdersReader;
IAsyncResult ASyncResult;
System.Threading.WaitHandle WHandle;

DBCon = new SqlConnection();
DBCon.ConnectionString =

ConfigurationManager.ConnectionStrings[“DSN_NorthWind”].ConnectionString;

Command.CommandText =
“SELECT TOP 5 Customers.CompanyName, Customers.ContactName, “ +
“ Orders.OrderID, Orders.OrderDate, “ +
“ Orders.RequiredDate, Orders.ShippedDate “ +
“ FROM Orders, Customers “ +
“ WHERE Orders.CustomerID = Customers.CustomerID “ +
“ ORDER BY Customers.CompanyName, Customers.ContactName “;

Command.CommandType = CommandType.Text;
Command.Connection = DBCon;

DBCon.Open();

// Starting the asynchronous processing
ASyncResult = Command.BeginExecuteReader();

WHandle = ASyncResult.AsyncWaitHandle;

if (WHandle.WaitOne() == true)
{

// Retrieving result from the asynchronous process
OrdersReader = Command.EndExecuteReader(ASyncResult);

// Displaying result on the screen
gvOrders.DataSource = OrdersReader;
gvOrders.DataBind();

// Closing connection
DBCon.Close();

}
else
{

// Asynchronous process has timed out. Handle this
// situation here.

}
}

</script>

439

Data Management with ADO.NET

15_576100 ch12.qxd 10/6/05 9:21 PM Page 439

If you set a break point and step through this code, you will notice that the program execution stops at the
WHandle.WaitOnemethod call. The program automatically resumes when the asynchronous commands finishes
its execution.

Using Multiple Wait Handles
The real power of the wait approach doesn’t become apparent until you start multiple asynchronous
processes. The code shown in Listing 12-11 starts two asynchronous processes. One process queries a
database to get information about a specific customer and runs another query to retrieve all orders
submitted by that the same customer. The code example shown in this listing creates two separate
Command objects, Data Reader objects, and wait handles. However, it uses the same connection object for
both queries to demonstrate how well multiple Active Result Set (MARS) supports work in conjunction
with the asynchronous processing.

Listing 12-11: Use of multiple wait handles in conjunction with MARS

VB
<%@ Page Language=”VB” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>
<%@ Import Namespace=”System.Configuration” %>

<script runat=”server”>
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Dim DBCon As SqlConnection
Dim OrdersCommand As SqlCommand = New SqlCommand()
Dim CustCommand As SqlCommand = New SqlCommand()
Dim OrdersReader As SqlDataReader
Dim CustReader As SqlDataReader
Dim OrdersASyncResult As IAsyncResult
Dim CustAsyncResult As IAsyncResult

Dim WHandles(1) As System.Threading.WaitHandle
Dim OrdersWHandle As System.Threading.WaitHandle
Dim CustWHandle As System.Threading.WaitHandle

DBCon = New SqlConnection()
DBCon.ConnectionString = _

ConfigurationManager.ConnectionStrings(“DSN_NorthWind”).ConnectionString

CustCommand.CommandText = _
“ SELECT * FROM Customers WHERE CompanyName = ‘Alfreds Futterkiste’ “

CustCommand.CommandType = CommandType.Text
CustCommand.Connection = DBCon

‘ Selecting all orders for a specific customer
OrdersCommand.CommandText = _

“ SELECT Customers.CompanyName, Customers.ContactName, “ & _
“ Orders.OrderID, Orders.OrderDate, “ & _
“ Orders.RequiredDate, Orders.ShippedDate “ & _
“ FROM Orders, Customers “ & _

440

Chapter 12

15_576100 ch12.qxd 10/6/05 9:21 PM Page 440

“ WHERE Orders.CustomerID = Customers.CustomerID “ & _
“ AND Customers.CompanyName = ‘Alfreds Futterkiste’ “ & _
“ ORDER BY Customers.CompanyName, Customers.ContactName “

OrdersCommand.CommandType = CommandType.Text
OrdersCommand.Connection = DBCon

DBCon.Open()

‘ Retrieving customer information asynchronously
CustAsyncResult = CustCommand.BeginExecuteReader()

‘ Retrieving orders list asynchronously
OrdersASyncResult = OrdersCommand.BeginExecuteReader()

CustWHandle = CustAsyncResult.AsyncWaitHandle
OrdersWHandle = OrdersASyncResult.AsyncWaitHandle

‘ Filling Wait Handles array with the two wait handles we
‘ are going to use in this code
WHandles(0) = CustWHandle
WHandles(1) = OrdersWHandle

System.Threading.WaitHandle.WaitAll(WHandles)

CustReader = CustCommand.EndExecuteReader(CustAsyncResult)

OrdersReader = OrdersCommand.EndExecuteReader(OrdersASyncResult)

gvCustomers.DataSource = CustReader
gvCustomers.DataBind()

gvOrders.DataSource = OrdersReader
gvOrders.DataBind()

DBCon.Close()
End Sub

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head id=”Head1” runat=”server”>

<title>Wait All Approach</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>
<asp:GridView ID=”gvCustomers” Width=”100%” Runat=”server”></asp:GridView>

<asp:GridView ID=”gvOrders” Width=”100%” AutoGenerateColumns=”False”

Runat=”server”>
<Columns>
<asp:BoundField HeaderText=”Company Name”

DataField=”CompanyName”></asp:BoundField>

(continued)

441

Data Management with ADO.NET

15_576100 ch12.qxd 10/6/05 9:21 PM Page 441

Listing 12-11: (continued)

<asp:BoundField HeaderText=”Contact Name”
DataField=”ContactName”></asp:BoundField>

<asp:BoundField HeaderText=”Order Date” DataField=”orderdate”
DataFormatString=”{0:d}”></asp:BoundField>

<asp:BoundField HeaderText=”Required Date” DataField=”requireddate”
DataFormatString=”{0:d}”></asp:BoundField>

<asp:BoundField HeaderText=”Shipped Date” DataField=”shippeddate”
DataFormatString=”{0:d}”></asp:BoundField>

</Columns>
</asp:GridView>
</div>
</form>

</body>
</html>

C#
<%@ Page Language=”C#” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>
<%@ Import Namespace=”System.Configuration” %>

<script runat=”server”>
protected void Page_Load(object sender, EventArgs e)
{

SqlConnection DBCon;
SqlCommand OrdersCommand = new SqlCommand();
SqlCommand CustCommand = new SqlCommand();
SqlDataReader OrdersReader;
SqlDataReader CustReader;
IAsyncResult OrdersASyncResult;
IAsyncResult CustAsyncResult;

System.Threading.WaitHandle[] WHandles = new
System.Threading.WaitHandle[1];

System.Threading.WaitHandle OrdersWHandle;
System.Threading.WaitHandle CustWHandle;

DBCon = new SqlConnection();
DBCon.ConnectionString =

ConfigurationManager.ConnectionStrings[“DSN_NorthWind”].ConnectionString;

CustCommand.CommandText =
“ SELECT * FROM Customers WHERE CompanyName = ‘Alfreds Futterkiste’ “;

CustCommand.CommandType = CommandType.Text;
CustCommand.Connection = DBCon;

// Selecting all orders for a specific customer

442

Chapter 12

15_576100 ch12.qxd 10/6/05 9:21 PM Page 442

“ SELECT Customers.CompanyName, Customers.ContactName, “ +
“ Orders.OrderID, Orders.OrderDate, “ +
“ Orders.RequiredDate, Orders.ShippedDate “ +
“ FROM Orders, Customers “ +
“ WHERE Orders.CustomerID = Customers.CustomerID “ +
“ AND Customers.CompanyName = ‘Alfreds Futterkiste’ “ +
“ ORDER BY Customers.CompanyName, Customers.ContactName “;

OrdersCommand.CommandType = CommandType.Text;
OrdersCommand.Connection = DBCon;

DBCon.Open();

// Retrieving customer information asynchronously
CustAsyncResult = CustCommand.BeginExecuteReader();

// Retrieving orders list asynchronously
OrdersASyncResult = OrdersCommand.BeginExecuteReader();

CustWHandle = CustAsyncResult.AsyncWaitHandle;
OrdersWHandle = OrdersASyncResult.AsyncWaitHandle;

// Filling Wait Handles array with the two wait handles we
// are going to use in this code
WHandles[0] = CustWHandle;
WHandles[1] = OrdersWHandle;

System.Threading.WaitHandle.WaitAll(WHandles);

CustReader = CustCommand.EndExecuteReader(CustAsyncResult);

OrdersReader = OrdersCommand.EndExecuteReader(OrdersASyncResult);

gvCustomers.DataSource = CustReader;
gvCustomers.DataBind();

gvOrders.DataSource = OrdersReader;
gvOrders.DataBind();

DBCon.Close();
}

</script>

When you compile and execute the code shown in Listing 12-11, you see the result on the screen as shown
in Figure 12-7. This figure clearly shows two GridView controls that were used in the code example. The
Grid View control on the top shows the result of executing a query that retrieved all information related to
a specific customer. The Grid View control on the bottom shows the results of executing the second query
that retrieved a list of all orders submitted by a specific customer.

443

Data Management with ADO.NET

15_576100 ch12.qxd 10/6/05 9:21 PM Page 443

Figure 12-7

The code shown in Listing 12-11 reveals some of the elegance of using the wait approach. However, it is
still not the most efficient code you can write with ADO.NET 2.0. The code should allow for a wait until
both asynchronous processes finish running before the data binds the result sets to the respective
GridView controls.

You can change the code shown in Listing 12-11 just a little to gain even more efficiency. Replace the
WaitAll method with the WaitAny method. The WaitAny method enables you to handle the results of
each of the asynchronous processes as soon as each is completed without waiting for other processing
to finish. To use the WaitAny method and still manage the execution of all asynchronous processes,
you can also add a loop that makes sure that all asynchronous processes are handled after they are
completed.

The WaitAny method returns an Integer value that indicates an array index of the wait handle that has
finished running. Using this return value, you can easily find the correct wait handle and process the
result set retrieved from the query that was executed in that particular process, as shown in Listing 12-12.

Listing 12-12: Use of the WaitAny method of processing multiple asynchronous
processes

VB
<%@ Page Language=”VB” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>
<%@ Import Namespace=”System.Configuration” %>

<script runat=”server”>
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Dim DBCon As SqlConnection
Dim OrdersCommand As SqlCommand = New SqlCommand()

444

Chapter 12

15_576100 ch12.qxd 10/6/05 9:21 PM Page 444

Dim CustCommand As SqlCommand = New SqlCommand()
Dim OrdersReader As SqlDataReader
Dim CustReader As SqlDataReader
Dim OrdersASyncResult As IAsyncResult
Dim CustAsyncResult As IAsyncResult

Dim WHIndex As Integer
Dim WHandles(1) As Threading.WaitHandle
Dim OrdersWHandle As Threading.WaitHandle
Dim CustWHandle As Threading.WaitHandle

DBCon = New SqlConnection()
DBCon.ConnectionString = _

ConfigurationManager.ConnectionStrings(“DSN_NorthWind”).ConnectionString

CustCommand.CommandText = _
“ SELECT * FROM Customers WHERE CompanyName = ‘Alfreds Futterkiste’ “

CustCommand.CommandType = CommandType.Text
CustCommand.Connection = DBCon

OrdersCommand.CommandText = _
“ SELECT Customers.CompanyName, Customers.ContactName, “ & _
“ Orders.OrderID, Orders.OrderDate, “ & _
“ Orders.RequiredDate, Orders.ShippedDate “ & _
“ FROM Orders, Customers “ & _
“ WHERE Orders.CustomerID = Customers.CustomerID “ & _
“ AND Customers.CompanyName = ‘Alfreds Futterkiste’ “ & _
“ ORDER BY Customers.CompanyName, Customers.ContactName “

OrdersCommand.CommandType = CommandType.Text
OrdersCommand.Connection = DBCon

‘ Opening the database connection
DBCon.Open ()

‘ Retrieving customer information asynchronously
CustAsyncResult = CustCommand.BeginExecuteReader()

‘ Retrieving orders list asynchronously
OrdersASyncResult = OrdersCommand.BeginExecuteReader()

CustWHandle = CustAsyncResult.AsyncWaitHandle
OrdersWHandle = OrdersASyncResult.AsyncWaitHandle

‘ Filling Wait Handles array with the two wait handles we
‘ are going to use in this code
WHandles(0) = CustWHandle
WHandles(1) = OrdersWHandle

‘ Looping 2 times because there are 2 wait handles
‘ in the array
For Index As Integer = 0 To 1

‘ We are only waiting for any of the two

(continued)

445

Data Management with ADO.NET

15_576100 ch12.qxd 10/6/05 9:21 PM Page 445

Listing 12-12: (continued)

‘ asynchronous process to finish running
WHIndex = Threading.WaitHandle.WaitAny(WHandles)

‘ The return value from the WaitAny method is
‘ the array index of the Wait Handle that just
‘ finsihed running
Select Case WHIndex

Case 0
CustReader = CustCommand.EndExecuteReader(CustAsyncResult)

gvCustomers.DataSource = CustReader
gvCustomers.DataBind()

Case 1
OrdersReader = _

OrdersCommand.EndExecuteReader(OrdersASyncResult)

gvOrders.DataSource = OrdersReader
gvOrders.DataBind()

End Select
Next

‘ Closing connection
DBCon.Close()

End Sub

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head id=”Head1” runat=”server”>

<title>The Wait Any Approach</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>
<asp:GridView ID=”gvCustomers” Width=”100%” Runat=”server”></asp:GridView>

<asp:GridView ID=”gvOrders” Width=”100%” AutoGenerateColumns=”False”

Runat=”server”>
<Columns>
<asp:BoundField HeaderText=”Company Name”

DataField=”CompanyName”></asp:BoundField>
<asp:BoundField HeaderText=”Contact Name”

DataField=”ContactName”></asp:BoundField>
<asp:BoundField HeaderText=”Order Date” DataField=”orderdate”

DataFormatString=”{0:d}”></asp:BoundField>
<asp:BoundField HeaderText=”Required Date” DataField=”requireddate”

DataFormatString=”{0:d}”></asp:BoundField>
<asp:BoundField HeaderText=”Shipped Date” DataField=”shippeddate”

DataFormatString=”{0:d}”></asp:BoundField>
</Columns>

</asp:GridView>

446

Chapter 12

15_576100 ch12.qxd 10/6/05 9:21 PM Page 446

</div>
</form>

</body>
</html>

C#
<%@ Page Language=”C#” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>
<%@ Import Namespace=”System.Configuration” %>

<script runat=”server”>
protected void Page_Load(object sender, EventArgs e)
{

SqlConnection DBCon;
SqlCommand OrdersCommand = new SqlCommand();
SqlCommand CustCommand = new SqlCommand();
SqlDataReader OrdersReader;
SqlDataReader CustReader;
IAsyncResult OrdersASyncResult;
IAsyncResult CustAsyncResult;

int WHIndex;
System.Threading.WaitHandle[] WHandles =

new System.Threading.WaitHandle[1];
System.Threading.WaitHandle OrdersWHandle;
System.Threading.WaitHandle CustWHandle;

DBCon = new SqlConnection();
DBCon.ConnectionString =

ConfigurationManager.ConnectionStrings[“DSN_NorthWind”].ConnectionString;

CustCommand.CommandText =
“ SELECT * FROM Customers WHERE CompanyName = ‘Alfreds Futterkiste’ “;

CustCommand.CommandType = CommandType.Text;
CustCommand.Connection = DBCon;

OrdersCommand.CommandText =
“ SELECT Customers.CompanyName, Customers.ContactName, “ +
“ Orders.OrderID, Orders.OrderDate, “ +
“ Orders.RequiredDate, Orders.ShippedDate “ +
“ FROM Orders, Customers “ +
“ WHERE Orders.CustomerID = Customers.CustomerID “ +
“ AND Customers.CompanyName = ‘Alfreds Futterkiste’ “ +
“ ORDER BY Customers.CompanyName, Customers.ContactName “;

OrdersCommand.CommandType = CommandType.Text;
OrdersCommand.Connection = DBCon;

// Opening the database connection

(continued)

447

Data Management with ADO.NET

15_576100 ch12.qxd 10/6/05 9:21 PM Page 447

Listing 12-12: (continued)

DBCon.Open();

// Retrieving customer information asynchronously
CustAsyncResult = CustCommand.BeginExecuteReader();

// Retrieving orders list asynchronously
OrdersASyncResult = OrdersCommand.BeginExecuteReader();

CustWHandle = CustAsyncResult.AsyncWaitHandle;
OrdersWHandle = OrdersASyncResult.AsyncWaitHandle;

// Filling Wait Handles array with the two wait handles we
// are going to use in this code
WHandles[0] = CustWHandle;
WHandles[1] = OrdersWHandle;

// Looping 2 times because there are 2 wait handles
// in the array
for (int Index = 0; Index < 2; Index++)
{

// We are only waiting for any of the two
// asynchronous process to finish running
WHIndex = System.Threading.WaitHandle.WaitAny(WHandles);

// The return value from the WaitAny method is
// the array index of the Wait Handle that just
// finsihed running
switch (WHIndex)
{

case 0:
CustReader = CustCommand.EndExecuteReader(CustAsyncResult);

gvCustomers.DataSource = CustReader;
gvCustomers.DataBind();
break;

case 1:
OrdersReader =

OrdersCommand.EndExecuteReader(OrdersASyncResult);

gvOrders.DataSource = OrdersReader;
gvOrders.DataBind();
break;

}
}
// Closing connection
DBCon.Close();

}
</script>

Next, look at the callback approach. Using this approach, you assign a callback method to the asynchronous
process and use it to display the result returned by executing the SQL query.

448

Chapter 12

15_576100 ch12.qxd 10/6/05 9:21 PM Page 448

The Callback Approach
Listing 12-13 creates an inline SQL statement that retrieves the top five records from the database. It
starts the asynchronous process by calling the BeginExecuteReader method and passing it the callback
delegate. No further processing is needed, and the method ends after the asynchronous process has
started. After the callback method is fired, it retrieves the result and displays it on the screen.

Listing 12-13: Asynchronous command processing using the callback approach

VB
<%@ Page Language=”C#” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>
<%@ Import Namespace=”System.Configuration” %>

<script runat=”server”>
Private Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Dim DBCon As SqlConnection
Dim Command As SqlCommand = New SqlCommand()
Dim ASyncResult As SqlAsyncResult

DBCon = New SqlConnection()
Command = New SqlCommand()
DBCon.ConnectionString = _
ConfigurationManager.ConnectionStrings(“DSN_NorthWind”).ConnectionString

‘ Selecting top 5 records from the Orders table
Command.CommandText = _

“SELECT TOP 5 Customers.CompanyName, Customers.ContactName, “ & _
“ Orders.OrderID, Orders.OrderDate, “ & _
“ Orders.RequiredDate, Orders.ShippedDate “ & _
“ FROM Orders, Customers “ & _
“ WHERE Orders.CustomerID = Customers.CustomerID “ & _
“ ORDER BY Customers.CompanyName, Customers.ContactName “

Command.CommandType = CommandType.Text
Command.Connection = DBCon

DBCon.Open()

‘ Starting the asynchronous processing
AsyncResult = Command.BeginExecuteReader(New _

AsyncCallback(AddressOf CBMethod), CommandBehavior.CloseConnection)
End Sub

Public Sub CBMethod(ByVal ar As SQLAsyncResult)
Dim OrdersReader As SqlDataReader

‘ Retrieving result from the asynchronous process
OrdersReader = ar.EndExecuteReader(ar)

‘ Displaying result on the screen
gvOrders.DataSource = OrdersReader

(continued)

449

Data Management with ADO.NET

15_576100 ch12.qxd 10/6/05 9:21 PM Page 449

Listing 12-13: (continued)

gvOrders.DataBind()
End Sub

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head id=”Head1” runat=”server”>

<title>The Call Back Approach</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>
<asp:GridView ID=”gvOrders” Width=”100%” AutoGenerateColumns=”False”

Runat=”server”>
<Columns>
<asp:BoundField HeaderText=”Company Name”

DataField=”CompanyName”></asp:BoundField>
<asp:BoundField HeaderText=”Contact Name”

DataField=”ContactName”></asp:BoundField>
<asp:BoundField HeaderText=”Order Date” DataField=”orderdate”

DataFormatString=”{0:d}”></asp:BoundField>
<asp:BoundField HeaderText=”Required Date” DataField=”requireddate”

DataFormatString=”{0:d}”></asp:BoundField>
<asp:BoundField HeaderText=”Shipped Date” DataField=”shippeddate”

DataFormatString=”{0:d}”></asp:BoundField>
</Columns>

</asp:GridView>
</div>
</form>

</body>
</html>

C#
<%@ Page Language=”C#” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>
<%@ Import Namespace=”System.Configuration” %>

<script runat=”server”>
protected void Page_Load(object sender, EventArgs e)
{

SqlConnection DBCon;
SqlCommand Command = new SqlCommand();
SqlAsyncResult ASyncResult;

DBCon = new SqlConnection();
Command = new SqlCommand();
DBCon.ConnectionString =

ConfigurationManager.ConnectionStrings[“DSN_NorthWind”].ConnectionString;

// Selecting top 5 records from the Orders table
Command.CommandText =

450

Chapter 12

15_576100 ch12.qxd 10/6/05 9:21 PM Page 450

“SELECT TOP 5 Customers.CompanyName, Customers.ContactName, “ +
“ Orders.OrderID, Orders.OrderDate, “ +
“ Orders.RequiredDate, Orders.ShippedDate “ +
“ FROM Orders, Customers “ +
“ WHERE Orders.CustomerID = Customers.CustomerID “ +
“ ORDER BY Customers.CompanyName, Customers.ContactName “;

Command.CommandType = CommandType.Text;
Command.Connection = DBCon;

DBCon.Open();

// Starting the asynchronous processing
AsyncResult = Command.BeginExecuteReader(new AsyncCallback(CBMethod),

CommandBehavior.CloseConnection);
}

public void CBMethod(SQLAsyncResult ar)
{

SqlDataReader OrdersReader;

// Retrieving result from the asynchronous process
OrdersReader = ar.EndExecuteReader(ar);

// Displaying result on the screen
gvOrders.DataSource = OrdersReader;
gvOrders.DataBind();

}
</script>

The callback approach enables you to handle the result of a command execution at a different part of
your code. This feature is useful in cases where the command execution takes longer than usual and you
want to respond to the user without waiting for the command execution to finish.

Canceling Asynchronous Processing
The asynchronous process often takes longer than expected. To alleviate this problem, you can provide
an option to the user to cancel the process without waiting for the result. Canceling an asynchronous
process is as easy as calling the Cancel method on the appropriate Command object. This method doesn’t
return any value. To roll back the work that was already completed by the Command object, you must
provide a custom transaction to the Command object before executing the query. You can also handle the
Rollback or the Commit process yourself.

Asynchronous Connections
Now that you understand how to execute multiple database queries asynchronously using the Command
object, take a quick look at how you can open database connections asynchronously, as well. The principles
of working with asynchronous connections are the same as when you work with asynchronous commands.
You can still use any of the three approaches you learned previously.

In ADO.NET 2.0, the SqlConnection class exposes a couple of new properties needed when working
asynchronously. These properties are shown in the following table.

451

Data Management with ADO.NET

15_576100 ch12.qxd 10/6/05 9:21 PM Page 451

Property Description

Asynchronous This read-only property returns a Boolean value indicating
whether the connection has been opened asynchronously.

State This property returns a value from System.Data.Connec-
tionState enumeration indicating the state of the
connection. The possible values are as follows:
—Broken
—Closed
—Connecting
—Executing
—Fetching
—Open

Summary
This chapter covered a range of advanced features that have been added to the 2.0 version of ADO.NET.
These features are designed to give you the flexibility to handle database processing in a manner never
before possible with either of the previous versions of ADO.NET or ADO.

The Bulk Copy feature is extremely efficient and geared toward loading large quantities of data into a
single destination table. You have been using the Data Transformation Services (DTS) to accomplish this
purpose. However, DTS lacks some flexibility and control over the retrieval and application of business
rules before the data is loaded in the destination table. With the introduction of the Bulk Copy feature in
ADO.NET, you have the ultimate control of using a managed runtime to process the data with the same
performance as DTS.

The Bulk Copy feature is not without its limitations. The most significant limitation is its inability to
store data in multiple destination tables or by leveraging a stored procedure. The creators of ADO.NET
2.0 realized this fact and empowered users with the flexibility of batch processing updated queries. This
enables users to create custom UPATE, INSERT, and DELETE queries using the Data Adapter object with
previous versions of ADO.NET. However, these previous versions were capable of processing each
command only as a separate database request. Loading of large quantities of information in those days
was, therefore, extremely slow and counterproductive. The 2.0 version of ADO.NET provides a new
property in the Data Adapter object that enables you to specify batch sizes and cause the Data Adapter
object to process multiple commands in a single batch.

This chapter also covered the features of Multiple Active Result Sets (MARS), which enables you to
reuse a single open connection for multiple accesses to the database, even if the connection is currently
processing a result set. This feature becomes even more powerful when it is used in conjunction with the
asynchronous command processing.

As you learned in this chapter, the 2.0 version of ADO.NET provides new properties for the SqlCommand
and SqlConnection classes. These new properties enable you to start database commands or open
database connections in an asynchronous process and manage their execution using a variety of
approaches, such as the poll approach, the callback approach, and the wait approach.

452

Chapter 12

15_576100 ch12.qxd 10/6/05 9:21 PM Page 452

Working with XML

This is not a book about XML, the eXtensible Markup Language; but XML has become such a part
of an ASP.NET programmer’s life that the topic deserves its own chapter. Although most of the
XML functionality in the .NET Framework appears to be in the System.Xml namespace, you can
find XML’s influence throughout the entire Framework including System.Data and System.Web.

XML is oft maligned and misunderstood. To some, XML is simply a text-based markup language; to
others it is an object serialization format or a document-encoding standard. In fact, XML has become
the de facto standard manner in which data passes around the Internet. XML, however, is not
really a technology as much as it is a set of standards or guiding principles. It provides a structure
within which data can be stored; but the XML specification doesn’t dictate how XML processors,
parsers, formatters, and data access methods should be written or implemented. System.Xml and
other namespaces contain the .NET Framework 2.0’s view on how programmers should manipulate
XML. Some of its techniques, such as XSLT and XML Schema, are standards-based. Others, like
XmlReader and XmlWriter, exist purely in the world of the .NET Framework. The XML con-
sumed and produced by these techniques is standards-based and can be used by other languages
that consume XML, but the .NET Framework has its own philosophy about the uses of XML.

This chapter covers all the major techniques for manipulating XML provided by the .NET
Framework. XmlReader and XmlWriter offer incredible speed but require a bit more thought. The
XmlDocument or DOM is the most commonly used method for manipulating XML but you’ll pay
dearly in performance penalties without careful use. ADO DataSets have always provided XML
support, and their support improves with .NET 2.0. XML Stylesheet Tree Transformations (XSLT)
gain debugging capabilities in Visual Studio 2005, and ASP.NET has some simple yet powerful
server controls to manipulate XML.

Its flexibility and room for innovation make XML very powerful and a joy to work with.

16_576100 ch13.qxd 10/6/05 8:19 PM Page 453

The Basics of XML
Listing 13-1, a Books.xml document that represents a bookstore’s inventory database, is one of the sample
documents used in this chapter. This example document has been used in various MSDN examples for
many years.

Listing 13-1: The Books.xml XML document

<?xml version=’1.0’?>
<!-- This file is a part of a book store inventory database -->
<bookstore xmlns=”http://example.books.com”>

<book genre=”autobiography” publicationdate=”1981” ISBN=”1-861003-11-0”>
<title>The Autobiography of Benjamin Franklin</title>
<author>

<first-name>Benjamin</first-name>
<last-name>Franklin</last-name>

</author>
<price>8.99</price>

</book>
<book genre=”novel” publicationdate=”1967” ISBN=”0-201-63361-2”>

<title>The Confidence Man</title>
<author>

<first-name>Herman</first-name>
<last-name>Melville</last-name>

</author>
<price>11.99</price>

</book>
<book genre=”philosophy” publicationdate=”1991” ISBN=”1-861001-57-6”>

<title>The Gorgias</title>
<author>

<first-name>Sidas</first-name>
<last-name>Plato</last-name>

</author>
<price>9.99</price>

</book>
</bookstore>

The first line of Listing 13-1, starting with <?xml version=’1.0’?>, is an XML declaration also called
the Prolog. This line should always appear before the first element in the XML document and indicates
the version of XML with which this document is compliant.

The second line is an XML comment and uses the same syntax as an HTML comment. This isn’t a coinci-
dence; remember that XML and HTML are both descendants of SGML, the Standard Generalized
Markup Language. Comments are always optional in XML documents

Note that when the acronym XML appears by itself, the whole acronym is capital-
ized, but when it appears in a function name or namespace, only the X is capitalized,
as in System.Xml or XmlTextReader. Microsoft’s API Design Guidelines dictate
that if an abbreviation of three or more characters appears in a variable name, class
name, or namespace, the first character is capitalized.

454

Chapter 13

16_576100 ch13.qxd 10/6/05 8:19 PM Page 454

The third line, <bookstore>, is the root element or document entity of the XML document. An XML
document can have only one root element. The last line in the document is the matching end element
</bookstore>. No elements of the document can appear after the final closing tag </bookstore>. The
<bookstore> element contains an xmlns attribute such as xmlns=”http://example.books.com”.
Namespaces in XML are similar to namespaces in the .NET Framework because they provide qualifica-
tion of elements and attributes. It’s very likely that someone else in the world has created a bookstore XML
document before, and it’s also likely he or she chose an element such as <book> or <bookstore/>.
A namespace is defined to make your <book> element different from any others and to deal with the
chance that other <book> elements might appear with yours in the same document — it’s possible
with XML.

This namespace is often a URL (Uniform/Universal Resource Locator), but it actually can be a URI
(Uniform/Universal Resource Identifier). A namespace can be a GUID or a nonsense string such as
“www-computerzen-com:schema” as long as it is unique. Recently, the convention has been to use a
URL because they are ostensibly unique, thus making the document’s associated schema unique. You
learn more about schemas and namespaces in the next section.

The fourth line is a little different because the <book> element contains some additional attributes such
as genre, publicationdate, and ISBN. The order of the elements matters in an XML document, but
the order of the attributes does not. These attributes are said to be on or contained within the book ele-
ment. Consider the following line of code:

<book genre=”autobiography” publicationdate=”1981” ISBN=”1-861003-11-0”>

Notice that every element following this line has a matching end element, similar to the example that
follows:

<example>This is a test</example>

If no matching end element is used, the XML is not well formed; technically it isn’t even XML! These
next two example XML fragments are not well formed because the elements don’t match up:

<example>This is a test

<example>This is a test</anothertag>

If the <example> element is empty, it might appear like this:

<example></example>

Alternatively, it could appear as a shortcut like this:

<example/>

The syntax is different, but the semantics are the same. The difference between the syntax and the
semantics of an XML document is crucial for understanding what XML is trying to accomplish. XML
documents are text files by their nature, but the information — the information set — is representable
using text that isn’t exact. The set of information is the same, but the actual bytes are not.

455

Working with XML

16_576100 ch13.qxd 10/6/05 8:19 PM Page 455

The XML InfoSet
The XML InfoSet is a W3C concept that describes what is and isn’t significant in an XML document. The
InfoSet isn’t a class, a function, a namespace, or a language — the InfoSet is a concept.

Listing 13-2 describes two XML documents that are syntactically different but semantically the same.

Listing 13-2: XML syntax versus semantics

XML document
<?xml version=’1.0’?>
<book genre=”autobiography” publicationdate=”1981” ISBN=”1-861003-11-0”>

<title>The Autobiography of Benjamin Franklin</title>
<author>

<first-name>Benjamin</first-name>
<last-name>Franklin</last-name>

</author>
<price></price>

</book>

XML document that differs in syntax, but not in semantics
<?xml version=’1.0’?><book genre=”autobiography” publicationdate=”1981”
ISBN=”1-861003-11-0”><title>The Autobiography of Benjamin
Franklin</title><author><first-name>Benjamin</first-name><last-name>Franklin</last-
name></author><price/></book>

Certainly, the first document in Listing 13-2 is easier for a human to read, but the second document is
just as easy for a computer to read. The second document has insignificant white space removed.

Notice also that the empty <price/> element is different in the two documents. The first uses the ver-
bose form, whereas the second element uses the shortcut form to express an empty element. However,
both are empty elements.

You can manipulate XML as elements and attributes. You can visualize XML as a tree of nodes. You
rarely, if ever, have to worry about angle brackets or parse text yourself. A text-based differences (diff)
tool would report these two documents are different because their character representations are different.
An XML-based differences tool would report (correctly) that they are the same document. Each document
contains the same InfoSet.

You can run an XML Diff Tool online at http://apps.gotdotnet.com/
xmltools/xmldiff/.

Note that attributes appear only within start tags or empty elements such as <book
genre=”scifi”></book> or <book genre=”scifi” />.Visit the World Wide Web
Consortium’s (W3C) XML site at www.w3.org/XML/ for more detailed information
on XML.

456

Chapter 13

16_576100 ch13.qxd 10/6/05 8:19 PM Page 456

XSD–XML Schema Definition
XML documents must be well formed at the very least. However, just because a document is well
formed doesn’t assure that its elements are in the right order, have the right name, or are the correct data
types. After creating a well-formed XML document, you should ensure that your document is also valid.
A valid XML document is well formed and also has an associated XML Schema Definition (XSD) that
describes what elements, simple types, and complex types are allowed in the document.

The schema for the Books.xml file is a glossary or vocabulary for the bookstore described in an XML
Schema definition. In programming terms, an XML Schema is a type definition, whereas an XML docu-
ment is an instance of that type. Listing 13-3 describes one possible XML Schema called Books.xsd that
validates against the Books.xml file.

Listing 13-3: The Books.xsd XML Schema

<?xml version=”1.0” encoding=”utf-8” ?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:tns=”http://example.books.com”
xmlns=”http://example.books.com”
targetNamespace=”http://example.books.com”
elementFormDefault=”qualified”>

<xsd:element name=”bookstore” type=”bookstoreType”/>

<xsd:complexType name=”bookstoreType”>
<xsd:sequence maxOccurs=”unbounded”>

<xsd:element name=”book” type=”bookType”/>
</xsd:sequence>

</xsd:complexType>

<xsd:complexType name=”bookType”>
<xsd:sequence>

<xsd:element name=”title” type=”xsd:string”/>
<xsd:element name=”author” type=”authorName”/>
<xsd:element name=”price” type=”xsd:decimal”/>

</xsd:sequence>
<xsd:attribute name=”genre” type=”xsd:string”/>
<xsd:attribute name=”publicationdate” type=”xsd:string”/>
<xsd:attribute name=”ISBN” type=”xsd:string”/>

</xsd:complexType>

<xsd:complexType name=”authorName”>
<xsd:sequence>

<xsd:element name=”first-name” type=”xsd:string”/>
<xsd:element name=”last-name” type=”xsd:string”/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

The XML Schema in Listing 13-3 starts by including a series of namespace prefixes used in the schema
document as attributes on the root element. The prefix xsd: is declared on the root element
(xmlns:xsd=”http://www.w3.org/2001/XMLSchema”) and then used on all other elements of that

457

Working with XML

16_576100 ch13.qxd 10/6/05 8:19 PM Page 457

schema. The default namespace assumed for any elements without prefixes is described by the xmlns
attribute like this:

xmlns=http://example.books.com

A namespace-qualified element has a prefix such as <xsd:element>. The target namespace for all ele-
ments in this schema is declared with the targetNamespace attribute.

XML Schema can be daunting at first; but if you read each line to yourself as a declaration, it makes more
sense. For example, the line

<xsd:element name=”bookstore” type=”bookstoreType”/>

declares that an element named bookstore has the type bookstoreType. Because the targetNamespace
for the schema is http://example.books.com, that is the namespace of each declared type in the
Books.xsd schema. If you refer to Listing 13-1, you see that the namespace of the Books.xml document is
also http://example.books.com.

For more detailed information on XML Schema, visit the W3C’s XML Schema site at www.w3.org/
XML/Schema.

Editing XML and XML Schema in Visual Studio .NET 2005
If you start up Visual Studio .NET and open the Books.xml file into the editor, you notice immediately
that the Visual Studio editor provides syntax highlighting and formats the XML document as a nicely
indented tree. If you start writing a new XML element anywhere, you don’t have access to IntelliSense.
Even though the http://example.books.com namespace is the default namespace, Visual Studio
.NET has no way to find the Books.xsd file; it could be located anywhere. Remember that the name-
space is not a URL; it’s a URI — an identifier. Even if it were a URL it wouldn’t be appropriate for the
editor, or any program you write, to go out on the Web looking for a schema. You have to be explicit
when associating XML Schema with instance documents.

Classes and methods are used to validate XML documents when you are working programmatically, but
the Visual Studio editor needs a hint to find the Book.xsd schema. Assuming the Books.xsd file is in
the same directory as Books.xml, you have three ways to inform the editor:

❑ Open the Books.xsd schema in Visual Studio in another window while the Books.xml file is
also open.

❑ Include a schemaLocation attribute in the Books.xml file.

❑ If you open at least one XML file with the schemaLocation attribute set, Visual Studio uses
that schema for any other open XML files that don’t include the attribute.

❑ Add the Books.xsd schema to the list of schemas that Visual Studio knows about internally by
adding it to the Schemas property in the document properties window of the Books.xml file.
When schemas are added in this way, Visual Studio checks the document’s namespace and
determines if it already knows of a schema that matches.

458

Chapter 13

16_576100 ch13.qxd 10/6/05 8:19 PM Page 458

The schemaLocation attribute is in a different namespace, so include the xmlns namespace attribute
and your chosen prefix for the schema’s location, as shown in Listing 13-4.

Listing 13-4: Updating the Books.xml file with a schemaLocation attribute

<?xml version=’1.0’?>
<!-- This file is a part of a book store inventory database -->
<bookstore xmlns=”http://example.books.com”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://example.books.com Books.xsd”>

<book genre=”autobiography” publicationdate=”1981” ISBN=”1-861003-11-0”>
<title>The Autobiography of Benjamin Franklin</title>
...Rest of the XML document omitted for brevity...

The format for the schemaLocation attribute is pairs of strings separated by spaces where the first
string in each pair is a namespace URI and the second string is the location of the schema. The location
can be relative, as shown in Listing 13-4, or it can be an http:// URL or file:// location.

When the Books.xsd schema can be located for the Books.xml document, Visual Studio .NET’s XML
editor becomes considerably more useful. Not only does the editor underline incorrect elements with
blue squiggles, it also includes tooltips and IntelliSense for the entire document, as shown in Figure 13-1.

Figure 13-1

459

Working with XML

16_576100 ch13.qxd 10/6/05 8:19 PM Page 459

When the XML Schema file from Listing 13-3 is loaded into the Visual Studio editor, the default view
presents the elements and complex types in a format that is familiar if you’ve edited database schemas
before (see Figure 13-2).

The gray squares in the schema in Figure 13-2 represent references to global entities. For example, the
bookType complex type declaration has an author element that is an instance of the authorName complex
type. Because the authorName type can be used and reused in many places within the same schema, the
visual editor allows you to edit only the global declaration, shown in Figure 13-2 as the white square in the
lower-left corner. All the white squares represent elements or composite complex types that are editable.

The visual layout of the schema doesn’t relate in any way to the underlying XML Schema document, so
you are free to organize the look of your schemas without fear. The layout is stored in a parallel XSD
designer layout file with the extension .XSX — in this case, Books.xsx. If this file is deleted, don’t worry;
it is created automatically with a default layout the next time the schema is opened in the designer.

Figure 13-2

A visual view for XML files in Visual Studio can be reached either from the menu View ➪ Data Grid or by
right-clicking in the text view and selecting Data Grid. In this view, repeated elements are grouped
together in a list box called a Data Table, as you can see in Figure 13-3. This view meshes well with the

460

Chapter 13

16_576100 ch13.qxd 10/6/05 8:19 PM Page 460

database-centric view presented by the Schema editor in Figure 13-2 and underlines the point that XML is
just a set of information, or InfoSet, and a developer can program quite comfortably without ever seeing
an angle bracket.

After you have created an XML Schema that correctly describes an XML document, you’re ready to start
programmatically manipulating XML. The System.Xml namespace provides a number of ways to access
XML. XML Schemas provide valuable typing information for all XML consumers that are type aware.

Figure 13-3

XmlReader and XmlWriter
XmlReader offers a pull-style API over an XML document that is unique to the .NET Framework. It provides
fast, forward-only, read-only access to XML documents. These documents may contain elements in multiple
namespaces. XmlReader is actually an abstract class that other classes derive from to provide specific
concrete instances like XmlTextReader and XmlNodeReader.

461

Working with XML

16_576100 ch13.qxd 10/6/05 8:19 PM Page 461

Things have changed slightly with XmlReader since .NET Framework 1.1. Convenient new methods
have been added, and the way you create XmlReader has changed for the better. XmlReader has become
a factory. The primary way for you to create an instance of an XmlReader is by using the Static/Shared
Create method. Rather than creating concrete implementations of the XmlReader class, you create an
instance of the XmlReaderSettings class and pass it to the Create method. You specify the features
you want for your XmlReader object with the XmlReaderSettings class. For example, you might want
a specialized XmlReader that checks the validity of an XML document with the IgnoreWhite Space
and IgnoreComments properties pre-set. The Create method of the XmlReader class provides you with
an instance of an XmlReader without requiring you to decide which implementation to use. You can
also add features to existing XmlReaders by chaining instances of the XmlReader class with each other
because the Create method of XmlReader takes another XmlReader as a parameter.

If you are accustomed to using the XmlDocument or DOM to write an entire XML fragment or document
into memory, you will find XmlReader to be a very different philosophy. A good analogy is that XmlReader
is to XmlDocument what the ADO ForwardOnly recordset is to the ADO Static recordset. Remember that the
ADO Static recordset loads the entire results set into memory and holds it there. Certainly, you wouldn’t use
a Static recordset if you want to retrieve only a few values. The same basic rules apply to the XmlReader
class. If you’re going to run through the document only once, you don’t want to hold it in memory; you
want the access to be as fast as possible. XmlReader is the right decision in this case.

Listing 13-5 creates an XmlReader class instance and iterates forward through it, counting the number of
books in the Books.xml document from Listing 13-1. The XmlReaderSettings object specifies the features
that are required, rather than the actual kind of XmlReader to create. In this example, IgnoreWhitespace
and IgnoreComments are set to True. The XmlReaderSettings object is created with these property set-
tings and then passed to the Create method of XmlReader.

Listing 13-5: Processing XML with an XmlReader

VB
Imports System.IO
Imports System.Xml

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
Handles Me.Load

Dim bookcount As Integer = 0
Dim settings As New XmlReaderSettings()

settings.IgnoreWhitespace = True
settings.IgnoreComments = True

Dim booksFile As String = _
Path.Combine(Request.PhysicalApplicationPath, “books.xml”)

Using reader As XmlReader = XmlReader.Create(booksFile, settings)
While (reader.Read())

If (reader.NodeType = XmlNodeType.Element _
And “book” = reader.LocalName) Then

bookcount += 1
End If

End While
End Using
Response.Write(String.Format(“Found {0} books!”, bookcount))

End Sub

462

Chapter 13

16_576100 ch13.qxd 10/6/05 8:19 PM Page 462

C#
using System.IO;
using System.Xml;

protected void Page_Load(object sender, EventArgs e)
{

int bookcount = 0;
XmlReaderSettings settings = new XmlReaderSettings();

settings.IgnoreWhitespace = true;
settings.IgnoreComments = true;

string booksFile = Path.Combine(Request.PhysicalApplicationPath, “books.xml”);
using (XmlReader reader = XmlReader.Create(booksFile, settings))
{

while (reader.Read())
{

if (reader.NodeType == XmlNodeType.Element &&
“book” == reader.LocalName)

{
bookcount++;

}
}

}
Response.Write(String.Format(“Found {0} books!”, bookcount));

}

Notice the use of the XmlReader.Create method in Listing 13-5. You may be used to creating concrete
implementations of an XmlReader, but if you try this technique, you should find it much more flexible
because you can reuse the XmlReaderSettings objects in the creation of other instances of XmlReader.
XmlReader implements IDisposable, so the Using keyword is correct in both VB and C#.

In Listing 13-5 the Books.xml file is in the same directory as this ASPX page, so a call to Path.Combine gets
the complete path to the XML file. The file name with full path is then passed into XmlReader.Create,
along with the XmlReaderSettings instance from a few lines earlier.

The read method continues to return true if the node was read successfully. It will return false when no
more nodes are left to read. From the point of view of an XmlReader, everything is a node including white
space, comments, attributes, elements, and end elements. If Listing 13-5 had simply spun through the while
loop incrementing the bookcount variable each time reader.LocalName equaled book, the final value for
bookcount would have been six. You would have counted both the beginning book element and the ending
book element. Consequently, you have to be more explicit, and ensure that the if statement is modified to
check not only the LocalName but also the NodeType.

The Reader.LocalName property contains the non–namespace qualified name of
that node. The Reader.Name property is different and contains the fully qualified
name of that node including namespace. The Reader.LocalName property is used
in the example in Listing 13-5 for simplicity and ease. You’ll hear more about names-
paces a little later in the chapter.

463

Working with XML

16_576100 ch13.qxd 10/6/05 8:19 PM Page 463

Using Schema with XmlTextReader
The code in Listing 13-5 reads any XML document regardless of its schema, and if the document contains
an element named book, the code counts it. If this code is meant to count books of a particular schema type
only, specifically the books from the Books.xml file, it should be validated against the Books.xsd schema.

Now modify the creation of the XmlReader class from Listing 13-5 to validate the XmlDocument against
the XML Schema used earlier in the chapter. Note that the XmlValidatingReader class is now consid-
ered obsolete because all reader creation is done using the Create method of the XmlReader class.

Listing 13-6 shows a concrete example of how easy it is to add schema validation to code using
XmlReaderSettings and the XmlReader Create method.

Listing 13-6: Validating XML with an XmlReader against an XML Schema

VB
Imports System.Xml.Schema

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
Handles Me.Load

Dim bookcount As Integer = 0
Dim settings As New XmlReaderSettings()
Dim booksSchemaFile As String = _

Path.Combine(Request.PhysicalApplicationPath, “books.xsd”)

settings.Schemas.Add(Nothing, XmlReader.Create(booksSchemaFile))
settings.ValidationType = ValidationType.Schema
settings.ValidationFlags =

XmlSchemaValidationFlags.ReportValidationWarnings

AddHandler settings.ValidationEventHandler, _
AddressOf settings_ValidationEventHandler

settings.IgnoreWhitespace = True
settings.IgnoreComments = True

Dim booksFile As String = _
Path.Combine(Request.PhysicalApplicationPath, “books.xml”)
Using reader As XmlReader = XmlReader.Create(booksFile, settings)

While (reader.Read())
If (reader.NodeType = XmlNodeType.Element _

And “book” = reader.LocalName) Then
bookcount += 1

End If
End While

End Using
Response.Write(String.Format(“Found {0} books!”, bookcount))

End Sub

Sub settings_ValidationEventHandler(ByVal sender As Object, _
ByVal e As System.Xml.Schema.ValidationEventArgs)

Response.Write(e.Message)
End Sub

464

Chapter 13

16_576100 ch13.qxd 10/6/05 8:19 PM Page 464

C#
using System.Xml.Schema;

protected void Page_Load(object sender, EventArgs e)
{

int bookcount = 0;
XmlReaderSettings settings = new XmlReaderSettings();

string booksSchemaFile = Path.Combine(Request.PhysicalApplicationPath,
“books.xsd”);

settings.Schemas.Add(null, XmlReader.Create(booksSchemaFile));
settings.ValidationType = ValidationType.Schema;
settings.ValidationFlags =

XmlSchemaValidationFlags.ReportValidationWarnings;
settings.ValidationEventHandler +=

new ValidationEventHandler(settings_ValidationEventHandler);

settings.IgnoreWhitespace = true;
settings.IgnoreComments = true;

string booksFile = Path.Combine(Request.PhysicalApplicationPath, “books.xml”);
using (XmlReader reader = XmlReader.Create(booksFile, settings))
{

while (reader.Read())
{

if (reader.NodeType == XmlNodeType.Element &&
“book” == reader.LocalName)

{
bookcount++;

}
}

}
Response.Write(String.Format(“Found {0} books!”, bookcount));

}

void settings_ValidationEventHandler(object sender,
System.Xml.Schema.ValidationEventArgs e)

{
Response.Write(e.Message);

}

When validating XML, the validator uses the schemaLocation hint found in the XML instance document.
If an XML instance document does not contain enough information to find an XML Schema, the instance
document expects an XmlSchemaSet object on the XmlReaderSettings object. In the interest of being
explicit, Listing 13-6 shows this technique. The XmlReaderSettings object has a Schemas collection
available as a property and many overloads for the Add method. This listing passes null into the Add
method as the first parameter, indicating that the targetNamespace is specified in the schema. Optionally,
XML documents can also contain their schemas inline.

The validator needs a way to let you know when validation problems occur. The XmlReaderSettings
object has a validation event handler that notifies you as validation events occur. Listing 13-6 also includes
a handler for the validation event that writes the message to the browser.

465

Working with XML

16_576100 ch13.qxd 10/6/05 8:19 PM Page 465

Including NameTable Optimization
XmlReader internally uses a NameTable that lists all the known elements and attributes with name-
spaces that are used in that document. This process is called atomization — literally meaning that the
XML document is broken up into its atomic parts. There’s no need to store the string book more than
once in the internal structure if you can make book an object reference that is held in a table with the
names of other elements.

Although this is an internal implementation detail, it is a supported and valid way that you can
measurably speed up your use of XML classes, such as XmlReader and XmlDocument. You add name
elements to the NameTable that you know will be in the document. Listings 13-5 and 13-6 use string
comparisons to compare a string literal with reader.LocalName. These comparisons can also be
optimized by turning them into object reference comparisons that are many, many times faster.
Additionally, an XML NameTable can be shared across multiple instances of System.Xml classes and
even between XmlReaders and XmlDocuments. This topic is covered shortly.

Because you are counting book elements, create a NameTable including this element (book), and instead
of comparing string against string, compare object reference against object reference, as shown in
Listing 13-7.

Listing 13-7: Optimizing XmlReader with a NameTable

VB
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _

Handles Me.Load
Dim bookcount As Integer = 0
Dim settings As New XmlReaderSettings()
Dim nt As New NameTable()
Dim book As Object = nt.Add(“book”)

settings.NameTable = nt
Dim booksSchemaFile As String = _

Path.Combine(Request.PhysicalApplicationPath, “books.xsd”)
settings.Schemas.Add(Nothing, XmlReader.Create(booksSchemaFile))
settings.ValidationType = ValidationType.Schema
settings.ValidationFlags =
XmlSchemaValidationFlags.ReportValidationWarnings

AddHandler settings.ValidationEventHandler, _
AddressOf settings_ValidationEventHandler

settings.IgnoreWhitespace = True
settings.IgnoreComments = True

Dim booksFile As String = _
Path.Combine(Request.PhysicalApplicationPath, “books.xml”)
Using reader As XmlReader = XmlReader.Create(booksFile, settings)

While (reader.Read())
If (reader.NodeType = XmlNodeType.Element _

And book.Equals(reader.LocalName)) Then
‘A subtle, but significant change!
bookcount += 1

466

Chapter 13

16_576100 ch13.qxd 10/6/05 8:19 PM Page 466

End If
End While

End Using
Response.Write(String.Format(“Found {0} books!”, bookcount))

End Sub

C#
protected void Page_Load(object sender, EventArgs e)
{

int bookcount = 0;
XmlReaderSettings settings = new XmlReaderSettings();
NameTable nt = new NameTable();
object book = nt.Add(“book”);

settings.NameTable = nt;
string booksSchemaFile = Path.Combine(Request.PhysicalApplicationPath,

“books.xsd”);

settings.Schemas.Add(null, XmlReader.Create(booksSchemaFile));
settings.ValidationType = ValidationType.Schema;
settings.ValidationFlags =

XmlSchemaValidationFlags.ReportValidationWarnings;

settings.ValidationEventHandler +=
new ValidationEventHandler(settings_ValidationEventHandler);

settings.IgnoreWhitespace = true;
settings.IgnoreComments = true;

string booksFile = Path.Combine(Request.PhysicalApplicationPath, “books.xml”);
using (XmlReader reader = XmlReader.Create(booksFile, settings))
{

while (reader.Read())
{

if (reader.NodeType == XmlNodeType.Element &&
book.Equals(reader.LocalName)) //A subtle, but significant change!

{
bookcount++;

}
}

}
Response.Write(String.Format(“Found {0} books!”, bookcount));

}

The NameTable is added to the XmlSettings object and the Add method of the NameTable returns an
object reference to the just-added atom that is stored, in this case, in an object reference named book. The
book reference is then used later to make a comparison to the reader.LocalName property. We specifically
chose to use the Equals method that is present on all objects within that .NET Framework in order to
emphasize that this is specifically an object identity check for equality. These two objects are either the same
identical atoms or they are not. The book object that is returned from the Add method on the NameTable is
the identical object that the reader uses when parsing the book element from the Books.xml XML
document.

467

Working with XML

16_576100 ch13.qxd 10/6/05 8:19 PM Page 467

In the example of Listing 13-7, in which you count a very small number of books, you probably won’t
have a measurable performance gain. However, for larger XML documents that approach sizes of
1MB, you may see performance gains of as much as 10 to 15 percent — especially for the involved
calculations and manipulations of XmlReader. Additionally, because the NameTable is cached within
the XmlReaderSettings object, that NameTable is reused when the XmlReaderSettings object is
reused for other System.Xml objects. This creates additional potential performance gains.

Retrieving .NET CLR Types from XML
In .NET Framework 2.0, it is considerably simpler to retrieve CLR types from an XmlReader than it was
previously. If you’ve used SQL Server data reader objects before, retrieving data types from XmlReader
may feel very familiar. Previously the Framework used a helper class called XmlConvert. When combined
with the ReadElementString method on XmlReader, this helper class retrieved a strong, simple type, as
shown in the following code:

//Retrieving a double from an XmlReader in the .NET Framework 1.1
Double price = XmlConvert.ToDouble(reader.ReadElementString());
//Has been replaced by and improved in the .NET Framework 2.0
Double price = reader.ReadElementContentAsDouble();

You can see the removal of the unnecessary double method call results in much cleaner and easier-to-read
code. Listing 13-8 adds not only the counting of books but also prints the total price of all books using
ReadElementContentAs when your XmlReader is currently on an element, or ReadContentAs if on text
content. If schema information is available to the reader, ReadElementContentAsObject returns the
value directly as, in this case, a decimal. If the reader does not have any schema information, it attempts to
convert the string to a decimal. A whole series of ReadElementContentAs and ReadContentAs methods,
including ReadElementContentAsBoolean and ReadElementContentAsInt, are available. Note that
the code specific to XmlSchema has been removed from Listing 13-8 in the interest of brevity.

Listing 13-8: Using XmlReader.ReadElementContentAs

VB
Dim bookcount As Integer = 0
Dim booktotal As Decimal = 0
Dim settings As New XmlReaderSettings()
Dim nt As New NameTable()
Dim book As Object = nt.Add(“book”)
Dim price As Object = nt.Add(“price”)

settings.NameTable = nt

Dim booksFile As String =
Path.Combine(Request.PhysicalApplicationPath, “books.xml”)
Using reader As XmlReader = XmlReader.Create(booksFile, settings)

While (reader.Read())
If (reader.NodeType = XmlNodeType.Element _

And book.Equals(reader.LocalName)) Then
bookcount += 1

End If

468

Chapter 13

16_576100 ch13.qxd 10/6/05 8:19 PM Page 468

If (reader.NodeType = XmlNodeType.Element _
And price.Equals(reader.LocalName)) Then
booktotal += CType(reader.ReadElementContentAsObject(),Decimal)

End If
End While

End Using

Response.Write(String.Format(“Found {0} books that total {1:C}!”, _
bookcount, booktotal))

C#
int bookcount = 0;
decimal booktotal = 0;
XmlReaderSettings settings = new XmlReaderSettings();
string booksSchemaFile = Path.Combine(Request.PhysicalApplicationPath,
“books.xsd”);
NameTable nt = new NameTable();
object book = nt.Add(“book”);
object price = nt.Add(“price”);

settings.NameTable = nt;

string booksFile = Path.Combine(Request.PhysicalApplicationPath, “books.xml”);

using (XmlReader reader = XmlReader.Create(booksFile, settings))
{

while (reader.Read())
{

if (reader.NodeType == XmlNodeType.Element &&
book.Equals(reader.LocalName))//A subtle, but significant change!

{
bookcount++;

}
if (reader.NodeType == XmlNodeType.Element &&
price.Equals(reader.LocalName))
{

booktotal +=
(decimal)reader.ReadElementContentAsObject();

}
}

}

Response.Write(String.Format(“Found {0} books that total {1:C}!”,
bookcount, booktotal));

The booktotal variable from Listing 13-8 is strongly typed as a decimal so that, in the String.Format
call, it can be formatted as currency using the formatting string {1:C}. This results in output from the
browser similar to the following:

Found 3 books that total $30.97!

469

Working with XML

16_576100 ch13.qxd 10/6/05 8:20 PM Page 469

ReadSubtree and XmlSerialization
Not only does XmlReader help you retrieve simple types from XML, it can help you retrieve more
complicated types using XML serialization and ReadSubtree.

XML serialization allows you to add attributes to an existing class that give hints to the XML serialization
on how to represent an object as XML. XML serialization serializes only the public properties of an object,
not the private ones.

When you create an XmlSerializer, a Type object is passed into the constructor, and the XmlSerializer
uses reflection to examine whether the object can create a temporary assembly that knows how to read and
write this particular object as XML. The XmlSerializer uses a concrete implementation of XmlReader
internally to serialize these objects.

Instead of retrieving the author’s first name and last name using XmlReader.ReadAsString, Listing
13-10 uses ReadSubtree and a new strongly typed Author class that has been marked up with XML
serialization attributes, as shown in Listing 13-9. ReadSubtree “breaks off” a new XmlReader at the
current location, and that XmlReader is passed to an XmlSerializer and a complex type is created.
The Author class includes XmlElement attributes that indicate, for example, that although there is a
property called FirstName, it should be serialized and deserialized as “first-name.”

Listing 13-9: An Author class with XML serialization attributes matching Books.xsd

VB
Imports System.Xml.Serialization
<XmlRoot(ElementName:=”author”, _
Namespace:=”http://example.books.com”)> Public Class Author

<XmlElement(ElementName:=”first-name”)> Public FirstName As String
<XmlElement(ElementName:=”last-name”)> Public LastName As String

End Class

C#
using System.Xml.Serialization;
[XmlRoot(ElementName = “author”, Namespace = “http://example.books.com”)]
public class Author
{

[XmlElement(ElementName = “first-name”)]
public string FirstName;

[XmlElement(ElementName = “last-name”)]
public string LastName;

}

Next, this Author class is used along with XmlReader.ReadSubtree and XmlSerializer to output
the names of each book’s author. Listing 13-10 shows just the additional statements added to the While
loop.

470

Chapter 13

16_576100 ch13.qxd 10/6/05 8:20 PM Page 470

Listing 13-10: Reading author instances from an XmlReader using XmlSerialization

VB
‘Create factory early
Dim factory As New XmlSerializerFactory

Using reader As XmlReader = XmlReader.Create(booksFile, settings)
While (reader.Read())

If (reader.NodeType = XmlNodeType.Element _
And author.Equals(reader.LocalName)) Then

‘Then use the factory to create and cache serializers
Dim xs As XmlSerializer = factory.CreateSerializer(GetType(Author))
Dim a As Author = CType(xs.Deserialize(reader.ReadSubtree), Author)
Response.Write(String.Format(“Author: {1}, {0}
”, _

a.FirstName, a.LastName))
End If

End While
End Using

C#
//Create factory early
XmlSerializerFactory factory = new XmlSerializerFactory();

using (XmlReader reader = XmlReader.Create(booksFile, settings))
{

while (reader.Read())
{

if (reader.NodeType == XmlNodeType.Element &&
author.Equals(reader.LocalName))

{
//Then use the factory to create and cache serializers
XmlSerializer xs = factory.CreateSerializer(typeof(Author));
Author a = (Author)xs.Deserialize(reader.ReadSubtree());
Response.Write(String.Format(“Author: {1}, {0}
”,

a.FirstName, a.LastName));
}

}
}

The only other addition to the code, as you can guess, is the author object atom (used only in the Equals
statement) that is added to the NameTable just as the book and price were, via Dim author As Object =
nt.Add(“author”).

When you create an XmlSerializer instance for a specific type, the framework uses reflection to create a
temporary type-specific assembly to handle serialization and deserialization. The .NET Framework 2.0
includes a new XmlSerializerFactory that automatically handles caching of these temporary assemblies.
This small factory provides an important layer of abstraction that allows you to structure your code in a way
that is convenient without worrying about creating XmlSerializer instances ahead of time.

471

Working with XML

16_576100 ch13.qxd 10/6/05 8:20 PM Page 471

Creating Xml with XmlWriter
XmlWriter works exactly like XmlReader except in reverse. It’s very tempting to use string concatenation
to quickly create XML documents or fragments of XML, but you should resist the urge! Remember that
the whole point of XML is the representation of the InfoSet, not the angle brackets. If you concatenate
string literals together with StringBuilder to create XML, you are dropping below the level of the
InfoSet to the implementation details of the format. Tell yourself that XML documents are not strings!

XmlWriter also has a settings class called, obviously, XmlWriterSettings. This class has options for
indentation, new lines, encoding, and XML conformance level. Listing 13-11 uses XmlWriter to create a
bookstore XML document and output it directly to the ASP.NET Response.OutputStream. All the
HTML tags in the ASPX page must be removed in order for the XML document to be output correctly.
Another way to output XML easily is with an ASHX HttpHandler.

The unusual indenting in Listing 13-11 is significant and very common when using XmlWriter. It helps
the programmer visualize the hierarchical structure of an XML document.

Listing 13-11: Writing out a bookstore with XmlWriter

Default.aspx
<%@ Page Language=”C#” codefile=”Default.aspx.cs” Inherits=”Default_aspx” %>

VB
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
Handles Me.Load

Dim price As Double = 49.99
Dim publicationdate As New DateTime(2005, 1, 1)
Dim isbn As String = “1-057-610-0”
Dim a As New Author()
a.FirstName = “Scott”
a.LastName = “Hanselman”

Dim settings As New XmlWriterSettings()
settings.Indent = True
settings.NewLineOnAttributes = True

Response.ContentType = “text/xml”

Dim factory As New XmlSerializerFactory1

Using writer As XmlWriter = XmlWriter.Create(Response.OutputStream, settings)

‘Note the artificial, but useful, indenting

Most people find it helpful (as a visualization tool) to indent the method calls to the
XmlWriter with the same structure as the resulting XML document. However, VB in
Visual Studio is much more aggressive than C# in keeping the code indented a specific
way. It does not allow this kind of artificial indentation unless Smart Indenting is
changed to either Block or None by using Tools ➪ Options ➪ Text Editor ➪ Basic ➪ Tabs.

472

Chapter 13

16_576100 ch13.qxd 10/6/05 8:20 PM Page 472

writer.WriteStartDocument()
writer.WriteStartElement(“bookstore”)

writer.WriteStartElement(“book”)
writer.WriteStartAttribute(“publicationdate”)

writer.WriteValue(publicationdate)
writer.WriteEndAttribute()
writer.WriteStartAttribute(“ISBN”)

writer.WriteValue(isbn)
writer.WriteEndAttribute()
writer.WriteElementString(“title”, “ASP.NET 2.0”)
writer.WriteStartElement(“price”)

writer.WriteValue(price)
writer.WriteEndElement() ‘price
Dim xs As XmlSerializer = _

factory.CreateSerializer(GetType(Author))
xs.Serialize(writer, a)

writer.WriteEndElement() ‘book
writer.WriteEndElement() ‘bookstore

writer.WriteEndDocument()
End Using

End Sub

C#
protected void Page_Load(object sender, EventArgs e)
{
Double price = 49.99;
DateTime publicationdate = new DateTime(2005, 1, 1);
String isbn = “1-057-610-0”;
Author a = new Author();
a.FirstName = “Scott”;
a.LastName = “Hanselman”;

XmlWriterSettings settings = new XmlWriterSettings();
settings.Indent = true;
settings.NewLineOnAttributes = true;

Response.ContentType = “text/xml”;

XmlSerializerFactory factory = new XmlSerializerFactory();

using (XmlWriter writer =
XmlWriter.Create(Response.OutputStream, settings))

{
//Note the artificial, but useful, indenting
writer.WriteStartDocument();

writer.WriteStartElement(“bookstore”);
writer.WriteStartElement(“book”);

writer.WriteStartAttribute(“publicationdate”);
writer.WriteValue(publicationdate);

writer.WriteEndAttribute();
writer.WriteStartAttribute(“ISBN”);

writer.WriteValue(isbn);
writer.WriteEndAttribute();
writer.WriteElementString(“title”, “ASP.NET 2.0”);

473

Working with XML

16_576100 ch13.qxd 10/6/05 8:20 PM Page 473

writer.WriteStartElement(“price”);
writer.WriteValue(price);

writer.WriteEndElement(); //price
XmlSerializer xs = factory.CreateSerializer(typeof(Author));
xs.Serialize(writer, a);

writer.WriteEndElement(); //book
writer.WriteEndElement(); //bookstore

writer.WriteEndDocument();
}

}

The Response.ContentType in Listing 13-11 is set to “text/xml” to indicate to Internet Explorer that the
result is XML. An XmlSerializer is created in the middle of the process and serialized directly to
XmlWriter. The XmlWriterSettings.Indent property includes indentation that makes the resulting XML
document more palatable for human consumption. Setting both this property and NewLineOnAttributes to
false results in a smaller, more compact document.

Improvements for XmlReader and XmlWriter in 2.0
A few helper methods and changes make using XmlReader and XmlWriter even simpler in the .NET
Framework 2.0:

❑ ReadSubtree: This method reads the current node of an XmlReader and returns a new
XmlReader that traverses the current node and all its descendants. It allows you to chop off
a portion of the XML InfoSet and process it separately.

❑ ReadToDescendant and ReadToNextSibling: These two methods provide convenient ways
to advance the XmlReader to specific elements that appear later in the document.

❑ Dispose: XmlReader and XmlWriter are both a disposable level, which means that they support
the Using keyword. Using, in turn, calls Dispose, which calls the Close method. These methods
are now less problematic because you no longer have to remember to call Close to release any
resources. This simple but powerful technique has been used in the listings in this chapter.

XmlDocument and XPathDocument
In the .NET Framework 1.1, the XmlDocument was one of the most common ways to manipulate XML. It is
similar to using a static ADO recordset because it parses and loads the entire XmlDocument into memory.
Often the XmlDocument is the first class a programmer learns to use and, consequently, as a solution it
becomes the hammer in his toolkit. Unfortunately, not every kind of XML problem is a nail. XmlDocuments
have been known to use many times their file size in memory. Often an XmlDocument is referred to as the
DOM or Document Object Model. The XmlDocument is compliant with the W3C DOM implementation
and should be familiar to anyone who has used a DOM implementation.

474

Chapter 13

16_576100 ch13.qxd 10/6/05 8:20 PM Page 474

Problems with the DOM
There are a number of problems with the XmlDocument class in .NET Framework 1.1. The data model
of the XmlDocument is very different from other XML query languages such as XSLT and XPath. The
XmlDocument is editable and provides a familiar API for those who used MSXML in Visual Basic 6.
Often, however, people use the XmlDocument to search for data within a larger document, but the
XmlDocument isn’t designed for searching large amounts of information. The XPathDocument is read-
only and optimized for XPath queries or XPath-heavy technologies such as XSLT. In .NET Framework
2.0, the XPathDocument is much, much faster than the XmlDocument for loading and querying XML.

The XPathDocument is very focused around the InfoSet because it has a much-optimized internal structure.
Be aware, however, that it does throw away insignificant white spaces and CDATA sections, so it is not
appropriate if you want the XPathDocument to maintain the identical number of bytes that you originally
created. However, if you’re focused more on the set of information that is contained within your document,
you can be assured that the XPathDocument contains everything that your source document contains.

A rule of thumb for querying data is that you should use the XPathDocument instead of the XmlDocument—
except in situations where you must maintain compatibility with previous versions of the .NET Framework.
The new XPathDocument supports all the type information from any associated XML Schema and supports
the schema validation via the Validate method. The XPathDocument lets you load XML documents to
URLs, files, or streams. The XPathDocument is also the preferred class to use for the XSLT transformations
covered later in this chapter.

XPath, the XPathDocument, and XmlDocument
The XPathDocument is so named because it is the most efficient way to use XPath expressions over an
in-memory data structure. The XPathDocument implements the IXPathNavigable interface, allowing
you to iterate over the underlying XML by providing an XPathNavigator. The XPathNavigator class
differs from the XmlReader because rather than forward-only, it provides random access over your
XML, similar to a read-only ADO Keyset recordset versus a forward-only recordset.

You typically want to use an XPathDocument to move around freely, forward and backward, within a
document. XPathDocument is read-only, while XmlDocument allows read-write access.

The XmlDocument in version 2.0 adds in-memory validation. Using the XmlReader, the only way to
validate the XML is from a stream or file. The XmlDocument now allows in-memory validation without
the file or stream access using Validate(). XmlDocument also adds capability to subscribe to events
like NodeChanged, NodeInserting, and the like.

XPath is a query language best learned by example. You must know it to make good use of the
XPathDocument. Here are some valid XPath queries that you can use with the Books.xml file. XPath
is a rich language in its own right, with many dozens of functions. As such, fully exploring XPath is
beyond the scope of this book, but this table should give you a taste of what’s possible.

475

Working with XML

16_576100 ch13.qxd 10/6/05 8:20 PM Page 475

Xpath Function Result

//book[@genre = “novel”]/title Recursively from the root node, gets all
books with the title element whose genre
attribute is equal to novel

/bookstore/book[author/last-name = Gets all books that are children of
“Melville”] bookstore whose author’s last name is

Melville

/bookstore/book/author[last-name = Gets all authors that are children of
“Melville”] book whose last name is Melville

//book[title = “The Gorgias” or title = Recursively from the root node, gets all
“The Confidence Man”] books whose title is either The Gorgias

or The Confidence Man

//title[contains(., “The”)] Gets all titles that contain the string The

//book[not(price[. > 10.00])] Gets all books whose prices are not
greater than 10.00

Listing 13-12 queries an XPathDocument for books whose prices are less than $10.00 and outputs the
price. In order to illustrate using built-in XPath functions, this example uses a greater-than instead of
using a less-than. It then inverts the result using the built-in not() method. XPath includes a number of
functions for string concatenation, arithmetic, and many other uses. The XPathDocument returns an
XPathNavigator as a result of calling CreateNavigator. The XPathNavigator is queried using an
XPath passed to the Select method and returns an XPathNodeIterator. That XPathNodeIterator is
foreach enabled via IEnumerable. As Listing 13-12 uses a read-only XPathDocument, it will not
update the data in memory.

Listing 13-12: Querying XML with XPathDocument and XPathNodeIterator

VB
‘Load document
Dim booksFile As String = Path.Combine(Request.PhysicalApplicationPath, _

“books.xml”)

Dim document As New XPathDocument(booksFile)
Dim nav As XPathNavigator = document.CreateNavigator()

‘Add a namespace prefix that can be used in the XPath expression
Dim namespaceMgr As New XmlNamespaceManager(nav.NameTable)
namespaceMgr.AddNamespace(“b”, “http://example.books.com”)

‘All books whose price is not greater than 10.00
For Each node As XPathNavigator In nav.Select(_

“//b:book[not(b:price[. > 10.00])]/b:price”, namespaceMgr)
Dim price As Decimal = _

CType(node.ValueAs(GetType(Decimal)), Decimal)
Response.Write(String.Format(“Price is {0}
”, _

price))
Next

476

Chapter 13

16_576100 ch13.qxd 10/6/05 8:20 PM Page 476

C#
//Load document
string booksFile = Path.Combine(Request.PhysicalApplicationPath, “books.xml”);

XPathDocument document = new XPathDocument(booksFile);
XPathNavigator nav = document.CreateNavigator();

//Add a namespace prefix that can be used in the XPath expression
XmlNamespaceManager namespaceMgr = new XmlNamespaceManager(nav.NameTable);
namespaceMgr.AddNamespace(“b”, “http://example.books.com”);

//All books whose price is not greater than 10.00
foreach(XPathNavigator node in

nav.Select(“//b:book[not(b:price[. > 10.00])]/b:price”,
namespaceMgr))

{
Decimal price = (decimal)node.ValueAs(typeof(decimal));
Response.Write(String.Format(“Price is {0}
”,

price));
}

If you then want to modify the underlying XML nodes, in the form of an XPathNavigator, you would
use an XmlDocument instead of an XPathDocument. Your XPath expression evaluation may slow you
down, but you will gain the capability to edit. Be ware of this tradeoff in performance. Most often, you
will want to use the read-only XPathDocument whenever possible. Listing 13-13 illustrates this change
with the new or changed portions appearing in gray. Additionally, now that the document is editable,
the price is increased 20 percent.

Listing 13-13: Querying and editing XML with XmlDocument and XPathNodeIterator

VB
‘Load document
Dim booksFile As String = Path.Combine(Request.PhysicalApplicationPath, _

“books.xml”)

Dim document As New XmlDocument()
document.Load(booksFile)
Dim nav As XPathNavigator = document.CreateNavigator()

‘Add a namespace prefix that can be used in the XPath expression
Dim namespaceMgr As New XmlNamespaceManager(nav.NameTable)
namespaceMgr.AddNamespace(“b”, “http://example.books.com”)
‘All books whose price is not greater than 10.00
For Each node As XPathNavigator In nav.Select(_

“//b:book[not(b:price[. > 10.00])]/b:price”, namespaceMgr)
Dim price As Decimal = CType(node.ValueAs(GetType(Decimal)), Decimal)
node.SetTypedValue(price * CDec(1.2))
Response.Write(String.Format(“Price raised from {0} to {1}
”, _

price, _
CType(node.ValueAs(GetType(Decimal)), Decimal)))

Next

477

Working with XML

16_576100 ch13.qxd 10/6/05 8:20 PM Page 477

C#
//Load document
string booksFile = Path.Combine(Request.PhysicalApplicationPath, “books.xml”);

XmlDocument document = new XmlDocument();
document.Load(booksFile);
XPathNavigator nav = document.CreateNavigator();

//Add a namespace prefix that can be used in the XPath expression
XmlNamespaceManager namespaceMgr = new XmlNamespaceManager(nav.NameTable);
namespaceMgr.AddNamespace(“b”, “http://example.books.com”);

//All books whose price is not greater than 10.00
foreach(XPathNavigator node in

nav.Select(“//b:book[not(b:price[. > 10.00])]/b:price”,
namespaceMgr))

{
Decimal price = (decimal)node.ValueAs(typeof(decimal));
node.SetTypedValue(price * 1.2M);
Response.Write(String.Format(“Price inflated raised from {0} to {1}
”,

price,
node.ValueAs(typeof(decimal))));

}

Listing 13-3 changes the XPathDocument to an XmlDocument, and adds a call to XPathNavigator
.SetTypedValue to update the price of the document in memory. The resulting document could then be
persisted to storage as needed. If SetTypedValue was instead called on the XPathNavigator that was
returned by XPathDocument, a NotSupportedException would be thrown as the XPathDocument is
read-only.

The Books.xml document loaded from disk uses http://example.books.com as its default namespace.
Because the Books.xsd XML Schema is associated with the Books.xml document, and it assigns the default
namespace to be http://example.books.com, the XPath must know how to resolve that namespace.
Otherwise, you cannot determine if an XPath expression with the word book in it refers to a book from this
namespace or another book entirely. An XmlNamespaceManager is created, and b is arbitrarily used as the
namespace prefix for the XPath expression.

Namespace resolution can be very confusing because it is easy to assume that your XML file is all alone in
the world and that specifying a node named book is specific enough to enable the system to find it.
However, remember that your XML documents should be thought of as living among all the XML in the
world — this makes providing a qualified namespace all the more important. The XmlNamespaceManager
in Listing 13-12 is passed into the call to SelectNodes in order to associate the prefix with the appropriate
namespace. Remember, the namespace is unique, not the prefix; the prefix is simply a convenience acting
as an alias to the longer namespace. If you find that you’re having trouble getting an XPath expression to
work and no nodes are being returned, find out if your source XML has a namespace specified and that it
matches up with a namespace in your XPath.

478

Chapter 13

16_576100 ch13.qxd 10/6/05 8:20 PM Page 478

DataSets
XQuery is an excellent example of how XML is baked into the experience of manipulating data on the
.NET Framework. The System.Data namespace and System.Xml namespace have started mingling
their functionality for some time. DataSets are another example of how relational data and XML data
meet in a hybrid class library. During the COM and XML heyday, the ADO 2.5 recordset sported the
capability to persist as XML. The dramatic inclusion of XML functionality in a class library focused
entirely on manipulation of relational data was a boon for developer productivity. XML could be pulled
out of SQL Server and manipulated.

Persisting DataSets to XML
Classes within System.Data use XmlWriter and XmlReader in a number of places. Now that you’re
more familiar with System.Xml concepts, be sure to take note of the method overloads provided by the
classes within System.Data. For example, the DataSet.WriteXml method has four overloads, one of
which takes in XmlWriter. Most of the methods with System.Data are very pluggable with the classes
from System.Xml. Listing 13-14 shows another way to retrieve the XML from relational data by loading
a DataSet from a SQL command and writing it directly to the browser with the Response object’s
TextWriter property using DataSet.WriteXml.

Listing 13-14: Extracting XML from a SQL Server with System.Data.DataSet

VB
Dim connStr As String = “database=Northwind;Data Source=localhost; “ _

& “User id=sa;pwd=wrox”

Using conn As New SqlConnection(connStr)
Dim command As New SqlCommand(“select * from customers”, conn)
conn.Open()
Dim ds As New DataSet()
ds.DataSetName = “Customers”
ds.Load(command.ExecuteReader(), LoadOption.OverwriteChanges, “Customer”)
Response.ContentType = “text/xml”
ds.WriteXml(Response.OutputStream)

End Using

C#
string connStr = “database=Northwind;Data Source=localhost;User id=sa;pwd=wrox”;

using (SqlConnection conn = new SqlConnection(connStr))
{

SqlCommand command = new SqlCommand(“select * from customers”, conn);
conn.Open();
DataSet ds = new DataSet();
ds.DataSetName = “Customers”;
ds.Load(command.ExecuteReader(), LoadOption.OverwriteChanges, “Customer”);
Response.ContentType = “text/xml”;
ds.WriteXml(Response.OutputStream);

}

479

Working with XML

16_576100 ch13.qxd 10/6/05 8:20 PM Page 479

DataSets have a fairly fixed format, as seen in this example. The root node of the document isCustomers,
which corresponds to theDataSetNameproperty. DataSets contain one or more namedDataTableobjects,
and the names of theseDataTablesdefine the wrapper element — in this case,Customer. The name of the
DataTable is passed into theloadmethod of the DataSet. The correlation between the DataSet’s name,
DataTable’s name, and the resulting XMLis not obvious when using DataSets. The resulting XMLis shown
in the browser in Figure 13-4.

DataSetspresentadatamodelthatisverydifferentfromtheXMLwayofthinkingaboutdata.Muchofthe
XML-styleofthinkingrevolvesaroundtheInfoSetortheDOM,whereasDataSetsarerow-andcolumn-
based.TheXmlDataDocument isanattempttopresentthesetwowaysofthinkingintoonerelativelyunified
model.

Figure 13-4

XmlDataDocument
Although DataSets have their own relatively inflexible format for using XML, the XmlDocument class
does not. In order to bridge this gap, an unusual hybrid object, the XmlDataDocument, is introduced.
This object maintains the full fidelity of all the XML structure and allows you to access XML via the
XmlDocument API without losing the flexibility of a relational API. An XmlDataDocument contains a

480

Chapter 13

16_576100 ch13.qxd 10/6/05 8:20 PM Page 480

DataSet of its own and can be called DataSet-aware. Its internal DataSet offers a relational view of the
XML data. Any data contained within the XML data document that does not map into the relational
view is not lost, but becomes available to the DataSet’s APIs

The XMLDataDocument is a constructor that takes a DataSet as a parameter. Any changes made to the
XmlDataDocument are reflected in the DataSet and vice versa.

Now take the DataSet loaded in Listing 13-14 and manipulate the data with the XmlDataDocument and
DOM APIs you’re familiar with. Next, jump back into the world of System.Data and see that the DataSets
underlying DataRows have been updated with the new data, as shown in Listing 13-15.

Listing 13-15: Changing DataSets using the DOM APIs from XmlDataDocument

VB
Dim connStr As String = “database=Northwind;Data Source=localhost; “ _

& “User id=sa;pwd=wrox”

Using conn As New SqlConnection(connStr)
Dim command As New SqlCommand(“select * from customers”, conn)
conn.Open()
Dim ds As New DataSet()
ds.DataSetName = “Customers”
ds.Load(command.ExecuteReader(), LoadOption.OverwriteChanges, “Customer”)
‘Response.ContentType = “text/xml”
‘ds.WriteXml(Response.OutputStream)

‘Added in Listing 13-15
Dim doc As New XmlDataDocument(ds)
doc.DataSet.EnforceConstraints = False
Dim node As XmlNode = _
doc.SelectSingleNode(“//Customer[CustomerID = ‘ANATR’]/ContactTitle”)
node.InnerText = “Boss”
doc.DataSet.EnforceConstraints = True

Dim dr As DataRow = doc.GetRowFromElement(CType(node.ParentNode, XmlElement))
Response.Write(dr(“ContactName”).ToString() & “ is the “)
Response.Write(dr(“ContactTitle”).ToString())

End Using

C#
string connStr = “database=Northwind;Data Source=localhost; “

+ “User id=sa;pwd=wrox”;

using (SqlConnection conn = new SqlConnection(connStr))
{

SqlCommand command = new SqlCommand(“select * from customers”, conn);
conn.Open();
DataSet ds = new DataSet();
ds.DataSetName = “Customers”;
ds.Load(command.ExecuteReader(), LoadOption.OverwriteChanges,”Customer”);
//Response.ContentType = “text/xml”;
//ds.WriteXml(Response.OutputStream);

//Added in Listing 13-15

481

Working with XML

16_576100 ch13.qxd 10/6/05 8:20 PM Page 481

XmlDataDocument doc = new XmlDataDocument(ds);
doc.DataSet.EnforceConstraints = false;
XmlNode node = doc.SelectSingleNode(@”//Customer[CustomerID

= ‘ANATR’]/ContactTitle”);
node.InnerText = “Boss”;
doc.DataSet.EnforceConstraints = true;

DataRow dr = doc.GetRowFromElement((XmlElement)node.ParentNode);
Response.Write(dr[“ContactName”].ToString() + “ is the “);
Response.Write(dr[“ContactTitle”].ToString());

}

Listing 13-15 extends Listing 13-14 by first commenting out changing the HTTP ContentType and the call
to DataSet.WriteXml. After the DataSet is loaded from the database, it is passed to the XmlDataDocument
constructor. At this point, the XmlDataDocument and the DataSet refer to the same set of information. The
EnforceConstraints property of the DataSet is set to false to allow changes to the DataSet. When
EnforceConstraints is later set to true, if any constraint rules were broken, an exception is thrown. An
XPath expression is passed to the DOM method SelectSingleNode, selecting the ContactTitle node of
a particular customer, and its text is changed to Boss. Then by calling GetRowFromElement on the
XmlDataDocument, the context jumps from the world of the XmlDocument back to the world of the DataSet.
Column names are passed into the indexing property of the returned DataRow, and the output is shown in
this line:

Ana Trujillo is the Boss

The data is loaded from the SQL server and then manipulated and edited with XmlDocument-style
methods; a string is then built using a DataRow from the underlying DataSet.

XML is clearly more than just angle brackets. XML data can come from files, from databases, from infor-
mation sets like the DataSet object, and certainly from the Web. Today, however, a considerable amount
of data is stored in XML format, so a specific data source control has been added to ASP.NET 2.0 just for
retrieving and working with XML data.

The XmlDataSource Control
The XmlDataSource control enables you to connect to your XML data and to use this data with any of
the ASP.NET data-bound controls. Just like the SqlDataSource and the AccessDataSource controls,
the XmlDataSource control also enables you not only to retrieve data, but also to insert, delete, and
update data items.

482

Chapter 13

16_576100 ch13.qxd 10/6/05 8:20 PM Page 482

You can use a DataList control or any DataBinding-aware control and connect to an
<asp:XmlDataSource> control. The technique for binding a control directly to the Books.xml file
is illustrated in Listing 13-16.

Listing 13-16 Using a DataList control to display XML content

<%@ Page Language=”VB” AutoEventWireup=”false” CodeFile=”Default.aspx.vb”
Inherits=”Default_aspx” %>
<html xmlns=”http://www.w3.org/1999/xhtml” >

<head id=”Head1” runat=”server”>
<title>XmlDataSource</title>

</head>
<body>
<form id=”form1” runat=”server”>

<asp:datalist id=”DataList1” DataSourceID=”XmlDataSource1” runat=”server”>
<ItemTemplate>

<p><%# XPath(“author/first-name”) %>
<%# XPath(“author/last-name”)%>
wrote <%# XPath(“title”) %></p>

</ItemTemplate>
</asp:datalist>
<asp:xmldatasource id=”XmlDataSource1” runat=”server”

datafile=”~/Books.xml”
xpath=”//bookstore/book”/>

</form>
</body>

</html>

This is a simple example, but it shows you the ease of using the XmlDataSource control. You should focus
on two attributes in this example. The first is the DataFile attribute. This attribute points to the location of
the XML file. Because the file resides in the root directory of the application, it is simply ~/Books.xml. The
next attribute included in the XmlDataSource control is the XPath attribute. The XmlDataSource control
uses the XPath attribute for the filtering of XML data. In this case, the XmlDataSource control is taking
everything within the <book> set of elements. The value //bookstore/book means that the

One unfortunate caveat of the new XmlDataSource is its XPath attribute does not sup-
port documents that use namespace qualification. Examples in this chapter use the
Books.xml file with a default namespace of http://examples.books.com. It is very
common for XML files to use multiple namespaces, including a default namespace.
As you learned when you created an XPathDocument and queried it with XPath,
the namespace in which an element exists is very important. The regrettable reality
is, there is no way to use a namespace qualified XPath expression or to make
the XmlDataSource Control aware of a list of prefix/namespace pairs via the
XmlNamespaceManager class. However, the XPath function used in the ItemTemplate
of the templated DataList control can take a XmlNamespaceManager as its second
parameter and query XML returned from the XmlDataSource— as long as the control
does not include an XPath attribute with namespace qualification or you can just omit
it all together. That said, in order for these examples to work, you must remove the
namespaces from your source XML and use XPath queries that include no namespace
qualification, as shown in Listing 13-16.

483

Working with XML

16_576100 ch13.qxd 10/6/05 8:20 PM Page 483

XmlDataSource control navigates to the <bookstore> element and then to the <book> element within the
specified XML file and returns a list of all books.

The DataList control then must specify its DataSourceID as the XmlDataSource control. In the
<ItemTemplate> section of the DataList control, you can retrieve specific values from the XML file by
using XPath commands within the template. The XPath commands filter the data from the XML file. The
first value retrieved is an element attribute (author/first-name) that is contained in the <book> ele-
ment. If you are retrieving an attribute of an element, you preface the name of the attribute with an at (@)
symbol. The next two XPath commands get the last name and the title of the book. Remember to sepa-
rate nodes with a forward slash (/). When run in the browser, this code produces the results illustrated
in the following list:

Benjamin Franklin wrote The Autobiography of Benjamin Franklin
Herman Melville wrote The Confidence Man
Sidas Plato wrote The Gorgias

Note that if you wrote the actual code, this entire exercise would be done entirely in the ASPX page
itself!

Besides working from static XML files such as the Books.xml file shown earlier, the XmlDataSource
control has the capability to work from dynamic, URL-accessible XML files. One popular XML format
that is pervasive on the Internet today is the weblog. These blogs, or personal diaries, can be viewed either
in the browser, through an RSS-aggregator, or as pure XML.

As you look at my blog in Figure 13-5, you can see the XML it produces when visited directly in the
browser. (You can find a lot of blogs to play with for this example at weblogs.asp.net.)

Figure 13-5

484

Chapter 13

16_576100 ch13.qxd 10/6/05 8:20 PM Page 484

Now that you know the location of the XML from the blog, you can use this XML with the
XmlDataSource control and display some of the results in a DataList control. The code for this exam-
ple is shown in Listing 13-17.

Listing 13-17: Displaying an XML RSS blog feed

<%@ Page Language=”VB”%>
<html xmlns=”http://www.w3.org/1999/xhtml” >

<head runat=”server”>
<title>XmlDataSource</title>

</head>
<body>
<form id=”form1” runat=”server”>

<asp:DataList ID=”DataList1” Runat=”server” DataSourceID=”XmlDataSource1”>
<HeaderTemplate>

<table border=”1” cellpadding=”3”>
</HeaderTemplate>
<ItemTemplate>

<tr><td><%# XPath(“title”) %>

<i><%# XPath(“pubDate”) %></i>

<%# XPath(“description”) %></td></tr>

</ItemTemplate>
<AlternatingItemTemplate>

<tr bgcolor=”LightGrey”><td><%# XPath(“title”) %>

<i><%# XPath(“pubDate”) %></i>

<%# XPath(“description”) %></td></tr>

</AlternatingItemTemplate>
<FooterTemplate>

</table>
</FooterTemplate>

</asp:DataList>
<asp:XmlDataSource ID=”XmlDataSource1” Runat=”server”
DataFile=”http://www.hanselman.com/blog/SyndicationService.asmx/GetRss”
XPath=”rss/channel/item”>
</asp:XmlDataSource>

</form>
</body>

</html>

Looking at the code in Listing 13-17, you can see that the DataFile points to a URL where the XML is
retrieved. The XPath property filters and returns all the <item> elements from the RSS feed. The
DataList control creates an HTML table and pulls out specific data elements from the RSS feed, such as
the <title>, <pubDate>, and <description> elements.

Running this page in the browser, you get something similar to the results shown in Figure 13-6.

This approach also works with XML Web services, even ones for which you can pass in parameters using
HTTP-GET. You just set up the DataFile property value in the following manner:

DataFile=”http://www.someserver.com/GetWeather.asmx/ZipWeather?zipcode=63301”

There is no end to the number of places you can find and use XML: files, databases, Web sites, and services.
Sometimes you will want to manipulate the XML via queries or programmatically, and sometimes you will
want to take the XML “tree” and transform it into a tree of a different form.

485

Working with XML

16_576100 ch13.qxd 10/6/05 8:20 PM Page 485

Figure 13-6

XSLT
XSLT is a tree transformation language also written in XML syntax. It’s a strange hybrid of a declarative
and a programmatic language, and some programmers would argue that it’s not a language at all. Others,
who use a number of XSLT scripting extensions, would argue that it is a very powerful language.
Regardless of the controversy, XSLT transformations are very useful for changing the structure of XML
files quickly and easily, often using a very declarative syntax.

The best way to familiarize yourself with XSLT is to look at an example. Remember that the Books.xml
file used in this chapter is a list of books and their authors. The XSLT in Listing 13-18 takes that document
and transforms it into a document that is a list of authors.

Listing 13-18: Books.xslt

XSLT
<?xml version=”1.0” encoding=”utf-8” ?>
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”>

<xsl:template match=”/”>
<xsl:element name=”Authors”>

<xsl:apply-templates select=”//book”/>
</xsl:element>

</xsl:template>
<xsl:template match=”book”>

486

Chapter 13

16_576100 ch13.qxd 10/6/05 8:20 PM Page 486

<xsl:element name=”Author”>
<xsl:value-of select=”author/first-name”/>
<xsl:text> </xsl:text>
<xsl:value-of select=”author/last-name”/>

</xsl:element>
</xsl:template>

</xsl:stylesheet>

Remember that XSLT is XML vocabulary in its own right, so it makes sense that it has its own namespace and
namespace prefix. XSLT is typically structured with a series of templates that match elements in the source
document. The XSLT document doesn’t describe what the result looks like as much as it declares what steps
must occur for the transformation to succeed. Remembering that your goal is an XML file with a list of
authors, you match on the root node of Books.xml and output a root element for the resulting document
named <Authors>. Then <xsl:apply-templates select=”//book”/> indicates to the processor that it
should continue looking for templates that, in this case, match the XPath expression //book. Below the first
template is a second template that handles all book matches. It outputs a new element named <Author>.

XSLT is very focused on context, so it is often helpful to imagine a cursor that is on a particular element
of the source document. Immediately after outputting the <Author> element, the processor is in the
middle of the template match on the book element. All XPath expressions in this example are relative to
the book element. So the <xsl:value-of select=”author/first-name”> directive searches for the
author’s first name relative to the book element. The <xsl:text> </xsl:text> directive is interesting
to note because it is explicit and a reminder that a difference exists between significant white space and
insignificant white space. It is important, for example, that a space is put between the author’s first and
last names, so it must be called out explicitly.

The resulting document is shown in Figure 13-7.

This example only scratches the surface of XSLT’s power. Although a full exploration of XSLT is beyond
the scope of this book, other books by Wrox Press cover the topic more fully. Remember that the .NET
Framework implements the 1.0 implementation of XSLT.

Figure 13-7 shows the resulting XML as the Books.xslt transformation is applied to Books.xml. You
can apply XSLT transformations in a number of ways, both declarative and programmatic. These are
described in the following sections.

Figure 13-7

487

Working with XML

16_576100 ch13.qxd 10/6/05 8:20 PM Page 487

XslCompiledTransform
The XslTransform class was used in the .NET Framework 1.x for XSLT transformation. In the .NET
Framework 2.0, the XsltCompiledTransform class is the new XSLT processor. It is such an improvement
that XslTransform is deprecated and marked with the Obsolete attribute. The compiler will now
advise you to use XslCompiledTransform. The system generates MSIL code on the call to Compile()
and the XSLT executes many times faster than previous techniques. You can also hold a reference to an
XsltCommand and speed processing even faster. This compilation technique also includes full debugging
support from within Visual Studio, which is covered a little later in this chapter.

XslCompiledTransform has only two methods: Load and Transform. The compilation happens with-
out any effort on your part. Listing 13-19 loads the Books.xml file into an XPathDocument and trans-
forms it using Books.xslt and an XslCompiledTransform. Even though there are only two methods,
there are fourteen overrides for Transform and six for Load. That may seem a little daunting at first, but
there is a simple explanation.

The Load method can handle loading a stylesheet from a string, an XmlReader, or any class that implements
IXPathNavigable. An XsltSettings object can be passed in optionally with any of the previous three
overloads, giving you six to choose from. XsltSettings includes options to enable the document()
XSLT–specific function via the XsltSettings.EnableDocumentFunction property or enable embedded
script blocks within XSLT via XsltSettings.EnableScript. These advanced options are disabled by
default for security reasons. Alternatively, you can retrieve a pre-populated XslSettings object via the
static property XsltSettings.TrustedXslt, which has enabled both these settings.

Note in Listing 13-19 that the Response.Output property eliminates an unnecessary string allocation.
In the example, Response.Output is a TextWriter wrapped in an XmlTextWriter and passed
directly to the Execute method.

Listing 13-19: Executing an XsltCompiledTransform

VB
Response.ContentType = “text/xml”

Dim xsltFile As String = Path.Combine(Request.PhysicalApplicationPath, _
“books.xslt”)

Dim xmlFile As String = Path.Combine(Request.PhysicalApplicationPath, “books.xml”)

Dim xslt As New XslCompiledTransform()

If you think it is odd that the class that does the work is called the
XslCompiledTransform and not the XsltCompiledTransform, but
XsltSettings includes the t, remember that the t in XSLT means transformation.

The XPathDocument is absolutely optimized for XSLT transformations and should be
used instead of the XmlDocument if you would like a 15- to 30-percent performance
gain in your transformations. Remember that XSLT contains XPath, and when you use
XPath, use an XPathDocument. According to the team’s numbers, XSLT is 400 percent
faster in .NET Framework 2.0.

488

Chapter 13

16_576100 ch13.qxd 10/6/05 8:20 PM Page 488

xslt.Load(xsltFile)

Dim doc As New XPathDocument(xmlFile)
xslt.Transform(doc, New XmlTextWriter(Response.Output))

C#
Response.ContentType = “text/xml”;

string xsltFile = Path.Combine(Request.PhysicalApplicationPath, “books.xslt”);
string xmlFile = Path.Combine(Request.PhysicalApplicationPath, “books.xml”);

XslCompiledTransform xslt = new XslCompiledTransform();
xslt.Load(xsltFile);

XPathDocument doc = new XPathDocument(xmlFile);
xslt.Transform(doc, new XmlTextWriter(Response.Output));

Named arguments may be passed into an XslTransform or XslCompiledTransform if the stylesheet
takes parameters. The following code snippet illustrates the use of XslArgumentList:

XslTransform transformer = new XslTransform();
transformer.Load(“foo.xslt”);

XslArgumentList args = new XslArgumentList();
args.Add(“ID”, “SOMEVALUE”);

transformer.Transform(“foo.xml”, args, Response.OutputStream);

The XML resulting from an XSLT transformation can be manipulated with any of the system.XML APIs
that have been discussed in this chapter. One common use of XSLT is to flatten hierarchical and, some-
times, relational XML documents into a format that is more conducive to output as HTML. The results
of these transformations to HTML can be placed inline within an existing ASPX document.

XML Web Server Control
XSLT transformations can also be a very quick way to get information out to the browser as HTML.
Consider this technique as yet another tool in your toolbox. HTML is a tree, and HTML is a cousin of XML,
so an XML tree can be transformed into an HTML tree. A benefit of using XSLT transformations to create
large amounts of static text, like HTML tables, is that the XSLT file can be kept external to the application.
You can make quick changes to its formatting without a recompile. A problem when using XSLT transfor-
mations is that they can become large and very unruly when someone attempts to use them to generate the
entire user interface experience. The practice was in vogue in the mid-nineties to use XSLT transformations
to generate entire Web sites, but the usefulness of this technique breaks down when complex user interac-
tions are introduced. That said, XSLT has a place, not only for transforming data from one format to
another, but also for creating reasonable chunks of your user interface — as long as you don’t go overboard.

In the next example, the output of the XSLT is HTML rather than XML. Note the use of the <xsl:output
method=”html”> directive. When this directive is omitted, the default output of an XSLT transformation
is XML. This template begins with a match on the root node. It is creating an HTML fragment rather than
an entire HTML document. Its first output is the <h3> tag with some static text. Next comes a table tag
and the header row, and then the <xsl:apply-template> element selects all books within the source
XML document. For every book element in the source document, the second template is invoked with the

489

Working with XML

16_576100 ch13.qxd 10/6/05 8:20 PM Page 489

responsibility of outputting one table row per book. Calls to <xsl:value-of> select each of the book’s
subnodes and outputs them within the <td> tags. This is seen in Listing 13-20, which follows.

Listing 13-20: BookstoHTML.xslt used with the XML Web Server Control

XSLT
<?xml version=”1.0” encoding=”utf-8” ?>
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”

xmlns:b=”http://example.books.com” version=”1.0”>
<xsl:output method=”html”/>
<xsl:template match=”/”>

<h3>List of Authors</h3>
<table border=”1”>

<tr>
<th>First</th><th>Last</th>

</tr>
<xsl:apply-templates select=”//b:book”/>

</table>
</xsl:template>
<xsl:template match=”b:book”>

<tr>
<td><xsl:value-of select=”b:author/b:first-name”/></td>
<td><xsl:value-of select=”b:author/b:last-name”/></td>

</tr>
</xsl:template>

</xsl:stylesheet>

ASPX
<%@ Page Language=”VB” %>
<html xmlns=”http://www.w3.org/1999/xhtml” >

<head runat=”server”><title>HTML/XSLT Transformation</title></head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:Xml ID=”Xml1” Runat=”server”
DocumentSource=”~/Books.xml”
TransformSource=”~/bookstoHTML.xslt”/>

</div>
</form>

</body>
</html>

Notice the use of namespace prefixes in Listing 13-20. The source namespace is declared with the prefix b as
in xmlns:b=”http://example.books.com” and the b prefix is subsequently used in XPath expressions
like //b:book. The XSLT in Listing 13-20 can use the XSLTCommand to perform this transformation on the
server-side because the entire operation is declarative and requires just two inputs — the XML document
and the XSLT document. The XML Web server control makes the transformation easy to perform from
the ASPX page and does not require any language-specific features. The DocumentSource property of the
control holds the path to the Books.xml file, whereas the TransformSource property holds the path
to the BookstoHTML.xslt file:

<h3>List of Authors</h3>
<table border=”1”>

<tr>
<th>First</th>
<th>Last</th>

490

Chapter 13

16_576100 ch13.qxd 10/6/05 8:20 PM Page 490

</tr>
<tr>

<td>Benjamin</td>
<td>Franklin</td>

</tr>
<tr>

<td>Herman</td>
<td>Melville</td>

</tr>
<tr>

<td>Sidas</td>
<td>Plato</td>

</tr>
</table>

The results of this transformation are output inline to this HTML document and appear between the two
<div> tags. You see the results of this HTML fragment in the previous code and in the browser’s output
shown in Figure 13-8.

Figure 13-8

XSLT Debugging
One of the exciting new additions to ASP.NET 2.0 and Visual Studio is that of XSLT debugging.
However, XSLT debugging is available only in the Professional and Team System versions of Visual
Studio and only when using the XslCompiledTransform class.

By passing the Boolean value true into the constructor of the XslCompiledTransform class, you can
step into your XSLT transformations within the Microsoft Development Environment.

Dim xslt As New XslCompiledTransform(True)

491

Working with XML

16_576100 ch13.qxd 10/6/05 8:20 PM Page 491

Change the constructor of the XslCompiledTransform to true in Listing 13-19 and set a breakpoint on
the Transform method. When you reach that breakpoint, press F11 to step into the transformation.
Figure 13-9 shows a debugging session of the Books.xslt/Books.xml transformation in process.

In the past, debugging XSLT was largely an opaque process that required a third-party application to
troubleshoot. The addition of debugging XSLT to Visual Studio means that your XML experience is just
that much more integrated and seamless.

Databases and XML
You have seen that XML can come from any source whether it be a Web service, a file on disk, an XML
fragment returned from a Web server, or a database. SQL server and ADO have rich support for XML,
starting with the ExectuteXmlReader method of the System.Data.SqlCommand class. Additional sup-
port for XML on SQL Server 2000 is included with SQLXML 3.0 and its XML extensions and SQL Server
2005 has native XML data type support built right in.

Figure 13-9

492

Chapter 13

16_576100 ch13.qxd 10/6/05 8:20 PM Page 492

FOR XML AUTO
You can modify a SQL query to return XML with the FOR XML AUTO clause. If you take a simple query
such as select * from customers, you just change the statement like so:

select * from customers as customer FOR XML AUTO

XML AUTO returns XML fragments rather than a full XML document with a root node. Each row in the
database becomes one element; each column in the database becomes one attribute on the element.
Notice that each element in the following result set is named Customers because the select clause is
from customers:

<Customers CustomerID=”ALFKI” CompanyName=”Alfreds Futterkiste” ContactName=”Maria
Anders” ContactTitle=”Sales Representative” Address=”Obere Str. 57” City=”Berlin”
PostalCode=”12209” Country=”Germany” Phone=”030-0074321” Fax=”030-0076545” />
<Customers CustomerID=”ANATR” CompanyName=”Ana Trujillo Emparedados y helados”
ContactName=”Ana Trujillo” ContactTitle=”Owner” Address=”Avda. de la Constitución
2222” City=”México D.F.” PostalCode=”05021” Country=”Mexico” Phone=”(5) 555-4729”
Fax=”(5) 555-3745” />

If you add ELEMENTS to the query like so

select * from customers FOR XML AUTO, ELEMENTS

you get an XML fragment like this:

<Customers>
<CustomerID>ALFKI</CustomerID>
<CompanyName>Alfreds Futterkiste</CompanyName>
<ContactName>Maria Anders</ContactName>
<ContactTitle>Sales Representative</ContactTitle>
<Address>Obere Str. 57</Address>
<City>Berlin</City>
<PostalCode>12209</PostalCode>
<Country>Germany</Country>
<Phone>030-0074321</Phone>
<Fax>030-0076545</Fax>

</Customers>
<Customers>

<CustomerID>ANATR</CustomerID>
<CompanyName>Ana Trujillo Emparedados y helados</CompanyName>
<ContactName>Ana Trujillo</ContactName>
<ContactTitle>Owner</ContactTitle>
<Address>Avda. de la Constitución 2222</Address>
<City>México D.F.</City>
<PostalCode>05021</PostalCode>
<Country>Mexico</Country>
<Phone>(5) 555-4729</Phone>
<Fax>(5) 555-3745</Fax>

</Customers>

493

Working with XML

16_576100 ch13.qxd 10/6/05 8:20 PM Page 493

The previous example is just a fragment with no root node. To perform an XSLT transformation, you
need a root node, and you probably want to change the <Customers> elements to <Customer>. By
using an alias in the select statement, you can affect the name of each row’s element. The query
select * from Customers as Customer for XML AUTO, ELEMENTS changes the name of the element to
<Customer>.

Now, put together all the things you’ve learned from this chapter and create an XmlDocument, edit and
manipulate it, retrieve data from SQL Server as an XmlReader, and style that information with XSLT
into an HTML table all in just a few lines of code.

First, add a root node to the document retrieved by the SQL query select * from Customers as
Customer for XML AUTO, ELEMENTS as seen in Listing 13-21.

Listing 13-21: Retrieving XML from SQL Server 2000 using FOR XML AUTO

VB
Dim connStr As String = “database=Northwind;Data Source=localhost;” & _

“ User id=sa;pwd=wrox”
Dim x As New XmlDocument()
Dim xpathnav As XPathNavigator = x.CreateNavigator()
Using conn As New SqlConnection(connStr)

conn.Open()
Dim command As New SqlCommand(“select * from Customers as Customer “ & _

“for XML AUTO, ELEMENTS”, conn)
Using xw As XmlWriter = xpathnav.PrependChild()

xw.WriteStartElement(“Customers”)
Using xr As XmlReader = command.ExecuteXmlReader()

xw.WriteNode(xr, True)
End Using
xw.WriteEndElement()

End Using
End Using
Response.ContentType = “text/xml”
x.Save(Response.Output)

C#
string connStr = “database=Northwind;Data Source=localhost;User id=sa;pwd=wrox”;
XmlDocument x = new XmlDocument();
XPathNavigator xpathnav = x.CreateNavigator();
using (SqlConnection conn = new SqlConnection(connStr))
{

conn.Open();
SqlCommand command = new SqlCommand(

“select * from Customers as Customer for XML AUTO, ELEMENTS”, conn);
using (XmlWriter xw = xpathnav.PrependChild())
{

xw.WriteStartElement(“Customers”);
using (XmlReader xr = command.ExecuteXmlReader())
{

xw.WriteNode(xr, true);
}
xw.WriteEndElement();

}

494

Chapter 13

16_576100 ch13.qxd 10/6/05 8:20 PM Page 494

}
Response.ContentType = “text/xml”;
x.Save(Response.Output);

This code creates an XmlDocument called Customers. Then it executes the SQL command and retrieves
the XML data into an XmlReader. An XPathNavigator is created from the XmlDocument, and a child
node is prepended to the document. A single call to the WriteNode method of the XmlWriter retrieved
from the XPathDocument moves the entire XML fragment into the well-formed XDocument. Because the
SQL statement contained from Customers as Customer as a table alias, each XML element is named
<Customer>. Then, for this example, the resulting XML document is output directly to the response
object. You see the resulting XML in the browser shown in Figure 13-10.

Figure 13-10

Of course, it’s nice to see the resulting XML, but it’s far more useful to style that information with XSLT.
The XML Web Server control mentioned earlier is perfect for this task. However, in Listing 13-22, rather
than setting both the TransformSource and DocumentSource properties as in Listing 13-20, you set
only the TransformSource property at design time, and the XmlDocument is the one created in the
code-behind of Listing 13-21.

495

Working with XML

16_576100 ch13.qxd 10/6/05 8:20 PM Page 495

Listing 13-22: The ASPX Page and XSLT to style the XML from SQL Server

ASPX
<%@ Page Language=”C#” CodeFile=”Default.aspx.cs” Inherits=”Default_aspx” %>
<asp:xml id=”Xml1” runat=”server” transformsource=”~/customersToHtml.xslt”/>

XSLT
<?xml version=”1.0” encoding=”utf-8” ?>
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”>

<xsl:output method=”html”/>
<xsl:template match=”/”>

<h3>List of Customers</h3>
<table border=”1”>

<tr>
<th>Company Name</th><th>Contact Name</th><th>Contact Title</th>

</tr>
<xsl:apply-templates select=”//Customer”/>

</table>
</xsl:template>
<xsl:template match=”Customer”>

<tr>
<td><xsl:value-of select=”CompanyName”/></td>
<td><xsl:value-of select=”ContactName”/></td>
<td><xsl:value-of select=”ContactTitle”/></td>

</tr>
</xsl:template>

</xsl:stylesheet>

VB
‘Response.ContentType = “text/xml”
‘x.Save(Response.Output)
Xml1.XPathNavigator = xpathnav

C#
//Response.ContentType = “text/xml”;
//x.Save(Response.Output);
Xml1.XPathNavigator = xpathnav;

In the code-behind file, the lines that set ContentType and write the XML to the Response object are
commented out, and instead the XPathNavigator from the XmlDocument that is manipulated in Listing
13-21 is set as a property of the XML Web Server control. The control then performs the XSLT Stylesheet
transformation, and the results are output to the browser as shown in Figure 13-11.

496

Chapter 13

16_576100 ch13.qxd 10/6/05 8:20 PM Page 496

Figure 13-11

You have an infinite amount of flexibility within the System.Xml and System.Data namespaces. Microsoft
has put together a fantastic series of APIs that interoperate beautifully. When you’re creating your own APIs
that expose or consume XML, compare them to the APIs that Microsoft has provided — if you expose your
data over an XmlReader or IXPathNavigable interface, you are sure to make your users much happier.
Passing XML around with these more flexible APIs (rather than as simple and opaque strings) provides a
much more comfortable and intuitive expression of the XML information set.

SQL Server Yukon 2005 and the XML DataType
You’ve seen that retrieving data from SQL Server 2000 is straightforward, if a little limited. SQL Server 2005,
originally codenamed Yukon, includes a number of very powerful XML-based features. Dare Obasanjo, an
XML Program Manager at Microsoft has said, “The rise of the ROX [Relational-Object-XML] database has
begun.” SQL Server 2005 is definitely leading the way.

Remember that the XmlReader that is returned from SqlCommand.ExecuteXmlReader()
is holding its SQL connection open, so you must call Close() when you’re done using
the XmlReader. The easiest way to ensure that this is done is the using statement. An
XmlReader implements IDisposable and calls Close() for you as the variable leaves
the scope of the using statement.

497

Working with XML

16_576100 ch13.qxd 10/6/05 8:20 PM Page 497

One of the things that is particularly tricky about mapping XML and the XML information set to the
relational structure that SQL Server shares with most databases is that most XML data has a hierarchical
structure. Relational databases structure hierarchical data with foreign key relationships. Relational
data often has no order, but the order of the elements within XmlDocument is very important. SQL
Server 2005 introduces a new data type called, appropriately, XML. Previously, data was stored in an
nvarchar or other string-based data type. SQL Server 2005 can now have a table with a column of type
XML, and each XML data type can have associated XML Schema.

The FOR XML syntax is improved to include the TYPE directive, so a query that includes FOR XML TYPE
returns the results as a single XML-typed value. This XML data is returned with a new class called
System.Data.SqlXml. It exposes its data within XmlReader, so you’ll find it to be very easy to use
because it works like all the other examples you’ve seen in this chapter.

The XML data type stores data as a new internal binary format that is more efficient to query. The programmer
doesn’t have to worry about the details of how the XML is stored if it continues to be available on the XQuery
or in XmlReader. You can mix column types in a way that was not possible in SQL Server 2000. You’re used
to returning data as either a DataSet or an XmlReader. With SQL Server 2005, you can return a DataSet where
some columns contain XML and some contain traditional SQL Server data types.

Summary
XML and the XML InfoSet is pervasive in the .NET Framework and in ASP.NET 2.0. All ASP.NET 2.0
configuration files now include associated XML Schema, and the Visual Studio Editor is even smarter
about XML documents that use XSDs.

XmlReader and XmlWriter provide unique and incredibly fast ways to consume and create XML; they now
also include even better support for mapping XML Schema types to CLR types, as well as other improve-
ments. The XmlDocument and XPathDocument return in .NET 2.0 with API additions and numerous
performance improvements, while the XmlDataDocument straddles the world of System.Data and
System.Xml. ASP.NET 2.0 and .NET 2.0 include support for XSLT via not only the new
XslCompiledTransform but also the XML Web Server Controls, and tops it all with XSLT debugging
support for compiled stylesheets.

All these ways to manipulate XML via the Base Class Library are married with XML support in SQL
Server 2000 and 2005. SQL Server 2005 also includes the new XML data type for storing XML in a first
class column type.

In a DataSet returned from SQL Server 2005, XML data defaults to being a string
unless DataAdapter.UseProviderSpecificType = true is set or a schema is
loaded ahead of time to specify the column type.

498

Chapter 13

16_576100 ch13.qxd 10/6/05 8:20 PM Page 498

Site Navigation

The Web applications that you develop generally have more than a single page to them. Usually
you create a number of Web pages that are interconnected in some fashion. If you also build the
navigation around your pages, you make it easy for the end user to successfully work through
your application in a straightforward manner.

Currently, you must choose among a number of different ways to expose the paths through your
application to the end user. The difficult task of site navigation is compounded when you continue
to add pages to the overall application.

The present method for building navigation within Web applications is to sprinkle pages with
hyperlinks. Hyperlinks are generally added to Web pages by using include files or user controls.
They can also be directly hard-coded onto a page so that they appear in the header or the sidebar of
the page being viewed. The difficulties in working with navigation become worse when you move
pages around or change page names. Sometimes developers are forced to go to each and every page
in the application just to change some aspect of the navigation.

ASP.NET 2.0 tackles this problem with the introduction of a navigation system that makes it quite
trivial to manage how end users work through the applications you create. This new capability in
ASP.NET is complex; but the great thing is that it can be as simple as you need it to be, or you can
actually get in deep and control every aspect of how it works.

The new site navigation system includes the capability to define your entire site in an XML file
that is called a site map. After you define a new site map, you can work with it programmatically
using the SiteMap class. Another addition in ASP.NET 2.0 is a new data provider that is specifi-
cally developed to work with site map files and to bind them to a new series of navigation-based
server controls. This chapter looks at all these components in the new ASP.NET 2.0 navigation
system. The following section introduces site maps.

17_576100 ch14.qxd 10/6/05 9:22 PM Page 499

XML-Based Site Maps
Although a site map is not a required element (as you see later), one of the common first steps you take
in working with the new ASP.NET 2.0 navigation system is building a site map for your application. A
site map is an XML description of your site’s structure.

You use this site map to define the layout of all the pages in your application and how they relate to one
another. If you do this according to the new site map standard, you interact with this navigation information
using either the new SiteMap class or the new SiteMapDataSource control. By using the SiteMapDataSource
control, you can then bind the information in the site map file to a variety of data-binding controls, including
the new navigation server controls provided by ASP.NET 2.0.

To create a new site map file for your application, add a site map or an XML file to your application.
When asked, you name the XML file Web.sitemap; this file is already in place if you select the Site Map
option. The file is named Web and has the new file extension of .sitemap. Take a look at an example of
a .sitemap file in Listing 14-1.

Listing 14-1: An example of a Web.sitemap file

<?xml version=”1.0” encoding=”utf-8” ?>

<siteMap xmlns=”http://schemas.microsoft.com/AspNet/SiteMap-File-1.0” >
<siteMapNode title=”Home” description=”Home Page” url=”Default.aspx”>

<siteMapNode title=”News” description=”The Latest News” url=”News.aspx”>
<siteMapNode title=”U.S.” description=”U.S. News”
url=”News.aspx?cat=us” />

<siteMapNode title=”World” description=”World News”
url=”News.aspx?cat=world” />

<siteMapNode title=”Technology” description=”Technology News”
url=”News.aspx?cat=tech” />

<siteMapNode title=”Sports” description=”Sports News”
url=”News.aspx?cat=sport” />

</siteMapNode>
<siteMapNode title=”Finance” description=”The Latest Financial Information”

url=”Finance.aspx”>
<siteMapNode title=”Quotes” description=”Get the Latest Quotes”
url=”Quotes.aspx” />

<siteMapNode title=”Markets” description=”The Latest Market Information”
url=”Markets.aspx”>

<siteMapNode title=”U.S. Market Report”
description=”Looking at the U.S. Market” url=”MarketsUS.aspx” />

<siteMapNode title=”NYSE”
description=”The New York Stock Exchange” url=”NYSE.aspx” />

</siteMapNode>
<siteMapNode title=”Funds” description=”Mutual Funds”
url=”Funds.aspx” />

</siteMapNode>
<siteMapNode title=”Weather” description=”The Latest Weather”
url=”Weather.aspx” />

</siteMapNode>
</siteMap>

500

Chapter 14

17_576100 ch14.qxd 10/6/05 9:22 PM Page 500

So what does this file give you? Well, it gives you a logical structure that ASP.NET 2.0 can now use in the
rest of the navigation system it provides. Next, examine how this file is constructed.

The root node of this XML file is a <siteMap> element. Only one <siteMap> element can exist in the file.
Within the <siteMap> element, there is a <siteMapNode> element. This is generally the start page of the
application. In the case of the file in Listing 14-1, the root <siteMapNode> points to the Default.aspx
page, the start page:

<siteMapNode title=”Home” description=”Home Page” url=”Default.aspx”>

The following table describes the most common attributes in the <siteMapNode> element.

Attribute Description

title The title attribute provides a textual description of the
link. The String value used here is the text used for the link.

description The description attribute not only reminds you what the
link is for, but it is also used for the ToolTip attribute on
the link. The ToolTip attribute is the yellow box that shows
up next to the link when the end user hovers the cursor over
the link for a couple of seconds.

url The url attribute describes where the file is located in the solution.
If the file is in the root directory, simply use the filename, such as
“Default.aspx”. If the file is located in a subfolder, be sure to
include the folders in the String value used in this attribute. For
example, “MySubFolder/Markets.aspx”.

After you have the first <siteMapNode> in place, you can place as many additional <siteMapNode>
elements as you need. You can also create additional link-levels by creating child <siteMapNode>
elements for any parent <siteMapNode> in the structure.

The example in Listing 14-1 gives the application the following navigation structure:

Home
News

U.S.
World
Technology
Sports

Finance
Quotes
Markets

U.S. Market Report
NYSE

Funds
Weather

501

Site Navigation

17_576100 ch14.qxd 10/6/05 9:22 PM Page 501

You can see that this structure goes down three levels in some places. One of the easiest places to use
this file is with the new SiteMapPath server control that now comes with ASP.NET 2.0. The new
SiteMapPath server control in ASP.NET 2.0 is built to work specifically with the new .sitemap files.

SiteMapPath Server Control
It is quite easy to use the .sitemap file you just created with the new SiteMapPath server control provided
with ASP.NET 2.0. You find this new control in the Navigation section of the Visual Studio 2005 IDE.

The SiteMapPath control creates navigation functionality that you once might have either created your-
self or have seen elsewhere in Web pages on the Internet. The SiteMapPath control creates what some
refer to as breadcrumb navigation. This is a linear path defining where the end user is in the navigation
structure. The Reuters.com Web site, shown in Figure 14-1, uses this type of navigation. A black arrow
points out the breadcrumb navigation used on the page.

Figure 14-1

502

Chapter 14

17_576100 ch14.qxd 10/6/05 9:22 PM Page 502

The purpose of this type of navigation is to show end users where they are in relation to the rest of the site.
Traditionally, coding this kind of navigation has been tricky, to say the least; but now with the introduction
of the SiteMapPath server control, you should find coding for this type of navigation a breeze.

You should first create an application that has the Web.sitemap file created in Listing 14-1. From there,
create a WebForm called MarketsUS.aspx. This file is defined in the Web.sitemap file as being on the
lowest tier of files in the application.

The SiteMapPath control is so easy to work with that it doesn’t even require a datasource control to
hook it up to the Web.sitemap file where it infers all its information. All you do is drag and drop a
SiteMapPath control onto your MarketsUS.aspx page. In the end, you should have a page like the
one shown in Listing 14-2.

Listing 14-2: Using the Web.sitemap file with a SiteMapPath server control

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Using the SiteMapPath Server Control</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:SiteMapPath ID=”Sitemappath1” Runat=”server”>
</asp:SiteMapPath>

</form>
</body>
</html>

Not much to it, is there? It really is that easy. Run this page and you see the results shown in Figure 14-2.

This screen shot shows that you are on the U.S. Market Report page at MarketsUS.aspx. As an end
user, you can see that this page is part of the Markets section of the site; Markets, in turn, is part of
the Finance section of the site. With breadcrumb navigation, end users who understand the structure
of the site and their place in it can quickly select the links to navigate to any location in the site.

Figure 14-2

503

Site Navigation

17_576100 ch14.qxd 10/6/05 9:22 PM Page 503

If you hover your mouse over the Finance link, you see a tooltip appear after a couple of seconds, as
shown in Figure 14-3.

Figure 14-3

This tooltip, which reads The Latest Financial Information, comes from the description attribute of
the <siteMapNode> element in the Web.sitemap file.

<siteMapNode title=”Finance” description=”The Latest Financial Information”
url=”Finance.aspx”>

The SiteMapPath control works automatically requiring very little work on your part. You just add the basic
control to your page, and the control automatically creates the breadcrumb navigation you have just seen.
However, you can use the properties discussed in the following sections to modify the control’s appearance
and behavior.

The PathSeparator Property
One important style property for the SiteMapPath control is the PathSeparator property. By default,
the SiteMapPath control uses a greater than sign (>) to separate the link elements. You can change this by
reassigning a new value to the PathSeparator property. Listing 14-3 illustrates the use of this property.

Listing 14-3: Changing the PathSeparator value

<asp:SiteMapPath ID=”Sitemappath1” Runat=”server” PathSeparator=” | “>
</asp:SiteMapPath>

Or

<asp:SiteMapPath ID=”Sitemappath1” Runat=”server”>
<PathSeparatorTemplate> | </PathSeparatorTemplate>

</asp:SiteMapPath>

504

Chapter 14

17_576100 ch14.qxd 10/6/05 9:22 PM Page 504

The SiteMapPath control in this example uses the pipe character (|), which is found above the Enter key.
When it is rendered, you get the results shown in Figure 14-4.

Figure 14-4

As you can see, you can use either the PathSeparator property or the <PathSeparatorTemplate>
element within the SiteMapPath control.

With the use of the PathSeparator property or the <PathSeparatorTemplate> element, it is quite
easy to specify what you want to use to separate the links in the breadcrumb navigation, but you might
also want to give this pipe some visual style as well. You can add a <PathSeparatorStyle> node to
your SiteMapPath control. An example of this is shown in Listing 14-4.

Listing 14-4: Adding style to the PathSeparator property

<asp:SiteMapPath ID=”Sitemappath1” Runat=”server” PathSeparator=” | “>
<PathSeparatorStyle Font-Bold=”true” Font-Names=”Verdana” ForeColor=”#663333”
BackColor=”#cccc66”></PathSeparatorStyle>

</asp:SiteMapPath>

Okay, it may not be pretty (I am not much of a designer), but by using the <PathSeparatorStyle> element
with the SiteMapPath control, I am able to change the visual appearance of the separator elements. The
results are shown in Figure 14-5.

Figure 14-5

505

Site Navigation

17_576100 ch14.qxd 10/6/05 9:22 PM Page 505

Using these constructs, you can also add an image as the separator, as illustrated in Listing 14-5.

Listing 14-5: Using an image as the separator

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Using the SiteMapPath Server Control</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:SiteMapPath ID=”SiteMapPath1” Runat=”server”>

<PathSeparatorTemplate>
<asp:Image ID=”Image1” Runat=”server” ImageUrl=”divider.gif” />

</PathSeparatorTemplate>
</asp:SiteMapPath>

</form>
</body>
</html>

To utilize an image as the separator between the links, you use the <PathSeparatorTemplate> element
and place an Image control within it. In fact, you can place any type of control between the navigation
links that the SiteMapPath control produces.

The PathDirection Property
Another interesting property to use with the SiteMapPath control is PathDirection. This property
changes the direction of the links generated in the output. Only two settings are possible for this property:
RootToCurrent and CurrentToRoot.

The Root link is the first link in the display. This is usually the Home page. The Current link is the link for
the page currently being displayed. By default, this property is set to RootToCurrent. Changing the
example to CurrentToRoot produces the results shown in Figure 14-6.

Figure 14-6

506

Chapter 14

17_576100 ch14.qxd 10/6/05 9:23 PM Page 506

The ParentLevelsDisplayed Property
In some cases, your navigation may go quite deep. You can see on the site map, shown in Listing 14-1, that
you go three pages deep, which isn’t a big deal. Some of you, however, might be dealing with sites that go
quite a number of pages deeper. In these cases, it might be bit silly to use the SiteMapPath control. Doing so
would display a huge list of pages.

In a case like this, you can turn to the ParentLevelsDisplayed property that is part of the
SiteMapPath control. When set, this property displays pages only as deep as specified. Therefore, if
you are using the SiteMapPath control with the Web.sitemap, as shown in Listing 14-1, and you give
the ParentLevelsDisplayed property a value of 3, you don’t notice any change to your page. It
already displays the path three pages deep. If you change this value to 2, however, the SiteMapPath
control is constructed as follows:

<asp:SiteMapPath ID=”Sitemappath1” Runat=”server” ParentLevelsDisplayed=”2”>
</asp:SiteMapPath>

Notice the result of this change in Figure 14-7. The SiteMapPath control shows links only two pages deep
and doesn’t show the Home page link.

Figure 14-7

By default, no limit is set on the number of links shown, so the SiteMapPath control just generates the
specified number of links based on what is labeled in the site map file.

The ShowToolTips Property
By default, the SiteMapPath control generates tooltips for each link if a description property is used within
the Web.sitemap file. Remember, a tooltip is the text that appears onscreen when an end user hovers the
mouse over one of the links in the SiteMapPath control. I showed you this capability earlier in this chapter.

There may be times when you do not want your SiteMapPath control to show any tooltips for the links
that it generates. For these situations, you can actually turn off this capability in a couple of ways. The
first way is to omit any description attributes in the .sitemap file. If you remove these attributes from
the file, the SiteMapPath has nothing to display for the tooltips on the page.

507

Site Navigation

17_576100 ch14.qxd 10/6/05 9:23 PM Page 507

The other way to turn off the display of tooltips is to set the ShowToolTips property to False, as shown here:

<asp:SiteMapPath ID=”Sitemappath1” Runat=”server” ShowToolTips=”false”>
</asp:SiteMapPath>

This turns off the tooltips capability but still allows you to use the description property in the .sitemap
file. You may still want to use the description attribute because it allows you to keep track of what the
links in your file are used for. This is quite advantageous when you are dealing with hundreds or even
thousands of links in your application.

The SiteMapPath Control’s Child Elements
You already saw the use of the <PathSeparatorStyle> and the <PathSeparatorTemplate> child
elements for the SiteMapPath control, but additional child elements exist. The following table covers
each of the available child elements.

Child Element Description

CurrentNodeStyle Applies styles to the link in the SiteMapPath
navigation for the currently displayed page.

CurrentNodeTemplate Applies a template construction to the link in the
SiteMapPath navigation for the currently
displayed page.

NodeStyle Applies styles to all links in the SiteMapPath naviga-
tion. The settings applied in the CurrentNodeStyle
or RootNodeStyle elements supersede any settings
placed here.

NodeStyleTemplate Applies a template construction to all links in the
SiteMapPath navigation. The settings applied in
the CurrentNodeStyle or RootNodeStyle
elements supersede any settings placed here.

PathSeparatorStyle Applies styles to the link dividers in the SiteMapPath
navigation.

PathSeparatorTemplate Applies a template construction to the link dividers
in the SiteMapPath navigation.

RootNodeStyle Applies styles to the first link (the root link) in the
SiteMapPath navigation.

RootNodeTemplate Applies a template construction to the first link in
the SiteMapPath navigation.

508

Chapter 14

17_576100 ch14.qxd 10/6/05 9:23 PM Page 508

TreeView Server Control
The TreeView server control is another new control that has been introduced with ASP.NET 2.0, and I have
to say that I really like this control. The TreeView server control is a rich server control for rendering a
of data, so it is quite ideal for displaying what is contained in your .sitemap file. Figure 14-8 shows you
how it displays the contents of the site map (again from Listing 14-1) that you have been working with thus
far in this chapter. This figure first shows a completely collapsed TreeView control at the top of the screen;
the second TreeView control has been completely expanded.

Figure 14-8

This control can preload the nodes to be displayed, even if they are hidden, at first, by the collapsible
framework of the control. If the control renders the treeview output using a client-side script, the control
doesn’t need to make a call back to the server if someone expands one of the nodes in the control. Just
the fact that it won’t make a postback and redraw the page gives this control a snappiness that will cause
your end users to really enjoy using it. Of course, this capability is there only if the browser accepts the
client-side code that the TreeView control can generate. If not, the control knows this and renders only
what is appropriate. It performs postbacks for those clients who cannot work with this client-side script.

The TreeView control is quite customizable; but first, take a look at how to create a default version of the
control using the .sitemap file from Listing 14-1. For this example, continue to use the MarketsUS.aspx
page you created earlier.

The first step is to create a SiteMapDataSource control on the page. When working with the TreeView con-
trol that displays the contents of your .sitemap file, you must apply one of these datasource controls. The
TreeView control doesn’t just bind to your site map file automatically as the SiteMapPath control does.

509

Site Navigation

17_576100 ch14.qxd 10/6/05 9:23 PM Page 509

After a basic SiteMapDataSource control is in place, position a TreeView control on the page and set the
DataSourceId property to SiteMapDataSource1. When you have finished, your code should look like
Listing 14-6.

Listing 14-6: A basic TreeView control

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Using the TreeView Server Control</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:SiteMapPath ID=”SiteMapPath1” Runat=”server”>
</asp:SiteMapPath>

<p>
<asp:TreeView ID=”TreeView1” Runat=”server”
DataSourceID=”SiteMapDataSource1”>

</asp:TreeView>
<asp:SiteMapDataSource ID=”SiteMapDataSource1” Runat=”server” /></p>

</form>
</body>
</html>

After the page is run and the TreeView control is expanded, the results are displayed as shown in Figure 14-9.

Figure 14-9

This is a very basic TreeView control. The great thing about this control is that it allows for a high degree
of customization and even gives you the capability to use some predefined styles that come prepackaged
with ASP.NET 2.0.

510

Chapter 14

17_576100 ch14.qxd 10/6/05 9:23 PM Page 510

Identifying the TreeView Control’s Built-In Styles
As stated, the TreeView control does come with a number of prebuilt styles right out of the box. The best
way to utilize these predefined styles is to do so from the Design view of your page. By right-clicking on
the TreeView control on your page from the Design view in Visual Studio 2005, you find the Auto
Format option. Click this option and a number of styles become available to you. Selecting one of these
styles changes the code of your TreeView control to adapt to that chosen style. For instance, if you
choose MSDN from the list of options, the simple one-line TreeView control you created is converted to
what is shown in Listing 14-7.

Listing 14-7: A TreeView control with the MSDN style applied to it

<asp:TreeView ID=”TreeView1” Runat=”server” DataSourceID=”SiteMapDataSource1”
ImageSet=”Msdn” NodeIndent=”10”>

<SelectedNodeStyle BackColor=”White” VerticalPadding=”1” BorderColor=”#888888”
BorderStyle=”Solid” BorderWidth=”1px”
HorizontalPadding=”3”></SelectedNodeStyle>

<NodeStyle VerticalPadding=”2” Font-Names=”Verdana” Font-Size=”8pt”
NodeSpacing=”1” HorizontalPadding=”5” ForeColor=”Black”></NodeStyle>

<HoverNodeStyle BackColor=”#CCCCCC” BorderColor=”#888888” BorderStyle=”Solid”
BorderWidth=”1px” Font-Underline=”True”></HoverNodeStyle>

</asp:TreeView>

As you can see, if you use these built-in styles, it isn’t too difficult to completely change the look and feel
of the TreeView control. When this bit of code is run, you get the results shown in Figure 14-10.

Figure 14-10

511

Site Navigation

17_576100 ch14.qxd 10/6/05 9:23 PM Page 511

Examining the Parts of the TreeView Control
To master working with the TreeView control, you must understand the terminology used for each part
of the hierarchical tree that is created by the control.

First, every element or entry in the TreeView control is called a node. The uppermost node in the hierarchy
of nodes is the root node. It is possible for a TreeView control to have multiple root nodes. Any node,
including the root node, is also considered a parent node if it has any nodes that are directly under it in the
hierarchy of nodes. The nodes directly under this parent node are referred to as child nodes. Each parent node
can have one or more child nodes. Finally, if a node contains no child nodes, it is referred to as a leaf node.

The following is based on the site map shown earlier and details the use of this terminology:

Home – Root node, parent node
News – Parent node, child node

U.S. – Child node, leaf node
World – Child node, leaf node
Technology – Child node, leaf node
Sports – Child node, leaf node

Finance – Parent node, child node
Quotes - Child node, leaf node
Markets – Parent node, child node

U.S. Market Report – Child node, leaf node
NYSE – Child node, leaf node

Funds – Child node, leaf node
Weather – Child node, leaf node

From this listing, you can see what each node is and how it is referred in the hierarchy of nodes. For
instance, the U.S. Market Report node is a leaf node — meaning that it doesn’t have any child nodes
associated with it. However, it is also a child node to the Markets node, which is a parent node to the U.S.
Market Report node. If you are working with the Markets node directly, it is also a child node to the
Finance node, which is its parent node. The main point to take away from all this is that each node in the
site map hierarchy has a relationship to the other nodes in the hierarchy. You must understand these rela-
tionships because you can programmatically work with these nodes (as will be demonstrated later in this
chapter) and the methods used for working with them include terms like RootNode, CurrentNode and
ParentNode.

Binding the TreeView Control to an XML File
You are not limited to working with just a .sitemap file in order to populate the nodes of your TreeView
controls. You have many ways to get this done. One cool way is to use the XmlDataSource control (instead
of the SiteMapDataSource control) to populate your TreeView controls from your XML files.

For an example of this, create a hierarchical list of items in an XML file called Hardware.xml. An example
of this is shown in Listing 14-8.

Listing 14-8: Hardware.xml

<?xml version=”1.0” encoding=”utf-8”?>
<Hardware>

<Item Category=”Motherboards”>
<Option Choice=”Asus” />

512

Chapter 14

17_576100 ch14.qxd 10/6/05 9:23 PM Page 512

<Option Choice=”Abit” />
</Item>
<Item Category=”Memory”>

<Option Choice=”128mb” />
<Option Choice=”256mb” />
<Option Choice=”512mb” />

</Item>
<Item Category=”HardDrives”>

<Option Choice=”40GB” />
<Option Choice=”80GB” />
<Option Choice=”100GB” />

</Item>
<Item Category=”Drives”>

<Option Choice=”CD” />
<Option Choice=”DVD” />
<Option Choice=”DVD Burner” />

</Item>
</Hardware>

As you can see, this list is not meant to be used for site navigation purposes, but instead for allowing the end
user to make a selection from a hierarchical list of options. This XML file is divided into four categories of
available options: Motherboards, Memory, HardDrives, and Drives. To bind your TreeView control to this
XML file, use an XmlDataSource control that specifies the location of the XML file you are going to use. Then
within the TreeView control itself, use the <asp:TreeNodeBinding> element to specify which elements to
bind in the XML file to populate the nodes of the TreeView control. This is illustrated in Listing 14-9.

Listing 14-9: Binding a TreeView control to the Hardware.xml file

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Latest Hardware</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:TreeView ID=”Treeview1” Runat=”server” DataSourceID=”Xmldatasource1”>

<DataBindings>
<asp:TreeNodeBinding DataMember=”Hardware”
Text=”Computer Hardware” />

<asp:TreeNodeBinding DataMember=”Item” TextField=”Category” />
<asp:TreeNodeBinding DataMember=”Option” TextField=”Choice” />

</DataBindings>
</asp:TreeView>
<asp:XmlDataSource ID=”Xmldatasource1” Runat=”server”
DataFile=”Hardware.xml”>

</asp:XmlDataSource>
</form>

</body>
</html>

513

Site Navigation

17_576100 ch14.qxd 10/6/05 9:23 PM Page 513

The first item to look at is the <asp:XmlDataSource> control. It is just as simple as the previous
<asp:SiteMapDataSource> control, but it points at the Hardware.xml file using the DataFile property.

The next step is to create a TreeView control that binds to this particular XML file. You can bind a default
TreeView control directly to the XmlDataSource control like this:

<asp:TreeView ID=”TreeView1” Runat=”server” DataSourceId=”XmlDataSource1” />

Doing this, you get the incorrect result shown in Figure 14-11.

Figure 14-11

As you can see, the TreeView control binds just fine to the Hardware.xml file, but looking at the nodes
within the TreeView control, you can see that it is simply displaying the names of the actual XML ele-
ments from the file itself. Because this isn’t what you want, you specify how to bind to the XML file with
the use of the <DataBindings> element within the TreeView control.

The <DataBindings> element encapsulates one or more TreeNodeBinding objects. Two of the more
important available properties of a TreeNodeBinding object are the DataMember and TextField prop-
erties. The DataMember property points to the name of the XML element that the TreeView control
should look for. The TextField property specifies the XML attribute that the TreeView should look for
in that particular XML element. If you do this correctly, using the <DataBindings> construct, you get
the result shown in Figure 14-12.

You can also see from Listing 14-9 that you can override the text value of the root node from the XML
file, <Hardware>, and have it appear as Computer Hardware in the TreeView control:

<asp:TreeNodeBinding DataMember=”Hardware” Text=”Computer Hardware” />

Selecting Multiple Options in a TreeView
As I stated earlier, the TreeView control is not meant to be used primarily for navigation purposes. You can
use it for all sorts of things. In many cases, you can present a hierarchical list from which you want the end
user to select one or more items.

514

Chapter 14

17_576100 ch14.qxd 10/6/05 9:23 PM Page 514

One great built-in feature of the TreeView control is the capability to put check boxes next to nodes within
the hierarchical items in the list. These boxes allow end users to make multiple selections. The TreeView
control contains a property called ShowCheckBoxes that can be used create check boxes next to many
different types of nodes within a list of items.

Figure 14-12

The available values for the ShowCheckBoxes property are discussed in the following table.

Value Description

All Applies check boxes to each and every node within the
TreeView control.

Leaf Applies check boxes to only the nodes that have no
additional child elements.

None Applies no check boxes to any node within the TreeView
control.

Parent Applies check boxes to only the nodes considered parent
nodes within the TreeView control. A parent node has at
least one child node associated with it.

Root Applies a check box to any root node contained within
the TreeView control.

When working with the ShowCheckBoxes property, you can set it declaratively in the control itself:

<asp:TreeView ID=”Treeview1” Runat=”server” Font-Underline=”false”
DataSourceID=”Xmldatasource1” ShowCheckBoxes=”Leaf”>

...
</asp:TreeViewTreeView>

515

Site Navigation

17_576100 ch14.qxd 10/6/05 9:23 PM Page 515

Or you can set it programmatically by using the following code:

VB
TreeView1.ShowCheckBoxes = TreeNodeTypes.Leaf

C#
TreeView1.ShowCheckBoxes = TreeNodeTypes.Leaf;

For an example of using check boxes with the TreeView control, let’s continue to expand on the computer
hardware example from Listing 14-9. Create a hierarchical list that enables people to select multiple items
from the list in order to receive additional information about them. Listing 14-10 shows an example of this.

Listing 14-10: Applying check boxes next to the leaf nodes within the hierarchical list
of nodes

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Protected Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)

If TreeView1.CheckedNodes.Count > 0 Then
Label1.Text = “We are sending you information on:<p>”

For Each node As TreeNode In TreeView1.CheckedNodes
Label1.Text += node.Text & “ “ & node.Parent.Text & “
”

Next
Else

Label1.Text = “You didn’t select anything. Sorry!”
End If

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Latest Hardware</title>
</head>
<body>

<form runat=”server”>
Please select the items you are interested in:

<p>
<asp:TreeView ID=”TreeView1” Runat=”server” Font-Underline=”False”
DataSourceID=”XmlDataSource1” ShowCheckBoxes=”Leaf”>

<DataBindings>
<asp:TreeNodeBinding DataMember=”Hardware”
Text=”Computer Hardware” />

<asp:TreeNodeBinding DataMember=”Item” TextField=”Category” />
<asp:TreeNodeBinding DataMember=”Option” TextField=”Choice” />

</DataBindings>
</asp:TreeView>
<p>
<asp:Button ID=”Button1” Runat=”server” Text=”Submit Choices”
OnClick=”Button1_Click” />

</p>

516

Chapter 14

17_576100 ch14.qxd 10/6/05 9:23 PM Page 516

<asp:XmlDataSource ID=”XmlDataSource1” Runat=”server”
DataFile=”Hardware.xml”>

</asp:XmlDataSource>
</p>
<asp:Label ID=”Label1” Runat=”Server” />

</form>
</body>
</html>

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
protected void Button1_Click(object sender, System.EventArgs e)
{

if (TreeView1.CheckedNodes.Count > 0)
{

Label1.Text = “We are sending you information on:<p>”;
foreach (TreeNode node in TreeView1.CheckedNodes)
{

Label1.Text += node.Text + “ “ + node.Parent.Text + “
”;
}

}
else
{

Label1.Text = “You didn’t select anything. Sorry!”;
}

}
</script>

In this example, you first set the ShowTextBoxes property to Leaf, meaning that you are interested in having
check boxes appear only next to items in the TreeView control that do not contain any child nodes. The items
with check boxes next to them should be the last items that can be expanded in the hierarchical list.

After this property is set, you then work with the items that are selected by the end user in the
Button1_Click event. The first thing you should check is whether any selection at all was made:

If TreeView1.CheckedNodes.Count > 0 Then
...

End If

In this case, the number of checked nodes on the postback needs to be greater than zero, meaning that at least
one was selected. If so, you can execute the code within the If statement. The If statement then proceeds to
populate the Label control that is on the page. To populate the Label control with data from the selected
nodes, you use a For Each statement, as shown in the following:

For Each node As TreeNode In TreeView1.CheckedNodes
...

Next

This creates an instance of a TreeNode object and checks each TreeNode object within the TreeView1
collection of checked nodes.

517

Site Navigation

17_576100 ch14.qxd 10/6/05 9:23 PM Page 517

For each node that is checked, you grab the nodes Text value and the Text value of this node’s parent node
to further populate the Label control:

Label1.Text += node.Text & “ “ & node.Parent.Text & “
”

In the end, you get a page that produces the results shown in Figure 14-13.

Figure 14-13

Specifying Custom Icons in the TreeView Control
The TreeView control allows for a high degree of customization. You saw earlier in the chapter that you were
easily able to customize the look-and-feel of the TreeView control by specifying one of the built-in styles.
Applying one of these styles dramatically changes the appearance of the control. One of the most noticeable
changes concerns the icons used for the nodes within the TreeView control. Although it is not as easy as just

518

Chapter 14

17_576100 ch14.qxd 10/6/05 9:23 PM Page 518

selecting one of the styles built into the TreeView control, you can apply your own icons to be used for the
nodes within the hierarchical list of nodes.

The TreeView control contains the properties discussed in the following table. These properties enable you
to specify your own images to use for the nodes of the control.

Property Description

CollapseImageUrl Applies a custom image next to nodes that have
been expanded to show any of their child nodes
and have the capability of being collapsed.

ExpandImageUrl Applies a custom image next to nodes that have
the capability of being expanded to display their
child nodes.

LeafImageUrl Applies a custom image next to a node that has no
child nodes and is last in the hierarchical chain of
nodes.

NoExpandImageUrl Applies a custom image to nodes that, for
programmatic reasons, cannot be expanded or to
nodes that are leaf nodes. This is primarily used
for spacing purposes to align leaf nodes with their
parent nodes.

ParentNodeImageUrl Applies a custom image only to the parent nodes
within the TreeView control.

RootNodeImageUrl Applies a custom image next to only the root nodes
within the TreeView control.

Listing 14-11 shows an example of these properties in use.

Listing 14-11: Applying custom images to the TreeView control

<asp:TreeViewTreeView ID=”TreeView1” Runat=”server” Font-Underline=”False”
DataSourceId=”XmlDataSource1”
CollapseImageUrl=”Images/CollapseImage.gif”
ExpandImageUrl=”Images/ExpandImage.gif”
LeafImageUrl=”Images/LeafImage.gif”>

<DataBindings>
<asp:TreeNodeBinding DataMember=”Hardware” Text=”Computer Hardware” />
<asp:TreeNodeBinding DataMember=”Item” TextField=”Category” />
<asp:TreeNodeBinding DataMember=”Option” TextField=”Choice” />

</DataBindings>
</asp:TreeView>

Specifying these three images to precede the nodes in your control overrides the default values of using a
plus (+) sign and a minus (–) sign for the expandable and collapsible nodes. It also overrides simply using
an image for any leaf nodes when by default nothing is used. Using the code from Listing 14-11, you get
something similar to the results illustrated in Figure 14-14 (depending on the images you use, of course).

519

Site Navigation

17_576100 ch14.qxd 10/6/05 9:23 PM Page 519

Figure 14-14

Specifying Lines Used to Connect Nodes
Because the TreeView control shows a hierarchical list of items to the end user, you sometimes want to
show the relationship between these hierarchical items more explicitly than it is shown by default with
the TreeView control. One possibility is to show line connections between parent and child nodes within
the display. Simply set the ShowLines property of the TreeView control to True (by default, this prop-
erty is set to False):

<asp:TreeViewTreeView ID=”TreeView1” Runat=”server” Font-Underline=”False”
DataSourceId=”XmlDataSource1” ShowCheckBoxes=”Leaf” ShowLines=”True”>

...
</asp:TreeViewTreeView>

This code gives the result shown in Figure 14-15.

If the ShowLines property is set to True, you can also define your own lines and images within the
TreeView control. This is quite easy to do because Visual Studio 2005 provides you with an ASP.NET
TreeView Line Image Generator tool. This tool enables you to visually design how you want the lines
and corresponding expanding and collapsing images to appear. After you have it set up as you want,
the tool then creates all the necessary files for any of your TreeView controls to use.

To get at the tool, move to the Design view of your file and click the smart tag for the TreeView control
that is on your page. Here you find the option Customize Line Images. Click this and you are presented
with the ASP.NET TreeView Line Generator dialog (shown in Figure 14-16).

520

Chapter 14

17_576100 ch14.qxd 10/6/05 9:23 PM Page 520

Figure 14-15

Figure 14-16

521

Site Navigation

17_576100 ch14.qxd 10/6/05 9:23 PM Page 521

From within this dialog, you can select the images used for the nodes that require an Expand, Collapse,
or NoCollapse icon. You can also specify the color and style of the lines that connect the nodes. As you
create your styles, a sample TreeView control output is displayed for you directly in the dialog based on
how your styles are to be applied. The final step is to choose the output of the files that this dialog will
create. When you have completed this step, click the OK button. This generates a long list of new files to
the folder that you specified in the dialog. By default, the ASP.NET TreeView Line Image Generator
wants you to name the output folder TreeLineImages, but feel free to name it as you wish. If the folder
doesn’t exist in the project, you are prompted to allow Visual Studio to create the folder for you. After
this is in place, the TreeView control can use your new images and styles by setting the
LineImagesFolderUrl property as shown here:

<asp:TreeViewTreeView ID=”TreeView1” Runat=”server” ShowLines=”True”
DataSourceId=”SiteMapDataSource1” LineImagesFolderUrl=”TreeViewLineImages”>

The important properties are shown in bold. The ShowLines property must be set to True. After it is set,
it uses the default settings displayed earlier, unless you have specified a location where it can retrieve
custom images and styles using the LineImagesFolderUrl property. As you can see, this simply points
to the new folder, TreeViewLineImages, which contains all the new images and styles you created.
Take a look in the folder. It is interesting to see what is output by the tool.

Working with the TreeView Control Programmatically
So far with the TreeView control, you have learned how to work with the control declaratively. The great
thing about ASP.NET is that you are not simply required to work with its components declaratively, but
you can also manipulate these controls programmatically.

The TreeView control has an associated TreeView class that enables you to completely manage the
TreeView control and how it functions from within your code. The next section takes a look at how to
use some of the more common ways to control the TreeView programmatically.

Expanding and Collapsing Nodes Programmatically
One thing you can do with your TreeView control is to expand or collapse the nodes within the hierar-
chy programmatically. You can accomplish this by using either the ExpandAll or CollapseAll meth-
ods from the TreeView class. Listing 14-12 shows you one of the earlier TreeView controls that you used
in Listing 14-6, but with a couple of buttons above it that you can now use to initiate the expanding and
collapsing of the nodes.

Listing 14-12: Expanding and collapsing the nodes of the TreeView control
programmatically

VB
<%@ Page Language=”VB” %>

<script runat=”server” language=”vb”>
Protected Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)

TreeView1.ExpandAll()
End Sub

Protected Sub Button2_Click(ByVal sender As Object, ByVal e As System.EventArgs)
TreeView1.CollapseAll()

522

Chapter 14

17_576100 ch14.qxd 10/6/05 9:23 PM Page 522

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>TreeView Control</title>
</head>
<body>

<form id=”Form1” runat=”server”>
<p>

<asp:Button ID=”Button1” Runat=”server” Text=”Expand Nodes”
OnClick=”Button1_Click” />

<asp:Button ID=”Button2” Runat=”server” Text=”Collapse Nodes”
OnClick=”Button2_Click” />

<asp:TreeView ID=”TreeView1” Runat=”server”
DataSourceId=”SiteMapDataSource1”>

</asp:TreeView>
<asp:SiteMapDataSource ID=”SiteMapDataSource1” Runat=”server” /></p>

</form>
</body>
</html>

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
protected void Button1_Click(object sender, System.EventArgs e)
{

TreeView1.ExpandAll();
}

protected void Button2_Click(object sender, System.EventArgs e)
{

TreeView1.CollapseAll();
}

</script>

Running this page gives you two buttons above your TreeView control. Clicking the first button invokes
the ExpandAll method and completely expands the entire list of nodes. Clicking the second button
invokes the CollapseAll method and completely collapses the list of nodes (see Figure 14-17).

The example shown in Listing 14-12 is nice, but it expands and collapses the nodes only on end user
actions (when the end user clicks the button). It would be even nicer if you could initiate this action
programmatically.

You might want to simply place the TreeView1.ExpandAll() command within the Page_Load event,
but if you try this, you see that it doesn’t work. Instead, you use the OnDataBound attribute within the
TreeView control:

<asp:TreeView ID=”TreeView1” Runat=”server”
DataSourceId=”SiteMapDataSource1” OnDataBound=”TreeView1_DataBound”>

</asp:TreeView>

523

Site Navigation

17_576100 ch14.qxd 10/6/05 9:23 PM Page 523

Figure 14-17

The value of this attribute points to a method in your code, as shown here:

VB
Protected Sub TreeView1_DataBound(ByVal sender As Object, _

ByVal e As System.EventArgs)
TreeView1.ExpandAll()

End Sub

C#
protected void TreeView1_DataBound(object sender, System.EventArgs e)
{

TreeView1.ExpandAll();
}

Now when you run the page, notice that the TreeView control is completely expanded when the page is
first loaded in the browser.

You can also expand specific nodes within the tree instead of just expanding the entire list. For this example,
use the TreeView1_DataBound method you just created. Using the site map from Listing 14-1, change the
TreeView1_DataBound method so that it appears as shown in Listing 14-13.

524

Chapter 14

17_576100 ch14.qxd 10/6/05 9:23 PM Page 524

Listing 14-13: Expanding specific nodes programmatically

VB
Protected Sub TreeView1_DataBound(ByVal sender As Object, _

ByVal e As System.EventArgs)
TreeView1.FindNode(“Home”).Expand()
TreeView1.FindNode(“Home\Finance”).Expand()
TreeView1.FindNode(“Home\Finance\Markets”).Expand()

End Sub

C#
protected void TreeView1_DataBound(object sender, System.EventArgs e)
{

TreeView1.FindNode(“Home”).Expand();
TreeView1.FindNode(“Home\\Finance”).Expand();
TreeView1.FindNode(“Home\\Finance\\Markets”).Expand();

}

In this case, you use the FindNode method and expand the node that is found. The FindNode method
takes a String value, which is the node and the path of the node that you want to reference. For instance,
TreeView1.FindNode(“Home\Finance”).Expand() expands the Finance node. To find the node, it is
important to specify the entire path from the root node to the node you want to work with (in this case, the
Finance node). You separate the nodes within the site map path structure with a backslash between each
of the nodes in the site map path (two backslashes if you are working in C#).

Note that you had to expand each of the nodes individually until you got to the Finance node. If you simply
used TreeView1.FindNode(“Home\Finance\Markets”).Expand() in the TreeView1_DataBound
method, the Finance node would indeed be expanded, but the parent nodes above it (the Finance and Home
nodes) would not have been expanded and you wouldn’t see the expanded Markets node when invoking
the page. (Try it; it’s interesting.)

Instead of using the Expand method, you can just as easily set the Expanded property to True, as shown in
Listing 14-14.

Listing 14-14: Expanding nodes programmatically using the Expanded property

VB
Protected Sub TreeView1_DataBound(ByVal sender As Object, _

ByVal e As System.EventArgs)
TreeView1.FindNode(“Home”).Expanded = True
TreeView1.FindNode(“Home/Finance”).Expanded = True
TreeView1.FindNode(“Home/Finance/Markets”).Expanded = True

End Sub

C#
protected void TreeView1_DataBound(object sender, System.EventArgs e)
{

TreeView1.FindNode(“Home”).Expanded = true;
TreeView1.FindNode(“Home/Finance”).Expanded = true;
TreeView1.FindNode(“Home/Finance/Markets”).Expanded = true;

}

525

Site Navigation

17_576100 ch14.qxd 10/6/05 9:23 PM Page 525

Although you focus on the Expand method and the Expanded property here, you can just as easily
programmatically collapse nodes using the Collapse method. No Collapsed property really exists.
Instead, you simply set the Expanded property to False.

Adding Nodes
Another interesting thing you can do with the TreeView control is to add nodes to the overall hierarchy
programmatically. The TreeView control is made up of a collection of TreeNode objects. So as you see in
previous examples, the Finance node is actually a TreeNode object that you can work with program-
matically. It includes the capability to add other TreeNode objects.

A TreeNode object typically stores a Text and Value property. The Text property is what is displayed
in the TreeView control for the end user. The Value property is an additional data item that you can use
to associate with this particular TreeNode object. Another property that you can use (if your TreeView
control is a list of navigational links) is the NavigateUrl property. Listing 14-15 demonstrates how to
add nodes programmatically to the same site map from Listing 14-1 that you have been using.

Listing 14-15: Adding nodes programmatically to the TreeView control

VB
<%@ Page Language=”VB” %>
<script runat=”server” language=”vb”>

Protected Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)
TreeView1.ExpandAll()

End Sub

Protected Sub Button2_Click(ByVal sender As Object, ByVal e As System.EventArgs)
TreeView1.CollapseAll()

End Sub

Protected Sub Button3_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Dim myNode As New TreeNode
myNode.Text = TextBox1.Text
myNode.NavigateUrl = TextBox2.Text
TreeView1.FindNode(“Home/Finance/Markets”).ChildNodes.Add(myNode)

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>TreeView Control</title>
</head>
<body>

<form id=”Form1” runat=”server”>
<p>

<asp:Button ID=”Button1” Runat=”server” Text=”Expand Nodes”
OnClick=”Button1_Click” />

<asp:Button ID=”Button2” Runat=”server” Text=”Collapse Nodes”
OnClick=”Button2_Click” /></p>

<p>
Text of new node:
<asp:TextBox ID=”TextBox1” runat=”server”>
</asp:TextBox>

</p>

526

Chapter 14

17_576100 ch14.qxd 10/6/05 9:23 PM Page 526

<p>
Desination URL of new node:
<asp:TextBox ID=”TextBox2” Runat=”server”>
</asp:TextBox>

<asp:Button ID=”Button3” Runat=”server” Text=”Add New Node”
OnClick=”Button3_Click” />

</p>
<p>
<asp:TreeView ID=”TreeView1” runat=”server”
DataSourceId=”SiteMapDataSource1”>

</asp:TreeView></p>
<p>
<asp:SiteMapDataSource ID=”SiteMapDataSource1” Runat=”server” /></p>

</form>
</body>
</html>

C#
protected void Button3_Click(object sender, System.EventArgs e)
{

TreeNode myNode = new TreeNode();
myNode.Text = TextBox1.Text;
myNode.NavigateUrl = TextBox2.Text;
TreeView1.FindNode(“Home/Finance/Markets”).ChildNodes.Add(myNode);

}

This page contains two text boxes and a new Button control. The first text box is used to populate the Text
property of the new node that is created. The second text box is used to populate the NavigateUrl property
of the new node.

If you run the page, you can expand the entire hierarchy by clicking the Expand Nodes button. Then you
can add additional child nodes to the Markets node. To add a new node programmatically, use the
FindNode method as you did before to find the Markets node. When you find it, you can add additional
child nodes by using the ChildNodes.Add method and pass in a TreeNode object instance. Submitting
NASDAQ in the first text box and Nasdaq.aspx in the second text box changes your TreeView control as
illustrated in Figure 14-18.

After it is added, the node stays added even after the hierarchy tree is collapsed and re-opened. You can also
add as many child nodes as you want to the Markets node. Note that, although you are changing nodes
programmatically, this in no way alters the contents of the data source (the XML file, or the .sitemap file).
These sources remain unchanged throughout the entire process.

Menu Server Control
One of the cooler navigation controls also introduced with ASP.NET 2.0 is the new Menu server control.
This control is ideal for allowing the end user to navigate a larger hierarchy of options while utilizing very
little browser real estate in the process. Figure 14-19 shows you what the menu control looks like when it
is either completely collapsed or completely extended down one of the branches of the hierarchy.

527

Site Navigation

17_576100 ch14.qxd 10/6/05 9:23 PM Page 527

Figure 14-18

Figure 14-19

528

Chapter 14

17_576100 ch14.qxd 10/6/05 9:23 PM Page 528

From here, you can see that the first Menu control displayed simply shows the Home link with a small
arrow to the right of the display. The arrow means that more options are available that relate to this up-
most link in the hierarchy. The second Menu control displayed shows what the default control looks like
when the end user works down one of the branches provided by the site map.

The Menu control is an ideal control to use when you have lots of options — whether these options are
selections the end user can make or navigation points provided by the application in which they are
working. The Menu control can provide a multitude of options and consumes little space in the process.

Using the Menu control in your ASP.NET applications is rather simple. The Menu control works with a
SiteMapDataSource control. You can drag and drop the SiteMapDataSource control and the Menu control
onto the Visual Studio 2005 design surface and connect the two by using the Menu control’s DataSourceId
property. Alternatively, you can create and connect them directly in code. Listing 14-16 shows an example of
the Menu control in its simplest form.

Listing 14-16: A simple use of the Menu control

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Menu Server Control</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:SiteMapDataSource ID=”SiteMapDataSource1” Runat=”server” />
<asp:Menu ID=”Menu1” Runat=”server” DataSourceID=”SiteMapDataSource1”>
</asp:Menu>

</form>
</body>
</html>

From this example, you can see that I’m using a SiteMapDataSource control that automatically works
with the application’s Web.sitemap file. The only other item included is the Menu control, which uses
the typical ID and Runat attributes and the DataSourceID attribute to connect it with what is retrieved
from the SiteMapDataSource control.

Although the default Menu control is pretty simple, you can highly customize how this control looks and
works by redefining the properties of the control. The following sections take a look at some examples of
how you can modify the appearance and change the behavior of this control.

Applying Different Styles to the Menu Control
By default, the Menu control is pretty plain. If you want to maintain this appearance, you can use what
is provided or simply change the font sizes and styles to make it fit in with your site. You actually have
quite a number of ways in which you can modify this control so that it appears unique and fits in with
the rest of your site. You can either customize this control’s appearance yourself, or you can use one of
the predefined styles that come with the control.

529

Site Navigation

17_576100 ch14.qxd 10/6/05 9:23 PM Page 529

Using a Predefined Style
Visual Studio 2005 includes some predefined styles that you can use with the Menu control to quickly
apply a look-and-feel to the displayed menu of items. Some of the provided styles include Classic and
Professional and more. To apply one of these predefined styles, you work with the Menu control
from the Design view of your page. Within the Design view, highlight the Menu control and expand the
control’s smart tag. From here, you see a list of options for working with this control. To change the look-
and-feel of the control, click the Auto Format link and select one of the styles.

Performing this operation changes the code of your control by applying a set of style properties. For
example, if you select the Classic option, you get the results shown in Listing 14-17.

Listing 14-17: Code changes when a style is applied to the Menu control

<asp:Menu ID=”Menu1” Runat=”server” DataSourceID=”SiteMapDataSource1”
BackColor=”#B5C7DE” ForeColor=”#284E98”
Font-Names=”Verdana” Font-Size=”0.8em” StaticSubMenuIndent=”10px”
DynamicHorizontalOffset=”2”>

<StaticSelectedStyle BackColor=”#507CD1”></StaticSelectedStyle>
<StaticMenuItemStyle HorizontalPadding=”5”
VerticalPadding=”2”></StaticMenuItemStyle>

<DynamicMenuStyle BackColor=”#B5C7DE”></DynamicMenuStyle>
<DynamicSelectedStyle BackColor=”#507CD1”></DynamicSelectedStyle>
<DynamicMenuItemStyle HorizontalPadding=”5”
VerticalPadding=”2”></DynamicMenuItemStyle>

<DynamicHoverStyle ForeColor=”White” Font-Bold=”True”
BackColor=”#284E98”></DynamicHoverStyle>

<StaticHoverStyle ForeColor=”White” Font-Bold=”True”
BackColor=”#284E98”></StaticHoverStyle>

</asp:Menu>

You can see a lot of added styles that change the menu items that appear in the control. Figure 14-20 shows
how this style selection appears in the browser.

Figure 14-20

530

Chapter 14

17_576100 ch14.qxd 10/6/05 9:23 PM Page 530

Changing the Style for Static Items
The Menu control considers items in the hierarchy to be either static or dynamic. Static items from this
example would be the Home link that appears when the page is generated. Dynamic links are the items
that appear dynamically when the user hovers the mouse over the Home link in the menu. It is possible
to change the styles for both these types of nodes in the menu.

To apply a specific style to the static links that appear, you must add a static style element to the Menu
control. The Menu control includes the following static style elements:

❑ <StaticHoverStyle>

❑ <StaticMenuItemStyle>

❑ <StaticMenuStyle>

❑ <StaticSelectedStyle>

❑ <StaticTemplate>

The important options from this list include the <StaticHoverStyle> and the <StaticMenuItemStyle>
elements. The <StaticHoverStyle> is what you use to define the style of the static item in the menu
when the end user hovers the mouse over the option. The <StaticMenuItemStyle> is what you use for
the style of the static item when the end user is not hovering the mouse over the option.

Listing 14-18 illustrates adding a style that is applied when the end user hovers the mouse over static items.

Listing 14-18: Adding a hover style to static items in the menu control

<asp:Menu ID=”Menu1” Runat=”server” DataSourceID=”SiteMapDataSource1”>
<StaticHoverStyle BackColor=”DarkGray” BorderColor=”Black” BorderStyle=”Solid”
BorderWidth=”1”></StaticHoverStyle>

</asp:Menu>

This little example adds a background color and border to the static items in the menu when the end
user hovers the mouse over the item. The result is shown in Figure 14-21.

Figure 14-21

531

Site Navigation

17_576100 ch14.qxd 10/6/05 9:23 PM Page 531

Adding Styles to Dynamic Items
Adding styles to the dynamic items of the menu control is just as easy as adding them to static items. The
Menu control has a number of different elements for modifying the appearance of dynamic items, including
the following:

❑ <DynamicHoverStyle>

❑ <DynamicMenuItemStyle>

❑ <DynamicMenuStyle>

❑ <DynamicSelectedStyle>

❑ <DynamicTemplate>

These elements change menu items the same way as the static versions of these elements, but they change
only the items that dynamically pop-out from the static items. Listing 14-19 shows an example of applying
the hover style to dynamic items.

Listing 14-19: Adding a hover style to dynamic items in the menu control

<asp:Menu ID=”Menu1” Runat=”server” DataSourceID=”Sitemapdatasource1”>
<StaticHoverStyle BackColor=”DarkGray” BorderColor=”Black” BorderStyle=”Solid”
BorderWidth=”1”></StaticHoverStyle>

<DynamicHoverStyle BackColor=”DarkGray” BorderColor=”Black” BorderStyle=”Solid”
BorderWidth=”1”></DynamicHoverStyle>

</asp:Menu>

This code produces the results shown in Figure 14-22.

Figure 14-22

532

Chapter 14

17_576100 ch14.qxd 10/6/05 9:23 PM Page 532

Changing the Layout of the Menu Items
By default, the dynamic menu items are displayed from left to right. This means that, as the items in the
menu expand, they are continually displayed in a vertical fashion. You can actually control this behavior,
but another option is available to you.

The other option is to have the first level of menu items appear directly below the first static item
(horizontally). You change this behavior by using the Orientation attribute of the Menu control, as
shown in Listing 14-20.

Listing 14-20: Forcing the menu items to use a horizontal orientation

<asp:Menu ID=”Menu1” Runat=”server” DataSourceID=”SiteMapDataSource1”
Orientation=”Horizontal”>

</asp:Menu>

This code produces the results shown in Figure 14-23.

Figure 14-23

The Orientation attribute can take a value of Horizontal or Vertical only. The default value is
Vertical.

Changing the Pop-Out Symbol
As the default, an arrow is used as the pop-out symbol for the menu items generated, whether they are static
or dynamic. This is shown in Figure 14-24.

Figure 14-24

You are not forced to use this arrow symbol; in fact, you can change it to an image with relatively little work.
Listing 14-21 shows how to accomplish this task.

533

Site Navigation

17_576100 ch14.qxd 10/6/05 9:23 PM Page 533

Listing 14-21: Using custom images

<asp:Menu ID=”Menu1” Runat=”server” DataSourceID=”SiteMapDataSource1”
Orientation=”Horizontal” DynamicPopOutImageUrl=”myArrow.gif”
StaticPopOutImageUrl=”myArrow.gif”>

</asp:Menu>

To change the pop-out symbol to an image of your choice, you use the DynamicPopOutImageUrl or
StaticPopOutImageUrl properties. The String value these attributes take is simply the path of the
image you want to use. Depending on the image used, it produces something similar to what you see in
Figure 14-25.

Figure 14-25

Separating Menu Items with Images
Another nice styling option of the Menu control is the capability to add a divider image to the menu
items. You use the StaticBottomSeparatorImageUrl, StaticTopSeparatorImageUrl,
DynamicBottomSeparatorImageUrl, and DynamicTopSeparatorImageUrl properties depending on
where you want to place the separator image.

For example, if you wanted to place a divider image under only the dynamic menu items, you use the
DynamicBottomSeparatorImageUrl property, as shown in Listing 14-22.

Listing 14-22: Applying divider images to dynamic items

<asp:Menu ID=”Menu1” Runat=”server” DataSourceID=”SiteMapDataSource1”
DynamicBottomSeparatorImageUrl=”myDivider.gif”>

</asp:Menu>

All the properties of the Menu control that define the image to use for the dividers take a String value
that points to the location of the image. The result of Listing 14-22 is shown in Figure 14-26.

534

Chapter 14

17_576100 ch14.qxd 10/6/05 9:23 PM Page 534

Figure 14-26

Menu Events
The Menu control exposes events such as the following:

❑ DataBinding

❑ DataBound

❑ Disposed

❑ Init

❑ Load

❑ MenuItemClick

❑ MenuItemDataBound

❑ PreRender

❑ Unload

One nice event to be aware of is the MenuItemClick event. This event, shown in Listing 14-23, enables you
to take some action when the end user clicks one of the available menu items.

Listing 14-23: Using the MenuItemClick event

VB
Protected Sub Menu1_MenuItemClick(ByVal sender As Object, _

ByVal e As System.Web.UI.WebControls.MenuEventArgs)

‘ Code for event here

End Sub

(continued)

535

Site Navigation

17_576100 ch14.qxd 10/6/05 9:23 PM Page 535

Listing 14-23: (continued)

C#
protected void Menu1_MenuItemClick(object sender, MenuEventArgs e)
{

// Code for event here

}

This event uses the MenuEventArgs event delegate and provides you access to the text and value of the item
selected from the menu.

Binding the Menu Control to an XML File
Just as with the TreeView control, it is possible to bind the Menu control to items that come from other
data source controls provided with ASP.NET 2.0. Although most developers are likely to use the Menu
control to enable end users to navigate to URL destinations, you can also use the Menu control to enable
users to make selections.

As an example, take the previous XML file, Hardware.xml, which was used with the TreeView control
from Listing 14-8 earlier in the chapter. For this example, the Menu control works with an XmlDataSource
control. When the end user makes a selection from the menu, you populate a Listbox on the page with the
items selected. The code for this is shown in Listing 14-24.

Listing 14-24: Using the Menu control with an XML file

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Protected Sub Menu1_MenuItemClick(ByVal sender As Object, _

ByVal e As System.Web.UI.WebControls.MenuEventArgs)

Listbox1.Items.Add(e.Item.Parent.Value & “ : “ & e.Item.Value)
End Sub

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Menu Server Control</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:Menu ID=”Menu1” Runat=”server” DataSourceID=”XmlDataSource1”
OnMenuItemClick=”Menu1_MenuItemClick”>

<DataBindings>
<asp:MenuItemBinding DataMember=”Item”
TextField=”Category”></asp:MenuItemBinding>

<asp:MenuItemBinding DataMember=”Option”

536

Chapter 14

17_576100 ch14.qxd 10/6/05 9:23 PM Page 536

TextField=”Choice”></asp:MenuItemBinding>
</DataBindings>

</asp:Menu>
<p>
<asp:ListBox ID=”Listbox1” Runat=”server”>
</asp:ListBox></p>
<asp:xmldatasource ID=”XmlDataSource1” runat=”server”
datafile=”Hardware.xml” />

</form>
</body>
</html>

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
protected void Menu1_MenuItemClick(object sender, MenuEventArgs e)
{

Listbox1.Items.Add(e.Item.Parent.Value + “ : “ + e.Item.Value);
}

</script>

From this example, you can see that instead of using the <asp:TreeNodeBinding> elements, as I did with
the TreeView control, the Menu control uses the <asp:MenuItemBinding> elements to make connections
to items listed in the XML file, Hardware.xml. In addition, the root element of the Menu control, the
<asp:Menu> element, now includes the OnMenuItemClick attribute, which points to the event delegate
Menu1_MenuItemClick.

The Menu1_MenuItemClick event includes the event delegate MenuEventArgs, which enables you to
get at both the values of the child and parent elements selected. For this example, both are used and then
populated into the Listbox control, as illustrated in Figure 14-27.

Figure 14-27

537

Site Navigation

17_576100 ch14.qxd 10/6/05 9:23 PM Page 537

SiteMap Data Provider
A whole new series of data providers in the form of DataSource controls have been added to ASP.NET 2.0.
One of these new DataSource controls now at your disposal, which you looked at earlier in the chapter, is
the SiteMapDataSource control. This new DataSource control was developed to work with site maps and
the controls that can bind to them.

Some controls don’t need a SiteMapDataSource control in order to bind to the application’s site map
(which is typically stored in the Web.sitemap file). Earlier in the chapter, you saw this in action when
using the SiteMapPath control. This control was able to work with the Web.sitemap file directly —
without the need for this new data provider.

Certain navigation controls, however, such as the TreeView control and the DropDownList control, require
an intermediary SiteMapDataSource control to retrieve the site navigation information.

The SiteMapDataSource control is simple to use as demonstrated throughout this chapter. The
SiteMapDataSource control in its simplest form is illustrated here:

<asp:SiteMapDataSource ID=”SiteMapDataSource1” Runat=”server” />

In this form, the SiteMapDataSource control simply grabs the info as a tree hierarchy (as consistently
demonstrated so far). Be aware that a number of properties do change how the data is displayed in any
control that binds to the data output.

ShowStartingNode
The ShowStartingNode property determines whether the root node of the .sitemap file is retrieved
with the retrieved collection of node objects. This property takes a Boolean value and is set to True by
default. If you are working with the Web.sitemap file shown in Listing 14-1, you construct your
SiteMapdataSource control as shown in Listing 14-25 to remove the root node from the collection.

Listing 14-25: Removing the root node from the retrieved node collection

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Menu Server Control</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:SiteMapDataSource ID=”SiteMapDataSource1” Runat=”server”
ShowStartingNode=”False” />

<asp:Menu ID=”Menu1” Runat=”server” DataSourceID=”SiteMapDataSource1”>
</asp:Menu>

</form>
</body>
</html>

538

Chapter 14

17_576100 ch14.qxd 10/6/05 9:23 PM Page 538

This code produces a menu like the one shown in Figure 14-28.

Figure 14-28

From this screen shot, you can see that indeed the root node has been removed, and the menu shown starts
by using all the child nodes of the root node.

StartFromCurrentNode
The StartFromCurrentNode property causes the SiteMapDataProvider to retrieve only a node collection
that starts from the current node of the page being viewed. By default, this is set to False, meaning that
the SiteMapDataProvider always retrieves all the available nodes (from the root node to the current node).

For an example of this, use the .sitemap file from Listing 14-1 and create a page called Markets.aspx.
This page in the hierarchy of the node collection is a child node of the Finance node, as well as having two
child nodes itself: U.S. Market Report and NYSE. An example of setting the StartFromCurrentNode
property to True is shown in Listing 14-26.

Listing 14-26: The MarketsUS.aspx page using the StartFromCurrentNode property

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Menu Server Control</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:SiteMapDataSource ID=”SiteMapDataSource1” Runat=”server”
StartFromCurrentNode=”True” />

<asp:Menu ID=”Menu1” Runat=”server” DataSourceID=”SiteMapDataSource1”>
</asp:Menu>

</form>
</body>
</html>

539

Site Navigation

17_576100 ch14.qxd 10/6/05 9:23 PM Page 539

This simple property addition produces the result shown in Figure 14-29.

Figure 14-29

StartingNodeOffset
The StartingNodeOffset property takes an Integer value that determines the starting point of the
hierarchy collection. Be default, this property is set to 0, meaning that the node collection retrieved by the
SiteMapDataSource control starts at the root node. From the example provided in Listing 14-1, you know
that the collection starts with the Home page found at Default.aspx, a page that you have seen in
numerous examples in this chapter.

If you set this property’s value to 1, the starting point of the collection is one space off the default starting
point (the Home page starting at Default.aspx). For example, if the page using the SiteMapDataSource
control is the MarketsUS.aspx page, the node collection starts with the Finance page (Finance.aspx).

Home Offset 0
News Offset 1

U.S. Offset 2
World Offset 2
Technology Offset 2
Sports Offset 2

Finance Offset 1
Quotes Offset 2
Markets Offset 2

U.S. Market Report Offset 3
NYSE Offset 3

Funds Offset 2
Weather Offset 1

From this hierarchy, you can see how much each node is offset from the root node. Therefore, if you set
the StartingNodeOffset property to 1 and you are browsing on the U.S. Market Report page, you can

540

Chapter 14

17_576100 ch14.qxd 10/6/05 9:23 PM Page 540

see that the node collection starts with the Finance page (Finance.aspx) and the other child nodes of
the root node (News and Weather) are not represented in the node collection.

StartingNodeUrl
The StartingNodeUrl property allows you to specify the page found in the .sitemap file from which
the node collection should start. By default, the value of this property is empty; but when set to some-
thing like Finance.aspx, the collection starts with the Finance page as the root node of the node collec-
tion. Listing 14-27 shows an example of using the StartingNodeUrl property.

Listing 14-27: Using the StartingNodeUrl property

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Menu Server Control</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:SiteMapDataSource ID=”SiteMapDataSource1” Runat=”server”
StartingNodeUrl=”Finance.aspx” />

<asp:Menu ID=”Menu1” Runat=”server” DataSourceID=”SiteMapDataSource1”>
</asp:Menu>

</form>
</body>
</html>

When the StartingNodeUrl property value is encountered, the value is compared against the url
attributes in the Web.sitemap file. When a match is found, the matched page is the one used as the
root node in the node collection retrieved by the SiteMapDataSource control.

SiteMap API
The SiteMap class is an in-memory representation of the site’s navigation structure. This is a great class for
programmatically working around the hierarchical structure of your site. The SiteMap class comes with a
couple of objects that make working with the navigation structure easy. These objects (or public properties)
are described in the following table.

Properties Description

CurrentNode Retrieves a SiteMapNode object for the current page

RootNode Retrieves a SiteMapNode object that starts from the root node
and the rest of the site’s navigation structure

Provider Retrieves the default ISiteMapProvider for the current site map

Providers Retrieves a collection of available, named ISiteMapProvider
objects

541

Site Navigation

17_576100 ch14.qxd 10/6/05 9:23 PM Page 541

Listing 14-28 shows an example of working with some SiteMap objects by demonstrating how to use the
CurrentNode object from the Markets.aspx page.

Listing 14-28: Working with the CurrentNode object

VB
<%@ Page Language=”VB” %>

<script runat=”server” language=”vb”>
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Label1.Text = SiteMap.CurrentNode.Description & “
” & _
SiteMap.CurrentNode.HasChildNodes & “
” & _
SiteMap.CurrentNode.NextSibling.ToString() & “
” & _
SiteMap.CurrentNode.ParentNode.ToString() & “
” & _
SiteMap.CurrentNode.PreviousSibling.ToString() & “
” & _
SiteMap.CurrentNode.RootNode.ToString() & “
” & _
SiteMap.CurrentNode.Title & “
” & _
SiteMap.CurrentNode.Url

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>SiteMapDataSource</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:Label ID=”Label1” Runat=”server”></asp:Label>

</form>
</body>
</html>

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
protected void Page_Load(object sender, System.EventArgs e)
{

Label1.Text = SiteMap.CurrentNode.Description + “
” +
SiteMap.CurrentNode.HasChildNodes + “
” +
SiteMap.CurrentNode.NextSibling.ToString() + “
” +
SiteMap.CurrentNode.ParentNode.ToString() + “
” +
SiteMap.CurrentNode.PreviousSibling.ToString() + “
” +
SiteMap.CurrentNode.RootNode.ToString() + “
” +
SiteMap.CurrentNode.Title + “
” +
SiteMap.CurrentNode.Url;

}
</script>

542

Chapter 14

17_576100 ch14.qxd 10/6/05 9:23 PM Page 542

As you can see from this little bit of code, by using the SiteMap class and the CurrentNode object you can
work with a plethora of information regarding the current page. Running this page, you get the following
results printed to the screen:

The Latest Market Information
True
Funds
Finance
Quotes
Home
Markets
/Chapter14_VB/Markets.aspx

Using the CurrentNode property, you can actually create your own style of the SiteMapPath control, as
illustrated in Listing 14-29.

Listing 14-29: Creating a custom navigation display using the CurrentNode property

VB
<%@ Page Language=”VB” %>

<script runat=”server” language=”vb”>
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Hyperlink1.Text = SiteMap.CurrentNode.ParentNode.ToString()
Hyperlink1.NavigateUrl = SiteMap.CurrentNode.ParentNode.Url

Hyperlink2.Text = SiteMap.CurrentNode.PreviousSibling.ToString()
Hyperlink2.NavigateUrl = SiteMap.CurrentNode.PreviousSibling.Url

Hyperlink3.Text = SiteMap.CurrentNode.NextSibling.ToString()
Hyperlink3.NavigateUrl = SiteMap.CurrentNode.NextSibling.Url

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>SiteMapDataSource</title>
</head>
<body>

<form id=”form1” runat=”server”>
Move Up:
<asp:Hyperlink ID=”Hyperlink1” Runat=”server”></asp:Hyperlink>

<-- <asp:Hyperlink ID=”Hyperlink2” Runat=”server”></asp:Hyperlink> |
<asp:Hyperlink ID=”Hyperlink3” Runat=”server”></asp:Hyperlink> -->

</form>
</body>
</html>

(continued)

543

Site Navigation

17_576100 ch14.qxd 10/6/05 9:23 PM Page 543

Listing 14-29: (continued)

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
protected void Page_Load(object sender, System.EventArgs e)
{

Hyperlink1.Text = SiteMap.CurrentNode.ParentNode.ToString();
Hyperlink1.NavigateUrl = SiteMap.CurrentNode.ParentNode.Url;

Hyperlink2.Text = SiteMap.CurrentNode.PreviousSibling.ToString();
Hyperlink2.NavigateUrl = SiteMap.CurrentNode.PreviousSibling.Url;

Hyperlink3.Text = SiteMap.CurrentNode.NextSibling.ToString();
Hyperlink3.NavigateUrl = SiteMap.CurrentNode.NextSibling.Url;

}
</script>

When run, this page gives you your own custom navigation structure, as shown in Figure 14-30.

Figure 14-30

URL Mapping
The URLs used by Web pages can sometimes get rather complex as your application grows and grows.
Sometimes, you could be presenting Web pages that change their content based on querystrings that are
provided via the URL, such as:

http://www.asp.net/forums/view.aspx?forumid=12&categoryid=6

In other cases, your Web page might be so deep within a hierarchy of folders that the URL has become
rather cumbersome for an end user to type or remember when they want to pull up the page later in
their browser. There are also moments when you want a collection of pages to look like they are the
same page or a single destination.

544

Chapter 14

17_576100 ch14.qxd 10/6/05 9:23 PM Page 544

In cases like these, you can take advantage of a new ASP.NET feature called URL mapping. URL mapping
lets you map complex URLs to simpler ones. You accomplish this through settings you apply in the
web.config file using the <urlMappings> element (see Listing 14-30).

Listing 14-30: Mapping URLs using the <urlMappings> element

<configuration>

<system.web>

<urlMappings>
<add url=”~/Content.aspx” mappedUrl=”~/SystemNews.aspx?categoryid=5” />

</urlMappings>

</system.web>

</configuration>

In this example, we provide a fake URL —Content.aspx— that is mapped to a more complicated URL:
SystemNews.aspx?categoryid=5. With this construction in place, when the end user types the URL
Content.aspx, the application knows to invoke the more complicated URL SystemNews.aspx?cate-
goryid=5 page. This takes place without the URL even being changed in the browser. Even after the page
has completely loaded, the browser will still show the Content.aspx page as the destination — thereby
tricking the end user in a sense.

It is important to note that in this situation, the end user is routed to SystemNews.aspx?categoryid=5
no matter what — even if a Content.aspx page exists! Therefore, it is important to map to pages that aren’t
actually contained within your application.

Sitemap Localization
The improved resource files (.resx) are a great way to localize ASP.NET applications. This localization of
Web applications using ASP.NET was introduced in Chapter 3 of this book. However, this introduction
focused on applying localization features to the pages of your applications; we didn’t demonstrate how to
take this localization capability further by applying it to items such as the Web.sitemap file.

Structuring the Web.sitemap File for Localization
Just as it is possible to apply localization instructions to the pages of your ASP.NET Web applications, you
can also use the same framework to accomplish your localization tasks in the Web.sitemap file. To show
you this in action, Listing 14-31 constructs a Web.sitemap file somewhat similar to the one presented in
Listing 14-1, but much simpler.

545

Site Navigation

17_576100 ch14.qxd 10/6/05 9:23 PM Page 545

Listing 14-31: Creating a basic .sitemap file for localization

<?xml version=”1.0” encoding=”utf-8” ?>

<siteMap xmlns=”http://schemas.microsoft.com/AspNet/SiteMap-File-1.0”
enableLocalization=”true”>
<siteMapNode url=”Default.aspx” resourceKey=”Home”>

<siteMapNode url=”News.aspx” resourceKey=”News”>
<siteMapNode url=”News.aspx?cat=us” resourceKey=”NewsUS” />
<siteMapNode url=”News.aspx?cat=world” resourceKey=”NewsWorld” />
<siteMapNode url=”News.aspx?cat=tech” resourceKey=”NewsTech” />
<siteMapNode url=”News.aspx?cat=sport” resourceKey=”NewsSport” />

</siteMapNode>
</siteMapNode>

</siteMap>

Looking at Listing 14-31, you can see that we have a rather simple Web.sitemap file. To enable the
localization capability from the Web.sitemap file, you have to turn this capability on by using
the enableLocalization attribute in the <siteMap> element and setting it to true. Once enabled,
you can then define each of the navigation nodes as you would normally through the use of the
<siteMapNode> element. In this case, however, because you are going to define the contents of
these navigation pieces (most notably the title and description attributes) in various .resx files,
there is no need to repeatedly define these items in this file. That means you need to define only the url
attribute for this example. It’s important to note, however, that you could also define this attribute
through your .resx files, thereby forwarding end users to different pages depending on their defined
culture settings.

The next attribute to note is the resourceKey attribute used in the <siteMapNode> elements. This is the key
that is used and defined in the various .resx files you will implement. Take the following <siteMapNode>
element as an example:

<siteMapNode url”News.aspx” resourceKey=”News”>
...

</siteMapNode>

In this case, the value of the resourceKey (and the key that will be used in the .resx file) is News. This
means that you are then able to define the values of the title and description attributes in the .resx
file through the use of the following syntax:

News.Title
News.Description

Now that the Web.sitemap is in place, the next step is to make some minor modifications to the Web.config
file, as shown next.

Making Modifications to the Web.config File
Now that the Web.sitemap file is in place and ready, the next step is to provide some minor additions to
the Web.config file. In order for your Web application to make an automatic detection of the culture of the

546

Chapter 14

17_576100 ch14.qxd 10/6/05 9:23 PM Page 546

users visiting the various pages you are providing, you need to either set the Culture and UICulture
settings in the @Page directive, or set these attributes for automatic detection in the <globalization>
element of the Web.config file.

When you are working with navigation and the Web.sitemap file, as we are, it is actually best to make
this change in the Web.config file so that it automatically takes effect on each and every page in your
application. This makes it much simpler because you won’t have to make these additions yourself to
each and every page.

To make these changes, open your Web.config file and add a <globalization> element, as shown in
Listing 14-32.

Listing 14-32: Adding culture detection to the Web.config file

<configuration>
<system.web>

<globalization culture=”auto” uiCulture=”auto” />

</system.web>
</configuration>

For the auto-detection capabilities to occur, you simply need to set the culture and uiCulture attributes
to auto. You could have also defined the values as auto:en-US, which means that the automatic culture
detection capabilities should occur, but if the culture defined is not found in the various resource files,
then use en-US (American English) as the default culture. But because we are going to define a default
Web.sitemap set of values, there really is no need for you to bring forward this construction.

Next, you need to create the assembly resources files that define the values used by the Web.sitemap file.

Creating Assembly Resource (.resx) Files
To create a set of assembly resource files that you will use with the Web.sitemap file, create a folder in your
project called App_GlobalResources. If you are using Visual Studio 2005 or Visual Web Developer, you can
add this folder by right-clicking on the project and selecting Add Folder ➪ App_GlobalResources Folder.

After the folder is in place, the next step is to add two assembly resource files to this folder. Name the first
file Web.sitemap.resx and the second one Web.sitemap.fi.resx. Your goal with these two files is to
have a default set of values for the Web.sitemap file that will be defined in the Web.sitemap.resx file,
and a version of these values that has been translated to the Finnish language and is contained in the
Web.sitemap.fi.resx file.

The fi value used in the name will be the file used by individuals who have their preferred language set
to fi-FI. Other variations of these constructions are shown in the following table.

547

Site Navigation

17_576100 ch14.qxd 10/6/05 9:23 PM Page 547

.resx File Culture Served

Web.sitemap.resx The default values used when the end user’s culture
cannot be identified through another .resx file

Web.sitemap.en.resx The resource file used for all en (English) users

Web.sitemap.en-gb.resx The resource file used for the English speakers of Great
Britain

Web.sitemap.fr-ca.resx The resource file used for the French speakers of Canada

Web.sitemap.ru.resx The resource file used for Russian speakers

Now that the Web.sitemap.resx and Web.sitemap.fi.resx files are in place, the next step is to fill these
files with values. To accomplish this task, you use the keys defined earlier directly in the Web.sitemap file.
Figure 14-31 shows the result of this exercise.

After you have the files in place you can test how this localization endeavor works, as shown in the
following section.

Figure 14-31

548

Chapter 14

17_576100 ch14.qxd 10/6/05 9:23 PM Page 548

Testing the Results
Create a page in your application and place a TreeView server control on the page. In addition to the
TreeView control, you also have to include a SiteMapDataSource control to work with the
Web.sitemap file you created. Be sure to tie the two controls together by giving the TreeView control
the attribute DataSourceID=”SiteMapDataSource1”, as demonstrated earlier in this chapter.

If you have your language preference in Microsoft’s Internet Explorer set to en-us (American English),
you will see the results shown in Figure 14-32.

Figure 14-32

When you pull up the page in the browser, the culture of the request is checked. Because the only finely
grained preference defined in the example is for users using the culture of fi (Finnish), the default
Web.sitemap.resx is used instead. Because of this, the Web.sitemap.resx file is used to populate the
values of the TreeView control, as shown in Figure 14-32. If the requestor has a culture setting of fi,
however, he gets an entirely different set of results.

To test this out, change the preferred language used in IE by selecting Tools ➪ Internet Options in IE. On
the first tab (General), click the Languages button at the bottom of the dialog. You are presented with the
Language Preferences dialog. Click the Add button and add the Finnish language setting to the list of
options. The final step is to use the Move Up button to move the Finnish choice to the top of the list. In the
end, you should see something similar to what’s shown in Figure 14-33.

Figure 14-33

549

Site Navigation

17_576100 ch14.qxd 10/6/05 9:23 PM Page 549

With this setting in place, running the page with the TreeView control gives you the result shown in
Figure 14-34.

Figure 14-34

Now, when the page is requested, the culture is set to fi and correlates to the Web.sitemap.fi.resx
file instead of to the default Web.sitemap.resx file.

Summary
This chapter introduced the new navigation mechanics that ASP.NET 2.0 provides. At the core of the new
navigation capabilities is the power to detail the navigation structure in an XML file, which can then be
utilized by various navigation controls — such as the new TreeView and SiteMapPath controls.

The powerful functionality that the new navigation capabilities provide saves you a tremendous amount
of coding time.

In addition to showing you the core infrastructure for navigation in ASP.NET 2.0, this chapter also
described both the new TreeView and SiteMapPath controls and how to use them throughout your
applications. The great thing about these new controls is that, right out of the box, they can richly display
your navigation hierarchy and enable the end user to work through the site easily. In addition, these
controls are easily changeable so that you can go beyond the standard appearance and functionality that
they provide.

Finally, this chapter took a look at how to achieve URL mapping, as well as how to localize your
Web.sitemap files.

550

Chapter 14

17_576100 ch14.qxd 10/6/05 9:23 PM Page 550

Personalization

Many Web applications must be customized with information that is specific to the end user who is
presently viewing the page. In the past, the developer usually provided storage of personalization
properties for end users viewing the page by means of cookies, the Session object, or the
Application object. Cookies enabled storage of persistent items so that when the end user returned
to a Web page, any settings related to him were retrieved. Cookies aren’t the best way to approach
persistent user data storage, however, because they are not accepted by all computers and also
because a crafty end user can easily alter them.

As you will see in Chapter 16, ASP.NET 2.0’s membership and role management capabilities are ways
that ASP.NET can conveniently store information about the user. How can you, as the developer, use
the same mechanics to store custom information?

ASP.NET 2.0 provides you with an outstanding new feature — personalization. The ASP.NET
personalization engine provided with this latest release can make an automatic association
between the end user viewing the page and any data points stored for that user. The personaliza-
tion properties that are maintained on a per-user basis are stored on the server and not on the
client. These items are conveniently placed in a data store of your choice (such as Microsoft’s SQL
Server) and, therefore, the end user can access these personalization properties on later site visits.

This new feature is an ideal way to start creating highly customizable and user-specific sites without
building any of the plumbing beforehand. The new personalization feature is yet another way that
the ASP.NET team is making developers more productive and their jobs easier.

The Personalization Model
The personalization model provided with ASP.NET 2.0 is simple and, as with most items that come
with ASP.NET, it is an extensible model as well. Figure 15-1 shows a simple diagram that outlines
the new personalization model.

18_576100 ch15.qxd 10/6/05 9:45 PM Page 551

Figure 15-1

From this diagram, you can see the three layers in this model. First, look at the middle layer of the
personalization model — the Personalization Services layer. This layer contains the Profile API. This
new Profile API layer enables you to program your end user’s data points into one of the lower-layer
data stores. Also included in this layer are the server control personalization capabilities, which are
important for the Portal Framework and the use of Web Parts. The Portal Framework and Web Parts
are discussed in Chapter 17.

Although certain controls built into ASP.NET can utilize the new personalization capabilities for storing
information about the page settings, you can also use this new engine to store your own data points. Just
like Web Parts, these points can be used within your ASP.NET pages.

Below the Personalization Services layer, you find the default personalization data provider for working
with Microsoft’s SQL Server 2005 or 2000, as well as the new Microsoft SQL Server Express Edition files.
You are not limited to just this one data store when applying the new personalization features of
ASP.NET 2.0; you can also extend the model and create a custom data provider for the personalization
engine.

Now that you have looked briefly at the personalization model, you can begin using it by creating some
stored personalization properties that can be used later within your applications.

Creating Personalization Properties
The nice thing about creating custom personalization properties is that you can do it so easily. After
these properties are created, you can gain a strongly typed access to them. It is also possible to create

Server Controls

Web Parts

Data Storage

SQL Server 7.0/2000/2005 Custom

Interfaces

Profile API Control Personalization

552

Chapter 15

18_576100 ch15.qxd 10/6/05 9:45 PM Page 552

personalization properties that are used only by authenticated users, and also some that anonymous
users can utilize. These data points are powerful — mainly because you can start using them immediately
in your application. The first step is to create some simple personalization properties. Later, you learn
how to use these personalization properties within your application.

Adding a Simple Personalization Property
The first step is to decide what data items from the user you are going to store. For this example, create a few
items about the user that you can use within your application; assume that you want to store the following
information about the user:

❑ First name

❑ Last name

❑ Last visited

❑ Age

❑ Membership Status

ASP.NET has a heavy dependency on storing configurations inside XML files, and the ASP.NET 2.0
personalization engine is no different. All these customization points concerning the end user are
defined and stored within the web.config file of the application. This is illustrated in Listing 15-1.

Listing 15-1: Creating personalization properties in the web.config file

<configuration>
<system.web>

<profile>

<properties>

<add name=”FirstName” />
<add name=”LastName” />
<add name=”LastVisited” />
<add name=”Age” />
<add name=”Member” />

</properties>

</profile>

<authentication mode=”Windows” />

</system.web>
</configuration>

Within the web.config file and nested within the <system.web> section of the file, you create a
<profile> section in order to work with the ASP.NET 2.0 personalization engine. Within this <profile>
section of the web.config file, you create a <properties> section. In this section, you can define all the
properties you want the personalization engine to store.

553

Personalization

18_576100 ch15.qxd 10/6/05 9:45 PM Page 553

From this code example, you can see that it is rather easy to define simple properties using the <add>
element. This element simply takes the name attribute, which takes the name of the property you want to
persist.

We start out with the assumption that accessing the page we will build with these properties is already
authenticated using Windows authentication (you can read more on authentication and authorization in
the next chapter). Later in this chapter, we look at how to apply personalization properties to anony-
mous users as well.

It’s just as easy to use these personalization properties as it is to define them. The next section looks at how
to use these definitions in an application.

Using Personalization Properties
Now that you have defined the personalization properties in the web.config file, it’s possible to use
these items in code. For example, you can create a simple form that asks for some of this information from
the end user. On the Button_Click event, the data is stored in the personalization engine. Listing 15-2
shows an example of this.

Listing 15-2: Using the defined personalization properties

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Protected Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)

If Page.User.Idenity.IsAuthenticated Then
Profile.FirstName = TextBox1.Text
Profile.LastName = TextBox2.Text
Profile.Age = TextBox3.Text
Profile.Member = Radiobuttonlist1.SelectedItem.Text
Profile.LastVisited = DateTime.Now().ToString()

Label1.Text = “Stored information includes:<p>” & _
“First name: “ & Profile.FirstName & _
“
Last name: “ & Profile.LastName & _
“
Age: “ & Profile.Age & _
“
Member: “ & Profile.Member & _
“
Last visited: “ & Profile.LastVisited

Else
Label1.Text = “You must be authenticated!”

End If
End Sub

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Storing Personalization</title>
</head>
<body>

<form id=”form1” runat=”server”>
<p>First Name:
<asp:TextBox ID=”TextBox1” Runat=”server”></asp:TextBox></p>

554

Chapter 15

18_576100 ch15.qxd 10/6/05 9:45 PM Page 554

<p>Last Name:
<asp:TextBox ID=”TextBox2” Runat=”server”></asp:TextBox></p>
<p>Age:
<asp:TextBox ID=”TextBox3” Runat=”server” Width=”50px”
MaxLength=”3”></asp:TextBox></p>

<p>Are you a member?
<asp:RadioButtonList ID=”Radiobuttonlist1” Runat=”server”>

<asp:ListItem Value=”1”>Yes</asp:ListItem>
<asp:ListItem Value=”0” Selected=”True”>No</asp:ListItem>

</asp:RadioButtonList></p>
<p><asp:Button ID=”Button1” Runat=”server” Text=”Submit”

OnClick=”Button1_Click” />
</p>
<hr /><p>
<asp:Label ID=”Label1” Runat=”server”></asp:Label></p>

</form>
</body>
</html>

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
protected void Button1_Click(object sender, EventArgs e)
{

if (Page.User.Identity.IsAuthenticated)
{

Profile.FirstName = TextBox1.Text;
Profile.LastName = TextBox2.Text;
Profile.Age = TextBox3.Text;
Profile.Member = Radiobuttonlist1.SelectedItem.Text;
Profile.LastVisited = DateTime.Now.ToString();

Label1.Text = “Stored information includes:<p>” +
“First name: “ + Profile.FirstName +
“
Last name: “ + Profile.LastName +
“
Age: “ + Profile.Age +
“
Member: “ + Profile.Member +
“
Last visited: “ + Profile.LastVisited;

}
else
{

Label1.Text = “You must be authenticated!”;
}

}
</script>

This is similar to the way you worked with the Session object in the past, but note that the personalization
properties you are storing and retrieving are not key based. Therefore, when working with them you don’t
need to remember key names.

555

Personalization

18_576100 ch15.qxd 10/6/05 9:45 PM Page 555

By default, these items are stored as type String, and you have early-bound access to the items stored. To
store an item, you simply populate the personalization property directly using the Profile object:

Profile.FirstName = TextBox1.Text

To retrieve the same information, you simply grab the appropriate property of the Profile class as
shown here:

Label1.Text = Profile.FirstName

The great thing about using the Profile class and all the personalization properties defined in code is
that this method provides IntelliSense. When working with the Profile class, all the items you define
are listed as available options, as illustrated in Figure 15-2.

Figure 15-2

All these properties are accessible in IntelliSense because the Profile class is hidden and dynamically
compiled behind the scenes whenever you save the personalization changes made to the web.config file.
After these items are saved in the web.config file, these properties are available to you throughout your
application.

556

Chapter 15

18_576100 ch15.qxd 10/6/05 9:45 PM Page 556

When run, the page from Listing 15-2 produces the results shown in Figure 15-3.

Figure 15-3

In addition to using early-bound access techniques, you can also use late-bound access for the items that
you store in the personalization engine. This technique is illustrated in Listing 15-3.

Listing 15-3: Using late-bound access

VB
Dim myFirstName As String

myFirstName = Profile.PropertyValues(“FirstName”).PropertyValue.ToString()

C#
string myFirstName;

myFirstName = (string) Profile.PropertyValues[“FirstName”].PropertyValue;

Whether it is early-bound access or late-bound access, you can easily store and retrieve personalization
properties for a particular user using this new capability afforded by ASP.NET 2.0. All this is done in
the personalization engine’s simplest form — now take a look at how you can customize for specific
needs in your applications.

557

Personalization

18_576100 ch15.qxd 10/6/05 9:45 PM Page 557

Adding a Group of Personalization Properties
If you want to store a large number of personalization properties about a particular user, remember that
you are not just storing personalization properties for a particular page, but for the entire application.
This means that items you have stored about a particular end user somewhere in the beginning of the
application can be retrieved later for use on any other page within the application. Because different
sections of your Web applications store different personalization properties, you sometimes end up with
a large collection of items to be stored and then made accessible.

To make it easier not only to store the items, but also to retrieve them, the personalization engine enables
you to store your personalization properties in groups. This is illustrated in Listing 15-4.

Listing 15-4: Creating personalization groups in the web.config file

<configuration>
<system.web>

<profile>

<properties>

<add name=”FirstName” />
<add name=”LastName” />
<add name=”LastVisited” />
<add name=”Age” />

<group name=”MemberDetails”>
<add name=”Member” />
<add name=”DateJoined” />
<add name=”PaidDuesStatus” />
<add name=”Location” />

</group>

<group name=”FamilyDetails”>
<add name=”MarriedStatus” />
<add name=”DateMarried” />
<add name=”NumberChildren” />
<add name=”Location” />

</group>

</properties>

</profile>

<authentication mode=”Windows” />

</system.web>
</configuration>

From the code in Listing 15-4, which is placed within the web.config file, you can see that two groups are
listed. The first group is the MemberDetails group, which has four specific items defined; the second
group —FamilyDetails— has three other related items defined. Personalization groups are defined using
the <group> element within the <properties> definition. The name of the group is specified using the

558

Chapter 15

18_576100 ch15.qxd 10/6/05 9:45 PM Page 558

name attribute, just as you specify the <add> element. You can have as many groups defined as you deem
necessary or as have been recommended as good practice to employ.

Using Grouped Personalization Properties
From Listing 15-4, you can also see that some items are not defined in any particular group. It is possible
to mix properties defined from within a group with those that are not. The items not defined in a group
in Listing 15-4 can still be accessed in the manner illustrated previously:

Label1.Text = Profile.FirstName

Now, using personalization groups, you can access your defined items in a logical manner using nested
namespaces:

Label1.Text = Profile.MemberDetails.DateJoined

Label2.Text = Profile.FamilyDetails.MarriedStatus

From this example, you can see that two separate items from each of the defined personalization groups were
accessed in a logical manner. From the defined properties, you can see that each of the groups has a property
with the same name—Location. This is possible because you are using personalization groups. With this
structure, it is now possible to get at each of the Location properties by specifying the appropriate group:

Label1.Text = Profile.MemberDetails.Location

Label2.Text = Profile.FamilyDetails.Location

Defining Types for Personalization Properties
By default, when you store personalization properties, these properties are created as type String. It is
quite easy, however, to change the type to something else through configurations within the web.config
file. To define the name of the personalization property along with its type, you use the Type attribute, as
shown in Listing 15-5.

Listing 15-5: Defining types for personalization properties

<properties>

<add name=”FirstName” type=”System.String” />
<add name=”LastName” type=”System.String” />
<add name=”LastVisited” type=”System.DateTime” />
<add name=”Age” type=”System.Integer” />
<add name=”Member” type=”System.Boolean” />

</properties>

The first two properties, FirstName and LastName, are cast as type String. This isn’t actually required.
Even if you omitted this step, they would still be cast as type String because that is the default type. The
next personalization property is the LastVisited property, which is defined as type System.DateTime
and used to store the date and time of the end user’s last visit to the page. Beyond that, you can see the
rest of the personalization properties are defined using a specific .NET data type.

559

Personalization

18_576100 ch15.qxd 10/6/05 9:45 PM Page 559

This is the preferred approach because it gives you type-checking capabilities as you code your application
and use the personalization properties you have defined.

Using Custom Types
As you can see from the examples that show you how to define types for the personalization properties, it
is quite simple to define types that are available in the .NET Framework. Items such as System.Integer,
System.String, System.DateTime, System.Byte, and System.Boolean are easily defined within the
web.config file. But how do you go about defining complex types?

Personalization properties that utilize custom types are just as easy to define as personalization properties
that use simple types. Custom types give you the capability to store complex items such as shopping cart
information or other status information from one use of the application to the next. Listing 15-6 first
shows a class, ShoppingCart, which you use later in one of the personalization property definitions.

Listing 15-6: Creating a class to use as a personalization type

VB
<Serializable()> _
Public Class ShoppingCart

Private PID As String
Private CompanyProductName As String
Private Number As Integer
Private Price As Decimal
Private DateAdded As DateTime

Public Property ProductID() As String
Get

Return PID
End Get
Set(ByVal value As String)

PID = value
End Set

End Property

Public Property ProductName() As String
Get

Return CompanyProductName
End Get
Set(ByVal value As String)

CompanyProductName = value
End Set

End Property

Public Property NumberSelected() As Integer
Get

Return Number
End Get
Set(ByVal value As Integer)

Number = value
End Set

560

Chapter 15

18_576100 ch15.qxd 10/6/05 9:45 PM Page 560

End Property

Public Property ItemPrice() As Decimal
Get

Return Price
End Get
Set(ByVal value As Decimal)

Price = value
End Set

End Property

Public Property DateItemAdded() As DateTime
Get

Return DateAdded
End Get
Set(ByVal value As DateTime)

DateAdded = value
End Set

End Property
End Class

C#
using System;

[Serializable]
public class ShoppingCart
{

private string PID;
private string CompanyProductName;
private int Number;
private decimal Price;
private DateTime DateAdded;

public ShoppingCart() {}

public string ProductID
{

get { return PID; }
set { PID = value; }

}

public string ProductName
{

get { return CompanyProductName; }
set { CompanyProductName = value; }

}

public int NumberSelected
{

get { return Number; }
set { Number = value; }

}

public decimal ItemPrice

(continued)

561

Personalization

18_576100 ch15.qxd 10/6/05 9:45 PM Page 561

Listing 15-6: (continued)

{
get { return Price; }
set { Price = value; }

}

public DateTime DateItemAdded
{

get { return DateAdded; }
set { DateAdded = value; }

}
}

This simple shopping cart construction can now store the end user’s shopping cart basket as the user
moves around on an e-commerce site. The basket can even be persisted when the end user returns to the
site at another time.

Take a look at how you would specify from within the web.config file that a personalization property
is this complex type. This is illustrated in Listing 15-7.

Listing 15-7: Using complex types for personalization properties

<properties>

<add name=”FirstName” type=”System.String” />
<add name=”LastName” type=”System.String” />
<add name=”LastVisited” type=”System.DateTime” />
<add name=”Age” type=”System.Integer” />
<add name=”Member” type=”System.Boolean” />
<add name=”Cart” type=”ShoppingCart” serializeAs=”Binary” />

</properties>

Just as the basic data types are stored in the personalization data stores, this construction allows you to
easily store custom types and to have them serialized into the end data store in the format you choose. In
this case, the ShoppingCart object is serialized into a binary object in the data store. The SerializeAs
attribute can take the values defined in the following list:

❑ Binary: Serializes and stores the object as binary data within the chosen data store.

❑ ProviderSpecific: Stores the object based upon the direction of the provider. This simply means
that instead of the personalization engine determining the serialization of the object, it is simply
left up to the data store.

❑ String: The default setting. Stores the personalization properties as a string inside the chosen
data store.

❑ XML: Takes the object and serializes it into an XML format before storing it in the chosen data
store.

562

Chapter 15

18_576100 ch15.qxd 10/6/05 9:45 PM Page 562

Providing Default Values
In addition to defining the types of personalization properties, you can also define their default values.
The personalization properties you create do not have a value, but you can easily change this using the
DefaultValue attribute of the <add> element. Defining default values is illustrated in Listing 15-8.

Listing 15-8: Defining default values for personalization properties

<properties>

<add name=”FirstName” type=”System.String” />
<add name=”LastName” type=”System.String” />
<add name=”LastVisited” type=”System.DateTime” />
<add name=”Age” type=”System.Integer” />
<add name=”Member” type=”System.Boolean” defaultValue=”False” />

</properties>

From this example, you can see that only one of the personalization properties is provided with a default
value. The last personalization property, Member in this example, is given a default value of False. This
means that when you add a new end user to the personalization property database, Member is defined
instead of remaining a blank value.

Making Personalization Properties Read-Only
It is also possible to make personalization properties read-only. To do this, you simply add the
readOnly attribute to the <add> element:

<add name=”StartDate” type=”System.DateTime” readOnly=”True” />

To make the personalization property a read-only property, you give the readOnly attribute a value of
True. By default, this property is set to False.

Anonymous Personalization
A great new feature in ASP.NET 2.0 enables anonymous end users to utilize the personalization features
it provides. This is important if a site requires registration of some kind. In these cases, end users do not
always register for access to the greater application until they have first taken advantage of some of the
basic services. For instance, many e-commerce sites allow anonymous end users to shop a site and use
the site’s shopping cart before the shoppers register with the site.

Enabling Anonymous Identification of the End User
By default, anonymous personalization is turned off because it consumes database resources on popular
sites. Therefore, one of the first steps in allowing anonymous personalization is to turn on this feature using
a setting in the web.config file.

As shown in Listing 15-9, you can turn on anonymous identification to enable the personalization engine
to identify the unknown end users.

563

Personalization

18_576100 ch15.qxd 10/6/05 9:45 PM Page 563

Listing 15-9: Allowing anonymous identification

<configuration>
<system.web>

<anonymousIdentification enabled=”True” />

</system.web>
</configuration>

To enable anonymous identification of the end users who might visit your applications, you add an
<anonymousIdentification> element to the web.config file within the <system.web> nodes. Then
within the <anonymousIdentification> element, you use the Enabled attribute and set its value to
True. Remember that by default, this value is set to False.

When anonymous identification is turned on, ASP.NET uses a unique identifier for each anonymous user
who comes to the application. This identifier is sent with each and every request, although after the end
user becomes authenticated by ASP.NET, the identifier is removed from the process.

For an anonymous user, information is stored by default as a cookie on the end user’s machine. Additional
information (the personalization properties that you enable for anonymous users) is stored in the specified
data store on the server.

Changing the Name of the Cookie for Anonymous Identification
Cookies are used by default under the cookie name .ASPXANONYMOUS. You can change the name of this
cookie from the <anonymousIdentification> element in the web.config file by using the cookieName
attribute, as shown in Listing 15-10.

Listing 15-10: Changing the name of the cookie

<configuration>
<system.web>

<anonymousIdentification
enabled=”True”
cookieName=”.ASPXEvjenWebApplication” />

</system.web>
</configuration>

Changing the Length of Time the Cookie Is Stored
Also, by default, the cookie stored on the end user’s machine is stored for 100,000 minutes (which is
almost 70 days). If you want to change this value, you do it within this <anonymousIdentification>
element through the use of the cookieTimeout attribute, as shown in Listing 15-11.

Listing 15-11: Changing the length of time the cookie is stored

<configuration>
<system.web>

<anonymousIdentification

564

Chapter 15

18_576100 ch15.qxd 10/6/05 9:45 PM Page 564

enabled=”True”
cookieTimeout=”1440” />

</system.web>
</configuration>

In this case, the cookieTimeout value was changed to 1440— meaning 1,440 minutes (or one day). This
would be ideal for a shopping cart when you don’t want to persist the identification of the end user too
long.

Changing How the Identifiers Are Stored
Although anonymous identifiers are stored through the use of cookies, you can also easily change this.
Cookies are, by far, the preferred way to achieve identification, but you can also do it without the use of
cookies. Other options include using the URI or device profiles. Listing 15-12 shows an example of
using the URI to place the identifiers.

Listing 15-12: Specifying how cookies are stored

<configuration>
<system.web>

<anonymousIdentification
enabled=”True”
cookieless=”UseUri” />

</system.web>
</configuration>

Besides UseUri, other options include UseCookies, AutoDetect, and UseDeviceProfile. The following
list reviews each of the options:

❑ UseCookies: This is the default setting. If you set no value, ASP.NET assumes this is the value.
UseCookies means that a cookie is placed on the end user’s machine for identification.

❑ UseUri: This value means that a cookie will not be stored on the end user’s machine, but instead
the unique identifier will be munged within the URL of the page. This is the same approach
used for cookieless sessions in ASP.NET 1.0/1.1. Although this is great if developers want to
avoid sticking a cookie on an end user’s machine, it does create strange looking URLs and can
be an issue when an end user bookmarks pages for later retrieval.

❑ AutoDetect: Using this value means that you are letting the ASP.NET engine decide whether to
use cookies or use the URL approach for the anonymous identification. This is done on a per-user
basis and performs a little worse than the other two options. ASP.NET must check the end user
before deciding which approach to use. My suggestion is to use AutoDetect instead of UseUri if
you absolutely must allow for end users who have cookies turned off (which is rare these days).

❑ UseDeviceProfile: Configures the identifier for the device or browser that is making the
request.

565

Personalization

18_576100 ch15.qxd 10/6/05 9:45 PM Page 565

Looking at the Anonymous Identifiers Stored
In order to make the anonymous identifiers unique, a globally unique GUID is used. You can also now
grab hold of this unique identifier for your own use. In order to retrieve the GUID, the Request object
has been enhanced with an AnonymousId property. The AnonymousId property returns a value of type
String, which can be used in your code as shown here:

Label1.Text = Request.AnonymousId

Working with Anonymous Identification Events
In working with the creation of anonymous users, be aware of two important events that can be used for
managing the process:

❑ AnonymousIdentification_OnCreate

❑ AnonymousIdentification_OnRemove

By using the AnonymousIdentification_OnCreate event, you can work with the identification of the
end user as it occurs. For instance, if you do not want to use GUIDs for uniquely identifying the end
user, you can change the identifying value from this event instead.

To do so, create the event using the event delegate of type AnonymousIdentificationEventArgs, as
illustrated in Listing 15-13.

Listing 15-13: Changing the unique identifier of the anonymous user

VB
Public Sub AnonymousIdentification_OnCreate(ByVal sender As Object, _

ByVal e As AnonymousIdentificationEventArgs)

e.AnonymousId = “Bubbles “ & DateTime.Now()

End Sub

C#
public void AnonymousIdentification_OnCreate(object sender,

AnonymousIdentificationEventArgs e)
{

e.AnonymousId = “Bubbles “ + DateTime.Now();
}

The AnonymousIdentificationEventArgs event delegate exposes an AnonymousId property that
assigns the value used to uniquely identify the anonymous user. Now, instead of a GUID to uniquely
identify the anonymous user as

d13fafec-244a-4d21-9137-b213236ebedb

the AnonymousID property is changed within the AnonymousIdentification_OnCreate event to

Bubbles 2/10/2006 2:07:33 PM

566

Chapter 15

18_576100 ch15.qxd 10/6/05 9:45 PM Page 566

The AnonymousIdentification_OnRemove event also employs an event delegate of type
AnonymousIdentificationEventArgs that is used immediately prior to migrating anonymous users to
registered users. Note that the AnonymousId property of the Request object is still accessible at this point.

Anonymous Options for Personalization Properties
Now that the capability to work with anonymous users is in place, you have to specify which personalization
properties you want to enable for anonymous users. This is also done through the web.config file by adding
the allowAnonymous attribute to the <add> element (see Listing 15-14).

Listing 15-14: Turning on anonymous capabilities personalization properties

<properties>

<add name=”FirstName” type=”System.String” />
<add name=”LastName” type=”System.String” />
<add name=”LastVisited” type=”System.DateTime” allowAnonymous=”true” />
<add name=”Age” type=”System.Integer” />
<add name=”Member” type=”System.Boolean” />

</properties>

In this example, the LastVisited property is set to allow anonymous users by setting the allowAnonymous
attribute to True. Because this is the only property that works with anonymous users, the rest of the defined
properties do not store information for these types of users.

Programmatic Access to Personalization
When an ASP.NET is invoked, ASP.NET creates a class (ProfileCommon) by inheriting from the
ProfileBase class, which it uses to strongly type the profile properties that were defined in the web
.config file. This created class, meant to deal with the user’s profile store, gets and sets profile properties
through the use of the GetPropertyValue and SetPropertyValue methods from the ProfileBase
class.

As you would expect, ASP.NET provides you with the hooks necessary to get at specific Profile events
through the use of the ProfileModule class. The ProfileModule class is what ASP.NET itself uses to
create and store profile information in the page’s Profile object.

The ProfileModule class exposes three events that you can use to handle your user’s profile situations.
These events, MigrateAnonymous, Personalize, and ProfileAutoSaving, are focused around the area
of authentication. Because we were just covering how to work with anonymous users in your applications,
we first take a look at how to migrate these users from anonymous users to authenticated users — as you
are most likely going to want to be moving their profile properties as well.

567

Personalization

18_576100 ch15.qxd 10/6/05 9:45 PM Page 567

Migrating Anonymous Users
When working with anonymous users, you must be able to migrate anonymous users to registered
users. For example, after an end user fills a shopping cart, he can register on the site to purchase the
items. At that moment, the end user switches from being an anonymous user to a registered user.

For this reason, ASP.NET 2.0 provides a Profile_MigrateAnonymous event enabling you to migrate
anonymous users to registered users. The Profile_MigrateAnonymous event requires an event delegate
of type ProfileMigrateEventArgs. It is placed either in the page that deals with the migration or
within the Global.asax file (if it can be used from anywhere within the application). The use of this
event is illustrated in Listing 15-15.

Listing 15-15: Migrating anonymous users for particular personalization properties

VB
Public Sub Profile_MigrateAnonymous(ByVal sender As Object, _

ByVal e As ProfileMigrateEventArgs)

Profile.LastVisited = Profile.GetPropertyValue(e.AnonymousId).LastVisited

End Sub

C#
public void Profile_MigrateAnonymous(object sender,

ProfileMigrateEventArgs e)
{

Profile.LastVisited = Profile.GetPropertyValue(e.AnonymousId).LastVisited;
}

From this example, you populate the new Profile property with the old property. You get at the old
property of the anonymous user by using the GetPropertyValue property, which takes a parameter of
the ID of the anonymous user. From the Profile_MigrateAnonymous event, you still have access to the
AnonymousId property, which you can retrieve from the event delegate —ProfileMigrateEventArgs.

Listing 15-15 shows how to migrate a single personalization property from an anonymous user to the
new registered user. In addition to migrating single properties, you also can migrate properties that
come from personalization groups. This is shown in Listing 15-16.

Listing 15-16: Migrating anonymous users for items in personalization groups

VB
Public Sub Profile_MigrateAnonymous(ByVal sender As Object, _

ByVal e As ProfileMigrateEventArgs)

Dim au As HttpProfile = Profile.GetProfile(e.AnonymousId)

If au.MemberDetails.DateJoined <> “” Then
Profile.MemberDetails.DateJoined = DateTime.Now().ToString()
Profile.FamilyDetails.MarriedStatus = au.FamilyDetails.MarriedStatus

End If

End Sub

568

Chapter 15

18_576100 ch15.qxd 10/6/05 9:45 PM Page 568

C#
public void Profile_MigrateAnonymous(object sender,

ProfileMigrateEventArgs e)
{

HttpProfile au = Profile.GetProfile(e.AnonymousId);

if (au.MemberDetails.DateJoined != String.Empty) {
Profile.MemberDetails.DateJoined = DateTime.Now.ToString();
Profile.FamilyDetails.MarriedStatus = au.FamilyDetails.MarriedStatus;

}

}

Using this event either in the page or in the Global.asax file enables you to logically migrate anonymous
users as they register themselves with your applications. The migration process also allows you to pick and
choose which items you migrate and to change the values as you wish.

Personalizing Profiles
Besides working with anonymous users from the Global.asax file, you can also programmatically
personalize the profiles retrieved from the personalization store. This is done though the use of the
Profile_Personalize event. An example use of this event is shown in Listing 15-17.

Listing 15-17: Personalizing a retrieved profile

VB
Public Sub Profile_Personalize(sender As Object, args As ProfileEventArgs)

Dim checkedProfile As ProfileCommon

If User Is Nothing Then Return

checkedProfile = CType(ProfileBase.Create(User.Identity.Name), ProfileCommon)

If (Date.Now.IsDaylightSavingTime()) Then
checkedProfile = checkedProfile.GetProfile(“TimeDifferenceUser”)

Else
checkedProfile = checkedProfile.GetProfile(“TimeUser”)

End If

If Not checkedProfile Is Nothing Then _
args.Profile = checkedProfile

End Sub

C#
public void Profile_Personalize(object sender, ProfileEventArgs args)
{

(continued)

569

Personalization

18_576100 ch15.qxd 10/6/05 9:45 PM Page 569

Listing 15-17: (continued)

ProfileCommon userProfile;

if (User == null) { return; }

checkedProfile = (ProfileCommon)ProfileBase.Create(User.Identity.Name);

if (Date.Now.IsDaylightSavingTime()) {
checkedProfile = checkedProfile.GetProfile(“TimeDifferenceUser”);

}
else {

checkedProfile = checkedProfile.GetProfile(“TimeUser”);
}

if (userProfile != null) {
args.Profile = userProfile;

}
}

In this case, based on a specific parameter (whether it is Daylight Savings Time or something else), you
are able to assign a specific profile to the user. You do this by using the ProfileBase.Personalize
event, which you would usually stick inside the Global.asax page.

Determining Whether to Continue with Automatic Saves
When you are working with the profile capabilities provided by ASP.NET, the page automatically saves
the profile values to the specified data store at the end of the page’s execution. This capability, which is
turned on (set to True) by default, can be set to False through the use of the automaticSaveEnabled
attribute in the <profile> node in the web.config file.

Listing 15-18: Working with the automaticSaveEnabled attribute

<profile automaticSaveEnabled=”False”>

<properties>

<add name=”FirstName” />
<add name=”LastName” />
<add name=”LastVisited” />
<add name=”Age” />
<add name=”Member” />

</properties>

</profile>

If you have set the automaticSaveEnabled attribute value to False, you will have to invoke the
ProfileBase.Save() method yourself. In most cases though, you are going to leave this setting on
True. Once a page request has been made and finalized, the ProfileModule.ProfileAutoSaving
event is raised. This is an event that you can also work with, as shown in Listing 15-19.

570

Chapter 15

18_576100 ch15.qxd 10/6/05 9:45 PM Page 570

Listing 15-19: Using the ProfileAutoSaving event to turn off the auto-saving feature

VB
Public Sub Profile_ProfileAutoSaving(sender As Object, _
args As ProfileAutoSaveEventArgs)

If Profile.PaidDueStatus.HasChanged Then
args.ContinueWithProfileAutoSave = True

Else
args.ContinueWithProfileAutoSave = False

End If
End Sub

C#
public void Profile_ProfileAutoSaving(object sender, ProfileAutoSaveEventArgs args)
{

if (Profile.PaidDueStatus.HasChanged)
args.ContinueWithProfileAutoSave = true;

else
args.ContinueWithProfileAutoSave = false;

}

In this case, when the Profile_ProfileAutoSaving event is triggered, it is then possible to work within
this event and change some behaviors. Listing 15-19 looks to see if the Profile.PaidDueStatus property
has changed. If it has changed, the auto-saving feature of the profile system is continued; if the
Profile.PaidDueStatus hasn’t changed, the auto-saving feature is turned off.

Personalization Providers
As shown in Figure 15-1 earlier in the chapter, the middle tier of the personalization model, the person-
alization API layer, communicates with a series of default data providers. By default, the personalization
model uses Microsoft SQL Server Express Edition files for storing the personalization properties you
define. You are not limited to just this type of data store, however. You can also use the Microsoft SQL
Server data provider to allow you to work with Microsoft SQL Server 7.0, 2000, and SQL Server 2005.
Besides the Microsoft SQL Server data provider, the architecture also allows you to create your own data
providers if one of these data stores doesn’t fit your requirements.

Working with SQL Server Express Edition
The Microsoft SQL Server data provider does allow you to work with the new SQL Server Express Edition
files. The SQL Server data provider is the default provider used by the personalization system provided
by ASP.NET. When used with Visual Studio 2005, the IDE places the ASPNETDB.MDF file within your
application’s App_Data folder.

As you look through the machine.config file, notice the sections that deal with how the personalization
engine works with this database. In the first reference to the LocalSqlServer file that it works with, you
find a connection string to this file (shown in Listing 15-20) within the <connectionStrings> section of
the file.

571

Personalization

18_576100 ch15.qxd 10/6/05 9:45 PM Page 571

Listing 15-20: Adding a connection string to the SQL Server Express file

<configuration>

<connectionStrings>
<clear />
<add name=”LocalSqlServer”
connectionString=”data source=.\SQLEXPRESS;Integrated Security=SSPI;
AttachDBFilename=|DataDirectory|aspnetdb.mdf;User Instance=true”
providerName=”System.Data.SqlClient” />

</connectionStrings>

</configuration>

In this example, you see that a connection string with the name LocalSqlServer has been defined. The
location of the file, specified by the connectionString attribute, points to the relative path of the file.
This means that in every application you build that utilizes the new personalization capabilities, the
default SQL Server provider should be located in the application’s App_Data folder and have the name
of ASPNETDB.MDF.

The SQL Server Express file’s connection string is specified through the LocalSqlServer declaration
within this <connectionStrings> section. You can see the personalization engine’s reference to this in
the <profile> section within the machine.config file. The <profile> section includes a subsection
listing all the providers available to the personalization engine. This is shown in Listing 15-21.

Listing 15-21: Adding a new SQL Server data provider

<configuration>
<system.web>

<profile>
<providers>

<add name=”AspNetSqlProfileProvider”
connectionStringName=”LocalSqlServer” applicationName=”/”
type=”System.Web.Profile.SqlProfileProvider, System.Web,

Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a” />

</providers>
</profile>

</system.web>
</configuration>

From this, you can see that a provider is added by using the <add> element. Within this element, the
connectionStringName attribute points to what was declared in the <connectionString> attribute
from Listing 15-20.

You can specify an entirely different Microsoft SQL Server Express Edition file other than the one specified
in the machine.config file. First, create a connection string that points to a new SQL Server Express file

572

Chapter 15

18_576100 ch15.qxd 10/6/05 9:45 PM Page 572

that is a templated version of the ASPNETDB.mdb file. At this point, you can use <connectionString> to
point to this new file. If you change these values in the machine.config file, all the ASP.NET applications
that reside on the server will then use this specified file. If you make the changes only to the web.config
file, however, only the application using this particular web.config file uses this new data store. Other
applications on the server remain unchanged.

Working with Microsoft’s SQL Server
You will likely find it quite easy to work with the personalization framework using the SQL Server
Express files. But when you work with larger applications that require the factors of performance and
reliability, you should use the SQL Server personalization provider along with SQL Server 7.0, 2000, or
2005. If this data store is available, you should always try to use this option instead of the default SQL
Server Express Edition files.

If you worked with the SQL Server personalization provider using SQL Server Express files as explained
earlier, you probably found it easy to use. The personalization provider works right out of the box —
without any set up or configuration on your part. Using the SQL Server personalization provider with
a full-blown version of SQL Server, however, is a bit of a different story. Although it is not difficult to
work with, you must set up and configure your SQL Server before using it.

ASP.NET 2.0 provides a couple of ways to set up and configure SQL Server for the personalization
framework. The following sections look at two ways to achieve this task. One way is through the
ASP.NET SQL Server Setup Wizard, and the other method is by running some of the SQL Server
scripts provided with the .NET Framework 2.0.

Using the ASP.NET SQL Server Setup Wizard
The ASP.NET SQL Server Setup Wizard is an easy-to-use tool that facilitates setup of the SQL Server to
work with the personalization framework. The Setup Wizard provides two ways for you to set up the
database: using a command-line tool or using a GUI tool.

The ASP.NET SQL Server Setup Wizard Command-Line Tool
The command-line version of the Setup Wizard gives the developer optimal control over how the database
is created. Working from the command-line using this tool is not difficult, so don’t be intimidated by it.

You can get at the actual tool, aspnet_regsql.exe, from the Visual Studio Command Prompt if you
have Visual Studio 2005. You can find this command prompt at Start ➪ All Programs ➪ Microsoft Visual
Studio 2005 ➪ Visual Studio Tools ➪ Visual Studio Command Prompt. At the command prompt, type
aspnet_regsql.exe -? to get a list of all the available command-line options at your disposal for working
this tool.

The following table describes some of the available options for setting up your SQL Server instance to
work with the personalization framework.

573

Personalization

18_576100 ch15.qxd 10/6/05 9:45 PM Page 573

Command Option Description

-? Displays a list of available option commands.

-W Uses the Wizard mode. This uses the default
installation if no other parameters are used.

-S <server> Specifies the SQL Server instance to work with.

-U <login> The username to log in to SQL Server. If you use
this, you also use the -P command.

-P <password> The password to use for logging in to SQL Server.
If you use this, you also use the -U command.

-E Provides instructions to use the current Windows
credentials for authentication.

-C Specifies the connection string for connecting to
SQL Server. If you use this, you can avoid using the
-U and -P commands because they are specified in
the connection string itself.

-A all Adds support for all the available SQL Server
operations provided by ASP.NET 2.0 including
membership, role management, profiles, site
counters, and page/control personalization.

-A p Adds support for working with profiles.

_R all Removes support for all the available SQL Server
operations that have been previously installed. These
include membership, role management, profiles, site
counters, and page/control personalization.

-R p Removes support for the profile capability from
SQL Server.

-d <database> Specifies the database name to use with the
application services. If you don’t specify a name of
a database, aspnetdb is used.

/sqlexportonly <filename> Instead of modifying an instance of a SQL Server
database, use this command in conjunction with
the other commands to generate a SQL script that
adds or removes the features specified. This com-
mand creates the scripts in a file that has the name
specified in the command.

To modify SQL Server to work with the personalization provider using this command-line tool, you
enter a command such as the following:

aspnet_regsql.exe –A p –E

574

Chapter 15

18_576100 ch15.qxd 10/6/05 9:45 PM Page 574

After you enter the preceding command, the command-line tool creates the profile features required.
The results are shown in the tool itself, as you see in Figure 15-4.

Figure 15-4

When this action is completed, you can see that a new table, aspnetdb, has been created in the SQL
Server Enterprise Manager. You now have the appropriate tables for working with the personalization
framework (see Figure 15-5).

Figure 15-5

575

Personalization

18_576100 ch15.qxd 10/6/05 9:45 PM Page 575

The ASP.NET SQL Server Setup Wizard GUI Tool
Instead of working with this tool through the command-line, another option is to work with the same
wizard through a GUI version of it. To get at the GUI version, type the following at the Visual Studio
Command Prompt:

aspnet_regsql.exe

At this point, the ASP.NET SQL Server Setup Wizard welcome screen appears, as shown in Figure 15-6.

Figure 15-6

Clicking the Next button gives you a new screen that provides you with two options: one to install
management features into SQL Server and the other to remove them (see Figure 15-7).

From here, choose the Configure SQL Server for ASP.NET SQL Server Features and click the Next but-
ton. The third screen (see Figure 15-8) asks for the login credentials to SQL Server and the name of the
database to perform the operations. When you pull it up, the Database option is <default>— meaning
that the wizard creates a database called aspnetdb. If you want to choose a different folder, such as the
application’s database, choose the appropriate option.

576

Chapter 15

18_576100 ch15.qxd 10/6/05 9:45 PM Page 576

Figure 15-7

Figure 15-8

577

Personalization

18_576100 ch15.qxd 10/6/05 9:45 PM Page 577

After you have made your server and database selections, click Next. The screen shown in Figure 15-9
asks you to confirm your settings. If everything looks correct, click the Next button — otherwise, click
Back and correct your settings.

Figure 15-9

When this is complete, you get a notification that everything was set up correctly.

Using SQL Scripts to Install Personalization Features
Another option is to use the same SQL scripts that these tools and wizards use. If you look at
C:\Windows\Microsoft.NET\Framework\v2.0xxxxx\, from this location, you see the install and
remove scripts —InstallPersonalization.sql and UninstallPersonalization.sql. Running
these scripts provides your database with the tables needed to run the personalization framework.

Setting Up Your Application to Use a SQL Server Personalization Provider
Now SQL Server is set up to work with the personalization capabilities provided by ASP.NET 2.0. The
personalization framework understands how to work with SQL through settings in the machine.config
or web.config files.

578

Chapter 15

18_576100 ch15.qxd 10/6/05 9:45 PM Page 578

If you look in the machine.config file, you find that the connection string to SQL Server is specified in the
<connectionStrings> section of the document. This SQL Server connection string actually is constructed
to work with the SQL Server Express Edition files by default. To change it to work with SQL Server 2000 or
2005, you need to implement the code shown in Listing 15-22.

Listing 15-22: Changing the connection string in the machine.config file to work with
SQL Server 2000

<configuration>

<connectionStrings>
<add name=”LocalSql2000Server”
connectionString=”data source=127.0.0.1;Integrated Security=SSPI” />

</connectionStrings>

</configuration>

You may want to change the values provided if you are working with a remote instance of SQL Server
rather than an instance that resides on the same server as the application. Changing this value in the
machine.config file changes how each and every ASP.NET application uses this provider.

After the connection string is set up accordingly, look further in the <providers> section of the <profile>
element. You see the settings for SQL Server, as shown in Listing 15-23.

Listing 15-23: Adding a custom SQL Server data provider

<configuration>
<system.web>

<profile>
<providers>

<clear />
<add name=”AspNetSql2000ProfileProvider”
connectionStringName=”LocalSql2000Server” applicationName=”/”
type=”System.Web.Profile.SqlProfileProvider, System.Web,

Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a” />

</providers>
</profile>

</system.web>
</configuration>

With these changes, SQL Server is now added as one of available providers to use with your applica-
tions. The name of this provider instance is AspNetSql2000Provider. You can see that this instance
also uses the connection string of LocalSql2000Server, which was defined in Listing 15-22.

579

Personalization

18_576100 ch15.qxd 10/6/05 9:45 PM Page 579

580

Chapter 15

Now that the SQL Server provider is configured, in place, and ready to use, you can further define that
this is the provider to use. You make a minor change to the web.config file of your application to
enable it to take advantage of what you have established. Listing 15-24 shows the <profile> section of
the web.config file.

Listing 15-24: Specifying SQL Server as the provider in the web.config file

<configuration>
<system.web>

<profile defaultProvider=”AspNetSql2000Provider”>

<properties>

<add name=”FirstName” />
<add name=”LastName” />
<add name=”LastVisited” />
<add name=”Age” />
<add name=”Member” />

</properties>

</profile>

</system.web>
</configuration>

The only change necessary is to use the defaultProvider attribute and give it a value that is the
name of the provider you want to use — in this case the newly created SQL Server provider,
AspNetSql2000Provider. You can also make this change to the machine.config file by changing
the <profile> element, as shown in Listing 15-25.

Listing 15-25: Using SQL Server as the provider in the machine.config file

<configuration>
<system.web>

...

<profile enabled=”true” defaultProvider=”AspNetSql2000Provider”>

...

</profile>

...

</system.web>
</configuration>

This change forces each and every application that resides on this server to use this new SQL Server
provider instead of the default SQL Server provider (unless this command is overridden in the application’s
web.config file).

18_576100 ch15.qxd 10/6/05 9:45 PM Page 580

Using Multiple Providers
You are not limited to using a single data store or provider. Instead, you can use any number of
providers. You can even specify the personalization provider for each property defined. This means that
you can use the default provider for most properties, as well as allowing a few of them use an entirely
different provider (see Listing 15-26).

Listing 15-26: Using different providers

<configuration>
<system.web>

<profile
defaultProvider=”AspNetSqlProvider”>

<properties>

<add name=”FirstName” />
<add name=”LastName” />
<add name=”LastVisited” />
<add name=”Age” />
<add name=”Member” provider=”AspNetSql2000Provider” />

</properties>

</profile>

</system.web>
</configuration>

From this example, you can see that a default provider is specified —AspNetSqlProvider. Unless specified
otherwise, this provider is used. The only property that changes this setting is the property Member. The
Member property uses an entirely different personalization provider. In this case, it employs the Access
provider (AspNetSql2000Provider) through the use of the provider attribute of the <add> element.
With this attribute, you can define a specific provider for each and every property that is defined.

Summary
The new personalization capabilities provided by ASP.NET 2.0 make it incredibly easy to make your Web
applications unique for all end users, whether they are authenticated or anonymous. This new system
enables you to store everything from basic data types provided by the .NET Framework to custom types
that you create. This system is more versatile and extensible than using the Session or Application
objects. The data is stored via a couple of built-in personalization providers that ship with ASP.NET. These
providers include ones that connect with either Microsoft’s SQL Server Express Edition files or Microsoft
SQL Server 2005, 2000, or 7.0.

581

Personalization

18_576100 ch15.qxd 10/6/05 9:45 PM Page 581

18_576100 ch15.qxd 10/6/05 9:45 PM Page 582

Membership and Role
Management

The authentication and authorization of users are important functions in many Web sites and
browser-based applications. Traditionally, when working with Microsoft’s Windows Forms
applications (thick-client), you depended on Windows Integrated Authentication; when working
with browser-based applications (thin-client), you used forms authentication.

Forms authentication enabled you to take requests that were not yet authenticated and redirect
them to an HTML form using HTTP client-side redirection. The user provided his login information
and submitted the form. After the application authenticated the request, the user received an HTTP
cookie, which was then used on any subsequent requests. This kind of authentication was fine in
many ways, but it required developers to build every element and even manage the back-end
mechanics of the overall system. This was a daunting task for many developers and, in most cases,
it was rather time-consuming.

ASP.NET 2.0 introduces a new authentication and authorization management service that takes care
of the login, authentication, authorization, and management of users who require access to your
Web pages or applications. This outstanding new membership and role management service is an easy-
to-implement framework that works out of the box using Microsoft SQL Server as the back-end
data store. This new framework also includes a new API that allows for programmatic access to the
capabilities of both the membership and role management services. In addition, a number of new
server controls make it easy to create Web applications that incorporate everything these services
have to offer.

Before you look at the new membership and role management features of ASP.NET 2.0, here’s a
quick review of authentication and authorization.

19_576100 ch16.qxd 10/6/05 9:47 PM Page 583

Authentication
Authentication is a process that determines the identity of a user. After a user has been authenticated, a
developer can determine if the identified user has authorization to proceed. It is impossible to give an
entity authorization if no authentication process has been applied. Authentication is provided in ASP.NET
2.0 through the use of the new membership service.

Authorization
Authorization is the process determining whether an authenticated user is allowed access to any part of
an application, access to specific points of an application, or access only to specific datasets that the
application provides. Authenticating and authorizing users or groups enable you to customize a site
based on user types or preferences. Authorization is provided in ASP.NET 2.0 through the use of a new
role management service.

ASP.NET 2.0 Authentication
ASP.NET 2.0 provides the membership management service to deal with authenticating users to access a
page or an entire site. The new ASP.NET management service not only provides a new API suite for
managing users, but it also gives you some new server controls. These new server controls work with the
end user through the process of authentication. Shortly, you look at the functionality of these controls.

Setting Up Your Web Site for Membership
Before you can use the security controls that are provided with ASP.NET 2.0, you first have to set up
your application to work with the new membership service. How you do this depends on how you
approach the security framework provided.

By default, ASP.NET 2.0 uses the built-in AspNetSqlProvider for storing details about the registered users
of your application. Also, for the initial demonstrations, you work with forms authentication. Let’s
assume that the application is open to the public for registration and viewing. If it were an intranet-based
application (meaning that all the users are on a particular network), you could use Windows Integrated
Authentication for authenticating users.

ASP.NET 2.0, as you know, offers a data provider model that handles the detailed management required
to interact with multiple types of underlying data stores. Figure 16-1 shows a diagram of the new
ASP.NET 2.0 membership service.

From the diagram, you can see that, like the rest of the ASP.NET 2.0 provider models, the membership
providers can access a wide variety of underlying data stores. In this diagram, you can see the built-in
Microsoft SQL Server data store. You can also build your own membership providers to get at any other
custom data stores that work with user credentials. Above the membership providers in the diagram,
you can see a list of security server controls that utilize the access granted by providers to work with the
users in the authentication process.

584

Chapter 16

19_576100 ch16.qxd 10/6/05 9:47 PM Page 584

Figure 16-1

Adding an <authentication> Element to the web.config File
To allow forms authentication in your Web application for the new membership service, the first step is
to turn on this feature from the web.config file. So create a web.config file if you don’t already have
one. Then, add the section shown in Listing 16-1 to the file.

Listing 16-1: Adding forms authentication to the web.config file

<?xml version=”1.0” encoding=”utf-8”?>
<configuration>

<system.web>
<authentication mode=”Forms” />

</system.web>
</configuration>

The simple addition of the <authentication> element to the web.config file turns on everything
that you need to start using the membership service provided by ASP.NET 2.0. To turn on the forms
authentication using this element, you simply give the value Forms to the mode attribute. This is a
forms authentication example, but other possible values of the mode attribute include Windows,
Passport, or None.

IIS authentication schemes include basic, digest, and Integrated Windows Authentication. Passport
authentication points to a centralized service provided by Microsoft that offers a single login and core
profile service for any member sites. It costs money to use Passport, which has recently been depreciated
by Microsoft.

Server Controls

Membership Server Controls
<asp:Login>, etc.

API

Membership API

Membership Providers

AspNetSqlProvider Custom Provider

Data Stores

SQL Server Custom

585

Membership and Role Management

19_576100 ch16.qxd 10/6/05 9:47 PM Page 585

Because the mode attribute in our example is set to Forms, you can move on to the next step of adding
users to the data store. You can also change the behavior of the forms authentication system at this point
by making some modifications to the web.config file. These possibilities are reviewed next.

Adding a <forms> Element to the web.config File
Using forms authentication, you can provide users with access to a site or materials based upon credentials
they input into a Web-based form. When an end user attempts to access a Web site, he is entering the site
using anonymous authentication, which is the default authentication mode. If he is found to be anonymous,
he can be redirected (by ASP.NET) to a specified login page. After the end user passes the authentication
process, he is provided with an HTTP cookie, which can be used in any subsequent requests.

You can see the possibilities of the forms authentication setting in Listing 16-2, which shows possible
changes to the web.config file.

Listing 16-2: Modifying the forms authentication behavior

<?xml version=”1.0” encoding=”utf-8”?>
<configuration>

<system.web>
<authentication mode=”Forms”>

<forms name=”.ASPXAUTH”
loginUrl=”login.aspx”
protection=”All”
timeout=”30”
path=”/”
requireSSL=”false”
slidingExpiration=”true”
cookieless=”useDeviceProfile” />

</authentication>
</system.web>

</configuration>

You can set these as you wish, and you have plenty of options for values other than the ones that are
displayed. Also, as stated earlier, these values are not required. You can use the membership service right
away with only what was shown in Listing 16-1.

You can find some interesting settings in Listing 16-2, however. You can change how the forms
authentication system works by adding a <forms> element to the web.config file. Make sure that you
have the <forms> element nested within the <authentication> elements. The following list describes
the possible attributes of the <forms> element:

❑ name: Defines the name used for the cookie sent to end users after they have been authenticated.
By default, this cookie is named .ASPXAUTH.

❑ loginUrl: Specifies the page location to which the HTTP request is redirected for login if no
valid authentication cookie (.ASPXAUTH or otherwise) is found. By default, it is set to
login.aspx.

❑ protection: Specifies the amount of protection that you want to apply to the cookie that is
stored on the end user’s machine after he has been authenticated. The possible settings include
All, None, Encryption, and Validation. You should always attempt to use All.

586

Chapter 16

19_576100 ch16.qxd 10/6/05 9:47 PM Page 586

❑ timeout: Defines the amount of time (in minutes) after which the cookie expires. The default
value is 30 minutes.

❑ path: Specifies the path for cookies issued by the application.

❑ requireSSL: Defines whether you require that credentials be sent over an encrypted wire (SSL)
instead of clear text.

❑ slidingExpiration: Specifies whether the timeout of the cookie is on a sliding scale. The
default value is True. This means that the end user’s cookie does not expire until 30 minutes (or
the time specified in the timeout attribute) after the last request to the application has been
made. If the value of the slidingExpiration attribute is set to False, the cookie expires 30
minutes from the first request.

❑ cookieless: Specifies how the cookies are handled by ASP.NET. The possible values include
useDeviceProfile, useCookies, auto, and useUri. The default value is useDeviceProfile.
This value detects whether to use cookies based on the user agent of the device. useCookies
requires that all requests have the credentials stored in a cookie. auto auto-determines whether
the details are stored in a cookie on the client or within the URI (this is done by sending a test
cookie first). Finally, useUri forces ASP.NET to store the details within the URI on all instances.

Now that forms authentication is turned on, the next step is adding users to the Microsoft Access data
store.

Adding Users
To add users to the membership service, you can register users into the Microsoft SQL Server Express
Edition data store. The first question you might ask is, “Where is this data store?”

The Microsoft SQL Server provider can use a SQL Server Express Edition file that is structured specifically
for the membership service (and other ASP.NET systems). Visual Studio 2005 is set to create this particular
file for you. To accomplish this task, you work with the ASP.NET server controls that utilize the membership
service to force the creation of this file. If a SQL Server Express Edition file is needed by the application,
Visual Studio will create this file on your behalf in the App_Data folder.

Once the data store is in place, it is time to start adding users to the data store.

Using the CreateUserWizard Server Control
The first server control that utilizes the membership service is the CreateUserWizard server control. You
can find this and the other controls mentioned in this chapter under the Login section in the Visual
Studio Toolbox. The CreateUserWizard control enables you to plug registered users into your data store
for later retrieval. If a page in your application allows end users to register for your site, you want, at a
minimum, to retrieve a login and password from the user so that he can use these items later to log in to
the site.

To make your life as simple as possible, the CreateUserWizard control takes complete control of doing
all these things. Listing 16-3 shows a simple use of the control.

587

Membership and Role Management

19_576100 ch16.qxd 10/6/05 9:47 PM Page 587

Listing 16-3: Allowing end users to register with the site

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Creating Users</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:CreateUserWizard ID=”CreateUserWizard1” Runat=”server”
BorderWidth=”1px” BorderColor=”#FFDFAD” BorderStyle=”Solid”
BackColor=”#FFFBD6” Font-Names=”Verdana”>

<TitleTextStyle Font-Bold=”True” BackColor=”#990000”
ForeColor=”White”></TitleTextStyle>

</asp:CreateUserWizard>
</form>

</body>
</html>

This page simply uses the CreateUserWizard control and nothing more. This one control enables you to
register end users. This particular CreateUserWizard control has a little style applied to it, but this control
can be as simple as:

<asp:CreateUserWizard ID=”CreateUserWizard1” Runat=”server”>
</asp:CreateUserWizard>

When this code is run, an end user is presented with the form shown in Figure 16-2.

Figure 16-2

588

Chapter 16

19_576100 ch16.qxd 10/6/05 9:47 PM Page 588

This screen shot shows the form as it would appear when filled out by the end user and includes user
information such as the username, password, e-mail address, as well as the security question-and-answer
section. Clicking the Create User button places this user information into the data store.

The username and password enable the end user to log in to the application through the login server
control. A Confirm Password text box is also included in the form to ensure that the password is spelled
correctly. An e-mail address is included in case end users forget their login credentials and want the
credentials e-mailed to them. Then finally, the security question and answer are used to verify the
identity of the end user before any credentials or user information is changed.

After the Create User button is clicked, the end user is presented with a confirmation of the information
being stored (see Figure 16-3).

Figure 16-3

Seeing Where Users Are Stored
Now that the CreateUserWizard control has been used to add a user to the membership service, take a
look at where this information is stored. If you used Visual Studio to create the Microsoft SQL Server
Express Edition file in which you want to store the user information, the file is created when the previ-
ous example is run and you complete the form process as shown in the figures. When the example is run
and completed, you can click the Refresh button in the Solution Explorer to find the ASPNETDB.MDF file,
which is located in the App_Data folder of your project. Many different tables are included in this file,
but you are interested in the aspnet_Membership table only.

When you open the aspnet_Membership table (by right-clicking on the table in the Database Explorer
and selecting Show Table Data), the users you entered are in the system. This is shown in Figure 16-4.

589

Membership and Role Management

19_576100 ch16.qxd 10/6/05 9:47 PM Page 589

Figure 16-4

The user password in this table is not stored as clear text; instead, it is hashed. When a user logs into an
application that is using the ASP.NET 2.0 membership service, his or her password is immediately
hashed and then compared to the hashed password stored in the database. If the two hashed strings do
not compare, the passwords are not considered a match. Storing clear text passwords is considered a
security risk.

Here is a note in regard to the passwords used in ASP.NET 2.0. If you are having difficulty entering users
because of a password error, it might be because, by default, ASP.NET requires strong passwords. All
passwords input into the system must be at least eight characters, and contain at least one number, one
non-alphanumeric character (such as [], !, @, #, $), as well as one uppercase and one lowercase letter.
Whew! An example password of this combination is

Bevjen7777$

Although this type of password is a heck of a lot more secure, a password like this is sometimes difficult
to remember. You can actually change how the membership provider works so that it doesn’t require
passwords as difficult as this by reworking the membership provider in the web.config file, as
illustrated here in Listing 16-4.

590

Chapter 16

19_576100 ch16.qxd 10/6/05 9:47 PM Page 590

Listing 16-4: Modifying the membership provider in web.config

<configuration>
<system.web>

<membership>
<providers>

<clear />
<add name=”AspNetSqlMembershipProvider”
type=”System.Web.Security.SqlMembershipProvider, System.Web,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”
connectionStringName=”LocalSqlServer”
requiresQuestionAndAnswer=”false”
requiresUniqueEmail=”true”
passwordFormat=”Hashed”
minRequiredNonalphanumericCharacters=”0”
minRequiredPasswordLength=”3” />

</providers>
</membership>

</system.web>
</configuration>

In this example, we have reworked the membership provider for SQL Server so that it doesn’t actually
require any non-alphanumeric characters and allows passwords as small as three characters in length. You
do this by using the minRequiredNonalphanumericCharacters and minRequiredPasswordLength
attributes. With these in place, you can now create users with these password rules as set forth in these
configuration settings. Modifying the membership provider is covered in more detail later in this chapter.

Working with the CreateUserWizard Control
When you work with the CreateUserWizard control, be aware of the ContinueButtonClick and the
CreatedUser events. The ContinueButtonClick event is triggered when the Continue button on
the second page is clicked after the user has been successfully created (see Listing 16-5).

Listing 16-5: The ContinueButtonClick event

VB
Protected Sub CreateUserWizard1_ContinueButtonClick(ByVal sender As Object, _

ByVal e As System.EventArgs)

Response.Redirect(“Default.aspx”)
End Sub

C#
protected void CreateUserWizard1_ContinueButtonClick(object sender, EventArgs e)
{

Response.Redirect(“Default.aspx”);
}

In this example, after the user has been added to the membership service through the form provided by the
CreateUserWizard control, she can click the Continue button to be redirected to another page in the
application. This is done with a simple Response.Redirect statement. Remember when you use this

591

Membership and Role Management

19_576100 ch16.qxd 10/6/05 9:47 PM Page 591

event, that you must add an OnContinueButtonClick=”CreateUserWizard1_ContinueButtonClick”
to the <asp:CreateUserWizard> control.

The CreateUser event is triggered when a user is successfully created in the data store. The use of this
event is shown in Listing 16-6.

Listing 16-6: The CreateUser event

VB
Protected Sub CreateUserWizard1_CreateUser(ByVal sender As Object, _

ByVal e As System.EventArgs)

‘ Code here
End Sub

C#
protected void CreateUserWizard1_CreateUser(object sender, EventArgs e)
{

// Code here
}

Use this event if you want to take any additional actions when a user is registered to the service.

Incorporating Personalization Properties in the Registration Process
As you saw in the previous chapter on personalization, it’s fairly simple to use the new personalization
management system that comes with ASP.NET 2.0 and store user-specific details. The registration process
provided by the CreateUserWizard control is an ideal spot to retrieve this information from the user to
store directly in the personalization system. The retrieval isn’t too difficult to incorporate into your code.

The first step, as you learned in the previous chapter on personalization, is to have some personalization
points defined in the application’s web.config file. This is shown in Listing 16-7.

Listing 16-7: Creating personalization properties in the web.config file

<configuration>
<system.web>

<profile>

<properties>

<add name=”FirstName” />
<add name=”LastName” />
<add name=”LastVisited” />
<add name=”Age” />
<add name=”Member” />

</properties>

</profile>

</system.web>
</configuration>

592

Chapter 16

19_576100 ch16.qxd 10/6/05 9:47 PM Page 592

Now that these properties are defined in the web.config file, you can use them to create users in the
ASP.NET membership system. Using the CreateUserWizard control, you can create a process that
requires the user to enter his preferred username and password in the first step, and then the second step
asks for these custom-defined personalization points. Listing 16-8 shows a CreateUserWizard control
that incorporates this idea.

Listing 16-8: Using personalization properties with the CreateUserWizard control

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Protected Sub CreateUserWizard1_CreatedUser(ByVal sender As Object, _

ByVal e As System.EventArgs)

Profile.FirstName = Firstname.Text
Profile.LastName = Lastname.Text
Profile.Age = Age.Text

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head id=”Head1” runat=”server”>

<title>Creating Users with Personalization</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:CreateUserWizard ID=”CreateUserWizard1” Runat=”server”
BorderWidth=”1px” BorderColor=”#FFDFAD” BorderStyle=”Solid”
BackColor=”#FFFBD6” Font-Names=”Verdana”
LoginCreatedUser=”true” OnCreatedUser=”CreateUserWizard1_CreatedUser” >

<WizardSteps>
<asp:WizardStep ID=”WizardStep1” Runat=”server”
Title=”Additional Information” StepType=”Start”>

<table width=”100%”><tr><td>
Firstname: </td><td>
<asp:TextBox ID=”Firstname” Runat=”server”></asp:TextBox>
</td></tr><tr><td>
Lastname: </td><td>
<asp:TextBox ID=”Lastname” Runat=”server”></asp:TextBox>
</td></tr><tr><td>
Age: </td><td>
<asp:TextBox ID=”Age” Runat=”server”></asp:TextBox>
</td></tr></table>

</asp:WizardStep>
<asp:CreateUserWizardStep Runat=”server”
Title=”Sign Up for Your New Account”>

</asp:CreateUserWizardStep>
<asp:CompleteWizardStep Runat=”server” Title=”Complete”>
</asp:CompleteWizardStep>

</WizardSteps>
<StepStyle BorderColor=”#FFDFAD” Font-Names=”Verdana”
BackColor=”#FFFBD6” BorderStyle=”Solid”
BorderWidth=”1px”></StepStyle>

(continued)

593

Membership and Role Management

19_576100 ch16.qxd 10/6/05 9:47 PM Page 593

Listing 16-8: (continued)

<TitleTextStyle Font-Bold=”True” BackColor=”#990000”
ForeColor=”White”></TitleTextStyle>

</asp:CreateUserWizard>
</form>

</body>
</html>

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
protected void CreateUserWizard1_CreatedUser(object sender, EventArgs e)
{

Profile.FirstName = Firstname.Text;
Profile.LastName = Lastname.Text;
Profile.Age = Age.Text;

}
</script>

With this change to the standard registration process as is defined by a default instance of the
CreateUserWizard control, your registration system now includes the request for properties stored using
the Profile object. You can define a custom step within the CreateUserWizard control by using the
<WizardSteps> element. Within this element, you can construct a series of registration steps in
whatever fashion you choose. From the <WizardSteps> section, shown in Listing 16-7, you can see that
three steps are defined. The first is the custom step in which the end user’s personalization properties are
requested with the <asp:WizardStep> control. Within the <asp:WizardStep> control, a table is laid
out and a custom form is created.

Two additional steps are defined within Listing 16-7: a step to create the user (using the
<asp:CreateUserWizardStep> control) and a step to confirm the creation of a new user (using
the <asp:CompleteWizardStep> control). The order in which these steps appear is the order in
which they are presented to the end user.

After the steps are created the way you want, you can then store the custom properties using the
CreateUserWizard control’s CreatedUser event:

Sub CreateUserWizard1_CreatedUser(ByVal sender As Object, _
ByVal e As System.EventArgs)

Profile.FirstName = Firstname.Text
Profile.LastName = Lastname.Text
Profile.Age = Age.Text

End Sub

You are not limited to having a separate step in which you ask for personal bits of information; you can
incorporate these items directly into the <asp:CreateUserWizardStep> step itself. An easy way to do

594

Chapter 16

19_576100 ch16.qxd 10/6/05 9:47 PM Page 594

this is to switch to the Design view of your page and pull up the smart tag for the CreateUserWizard
control. Then click the Customize Create User Step link (shown in Figure 16-5).

Figure 16-5

Clicking on the Customize Create User Step details the contents of this particular step within a new
<ContentTemplate> section that is now contained within the <asp:CreateUserWizardStep> control.
Within the <ContentTemplate> element, you can now see the complete default form used for creating a
new user. At this point, you are free to change the form by adding your own sections that request the
end user’s personal information. From this detailed form, you can also remove items. For instance, if
you are not interested in asking for the security question and answer, you can remove these two items
from the form. By changing this default form, you can completely customize the registration process for
your end users (see Figure 16-6).

Adding Users Programmatically
You are not limited to using only server controls to register or add new users to the membership service.
ASP.NET 2.0 provides a Membership API for performing this task programmatically. This is ideal to create
your own mechanics for adding users to the service — or if you are modifying a Web application that was
created using ASP.NET 1.0/1.1.

595

Membership and Role Management

19_576100 ch16.qxd 10/6/05 9:47 PM Page 595

Figure 16-6

The Membership API includes the CreateUser method for adding users to the service. The CreateUser
method includes four possible signatures:

Membership.CreateUser(username As String, password As String)

Membership.CreateUser(username As String, password As String,
email As String)

Membership.CreateUser(username As String, password As String,
email As String, passwordQuestion As String,
passwordAnswer As String, isApproved As Boolean,
ByRef status As System.Web.Security.MembershipCreateStatus)

Membership.CreateUser(username As String, password As String,
email As String, passwordQuestion As String,
passwordAnswer As String, isApproved As Boolean, providerUserKey As Object
ByRef status As System.Web.Security.MembershipCreateStatus)

You can use this method to create users. The nice thing about this method is that you aren’t required to
create an instance of the Membership class; you use it directly. A simple use of the CreateUser method is
illustrated in Listing 16-9.

596

Chapter 16

19_576100 ch16.qxd 10/6/05 9:47 PM Page 596

Listing 16-9: Creating users programmatically

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Protected Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)

Try
Membership.CreateUser(TextBox1.Text, TextBox2.Text)
Label1.Text = “Successfully created user “ & TextBox1.Text

Catch ex As MembershipCreateUserException
Label1.Text = “Error: “ & ex.ToString()

End Try
End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Creating a User</title>
</head>
<body>

<form id=”form1” runat=”server”>
<h1>Create User</h1>
<p>Username

<asp:TextBox ID=”TextBox1” Runat=”server”></asp:TextBox>
</p>
<p>Password

<asp:TextBox ID=”TextBox2” Runat=”server”
TextMode=”Password”></asp:TextBox>

</p>
<p>

<asp:Button ID=”Button1” Runat=”server” Text=”Create User”
OnClick=”Button1_Click” />

</p>
<p>

<asp:Label ID=”Label1” Runat=”server”></asp:Label>
</p>

</form>
</body>
</html>

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
protected void Button1_Click(object sender, EventArgs e)
{

try
{

Membership.CreateUser(TextBox1.Text.ToString(),
TextBox2.Text.ToString());

(continued)

597

Membership and Role Management

19_576100 ch16.qxd 10/6/05 9:47 PM Page 597

Listing 16-9: (continued)

Label1.Text = “Successfully created user “ + TextBox1.Text;
}
catch (MembershipCreateUserException ex)
{

Label1.Text = “Error: “ + ex.ToString();
}

}
</script>

So, use either the CreateUserWizard control or the CreateUser method found in the Membership API
to create users for your Web applications with relative ease. This functionality was possible in the past
with ASP.NET 1.0/1.1, but it was a labor-intensive task. Now with ASP.NET 2.0, you can create users
with either a single control or with a single line of code.

Changing How Users Register with Your Application
You determine how users register with your applications and what is required of them by the membership
provider you choose. You will find a default membership provider and its applied settings is established
within the machine.config file. If you dig down in the machine.config file on your server, you find the
following code (shown in Listing 16-10).

Listing 16-10: Membership provider settings in the machine.config file

<membership>
<providers>

<add name=”AspNetSqlMembershipProvider”
type=”System.Web.Security.SqlMembershipProvider, System.Web,

Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”
connectionStringName=”LocalSqlServer”
enablePasswordRetrieval=”false”
enablePasswordReset=”true”
requiresQuestionAndAnswer=”true”
applicationName=”/”
requiresUniqueEmail=”false”
passwordFormat=”Hashed”
maxInvalidPasswordAttempts=”5”
passwordAttemptWindow=”10”
passwordStrengthRegularExpression=”” />

</providers>
</membership>

This section of the machine.config file shows the default membership provider that comes with
ASP.NET 2.0 — the AspNetSqlProvider. If you are going to add any additional membership providers for
use on a server-wide scale, you are going to want to add this provider to this <membership> section of
the machine.config file.

The important attributes of the AspNetSqlMembershipProvider definition include the
enablePasswordRetrieval, enablePasswordReset, requiresQuestionAndAnswer,
requiresUniqueEmail, and PasswordFormat attributes. The following table defines these
attributes.

598

Chapter 16

19_576100 ch16.qxd 10/6/05 9:47 PM Page 598

Attribute Description

enablePasswordRetrieval Defines whether the provider supports password
retrievals. This attribute takes a Boolean value.
The default value is False.

enablePasswordReset Defines whether the provider supports password
resets. This attribute takes a Boolean value. The
default value is True. When it is set to False,
passwords cannot be retrieved although they can
be changed with a new random password.

requiresQuestionAndAnswer Specifies whether the provider should require a
question-and-answer combination when a user is
created. This attribute takes a Boolean value, and
the default value is False.

requiresUniqueEmail Defines whether the provider should require a
unique e-mail to be specified when the user is
created. This attribute takes a Boolean value, and
the default value is False. When set to True, only
unique e-mail addresses can be entered into the
data store.

passwordFormat Defines the format in which the password is stored
in the data store. The possible values include
Hashed, Clear, and Encrypted. The default value
is Hashed. Hashed passwords use SHA1, whereas
encrypted passwords use Triple-DES encryption.

In addition to having these items defined in the machine.config file, you can also redefine them in the
web.config file.

Asking for Credentials
After you have users that can access your Web application using the new membership service provided
by ASP.NET 2.0, you can then give these users the means to log in to the site. This requires little work on
your part. Before you learn the controls that enable users to access your applications, you should make a
few more modifications to the web.config file.

Turning Off Access with the <authorization> Element
After you make the changes to the web.config file by adding the <authorization> and <forms> ele-
ments (Listings 16-1 and 16-2), your Web application is accessible to each and every user that browses to
any page your application contains. To prevent open access, you have to deny unauthenticated users
access to the pages of your site.

Denying unauthenticated users access to your site is illustrated in Listing 16-11.

599

Membership and Role Management

19_576100 ch16.qxd 10/6/05 9:47 PM Page 599

Listing 16-11: Denying unauthenticated users

<?xml version=”1.0” encoding=”utf-8”?>
<configuration>

<system.web>
<authentication mode=”Forms” />
<authorization>

<deny users=”?” />
</authorization>

</system.web>
</configuration>

Using the <authentication> and <deny> elements, you can deny specific users access to your Web
application — or (as in this case) simply deny every unauthenticated user (this is what the question mark
signifies).

Now that everyone but authenticated users has been denied access to the site, you want to make it easy
for viewers of your application to become authenticated users. To do so, use the Login server control.

Using the Login Server Control
The Login server control enables you to turn unauthenticated users into authenticated users by allowing
them to provide login credentials that can be verified in a data store of some kind. In the examples so far,
you have used Microsoft SQL Server Express Edition as the data store, but you can just as easily use the
full-blown version of Microsoft’s SQL Server.

The first step in using the Login control is to create a new Web page titled Login.aspx. This is the default
page to which unauthenticated users are redirected in order to obtain their credentials. Remember that
you can change this behavior by changing the value of the <forms> element’s loginUrl attribute in the
web.config file.

The Login.aspx page simply needs an <asp:Login> control to give the end user everything he needs
to become authenticated, as illustrated in Listing 16-12.

Listing 16-12: Providing a login for the end user using the Login control

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Login Page</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:Login ID=”Login1” Runat=”server”>
</asp:Login>

</form>
</body>
</html>

600

Chapter 16

19_576100 ch16.qxd 10/6/05 9:47 PM Page 600

In the situation established here, if the unauthenticated user hits a different page in the application, he is
redirected to the Login.aspx page. You can see how ASP.NET tracks the location in the URL from the
address bar in the browser:

http://localhost:18436/Membership/login.aspx?ReturnUrl=%2fMembership%2fDefault.aspx

The login page, using the Login control, is shown in Figure 16-7.

Figure 16-7

From this figure, you can see that the Login control asks the user for a username and password. A check
box allows for a cookie to be stored on the client machine. This cookie enables the end user to bypass
future logins. You can remove the check box and related text created to remember the user by setting the
Login control’s DisplayRememberMe property to False.

In addition to the DisplayRememberMe property, you can work with this aspect of the Login control by
using the RememberMeText and the RememberMeSet properties. The RememberMeText property is pretty
self-explanatory because its value simply defines the text set next to the check box. The RememberMeSet
property, however, is fairly interesting. The RememberMeSet property takes a Boolean value (by default, it
is set to False) that specifies whether to set a persistent cookie on the client’s machine after a user has
logged in using the Login control. If set to True when the DisplayRememberMe property is also set to
True, the check box is simply checked by default when the Login control is generated in the browser. If the
DisplayRememberMe property is set to False (meaning the end user does not see the check box or cannot
select the option of persisting the login cookie) and the RememberMeSet is set to True, a cookie is set on the
user’s machine automatically without the user’s knowledge or choice in the matter. This cookie remains on
the client’s machine until the user logs out of the application (if this option is provided). With the persisted
cookie, and assuming the end user has not logged out of the application, the user never needs to log in
again when he returns to the application because his credentials are provided by the contents found in the
cookie. After the end user has logged in to the application, he is returned to the page he originally intended
to access.

601

Membership and Role Management

19_576100 ch16.qxd 10/6/05 9:47 PM Page 601

You can also modify the look-and-feel of the Login control just as you can for the other controls. One way
to do this is by clicking the Auto Format link in the control’s smart tag. There you find a list of options for
modifying the look-and-feel of the control (see Figure 16-8).

Figure 16-8

Select the Elegant option, for example, and the code is modified. Listing 16-13 shows the code gener-
ated for this selection.

Listing 16-13: A formatted Login control

<asp:Login ID=”Login1” Runat=”server” BorderWidth=”1px” BorderColor=”#CCCC99”
BorderStyle=”Solid” BackColor=”#F7F7DE” Font-Names=”Verdana” Font-Size=”10pt”>

<TitleTextStyle Font-Bold=”True” BackColor=”#6B696B”
ForeColor=”#FFFFFF”></TitleTextStyle>

</asp:Login>

From this listing, you can see that the <InstructionTextStyle> and the <TitleTextStyle> subelements
are used to modify those particular items displayed by the control. The available styling elements for the
Login control include the following:

❑ <CheckboxStyle>

❑ <FailureTextStyle>

❑ <HyperLinkStyle>

❑ <InstructionTextStyle>

❑ <LabelStyle>

❑ <LoginButtonStyle>

❑ <TextBoxStyle>

❑ <TitleTextStyle>

❑ <ValidatorTextStyle>

602

Chapter 16

19_576100 ch16.qxd 10/6/05 9:47 PM Page 602

The Login control has numerous properties that allow you to alter how the control appears and behaves.
An interesting change you can make is to add some links at the bottom of the control to provide access
to additional resources. With these links, you can give users the capability to get help or register for the
application so that they can be provided with log-in credentials.

Here are some links you can provide:

❑ The capability to be redirected to a help page using the HelpPageText, HelpPageUrl, and
HelpPageIconUrl properties.

❑ The capability to be redirected to a registration page using the CreateUserText,
CreateUserUrl, and CreateUserIconUrl properties.

❑ The capability to be redirected to a page that allows end users to recover their forgotten
passwords using the PasswordRecoveryText, PasswordRecoveryUrl, and
PasswordRecoveryIconUrl properties.

When used, the Login control looks like what’s shown in Figure 16-9.

Figure 16-9

Logging In Users Programmatically
Besides using the prebuilt mechanics of the Login control, you can also perform this task programmatically
using the Membership class. To validate credentials that you receive, you use the ValidateUser method
of this class. The ValidateUser method takes a single signature:

ValidateUser(username As String, password As String)

This method is illustrated in Listing 16-14.

603

Membership and Role Management

19_576100 ch16.qxd 10/6/05 9:47 PM Page 603

Listing 16-14: Validating a user’s credentials programmatically

VB
If Membership.ValidateUser(TextBox1.Text, TextBox2.Text) Then

FormsAuthentication.RedirectFromLoginPage(TextBox1.Text, False)
Else

Label1.Text = “You are not registered with the site.”
End If

C#
if (Membership.ValidateUser(TextBox1.Text.ToString(), TextBox2.Text.ToString()) {

FormsAuthentication.RedirectFromLoginPage(TextBox1.Text.ToString(), false);
}
else {

Label1.Text = “You are not registered with the site.”;
}

The ValidateUser method returns a Boolean value of True if the user credentials pass the test and
False if they do not. From the code snippet in Listing 16-14, you can see that end users whose credentials
are verified as correct are redirected from the login page using the RedirectFromLoginPage method.
This method takes the username and a Boolean value that specifies whether the credentials are persisted
through a cookie setting.

Working with Authenticated Users
After users are authenticated, ASP.NET 2.0 provides a number of different server controls and methods
that you can use to work with the user details. Included in this collection of tools are the LoginStatus
and the LoginName controls.

The LoginStatus Server Control
The LoginStatus server control enables users to click a link to log in or log out of a site. For a good example
of this control, remove the <deny> element from the web.config file so that the pages of your site are
accessible to unauthenticated users. Then code your Default.aspx page so that it is similar to the code
shown in Listing 16-15.

Listing 16-15: Login and logout features of the LoginStatus control

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Login or Logout</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:LoginStatus ID=”LoginStatus1” Runat=”server” />

</form>
</body>
</html>

604

Chapter 16

19_576100 ch16.qxd 10/6/05 9:47 PM Page 604

Running this gives you a simple page that contains only a hyperlink titled Login, as shown in Figure 16-10.

Figure 16-10

Clicking the Login hyperlink forwards you to the Login.aspx page where you provide your credentials.
After the credentials are provided, you are redirected to the Default.aspx page — although now the page
includes a hyperlink titled Logout (see Figure 16-11). The LinkStatus control displays one link when the
user is unauthenticated and another link when the user is authenticated. Clicking the Logout hyperlink
logs out the user and redraws the Default.aspx page — but with the Login hyperlink in place.

Figure 16-11

605

Membership and Role Management

19_576100 ch16.qxd 10/6/05 9:47 PM Page 605

The LoginName Server Control
The LoginName server control enables you to display the username of the authenticated user. This is a
common practice today. For an example of this, change the Default.aspx page so that it now includes
the authenticated user’s login name when that user is logged in, as illustrated in Listing 16-16.

Listing 16-16: Displaying the username of the authenticated user

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Login or Logout</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:LoginStatus ID=”LoginStatus1” Runat=”server” />
<p><asp:LoginName ID=”LoginName1” Runat=”server”

Font-Bold=”True” Font-Size=”XX-Large” /></p>
</form>

</body>
</html>

When the user logs in to the application and is returned to the Default.aspx page, he sees his username
displayed, as well as the hyperlink generated by the LoginStatus control (see Figure 16-12).

Figure 16-12

In addition to just showing the username of the logged in user, you can also add text by using the
LoginName control’s FormatString property. For instance, to provide a welcome message along with
the username, you construct the LoginName control as follows:

<asp:LoginName ID=”LoginName1” Runat=”Server”
FormatString=”Welcome to our Website {0}!” />

606

Chapter 16

19_576100 ch16.qxd 10/6/05 9:47 PM Page 606

You can also simply use the following construction in one of the page events. (This is shown in VB; if
you are using C#, add a semicolon at the end of the line):

LoginName1.FormatString = “Welcome to the site {0}!”

When the page is generated, ASP.NET replaces the {0} part of the string with the username of the logged-in
user. This provides you with a result similar to the following:

Welcome to the site evjen!

If you don’t want to show the username when using the LoginName control, simply omit the {0} aspect
of the string. The control then places the FormatString property’s value on the page.

Showing the Number of Users Online
One cool feature of the membership service is that you can display how many users are online at a given
moment. This is an especially popular option for a portal or a forum that wishes to impress visitors to
the site with its popularity.

To show the number of users online, you use the GetNumberOfUsersOnline method provided by the
Membership class. You can add to the Default.aspx page shown in Figure 16-10 with the code illustrated
in Listing 16-17.

Listing 16-17: Displaying the number of users online

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Label1.Text = Membership.GetNumberOfUsersOnline().ToString()
End Sub

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Login or Logout</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:LoginStatus ID=”LoginStatus1” Runat=”server” />
<p><asp:LoginName ID=”LoginName1” Runat=”server”

Font-Bold=”True” Font-Size=”XX-Large” /></p>
<p>There are <asp:Label ID=”Label1” Runat=”server” Text=”0” />

users online.</p>
</form>

</body>
</html>

(continued)

607

Membership and Role Management

19_576100 ch16.qxd 10/6/05 9:47 PM Page 607

Listing 16-17: (continued)

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
protected void Page_Load(object sender, EventArgs e)
{

Label1.Text = Membership.GetNumberOfUsersOnline().ToString();
}

</script>

When the page is generated, it displays the number of users who have logged on in the last 15 minutes.
An example of what is generated is shown in Figure 16-13.

Figure 16-13

You can see that two users have logged on in the last 15 minutes. This 15-minute period is determined in
the machine.config file from within the <membership> element:

<membership userIsOnlineTimeWindow=”15” >
</membership>

By default, the userIsOnlineTimeWindow is set to 15. The number is specified here in minutes. To
increase the time window, you simply increase this number. In addition to specifying this number from
within the machine.config file, you can also set this number in the web.config file.

Dealing with Passwords
Many of us seem to spend our lives online and have username/password combinations for many differ-
ent Web sites on the Internet. For this reason, end users forget passwords or want to change them every
so often. ASP.NET 2.0 provides a couple of new server controls that work with the membership service
so that end users can either change their passwords or retrieve forgotten passwords.

608

Chapter 16

19_576100 ch16.qxd 10/6/05 9:47 PM Page 608

The ChangePassword Server Control
The ChangePassword server control enables end users to change their passwords directly in the browser.
Listing 16-18 shows a use of the ChangePassword control.

Listing 16-18: Allowing users to change passwords

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Change Your Password</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:LoginStatus ID=”LoginStatus1” Runat=”server” />
<p><asp:ChangePassword ID=”ChangePassword1” Runat=”server”>

</asp:ChangePassword><p>
</form>

</body>
</html>

This is a rather simple use of the <asp:ChangePassword> control. Running this page produces the results
shown in Figure 16-14.

Figure 16-14

The ChangePassword control produces a form that asks for the previous password. It also requires the
end user to type the new password twice. Clicking the Change Password button launches an attempt to
change the password if the user is logged in. If the end user isn’t logged into the application yet, he or
she is redirected to the login page. Only a logged-in user can change a password. After the password is
changed, the end user is notified (see Figure 16-15).

Remember that end users are allowed to change their passwords because the enablePasswordReset
attribute of the membership provider is set to True. To deny this capability, set the enablePasswordReset
attribute to False.

609

Membership and Role Management

19_576100 ch16.qxd 10/6/05 9:47 PM Page 609

Figure 16-15

You can also specify rules on how the passwords must be constructed when an end user attempts to change
her password. For instance, you might want to require that the password contain more than a certain
number of characters or that it use numbers and/or special characters in addition to alpha-characters. Using
the NewPasswordRegularExpression attribute, you can specify the construction required for the new
password, as shown here:

NewPasswordRegularExpression=’@\”(?=.{6,})(?=(.*\d){1,})(?=(.*\W){1,})’

Any new passwords created by the end user are checked against this regular expression. If there isn’t a
match, you can use the NewPasswordRegularExpressionErrorMessage attribute (one of the lengthier
names for an attribute in ASP.NET) to cause an error message to appear within the control.

The PasswordRecovery Server Control
People simply forget their passwords. For this reason, you should provide the means to retrieve passwords
from your data store. The PasswordRecovery server control provides an easy way to accomplish this task.

Password recovery usually means sending the end user’s password to him in an e-mail. Therefore, you
need to set up an SMTP server (it might be the same as the application server). You configure for this
server in the web.config file, as illustrated in Listing 16-19.

Listing 16-19: Configuring passwords to be sent via email in the web.config file

<configuration>
<system.web>

<!-- Removed for clarity -->
</system.web>

<system.net>

<mailSettings>
<smtp>

<network host=”localhost” port=”25” from=”evjen@yahoo.com”
defaultCredentials=”true” />

</smtp>

610

Chapter 16

19_576100 ch16.qxd 10/6/05 9:47 PM Page 610

</mailSettings>

</system.net>
</configuration>

After you have the <mailSettings> element set up correctly, you can start to use the PasswordRecovery
control. A simple use of the PasswordRecovery control is shown in Listing 16-20.

Listing 16-20: Using the PasswordRecovery control

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Getting Your Password</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:PasswordRecovery ID=”PasswordRecovery1” Runat=”server”>

<MailDefinition From=”evjen@yahoo.com”>
</MailDefinition>

</asp:PasswordRecovery>
</form>

</body>
</html>

The <asp:PasswordRecovery> element needs a <MailDefinition> subelement. The
<MailDefinition> element contains details about the e-mail to be sent to the end user. The minimum
requirement is that the From attribute is used, which provides the e-mail address for the From part of
the e-mail. The String value of this attribute should be an e-mail address. Other attributes for the
<MailDefinition> element include the following:

❑ BodyFileName

❑ Cc

❑ From

❑ IsBodyHtml

❑ Priority

❑ Subject

When you run this page, the PasswordRecovery control asks for the user’s username, as shown in
Figure 16-16.

When it has the username, the membership service retrieves the question and answer that was earlier
entered by the end user and generates the view shown in Figure 16-17.

If the question is answered correctly, an e-mail containing the password is generated and mailed to the end
user. If the question is answered incorrectly, an error message is displayed. Of course, a question will not
be used if you have the Question/Answer feature of the membership system disabled.

611

Membership and Role Management

19_576100 ch16.qxd 10/6/05 9:47 PM Page 611

Figure 16-16

Figure 16-17

It is important to change some of your membership service settings in order for this entire process to
work. At present, it won’t work because of the way in which a user’s password is hashed. The
membership service data store isn’t storing the actual password — just a hashed version of it. Of course,
it is useless for an end user to receive a hashed password.

In order for you to be able to send back an actual password to the user, you must change how the
passwords are stored in the membership service data store. This is done (as stated earlier in the chapter)
by changing PasswordFormat attribute of your membership data provider. The other possible values
(besides Hashed) are Clear and Encrypted. Changing it to either Clear or Encrypted makes it
possible for the passwords to be sent back to the end user in a readable format.

612

Chapter 16

19_576100 ch16.qxd 10/6/05 9:47 PM Page 612

ASP.NET 2.0 Authorization
Now that you can deal with the registration and authentication of users who want to access your Web
applications, the next step is authorization. What are they allowed to see and what roles do they take?
These are important questions for any Web application. First, learn how to show only certain items to
authenticated users while you show different items to unauthenticated users.

Using the LoginView Server Control
The LoginView server control allows you to control who views what information on a particular part of a
page. Using the LoginView control, you can dictate which parts of the pages are for authenticated users
and which parts of the pages are for unauthenticated users. Listing 16-21 shows an example of this control.

Listing 16-21: Controlling information viewed via the LoginView control

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Changing the View</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:LoginStatus ID=”LoginStatus1” Runat=”server” />
<p>
<asp:LoginView ID=”LoginView1” Runat=”server”>

<LoggedInTemplate>
Here is some REALLY important information that you should know
about all those people that are not authenticated!

</LoggedInTemplate>
<AnonymousTemplate>

Here is some basic information for you.
</AnonymousTemplate>

</asp:LoginView><p>
</form>

</body>
</html>

The <asp:LoginView> control is a templated control that takes two possible subelements — the
<LoggedInTemplate> and <AnonymousTemplate> elements. In this case, the information defined in
the <AnonymousTemplate> section (see Figure 16-18) is for unauthenticated users.

It is quite different from what authenticated users see defined in the <LoggedInTemplate> section
(see Figure 16-19).

613

Membership and Role Management

19_576100 ch16.qxd 10/6/05 9:47 PM Page 613

Figure 16-18

Figure 16-19

Only simple ASCII text is placed inside both of these templates, but you can actually place anything else
within the template including additional server controls. This means that you can show entire sections of
pages, including forms, from within the templated sections.

Besides using just the <LoggedInTemplate> and the <AnonymousTemplate> of the LoginView control,
you can also enable sections of a page or specific content for entities that are part of a particular role —
such as someone who is part of the Admin group. You can accomplish this by using the <RoleGroups>
section of the LoginView control, as shown in Listing 16-22.

Listing 16-22: Providing a view for a particular group

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Changing the View</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:LoginStatus ID=”LoginStatus1” Runat=”server” />
<p>
<asp:LoginView ID=”LoginView1” Runat=”server”>

<LoggedInTemplate>

614

Chapter 16

19_576100 ch16.qxd 10/6/05 9:47 PM Page 614

Here is some REALLY important information that you should know
about all those people that are not authenticated!

</LoggedInTemplate>
<AnonymousTemplate>

Here is some basic information for you.
</AnonymousTemplate>
<RoleGroups>

<asp:RoleGroup Roles=”Admins”>
<ContentTemplate>

You are an Admin!
</ContentTemplate>

</asp:RoleGroup>
<asp:RoleGroup Roles=”CoolPeople”>

<ContentTemplate>
You are cool!

</ContentTemplate>
</asp:RoleGroup>

</RoleGroups>
</asp:LoginView><p>

</form>
</body>
</html>

To show content for a particular group of users, you add a <RoleGroups> element to the LoginView
control. The <RoleGroups> section can take one or more RoleGroup controls (you will not find this control
in Visual Studio’s Toolbox). To provide content to display using the RoleGroup control, you provide a
<ContentTemplate> element, which enables you to define the content to be displayed for an entity that
belongs to the specified role. What is placed in the <ContentTemplate> section completely depends on
you. You can place raw text (as shown in the example) or even other ASP.NET controls.

Be cautious of the order in which you place the defined roles in the <RoleGroups> section. When users
log in to a site, they are first checked to see if they match one of the defined roles. The first (uppermost)
role matched is the view used for the LoginView control — even if they match more than one role. You
can also place more than one role in the Roles attribute of the <asp:RoleGroups> control, like this:

<asp:RoleGroup Roles=”CoolPeople, HappyPeople”>
<ContentTemplate>

You are cool or happy (or both)!
</ContentTemplate>

</asp:RoleGroup>

Setting Up Your Web Site for Role Management
In addition to the membership service just reviewed, ASP.NET 2.0 provides you with the other side of the
end-user–management service — the ASP.NET role management service. The membership service covered
all the details of authentication for your applications, whereas the role management service covers
authorization. Just as the membership service can use any of the data providers listed earlier, the role
management service can use the same SQL Server provider plus any custom providers. In fact, this service
is comparable to the membership service in many ways. Figure 16-20 shows you a simple diagram that
details some the particulars of the role management service.

615

Membership and Role Management

19_576100 ch16.qxd 10/6/05 9:47 PM Page 615

Figure 16-20

Making Changes to the <roleManager> Section
The first step in working with the role management service is to change any of the role management
provider’s behaviors either in the machine.config.comments or from the web.config files. If you look
in the machine.config.comments file, you see an entire section that deals with the role management
service (see Listing 16-23).

Listing 16-23: Role management provider settings in the machine.config.comments file

<roleManager
enabled=”false”
cacheRolesInCookie=”false”
cookieName=”.ASPXROLES”
cookieTimeout=”30”
cookiePath=”/”
cookieRequireSSL=”false”
cookieSlidingExpiration=”true”
cookieProtection=”All”
defaultProvider=”AspNetSqlRoleProvider”
createPersistentCookie=”false”
maxCachedResults=”25”>

<providers>
<clear />
<add connectionStringName=”LocalSqlServer” applicationName=”/”
name=”AspNetSqlRoleProvider” type=”System.Web.Security.SqlRoleProvider,
System.Web, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a” />

<add applicationName=”/” name=”AspNetWindowsTokenRoleProvider”
type=”System.Web.Security.WindowsTokenRoleProvider, System.Web,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a” />

API

Roles API

Roles Membership Providers

AspNetSqlProvider Custom Provider

Data Stores

SQL Server Custom

616

Chapter 16

19_576100 ch16.qxd 10/6/05 9:47 PM Page 616

</providers>
</roleManager>

The role management service defines its settings from within the machine.config.comments file, as
shown in the previous code listing. You can make changes to these settings either directly in the
machine.config.comments file or by overriding these settings in the web.config file (thereby
making changes only to the application at hand).

The main settings are defined in the <roleManager> element. Some of the attributes of the <roleManager>
element are defined in the following table.

Attribute Description

enabled Defines whether the role management service is enabled for the
application. This attribute takes a Boolean value and is set to
False by default. This means that the role management service
is disabled by default. This is done to avoid breaking changes
that would occur for users migrating from ASP.NET 1.0/1.1 to
ASP.NET 2.0. Therefore, you must first change this value to
True in either the machine.config or the web.config file.

cacheRolesInCookie Defines whether the roles of the user can be stored within a
cookie on the client machine. This attribute takes a Boolean
value and is set to True by default. This is an ideal situation
because retrieving the roles from the cookie prevents ASP.NET
from looking up the roles of the user via the role management
provider. Set it to False if you want the roles to be retrieved
via the provider for all instances.

cookieName Defines the name used for the cookie sent to the end user for
role management information storage. By default, this cookie
is named .ASPXROLES, and you probably won’t change this.

cookieTimeout Defines the amount of time (in minutes) after which the
cookie expires. The default value is 30 minutes.

cookieRequireSSL Defines whether you require that the role management
information be sent over an encrypted wire (SSL) instead of
being sent as clear text. The default value is False.

cookieSlidingExpiration Specifies whether the timeout of the cookie is on a sliding
scale. The default value is True. This means that the end
user’s cookie does not expire until 30 minutes (or the time
specified in the cookieTimeout attribute) after the last
request to the application has been made. If the value of the
cookieSlidingExpiration attribute is set to False, the
cookie expires 30 minutes from the first request.

createPersistentCookie Specifies whether a cookie expires or if it remains alive
indefinitely. The default setting is False because a persistent
cookie is not always advisable for security reasons.

Table continued on following page

617

Membership and Role Management

19_576100 ch16.qxd 10/6/05 9:47 PM Page 617

Attribute Description

cookieProtection Specifies the amount of protection you want to apply to the
cookie stored on the end user’s machine for management
information. The possible settings include All, None,
Encryption, and Validation. You should always attempt to
use All.

DefaultProvider Defines the provider used for the role management service. By
default, it is set to AspNetSqlRoleProvider.

Making Changes to the web.config File
The next step is to configure your web.config file so that it can work with the role management service.
Certain pages or subsections of your application may be accessible only to people with specific roles. To
manage this access, you define the access rights in the web.config file. The necessary changes are shown in
Listing 16-24.

Listing 16-24: Changing the web.config file

<?xml version=”1.0” encoding=”utf-8”?>
<configuration>

<system.web>
<roleManager enabled=”true”/>
<authentication mode=”Forms” />
<authorization>

<deny users=”?” />
</authorization>

</system.web>

<location path=”AdminPage.aspx”>
<system.web>

<authorization>
<allow roles=”AdminPageRights” />
<deny users=”*” />

</authorization>
</system.web>

</location>

</configuration>

This web.config file is doing a couple of things. First, the function of the first <system.web> section is
no different from that of the membership service shown earlier in the chapter. The <deny> element is
denying all unauthenticated users across the board.

The second section of this web.config file is rather interesting. The <location> element is used to
define the access rights of a particular page in the application (AdminPage.aspx). In this case, only users
contained in the AdminPageRights role are allowed to view the page, whereas all other users —
regardless whether they are authenticated — are not allowed to view the page. When using the asterisk
(*) as a value of the users attribute of the <deny> element, you are saying that all users (regardless of
whether they are authenticated) are not allowed to access the resource being defined. This overriding

618

Chapter 16

19_576100 ch16.qxd 10/6/05 9:47 PM Page 618

denial of access, however, is broken open a bit via the use of the <allow> element, which allows users
contained within a specific role.

Adding and Retrieving Application Roles
Now that the machine.config.comments and the web.config files are in place, you can add roles to
the role management service. The role management service, just like the membership service, uses data
stores to store information about the users. These examples focus primarily on using Microsoft SQL
Server Express Edition as the provider because it is the default provider.

One big difference between the role management service and the membership service is that no server
controls are used for the role management service. You manage the application’s roles and the user’s role
details through a new Roles API or through the Web Site Administration Tool provided with ASP.NET 2.0.
Listing 16-25 shows how to use some of the new methods to add roles to the service.

Listing 16-25: Adding roles to the application

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

ListBoxDataBind()
End Sub

Protected Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Roles.CreateRole(TextBox1.Text)
ListBoxDataBind()

End Sub

Protected Sub ListBoxDataBind()
ListBox1.DataSource = Roles.GetAllRoles()
ListBox1.DataBind()

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Role Manager</title>
</head>
<body>

<form id=”form1” runat=”server”>
<h1>Role Manager</h1>
Add Role:

<asp:TextBox ID=”TextBox1” Runat=”server”></asp:TextBox>
<p><asp:Button ID=”Button1” Runat=”server” Text=”Add Role to Application”

OnClick=”Button1_Click” /></p>
Roles Defined:

<asp:ListBox ID=”ListBox1” Runat=”server”>
</asp:ListBox>

</form>
</body>
</html>

(continued)

619

Membership and Role Management

19_576100 ch16.qxd 10/6/05 9:47 PM Page 619

Listing 16-25: (continued)

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
protected void Page_Load(object sender, EventArgs e)
{

ListBoxDataBind();
}

protected void Button1_Click(object sender, EventArgs e)
{

Roles.CreateRole(TextBox1.Text.ToString());
ListBoxDataBind();

}

protected void ListBoxDataBind()
{

ListBox1.DataSource = Roles.GetAllRoles();
ListBox1.DataBind();

}
</script>

This example enables you to enter roles into the text box and then to submit them to the role management
service. The roles contained in the role management service are then displayed in the list box, as illustrated
in Figure 16-21.

To enter the roles into the management service, you simply use the CreateRole method of the Roles
class. Just as with the Membership class, you don’t instantiate the Roles class. To add roles to the role
management service, use the CreateRole method that takes only a single parameter — the name of the
role as a String value:

Roles.CreateRole(rolename As String)

Figure 16-21

620

Chapter 16

19_576100 ch16.qxd 10/6/05 9:47 PM Page 620

With this method, you can create as many roles as you want, but each role must be unique — otherwise
an exception is thrown.

To retrieve the roles that are in the application’s role management service (such as the list of roles displayed
in the list box from the earlier example), you use the GetAllRoles method of the Roles class. This method
returns a String collection of all the available roles in the service:

Roles.GetAllRoles()

Deleting Roles
It would be just great to sit and add roles to the service all day long. Every now and then, however, you
might want to delete roles from the service as well. Deleting roles is just as easy as adding roles to the role
management service. To delete a role, you use one of the DeleteRole method signatures. The first option
of the DeleteRole method takes a single parameter — the name of the role as a String value. The
second option takes the name of the role plus a Boolean value that determines whether to throw an
exception when one or more members are contained within that particular role (so that you don’t
accidentally delete a role with users in it when you don’t mean to):

Roles.DeleteRole(rolename As String)

Roles.DeleteRole(rolename As String, throwOnPopulatedRole As Boolean)

Listing 16-26 is a partial code example that builds on Listing 16-25. For this example, add an additional
button, which initiates a second button-click event that deletes the role from the service.

Listing 16-26: Deleting roles from the application

VB
Protected Sub DeleteButton_Click(ByVal sender As Object, _

ByVal e As System.EventArgs)

For Each li As ListItem In ListBox1.Items
If li.Selected = True Then

Roles.DeleteRole(li.ToString())
End If

Next
ListBoxDataBind()

End Sub

C#
protected void DeleteButton_Click(object sender, EventArgs e)
{

foreach (ListItem li in ListBox1.Items) {
if (li.Selected == true) {

Roles.DeleteRole(li.ToString());
}

}
ListBoxDataBind();

}

621

Membership and Role Management

19_576100 ch16.qxd 10/6/05 9:47 PM Page 621

This example deletes the selected items from the ListBox control. If more than one selection is made
(meaning that you have placed the attribute SelectionMode=”Multiple” in the ListBox control), each of
the roles is deleted from the service, in turn, in the For Each loop. Although Roles.DeleteRole(li
.ToString()) is used to delete the role, Roles.DeleteRole(li.ToString(), True) could also be used
to make sure that no roles are deleted if that role contains any members.

Adding Users to Roles
Now that the roles are in place and it is also possible to delete these roles if required, the next step is
adding users to the roles created. A role doesn’t do much good if no users are associated with it. To add a
single user to a single role, you use the following construct:

Roles.AddUserToRole(username As String, rolename As String)

To add a single user to multiple roles at the same time, you use this construct:

Roles.AddUserToRoles(username As String, rolenames() As String)

To add multiple users to a single role, you use the following construct:

Roles.AddUsersToRole(usernames() As String, rolename As String)

Then finally, to add multiple users to multiple roles, you use the following construct:

Roles.AddUsersToRoles(usernames() As String, rolenames() As String)

The parameters that can take collections, whether they are usernames() or rolenames(), are presented
to the method as String arrays.

Getting All the Users of a Particular Role
Looking up information is easy in the role management service, whether you are determining which users
are contained within a particular role or whether you want to know the roles that a particular user belongs to.

Methods are available for either of these scenarios. First, look at how to determine all the users con-
tained in a particular role, as illustrated in Listing 16-27.

Listing 16-27: Looking up users in a particular role

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

DropDownDataBind()
End Sub

Protected Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)
GridView1.DataSource = Roles.GetUsersInRole(DropDownList1.SelectedValue)
GridView1.DataBind()
DropDownDataBind()

End Sub

622

Chapter 16

19_576100 ch16.qxd 10/6/05 9:47 PM Page 622

Protected Sub DropDownDataBind()
DropDownList1.DataSource = Roles.GetAllRoles()
DropDownList1.DataBind()

End Sub

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Role Manager</title>
</head>
<body>

<form id=”form1” runat=”server”>
Roles:
<asp:DropDownList ID=”DropDownList1” Runat=”server”>
</asp:DropDownList>
<asp:Button ID=”Button1” Runat=”server” Text=”Get Users In Role”
OnClick=”Button1_Click” />

<asp:GridView ID=”GridView1” Runat=”server”>
</asp:GridView>

</form>
</body>
</html>

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
protected void Page_Load(object sender, EventArgs e)
{

DropDownDataBind();
}

protected void Button1_Click(object sender, EventArgs e)
{

GridView1.DataSource = Roles.GetUsersInRole(DropDownList1.SelectedValue);
GridView1.DataBind();
DropDownDataBind();

}

protected void DropDownDataBind()
{

DropDownList1.DataSource = Roles.GetAllRoles();
DropDownList1.DataBind();

}
</script>

This page creates a drop-down list that contains all the roles for the application. Clicking the button displays
all the users for the selected role. Users of a particular role are determined using the GetUsersInRole
method. This method takes a single parameter — a String value representing the name of the role:

Roles.GetUsersInRole(rolename As String)

623

Membership and Role Management

19_576100 ch16.qxd 10/6/05 9:47 PM Page 623

When run, the page looks similar to the page shown in Figure 16-22.

Figure 16-22

Getting All the Roles of a Particular User
To determine all the roles for a particular user, create a page with a single text box and a button. In the
text box, you type the name of the user; and a button click initiates the retrieval and populates a
GridView control. The button click event (where all the action is) is illustrated in Listing 16-28.

Listing 16-28: Getting all the roles of a specific user

VB
Protected Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)

GridView1.DataSource = Roles.GetRolesForUser(TextBox1.Text)
GridView1.DataBind()

End Sub

C#
protected void Button1_Click(object sender, EventArgs e)
{

GridView1.DataSource = Roles.GetRolesForUser(TextBox1.Text.ToString());
GridView1.DataBind();

}

The preceding code produces something similar to what is shown in Figure 16-23.

To get the roles of a particular user, you simply use the GetRolesForUser method. This method has
two possible signatures. The first is shown in the preceding example — a String value that represents
the name of the user. The other option is an invocation of the method without any parameters listed.
This returns the roles of the user who has logged into the membership service.

624

Chapter 16

19_576100 ch16.qxd 10/6/05 9:47 PM Page 624

Figure 16-23

Removing Users from Roles
In addition to adding users to roles, you can also easily remove users from roles. To delete or remove a
single user from a single role, you use the following construct:

Roles.RemoveUserFromRole(username As String, rolename As String)

To remove a single user from multiple roles at the same time, you use this construct:

Roles.RemoveUserFromRoles(username As String, rolenames() As String)

To remove multiple users from a single role, you use the following construct:

Roles.RemoveUsersFromRole(usernames() As String, rolename As String)

Then finally, to remove multiple users from multiple roles, you use the following construct:

Roles.RemoveUsersFromRoles(usernames() As String, rolenames() As String)

The parameters shown as collections, whether they are usernames() or rolenames(), are presented to
the method as String arrays.

Checking Users in Roles
One final action you can take is checking whether a particular user is in a role. You can go about this in a
couple of ways. The first is using the IsUserInRole method.

The IsUserInRole method takes two parameters — the username and the name of the role:

Roles.IsUserInRole(username As String, rolename As String)

This method returns a Boolean value on the status of the user, and it can be used as shown in Listing 16-29.

625

Membership and Role Management

19_576100 ch16.qxd 10/6/05 9:47 PM Page 625

Listing 16-29: Checking a user’s role status

VB
If (Roles.IsUserInRole(TextBox1.Text, “AdminPageRights”)) Then

‘ perform action here
End If

C#
If (Roles.IsUserInRole(TextBox1.Text.ToString(), “AdminPageRights”))
{

// perform action here
}

The other option, in addition to the IsUserInRole method, is to use FindUsersInRole. This method
enables you make a name search against all the users in a particular role. The FindUsersInRole
method takes two parameters — the name of the role and the username, both as String values:

Roles.FindUsersInRole(rolename As String, username As String)

Listing 16-30 shows an example of this method.

Listing 16-30: Checking for a specific user in a particular role

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Protected Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)

GridView1.DataSource = _
Roles.FindUsersInRole(“AdminPageRights”, TextBox1.Text)

GridView1.DataBind()
End Sub

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Role Manager</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:TextBox ID=”TextBox1” Runat=”server”></asp:TextBox>
<asp:Button ID=”Button1” Runat=”server” Text=”Button”
OnClick=”Button1_Click” />

<p><asp:GridView ID=”GridView1” Runat=”server”>
</asp:GridView></p>

</form>
</body>
</html>

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
protected void Button1_Click(object sender, EventArgs e)

626

Chapter 16

19_576100 ch16.qxd 10/6/05 9:47 PM Page 626

{
GridView1.DataSource =

Roles.FindUsersInRole(“AdminPageRights”, TextBox1.Text.ToString());
GridView1.DataBind();

}
</script>

Understanding How Roles Are Cached
By default, after you retrieve a user’s roles from the data store underlying the role management service,
you can store these roles as a cookie on the client machine. This is done so you don’t have to access the data
store each and every time the application needs a user’s role status. There is always a bit of risk in working
with cookies because the end user can manipulate the cookie and thereby gain access to information or
parts of an application that normally would be forbidden to that particular user.

Although roles are cached in a cookie, the default is that they are cached for only 30 minutes at a time. You
can deal with this role cookie in several ways — some of which might help to protect your application better.

One protection for your application is to delete this role cookie, using the DeleteCookie method of the
Role API, when the end user logs on to the site. This is illustrated in Listing 16-31.

Listing 16-31: Deleting the end user’s role cookie upon authentication

VB
If Membership.ValidateUser(TextBox1.Text, TextBox2.Text) Then

Roles.DeleteCookie()
FormsAuthentication.RedirectFromLoginPage(TextBox1.Text, False)

Else
Label1.Text = “You are not registered with the site.”

End If

C#
if (Membership.ValidateUser(TextBox1.Text.ToString(), TextBox2.Text.ToString()) {

Roles.DeleteCookie();
FormsAuthentication.RedirectFromLoginPage(TextBox1.Text.ToString(), false);

}
else {

Label1.Text = “You are not registered with the site.”;
}

Using Roles.DeleteCookie does exactly what you would think — it deletes from the client machine any
cookie that is used to define the user’s roles. If the end user is re-logging into the site, no problem should
arise with re-authenticating his exact roles within the application. There is no need to rely on the contents
of the cookie. This step provides a little more protection for your site.

627

Membership and Role Management

19_576100 ch16.qxd 10/6/05 9:47 PM Page 627

Using the Web Site Administration Tool
Many of the actions shown in this chapter can also be performed through the Web Site Administration
Tool shown in Figure 16-24.

Figure 16-24

Although you can easily use this tool to perform all the actions for you, often you perform these actions
through your own applications as well. It is important to know all the possibilities when programming
an ASP.NET application.

The Web Site Administration Tool is detailed in Chapter 28.

Public Methods of the Membership API
The public methods of the Membership API are detailed in the following table. You would use this API
when working with the authentication process of your application.

628

Chapter 16

19_576100 ch16.qxd 10/6/05 9:47 PM Page 628

Membership Methods Description

CreateUser Adds a new user to the appointed data store.

DeleteUser Deletes a specified user from the data store.

FindUsersByEmail Returns a collection of users who have an e-mail address
to match the one provided.

FindUsersByName Returns a collection of users who have a username to
match the one provided.

GeneratePassword Generates a random password of a length that you specify.

GetAllUsers Returns a collection of all the users contained in the data
store.

GetNumberOfUsersOnline Returns an Integer that specifies the number of users who
have logged in to the application. The time window during
which users are counted is specified in the machine.config
or the web.config files.

GetUser Returns information about a particular user from the
data store.

GetUserNameByEmail Retrieves a username of a specific record from the data
store based on an e-mail address search.

UpdateUser Updates a particular user’s information in the data store.

ValidateUser Returns a Boolean value indicating whether a specified set
of credentials is valid.

Public Methods of the Roles API
The public methods of the Roles API are detailed in the following table. You would use this API when
working with the authorization process of your application.

Roles Methods Description

AddUsersToRole Adds a collection of users to a specific role.

AddUsersToRoles Adds a collection of users to a collection of roles.

AddUserToRole Adds a specific user to a specific role.

AddUserToRoles Adds a specific user to a collection of roles.

CreateRole Adds a new role to the appointed data store.

DeleteCookie Deletes the cookie on the client used to store the roles to
which the user belongs.

Table continued on following page

629

Membership and Role Management

19_576100 ch16.qxd 10/6/05 9:47 PM Page 629

Roles Methods Description

DeleteRole Deletes a specific role in the data store. Using the proper
parameters for this method, you can also control if roles are
deleted or kept intact whether or not that particular role
contains users.

FindUsersInRole Returns a collection of users who have a username to
match the one provided.

GetAllRoles Returns a collection of all the roles stored in the data store.

GetRolesForUser Returns a collection of roles for a specific user.

IsUserInRole Returns a Boolean value that specifies whether a user is
contained in a particular role.

RemoveUserFromRole Removes a specific user from a specific role.

RemoveUserFromRoles Removes a specific user from a collection of roles.

RemoveUsersFromRole Removes a collection of users from a specific role.

RemoveUsersFromRoles Removes a collection of users from a collection of roles.

RoleExists Returns a Boolean value indicating whether a role exists
in the data store.

Summary
This chapter covered two outstanding new additions to ASP.NET 2.0. The membership and role management
services that are now a part of ASP.NET make managing users and their roles almost trivial.

This chapter reviewed both the Membership and Roles APIs and the controls that also utilize these APIs.
These new controls and APIs follow the same data provider models as the rest of ASP.NET 2.0. The
examples were presented using Microsoft Access, but you can also use Microsoft SQL Server for the
back-end storage.

630

Chapter 16

19_576100 ch16.qxd 10/6/05 9:47 PM Page 630

Portal Frameworks
and Web Par ts

Internet and intranet applications have changed considerably since their introduction in the 1990s.
Today’s applications don’t simply display the same canned information to every viewer; they do
much more. Because of the wealth of information being exposed to end users, Internet and intranet
applications must integrate large amounts of customization and personalization into their offerings.

Web sites that provide a plethora of offerings give end users the option to choose which parts of the
site they want to view and which parts they want to hide. Ideally, end users can personalize the pages,
deciding for themselves the order in which the content appears on the page. They should be able to
move items around on the page as if it were a design surface.

In this situation, after pages are customized and established, end users need the capability to export
their settings for storage. You certainly wouldn’t want an end user who has highly customized a
page or a series of pages in your portal to be forced to reapply the settings each time he visits the site.
Instead, you want to retain these setting points by moving them to a data store for later exposure.

Adding this kind of functionality is expensive — expensive in the sense that it can take a considerable
amount of work on the part of the developer. Before ASP.NET 2.0, the developer had to build a
personalization framework to be used by each page requiring the functionality. This type of work is
error prone and difficult to achieve, which is why in most cases it wasn’t done.

But wait. . . .

Introducing Web Parts
To make it easier to retain the page customization settings that your end users apply to your page,
Microsoft has included Web Parts in this release of ASP.NET. Web Parts, part of the larger Portal
Framework, provide an outstanding way to build a modular Web site that can be customized with

20_576100 ch17.qxd 10/6/05 9:39 PM Page 631

dynamically reapplied settings on a per-user basis. Web Parts are objects in the Portal Framework which
the end user can open, close, minimize, maximize, or move from one part of the page to another.

The Portal Framework enables you to build pages that contain multiple Web Parts — which are part of
the ASP.NET server control framework and are used like any other ASP.NET server controls. This means
that you can also extend Web Parts if necessary.

The components of the Portal Framework provide the means to build a truly dynamic Web site, whether
that site is a traditional Internet site, an intranet site, a browser-based application, or any other typical portal.

When you first look at Web Parts in ASP.NET 2.0, it may remind you of Microsoft’s SharePoint offering. Be
forewarned, however, that these two technologies are not the same. The ASP.NET team introduced Web
Parts; the resulting Portal Framework, besides being offered in ASP.NET, is also used by the Windows
SharePoint Services (WSS). Microsoft, as it often does, is simply creating singular technologies that can be
used by other Microsoft offerings. In this process, Microsoft is trying to reach the Holy Grail of computing —
code reuse!

The modular and customizable sites that you can build with the new Portal Framework enable you to put
the Web page that is in view into several possible modes for the end user. The following list describes each of
the available modes and what each means to the end user viewing the page:

❑ Normal Mode: Puts the page in a normal state, which means that the end user cannot edit or
move sections of the page. This is the mode used for standard page viewing.

❑ Edit Mode: Enables end users to select particular sections on the page for editing. The selected
section allows all types of editing capabilities from changing the part’s title, the part’s color, or
even setting custom properties — such as allowing the end user to specify his zip code to pull
up a customized weather report.

❑ Design Mode: Enables end users to rearrange the order of the page’s modular components. The
end user can bring items higher or lower within a zone, delete items from a zone, or move items
from one page zone to another.

❑ Catalog Mode: Displays a list of available sections (Web Parts) that can be placed in the page.
Catalog mode also allows the end user to select in which zone on the page the items should appear.

Figure 17-1 shows a screen shot of a sample portal utilizing the Portal Framework with the Edit mode
selected.

The Portal Framework is a comprehensive and well-thought-out framework that enables you to incorporate
everything you would normally include in your ASP.NET applications. You can apply security using either
Windows Authentication or Forms Authentication. This framework also enables you to leverage the other
new aspects of ASP.NET 2.0, such as applying role management, personalization, and membership features
to any portal that you build.

To understand how to build your own application on top of the new Portal Framework, start by creating
a simple page that uses this new framework’s utilities.

632

Chapter 17

20_576100 ch17.qxd 10/6/05 9:39 PM Page 632

Figure 17-1

Building Dynamic and Modular Web Sites
As you begin using the new Portal Framework to build Web sites, note that the framework defines everything
in zones. There are zones for both laying out and editing content. The zones that a page might incorporate are
managed by a Portal Framework manager—you don’t have to manage them in any fashion—which makes
working with this new Portal Framework a breeze.

This framework contains a lot of moving parts (pieces that are dependent upon each other), so this section
starts at the beginning by examining the Portal Framework manager control: WebPartManager.

Introducing the WebPartManager Control
The WebPartManager control is an ASP.NET server control that completely manages the state of the zones
and the content placed in the zones on a per-user basis. This control, which has no visual aspect, can add
and delete items contained within each zone of the page. The WebPartManager control can also manage
the communications sometimes required between different elements contained in the zones. For example,

633

Portal Frameworks and Web Parts

20_576100 ch17.qxd 10/6/05 9:39 PM Page 633

you can pass a specific name/value pair from one item to another item within the same zone, or between
items contained in entirely separate zones. The WebPartManager control provides the capabilities to make
this communication happen.

The WebPartManager control must be in place on every page in your application that works with the
Portal Framework. A single WebPartManager control does not manage an entire application; it manages
on a per-page basis.

You can also place a WebPartManager server control on the master page (if you are using one) to avoid
having to place one on each and every content page.

Listing 17-1 shows a WebPartManager control added to an ASP.NET page.

Listing 17-1: Adding a WebPartManager control to an ASP.NET page

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Web Parts Example</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:WebPartManager ID=”Webpartmanager1” runat=”server”>
</asp:WebPartManager>

</form>
</body>
</html>

If you want to work from the design surface of Visual Studio 2005, you can drag and drop the
WebPartManager control from the Toolbox to the design surface — but remember, it does not have a
visual aspect and appears only as a gray box. You can find the WebPartManager control (and the other
server controls that are part of the Portal Framework) in the WebParts section of the Toolbox, as shown
in Figure 17-2.

Working with Zone Layouts
After you place the WebPartManager control on the page, the next step is to create zones from which
you can utilize the Portal Framework. You should give this step some thought because it contributes
directly to the usability of the page you are creating. Web pages are constructed in a linear fashion —
either horizontally or vertically. Web pages are managed in square boxes — usually through the use of
tables that organize the columns and rows in which items appear on the page.

Web zones define specific rows or columns as individual content areas managed by the WebPartManager.
For an example of a Web page that uses these zones, create a table similar to the one shown in Figure 17-3.

634

Chapter 17

20_576100 ch17.qxd 10/6/05 9:39 PM Page 634

Figure 17-2

Figure 17-3

635

Portal Frameworks and Web Parts

20_576100 ch17.qxd 10/6/05 9:39 PM Page 635

The black sections in Figure 17-3 represent Web zones. The code used to produce the table is shown in
Listing 17-2.

Listing 17-2: Creating multiple Web zones

<%@ Page Language=”VB”%>
<%@ Register Src=”DailyLinks.ascx” TagName=”DailyLinks” TagPrefix=”uc1” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Web Parts Example</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:WebPartManager ID=”Webpartmanager1” runat=”server”>
</asp:WebPartManager>
<table cellpadding=”5” border=”1”>

<tr>
<td colspan=”3”>

<h1>Bill Evjen’s Web Page</h1>
<asp:WebPartZone ID=”WebPartZone1” runat=”server”
LayoutOrientation=”Horizontal”>

<ZoneTemplate>
<asp:Label ID=”Label1” runat=”server” Text=”Label”
Title=”Welcome to my web page!”>
Welcome to the page!

</asp:Label>
</ZoneTemplate>

</asp:WebPartZone>
</td>

</tr>
<tr valign=”top”>

<td>
<asp:WebPartZone ID=”WebPartZone2” runat=”server”>

<ZoneTemplate>
<asp:Image ID=”Image1” runat=”server”
ImageUrl=”~/Images/Kids.jpg” Width=”150px”
Title=”My Kids”>

</asp:Image>
<uc1:DailyLinks ID=”DailyLinks1” runat=”server”
Title=”Daily Links”>

</uc1:DailyLinks>
</ZoneTemplate>

</asp:WebPartZone>
</td>
<td>

<asp:WebPartZone ID=”WebPartZone3” runat=”server”>
<ZoneTemplate>

<asp:Calendar ID=”Calendar1” runat=”server”
Title=”Calendar”>

</asp:Calendar>
</ZoneTemplate>

</asp:WebPartZone>

636

Chapter 17

20_576100 ch17.qxd 10/6/05 9:39 PM Page 636

</td>
<td><!-- Blank for now -->
</td>

</tr>
</table>

</form>
</body>
</html>

This page now has sections like the ones shown in Figure 17-3: a header section that runs horizontally and
three vertical sections underneath the header. Running this page provides the result shown in Figure 17-4.

Figure 17-4

First, this page includes the <asp:WebPartManager> control that manages the items contained in the
three zones on this page. Within the table, the <asp:WebPartZone> server control specifies three Web
zones. You can declare each Web zone in one of two ways. You can use the <asp:WebPartZone> ele-
ment directly in the code, or you can create the zones within the table by dragging and dropping
WebPartZone controls onto the design surface at appropriate places within the table. In Figure 17-4, the
table border width is intentionally turned on and set to 1 in order to show the location of the Web zones
in greater detail. Figure 17-5 shows what the sample from Listing 17-2 looks like in the Design view of
Visual Studio 2005.

When using Visual Studio 2005, note that by default this IDE creates a Microsoft SQL Server Express
Edition file called ASPNETDB.MDF and stores it in the App_Data folder of your Web Project. This database
file is where the Portal Framework stores all the customization points.

637

Portal Frameworks and Web Parts

20_576100 ch17.qxd 10/6/05 9:39 PM Page 637

Figure 17-5

Now that you have seen the use of WebPartZone controls, which are managed by the WebPartManager
control, the next section takes a closer look at the WebPartZone control itself.

Understanding the WebPartZone Control
The WebPartZone control defines an area of items, or Web Parts, that can be moved, minimized, maximized,
deleted, or added based on programmatic code or user preferences. When you drag and drop WebPartZone
controls onto the design surface using Visual Studio 2005, the WebPartZone control is drawn at the top of
the zone, along with a visual representation of any of the items contained within the zone.

You can place almost anything in one of the Web zones. For example, you can include the following:

❑ HTML elements

❑ Raw text

❑ HTML server controls

❑ Web server controls

❑ User controls

❑ Custom controls

638

Chapter 17

20_576100 ch17.qxd 10/6/05 9:39 PM Page 638

WebPartZone controls are declared like this:

<asp:WebPartZone ID=”WebPartZone1” Runat=”server”></asp:WebPartZone>

The LayoutOrientation Attribute
The Web Parts declared within a WebPartZone control can be displayed either horizontally or vertically.
By default, all the items are displayed vertically, but to display the items horizontally, you simply add
the LayoutOrientation attribute to the <asp:WebPartZone> element:

<asp:WebPartZone ID=”WebPartZone1” Runat=”server”
LayoutOrientation=”Horizontal”></asp:WebPartZone>

The first row in the table from Listing 17-2 uses horizontal orientation, whereas the other two zones use
the default vertical orientation.

The ZoneTemplate Element
In order to include items within the templated WebPartZone control, you must include a <ZoneTemplate>
element.

The ZoneTemplate element encapsulates all the items contained within a particular zone. The order in
which they are listed in the ZoneTemplate section is the order in which they appear in the browser until
changed by the end user or by programmatic code. The sample <ZoneTemplate> section used earlier is
illustrated here:

<asp:WebPartZone ID=”WebPartZone2” Runat=”server”>
<ZoneTemplate>

<asp:Image ID=”Image1” Runat=”server”
ImageUrl=”~/Images/kids.jpg” Width=”150” Title=”My Kids”>

</asp:Image>
<uc1:DailyLinks ID=”DailyLinks1” runat=”server” Title=”Daily Links”>
</uc1:DailyLinks>

</ZoneTemplate>
</asp:WebPartZone>

This zone contains two items — a dynamic image and a user control consisting of a collection of links
that come from an XML file.

Default Web Part Control Elements
By default, when you generate a page using the code from Listing 17-2, you discover that you can exert
only minimal control over the Web Parts themselves. In the default view, which isn’t the most artistic,
you are able only to minimize or close a Web Part. You can see these options when you click on the
down arrow that is presented next to the name of the Web Part.

Figure 17-6 shows what the Web Part that contains the Calendar control looks like after you minimize it.
Notice also that if you opt to close one of the Web Parts, the item completely disappears. There seems to be
no way to make it come back — even if you shut down the page and restart it. This is by design — so don’t
worry. I’ll show you how to get it back!

639

Portal Frameworks and Web Parts

20_576100 ch17.qxd 10/6/05 9:39 PM Page 639

Figure 17-6

A few of the items included in the zones have new titles. By default, the title that appears at the top of
the Web Part is the name of the control. For instance, you can see that the Calendar control is simply
titled Calendar. If you add a Button control or any other control to the zone, at first it is simply titled
Untitled. To give better and more meaningful names to the Web Parts that appear in a zone, you simply
add a Title attribute to the control — just as was done with the Image control and the User control,
which both appear on the page. In the preceding code example, the Image control is renamed to My
Kids, and the user control is given the Title value Daily Links.

Besides this little bit of default functionality, you can do considerably more with the Web Parts contained
within this page, but you have to make some other additions. These are reviewed next.

Allowing the User to Change the Mode of the Page
Working with the WebPartManager class either directly or through the use of the WebPartManager server
control, you can have the mode of the page changed. Changing the mode of the page being viewed allows
the user to add, move, or change the pages they are working with. The nice thing about the Web Part
capabilities of ASP.NET is that these changes are then recorded to the ASPNETDB.MDF database file and
are, therefore, re-created the next time the user visits the page.

Through the use of the WebPartManager object, you can enable the user to do the following, as defined in
this list:

❑ Add new Web Parts to the page: Includes Web Parts not displayed on the page by default and Web
Parts that the end user has previously deleted. This aspect of the control works with the catalog
capabilities of the Portal Framework, which is discussed shortly.

640

Chapter 17

20_576100 ch17.qxd 10/6/05 9:39 PM Page 640

❑ Enter the Design mode for the page: Enables the end user to drag and drop elements around the
page. The end user can use this capability to change the order in which items appear in a zone or to
move items from one zone to another.

❑ Modify the Web Parts settings: Enables the end user to customize aspects of the Web Parts, such
as their appearance and behavior. It also allows the end user to modify any custom settings that
developers apply to the Web Part.

❑ Connect Web Parts on the page: Enables the end user to make a connection between one or more
Web Parts on the page. For example, when an end user working in a financial services application
enters a stock symbol into an example Web Part, he can use a connection to another Web Part to see
a stock chart change or news appear based on that particular stock symbol. All of this is based on
the variable defined in the first Web Part.

Building on Listing 17-2, Listing 17-3 adds a DropDownList control to the table’s header. This drop-down
list provides a list of available modes the user can employ to change how the page is displayed. Again, the
mode of the page determines the actions the user can initiate directly on the page (this is demonstrated later
in this chapter).

Listing 17-3: Adding a list of modes to the page

VB
<%@ Page Language=”VB”%>
<%@ Register Src=”DailyLinks.ascx” TagName=”DailyLinks” TagPrefix=”uc1” %>

<script runat=”server”>
Protected Sub DropDownList1_SelectedIndexChanged(ByVal sender As Object, _

ByVal e As System.EventArgs)

Dim wpDisplayMode As WebParts.WebPartDisplayMode = _
Webpartmanager1.SupportedDisplayModes(DropDownList1.SelectedValue.ToString())
Webpartmanager1.DisplayMode = wpDisplayMode

End Sub

Protected Sub Page_Init(ByVal sender As Object, ByVal e As System.EventArgs)
For Each wpMode As WebPartDisplayMode In _

Webpartmanager1.SupportedDisplayModes

Dim modeName As String = wpMode.Name
Dim dd_ListItem As ListItem = New ListItem(modeName, modeName)
DropDownList1.Items.Add(dd_ListItem)

Next
End Sub

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head id=”Head1” runat=”server”>

<title>Web Parts Example</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:WebPartManager ID=”Webpartmanager1” Runat=”server”>
</asp:WebPartManager>
<table cellpadding=”5” border=”1”>

(continued)

641

Portal Frameworks and Web Parts

20_576100 ch17.qxd 10/6/05 9:39 PM Page 641

Listing 17-3: (continued)

<tr>
<td colspan=”2”>

<h1>Bill Evjen’s Web Page</h1>
<asp:WebPartZone ID=”WebPartZone1” Runat=”server”
LayoutOrientation=”Horizontal”>

<ZoneTemplate>
<asp:Label ID=”Label1” Runat=”server” Text=”Label”
Title=”Welcome to my web page!”>
Welcome to the page!

</asp:Label>
</ZoneTemplate>

</asp:WebPartZone>
</td>
<td valign=”top”>

Select mode:
<asp:DropDownList ID=”DropDownList1” runat=”server”
AutoPostBack=”True”
OnSelectedIndexChanged=”DropDownList1_SelectedIndexChanged”>

</asp:DropDownList>
</td>

</tr>
<tr valign=”top”>

<td>
<asp:WebPartZone ID=”WebPartZone2” Runat=”server”>

<ZoneTemplate>
<asp:Image ID=”Image1” Runat=”server”
ImageUrl=”~/Images/Kids.jpg” Width=”150px”
Title=”My Kids”>

</asp:Image>
<uc1:DailyLinks ID=”DailyLinks1” runat=”server”
Title=”Daily Links”>

</uc1:DailyLinks>
</ZoneTemplate>

</asp:WebPartZone>
</td>
<td>

<asp:WebPartZone ID=”WebPartZone3” Runat=”server”>
<ZoneTemplate>

<asp:Calendar ID=”Calendar1” Runat=”server”
Title=”Calendar”>

</asp:Calendar>
</ZoneTemplate>

</asp:WebPartZone>
</td>
<td><!-- Blank for now -->
</td>

</tr>
</table>

</form>
</body>
</html>

642

Chapter 17

20_576100 ch17.qxd 10/6/05 9:39 PM Page 642

C#
<%@ Page Language=”C#”%>
<%@ Register Src=”DailyLinks.ascx” TagName=”DailyLinks” TagPrefix=”uc1” %>

<script runat=”server”>
protected void DropDownList1_SelectedIndexChanged(object sender, EventArgs e)
{

WebParts.WebPartDisplayMode wpDisplayMode =
Webpartmanager1.SupportedDisplayModes(DropDownList1.SelectedValue.ToString());
Webpartmanager1.DisplayMode = wpDisplayMode;

}

protected void Page_Init(object sender, EventArgs e)
{

foreach (WebPartDisplayMode wpMode in
Webpartmanager1.SupportedDisplayModes)

{
string modeName = wpMode.Name;
ListItem dd_ListItem = New ListItem(modeName, modeName);
DropDownList1.Items.Add(dd_ListItem);

}
}

</script>

This adds a drop-down list to the top of the table, as shown in Figure 17-7. This drop-down list will
allow the end user to switch between the Browse and Design modes.

Figure 17-7

643

Portal Frameworks and Web Parts

20_576100 ch17.qxd 10/6/05 9:39 PM Page 643

When the end user clicks open the link, a drop-down window of options appears, as shown in Figure 17-8.

Figure 17-8

Using the Page_Init event, the drop-down list is populated with a list of the available page modes that
are accessible at this particular time. In this case, it is Browse and Design. The Browse mode is the
default mode used when the page is first created. The Design mode causes the ASP.NET page to show
the WebPartZone sections. In this mode, the user can drag and drop controls from one section to another
with relative ease. Again, the positioning of the elements contained in the page is remembered from one
application visit to the next.

The DropDownList control is populated by iterating through a list of available WebPartDisplayMode
objects contained in the SupportedDisplayModes collection of modes. These modes are available
through the WebPartManager1 control, which was placed on the page and is in charge of managing the
modes and change of modes of the page. These WebPartDisplayMode objects are then used to populate
the DropDownList control.

When the end user selects one of the available modes displayed in the DropDownList control, using the
AutoPostBack feature of the control, the page is then changed to the selected mode. This is done
through the use of the first creating an instance of a WebPartDisplayMode object and populating it with
the value of the mode selected from the drop-down list. Then, using this WebPartDisplayMode object,
the DisplayMode property of the WebPartManager object is assigned with this retrieved value.

The next section covers an important addition to the Portal Framework — the capability to add Web Parts
dynamically to a page.

Adding Web Parts to a Page
The next step is to rework the example so that the end user has a built-in way to add Web Parts to the page
through the use of the Portal Framework. The ASP.NET 2.0 Portal Framework enables an end user to add
Web Parts, but you must also provide the end user with a list of items he can add. To do this, simply add a
Catalog Zone to the last table cell in the bottom of the table, as illustrated in the partial code example in
Listing 17-4.

Listing 17-4: Adding a Catalog Zone

<tr valign=”top”>
<td>

<asp:WebPartZone ID=”WebPartZone2” runat=”server”>
<ZoneTemplate>

<asp:Image ID=”Image1” runat=”server”
ImageUrl=”~/Images/Kids.jpg” Width=”150px”
Title=”My Kids”>

644

Chapter 17

20_576100 ch17.qxd 10/6/05 9:39 PM Page 644

</asp:Image>
<uc1:DailyLinks ID=”DailyLinks1” runat=”server”
Title=”Daily Links”>

</uc1:DailyLinks>
</ZoneTemplate>

</asp:WebPartZone>
</td>
<td>

<asp:WebPartZone ID=”WebPartZone3” runat=”server”>
<ZoneTemplate>

<asp:Calendar ID=”Calendar1” runat=”server”
Title=”Calendar”>

</asp:Calendar>
</ZoneTemplate>

</asp:WebPartZone>
</td>
<td>

<asp:CatalogZone ID=”Catalogzone1” runat=”server”>
<ZoneTemplate>

<asp:PageCatalogPart ID=”Pagecatalogpart1” runat=”server” />
</ZoneTemplate>

</asp:CatalogZone>
</td>

</tr>

Once a Catalog Zone section is present on the page, the page is enabled for the Catalog mode. You need to
create a Catalog Zone section by using the <asp:CatalogZone> control. This is similar to creating a Web
Part Zone, but the Catalog Zone is specifically designed to allow for categorization of the items that can
be placed on the page. Notice that Catalog mode does not appear as an option in the drop-down list of
available modes until a CatalogZone control is placed on the page. If no CatalogZone control is present on
the page, this option is not displayed.

After the Catalog Zone is in place, the next step is to create a <ZoneTemplate> section within the Catalog
Zone because this is also a templated control. Inside the <ZoneTemplate> element is a single control —
the PageCatalogPart control. If you run the page after adding the PageCatalogPart control and change the
mode to Catalog, you will see the results shown in Figure 17-9.

To get some items to appear in the list (since none do at present), delete one or more items (any items
contained on the page when viewing the page in the browser) from the page’s default view and enter
the Catalog mode by selecting Catalog from the drop-down list of modes.

At this point, you can see the deleted Web Parts in the Catalog Zone. The PageCatalogPart control contains
a title and check box list of items that can be selected. The PageCatalogPart control also includes a drop-
down list of all the available Web Part Zones on the page. From here, you can place the selected Web Parts
into one of the Web Part Zones available from this list. After you select the Web Parts and the appropriate
zone in which you want to place the item, you click the Add button and the items appear in the specified
locations.

645

Portal Frameworks and Web Parts

20_576100 ch17.qxd 10/6/05 9:39 PM Page 645

Figure 17-9

Moving Web Parts
Not only can the end user change the order in which Web Parts appear in a zone, he can also move Web
Parts from one zone to another. By adding the capability to enter the Design mode through the drop-down
list that you created earlier, you have already provided the end user with this capability. He simply enters
the Design mode and this allows for this type of movement.

The Design option in the drop-down list changes the page so that the user can see the zones defined on
the page, as illustrated in Figure 17-10.

From this figure, you can see the three zones (WebPartZone1, WebPartZone2, and WebPartZone3). At this
point, the end user can select one of the Web Parts contained in one of these zones and either change its
order in the zone or move it to an entirely different zone on the page. To grab one of the Web Parts, the user
simply clicks and holds the left mouse button on the title of the Web Part. When done correctly, the cross-
hair, which appears when the end user hovers over the Web Part’s title, turns into an arrow. This means
that the user has grabbed hold of the Web Part and can drag it to another part of the page. While the user
drags the Web Part around the page, a visual representation of the item appears (see Figure 17-11). In this
state, the Web Part is a bit transparent and its location in the state of the page is defined with a blue line
(the darker line shown at the top of WebPartZone3). Releasing the left mouse button drops the Web Part at
the blue line’s location.

After the end user places all the items where he wants them, the locations of the items on the page are
saved for later use.

646

Chapter 17

20_576100 ch17.qxd 10/6/05 9:39 PM Page 646

Figure 17-10

Figure 17-11
647

Portal Frameworks and Web Parts

20_576100 ch17.qxd 10/6/05 9:39 PM Page 647

When he reopens the browser, everything is then drawn in the last state in which he left the page. This is
done on a per-user basis, so any other users browsing to the same page see either their own modified
results or the default view if it is a first visit to the page.

The user can then leave the Design view by opening the list of options from the drop-down list of modes
and selecting Browse.

Another way to move Web Parts is to enter the Catalog mode of the page (which is now one of the options
in the drop-down list due to the addition of the Catalog Zone section). The Catalog mode enables you to
add deleted items to the page, but it also allows you to modify the location of the items on the page by
providing the same drag-and-drop capability as the Design mode.

Modifying the Web Part Settings
Another option in the list of modes that can be added to the drop-down list is to allow your end users to
edit the actual Web Parts themselves to a degree. This is done through the available Edit mode, and this
enables the end user to modify settings determining appearance, behavior, and layout for a particular
Web Part on the page.

To make this functionality work, you must add an Editor Zone to the page just as you add the Catalog
Zone. This is illustrated in Listing 17-5. You place this bit of new code within the same table directly
below the Catalog Zone declaration.

Listing 17-5: Adding an Editor Zone to the page

<td>
<asp:CatalogZone ID=”Catalogzone1” runat=”server”>

<ZoneTemplate>
<asp:PageCatalogPart ID=”Pagecatalogpart1” runat=”server” />

</ZoneTemplate>
</asp:CatalogZone>
<asp:EditorZone ID=”Editorzone1” runat=”server”>

<ZoneTemplate>
<asp:AppearanceEditorPart ID=”Appearanceeditorpart1” runat=”server” />
<asp:BehaviorEditorPart ID=”Behavioreditorpart1” runat=”server” />
<asp:LayoutEditorPart ID=”Layouteditorpart1” runat=”server” />
<asp:PropertyGridEditorPart ID=”PropertyGridEditorPart1” runat=”server” />

</ZoneTemplate>
</asp:EditorZone>

</td>

Just like the <asp:CatalogZone>, the <asp:EditorZone> control is a templated control that
requires a <ZoneTemplate> section. Within this section, you can place controls that allow for the
modification of the appearance, behavior, and layout of the selected Web Part. These controls include
<asp:AppearanceEditorPart>, <asp:BehaviorEditorPart>, <asp:LayoutEditorPart>, and
<asp:PropertyGridEditorPart>.

When you run this new section of code and select Edit from the drop-down list of modes, the arrow that is
next to the Web Part title from each of the Web Parts on the page will show an Edit option, as illustrated in
Figure 17-12.

After you select the Edit option from this list of three options, the right column of the table shows the
various editing sections for this particular Web Part.

648

Chapter 17

20_576100 ch17.qxd 10/6/05 9:39 PM Page 648

Figure 17-12

The Appearance section enables the end user to change the Web Part’s details, including the title, how the
title appears, and other appearance-related items such as the item’s height and width. The Appearance
section is shown in Figure 17-13.

Figure 17-13

The Behavior section (shown in Figure 17-14) enables the end user to select whether the Web Part can be
closed, minimized, or exported. This section allows you to change behavior items for either yourself
only (a single user) or for everyone in the system (a shared view of the Web Part). Using the shared view,

649

Portal Frameworks and Web Parts

20_576100 ch17.qxd 10/6/05 9:39 PM Page 649

the Behavior section is generally used to allow site editors (or admins) to change the dynamics of how
end users can modify Web Parts. General viewers of the page most likely won’t see this section.

Figure 17-14

To get the Behavior section to appear, you first need to make the changes to the Web.config files presented
in Listing 17-6.

Listing 17-6: Getting the Behavior section to appear through settings in the Web.config

<configuration>
<system.web>

<webParts>
<personalization>

<authorization>
<allow users=”*” verbs=”enterSharedScope” />

</authorization>
</personalization>

</webParts>
</system.web>

</configuration>

650

Chapter 17

20_576100 ch17.qxd 10/6/05 9:39 PM Page 650

After the Web.config file is in place, the next step is to add a bit of code to your Page_Load event, as
shown in Listing 17-7.

Listing 17-7: Adding some code to allow the Behavior section to appear

VB
If Webpartmanager1.Personalization.Scope = PersonalizationScope.User _

AndAlso Webpartmanager1.Personalization.CanEnterSharedScope Then

Webpartmanager1.Personalization.ToggleScope()
End If

C#
if (Webpartmanager1.Personalization.Scope = PersonalizationScope.User

&& Webpartmanager1.Personalization.CanEnterSharedScope)
{

Webpartmanager1.Personalization.ToggleScope();
}

The Layout section (shown in Figure 17-15) enables the end user to change the order in which Web Parts
appear in a zone or move Web Parts from one zone to another. This is quite similar to the drag-and-drop
capabilities illustrated previously, but this section allows for the same capabilities through the manipulation
of simple form elements.

Figure 17-15

The PropertyGridEditorPart, though not demonstrated yet, allows end users to modify properties that are
defined in your own custom server controls. At the end of this chapter, we will take a look at building a
custom Web Part and using the PropertyGridEditorPart to allow end users to modify one of the publicly
exposed properties contained in the control.

After you are satisfied with the appearance and layout of the Web Parts and have made the necessary
changes to the control’s properties in one of the editor parts, simply click OK or Apply.

Connecting Web Parts
One option you do have is to make a connection between two Web Parts using the <asp:
ConnectionsZone> control. This control enables you to make property connections between two
Web Parts on the same page. For example, within the Weather Web Part built into one of ASP.NET’s
pre-built applications, you can have a separate Web Part that is simply a text box and a button that allows
the end user to input a zip code. This, in turn, modifies the contents in the original Weather Web Part.

651

Portal Frameworks and Web Parts

20_576100 ch17.qxd 10/6/05 9:39 PM Page 651

Modifying Zones
One aspect of the Portal Framework that merits special attention is the capability to modify zones on the
page. These zones allow for a high degree of modification — not only in the look-and-feel of the items
placed in the zone, but also in terms of the behaviors of zones and the items contained in the zones as
well. Following are some examples of what you can do to modify zones.

Turning Off the Capability for Modifications in a Zone
As you have seen, giving end users the capability to move Web Parts around the page is quite easy, whether
within a zone or among entirely different zones. When working with the Portal Framework and multiple
zones on a page, you do not always want to allow the end user to freely change the items that appear in
every zone. You want the items placed in some zones to be left alone. Listing 17-8 shows an example of this.

Listing 17-8: Turning off the zone modification capability

<asp:WebPartZone ID=”WebPartZone1” runat=”server”
LayoutOrientation=”Horizontal” AllowLayoutChange=”false”>

<ZoneTemplate>
<asp:Label ID=”Label1” runat=”server” Text=”Label”
Title=”Welcome to my web page!”>
Welcome to the page!

</asp:Label>
</ZoneTemplate>

</asp:WebPartZone>

In this example, the first Web Part Zone, WebPartZone1, uses the AllowLayoutChange attribute with a
value of False, which turns off the end user’s capability to modify this particular Web Part Zone. When
you run this page and go to the design mode, notice that you cannot drag and drop any of the Web Parts
from the other zones into WebPartZone1. Neither can you grab hold of the Label Web Part contained in
WebPartZone1. No capability exists to minimize and close the Web Parts contained in this zone. It
allows absolutely no modifications to the zone’s layout.

You may notice another interesting change when you are working in the page catalog mode with the
AllowLayoutChange attribute set to False. After you select items to add to the page through the page
catalog, WebPartZone1 does not appear in the drop-down list of places where you can publish the Web
Parts (see Figure 17-16). From this figure, you can see that only WebPartZone2 and WebPartZone3
appear and allow modifications.

Adding Controls through Other Means
Earlier in this chapter, you examined how to use the <asp:PageCatalogPart> control to restore controls
to a page after they had been deleted. Although the <asp:PageCatalogPart> is ideal for this, you might
also want to allow the end user to add Web Parts that are not on the page by default. You may want to
enable the end user to add more than one of any particular Web Part to a page. For these situations, you
work with the <asp:DeclarativeCatalogPart> control.

652

Chapter 17

20_576100 ch17.qxd 10/6/05 9:39 PM Page 652

Figure 17-16

Listing 17-9 shows an example of using this type of catalog system in place of the <asp:PageCatalogPart>
control.

Listing 17-9: Using the DeclarativeCatalogPart control

<asp:CatalogZone ID=”Catalogzone1” Runat=”server”>
<ZoneTemplate>

<asp:DeclarativeCatalogPart ID=”Declarativecatalogpart1” Runat=”server”>
<WebPartsTemplate>

<uc1:CompanyContactInfo ID=”CompanyContact” Runat=”Server”
Title=”Company Contact Info” />

<uc1:PhotoAlbum ID=”PhotoAlbum” Runat=”Server” Title=”Photo Album” />
<uc1:Customers ID=”Customers” Runat=”Server” Title=”Customers” />
<uc1:Locations ID=”Locations” Runat=”Server” Title=”Locations” />

</WebPartsTemplate>
</asp:DeclarativeCatalogPart>

</ZoneTemplate>
</asp:CatalogZone>

Instead of using the <asp:PageCatalogPart> control, this catalog uses the <asp:
DeclarativeCatalogPart> control. This templated control needs a <WebPartsTemplate>
section where you can place all the controls you want available as options for the end user. The controls
appear in the check box list in the same order in which you declare them in the <WebPartsTemplate>
section. Figure 17-17 shows how the catalog looks in the Design view in Visual Studio 2005.

653

Portal Frameworks and Web Parts

20_576100 ch17.qxd 10/6/05 9:39 PM Page 653

Figure 17-17

This catalog lets you select items from the list of Web Parts and assign the location of the zone in which they
will be placed. After they are placed, notice that the option to add these Web Parts has not disappeared as it
did with the earlier PageCatalogPart control. In fact, you can add as many of these items to the page as you
deem necessary — even if it is to the same zone within the Portal Framework.

Using the DeclarativeCatalogPart control is not always a completely ideal solution. When the end user
closes one of the Web Parts that initially appears on the page, he may not see that control listed in the
DeclarativeCatalogPart control’s list of elements. You must explicitly specify it should appear when you
write the code for the DeclarativeCatalogPart control. In fact, the end user cannot re-add these deleted items.
Using both the PageCatalogPart control and the DeclarativeCatalogPart control simultaneously is some-
times the best solution. The great thing about this framework is that it allows you to do that. The Portal
Framework melds both controls into a cohesive control that not only enables you to add controls that are not
on the page by default, but it also lets you add previously deleted default controls. Listing 17-10 shows an
example of this.

Listing 17-10: Combining both catalog types

<asp:CatalogZone ID=”Catalogzone1” Runat=”server”>
<ZoneTemplate>

<asp:PageCatalogPart ID=”Pagecatalogpart1” Runat=”server” />
<asp:DeclarativeCatalogPart ID=”Declarativecatalogpart1” Runat=”server”>

<WebPartsTemplate>
<uc1:CompanyContactInfo ID=”CompanyContact” Runat=”Server”
Title=”Company Contact Info” />

<uc1:PhotoAlbum ID=”PhotoAlbum” Runat=”Server” Title=”Photo Album” />
<uc1:Customers ID=”Customers” Runat=”Server” Title=”Customers” />
<uc1:Locations ID=”Locations” Runat=”Server” Title=”Locations” />

</WebPartsTemplate>
</asp:DeclarativeCatalogPart>

</ZoneTemplate>
</asp:CatalogZone>

In this example, both the PageCatalogPart control and the DeclarativeCatalogPart control are contained
within the <ZoneTemplate> section. When this page is run, you see the results shown in Figure 17-18.

You can see that each catalog is defined within the Catalog Zone. Figure 17-18 shows the PageCatalogPart
control’s collection of Web Parts (defined as Page Catalog). Also note that a link to the Declarative Catalog
is provided for that particular list of items. Note that the order in which the catalogs appear in the
<ZoneTemplate> section is the order in which the links appear in the Catalog Zone.

654

Chapter 17

20_576100 ch17.qxd 10/6/05 9:39 PM Page 654

Figure 17-18

Web Part Verbs
Web Part verbs declare the actions of the items (such as Minimize and Close) that appear in the title.
These verbs are basically links that initiate an action for a particular Web Part. The available list of Web
Part verbs includes the following:

❑ <CloseVerb>

❑ <ConnectVerb>

❑ <EditVerb>

❑ <ExportVerb>

❑ <HelpVerb>

❑ <MinimizeVerb>

❑ <RestoreVerb>

The <asp:WebPartZone> control allows you to control these verbs by nesting the appropriate verb
elements within the <asp:WebPartZone> element itself. After these are in place, you can manipulate
how these items appear in all the Web Parts that appear in the chosen Web Part Zone.

For example, look at graying out the default Close link included with a Web Part. This is illustrated in
Listing 17-11.

655

Portal Frameworks and Web Parts

20_576100 ch17.qxd 10/6/05 9:39 PM Page 655

Listing 17-11: Graying out the Close link in a Web Part

<asp:WebPartZone ID=”WebPartZone3” Runat=”server”>
<CloseVerb Enabled=”False” />
<ZoneTemplate>

<asp:Calendar ID=”Calendar1” Runat=”server”>
</asp:Calendar>

</ZoneTemplate>
</asp:WebPartZone>

In this example, you can see that you simply need to set the Enabled attribute of the <CloseVerb> element
to False in order to gray out the Close link in any of the generated Web Parts included in this Web Part
Zone. If you construct the Web Part Zone in this manner, you achieve the results shown in Figure 17-19.

Figure 17-19

If you don’t want to gray out the Close link (or any other verb link contained within the Web Part), you
must instead use the Visible attribute of the appropriate verb (see Listing 17-12).

Listing 17-12: Removing the Close link in a Web Part

<asp:WebPartZone ID=”WebPartZone3” Runat=”server”>
<CloseVerb Visible=”False” />
<ZoneTemplate>

656

Chapter 17

20_576100 ch17.qxd 10/6/05 9:39 PM Page 656

<asp:Calendar ID=”Calendar1” Runat=”server”>
</asp:Calendar>

</ZoneTemplate>
</asp:WebPartZone>

Using the Visible attribute produces the screen shown in Figure 17-20.

Figure 17-20

Verb elements provide another exciting feature: They give you the capability to use images that would
appear next to the text of an item. Using images with the text makes the Web Parts appear more like the
overall Windows environment. For instance, you can change the contents of WebPartZone3 again so that
it now uses images with the text for the Close and Minimize links. This is illustrated in Listing 17-13.

Listing 17-13: Using images for the Web Part verbs

<asp:WebPartZone ID=”WebPartZone3” Runat=”server”>
<CloseVerb ImageUrl=”Images/CloseVerb.gif” />
<MinimizeVerb ImageUrl=”Images/MinimizeVerb.gif” />
<ZoneTemplate>

<asp:Calendar ID=”Calendar1” Runat=”server”>
</asp:Calendar>

</ZoneTemplate>
</asp:WebPartZone>

657

Portal Frameworks and Web Parts

20_576100 ch17.qxd 10/6/05 9:39 PM Page 657

To point to an image for the verb, use the ImageUrl attribute. This produces something similar to
Figure 17-21, depending on the images you use.

Figure 17-21

This chapter, thus far, has concentrated on creating completely customizable portal applications in a
declarative manner using the capabilities provided by the ASP.NET Portal Framework. As with most
aspects of ASP.NET, however, not only can you work with appearance and functionality in a declarative
fashion, but you can also create the same constructs through server-side code.

Working with Classes in
the Portal Framework

The Portal Framework provides three main classes for dealing with the underlying framework presented
in this chapter: WebPartManager, WebPartZone, and WebPart.

The WebPartManager class allows you to perform multiple operations in your server-side code. The
following table shows a partial listing of some of the properties that this class provides.

658

Chapter 17

20_576100 ch17.qxd 10/6/05 9:39 PM Page 658

WebPartManager Class Properties Description

Connections Provides a collection of all the connections between
Web Parts contained on the page.

DisplayMode Allows you to change the page’s display mode.
Possible choices include CatalogDisplayMode,
ConnectDisplayMode, DesignDisplayMode,
EditDisplayMode, and NormalDisplayMode.

EnableCatalogDisplayMode Takes a Boolean value and either enables or disables
the capability to turn on the page in the catalog mode.

EnableConnectDisplayMode Takes a Boolean value and either enables or disables
the capability to turn on the page in the connect mode.

EnableDesignDisplayMode Takes a Boolean value and either enables or disables
the capability to turn on the page in the design mode.

EnableEditDisplayMode Takes a Boolean value and either enables or disables
the capability to turn on the page in the display mode.

SelectedWebPart Allows you to perform multiple operations on the
selected Web Part.

WebParts Provides a collection of all the Web Parts contained on
the page.

Zones Provides a collection of all the Web Part Zones contained
on the page.

Beyond the properties of the WebPartManager class, you also have an extensive list of available methods
at your disposal. The following table outlines some of the available methods of the WebPartManager class.

WebPartManager Class Methods Description

AddWebPart Allows you to dynamically add new Web Parts to a
particular zone on the page.

ConnectWebParts Allows you to connect two Web Parts together via a
common property or value.

DeleteWebPart Allows you to dynamically delete new Web Parts
from a particular zone on the page.

DisconnectWebParts Allows you to delete a connection between two Web
Parts.

MoveWebPart Allows you to move a Web Part from one zone to
another, or allows you to change the index order in
which Web Parts appear in a particular zone.

Whereas the WebPartManager class allows you to manipulate the location, addition, and deletion of Web
Parts that appear in the page as a whole, the WebPartZone class allows you to modify a single Web Part
Zone on the page. The following table provides a list of some properties available to the WebPartZone class.

659

Portal Frameworks and Web Parts

20_576100 ch17.qxd 10/6/05 9:39 PM Page 659

WebPartZone Class Properties Description

AllowLayoutChange Takes a Boolean value and either enables or disables
the Web Part Zone’s capability to accept or allow any
changes in the Web Parts it contains.

BackColor, BackImageUrl, BorderColor, Enable you to modify the Web Part Zone’s general
BorderStyle, BorderWidth appearance.

CloseVerb References the Close verb for a particular Web Part
Zone from which you can then manipulate the
verb’s Description, Enabled, ImageUrl, Text,
and Visible properties.

ConnectVerb References a Web Part Zone’s Connect verb from
which you can then manipulate the verb’s
Description, Enabled, ImageUrl, Text, and
Visible properties.

DragHighlightColor Takes a System.Color value that sets the color of
the Web Part Zone’s border if focused when the
moving of Web Parts is in operation. This also
changes the color of the line that appears in the Web
Part Zone specifying where to drop the Web Part.

EditVerb References a Web Part Zone’s Edit verb from which
you can then manipulate the verb’s Description,
Enabled, ImageUrl, Text, and Visible proper-
ties.

EmptyZoneText Sets the text that is shown in the zone if a Web Part
is not set in the zone.

HeaderAlignment Allows you to align the Web Part Zone header.

HeaderText Sets header text.

Height Sets the height of the Web Part Zone.

HelpVerb References a Web Part Zone’s Help verb from which
you can then manipulate the verb’s Description,
Enabled, ImageUrl, Text, and Visible properties.

MenuImageUrl, MenuLabelStyle, Enable you to modify the drop-down menu that
MenuLabelText, MenuText appears when end users edit a Web Part. These

properties let you apply an image, alter the text, or
change the style of the menu.

MinimizeVerb References a Web Part Zone’s Minimize verb from
which you can then manipulate the verb’s
Description, Enabled, ImageUrl, Text, and
Visible properties.

Orientation Enables you to change the Web Part Zone’s
orientation from horizontal to vertical or vice versa.

660

Chapter 17

20_576100 ch17.qxd 10/6/05 9:39 PM Page 660

WebPartZone Class Properties Description

RestoreVerb References a Web Part Zone’s Restore verb, from
which you can then manipulate the verb’s
Description, Enabled, ImageUrl, Text, and
Visible properties.

VerbButtonType Enables you to change the button style. Choices
include ButtonType.Button,
ButtonType.Image, or ButtonType.Link.

WebParts Provides a collection of all the Web Parts contained
within the zone.

Width Sets the width of the Web Part Zone.

You have a plethora of options to manipulate the look-and-feel of the Web Part Zone and the items contained
therein.

The final class is the WebPart class. This class enables you to manipulate specific Web Parts located on
the page. The following table details some of the properties available in the WebPart class.

WebPart Class Properties Description

AllowClose Takes a Boolean value that specifies whether
the Web Part can be closed and removed from
the page.

AllowEdit Takes a Boolean value that specifies whether
the end user can edit the Web Part.

AllowHide Takes a Boolean value that specifies whether the
end user can hide the Web Part within the Web Part
Zone. If the control is hidden, it is still in the zone,
but invisible.

AllowMinimize Takes a Boolean value that specifies whether
the end user can collapse the Web Part.

AllowPaginate Takes a Boolean value that specifies whether the
Web Part can be paginated using the ASP.NET Pager
server control.

AllowZoneChange Takes a Boolean value that specifies whether the
end user can move the Web Part from one zone to
another.

BackColor, BackImageUrl, BorderColor, Enable you to modify the Web Part’s general
BorderStyle, BorderWidth appearance.

Table continued on following page

661

Portal Frameworks and Web Parts

20_576100 ch17.qxd 10/6/05 9:39 PM Page 661

WebPart Class Properties Description

Caption Sets an item of text directly in the title bar next to
the Web Part’s title. This property allows you to
differentiate among multiple Web Parts that have
the same title.

ChromeState Specifies whether the Web Part chrome is in a nor-
mal state or is minimized.

ChromeType Specifies the chrome type that the Web Part uses.
Available options include BorderOnly, Default,
None, TitleAndBorder, and TitleOnly.

Direction Specifies the direction of the text or items placed
within the Web Part. Available options include
LeftToRight, NotSet, and RightToLeft. This
property is ideal for dealing with Web Parts that
contain Asian text that is read from right to left.

HelpMode Specifies how the help items display when the end
user clicks the Help verb. Available options include
Modal, Modeless, and Navigate. Modal displays
the help items within a modal window if the end
user’s browser supports modal windows. If not, a
pop-up window displays. Modeless means that a
pop-up window displays for every user. Navigate
redirects the user to the appropriate help page
(specified by the HelpUrl property) when he clicks
on the Help verb.

HelpUrl Used when the HelpMode is set to Navigate.
Takes a String value that specifies the location of
the page the end user is redirected to when he
clicks on the Help verb.

ScrollBars Applies scroll bars to the Web Part. Available
values include Auto, Both, Horizontal, None,
and Vertical.

Title Specifies the text for the Web Part’s title. Text
appears in the title bar section.

TitleIconImageUrl Enables you to apply an icon to appear next to the
title by specifying to the icon image’s location as a
String value of the property.

TitleUrl Specifies the location to direct the end user when
the Web Part’s title Web Part is clicked. When set,
the title is converted to a link; when not set, the
title appears as regular text.

Zone Allows you to refer to the zone in which the Web
Part is located.

662

Chapter 17

20_576100 ch17.qxd 10/6/05 9:39 PM Page 662

Creating Custom Web Parts
When adding items to a page that utilizes the Portal Framework, you add the pre-existing ASP.NET Web
server controls, user controls, or custom controls. In addition to these items, you can also build and
incorporate custom Web Parts. Using the WebParts class, you can create your own custom Web Parts.
Although similar to ASP.NET custom server control development, the creation of custom Web Parts adds
some additional capabilities. Creating a class that inherits from the WebPart class instead of the Control
class enables your control to use the new personalization features and to work with the larger Portal
Framework, thereby allowing for the control to be closed, maximized, minimized, and more.

To create a custom Web Part control, the first step is to create a project in Visual Studio 2005. From Visual
Studio, choose File➪New Project. This pops open the New Project dialog. From this dialog, select Web
Control Library. Name the project MyStateListBox and click OK to create the project. You are presented
with a class that contains the basic framework for a typical ASP.NET server control. Ignore this framework;
you are going to change it so that your class creates a custom Web Parts control instead of a ASP.NET custom
server control. Listing 17-14 details the creation of a custom Web Part control.

Listing 17-14: Creating a custom Web Part control

VB
Imports System
Imports System.Web
Imports System.Web.UI.WebControls
Imports System.Web.UI.WebControls.WebParts

Namespace Wrox

Public Class StateListBox
Inherits WebPart

Private _LabelStartText As String = “ Enter State Name: “
Dim StateInput As New TextBox
Dim StateContents As New ListBox

Public Sub New()
Me.AllowClose = False

End Sub

<Personalizable(), WebBrowsable()> _
Public Property LabelStartText() As String

Get
Return _LabelStartText

End Get
Set(ByVal value As String)

_LabelStartText = value
End Set

End Property

Protected Overrides Sub CreateChildControls()
Controls.Clear()

Dim InstructionText As New Label

(continued)

663

Portal Frameworks and Web Parts

20_576100 ch17.qxd 10/6/05 9:39 PM Page 663

Listing 17-14: (continued)

InstructionText.BackColor = Drawing.Color.LightGray
InstructionText.Font.Name = “Verdana”
InstructionText.Font.Size = 10
InstructionText.Font.Bold = True
InstructionText.Text = LabelStartText
Me.Controls.Add(InstructionText)

Dim LineBreak As New Literal
LineBreak.Text = “
”
Me.Controls.Add(LineBreak)

Me.Controls.Add(StateInput)

Dim InputButton As New Button
InputButton.Text = “Input State”
AddHandler InputButton.Click, AddressOf Me.Button1_Click
Me.Controls.Add(InputButton)

Dim Spacer As New Literal
Spacer.Text = “<p>”
Me.Controls.Add(Spacer)

Me.Controls.Add(StateContents)

ChildControlsCreated = True
End Sub

Public Sub Button1_Click(ByVal sender As Object, ByVal e As EventArgs)
StateContents.Items.Add(StateInput.Text)
StateInput.Text = String.Empty
StateInput.Focus()

End Sub

End Class

End Namespace

C#
using System;
using System.Web;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;

namespace Wrox
{

public class StateListBox : WebPart
{

private String _LabelStartText = “ Enter State Name: “;
TextBox StateInput;
ListBox StateContents;

public StateListBox()
{

664

Chapter 17

20_576100 ch17.qxd 10/6/05 9:39 PM Page 664

this.AllowClose = false;
}

[Personalizable(), WebBrowsable]
public String LabelStartText
{

get { return _LabelStartText; }
set { _LabelStartText = value; }

}

protected override void CreateChildControls()
{

Controls.Clear();

Label InstructionText = new Label();
InstructionText.BackColor = System.Drawing.Color.LightGray;
InstructionText.Font.Name = “Verdana”;
InstructionText.Font.Size = 10;
InstructionText.Font.Bold = true;
InstructionText.Text = LabelStartText;
this.Controls.Add(InstructionText);

Literal LineBreak = new Literal();
LineBreak.Text = “
”;
this.Controls.Add(LineBreak);

this.Controls.Add(StateInput);

Button InputButton = new Button();
InputButton.Text = “Input State”;
InputButton.Click += new EventHandler(this.Button1_Click);
this.Controls.Add(InputButton);

Literal Spacer = new Literal();
Spacer.Text = “<p>”;
this.Controls.Add(Spacer);

this.Controls.Add(StateContents);

ChildControlsCreated = true;
}

private void Button1_Click(object sender, EventArgs e)
{

StateContents.Items.Add(StateInput.Text);
StateInput.Text = String.Empty;
StateInput.Focus();

}
}

}

In review, you first import the System.Web.UI.WebControls.WebParts namespace. The important step
in the creation of this custom control is to make sure that it inherits from the WebPart class instead of the
customary Control class. As stated earlier, this gives the control access to the advanced functionality of the
Portal Framework that a typical custom control wouldn’t have.

665

Portal Frameworks and Web Parts

20_576100 ch17.qxd 10/6/05 9:39 PM Page 665

VB
Public Class StateListBox

Inherits WebPart

End Class

C#
public class StateListBox : WebPart
{

}

After the class structure is in place, a few properties are defined, and the constructor is defined as well. The
constructor directly uses some of the capabilities that the WebPart class provides. These capabilities wouldn’t
be available if this custom control has the Control class as its base class and is making use of the
WebPart.AllowClose property.

VB
Public Sub New()

Me.AllowClose = False
End Sub

C#
public StateListBox()
{

this.AllowClose = false;
}

This constructor creates a control that explicitly sets the control’s AllowClose property to False—
meaning that the Web Part will not have a Close link associated with it when generated in the page.
Because of the use of the WebPart class instead of the Control class, you will find, in addition to the
AllowClose property, other WebPart class properties such as AllowEdit, AllowHide,
AllowMinimize, AllowZoneChange, and more.

In the example shown in Listing 17-14, you see a custom-defined property: LabelStartText. This property
allows the developer to change the instruction text displayed at the top of the control. The big difference
with this custom property is that it is preceded by the Personalizable and the WebBrowsable attributes.

The Personalizable attribute enables the property for personalization, whereas the WebBrowsable
attribute specifies whether the property should be displayed in the Properties window in Visual Studio.
The Personalizable attribute can be defined further using a PersonalizationScope enumeration.
The only two possible enumerations —Shared and User— can be defined in the following ways:

VB
<Personalizable(PersonalizationScope.Shared), WebBrowsable()> _
Public Property LabelStartText() As String

Get
Return _LabelStartText

End Get
Set(ByVal value As String)

_LabelStartText = value
End Set

End Property

666

Chapter 17

20_576100 ch17.qxd 10/6/05 9:39 PM Page 666

C#
[Personalizable(PersonalizationScope.Shared), WebBrowsable]
public String LabelStartText
{

get { return _LabelStartText; }
set { _LabelStartText = value; }

}

A PersonalizationScope of User means that any modifications are done on a per-user basis. This is the
default setting and means that if a user makes modifications to the property, the changes are seen only by
that particular user and not by the other users that browse the page. If the PersonalizationScope is set
to Shared, changes made by one user can be viewed by others requesting the page.

After you have any properties in place, the next step is to define what gets rendered to the page by overriding
the CreateChildControls method. From the example in Listing 17-14, the CreateChildControls method
renders Label, Literal, TextBox, Button, and ListBox controls. In addition to defining the properties of some of
these controls, a single event is associated with the Button control (Button1_Click) that is also defined in
this class.

Now that the custom Web Part control is in place, build the project so that a DLL is created. The next step
is to open up the ASP.NET Web project where you want to utilize this new control and, from the Visual
Studio Toolbox, add the new control. You can quickly accomplish this task by right-clicking in the Toolbox
on the tab where you want the new control to be placed. After right-clicking the appropriate tab, select
Choose Items. Click the Browse button and point to the new MyStateListBox.dll that you just created.
After this is done, the StateListBox control is highlighted and checked in the Choose Toolbox Items dialog,
as illustrated in Figure 17-22.

Figure 17-22

Clicking OK adds the control to your toolbox. Now you are ready to use this new control as a Web Part
control. To do this, simply drag and drop the control into one of your Web Part Zone areas. This does a
couple of things. First, it registers the control on the page using the Register directive:

667

Portal Frameworks and Web Parts

20_576100 ch17.qxd 10/6/05 9:39 PM Page 667

<%@ Register TagPrefix=”cc1” Namespace=”MyStateListBox.Wrox”
Assembly=”MyStateListBox” %>

Once registered, the control can be used on the page. If dragged and dropped onto the page’s design
surface, you get a control in the following construct:

<cc1:StateListBox Runat=”server” ID=”StateListBox1”
LabelStartText=” Enter State Name: “ AllowClose=”False” />

The two important things to notice with this construct is that the custom property, LabelStartText, is
present and has the default value in place, and the AllowClose attribute is included. Because the
LabelStartText uses the WebBrowsable attribute, the developer using this control can find this property
in the Properties window of Visual Studio and change it if necessary. The AllowClose attribute is present
only because earlier you made the control’s inherited class WebPart and not Control. Because WebPart
was made the inherited class, you have access to these Web-Part–specific properties. When the StateListBox
control is drawn on the page, you can see that, indeed, it is part of the larger Portal Framework and allows
for things such as minimization and editing. End users can use this custom Web Part control as if it were
any other type of Web Part control. As you can see, you have a lot of power when you create your own
Web Part controls.

And because LabelStartText uses the WebBrowsable attribute, you can use the PropertyGridEditorPart
control to allow end users to edit this directly in the browser. With this in place, as was demonstrated earlier
in Listing 17-5, an end user will see the following editing capabilities after switching to the Edit mode (see
Figure 17-23).

Figure 17-23

Summary
This chapter introduced you to the Web Part Manager, Web Part Zone, and the Web Part controls. Not
only do these controls allow for easy customization of the look-and-feel of either the Web Parts or the
zones in which they are located, but the framework provided can be used to completely modify the
behavior of these items.

This chapter also showed you how to create your own custom Web Part controls. Creating your own controls
was always one of the benefits provided by ASP.NET, and this benefit has been taken one step further with
the capability to now create Web Part controls. Web Part controls enable you to take advantage of some of the
more complex features that you don’t get with custom ASP.NET server controls.

You may find the Portal Framework to be one of the more exciting new features of ASP.NET 2.0; you may
like the idea of creating completely modular and customizable Web pages. End users like this feature, and
it is quite easy for developers to implement. Just remember that you don’t have to implement every feature
explained in this chapter; with the framework provided, however, you can choose the functionality that
you want.

668

Chapter 17

20_576100 ch17.qxd 10/6/05 9:39 PM Page 668

Security

Not every page that you build with ASP.NET is meant to be open and accessible to everyone on
the Internet. Sometimes, you want to build pages or sections of an application that are accessible to
only a select group of your choosing. For this reason, you need the security measures explained in
this chapter. They can help protect the data behind your applications and the applications them-
selves from fraudulent use.

Security is a very wide-reaching term. During every step of the application-building process, you
must, without a doubt, be aware of how mischievous end users might attempt to bypass your
lockout measures. You must take steps to ensure that no one can take over the application or gain
access to its resources. Whether it involves working with basic server controls or accessing
databases, you should be thinking through the level of security you want to employ to protect
yourself.

How security is applied to your applications is truly a measured process. For instance, a single
ASP.NET page on the Internet, open to public access, has different security requirements than does
an ASP.NET application that is available to only selected individuals because it deals with confi-
dential information such as credit card numbers or medical information.

The first step is to apply the appropriate level of security for the task at hand. Because you can take
so many different actions to protect your applications and the resources, you have to decide for
yourself which of these measures to employ. This chapter takes a look at some of the possibilities
for protecting your applications.

Notice that security is discussed throughout this book. In addition, a couple chapters focus on new
security frameworks provided by ASP.NET 2.0 that are not discussed in this chapter. Chapters 15
and 16 discuss ASP.NET’s new membership and role management frameworks, as well as the new
personalization features in this version. These topics are aspects of security that can make it even
easier for you to build safe applications. Although these new security frameworks are provided
with this latest release of ASP.NET, you can still build you own measures as you did in the previous
versions of ASP.NET. This chapter discusses how to do so.

21_576100 ch18.qxd 10/6/05 9:31 PM Page 669

An important aspect of security is how you handle the authentication and authorization for accessing
resources in your applications. Before you begin working through some of the authentication/authorization
possibilities in ASP.NET, you should know exactly what we mean by those two terms.

Authentication and Authorization
As discussed in Chapter 16, authentication is the process that determines the identity of a user. After a user
has been authenticated, a developer can determine if the identified user has authorization to proceed. It is
impossible to give an entity authorization if no authentication process has been applied.

Authorization is the process of determining whether an authenticated user is permitted access to any part
of an application, access to specific points of an application, or access only to specified datasets that the
application provides. Authenticating and authorizing users and groups enable you to customize a site
based on user types or preferences.

Applying Authentication Measures
ASP.NET provides many different types of authentication measures to use within your applications,
including basic authentication, digest authentication, forms authentication, Passport, and Integrated
Windows authentication. You also can develop your own authentication methods. You should never
authorize access to resources you mean to be secure if you haven’t applied an authentication process to
the requests for the resources.

The different authentication modes are established through settings that can be applied to the application’s
web.config file or in conjunction with the application server’s Internet Information Services (IIS) instance.

ASP.NET is configured through a series of .config files on the application server. These are XML-based
files that enable you to easily change how ASP.NET behaves. This is an ideal way to work with the
configuration settings you require. ASP.NET configuration files are applied in a hierarchal manner. The
.NET Framework provides a server-level configuration file called the machine.config file, which can be
found at C:\Windows\Microsoft.NET\Framework\v2.0xxxxx\CONFIG. The folder contains
machine.config and machine.config.comments files. These files provide ASP.NET application
settings at a server-level, meaning that the settings are applied to each and every ASP.NET application
that resides on the particular server.

A web.config file is another XML-based configuration file that resides in the root of the Web application.
The settings applied in the web.config file override the same settings applied in the higher-level
machine.config file.

You can even nest the web.config files so that the main application web.config file is located in the root
directory of your application, but additional web.config files reside in some of the application’s subdi-
rectories (see Figure 18-1). The web.config files contained in any of the subdirectories supersede the root
directory’s web.config file. Therefore, any settings applied through a subdirectory’s web.config file
change whatever was set in the application’s main web.config file.

670

Chapter 18

21_576100 ch18.qxd 10/6/05 9:32 PM Page 670

Figure 18-1

In a lot of the examples in this chapter, you use the web.config file to apply the authentication and
authorization mechanics you want in your applications. You also can work with IIS to apply settings
directly to your applications.

IIS is the Web server that handles all the incoming HTTP requests that come to into the server. You must
modify IIS to perform as you want. IIS hands a request to the ASP.NET engine only if the page has a specific
file extension (for example, .aspx). You learn how to work with IIS 5.0 and 6.0 later in this chapter.

The <authentication> Node
You use the <authentication> node in the application’s web.config file to set the type of authentication
your ASP.NET application requires:

<system.web>
<authentication mode=”Windows|Forms|Passport|None”>

</authentication>
</system.web>

The <authentication> node uses the mode attribute to set the form of authentication that is to be used.
Options include Windows, Forms, Passport, and None. Each option is explained in the following table.

Provider Description

Windows Windows authentication is used together with IIS
authentication. Authentication is performed by IIS in the
following ways: basic, digest, or Integrated Windows
Authentication. When IIS authentication is complete,
ASP.NET uses the authenticated identity to authorize
access. This is the default setting.

Table continued on following page

671

Security

21_576100 ch18.qxd 10/6/05 9:32 PM Page 671

Provider Description

Forms Requests that are not authenticated are redirected to an
HTML form using HTTP client-side redirection. The user
provides his login information and submits the form. If
the application authenticates the request, the system
issues a form that contains the credentials or a key for
reacquiring the identity.

Passport A centralized authentication service provided by Microsoft
that offers single login and core profile services for member
sites. This mode of authentication was de-emphasized by
Microsoft at the end of 2004.

None No authentication mode is in place with this setting.

As you can see, a couple of methods are at your disposal for building an authentication/authorization
model for your ASP.NET applications. We start by examining the Windows mode of authentication.

Windows-Based Authentication
Windows-based authentication is handled between the Windows server where the ASP.NET application
resides and the client machine. In a Windows-based authentication model, the requests go directly to IIS
to provide the authentication process. This type of authentication is quite useful in an intranet environ-
ment where you can let the server deal completely with the authentication process — especially in
environments where users are already logged onto a network. In this scenario, you simply grab and
utilize the credentials that are already in place for the authorization process.

IIS first takes the user’s credentials from the domain login. If this process fails, IIS displays a pop-up a
dialog box so the user can enter or re-enter his login information. To set up your ASP.NET application to
work with Windows-based authentication, begin by creating some users and groups.

Creating Users
You use aspects of Windows-based authentication to allow specific users who have provided a domain
login to access your application or parts of your application. Because it can use this type of authentication,
ASP.NET makes it quite easy to work with applications that are deployed in an intranet environment. If a
user has logged onto a local computer as a domain user, he won’t need to be authenticated again when
accessing a network computer in that domain.

The following steps show you how to create a user. It is important to note that you must have sufficient
rights to be authorized to create users on a server. If you are authorized, the steps to create users are as
follows:

1. Within your Windows XP or Windows Server 2003 server, choose Start ➪ Control Panel ➪

Administrative Tools ➪ Computer Management. The Computer Management utility opens. It
manages and controls resources on the local Web server. You can accomplish many things using
this utility, but the focus here is on the creation of users.

2. Expand the System Tools node.

3. Expand the Local Users and Groups node.

672

Chapter 18

21_576100 ch18.qxd 10/6/05 9:32 PM Page 672

4. Select the Users folder. You see something similar to the results shown in Figure 18-2.

Figure 18-2

5. Right-click the Users folder and select New User. The New User dialog appears, as shown in
Figure 18-3.

Figure 18-3

6. Give the user a name, password, and description stating that this is a test user. This example
calls the user Bubbles.

7. Uncheck the check box that requires the user to change his password at the next login.

8. Click the Create button. Your test user is created and presented in the Users folder of the Computer
Management utility, as shown in Figure 18-4.

673

Security

21_576100 ch18.qxd 10/6/05 9:32 PM Page 673

Figure 18-4

Now create a page to work with this user.

Authenticating and Authorizing a User
Now create an application that enables the user to enter it. You work with the application’s web.config
file to control which users are allowed to access the site and which users are not allowed.

Add the section presented in Listing 18-1 to your web.config file.

Listing 18-1: Denying all users through the web.config file

<system.web>
<authentication mode=”Windows” />
<authorization>

<deny users=”*” />
</authorization>

</system.web>

In this example, the web.config file is configuring the application to employ Windows-based
authentication through the use of the <authentication> element’s mode attribute. In addition, the
<authorization> element is used to define specifics about the users or groups who are permitted access
to the application. In this case, the <deny> element specifies that all users (even if they are authenticated)
are denied access to the application. Not permitting specific users with the <allow> element doesn’t
make much sense, but for this example, leave it like it is. The results are illustrated in Figure 18-5.

Any end user — authenticated or not — who tries to access the site sees a large “Access is denied” statement
in his browser window, which is just what you want for those not allowed to access your application!

In most instances, however, you want to allow at least some users to access your application. Use the
<allow> element in the web.config file to allow a specific user. Here’s the syntax:

<allow users=”Domain\Username” />

674

Chapter 18

21_576100 ch18.qxd 10/6/05 9:32 PM Page 674

Figure 18-5

Listing 18-2 shows how the user is permitted access.

Listing 18-2: Allowing a single user through the web.config file

<system.web>
<authentication mode=”Windows” />
<authorization>

<allow users=”REUTERS-EVJEN\Bubbles” />
<deny users=”*” />

</authorization>
</system.web>

Even though all users (even authenticated ones) are denied access through the use of the <deny> ele-
ment, the definitions defined in the <allow> element take precedence. In this example, a single user —
Bubbles— is allowed.

Now, if you are logged on to the client machine as the user Bubbles and run the page in the browser, you
get access to the application.

Looking Closely at the <allow> and <deny> Nodes
The <allow> and <deny> nodes enable you to work not only with specific users, but also with groups.
The elements support the attributes defined in the following table.

Attribute Description

users Enables you to specify users by their domain and/or name.

roles Enables you to specify access groups that are allowed or
denied access.

verbs Enables you to specify the HTTP transmission method that
is allowed or denied access.

675

Security

21_576100 ch18.qxd 10/6/05 9:32 PM Page 675

When using any of these attributes, you can specify all users with the use of the asterisk (*):

<allow roles=”*” />

In this example, all roles are allowed access to the application. Another symbol you can use with these
attributes is the question mark (?), which represents all anonymous users. For example, if you want to
block all anonymous users from your application, use the following construction:

<deny users=”?” />

When using users, roles, or verbs attributes with the <allow> or <deny> elements, you can specify
multiple entries by separating the values with a comma. If you are going to allow more than one user,
you can either separate these users into different elements as shown here

<allow users=”MyDomain\User1” />
<allow users=”MyDomain\User2” />

or you can use the following:

<allow users=”MyDomain\User1, MyDomain\User2” />

Use the same construction when defining multiple roles and verbs.

Authenticating and Authorizing a Group
You can define groups of individuals allowed or denied access to your application or the application’s
resources. Your server can contain a number of different groups, each of which can have any number of
users belonging to it. It’s also possible for a single user to belong to multiple groups. Pull up the
Computer Management utility (Start ➪ Control Panel ➪ Administrative Tools ➪ Computer Management)
to access the list of the groups defined on the server you are working with. Simply click the Groups folder
in the Computer Management utility, and the list of groups is displayed, as illustrated in Figure 18-6.

Figure 18-6

676

Chapter 18

21_576100 ch18.qxd 10/6/05 9:32 PM Page 676

Right-click in the Groups folder to select New Group. The New Group dialog displays (see Figure 18-7).

Figure 18-7

To create a group, give it a name and description; then click the Add button and select the users whom you
want to be a part of the group. After a group is created, you can allow it access to your application like this:

<allow roles=”MyGroup” />

You can use the roles attribute in either the <allow> or <deny> element to work with a group that you
have created or with a specific group that already exists.

Authenticating and Authorizing an HTTP Transmission Method
In addition to authenticating and authorizing specific users or groups of users, you can also authorize or
deny requests that come via a specific HTTP transmission protocol. This is done using the verb attribute
in the <allow> and <deny> elements.

<deny verbs=”GET, DEBUG” />

In this example, requests that come in using the HTTP GET or HTTP DEBUG protocols are denied access to
the site. Possible values for the verbs attribute include POST, GET, HEAD, and DEBUG.

Integrated Windows Authentication
So far, you’ve been using the default Integrated Windows authentication mode for the
authentication/authorization process. This is fine if you are working with an intranet application and
each of the clients is using Windows, the only system that the authentication method supports. This
system of authentication also requires the client to be using Microsoft’s Internet Explorer, which might
not always be possible.

677

Security

21_576100 ch18.qxd 10/6/05 9:32 PM Page 677

Integrated Windows authentication was previously known as NTLM or Windows NT
Challenge/Response authentication. This authentication model has the client prove its identity by send-
ing a hash of its credentials to the server that is hosting the ASP.NET application. Along with Microsoft’s
Active Directory, a client can also use Kerberos if it’s using Microsoft’s Internet Explorer 5 or higher.

Basic Authentication
Another option is to use Basic authentication, which also requires a username and password from the
client for authentication. The big plus about Basic authentication is that it is part of the HTTP specification
and therefore is supported by most browsers. The negative aspect of Basic authentication is that it passes
the username and password to the server as clear text, meaning that the username and password are quite
visible to prying eyes. For this reason, it is important to use Basic authentication along with SSL (Secure
Sockets Layer).

To implement Basic authentication for your application, you must pull up IIS and open the Properties
dialog for the Web site you are working with. Select the Directory Security tab and click the Edit button in
the Anonymous Access and Authentication Control box. The Authentication Methods dialog box opens.

Uncheck the Integrated Windows Authentication check box at the bottom and check the Basic
Authentication check box above it (see Figure 18-8). When you do, you are warned that this method
transmits usernames and passwords as clear text.

Figure 18-8

End by clicking OK in the dialog. Now your application uses Basic authentication instead of Integrated
Windows authentication.

678

Chapter 18

21_576100 ch18.qxd 10/6/05 9:32 PM Page 678

Digest Authentication
Digest authentication is the final mode you explore in this chapter. The model alleviates the Basic
authentication problem of passing the client’s credentials as clear text. Instead, Digest authentication
uses an algorithm to encrypt the client’s credentials before they are sent to the application server.

To use Digest authentication, you are required to have a Windows domain controller. One of the main
issues that arises with Digest authentication is that it is not supported on all platforms and requires
browsers that conform to the HTTP 1.1 specification. Digest authentication, however, not only works
well with firewalls, but it is also compatible with proxy servers.

You can select Digest authentication as the choice for your application in the same Authentication Methods
dialog — simply select the Digest Authentication check box.

Forms-Based Authentication
Forms-based authentication is a popular mode of authenticating users to access an entire application or
specific resources within an application. Using it enables you to put the login form directly in the
application so that the end user simply enters his username and password into an HTML form contained
within the browser itself. One negative aspect of forms-based authentication is that the usernames and
passwords are sent as clear text unless you are using SSL.

It’s easy and relatively straightforward to implement forms-based authentication in your Web application. To
begin with, you make some modifications to your application’s web.config file, as illustrated in Listing 18-3.

Listing 18-3: Modifying the web.config file for forms-based authentication

<system.web>
<authentication mode=”Forms”>

<forms name=”Wrox” loginUrl=”Login.aspx” path=”/” />
</authentication>

<authorization>
<deny users=”?” />

</authorization>
</system.web>

This is the structure you must apply to the web.config file. First, using the <authorization> element
described earlier, you are denying access to the application to all anonymous users. Only authenticated
users are allowed to access any page contained within the application.

If the requestor is not authenticated, what is defined in the <authentication> element is put into action.
The value of the mode attribute is set to Forms to employ forms-based authentication for your Web
application. The next attribute specified is loginUrl, which points to the page that contains the
application’s login form. In this example, Login.aspx is specified as a value. If the end user trying to
access the application is not authenticated, his request is redirected to Login.aspx so that the user can be
authenticated and authorized to proceed. After valid credentials have been provided, the user is returned
to the location in the application where he originally made the request. The final attribute used here is
path. It simply specifies the location in which to save the cookie used to persist the authorized user’s
access token. In most cases, you want to leave the value as /. The following table describes each of the
possible attributes for the <forms> element.

679

Security

21_576100 ch18.qxd 10/6/05 9:32 PM Page 679

Attribute Description

name This is the name that is assigned to the cookie saved
used to remember the user from request to request.
The default value is .ASPXAUTH.

loginUrl Specifies the URL to which the request is redirected
for login if no valid authentication cookie is found.
The default value is Login.aspx.

protection Specifies the amount of protection you want to apply
to the authentication cookie. The four available set-
tings are:
—All: The application uses both data validation and
encryption to protect the cookie. This is the default
setting.
—None: Applies no encryption to the cookie.
—Encryption: The cookie is encrypted but data
validation isn’t performed on it. Cookies used in this
manner might be subject to plain text attacks.
—Validation: The opposite of the Encryption
setting. Data validation is performed, but the cookie is
not encrypted.

path Specifies the path for cookies issued by the application.
In most cases you want to use /, which is the default
setting.

timeout Specifies the amount of time, in minutes, after which
the cookie expires. The default value is 30.

cookieless Specifies whether the forms-based authentication
process should use cookies when working with the
authentication/authorization process.

defaultUrl Specifies the default URL.

domain Specifies the domain name to be sent with forms
authentication cookies.

slidingExpiration Specifies whether to apply a sliding expiration to the
cookie. If set to True, the expiration of the cookie is
reset with each request made to the server. The default
value is False.

enableCrossAppsRedirect Specifies whether to allow for cross-application
redirection.

requireSSL Specifies whether a Secure Sockets Layer (SSL)
connection is required when transmitting authentication
information.

680

Chapter 18

21_576100 ch18.qxd 10/6/05 9:32 PM Page 680

After the web.config file is in place, the next step is to create a typical page for your application that
people can access. Listing 18-4 presents a simple page.

Listing 18-4: A simple page--Default.aspx

<%@ Page Language=”VB” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>The Application</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

Hello World
</div>
</form>

</body>
</html>

As you can see, this page simply writes Hello World to the browser. The real power of forms
authentication is shown in the Login.aspx page presented in Listing 18-5.

Listing 18-5: The Login.aspx page

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Protected Sub Button1_Click(ByVal sender As Object, _

ByVal e As System.EventArgs)

If (TextBox1.Text = “BillEvjen” And TextBox2.Text = “Bubbles”) Then
FormsAuthentication.RedirectFromLoginPage(TextBox1.Text, True)

Else
Response.Write(“Invalid credentials”)

End If
End Sub

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Login Page</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

Username

<asp:TextBox ID=”TextBox1” runat=”server”></asp:TextBox>

Password

<asp:TextBox ID=”TextBox2” runat=”server”
TextMode=”Password”></asp:TextBox>

(continued)

681

Security

21_576100 ch18.qxd 10/6/05 9:32 PM Page 681

Listing 18-5: (continued)

<asp:Button ID=”Button1” OnClick=”Button1_Click” runat=”server”
Text=”Submit” />

</div>
</form>

</body>
</html>

C#
<%@ Page Language=”C#”%>

<script runat=”server”>
protected void Button1_Click(object sender, EventArgs e)
{

if (TextBox1.Text == “BillEvjen” && TextBox2.Text == “Bubbles”) {
FormsAuthentication.RedirectFromLoginPage(TextBox1.Text, true);

}
else {

Response.Write(“Invalid credentials”);
}

}
</script>

Login.aspx has two simple TextBox controls and a Button control that ask the user to submit his
username and password. The Button1_Click event uses the RedirectFromLoginPage method of the
FormsAuthentication class. This method does exactly what its name implies — it redirects the request
from Login.aspx to the original requested resource.

RedirectFromLoginPage takes two arguments. The first is the name of the user, used for cookie
authentication purposes. This argument doesn’t actually map to an account name and is used by
ASP.NET’s URL authorization capabilities. The second argument specifies whether a durable cookie
should be issued. If set to True, the end user does not need to log in again to the application from one
browser session to the next.

Using the three pages you’ve constructed, each request for the Default.aspx page from Listing 18-4
causes ASP.NET to check that the proper authentication token is in place. If the proper token is not found,
the request is directed to the specified login page (in this example, Login.aspx). Looking at the URL in
the browser, you can see that ASP.NET is using a querystring value to remember where to return the user
after he has been authorized to proceed:

http://localhost:35089/Security/Login.aspx?ReturnUrl=%2fSecurity%2fDefault.aspx

Here the querystring ReturnUrl is used with a value of the folder and page that was the initial request.

Look more closely at the Login.aspx page from Listing 18-5, and note that the values placed in the two
text boxes are checked to make sure they abide by a specific username and password. If they do, the
RedirectFromLoginPage method is invoked; otherwise, the Response.Write statement is used. In
most cases, you don’t want to hardcode a username and password in your code. Many other options exist
for checking whether usernames and passwords come from authorized users. Some of the other options
follow.

682

Chapter 18

21_576100 ch18.qxd 10/6/05 9:32 PM Page 682

Authenticating Against Values Contained in the web.config File
The previous example is not the best approach for dealing with usernames and passwords offered for
authentication. It is never a good idea to hardcode these things directly into your applications. Take a
quick look at storing these values in the web.config file itself.

The <forms> element in web.config that you worked with in Listing 18-3 can also take a sub-element.
The sub-element, <credentials>, allows you to specify username and password combinations directly
in the web.config file. You can choose from a couple of ways to add these values. The simplest method
is shown in Listing 18-6.

Listing 18-6: Modifying the web.config file to add username/password values

<system.web>
<authentication mode=”Forms”>

<forms name=”Wrox” loginUrl=”Login.aspx” path=”/”>
<credentials passwordFormat=”Clear”>

<user name=”BillEvjen” password=”Bubbles” />
</credentials>

</forms>
</authentication>

<authorization>
<deny users=”?” />

</authorization>
</system.web>

The <credentials> element has been included to add users and their passwords to the configuration
file. <credentials> takes a single attribute —passwordFormat. The possible values of
passwordFormat are Clear, MD5, and SHA1. The following list describes each of these options:

❑ Clear: Passwords are stored in clear text. The user password is compared directly to this value
without further transformation.

❑ MD5: Passwords are stored using a Message Digest 5 (MD5) hash digest. When credentials are
validated, the user password is hashed using the MD5 algorithm and compared for equality
with this value. The clear-text password is never stored or compared. This algorithm produces
better performance than SHA1.

❑ SHA1: Passwords are stored using the SHA1 hash digest. When credentials are validated, the
user password is hashed using the SHA1 algorithm and compared for equality with this value.
The clear-text password is never stored or compared. Use this algorithm for best security.

In the example from Listing 18-6, you use a setting of Clear. This isn’t the most secure method, but it is
used for demonstration purposes. A sub-element of <credentials> is <user>; that’s where you define
the username and password for the authorized user with the attributes name and password.

The next step is to change the Button1_Click event on the Login.aspx page shown earlier. This is
illustrated in Listing 18-7.

683

Security

21_576100 ch18.qxd 10/6/05 9:32 PM Page 683

Listing 18-7: Changing the Login.aspx page to work with the web.config file

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Protected Sub Button1_Click(ByVal sender As Object, _

ByVal e As System.EventArgs)

If FormsAuthentication.Authenticate(TextBox1.Text, TextBox2.Text) Then
FormsAuthentication.RedirectFromLoginPage(TextBox1.Text, True)

Else
Response.Write(“Invalid credentials”)

End If
End Sub

</script>

C#
<%@ Page Language=”C#”%>

<script runat=”server”>
protected void Button1_Click(object sender, EventArgs e)
{

if (FormsAuthentication.Authenticate(TextBox1.Text, TextBox2.Text)) {
FormsAuthentication.RedirectFromLoginPage(TextBox1.Text, true);

}
else {

Response.Write(“Invalid credentials”);
}

}
</script>

In this example, you simply use the Authenticate method to get your ASP.NET page to look at the
credentials stored in the web.config file for verification. The Authenticate method takes two
parameters — the username and the password that you are passing in to be checked. If the credential
lookup is successful, the RedirectFromLoginPage method is invoked.

It is best not to store your users’ passwords in the web.config file as clear text as the preceding example
did. Instead, use one of the available hashing capabilities so you can keep the end user’s password out of
sight of prying eyes. To do this, simply store the hashed password in the configuration file as shown in
Listing 18-8.

Listing 18-8: Using encrypted passwords

<forms name=”Wrox” loginUrl=”Login.aspx” path=”/”>
<credentials passwordFormat=”SHA1”>

<user name=”BillEvjen” password=”58356FB4CAC0B801F011B397F9DFF45ADB863892” />
</credentials>

</forms>

Using this kind of construct makes it impossible for even the developer to discover a password because
the clear text password is never used. The Authenticate method in the Login.aspx page hashes the
password using SHA1 (because it is the method specified in the web.config’s <credentials> node)
and compares the two hashes for a match. If a match is found, the user is authorized to proceed.

684

Chapter 18

21_576100 ch18.qxd 10/6/05 9:32 PM Page 684

When using SHA1 or MD5, the only changes you make are in the web.config file and nowhere else. You
don’t have to make any changes to the login page or to any other page in the application. To store hashed
passwords, however, you use the FormsAuthentication.HashPasswordForStoringInConfigFile
method (probably the longest method name in the .NET Framework). You accomplish this in the following
manner:

FormsAuthentication.HashPasswordForStoringInConfigFile(TextBox2.Text, “SHA1”)

Authenticating Against Values in a Database
Another common way to retrieve username/password combinations is by getting them directly from a
datastore of some kind. This enables you, for example, to check the credentials input by a user against
values stored in Microsoft’s SQL Server. The code for this is presented in Listing 18-9.

Listing 18-9: Checking credentials in SQL Server (Login.aspx)

VB
<%@ Page Language=”VB” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>

<script runat=”server”>
Protected Sub Button1_Click(ByVal sender As Object, _

ByVal e As System.EventArgs)

Dim conn As SqlConnection
Dim cmd As SqlCommand
Dim cmdString As String = “SELECT [Password] FROM [AccessTable] WHERE” & _

“ (([Username] = @Username) AND ([Password] = @Password))”

conn = New SqlConnection(“Data Source=localhost;Initial “ & _
“Catalog=Northwind;Persist Security Info=True;User ID=sa”)

cmd = New SqlCommand(cmdString, conn)

cmd.Parameters.Add(“@Username”, SqlDbType.VarChar, 50)
cmd.Parameters(“@Username”).Value = TextBox1.Text
cmd.Parameters.Add(“@Password”, SqlDbType.VarChar, 50)
cmd.Parameters(“@Password”).Value = TextBox2.Text

conn.Open()

Dim myReader As SqlDataReader

myReader = cmd.ExecuteReader(CommandBehavior.CloseConnection)

If myReader.Read() Then
FormsAuthentication.RedirectFromLoginPage(TextBox1.Text, False)

Else
Response.Write(“Invalid credentials”)

End If

myReader.Close()
End Sub

</script>

(continued)

685

Security

21_576100 ch18.qxd 10/6/05 9:32 PM Page 685

Listing 18-9: (continued)

C#
<%@ Page Language=”C#”%>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>

<script runat=”server”>
protected void Button1_Click(object sender, EventArgs e)
{

SqlConnection conn;
SqlCommand cmd;
string cmdString = “SELECT [Password] FROM [AccessTable] WHERE” +

“ (([Username] = @Username) AND ([Password] = @Password))”;

conn = new SqlConnection(“Data Source=localhost;Initial “ +
“Catalog=Northwind;Persist Security Info=True;User ID=sa”);

cmd = new SqlCommand(cmdString, conn);

cmd.Parameters.Add(“@Username”, SqlDbType.VarChar, 50);
cmd.Parameters[“@Username”].Value = TextBox1.Text;
cmd.Parameters.Add(“@Password”, SqlDbType.VarChar, 50);
cmd.Parameters[“@Password”].Value = TextBox2.Text;

conn.Open();

SqlDataReader myReader;

myReader = cmd.ExecuteReader(CommandBehavior.CloseConnection);

if (myReader.Read()) {
FormsAuthentication.RedirectFromLoginPage(TextBox1.Text, false);

}
else {

Response.Write(“Invalid credentials”);
}

myReader.Close();
}

</script>

Leave everything else from the previous examples the same, except for the Login.aspx page. You can
now authenticate usernames and passwords against data stored in SQL Server. In the Button1_Click
event, a connection is made to SQL Server. (For security reasons, you should store your connection string
in the web.config file.) Two parameters are passed in — the inputs from TextBox1 and TextBox2. If a
result is returned, the RedirectFromLoginPage method is invoked.

Using the Login Control with Forms Authentication
You have seen how to use ASP.NET forms authentication with standard ASP.NET server controls, such
as simple TextBox and Button controls. You can also use the latest ASP.NET 2.0 server controls — such as
the new Login server control — with your custom-developed forms-authentication framework instead of
using other controls. This really shows the power of ASP.NET — you can combine so many pieces to
construct the solution you want.

686

Chapter 18

21_576100 ch18.qxd 10/6/05 9:32 PM Page 686

Listing 18-10 shows a modified Login.aspx page using the new Login server control.

Listing 18-10: Using the Login server control on the Login.aspx page

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Protected Sub Login1_Authenticate(ByVal sender As Object, _

ByVal e As System.Web.UI.WebControls.AuthenticateEventArgs)

If (Login1.UserName = “BillEvjen” And Login1.Password = “Bubbles”) Then
FormsAuthentication.RedirectFromLoginPage(Login1.UserName, _

Login1.RememberMeSet)
Else

Response.Write(“Invalid credentials”)
End If

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Login Page</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:Login ID=”Login1” runat=”server” OnAuthenticate=”Login1_Authenticate”>
</asp:Login>

</div>
</form>

</body>
</html>

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
protected void Login1_Authenticate(object sender, AuthenticateEventArgs e)
{

if (Login1.UserName == “BillEvjen” && Login1.Password == “Bubbles”) {
FormsAuthentication.RedirectFromLoginPage(Login1.UserName,

Login1.RememberMeSet);
}
else {

Response.Write(“Invalid credentials”);
}

}
</script>

Because no Button server control is on the page, you use the Login control’s OnAuthenticate attribute
to point to the authentication server-side event —Login1_Authenticate. The event takes care of the
authorization lookup (although the values are hardcoded in this example). The username text box of the

687

Security

21_576100 ch18.qxd 10/6/05 9:32 PM Page 687

Login control can be accessed via the Login1.UserName declaration, and the password can be accessed
using Login1.Password. The Login1.RememberMeSet property is used to specify whether to persist
the authentication cookie for the user so that he is remembered on his next visit.

This example is a bit simpler than creating your own login form using TextBox and Button controls. You
can give the Login control a predefined look-and-feel that is provided for you. You can also get at the
subcontrol properties of the Login control a bit more easily. In the end, it really is up to you as to what
methods you employ in your ASP.NET applications.

Looking Closely at the FormsAuthentication Class
As you can tell from the various examples in the forms authentication part of this chapter, a lot of what
goes on depends on the FormsAuthentication class itself. For this reason, you should learn what that
class is all about.

FormsAuthentication provides a number of methods and properties that enable you to read and control
the authentication cookie as well as other information (such as the return URL of the request). The following
table details some of the methods and properties available in the FormsAuthentictation class.

Method/Property Description

Authenticate This method is used to authenticate credentials that are
stored in a configuration file (such as the web.config file).

Decrypt Returns an instance of a valid, encrypted authentication
ticket retrieved from an HTTP cookie as an instance of a
FormsAuthenticationTicket class.

Encrypt Creates a string which contains a valid encrypted
authentication ticket that can be used in an HTTP cookie.

FormsCookieName Returns the name of the cookie for the current application.

FormsCookiePath Returns the cookie path (the location of the cookie) for the
current application.

GetAuthCookie Provides an authentication cookie for a specified user.

GetRedirectUrl Returns the URL to which the user is redirected after being
authorized by the login page.

HashPasswordFor Creates a hash of a provided string password. This method
Storing takes two parameters — one is the password and the other is
InConfigFile the type of hash to perform on the string. Possible hash

values include SHA1 and MD5.

Initialize Performs an initialization of the FormsAuthentication
class by reading the configuration settings in the web.
config file, as well as getting the cookies and encryption
keys used in the given instance of the application.

RedirectFromLogin Performs a redirection of the HTTP request back to the
Page original requested page. This should be performed only

after the user has been authorized to proceed.

688

Chapter 18

21_576100 ch18.qxd 10/6/05 9:32 PM Page 688

Method/Property Description

RenewTicketIfOld Conditionally updates the sliding expiration on a
FormsAuthenticationTicket instance.

RequireSSL Specifies whether the cookie should be transported via SSL
only (HTTPS).

SetAuthCookie Creates an authentication ticket and attaches it to a cookie
that is contained in the outgoing response.

SignOut Removes the authentication ticket.

SlidingExpiration Provides a Boolean value indicating whether sliding
expiration is enabled.

Passport Authentication
Another method for the authentication of your end users is using Microsoft’s Passport identity system.
Users with a passport account can have a single sign-on solution, meaning that he needs only those cre-
dentials to log in to your site and into other Passport-enabled sites and applications on the Internet.

When your application is enabled for Passport authentication, the request is actually redirected to the
Microsoft Passport site where the user can enter his credentials. If the authentication is successful, the
user is then authorized to proceed, and the request is redirected back to your application.

Very few Internet sites and applications use Microsoft’s Passport technologies. In fact, Microsoft
has completely de-emphasized Passport in 2005, and most companies interested in global
authentication/authorization standards are turning toward the Project Liberty endeavors for
a solution (www.projectliberty.org).

Authenticating Specific Files and Folders
You may not want to require credentials for each and every page or resource in your application.
For instance, you might have a public Internet site with pages anyone can access without credentials,
although you might have an administration section as part of your application that may require
authentication/authorization measures.

URL authorization enables you to use the web.config file to apply the settings you need. Using URL
authorization, you can apply any of the authentication measures to only specific files or folders. Listing
18-11 shows an example of locking down a single file.

Listing 18-11: Applying authorization requirements to a single file

<configuration>
<system.web>

(continued)

689

Security

21_576100 ch18.qxd 10/6/05 9:32 PM Page 689

Listing 18-11: (continued)

<authentication mode=”None” />

<!-- The rest of your web.config file settings go here -->

</system.web>

<location path=”AdminPage.aspx”>
<system.web>

<authentication mode=”Windows” />

<authorization>
<allow users=”ReutersServer\EvjenB” />
<deny users=”*” />

</authorization>
</system.web>

</location>
</configuration>

This web.config construction keeps the Web application open to the general public while, at the same
time, it locks down a single file contained within the application — the AdminPage.aspx page. This is
accomplished through the <location> element. <location> takes a single attribute (path) to specify
the resource defined within the <system.web> section of the web.config file.

In the example, the <authentication> and <authorization> elements are used to provide the
authentication and authorization details for the AdminPage.aspx page. For this page, Windows
authentication is applied, and the only user allowed access is EvjenB in the ReutersServer domain.
You can have as many <location> sections in your web.config file as you want.

Programmatic Authorization
So far, you have seen a lot of authentication examples that simply provide a general authorization to a
specific page or folder within the application. Yet, you may want to provide more granular authorization
measures for certain items on a page. For instance, you might provide a link to a specific document only
for users who have an explicit Windows role. Other users may see something else. You also might want
additional commentary or information for specified users, while other users see a condensed version of
the information. Whatever your reason, this role-based authorization practice is possible in ASP.NET by
working with certain objects.

You can use the Page object’s User property, which provides an instance of the IPrincipal object. The
User property provides a single method and a single property:

❑ Identity: This property provides an instance of the
System.Security.Principal.IIdentity object for you to get at specific properties of the
authenticated user.

❑ IsInRole: This method takes a single parameter, a string representation of the system role. It
returns a Boolean value that indicates whether the user is in the role specified.

690

Chapter 18

21_576100 ch18.qxd 10/6/05 9:32 PM Page 690

Working with User.Identity
The User.Identity property enables you to work with some specific contextual information about the
authorized user. Using the property within your ASP.NET applications enables you to make resource-
access decisions based on the information the object provides.

With User.Identity, you can gain access to the user’s name, his authentication type, and whether he is
authenticated. The following table details the properties provided through User.Identity.

Attribute Description

AuthenticationType Provides the authentication type of the current user.
Example values include Basic, NTLM, Forms, and
Passport.

IsAuthenticated Returns a Boolean value specifying whether the user has
been authenticated.

Name Provides the username of the user as well as the domain of
the user (only if he logged on with a Windows account).

For some examples of working with the User object, take a look at checking the user’s login name. To do
this, you use code similar to that shown in Listing 18-12.

Listing 18-12: Getting the username of the logged-in user

VB
Dim UserName As String
UserName = User.Identity.Name

C#
string userName;
userName = User.Identity.Name;

Another task you can accomplish with the User.Identity object is checking whether the user has been
authenticated through your application’s authentication methods, as illustrated in Listing 18-13.

Listing 18-13: Checking whether the user is authenticated

VB
Dim AuthUser As Boolean
AuthUser = User.Identity.IsAuthenticated()

C#
bool authUser;
authUser = User.Identity.IsAuthenticated();

This example provides you with a Boolean value indicating whether the user has been authenticated.
You can also use the IsAuthenticated method in an If/Then statement as shown in Listing 18-14.

691

Security

21_576100 ch18.qxd 10/6/05 9:32 PM Page 691

Listing 18-14: Using an If/Then statement that checks authentication

VB
If (User.Identity.IsAuthenticated()) Then

‘ Do some actions here for authenticated users
Else

‘ Do other actions here for unauthenticated users
End If

C#
if (User.Identity.IsAuthenticated()) {

// Do some actions here for authenticated users
}
else {

// Do other actions here for unauthenticated users
}

You can also use the User object to check the authentication type of the user. This is done with the
AuthenticationType property illustrated in Listing 18-15.

Listing 18-15: Using the AuthenticationType property

VB
Dim AuthType As String
AuthType = User.Identity.AuthenticationType

C#
string authType;
authType = User.Identity.AuthenticationType;

Again, the result is Basic, NTLM, Forms, or Passport.

Working with User.IsInRole()
If you are using Windows-based authentication, you can check to make sure that an authenticated user is
in a specific Windows role. For example, you might want to show specific information only for users in the
Subscribers group in the Computer Management Utility. To accomplish that, you can use the User
object’s IsInRole method, as shown in Listing 18-16.

Listing 18-16: Checking whether the user is part of a specific role

VB
If (User.IsInRole(“ReutersServer\Subscribers”)) Then

‘ Private information for subscribers
Else

‘ Public information
End If

692

Chapter 18

21_576100 ch18.qxd 10/6/05 9:32 PM Page 692

C#
if (User.IsInRole(“ReutersServer\Subscribers”)) {

// Private information for subscribers
}
else {

// Public information
}

The IsInRole method’s parameter provides a string value that represents the domain and the group
(Windows role). In this case, you specify that any user in the Subscribers Windows role from the
ReutersServer domain is permitted to see some information not available to users who don’t belong to
that specific role.

Another possibility is to specify some of the built-in groups available to you. Ever since Windows 2000,
Windows has included a series of built-in accounts such as Administrator, Guest, PrintOperator, and
User. You can access to these built-in accounts in a couple of ways. One is to specify the built-in account
with the domain directly:

User.IsInRole(“ReutersServer\Administrator”)

The other possibility is to use the BUILTIN keyword:

User.IsInRole(“BUILTIN\Administrator”)

Pulling More Information with WindowsIdentity
So far, in working with the user’s identity information, you’ve used the standard Identity object that is
part of ASP.NET by default. If you are working with Windows-based authentication, you also have the
option of using the WindowsIdentity object and other objects. To gain access to these richer objects,
create a reference to the System.Security.Principal object in your application.

Used in combination with the Identity object from the preceding examples, these additional objects
make certain tasks even easier. For instance, if you are working with roles, System.Security.Principal
provides access to the WindowsBuiltInRole enumeration.

Listing 18-17 is an example of using the WindowsBuiltInRole enumeration.

Listing 18-17: Using the WindowsBuiltInRole enumeration

VB
Dim AdminUser As Boolean
AdminUser = User.IsInRole(WindowsBuiltInRole.Administrator)

C#
bool adminUser;
adminUser = User.IsInRole(WindowsBuiltInRole.Administrator)

Instead of specifying a string value of the domain and the role, you can use the WindowsBuiltInRole
enumeration to easily access specific roles on the application server. When working with this and other
enumerations, you also have IntelliSense (see Figure 18-9) to help you make your selections easily.

693

Security

21_576100 ch18.qxd 10/6/05 9:32 PM Page 693

Figure 18-9

The roles in the WindowsBuiltInRole enumeration include the following:

❑ AccountOperator

❑ Administrator

❑ BackupOperator

❑ Guest

❑ PowerUser

❑ PrintOperator

❑ Replicator

❑ SystemOperator

❑ User

Using System.Security.Principal, you have access to the WindowsIdentity object — which is
much richer than working with the default Identity object. Listing 18-18 lists some of the additional
information you can get through the WindowsIdentity object.

Listing 18-18: Using the WindowsIdentity object

VB
<%@ Page Language=”VB” %>
<%@ Import Namespace=”System.Security.Principal” %>

<script runat=”server”>
Protected Sub Page_Load(ByVal sender As Object, _

694

Chapter 18

21_576100 ch18.qxd 10/6/05 9:32 PM Page 694

ByVal e As System.EventArgs)

Dim AuthUser As WindowsIdentity = WindowsIdentity.GetCurrent()
Response.Write(AuthUser.AuthenticationType.ToString() & “
” & _

AuthUser.ImpersonationLevel.ToString() & “
” & _
AuthUser.IsAnonymous.ToString() & “
” & _
AuthUser.IsAuthenticated.ToString() & “
” & _
AuthUser.IsGuest.ToString() & “
” & _
AuthUser.IsSystem.ToString() & “
” & _
AuthUser.Name.ToString())

End Sub
</script>

C#
<%@ Page Language=”C#” %>
<%@ Import Namespace=”System.Security.Principal” %>

<script runat=”server”>
protected void Page_Load(object sender, EventArgs e)
{

WindowsIdentity AuthUser = WindowsIdentity.GetCurrent();
Response.Write(AuthUser.AuthenticationType.ToString() + “
” +

AuthUser.ImpersonationLevel.ToString() + “
” +
AuthUser.IsAnonymous.ToString() + “
” +
AuthUser.IsAuthenticated.ToString() + “
” +
AuthUser.IsGuest.ToString() + “
” +
AuthUser.IsSystem.ToString() + “
” +
AuthUser.Name.ToString());

}
</script>

In this example, an instance of the WindowsIdentity object is created and populated with the current
identity of the user accessing the application. Then you have access to a number of properties that are
written to the browser using a Response.Write statement. The displayed listing shows information
about the current user’s credentials, such as if the user is authenticated, anonymous, or running under a
guest account or a system account. It also gives you the user’s authentication type and login name. A
result is shown in Figure 18-10.

Figure 18-10

695

Security

21_576100 ch18.qxd 10/6/05 9:32 PM Page 695

Identity and Impersonation
ASP.NET runs under a worker process that uses the credentials of a Windows account named ASPNET
(without the period) when working from IIS 5.0, and an account named Network Service when working
from IIS 6.0. For security purposes, it is always best to run everything using the fewest number of privileges
possible, and that is specifically what ASP.NET is designed to do.

By default, the ASP.NET account has Read & Execute privileges on all ASP.NET pages. Look at the Security
tab of a sample aspx page’s properties, for example, and you see that the ASPNET or Network Service
account is not listed. What is listed is the Everyone account, which is given Read & Execute privileges, as
shown in Figure 18-11.

Figure 18-11

If you remove this account from the list, ASP.NET cannot run the pages. At a minimum, you have to give
the ASPNET or Network Service (depending on whether you are running IIS 5.0 or IIS 6.0) Read &
Execute privileges to the page. You also must ensure that the IUSR_MachineName account has access to
the same page.

By default, ASP.NET runs under an account that has limited privileges. For instance, you may find that
although the account can gain access to a network, it cannot be authenticated to any other computer on
the network.

696

Chapter 18

21_576100 ch18.qxd 10/6/05 9:32 PM Page 696

The account setting is provided in the machine.config file:

<processModel
enable=”true”
userName=”machine”
password=”AutoGenerate” />

These settings force ASP.NET to run under the system account (ASPNET or Network Service). This is
really specified through the userName attribute that contains a value of machine. The other possible
value you can have for this attribute is system. Here’s what each entails:

❑ machine: The most secure setting. You should have good reasons to change this value. It’s the
ideal choice mainly because it forces the ASP.NET account to run under the fewest number of
privileges possible.

❑ system: Forces ASP.NET to run under the local SYSTEM account, which has considerably more
privileges to access networking and files.

It is also possible to specify an account of your choosing using the <processModel> element in either
the machine.config or web.config files:

<processModel
enable=”true”
userName=”MySpecifiedUser”
password=”MyPassword” />

In this example, ASP.NET is run under a specified administrator or user account instead of the default
ASPNET or Network Service account. It inherits all the privileges this account offers.

You can also change how ASP.NET behaves in whatever account it is specified to run under through the
<identity> element in the web.config file. The <identity> element in the web.config file allows
you to turn on impersonation. Impersonation provides ASP.NET with the capability to run as a process
using the privileges of another user for a specific session. In more detail, impersonation allows ASP.NET
to run under the account of the entity making the request to the application. To turn on this imperson-
ation capability, you use the impersonate attribute in the <identity> element as shown here:

<configuration>
<system.web>

<identity impersonate=”true” />

</system.web>
</configuration>

By default, the impersonate attribute is set to false. Setting this property to true ensures that
ASP.NET runs under the account of the person making the request to the application. If the requestor is
an anonymous user, ASP.NET runs under the IUSR_MachineName account. To see this in action, run the
example shown in Listing 18-18, but this time with impersonation turned on (true). Instead of getting a
username of REUTERS-EVJEN\ASPNET as the user, you get the name of the user who is requesting the
page —REUTERS-EVJEN\Administrator in this example, as shown in Figure 18-12.

697

Security

21_576100 ch18.qxd 10/6/05 9:32 PM Page 697

Figure 18-12

You also have the option of running ASP.NET under a specified account that you declare using the
<identity> element in the web.config file:

<identity impersonate=”true” userName=”MySpecifiedUser” password=”MyPassword” />

As shown, you can run the ASP.NET process under an account that you specify through the userName
and password attributes. These values are stored as clear text in the web.config file.

Look at the machine.config.comments file, and you can see that ASP.NET runs under full trust, mean-
ing that it has some pretty high-level capabilities to run and access resources. Here’s the setting:

<system.web>

<securityPolicy>
<trustLevel name=”Full” policyFile=”internal” />
<trustLevel name=”High” policyFile=”web_hightrust.config” />
<trustLevel name=”Medium” policyFile=”web_mediumtrust.config” />
<trustLevel name=”Low” policyFile=”web_lowtrust.config” />
<trustLevel name=”Minimal” policyFile=”web_minimaltrust.config” />

</securityPolicy>

<!-- level=”[Full|High|Medium|Low|Minimal]” -->
<trust level=”Full” originUrl=”” />

</system.web>

Five possible settings exist for the level of trust that you give ASP.NET —Full, High, Medium, Low, and
Minimal. The level of trust applied is specified through the <trust> element’s level attribute. By
default it is set to Full. Each one points to a specific configuration file for the policy in which the level
can find its trust level settings. The Full setting does not include a policy file because it simply skips all
the code access security checks.

698

Chapter 18

21_576100 ch18.qxd 10/6/05 9:32 PM Page 698

Securing Through IIS
ASP.NET works in conjunction with IIS; not only can you apply security settings directly in ASP.NET
(through code or configuration files), but you can also apply additional security measures in IIS itself. IIS
enables you to apply access methods you want by working with users and groups (which were dis-
cussed earlier in the chapter), working with restricting IP addresses, file extensions, and more. Security
through IIS is deserving of a chapter in itself, but the major topics are explored here.

IP Address and Domain Name Restrictions
You can work with the restriction of IP addresses and domain names in Windows Server 2003, Windows
2000 Server, or Windows NT only. Through IIS, you can apply specific restrictions based on a single
computer’s IP address, a group of computers, or even a specific domain name.

To access this capability, pull up the Internet Information Services (IIS) Manager and right-click on either
the Web site you are interested in working with or on the Default Web Site node to simply apply the set-
tings to every Web application on the server. From the menu, choose Properties and select the Directory
Security tab.

Click the Edit button in the IP Address and domain name restrictions box and a dialog appears. The
resulting dialog enables you to grant or restrict access based on an IP address or domain name. These
dialogs are shown in Figure 18-13.

Figure 18-13

Think twice about restricting based on a domain name. It can hinder performance when the reverse DNS
lookup is performed on each request to check the domain.

699

Security

21_576100 ch18.qxd 10/6/05 9:32 PM Page 699

You not only can restrict specific IP addresses and domain names, but you can also restrict everyone and
just allow specified entities based on the same items. Although Figure 18-13 shows restricting a specific
IP address, you can restrict or grant access to an entire subnet as well. Figure 18-14 shows how to grant
access just to the servers on the 192.168.1.0 subnet (defined by a Linksys router).

Figure 18-14

Working with File Extensions
You can work with many types of files in ASP.NET. These files are defined by their extensions. For example,
you know that .aspx is a typical ASP.NET page, and .asmx is an ASP.NET Web service file extension. These
files are actually mapped by IIS to the ASP.NET DLL, aspnet_isapi.dll.

To access the dialog in IIS that maps the file extensions, pull up the Properties dialog of your Web
application in IIS or pull up the Default Web Site Properties. In a specific Web application, you must
work from the Directory tab; but if you are working with the Default Web Site Properties dialog, you can
instead use the Home Directory tab. From these tabs, click the Configuration button in the Application
Settings box. The Application Configuration dialog includes a Mapping tab, where the mappings are
configured. Highlight .aspx in the list of mappings and click the Edit button. Figure 18-15 shows the
result.

In the Executable text box, you can see that all .aspx pages map to the aspnet_isapi.dll from
ASP.NET 2.0, and that you can also specify which types of requests are allowed in the application. You
can either allow all verbs (for example, GET or POST) or you can specify which verbs are allowed access
to the application.

One important point regarding these mappings is that you don’t see .html, .htm, .jpg, or other file
extensions such as .txt in the list. Your application won’t be passing requests for these files to ASP.NET.
That might not be a big deal, but in working through the various security examples in this chapter, you
might want to have the same type of security measures applied to these files as to .aspx pages. If, for
instance, you want all .html pages to be included in the forms authentication model that you require for
your ASP.NET application, you must add .html (or whatever file extension you want) to the list. To do
so, click the Add button in the Application Configuration dialog.

700

Chapter 18

21_576100 ch18.qxd 10/6/05 9:32 PM Page 700

Figure 18-15

In the next dialog, you can add the ASP.NET DLL to the Executable text box, and the appropriate file
extension and verbs to the list before adding the mapping to your application’s mapping table. This
example is illustrated in Figure 18-16.

Figure 18-16

701

Security

21_576100 ch18.qxd 10/6/05 9:32 PM Page 701

When dealing with the security of your site, you have to remember all the files that might not be
included in the default mapping list and add the ones you think should fall under the same security
structure.

Using the New ASP.NET MMC Snap-In
The new ASP.NET MMC console (covered in detail in Chapter 28) enables you to edit the web.config
and machine.config files using an easy-to-use GUI instead of having to dig through the text of those
files yourself to make the necessary changes. Most of the items examined in this book can also be modi-
fied and changed using this dialog. The plug-in is available on the ASP.NET tab (see Figure 18-17) of
your Web application running under IIS.

Figure 18-17

When you make the changes directly in the dialog, you are also making the hardcoded changes to the
actual configuration files.

Click the Edit Configuration button on the ASP.NET tab, and the ASP.NET Configuration Settings dialog
opens. There you can modify how your forms authentication model works in the GUI without going to
the application’s web.config file directly. Figure 18-18 shows an example of working with forms
authentication in the GUI.

702

Chapter 18

21_576100 ch18.qxd 10/6/05 9:32 PM Page 702

Figure 18-18

Summary
This chapter covered some of the foundation items of ASP.NET security and showed you how to apply
both authentication and authorization to your Web applications. It reviewed some of the various
authentication and authorization models at your disposal, such as Basic, Digest, and Windows
Integrated Authentication. Other topics included forms-based authentication and how to construct your
own forms-based authentication models outside of the new ones provided via ASP.NET 2.0 by using
the new membership and role management capabilities it provides. The chapter also discussed how to
use authentication properties within your applications and how to authorize users and groups based on
those properties.

703

Security

21_576100 ch18.qxd 10/6/05 9:32 PM Page 703

21_576100 ch18.qxd 10/6/05 9:32 PM Page 704

State Management

Why is state management such a difficult problem that it requires an entire chapter in a book on
programming? In the old days (about 10 years ago), using standard client-server architecture
meant using a fat client and a fat server. Perhaps your Visual Basic 6 application could talk to a
database. The state was held either on the client-side or in the server-side database. Typically, you
could count on a client having a little bit of memory and a hard drive of its own to manage state.
The most important aspect of traditional client/server design, however, was that the client was
always connected to the server. It’s easy to forget, but HTTP is a stateless protocol. For the most
part, a connection is built up and torn down each time a call is made to a remote server. Yes, HTTP
1.1 includes a keep-alive technique that provides optimizations at the TCP level. Even with these
optimizations, the server has no way to determine that subsequent connections came from the
same client.

Although the Web has the richness of DHTML, JavaScript, and HTML 4.0 on the client side, the
average high-powered Pentium 4 with a gigabyte of RAM is still being used only to render HTML.
It’s quite ironic that such powerful computers on the client side are still so vastly underutilized
when it comes to storing state. Additionally, although many individuals have broadband, it is not
universally used. Developers must still respect and pay attention to the dial-up users of the world.
When was the last time that your project manager told you that bandwidth was not an issue for
your Web application?

The ASP.NET concept of a Session that is maintained over the statelessness of HTTP is not a new
one, and it existed before ASP.NET and even before classic ASP. It is, however, a very effective and
elegant way to maintain state. There are, however, a number of different choices available to you,
of which the ASP.NET session is just one. There have been a few subtle changes between ASP.NET
1.x and 2.0 that will be covered in this chapter. The Session object remains as before, but the
option is available now to plug in your own session state provider.

22_576100 ch19.qxd 10/6/05 9:47 PM Page 705

What Are Your Choices?
Given a relatively weak client, a stateless protocol such as HTTP, and ASP.NET 1.x or 2.0 on the server
side, how do you manage state on the Web? Figure 19-1 is a generalized diagram that calls out the pri-
mary means available for managing state. The problem is huge, and the solution range is even larger.
This chapter assumes that you are not using Java applets or ActiveX controls to manage state. Although
these options are certainly valid (although complex) solutions to the state problem, they are beyond the
scope of this book.

Figure 19-1

If you remember one thing about state management, remember this: There is no right answer. Some
answers are more right than others, certainly; but there are many, many ways to manage state. Think
about your last project. How many days were spent trying to decide where you should manage state?
The trick is to truly understand the pros and cons of each method.

To make an educated decision about a method, you should understand the lifecycle of a request and the
opportunities for state management at each point in the process:

1. A Web browser makes an HTTP GET request for a page on your server http://myserver/
myapp/mypage.aspx. This client Web browser has never visited your site before.

2. IIS and your ASP.NET application respond by returning HTML rendered by mypage.aspx.
Additionally mypage.aspx returns a cookie with a unique ID to track this Web browser.
Remember that a cookie is actually a slightly abstract concept. The cookie is set by returning a
Set-Cookie HTTP Header to the client. The client then promises to return the values of the
cookie in every subsequent HTTP call in the HTTP header. The state in this example is actually
an agreement between the client and server to bounce the cookie back-and-forth on every
request in response.

Session

Application

ASP.Net worker process

Web server

Hidden HTML form
field and/or JavaScript
array

Cookies (HTTP headers)

http://.../page.aspx?state=some

State in the URL

Client Browser

Cache
OOP

session
state

706

Chapter 19

22_576100 ch19.qxd 10/6/05 9:47 PM Page 706

3. The HTML that is returned may contain hidden text boxes like <input type= “hidden”
value= “somestate”/>. These text boxes are similar to cookies because they are passed back
to the server if the form on this page is submitted. Cookies are set per domain; hidden form
fields are set per page.

4. Upon the next request, the previously set cookies are returned to the server. If this request was
the submission of the form as an HTTP POST, all fields in the Form are returned — hidden or
otherwise.

5. The unique identifier that was set earlier as a cookie can now be used as a key into any kind of
server-side state mechanism. That state might be as simple as an in-memory hashtable, or as
complicated as a SQL database.

One of the repeating themes you might notice is the agreement between the client and the server to pass
information back and forth. That information can be in the URL, in HTTP headers, or even in the
submitted Form as an input field.

On the server side, you have a few options available. You’ll want to weigh the options based on the
amount of memory you have available, the amount of data you want to store, and how often you’ll
require access to the data.

The following tables express each of the server-side and client-side options and list a few pros and cons
for each.

Server-Side Option Pros Cons

Application State Fast. Shared among all users. State is stored once per server in
multiple server configurations.

Cache Object Like the Application but State is stored once per server in
(Application Scope) includes expiration via multiple server configurations.

Dependencies (see Chapter 20).

Session State Three choices: in process, Can be abused. You pay a
out of process, DB-backed. Can serialization cost when objects
be configured as cookieless. leave the process. In process

requires Web Server affinity.
Cookieless configuration makes it
easier to hijack.

Database State can be accessed by any Pay a serialization and persistence
server in a Web farm. cost when objects leave the

process. Requires a SQL Server
license.

On the client side, every available option costs you in bandwidth. Each option involves passing data
back and forth from client to server. Every byte of data you store will be paid for twice: once when it is
passed to the server and once when it is passed back.

707

State Management

22_576100 ch19.qxd 10/6/05 9:47 PM Page 707

Client-Side Option Pros Cons

Cookie Simple Can be rejected by browser. Not
appropriate for large amounts of
data. Inappropriate for sensitive
data. Size cost is paid on every
HTTP Request and Response.

Hidden Field Simple for page-scoped data Not appropriate for large
amounts of data. Inappropriate
for sensitive data.

ViewState Simple for page-scoped data Encoding of serialized object as
binary Base64-encoded data
adds approximately 30 percent
overhead. Small serialization
cost. Has a negative reputation,
particularly with DataGrids.

ControlState Simple for page-scoped Like ViewState, but used for
control-specific data controls that require ViewState

even if the developer has turned
it off.

QueryString (URL) Incredibly simple and often Comparatively complex.
convenient if you want your Can’t hold a lot of information.
URLs to be modified directly Inappropriate for sensitive data.
by the end user Easily modified by the end user.

These tables provided you with some of the server-side and client-side options. The improvements to
caching in ASP.NET 2.0 are covered in Chapter 20.

Understanding the Session Object in
ASP.NET 2.0

In classic ASP, the Session object was held in-process (as was everything) to the IIS process. The user
received a cookie with a unique key in the form of a GUID. The Session key was an index into a diction-
ary where object references could be stored.

In ASP.NET 2.0 the Session object still offers an in-process option, but also includes an out-of-process
and database-backed option. Additionally, the developer has the option to enable a cookieless Session
State where the Session key appears in the URL rather than being sent as a cookie.

708

Chapter 19

22_576100 ch19.qxd 10/6/05 9:47 PM Page 708

Sessions and the Event Model
The HttpApplication object raises a series of events during the life of the HTTP protocol request:

❑ BeginRequest: This event fires at the beginning of every request.

❑ AuthenticateRequest: This event is used by the security module and indicates that a request
is about to be authenticated. This is where the security module, or you, determines who the user is.

❑ AuthorizeRequest: This event is used by the security module and indicates that a request is
about to be authorized. This is where the security module, or you, determines what the user is
allowed to do.

❑ ResolveRequestCache: This event is used by the caching module to determine whether this
now-authorized request can bypass any additional processing.

❑ AcquireRequestState: This event indicates that all session state associated with this HTTP
request is about to be acquired.

❑ PreRequestHandlerExecute: This is the last event you get before the HttpHandler class for
this request is called.

❑ PostRequestHandlerExecute: This is the event that fires just after the HttpHandler is called.

❑ ReleaseRequestState: Indicates that the session state should be stored. Session state is persisted
at this point, using whatever Session-state module is configured in web.config.

❑ UpdateRequestCache: All work is complete, and the resulting output is ready to be added to
the cache.

❑ EndRequest: This is the last event called during a request.

You can see from the preceding list that AcquireRequestState and ReleaseRequestState are two
significant events in the life of the Session object.

By the time your application code executes, the Session object has been populated using the Session
key that was present in the cookie, or as you see later, from the URL. If you want to handle some
processing at the time the Session begins, rather than handling it in AcquireRequestState, you can
define an event handler for the Start event of a SessionState HttpModule.

Your application code, usually in the form of a Page, executes at this point in the
process.

Session state is available to you, the developer, after the AcquireRequestState
event fires. The session state key that is unique to each user is retrieved either from
a cookie or from the URL.

709

State Management

22_576100 ch19.qxd 10/6/05 9:47 PM Page 709

Sub Session_OnStart()
‘this fires after session state has been acquired by the SessionStateModule.

End Sub

Pre- and post-events occur at almost every point within the life of an HTTP request. Session state can be
manipulated at any point after AcquireRequestState, including in the Global.asax within the
Session_OnStart event.

The HttpSessionState object can be used within any event in a subclass of the Page object. Because
the pages you create in ASP.NET 2.0 derive from System.Web.UI.Page, you can access Session State as
a collection because System.Web.SessionState.HttpSession implements ICollection.

The Page has a public property aptly named Session that automatically retrieves the Session from the
current HttpContext. Even though it seems as if the Session object lives inside the page, it actually
lives in the HttpContext, and the page’s public Session property actually retrieves the reference to the
Session State. This convenience not only makes it more comfortable for the classic ASP programmer, but
saves you a little typing as well.

The Session object can be referred to within a page in this way:

Session[“SomeSessionState”] = “Here is some data”;

or

HttpContext.Current.Session[“SomeSessionState”] = “Here is some data”;

The fact that the Session object actually lives in the current HTTP context is more than just a piece of
trivia. This knowledge enables you to access the Session object in contexts other than the page (such as
in your own HttpHandler).

Configuring Session State Management
All the code within a page refers to the Session object using the dictionary-style syntax seen previously,
but the HttpSessionState object uses a Provider Pattern to extract possible choices for session state
storage. You can choose between the included providers by changing the sessionState element in
web.config. ASP.NET ships with the following three storage providers:

❑ In-Process Session State Store: Stores sessions in the ASP.NET in-memory cache

❑ Out-Of-Process Session State Store: Stores sessions in the ASP.NET State Server service asp-
net_state.exe

❑ Sql Session State Store: Stores sessions in Microsoft SQL Server database and is configured
with aspnet_regsql.exe

The Session object includes both Start and End events that you can hook event
handlers to for your own needs. However, the Session_OnEnd event is supported
only in the In-Process Session State mode. This event will not be raised if you use
out-of-process State Server or SQL Server modes. The Session ends, but your
handlers will never hear about it.

710

Chapter 19

22_576100 ch19.qxd 10/6/05 9:47 PM Page 710

The format of the web.config file’s sessionState element is shown in the following code:

<configuration>
<system.web>

<sessionState mode=”Off|InProc|StateServer|SQLServer|Custom” ../>
</system.web>

...

Begin configuring session state by setting the mode=”InProc” attribute of the sessionState element in
the web.config of a new Web site. This is the most common configuration for session state within
ASP.NET 2.0 and is also the fastest, as you see next.

In-Process Session State
When the configuration is set to InProc, session data is stored in the HttpRuntime’s internal cache in
an implementation of ISessionStateItemCollection that implements ICollection. The session
state key is a 120-bit value string that indexes this global dictionary of object references. When session
state is in process, objects are stored as live references. This is an incredibly fast mechanism because no
serialization occurs, nor do objects leave the process space. Certainly, your objects are not garbage-
collected if they exist in the In-Process Session object because a reference is still being held.

Additionally, because the objects are stored (held) in memory, they use up memory until that Session
times out. If a user visits your site and hits one page, he might cause you to store a 40MB XmlDocument
in in-process session. If that user never comes back, you are left sitting on that large chunk of memory
for the next 20 minutes or so (a configurable value) until the Session ends, even if the user never returns.

InProc Gotchas
Although the InProc Session model is the fastest, the default, and the most common, it does have a
significant limitation. If the worker process or application domain recycles, all session state data is lost.

Also, ASP.net application may restart for a number of reasons, such as the following:

❑ You’ve changed the web.config or Global.asax file or “touched” it by changing its
modified date.

❑ You’ve modified files in the \bin or \App_Code directory.

❑ The processModel element has been set in the web.config or machine.config file indicating
when the application should restart. Conditions that could generate a restart might be a memory
limit or request-queue limit.

❑ Antivirus software modifies any of the previously mentioned files. This is particularly common
with antivirus software that innoculates files.

This said, In-Process Session State works great for smaller applications that require only a single Web
server, or in situations where IP load balancing is returning each user to the server where his original
Session was created.

If a user already has a Session key, but is returned to a different machine than the one on which his
session was created, a new Session is created on that new machine using the session ID supplied by the
user. Of course, that new Session is empty and unexpected results may occur. However if
regenerateExpiredSessionId is set to True in the web.config file, a new Session ID is created and
assigned to the user.

711

State Management

22_576100 ch19.qxd 10/6/05 9:47 PM Page 711

Web Gardening
Web gardening is a technique for multiprocessor systems wherein multiple instances of the ASP.NET
worker process are started up and assigned with processor affinity. On a larger Web server with as many
as four CPUs, you could have anywhere from one to four worker processes hosting ASP.NET 2.0.
Processor affinity means literally that an ASP.NET 2.0 worker process has an affinity for a particular CPU.
It’s “pinned” to that CPU. This technique is usually enabled only in very large Web farms.

Don’t forget that In-Process Session State is just that — in-process. Even if your Web application consists
of only a single Web server and all IP traffic is routed to that single server, you have no guarantee that
each subsequent request will be served on the same processor. A Web garden must follow many of the
same rules that a Web farm follows.

Storing Data in the Session Object
In the following simple example, in a Button_Click event the content of the text box is added
to the Session object with a specific key. The user then clicks to go to another page within the same
application, and the data from the Session object is retrieved and presented in the browser.

Note the use of the <asp:HyperLink> control. Certainly, that markup could have been hard coded as
HTML, but this small distinction will serve us well later. Additionally, the URL is relative to this site, not
absolute. Watch for it to help you later in this chapter.

Listing 19-1 illustrates how simple it is to use the Session object. It behaves like any other
IDictionary collection and allows you to store keys of type String associated with any kind
of object. The Retrieve.aspx file referenced will be added in Listing 19-2.

Listing 19-1: Setting values in session state

ASP.NET--C#
<%@ Page Language=”C#” CodeFile=”Default.aspx.cs” Inherits=”_Default” %>

ASP.NET--VB.NET
<%@ Page Language=”VB” AutoEventWireup=”false” CodeFile=”Default.aspx.vb”

Inherits=”_Default” %>

ASP.NET
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Session State</title>
</head>
<body>

<form id=”form1” runat=”server”>

If you’re using Web gardening on a multiprocessor system, you must not use In-Process
Session State or you lose Sessions. In-Process Session State is appropriate only where
there is a 1:1 ratio of applications to application domains.

712

Chapter 19

22_576100 ch19.qxd 10/6/05 9:47 PM Page 712

<div>
<asp:TextBox ID=”TextBox1” Runat=”server”></asp:TextBox>
<asp:Button ID=”Button1” Runat=”server” Text=”Store in Session”
OnClick=”Button1_Click” />

<asp:HyperLink ID=”HyperLink1” Runat=”server”
NavigateUrl=”Retrieve.aspx”>Next Page</asp:HyperLink>

</div>
</form>

</body>
</html>

VB
Partial Class _Default

Inherits System.Web.UI.Page

Protected Sub Button1_Click(ByVal sender As Object, _
ByVal e As System.EventArgs)

Session(“mykey”) = TextBox1.Text
End Sub

End Class

C#
public partial class _Default : System.Web.UI.Page
{

protected void Button1_Click(object sender, EventArgs e)
{

Session[“mykey”] = TextBox1.Text;
}

}

The page from Listing 19-1 renders in the browser as shown in Figure 19-2. The Session object is
accessed as any dictionary indexed by a string key. See Chapter 10 for more on collections and lists.

Figure 19-2

713

State Management

22_576100 ch19.qxd 10/6/05 9:47 PM Page 713

More details about the page and the Session object can be displayed to the developer if page tracing is
enabled. You add this element to your application’s web.config file inside the <system.web> element,
as follows:

<trace enabled=”true” pageOutput=”true”/>

Now tracing is enabled, and the tracing output is sent directly to the page. More details on tracing and
debugging are given in Chapter 21. For now, make this change and refresh your browser.

In Figure 19-3, the screen shot is split to show both the top and roughly the middle of the large amount
of trace information that is returned when trace is enabled. Session State is very much baked into the
fabric of ASP.NET. You can see in the Request Details section of the trace that not only was this page the
result of an HTTP POST but the Session ID was as well — elevated to the status of first-class citizen.
However, the ASP.NET Session ID lives as a cookie by default, as you can see in the Cookies collection
at the bottom of the figure.

Figure 19-3

The default name for that cookie is ASP.NET_SessionId, but its name can be configured via the
cookieName attribute of the <sessionState> element in web.config. Some large enterprises allow
only certain named cookies past their proxies, so you might need to change this value when working on
an extranet or a network with a gateway server; but this would be a very rare occurrence. The
cookieName is changed to use the name “Foo” in the following example.

<sessionState cookieName=”Foo” mode=”InProc”></sessionState>

714

Chapter 19

22_576100 ch19.qxd 10/6/05 9:47 PM Page 714

The trace output shown in Figure 19-3 includes a section listing the contents of the Session State col-
lection. In the figure, you can see that the name mykey and the value Hanselman are currently stored.
Additionally, you see the CLR data type of the stored value; in this case, it’s System.String.

Now add the next page, retrieve.aspx, which pulls this value out of the session. Leave the
retrieve.aspx page as the IDE creates it and add a Page_Load event handler, as shown in Listing 19-2.

Listing 19-2: Retrieving values from the session

VB
Partial Class Retrieve

Inherits System.Web.UI.Page

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
Handles Me.Load

Dim myValue As String = CType(Session(“mykey”), String)
Response.Write(myValue)

End Sub
End Class

C#
public partial class Retrieve : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{

string myValue = (string)Session[“mykey”];
Response.Write(myValue);

}
}

Because the session contains object references, the resulting object is converted to a string by way of a
cast in C# or the CType function in VB.

Making Sessions Transparent
It is unfortunate that the cast to a string is required to retrieve data from the Session object. Combined
with the string key used as an index, it makes for a fairly weak contract between the page and the
Session object. You can create a session helper that is specific to your application to hide these details,
or you can add properties to a base Page class that presents these objects to your pages in a friendlier
way. Because the generic Session object is available as a property on System.Web.UI.Page, add a new
class derived from Page that exposes a new property named MyKey.

The Value column of the trace output comes from a call to the contained object’s
ToString() method. If you store your own objects in the Session, you can override
ToString() to provide a text-friendly representation of your object that might make
the trace results more useful.

715

State Management

22_576100 ch19.qxd 10/6/05 9:47 PM Page 715

Start by right-clicking your project and selecting Add New Item from the context menu to create a new
class. Name it SmartSessionPage and click OK. The IDE may tell you that it would like to put this new
class in the /App_Code folder to make it available to the whole application. Click Yes.

Your new base page is very simple. Via derivation, it does everything that System.Web.UI.Page does,
plus it has a new property, as shown in Listing 19-3.

Listing 19-3: A more session-aware base page

VB
Imports Microsoft.VisualBasic
Imports System
Imports System.Web

Public Class SmartSessionPage
Inherits System.Web.UI.Page

Private Const MYSESSIONKEY As String = “mykey”
Public Property MyKey() As String

Get
Return CType(Session(MYSESSIONKEY), String)

End Get
Set(ByVal value As String)

Session(MYSESSIONKEY) = value
End Set

End Property
End Class

C#
using System;
using System.Web;

public class SmartSessionPage : System.Web.UI.Page
{

private const string MYKEY = “mykey”;
public string MyKey
{

get
{

return (string)Session[MYKEY];
}
set
{

Session[MYKEY] = value;
}

}
}

Now, return to your code from Listing 19-1 and derive your pages from this new base class. To do this,
change the base class in the code-beside files to inherit from SmartSessionPage. Listing 19-4 shows
how the class in the code-behind file derives from the SmartSessionPage, which in turn derives from
System.Web.UI.Page. Listing 19-4 outlines the differences to make to Listing 19-1.

716

Chapter 19

22_576100 ch19.qxd 10/6/05 9:47 PM Page 716

Listing 19-4: Deriving from the new base page

VB--ASPX
<%@ Page Language=”VB” AutoEventWireup=”false” CodeFile=”Default.aspx.vb”

Inherits=”_Default” %>

VB--Default.aspx.vb Code
Partial Class _Default

Inherits SmartSessionPage

Protected Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)
‘ Session(“mykey”) = TextBox1.Text
MyKey = TextBox1.Text

End Sub
End Class

C#--ASPX
<%@ Page Language=”C#” CodeFile=”Default.aspx.cs” Inherits=”_Default” %>

C#--Default.aspx.cs Code
public partial class _Default : SmartSessionPage
{

protected void Button1_Click(object sender, EventArgs e)
{

//Session[“mykey”] = TextBox1.Text;
MyKey = TextBox1.Text;

}
}

In this code, you change the access to the Session object so it uses the new public property. After the
changes in Listing 19-3, all derived pages have a public property called MyKey. This property can be
used without any concern about casting or Session key indexes. Additional specific properties can be
added as other objects are included in the Session.

Here’s an interesting language note: In Listing 19-3 the name of the private string value collides with
the public property in VB because they differ only in case. In C#, a private variable named MYKEY and a
public property named MyKey are both acceptable. Be aware of things like this when creating APIs that
will be used with multiple languages. Aim for CLS compliance.

Advanced Techniques for Optimizing Session Performance
By default, all pages have write access to the Session. Because it’s possible that more than one page
from the same browser client might be requested at the same time (using frames, more than one browser
window on the same machine, and so on), a page holds a reader/writer lock on the same Session for
the duration of the page request. If a page has a writer lock on the same Session, all other pages
requested in the same Session must wait until the first request finishes. To be clear, the Session is
locked only for that SessionID. These locks don’t affect other users with different Sessions.

717

State Management

22_576100 ch19.qxd 10/6/05 9:47 PM Page 717

In order to get the best performance out of your pages that use Session, ASP.NET allows you declare
exactly what your page requires of the Session object via the EnableSessionState @Page attribute.
The options are True, False, or ReadOnly:

❑ EnableSessionState=”True”: The page requires read and write access to the Session. The
Session with that SessionID will be locked during each request.

❑ EnableSessionState=”False”: The page does not require access to the Session. If the code
uses the Session object anyway, an HttpException is thrown stopping page execution.

❑ EnableSessionState=”ReadOnly”: The page requires read-only access to the Session. A
reader lock is held on the Session for each request, but concurrent reads from other pages can
occur. If a page is requested requiring read-only access and two other requests are queued up,
one requesting read-only access and one requesting read/write access, the read-only page is
executed while the read/write access page waits.

By modifying the @Page direction in default.aspx and retrieve.aspx to reflect each page’s actual
need, you affect performance when the site is under load. Add the EnableSessionState attribute to
the pages as shown in the following code:

VB--Default.aspx
<%@ Page Language=”VB” EnableSessionState=”True” AutoEventWireup=”false”

CodeFile=”Default.aspx.vb” Inherits=”_Default” %>

VB--Retrieve.aspx
<%@ Page Language=”VB” EnableSessionState=”ReadOnly” AutoEventWireup=”false”

CodeFile=”Retrieve.aspx.vb” Inherits=”Retrieve” %>

C#--Default.asp
<%@ Page Language=”C#” EnableSessionState=”True”

CodeFile=”Default.aspx.cs” Inherits=”_Default”%>

C#--Retrieve.aspx
<%@ Page Language=”C#” EnableSessionState=”ReadOnly”

CodeFile=”Retrieve.aspx.cs” Inherits=”Retrieve” %>

Under the covers, ASP.NET is using marker interfaces from the System.Web.SessionState
namespace to keep track of each page’s needs. When the partial class for default.aspx is generated,
it implements the IRequiresSessionState interface, whereas Retrieve.aspx implements
IReadOnlySessionState. All HttpRequests are handled by objects that implement IHttpHandler.
Pages are handled by a PageHandlerFactory. You can find more on HttpHandlers in Chapter 23.
Internally, the SessionStateModule is executing code similar to the pseudocode that follows:

If TypeOf HttpContext.Current.Handler Is IReadOnlySessionState Then
Return SessionStateStore.GetItem(itemKey)

Else ‘If TypeOf HttpContext.Current.Handler Is IRequiresSessionState
Return SessionStateStore.GetItemExclusive(itemKey)

End If

As the programmer, you know things about the intent of your pages at compile time that ASP.NET
can’t figure out at runtime. By including the EnableSessionState attribute in your pages, you allow
ASP.NET to operate more efficiently. Remember, ASP.NET always makes the most conservative decision
unless you give it more information to act upon.

718

Chapter 19

22_576100 ch19.qxd 10/6/05 9:47 PM Page 718

Out-of-Process Session State
Out-of-process session state is held in a process called aspnet_state.exe that runs as a Windows
Service. You can start the ASP.NET state service by using the Services MMC snap-in or by running the
following net command from the command line:

net start aspnet_state

By default, the State Service listens on TCP port 42424, but this port can be changed at the registry key
for the service, as shown in the following code. The State Service is not started by default.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\
aspnet_state\Parameters\Port

Change the web.config’s settings from InProc to StateServer, as shown in the following code.
Additionally, you must include the stateConnectionString attribute with the IP address and port on
which the Session State Service is running. In a Web farm (a group of more than one Web server), you
could run the State Service on any single server or on a separate machine entirely. In this example, the
State Server is running on the local machine, so the IP address is the localhost IP 127.0.0.1. If you run the
State Server on another machine, make sure the appropriate port is open — in this case, TCP port 42424.

<configuration>
<system.web>

<sessionState mode=”StateServer”
stateConnectionString=”tcpip=127.0.0.1:42424”/>

</system.web>
</configuration>

The State Service used is always the most recent one installed with ASP.NET. That means that if you are
running ASP.NET 2.0 and 1.1 on the same machine, all the states stored in Session objects for any and
all versions of ASP.NET are kept together in a single instance of the ASP.NET 2.0 State Service.

Because your application’s code runs in the ASP.NET Worker Process (aspnet_wp.exe, or w3wp.exe)
and the State Service runs in the separate aspnet_state.exe process, objects stored in the Session can’t
be stored as references. Your objects must physically leave the worker process via binary serialization.

Performance Tip: If you’re coding a page that doesn’t require anything of the Session,
by all means, set EnableSessionState=”False”. This causes ASP.NET to schedule
that page ahead of pages that require Session and helps with the overall scalability of
your app. Additionally, if your application doesn’t use Session at all, set Mode=”Off”
in your web.config file to reduce overhead for the entire application.

719

State Management

22_576100 ch19.qxd 10/6/05 9:47 PM Page 719

Only classes that have been marked with the [Serializable] attribute may be serialized. In the context
of the Session object, think of the [Serializable] attribute as a permission slip for instances of your
class to leave the worker process.

Update the SmartSessionPage file in your \App_Code directory to include a new class called Person, as
shown in Listing 19-5. Be sure to mark it as Serializable or you will see the error shown in Figure 19-4.

Figure 19-4

As long as you’ve marked your objects as [Serializable], they’ll be allowed out of the ASP.NET
process. Notice that the objects in Listing 19-5 are marked [Serializable].

For a world-class, highly available, and scalable Web site, consider using a Session
model other than InProc. Even if you can guarantee via your load-balancing appliance
that your Sessions will be sticky, you still have application-recycling issues to contend
with. The out-of-process state service’s data is persisted across application pool recycles
but not computer reboots. However, if your state is stored on a different machine
entirely, it will survive Web Server recycles and reboots.

720

Chapter 19

22_576100 ch19.qxd 10/6/05 9:47 PM Page 720

Listing 19-5: A serializable object that can be used in the out-of-process Session

VB
<Serializable()> _
Public Class Person

Public firstName As String
Public lastName As String

Public Overrides Function ToString() As String
Return String.Format(“Person Object: {0} {1}”, firstName, lastName)

End Function
End Class

C#
[Serializable]
public class Person
{

public string firstName;
public string lastName;

public override string ToString()
{

return String.Format(“Person Object: {0} {1}”, firstName, lastName);
}

}

Because you put an instance of the Person class from Listing 19-5 into the Session object that is
currently configured as StateServer, you should add a strongly typed property to the base Page class
from Listing 19-3. In Listing 19-6 you see the strongly typed property added. Note the cast on the prop-
erty Get, and the strongly typed return value indicating that this property deals only with objects of type
Person.

Listing 19-6: Adding a strongly typed property to SmartSessionPage

VB
Public Class SmartSessionPage

Inherits System.Web.UI.Page

Private Const MYSESSIONPERSONKEY As String = “myperson”

Public Property MyPerson() As Person
Get

Return CType(Session(MYSESSIONPERSONKEY), Person)
End Get
Set(ByVal value As Person)

Session(MYSESSIONPERSONKEY) = value
End Set

End Property

End Class

721

State Management

22_576100 ch19.qxd 10/6/05 9:47 PM Page 721

C#
public class SmartSessionPage : System.Web.UI.Page
{

private const string MYPERSON = “myperson”;

public Person MyPerson
{

get
{

return (Person)Session[MYPERSON];
}
set
{
Session[MYPERSON] = value;

}
}

Now, add code to create a new Person, populate its fields from the text box, and put the instance into
the now-out-of-process Session State Service. Then, retrieve the Person and write its values out to the
browser using the overloaded ToString() method from Listing 19-5.

In Listing 19-7, the value of the TextBox is split into a string array and the first two strings are put into a
Person instance. For example, if you entered “Scott Hanselman” as a value, “Scott” is put into
Person.firstName and “Hanselman” is put into Person.lastName. The values you enter should appear
when they are retrieved later in Retrieve.aspx and written out to the browser with the overloaded
ToString method.

Listing 19-7: Setting and retrieving objects from the Session using State Service and
a base page

VB--Default.aspx.vb
Partial Class _Default

Inherits SmartSessionPage

Protected Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Dim names As String()
names = TextBox1.Text.Split(“ “c) ‘ “ “c creates a char
Dim p As New Person()
p.firstName = names(0)
p.lastName = names(1)
Session(“myperson”) = p

End Sub
End Class

Certain classes in the Framework Class Library are not marked as serializable. If you
use objects of this type within your own objects, these objects are not serializable at
all. For example, if you include a DataRow field in a class and add your object to the
State Service, you receive a message telling you it “. . . is not marked as serializable”
because the DataRow includes objects that are not serializable.

722

Chapter 19

22_576100 ch19.qxd 10/6/05 9:47 PM Page 722

VB--Retrieve.aspx.vb
Partial Class Retrieve

Inherits SmartSession Page
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _

Handles Me.Load
Dim p As Person = MyPerson
Response.Write(p) ‘ ToString will be called!

End Sub
End Class

C#--Default.aspx.cs
public partial class _Default : SmartSessionPage
{

protected void Button1_Click(object sender, EventArgs e)
{

string[] names = TextBox1.Text.Split(‘ ‘);
Person p = new Person();
p.firstName = names[0];
p.lastName = names[1];

Session[“myperson”] = p;
}

}

C#--Retrieve.aspx.cs
public partial class Retrieve : SmartSessionPage
{

protected void Page_Load(object sender, EventArgs e)
{

Person p = MyPerson;
Response.Write(p); //ToString will be called!

}
}

Now, launch the browser, enter your name (or “Scott Hanselman” if you like), click the button to store it
in the Session, and then visit Retrieve.aspx via the hyperlink. You see the result of the ToString()
method via Response.Write, as shown in Figure 19-5.

The completed code and techniques shown in Listing 19-7 illustrate a number of best practices for ses-
sion management:

❑ Mark your objects as Serializable if you might ever use non-In-Proc session state.

❑ Even better, do all your development with a local session state server. This forces you to dis-
cover non-serializable objects early, gives you a sense of the performance and memory
usages of aspnet_state.exe, and allows you to choose from any of the session options at
deployment time.

❑ Use a base Page class or helper object with strongly typed properties to simplify your code. It
enables you to hide the casts made to session keys otherwise referenced throughout your code.

These best practices apply to all state storage methods, including SQL session state.

723

State Management

22_576100 ch19.qxd 10/6/05 9:47 PM Page 723

Figure 19-5

SQL-Backed Session State
ASP.NET sessions can also be stored in a SQL Server database. InProc offers speed, StateServer offers a
resilience/speed balance, and storing sessions in SQL Server offers resilience that can serve sessions to a
large Web farm that persists across IIS restarts, if necessary.

SQL-backed session state is configured with aspnet_regsql.exe. This tool adds and removes
support for a number of ASP.NET features such as cache dependency (see Chapter 20) and
personalization/membership (Chapters 15 and 16) as well as session support. When you run
aspnet_regsql.exe from the command line without any options, surprisingly, it pops up a GUI as
shown in Figure 19-6. This utility is located in the .NET Framework’s installed directory, usually
c:\windows\microsoft.net\framework\<version>.

724

Chapter 19

22_576100 ch19.qxd 10/6/05 9:47 PM Page 724

Figure 19-6

The text of the dialog shown in Figure 19-6 contains instructions to run aspnet_regsql from the
command line with a “-?” switch. You have a huge number of options, so you’ll want to pipe it through
in a form like aspnet_regsql -? | more. You see the session-state–specific options shown here:

-- SESSION STATE OPTIONS --

-ssadd Add support for SQLServer mode session state.

-ssremove Remove support for SQLServer mode session state.

-sstype t|p|c Type of session state support:

t: temporary. Session state data is stored in the
“tempdb” database. Stored procedures for managing
session are installed in the “ASPState” database.
Data is not persisted if you restart SQL. (Default)

p: persisted. Both session state data and the stored
procedures are stored in the “ASPState” database.

c: custom. Both session state data and the stored
procedures are stored in a custom database. The
database name must be specified.

725

State Management

22_576100 ch19.qxd 10/6/05 9:47 PM Page 725

-d <database> The name of the custom database to use if -sstype is
“c”.

Three options exist for session state support: t, p, and c. The most significant difference is that the
-sstype t option does not persist session state data across SQL Server restarts, whereas the -sstype p
option does. Alternatively, you can specify a custom database with the -c option and give the database
name with -d database.

The following command-line example configures your system for SQL session support with the SQL
Server on localhost with an sa password of wrox and a persistent store in the ASPState database (certainly,
you know not to deploy your system using sa and a weak password, but this simplifies the example). If
you’re using SQL Express, replace “localhost” with “.\SQLEXPRESS”.

C:\ >aspnet_regsql -S localhost -U sa -P wrox -ssadd -sstype p
Start adding session state.
...........
Finished.

Next, open up Enterprise Manager and look at the newly created database. Two tables are created —
ASPStateTempApplications and ASPStateTempSessions — as well as a series of stored procedures to
support moving the session back and forth from SQL to memory.

If your SQL Server has its security locked down tight, you might get an Error 15501 after executing
aspnet_regsql.exe that says “An error occurred during the execution of the SQL file
‘InstallSqlState.sql’.” The SQL error number is 15501 and the SqlException message is: This
module has been marked OFF. Turn on ‘Agent XPs’ in order to be able to access the module.
If the job does not exist, an error from msdb.dbo.sp_delete_job is expected. This is a
rather obscure message, but aspnet_regsql.exe is trying to tell you that the extended stored
procedures it needs to enable session state are not enabled for security reasons. You’ll need to allow
them explicitly. To do so, execute the following commands within the SQL Server 2005 Query Analyzer
or the SQL Server 2005 Express Manager:

USE master
EXECUTE sp_configure ‘show advanced options’, 1
RECONFIGURE WITH OVERRIDE
GO
EXECUTE sp_configure ‘Agent XPs’, 1
RECONFIGURE WITH OVERRIDE
GO
EXECUTE sp_configure ‘show advanced options’, 0
RECONFIGURE WITH OVERRIDE
GO

Now, change the web.config <sessionState> element to use SQL Server, as well as the new
connection string:

<sessionState mode=”SQLServer” sqlConnectionString=”data source=127.0.0.1;user
id=sa;password=Wrox”/>

726

Chapter 19

22_576100 ch19.qxd 10/6/05 9:47 PM Page 726

The session code shown in Listing 19-7 continues to work as before. However, if you open up the
ASPStateTempSessions table, you see the serialized objects. Notice in Figure 19-7 that the Session ID
from the trace appears as a primary key in a row in the ASPStateTempSessions table.

Figure 19-7

Figure 19-7 shows the SessionId as seen in the Request Details of ASP.NET tracing and how that
SessionId appears in the SessionId column of the ASPStateTempSessions table in the ASPState
database just created. Notice also the ASPStateTempApplications table that keeps track of each IIS
application that may be using the same database to manage sessions.

If you want to use your own database to store session state, you specify the database name with the
-d <database> switch of aspnet_regsql.exe and include the allowCustomSqlDatabase=”true”
attribute and the name of the database in the connection string:

<sessionState allowCustomSqlDatabase=”true” mode=”SQLServer”
sqlConnectionString=”data source=127.0.0.1;database=MyCustomASPStateDatabase;”/>

The user ID and password can be included in the connection string; or Windows Integrated Security
can be used if the ASP.NET Worker Process’s identity is configured with access in SQL Server.

727

State Management

22_576100 ch19.qxd 10/6/05 9:47 PM Page 727

Extending Session State with Other Providers
ASP.NET 2.0 Session State is built on a new, extensible, provider-based storage model. You can
implement custom providers that store session data in other storage mechanisms simply by deriving
from SessionStateStoreProviderBase. This extensibility feature also allows you to generate session
IDs via your own algorithms by implementing ISessionIDModule.

You start by creating a class that inherits from SessionStateStoreProviderBase. The session module
will call methods on any session provider as long as it derives from
SessionStateStoreProviderBase. Register your custom provider in your application’s web.config,
as in the following example:

<sessionState mode =”Custom” customProvider =”WroxProvider”>
<providers >

<add name =”WroxProvider” type =”Wrox.WroxStore, WroxSessionSupplier”/>
</providers>

</sessionState>

ASP.NET initializes the SessionStateModule, and these methods are called on any custom
implementation:

❑ Initialize: This method is inherited ultimately from System.Configuration
.Provider.ProviderBase and is called immediately after the constructor. With this method,
you set your provider name and call up to the base implementation of Initialize.

❑ SetItemExpireCallback: With this method, you can register any methods to be called when a
session item expires.

❑ BeginRequest: This method is called by the SessionStateModule for each request. This is an
early opportunity to get ready for any requests for data that are coming.

❑ CreateNewStoreData: With this method, you create a new instance of
SessionStateStoreData, the data structure that holds session items, the session timeout
values, and any static items.

When a session item is requested, ASP.NET calls your implementation to retrieve it. Implement the
following methods to retrieve items:

❑ GetItemExclusive: This method is where you get SessionStateStoreData from your chosen
store. You may have created an Oracle provider, stored data in XML, or wherever you like.

❑ GetItem: This is your opportunity to retrieve it as you did in GetItemExclusive except with-
out exclusive locking. You may or may not care, depending on what backing store you’ve chosen.

When it’s time to store an item, the following method is called:

❑ SetAndReleaseItemExculsive: Here you should save the SessionStateStoreData object
to your custom store.

728

Chapter 19

22_576100 ch19.qxd 10/6/05 9:47 PM Page 728

Expect to see a number of third-party session state providers available to both open source and for sale
soon after the release of ASP.NET 2.0.

The derivation-based provider module for things such as session state will no doubt create a rich
ecosystem of enthusiasts who will help push the functionality to new places Microsoft did not expect.

Cookieless Session State
In the previous example, the ASP.NET Session State ID was stored in a cookie. Some devices don’t
support cookies, or a user may have turned off cookie support in his browser. Cookies are convenient
because the values are passed back and forth with every request and response. That means every
HttpRequest contains cookie values, and every HttpResponse contains cookie values. What is the only
other thing that is passed back and forth with every Request and Response? The URL.

If you include the cookieless=”UseUri” attribute in the web.config, ASP.NET does not send the
ASP.NET Session ID back as a cookie. Instead, it modifies every URL to include the Session ID just
before the requested page:

<sessionState mode=”SQLServer” cookieless=”UseUri” sqlConnectionString=”data
source=127.0.0.1;user id=sa;password=Wrox”></sessionState>

Notice that the Session ID appears in the URL as if it were a directory of its own situated between
the actual Web site virtual directory and the page. With this change, server-side user controls such as the
HyperLink control, used in Listing 19-1, have their properties automatically modified. The link in
Listing 19-1 could have been hard-coded as HTML directly in the Designer, but then ASP.NET could not
modify the target URL shown in Figure 19-8.

The Session ID is a string that contains only the ASCII characters allowed in a URL. That makes sense
when you realize that moving from a cookie-based Session-State system to a cookieless system requires
putting that Session State value in the URL.

Notice in Figure 19-8 that the request URL contains a Session ID within parentheses. One disadvantage
to cookieless Sessions is how easily they can be tampered with. Certainly, cookies can be tampered with
using HTTP sniffers, but URLS can be edited by anyone. The only way Session State is maintained is if
every URL includes the Session ID in this way.

ScaleOut Software released the first 3rd party ASP.NET 2.0 State Provider in the form
of their StateServer product. It fills a niche between the ASP.NET included singleton
StateServer and the SQL Server Database State Provider. ScaleOut Software’s
StateServer is an out-of-process service that runs on each machine in the Web Farm
and ensures that session state is stored in a transparent and distributed manner among
machines in the farm. You can learn more about StateServer and their ASP.NET 2.0
Session Provider at http://www.scaleoutsoftware.com/asp.net2.0.htm.

729

State Management

22_576100 ch19.qxd 10/6/05 9:48 PM Page 729

Figure 19-8

Additionally, all URLS must be relative. Remember that the Session ID appears as if it were a directory.
The Session is lost if a relative URL such as /myapp/retrieve.aspx is invoked. If you are generating
URLs on the server side, use HttpResponse.ApplyAppPathModifier(). It changes a URL when the
Session ID is embedded, as shown here:

Response.Write(Response.ApplyAppPathModifier(“foo/bar.aspx”));

The previous line generates a URL similar to the following:

/myapp/ (S(avkbnbml4n1n5mi5dmfqnu45))/foo/bar.aspx

Notice that not only was session information added to the URL, but it was also converted from a relative
URL to an absolute URL, including the application’s virtual directory. This method can be useful when
you need to use Response.Redirect or build a URL manually to redirect from an HTTP page to an
HTTPS page while still maintaining cookieless session state.

Choosing the Correct Way to Maintain State
Now that you’re familiar with the variety of options available for maintaining state in ASP.NET 2.0,
here’s some real-world advice from production systems. The In-Process (InProc) Session provider is the
fastest method, of course, because everything held in memory is a live object reference. This provider is
held in the HttpApplication’s cache and, as such, it is susceptible to application recycles. If you use
Windows 2000 Server or Windows XP, the aspnet_wp.exe process manages the ASP.NET HTTP
pipeline. If you’re running Windows 2003 Server, w3wp.exe is the default process that hosts the runtime.

You must find a balance between the robustness of the out-of-process state service and the speed of the
in-process provider. In my experience, generally the out-of-process state service is usually about
15 percent slower than the in-process provider because of the serialization overhead and marshaling.
SQL Session State is about 25 percent slower than InProc. Of course your mileage will likely vary. Don’t
let these numbers concern you too much. Be sure to do scalability testing on your applications before
you panic and make inappropriate decisions.

730

Chapter 19

22_576100 ch19.qxd 10/6/05 9:48 PM Page 730

The Application Object
The Application object is the equivalent of a bag of global variables for your ASP.NET application.
Global variables have been considered harmful for many years in other programming environments,
and ASP.NET is no different. You should give some thought to what you want to put in the
Application object and why. Often, the more flexible Cache object that helps you control an object’s
lifetime is the more useful. Caching is discussed in depth in Chapter 20.

The Application object is not global to the machine; it’s global to the HttpApplication. If you are
running in the context of a Web farm, each ASP.NET application on each Web server has its own
Application object. Because ASP.NET applications are multithreaded and are receiving requests that
are being handled by your code on multiple threads, access to the Application object should be
managed using the Application.Lock and Application.Unlock methods. If your code doesn’t call
Unlock directly (which it should, shame on you) the lock is removed implicitly at the end of the
HttpRequest that called Lock originally.

This small example shows locking the Application object just before inserting an object. Other threads
that might be attempting to write to the Application will wait until it is unlocked. This example
assumes there is an integer already stored in Application under the key GlobalCount.

VB
Application.Lock()
Application(“GlobalCount”) = CType(Application(“GlobalCount”), Integer) + 1
Application.UnLock()

C#
Application.Lock();
Application[“GlobalCount”] = (int)Application[“GlobalCount”] + 1;
Application.UnLock();

Object references can be stored in the Application, as in the Session, but they must be cast back to
their known types when retrieved (as shown in the preceding sample code).

It’s worth saying again: We recommend that all developers use Out-Of-Process
Session State during development, even if this is not the way your application will be
deployed. Forcing yourself to use the Out-Of-Process provider enables you to catch
any potential problems with custom objects that do not carry the Serializable
attribute. If you design your entire site using the In-Process provider and then dis-
cover, late in the project, that requirements force you to switch to the SQL or Out-Of-
Process providers, you have no guarantee that your site will work as you wrote it.
Developing with the Out-Of-Process provider gives you the best of both worlds and
does not affect your final deployment method. Think of it as an insurance policy that
costs you nothing upfront.

731

State Management

22_576100 ch19.qxd 10/6/05 9:48 PM Page 731

QueryStrings
The URL, or QueryString, is the idea place for navigation-specific — not user-specific — data. The
QueryString is the most hackable element on a Web site, and that fact can work for you or against you.
For example, if your navigation scheme uses your own page IDs at the end of a query string (such as
/localhost/mypage.aspx?id=54) be prepared for a user to play with that URL in his browser, and try
every value for id under the sun. Don’t blindly cast id to an int, and if you do, have a plan if it fails. A
good idea is to return Response.StatusCode = 404 when someone changes a URL to an unreasonable
value. Another fine idea that Amazon.com implemented was the Smart 404 — perhaps you’ve see these:
They say “Sorry you didn’t find what you’re looking for. Did you mean _____?”

Remember, your URLs are the first thing your users may see, even before they see your HTML. Hackable
URLs — hackable even by my mom — make your site more accessible. Which of these URLs is friendlier
and more hackable (for the right reason)?

http://reviews.cnet.com/Philips_42PF9996/4505-6482_7-31081946.html?tag=cnetfd.sd

or

http://www.hanselman.com/blog/CategoryView.aspx?category=Movies

Cookies
Do you remember the great cookie scare of 1997? Most users weren’t quite sure just what a cookie was,
but they were all convinced that cookies were evil and were storing their personal information.
Back then, it was likely personal information was stored in the cookie! Never, ever store sensitive
information, like a user ID or password, in a cookie. Cookies should be used only to store non-sensitive
information, or information that can be retrieved from an authoritative source. Cookies shouldn’t
be trusted, and their contents should be able to be validated. For example, if a Forms Authentication
cookie has been tampered with, the user is logged out and an exception is thrown. If an invalid session
ID cookie is passed in for an expired Session, a new cookie can be assigned.

When you store information in cookies, remember that it’s quite different from storing data in the
Session object:

❑ Cookies are passed back and forth on every request. That means you are paying for the size of
your cookie during every HTTP GET and HTTP POST.

❑ If you have ten 1-pixel spacer GIFs on your page used for table layouts, the user’s browser is
sending the same cookie eleven times: once for the page itself, and once for each spacer GIF, even
if the GIF is already cached.

❑ Cookies can be stolen, sniffed, and faked. If your code counts on a cookie’s value, have a plan in
your code for the inevitability that cookie will get corrupted or be tampered with.

❑ What is the expected behavior of your application if a cookie doesn’t show? What if it’s 4096
bytes? Be prepared. You should design your application around the “principle of least surprise.”
Your application should attempt to heal itself if cookies are found missing or if they are larger
than expected.

❑ Think twice before Base64 encoding anything large and placing it in a cookie. If your design
depends on this kind of technique, rethink using either the Session or another backing-store.

732

Chapter 19

22_576100 ch19.qxd 10/6/05 9:48 PM Page 732

PostBacks and Cross-Page PostBacks
In classic ASP, in order to detect logical events like a button being clicked, developers had to inspect the
Form collection of the Request object. Yes, a button was clicked in the user’s browser, but no object model
was built on top of stateless HTTP and HTML. ASP.NET 1.x introduced the concept of the postback,
wherein a server-side event was raised to alert the developer of a client-side action. If a button is clicked
on the browser, the Form collection is POSTed back to the server, but now ASP.NET allowed the developer
to write code in events such as Button1_Click and TextBox1_Changed.

However, this technique of posting back to the same page is counter-intuitive, especially when you are
designing user interfaces that aim to create wizards to give the user the sense of forward motion.

This chapter is about all aspects of state management. Postbacks and cross-page postbacks, however, are
covered extensively in Chapter 3 so this chapter touches on them only in the context of state management.
Postbacks were introduced in ASP.NET 1.x to provide an eventing subsystem for Web development. It
was inconvenient to have only single-page postbacks in 1.x, however, and that caused many developers to
store small objects in the Session on a postback and then redirect to the next page to pick up the stored
data. With cross-page postbacks, data can be posted “forward” to a different page, often obviating the
need for storing small bits of data that could be otherwise passed directly.

ASP.NET 2.0 adds the notion of a PostBackUrl to all the Button controls including LinkButton and
ImageButton. The PostBackUrl property is both part of the markup when a control is presented as part
of the ASPX page, as seen in the following, and is a property on the server-side component that’s avail-
able in the code-behind:

<asp:Button PostBackUrl=”url” ..>

When a button control with the PostBackUrl property set is clicked, the page does not post back to
itself; instead, the page is posted to the URL assigned to the button control’s PostBackUrl property.
When a cross-page request occurs, the PreviousPage property of the current Page class holds a refer-
ence to the page that caused the postback. To get a control reference from the PreviousPage, use the
Controls property or use the FindControl method.

Create a fresh site with a Default.aspx (as shown in Listing 19-8). Put a TextBox and a Button on it,
and set the Button PostBackUrl property to Step2.aspx. Then create a Step2.aspx page with a sin-
gle Label and add a Page_Load handler by double-clicking the HTML Designer.

Listing 19-8: Cross-page postbacks

Default.aspx
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Cross-page PostBacks</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:TextBox ID=”TextBox1” Runat=”server”></asp:TextBox>
<asp:Button ID=”Button1” Runat=”server” Text=”Button”

(continued)

733

State Management

22_576100 ch19.qxd 10/6/05 9:48 PM Page 733

Listing 19-8: (continued)

PostBackUrl=”~/Step2.aspx” />
</div>
</form>

</body>
</html>

Step2.aspx
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Step 2</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:Label ID=”Label1” runat=”server” Text=”Label”></asp:Label>
</div>
</form>

</body>
</html>

VB--Step2.aspx.vb
Partial Class Step2

Inherits System.Web.UI.Page

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
Handles Me.Load

If PreviousPage IsNot Nothing AndAlso PreviousPage.IsCrossPagePostBack Then
Dim text As TextBox = _

CType(PreviousPage.FindControl(“TextBox1”), TextBox)
If text IsNot Nothing Then

Label1.Text = text.Text
End If

End If

End Sub

End Class

CS--Step2.aspx.cs
using System;
using System.Web.UI.WebControls;

public partial class Step2 : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{

if (PreviousPage != null && PreviousPage.IsCrossPagePostBack)
{

TextBox text = PreviousPage.FindControl(“TextBox1”) as TextBox;
if (text != null)

734

Chapter 19

22_576100 ch19.qxd 10/6/05 9:48 PM Page 734

{
Label1.Text = text.Text;

}
}

}

}

In Listing 19-8, Default.aspx posts forward to Step2.aspx, which can then access the Page
.PreviousPage property and retrieve a populated instance of the Page that caused the postback. A call
to FindControl and a cast retrieves the TextBox from the previous page and copies its value into the
Label of Step2.aspx.

Hidden Fields, ViewState, and ControlState
Hidden input fields like <input type=”hidden” name=”foo”> are sent back as name/value pairs in a
Form POST exactly like any other control, except they are not rendered. Think of them as hidden text
boxes. Figure 19-9 shows a HiddenField control on the Visual Studio Designer with its available
properties. Hidden fields are available in both ASP.NET 1.x and 2.0.

Figure 19-9

ViewState, on the other hand, exposes itself as a collection of key/value pairs like the Session object,
but renders itself as a hidden field with the name “__VIEWSTATE” like this:

<input type=”hidden” name=”__VIEWSTATE” value=”/AAASSDAS...Y/lOI=” />

Any objects put into the ViewState must be marked Serializable. ViewState serializes the objects with
a special binary formatter called the LosFormatter. LOS stands for limited object serialization. It serializes
any kind of object, but it is optimized to contain strings, arrays, and hashtables.

To see this at work, create a new page and drag a TextBox, Button, and HiddenField onto it. Double-click
in the Designer to create a Page_Load and include the code from Listing 19-9. This example adds a string to
HiddenField.Value, but adds an instance of a Person to the ViewState collection. This listing illustrates
that while ViewState is persisted in a single HTML TextBox on the client, it can contain both simple types

735

State Management

22_576100 ch19.qxd 10/6/05 9:48 PM Page 735

such as strings, and complex types such as Person. This technique has been around since ASP.NET 1.x and
continues to be a powerful and simple way to persist small pieces of data without utilizing server resources.

Listing 19-9: Hidden fields and ViewState

ASPX
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Hidden Fields and ViewState</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:TextBox ID=”TextBox1” Runat=”server”></asp:TextBox>
<asp:Button ID=”Button1” Runat=”server” Text=”Button” />
<asp:HiddenField ID=”HiddenField1” Runat=”server” />

</div>
</form>

</body>
</html>

VB
<Serializable> _
Public Class Person

Public firstName As String
Public lastName As String

End Class

Partial Class _Default
Inherits System.Web.UI.Page

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
Handles Me.Load

If Not Page.IsPostBack Then
HiddenField1.Value = “foo”
ViewState(“AnotherHiddenValue”) = “bar”

Dim p As New Person
p.firstName = “Scott”
p.lastName = “Hanselman”
ViewState(“HiddenPerson”) = p

End If

End Sub

End Class

C#
using System;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

736

Chapter 19

22_576100 ch19.qxd 10/6/05 9:48 PM Page 736

[Serializable]
public class Person
{

public string firstName;
public string lastName;

}
public partial class _Default : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{

if (!Page.IsPostBack)
{

HiddenField1.Value = “foo”;
ViewState[“AnotherHiddenValue”] = “bar”;

Person p = new Person();
p.firstName = “Scott”;
p.lastName = “Hanselman”;
ViewState[“HiddenPerson”] = p;

}
}

}

In Listing 19-9, a string is added to a HiddenField and to the ViewState collection. Then a Person
instance is added to the ViewState collection with another key. A fragment of the rendered HTML is
shown in the following code:

<form method=”post” action=”Default.aspx” id=”form1”>
<div>
<input type=”hidden” name=”__VIEWSTATE”
value=”/wEPDwULLTIxMjQ3OTEzODcPFgQeEkFub3RoZXJIaWRkZW5WYWx1ZQUDYmFyHgxIaWRkZW5QZXJz
b24ypwEAAQAAAP////8BAAAAAAAAAAwCAAAAP3ZkcTVqYzdxLCBWZXJzaW9uPTAuMC4wLjAsIEN1bHR1cmU
9bmV1dHJhbCwgUHVibGljS2V5VG9rZW49bnVsbAUBAAAAE0RlZmF1bHRfYXNweCtQZXJzb24CAAAACWZpcn
N0TmFtZQhsYXN0TmFtZQEBAgAAAAYDAAAABVNjb3R0BgQAAAAJSGFuc2VsbWFuC2RkI/CLauUviFo58BF8v
pSNsjY/lOI=” />
</div>

<div>
<input name=”TextBox1” type=”text” id=”TextBox1” />
<input type=”submit” name=”Button1” value=”Button” id=”Button1” />
<input type=”hidden” name=”HiddenField1” id=”HiddenField1” value=”foo” />

</div>
</form>

Notice that the ViewState value uses only valid ASCII characters to represent all its contents. Don’t let
the sheer mass of it fool you. It is big and it appears to be opaque. However, it’s just a hidden text box
and is automatically POSTed back to the server. The entire ViewState collection is available to you in
the Page_Load. The value of the HiddenField is stored as plain text.

Neither ViewState nor Hidden Fields are acceptable for any kind of sensitive data.

737

State Management

22_576100 ch19.qxd 10/6/05 9:48 PM Page 737

By default, the ViewState field is sent to the client with a salted hash to prevent tampering. Salting means
that the ViewState’s data has a unique value appended to it before it’s encoded. As Keith Brown says
“Salt is just one ingredient to a good stew.” The technique used is called HMAC, or hashed message
authentication code. As shown in the following code, you can use the <machineKey> element of the
web.config file to specify the validationKey, as well as the algorithm used to protect ViewState.
This section of the file and the decryptionKey attribute also affect how Forms Authentication cookies
are encrypted (see Chapter 18 for more on Forms Authentication).

<machineKey validationKey=”AutoGenerate,IsolateApps”
decryptionKey=”AutoGenerate,IsolateApps” validation=”SHA1” />

If you are running your application in a Web farm, <validationKey> and <decryptionKey> have to
be manually set to the same value. Otherwise, ViewState generated from one machine could be POSTed
back to a machine in the farm with a different key! The keys should be 128 characters long (the
maximum) and generated totally by random means. If you add IsolateApps to these values, ASP.NET
generates a unique encrypted key for each application using each application’s application ID.

I like to use Security Guru Keith Brown’s GenerateMachineKey tool, which you can find at http://
www.pluralsight.com/tools.aspx, to generate these keys randomly.

The validation attribute can be set to SHA1 or MD5 to provide tamper-proofing, but you can include
added protection by encrypting ViewState as well. In ASP.NET 1.1 you can only encrypt ViewState using
the value 3DES in the validation attribute, and ASP.NET 1.1 will use the key in the decryptionKey
attribute for encryption. However, ASP.NET 2.0 adds a new decryption attribute that is used exclusively
for specifying the encryption and decryption mechanisms for forms authentication tickets, and the
validation attribute is used exclusively for ViewState, which can now be encrypted using 3DES or
AES and the key stored in the validationKey attribute.

ASP.NET 2.0 also adds the ViewStateEncryptionMode attribute to the <pages> configuration element
with two possible values, Auto or Always. Setting the attribute to Always will force encryption of
ViewState, whereas setting it to Auto will encrypt ViewState only if a control requested encryption using
the new Page.RegisterRequiresViewStateEncryption method.

Added protection can be applied to ViewState by setting Page.ViewStateUserKey in the Page_Init to
a unique value such as the user’s ID. This must be set in Page_Init because the key should be provided
to ASP.NET before ViewState is loaded or generated. For example:

protected void Page_Init (Object sender, EventArgs e)
{

if (User.Identity.IsAuthenticated)
ViewStateUserKey = User.Identity.Name;

}

People often complain about the size of ViewState and turn if off completely
without realizing its benefits. ASP.NET 2.0 cuts the size of serialized ViewState
nearly in half. You can find a number of tips on using ViewState at http://
www.hanselman.com/blog/SearchView.aspx?q=viewstate. Also, Fritz Onion’s
free ViewStateDecoder tool from http://www.pluralsight.com is a great way to
gain insight into what’s stored in your pages’ ViewState.

738

Chapter 19

22_576100 ch19.qxd 10/6/05 9:48 PM Page 738

When optimizing their pages, ASP.NET programmers often disable ViewState for many controls when
that extra bit of state isn’t absolutely necessary. However, in ASP.NET 1.x, disabling ViewState was a
good way to break many third-party controls, as well as the included DataGrid’s sorting functionality.
ASP.NET 2.0 now includes a second, parallel ViewState-like collection called ControlState. This
dictionary can be used for round-tripping crucial information of limited size that should not be disabled
even when ViewState is. You should only store data in the ControlState collection that is absolutely
critical to the functioning of the control.

Recognize that ViewState, and also ControlState, although not secure, is a good place to store small bits
of a data and state that don’t quite belong in a cookie or the Session object. If the data that must be
stored is relatively small and local to that specific instance of your page, ViewState is a much better
solution than littering the Session object with lots of transient data.

Using HttpContext.Current.Items for Very
Short-Term Storage

The Items collection of HttpContext is one of ASP.NET’s best-kept secrets. It is an IDictionary
key/value collection of objects that’s shared across the life of a single HttpRequest. That’s a single
HttpRequest. Why would you want to store state for such a short period of time? Consider these
reasons:

❑ When you share content between IHttpModules and IHttpHandlers. If you write a custom
IHttpModule, you can store context about the user for use later in a Page.

❑ When you communicate between two instances of the same UserControl on the same page.
Imagine you are writing a UserControl that serves banner ads. Two instances of the same con-
trol could select their ads from HttpContext.Items to prevent showing duplicates on the
same page.

❑ When you store the results of expensive calls that might otherwise happen twice or more on a
page. If you have multiple UserControls that each show a piece of data from a large, more
expensive database retrieval, those UserControls can retrieve the necessary data from
HttpContext.Items. The database is hit only once.

❑ When individual units within a single HttpRequest need to act on the same or similar data.

The Items collection holds objects, just like many of the collections that have been used in this chapter.
You need to cast those objects back to their specific type when they are retrieved.

Within a Web-aware Database Access Layer, per-request caching can be quickly implemented with the
simple coding pattern shown in the following. Note that this sample code is a design pattern and there is
no MyData class; it’s for illustration.

VB
Public Shared Function GetExpensiveData(ID As Integer) As MyData

Dim key as string = “data” & ID.ToString()
Dim d as MyData = _

CType(HttpContext.Current.Items(key), MyData)
If d Is Nothing Then

739

State Management

22_576100 ch19.qxd 10/6/05 9:48 PM Page 739

d = New Data()
‘Go to the Database, do whatever...
HttpContext.Current.Items(key) = d

End If
Return d

End Function

C#
public static MyData GetExpensiveData(int ID)
{

string key = “data” + ID.ToString();
MyData d = (MyData) HttpContext.Current.Items[key];
if (d == null)
{

d = new Data();
//Go to the Database, do whatever...
HttpContext.Current.Items[key] = d;

}
return d;

}

This code checks the Items collection of the current HttpContext to see if the data is already there. If
not, the data is retrieved from the appropriate backing store and then stored in the Items collection.
Subsequent calls to this function within the same HttpRequest receive the already-cached object.

As with all optimizations and caching, premature optimization is the root of all evil. Measure your need
for caching, and measure your improvements. Don’t cache just because it feels right; cache because it
makes sense.

Summary
This chapter explored the many ways to manage State within your ASP.NET application. The Session
object and its providers offer many choices. Each has its own pros and cons for managing state
in the form of object references and serialized objects in a way that can be made largely transparent to
the application. Server-side Session state data can have its unique identifying key stored in a cookie or
the key can be carried along in the URL. Cookies can also be used independently to store small amounts
of data and persist it between visits, albeit in much smaller amounts and with simpler types. Hidden
fields, ViewState, ControlState, postbacks, and new cross-page postbacks offer new possibilities for
managing small bits of state within a multi-page user experience. HttpContext.Current.Items offers
a perfect place to hold transient state, living the life of only a single HttpRequest. QueryStrings are an
old standby for holding non-private state that is appropriate for navigation.

ASP.NET 2.0 has improved on ASP.NET 1.1’s state management options with a flexible Session State
Provider module, the addition of Control State for user controls, and cross-page postbacks for a more
mature programming model.

740

Chapter 19

22_576100 ch19.qxd 10/6/05 9:48 PM Page 740

Caching

Performance is a key requirement for any application or piece of code that you develop. The
browser helps with client-side caching of text and images, whereas the server-side caching you
choose to implement is vital for creating the best possible performance. Caching is the process of
storing frequently used data on the server to fulfill subsequent requests. You will discover that
grabbing objects from memory is much faster than re-creating the Web pages or items contained in
them from scratch each time they are requested. Caching increases your application’s perfor-
mance, scalability, and availability. The more you fine-tune your application’s caching approach,
the better it performs.

This chapter focuses on caching, including the new SQL invalidation caching capabilities that
ASP.NET 2.0 provides. This chapter takes a close look at this unique aspect of caching. When you
are using SQL cache invalidation, if the result set from SQL Server changes, the output cache can
be triggered to change. This ensures that the end user always sees the latest result set, and the
data presented is never stale. This is an outstanding new feature, so this chapter looks at SQL
cache invalidation in-depth. This feature was frequently requested by developers using ASP.NET
1.0/1.1, so the ASP.NET team worked hard to bring it to ASP.NET 2.0. After introducing SQL
cache invalidation, this chapter also covers other performance enhancements. It discusses the new
Post-Cache Substitution feature, which caches entire pages while dynamically replacing specified
bits of content. Last, the chapter covers a new capability that enables a developer to create custom
dependencies.

Caching
In ASP.NET 1.0/1.1 and now in ASP.NET 2.0, developers deal with caching in several ways. First,
you can cache an entire HTTP response (the entire Web page) using a mechanism called output
caching. Two other methods are partial page caching and data caching. The following sections
describe these methods.

23_576100 ch20.qxd 10/6/05 9:33 PM Page 741

Output Caching
Output caching is a way to keep the dynamically generated page content in the server’s memory for later
retrieval. After a cache is saved to memory, it can be used when any subsequent requests are made to the
server. You apply output caching by inserting an OutputCache page directive at the top of an .aspx
page, as follows:

<%@ OutputCache Duration=”60” VaryByParam=”None” %>

The Duration attribute defines the number of seconds a page is stored in memory. The VaryByParam
attribute determines which versions of the page output are actually cached. You can generate different
responses based on whether an HTTP-POST or HTTP-GET response is required. Other than the
attributes for the OutputCache directive, ASP.NET includes the VaryByHeader, VaryByCustom,
VaryByControl, and Location attributes. Additionally, the Shared attribute can affect UserControls,
as you’ll see later.

Caching in ASP.NET is implemented as an HttpModule that listens to all HttpRequests that
come through the ASP.NET worker process. The OutputCacheModule listens to the application’s
ResolveRequestCache and UpdateRequestCache events, handles cache hits and misses, and returns
the cached HTML, bypassing the Page Handler if need be.

VaryByParam
The VaryByParam attribute can specify which QueryString parameters cause a new version of the
page to be cached:

<%@ OutputCache Duration=”90” VaryByParam=”pageId;subPageId” %>

For example, if you have a page called navigation.aspx that includes navigation information in the
QueryString, such as pageId and subPageId, the OutputCache directive shown here caches the page
for every different value of pageId and subPageId. In this example, the number of pages is best
expressed with an equation:

cacheItems = (num of pageIds) * (num of subPageIds)

where cacheItems is the number of rendered HTML pages that would be stored in the cache. Pages are
cached only after they’re requested and pass through the OutputCacheModule. The maximum amount
of cache memory in this case is used only after every possible combination is visited at least once.
Although these are just potential maximums, creating an equation that represents your system’s potential
maximum is an important exercise.

If you want to cache a new version of the page based on any differences in the QueryString parame-
ters, use VaryByParam=”*”, as in the following code.

<%@ OutputCache Duration=”90” VaryByParam=”*” %>

It’s important to “do the math” when using the VaryBy attributes. For example, you could add
VaryByHeader and cache a different version of the page based on the browser’s reported User-Agent
HTTP Header.

<%@ OutputCache Duration=”90” VaryByParam=”*” VaryByHeader=”User-Agent”%>

742

Chapter 20

23_576100 ch20.qxd 10/6/05 9:33 PM Page 742

Literally dozens, if not hundreds, of User-Agent strings exist in the wild; this OutputCache directive
could multiply into thousands of different versions of this page being cached, depending on server load. In
this case, you should measure the cost of the caching against the cost of re-creating the page dynamically.

VaryByControl
VaryByControl can be a very easy way to get some serious performance gains from complicated
UserControls that render a lot of HTML that doesn’t change often. For example, imagine a UserControl
that renders a ComboBox showing the names of all the countries in the world. Perhaps those names are
retrieved from a database and rendered in the combo box as follows:

<%@ OutputCache Duration=”2592000” VaryByControl=”comboBoxOfCountries” %>

Certainly the names of the world’s countries don’t change that often, so the Duration might be set to a
month (in seconds).

VaryByCustom
Although the VaryBy attributes offer a great deal of power, sometimes you need more flexibility. If you
want to take the OutputCache directive from the previous navigation example and cache by a value
stored in a cookie, you can add VaryByCustom. The value of VaryByCustom is passed into the
GetVaryByCustomString method that can be added to the Global.asax.cs. This method is called
every time the page is requested, and it is the function’s responsibility to return a value.

A different version of the page is cached for each unique value returned. For example, say your users have
a cookie called Language that has three potential values: en, es, and fr. You want to allow users to specify
their preferred language, regardless of their language reported by their browser. Language also has a
fourth potential value — it may not exist! Therefore, the OutputCache directive in the following example
caches many versions of the page, as described in this equation:

cacheItems = (num of pageIds) * (num of subPageIds) * (4 possible Language values)

To summarize, suppose there were ten potential values for pageId, five potential subPageId values for
each pageId, and four possible values for Language. That adds up to 200 different potential cached
versions of this single navigation page. This math isn’t meant to scare you away from caching, but you
should realize that with great (caching) power comes great responsibility.

The following OutputCache directive includes pageId and subPageId as values for VaryByParam, and
VaryByCustom passes in the value of “prefs” to the GetVaryByCustomString callback function in
Listing 20-1:

<%@ OutputCache Duration=”90” VaryByParam=”pageId;subPageId” VaryByCustom=”prefs”%>

Always cache what will give you the biggest performance gain, and prove that
assumption with testing. Don’t “cache by coincidence” using attributes like
VaryByParam=”*”. In order to see the most dramatic effects, cache the least possible
amount of data.

743

Caching

23_576100 ch20.qxd 10/6/05 9:33 PM Page 743

Caching in ASP.NET is a trade-off between CPU and memory: How hard is it to make this page, versus
whether you can afford to hold 200 versions of it. If it’s only 5KB of HTML, a potential megabyte of
memory could pay off handsomely versus thousands and thousands of database accesses. Every page
request served from the cache saves you a trip to the database. Efficient use of caching can translate into
significant cost savings if fewer database servers and licenses are needed.

The code in Listing 20-1 returns the value stored in the Language cookie. The arg parameter to the
GetVaryByCustomString method contains the string “prefs”, as specified in VaryByCustom.

Listing 20-1: GetVaryByCustomString callback method in the HttpApplication

VB
Overrides Function GetVaryByCustomString(ByVal context As HttpContext, _

ByVal arg As String) As String
If arg.ToLower() = “prefs” Then

Dim cookie As HttpCookie = context.Request.Cookies(“Language”)
If cookie IsNot Nothing Then

Return cookie.Value
End If

End If
Return MyBase.GetVaryByCustomString(context, arg)

End Function

C#
public override string GetVaryByCustomString(HttpContext context, string arg)
{

if(arg.ToLower() == “prefs “)
{

HttpCookie cookie = context.Request.Cookies[“Language”];
if(cookie != null)
{

return cookie.Value;
}

}
return base.GetVaryByCustomString(context, arg);

}

The GetVaryByCustomString method in Listing 20-1 is used by the HttpApplication and will be
called for every page that uses the VaryByCustom OutputCache directive. If your application has many
pages that use VaryByCustom, you can create a switch statement and a series of helper functions to
retrieve whatever information you want from the user’s HttpContext and to generate unique values for
cache keys.

Partial Page (UserControl) Caching
Similar to output caching, partial page caching enables you to cache only specific blocks of a Web page.
You can, for example, cache only the center of the page. Partial page caching is achieved with the
caching of user controls. You can build your ASP.NET pages utilizing numerous user controls and then
apply output caching to the user controls you select. This, in essence, caches only the parts of the page
that you want, leaving other parts of the page outside the reach of caching. This is a nice feature and, if
done correctly, it can lead to pages that perform better.

744

Chapter 20

23_576100 ch20.qxd 10/6/05 9:33 PM Page 744

Typically, UserControls are placed on multiple pages to maximize reuse. However, when these
UserControls (ASCX files) are cached with the @OutputCache directive’s default attributes, they are
cached on a per-page basis. That means that even if a UserControl outputs the identical HTML when
placed on pagea.aspx as it does when placed on pageb.aspx, its output is cached twice. By enabling
the Shared=”true” attribute, the UserControl’s output can be shared among multiple pages and on
sites that make heavy use of shared UserControls:

<%@ OutputCache Duration=”300” VaryByParam=”*” Shared=”true” %>

The resulting memory savings can be surprisingly large. As with all optimizations, test both for correctness
of output as well as memory usage.

Any code in the ASPX page that requires a UserControl to be constantly available will fail if that control is
reconstituted from the OutputCache. So be sure to always check for this type of caching before using any
control. The following code fragment illustrates the kind of logic required when accessing a potentially
cached UserControl:

VB
Protected Sub Page_Load()

If Not PossiblyCachedUserControl is Nothing Then
‘ Place code manipulating PossiblyCachedUserControl here.

End If
End Sub

C#
protected void Page_Load()
{

if (PossiblyCachedUserControl != null)
{

// Place code manipulating PossiblyCachedUserControl here.
}

}

Post-Cache Substitution
Output caching has typically been an all-or-nothing proposition. The output of the entire page is cached
for later use. However, often you want the benefits of output caching, but you also want to keep a small
bit of dynamic content on the page. It would be a shame to cache a page but be unable to output a
dynamic “Welcome, Scott!”

ASP.NET 2.0 adds post-cache substitution as an opportunity to affect the about-to-be-rendered page. A
control is added to the page that acts as a placeholder. It calls a method that you specify after the cached
content has been returned. The method returns any string output you like, but you should be careful not
to abuse the feature. If your post-cache substitution code calls an expensive stored procedure, you could
easily lose any performance benefits you might have gained with a little more thought.

If you have an ASCX UserControl using the OutputCache directive, remember that
the UserControl exists only for the first request. If a UserControl has its HTML
retrieved from the OutputCache, the control doesn’t really exist on the ASPX page.
Instead, a PartialCachingControl is created that acts as a proxy or ghost of that control.

745

Caching

23_576100 ch20.qxd 10/6/05 9:33 PM Page 745

Post-cache substitution is the easiest new feature to use. It gives you two ways to control the substitution:

❑ Call the new Response.WriteSubstitution method, passing it a reference to the desired
substitution method callback.

❑ Add a <asp:Substitution> control to the page at the desired location, and set its
methodName attribute to the name of the callback method.

To try this feature, create a new Web site with a Default.aspx. Drag a label control and a substitution
control to the design surface. The code in Listing 20-2 updates the label to display the current time, but
the page is cached immediately and future requests return that cached value. Set the methodName
property in the substitution control to GetUpdatedTime, meaning the name of the static method that is
called after the page is retrieved from the cache.

The callback function must be static because the page that is rendered doesn’t really exist at this point
(an instance of it doesn’t). Because you don’t have a page instance to work with, this method is limited
in its scope. However, the current HttpContext is passed into the method, so you have access to the
Session, Request, and Response. The string returned from this method is injected into the Response
in place of the substitution control.

Listing 20-2: Using the substitution control

ASPX
<%@ Page Language=”C#” CodeFile=”Default.aspx.cs” Inherits=”_Default” %>
<%@ OutputCache Duration=”30” VaryByParam=”None” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head>

<title>Substitution Control</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:Label ID=”Label1” Runat=”server” Text=”Label”></asp:Label>

<asp:Substitution ID=”Substitution1” Runat=”server”

methodName=”GetUpdatedTime” />

</div>
</form>

</body>
</html>

VB
Partial Class _Default

Inherits System.Web.UI.Page
Public Shared Function GetUpdatedTime(ByVal context As HttpContext) As String

Return DateTime.Now.ToLongTimeString() + “ by “ + _
context.User.Identity.Name

End Function

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
Handles Me.Load

Label1.Text = DateTime.Now.ToLongTimeString()

746

Chapter 20

23_576100 ch20.qxd 10/6/05 9:33 PM Page 746

End Sub
End Class

C#
public partial class _Default : System.Web.UI.Page
{

public static string GetUpdatedTime(HttpContext context)
{

return DateTime.Now.ToLongTimeString() + “ by “ +
context.User.Identity.Name;

}
protected void Page_Load(object sender, EventArgs e)
{

Label1.Text = DateTime.Now.ToLongTimeString();
}

}

The ASPX page in Listing 20-2 has a label and a Post-Cache Substitution Control. The control acts a
placeholder in the spot where you want fresh content injected after the page is returned from the
cache. The very first time the page is visited only the label is updated because no cached content is
returned. The second time the page is visited, however, the entire page is retrieved from the cache —
the page handler isn’t called and, consequently, none of the page-level events fire. However, the
GetUpdatedTime method is called after the cache module completes its work. Figure 20-1 shows the
result if the first line is cached and the second line is created dynamically.

Figure 20-1

HttpCachePolicy and Client-Side Caching
Caching is more than just holding data in memory on the server-side. A good caching strategy should
also include the browser and its client-side caches, controlled by the Cache-Control HTTP Header. HTTP
Headers are hints and directives to the browser on how to handle a request.

747

Caching

23_576100 ch20.qxd 10/6/05 9:33 PM Page 747

Some people recommend using HTML <META> tags to control caching behavior. Be aware that neither
the browsers nor routers along the way are obligated to pay attention to these directives. You might have
more success using HTTP Headers to control caching.

Because HTTP Headers travel outside the body of the HTTP message, you have several options for
viewing them. You can enable tracing (see Chapter 21) and view the Headers from the tracing output.
We prefer to use a tool like IEHttpHeaders that shows the Headers in an IE Explorer Bar.

Create a Default.aspx that writes the current time in its Load event. Now, view the default HTTP
Headers used by ASP.NET, as in Figure 20-2. Note that one header, Cache-Control: private, indicates
to routers and other intermediates that this response is intended only for you. Otherwise, no headers
refer to caching.

Figure 20-2

The HttpCachePolicy class gives you an object model for managing client-side state that insulates you
from adding HTTP Headers yourself. Add the lines from Listing 20-3 to your Page_Load to influence
the Response’s Headers and the caching behavior of the browser. This listing tells the browser not to
cache this Response in memory nor store it on disk. It also directs the Response to expire immediately.

Get the IEHttpHeaders Explorer Bar for free from Jonas Blunck at www.blunck.info.
For background information on HTTP headers and controlling caching, see the
document RFC 2616: Hypertext Transfer Protocol - HTTP/1.1, available on the World
Wide Web Consortium’s site at www.w3c.org.

748

Chapter 20

23_576100 ch20.qxd 10/6/05 9:33 PM Page 748

Listing 20-3: Using HTTP Headers to force the browser not to cache on the client-side

VB
Protected Sub Page_Load(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles Me.Load

Response.Cache.SetCacheability(HttpCacheability.NoCache)
Response.Cache.SetNoStore()
Response.Cache.SetExpires(DateTime.MinValue)

Response.Write(DateTime.Now.ToLongTimeString())
End Sub

C#
protected void Page_Load(object sender, EventArgs e)
{

Response.Cache.SetCacheability(HttpCacheability.NoCache);
Response.Cache.SetNoStore();
Response.Cache.SetExpires(DateTime.MinValue);

Response.Write(DateTime.Now.ToLongTimeString());
}

Compare the results of running Listing 20-3 in the before Figure 20-2 and then in the after Figure 20-3.
Two new HTTP Headers have been injected directing the client’s browser and the Cache-Control
Header has changed to no-cache, no-store. In this figure, the Request HTTP Headers are in the top
grouping whereas the Response Headers are in the bottom group. The Output Caching HttpModule will
respect these HTTP Headers, so sending no-cache to the browser also advises the HttpModule to
record the response as a cache miss.

Figure 20-3
749

Caching

23_576100 ch20.qxd 10/6/05 9:33 PM Page 749

If your ASP.NET application contains a considerable number of relatively static or non–time-sensitive
pages, consider what your client-side caching strategy is. It’s better to take advantage of the disk space
and the memory of your users’ powerful client machines rather than burdening your server’s limited
resources.

Caching Programmatically
Output Caching is a very declarative business. UserControls and Pages can be marked up with
OutputCache directives and dramatically change the behavior of your site. Declarative caching
controls the life cycle of HTML markup, but ASP.NET also includes deep support for caching objects.

Data Caching Using the Cache Object
Another method of caching is to use the Cache object to start caching specific data items for later use on
a particular page or group of pages. The Cache object enables you to store everything from simple
name/value pairs to more complex objects like datasets and entire .aspx pages.

You use the Cache object in the following fashion:

VB
Cache(“WhatINeedToStore”) = myDataSet

C#
Cache[“WhatINeedToStore”] = myDataSet;

After an item is in the cache, you can retrieve it later as shown here:

VB
Dim ds As New DataSet
ds = CType(Cache(“WhatINeedToStore”), DataSet)

C#
DataSet ds = new DataSet();
ds = (DataSet)Cache[“WhatINeedToStore”];

Using the Cache object is an outstanding way to cache your pages and is, in fact, what the OutputCache
directive uses under the covers. This small fragment shows the simplest use of the Cache object. Simply
put an object reference in it. However, the real power of the Cache object comes with its capability to
invalidate itself. That’s where cache dependencies come in.

Cache Dependencies
Using the Cache object, you can store and also invalidate items in the cache based on several different
dependencies. In ASP.NET 1.0/1.1, the only possible dependencies were the following:

❑ File-based dependencies

❑ Key-based dependencies

❑ Time-based dependencies

750

Chapter 20

23_576100 ch20.qxd 10/6/05 9:33 PM Page 750

When inserting items into the cache using the Cache object, you set the dependencies with the Insert
method, as shown in the following example:

Cache.Insert(“DSN”, connectionString, _
New CacheDependency(Server.MapPath(“myconfig.xml”)))

By using a dependency when the item being referenced changes, you remove the cache for that item from
memory.

Cache Dependencies have been improved in ASP.NET 2.0 with the addition of the
AggregateCacheDependency class, the newly extendable CacheDependency class, and the
capability to create your own custom CacheDependency classes. These three things are discussed
in the following sections.

The AggregateCacheDependency Class
The AggregateCacheDependency class is like the CacheDependency class but it allows you to create
an association connecting an item in the cache with many disparate dependencies of different types.
For example, if you have a cached data item that is built from XML from a file and you also have
information from a SQL database table, you can create an AggregateCacheDependency with inserted
CacheDependency objects for each subdependency. To do this, you call Cache.Insert and add the
AggregateCacheDependency instance. For example:

Dim agg as new AggregateCacheDependency()
agg.Insert(New CacheDependency(Server.MapPath(“myconfig.xml”)))
agg.Insert(New SqlCacheDependency(“Northwind”, “Customers”))
Cache.Insert(“DSN”, connectionString, agg)

Note that AggregateCacheDependency is meant to be used with different kinds of CacheDependency
classes. If you simply want to associate one cached item with multiple files, use an overload of
CacheDependency, as in this example:

VB
Cache.Insert(“DSN”, yourObject, _

New System.Web.Caching.CacheDependency(_
New String() _

{ _
Server.MapPath(“foo.xml”), _
Server.MapPath(“bar.xml”) _

} _
) _

)

C#
Cache.Insert(“DSN”, yourObject,

new System.Web.Caching.CacheDependency(
new string[]
{

Server.MapPath(“foo.xml”),
Server.MapPath(“bar.xml”)

}
)

);

751

Caching

23_576100 ch20.qxd 10/6/05 9:33 PM Page 751

The AggregateCacheDependency class is made possible by the new support for extending the
previously sealed CacheDependency class. You can use this innovation to create your own custom
CacheDependency.

The Unsealed CacheDependency Class
A big change in caching in ASP.NET 2.0 is that the CacheDependency class has been refactored and
unsealed (or made overrideable). You can now create classes that inherit from the CacheDependency
class and create more elaborate dependencies that are not limited to the Time, Key, or File
dependencies of the past.

When you create your own cache dependencies, you have the option to add procedures for such things
as Web services data, only-at-midnight dependencies, or textual string changes within a file. The
dependencies you create are limited only by your imagination. The unsealing of the CacheDependency
class makes this possible.

Because of the unsealing of the CacheDependency class, the ASP.NET team has built a new SQL Server
cache dependency —SqlCacheDependency. A SQL cache dependency was the caching feature most
requested by ASP.NET 1.0/1.1 developers. When a cache becomes invalid because a table changes
within the underlying SQL Server, you now know it immediately.

Because CacheDependency is now unsealed, you can derive your own custom Cache Dependencies;
that’s what you do in the next section.

Creating Custom Cache Dependencies
ASP.NET 2.0 ships with time-based, file-based, and now SQL-based CacheDependency support. You
might ask yourself why you would write your own CacheDependency. Here are a few ideas:

❑ Invalidate the cache from the results of an Active Directory lookup query

❑ Invalidate the cache upon arrival of an MSMQ or MQSeries message

❑ Create an Oracle-specific CacheDependency

❑ Invalidate the cache using data reported from an XML Web service

❑ Update the cache with new data from a Stock Price service

The new version of the CacheDependency class, while introducing no breaking changes to existing
ASP.NET 1.1 code, exposes three new members and a constructor overload that developers can use:

❑ GetUniqueID: When overridden, enables you to return a unique identifier for a custom cache
dependency to the caller.

❑ DependencyDispose: Used for disposing of resources used by the custom cache dependency
class. When you create a custom cache dependency, you are required to implement this method.

❑ NotifyDependencyChanged: Called to cause expiration of the cache item dependent on the
custom cache dependency instance.

❑ New Public Constructor

Listing 20-4 creates a new RssCacheDependency that invalidates a cache key if an RSS (Rich Site
Summary) XML Document has changed.

752

Chapter 20

23_576100 ch20.qxd 10/6/05 9:33 PM Page 752

Listing 20-4: Creating an RssCacheDependency class

VB
Imports System
Imports System.Web
Imports System.Threading
Imports System.Web.Caching
Imports System.Xml

Public Class RssCacheDependency
Inherits CacheDependency

Shared backgroundThread As Timer
Dim howOften As Integer = 900
Dim RSS As XmlDocument
Dim RSSUrl As String

Public Sub New(ByVal URL As String, ByVal polling As Integer)
howOften = polling
RSSUrl = URL
RSS = RetrieveRSS(RSSUrl)

If backgroundThread Is Nothing Then
backgroundThread = New Timer(_

New TimerCallback(AddressOf CheckDependencyCallback), _
Me, (howOften * 1000), (howOften * 1000))

End If
End Sub

Function RetrieveRSS(ByVal URL As String) As XmlDocument
Dim retVal As New XmlDocument
retVal.Load(URL)
Return retVal

End Function

Public Sub CheckDependencyCallback(ByVal Sender As Object)
Dim CacheDepends As RssCacheDependency = _

CType(Sender, RssCacheDependency)
Dim NewRSS As XmlDocument = RetrieveRSS(RSSUrl)
If Not NewRSS.OuterXml = RSS.OuterXml Then

CacheDepends.NotifyDependencyChanged(CacheDepends, EventArgs.Empty)
End If
End Sub

Protected Overrides Sub DependencyDispose()
backgroundThread = Nothing
MyBase.DependencyDispose()

End Sub

Public ReadOnly Property Document() As XmlDocument
Get

Return RSS
End Get

End Property
End Class

(continued)

753

Caching

23_576100 ch20.qxd 10/6/05 9:33 PM Page 753

Listing 20-4: (continued)

C#
using System;
using System;
using System.Web;
using System.Threading;
using System.Web.Caching;
using System.Xml;

public class RssCacheDependency : CacheDependency
{

static Timer backgroundThread;
int howOften = 900;
XmlDocument RSS;
string RSSUrl;

public RssCacheDependency(string URL, int polling)
{

howOften = polling;
RSSUrl = URL;
RSS = RetrieveRSS(RSSUrl);

if (backgroundThread == null)
{

backgroundThread = new Timer(
new TimerCallback(CheckDependencyCallback),
this, (howOften * 1000), (howOften * 1000));

}
}

public XmlDocument RetrieveRSS(string URL)
{

XmlDocument retVal = new XmlDocument();
retVal.Load(URL);
return retVal;

}

public void CheckDependencyCallback(object sender)
{

RssCacheDependency CacheDepends = sender as RssCacheDependency;
XmlDocument NewRSS = RetrieveRSS(RSSUrl);
if (NewRSS.OuterXml != RSS.OuterXml)
{

CacheDepends.NotifyDependencyChanged(CacheDepends, EventArgs.Empty);
}

}

override protected void DependencyDispose()
{

backgroundThread = null;
base.DependencyDispose();

}

public XmlDocument Document

754

Chapter 20

23_576100 ch20.qxd 10/6/05 9:33 PM Page 754

{
get
{

return RSS;
}

}
}

Create a new Web site and put the RssCacheDependency class in a /Code folder. Create a default.aspx
and drag two text boxes, a label, and a button onto the HTML Design view. Execute the Web site and enter
an RSS URL for a blog (like mine at www.hanselman.com/blog/SyndicationService.asmx/GetRss),
and click the button. The program checks the Cache object using the URL itself as a key. If the
XmlDocument containing RSS doesn’t exist in the cache, a new RssCacheDependency is created
with a 10-minute (600-second) timeout. The XmlDocument is then cached, and all future requests to this
page retrieve the RSS XmlDocument from the cache.

Next, your new RssCacheDependency class from Listing 20-4 is illustrated in the following fragment.
The RssCacheDependency is created and passed into the call to Cache.Insert. The Cache object
handles the lifetime and calling of the methods of the RssCacheDependency instance:

VB
<%@ Page Language=”VB” ValidateRequest=”false” %>

<html>
<head runat=”server”>

<title>Custom Cache Dependency Example</title>
</head>
<body>

<form runat=”server”> RSS URL:
<asp:TextBox ID=”TextBox1” Runat=”server”/>
<asp:Button ID=”Button1” onclick=”Button1_Click” Runat=”server”
Text=”Get RSS” />
Cached:<asp:Label ID=”Label2” Runat=”server”></asp:Label>

RSS:

<asp:TextBox ID=”TextBox2” Runat=”server” TextMode=”MultiLine”
Width=”800px” Height=”300px”></asp:TextBox>

</form>
</body>
</html>

<script runat=”server”>
Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)

Dim RSSUrl As String = TextBox1.Text
Label2.Text = “Loaded From Cache”
If Cache(TextBox1.Text) Is Nothing Then

Label2.Text = “Loaded Fresh”
Dim itDepends As New RssCacheDependency(RSSUrl, 600)
Cache.Insert(RSSUrl, itDepends.Document, itDepends)

End If
TextBox2.Text = CType(Cache(TextBox1.Text), _

System.Xml.XmlDocument).OuterXml
End Sub

</script>

(continued)

755

Caching

23_576100 ch20.qxd 10/6/05 9:33 PM Page 755

Listing 20-4: (continued)

C#
<%@ Page Language=”C#” ValidateRequest=”false” %>
<script runat=”server”>

void Button1_Click(object sender, System.EventArgs e)
{

string RSSUrl = TextBox1.Text;
Label2.Text = “Loaded From Cache”;
if (Cache[TextBox1.Text] == null)
{

Label2.Text = “Loaded Fresh”;
RssCacheDependency itDepends = new RssCacheDependency(RSSUrl, 600);
Cache.Insert(RSSUrl, itDepends.Document, itDepends);

}
TextBox2.Text = ((System.Xml.XmlDocument)Cache[TextBox1.Text]).OuterXml;

}
</script>

The RssCacheDependency class creates a Timer background thread to poll for changes in the RSS feed.
If it detects changes, the RssCacheDependency notifies the caching subsystem with the
NotifyDependencyChanged event. The cached value with that key clears, and the next page view
forces a reload of the requested RSS from the specified feed.

Using the SQL Server Cache Dependency
To utilize the new SQL Server Cache Dependency feature in ASP.NET 2.0, you must perform a one-time
setup of your SQL Server database. To set up your SQL Server, use the aspnet_regsql.exe tool
found at C:\Windows\Microsoft.NET\Framework\v2.0xxxxx\. This tool makes the necessary
modifications to SQL Server so that you can start working with the new SQL cache invalidation features.

Follow these steps when using the new SQL Server Cache Dependency features:

1. Enable your database for SQL Cache Dependency support.

2. Enable a table or tables for SQL Cache Dependency support.

3. Include SQL connection string details in the ASP.NET application’s web.config.

4. Utilize the SQL Cache Dependency features in one of the following ways:

❑ Programmatically create a SqlCacheDependency object in code.

❑ Add a SqlDependency attribute to an OutputCache directive.

❑ Add a SqlCacheDependency instance to the Response object via
Response.AddCacheDependency.

This section explains all the steps required and the operations available to you.

756

Chapter 20

23_576100 ch20.qxd 10/6/05 9:33 PM Page 756

To start, you need to get at the aspnet_regsql.exe tool. Open up the Visual Studio Command Prompt
by choosing Start ➪ All Programs ➪ Microsoft Visual Studio 2005 ➪ Visual Studio Tools ➪ Visual Studio
Command Prompt from the Windows Start menu. After the prompt launches, type this command:

aspnet_regsql.exe -?

This code outputs the help command list for this command-line tool, as shown in the following:

-- SQL CACHE DEPENDENCY OPTIONS --

-d <database> Database name for use with SQL cache dependency. The
database can optionally be specified using the
connection string with the -c option instead.
(Required)

-ed Enable a database for SQL cache dependency.

-dd Disable a database for SQL cache dependency.

-et Enable a table for SQL cache dependency. Requires -t
option.

-dt Disable a table for SQL cache dependency. Requires -t
option.

-t <table> Name of the table to enable or disable for SQL cache
dependency. Requires -et or -dt option.

-lt List all tables enabled for SQL cache dependency.

The following sections show you how to use some of these commands.

Enabling Databases for SQL Server Cache Invalidation
To use SQL Server cache invalidation with SQL Server 7 or 2000, begin with two steps. The first step
enables the appropriate database. In the second step, you enable the tables that you want to work with.
You must perform both steps for this process to work. If you want to enable your databases for SQL
cache invalidation and you are working on the computer where the SQL Server instance is located, you
can use the following construct. If your SQL instance is on another computer, change localhost in this
example to the name of the remote machine.

aspnet_regsql.exe -S localhost -U sa -P password -d Northwind –ed

This produces something similar to the following output:

Enabling the database for SQL cache dependency.
..
Finished.

From this command prompt, you can see that we simply enabled the Northwind database (the sample
database that comes with SQL Server) for SQL cache invalidation. The name of the SQL machine was
passed in with -S, the username with -U, the database with -d, and most importantly, the command to
enable SQL cache invalidation was -ed.

757

Caching

23_576100 ch20.qxd 10/6/05 9:33 PM Page 757

Now that you have enabled the database for SQL cache invalidation, you can enable one or more tables
contained within the Northwind database.

Enabling Tables for SQL Server Cache Invalidation
You enable or more tables by using the following command:

aspnet_regsql.exe -S localhost -U sa -P password -d Northwind -t Customers –et

aspnet_regsql.exe -S localhost -U sa -P password -d Northwind -t Products –et

You can see that this command is not much different from the one for enabling the database, except for
the extra -t Customers entry and the use of -et to enable the table rather than -ed to enable a
database. Customers is the name of the table that is enabled in this case.

Go ahead and enable both the Customers and Product tables. You run the command once per table.
After a table is successfully enabled, you receive the following response:

Enabling the table for SQL cache dependency.
.
Finished.

After the table is enabled, you can begin using the SQL cache invalidation features. However, before you
do, the following section shows you what happens to SQL Server when you enable these features.

Looking at SQL Server
Now that the Northwind database and the Customers and Products tables have all been enabled
for SQL cache invalidation, look at what has happened in SQL Server. If you open up the SQL
Server Enterprise Manager, you see a new table contained within the Northwind database —
AspNet_SqlCacheTablesForChangeNotification (whew, that’s a long one!). Your screen should
look like Figure 20-4.

At the top of the list of tables in the right-hand pane, you see the AspNet_
SqlCacheTablesForChangeNotification table. This is the table that ASP.NET uses to learn
which tables are being monitored for change notification and also to make note of any changes
to the tables being monitored. The table is actually quite simple when you look at the details,
as illustrated in Figure 20-5.

In this figure, you can see three columns in this new table. The first is the tableName column. This
column simply shows a String reference to the names of the tables contained in the same database. Any
table named here is enabled for SQL cache invalidation.

The second column, notificationCreated, shows the date and time when the table was enabled for
SQL cache invalidation. The final column, changeId, is used to communicate to ASP.NET any changes
to the included tables. ASP.NET monitors this column for changes and, depending on the value, either
uses what is stored in memory or makes a new database query.

758

Chapter 20

23_576100 ch20.qxd 10/6/05 9:33 PM Page 758

Figure 20-4

Figure 20-5

Looking at the Tables That Are Enabled
Using the aspnet_regsql.exe tool, you can see (by using a simple command) which tables are enabled
in a particular database. If you are working through the preceding examples, you see that so far you
have enabled the Customers and Products tables of the Northwind database. To get a list of the tables
that are enabled, use something similar to the following command:

aspnet_regsql.exe -S localhost -U sa -P password -d Northwind -lt

The -lt command produces a simple list of tables enabled for SQL cache invalidation. Inputting this
command produces the following results:

Listing all tables enabled for SQL cache dependency:
Customers
Products

759

Caching

23_576100 ch20.qxd 10/6/05 9:33 PM Page 759

Disabling a Table for SQL Server Cache Invalidation
Now that you know how to enable your SQL Server database for SQL Server cache invalidation, take a
look at how you remove the capability for a specific table to be monitored for this process. To remove a
table from the SQL Server cache invalidation process, use the -dt command.

In the preceding example, using the -lt command showed that you have both the Customers and
Products tables enabled. Next, you remove the Products table from the process using the following
command:

aspnet_regsql.exe -S localhost -U sa -P password -d Northwind -t Products –dt

You can see that all you do is specify the name of the table using the -t command followed by a -dt
command (disable table). The command line for disabling table caching will again list the tables that are
enabled for SQL Server cache invalidation; this time, the Products table will is not listed — instead,
Customers, the only enabled table, is listed.

Disabling a Database for SQL Server Cache Invalidation
Not only can you pick and choose the tables that you want to remove from the process, but you can also
disable the entire database for SQL Server cache invalidation. In order to disable an entire database, you
use the -dd command (disable database).

Note that disabling an entire database for SQL Server cache invalidation also means that every single
table contained within this database is also disabled.

This example shows the Northwind database being disabled on my computer:

C:\>aspnet_regsql -S localhost -U sa -P wrox -d Northwind -dd
Disabling the database for SQL cache dependency.
..
Finished.

To ensure that the table is no longer enabled for SQL Server cache invalidation, we attempted to list the
tables that were enabled for cache invalidation using the -lt command. We received the following error:

C:\ >aspnet_regsql -S localhost -U sa -P wrox -d Northwind -lt
An error has happened. Details of the exception:
The database is not enabled for SQL cache notification. To enable a database for
SQL cache notification, please use SQLCacheDependencyAdmin.EnableNotifications
method, or the command line tool aspnet_regsql.exe.

If you now open the Northwind database in the SQL Server Enterprise Manager, you can see that the
AspNet_SqlCacheTablesForChangeNotification table has been removed for the database.

SQL Server 2005 Cache Invalidation
As you’ve seen, standard SQL Server 2000 cache invalidation uses a table-level mechanism using a
polling model every few seconds to monitor what tables have changed.

760

Chapter 20

23_576100 ch20.qxd 10/6/05 9:33 PM Page 760

SQL Server 2005 supports a different, more granular series of notification that doesn’t require polling.
Direct notification of changes are a built-in feature of SQL Server 2005 and are presented via the
ADO.NET SqlCommand. For example:

Protected Sub Page_Load(ByVal sender as Object, ByVal e as System.EventArgs)

Response.Write(“Page created: “ + DateTime.Now.ToLongTimeString())
Dim connStr As String =

ConfigurationManager.ConnectionStrings(“AppConnectionString1”).ConnectionString
SqlDependency.Start(connStr)
Dim connection As New SqlConnection(connStr)
Dim command as New SqlCommand(“Select * FROM Customers”, connection)
Dim depends as New SqlCacheDependency(command)

Connection.Open
GridView1.DataSource = command.ExecuteReader()
GridView1.DataBind()

Connection.Close

‘Now, do what you want with the sqlDependency object like:
Response.AddCacheDependency(depends)

End Sub

SQL Server 2005 supports both programmatic and declarative techniques when caching. Use the string
“CommandNotification” in the OutputCache directive to enable notification-based caching for a page as
in this example. You can specify SQL caching options programmatically or declaratively, but not both.
Note that you must first call System.Data.SqlClient.SqlDependency.Start, passing in the connec-
tion string, to start the SQL notification engine.

<%@ OutputCache Duration=”3600” VaryByParam=”none”
SqlDependency=”CommandNotification”%>

Or, if you’re using a SqlDataSource control from within your ASP.NET page:

<asp:SqlDataSource EnableCaching=”true” SqlCacheDependency=”CommandNotification”
CacheDuration=”2600” />

As data changes within SQL Server 2005, SQL and ADO.NET automatically invalidate data cached on
the web server.

Configuring Your ASP.NET Application
After you enable a database for SQL Server cache invalidation and also enable a couple of tables within
this database, the next step is to configure your application for SQL Server cache invalidation.

To configure your application to work with SQL Server cache invalidation, the first step is to make some
changes to the web.config file. In the web.config file, specify that you want to work with the
Northwind database, and you want ASP.NET connected to it.

761

Caching

23_576100 ch20.qxd 10/6/05 9:33 PM Page 761

Listing 20-5 shows an example of how you should change your web.config file to work with SQL Server
cache invalidation. The pollTime attribute isn’t needed if you’re using SQL Server 2005 notification.

Listing 20-5: Configuring the web.config file

<configuration xmlns=”http://schemas.microsoft.com/.NetConfiguration/v2.0”>

<connectionStrings>
<add name=”AppConnectionString1” connectionString=”Data Source=localhost;

User ID=sa;Password=wrox;Database=Northwind;Persist Security Info=False”
providerName=”System.Data.SqlClient” />

</connectionStrings>

<system.web>

<caching>
<sqlCacheDependency enabled=”true”>

<databases>
<add name=”Northwind” connectionStringName=”AppConnectionString1”
pollTime=”500” />

</databases>
</sqlCacheDependency>

</caching>

</system.web>
</configuration>

From this listing, you can see that the first thing established is the connection string to the Northwind
database using the <connectionStrings> element in the web.config file. Note of the name of the
connection string because it is utilized later in the configuration settings for SQL Server cache invalidation.

The SQL Server cache invalidation is configured using the new <caching> element. This element must
be nested within the <system.web> elements. Because you are working with a SQL Server cache
dependency, you must use a <sqlCacheDependency> child node. You enable the entire process by
using the enabled=”true” attribute. After this attribute is enabled, you work with the <databases>
section. You use the <add> element, nested within the <databases> nodes, to reference the Northwind
database. The following table explains all the attributes of the <add> element.

Attribute Description

Name The name attribute provides an identifier to the SQL Server
database.

connectionStringName The connectionStringName attribute specifies the name of
the connection. Because the connection string in the
preceding example is called AppConnectionString1,
you use this value for the connectionStringName
attribute as well.

pollTime The pollTime attribute specifies the time interval from one
SQL Server poll to the next. The default is 5 seconds or 500
milliseconds (as shown in the example). This is not needed
for SQL Server 2005 notification.

762

Chapter 20

23_576100 ch20.qxd 10/6/05 9:33 PM Page 762

Now that the web.config file is set up correctly, you can start using SQL Server cache invalidation on
your pages. ASP.NET makes a separate SQL Server request on a completely different thread to the
AspNet_SqlCacheTablesForChangeNotification table to see if the changeId number has been
incremented. If the number is changed, ASP.NET knows that an underlying change has been made to
the SQL Server table and that a new result set should be retrieved. When it checks to see if it should
make a SQL Server call, the request to the small AspNet_SqlCacheTablesForChangeNotification
table has a single result. With SQL Server cache invalidation enabled, this is done so quickly that you
really notice the difference.

Testing SQL Server Cache Invalidation
Now that the web.config file is set up and ready to go, the next step is to actually apply these new
capabilities to a page. For an example of a page using the new SQL Server cache invalidation process,
look at Listing 20-6.

Listing 20-6: An ASP.NET page utilizing SQL Server cache invalidation

VB
<%@ Page Language=”VB” %>
<%@ OutputCache Duration=”3600” VaryByParam=”none”

SqlDependency=”Northwind:Customers”%>

<script runat=”server”>
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Label1.Text = “Page created at “ & DateTime.Now.ToShortTimeString ()
End Sub

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Sql Cache Invalidation</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:Label ID=”Label1” Runat=”server”></asp:Label>

<asp:GridView ID=”GridView1” Runat=”server” DataSourceID=”SqlDataSource1”>
</asp:GridView>
<asp:SqlDataSource ID=”SqlDataSource1” Runat=”server”
SelectCommand=”Select * From Customers”
ConnectionString=”<%$ ConnectionStrings:AppConnectionString1 %>”
ProviderName=”<%$ ConnectionStrings:AppConnectionString1.providername %>”>

</asp:SqlDataSource>
</form>

</body>
</html>

(continued)

763

Caching

23_576100 ch20.qxd 10/6/05 9:33 PM Page 763

Listing 20-6: (continued)

C#
<%@ Page Language=”C#” %>
<%@ OutputCache Duration=”3600” VaryByParam=”none”

SqlDependency=”Northwind:Customers”%>

<script runat=”server”>
protected void Page_Load(object sender, System.EventArgs e)
{

Label1.Text = “Page created at “ + DateTime.Now.ToShortTimeString();
}

</script>

The first and most important part of this page is the OuputCache page directive that is specified at
the top of the file. Typically, the OutputCache directive specifies how long the page output is held in
the cache using the Duration attribute. Next comes the VaryByParam attribute, which does not permit
separate page outputs to be cached based on factors like the requestor’s browser. The new addition is
the SqlDependency attribute. This enables a particular page to use SQL Server cache invalidation. The
following line shows the format of the value for the SqlDependency attribute:

SqlDependency=”database:table”

The value of Northwind:Customers specifies that you want the SQL Server cache invalidation enabled
for the Customers table within the Northwind database. The Duration attribute of the OutputCache
directive shows you that, typically, the output of this page is stored in the cache for a long time — but this
cache is disabled if the Customers table has any underlying changes made to the data that it contains.

A change to any of the cells in the Customers table of the Northwind database invalidates the cache, and
a new cache is generated from the result, which now contains a new SQL Server database request. Figure
20-6 shows an example of the page generated the first time it is run.

Figure 20-6

764

Chapter 20

23_576100 ch20.qxd 10/6/05 9:33 PM Page 764

From this figure, you can see the contents of the customer with the CustomerID of ALFKI. For this entry,
go to SQL Server and change the value of the ContactName from Maria Anders to Mary Anders. Before
SQL Server cache invalidation, this change would have done nothing to the output cache. The original
page output in the cache would still be present and the end user would still see the Maria Anders
entry for the duration specified in the page’s OutputCache directive. Because of SQL Server cache
invalidation, after the underlying information in the table is changed, the output cache is invalidated,
a new result set is retrieved, and the new result set is cached. When a change has been made, you see the
results as shown in Figure 20-7.

Figure 20-7

Notice also that the text “Page created at” includes an updated time indicating when this page was
rendered. Need to stop working so late, eh?

Adding More Than One Table to a Page
The preceding example shows how to use SQL Server cache invalidation for a single table on the ASP.NET
page. What do you do if your page is working with two or more tables?

To add more than one table, you use the OutputCache directive shown here:

SqlDependency=”database:table;database:table”

From this example, you can see that the value of the SqlDependency attribute separates the databases
and tables with a semicolon. If you want to work with both the Customers table and the Products table
of the Northwind database, you construct the value of the SqlDependency attribute as follows:

SqlDependency=”Northwind:Customers;Northwind:Products”

765

Caching

23_576100 ch20.qxd 10/6/05 9:33 PM Page 765

Attaching SQL Server Cache Dependencies
to the Request Object

In addition to changing settings in the OutputCache directive to activate SQL Server cache
invalidation, you can also set the SQL Server cache invalidation programmatically. To do so, use the
SqlCacheDependency class, which is illustrated in Listing 20-7.

Listing 20-7: Working with SQL Server cache invalidation programmatically

VB
Dim myDependency As SqlCacheDependency = _

New SqlCacheDependency(“Northwind”, “Customers”)
Response.AddCacheDependency(myDependency)
Response.Cache.SetValidUntilExpires(true)
Response.Cache.SetExpires(DateTime.Now.AddMinutes(60))
Response.Cache.SetCacheability(HttpCacheability.Public)

C#
SqlCacheDependency myDependency = new SqlCacheDependency(“Northwind”, “Customers”);
Response.AddCacheDependency(myDependency);
Response.Cache.SetValidUntilExpires(true);
Response.Cache.SetExpires(DateTime.Now.AddMinutes(60));
Response.Cache.SetCacheability(HttpCacheability.Public);

You first create an instance of the SqlCacheDependency object, assigning it the value of the database
and the table at the same time. The SqlCacheDependency class takes the following parameters:

SqlCacheDependency(databaseEntryName As String, tablename As String)

You use this parameter construction if you are working with SQL Server 7.0 or with SQL Server 2000. If
you are working with SQL Server 2005 you use the following construction:

SqlCacheDependency(sqlCmd As System.Data.SqlClient.SqlCommand)

After the SqlCacheDependency class is in place, you add the dependency to the Cache object and set
some of the properties of the Cache object as well. You can do this either programmatically or through
the OutputCache directive.

Attaching SQL Server Cache Dependencies
to the Cache Object

In addition to attaching SQL Server cache dependencies to the Request object, you can attach them to
the Cache object. The Cache object is contained within the System.Web.Caching namespace, and it
enables you to work programmatically with the caching of any type of objects. Listing 20-8 shows a page
that utilizes the Cache object with the SqlDependency object.

766

Chapter 20

23_576100 ch20.qxd 10/6/05 9:33 PM Page 766

Listing 20-8: Using the Cache object with the SqlDependency object

VB
<%@ Page Language=”VB” %>
<%@ Import Namespace=”System.Data”%>
<%@ Import Namespace=”System.Data.SqlClient”%>

<script runat=”server”>
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Dim myCustomers As DataSet
myCustomers = CType(Cache(“firmCustomers”), DataSet)

If myCustomers Is Nothing Then
Dim conn As SqlConnection = _
New SqlConnection(_

ConfigurationManager.ConnectionStrings(“AppConnectionString1”).ConnectionString)
Dim da As SqlDataAdapter = _
New SqlDataAdapter(“Select * From Customers”, conn)

myCustomers = New DataSet
da.Fill(myCustomers)

Dim myDependency As SqlCacheDependency = _
New SqlCacheDependency(“Northwind”, “Customers”)

Cache.Insert(“firmCustomers”, myCustomers, myDependency)

Label1.Text = “Produced from database.”
Else

Label1.Text = “Produced from Cache object.”
End If

GridView1.DataSource = myCustomers
GridView1.DataBind()

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Sql Cache Invalidation</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:Label ID=”Label1” Runat=”server”></asp:Label>

<asp:GridView ID=”GridView1” Runat=”server”></asp:GridView>

</form>
</body>
</html>

(continued)

767

Caching

23_576100 ch20.qxd 10/6/05 9:33 PM Page 767

Listing 20-8: (continued)

C#
<%@ Page Language=”C#” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>

<script runat=”server”>
protected void Page_Load(object sender, System.EventArgs e)
{

DataSet myCustomers;
myCustomers = (DataSet)Cache[“firmCustomers”];

if (myCustomers == null)
{

SqlConnection conn = new
SqlConnection(

ConfigurationManager.ConnectionStrings[“AppConnectionString1”].ConnectionString);
SqlDataAdapter da = new

SqlDataAdapter(“Select * from Customers”, conn);

myCustomers = new DataSet();
da.Fill(myCustomers);

SqlCacheDependency myDependency = new
SqlCacheDependency(“Northwind”, “Customers”);

Cache.Insert(“firmCustomers”, myCustomers, myDependency);

Label1.Text = “Produced from database.”;
}
else
{

Label1.Text = “Produced from Cache object.”;
}

GridView1.DataSource = myCustomers;
GridView1.DataBind();

}
</script>

In this example, the SqlCacheDependency class associated itself to the Customers table in the Northwind
database as before. This time, however, you use the Cache object to insert the retrieved dataset along with
a reference to the SqlCacheDependency object. The Insert method of the Cache class is constructed as
follows:

Cache.Insert(key As String, value As Object,
dependencies As System.Web.Caching.CacheDependency)

You can also insert more information about the dependency using the following construct:

Cache.Insert(key As String, value As Object,
dependencies As System.Web.Caching.CacheDependency
absoluteExpiration As Date, slidingExpiration As System.TimeSpan)

768

Chapter 20

23_576100 ch20.qxd 10/6/05 9:33 PM Page 768

And finally:

Cache.Insert(key As String, value As Object,
dependencies As System.Web.Caching.CacheDependency
absoluteExpiration As Date, slidingExpiration As System.TimeSpan)
priority As System.Web.Caching.CacheItemPriority,
onRemoveCallback As System.Web.Caching.CacheItemRemovedCallback)

The SQL Server cache dependency created comes into action and does the same polling as it would have
done otherwise. If any of the data in the Customers table has changed, the SqlCacheDependency class
invalidates what is stored in the cache. When the next request is made, the Cache(“firmCustomers”)
is found to be empty and a new request is made to SQL Server. The Cache object again repopulates the
cache with the new results generated.

When the ASP.NET page from Listing 20-8 is called for the first time, the results generated are shown in
Figure 20-8.

Figure 20-8

Because this is the first time that the page is generated, nothing is in the cache. The Cache object is,
therefore, placed in the result set along with the association to the SQL Server cache dependency.
Figure 20-9 shows the result for the second request. Notice that the HTML table is identical since it was
generated from the identical DataSet, but the first line of the file has changed to indicate that this
output was produced from cache.

769

Caching

23_576100 ch20.qxd 10/6/05 9:33 PM Page 769

Figure 20-9

On the second request, the dataset is already contained within the cache; therefore, it is retrievable. You
aren’t required to hit SQL Server to get the full results again. If any of the information has changed
within SQL Server itself, however, the Cache object returns nothing; a new result set is retrieved.

Summary
SQL Server cache invalidation is an outstanding new feature of ASP.NET 2.0 that enables you to
invalidate items stored in the cache when underlying changes occur to the data in the tables being
monitored. Post-Cache Substitution fills in an important gap in ASP.NET’s technology, enabling you to
have both the best highly dynamic content and a high-performance Web site with caching.

When you are monitoring changes to the database, you can configure these procedures easily in the
web.config file, or you can work programmatically with cache invalidation directly in your code.
These changes are possible because the CacheDependency object has been unsealed. You can now
inherit from this object and create your own cache dependencies. The SQL Server cache invalidation
process is the first example of this capability.

770

Chapter 20

23_576100 ch20.qxd 10/6/05 9:33 PM Page 770

Debugging and
Error Handling Techniques

Your code always runs exactly as you wrote it, and you will never get it right the first time. So,
expect to spend about 30 percent of your time debugging and, to be a successful debugger, learn
to use the available tools effectively. Visual Studio has upped the ante with version 2005, giving
you a host of new features that greatly improve your debugging experience. So many of these new
features, however, can be overwhelming at first. This chapter breaks down all the techniques
available to you, one at a time, while presenting a holistic view of Visual Studio, the Common
Language Runtime (CLR), and the Base Class Library (BCL).

Everyone knows that debugging is twice as hard as writing a program in the first place.
So if you’re as clever as you can be when you write it, how will you ever debug it?
— Brian Kernighan

Additionally, because debugging is more than stepping through code, this chapter talks about
efficient error and exception handling, tracing and logging, and cross-language (C#, Visual Basic,
client-side JavaScript, XSLT, and SQL Stored Procedure) debugging.

Design-Time Support
Visual Studio has always had excellent support for warning you of potential errors at design time.
Syntax notifications or squiggles underline code that won’t compile or that might cause an error before
you have compiled the project. A new error notification pops up when an exception occurs during a
debugging session and recommends a course of action that prevents the exception. At every step,
Visual Studio tries to be smarter, anticipating your needs and catching common mistakes.

Rico Mariani, a performance architect on the CLR team, has used the term The Pit of Success to
describe the experience Microsoft wants you to have with Visual Studio. When Microsoft designed
these new features, they wanted the customer to simply fall into winning practices. The company

24_576100 ch21.qxd 10/6/05 9:38 PM Page 771

tried to achieve this by making it more difficult for you to write buggy code or make common
mistakes. Microsoft’s developers put a great deal of thought into building APIs that point us in the
right direction.

Syntax Notifications
Both the Visual Basic and C# editors show squiggles and tooltips for many syntax errors well before
compilation, as illustrated in Figure 21-1. In prior releases of these language editors, Visual Basic had
superior support for syntax errors, but in this latest release, a number of improvements have been made
to C# to bring the syntax notifications up to par with what Visual Basic already offered.

Figure 21-1

Syntax notifications aren’t just for CLR programming languages; Visual Studio has also greatly improved
the XML Editor with enhancements like the following:

❑ Full XML 1.0 syntax checking

❑ Support for DTD as well as XSD validation

❑ Support for XSLT 1.0 syntax checking

Figure 21-2 shows a detailed tooltip indicating that the element <junk> doesn’t have any business being
in the web.config file. The editor knows this because of a combination of the XSD validation support in
the XML Editor and the addition of schemas for configuration files like web.config. This is a welcome
change for anyone who, when manually editing a web.config file, has wondered if he guessed the
right elements.

Figure 21-2

The ASPX/HTML Editor benefits from these improvements as well; for example, Figure 21-3 shows a
warning that the <hanselman/> element is not available in the active schema. Code that appears in
<script runat=”Server”/> blocks in ASP.NET pages is also parsed and marked with squiggles. This
makes including code in your pages considerably easier. Notice also that the ASP.NET page in Figure
21-3 has an XHTML DOCTYPE declaration on the first line, and the HTML element has a default XHTML
namespace. This HTML page is treated as XML because XHTML has been targeted.

772

Chapter 21

24_576100 ch21.qxd 10/6/05 9:38 PM Page 772

To add a hanselman element, you must put it in its own namespace and add a namespace declaration in
the root HTML element.

Figure 21-3

The Visual Basic Editor takes assistance to the next level with a smart tag like the pulldown/button that
appears when you hover your mouse over a squiggle. A very nicely rendered modeless window appears
with your code in a box along with some suggested changes to make your code compile. Figure 21-4
shows a recommendation to insert a missing End If; making the correction is simple — just click Insert
the missing ‘End If’.

Figure 21-4

All these design-time features exist to help you ensure better code while it’s being written, before it’s
been compiled and run. Two related features help you run arbitrary code within the development
environment as well as organize the tasks still to be performed.

XHTML is the HTML vocabulary of markup expressed with all the syntax rules
of XML. For example, in HTML you could create a
 tag and never close it.
In XHTML you use the closing tag
. XHTML documents look exactly like
HTML documents because they in fact are expressing the same semantics.
Because XHTML documents are XML, they require a namespace on their root
element and should have a DOCTYPE as well.

773

Debugging and Error Handling Techniques

24_576100 ch21.qxd 10/6/05 9:38 PM Page 773

Immediate and Command Window
The Immediate Window lets you run arbitrary bits of code in Design mode without compiling your
application. You can evaluate code at design time or while you’re debugging. It can be a great way to
test a line of code or a static method quickly. The Immediate mode of this window is used primarily for
debugging.

Access the Immediate Window from Debug ➪ Windows ➪ Immediate. To evaluate a variable or run a
method, simply click in the Immediate Window and type a question mark (?) followed by the expres-
sion, variable, or method you want to evaluate.

The immediate window can also be switched into the Command Window by prefacing commands with
a greater-than sign (>). When you enter a greater-than sign in the Immediate/Command Window, an
IntelliSense drop-down appears exposing the complete Visual Studio object model as well as any macros
that you may have recorded. Command mode of this window is used for executing Visual Studio
Commands without using the menus. You can also execute commands that may not have a menu item.

If you type >alias into the Command Window, you receive a complete list of all current aliases and their
definitions. Some useful command aliases include the following:

❑ >Log filename /overwrite /on|off: The Log command starts logging all output from the
command window to a file. If no filename is included for logging, go to cmdline.log. This is
one of the more useful and least-used features of the debugger, and reason enough to learn a
few things about the immediate/Command Window.

❑ >Shell args /command /output /dir:folder: The Shell command allows you to launch
executable programs from within the Visual Studio Command Window such as utilities,
command shells, batch files, and so on.

Task List
The Task List in Visual Studio is more useful than you might think. People who haven’t given it much
attention are missing out on a great feature. The Task List supports two views: User Tasks and
Comments.

User Tasks view enables you to add and modify tasks, which can include anything from “Remember to
Test” to “Buy Milk.” These tasks are stored in the .SUO (solution user options) that is a parallel partner
to the .SLN files.

The Comments view shows text from the comments in your code where those lines are prefixed with a
specific token. Visual Studio comes configured to look for the TODO: token, but you can add your own in
Tools ➪ Options ➪ Environment ➪ Task List.

In Figure 21-5, the comment token HACK has been added in the Options dialog. A comment appears in
the source with HACK: preceding it, so that comment line automatically appears in the Task List in the
docked window at the bottom of Visual Studio. The three circles in Figure 21-5 illustrate the connection
between the word HACK added to the Options dialog and its subsequent appearance in the source code
and Task List. You and your team can add as many of these tokens as you’d like.

774

Chapter 21

24_576100 ch21.qxd 10/6/05 9:38 PM Page 774

Figure 21-5

Tracing
Tracing is a way to monitor the execution of your ASP.NET application. You can record exception details
and program flow in a way that doesn’t affect the program’s output. In classic ASP, tracing and debug-
ging facilities were nearly nonexistent, forcing developers to use got here debugging in the form of many
Response.Write statements that litter the resulting HTML with informal trace statements announcing
to the programmer that the program “got here” and “got there” with each new line executed. This kind
of intrusive tracing was very inconvenient to clean up and many programmers ended up creating their
own informal trace libraries to get around these classic ASP limitations.

In ASP.NET 2.0, there is rich support for tracing. The destination for trace output can be configured with
TraceListeners like the EventLogTraceListener. Configuration of TraceListeners is covered later in
this section. ASP.NET 2.0 also includes a number of small improvements to tracing over ASP.NET 1.x,
including trace forwarding between the ASP.NET page-specific Trace class and standard Base Class
Library’s (BCL) System.Diagnostics.Trace used by non–Web developers. Additionally, the
resolution of the timing output by ASP.NET tracing has increased precision — from 6 digits to 18 digits
for highly accurate profiling.

775

Debugging and Error Handling Techniques

24_576100 ch21.qxd 10/6/05 9:38 PM Page 775

System.Diagnostics.Trace and ASP.NET’s Page.Trace
There are multiple things named Trace in the whole of the .NET Framework, so it may appear that
tracing isn’t unified between Web and non-Web applications. Don’t be confused because there is a class
called System.Diagnostics.Trace and there is also a public property on System.Web.UI.Page
called Trace. The Trace property on the Page class gives you access to the System.Web
.TraceContext and the ASP.NET-specific tracing mechanism. The TraceContext class collects
all the details and timing of a Web request. It contains a number of methods, but the one you’ll use
the most is Write. It also includes Warn, which simply calls Write(), and also ensures that the output
generated by Warn is colored red.

If you’re writing an ASP.NET application that has no supporting components or other assemblies that
may be used in a non-Web context, you can usually get a great deal of utility using only the ASP.NET
TraceContext. However, ASP.NET support tracing is different from the rest of the base class library’s
tracing. You’ll explore ASP.NET’s tracing facilities first, and then learn how to bridge the gap and see
some new features in 2.0 that make debugging even easier.

Page-Level Tracing
ASP.NET tracing can be enabled on a page-by-page basis by adding Trace=”true” to the Page directive
in any ASP.NET page:

<%@ Page Language=”C#” Inherits=”System.Web.UI.Page” Trace=”true” %>

Additionally, you can add the TraceMode attribute that sets SortByCategory or the default,
SortByTime. You might include a number of categories, one per subsystem, and use SortByCategory
to group them, or you might use SortByTime to see the methods that take up the most CPU time for
your application. You can enable tracing programmatically as well, using the Trace.IsEnabled
property. The capability to enable tracing programmatically means you can enable tracing via a
querystring, cookie, or IP address; it’s up to you.

Application Tracing
Alternatively, you can enable tracing for the entire application by adding tracing settings in
web.config. In the following example, pageOutput=”false” and requestLimit=”20” are used, so
trace information is stored for 20 requests, but not displayed on the page:

<configuration>
<system.web>

<trace enabled=”true” pageOutput=”false” requestLimit=”20”
traceMode=”SortByTime” localOnly=”true” />

</system.web>
</configuration>

The page-level settings take precedence over settings in web.config, so if enabled=”false” is set in
web.config but trace=”true” is set on the page, tracing occurs.

776

Chapter 21

24_576100 ch21.qxd 10/6/05 9:38 PM Page 776

Viewing Trace Data
Tracing can be viewed for multiple page requests at the application level by requesting a special page
(of sorts) called trace.axd. Note that trace.axd doesn’t actually exist; it is actually provided by
System.Web.Handlers.TraceHandler, a special IHttpHandler to which trace.axd is bound. When
ASP.NET detects an HTTP Request for trace.axd, that request is handled by the TraceHandler rather
than by a page.

Create a Web site and a page, and in the Page_Load event, call Trace.Write(). Enable tracing in the
web.config as shown in Listing 21-1.

Listing 21-1: Tracing using Page.Trace

Web.config
<configuration>

<system.web>
<trace enabled=”true” pageOutput=”true” />

</system.web>
</configuration>

VB
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Handles Me.Load ‘All on one line!
Trace.Write(“This message is from the START OF the Page_Load method!”)

End Sub

C#
protected void Page_Load(object sender, EventArgs e)
{

Trace.Write(“This message is from the START of the Page_Load method!”);
}

Hit the page in the browser a few times and notice that, although this page doesn’t create any HTML to
speak of, a great deal of trace information is presented in the browser, as shown in Figure 21-6, because
the setting is pageOutput=”true”.

The message from Trace.Write appears after Begin Load and before End Load — it’s right in the
middle of the Page_Load method where you put it. Also, notice the timing from the Begin Load until
the trace output. It takes nearly 6.5 seconds! The page was automatically JIT-compiled as you ran it, and
that initial performance hit is over. Now that it’s been compiled into native code, a subsequent run of
this same page, performed by clicking Refresh in the browser, took only 0.017735 seconds on my laptop
because the page had already compiled. It’s easy to collect this kind of very valuable performance
timing data between Trace statements.

777

Debugging and Error Handling Techniques

24_576100 ch21.qxd 10/6/05 9:38 PM Page 777

Figure 21-6

Eleven different sections of tracing information provide a great deal of detail and specific insight into the
ASP.NET page-rendering process, as described in the following table.

Section Description

Request Details Includes the ASP.NET Session ID, the character encoding
of the request and response, and the HTTP conversation’s
returned status code. Be aware of the request and response
encoding, especially if you’re using any non-Latin charac-
ter sets. If you’re returning languages other than English,
you’ll want your encoding to be UTF-8. Fortunately that is
the default.

Trace Information Includes all the Trace.Write methods called during
the lifetime of the HTTP request and a great deal of
information about timing. This is probably the most
useful section for debugging. The timing information
located here is valuable when profiling and searching for
methods in your application that take too long to execute.

778

Chapter 21

24_576100 ch21.qxd 10/6/05 9:38 PM Page 778

Section Description

Control Tree Presents an HTML representation of the ASP.NET Control
Tree. Shows each control’s unique ID, runtime type, the
number of bytes it took to be rendered, and the bytes it
requires in ViewState and ControlState. Don’t undervalue
the usefulness of these two sections, particularly of the
three columns showing the weight of each control. The
weight of the control indicates the number of bytes
occupied in ViewState and/or ControlState by that
particular Control. Be aware of the number of bytes that
each of your controls uses, especially if you write your
own custom controls, as you want your controls to return
as few bytes as possible to keep overall page weight
down.

Session State Lists all the keys for a particular user’s session, their
types, and their values. Shows only the current user’s
Session State.

Application State Lists all the keys in the current application’s Application
object and their types and values.

Request Cookies Lists all the cookies passed in during the page’s request.

Response Cookies Lists all the cookies that were passed back during the
page’s response.

Headers Collection Shows all the headers that might be passed in during the
request from the browser, including Accept-Encoding,
indicating whether the browser supports compressed
HTTP responses; Accept-Languages, a list of ISO language
codes that indicate the order of the user’s language
preferences; and User-Agent, the identifying string for the
user’s browser. The string also contains information about
the user’s operating system and the version or versions of
the .NET Framework he is running.

Form Collection Displays a complete dump of the Form collection and all
its keys and values.

Querystring Collection Displays a dump of the Querystring collection and all its
contained keys and values.

Server Variables A complete dump of name-value pairs of everything that
the Web server knows about the application and the
requesting browser.

Page output of tracing shows only the data collected for the current page request. However, when
visiting http://localhost/yoursite/trace.axd you’ll see detailed data collected for all requests to
the site thus far. If you’re using the built-in ASP.NET Development Server, remove the current page from
the URL and replace it with trace.axd. Don’t change the automatically selected port or path.

779

Debugging and Error Handling Techniques

24_576100 ch21.qxd 10/6/05 9:38 PM Page 779

Again, trace.axd is an internal handler, not a real page. When it’s requested from a local browser, as
shown in Figure 21-7, it displays all tracing information for all requests up to a preset limit.

Figure 21-7

Figure 21-7 shows that nine requests have been made to this application and the right side of the header
indicates “Remaining: 1”. That means that there is one more request remaining before tracing stops for
this application. After that final request, tracing data is not saved until an application recycle or until
you click “Clear current trace” from the trace.axd page. The request limit can be raised in web.config
at the expense of memory:

<trace requestLimit=”100” pageOutput=”true” enabled=”true”/>

The maximum request limit value is 10000. If you try to use any greater value, ASP.NET uses 10000
anyway and gives you no error. However, a new property called mostRecent is added to the
trace section in ASP.NET 2.0. When set to true, it shows the most recent requests that are stored in the
trace log up to the request limit — instead of showing tracing in the order it occurs (the default) —
without using up a lot of memory. Setting mostRecent to true causes memory to be used only for the
trace information it stores and automatically throws away tracing information over the requestLimit.

Clicking “View Details” from Trace.axd on any of these requests takes you to a request-specific page
with the same details shown in Figure 21-6.

780

Chapter 21

24_576100 ch21.qxd 10/6/05 9:38 PM Page 780

Tracing from Components
The tracing facilities of ASP.NET are very powerful and can stand alone. However, previously we
mentioned System.Diagnostics.Trace, the tracing framework in the Base Class Library that is not
Web-specific and that receives consistent and complete tracing information when an ASP.NET
application calls a non–Web-aware component. This can be confusing. Which should you use?

System.Diagnostics.Trace is the core .NET Framework tracing library. Along with System
.Diagnostics.Debug, this class provides flexible, non-invasive tracing and debug output for any
application. But, as mentioned earlier, there is rich tracing built into the System.Web namespace.
As a Web developer, you’ll find yourself using ASP.NET’s tracing facilities. You may need to have
ASP.NET-specific tracing forwarded to the base framework’s System.Diagnostics.Trace, or more
likely, you’ll want to have your non–Web-aware components output their trace calls to ASP.NET so you
can take advantage of trace.axd and other ASP.NET specific features.

Additionally, some confusion surrounds Trace.Write and Debug.Write functions. Look at the source
code for Debug.Write, and you see something like this:

[Conditional(“DEBUG”)]
public static void Write(string message)
{

TraceInternal.Write(message);
}

Notice that Debug.Write calls a function named TraceInternal.Write, which has a conditional
attribute indicating that Debug.Write is compiled only if the debug preprocessor directive was set.
In other words, you can put as many calls to Debug.Write as you want in your application without
affecting your performance when you compile in Release mode. This enables you to be as verbose as
you want to be during the debugging phase of development.

TraceInternal cycles through all attached trace listeners, meaning all classes that derive from
the TraceListener base class and are configured in that application’s configuration file. The default
TraceListener lives in the aptly named DefaultTraceListener class and calls the Win32 API
OutputDebugString. OutputDebugString sends your string into the abyss and, if a debugger is
listening, it is displayed. If no debugger is listening, OutputDebugString does nothing. Everyone
knows the debugger listens for output from OutputDebugString so this can be a very effective way
to listen in on debug versions of your application.

For quick and dirty no-touch debugging, try using DbgView from SysInternals at
http://www.sysinternals.com/ntw2k/freeware/debugview.shtml. DbgView
requires no installation, works great with all your calls to Debug.Writer, and has lots
of cool features such as highlighting and logging to a file.

781

Debugging and Error Handling Techniques

24_576100 ch21.qxd 10/6/05 9:38 PM Page 781

Now, if you look at the source code for Trace.Write (that’s TRACE not DEBUG), you see something like
this:

[Conditional(“TRACE”)]
public static void Write(string message)
{

TraceInternal.Write(message);
}

The only difference between Debug.Write and Trace.Write given these two source snippets is the
conditional attribute indicating the preprocessor directive TRACE . You can conditionally compile your
assemblies to include tracing statements, debug statements, both, or neither. Most people keep TRACE
defined even for release builds and use the configuration file to turn tracing on and off. More than likely,
the benefits you gain from making tracing available to your users far outweigh any performance issues
that might arise.

Because Trace.Write calls the DefaultTraceListener just like Debug.Write, you can use any
debugger to tap into tracing information. So, what’s the difference?

When designing your application, think about your deployment model. Are you going to ship debug
builds or release builds? Do you want a way for end-users or systems engineers to debug your application
using log files or the event viewer? Are there things you want only the developer to see?

Typically, you want to use tracing and Trace.Write for any formal information that could be useful in
debugging your application in a production environment. Trace.Write gives you everything that
Debug.Write does, except it uses the TRACE preprocessor directive and is not affected by debug or
release builds.

This means you have four possibilities for builds: Debug On, Trace On, Both On, or Neither On. You
choose what’s right for you. Typically, use Both On for debug builds and Trace On for production builds.
You can specify these conditional attributes in the property pages or the command line of the compiler,
as well as with the C# #define keyword or #CONST keyword for Visual Basic.

Trace Forwarding
You often find existing ASP.NET applications that have been highly instrumented and make extensive
use of the ASP.NET TraceContext class. ASP.NET version 2.0 introduces a new attribute to the
web.config <trace> element that allows you to route messages emitted by ASP.NET tracing to
System.Diagnostics.Trace: writeToDiagnosticsTrace.

<trace writeToDiagnosticsTrace=”true” pageOutput=”true” enabled=”true”/>

When you set writeToDiagnosticsTrace to true, all calls to System.Web.UI.Page.Trace.Write
(the ASP.NET TraceContext) also go to System.Diagnostics.Trace.Write, enabling you to use all the
standard TraceListeners and tracing options that are covered later in this chapter. The simple
writeToDiagnoticsTrace setting connects the ASP.NET tracing functionality with the rest of the base
class library. I use this feature when I’m deep in debugging my pages, and it’s easily turned off using
this configuration switch. I believe that more information is better than less, but you may find the
exact page event information too verbose. Try it and form your own opinion.

782

Chapter 21

24_576100 ch21.qxd 10/6/05 9:38 PM Page 782

TraceListeners
Output from System.Diagnostics.Trace methods is routable by a TraceListener to a text file, to
ASP.NET, to an external monitoring system, even to a database. This powerful facility was a woefully
underused tool in many ASP.NET 1.1 developers’ tool belts. In ASP.NET 1.1, some component
developers who knew their components were being used within ASP.NET would introduce a direct
reference to System.Web and call HttpContext.Current.Trace. They did this so that their tracing
information would appear in the developer-friendly ASP.NET format. All components called within
the context of an HttpRequest automatically receive access to that request’s current context, enabling
the components to talk directly to the request and retrieve cookies or collect information about the user.

However, assuming an HttpContext will always be available is dangerous for a number of reasons.
First, you are making a big assumption when you declare that your component can be used only within
the context of an HttpRequest. Notice that this is said within the context of a request, not within the con-
text of an application. If you access HttpContext.Current even from within the Application_Start,
you will be surprised to find that HttpContext.Current is null. Second, marrying your component’s
functionality to HttpContext makes it tricky if not impossible to use your application in any non-Web
context, and unit testing becomes particularly difficult.

If you have a component that is being used by a Web page, but it also needs to be unit tested outside of
Web context or must be called from any other context, don’t call HttpContext.Current.Trace.
Instead, use the standard System.Diagnostics.Trace and redirect output to the ASP.NET tracing
facilities using the new WebPageTraceListener described in the next section. Using the standard trace
mechanism means your component can be used in any context, Web or otherwise. You’ll still be able to
view the component’s trace output with a TraceListener.

The framework comes with a number of very useful TraceListeners; you can add them programmatically
or via a .config file. For example, you can programmatically add a TraceListener log to a file as shown
in Listing 21-2. These snippets required the System.Diagnostics and System.IO namespaces.

Listing 21-2: Configuring TraceListeners

VB
Dim myTextListener As New TextWriterTraceListener(File.Create(“c:\myListener.log”))
Trace.Listeners.Add(myTextListener)

C#
TextWriterTraceListener myTextListener = new

TextWriterTraceListener(File.Create(@”c:\myListener.log”));
Trace.Listeners.Add(myTextListener);

You can do the same thing declaratively in web.config via an add element that passes in the type of
TraceListener to use, along with any initializing data it might need. TraceListeners already configured in
machine.config or a parent web.config can also be removed using the remove tag, along with their
name:

<configuration>
<system.diagnostics>

<trace autoflush=”false” indentsize=”4”>

783

Debugging and Error Handling Techniques

24_576100 ch21.qxd 10/6/05 9:38 PM Page 783

<listeners>
<add name=”myListener”

type=”System.Diagnostics.TextWriterTraceListener”
initializeData=”c:\myListener.log” />

<remove name=”Default” />
</listeners>

</trace>
</system.diagnostics>

</configuration>

TraceListeners, like TextWriterTraceListener, that access a resource (such as a file, event log, or
database) require that the ASP.NET worker process be run as a user who has sufficient access. In order to
write to c:\foo\example.log, for example, the ASP.NET worker process requires explicit write access
in the Access Control List (ACL) of that file.

Notice the preceding example also optionally removes the default TraceListener. If you write your own
TraceListener, you must provide a fully qualified assembly name in the type attribute.

The New ASP.NET WebPageTraceListener
The new ASP.NET 2.0 WebPageTraceListener derives from System.Diagnostics
.TraceListener and automatically forwards tracing information from any component calls to
System.Diagnostics.Trace.Write. This enables you to write your components using the most
generic trace provider and to see its tracing output in the context of your ASP.NET application.

The WebPageTraceListener is added to the web.config as shown in the following example:

<configuration>
<system.diagnostics>

<trace autoflush=”false” indentsize=”4”>
<listeners>

<add name=”webListener”
type=”System.Web.WebPageTraceListener, System.Web”/>

</listeners>
</trace>

</system.diagnostics>
<system.web>

<trace enabled=”true” pageOutput=”false” localOnly=”true” />
</system.web>

</configuration>

Figure 21-8 shows output from a call to System.Diagnostics.Trace.Write from a referenced library.
It appears within ASP.NET’s page tracing. The line generated from the referenced library is circled in
this figure.

784

Chapter 21

24_576100 ch21.qxd 10/6/05 9:38 PM Page 784

Figure 21-8

EventLogTraceListener
Tracing information can also be sent to the event log using the EventLogTraceListener. This can be a little
tricky because ASP.NET requires explicit write access to the event log:

<configuration>
<system.diagnostics>

<trace autoflush=”false” indentsize=”4”>
<listeners>

<add name=”EventLogTraceListener”
type=”System.Diagnostics.EventLogTraceListener”
initializeData=”Wrox”/>

</listeners>
</trace>

</system.diagnostics>
</configuration>

Notice that “Wrox” is passed in as a string to the initializeData attribute as the TraceListener is
added. The string “Wrox” appears as the application or source for this event. This works fine when
debugging your application; most likely, the debugging user has the appropriate access. However, when
your application is deployed, it will probably run under a less privileged account, so you must give

785

Debugging and Error Handling Techniques

24_576100 ch21.qxd 10/6/05 9:38 PM Page 785

explicit write access to a registry key such as HKLM\System\CurrentControlSet\Services\
EventLog\Application\Wrox, where “Wrox” is the same string passed in to initializeData.
Remember that registry keys have ACLs (Access Control Lists) just as files do. Use RegEdit.exe to
change the permissions on a registry key by right-clicking the key and selecting Properties, and setting
the ACL just like you would for a file.

Be careful when using the EventLogTraceListener because your event log can fill up fairly quickly if you
have a particularly chatty application. Figure 21-9 shows the same tracing output used in Figure 21-8,
this time in the event log.

Figure 21-9

Other New Listeners
The .NET 2.0 Framework adds two TraceListeners in addition to the WebPageTraceListener:

❑ XmlWriterTraceListener: Derives from TextWriterTraceListener and writes out a strongly
typed XML file.

❑ DelimitedListTraceListener: Also derives from TextWriterTraceListener; writes out
comma-separated values (CSV) files.

One of the interesting things to note about the XML created by the XmlWriterTraceListener — it’s not
well-formed XML! Specifically, it doesn’t have a root node; it’s just a collection of peer nodes as shown in
the following code. This may seem like it goes against many of the ideas you’ve been told about XML,
but think of each event as a document. Each stands alone and can be consumed alone. They just happen
to be next to each other in one file. Certainly the absence of an ultimate closing tag cleverly dodges the
issue of wellformedness and allows easy appending to a file.

786

Chapter 21

24_576100 ch21.qxd 10/6/05 9:38 PM Page 786

<E2ETraceEvent xmlns=\”http://schemas.microsoft.com/2004/06/E2ETraceEvent\”>
<System xmlns=\”http://schemas.microsoft.com/2004/06/windows/eventlog/system\”>

<EventID>0</EventID>
<Type>3</Type>
<SubType Name=”Information”>0</SubType>
<Level>8</Level>
<TimeCreated SystemTime=”2005-11-05T12:43:44.4234234Z”>
<Source Name=”WroxChapter21.exe”/>
<Correlation ActivityID=”{00000000-0000-0000-0000-000000000000>
<Execution ProcessName=”WroxChapter21.exe” ProcessID=”4234” ThreadID=”1”/>
<Channel/>
<Computer>SCOTTPC</Computer>

</System>
<ApplicationData>Your Text Here</ApplicationData>

</E2ETraceEvent>
<E2ETraceEvent xmlns=\”http://schemas.microsoft.com/2004/06/E2ETraceEvent\”>

<System xmlns=\”http://schemas.microsoft.com/2004/06/windows/eventlog/system\”>
<EventID>0</EventID>
<Type>3</Type>

...the XML continues...

The “E2E” in E2ETraceEvent stands for end-to-end. Notice that it includes information such as your
computer name and a “correlation id.” Microsoft will include TraceViewer tools with coming products,
such as the product codenamed Indigo and the managed WinFX API that will consume this XML Schema
and help you diagnose problems with operations that span multiple machines in a Web farm. If your
ASP.NET application makes calls to an Indigo service, you may want your app to supply its tracing
information in this format to make aggregated analysis easier.

Diagnostic Switches
It’s often not convenient to recompile your application just because you want to change tracing character-
istics. Sometimes you may want to change your configuration file to add and remove TraceListeners. At
other times, you may want to change a configuration parameter or “flip a switch” to adjust the amount of
detail the tracing produces. That’s where Switch comes in. Switch is an abstract base class that supports
a series of diagnostic switches that you can control by using the application’s configuration file.

BooleanSwitch
To use a BooleanSwitch, create an instance and pass in the switch name that appears in the application’s
config file (see Listing 21-3).

Listing 21-3: Using diagnostic switches

<configuration>
<system.diagnostics>
<switches>
<add name=”ImportantSwitch” value=”1” /> <!-- This is for the BooleanSwitch -->
<add name=”LevelSwitch” value=”3” /> <!-- This is for the TraceSwitch -->
<add name=”SourceSwitch” value=”4” /> <!-- This is for the SourceSwitch -->

</switches>
</system.diagnostics>

</configuration>

787

Debugging and Error Handling Techniques

24_576100 ch21.qxd 10/6/05 9:38 PM Page 787

Switches can be used in an if statement for any purpose, but they are most useful in the context of tracing
along with System.Diagnostics.Trace.WriteIf:

VB
Dim aSwitch As New BooleanSwitch(“ImportantSwitch”, “Show errors”)
System.Diagnostics.Trace.WriteIf(aSwitch.Enabled, “The Switch is enabled!”)

C#
BooleanSwitch aSwitch = new BooleanSwitch(“ImportantSwitch”, “Show errors”);
System.Diagnostics.Trace.WriteIf(aSwitch.Enabled, “The Switch is enabled!”);

If ImportantSwitch is set to 1 in the config file, the call to WriteIf sends a string to trace output.

TraceSwitch
TraceSwitch offers five levels of tracing from 0 to 4, implying an increasing order: Off, Error, Warning,
Info, and Verbose. You construct a TraceSwitch exactly as you create a BooleanSwitch:

VB
Dim tSwitch As New TraceSwitch(“LevelSwitch”, “Trace Levels”)
System.Diagnostics.Trace.WriteIf(tSwitch.TraceInfo, “The Switch is 3 or more!”)

C#
TraceSwitch tSwitch = new TraceSwitch(“LevelSwitch”, “Trace Levels”);
System.Diagnostics.Trace.WriteIf(tSwitch.TraceInfo, “The Switch is 3 or more!”);

There are a number of properties on the TraceSwitch class that return true if the switch is at the same
level or at a higher level than the property’s value. For example, the TraceInfo property will return
true if the switch’s value is set to 3 or more.

SourceSwitch
New with .NET 2.0 is SourceSwitch, which is similar to TraceSwitch but provides a greater level of
granularity. You call SourceSwitch.ShouldTrace with an EventType as the parameter:

VB
Dim sSwitch As New SourceSwitch(“SourceSwitch”, “Even More Levels”)
System.Diagnostics.Trace.WriteIf(sSwitch.ShouldTrace(TraceEventType.Warning), _

“The Switch is 3 or more!”)

C#
SourceSwitch sSwitch = new SourceSwitch(“SourceSwitch”, “ Even More Levels”);
System.Diagnostics.Trace.WriteIf(sSwitch.ShouldTrace(TraceEventType.Warning),

“The Switch is 4 or more!”);

Web Events
It doesn’t exactly qualify as debugging, but a series of new application-monitoring and health-monitoring
tools within the system has been added in ASP.NET’s System.Web.Management namespace in ASP.NET
2.0. These tools can be as valuable as tracing information in helping you monitor, maintain, and diagnose
the health of your application. The system has a whole new event model and event engine that can
update your application with runtime details. There are a number of built-in events, including application
lifetime events such as start and stop and a heartbeat event. You can take these base classes and events

788

Chapter 21

24_576100 ch21.qxd 10/6/05 9:38 PM Page 788

and build on them to create events of your own. For example, you might want to create an event that tells
you when a user downloads a particularly large file or when a new user is created in your personalization
database. You can have your application send an e-mail to you once a day with statistics.

For instance, you can create your own event by deriving from System.Web.Management
.WebBaseEvent, as shown in Listing 21-4.

Listing 21-4: Web events

VB
Imports System
Imports System.Web.Management

Namespace Wrox
Public Class WroxEvent

Inherits WebBaseEvent

Public Const WroxEventCode As Integer = WebEventCodes.WebExtendedBase + 1
Public Sub New(ByVal message As String, ByVal eventSource As Object)

MyBase.New(message, eventSource, WroxEventCode)
End Sub

End Class
End Namespace

C#
namespace Wrox
{

using System;
using System.Web.Management;

public class WroxEvent: WebBaseEvent
{

public const int WroxEventCode = WebEventCodes.WebExtendedBase + 1;
public WroxEvent(string message, object eventSource) :

base(message, eventSource, WroxEventCode){}
}

}

Later, in a sample Page_Load, you raise this event to the management subsystem:

VB
Protected Sub Page_Load(sender As Object, e As EventArgs)

‘ Raise a custom event
Dim anEvent As Wrox.WroxEvent = New Wrox.WroxEvent(“Someone visited here”, Me)
anEvent.Raise()

End Sub

C#
protected void Page_Load(Object sender, EventArgs e)
{

// Raise a custom event
Wrox.WroxEvent anEvent = new Wrox.WroxEvent(“Someone visited here!”, this);
anEvent.Raise();

}

789

Debugging and Error Handling Techniques

24_576100 ch21.qxd 10/6/05 9:38 PM Page 789

The event is caught by the management subsystem and can be dispatched to different providers based
on a number of rules. This is a much more formal kind of tracing than a call to Trace.WriteLine, so
you create a strongly typed event class for events specific to your application:

Web.config
<?xml version=”1.0”?>
<configuration>

<system.web>
<healthMonitoring enabled=”true”>

<providers>
<add name=”WroxDatabaseLoggingProvider”

type=”System.Web.Management.SqlWebEventProvider”
connectionStringName=”QuickStartSqlServer”
maxEventDetailsLength=”1073741823”
buffer=”false”/>

</providers>
<rules>

<add
name=”Application Lifetime Events Rule”
eventName=”All Events”
provider=”WroxDatabaseLoggingProvider”
profile=”Critical” />

</rules>
</healthMonitoring>

</system.web>
</configuration>

Debugging
Visual Studio includes two configurations by default: debug and release. The debug configuration
automatically defines the debug and trace constants, enabling your application to provide context to a
troubleshooter. The option to generate debugging information is turned on by default, causing a pro-
gram database (or debug) file (PDB) to be generated for each assembly and your solution. They appear
in the same \bin folder as your assemblies. Remember, however, that the actual compilation to native
code does not occur in Visual Studio, but rather at runtime using just-in-time compilation (JIT). The JIT
will automatically optimize your code for speed. Optimized code, however, is considerably harder to
debug because the operations that are generated may not correspond directly to lines in your source
code. For debug purposes, this option is set to false.

What’s Required
The PDBs are created when either the C# compiler (CSC.EXE) or Visual Basic compiler (VBC.EXE) is
invoked with the /debug:full command lines switch. As an option, if you use /debug:pdbonly, you
will generate PDBs but still direct the compiler to produce release-mode code.

Debug Versus Release
The debug and release configurations that come with Visual Studio are generally sufficient for your
needs. However, these configurations control only the compilation options of the code behind files.
Remember that, depending on how you’ve chosen to design your ASP.NET application, the ASP.NET

790

Chapter 21

24_576100 ch21.qxd 10/6/05 9:38 PM Page 790

.aspx files may be compiled the first time they’re hit, or the entire application may compile the first
time a page is hit. You can control these compilation settings via the compilation elements within the
<system.web> section of your application’s web.config. Set <compilation debug=”true”> to
produce binaries as you do when using the /debug:full switches. PDBs are also produced.

The average developer is most concerned with the existence of PDB files. When these files exist in your
ASP.NET applications \bin folder, the runtime provides you with line numbers. Of course, line numbers
greatly assist in debugging. You can’t step through source code during an interactive debugging session
without these files.

Debugging and the JIT Dialog
When an unhandled error occurs in an ASP.NET application, the default error handler for the ASP.NET
worker process catches it and tries to output some HTML that expresses what happened. However,
when you are debugging components outside of ASP.NET, perhaps within the context of unit testing, the
debug dialog appears when the .NET application throws an unhandled exception.

If something has gone horribly wrong with an ASP.NET application, it’s conceivable that you may find a
Web server with the dialog box popped up waiting for your input. This can be especially inconvenient if
the machine has no keyboard or monitor hooked up. The day may come when you want to turn off the
debug dialog that appears, and you have two options to do this:

❑ You can disable JIT Debugging from the registry. The proper registry key is HKLM\Software\
Microsoft\.NETFramework\DbgJITDebugLaunchSetting. There are three possible values
for the option:

❑ 0: Prompts the user by means of a message box. The choices presented include
Continue, which results in a stack dump and process termination, and Attach a
Debugger, which means the runtime spawns the debugger listed in the
DbgManagedDebugger registry key. If no key exists, the debugger releases
control and the process is terminated.

❑ 1: Does not display a dialog. This results in a stack dump and then process termination.

❑ 2: Launches the debugger listed in the DbgManagedDebugger registry key.

For this option, the registry entry must to be set to 0 for the dialog to show up.

❑ To disable the JIT debug dialog and still present an error dialog, within Visual Studio.NET,
choose Tools ➪ Options ➪ Debugging ➪ Just-In-Time and deselect Common Language Runtime.
Instead of the Select a Debugger dialog, an OK/Cancel dialog will appear during an unhandled
exception.

An interesting CLR Internals trick: Call System.Diagnostics.Debugger.Launch
within your assembly, even if the assembly was compiled via /debug:pdbonly, and
the debugger pops up. The JIT compiler compiles code on the first call to a method,
and the code that it generates is debuggable because JIT knows that a debugger is
attached.

791

Debugging and Error Handling Techniques

24_576100 ch21.qxd 10/6/05 9:38 PM Page 791

IIS versus ASP.NET Development Server
ASP.NET greatly simplifies your Web developing experience by enabling you to develop applications
without IIS (Internet Information Server — the Web server) on your developer machine. Rather than the
traditional style of creating a virtual directory and mapping it to a physical directory, a directory can be
opened as a Web site simply by telling Visual Studio that it is a Web site. When you open a Web site from
the File menu, the first option on the list of places to open from is the file system. Visual Studio considers
any folder that you open to be the root of a Web site. Other options, of course, are opening Web sites
from your local IIS instance, FTP, or source control.

Using the IIS option works much as it does in previous versions of Visual Studio with a few convenient
changes such as the capability to create a Web site or map a virtual directory directly from the Open Web
Site dialog. However, more interesting stuff happens after you open a Web site from the file system.

By default, Web sites that exist only on the file system have a “just-in-time” Web server instantiated called
the ASP.NET Development Server. The small Web server hosts the exact same ASP.NET page
rendering at runtime that is hosted within IIS on a deployed production site. The page rendering behavior
should be identical under the small server as it is under IIS. You should be aware of a few important
differences and specific caveats to ensure a smooth transition from development to production.

Create a new Web site by selecting File ➪ New Web Site and immediately pressing F5 to begin a debugging
session. You are greeted with a Debugging Not Enabled dialog box. The first option automatically adds a
new web.config file with debugging enabled. (Earlier versions of Visual Studio required a tedious
manual process.) Click OK and balloon help appears in the system tray announcing that the ASP.NET
Development Server has started up. It also shows what random high-number port the Web server has
selected on the local host. When you close your browser and stop your debugging session, the tiny Web
server shuts down.

The ASP.NET Development Server is an application, not a service. It is not a replacement for IIS, nor
does it try to be. It’s really just a broker that sits between the developer and the ASP.NET page renderer,
and it contains very few, if any, of the security benefits that IIS includes. It is loosely based on a .NET 1.x
project code-named Cassini that is downloadable from http://asp.net/Projects/Cassini/
Download/Default.aspx. This project was a sample meant to illustrate how to use the System.Web
.Hosting namespace. The Cassini project was the grandparent and now the ASP.NET Development
Server is a first-class member of the Visual Studio product family. Including this tiny Web Server with
the Development Environment also allows Visual Studio 2005 to be used on Windows XP Home systems
that are unable to run IIS.

The small Web server runs under the same user context that runs Visual Studio. If your application
requires a specific security context, such as an anonymous user or specific domain user, consider using
IIS as your development Web server. Additionally, because the Web server starts up on a port other than
port 80, be sure to use best practices while developing your site’s navigation scheme. Often developers
assume their site’s URL will not include a port number (it will default to port 80), that their site may
appear within a specific subdomain (bar.foo.com), or that their site will appear within a subdirectory
(www.foo.com/bar). Consider making your navigation relative to the virtual root of your application so
your application is resilient enough to be run in many contexts.

792

Chapter 21

24_576100 ch21.qxd 10/6/05 9:38 PM Page 792

Starting a Debugging Session
There are a number of ways to enter an interactive debugging session with ASP.NET. Visual Studio can
fire up the ASP.NET Worker Process, load your newly compiled Web site and attach the debugging to
the Worker Process automatically. Or, you can attach a debugger to a site that is already running. Visual
Studio also includes a new simpler remote debugging tool for cross-machine debugging.

F5 Debugging
When you start debugging an ASP.NET application, Visual Studio takes into consideration all the Start
options within your project properties. Just as ASP.NET 1.x Visual Studio can be set to launch the
browser on a specific page, the new version allows you to start debugging using the currently selected
page. The specific page has been selected so that the Visual Studio debugger can automatically attach the
correct process, which might be the Visual Studio Web Server, the ASP.NET Worker Process, or a remote
debug monitor.

Attaching to a Process
It’s often convenient to jump into an interactive debugging session of a Web site that is already running,
and at known state, rather than starting an application from scratch each time you debug. To begin
debugging a site that is already running, from Visual Studio’s Debug menu, select Attach to Process.
The dialog has been improved from previous versions of Visual Studio and now includes a Refresh
button and simplifies most common debugging use cases by showing only those processes that belong
to the user and that are in the currently running session.

Also included is a transport drop-down with the default transport selected. The default allows you to
select processes on your computer or on a remote computer that’s running the Remote Debugging
Monitor. Other options are there for smart client or unmanaged debugging.

The only difference between starting a Debug session via F5 and attaching to a process manually is that
when you debug via F5, Visual Studio automatically starts up a browser or external application for you.
Remember that if you use Attach to Process, it is assumed that you have already done the work of start-
ing up the process. The ASP.NET Worker Processes under IIS will start up when the site has been hit
with an HttpRequest at least once. The debugger can now attach to the running Worker Process.

Sometimes you want to debug an ASP.NET application that is already running on your computer. If that
application was not started by Visual Studio and you want to attach to it, select Attach to Process from
the Debug menu and choose either ASPNET_WP.exe (if you’re running Windows XP) or W3WP.exe (if
you are running Windows 2003 server). Be careful that you are not trying to debug an application that is
actively servicing other users or you may ruin their experience.

Simpler Remote Debugging
Remote debugging got simpler with this version of Visual Studio. However, in the interest of security,
you must have the appropriate credentials to perform remote debugging. You’ll find a Remote
Debugger folder in C:\Program Files\Microsoft Visual Studio 8\Common7\IDE. In Figure 21-10,
Explorer is shown open and the Remote Debugger folder is selected and has been configured as a
shared directory for access over the local network.

793

Debugging and Error Handling Techniques

24_576100 ch21.qxd 10/6/05 9:38 PM Page 793

Figure 21-10

To begin, remote debugging must be set up on the machine that contains the application you want to
debug. Rather than performing a complicated installation, you can now use the Remote Debug Monitor,
and an application that can simply be run off a file share. The easiest scenario has you sharing these
components directly from your Visual Studio machine and then running msvsmon.exe off the share, as
seen in Figure 21-11.

Figure 21-11

Simply running the Remote Debug Monitor executable off the file share can make remote ASP.NET
debugging of an already-deployed applications much simpler, although you still need to manually
attach to the ASP.NET worker process because automatic attaching is not supported.

794

Chapter 21

24_576100 ch21.qxd 10/6/05 9:38 PM Page 794

You are allowed to debug a process that’s running under your account and password without any
special permissions. If you need to debug a process running under another account name, such as an
ASP.NET worker process running as a user who is not you, you must be an administrator on the
machine running the process.

The most important thing to remember when debugging remotely is this: You need to get the user
account that is running as Visual Studio to map somehow to a legitimate user account on the machine
running the Remote Debug Monitor (msvsmon.exe) machine and vice versa. The easiest way to do this
is to create a local user account on both computers with the same username and password. To run
msvsmon as a user other than Visual Studio, you must create two user accounts on each computer.

If one of the machines is located on a domain, be aware that domain account can be mapped to a local
account. You create a local user account on both computers. However, if you pick the same username
and password as your domain account, Visual Studio can be run as a domain account. Figure 21-12
shows the machine name is SCOTTPC and the username is Wrox. A Wrox user was created on both
machines with the same password on each.

For Windows XP machines on a workgroup, the security option entitled Network Security: Shared and
Security Model for Local Accounts affects your use of the Remote Debug Monitor. If this option is set to
Guest Only — Local Users Authenticate As Guest, then remote debugging fails and shows you a dialog.
Configure this via the Local Security Policy MMC-based administrative tool. The warning doesn’t
affect Windows 2000 or Windows Server 2003, or Windows XP-based computers that are joined to a
domain.

Figure 21-12

Debugging Running Windows XP Service Pack 2
Make sure that TCP Port 80 is set to allow ASP.NET and IIS to communicate with the remote machine.
Try to keep the scope limited, using options such as Local Subnet Only, and avoid exposing your Web
server to the Internet during development. Also include TCP Port 135, which allows DCOM to
communicate with remote machines as well as with UDP Ports 4500 and 500 for IPSec-based security.
Lastly, confirm that the Remote Debug Monitor (msvsmon.exe) is in the list of exceptions to the firewall.
Again, avoid exposing your debugging session to the outside world. Remote debugging is usually a last
resort if the bug isn’t reproducible for whatever reason on the developer workstation.

795

Debugging and Error Handling Techniques

24_576100 ch21.qxd 10/6/05 9:38 PM Page 795

New Tools to Help You with Debugging
The debugging experience in Visual Studio has improved arguably more than any other aspect of the
environment. A number of new tools, some obvious, some more subtle, assist you in every step of the
debug session.

Debugger Datatips
Previous versions of Visual Studio gave you tooltips when the user hovered the mouse over variables of
simple types. Visual Studio 2005 offers datatips, allowing. complex types to be explored using a modeless
tree-style view that acts like a tooltip and provides much more information. After you traverse the tree
to the node that you’re interested in, that simple type can be viewed using a visualizer by clicking the
small magnifying glass icon, as seen in Figure 21-13.

Figure 21-13

Data Visualizers
As you see in Figure 21-13, a simple type can be viewed using any number of data visualizers. For
example, if a simple variable such as a string contains a fragment of XML, you might want to visualize
that data in a style that’s more appropriate for the data’s native format, as shown in Figure 21-14.

Figure 21-14

The visualizers are straightforward to write and, although Visual Studio ships with default visualizers for
text, HTML, XML, and DataSets, expect to see a flood of new visualizers appearing on the Internet with
support for images, collection classes, and more. The result is a rich, unparalleled debugging experience.

796

Chapter 21

24_576100 ch21.qxd 10/6/05 9:38 PM Page 796

Error Notifications
During an interactive debugging session, Visual Studio now strives to assist you with informative
Error Notifications. These notifications not only report on events like unhandled exceptions, but also
offer context-sensitive troubleshooting tips and next steps for dealing with the situation. Figure 21-15
shows an unhandled NullReferenceException along with the good advice that we might try using
the “new” keyword to create an object instance before using it. Oops!

Figure 21-15

Edit and Continue (Lack of) Support, or Edit and Refresh
Visual Basic 6 was all about developing things quickly, and its most powerful feature was the Edit and
Continue feature, which gave you capability to change code during a debugging session without restarting
the session. In break mode, you could modify code fix bugs and move on. The 2.0 version of the CLR has
restored this feature for both C# and Visual Basic. Although this has a large number of developers cheering,
unfortunately this feature is not available to ASP.NET developers.

In ASP.NET, your assembly is compiled not by Visual Studio, but by the ASP.NET runtime using the
same technique it does during a normal Web page request by a browser. To cooperate with the debugger
and support Edit and Continue within ASP.NET, a number of fantastically complex modifications to
ASP.NET runtime would have been required by the development team. Rather than including support
for this feature, ASP.NET developers can use page recycling.

This means that code changes are made during a debugging session, and then the whole page is
refreshed via F5, automatically recompiled, and re-executed. Basically, ASP.NET 2.0 includes much
improved support for Edit and Refresh, but not for Edit and Continue.

Just My Code Debugging
A new concept in the .NET 2.0 CLR is called Just My Code debugging. Any method in code can be explicitly
marked with the new attribute [DebuggerNonUserCode]. Using this explicit technique and a number of
other heuristic methods internal to the CLR, the debugger silently skips over code that isn’t important to
the code at hand. You can find the new preference Enable Just My Code in Tools ➪ Options ➪ Debugging.

797

Debugging and Error Handling Techniques

24_576100 ch21.qxd 10/6/05 9:38 PM Page 797

The [DebuggerHidden] attribute is still available in .NET 2.0 and hides methods from the
debugger, regardless of the user’s Just My Code preference. The 1.1 attribute [DebuggerStepThrough]
tells the debugger to step through, rather than into, any method to which it’s applied; the
[DebuggerNonUserCode] attribute is a much more pervasive and complete implementation
that works at runtime on delegates, virtual functions, and any arbitrarily complex code.

Be aware that these attributes and this new user option exist to help you debug code effectively and
not be fooled by any confusing call stacks. While these can be very useful, be sure not to use them on
your components until you’re sure you won’t accidentally hide the very error you’re trying to debug.
Typically these attributes are used for components such as proxies or thin shim layers.

Tracepoints
Breakpoints by themselves are useful for stopping execution either conditionally or unconditionally.
Standard breakpoints break always. Conditional breakpoints cause you to enter an interactive debug-
ging session based on a condition. Tracing is useful to output the value of a variable or assertion to the
debugger or to another location. If you combine all these features, what do you get? Tracepoints, a new
and powerful Visual Studio feature. Tracepoints can save you from hitting breakpoints dozens of times
just to catch an edge case variable value. They can save you from covering your code with breakpoints
to catch a strange case.

To insert a Tracepoint, right-click in the code editor and select Breakpoint ➪ Insert Tracepoint, or select
New Breakpoint ➪ New File Tracepoint from the Debug menu. Either way, you get the dialog shown in
Figure 21-16. The icon that indicates a breakpoint is a red circle, and the icon for a Tracepoint is a red
diamond. Arbitrary strings can be created from the dialog using pseudo-variables in the form of key-
words like $CALLSTACK or $FUNCTION, as well as the values of variables in scope placed in curly braces.
In Figure 21-16 , the value of i.FirstName (placed in curly braces) is shown in the complete string with
the Debug output of Visual Studio.

SQL Stored Proc Debugging
Database projects are file-based projects that let you manage and execute database queries. You can add
your existing SQL scripts to the project or create new ones and edit them within Visual Studio. Database
projects and SQL debugging are not available in the Express or Standard versions of Visual Studio. They
are available only in the Professional or Team Edition Visual Studio SKUs/versions.

When debugging database applications, you can’t use Step Into (F11) to step between code in the
application tier into the code in SQL Server 2005 (be it T-SQL or CLR SQL). However, you can set a
breakpoint in the stored procedure code and use Continue (F5) to execute code to that set break point.

When debugging SQL on SQL Server 2005, be aware of any software or hardware firewalls you may be
running. Windows XP SP2’s software firewall will warn you what you’re trying to do. Be sure to select
“unblock” in any warning dialogs to ensure that SQL Server 2005 and Visual Studio can communicate.

If you are using a SQL account to connect to the SQL Server, make sure the Windows User Account you
run Visual Studio under is also an administrator on the SQL Server machine. You can add accounts to
SQL Server’s sysadmin privilege using the SQL command sp_addsrvrolemember ‘Domain\Name’,
‘sysadmin’. Of course, never do this in production; and better yet, do your debugging on a machine
with everything installed locally.

798

Chapter 21

24_576100 ch21.qxd 10/6/05 9:38 PM Page 798

If you’re using the NT Authentication model on the SQL Server 2005, make sure that account has
permissions to run the sp_enable_sql_debug stored procedure. You can give account access to this
stored procedure by using the SQL commands CREATE USER UserName FOR LOGIN ‘Domain\Name’
followed by GRANT EXECUTE ON sp_enable_sql_debug TO UserName. This creates a SQL user that is
associated directly with a specific Windows User and then explicitly grants permissions to debug TSQL
to that user. On SQL Server 2000, the user must have access to the extended stored procedure
sp_sdidebug.

Figure 21-16

For slightly older installations such as Windows 2000 and Windows NT 4, or if you are using SQL 2000,
be sure to visit MSDN for the latest details and tools in this space. The MSDN URL for debugging SQL
Server is http://msdn2.microsoft.com/library/zefbf0t6.

799

Debugging and Error Handling Techniques

24_576100 ch21.qxd 10/6/05 9:38 PM Page 799

Exception and Error Handling
When an exception occurs in your ASP.NET application code, you can handle it in a number of ways,
but the best approach is a multi-pronged one:

❑ Catch what you expect:

❑ Use a Try/Catch around error-prone code. This can always catch specific exceptions
that you can deal with, such as System.IO.FileNotFoundException.

❑ Rather than catching exceptions around specific chunks of code at the page level,
consider using the page-level error handler to catch specific exceptions that might
happen anywhere on the page.

❑ But prepare for unhandled exceptions:

❑ Set the Page.Error property if a specific page should show a specific error at page for
any unhandled exception. This can also be done using the <%@ Page %> directive or the
code behind the property.

❑ Have default error pages for 400 and 500 errors set in your web.config.

❑ Have a boilerplate Application_OnError handler that takes into consideration both
specific exceptions that you can do something about, as well as all unhandled
exceptions that you may want logged to either the event log, a text file, or other
instrumentation mechanism.

The phrase unhandled exception may be alarming, but remember that you don’t do anyone any good
catching an exception that you can’t recover from. Unhandled exceptions are okay if they are just that —
exceptional. For these situations, rely on global exception handlers for logging and friendly error pages
that you can present to the user.

Handling Exceptions on a Page
To handle exceptions at a page level, override the OnError method that System.Web.UI.Page inherits
from the TemplateControl class (see Listing 21-5). Calling Server.GetLastError gives you access to
the exception that just occurred. Be aware that a chain of exceptions may have occurred, and you can use
the ExceptionGetBaseException method to return the root exception.

Why try to catch an exception by adding code everywhere if you can catch and log
exceptions all in one place? A common mistake is creating a try/catch block around
some arbitrary code and catching the least specific exception type —System
.Exception. A rule of thumb is, don’t catch any exception that you can’t do anything
about. Just because an exception can be thrown by a particular method doesn’t mean
you have to catch it. It’s exceptional, remember? Also, there are exception handlers at
both the page and the application level. Catch exceptions in these two centralized
locations rather than all over.

800

Chapter 21

24_576100 ch21.qxd 10/6/05 9:38 PM Page 800

Listing 21-5: Page-level error handling

VB
Protected Overrides Sub OnError(ByVal e As System.EventArgs)

Dim AnError As System.Exception = Server.GetLastError()
If (TypeOf AnError.GetBaseException() Is SomeSpecificException) Then

Response.Write(“Something bad happened!”)
Response.StatusCode = 200
Server.ClearError()
Response.End()

End If
End Sub

C#
protected override void OnError(EventArgs e)
{

System.Exception anError = Server.GetLastError();
if (anError.GetBaseException() is SomeSpecificException)
{

Response.Write(“Something bad happened!”);
Response.StatusCode = 200;
Server.ClearError();
Response.End();

}
}

Handling Application Exceptions
The technique of catching exceptions in a centralized location can be applied to error handling at the
application level in Global.asax, as shown in Listing 21-6. If an exception is not caught on the page,
the web.config is checked for an alternate error page; if there isn’t one, the exception bubbles up to the
application and your user sees a complete call stack.

Listing 21-6: Application-level error handling

VB
Protected Sub Application_Error(sender as Object, ByVal e As System.EventArgs)

Dim bigError As System.Exception = Server.GetLastError()
‘Example checking for HttpRequestValidationException
If (TypeOf AnError.GetBaseException() Is HttpRequestValidationException) Then

System.Diagnostics.Trace.WriteLine(bigError.ToString)
Server.ClearError()

End If
End Sub

C#
protected void Application_Error(Object sender, EventArgs e)
{

System.Exception bigError = Server.GetLastError();
//Example checking for HttpRequestValidationException
if(bigError.GetBaseException() is HttpRequestValidationException)
{

(continued)

801

Debugging and Error Handling Techniques

24_576100 ch21.qxd 10/6/05 9:38 PM Page 801

Listing 21-6: (continued)

System.Diagnostics.Trace.WriteLine(bigError.ToString());
Server.ClearError();

}
}

Unhandled application errors turn into HTTP Status Code 500 and display errors in the browser. These
errors, including the complete calls back and other technical details, may be useful during development,
but are hardly useful at production time. Most often, you want to create an error handler (as shown
previously) to log your error and to give the user a friendlier page to view.

Http Status Codes
Every HttpRequest results in an HttpResponse, and every HttpResponse includes a status code. The
following table describes 11 particularly interesting HTTP status codes.

Status Code Explanation

200 OK Everything went well.

301 Moved Permanently Reminds the caller to use a new, permanent URL rather
than the one he used to get here.

302 Found Returned during a Response.Redirect. This is the way to
say “No, no, look over here right now.”

304 Not Modified Returned as the result of a conditional GET when a
requested document hasn’t been modified. It is the basis
of all browser-based caching. An HTTP message-body
must not be returned when using a 304.

307 Temporary Redirect Redirects calls to ASMX Web services to alternate URLs.
Rarely used with ASP.NET.

400 Bad Request Request was malformed.

401 Unauthorized Request requires authentication from the user.

403 Forbidden Authentication has failed, indicating that the server
understood the requests but cannot fulfill it.

If you ever find yourself trying to catch exceptions of type System.Exception, take a
look at the code to see whether you can avoid it. There’s almost never a reason to do
catch such a non-specific exception, and you’re more likely to swallow exceptions that
can provide valuable debugging. Check the API documentation for the framework
method you are calling — a section specifically lists what exceptions an API call might
throw. Never rely on an exception occurring to get a standard code path to work.

802

Chapter 21

24_576100 ch21.qxd 10/6/05 9:38 PM Page 802

Status Code Explanation

404 Not Found The server has not found an appropriate file or handler
to handle this request. The implication is that this may be
a temporary state. This happens in ASP.NET not only
because a file cannot be found, but also because it may be
inappropriately mapped to an IHttpHandler that was not
available to service the request.

410 Gone The equivalent of a permanent 404 indicating to the
client that it should delete any references to this link if
possible. 404s usually indicate that the server does not
know whether the condition is permanent.

500 Internal Server Error The official text for this error is “The server encountered
an unexpected condition which prevented it from
fulfilling the request,” but this error can occur when
any unhandled exception bubbles all the way up to the
user from ASP.NET.

Any status code greater than or equal to 400 is considered an error and, unless you configure otherwise,
the user will likely see an unfriendly message in his browser. If you have not already handled these
errors inside of the ASP.NET runtime by checking their exception types, or if the error occurred outside
of ASP.NET and you want to show the user a friendly message, you can assign pages to any status code
within web.config, as the following example shows:

<customErrors mode =”On” >
<error statusCode =”500” redirect =”FriendlyMassiveError.aspx” />

</customErrors>

After making a change to the customer errors section of your web.config, make sure a page is available to
be shown to the user. A classic mistake in error redirection is redirecting the user to a page that will cause
an error, thereby getting him stuck in a loop. Use a great deal of care if you have complicated headers or
footers in your application that might cause an error if they appear on an error page. Avoid hitting the
database or performing any other backend operation that requires either user authorization or that the
user’s session be in any specific state. In other words, make sure that the error page is a reliable standalone.

Any status code greater than or equal to 400 increments the ASP.NET Requests
Failed performance counter. 401 increments Requests Failed and Requests Not
Authorized. 404 and 414 increment both Requests Failed and Requests Not Found.
Requests that result in a 500 status code increment Requests Failed and Requests
Timed Out. If you’re going to return status codes, you must realize their effects and
their implications.

803

Debugging and Error Handling Techniques

24_576100 ch21.qxd 10/6/05 9:38 PM Page 803

Summary
This chapter examined the debugging tools available to you for creating robust ASP.NET 2.0
applications. A successful debugging experience includes not only interactive debugging with new
features like datatips, data visualizers, and error notifications, but also powerful options around
configurable tracing and logging of information.

Remote debugging is easier than ever with ASP.NET 2.0, and the capability to write and debug ASP.NET
pages without installing IIS removes yet another layer of complexity from the development process.

Visual Studio 2005 and its extensible new debugging mechanisms will no doubt be expanded in the
coming months by intrepid bloggers and enthusiasts, making debugging even less like the tedious
experience it has been in the past.

804

Chapter 21

24_576100 ch21.qxd 10/6/05 9:38 PM Page 804

File I/O and Streams

Although most of this book concentrates specifically on learning and using the features of
ASP.NET 2.0, .NET provides an enormous amount of additional functionality in other areas of the
Base Class Library (BCL). This chapter examines a few of the common base classes that you can
use to enhance your ASP.NET applications. First, you look at using the frameworks System.IO
namespace to manage files on the local file system. Next, you explore how to use the various
Stream classes within the framework to read from and write different data formats to memory and
the local file system. Finally, you learn how to use the .NET Framework to communicate with
other computers across the Internet using common protocols like HTTP and FTP.

A Word About I/O Security
Although this chapter is not specifically about ASP.NET security, you need to understand
the impact of local system security on what the ASP.NET Worker Process is allowed to do
inside of the IO namespace. Remember that generally, when your code is executed by IIS,
it executes under the context of the ASP.NET Worker Process user account (ASPNET)
and, therefore, your application may be restricted by that account’s security rights. For
example, by default, the ASP.NET Worker Process does not have rights to write to the
local disk. The two main areas that you should look at to get a very basic understanding
of the impact of security on an application are impersonation and user account ACLs.
ASP.NET security is discussed thoroughly in Chapter 18.

Additionally, this chapter demonstrates how to use classes in the BCL to delete files and
directories and to modify the permissions of directories and files. Recognize that it is
entirely possible to permanently delete important data from your hard drive or change
the permissions of a resource, which would result in you losing the ability to access the
resource. Be very careful when using these classes against the file system.

25_576100 ch22.qxd 10/6/05 9:37 PM Page 805

Working with Drives, Directories, and Files
Many times in your ASP.NET applications, you need to interact with the local file system, reading
directory structures, reading and writing to files, or performing many other tasks. The System.IO
namespace within the .NET Framework makes working with file system directories and files very
easy. While working with the classes in the System.IO namespace, keep in mind that because
your ASP.NET applications are executing on the server, the file system you are accessing is the one
your Web application is running on. You, of course, cannot use an ASP.NET application to access
the end user’s file system.

The DriveInfo Class
You can start working with the System.IO namespace at the top of the directory tree by using
a great new addition to the .NET 2.0 class libraries, the DriveInfo class. This class supplements the
GetLogicalDrives() method of the Directory class included in prior versions of the .NET
Framework. It provides you with extended information on any drive registered with the server’s local
file system. You can get information such as the name, type, size, and status of each drive. Listing 22-1
shows you how to create a DriveInfo object and display local drive information on a Web page.

Listing 22-1: Displaying local drive information

VB
<script runat=”server”>

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Dim drive As New System.IO.DriveInfo(“C:\”)
lblDriveName.Text = drive.Name
lblDriveType.Text = drive.DriveType.ToString()
lblAvailableFreeSpace.Text = drive.AvailableFreeSpace.ToString()
lblDriveFormat.Text = drive.DriveFormat
lblTotalFreeSpace.Text = drive.TotalFreeSpace.ToString()
lblTotalSize.Text = drive.TotalSize.ToString()
lblVolumeLabel.Text = drive.VolumeLabel

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Displaying Drive Information</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<table>
<tr><td>Drive Name:</td><td>

<asp:Label ID=”lblDriveName” runat=”server” Text=”Label” />
</td></tr>
<tr><td>Drive Type:</td><td>

<asp:Label ID=”lblDriveType” runat=”server” Text=”Label”/>
</td></tr>
<tr><td>Available Free Space:</td><td>

<asp:Label ID=”lblAvailableFreeSpace” runat=”server” Text=”Label” />
</td></tr>
<tr><td>Drive Format:</td><td>

806

Chapter 22

25_576100 ch22.qxd 10/6/05 9:37 PM Page 806

<asp:Label ID=”lblDriveFormat” runat=”server” Text=”Label” />
</td></tr>
<tr><td>Total Free Space:</td><td>

<asp:Label ID=”lblTotalFreeSpace” runat=”server” Text=”Label” />
</td></tr>
<tr><td>Total Size:</td><td>

<asp:Label ID=”lblTotalSize” runat=”server” Text=”Label” />
</td></tr>
<tr><td>Volume Label</td><td>

<asp:Label ID=”lblVolumeLabel” runat=”server” Text=”Label” />
</td></tr>

</table>
</div>
</form>

</body>
</html>

C#
<script runat=”server”>

protected void Page_Load(object sender, EventArgs e)
{

System.IO.DriveInfo drive = new System.IO.DriveInfo(@”C:\”);
lblDriveName.Text = drive.Name;
lblDriveType.Text = drive.DriveType.ToString();
lblAvailableFreeSpace.Text = drive.AvailableFreeSpace.ToString();
lblDriveFormat.Text = drive.DriveFormat;
lblTotalFreeSpace.Text = drive.TotalFreeSpace.ToString();
lblTotalSize.Text = drive.TotalSize.ToString();
lblVolumeLabel.Text = drive.VolumeLabel;

}
</script>

One of the more interesting properties in the sample is the DriveType enumeration. This read-only
enumeration tells you what the drive type is, for example CD-ROM, Fixed, Ram, or Removable. Figure
22-1 shows you what the page looks like when you view it in a browser.

Figure 22-1

807

File I/O and Streams

25_576100 ch22.qxd 10/6/05 9:37 PM Page 807

You can also enumerate through all the drives on the local file system by using the DriveInfo’s static
GetDrives() method. Listing 22-2 shows an example of enumerating through the local file system
drives and adding each drive as a root node to a TreeView control.

Listing 22-2: Enumerating through local file system drives

VB
<script runat=”server”>

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
For Each drive As System.IO.DriveInfo In System.IO.DriveInfo.GetDrives()

Dim node As TreeNode = New TreeNode()
node.Value = drive.Name

‘ Make sure the drive is ready before we access it
If (drive.IsReady) Then

node.Text = drive.Name & _
“ - (free space: “ & drive.AvailableFreeSpace & “)”

Else
node.Text = drive.Name & “ - (not ready)”

End If

Me.TreeView1.Nodes.Add(node)
Next

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Enumerate Local System Drives</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<table>
<tr>

<td style=”width: 100px” valign=”top”>
<asp:TreeView ID=”TreeView1” runat=”server”></asp:TreeView>

</td>
</tr>

</table>
</div>
</form>

</body>
</html>

C#

<script runat=”server”>
protected void Page_Load(object sender, EventArgs e)
{

foreach (System.IO.DriveInfo drive in System.IO.DriveInfo.GetDrives())
{

TreeNode node = new TreeNode();

808

Chapter 22

25_576100 ch22.qxd 10/6/05 9:37 PM Page 808

node.Value = drive.Name;

//Make sure the drive is ready before we access it
if (drive.IsReady)

node.Text = drive.Name +
“ - (free space: “ + drive.AvailableFreeSpace + “)”;

else
node.Text = drive.Name + “ - (not ready)”;

this.TreeView1.Nodes.Add(node);
}

}
</script>

Notice that, in this sample, the drive object’s IsReady property is a read-only property used to test
whether the drive is accessible. If you are enumerating drives, it’s always a good idea to test for this
before attempting to access any of the other drive properties because removable drives and network
drives may not always be available when your code is executed. Figure 22-2 shows what the page looks
like when viewed in the browser.

Figure 22-2

The Directory and DirectoryInfo Classes
Next, you can build on the previous examples and add the capability to browse through the system’s
directory structure. The System.IO namespace contains two classes for working with file system
directories, the Directory and DirectoryInfo classes. The Directory class exposes static methods
you can use to create, move, and delete directories. The DirectoryInfo represents a specific directory
and lets you perform many of the same actions as the Directory class on the specific directory.
Additionally, it enumerates child directories and files.

809

File I/O and Streams

25_576100 ch22.qxd 10/6/05 9:37 PM Page 809

To continue the example, you can use the GetDirectories() method of the DirectoryInfo class to
create a recursive method that loops through each system drive directory tree and adds the directories to
a TreeView control to create a small directory browser. Listing 22-3 shows how to create a recursive
LoadDirectories() method to walk through the local file system’s directory structure.

Listing 22-3: Enumerating file system directories

VB
<script runat=”server”>

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
For Each drive As System.IO.DriveInfo In System.IO.DriveInfo.GetDrives()

Dim node As TreeNode = New TreeNode()
node.Value = drive.Name

If (drive.IsReady) Then
node.Text = drive.Name & _

“ - (free space: “ & drive.AvailableFreeSpace & “)”

LoadDirectories(node, drive.Name)
Else

node.Text = drive.Name & “ - (not ready)”
End If

Me.TreeView1.Nodes.Add(node)
Next

Me.TreeView1.CollapseAll()

End Sub

Private Sub LoadDirectories(ByVal parent As TreeNode, ByVal path As String)

Dim directory As System.IO.DirectoryInfo = _
New System.IO.DirectoryInfo(path)

Try
For Each d As System.IO.DirectoryInfo In directory.GetDirectories()

Dim node As TreeNode = New TreeNode(d.Name, d.FullName)

parent.ChildNodes.Add(node)

‘Recurse the current directory
LoadDirectories(node, d.FullName)

Next
Catch ex As System.UnauthorizedAccessException

parent.Text += “ (Access Denied)”
Catch ex As System.IO.IOException

parent.Text += “ (Unknown Error: “ + ex.Message + “)”
End Try

End Sub
</script>

810

Chapter 22

25_576100 ch22.qxd 10/6/05 9:37 PM Page 810

C#
<script runat=”server”>

protected void Page_Load(object sender, EventArgs e)
{

foreach (System.IO.DriveInfo drive in System.IO.DriveInfo.GetDrives())
{

TreeNode node = new TreeNode();
node.Value = drive.Name;

if (drive.IsReady)
{

node.Text = drive.Name +
“ - (free space: “ + drive.AvailableFreeSpace + “)”;

LoadDirectories(node, drive.Name);
}
else

node.Text = drive.Name + “ - (not ready)”;

this.TreeView1.Nodes.Add(node);
}

this.TreeView1.CollapseAll();
}

private void LoadDirectories(TreeNode parent, string path)
{

System.IO.DirectoryInfo directory = new System.IO.DirectoryInfo(path);

try
{

foreach (System.IO.DirectoryInfo d in directory.GetDirectories())
{

TreeNode node = new TreeNode(d.Name, d.FullName);

parent.ChildNodes.Add(node);

//Recurs the current directory
LoadDirectories(node, d.FullName);

}
}
catch (System.UnauthorizedAccessException e)
{

parent.Text += “ (Access Denied)”;
}
catch (System.IO.IOException e)
{

parent.Text += “ (Unknown Error: “ + e.Message + “)”;
}

}
</script>

811

File I/O and Streams

25_576100 ch22.qxd 10/6/05 9:37 PM Page 811

Figure 22-3 shows what the page should look like in the browser. You should now be able to browse the
directory tree, much as you do in Windows Explorer, by opening and closing the TreeView nodes.

Figure 22-3

Notice that the example continuously creates new instances of the DirectoryInfo class each time
the method executes in order to continue to enumerate the directory tree. You could also extend this
example by displaying some additional properties as part of the Node text, such as the CreationTime
or Attributes.

To perform only a specific action, you don’t have to create an instance of the DirectoryInfo class. You
can simply use the static methods exposed by the Directory class. These methods allow you to create,
read properties from, and delete a directory. Rather than creating an object instance that represents a
specific path and exposes methods that act on that path, the static methods exposed by the Directory
class generally require you to pass the path as a method parameter. Listing 22-4 shows how you can use
the static methods exposed by the Directory class to create, read properties from, and delete a directory.

Remember to be very careful when deleting a folder from your hard drive. It is
possible to permanently delete important data from your system or change
the permissions of a resource, which would result in your losing the ability to
access the resource.

812

Chapter 22

25_576100 ch22.qxd 10/6/05 9:37 PM Page 812

Listing 22-4: Working with the static methods of the Directory class

VB
<script runat=”server”>

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Directory.CreateDirectory(“C:\Wrox”)

If Directory.Exists(“C:\Wrox”) Then

Me.Label1.Text = _
Directory.GetCreationTime(“C:\Wrox”).ToString()

Me.Label2.Text = _
Directory.GetLastAccessTime(“C:\Wrox”).ToString()

Me.Label3.Text = _
Directory.GetLastWriteTime(“C:\Wrox”).ToString()

Directory.Delete(“C:\Wrox”)
End If

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Using Static Methods</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

Creation Time:
<asp:Label ID=”Label1” runat=”server” Text=”Label”></asp:Label>

Last Access Time:
<asp:Label ID=”Label2” runat=”server” Text=”Label”></asp:Label>

Last Write Time:
<asp:Label ID=”Label3” runat=”server” Text=”Label”></asp:Label>

</div>
</form>

</body>
</html>

C#
<script runat=”server”>

protected void Page_Load(object sender, EventArgs e)
{

Directory.CreateDirectory(@”C:\Wrox”);

if (Directory.Exists(@”C:\Wrox”))
{

this.Label1.Text =
Directory.GetCreationTime(@”C:\Wrox”).ToString();

(continued)

813

File I/O and Streams

25_576100 ch22.qxd 10/6/05 9:37 PM Page 813

Listing 12-4: (continued)

this.Label2.Text =
Directory.GetLastAccessTime(@”C:\Wrox”).ToString();

this.Label3.Text =
Directory.GetLastWriteTime(@”C:\Wrox”).ToString();

Directory.Delete(@”C:\Wrox”);
}

}
</script>

When you load this page in the browser, you will see that the Creation Time, Last Access Time, and
Last Write Time are displayed. Additionally, if you open Windows Explorer, you will see that the Wrox
directory has been deleted.

Using Relative Paths and Setting and Getting the Current Directory
When an ASP.NET page is executed, the thread used to execute the code that generates the page, by
default, has a current working directory. It uses this directory as its base directory if you have specified
relative paths in your application. Therefore, if you pass a relative file name into any System.IO class,
the file is assumed to be located in the current working directory.

For example, the default working directory for the ASP.NET Development Server is a directory under
your Visual Studio install root. If you installed Visual Studio in C:\Program Files, your ASP.NET
Development Server working directory would be c:\Program Files\Microsoft Visual Studio 8\
Common7\IDE.

You can find the location of your working directory by using the Directory class’s
GetCurrentDirectory() method. In addition, you can change the current working directory
using the Directory class’s SetCurrentDirectory() method.

Listing 22-5 shows you how to set and then display your working directory.

Listing 22-5: Setting and displaying the application’s working directory

VB
<script runat=”server”>

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Me.Label1.Text = Directory.GetCurrentDirectory()
Directory.SetCurrentDirectory(“C:\Wrox”)
Me.Label2.Text = Directory.GetCurrentDirectory()

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Set and Display the Working Directory</title>
</head>

814

Chapter 22

25_576100 ch22.qxd 10/6/05 9:37 PM Page 814

<body>
<form id=”form1” runat=”server”>
<div>

Old Working Directory:
<asp:Label ID=”Label1” runat=”server” Text=”Label”></asp:Label>

New Working Directory:
<asp:Label ID=”Label2” runat=”server” Text=”Label”></asp:Label>

</div>
</form>

</body>
</html>

C#
<script runat=”server”>

protected void Page_Load(object sender, EventArgs e)
{

this.Label1.Text = Directory.GetCurrentDirectory();
Directory.SetCurrentDirectory(@”C:\Wrox”);
this.Label2.Text = Directory.GetCurrentDirectory();

}
</script>

Note that the directory parameter you specify in the SetCurrentDirectory() method must already
exist; otherwise, ASP.NET throws an exception. Knowing this, it would probably be a good idea to use
the Exists() method of the Directory class to make sure the directory you are specifying does, in fact,
already exist before you try to change the working directory.

When you execute this code, you should see that it displays the original working directory, and then
displays the new working directory after you change it. Figure 22-4 shows what the page looks like
when executed.

Figure 22-4

815

File I/O and Streams

25_576100 ch22.qxd 10/6/05 9:37 PM Page 815

File and FileInfo
Now that you can effectively display and browse a directory tree, you can expand the example even
further by displaying the files located in the directory that is currently selected in your TreeView control

The simplest way to display the files is to bind a FileInfo array to a GridView. This example uses the
GetFiles() method of the DirectoryInfo class because it returns an array of FileInfo objects. You
want to use this method because the FileInfo object enables you to display some properties of each
file. (If you want to display only the file names, you could use the Directory class’s GetFiles()
method, which returns a simple string array of file names.)

Listing 22-6 shows how to use the TreeView control’s SelectedNodeChanged event to bind your
GridView with the file information.

Listing 22-6: Binding a GridView to directory files

VB
<script runat=”server”>

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
For Each drive As System.IO.DriveInfo In System.IO.DriveInfo.GetDrives()

Dim node As TreeNode = New TreeNode()
node.Value = drive.Name

If (drive.IsReady) Then
node.Text = drive.Name & _

“ - (free space: “ & drive.AvailableFreeSpace & “)”

LoadDirectories(node, drive.Name)
Else

node.Text = drive.Name & “ - (not ready)”
End If

Me.TreeView1.Nodes.Add(node)
Next

Me.TreeView1.CollapseAll()

End Sub

Private Sub LoadDirectories(ByVal parent As TreeNode, ByVal path As String)

Dim directory As System.IO.DirectoryInfo = _
New System.IO.DirectoryInfo(path)

Try
For Each d As System.IO.DirectoryInfo In directory.GetDirectories()

Dim node As TreeNode = New TreeNode(d.Name, d.FullName)

parent.ChildNodes.Add(node)

‘Recurse the current directory

816

Chapter 22

25_576100 ch22.qxd 10/6/05 9:37 PM Page 816

LoadDirectories(node, d.FullName)
Next

Catch ex As System.UnauthorizedAccessException
parent.Text += “ (Access Denied)”

Catch ex As Exception
parent.Text += “ (Unknown Error: “ + ex.Message + “)”

End Try
End Sub

Protected Sub TreeView1_SelectedNodeChanged _
(ByVal sender As Object, ByVal e As System.EventArgs)

Dim directory As System.IO.DirectoryInfo = _
New System.IO.DirectoryInfo(Me.TreeView1.SelectedNode.Value)

Me.GridView1.DataSource = directory.GetFiles()
Me.GridView1.DataBind()

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Binding a Gridview </title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<table>
<tr>

<td style=”width: 100px” valign=”top”>
<asp:TreeView ID=”TreeView1” runat=”server”

OnSelectedNodeChanged=”TreeView1_SelectedNodeChanged”>
</asp:TreeView>

</td>
<td valign=top>

<asp:GridView ID=”GridView1” runat=”server”
AutoGenerateColumns=False GridLines=None CellPadding=3>

<Columns>
<asp:BoundField DataField=”Name” HeaderText=”Name”

HeaderStyle-HorizontalAlign=Left
HeaderStyle-Font-Bold=true />

<asp:BoundField DataField=”Length” HeaderText=”Size”
ItemStyle-HorizontalAlign=Right
HeaderStyle-HorizontalAlign=Right
HeaderStyle-Font-Bold=true />

<asp:BoundField DataField=”LastWriteTime”
HeaderText=”Date Modified”
HeaderStyle-HorizontalAlign=Left

(continued)

817

File I/O and Streams

25_576100 ch22.qxd 10/6/05 9:37 PM Page 817

Listing 22-6: (continued)

HeaderStyle-Font-Bold=true />
</Columns>

</asp:GridView>
</td>

</tr>
</table>

</div>
</form>

</body>
</html>

C#
<script runat=”server”>

protected void Page_Load(object sender, EventArgs e)
{

foreach (System.IO.DriveInfo drive in System.IO.DriveInfo.GetDrives())
{

TreeNode node = new TreeNode();
node.Value = drive.Name;

// Make sure the drive is ready before we access it
if (drive.IsReady)

node.Text = drive.Name +
“ - (free space: “ + drive.AvailableFreeSpace + “)”;

else
node.Text = drive.Name + “ - (not ready)”;

this.TreeView1.Nodes.Add(node);
}

}

private void LoadDirectories(TreeNode parent, string path)
{

System.IO.DirectoryInfo directory = new System.IO.DirectoryInfo(path);

try
{

foreach (System.IO.DirectoryInfo d in directory.GetDirectories())
{

TreeNode node = new TreeNode(d.Name, d.FullName);

parent.ChildNodes.Add(node);

//Recurse the current directory
LoadDirectories(node, d.FullName);

}
}
catch (System.UnauthorizedAccessException e)
{

parent.Text += “ (Access Denied)”;
}

818

Chapter 22

25_576100 ch22.qxd 10/6/05 9:37 PM Page 818

catch (Exception e)
{

parent.Text += “ (Unknown Error: “ + e.Message + “)”;
}

}

protected void TreeView1_SelectedNodeChanged(object sender, EventArgs e)
{

System.IO.DirectoryInfo directory =
new System.IO.DirectoryInfo(this.TreeView1.SelectedNode.Value);

this.GridView1.DataSource = directory.GetFiles();
this.GridView1.DataBind();

}
</script>

Figure 22-5 shows what your Web page looks like after you have selected a directory and your grid has
been bound to the FileInfo array.

Figure 22-5

Keep in mind that, as in the Load Directory example, you can also enumerate though the FileInfo
array to display the information. Listing 22-7 shows you how to enumerate through the FileInfo array
and display the properties to the page.

819

File I/O and Streams

25_576100 ch22.qxd 10/6/05 9:37 PM Page 819

Listing 22-7: Manually enumerating directory files

VB
For Each (System.IO.FileInfo file in dir.GetFiles(“*.*”))

Response.Write(file.Name & “
”)
Response.Write(file.LastWriteTime.ToString() & “
”)
Response.Write(file.Attributes.ToString() & “
”)

Next

C#
foreach (System.IO.FileInfo file in dir.GetFiles(“*.*”))
{

Response.Write(file.Name + “
”);
Response.Write(file.LastWriteTime.ToString() + “
”);
Response.Write(file.Attributes.ToString() + “
”);

}

Listing 22-7 also shows that you can provide a file filter to the GetFiles() method. This allows you to
limit the results from the method to specific file extensions or to files matching a specific file name part.

Working with Paths
Although working with files and directories has been pretty easy, even going all the way back to good
old ASP, one of the most problematic areas has always been working with paths. Many lines of code
have been written by developers to deal with concatenating partial paths together, making sure files
have extensions, evaluating those extensions, stripping file names off of paths, and even more.

Thankfully, the .NET Framework provides you with a class just for dealing with paths. The
System.IO.Path class exposes a handful of static methods that make dealing with paths a snap.
The following table lists the static methods exposed by the Path class.

Method Description

ChangeExtension Changes the extension of the provided path string to the
provided new extension.

Combine Returns a single combined path from two partial path
strings.

GetDirectoryName Returns the directory or directories of the provided path.

GetExtension Returns the extension of the provided path.

GetFileName Returns the file name of the provided path.

GetFileNameWithoutExtension Returns the file name without its extension of the provided
path.

GetFullPath Given a non-rooted path, returns a rooted pathname based
on the current working directory. For example, if the path
passed in is “temp” and the current working directory is
c:\MyWebsite, the method returns C:\MyWebsite\temp.

820

Chapter 22

25_576100 ch22.qxd 10/6/05 9:37 PM Page 820

Method Description

GetInvalidFileNameChars Returns an array of characters that are not allowed in file
names for the current system

GetInvalidPathChars Returns an array of characters that are not allowed in path-
names for the current system.

GetPathRoot Returns the root path.

GetTempFileName Returns a temporary file name, located in the temporary
directory returned by GetTempPath.

GetTempPath Returns the temporary directory name.

HasExtension Returns a Boolean value indicating whether a path has an
extension.

IsPathRooted Returns a Boolean indicating if a path is rooted.

As an example of using the Path class, the application shown in Figure 22-6 lets you enter a path and
then displays the component parts of the path such as the root path (logical drive), the directory, file
name, and extension.

Figure 22-6

821

File I/O and Streams

25_576100 ch22.qxd 10/6/05 9:37 PM Page 821

The GetInvalidPathChars and GetInvalidFileNameChars methods return an array
of characters that are not allowed in path and file names, respectively. Although the specific invalid
characters are dependent on the platform the application is running on, the arrays returned by these
methods will most likely contain elements such as non-printable characters, special Unicode characters,
or characters from non-Latin–based character sets. The characters that your browser is capable of
rendering will depend on your specific platform setup. Characters that your browser is incapable of
rendering properly will display as the generic square box shown in Figure 22-6.

The code in Listing 22-8 shows how the various methods and constant properties of the Path class have
been used to create the application shown in Figure 22-6.

Listing 22-8: Using the Path class

VB
<script runat=”server”>

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
If Page.IsPostBack Then

Me.lblRootPath.Text = Path.GetPathRoot(Me.txtPathName.Text)
Me.lblDirectoryName.Text = Path.GetDirectoryName(Me.txtPathName.Text)
Me.lblFileName.Text = Path.GetFileName(Me.txtPathName.Text)
Me.lblFileNameWithoutExtension.Text = _

Path.GetFileNameWithoutExtension(Me.txtPathName.Text)
Me.lblExtension.Text = Path.GetExtension(Me.txtPathName.Text)

Me.lblTemporaryPath.Text = Path.GetTempPath()
Me.lblDirectorySeparatorChar.Text =

Path.DirectorySeparatorChar.ToString()
Me.lblAltDirectorySeparatorChar.Text =

Path.AltDirectorySeparatorChar.ToString()
Me.lblVolumeSeparatorChar.Text = Path.VolumeSeparatorChar.ToString()
Me.lblPathSeparator.Text = Path.PathSeparator.ToString()

Me.lblInvalidChars.Text =
HttpUtility.HtmlEncode(New String(Path.GetInvalidPathChars()))

Me.lblInvalidFileNameChars.Text =
HttpUtility.HtmlEncode(New String(Path.GetInvalidFileNameChars()))

End If
End Sub

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Using the Path Class</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

Working with the Path Class

Enter a path name:
<asp:TextBox ID=”txtPathName” runat=”server”></asp:TextBox>

<asp:Button ID=”Button1” runat=”server” Text=”Button” />

822

Chapter 22

25_576100 ch22.qxd 10/6/05 9:37 PM Page 822

Root Path =
<asp:Label ID=”lblRootPath” runat=”server” Text=”Label” />

Directory =
<asp:Label ID=”lblDirectoryName” runat=”server” Text=”Label” />

Filename =
<asp:Label ID=”lblFileName” runat=”server” Text=”Label” />

Filename (without extension) =
<asp:Label ID=”lblFileNameWithoutExtension” runat=”server” Text=”Label” />

Extension =
<asp:Label ID=”lblExtension” runat=”server” Text=”Label” />

Temporary Directory =
<asp:Label ID=”lblTemporaryPath” runat=”server” Text=”Label” />

Directory Separator Character =
<asp:Label ID=”lblDirectorySeparatorChar” runat=”server” Text=”Label” />

Alt Directory Separator Character =
<asp:Label ID=”lblAltDirectorySeparatorChar” runat=”server” Text=”Label” />

Volume Separator Character =
<asp:Label ID=”lblVolumeSeparatorChar” runat=”server” Text=”Label” />

Path Separator Character =
<asp:Label ID=”lblPathSeparator” runat=”server” Text=”Label” />

Invalid Path Characters =
<asp:Label ID=”lblInvalidChars” runat=”server” Text=”Label” />

Invalid FileName Characters =
<asp:Label ID=”lblInvalidFileNameChars” runat=”server” Text=”Label” />

</div>
</form>

</body>
</html>

C#
<script runat=”server”>

protected void Page_Load(object sender, EventArgs e)
{

if (Page.IsPostBack)
{

this.lblRootPath.Text =
Path.GetPathRoot(this.txtPathName.Text);

this.lblDirectoryName.Text =

(continued)

823

File I/O and Streams

25_576100 ch22.qxd 10/6/05 9:37 PM Page 823

Listing 22-8: (continued)

Path.GetDirectoryName(this.txtPathName.Text);
this.lblFileName.Text =

Path.GetFileName(this.txtPathName.Text);
this.lblFileNameWithoutExtension.Text =

Path.GetFileNameWithoutExtension(this.txtPathName.Text);
this.lblExtension.Text =

Path.GetExtension(this.txtPathName.Text);

this.lblTemporaryPath.Text = Path.GetTempPath();
this.lblDirectorySeparatorChar.Text =

Path.DirectorySeparatorChar.ToString();
this.lblAltDirectorySeparatorChar.Text =

Path.AltDirectorySeparatorChar.ToString();
this.lblVolumeSeparatorChar.Text = Path.VolumeSeparatorChar.ToString();
this.lblPathSeparator.Text = Path.PathSeparator.ToString();

this.lblInvalidChars.Text =
HttpUtility.HtmlEncode(new String(Path.GetInvalidPathChars()));

this.lblInvalidFileNameChars.Text =
HttpUtility.HtmlEncode(new String(Path.GetInvalidFileNameChars()));

}
}

</script>

File and Directory Properties,
Attributes, and Access Control Lists

Finally, this section explains how you can access and modify file and directory properties, attributes, and
Access Control Lists.

Samples in this section use a simple text file called TextFile.txt to demonstrate the concepts. You
can either create this file or substitute your own file in the sample code. The samples assume the file has
been added to the Web site and use the Server.MapPath method to determine the full filepath.

Properties and Attributes
Files and directories share certain properties that you can use to determine the age of a file or directory,
when it was last modified, and what attributes have been applied. These properties can be viewed by
opening the file’s Properties dialog. You can open this dialog from Windows Explorer by either right-
clicking on the file and selecting Properties from the context menu, or selecting Properties from the File
menu. Figure 22-7 shows the file’s Properties window for the text document.

Both the DirectoryInfo and the FileInfo classes let you access these properties and modify them.
Listing 22-9 shows you an example of displaying the file properties.

824

Chapter 22

25_576100 ch22.qxd 10/6/05 9:37 PM Page 824

Listing 22-9: Displaying and modifying the file properties

VB
Dim file As New System.IO.FileInfo(Server.MapPath(“TextFile.txt”))
Response.Write(“Location: “ & file.FullName)
Response.Write(“Size: “ & file.Length)
Response.Write(“Created: “ & file.CreationTime)
Response.Write(“Modified: “ & file.LastWriteTime)
Response.Write(“Accessed: “ & file.LastAccessTime)
Response.Write(“Attributes: “ & file.Attributes)

C#
System.IO.FileInfo file = new System.IO.FileInfo(Server.MapPath(“TextFile.txt”));
Response.Write(“Location: “ & file.FullName);
Response.Write(“Size: “ & file.Length);
Response.Write(“Created: “ & file.CreationTime);
Response.Write(“Modified: “ & file.LastWriteTime);
Response.Write(“Accessed: “ & file.LastAccessTime);
Response.Write(“Attributes: “ & file.Attributes);

Figure 22-7

825

File I/O and Streams

25_576100 ch22.qxd 10/6/05 9:37 PM Page 825

Access Control Lists
Although getting the properties and attributes is useful, what many developers need is the capability to
actually change the Access Control Lists, or ACLs — pronounced Ackels — on directories and files. ACLs are
the way resources such as directories and files are secured in the NTFS file system, which is the file system
used by Windows XP, NT 4.0, 2000, and 2003. You can view a file’s ACLs by selecting the Security tab from
the file’s Properties dialog. Figure 22-8 shows the ACLs set for the TextFile.txt file you created.

Figure 22-8

Using the new System.AccessControl namespace in the .NET Framework, you can query the file system
for the ACL information and display it in a Web page, as shown in Listing 22-10.

Listing 22-10: Access Control List information

VB
<script runat=”server”>

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
‘ retrieve the AccessControl information for this file
Dim sec As New System.Security.AccessControl.FileSecurity = _

File.GetAccessControl(Server.MapPath(“TextFile.txt”))

Me.Label1.Text = _
sec.GetOwner(typeof(System.Security.Principal.NTAccount)).Value

‘ retrieve the collection of access rules
Dim auth As New AuthorizationRuleCollection = _

826

Chapter 22

25_576100 ch22.qxd 10/6/05 9:37 PM Page 826

sec.GetAccessRules(true, true, _
typeof (System.Security.Principal.NTAccount))

Dim tc As TableCell
‘ loop through the rule collection and add a table row for each rule
For Each (r As FileSystemAccessRule In auth)

Dim tr As New TableRow()

tc = New TableCell()
tc.Text = r.AccessControlType.ToString() deny or allow
tr.Cells.Add(tc)

tc = New TableCell()
tc.Text = r.IdentityReference.Value who
tr.Cells.Add(tc)

tc = New TableCell()
tc.Text = r.InheritanceFlags.ToString()
tr.Cells.Add(tc)

tc = New TableCell()
tc.Text = r.IsInherited.ToString()
tr.Cells.Add(tc)

tc = New TableCell()
tc.Text = r.PropagationFlags.ToString()
tr.Cells.Add(tc)

tc = New TableCell()
tc.Text = r.FileSystemRights.ToString()
tr.Cells.Add(tc)

Table1.Rows.Add(tr)
Next

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Displaying ACL Information</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<p>File Owner:
<asp:Label ID=”Label1” runat=”server” Text=”Label /></p>

<p>
Access Rules:

<asp:Table ID=”Table1” runat=”server” CellPadding=”2” GridLines=Both>

<asp:TableRow>
<asp:TableHeaderCell>Control Type</asp:TableHeaderCell>
<asp:TableHeaderCell>Identity</asp:TableHeaderCell>
<asp:TableHeaderCell>Inheritance Flags</asp:TableHeaderCell>
<asp:TableHeaderCell>Is Inherited</asp:TableHeaderCell>

(continued)

827

File I/O and Streams

25_576100 ch22.qxd 10/6/05 9:37 PM Page 827

Listing 22-10: (continued)

<asp:TableHeaderCell>Propagation Flags</asp:TableHeaderCell>
<asp:TableHeaderCell>File System Rights</asp:TableHeaderCell>

</asp:TableRow>
</asp:Table>
</p>

</div>
</form>

</body>
</html>

C#
<script runat=”server”>

protected void Page_Load(object sender, EventArgs e)
{

// retrieve the AccessControl information for this file
System.Security.AccessControl.FileSecurity sec =

File.GetAccessControl(Server.MapPath(“TextFile.txt”));

this.Label1.Text =
sec.GetOwner(typeof(System.Security.Principal.NTAccount)).Value;

// retrieve the collection of access rules
AuthorizationRuleCollection auth =

sec.GetAccessRules(true, true,
typeof (System.Security.Principal.NTAccount))

TableCell tc;
// loop through the rule collection and add a table row for each rule
foreach (FileSystemAccessRule r in auth)
{

TableRow tr = new TableRow();

tc = new TableCell();
tc.Text = r.AccessControlType.ToString(); // deny or allow
tr.Cells.Add(tc);

tc = new TableCell();
tc.Text = r.IdentityReference.Value; // who
tr.Cells.Add(tc);

tc = new TableCell();
tc.Text = r.InheritanceFlags.ToString();
tr.Cells.Add(tc);

tc = new TableCell();
tc.Text = r.IsInherited.ToString();
tr.Cells.Add(tc);

tc = new TableCell();
tc.Text = r.PropagationFlags.ToString();

828

Chapter 22

25_576100 ch22.qxd 10/6/05 9:37 PM Page 828

tr.Cells.Add(tc);

tc = new TableCell();
tc.Text = r.FileSystemRights.ToString();
tr.Cells.Add(tc);

Table1.Rows.Add(tr);
}

}
</script>

Figure 22-9 shows what the page looks like when it is executed. Note that the Identity column might be
different depending on whom you are logged in as when you run the page and what security mode the
application is running under (Integrated Windows Authentication, Basic, or Anonymous).

Figure 22-9

Now let’s look at actually modifying the ACL lists. In this example, you give a user explicit Full Control
rights over the TextFile.txt file. You can use either an existing user or create a new test User account
in Windows to run this sample. Listing 22-11 shows how to add an access rule to the TextFile.txt file.

Listing 22-11: Adding a rule to the Access Control List

VB
Dim sec As System.Security.AccessControl.FileSecurity = _

System.IO.File.GetAccessControl(Server.MapPath(“TextFile.txt”))

sec.AddAccessRule(_
New System.Security.AccessControl.FileSystemAccessRule(_

“DEMOXP\TestUser”, _
System.Security.AccessControl.FileSystemRights.FullControl, _
System.Security.AccessControl.AccessControlType.Allow _
) _

(continued)

829

File I/O and Streams

25_576100 ch22.qxd 10/6/05 9:37 PM Page 829

Listing 22-11: (continued)

)

File.SetAccessControl(Server.MapPath(“TextFile.txt”),sec)

C#
System.Security.AccessControl.FileSecurity sec =

System.IO.File.GetAccessControl(Server.MapPath(“TextFile.txt”));

sec.AddAccessRule(
new System.Security.AccessControl.FileSystemAccessRule(

@”DEMOXP\TestUser”,
System.Security.AccessControl.FileSystemRights.FullControl,
System.Security.AccessControl.AccessControlType.Allow
)

);

File.SetAccessControl(Server.MapPath(“TextFile.txt”),sec);

There are several things to notice in this code sample. First, notice that you are passing three parameters to
the FileSystemAccessRule constructor. The first parameter is the user you want to give rights to; change
this value to a user on your specific system. Also notice that you must specify the full DOMAIN\USER-
NAME for the user. Next, notice that, in the code, you are using the FileSystemRights enumeration to
specify exactly which rights you want to give to this user. You can specify multiple rights by using a
bitwise And operator, as shown in the following:

new System.Security.AccessControl.FileSystemAccessRule(
“DEMOXP\TestUser”,
System.Security.AccessControl.FileSystemRights.Read &

System.Security.AcccessControl.FileSystemRights.Write,
System.Security.AccessControl.AccessControlType.Allow

)

After running this code, take a look at the Security tab in the file’s Properties dialog and you should see
that the user has been added to the Access Control List and allowed Full Control. Figure 22-10 shows
what the dialog should look like.

Now remove the ACL you just added by running essentially the same code, but using the
RemoveAccessRule method rather than the AddAccessRule method. Listing 22-12 shows this code.

Listing 22-12: Removing the rule from the Access Control List

VB
Dim sec As System.Security.AccessControl.FileSecurity = _

System.IO.File.GetAccessControl(Server.MapPath(“TextFile.txt”))

sec.RemoveAccessRule(_
new System.Security.AccessControl.FileSystemAccessRule(_

“DEMOXP\TestUser”, _
System.Security.AccessControl.FileSystemRights.FullControl, _

830

Chapter 22

25_576100 ch22.qxd 10/6/05 9:37 PM Page 830

System.Security.AccessControl.AccessControlType.Allow _
) _

)

File.SetAccessControl(Server.MapPath(“TextFile.txt”),sec)

C#
System.Security.AccessControl.FileSecurity sec =

File.GetAccessControl(Server.MapPath(“TextFile.txt”));

sec.RemoveAccessRule(
new System.Security.AccessControl.FileSystemAccessRule(

@”DEMOXP\TestUser”,
System.Security.AccessControl.FileSystemRights.FullControl,
System.Security.AccessControl.AccessControlType.Allow)

);

File.SetAccessControl(Server.MapPath(“TextFile.txt”),sec);

If you open the file Properties dialog again, you see that the user has been removed from the Access
Control List.

Figure 22-10

831

File I/O and Streams

25_576100 ch22.qxd 10/6/05 9:37 PM Page 831

Reading and Writing Files
Now that you have learned how to manage the files on the local system, this section shows you how to
use the .NET Framework to perform input/output (I/O) operations, such as reading and writing, on
those files. The .NET Framework makes performing I/O very easy because it uses a common model of
reading or writing I/O data; so regardless of the source, virtually the same code can be used. The model is
based on two basic concepts, Stream classes and Reader/Writer classes. Figure 22-11 shows the basic I/O
model .NET uses and how Streams, Readers, and Writers work together to make it possible to transfer
data to and from any number of sources in any number of formats. Note that the diagram shows only
some of the Streams and Reader/Writer pairs in the .NET Framework.

Figure 22-11

In this section, you dive deeper into learning how Streams, Readers, and Writers work and how .NET
makes it easy to use them to transfer data.

Streams
Regardless of the type of I/O operation you are performing in .NET, if you want to read or write data
you eventually use a stream of some type. Streams are the basic mechanism .NET uses to transfer data to
and from its underlying source, be it a file, communication pipe, or TCP/IP socket. The Stream class
provides the basic functionality to read and write I/O data, but because the Stream class is marked as
abstract, you most likely need to use one of the several classes derived from Stream. Each Stream
derivation is specialized to make it easy to transfer data from a specific source. The following table lists
some of the classes derived from the Stream class.

File
System

FileStream NetworkStream MemoryStream UnmanagedMemoryStream

System
MemoryNetwork

Stream Class

Stream Classes

Physical Hardware

Writer
ClassesStringWriter TextWriter

StreamWriter BinaryWriter

Reader
ClassesStringReader TextReader

StreamReader BinaryReader

832

Chapter 22

25_576100 ch22.qxd 10/6/05 9:37 PM Page 832

Class Description

System.IO.FileStream Reads and writes files on a file system, as well
as other file-related operating system handles
(including pipes, standard input, standard output,
and so on).

System.IO.MemoryStream Creates streams that have memory as a backing
store instead of a disk or a network connection.
This can be useful in eliminating the need to write
temporary files to disk or to store binary blob
information in a database.

System.IO.UnmanagedMemoryStream Supports access to unmanaged memory using the
existing stream-based model and does not require
that the contents in the unmanaged memory be
copied to the heap.

System.IO.BufferedStream Extends the Stream class by adding a buffering
layer to read and write operations on another
stream. The stream performs reads and writes
in blocks (4096 bytes by default), which can result
in improved efficiency.

System.Net.NetworkStream Implements the standard .NET Framework stream
to send and receive data through network sockets.
It supports both synchronous and asynchronous
access to the network data stream.

System.Security.CryptoStream Enables you to read and write data through
cryptographic transformations.

System.Compression.GZipStream Enables you to compress data using the GZip data
format.

System.Compression.DeflateStream Enables you to compress data using the Deflate
algorithm. For more information, see the RFC 1951:
DEFLATE 1.3 Specification.

System.Security.NegotiateStream Uses the Negotiate security protocol to
authenticate the client, and optionally the server,
in client-server communication.

System.Security.SslStream Necessary for client-server communication
that uses the Secure Socket Layer (SSL) security
protocol to authenticate the server and optionally
the client.

As an example, you can use the FileStream to read a local system file from disk. To prepare for this
sample, open the TextFile.txt you created for the samples in the previous section, enter some text,
and save the file. Listing 22-13 shows the code to read this simple text file.

833

File I/O and Streams

25_576100 ch22.qxd 10/6/05 9:37 PM Page 833

Listing 22-13: Using a FileStream to read a system file

VB
Dim fs As New FileStream (Server.MapPath(“TextFile.txt”), FileMode.Open)
Dim data(fs.Length) As Byte
fs.Read(data, 0, fs.Length)
fs.Close()

C#
FileStream fs = new FileStream(Server.MapPath(“TextFile.txt”), FileMode.Open);
byte[] data = new byte[fs.Length];
fs.Read(data, 0, fs.Length);
fs.Close();

There are several items of note in this code. First, notice that you are creating a byte array the length of
the stream, using the Length property to properly size the array, and then passing it to the Read method.
The Read method fills the byte array with the stream data, in this case reading the entire stream into the
byte array. If you want to read only a chunk of the stream or to start at a specific point in the stream, just
change the parameters you pass to the Read method.

Streams use byte arrays as the basic means of transporting data to and from the underlying data source.
You use a byte array to read data in this sample and, later in the chapter, you learn how to create a byte
array that contains data you can write to a stream.

Second, note that you are explicitly closing the FileStream using the Close method. Streams must
always be explicitly closed in order to release the resources they are using, which in this case is the file.
Failing to explicitly close the stream can cause memory leaks, and it may also deny other users and
applications access to the resource.

A good way to ensure that your streams will always be closed once you are done using them is to wrap
then in a Using statement. Using automatically calls the stream objects Dispose() method once the
Using statement is closed. For the stream object, calling the Dispose method also automatically calls
the streams Close() method. Utilizing the Using statement with stream objects is a good way to
ensure that even if you do forget to explicitly add a call to close the stream, the object will be closed and
the underlying resources released before the object is disposed.

Finally, notice that in the FileStream constructor, you are passing two parameters, the first being
the path to the file you want to read and the other indicating the type of access you want to use when
opening the file. The FileAccess enumeration lets you specify if you will be reading, writing, or both
reading and writing to the opened file.

Thinking about how you will use the opened file can become very important. Here are some issues you
might want to consider when working with files using FileStream:

❑ Will you be reading, writing, or both?

❑ Are you creating a new file, or appending or truncating an existing file?

❑ Should other programs be allowed to access the file while you are using it?

❑ How are you going to read or write the data in the file? Are you looking for a specific location in
the file, or simply reading the entire file from beginning to end?

834

Chapter 22

25_576100 ch22.qxd 10/6/05 9:37 PM Page 834

Thankfully, the FileStream constructor includes a number of overloads that let you explicitly specify
how you will use the file. The IO namespace also includes four enumerations that can help you control
how the FileStream accesses your file:

❑ FileMode: The FileMode enumeration lets you control whether the file is appended, truncated,
created, or opened.

❑ FileAccess: The FileAccess enumeration controls whether the file is opened for reading, writing,
or both.

❑ FileOptions: The FileOptions enumeration controls several other miscellaneous options, such
as random or sequential access, file encryption, or asynchronous file writing.

❑ FileShare: The FileShare enumeration controls the access that other users and programs have
to the file while your application is using it.

Listing 22-14 shows how you can use all these enumerations in the FileStream constructor to write
data to the text file you created earlier. Notice that you are supplying the FileStream constructor
with much more information on how you want to open the file. In this sample, you append another text
string to the file you just read. To do this, set the FileMode to Append and the FileAccess to Write.

Listing 22-14: Using I/O enumerations to control file behavior when writing a file

VB
Dim fs As New FileStream(Server.MapPath(“TextFile.txt”), FileMode.Append, _

FileAccess.Write, FileShare.Read, FileOptions.Asynchronous)
Dim data() As Byte = _

System.Text.Encoding.ASCII.GetBytes(“This is an additional string”)
fs.Write(data, 0, data.Length)
fs.Flush()
fs.Close()

C#
FileStream fs = new FileStream(Server.MapPath(“TextFile.txt”), FileMode.Append,

FileAccess.Write, FileShare.Read, FileOptions.Asynchronous);
byte[] data = System.Text.Encoding.ASCII.GetBytes(“This is an additional string”);
fs.Write(data, 0, data.Length);
fs.Flush();
fs.Close();

You can write your text to the file by encoding a string to a byte array, which contains the information
you want to write. Then, using the Write method, write your byte array to the FileStreams buffer and
use the Flush method to instruct the FileStream to clear its buffer, causing any buffered data to be
committed to the underlying data store. Finally, close the FileStream, releasing any resources it is
using. If you open the TextFile.txt file in Notepad, you should see your string has been appended to
the existing text in the file.

Note that using the Flush method in this scenario is optional because the Close method also calls Flush
internally to commit the data to the data store. However, because the Flush method does not release the
FileStream resources as Close does, it can be very useful if you are going to perform multiple write
operations and do not want to release and then reacquire the resources for each write operation.

835

File I/O and Streams

25_576100 ch22.qxd 10/6/05 9:37 PM Page 835

As you can see, so far reading and writing to files is really quite easy. The good thing is that, as mentioned
earlier, because .NET uses the same basic Stream model for a variety of data stores, you can use these
same techniques for reading and writing to any of the Stream derived classes. Listing 22-15 shows how
you can use the same basic code to write to a MemoryStream, and Listing 22-16 demonstrates reading a
Telnet server response using the NetworkStream.

Listing 22-15: Writing to a MemoryStream

VB
Dim data() As Byte = System.Text.Encoding.ASCII.GetBytes(“This is a string”)
Dim ms As New MemoryStream()
ms.Write(data, 0, data.Length)
ms.Close()

C#
byte[] data = System.Text.Encoding.ASCII.GetBytes(“This is a string”);
MemoryStream ms = new MemoryStream();
ms.Write(data, 0, data.Length);
ms.Close();

Listing 22-16: Reading from a NetworkStream

VB
Dim client As New TcpClient()

‘ Note: You can find a large list of Telnet accessible
‘ BBS systems at http://www.dmine.com/telnet/brieflist.htm

‘ The WCS Online BBS (http://bbs.wcssoft.com)
Dim addr As IPAddress = IPAddress.Parse(“65.182.234.52”)
Dim endpoint As New IPEndPoint(addr, 23)

client.Connect(endpoint)
Dim ns As NetworkStream = client.GetStream()

If (ns.DataAvailable) Then
Dim data(client.ReceiveBufferSize) As Byte
ns.Read(data, 0, client.ReceiveBufferSize)
Dim response As String = System.Text.Encoding.ASCII.GetString(data)

End If
ns.Close()

C#
TcpClient client = new TcpClient();

// Note: You can find a large list of Telnet accessible
// BBS systems at http://www.dmine.com/telnet/brieflist.htm

// The WCS Online BBS (http://bbs.wcssoft.com)
IPAddress addr = IPAddress.Parse(“65.182.234.52”);

836

Chapter 22

25_576100 ch22.qxd 10/6/05 9:37 PM Page 836

IPEndPoint endpoint = new IPEndPoint(addr,23);

client.Connect(endpoint);
NetworkStream ns = client.GetStream();

if (ns.DataAvailable)
{

byte[] bytes = new byte[client.ReceiveBufferSize];
ns.Read(bytes, 0, client.ReceiveBufferSize);
string data = System.Text.Encoding.ASCII.GetString(bytes);

}
ns.Close();

Notice that the concept in both examples is virtually identical. You create a Stream object, read the bytes
into a byte array for processing, and then close the stream. The code varies only in the implementation of
specific Streams.

Readers and Writers
Other main parts of I/O in the .NET Framework are Reader and Writer classes. These classes help
insulate you from having to deal with reading and writing individual bytes to and from Streams, enabling
you to concentrate on the data you are working with. The .NET Framework provides a wide variety of
reader and writer classes, each designed for reading or writing according to a specific set of rules. The first
table following shows a partial list of the readers available in the .NET Framework. The second table lists
the corresponding writer classes.

Class Description

System.IO.TextReader Abstract class that enables the reading of a sequential
series of characters.

System.IO.StreamReader Reads characters from a byte stream. Derived from
TextReader.

System.IO.StringReader Reads textual information as a stream of in-memory
characters. Derived from TextReader.

System.IO.BinaryReader Reads primitive data types as binary values from a
stream.

System.Xml.XmlTextReader Provides fast, non-cached, forward-only access to XML.

837

File I/O and Streams

25_576100 ch22.qxd 10/6/05 9:37 PM Page 837

Class Description

System.IO.TextWriter Abstract class that enables the writing of a sequential
series of characters.

System.IO.StreamWriter Writes characters to a stream. Derived from TextWriter.

System.IO.StringWriter Writes textual information as a stream of in-memory
characters. Derived from TextWriter.

System.IO.BinaryWriter Writes primitive data types in binary to a stream.

System.Xml.XmlTextWriter Provides a fast, non-cached, forward-only way of
generating XML streams or files

Now look at using several different types of readers and writers, starting with a simple example.
Listing 22-17 shows you how to use a StreamReader to read a FileStream.

Listing 22-17: Reading and writing a text file with a StreamReader

VB
Dim streamwriter As New StreamWriter(File.Open(“C:\Wrox\temp.txt”,FileMode.Open))
streamwriter.Write(“This is a string”)
streamwriter.Close()

Dim reader As New StreamReader(File.Open(“C:\Wrox\temp.txt”,FileMode.Open))
Dim tmp As String = reader.ReadToEnd()
reader.Close()

C#
StreamWriter streamwriter =

new StreamWriter(File.Open(@”C:\Wrox\temp.txt”,FileMode.Open));
streamwriter.Write(“This is a string”);
streamwriter.Close();

StreamReader reader =
new StreamReader(File.Open(@”C:\Wrox\temp.txt”,FileMode.Open));

string tmp = reader.ReadToEnd();
reader.Close();

Notice that when you create a StreamReader, you must pass an existing stream instance as a constructor
parameter. The reader uses this stream as its underlying data source. In this sample, you use the File
class’s static OpenWrite method to open a writable FileStream for your StreamWriter.

Also notice that you no longer have to deal with byte arrays. The StreamReader takes care of converting
the data to a type that’s more user-friendly than a byte array. In this case, you are using the ReadToEnd
method to read the entire stream and convert it to a string. The StreamReader provides a number of dif-
ferent methods for reading data that you can use depending on exactly how you want to read the data,
from reading a single character using the Read method, to reading the entire file using the ReadToEnd
method.

838

Chapter 22

25_576100 ch22.qxd 10/6/05 9:37 PM Page 838

Figure 22-12 shows the results of your write when you open the file in Notepad.

Figure 22-12

Now use the BinaryReader and BinaryWriter classes to read and write some primitive types to a file.
The BinaryWriter writes primitive objects in their native format, so in order to read them using the
BinaryReader, you must select the appropriate Read method. Listing 22-18 shows you how to do that; in
this case, you are writing a value from a number of different primitive types to the text file, then reading
the same value.

Listing 22-18: Reading and writing binary data

VB
Dim binarywriter As New BinaryWriter(File.Create(“C:\Wrox\binary.dat”))
binarywriter.Write(“a string”)
binarywriter.Write(&H12346789ABCDEF)
binarywriter.Write(&H12345678)
binarywriter.Write(“c”c)
binarywriter.Write(1.5F)
binarywriter.Write(100.2D)
binarywriter.Close()

Dim binaryreader As New BinaryReader(_
File.Open(“C:\Wrox\binary.dat”, FileMode.Open))

Dim a As String = binaryreader.ReadString()
Dim l As Long = binaryreader.ReadInt64()
Dim i As Integer = binaryreader.ReadInt32()
Dim c As Char = binaryreader.ReadChar()
Dim f As Double = binaryreader.ReadSingle()
Dim d As Decimal = binaryreader.ReadDecimal()
binaryreader.Close()

C#
BinaryWriter binarywriter =

new BinaryWriter(File.Create(@”C:\Wrox\binary.dat”));
binarywriter.Write(“a string”);
binarywriter.Write(0x12346789abcdef);
binarywriter.Write(0x12345678);0

(continued)

839

File I/O and Streams

25_576100 ch22.qxd 10/6/05 9:37 PM Page 839

Listing 22-18: (continued)

binarywriter.Write(‘c’);
binarywriter.Write(1.5f);
binarywriter.Write(100.2m);
binarywriter.Close();

BinaryReader binaryreader =
new BinaryReader(File.Open(@”C:\Wrox\binary.dat”, FileMode.Open));

string a = binaryreader.ReadString();
long l = binaryreader.ReadInt64();
int i = binaryreader.ReadInt32();
char c = binaryreader.ReadChar();
float f = binaryreader.ReadSingle();
decimal d = binaryreader.ReadDecimal();
binary.Close();

If you open this file in Notepad, you should see that the BinaryWriter has written the nonreadable binary
data to the file. Figure 22-13 shows what the content of the file looks like. The BinaryReader provides a
number of different methods for reading various kinds of primitive types from the stream. In this sample,
you use a different Read method for each primitive type that you write to the file.

Figure 22-13

Finally, notice that the basic usage of both the StreamReader/StreamWriter and BinaryReader/
BinaryWriter classes is virtually identical. You can apply the same basic ideas to use any of the reader
or writer classes.

840

Chapter 22

25_576100 ch22.qxd 10/6/05 9:37 PM Page 840

Encodings
The StreamReader by default attempts to determine the encoding format of the file. If one of the
supported encodings such as UTF-8 or UNICODE is detected, it is used. If the encoding is not recog-
nized, the default encoding of UTF-8 is used. Depending on the constructor you call, you can change
the default encoding used and optionally turn off encoding detection. The following example shows
how you can control the encoding that the StreamReader uses.

StreamReader reader =
new StreamReader(@”C:\Wrox\text.txt”,System.Encoding.Text.Unicode);

The default encoding for the StreamWriter is also UTF-8, and you can override it in the same manner
as the StreamReader class.

I/O Shortcuts
Although knowing how to create and use streams is always very useful and worth studying, the .NET
Framework provides you with numerous shortcuts for common tasks like reading and writing to files.
For instance, if you want to read the entire the entire file, you can simply use the static ReadAll method
of the File class. Using this method, you cause .NET to handle the process of creating the Stream and
StreamReader for you, and simply return the resulting string of data. This is just one example of the
shortcuts that the .NET framework provides. Listing 22-19 shows some of the others, with explanatory
comments. Keep in mind that Listing 22-19 is showing individual code snippets; do not try to run the
listing as a single block of code.

Listing 22-19: Using the static method of the File and Directory classes

VB
‘ Opens a file and returns a FileStream
Dim fs As FileStream = System.IO.File.Open(“C:\Wrox\temp.txt”)

‘ Opens a file and returns a StreamReader for reading the data
Dim sr As StreamReader = System.IO.File.OpenText(“C:\Wrox\temp.txt”)

‘ Opens a filestream for reading
Dim fs As FileStream = System.IO.File.OpenRead(“C:\Wrox\temp.txt”)

‘ Opens a filestream for writing
Dim fs As FileStream = System.IO.File.OpenWrite(“C:\Wrox\temp.txt”)

‘ Reads the entire file and returns a string of data
Dim data As String = System.IO.File.ReadAllText(“C:\Wrox\temp.txt”)

‘ Writes the string of data to the file
File.WriteAllText(“C:\Wrox\temp.txt”, data)

(continued)

841

File I/O and Streams

25_576100 ch22.qxd 10/6/05 9:37 PM Page 841

Listing 22-19: (continued)

C#
// Opens a file and returns a FileStream
FileStream fs = System.IO.File.Open(@”C:\Wrox\temp.txt”);

// Opens a file and returns a StreamReader for reading the data
StreamReader sr = System.IO.File.OpenText(@”C:\Wrox\temp.txt”);

// Opens a filestream for reading
FileStream fs = System.IO.File.OpenRead(@”C:\Wrox\temp.txt”);

// Opens a filestream for writing
FileStream fs = System.IO.File.OpenWrite(@”C:\Wrox\temp.txt”);

// Reads the entire file and returns a string of data
string data = System.IO.File.ReadAllText(@”C:\Wrox\temp.txt”);

// Writes the string of data to the file
File.WriteAllText(@”C:\Wrox\temp.txt”, data);

Compressing Streams
A new and very welcome addition to the .NET 2.0 Framework is the introduction of the System.IO
.Compression namespace. This namespace includes classes for compressing and decompressing data
using either the GZipStream or the DeflateStream classes.

GZip Compression
Because both new classes are derived from the Stream class, using them should be relatively similar to
using the other Stream operations you have examined so far in this chapter. Listing 22-20 shows an
example of compressing your text file using the GZipStream class.

Listing 22-20: Compressing a file using GZipStream

VB
‘ Read the file we are going to compress into a FileStream
Dim filename As String = Server.MapPath(“TextFile.txt”)

Dim infile As FileStream = File.OpenRead(filename)
Dim buffer(infile.Length) As Byte
infile.Read(buffer, 0, buffer.Length)
infile.Close()

‘ Create the output file
Dim outfile As System.IO.FileStream = _

File.Create(Path.ChangeExtension(filename, “zip”))

‘ Compress the input stream and write it to the output FileStream

842

Chapter 22

25_576100 ch22.qxd 10/6/05 9:37 PM Page 842

Dim gzipStream As New GZipStream(outfile, CompressionMode.Compress)
gzipStream.Write(buffer, 0, buffer.Length)
gzipStream.Close()

C#
// Read the file we are going to compress into a FileStream
string filename = Server.MapPath(“TextFile.txt”);

FileStream infile = File.OpenRead(filename);
byte[] buffer = new byte[infile.Length];
infile.Read(buffer, 0, buffer.Length);
infile.Close();

// Create the output file
FileStream outfile = File.Create(Path.ChangeExtension(filename, “zip”);

// Compress the input stream and write it to the output FileStream
GZipStream gzipStream = new GZipStream(outfile, CompressionMode.Compress);
gzipStream.Write(buffer, 0, buffer.Length);
gzipStream.Close();

Notice that the GZipStream constructor requires two parameters, the stream to write the compressed
data to, and the CompressionMode enumeration, which tells the class if you want to compress or
decompress data. After the code runs, be sure there is a file called text.zip on the C:\Wrox directory.

Deflate Compression
The Compression namespace also allows to you decompress a file using the GZip or Deflate methods.
Listing 22-21 shows an example of decompressing a file using the Deflate method.

Listing 22-21: Decompressing a file using DeflateStream

VB
Dim filename As String = Server.MapPath(“TextFile.zip”)

Dim infile As FileStream = File.OpenRead(filename)
Dim deflateStream As New DeflateStream(infile, CompressionMode.Decompress)
Dim buffer(infile.Length + 100) As Byte

Dim offset As Integer = 0
Dim totalCount As Integer = 0
While True

Dim bytesRead As Integer = deflateStream.Read(buffer, offset, 100)
If bytesRead = 0 Then

Exit While
End If
offset += bytesRead
totalCount += bytesRead

End While

Dim outfile As FileStream = _
File.Create(Path.ChangeExtension(filename, “txt”))

outfile.Write(buffer, 0, buffer.Length)
outfile.Close()

(continued)

843

File I/O and Streams

25_576100 ch22.qxd 10/6/05 9:37 PM Page 843

Listing 22-21: (continued)

C#
string filename = Server.MapPath(“TextFile.zip”);

FileStream infile = File.OpenRead(filename);
DeflateStream deflateStream =

new DeflateStream(infile, CompressionMode.Decompress);
byte[] buffer = new byte[infile.Length + 100];

int offset = 0;
int totalCount = 0;
while (true)
{

int bytesRead = deflateStream.Read(buffer, offset, 100);
if (bytesRead == 0)
{ break; }

offset += bytesRead;
totalCount += bytesRead;

}

FileStream outfile = File.Create(Path.ChangeExtension(filename, “txt”));
outfile.Write(buffer, 0, buffer.Length);
outfile.Close();

Compressing HTTP Output
Besides compressing files, one other very good use of the new compression features of the .NET 2.0
Framework in an ASP.NET application is to implement your own HttpModule class that compresses
the HTTP output of your application. This is easier than it might sound, and it will save you precious
bandwidth by compressing the data that is sent from your Web server to the browsers that support
the HTTP 1.1 Protocol standard (which most do). The browser can then decompress the data before
rendering it.

Note that IIS 6 does offer built-in HTTP compression capabilities, and there are several third-party
HTTP compression modules available, such as the Blowery Http Compression Module
(http://www.blowery.org).

Start by creating a Windows Class library project. Add a new class to your project called
CompressionModule. This class is your compression HttpModule. Listing 22-22 shows the code
for creating the class.

Listing 22-22: Compressing HTTP output with an HttpModule

VB
Imports System
Imports System.Collections.Generic
Imports System.Text
Imports System.Web
Imports System.IO
Imports System.IO.Compression

Public Class Class1

844

Chapter 22

25_576100 ch22.qxd 10/6/05 9:37 PM Page 844

Implements IHttpModule

Public Sub Dispose() Implements System.Web.IHttpModule.Dispose
Throw New Exception(“The method or operation is not implemented.”)

End Sub

Public Sub Init(ByVal context As System.Web.HttpApplication) _
Implements System.Web.IHttpModule.Init
AddHandler context.BeginRequest, AddressOf context_BeginRequest

End Sub

Public Sub context_BeginRequest(ByVal sender As Object, ByVal e As EventArgs)
Dim app As HttpApplication = CType(sender, HttpApplication)

‘Get the Accept-Encoding HTTP header from the request.
‘The requesting browser sends this header which we will use
‘ to determine if it supports compression, and if so, what type
‘ of compression algorithm it supports
Dim encodings As String = app.Request.Headers.Get(“Accept-Encoding”)

If (encodings = Nothing) Then
Return

End If

Dim s As Stream = app.Response.Filter

encodings = encodings.ToLower()

If (encodings.Contains(“gzip”)) Then
app.Response.Filter = New GZipStream(s, CompressionMode.Compress)
app.Response.AppendHeader(“Content-Encoding”, “gzip”)
app.Context.Trace.Warn(“GZIP Compression on”)

Else
app.Response.Filter = _

New DeflateStream(s, CompressionMode.Compress)
app.Response.AppendHeader(“Content-Encoding”, “deflate”)
app.Context.Trace.Warn(“Deflate Compression on”)

End If
End Sub

End Class

C#
using System;
using System.Collections.Generic;
using System.Text;
using System.Web;
using System.IO;
using System.IO.Compression;

namespace ClassLibrary1
{

public class Class1 : IHttpModule

(continued)

845

File I/O and Streams

25_576100 ch22.qxd 10/6/05 9:37 PM Page 845

Listing 22-22: (continued)

{

#region IHttpModule Members

void IHttpModule.Dispose()
{

throw new Exception(“The method or operation is not implemented.”);
}

void IHttpModule.Init(HttpApplication context)
{

context.BeginRequest += new EventHandler(context_BeginRequest);
}

void context_BeginRequest(object sender, EventArgs e)
{

HttpApplication app = (HttpApplication)sender;

//Get the Accept-Encoding HTTP header from the request.
//The requesting browser sends this header which we will use
// to determine if it supports compression, and if so, what type
// of compression algorithm it supports
string encodings = app.Request.Headers.Get(“Accept-Encoding”);

if (encodings == null)
return;

Stream s = app.Response.Filter;

encodings = encodings.ToLower();

if (encodings.Contains(“gzip”))
{

app.Response.Filter = new GZipStream(s, CompressionMode.Compress);
app.Response.AppendHeader(“Content-Encoding”, “gzip”);
app.Context.Trace.Warn(“GZIP Compression on”);

}
else
{

app.Response.Filter =
new DeflateStream(s, CompressionMode.Compress);

app.Response.AppendHeader(“Content-Encoding”, “deflate”);
app.Context.Trace.Warn(“Deflate Compression on”);

}
}

#endregion
}

}

846

Chapter 22

25_576100 ch22.qxd 10/6/05 9:37 PM Page 846

After you create and build the module, add the assembly to your Web site’s Bin directory. After that’s
done, you let your Web application know that it should use the HttpModule when it runs. Do
this by adding the module to the web.confile file. Listing 22-23 shows the nodes to add to the
web.config system.web configuration section.

Listing 22-23: Adding an HttpCompression module to the web.config

<httpModules>
<add name=”HttpCompressionModule”
type=”Wrox.Demo.Compression.CompressionModule, HttpCompressionModule”/>

</httpModules>

<trace enabled=”true” />

Notice that one other change you are making is to enable page tracing. You use this to demonstrate that
the page is actually being compressed. When you run the page, you should see the trace output shown
in Figure 22-14. Notice a new entry under the trace information showing that the GZip compression has
been enabled on this page.

Figure 22-14

Working with Serial Ports
Another wonderful new addition to the .NET 2.0 Framework is the System.IO.Ports namespace. This
namespace contains classes that enable you to work with and communicate through serial ports.

.NET provides a SerialPort component that you can add to the Component Designer of your Web
page. Adding this component enables your application to communicate via the serial port. Listing 22-24
shows how to write some text to the serial port.

847

File I/O and Streams

25_576100 ch22.qxd 10/6/05 9:37 PM Page 847

Listing 22-24: Writing text to the serial port

VB
Me.SerialPort1.PortName = “COM1”

If (Not Me.SerialPort1.IsOpen()) Then
Me.SerialPort1.Open()

End If

Me.SerialPort1.Write(“Hello World”)
Me.SerialPort1.Close()

C#
this.SerialPort1.PortName = “COM1”;

if (!this.SerialPort1.IsOpen())
{

this.SerialPort1.Open();
}

this.SerialPort1.Write(“Hello World”);
this.SerialPort1.Close();

This code simply attempts to open the serial port COM1 and write a bit of text. The SerialPort
component gives you control over most aspects of the serial port, including baud rate, parity, and stop bits.

Network Communications
Finally, this chapter takes you beyond your own systems and talks about how you can use the .NET
Framework to communicate with other systems. The .NET Framework contains a rich set of classes in
the System.Net namespace that allow you to communicate over a network using a variety of protocols
and communications layers. You can perform all types of actions, from DNS resolution to programmatic
HTTP Posts to sending e-mail through SMTP.

WebRequest and WebResponse
The first series of classes to discuss are the WebRequest and WebResponse classes. You can use these
two classes to develop applications that can make a request to a Uniform Resource Identifier (URI)
and receive a response from that resource. The .NET Framework provides three derivatives of the
WebRequest and WebResponse classes, each designed to communicate to a specific type of end point
via HTTP, FTP, and file:// protocols.

HttpWebRequest and HttpWebResponse
The first pair of classes are the HttpWebRequest and HttpWebResponse classes. As you can probably
guess based on their names, these two classes are designed to communicate using the HTTP protocol.
Perhaps the most famous use of the HttpWebRequest and HttpWebResponse classes is to write
applications that can make requests to other Web pages via HTTP and parse the resulting text to extract
data. This is known as screen scraping.

848

Chapter 22

25_576100 ch22.qxd 10/6/05 9:37 PM Page 848

For an example of using the HttpWebRequest and HttpWebResponse classes to screen scrape, you can
use the following code to build a Web page that will serve as a simple Web browser. You also learn how
another Web page can be displayed inside of yours using an HttpWebRequest. In this example, you scrape
the Microsoft.com homepage and display it in a panel on your Web page. Listing 22-25 shows the code.

Listing 22-25: Using an HttpWebRequest to retrieve a Web page

VB
<%@ Page Language=”VB” %>
<%@ Import Namespace=System.IO %>
<%@ Import Namespace=System.Net %>

<script runat=”server”>
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Dim uri As New Uri(“http://www.microsoft.com/default.aspx”)
If (uri.Scheme = uri.UriSchemeHttp) Then

Dim request As HttpWebRequest = HttpWebRequest.Create(uri)
request.Method = WebRequestMethods.Http.Get
Dim response As HttpWebResponse = request.GetResponse()
Dim reader As New StreamReader(response.GetResponseStream())
Dim tmp As String = reader.ReadToEnd()
response.Close()

Me.Panel1.GroupingText = tmp
End If

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Untitled Page</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<p>This is the microsoft.com website:</p>
<asp:Panel ID=”Panel1” runat=”server”

Height=”355px” Width=”480px” ScrollBars=Auto>
</asp:Panel>

</div>
</form>

</body>
</html>

C#
<script runat=”server”>

protected void Page_Load(object sender, EventArgs e)
{

Uri uri = new Uri(“http://www.microsoft.com/default.aspx”);
if (uri.Scheme == Uri.UriSchemeHttp)
{

HttpWebRequest request = HttpWebRequest.Create(uri);
request.Method = WebRequestMethods.Http.Get;
HttpWebResponse response = request.GetResponse();

(continued)

849

File I/O and Streams

25_576100 ch22.qxd 10/6/05 9:37 PM Page 849

Listing 22-25: (continued)

StreamReader reader = new StreamReader(response.GetResponseStream());
string tmp = reader.ReadToEnd();
response.Close();

this.Panel1.GroupingText = tmp;
}

}
</script>

Figure 22-15 shows what the Web page look likes when you execute the code in Listing 22-25. The
HttpWebRequest to the microsoft.com home page returns a string containing the scraped HTML. The
sample assigns the value of this string to the GroupingText property of the Panel control. When the final
page is rendered, the browser renders the HTML that was scraped as literal content on the page.

Figure 22-15

One other use of the HttpWebRequest and HttpWebResponse classes is to programmatically post data
to another Web page, as shown in Listing 22-26.

850

Chapter 22

25_576100 ch22.qxd 10/6/05 9:37 PM Page 850

Listing 22-26: Using an HttpWebRequest to post data to a remote Web page

VB
<%@ Page Language=”VB” %>
<%@ Import Namespace=System.IO %>
<%@ Import Namespace=System.Net %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<script runat=”server”>

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Dim uri As New Uri(“http://www.amazon.com/” & _

“exec/obidos/search-handle-form/102-5194535-6807312”)
Dim data As String = “field-keywords=Professional ASP.NET 2.0”
If (uri.Scheme = uri.UriSchemeHttp) Then

Dim request As HttpWebRequest = HttpWebRequest.Create(uri)
request.Method = WebRequestMethods.Http.Post
request.ContentLength = data.Length
request.ContentType = “application/x-www-form-urlencoded”

Dim writer As New StreamWriter(request.GetRequestStream())
writer.Write(data)
writer.Close()

Dim response As HttpWebResponse = request.GetResponse()
Dim reader As New StreamReader(response.GetResponseStream())
Dim tmp As String = reader.ReadToEnd()
response.Close()

Me.Panel1.GroupingText = tmp
End If

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Untitled Page</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:Panel ID=”Panel1” runat=”server”
Height=”355px” Width=”480px” ScrollBars=Auto>

</asp:Panel>
</div>
</form>

</body>
</html>

(continued)

851

File I/O and Streams

25_576100 ch22.qxd 10/6/05 9:37 PM Page 851

Listing 22-26: (continued)

<script runat=”server”>

protected void Page_Load(object sender, EventArgs e)
{

Uri uri = new Uri(“http://www.amazon.com/” +
“exec/obidos/search-handle-form/102-5194535-6807312”);

string data = “field-keywords=Professional ASP.NET 2.0”;
if (uri.Scheme == Uri.UriSchemeHttp)
{

HttpWebRequest request = (HttpWebRequest)HttpWebRequest.Create(uri);
request.Method = WebRequestMethods.Http.Post;
request.ContentLength = data.Length;
request.ContentType = “application/x-www-form-urlencoded”;

StreamWriter writer = new StreamWriter(request.GetRequestStream());
writer.Write(data);
writer.Close();

HttpWebResponse response = (HttpWebResponse)request.GetResponse();
StreamReader reader = new StreamReader(response.GetResponseStream());
string tmp = reader.ReadToEnd();
response.Close();

this.Panel1.GroupingText = tmp;
}

}
</script>

You can see that the preceding code posts a search query to amazon.com and receives the HTML as
the response. As in the example shown earlier in Listing 22-25, you can simply use a Panel to display the
resulting text as HTML. The results of the query are shown in Figure 22-16.

FtpWebRequest and FtpWebResponse
The next pair of classes are the FtpWebRequest and FtpWebResponse classes. These two classes are
new additions to the .NET 2.0 Framework, and they make it easy to execute File Transfer Protocol (FTP)
commands from your Web page. Using these classes, it is now possible to implement an entire FTP client
right from your Web application. Listing 22-27 shows an example of downloading a text file from the
public Microsoft.com FTP site.

Listing 22-27: Using an FtpWebRequest to download a file from an FTP site

VB
<%@ Page Language=”VB” %>
<%@ Import Namespace=System.IO %>
<%@ Import Namespace=System.Net %>

<script runat=”server”>

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

852

Chapter 22

25_576100 ch22.qxd 10/6/05 9:37 PM Page 852

Dim uri As New Uri(“ftp://ftp.microsoft.com/SoftLib/ReadMe.txt”)
If (uri.Scheme = uri.UriSchemeFtp) Then

Dim request As FtpWebRequest = FtpWebRequest.Create(uri)
request.Method = WebRequestMethods.Ftp.DownloadFile
Dim response As FtpWebResponse = request.GetResponse()
Dim reader As New StreamReader(response.GetResponseStream())
Dim tmp As String = reader.ReadToEnd()
response.Close()

Me.Panel1.GroupingText = tmp
End If

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Using FTP from an ASP.NET webpage</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:Panel ID=”Panel1” runat=”server”
Height=”355px” Width=”480px” ScrollBars=Auto>

</asp:Panel>

</div>
</form>

</body>
</html>

C#
<script runat=”server”>

protected void Page_Load(object sender, EventArgs e)
{

Uri uri = new Uri(“ftp://ftp.microsoft.com/SoftLib/ReadMe.txt “);
if (uri.Scheme == Uri.UriSchemeFtp)
{

FtpWebRequest request = (FtpWebRequest)FtpWebRequest.Create(uri);
request.Method = WebRequestMethods.Ftp.DownloadFile;
FtpWebResponse response = (FtpWebResponse)request.GetResponse();
StreamReader reader = new StreamReader(response.GetResponseStream());
string tmp = reader.ReadToEnd();
response.Close();

this.Panel1.GroupingText = tmp;
}

}
</script>

853

File I/O and Streams

25_576100 ch22.qxd 10/6/05 9:37 PM Page 853

Figure 22-16

FileWebRequest and FileWebResponse
Next, look at the FileWebRequest and FileWebResponse classes. These classes provide a file system
implementation of the WebRequest and WebResponse classes and are designed to make it easy to transfer
files using the file:// protocol, as shown in Listing 22-28.

Listing 22-28: Using the FileWebRequest to write to a remote file

VB
Dim uri As New Uri(“file://DEMOXP/Documents/lorum.txt”)
If (uri.Scheme = uri.UriSchemeFile) Then

Dim request As FileWebRequest = FileWebRequest.Create(uri)
Dim response As FileWebResponse = request.GetResponse()
Dim reader As New StreamReader(response.GetResponseStream())
Dim tmp As String = reader.ReadToEnd()
response.Close()

End If

C#
Uri uri = new Uri(“file://DEMOXP/Documents/lorum.txt “);
if (uri.Scheme == Uri.UriSchemeFile)
{

FileWebRequest request = FileWebRequest.Create(uri);
FileWebResponse response = request.GetResponse();

854

Chapter 22

25_576100 ch22.qxd 10/6/05 9:37 PM Page 854

StreamReader reader = new StreamReader(response.GetResponseStream());
string tmp = reader.ReadToEnd();
response.Close();

}

In this listing, we are requesting the lorum.txt file that exists in the Documents folder on the DEMOXP
machine on our local network.

Figure 22-17

Sending Mail
Finally, consider a feature common to many Web applications — the capability to send e-mail from a
Web page. The capability to send mail was part of the 1.0 Framework and located in the
System.Web.Mail namespace. In the 2.0 Framework, this functionality has been enhanced and moved
to the System.Net.Mail namespace. Listing 22-29 shows an example of sending an e-mail.

Listing 22-29: Sending mail from a Web page

VB
Dim message As _

New System.Net.Mail.MailMessage(“webmaster@ineta.org”, “webmaster@ineta.org”)
message.Subject = “Sending Mail with ASP.NET 2.0”
message.Body = _

(continued)

855

File I/O and Streams

25_576100 ch22.qxd 10/6/05 9:37 PM Page 855

Listing 22-29: (continued)

“This is a sample email which demonstrates sending email using ASP.NET 2.0”

Dim smtp As New System.Net.Mail.SmtpClient(“localhost”)
smtp.Send(message)

C#
System.Net.Mail.MailMessage message =

new System.Net.Mail.MailMessage(“webmaster@ineta.org”,”webmaster@ineta.org”);
message.Subject = “Sending Mail with ASP.NET 2.0”;
message.Body =

“This is a sample email which demonstrates sending email using ASP.NET 2.0”;
System.Net.Mail.SmtpClient smtp = new System.Net.Mail.SmtpClient(“localhost”);
smtp.Send(message);

In this sample, you first create a Message object, which is the class that contains the actual message you
want to send. The Message class requires the To and From address be provided to its constructor, and
you can either provide the parameters as strings, or you can use the MailRecipientCollection class
to provide multiple recipients’ e-mail addresses.

After you create the Message, you use the SmtpClient class to actually send the message to your local
SMTP server. The SmtpClient class allows you to specify the SMTP Server from which you want to
relay your e-mail.

Summary
In this chapter, you looked at some of the other classes in the .NET Framework. You looked at managing
the local file system by using classes in the System.IO namespace such as DirectoryInfo and the
FileInfo, and you learned how to enumerate the local file system and manipulate both directory and
file properties and directory and file Access Control Lists. Additionally, the chapter discussed the rich
functionality .NET provides for working with paths.

The chapter also covered how the .NET framework enables you to read and write data to a multitude of
data locations, including the local file system, network file system, and even system memory through a
common Stream architecture. The Framework provides you with specialized classes to deal with each
kind of data location. Additionally, the Framework makes working with streams even easier by provid-
ing Reader and Writer classes. These classes hide much of the complexity of reading from and writing
to underlying streams. Here, too, the framework provides you with a number of different Reader and
Writer classes that give you the power to control exactly how your data is read or written, be it charac-
ter, binary, string, or XML.

You were also introduced to a new feature of the .NET 2.0 Framework that allows you to communicate
with serial ports.

Finally, you learned about the variety of network communication options the .NET Framework provides.
From making and sending Web requests over HTTP, FTP, and File, to sending mail, the .NET Framework
offers you a full plate of network communication services.

856

Chapter 22

25_576100 ch22.qxd 10/6/05 9:37 PM Page 856

User Controls, Server
Controls, Modules,

and HttpHandlers

In an object-oriented environment like .NET, the encapsulation of code into small, single-purpose,
reusable objects is one of the keys to developing a robust system. For instance, if your application
deals with customers, you might want to consider creating a customer’s object that encapsulates
all the functionality a customer might need. The advantage is that you create a single point with
which other objects can interact, and you have only a single point of code to create, debug, deploy,
and maintain. In this scenario, the customer object is typically known as a business object because
it encapsulates all the business logic needed for a customer.

You can also create other types of reusable objects. In this chapter, we concentrate on discussing
and demonstrating how you can create reusable visual components for an ASP.NET application.
The two types of reusable components in ASP.NET are user controls and server controls.

A user control encapsulates existing ASP.NET controls into a single container control, which you
can easily reuse throughout your Web project.

A server control encapsulates the visual design, behavior, and logic for an element that the user
interacts with on the Web page.

Visual Studio ships with a large number of server controls that you are probably already familiar
with, such as the Label, Button, and TextBox controls. This chapter talks about how you can create
custom server controls and extend existing server controls.

26_576100 ch23.qxd 10/6/05 9:36 PM Page 857

Finally in this chapter, you look at two other types of objects: HttpHandlers, which allow you to inter-
cept and process incoming HTTP requests much like an ISAPI filter does, and HttpModules, which
allow you to modify incoming HTTP requests for Web application resources.

Because all four of these topics are so large, and because discussing the intricacies of each could easily
fill an entire book by itself, you can’t possibly investigate every option available to you. Instead, this
chapter attempts to give you a brief overview of building and using user controls, server controls,
HttpHandlers, and HttpModules. It demonstrates some common scenarios for each control. By the end
of this chapter, you should have learned enough that you can get started building basic controls of each
type and be able to continue to learn on your own.

User Controls
User controls represent the simplest form of ASP.NET control encapsulation. Because they are the sim-
plest, they are also the easiest to create and use. Essentially a user control is the grouping of existing
server controls into a single-container control. This enables you to create powerful objects that you can
easily use throughout an entire Web project.

Creating User Controls
Creating user controls is very simple in Visual Studio 2005. To create a new user control, you first add a
new User Control file to your Web site. From the Website menu, select the Add New Item option. After
the Add New File dialog appears, select the Web User Control File template from the list and click OK.
Notice that after the file is added to the project, the file has an .ascx extension. This extension signals to
ASP.NET that this file is a user control. If you attempt to load the user control directly into your browser,
ASP.NET returns an error telling you that this type of file cannot be served to the client.

If you look at the HTML source (shown in Listing 23-1) for the user control, you see several interesting
differences from a standard ASP.NET Web page.

Listing 23-1: A Web user control file template

<%@ Control Language=”VB” ClassName=”WebUserControl1” %>

<script runat=”server”>

</script>

First, notice that the source uses the @Control directive rather than the @Page directive, which a stan-
dard Web page would use. Second, notice that unlike a standard ASP.NET Web page, no other HTML
tags besides the <script> tags exist in the control. The Web page containing the user control provides
the basic HTML, such as the <body> and <form> tags. In fact, if you try to add a server-side form tag to
the user control, ASP.NET returns an error when the page is served to the client. The error message tells
you that only one server-side form tag is allowed in your Web page.

To add controls to the form, simply drag them from the Toolbox onto your user control. Listing 23-2
shows the user control after a Label and a Button have been added.

858

Chapter 23

26_576100 ch23.qxd 10/6/05 9:36 PM Page 858

Listing 23-2: Adding controls to the Web user control

<%@ Control Language=”VB” ClassName=”WebUserControl2” %>

<script runat=”server”>

</script>

<asp:Label ID=”Label1” runat=”server” Text=”Label”></asp:Label>
<asp:Button ID=”Button1” runat=”server” Text=”Button” />

After you add the controls to the user control, you put the user control onto a standard ASP.NET Web
page. To do this, drag the file from the Solution Explorer onto your Web page.

If you are familiar with using user controls in prior versions of Visual Studio, you probably remember
the gray control representation that appeared in the page designer when you dropped a user control onto
a Web page. Visual Studio 2005 has improved this, and user controls are now fully rendered on the host
Web page during design time. This allows you to see an accurate representation of what the entire page
will look like after it is rendered to the client.

Figure 23-1 shows the user control after it has been dropped onto a host Web page.

Figure 23-1

After you have placed the user control onto a Web page, open the page in a browser to see the fully ren-
dered Web page.

859

User Controls, Server Controls, Modules, and HttpHandlers

26_576100 ch23.qxd 10/6/05 9:36 PM Page 859

User controls fully participate in the page-rendering lifecycle, and controls contained within a user con-
trol behave identically to controls placed onto a standard ASP.NET Web page. This means that the user
control has its own page execute events (such as Init, Load, and Prerender) that execute as the page is
processed. It also means that child control events, such as a button-click event, will behave identically.
Listing 23-3 shows how to use the User Controls Page_Load event to populate the label and to handle
the button-click event.

Listing 23-3: Creating control events in a user control

VB
<%@ Control Language=”VB” ClassName=”WebUserControl1” %>

<script runat=”server”>

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Me.Label1.Text = “The quick brown fox jumped over the lazy dog”

End Sub

Protected Sub Button1_Click(ByVal sender As Object, _
ByVal e As System.EventArgs)
Me.Label1.Text = “The quick brown fox clicked the button on the page”

End Sub
</script>

<asp:Label ID=”Label1” runat=”server” Text=”Label”></asp:Label>
<asp:Button ID=”Button1” runat=”server” Text=”Button” OnClick=”Button1_Click” />

C#
<%@ Control Language=”C#” ClassName=”WebUserControl1” %>

<script runat=”server”>

protected void Page_Load(object sender, EventArgs e)
{

this.Label1.Text = “The quick brown fox jumped over the lazy dog”;
}

protected void Button1_Click(object sender, EventArgs e)
{

this.Label1.Text = “The quick brown fox clicked the button on the page”;
}

</script>

<asp:Label ID=”Label1” runat=”server” Text=”Label”></asp:Label>
<asp:Button ID=”Button1” runat=”server” Text=”Button” OnClick=”Button1_Click” />

Now when you render the Web page, you see that the text of the label changes as the user control loads,
and again when you click the bottom of the page. In fact, if you put a breakpoint on either of these two
events, you can see that ASP.NET does indeed break, even inside the user control code when the page is
executed.

860

Chapter 23

26_576100 ch23.qxd 10/6/05 9:36 PM Page 860

Interacting with User Controls
So far, you have learned how you can create user controls and add them to a Web page. You have also
learned how user controls can execute their own code. Most user controls, however, are not islands on
their parent page. Many scenarios require that the host Web page be able to interact with user controls
that have been placed on it. For instance, you may decide that the text you want to load in the label must
be given to the user control by the host page. To do this, you simply add a public property to the user
control, and then assign text using the property. Listing 23-4 shows the modified user control.

Listing 23-4: Exposing user control properties

VB
<%@ Control Language=”VB” ClassName=”WebUserControl” %>

<script runat=”server”>

Private _text As String

Public Property Text() As String
Get

Return _text
End Get
Set(ByVal value As String)

_text = value
End Set

End Property

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Me.Label1.Text = Me.Text

End Sub

Protected Sub Button1_Click(ByVal sender As Object, _
ByVal e As System.EventArgs)

Me.Label1.Text = “The quick brown fox clicked the button on the page”
End Sub

</script>

<asp:Label ID=”Label1” runat=”server” Text=”Label”></asp:Label>
<asp:Button ID=”Button1” runat=”server” Text=”Button” OnClick=”Button1_Click” />

C#
<%@ Control Language=”C#” ClassName=”WebUserControl” %>

<script runat=”server”>

private string _text;

public string Text
{

get {

(continued)

861

User Controls, Server Controls, Modules, and HttpHandlers

26_576100 ch23.qxd 10/6/05 9:36 PM Page 861

Listing 23-4: (continued)

return _text;
}
Set {

_text = value;
}

}

protected void Page_Load(object sender, EventArgs e)
{

this.Label1.Text = this.Text;
}

protected void Button1_Click(object sender, EventArgs e)
{

this.Label1.Text = “The quick brown fox clicked the button on the page”;
}

</script>

<asp:Label ID=”Label1” runat=”server” Text=”Label”></asp:Label>
<asp:Button ID=”Button1” runat=”server” Text=”Button” OnClick=”Button1_Click” />

After you modify the user control, you simply populate the property from the host Web page. Listing
23-5 shows how to set the Text property in code, but public properties exposed by user controls will
also be exposed by the Property Browser.

Listing 23-5: Populating user control properties from the host Web page

VB
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Me.WebUserControl1.Text = “The quick brown fox jumped over the lazy dog”
End Sub

C#
protected void Page_Load(object sender, EventArgs e)
{

this.WebUserControl1.Text = “The quick brown fox jumped over the lazy dog”;
}

User controls are simple ways of creating powerful, reusable components in ASP.NET. They are easy to
create using the built-in templates. Because they participate fully in the page lifecycle, you can create
controls that can interact with their host page and even other controls on the host page.

Server Controls
The power to create server controls in ASP.NET is one of the greatest tools you can have as an ASP.NET
developer. Creating your own custom server controls and extending existing controls are actually both

862

Chapter 23

26_576100 ch23.qxd 10/6/05 9:36 PM Page 862

quite easy. All controls in ASP.NET are derived from two basic classes: System.Web.UI.Control or
System.Web.UI.WebControls.WebControl. Classes derived from the Control class have the basic
functionality required to participate in the Page framework. Additionally, because the Control class
implements IComponent, classes derived from Control have the basic functionality to be a designable
component. They can be added to the Visual Studio Toolbox, dragged onto the page designer, and have
their properties and events displayed in the Property Browser.

Controls derived from the WebControl class build on the functionality that the Control class provides
by adding much of the common functionality needed to create controls that render a visual HTML repre-
sentation. Additionally, classes derived from the WebControl class have support for many of the basic
styling elements such as Font, Height, and Width.

Project Setup
This section demonstrates just how easy it is to create custom server controls by creating a very simple
server control that derives from the WebControl class. In order to create a new server control, you
create a new Web Control Library project. You can use this project to demonstrate concepts throughout
the rest of this chapter. In Visual Studio, choose File ➪ New Project to open the New Project dialog.
From the Project Types tree, open either the Visual Basic or Visual C# nodes and select the Windows
node. Figure 23-2 shows the New Project dialog with a Visual C# Web Control Library project template
selected.

Figure 23-2

When you click OK in the New Project dialog, Visual Studio creates a new Web Control Library project
for you. Notice that the project includes a template class that contains a very simple server control.
Listing 23-6 shows the code for this template class.

863

User Controls, Server Controls, Modules, and HttpHandlers

26_576100 ch23.qxd 10/6/05 9:36 PM Page 863

Listing 23-6: The Visual Studio Web Control Library class template

VB
Imports System.ComponentModel
Imports System.Web.UI

<DefaultProperty(“Text”), _
ToolboxData(“<{0}:WebCustomControl1 runat=server></{0}:WebCustomControl1>”)>

Public Class WebCustomControl1
Inherits System.Web.UI.WebControls.WebControl

Dim _text As String

<Bindable(True), Category(“Appearance”), DefaultValue(“”)> _
Property [Text]() As String

Get
Return _text

End Get

Set(ByVal Value As String)
_text = Value

End Set
End Property

Protected Overrides Sub Render(ByVal output As System.Web.UI.HtmlTextWriter)
output.Write([Text])

End Sub

End Class

C#
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Text;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace WebControlLibrary1
{

[DefaultProperty(“Text”)]
[ToolboxData(“<{0}:WebCustomControl1 runat=server></{0}:WebCustomControl1>”)]
public class WebCustomControl1 : WebControl
{

private string text;

[Bindable(true)]
[Category(“Appearance”)]
[DefaultValue(“”)]
public string Text
{

get

864

Chapter 23

26_576100 ch23.qxd 10/6/05 9:36 PM Page 864

{
return text;

}
set
{

text = value;
}

}

protected override void Render(HtmlTextWriter output)
{

output.Write(Text);
}

}
}

This template class creates a basic server control that exposes one property called Text and renders the
value of that property to the screen. Notice that you override the Render method of the control and
write the value of the Text property to the pages output stream. We talk more about rendering output
later in the chapter.

Now, take this class and use it in a sample Web application by adding a new Web Project to the existing
solution. The default Web page, created by Visual Studio, serves as a test page for the server control
samples in this chapter.

Visual Studio 2005 has greatly improved the process of using custom controls. Instead of having to man-
ually add controls, as you had to do in prior Visual Studio versions, Visual Studio 2005 can automati-
cally add the control to the Toolbox for you as long as the solution contains the Web Control Library
project. To see this, simply build the project and then open the default Web page of the Web Project you
just added. The Toolbox should contain a new section called WebControlLibrary1.Components, and the
new server control should be listed in this section (see Figure 23-3).

Figure 23-3

New section

865

User Controls, Server Controls, Modules, and HttpHandlers

26_576100 ch23.qxd 10/6/05 9:36 PM Page 865

Now, all you have to do is drag the control onto the Web form, and the control’s assembly is automati-
cally added to the Web project for you. When you drag the control from the Toolbox onto the designer
surface, the control adds itself to the Web page. Listing 23-7 shows you what the Web page source code
looks like after you have added the control.

Listing 23-7: Adding a Web Control Library to a Web page

<%@ Register Assembly=”ClassLibrary1” Namespace=”ClassLibrary1” TagPrefix=”cc1” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Adding a Custom Web Control</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<cc1:WebCustomControl1 ID=”WebCustomControl1_1” runat=”server” />
</div>
</form>

</body>
</html>

After you drag the control onto the Web form, take a look at its properties in the Properties Window.
Figure 23-4 shows the properties of your custom control.

Figure 23-4

866

Chapter 23

26_576100 ch23.qxd 10/6/05 9:36 PM Page 866

Notice that in addition to the Text property you defined in the control, the control has all the basic prop-
erties of a visual control, including various styling and behavior properties. The properties are exposed
because the control was derived from the WebControl class. The control also inherits the base events
exposed by WebControl.

Make sure the control is working by entering a value for the Text property and viewing the page in a
browser. Figure 23-5 shows what the page looks like if you set the Text property to “Hello World!”.

Figure 23-5

As expected the control has rendered the value of the Text property to the Web page.

This sample demonstrates just how easy it is to create a simple server control. Of course, this control
does not have much functionality and lacks many of the features of a server control. The following
section shows how you can use attributes to enhance this server control to make it more useful and
user-friendly.

Control Attributes
A key enhancement to the design-time experience for users utilizing server controls is achieved by
adding attributes to the class level and to the control’s classes and properties. Attributes define much of
how the control behaves at design time in Visual Studio. For instance, when you look at the default con-
trol template from the previous section (Listing 23-6), notice that attributes have been applied to both
the Class and to the Text property. In this section, you study these attributes and how they affect the
behavior of the control.

Class Attributes
Class attributes generally control how the server control behaves in the Visual Studio Toolbox and when
placed on the design surface. The class attributes can be divided into three basic categories: attributes
that help the Visual Studio designer know how to render the control at design time, attributes that help
you tell ASP.NET how to render nested controls, and attributes that tell Visual Studio how to display the
control in the Toolbox. The following table describes some of these attributes.

867

User Controls, Server Controls, Modules, and HttpHandlers

26_576100 ch23.qxd 10/6/05 9:36 PM Page 867

Attribute Description

Designer Indicates the designer class this control should use to
render a design-time view of the control on the Visual
Studio design surface

Type Converter Specifies what type to use as a converter for the object

DefaultEvent Indicates the default event created when the user
double-clicks the control on the Visual Studio design
surface

DefaultProperty Indicates the default property for the control

ControlBuilder Specifies a ControlBuilder class for building a custom
control in the ASP.NET control parser

ParseChildren Indicates whether XML elements nested within the
server controls tags will be treated as properties or as
child controls

TagPrefix Indicates the text the control is prefixed with in the Web
page HTML

Property/Event Attributes
Property attributes are used to control a number of different aspects of server controls. You can use
attributes to control how your properties and events behave in the Visual Studio Property Browser. You
can also use attributes to control how properties and events are serialized at design time. The following
table describes some of the property and event attributes you can use.

Attribute Description

Bindable Indicates that the property can be bound to a data
source

Browsable Indicates whether the property should be displayed at
design time in the Property Browser

Category Indicates the category this property should be displayed
under in the Property Browser

Description Displays a text string at the bottom of the Property
Browser that describes the purpose of the property

EditorBrowsable Indicates whether the property should be editable when
shown in the Property Browser

DefaultValue Indicates the default value of the property shown in the
Property Browser

868

Chapter 23

26_576100 ch23.qxd 10/6/05 9:36 PM Page 868

Attribute Description

DesignerSerializationVisibility Specifies the visibility a property has to the design-time
serializer

NotifyParentProperty Indicates that the parent property is notified when the
value of the property is modified

PersistChildren Indicates whether, at design-time, the child controls of
a server control should be persisted as nested inner
controls

PersistanceMode Specifies how a property or an event is persisted to the
ASP.NET page

TemplateContainer Specifies the type of INamingContainer that will contain
the template once it is created

Editor Indicates the UI Type Editor class this control should
use to edit its value

Localizable Indicates that the property contains text that can be
localized

Themable Indicates whether this property can have a theme
applied to it

Obviously, the class and property/event attribute tables present a lot of information upfront. You already
saw a demonstration of some of these attributes in Listing 23-1; now, as you go through the rest of the
chapter, you will spend time working with most of the attributes listed in the tables.

Control Rendering
Now that that you have seen the large number of options you have for working with a server control
at design-time, look at what you need to know to manage how your server control renders its HTML at
runtime.

The Page Event Lifecycle
Before we talk about rendering HTML, you must understand the lifecycle of a Web page. As the control
developer, you are responsible for overriding methods that execute during the lifecycle and implement-
ing your own custom rendering logic.

Remember that when a Web browser makes a request to the server, it is using HTTP, a stateless protocol.
ASP.NET provides a page-execution framework that helps create the illusion of state in a Web application.
This framework is basically a series of methods and events that execute every time an ASP.NET page is
processed. You may have seen diagrams showing this lifecycle for ASP.NET 1.0, but ASP.NET 2.0 adds a
variety of new events to give you more power over the behavior of the control. Figure 23-6 shows the
events and methods called during the control’s lifecycle.

Many events and members are executed during the control’s lifecycle, but you should concentrate on the
more important among them.

869

User Controls, Server Controls, Modules, and HttpHandlers

26_576100 ch23.qxd 10/6/05 9:36 PM Page 869

Figure 23-6

FrameworkInitialize

AddParsedSubObject

CreateControlCollection

AddedControl Loop to add all
controls resident
on the pageAddParsedSubObject

DeterminePostBakMode

PreInit

Init

TrackViewState

InitComplete

LoadPageFromPersistanceMedium

PreLoad

Load

RaisePostbackEvent

LoadComplete

PreRenderComplete

PreRender

SaveViewState

SavePageToPersistanceMedium

SaveStateComplete

RenderControl

VerifyRenderingServerForm

Unload

870

Chapter 23

26_576100 ch23.qxd 10/6/05 9:36 PM Page 870

Rendering Services
The main job of a server control is to render some type of markup language to the HTTP output stream,
which is returned to and displayed by the client. If your client is a standard browser, the control should
emit HTML; if the client is something like a mobile device, the control may need to emit a different type
of markup, such as WAP, or WML. As I stated earlier, it is your responsibility as the control developer
to tell the server control what markup to render. The overridden Render method, called during the
control’s lifecycle, is the primary location where you tell the control what you want to emit to the client.
In Listing 23-8, notice that the Render method is used to tell the control to print the value of the Text
property.

Listing 23-8: Overriding the Render method

VB
Protected Overrides Sub Render(ByVal output As System.Web.UI.HtmlTextWriter)

output.Write([Text])
End Sub

C#
protected override void Render(HtmlTextWriter output)
{

output.Write(Text);
}

Also notice that the Render method has one method parameter called output. This parameter is an
HtmlTextWriter class, which is what the control uses to render HTML to the client. This special writer
class is specifically designed to emit HTML 4.0–compliant HTML to the browser. The HtmlTextwriter
class has a number of methods you can use to emit your HTML, including RenderBeginTag and
WriteBeginTag. Listing 23-9 shows how you can modify the control’s Render method to emit an
HTML <input> tag.

Listing 23-9: Using the HtmlTextWriter to render an HTML tag

VB
Protected Overrides Sub Render(ByVal output As System.Web.UI.HtmlTextWriter)

output.RenderBeginTag(HtmlTextWriterTag.Input)
output.RenderEndTag()

End Sub

C#
protected override void Render(HtmlTextWriter output)
{

output.RenderBeginTag(HtmlTextWriterTag.Input);
output.RenderEndTag();

}

First, notice that the RenderBeginTag method is used to emit the HTML. The advantage of using this
method to emit HTML is that it requires you to select a tag from the HtmlTextWriterTag enumeration.
Using the RenderBeginTag method and the HtmlTextWriterTag enumeration enables you to have
your control automatically support downlevel browsers that cannot understand HTML 4.0 syntax. If
a downlevel browser is detected by ASP.NET, the control automatically emits HTML 3.2 syntax instead
of HTML 4.0.

871

User Controls, Server Controls, Modules, and HttpHandlers

26_576100 ch23.qxd 10/6/05 9:36 PM Page 871

Second, notice that the RenderEndTag method is also used. As the name suggests, this method renders
the closing tag. Notice, however, that you do not have to specify in this method which tag you want
to close. The RenderEndTag automatically closes the last begin tag rendered by the RenderBeginTag
method, which in this case is the <input> tag. If you want to emit multiple HTML tags, make sure you
order your Begin and End render methods properly. In Listing 23-10, for example, you add a <div> tag
to the control. The <div> tag surrounds the <input> tag when rendered to the page.

Listing 23-10: Using the HtmlTextWriter to render multiple HTML tags

VB
Protected Overrides Sub Render(ByVal output As System.Web.UI.HtmlTextWriter)

output.RenderBeginTag(HtmlTextWriterTag.Div)
output.RenderBeginTag(HtmlTextWriterTag.Input)
output.RenderEndTag()
output.RenderEndTag()

End Sub

C#
protected override void Render(HtmlTextWriter output)
{

output.RenderBeginTag(HtmlTextWriterTag.Div);
output.RenderBeginTag(HtmlTextWriterTag.Input);
output.RenderEndTag();
output.RenderEndTag();

}

Now that you have a basic understanding of how to emit simple HTML, look at the output of your con-
trol. You can do this by viewing the test HTML page containing the control in a browser and choosing
View ➪ Source. Figure 23-7 shows the source for the page.

Figure 23-7

872

Chapter 23

26_576100 ch23.qxd 10/6/05 9:36 PM Page 872

You can see that the control emitted some pretty simple HTML markup. Also notice (in the highlighted
area) that the control was smart enough to realize that the input control did not contain any child con-
trols and, therefore, the control did not need to render a full closing tag. Instead, it automatically ren-
dered the shorthand />, rather than </input>.

Adding Tag Attributes
Emitting HTML tags is a good start to building the control, but perhaps this is a bit simplistic. Normally,
when rendering HTML you would emit some tag attributes (such as ID or Name) to the client in addition
to the tag. Listing 23-11 shows how you can easily add tag attributes.

Listing 23-11: Rendering HTML tag attributes

VB
Protected Overrides Sub Render(ByVal output As System.Web.UI.HtmlTextWriter)

output.RenderBeginTag(HtmlTextWriterTag.Div)

output.AddAttribute(HtmlTextWriterAttribute.Type, “text”)
output.AddAttribute(HtmlTextWriterAttribute.Id, Me.ClientID)
output.AddAttribute(HtmlTextWriterAttribute.Name, Me.ClientID)
output.AddAttribute(HtmlTextWriterAttribute.Value, Me.Text)
output.RenderBeginTag(HtmlTextWriterTag.Input)
output.RenderEndTag()

output.RenderEndTag()
End Sub

C#
protected override void Render(HtmlTextWriter output)
{

output.RenderBeginTag(HtmlTextWriterTag.Div);

output.AddAttribute(HtmlTextWriterAttribute.Type, “text”);
output.AddAttribute(HtmlTextWriterAttribute.Id, this.ClientID);
output.AddAttribute(HtmlTextWriterAttribute.Name, this.ClientID);
output.AddAttribute(HtmlTextWriterAttribute.Value, this.Text);
output.RenderBeginTag(HtmlTextWriterTag.Input);
output.RenderEndTag();

output.RenderEndTag();
}

You can see that by using the AddAttribute method, you have added three attributes to the <input>
tag. Also notice that, once again, you are using an enumeration, HtmlTextWriterAttribute, to select
the attribute you want to add to the tag. This serves the same purpose as using the HtmlTextWriterTag
enumeration, allowing the control to degrade its output to downlevel browsers.

As with the Render methods, the order in which you place the AddAttributes methods is important.
You place the AddAttributes methods directly before the RenderBeginTag method in the code.
The AddAttributes method associates the attributes with the next HTML tag that is rendered by the
RenderBeginTag method — in this case the <input> tag.

873

User Controls, Server Controls, Modules, and HttpHandlers

26_576100 ch23.qxd 10/6/05 9:36 PM Page 873

Now browse to the test page and check out the HTML source with the added tag attributes. Figure 23-8
shows the HTML source rendered by the control.

Figure 23-8

You can see that the tag attributes you added in the server control are now included as part of the HTML
tag rendered by the control.

874

Chapter 23

A Word About Control IDs
Notice that in Listing 23-11 it’s important to use the control’s ClientID property as the
value of both the Id and Name attributes. Controls that derive from the WebControl
class automatically expose three different types of ID properties: ID, UniqueID, and
ClientID. Each of these properties exposes a slightly altered version of the control’s
ID for use in a specific scenario.

The ID property is the most obvious. Developers use it to get and set the control’s ID.
It must be unique to the page at design time.

The UniqueID property is a read-only property generated at runtime that returns an
ID that has been prepended with the containing control’s ID. This is essential so that
ASP.NET can uniquely identify each control in the page’s control tree, even if the con-
trol is used multiple times by a container control such as a Repeater or GridView. For
example, if you add this custom control to a repeater, the UniqueID for each custom
control rendered by the Repeater is modified to include the Repeater’s ID when the
page executed:

MyRepeater:Ctrl0:MyCustomControl

26_576100 ch23.qxd 10/6/05 9:36 PM Page 874

Styling HTML
So far, you have seen how easy it is to build a simple HTML control and emit the proper HTML, including
attributes. In this section, we discuss how you can have your control render style information. As men-
tioned at the very beginning of this section, you are creating controls that inherit from the WebControl
class. Because of this, these controls already have the basic infrastructure for emitting most of the standard
CSS-style attributes. In the Property Browser for this control, you should see a number of style properties
already listed, such as background color, border width, and font. You can also launch the style builder to
create complex CSS styles. These basic properties are provided by the WebControl class, but it is up to you
to tell your control to render the values set at design time. To do this, you simply execute the
AddAttributeToRender method. Listing 23-12 shows you how to do this.

Listing 23-12: Rendering style properties

VB
Protected Overrides Sub Render(ByVal output As System.Web.UI.HtmlTextWriter)

output.RenderBeginTag(HtmlTextWriterTag.Div)

output.AddAttribute(HtmlTextWriterAttribute.Type, “text”)
output.AddAttribute(HtmlTextWriterAttribute.Id, Me.ClientID)
output.AddAttribute(HtmlTextWriterAttribute.Name, Me.ClientID)
output.AddAttribute(HtmlTextWriterAttribute.Value, Me.Text)
Me.AddAttributesToRender(output)

output.RenderBeginTag(HtmlTextWriterTag.Input)
output.RenderEndTag()

output.RenderEndTag()
End Sub

C#
protected override void Render(HtmlTextWriter output)
{

output.RenderBeginTag(HtmlTextWriterTag.Div);

output.AddAttribute(HtmlTextWriterAttribute.Type, “text”);

(continued)

875

User Controls, Server Controls, Modules, and HttpHandlers

The ClientID property is essentially identical to the UniqueID property with one
important exception. The ClientID property always uses an underscore (_) to sepa-
rate the ID values, rather than using the value of the IdSeparator property. This is
because the ECMAScript standard disallows the use of colons in ID attribute values,
which is the default value of the IdSeparator property. Using the underscore assures
that a control can be used by client-side JavaScript.

Additionally, in order to ensure that controls can generate a unique ID, they should
implement the INamingContainer interface. This is a marker interface only, meaning
that it does not require any additional methods to be implemented; it does, however,
ensure that the ASP.NET runtime guarantees the control always has a unique name
within the page’s tree hierarchy, regardless of its container.

26_576100 ch23.qxd 10/6/05 9:36 PM Page 875

Listing 23-12: (continued)

output.AddAttribute(HtmlTextWriterAttribute.Id, this.ClientID);
output.AddAttribute(HtmlTextWriterAttribute.Name, this.ClientID);
output.AddAttribute(HtmlTextWriterAttribute.Value, this.Text);
this.AddAttributesToRender(output);

output.RenderBeginTag(HtmlTextWriterTag.Input);
output.RenderEndTag();

output.RenderEndTag();
}

Executing this method tells the control to render any style information that has been set. Using the
Property Browser, you can set the background color of the control to Red and the font to Bold. When
you set these properties, they are automatically added to the control tag in the ASP.NET page. After
you have added the styles, the control tag looks like this:

<cc1:WebCustomControl1 BackColor=”Red” Font-Bold=true
ID=”WebCustomControl1_1” runat=”server” />

The style changes have been persisted to the control as attributes. When you execute this page in the
browser, the style information should be rendered to the HTML, making the background of the text box
red and its font bold. Figure 23-9 shows the page in the browser.

Figure 23-9

Once again, look at the source for this page. The style information has been rendered to the HTML as a
style tag. Figure 23-10 shows the HTML emitted by the control.

876

Chapter 23

26_576100 ch23.qxd 10/6/05 9:36 PM Page 876

Figure 23-10

Themes and Skins
A new feature in ASP.NET 2.0, introduced to you in Chapter 9, is themes and skins. This feature allows
you to create visual styles for your Web applications. In this section, you learn what you need to know
about themes and skins when creating a server control.

As you saw in Chapter 9, skins are essentially a way to set default values for the UI elements of controls
in your Web application. You simply define the control and its properties in a .skin file and the values
are applied to the control at runtime. Listing 23-13 shows a sample skin.

Listing 23-13: Sample ASP.NET 2.0 skin

<%@ Register Assembly=”WebControlLibrary1” Namespace=”WebControlLibrary1”
TagPrefix=”cc1” %>

<cc1:webcustomcontrol1 BackColor=”Green” runat=”server” />

By default, ASP.NET allows all control properties to be defined in the skin file, but obviously this is not
always appropriate. Most exposed properties are non-UI related; therefore, you do not apply a theme to
them. By setting the Themeable attribute to False on each of these properties, you prevent the application
of a theme. Listing 23-14 shows how to do this in your control by disabling themes on the Text property.

Listing 23-14: Disabling theme support on a control property

VB
<Bindable(True), Category(“Appearance”), DefaultValue(“”), Themeable(False)> _
Property [Text]() As String

Get
Return _text

(continued)

877

User Controls, Server Controls, Modules, and HttpHandlers

26_576100 ch23.qxd 10/6/05 9:36 PM Page 877

Listing 23-14: (continued)

End Get

Set(ByVal Value As String)
_text = Value

End Set
End Property

C#
[Bindable(true)]
[Category(“Appearance”)]
[DefaultValue(“”)]
[Themeable(false)]
public string Text
{

get
{

return text;
}
set
{

text = value;
}

}

Now, if a developer attempts to define this property in his skin file, he receives a compiler error when
the page is executed.

Adding Client-Side Features
Although the capability to render and style HTML is quite powerful by itself, other resources can be sent
to the client, such as client-side scripts, images, and resource strings. ASP.NET 2.0 provides you with some
powerful new tools for using client-side scripts in your server controls and retrieving other resources to
the client along with the HTML your control emits. Additionally, ASP.NET now includes an entire model
that allows you to make asynchronous callbacks from your Web page to the server.

Emitting Client-Side Script
Having your control emit client-side script like VBScript or JavaScript enables you to add powerful
client-side functionality to your control. Client-side scripting languages take advantage of the client’s
browser to create more flexible and easy-to-use controls. Although ASP.NET 1.0 provided some simple
methods to emit client-side script to the browser, ASP.NET 2.0 has enhanced these capabilities and now
provides a wide variety of methods for emitting client-side script that you can use to control where and
how your script is rendered.

If you have already used ASP.NET 1.0 to render client-side script to the client, you are probably familiar with
a few methods like the Page.RegisterClientScriptBlock and the Page.RegisterStartupScript
methods. In ASP.NET 2.0, these classes have been deprecated. Instead, ASP.NET 2.0 now uses the
ClientScriptManager class, which you can access using Page.ClientScript. This class exposes
various static client-script rendering methods that you can use to render client-side script.

878

Chapter 23

26_576100 ch23.qxd 10/6/05 9:36 PM Page 878

Listing 23-15 demonstrates how you can use the RegisterStartupScriptMethod method to render
JavaScript to the client. This listing adds the code into the OnPreRender method, rather than into the
Render method used in previous samples. This method allows every control to inform the page about
the client-side script it needs to render. After the Render method is called, the page is able to render all
the client-side script it collected during the OnPreRender method. If you call the client-side script regis-
tration methods in the Render method, the page has already completed a portion of its rendering before
your client-side script can render itself.

Listing 23-15: Rendering a client-side script to the browser

VB
Protected Overrides Sub OnPreRender(ByVal e As System.EventArgs)

Page.ClientScript.RegisterStartupScript(GetType(Page), _
“ControlFocus”, “document.getElementById(‘“ & Me.ClientID & “‘).focus();”, _
True)

End Sub

C#
protected override void OnPreRender(EventArgs e)
{

Page.ClientScript.RegisterStartupScript(typeof(Page),
“ControlFocus”,”document.getElementById(‘“ + this.ClientID + “‘).focus();”,
true);

}

In this listing, the code emits client-side script to automatically move the control focus to the TextBox
control when the Web page loads. When you use the RegisterStartupScript method, notice that it
now includes an overload that lets you specify if the method should render surrounding script tags.
This can be handy if you are rendering more than one script to the page.

Also notice that the method requires a key parameter. This parameter is used to uniquely identify the
script block; if you are registering more than one script block in the Web page, make sure that each block
is supplied a unique key. You can use the IsStartupScriptRegistered method and the key to deter-
mine if a particular script block has been previously registered on the client using the
RegisterStatupScript method.

When you execute the page in the browser, notice that the focus is automatically placed into a text box.
If you look at the source code for the Web page, you should see that the JavaScript was written to the
bottom of the page, as shown in Figure 23-11.

If you want the script to be rendered to the top of the page, you use the RegisterClientScriptBlock
method that emits the script block immediately after the opening <form> element.

Keep in mind that the browser parses the Web page from top to bottom, so if you emit client-side script
at the top of the page that is not contained in a function, any references in that code to HTML elements
further down the page will fail. The browser has not parsed that portion of the page yet.

Being able to render script that automatically executes when the page loads is nice, but it is more likely
that you will want the code to execute based on an event fired from an HTML element on your page,
such as the Click, Focus, or Blur events. In order to do this, you add an attribute to the HTML element
you want the event to fire from. Listing 23-16 shows you how you can modify your control’s Render
and PreRender methods to add this attribute.

879

User Controls, Server Controls, Modules, and HttpHandlers

26_576100 ch23.qxd 10/6/05 9:36 PM Page 879

Figure 23-11

Listing 23-16: Using client-side script and event attributes to validate data

VB
Protected Overrides Sub Render(ByVal output As System.Web.UI.HtmlTextWriter)

output.RenderBeginTag(HtmlTextWriterTag.Div)

output.AddAttribute(HtmlTextWriterAttribute.Type, “text”)
output.AddAttribute(HtmlTextWriterAttribute.Id, Me.ClientID)
output.AddAttribute(HtmlTextWriterAttribute.Name, Me.ClientID)
output.AddAttribute(HtmlTextWriterAttribute.Value, Me.Text)

output.AddAttribute(“OnBlur”, “ValidateText(this)”)
Me.AddAttributesToRender(output)

output.RenderBeginTag(HtmlTextWriterTag.Input)
output.RenderEndTag()

output.RenderEndTag()

End Sub

Protected Overrides Sub OnPreRender(ByVal e As System.EventArgs)
Page.ClientScript.RegisterStartupScript(GetType(Page), _

“ControlFocus”, “document.getElementById(‘“ & Me.ClientID & “‘).focus();”, _
True)

880

Chapter 23

26_576100 ch23.qxd 10/6/05 9:36 PM Page 880

Page.ClientScript.RegisterClientScriptBlock(_
GetType(Page), _
“ValidateControl”, _
“function ValidateText() {“ & _

“if (ctl.value==’’) {“ & _
“alert(‘Please enter a value.’);ctl.focus(); }” & _

“}”, _
True)

End Sub

C#
protected override void Render(HtmlTextWriter output)
{

output.RenderBeginTag(HtmlTextWriterTag.Div);
output.AddAttribute(HtmlTextWriterAttribute.Type, “text”);
output.AddAttribute(HtmlTextWriterAttribute.Id, this.ClientID);
output.AddAttribute(HtmlTextWriterAttribute.Name, this.ClientID);
output.AddAttribute(HtmlTextWriterAttribute.Value, this.Text);

output.AddAttribute(“OnBlur”, “ValidateText(this)”);
this.AddAttributesToRender(output);

output.RenderBeginTag(HtmlTextWriterTag.Input);
output.RenderEndTag();
output.RenderEndTag();

}

protected override void OnPreRender(EventArgs e)
{

Page.ClientScript.RegisterStartupScript(
typeof(Page),
“ControlFocus”,”document.getElementById(‘“ + this.ClientID + “‘).focus();”,
true);

Page.ClientScript.RegisterClientScriptBlock(
typeof(Page),
“ValidateControl”,
“function ValidateText(ctl) {“ +

“if (ctl.value==’’) {“ +
“alert(‘Please enter a value.’);ctl.focus(); }” +

“}”,
true);

}

As you can see, the TextBox control is modified to check for an empty string. We have also included an
attribute that adds the JavaScript OnBlur event to the text box. The OnBlur event fires when the control
loses focus. When this happens, the client-side ValidateText method is executed, which we rendered
to the client using RegisterClientScriptBlock.

The rendered HTML is shown in Figure 23-12.

881

User Controls, Server Controls, Modules, and HttpHandlers

26_576100 ch23.qxd 10/6/05 9:36 PM Page 881

Figure 23-12

Embedding JavaScript in the page is powerful, but if you are writing large amounts of client-side code,
you might want to consider storing the JavaScript in an external file. You can include this file in your
HTML by using the RegisterClientScriptInclude method. This method renders a script tag using
the URL you provide to it as the value of its src element.

<script src=”[url]” type=”text/javascript”></script>

Listing 23-17 shows how you can modify the validation added to the TextBox control in Listing 23-16;
but this time, the JavaScript validation function is stored in an external file.

Listing 23-17: Adding client-side script include files to a Web page

VB
Protected Overrides Sub OnPreRender(ByVal e As System.EventArgs)

Page.ClientScript.RegisterClientScriptInclude(_
“UtilityFunctions”, “JScript.js”)

Page.ClientScript.RegisterStartupScript(GetType(Page), _
“ControlFocus”, “document.getElementById(‘“ & Me.ClientID & “‘).focus();”, _
True)

End Sub

882

Chapter 23

26_576100 ch23.qxd 10/6/05 9:36 PM Page 882

C#
protected override void OnPreRender(EventArgs e)
{

Page.ClientScript.RegisterClientScriptInclude(
“UtilityFunctions”, “JScript.js”);

Page.ClientScript.RegisterStartupScript(
typeof(Page),
“ControlFocus”,”document.getElementById(‘“ + this.ClientID + “‘).focus();”,
true);

}

You have modified the OnPreRender event to register a client-side script file include, which contains the
ValidateText function. You need to add a JScript file to the project and create the ValidateText func-
tion, as shown in Listing 23-18.

Listing 23-18: The validation JavaScript contained in the Jscript file

// JScript File

function ValidateText(ctl)
{

if (ctl.value==’’) {
alert(‘Please enter a value.’);
ctl.focus();

}
}

The ClientScriptManager also provides methods for registering hidden HTML fields and adding
script functions to the OnSubmit event.

Accessing Embedded Resources
A great way to distribute application resources like JavaScript files, images, or resource files is to embed
them directly into the compiled assembly. While this was possible in ASP.NET 1.0, it was very difficult to
access these resources as part of the page request process. ASP.NET 2.0 solved this problem by including
the RegisterClientScriptResource method as part of the ClientScriptManager.

This method makes it possible for your web pages to retrieve stored resources — like JavaScript files —
from the compiled assembly at runtime. It works by using an HttpHandler to retrieve the requested
resource from the assembly and return it to the client. The RegisterClientScriptResource method
emits a <script> block whose src value points to this HttpHandler:

<script
language=”javascript”
src=”WebResource.axd?a=s&r=WebUIValidation.js&t=631944362841472848”
type=”text/javascript”>

</script>

As you can see, the WebResource.axd handler is used to return the resource — in this case, the JavaScript
file. You can use this method to retrieve any resource stored in the assembly, such as images or localized
content strings from resource files.

883

User Controls, Server Controls, Modules, and HttpHandlers

26_576100 ch23.qxd 10/6/05 9:36 PM Page 883

Asynchronous Callbacks
Finally, a new addition to the client-side script rendering capabilities of ASP.NET 2.0 is client-side call-
backs. Client-side callbacks enable you to take advantage of the XmlHttp components found in most
modern browsers to communicate with the server without actually performing a complete postback.
Figure 23-13 shows how client-side callbacks work in the ASP.NET framework.

Figure 23-13

In order to enable callbacks in your server control, you implement the System.Web.UI
.ICallBackEventHander interface. This interface requires you to implement a single method,
RaiseCallbackEvent. This is the server-side event that fires when the client executes the callback.
After you implement the interface, you want to tie your client-side events back to the server. You do this
by using the Page.ClientScript.GetCallbackEventReference method. This method allows you
to specify the two client-side functions: one to serve as the callback handler and one to serve as an error
handler. Listing 23-19 demonstrates how you can modify the TextBox control’s Render methods and
add the RaiseCallBackEvent method to use callbacks to perform validation.

Listing 23-19: Adding an asynchronous callback to validate data

VB
Protected Overrides Sub Render(ByVal output As System.Web.UI.HtmlTextWriter)

output.RenderBeginTag(HtmlTextWriterTag.Div)

output.AddAttribute(HtmlTextWriterAttribute.Type, “text”)
output.AddAttribute(HtmlTextWriterAttribute.Id, Me.ClientID)
output.AddAttribute(HtmlTextWriterAttribute.Name, Me.ClientID)

Using JavaScript, the
browser creates an

instance of the MSXML
ActiveX control

The MSXML ActiveX
control makes a

request to the server

JavaScript handles the
Callback method

The Internet

JavaScript handles the
ErrorCallback method

The request raises the
ICallbackEventHandler

method RaiseCallbackEvent
on the server

Method returns a string, or
thrown an exception

884

Chapter 23

26_576100 ch23.qxd 10/6/05 9:36 PM Page 884

output.AddAttribute(HtmlTextWriterAttribute.Value, Me.Text)

output.AddAttribute(“OnBlur”, “ClientCallback();”)
Me.AddAttributesToRender(output)

output.RenderBeginTag(HtmlTextWriterTag.Input)
output.RenderEndTag()

output.RenderEndTag()

End Sub

Protected Overrides Sub OnPreRender(ByVal e As System.EventArgs)
Page.ClientScript.RegisterStartupScript(GetType(Page), _

“ControlFocus”, “document.getElementById(‘“ & Me.ClientID & “‘).focus();”, _
True)

Page.ClientScript.RegisterStartupScript(_
GetType(Page), “ClientCallback”, _
“function ClientCallback() {“ & _

“args=document.getElementById(‘“ & Me.ClientID & “‘).value;” & _
Page.ClientScript.GetCallbackEventReference(Me, “args”, _

“CallbackHandler”, Nothing, “ErrorHandler”, True) + “}”, _
True)

End Sub

Public Function RaiseCallbackEvent(ByVal eventArgument As String) As String
Implements System.Web.UI.ICallbackEventHandler.RaiseCallbackEvent

Dim result As Int32
If (Not Int32.TryParse(eventArgument, result)) Then

Throw New Exception(“The method or operation is not implemented.”)
End If
Return “Valid Data”

End Function

C#
protected override void Render(HtmlTextWriter writer)
{

output.RenderBeginTag(HtmlTextWriterTag.Div);

output.AddAttribute(HtmlTextWriterAttribute.Type, “text”);
output.AddAttribute(HtmlTextWriterAttribute.Id, this.ClientID);
output.AddAttribute(HtmlTextWriterAttribute.Name, this.ClientID);
output.AddAttribute(HtmlTextWriterAttribute.Value, this.Text);

output.AddAttribute(“OnBlur”, “ClientCallback();”);
this.AddAttributesToRender(writer);

output.RenderBeginTag(HtmlTextWriterTag.Input);
output.RenderEndTag();

output.RenderEndTag();
}

protected override void OnPreRender(EventArgs e)

(continued)

885

User Controls, Server Controls, Modules, and HttpHandlers

26_576100 ch23.qxd 10/6/05 9:36 PM Page 885

Listing 23-19: (continued)

{
Page.ClientScript.RegisterStartupScript(

typeof(Page),
“ControlFocus”,”document.getElementById(‘“ + this.ClientID + “‘).focus();”,
true);

Page.ClientScript.RegisterStartupScript(
typeof(Page), “ClientCallback”,
“function ClientCallback() {“ +

“args=document.getElementById(‘“ + this.ClientID + “‘).value;” +
Page.ClientScript.GetCallbackEventReference(this, “args”,

“CallbackHandler”, null,”ErrorHandler”,true) + “}”,
true);

}

#region ICallbackEventHandler Members

public string RaiseCallbackEvent(string eventArgument)
{

int result;
if (!Int32.TryParse(eventArgument,out result))

throw new Exception(“The method or operation is not implemented.”);

return “Valid Data”;
}

#endregion

As you can see, the OnBlur attribute has again been modified, this time by simply calling the
ClientCallback method. This method is created and rendered during the PreRender event. The main
purpose of this event is to populate the client-side args variable and call the client-side callback method.

You are using the GetCallbackEventReference method to generate the client-side script that actually
initiates the callback. The parameters passed to the method indicate which control is initiating the call-
back, the names of the client-side callback method, and the name of the callback method parameters.
The following table provides more details on the GetCallbackEventReference arguments.

Parameter Description

Control Server control that initiates the callback.

Argument Client-side variable used to pass arguments to the server-side event
handler.

ClientCallback Client-side function serving as the Callback method. This method
fires when the server-side processing has completed successfully.

Context Client-side variable that gets passed directly to the receiving client-
side function. The context does not get passed to the server.

ClientErrorCallback Client-side function serving as the Callback error-handler method.
This method fires when the server-side processing encounters an error.

886

Chapter 23

26_576100 ch23.qxd 10/6/05 9:36 PM Page 886

In the code, two client-side methods are called: CallbackHandler and ErrorHandler, respectively.
The two method parameters are args and ctx.

In addition to the server control code changes, the two client-side callback methods have been added to
the JavaScript file. Listing 23-20 shows these new functions.

Listing 23-20: The client-side callback JavaScript functions

// JScript File
var args;
var ctx;

function ValidateText(ctl)
{

if (ctl.value==’’) {
alert(‘Please enter a value.’);
ctl.focus();

}
}

function CallbackHandler(args,ctx)
{

alert(“The data is valid”);
}

function ErrorHandler(args,ctx)
{

alert(“Please enter a number”);
}

Now, when you view your Web page in the browser, as soon as the text box loses focus, you perform a
client-side callback to validate the data. The callback raises the RaiseCallbackEvent method on the
server, which validates the value of the text box that was passed to it in the eventArguments. If the
value is valid, you return a string and the client-side CallbackHandler function fires. If the value is
invalid, you throw an exception, which causes the client-side ErrorHandler function to execute.

Detecting and Reacting to Browser Capabilities
So far in the chapter we have described many powerful features, such as styling and emitting client-side
scripts, that you can utilize when writing your own custom control. But if you are taking advantage of
these features, you must also consider how you can handle certain browsers, often called downlevel
browsers, that might not understand these advanced features or might not have them enabled. Being
able to detect and react to downlevel browsers is an important consideration when creating your control.
ASP.NET includes some powerful tools you can use to detect the type and version of the browser mak-
ing the page request, as well as what capabilities the browser supports.

.browser files
ASP.NET 2.0 has introduced a new and highly flexible method for configuring, storing, and discovering
browser capabilities. All browser identification and capability information is now stored in .browser
files. ASP.NET stores these files in the C:\Windows\Microsoft.NET\Framework\v2.0.[xxxx]\
CONFIG\Browsers directory. If you open this folder, you see that ASP.NET provides you with a variety

887

User Controls, Server Controls, Modules, and HttpHandlers

26_576100 ch23.qxd 10/6/05 9:36 PM Page 887

of .browser files that describe the capabilities of most of today’s common desktop browsers, as well as
information on browsers in devices such as PDAs and cellular phones. Open one of the browser files,
and you see that the file contains all the identification and capability information for the browser. Listing
23-21 shows you the contents of the WebTV capabilities file.

Listing 23-21: A sample browser capabilities file

<browsers>
<!-- sample UA “Mozilla/3.0 WebTV/1.2(Compatible;MSIE 2.0)” -->
<browser id=”WebTV” parentID=”IE2”>

<identification>
<userAgent

match=”WebTV/(?’version’(?’major’\d+)(?’minor’\.\d+)(?’letters’\w*))” />
</identification>

<capture>
</capture>

<capabilities>
<capability name=”backgroundsounds” value=”true” />
<capability name=”browser” value=”WebTV” />
<capability name=”cookies” value=”true” />
<capability name=”isMobileDevice” value=”true” />
<capability name=”letters” value=”${letters}” />
<capability name=”majorversion” value=”${major}” />
<capability name=”minorversion” value=”${minor}” />
<capability name=”tables” value=”true” />
<capability name=”type” value=”WebTV${major}” />
<capability name=”version” value=”${version}” />

</capabilities>

<controlAdapters markupTextWriterType=”System.Web.UI.Html32TextWriter”>
</controlAdapters>
</browser>

<browser id=”WebTV2” parentID=”WebTV”>
<identification>

<capability name=”minorversion” match=”2” />
</identification>

<capture>
</capture>

<capabilities>
<capability name=”css1” value=”true” />
<capability name=”ecmascriptversion” value=”1.0” />
<capability name=”javascript” value=”true” />

</capabilities>
</browser>

<gateway id=”WebTVbeta” parentID=”WebTV”>
<identification>

<capability name=”letters” match=”^b” />

888

Chapter 23

26_576100 ch23.qxd 10/6/05 9:36 PM Page 888

</identification>

<capture>
</capture>

<capabilities>
<capability name=”beta” value=”true” />

</capabilities>
</gateway>

</browsers>

The advantage of this new method for storing browser capability information is that as new browsers
are created or new versions are released, developers simply create or update a .browser file to describe
the capabilities of that browser.

Accessing Browser Capability Information
Now that you have seen how ASP.NET 2.0 stores browser capability information, we want to discuss
how you can access this information at runtime and program your control to change what it renders
based on the browser. To access capability information about the requesting browser, you can use the
Page.Request.Browser property. This property gives you access to the
System.Web.HttpBrowserCapabilities class, which provides information about the capabilities of
the browser making the current request. The class provides you with a myriad of attributes and proper-
ties that describe what the browser can support and render and what it requires. Lists use this informa-
tion to add capabilities to the TextBox control. Listing 23-22 shows how you can detect browser
capabilities to make sure a browser supports JavaScript.

Listing 23-22: Detecting browser capabilities in server-side code

VB
Protected Overrides Sub OnPreRender(ByVal e As System.EventArgs)

If (Page.Request.Browser.EcmaScriptVersion.Major > 0) Then
Page.ClientScript.RegisterStartupScript(_

GetType(Page), “ClientCallback”, _
“function ClientCallback() {“ & _

“args=document.getElementById(‘“ & Me.ClientID & “‘).value;” & _
Page.ClientScript.GetCallbackEventReference(Me, “args”, _

“CallbackHandler”, Nothing, “ErrorHandler”, True) + “}”, _
True)

Page.ClientScript.RegisterStartupScript(GetType(Page), _
“ControlFocus”, “document.getElementById(‘“ & _
Me.ClientID & “‘).focus();”, _
True)

End If
End Sub

C#
protected override void OnPreRender(EventArgs e)
{

if (Page.Request.Browser.EcmaScriptVersion.Major > 0)
{

Page.ClientScript.RegisterClientScriptInclude(

(continued)

889

User Controls, Server Controls, Modules, and HttpHandlers

26_576100 ch23.qxd 10/6/05 9:36 PM Page 889

Listing 23-22: (continued)

“UtilityFunctions”, “JScript.js”);
Page.ClientScript.RegisterStartupScript(

typeof(Page),
“ControlFocus”,”document.getElementById(‘“ +

this.ClientID + “‘).focus();”,
true);

Page.ClientScript.RegisterStartupScript(
typeof(Page), “ClientCallback”,
“function ClientCallback() {“ +

“args=document.getElementById(‘“ + this.ClientID + “‘).value;” +
Page.ClientScript.GetCallbackEventReference(this, “args”,

“CallbackHandler”, null,”ErrorHandler”,true) + “}”,
true);

}
}

This is a very simple sample, but it gives you an idea of what is possible using the
HttpBrowserCapabilities class.

Using ViewState
When developing Web applications, remember that they are built on the stateless HTTP protocol. ASP.NET
gives you a number of ways to give users the illusion that they are using a stateful application, including
Session State and cookies. Additionally, ASP.NET 1.0 introduces a new way of creating the state illusion
called ViewState. ViewState enables you to maintain the state of the objects and controls that are part of the
Web page through the page’s lifecycle by storing the state of the controls in a hidden form field that is ren-
dered as part of the HTML. The state contained in the form field can then be used by the application to
reconstitute the page’s state when a postback occurs. Figure 23-14 shows how ASP.NET stores ViewState
information in a hidden form field.

Figure 23-14890

Chapter 23

26_576100 ch23.qxd 10/6/05 9:36 PM Page 890

Notice that the page contains a hidden form field named __ViewState. The value of this form field is
the ViewState for your Web page. By default, ViewState is enabled in all in-box server controls shipped
with ASP.NET. If you write customer server controls, however, you are responsible for ensuring that a
control is participating in the use of ViewState by the page.

The ASP.NET ViewState is basically a StateBag that enables you to save and retrieve objects as key/
value pairs. As you see in Figure 23-14, these objects are then serialized by ASP.NET and persisted as an
encrypted string, which is pushed to the client as a hidden HTML form field. When the page posts back
to the server, ASP.NET can use this hidden form field to reconstitute the StateBag, which you can then
access as the page is processed on the server.

Because the ViewState can sometimes grow to be very large and can therefore affect the overall page size,
you might consider an alternate method of storing the ViewState information. You can create your own
persistence mechanism by deriving a class from the System.Web.UI.PageStatePersister class and over-
riding its Load and Save methods.

To see the effects of ViewState, look at how the standard ASP.NET text box works in comparison to the
customer server control’s text box. To demonstrate this, add two buttons and a standard ASP.NET text
box to your existing Web page. Listing 23-23 shows how you can modify the Web page.

Listing 23-23: The ViewState sample demonstration Web page

VB
<%@ Page Language=”VB” %>

<%@ Register Assembly=”WebControlLibrary1” Namespace=”WebControlLibrary1”
TagPrefix=”cc1” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<script runat=”server”>
Protected Sub Button1_Click(ByVal sender As Object, _

ByVal e As System.EventArgs)
Me.WebCustomControl1_1.Text = “CustomControl”
Me.TextBox1.Text = “StandardTextbox”

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>ViewState Sample</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

My Control
<cc1:webcustomcontrol1 id=”WebCustomControl1_1”

runat=”server”></cc1:webcustomcontrol1>

Reg Control
<asp:TextBox ID=”TextBox1” runat=”server”></asp:TextBox>

(continued)

891

User Controls, Server Controls, Modules, and HttpHandlers

26_576100 ch23.qxd 10/6/05 9:36 PM Page 891

Listing 23-23: (continued)

<asp:Button ID=”Button1” runat=”server” Text=”Button” />
<asp:Button ID=”Button2” runat=”server” Text=”Button” /></div>

</form>
</body>
</html>

C#
<script runat=”server”>

protected void Button1_Click(object sender, EventArgs e)
{

this.WebCustomControl1_1.Text = “CustomControl”;
this.TextBox1.Text = “StandardTextbox”;

}
</script>

Notice that you use the Button1 click event to assign a value to each text box. Now, see what happens
when you execute the Web page in a browser. After the page has loaded, click the Populate button, and
the text you assign should appear in each respective text box. Now click the Postback button and notice
that when the page reloads after the postback, the text in your text box disappears, but the text in the
standard text box is repopulated. This occurs because the request to the server re-initializes your server
control and it rerenders itself to the client. Because you are not re-assigning the value, the control is
empty. The standard ASP.NET text box uses ViewState to repopulate its value after the postback, whereas
your custom control is not able to do that yet. Now modify your server control to take advantage of
ViewState. Listing 23-24 shows how you make this modification.

Listing 23-24: Modifying control properties to use ViewState

VB
<Bindable(True), Category(“Appearance”), DefaultValue(“”), Themeable(False)> _
Property [Text]() As String

Get
_text = CStr(ViewState(“ControlText”))
If (_text = Nothing) Then

Return String.Empty
End If

Return _text
End Get

Set(ByVal Value As String)
ViewState(“ControlText”) = Value

End Set
End Property

C#
[Bindable(true)]
[Category(“Appearance”)]
[DefaultValue(“”)]
[Themeable(false)]
public string Text
{

892

Chapter 23

26_576100 ch23.qxd 10/6/05 9:36 PM Page 892

get
{

text = (string)ViewState[“ControlText”];
if (text == null)

return String.Empty;
return text;

}
set
{

ViewState[“ControlText”] = value;
}

}

After you make this change, rerun the previous sample using the modified server control. This time,
you should see that both the standard ASP.NET text box and the custom server control now persist data
across the postback because you stored the text property value in ViewState.

Note that the loading of ViewState happens after the OnInit event has been raised by the page. If your
control makes changes to itself or another server control before the event has been raised, the changes are
not saved to the ViewState.

Types and ViewState
As mentioned in the preceding section, the ViewState is basically a generic collection of objects, but not
all objects can be added to the ViewState. Only types that can be safely persisted can be used in the
ViewState, so objects such as database connections or file handles should not be added to the ViewState.

Additionally, certain data types are optimized for use in the ViewState. When adding data to the
ViewState, try to package the data into these types:

❑ Primitive Types (Int32, Boolean, and so on)

❑ Arrays of Primitive Types

❑ ArrayList, HashTable

❑ Pair, Triplet

❑ Color, DataTime

❑ String, IndexedString

❑ HybridDictionary of these types

❑ Objects that have a TypeConverter available. Be aware, however, that there is a reduction in per-
formance if you use these types.

❑ Objects that are serializable (marked with the Serializable attribute)

The .NET 2.0 ViewState also has some new features that improve performance. For example, the .NET
1.1 ViewState used the LosFormatter to serialize objects, but ViewState in .NET 2.0 does not. Instead,
it uses the ObjectStateFormatter, and this results in dramatic improvements in the speed with which
objects are serialized and deserialized. It also decreases the overall byte size of the resulting serialization.
Additionally, the 2.0 ViewState has been modified to write out bytes rather than strings, thereby saving
the cost of converting to a string.

893

User Controls, Server Controls, Modules, and HttpHandlers

26_576100 ch23.qxd 10/6/05 9:36 PM Page 893

Control State
At times, your control must store critical, usually private information across postbacks. In ASP.NET
1.0, you might have considered using ViewState, but a developer using your control could disable
ViewState. ASP.NET 2.0 solves this problem by introducing a new kind of ViewState called ControlState.
ControlState is essentially a private ViewState for your control only, and it is not affected when
ViewState is turned off.

Two new methods, SaveViewState and LoadViewState, provide access to ControlState; however,
the implementation of these methods is left up to you. Listing 23-25 shows how you can use the
LoadControlState and SaveViewState methods.

Listing 23-25: Using ControlState in a server control

VB
Imports System.ComponentModel
Imports System.Web.UI

<DefaultProperty(“Text”)> _
<ToolboxData(“<{0}:[WebCustomControl5] runat=server></{0}:[WebCustomControl5]>”)> _
Public Class [WebCustomControl5]

Inherits System.Web.UI.WebControls.WebControl

Dim s As String
Protected Overrides Sub OnInit(ByVal e As System.EventArgs)

Page.RequiresControlState(Me)
MyBase.OnInit(e)

End Sub

Protected Overrides Sub LoadControlState(ByVal savedState As Object)
s = CStr(savedState)

End Sub

Protected Overrides Function SaveControlState() As Object
Return CType(“FOO”, Object)

End Function

Protected Overrides Sub Render(ByVal output As System.Web.UI.HtmlTextWriter)
output.Write(“Control State: “ & s)

End Sub

End Class

C#
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Text;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace WebControlLibrary1
{

[DefaultProperty(“Text”)]

894

Chapter 23

26_576100 ch23.qxd 10/6/05 9:36 PM Page 894

[ToolboxData(“<{0}:WebCustomControl5 runat=server></{0}:WebCustomControl5>”)]
public class WebCustomControl5 : WebControl
{

string s;
protected override void OnInit(EventArgs e)

{
Page.RequiresControlState(this);
base.OnInit(e);

}

protected override void LoadControlState(object savedState)
{

s = (string)savedState;
}

protected override object SaveControlState()
{

return (object)”FOO”;
}

protected override void Render(HtmlTextWriter output)
{

output.Write(“Control State: “ + s);
}

}
}

Controls intending to use ControlState must call the Page.RegisterRequiresControlState method
before attempting to save control state data. Additionally, the RegisterRequireControlState method
must be called for each page load because the value is not retained through page postbacks.

Raising PostBack Events
As you have seen in this chapter, ASP.NET provides a very powerful set of tools you can use to
develop server controls and emit them to a client browser. But this is still one-way communication
because the server only pushes data to the client. It would be useful if the server control could send data
back to the server. The process of sending data back to the server is generally known as a page postback.
You experience a page postback any time you click a form button or link that causes the page to make a
new request to the Web server.

ASP.NET provides a rich framework for handling postbacks from ASP.NET Web pages. Additionally,
ASP.NET attempts to give you a development model that mimics the standard Windows Forms event
model. It enables you to use controls that, even though they are rendered in the client browser, can raise
events in server-side code. It also provides an easy mechanism for plugging the server control into that
framework, allowing you to create controls that can cause a page postback. Figure 23-15 shows the
ASP.NET postback framework.

In order to initiate a postback, ASP.NET uses client-side scripting. You can add the proper script to your
control by using the GetPostBackEventReference method and emitting the results to the client dur-
ing the controls render method. Listing 23-26 shows how you can add that to a new server control that
emits an HTML button.

895

User Controls, Server Controls, Modules, and HttpHandlers

26_576100 ch23.qxd 10/6/05 9:36 PM Page 895

Figure 23-15

Listing 23-26: Adding PostBack capabilities to a server control

VB
Imports System.ComponentModel
Imports System.Web.UI

<DefaultProperty(“Text”)> _
<ToolboxData(“<{0}:WebCustomControl3 runat=server></{0}:WebCustomControl3>”)> _
Public Class WebCustomControl3

Init

IPostbackDataHandler
IPostbackEventHandler

Load State

Process Postback Data

Load

Postback Events

Save State

PreRender

Render

Unload

896

Chapter 23

26_576100 ch23.qxd 10/6/05 9:36 PM Page 896

Inherits System.Web.UI.WebControls.WebControl

Protected Overrides Sub Render(ByVal output As System.Web.UI.HtmlTextWriter)
Dim p As New PostBackOptions(Me)

output.AddAttribute(HtmlTextWriterAttribute.Onclick, _
Page.ClientScript.GetPostBackEventReference(p))

output.AddAttribute(HtmlTextWriterAttribute.Value, “My Button”)
output.AddAttribute(HtmlTextWriterAttribute.Id, Me.ClientID)
output.AddAttribute(HtmlTextWriterAttribute.Name, Me.ClientID)
output.RenderBeginTag(HtmlTextWriterTag.Button)
output.RenderEndTag()

End Sub
End Class

C#
using System.ComponentModel;
using System.Text;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace WebControlLibrary1
{

[DefaultProperty(“Text”)]
[ToolboxData(“<{0}:WebCustomControl3 runat=server></{0}:WebCustomControl3>”)]
public class WebCustomControl3 : WebControl
{

protected override void Render(HtmlTextWriter output)
{

PostBackOptions p = new PostBackOptions(this);

output.AddAttribute(HtmlTextWriterAttribute.Onclick,
Page.ClientScript.GetPostBackEventReference(p));

output.AddAttribute(HtmlTextWriterAttribute.Value, “My Button”);
output.AddAttribute(HtmlTextWriterAttribute.Id, this.ClientID);
output.AddAttribute(HtmlTextWriterAttribute.Name, this.ClientID);
output.RenderBeginTag(HtmlTextWriterTag.Button);
output.RenderEndTag();

}
}

}

As you can see, this code adds the postback event reference to the client-side OnClick event, but you are
not limited to that. You can add the postback JavaScript to any client-side event. You could even add the
code to a client-side function if you want to include some logic code.

Now that you can create a postback, you may want to add events to your control that execute during the
page postback. To raise server-side events from a client-side object, you implement the System.Web
.IPostBackEventHandler interface. Listing 23-27 shows how to do this for a button control. You also cre-
ate a server-side Click event you can handle when the page posts back.

897

User Controls, Server Controls, Modules, and HttpHandlers

26_576100 ch23.qxd 10/6/05 9:36 PM Page 897

Listing 23-27: Handling postback events in a server control

VB
Imports System.ComponentModel
Imports System.Web.UI

<DefaultProperty(“Text”)> _
<ToolboxData(“<{0}:WebCustomControl3 runat=server></{0}:WebCustomControl3>”)> _
Public Class WebCustomControl3

Inherits System.Web.UI.WebControls.WebControl
Implements IPostBackEventHandler

‘. . . Code removed for clarity . . .

Public Event Click()
Public Sub OnClick(ByVal args As EventArgs)

RaiseEvent Click()
End Sub

Public Sub RaisePostBackEvent(ByVal eventArgument As String)
Implements System.Web.UI.IPostBackEventHandler.RaisePostBackEvent

OnClick(EventArgs.Empty)
End Sub

End Class

C#
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Text;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace WebControlLibrary1
{

[DefaultProperty(“Text”)]
[ToolboxData(“<{0}:WebCustomControl3 runat=server></{0}:WebCustomControl3>”)]
public class WebCustomControl3 : WebControl, IPostBackEventHandler
{

//. . . Code removed for clarity . . .

#region IPostBackEventHandler Members
public event EventHandler Click;

public virtual void OnClick(EventArgs e)
{

if (Click != null)
{

Click(this,e);
}

}

public void RaisePostBackEvent(string eventArgument)

898

Chapter 23

26_576100 ch23.qxd 10/6/05 9:36 PM Page 898

{
OnClick(EventArgs.Empty);

}

#endregion
}

}

Now, when the user clicks the button and the page posts back, the server-side Click event fires, allowing
you to add server-side handling code to the event.

Handling PostBack Data
Now that you have learned how to store data in ViewState and add postback capabilities to a control,
look at how you can enable the control to interact with data the user enters into one of its form fields.
When a page is posted back to the server by ASP.NET, all the form data is also posted to the server. If the
control can interact with data that is passed with a page, you can store the information in ViewState and
complete the illusion of a stateful application.

To interact with postback data, your control must be able to access the data. To do this, it implements the
System.Web.IPostBackDataHandler interface. This interface allows your control to examine the form
data that is passed back to the server during the postback.

The IPostBackDataHandler interface requires that you implement two methods: LoadPostData and
RaisePostBackDataChangedEvent. The LoadPostData method is called for all server controls on the
page that have postback data. If a control does not have any postback data, the method is not called;
however, you can explicitly ask for the method to be called by using the RegisterRequiresPostBack
method.

Listing 23-28 shows how you implement the IPostBackDataHandler interface method in a text box.

Listing 23-28: Accessing Postback data in a server control

VB
Imports System.ComponentModel
Imports System.Web.UI

<DefaultProperty(“Text”)> _
<ToolboxData(“<{0}:WebCustomControl3 runat=server></{0}:WebCustomControl3>”)> _
Public Class WebCustomControl3

Inherits System.Web.UI.WebControls.WebControl
Implements IPostBackEventHandler, IPostBackDataHandler

‘. . . Code removed for clarity . . .

Public Function LoadPostData(ByVal postDataKey As String, _
ByVal postCollection As _

System.Collections.Specialized.NameValueCollection) _
As Boolean Implements System.Web.UI.IPostBackDataHandler.LoadPostData

Me.Text = postCollection(postDataKey)

(continued)

899

User Controls, Server Controls, Modules, and HttpHandlers

26_576100 ch23.qxd 10/6/05 9:36 PM Page 899

Listing 23-28: (continued)

Return False
End Function

Public Sub RaisePostDataChangedEvent()
Implements System.Web.UI.IPostBackDataHandler.RaisePostDataChangedEvent

End Sub

End Class

C#
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Text;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace WebControlLibrary1
{

[DefaultProperty(“Text”)]
[ToolboxData(“<{0}:WebCustomControl3 runat=server></{0}:WebCustomControl3>”)]
public class WebCustomControl3 : WebControl,

IPostBackEventHandler, IPostBackDataHandler
{

//. . . Code removed for clarity . . .

public bool LoadPostData(string postDataKey,
System.Collections.Specialized.NameValueCollection postCollection)

{
this.Text = postCollection[postDataKey];
return false;

}

public void RaisePostDataChangedEvent()
{
}

}
}

As you can see, the LoadPostData method passes any form data submitted to the method as a name
value collection that the control can access. The postDataKey parameter allows the control to access
the postback data item specific to it. You use these parameters to save text to the Text property of the
TextBox control. If you remember the earlier ViewState example, the Text property saves the new value
to ViewState; when the page renders, the TextBox value automatically repopulates.

In addition to the input parameters, the LoadPostData method also returns a Boolean value. This value
indicates whether the RaisePostBackDataChangedEvent method is also called after the LoadPostData
method completes execution. In the sample, it returns false because no events exist, but if you
create a TextChanged event to indicate the Textbox text has changed, you raise that event in the
RaisePostDataChangedEvent method.

900

Chapter 23

26_576100 ch23.qxd 10/6/05 9:36 PM Page 900

Composite Controls
So far, in looking at Server controls, you have concentrated on emitting a single HTML control; but this
can be fairly limiting. Creating extremely powerful controls often requires that you nest several HTML
elements together. ASP.NET allows you to easily create controls that serve as a container for other con-
trols. These types of controls are called composite controls.

To demonstrate how easy creating a composite control can be, try to change an existing control into a
composite control. Listing 23-29 shows how you can do this.

Listing 23-29: Creating a composite control

VB
Imports System.ComponentModel
Imports System.Web.UI
Imports System.Web.UI.WebControls

<DefaultProperty(“Text”)> _
<ToolboxData(“<{0}:[WebCustomControl2] runat=server></{0}:[WebCustomControl2]>”)> _
Public Class [WebCustomControl2]

Inherits System.Web.UI.WebControls.CompositeControl

Protected textbox As TextBox

Protected Overrides Sub CreateChildControls()
Me.Controls.Add(textbox)

End Sub

End Class

C#
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Text;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace WebControlLibrary1
{

[DefaultProperty(“Text”)]
[ToolboxData(“<{0}:WebCustomControl2 runat=server></{0}:WebCustomControl2>”)]
public class WebCustomControl2 : CompositeControl
{

protected TextBox textbox = new TextBox();

protected override void CreateChildControls()
{

this.Controls.Add(textbox);
}

}
}

901

User Controls, Server Controls, Modules, and HttpHandlers

26_576100 ch23.qxd 10/6/05 9:36 PM Page 901

A number of things in this listing are important. First, notice that the control class is now inheriting from
CompositeControl, rather than WebControl. Deriving from CompositeControl gives you a few extra
features specific to this type of control.

Second, notice that no Render method appears in this code. Instead, you simply create an instance of
another type of server control and add that to the Controls collection in the CreateChildControls
method. When you run this sample, you see that it renders a text box just like the last control did. In fact,
the HTML that it renders is almost identical.

Exposing Child Control Properties
When you drop a composite control (such as the text box from the last sample) onto the design surface,
notice that even though you are using a powerful ASP.NET TextBox control within the control, none of
that control’s properties are exposed to you in the Properties Explorer. In order to expose child control
properties through the parent container, you must create corresponding properties in the parent control.
For example, if you want to expose the ASP.NET text box Text property through the parent control, you
create a Text property. Listing 23-30 shows how to do this.

Listing 23-30: Exposing control properties in a composite control

VB
Imports System.ComponentModel
Imports System.Web.UI
Imports System.Web.UI.WebControls

<DefaultProperty(“Text”)>
<ToolboxData(“<{0}:[WebCustomControl2] runat=server></{0}:[WebCustomControl2]>”)> _
Public Class [WebCustomControl2]

Inherits System.Web.UI.WebControls.CompositeControl

Protected textbox As TextBox

Public Property Text() As String
Get

EnsureChildControls()
Return textbox.Text

End Get
Set(ByVal value As String)

EnsureChildControls()
textbox.Text = value

End Set
End Property

Protected Overrides Sub CreateChildControls()
Me.Controls.Add(textbox)
Me.ChildControlsCreated=True

End Sub

End Class

C#
using System;
using System.Collections.Generic;
using System.ComponentModel;

902

Chapter 23

26_576100 ch23.qxd 10/6/05 9:36 PM Page 902

using System.Text;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace WebControlLibrary1
{

[DefaultProperty(“Text”)]
[ToolboxData(“<{0}:WebCustomControl2 runat=server></{0}:WebCustomControl2>”)]
public class WebCustomControl2 : CompositeControl
{

protected TextBox textbox = new TextBox();

public string Text
{

get
{

EnsureChildControls();
return textbox.Text;

}
set
{

EnsureChildControls();
textbox.Text = value;

}
}

protected override void CreateChildControls()
{

this.Controls.Add(textbox);
this.ChildControlsCreated=true;

}
}

}

Notice that you use this property simply to populate the underlying control’s properties. Also notice that
before you access the underlying control’s properties, you always call the EnsureChildControls method.
This method ensures that children of the container control have actually been initialized before you attempt
to access them.

Templated Controls
In addition to composite controls, you can also create templated controls. Templated controls allow the user
to specify a portion of the HTML that is used to render the control, and to nest other controls inside of a
container control. You might be familiar with the Repeater or DataList control. These are both templated
controls that let you specify how you want the bound data to be displayed when the page renders.

To demonstrate a templated control, the following code gives you a simple example of displaying a mes-
sage from a user on a Web page. Because the control is a templated control, the developer has complete
control over how the message is displayed.

To get started, create the Message server control that will be used as the template inside of a container
control. Listing 23-31 shows the class which simply extends the existing Panel control by adding two
additional properties, Name and Text, and a new constructor.

903

User Controls, Server Controls, Modules, and HttpHandlers

26_576100 ch23.qxd 10/6/05 9:36 PM Page 903

Listing 23-31: Creating the templated control’s inner control class

VB
Public Class Message

Inherits System.Web.UI.WebControls.Panel
Implements System.Web.UI.INamingContainer

Private _name As String
Private _text As String

Public Sub New(ByVal name As String, ByVal text As String)
_text = text
_name = name

End Sub

Public ReadOnly Property Name() As String
Get

Return _name
End Get

End Property

Public ReadOnly Property Text() As String
Get

Return _text
End Get

End Property
End Class

C#
using System;
using System.Text;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace WebControlLibrary1
{

public class Message : Panel, INamingContainer
{

private string _name;
private string _text;

public Message(string name, string text)
{

_text = text;
_name = name;

}

public string Name
{

get { return _name; }
}

public string Text

904

Chapter 23

26_576100 ch23.qxd 10/6/05 9:36 PM Page 904

{
get { return _text; }

}
}

}

As you will see in a moment, you can access the public properties exposed by the Message class in order
to insert dynamic content into the template. You will also see how you can display the values of the
Name and Text properties as part of the rendered template control.

Next, create a new server control which will be the container for the Message control. This server control
is responsible for rendering any template controls nested in it.

Listing 23-32: Creating the template control container class

VB
Imports System.ComponentModel
Imports System.Web.UI
Imports System.Web.UI.WebControls

<DefaultProperty(“Text”)> _
<ToolboxData(“<{0}:TemplatedControl runat=server></{0}:TemplatedControl>”)> _
Public Class TemplatedControl

Inherits System.Web.UI.WebControls.WebControl

Private _name As String
Private _text As String

Private _message As Message
Private _messageTemplate As ITemplate

<Browsable(True)> Public ReadOnly Property Message() As Message
Get

EnsureChildControls()
Return _message

End Get
End Property

<PersistenceMode(PersistenceMode.InnerProperty), _
TemplateContainer(GetType(Message))> _

Public Property MessageTemplate() As ITemplate
Get

Return _messageTemplate
End Get
Set(ByVal value As ITemplate)

_messageTemplate = value
End Set

End Property

<Bindable(True), DefaultValue(“”)> Public Property Name() As String
Get

Return _name
End Get

(continued)

905

User Controls, Server Controls, Modules, and HttpHandlers

26_576100 ch23.qxd 10/6/05 9:36 PM Page 905

Listing 23-32: (continued)

Set(ByVal value As String)
_name = value

End Set
End Property

<Bindable(True), DefaultValue(“”)> Public Property Text() As String
Get

Return _text
End Get
Set(ByVal value As String)

_text = value
End Set

End Property

Public Overrides Sub DataBind()
CreateChildControls()
ChildControlsCreated = True
MyBase.DataBind()

End Sub

Protected Overrides Sub CreateChildControls()

Me.Controls.Clear()

_message = New Message(Name, Text)

Dim template As ITemplate = MessageTemplate
template.InstantiateIn(_message)
Controls.Add(_message)

End Sub

End Class

C#
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Text;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace WebControlLibrary1
{

[DefaultProperty(“Text”)]
[ToolboxData(“<{0}:TemplatedControl runat=server></{0}: TemplatedControl >”)]
public class TemplatedControl : WebControl
{

private string _name;
private string _text;

private Message _message;
private ITemplate _messageTemplate;

[Browsable(false)]

906

Chapter 23

26_576100 ch23.qxd 10/6/05 9:36 PM Page 906

public Message Message
{

get
{

EnsureChildControls();
return _message;

}
}

[PersistenceMode(PersistenceMode.InnerProperty)]
[TemplateContainer(typeof(Message))]
public virtual ITemplate MessageTemplate
{

get { return _messageTemplate; }
set { _messageTemplate = value; }

}

[Bindable(true)]
[DefaultValue(“”)]
public string Name
{

get { return _name; }
set { _name = value; }

}

[Bindable(true)]
[DefaultValue(“”)]
public string Text
{

get { return _text; }
set { _text = value; }

}

public override void DataBind()
{

CreateChildControls();
ChildControlsCreated = true;
base.DataBind();

}

protected override void CreateChildControls()
{

this.Controls.Clear();

_message = new Message(Name,Text);

ITemplate template = MessageTemplate;
template.InstantiateIn(_message);
Controls.Add(_message);

}

}
}

907

User Controls, Server Controls, Modules, and HttpHandlers

26_576100 ch23.qxd 10/6/05 9:36 PM Page 907

To start to dissect this sample, first notice the MessageTemplate property. This property allows Visual
Studio to understand that the control can contain a template, and allows it to display the IntelliSense for
that template. The property has been marked with the PersistanceMode attribute indicating that the
template control should be persisted as an inner property within the control’s tag in the ASPX page.
Additionally, the property is marked with the TemplateContainer attribute, which helps ASP.NET
figure out what type of template control this property represents. In this case, it’s the Message template
control you created earlier.

The container control exposes two public properties, Name and Text. These properties are used to popu-
late the Name and Text properties of the Message control since that class does not allow developers to
set the properties directly.

Finally, the CreateChildControls method, called by the DataBind method, does most of the heavy
lifting in this control. It creates a new Message object, passing the values of Name and Text as construc-
tor values. Once the CreateChildControls method completes, the base DataBind operation comtinues to
execute. This is important because that is where the evaluation of the Name and Text properties occurs,
which allows you to insert these properties values into the template control.

After the control and template are created, you can drop them onto a test Web page. Listing 23-33 shows
how the control can be used to customize the display of the data.

Listing 23-33: Adding a templated control to a Web page

VB
<%@ Page Language=”VB” %>

<%@ Register Assembly=”WebControlLibrary1” Namespace=”WebControlLibrary1”
TagPrefix=”cc1” %>

<script runat=”server”>
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Me.TemplatedControl1.DataBind()
End Sub

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Templated Web Controls</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<cc1:TemplatedControl Name=”John Doe” Text=”Hello World!”
ID=” TemplatedControl1” runat=”server”>
<MessageTemplate>The user ‘<%# Container.Name %>’

has a message for you:
”<%#Container.Text%>”
</MessageTemplate>

</cc1:TemplatedControl>
</div>
</form>

</body>
</html>

908

Chapter 23

26_576100 ch23.qxd 10/6/05 9:36 PM Page 908

C#
<script runat=”server”>

protected void Page_Load(object sender, EventArgs e)
{

this.TemplatedControl1.DataBind();
}

</script>

As you can see in the listing, the <cc1:TemplatedControl> control contains a MessageTemplate
within it, which has been customized to display the Name and Text values. Figure 23-16 shows this page
after it has been rendered in the browser.

Figure 23-16

One item to consider when creating templated controls is what happens if the developer does not
include a template control inside of the container control. In the previous example, if you removed the
MessageTemplate control from the TemplateContainer, a NullReferenceException would occur when
you tried to run your web page. This is because the container control’s MessageTemplate property
would return a null value. In order to prevent this, you can include a default template class as part of
the container control. An example of a default template is shown in Listing 23-34.

Listing 23-34: Creating the templated control’s default template class

VB
Private Class DefaultMessageTemplate

Implements ITemplate

Public Sub InstantiateIn(ByVal container As System.Web.UI.Control) _
Implements System.Web.UI.ITemplate.InstantiateIn

Dim l As New Literal()
l.Text=”No MessageTemplate was included.”
container.Controls.Add(l)

End Sub
End Class

(continued)

909

User Controls, Server Controls, Modules, and HttpHandlers

26_576100 ch23.qxd 10/6/05 9:36 PM Page 909

Listing 23-34: (continued)

C#
private sealed class DefaultMessageTemplate : ITemplate
{

public void InstantiateIn(Control container)
{

Literal l = new Literal();
l.Text=”No MessageTemplate was included.”;
container.Controls.Add(l);

}
}

Notice that the DefaultMessageTemplate implements the ITemplate interface. This interface requires that
the InstantiateIn method be implemented, which we use to provide the default template content.

To include the default template, simply add the class to the TemplatedControl class. You will also need
to modify the CreateChildControls method to detect the null MessageTemplate and instead create an
instance of and use the default template.

VB
If template = Nothing Then

template = New DefaultMessageTemplate()
End If

C#
if (template == null)
{

template = new DefaultMessageTemplate();
}

Creating Control Design-Time Experiences
So far in this chapter, you concentrated primarily on what gets rendered to the client’s browser, but the
browser is not the only consumer of server controls. Visual Studio and the developer using a server con-
trol are also consumers, and you need to consider their experiences when using your control.

ASP.NET 2.0 offers numerous improvements in the design-time experience you give to developers using
your control. Some of these improvements require no additional coding, such as the WYSIWYG render-
ing of user controls and basic server controls; but for more complex scenarios, ASP.NET 2.0 includes a
number of new tools that give the developer an outstanding design-time experience.

When you write server controls, a priority should be to give the developer a design-time experience
that closely replicates the runtime experience. This means altering the appearance of the control on the
design surface in response to changes in control properties and the introduction of other server controls
onto the design surface. Three main components are involved in creating the design-time behaviors of a
server control:

❑ Type Converters

❑ Designers

❑ UI Type Editors

910

Chapter 23

26_576100 ch23.qxd 10/6/05 9:36 PM Page 910

Because a chapter can be written for each one of these topics, in this section I attempt to give you only
an overview of each, how they tie into a control’s design-time behavior, and some simple examples of
their use.

Type Converters
TypeConverter is a class that allows you to perform conversions between one type and another. Visual
Studio uses type converters at design time to convert object property values to String types so that they
can be displayed on the Property Browser, and it returns them to their original types when the developer
changes the property.

ASP.NET 2.0 includes a wide variety of type converters you can use when creating your control’s design-
time behavior. These range from converters that allow you to convert most number types, to converters
that let you convert Fonts, Colors, DataTimes, and Guids. The easiest way to see what type converters are
available to you in the .NET Framework is to search for types in the framework that derive from the
TypeConverter class using the MSDN Library help.

After you have found a type converter that you want to use on a control property, mark the property
with a TypeConverter attribute, as shown in Listing 23-35.

Listing 23-35: Applying the TypeConverter attribute to a property

VB
<Bindable(True)> _
<Category(“Appearance”)> _
<DefaultValue(“”)> _
<TypeConverter(GetType(GuidConverter))> _
Property BookId() As System.Guid

Get
Return _bookid

End Get

Set(ByVal Value As System.Guid)
_bookid = Value

End Set
End Property

C#
[Bindable(true)]
[Category(“Appearance”)]
[DefaultValue(“”)]
[TypeConverter(typeof(GuidConverter))]
public Guid BookId
{

get
{

return _bookid;
}

set
{

_bookid = value;
}

}

911

User Controls, Server Controls, Modules, and HttpHandlers

26_576100 ch23.qxd 10/6/05 9:36 PM Page 911

In this example, a property is exposed that accepts and returns an object of type Guid. The Property
Browser cannot natively display a Guid object, so you convert the value to a string so that it can be dis-
played properly in the property browser. Marking the property with the TypeConverter attribute and,
in this case, specifying the GuidConverter as the type converter you want to use, allows complex objects
like a Guid to display properly in the Property Browser.

Custom Type Converters
It is also possible to create your own custom type converters if none of the in-box converters fit into your
scenario. Type converters derive from the System.ComponentModel.TypeConverter class. Listing 23-36
shows a custom type converter that converts a custom object called Name to and from a string.

Listing 23-36: Creating a custom type converter

VB
Imports System
Imports System.ComponentModel
Imports System.Globalization

Public Class Name

Private _first As String
Private _last As String

Public Sub New(ByVal first As String, ByVal last As String)
_first = first
_last = last

End Sub

Public Property First() As String
Get

Return _first
End Get
Set(ByVal value As String)

_first = value
End Set

End Property

Public Property Last() As String
Get

Return _last
End Get
Set(ByVal value As String)

_last = value
End Set

End Property
End Class

Public Class NameConverter
Inherits TypeConverter

Public Overrides Function CanConvertFrom(ByVal context As _
ITypeDescriptorContext, ByVal sourceType As Type) As Boolean

If (sourceType Is GetType(String)) Then

912

Chapter 23

26_576100 ch23.qxd 10/6/05 9:36 PM Page 912

Return True
End If

Return MyBase.CanConvertFrom(context, sourceType)
End Function

Public Overrides Function ConvertFrom(_
ByVal context As ITypeDescriptorContext, _
ByVal culture As CultureInfo, ByVal value As Object) As Object

If (value Is GetType(String)) Then
Dim v As String() = (CStr(value).Split(New [Char]() {“ “c}))
Return New Name(v(0), v(1))

End If
Return MyBase.ConvertFrom(context, culture, value)

End Function

Public Overrides Function ConvertTo(_
ByVal context As ITypeDescriptorContext, _
ByVal culture As CultureInfo, ByVal value As Object, _
ByVal destinationType As Type) As Object

If (destinationType Is GetType(String)) Then
Return (CType(value, Name).First + “ “ + (CType(value, Name).Last))

End If
Return MyBase.ConvertTo(context, culture, value, destinationType)

End Function
End Class

C#
using System;
using System.ComponentModel;
using System.Globalization;

public class Name
{

private string _first;
private string _last;

public Name(string first, string last)
{

_first=first;
_last=last;

}

public string First
{

get{ return _first; }
set { _first = value; }

}
public string Last
{

get { return _last; }
set { _last = value; }

}

(continued)

913

User Controls, Server Controls, Modules, and HttpHandlers

26_576100 ch23.qxd 10/6/05 9:36 PM Page 913

Listing 23-36: (continued)

}

public class NameConverter : TypeConverter
{

public override bool CanConvertFrom(ITypeDescriptorContext context,
Type sourceType) {

if (sourceType == typeof(string)) {
return true;

}
return base.CanConvertFrom(context, sourceType);

}

public override object ConvertFrom(ITypeDescriptorContext context,
CultureInfo culture, object value) {
if (value is string) {

string[] v = ((string)value).Split(new char[] {‘ ‘});
return new Name(v[0],v[1]);

}
return base.ConvertFrom(context, culture, value);

}

public override object ConvertTo(ITypeDescriptorContext context,
CultureInfo culture, object value, Type destinationType) {
if (destinationType == typeof(string)) {

return ((Name)value).First + “ “ + ((Name)value).Last;
}
return base.ConvertTo(context, culture, value, destinationType);

}
}

The NameConverter class overrides three methods, CanConvertFrom, ConvertFrom, and ConvertTo.
The CanConvertFrom method allows you to control what types the converter can convert from. The
ConvertFrom method converts the string representation back into a Name object, and ConvertTo con-
verts the Name object into a string representation.

After you have built your type converter, you can use it to mark properties in your control with the
TypeConverter attribute, as you saw in Listing 23-35.

Control Designers
Controls that live on the Visual Studio design surface depend on control designers to create the design-
time experience for the end user. Control designers, for both WinForms and ASP.NET, are classes that
derive from the System.ComponentModel.Design.ComponentDesigner class. .NET provides an
abstracted base class specifically for creating ASP.NET control designers called the System.Web.UI
.Design.ControlDesigner. In order to access these classes you will need to add a reference to the
System.Design.dll assembly to your project.

.NET includes a number of in-box control designer classes that you can use when creating a custom con-
trol; but as you develop server controls, you see that .NET automatically applies a default designer. The

914

Chapter 23

26_576100 ch23.qxd 10/6/05 9:36 PM Page 914

designer it applies is based on the type of control you are creating. For instance, when you created your
first TextBox control, Visual Studio used the ControlDesigner class to achieve the WYSIWYG design-
time rendering of the text box. If you develop a server control derived from the ControlContainer
class, .NET automatically use the ControlContainerDesigner class as the designer.

You can also explicitly specify the designer you want to use to render your control at design time using
the Designer attribute on your control’s class, as shown in Listing 23-37.

Listing 23-37: Adding a Designer attribute to a control class

VB
<DefaultProperty(“Text”)> _
<ToolboxData(“<{0}:[WebCustomControl1] runat=server></{0}:[WebCustomControl1]>”)> _
<Designer(GetType(ControlDesigner))> _
Public Class [WebCustomControl1]

Inherits System.Web.UI.WebControls.WebControl

C#
[DefaultProperty(“Text”)]
[ToolboxData(“<{0}:WebCustomControl1 runat=server></{0}:WebCustomControl1>”)]
[Designer(typeof(ControlDesigner))]
public class WebCustomControl1 : WebControl

Notice that the Designer attribute has been added to the WebCustomControl1 class. You have specified
that the control should use the ControlDesigner class as its designer. Other in-box designers you could
have specified are

❑ CompositeControlDesigner

❑ TemplatedControlDesigner

❑ DataSourceDesigner

Each designer provides a specific design-time behavior for the control, and you can select one that is
appropriate for the type of control you are creating.

Design-Time Regions
As you saw earlier, ASP.NET allows you to create server controls that consist of other server controls and
text. In ASP.NET 1.0, a server control developer could use the ReadWriteControlDesigner class to
enable the user of the server control to enter text or drop other server controls into a custom server con-
trol at design time. An example of this is the ASP.NET Panel control, which enables developers to add
content to the panel at design time.

In ASP.NET 2.0, however, creating a control with this functionality has changed. The
ReadWriteControlDesigner class has been marked as obsolete in ASP.NET 2.0, and a new and
improved way has been included to allow the developer to create server controls that have design-
time editable portions. The new technique, called designer regions, is an improvement over the
ReadWriteControlDesigner in several ways. First, unlike the ReadWriteControlDesigner class,
which allowed only a single editable area, designer regions enables you to create multiple, independent
regions defined within a single control. Second, designer classes can now respond to events raised by a
design region. This might be the designer drawing a control on the design surface or the user clicking an
area of the control or entering or exiting a template edit mode.

915

User Controls, Server Controls, Modules, and HttpHandlers

26_576100 ch23.qxd 10/6/05 9:36 PM Page 915

To show how you can use designer regions, create a container control to which you can apply a custom
control designer (as shown in Listing 23-38).

Listing 23-38: Creating a composite control with designer regions

VB
<Designer(GetType(MultiRegionControlDesigner))> _
<ToolboxData(“<{0}:MultiRegionControl runat=server width=100%>” & _

“</{0}:MultiRegionControl>”)> _
Public Class MultiRegionControl

Inherits CompositeControl

‘ Define the templates that represent 2 views on the control
Private _view1 As ITemplate
Private _view2 As ITemplate

‘ These properties are inner properties
<PersistenceMode(PersistenceMode.InnerProperty), DefaultValue(“”)> _
Public Overridable Property View1() As ITemplate

Get
Return _view1

End Get
Set(ByVal value As ITemplate)

_view1 = value
End Set

End Property

<PersistenceMode(PersistenceMode.InnerProperty), DefaultValue(“”)> _
Public Overridable Property View2() As ITemplate

Get
Return _view2

End Get
Set(ByVal value As ITemplate)

_view2 = value
End Set

End Property

‘ The current view on the control; 0= view1, 1=view2, 2=all views
Private _currentView As Int32 = 0
Public Property CurrentView() As Int32

Get
Return _currentView

End Get
Set(ByVal value As Int32)

_currentView = value
End Set

End Property

Protected Overrides Sub CreateChildControls()
MyBase.CreateChildControls()

Controls.Clear()

Dim template As ITemplate = View1
If (_currentView = 1) Then

916

Chapter 23

26_576100 ch23.qxd 10/6/05 9:36 PM Page 916

template = View2
End If

Dim p As New Panel()
Controls.Add(p)

If (Not template Is Nothing) Then
template.InstantiateIn(p)

End If

End Sub

End Class

C#
[Designer(typeof(MultiRegionControlDesigner))]
[ToolboxData(“<{0}:MultiRegionControl runat=\”server\” width=\”100%\”>” +

“</{0}:MultiRegionControl>”)]
public class MultiRegionControl : CompositeControl {

// Define the templates that represent 2 views on the control
private ITemplate _view1;
private ITemplate _view2;

// These properties are inner properties
[PersistenceMode(PersistenceMode.InnerProperty), DefaultValue(null)]
public virtual ITemplate View1 {

get { return _view1; }
set { _view1 = value; }

}

[PersistenceMode(PersistenceMode.InnerProperty), DefaultValue(null)]
public virtual ITemplate View2 {

get { return _view2; }
set { _view2 = value; }

}

// The current view on the control; 0= view1, 1=view2, 2=all views
private int _currentView = 0;
public int CurrentView {

get { return _currentView; }
set { _currentView = value; }

}

protected override void CreateChildControls()
{

Controls.Clear();

ITemplate template = View1;
if (_currentView == 1)

template = View2;

Panel p = new Panel();
Controls.Add(p);

(continued)

917

User Controls, Server Controls, Modules, and HttpHandlers

26_576100 ch23.qxd 10/6/05 9:36 PM Page 917

Listing 23-38: (continued)

if (template != null)
template.InstantiateIn(p);

}
}

The container control creates two ITemplate objects, which serve as the controls to display. The
ITemplate objects are the control containers for this server control, allowing you to drop other server
controls or text into this control. The control also uses the Designer attribute to indicate to Visual
Studio that it should use the MultiRegionControlDesigner class when displaying this control on
the designer surface.

Now you create the control designer that defines the regions for the control. Listing 23-39 shows the
designer class.

Listing 23-39: A custom designer class used to define designer regions

VB
Public Class MultiRegionControlDesigner

Inherits CompositeControlDesigner

Protected _currentView As Int32 = 0
Private myControl As MultiRegionControl

Public Overrides Sub Initialize(ByVal component As IComponent)
MyBase.Initialize(component)
myControl = CType(component, MultiRegionControl)

End Sub

Public Overrides ReadOnly Property AllowResize() As Boolean
Get

Return True
End Get

End Property

Protected Overrides Sub OnClick(ByVal e As DesignerRegionMouseEventArgs)

If (e.Region Is Nothing) Then
Return

End If

If ((e.Region.Name = “Header0”) And (Not _currentView = 0)) Then
_currentView = 0
UpdateDesignTimeHtml()

End If

If ((e.Region.Name = “Header1”) And (Not _currentView = 1)) Then

_currentView = 1
UpdateDesignTimeHtml()

End If

918

Chapter 23

26_576100 ch23.qxd 10/6/05 9:36 PM Page 918

End Sub

Public Overrides Function GetDesignTimeHtml(_
ByVal regions As DesignerRegionCollection) As String

BuildRegions(regions)
Return BuildDesignTimeHtml()

End Function

Protected Overridable Sub BuildRegions(_
ByVal regions As DesignerRegionCollection)

regions.Add(New DesignerRegion(Me, “Header0”))
regions.Add(New DesignerRegion(Me, “Header1”))

‘ If the current view is for all, we need another editable region
Dim edr0 As New EditableDesignerRegion(Me, “Content” & _currentView, False)
edr0.Description = “Add stuff in here if you dare:”
regions.Add(edr0)

‘ Set the highlight, depending upon the selected region
If ((_currentView = 0) Or (_currentView = 1)) Then

regions(_currentView).Highlight = True
End If

End Sub

Protected Overridable Function BuildDesignTimeHtml() As String

Dim sb As New StringBuilder()
sb.Append(BuildBeginDesignTimeHtml())
sb.Append(BuildContentDesignTimeHtml())
sb.Append(BuildEndDesignTimeHtml())

Return sb.ToString()
End Function

Protected Overridable Function BuildBeginDesignTimeHtml() As String
‘ Create the table layout
Dim sb As New StringBuilder()
sb.Append(“<table “)

‘ Styles that we’ll use to render for the design-surface
sb.Append(“height=’” & myControl.Height.ToString() & “‘ width=’” &

myControl.Width.ToString() & “‘>”)

‘ Generate the title or caption bar
sb.Append(“<tr height=’25px’ align=’center’ “ & _

“style=’font-family:tahoma;font-size:10pt;font-weight:bold;’>” & _
“<td style=’width:50%’ “ & _
DesignerRegion.DesignerRegionAttributeName & “=’0’>”)

sb.Append(“Page-View 1</td>”)
sb.Append(“<td style=’width:50%’ “ & _

DesignerRegion.DesignerRegionAttributeName & “=’1’>”)
sb.Append(“Page-View 2</td></tr>”)

Return sb.ToString()

(continued)

919

User Controls, Server Controls, Modules, and HttpHandlers

26_576100 ch23.qxd 10/6/05 9:36 PM Page 919

)

Listing 23-39: (continued)

End Function
Protected Overridable Function BuildEndDesignTimeHtml() As String

Return (“</table>”)
End Function

Protected Overridable Function BuildContentDesignTimeHtml() As String

Dim sb As New StringBuilder()
sb.Append(“<td colspan=’2’ style=’”)
sb.Append(“background-color:” & _

myControl.BackColor.Name.ToString() & “;’ “)

sb.Append(DesignerRegion.DesignerRegionAttributeName & “=’2’>”)

Return sb.ToString()
End Function

Public Overrides Function GetEditableDesignerRegionContent(_
ByVal region As EditableDesignerRegion) As String

Dim host As IDesignerHost =
CType(Component.Site.GetService(GetType(IDesignerHost)), IDesignerHost)

If (Not host Is Nothing) Then
Dim template As ITemplate = myControl.View1
If (region.Name = “Content1”) Then

template = myControl.View2
End If

If (Not template Is Nothing) Then
Return ControlPersister.PersistTemplate(template, host)

End If

End If

Return String.Empty
End Function

Public Overrides Sub SetEditableDesignerRegionContent(_
ByVal region As EditableDesignerRegion, ByVal content As String)

Dim regionIndex As Int32 = Int32.Parse(region.Name.Substring(7))

If (content Is Nothing) Then

If (regionIndex = 0) Then
myControl.View1 = Nothing

ElseIf (regionIndex = 1) Then
myControl.View2 = Nothing
Return

End If

Dim host As IDesignerHost =

920

Chapter 23

26_576100 ch23.qxd 10/6/05 9:36 PM Page 920

CType(Component.Site.GetService(GetType(IDesignerHost)),
IDesignerHost)

If (Not host Is Nothing) Then
Dim template = ControlParser.ParseTemplate(host, content)

If (Not template Is Nothing) Then
If (regionIndex = 0) Then

myControl.View1 = template
ElseIf (regionIndex = 1) Then

myControl.View2 = template
End If

End If
End If

End If
End Sub

End Class

C#
public class MultiRegionControlDesigner : CompositeControlDesigner {

protected int _currentView = 0;

private MultiRegionControl myControl;
public override void Initialize(IComponent component)
{

base.Initialize(component);
myControl = (MultiRegionControl)component;

}

public override bool AllowResize { get { return true; } }

protected override void OnClick(DesignerRegionMouseEventArgs e)
{

if (e.Region == null)
return;

if (e.Region.Name == “Header0” && _currentView != 0) {
_currentView = 0;
UpdateDesignTimeHtml();

}

if (e.Region.Name == “Header1” && _currentView != 1) {
_currentView = 1;
UpdateDesignTimeHtml();

}
}

public override String GetDesignTimeHtml(DesignerRegionCollection regions)
{

BuildRegions(regions);
return BuildDesignTimeHtml();

}
protected virtual void BuildRegions(DesignerRegionCollection regions)
{

(continued)

921

User Controls, Server Controls, Modules, and HttpHandlers

26_576100 ch23.qxd 10/6/05 9:36 PM Page 921

Listing 23-39: (continued)

regions.Add(new DesignerRegion(this, “Header0”));
regions.Add(new DesignerRegion(this, “Header1”));

// If the current view is for all, we need another editable region
EditableDesignerRegion edr0 = new

EditableDesignerRegion(this, “Content” + _currentView, false);
edr0.Description = “Add stuff in here if you dare:”;
regions.Add(edr0);

// Set the highlight, depending upon the selected region
if (_currentView ==0 || _currentView==1)

regions[_currentView].Highlight = true;
}

protected virtual string BuildDesignTimeHtml()
{

StringBuilder sb = new StringBuilder();
sb.Append(BuildBeginDesignTimeHtml());
sb.Append(BuildContentDesignTimeHtml());
sb.Append(BuildEndDesignTimeHtml());

return sb.ToString();
}

protected virtual String BuildBeginDesignTimeHtml()
{

// Create the table layout
StringBuilder sb = new StringBuilder();
sb.Append(“<table “);

// Styles that we’ll use to render for the design-surface
sb.Append(“height=’” + myControl.Height.ToString() + “‘ width=’” +

myControl.Width.ToString() + “‘>”);

// Generate the title or caption bar
sb.Append(“<tr height=’25px’ align=’center’ “ +

“style=’font-family:tahoma;font-size:10pt;font-weight:bold;’>” +
“<td style=’width:50%’ “ + DesignerRegion.DesignerRegionAttributeName +
“=’0’>”);

sb.Append(“Page-View 1</td>”);
sb.Append(“<td style=’width:50%’ “ +

DesignerRegion.DesignerRegionAttributeName + “=’1’>”);
sb.Append(“Page-View 2</td></tr>”);

return sb.ToString();
}

protected virtual String BuildEndDesignTimeHtml()
{

return (“</table>”);
}

protected virtual String BuildContentDesignTimeHtml()

922

Chapter 23

26_576100 ch23.qxd 10/6/05 9:36 PM Page 922

{
StringBuilder sb = new StringBuilder();
sb.Append(“<td colspan=’2’ style=’”);
sb.Append(“background-color:” + myControl.BackColor.Name.ToString() +

“;’ “);

sb.Append(DesignerRegion.DesignerRegionAttributeName + “=’2’>”);

return sb.ToString();
}

public override string GetEditableDesignerRegionContent
(EditableDesignerRegion region)

{
IDesignerHost host =

(IDesignerHost)Component.Site.GetService(typeof(IDesignerHost));

if (host != null) {
ITemplate template = myControl.View1;

if (region.Name == “Content1”)
template = myControl.View2;

if (template != null)
return ControlPersister.PersistTemplate(template, host);

}

return String.Empty;
}

public override void SetEditableDesignerRegionContent
(EditableDesignerRegion region, string content)

{
int regionIndex = Int32.Parse(region.Name.Substring(7));

if (content == null)
{

if (regionIndex == 0)
myControl.View1 = null;

else if (regionIndex == 1)
myControl.View2 = null;

return;
}

IDesignerHost host =
(IDesignerHost)Component.Site.GetService(typeof(IDesignerHost));

if (host != null)
{

ITemplate template = ControlParser.ParseTemplate(host, content);

if (template != null)
{

if (regionIndex == 0)

(continued)

923

User Controls, Server Controls, Modules, and HttpHandlers

26_576100 ch23.qxd 10/6/05 9:36 PM Page 923

Listing 23-39: (continued)

myControl.View1 = template;
else if (regionIndex == 1)

myControl.View2 = template;
}

}
}

}

The designer overrides the GetDesignTimeHtml method, calling the BuildRegions and
BuildDesignTimeHtml methods to alter the HTML that the control renders to the Visual Studio
design surface.

The BuildRegions method creates three design regions in the control, two header regions and an editable
content region. The regions are added to the DesignerRegionCollection. The BuildDesignTimeHtml
method calls three methods to generate the actual HTML that will be generated by the control at design
time.

The designer class also contains two overridden methods for getting and setting the editable designer
region content: GetEditableDesignerRegionContent and SetEditableDesignerRegionContent.
These methods get or set the appropriate content HTML, based on the designer region template that is
currently active.

Finally, the class contains an OnClick method that it uses to respond to click events fired by the control
at design time. This control uses the OnClick event to switch the current region being displayed by the
control at design time.

When you add the control to a Web form, you see that you can toggle between the two editable regions,
and each region maintains its own content. Figure 23-17 shows what the control looks like on the Visual
Studio design surface.

As you can see in Figure 23-17, the control contains three separate design regions. When you click design
regions 1 or 2, the OnClick method in the designer fires and redraws the control on the design surface,
changing the template area located in design region 3.

Designer Actions
Another great new improvement in ASP.NET 2.0 is the introduction of control smart tags. Smart tags give
developers using a control quick access to common control properties. Smart tags are actually a new and
improved implementation of the Designer Verbs functionality that was available in ASP.NET 1.0.

To add menu items to a server control’s smart tag, you create a new class that inherits from the
DesignerActionList class. The DesignerActionList contains the list of designer action items
that are displayed by a server control. Classes that derive from the DesignerActionList class can
override the GetSortedActionItems method, creating their own DesignerActionItemsCollection
object to which designer action items can be added.

924

Chapter 23

26_576100 ch23.qxd 10/6/05 9:36 PM Page 924

Figure 23-17

You can add several different types of DesignerActionItems types to the collection:

❑ DesignerActionTextItem

❑ DesignerActionHeaderItem

❑ DesignerActionMethodItem

❑ DesignerActionPropertyItem

Listing 23-40 shows a control designer class that contains a private class deriving from
DesignerActionList.

Listing 23-40: Adding designer actions to a control designer

VB
Public Class TestControlDesigner

Inherits ControlDesigner

Public Overrides ReadOnly Property ActionLists() _
As DesignerActionListCollection

Get
Dim lists As New DesignerActionListCollection()
lists.AddRange(MyBase.ActionLists)
lists.Add(New TestControlList(Me))
Return lists

End Get

(continued)

Design region 2Design region 1

Design region 3

925

User Controls, Server Controls, Modules, and HttpHandlers

26_576100 ch23.qxd 10/6/05 9:36 PM Page 925

Listing 23-40: (continued)

End Property

Private NotInheritable Class TestControlList
Inherits DesignerActionList

Public Sub New(ByVal c As TestControlDesigner)
MyBase.New(c.Component)

End Sub

Public Overrides Function GetSortedActionItems() _
As DesignerActionItemCollection

Dim c As New DesignerActionItemCollection()
c.Add(New DesignerActionTextItem(“FOO”, “FOO”))
Return c

End Function
End Class

End Class

C#
public class TestControlDesigner : ControlDesigner
{

public override DesignerActionListCollection ActionLists
{

get
{

DesignerActionListCollection actionLists =
new DesignerActionListCollection();

actionLists.AddRange(base.ActionLists);
actionLists.Add(new TestControlList(this));
return actionLists;

}
}

private sealed class TestControlList : DesignerActionList
{

public TestControlList(TestControlDesigner c) : base(c.Component)
{
}

public override DesignerActionItemCollection GetSortedActionItems()
{

DesignerActionItemCollection c = new DesignerActionItemCollection();
c.Add(new DesignerActionTextItem(“FOO”, “FOO”));
return c;

}
}

}

926

Chapter 23

26_576100 ch23.qxd 10/6/05 9:36 PM Page 926

The control designer class overrides the ActionsLists property. The property creates an instance
of the TextControlList class, which derives from DesignerActionList and overrides the
GetSortedActionItems method. The method creates a new DesignerActionListCollection, and a
DesignerActionTextItem is added to the collection (see Figure 23-18). The DesignerActionTextItem
class allows you to add text menu items to the smart tag.

Figure 23-18

As shown in Figure 23-18, when you add the control to a Web page, the control now has a smart tag with
the DesignerActionTextItem class as content.

UI Type Editors
A UI type editor is a way to provide users of your controls with a custom interface for editing properties
directly from the Property Browser. One type of UI type editor you might already be familiar with is the
Color Picker you see when you want to change the ForeColor attribute that exists on most ASP.NET
controls. ASP.NET provides a wide variety of in-box UI type editors that make it easy to edit more com-
plex property types. The easiest way to find what UI type editors are available in the .NET Framework is
to search for types derived from the UITypeEditor class in the MSDN Library help.

After you find the type editor you want to use on your control property, you simply apply the UI Type
Editor to the property using the Editor attribute. Listing 23-41 shows how to do this.

Listing 23-41: Adding a UI type editor to a control property

VB
<Bindable(True), Category(“Appearance”), DefaultValue(“”), _
Editor(_

GetType(System.Web.UI.Design.UrlEditor), _
GetType(System.Drawing.Design.UITypeEditor))> _

Public Property Url() As String
Get

Return _url

(continued)

927

User Controls, Server Controls, Modules, and HttpHandlers

26_576100 ch23.qxd 10/6/05 9:36 PM Page 927

Listing 23-41: (continued)

End Get
Set(ByVal value As String)

_url = value
End Set

End Property

C#
[Bindable(true)]
[Category(“Appearance”)]
[DefaultValue(“”)]
[Editor(typeof(System.Web.UI.Design.UrlEditor),

typeof(System.Drawing.Design.UITypeEditor))]
public string Url
{

get
{

return url;
}
set
{

url = value;
}

}

In this sample, you have created a Url property for a control. Because you know this property will be a
URL, you want to give the control user a positive design-time experience. You can use the UrlEditor type
editor to make it easier for users to select a URL. Figure 23-19 shows the Url Editor that appears when
the user edits the control property.

Figure 23-19

928

Chapter 23

26_576100 ch23.qxd 10/6/05 9:37 PM Page 928

Modules and Handlers
Sometimes, just creating dynamic Web pages with the latest languages and databases just does not give
you, the developer, enough control over an application. At times, you need to be able to dig deeper and
create applications that can interact with the Web server itself. You want to be able to interact with the
low-level processes, such as how the Web server processes incoming and outgoing HTTP requests.

Before ASP.NET, in order to get this level of control using IIS, you were forced to create ISAPI extensions
or filters. This proved to be quite a daunting and painful task for many developers because creating
ISAPI extensions and filters required knowledge of C/C++ and knowledge of how to create native
Win32 DLLs. Thankfully, in the .NET world, creating these types of low-level applications is really no
more difficult than most other tasks you would normally perform.

Now, take a high-level look at how ASP.NET processes HTTP requests and what options you have for
plugging into those requests. ASP.NET processes HTTP requests using a pipeline model. This model has
two core mechanisms for processing HTTP requests: HttpModules and HttpHandlers. ASP.NET uses those
two mechanisms to process incoming ASP.NET requests, generate a response, and return that response to
the client. In fact, you are probably already familiar with HttpModules and HttpHandlers — although you
might not know it. If you have ever used the inbox caching or the authentication features of ASP.NET,
you have used several different HttpModules. Additionally, if have ever served up an ASP.NET applica-
tion, even something as simple as a Hello World Web page and viewed it in a browser, you have used an
HttpHandler. ASP.NET uses handlers to process and render ASPX pages and many other file extensions.
Modules and handlers allow you to plug into the request-processing pipeline at different points and inter-
act with the actual requests being processed by IIS. Figure 23-20 shows how this model works.

Figure 23-20

Http Runtime

Fr
om

 II
S

To
 II

S

Http
Module

Http
Module

Http
Module

Http
Module

Http
Module

Http
Handler

929

User Controls, Server Controls, Modules, and HttpHandlers

26_576100 ch23.qxd 10/6/05 9:37 PM Page 929

As you can see, ASP.NET passes each incoming request through a layer of HttpModules in the process-
ing pipeline. ASP.NET allows multiple modules to exist in the pipeline for each request. After the incom-
ing request has passed through each module, it is passed to the HttpHandler, which serves the request.
Notice that although a single request may pass through many different modules, it can be processed by
one handler only. The handler is generally responsible for creating a response to the incoming HTTP
request. After the handler has completed execution and generated a response, the response is passed
back through each module, before it is returned to the client.

You should now have a basic understanding of the ASP.NET request pipeline — and how you can use
HttpModules and HttpHandlers to interact with the pipeline. The following sections take an in-depth
look at each of these.

HttpModules
HttpModules are simple classes that can plug themselves into the request-processing pipeline. They do
this by hooking into a handful of events thrown by the application as it processes the HTTP request. To
create an HttpModule, you simply create a class that derives from the System.Web.IHttpModule inter-
face. This interface requires you to implement two methods: Init and Dispose. Listing 23-42 shows the
class stub created after you implement the IHttpModule interface.

Listing 23-42: Implementing the IHttpModule Interface

VB
Imports Microsoft.VisualBasic
Imports System.Web

Public Class AppendMessage
Implements IHttpModule

Public Overridable Sub Init(ByVal context As HttpApplication) _
Implements IHttpModule.Init

End Sub

Public Overridable Sub Dispose() Implements IHttpModule.Dispose

End Sub

End Class

C#
using System;
using System.Collections.Generic;
using System.Text;
using System.Web;

namespace Demo
{

class SimpleModule : IHttpModule
{

#region IHttpModule Members

public void Dispose()

930

Chapter 23

26_576100 ch23.qxd 10/6/05 9:37 PM Page 930

{
throw new Exception(“The method or operation is not implemented.”);

}

public void Init(HttpApplication context)
{

throw new Exception(“The method or operation is not implemented.”);
}

#endregion
}

}

The Init method is the primary method you use to implement functionality. Notice that it has a single
method parameter, an HttpApplication object named context. This parameter gives you access to the
current HttpApplication context, and it is what you use to wire up the different events that fire during
the request processing. The following table shows the events that you can register in the Init method.

Event Name Description

AcquireRequestState Raised when ASP.NET runtime is ready to acquire the Session
State of the current HTTP request.

AuthenticateRequest Raised when ASP.NET runtime is ready to authenticate the
identity of the user.

AuthorizeRequest Raised when ASP.NET runtime is ready to authorize the user for
the resources user is trying to access.

BeginRequest Raised when ASP.NET runtime receives a new HTTP request.

Disposed Raised when ASP.NET completes the processing of HTTP request.

EndRequest Raised just before sending the response content to the client.

Error Raised when an unhandled exception occurs during the
processing of HTTP request.

PostRequestHandlerExecute Raised just after HTTP handler finishes execution.

PreRequestHandlerExecute Raised just before ASP.NET begins executing a handler for the
HTTP request. After this event, ASP.NET forwards the request to
the appropriate HTTP handler.

PreSendRequestContent Raised just before ASP.NET sends the response contents to the
client. This event allows you to change the contents before it
gets delivered to the client. You can use this event to add the
contents, which are common in all pages, to the page output.
For example, a common menu, header, or footer.

PreSendRequestHeaders Raised just before ASP.NET sends the HTTP response headers to
the client. This event allows you to change the headers before
they get delivered to the client. You can use this event to add
cookies and custom data into headers.

931

User Controls, Server Controls, Modules, and HttpHandlers

26_576100 ch23.qxd 10/6/05 9:37 PM Page 931

Modifying HTTP Output
Take a look at some examples of using HttpModules. The first example shows a useful way of modifying
the HTTP output stream before it is sent to the client. This can be a simple and useful tool if you want to
add text to each page served from your Web site, but you do not want to modify each page. For the first
example, create a Web project in Visual Studio and add a class to the App_Code directory. The code for
this first module is shown in Listing 23-43.

Listing 23-43: Altering the output of an ASP.NET Web page

VB
Imports Microsoft.VisualBasic
Imports System.Web

Public Class AppendMessage
Implements IHttpModule

Dim WithEvents _application As HttpApplication = Nothing

Public Overridable Sub Init(ByVal context As HttpApplication) _
Implements IHttpModule.Init

_application = context
End Sub

Public Overridable Sub Dispose() Implements IHttpModule.Dispose

End Sub

Public Sub context_PreSendRequestContent(ByVal sender As Object, _
ByVal e As EventArgs) Handles _application.PreSendRequestContent

‘alter the outgoing content by adding a HTML comment.
Dim message As String = “<!-- This page has been post processed at “ & _

System.DateTime.Now.ToString() & _
“ by a custom HttpModule.-->”

_application.Context.Response.Output.Write(message)

End Sub

End Class

C#
using System;
using System.Collections.Generic;
using System.Text;
using System.Web;

namespace Demo
{

public class AppendMessage : IHttpModule
{

private HttpContext _current = null;

#region IHttpModule Members

932

Chapter 23

26_576100 ch23.qxd 10/6/05 9:37 PM Page 932

public void Dispose()
{

throw new Exception(“The method or operation is not implemented.”);
}

public void Init(System.Web.HttpApplication context)
{

_current = context.Context;

context.PreSendRequestContent +=
new EventHandler(context_PreSendRequestContent);

}

void context_PreSendRequestContent(object sender, EventArgs e)
{

//alter the outgoing content by adding a HTML comment.
string message = “<!-- This page has been post processed at “ +

System.DateTime.Now.ToString() +
“ by a custom HttpModule.-->”;

_current.Response.Output.Write(message);
}

#endregion
}

}

You can see that the class stub from Listing 23-42 is expanded here. In the Init method, you register the
PreSendRequestContent event. This event fires right before the content is sent to the client, and you
have one last opportunity to modify it.

In the PreSendRequestContent handler method, you simply create a string containing an HTML com-
ment that contains the current time. You take this string and write it to the current HTTP requests output
stream. The HTTP request is then sent back to the client.

In order to use this module, you must let ASP.NET know that you want to include the module in the
request-processing pipeline. You do this is by modifying the web.config to contain a reference to the
module. Listing 23-44 shows how you can add an httpModules section to your web.config.

Listing 23-44: Adding the httpModule configuration to web.config

<configuration>
<system.web>

<httpModules>
<add name=”AppendMessage” type=”AppendMessage, App_code” />

</httpModules>
</system.web>

</configuration>

The generic format of the httpModules section is

<httpModules>
<add name=”modulename” type=”namespace.classname, assemblyname” />

</httpModules>

933

User Controls, Server Controls, Modules, and HttpHandlers

26_576100 ch23.qxd 10/6/05 9:37 PM Page 933

If you have created your HttpModule in the App_Code directory of an ASP.NET, you might wonder how
you know what the assemblyname value should be, considering ASP.NET now dynamically compiles
this code at runtime. The solution is to use the text App_Code as the assembly name. This tells ASP.NET
that your module is located in the dynamically created assembly.

You can also create HttpModules as a separate class library in which case you simply use the assembly
name of the library.

After you have added this section to your web.config file, simply view one of the Web pages from your
project in the browser. When you view the page in the browser, you should not notice any difference.
But if you view the source of the page, notice the comment you added at the bottom of the HTML.
Figure 23-21 shows what you should see when you view the page source.

Figure 23-21

URL Rewriting
Another interesting use of an HttpModule is to perform URL rewriting. URL rewriting is a technique that
allows you to intercept the HTTP request and change the path that was requested to an alternative one.
This can be very useful for creating pseudo Web addresses that simplify a URL for the user. For example,
the MSDN Library is well-known for its extremely long and cryptic URL paths, such as

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/
frlrfSystemWebIHttpModuleClassTopic.asp

The problem with this URL is that it is not easy to remember; and even if you do somehow remember it,
it is very difficult to type into the browser’s Address field. URL rewriting allows you to create friendly
URLs that you can parse and redirect to the appropriate resource. The MSDN Library now uses URL
rewriting to create friendly URLs. Instead of the cryptic URL you saw previously, you can now use the
following URL to access the same resource:

http://msdn2.microsoft.com/library/system.web.ihttpmodule.aspx

934

Chapter 23

26_576100 ch23.qxd 10/6/05 9:37 PM Page 934

This URL is much shorter, easier to remember, and easier to type into a browser’s Address field. You can
create your own URL rewriter module to learn how this is done.

To demonstrate this, you create three new Web pages in your project. The first Web page is used to con-
struct a URL using two text boxes. The second serves as the page that accepts the unfriendly querystring,
like the MSDN URL shown previously. The third page is used to trick IIS into helping you serve the
request. Shortly, we talk about this trick and how to get around it.

Listing 23-45 shows the first Web page you add to the project; it’s called friendlylink.aspx.

Listing 23-45: The friendlylink.aspx Web page

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Untitled Page</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>
Click this friendly link
</div>
</form>

</body>
</html>

As you can see, you simply created a hyperlink that links to a friendly, easily remembered URL.

Now, create the second page called unfriendly.aspx. This is the page that the handle actually executes
when a user clicks the hyperlink in the friendlylink.aspx page. Listing 23-46 shows how to create
unfriendly.aspx.

Listing 23-46: The unfriendly.aspx Web page

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Protected Sub Page_Load(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles Me.Load
Label1.Text = Request(“firstname”).ToString() & _

“ “ & Request(“lastname”).ToString()
End Sub

</script>
<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Unfriendly Web Page</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>
Welcome to the unfriendly URL page <asp:Label ID=”Label1”

runat=”server” Text=”Label”></asp:Label>

(continued)

935

User Controls, Server Controls, Modules, and HttpHandlers

26_576100 ch23.qxd 10/6/05 9:37 PM Page 935

Listing 23-46: (continued)

</div>
</form>

</body>
</html>

C#
<script runat=”server”>

protected void Page_Load(object sender, EventArgs e)
{

Label1.Text = Request(“firstname”).ToString() +
“ “ + Request(“lastname”).ToString();

}
</script>

Next, you create the directory and file that the hyperlink in friendlyurl.aspx points to. The
trickiis.aspx page can simply be an empty Web page because you are not really going to execute it.

Finally, you create a new module that parses the request path and rewrites the URL to the page you
want to execute. To do this, create another class in the App_Code directory called SimpleRewriter.
Listing 23-47 shows the code for this.

Listing 23-47: A sample URL rewriting HttpModule

VB
Imports Microsoft.VisualBasic
Imports System.Web

Public Class SimpleRewriter
Implements System.Web.IHttpModule

Dim WithEvents _application As HttpApplication = Nothing

Public Overridable Sub Init(ByVal context As HttpApplication) _
Implements IHttpModule.Init

_application = context
End Sub

Public Overridable Sub Dispose() Implements IHttpModule.Dispose

End Sub

Public Sub context_BeginRequest(ByVal sender As Object, ByVal e As EventArgs) _
Handles _application.BeginRequest

Dim requesturl As String = _
_application.Context.Request.Path.Substring(0, _
_application.Context.Request.Path.LastIndexOf(“/”c))

‘Here is where we parse the original request url to determine
‘ the querystring parameters for the unfriendly url
Dim parameters() As String = _

936

Chapter 23

26_576100 ch23.qxd 10/6/05 9:37 PM Page 936

requesturl.Split(New [Char]() {“/”c}, _
StringSplitOptions.RemoveEmptyEntries)

If (parameters.Length > 1) Then
Dim firstname As String = parameters(1)
Dim lastname As String = parameters(2)

‘Rewrite the request path
_application.Context.RewritePath(“~/unfriendly.aspx?firstname=” & _

firstname & “&lastname=” & lastname)
End If

End Sub

End Class

C#
using System.Web;

public class SimpleRewriter: System.Web.IHttpModule
{

HttpApplication _application = null;

public void Init(HttpApplication context)
{

context.BeginRequest+=new System.EventHandler(context_BeginRequest);
_application = context;

}

public void Dispose()
{
}

private void context_BeginRequest(object sender, System.EventArgs e)
{

string requesturl =
_application.Context.Request.Path.Substring(0,

_application.Context.Request.Path.LastIndexOf(“//”)
);

//Here is where we parse the original request url to determine
//the querystring parameters for the unfriendly url
string[] parameters = requesturl.Split(new char[] {‘/’});
if (parameters.Length > 1)
{

string firstname = parameters[1];
string lastname = parameters[2];

//Rewrite the request path
_application.Context.RewritePath(“~/unfriendly.aspx?firstname=” +

firstname + “&lastname=” + lastname);
}

}
}

937

User Controls, Server Controls, Modules, and HttpHandlers

26_576100 ch23.qxd 10/6/05 9:37 PM Page 937

As you can see from the listing, in this sample you use the BeginRequest event in the HttpModule to
parse the incoming HTTP request path and create a new URL that you execute. Normally, when you
click the hyperlink on friendlyurl.aspx, an HTTP request is sent to the server for execution and then
IIS returns the page asked for in the hyperlink. In this case, you make a request for this page:

http://localhost:1234/WebProject1/John/Smith/trickiis.aspx

But, because you put the HttpModule in the request-processing pipeline, you can modify the HTTP
request and change its behavior. The code in the BeginRequest method of the module parses the
request path to create a querystring that the unfriendly.aspx page can understand and execute. So
when you execute the code in the listing, you convert the original path into the following:

http://localhost:1234/WebProject1/unfriendly.aspx?var1=John&var2=Smith

This URL is, as the page name states, not very friendly; and the user is less likely to remember and be
able to type this URL. Finally, the module uses the RewritePath method to tell ASP.NET that you want
to rewrite the path to execute for this request.

After you have completed creating the code for this sample, try loading friendlyurl.aspx into a
browser. When you click the hyperlink on the page, you should notice two things. First, notice that the
URL in the browser’s address bar shows that you have been served the page you requested, trickiis
.aspx, but the contents of the page show that you are actually served unfriendly.aspx. Figure 23-22
shows what the browser looks like.

Figure 23-22

IIS WildCards
There is, however, a drawback to this type of URL rewriting. When IIS receives a request to serve a
resource, it first checks to see if the resource exists. If the resource does exist, the request is passed to the
appropriate handler; in this case, the handler is ASP.NET, which processes the request. IIS then returns
the results to the client. However, if the requested resource does not exist, IIS returns a 404 File Not
Found error to the client. It never hands the request to ASP.NET. In order for a module to execute, you
must create an endpoint that actually exists on the Web server.

In the case of this example, you actually create a /WebProject1/John/Smith/trickiis.aspx page
in order to fool IIS. Otherwise, it simply returns a 404 error. This can be a problem if you find you are

938

Chapter 23

26_576100 ch23.qxd 10/6/05 9:37 PM Page 938

creating a large number of directories or resources just to enable URL rewriting. However, a solution to
this problem exists in IIS: wildcards. Wildcards allow you tell IIS that it should use a particular executable to
process all incoming requests, regardless of the requested paths or file extensions. In this sample, adding
a wildcard fixes the problem of having to create a dummy endpoint for the module.

Adding Wildcards in IIS 5
To add a wildcard mapping in IIS 5, start by opening the IIS Management Console. After the console is
open, right-click on the Web site you want to modify and select the Properties option from the context
menu. When the Properties dialog opens, select the Configuration button from the Home Directory Tab.
The Configuration dialog is where you can create new or modify existing application extension map-
pings. If you take a moment to look at the existing mappings, you see that most of the familiar file exten-
sions (such as .aspx, .asp, and .html) are configured.

To add the wildcard that you need to create a new mapping, click the Add button. The Add Application
Extension Mapping dialog is shown in Figure 23-23. You create a mapping that directs IIS to use the
ASP.NET ISAPI DLL to process every incoming request. To do this, simply put the full path to the ISAPI
DLL (usually something like C:\WINDOWS\Microsoft.NET\Framework\v1.1.4322\aspnet_isapi
.dll) in the Executable field. For the extension, simply use .*, which indicates any file extension.

Additionally, you uncheck the Check That File Exists check box to tell IIS not to check whether the
requested file exists before processing (because you know that it doesn’t).

Figure 23-23

Now you don’t have to add the stub file to your Web site. IIS will pass any request that it receives to
ASP.NET for processing, regardless of whether the file exists.

Adding Wildcards in IIS 6
Adding Wildcards in IIS 6 is similar to adding wildcards in IIS 5. Open the IIS Management Console,
and then open the Properties dialog for the Web site you want to modify. Next, click the Configuration
button on the Home Directory tab.

The Application Extension Configuration dialog in IIS is slightly different. Wildcard application maps
now have their own separate listing, as shown in Figure 23-24.

939

User Controls, Server Controls, Modules, and HttpHandlers

26_576100 ch23.qxd 10/6/05 9:37 PM Page 939

Figure 23-24

To add a wildcard mapping, click the Insert button, add the path to the ASP.NET ISAPI DLL, and make
sure the Verify That File Exists check box is unchecked.

HttpHandlers
HttpHandlers differ from HttpModules, not only because of their positions in the request-processing
pipeline (see Figure 23-20), but also because they must be mapped to a specific file extension. Handlers
are the last stop for incoming HTTP requests and are ultimately the point in the request-processing
pipeline that is responsible for serving up the requested content, be it an ASPX page, HTML, plain text,
or an image. Additionally, HttpHandlers can offer significant performance gains

In this section, we demonstrate two different ways to create a simple HttpHandler that you can use to
serve up dynamic images. First, you look at creating an HttpHandler using an ASHX file extension.
Then you learn how you get even more control by mapping your HttpHandler to a custom file extension
using IIS.

Generic Handlers
In previous versions of Visual Studio, HttpHandlers were somewhat hard to understand and create. This
was because little documentation was included to help developers understand handlers, and Visual
Studio did not provide any friendly methods for creating them.

This has changed in Visual Studio 2005, which comes with a standard template for HttpHandlers to help
you get started. To add an HttpHandler to your project, you simply select the Generic Handler file type
from the Add New Item dialog. Figure 23-25 shows this dialog with the file type selected.

940

Chapter 23

26_576100 ch23.qxd 10/6/05 9:37 PM Page 940

Figure 23-25

You can see that when you add the Generic Handler file to your project, it adds a file with an .ashx exten-
sion. The .ashx file extension is the default HttpHandler file extension set up by ASP.NET. Remember that
HttpHandlers must be mapped to a unique file extension, so by default ASP.NET uses the .ashx extension.
This is convenient because, otherwise, you would be responsible for adding the file extension yourself. This
is obviously not always possible, nor is it practical. Using the Custom Handler file type helps you avoid
any extra configuration.

Notice the class stub that the file type automatically creates for you. Listing 23-48 shows the class.

Listing 23-48: The IHttpHandler page template

VB
<%@ WebHandler Language=”VB” Class=”Handler” %>

Imports System.Web

Public Class Handler
Implements IHttpHandler

Public Sub ProcessRequest(ByVal context As HttpContext) _
Implements IHttpHandler.ProcessRequest

context.Response.ContentType = “text/plain”
context.Response.Write(“Hello World”)

End Sub

Public ReadOnly Property IsReusable() As Boolean _
Implements IHttpHandler.IsReusable

Get
Return False

End Get

(continued)

941

User Controls, Server Controls, Modules, and HttpHandlers

26_576100 ch23.qxd 10/6/05 9:37 PM Page 941

Listing 23-48: (continued)

End Property

End Class

C#
<%@ WebHandler Language=”C#” Class=”Handler” %>

using System.Web;

public class Handler : IHttpHandler {

public void ProcessRequest (HttpContext context) {
context.Response.ContentType = “text/plain”;
context.Response.Write(“Hello World”);

}

public bool IsReusable {
get {

return false;
}

}

}

Notice that the stub implements the IHttpHandler interface, which requires the ProcessRequest
method and IsReusable property. The ProcessRequest method is the method we use to actually pro-
cess the incoming HTTP request. By default, the class stub changes the content type to plain and then
writes the “Hello World” string to the output stream. The IsReusable property simply lets ASP.NET
know if incoming HTTP requests can reuse the sample instance of this HttpHandler.

By default, this handler is ready to run right away. Try executing the handler in your browser and see
what happens. The interesting thing to note about this handler is that because it changes the content to
text/plain, browsers handle the responses from this handler in potentially very different ways depend-
ing on a number of factors:

❑ Browser type and version

❑ Applications loaded on the system that may map to the MIME type

❑ Operating system and service pack level

Based on these factors, you might see the text returned in the browser, you might see Notepad open and
display the text, or you might receive the Open/Save/Cancel prompt from IE. Make sure you under-
stand the potential consequences of changing the ContentType header.

You can continue the example by modifying it to return an actual file. In this case, you use the handler to
return an image. To do this, you simply modify the code in the ProcessRequest method, as shown in
Listing 23-49.

942

Chapter 23

26_576100 ch23.qxd 10/6/05 9:37 PM Page 942

Listing 23-49: Outputting an image from an HttpHandler

VB
<%@ WebHandler Language=”VB” Class=”Handler” %>

Imports System.Web

Public Class Handler : Implements IHttpHandler

Public Sub ProcessRequest(ByVal context As HttpContext) _
Implements IHttpHandler.ProcessRequest

‘Logic to retrieve the image file
context.Response.ContentType = “image/jpeg”
context.Response.WriteFile(“Sunset.jpg”)

End Sub

Public ReadOnly Property IsReusable() As Boolean _
Implements IHttpHandler.IsReusable

Get
Return False

End Get
End Property

End Class

C#
<%@ WebHandler Language=”C#” Class=”Handler” %>

using System.Web;

public class Handler : IHttpHandler {

public void ProcessRequest (HttpContext context) {
//Logic to retrieve the image file
context.Response.ContentType = “image/jpeg”
context.Response.WriteFile(“Sunset.jpg”)

}

public bool IsReusable {
get {

return false;
}

}

}

As you can see, you simply change the ContentType to image/jpeg to indicate that you are returning a
JPEG image; then you use the WriteFile() method to write an image file to the output stream. Load
the handler into a browser, and you see that the handler displays the image. Figure 23-26 shows the
resulting Web page.

Now, you create a simple Web page to display the image handler. Listing 23-50 shows code for the
Web page.

943

User Controls, Server Controls, Modules, and HttpHandlers

26_576100 ch23.qxd 10/6/05 9:37 PM Page 943

Figure 23-26

Listing 23-50: A sample Web page using the HttpHandler for the image source

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>HttpHandler Serving an Image</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

</div>
</form>

</body>
</html>

Although this sample is simple, you can enhance it by passing querystring parameters to your handler
and using them to perform additional logic in the handler. For instance, you can pass an ID in to dynam-
ically retrieve an image from a SQL database and return it to the client, like this:

944

Chapter 23

26_576100 ch23.qxd 10/6/05 9:37 PM Page 944

Mapping a File Extension in IIS
Although using the .ashx file extension is convenient, you might want to create an HTTP handler for a
custom file extension or even for a commonly used extension. Use the code from the image handler to
demonstrate this.

Create a new class in the App_Code directory of your Web project. You can simply copy the code from
the existing image handler control into this class, as shown in Listing 23-51. Notice that you removed the
WebHandler directive because this is only a class and not a generic handler control. Other than that, the
code is the same.

Listing 23-51: The class-based image HttpHandler

VB
Imports System.Web

Public Class MappedHandler : Implements IHttpHandler

Public Sub ProcessRequest(ByVal context As HttpContext) _
Implements IHttpHandler.ProcessRequest

context.Response.ContentType = “image/jpeg”
context.Response.WriteFile(“Sunset.jpg”)

End Sub

Public ReadOnly Property IsReusable() As Boolean _
Implements IHttpHandler.IsReusable

Get
Return False

End Get
End Property

End Class

C#
using System.Web;

public class MappedHandler : IHttpHandler {

public void ProcessRequest (HttpContext context) {
//Logic to retrieve the image file
context.Response.ContentType = “image/jpeg”;
context.Response.WriteFile(“Sunset.jpg”);

}

public bool IsReusable {
get {

return false;
}

}

}

945

User Controls, Server Controls, Modules, and HttpHandlers

26_576100 ch23.qxd 10/6/05 9:37 PM Page 945

After your class is added, configure the application to show which file extension this handler serves. You
do this by adding an httpHandlers section to web.config. Listing 23-52 shows the section to add for the
image handler.

Listing 23-52: Adding the HttpHandler configuration information to web.config

<httpHandlers>
<add verb=”*” path=”ImageHandler.img” type=”MappedHandler, App_Code” />

</httpHandlers>

In the configuration section, you direct the application to use the MappedHandler class to process
incoming requests for ImageHandler.img. You can also specify wildcards for the path. Specifying
*.img for the path indicates that you want the application to use the MappedHandler class to process
any request with the .img file extension. Specifying * indicates that you want all requests to the applica-
tion to be processed using the handler.

Load the ImageHandler.img file into a browser and, again, you should see that it serves up the image.
Figure 23-27 shows the results. Notice the path in the browser’s address bar leads directly to the
ImageHandler.img file.

Figure 23-27

HttpHandler responds to custom file extension

946

Chapter 23

26_576100 ch23.qxd 10/6/05 9:37 PM Page 946

Summary
In this chapter, you learned a number of ways you can create reusable, encapsulated chunks of code.
You first looked at user controls, the simplest form of control creation. You learned how to create user
controls and how you can make them interact with their host Web page. Creating user controls is quite
easy, but they lack the portability of other control-creation options.

Next, you saw how you can create your own custom server controls. You looked at many of the tools
you can create by writing custom server controls, and these range from tools for emitting HTML and
creating CSS styles and JavaScript to applying themes. The chapter also discussed the type of server
controls you can create, ranging from server controls that simply inherit from the WebControl class to
templated controls that give the control’s user the power to define the display of the server control.

Next, I switched gears and talked about HttpModules. Modules give you the power to plug yourself
directly into the ASP.NET page-processing pipeline. The events provided to an HttpModule give you
great power and flexibility to customize your applications.

Finally, you looked at HttpHandlers. Handlers allow you to skip the ASP.NET page-processing pipeline
completely and have 100 percent control over how the framework serves up requested data. You learned
how to create your own image handler and then map the handler to any file or file extension you want.

As I said in the beginning of this chapter, an entire book could be written on these four topics alone;
but I hope you have learned enough to feel motivated to continue exploring the topics discussed in this
chapter.

947

User Controls, Server Controls, Modules, and HttpHandlers

26_576100 ch23.qxd 10/6/05 9:37 PM Page 947

26_576100 ch23.qxd 10/6/05 9:37 PM Page 948

Using Business Objects

One of the best practices in programming is to separate your application into workable and sepa-
rate components — also known as business objects. This makes your applications far easier to man-
age and enables you to achieve the goal of code reuse because you can share these components
among different parts of the same application or between entirely separate applications.

Using business components enables you to build your ASP.NET applications using a true 3-tier
model where the business tier is in the middle between the presentation and data tiers. In addi-
tion, using business objects allows you to use multiple languages within your ASP.NET applica-
tions. Business objects can be developed in one programming language while the code used for
the presentation logic is developed in another.

If you are moving any legacy applications or aspects of these applications to an ASP.NET environ-
ment, you might find that you need to utilize various COM components. This chapter shows you
how to use both .NET and COM components in your ASP.NET pages and code.

This chapter also explains how you can mingle old ActiveX (COM) DLLs with new .NET compo-
nents. So when all is said and done, you should feel somewhat relieved. You will see that you
have not wasted all the effort you put into building componentized applications using the “latest”
ActiveX technologies.

Using Business Objects in ASP.NET 2.0
Chapter 3 provides an introduction to using .NET business objects within your ASP.NET 2.0
applications. ASP.NET now includes a new folder, \App_Code, which you can place within your
ASP.NET applications to hold all your .NET business objects. The nice thing about the App_Code
folder is that you can simply place your uncompiled .NET objects (such as Calculator.vb or
Calculator.cs) into this folder and ASP.NET takes care of compiling the objects into usable
.NET business objects.

27_576100 ch24.qxd 10/6/05 9:32 PM Page 949

Chapter 3 also shows how you can place within the App_Code folder multiple custom folders that allow
you to use business objects written in different programming languages. Using this method enables
ASP.NET to compile each business object into the appropriate DLLs to be used by your ASP.NET
applications.

Creating Precompiled .NET Business Objects
Even though the App_Code folder is there for your use, you might choose instead to precompile your
business objects into DLLs to be used by your ASP.NET 2.0 applications. This is the method that was uti-
lized prior to ASP.NET 2.0 and is still a method that is available today. You also might not have a choice
if you are receiving your .NET business objects only as DLLs.

First look at how to create a simple .NET business object using Visual Studio 2005. The first step is not to
create an ASP.NET project but to choose File ➪ New Project from the Visual Studio menu. This launches
the New Project dialog. From this dialog, select Class Library as the project type and name the project
Calculator (see Figure 24-1).

Figure 24-1

Using the Class1.vb or Class1.cs file that is created in the project for you, modify the class to be a
simple calculator with Add, Subtract, Multiply, and Divide functions. This is illustrated using Visual
Basic in Figure 24-2.

One point to pay attention to when you build your .NET components is the assembly’s metadata that is
stored along with the assembly. Looking at the project’s properties, click the Application tab (the first tab
available). On this tab’s page, you will find a button labeled Assembly Information. Clicking this button
gives you a dialog where you can put in all the business object’s metadata, including the assembly’s ver-
sioning information (see Figure 24-3).

950

Chapter 24

27_576100 ch24.qxd 10/6/05 9:32 PM Page 950

Figure 24-2

Figure 24-3

951

Using Business Objects

27_576100 ch24.qxd 10/6/05 9:32 PM Page 951

You are now ready to compile the business object into a usable object. To accomplish this task, choose
Build ➪ Build Calculator from the Visual Studio menu. This process compiles everything contained in
this solution down to a Calculator.dll file. You will find this DLL in your project’s bin\debug folder.
By default, that will be C:\Documents and Settings\[user]\My Documents\Visual Studio 2005\
Projects\Calculator\Calculator\bin\Debug\Calculator.dll.

Besides using Visual Studio 2005 to build and compile your business objects into DLLs, you can also
accomplish this yourself manually. In Notepad, you simply create the same class file as was shown in
Figure 24-2 and save the file as Calculator.vb or Calculator.cs depending on the language you
are using. After saving the file, you need to compile the class into an assembly (a DLL).

The .NET Framework provides you with a compiler for each of the targeted languages. This book
focuses on the Visual Basic 2005 and C# 2005 compilers that come with the Framework.

To compile this class, open the Visual Studio 2005 Command Prompt found at All Programs ➪ Microsoft
Visual Studio 2005 ➪ Visual Studio Tools ➪ Visual Studio 2005 Command Prompt. From the provided
DOS prompt, navigate to the directory that is holding your Calculator class (an example navigation
command is cd c:\My Files). From the DOS prompt, type the following command if you are using the
Visual Basic compiler:

vbc /t:library Calculator.vb

If your class is in C#, you use the following command:

csc /t:library Calculator.cs

As stated, each language uses its own compiler. Visual Basic uses the vbc.exe compiler found at
C:\Windows\Microsoft.NET\Framework\v2.0xxxxx\. You will find the C# compiler, csc.exe,
contained in the same folder. In the preceding examples, /t:library states that you are interested in
compiling the Calculator.vb (or .cs) class file into a DLL and not an executable (.exe), which is the
default. Following the t:/library command is the name of the file to be compiled.

There are many different commands you can give the compiler, even more than Visual Studio 2005
offers. For example, if you want to make references to specific DLLs in your assembly, you will have to
add commands such as /r:system.data.dll. To get a full list of all the compiler options, check out
the MSDN documentation.

After you have run the commands through the compiler, the DLL is created and ready to go.

Using Precompiled Business Objects
in Your ASP.NET Applications

To use any DLLs in your ASP.NET 2.0 project, you need to create a Bin folder in the root directory
of your application by right-clicking on the project within the Solution Explorer and selecting Add
Folder ➪ Bin Folder. In Visual Studio 2005, the Bin directory’s icon appears as a gray folder with a gear
next to it. Add your new DLL to this folder by right-clicking on the folder and selecting the Add
Reference option from the menu provided. This launches the Add Reference dialog. From this dialog,
select the Browse tab and browse till you find the Calculator.dll. When you find it, highlight the
DLL and press OK to add it to the Bin folder of your project. This dialog is illustrated in Figure 24-4.

952

Chapter 24

27_576100 ch24.qxd 10/6/05 9:32 PM Page 952

Figure 24-4

Calculator.dll is added to your project and is now accessible by the entire project. This means that
you now have access to all the functions exposed through this interface. Figure 24-5 shows an example
of how IntelliSense makes exploring this .NET component easier than ever.

Figure 24-5

As you can see, it is rather simple to create .NET components and use them in your ASP.NET applica-
tions. Next, let’s look at using COM components.

953

Using Business Objects

27_576100 ch24.qxd 10/6/05 9:32 PM Page 953

COM Interop: Using COM within .NET
Microsoft knows that every one of its legions of developers out there would be quite disappointed
if they couldn’t use the thousands of COM controls that it has built, maintained, and improved over
the years. Microsoft knows that nobody would get up and walk away from these controls to a purely
.NET world.

To this end, Microsoft has provided us with COM Interoperability. COM Interop (for short) is a technol-
ogy that enables .NET to wrap the functionality of a COM object with the interface of a .NET component
so that your .NET code can communicate with the COM object without having to use COM techniques
and interfaces in your code.

Figure 24-6 illustrates the Runtime Callable Wrapper, the middle component that directs traffic between
the .NET code and the COM component.

Figure 24-6

The Runtime Callable Wrapper
The Runtime Callable Wrapper, or RCW, is the magic piece of code that allows interaction to occur
between .NET and COM. One RCW is created for each COM component in your project. To create an
RCW for a COM component, you can use Visual Studio 2005.

To add an ActiveX DLL to the References section of your project, choose Website ➪ Add Reference or
choose the Add Reference menu item that appears when you right-click the root node of your project in
the Solution Explorer.

The Add Reference dialog box appears with five tabs: .NET, COM, Projects, Browse, and Recent, as
shown in Figure 24-7. For this example, select the COM tab and locate the component that you want to
add to your .NET project. After you have located the component, highlight the item and click OK to add
a reference to the component to your project. The newly added component will then be found inside a
newly created Bin folder in your project.

Runtime
Callable
Wrapper
(RCW)

.NET Code
(C# or

VB.NET)

ActiveX
DLL or OCX

(COM
Component)

Your New .NET
Code

.NETs Built-In
Interoperability

Technology

Your existing
ActiveX Component

Code

Managed Code Unmanaged Code

954

Chapter 24

27_576100 ch24.qxd 10/6/05 9:32 PM Page 954

Figure 24-7

Your Interop library is automatically created for you from the ActiveX DLL that you told Visual Studio
2005 to use. This Interop library is the RCW component customized for your ActiveX control, as shown
previously in Figure 24-6. The name of the Interop file is simply Interop.OriginalName.DLL.

It is also possible to create the RCW files manually instead of doing it through Visual Studio 2005. In the
.NET Framework, you will find a method to create RCW Interop files for controls manually through a
command-line tool called the Type Library Importer. You invoke the Type Library Importer by using the
tlbimp.exe executable.

For example, to create the Interop library for the SQLDMO object used earlier, start up a Visual Studio
2005 Command Prompt from the Microsoft Visual Studio 2005 ➪ Visual Studio Tools group within your
Start Menu. From the comment prompt, type

tblimp sqldmo.dll /out:sqldmoex.dll

In this example, the /out: parameter specifies the name of the RCW Interop library to be created. If you
omit this parameter, you get the same name that Visual Studio would generate for you.

The Type Library Importer is useful when you are not using Visual Studio 2005 as your development
environment, if you want to have more control over the assemblies that get created for you, or if you are
automating the process of connecting to COM components.

The Type Library Importer is a wrapper application around the TypeLibConvertor class of the System
.Runtime.InteropServices namespace.

Using COM objects in ASP.NET code
To continue working through some additional examples, you next take a look at a simple example of
using a COM object written in Visual Basic 6 within an ASP.NET page.

955

Using Business Objects

27_576100 ch24.qxd 10/6/05 9:32 PM Page 955

In the first step, you create an ActiveX DLL that you can use for the upcoming examples. Add the Visual
Basic 6 code shown in Listing 24-1 to a class called NameFunctionsClass and compile it as an ActiveX
DLL called NameComponent.dll.

Listing 24-1: VB6 code for ActiveX DLL, NameComponent.DLL

Option Explicit

Private m_sFirstName As String
Private m_sLastName As String

Public Property Let FirstName(Value As String)
m_sFirstName = Value

End Property

Public Property Get FirstName() As String
FirstName = m_sFirstName

End Property

Public Property Let LastName(Value As String)
m_sLastName = Value

End Property

Public Property Get LastName() As String
LastName = m_sLastName

End Property

Public Property Let FullName(Value As String)
m_sFirstName = Split(Value, “ “)(0)
If (InStr(Value, “ “) > 0) Then

m_sLastName = Split(Value, “ “)(1)
Else

m_sLastName = “”
End If

End Property

Public Property Get FullName() As String
FullName = m_sFirstName + “ “ + m_sLastName

End Property

Public Property Get FullNameLength() As Long
FullNameLength = Len(Me.FullName)

End Property

Now that you have created an ActiveX DLL to use in your ASP.NET pages, the next step is to create a
new ASP.NET project using Visual Studio 2005. Replace the HTML code in the Default.aspx file with
the HTML code illustrated in Listing 24-2. This adds a number of text boxes and labels to the HTML
page, as well as the Visual Basic or C# code for the functionality.

956

Chapter 24

27_576100 ch24.qxd 10/6/05 9:32 PM Page 956

Listing 24-2: Source code for the Calculate.dll ActiveX DLL

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Protected Sub AnalyzeName_Click(ByVal sender As Object, _

ByVal e As System.EventArgs)

Dim Name As New NameComponent.NameFunctionsClass()

If (FirstName.Text.Length > 0) Then
Name.FirstName = FirstName.Text

End If

If (LastName.Text.Length > 0) Then
Name.LastName = LastName.Text

End If

If (FullName.Text.Length > 0) Then
Name.FullName = FullName.Text

End If

FirstName.Text = Name.FirstName
LastName.Text = Name.LastName
FullName.Text = Name.FullName
FullNameLength.Text = Name.FullNameLength.ToString

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Using COM Components</title>
</head>
<body>

<form id=”form1” runat=”server”>
<P>

<asp:Label ID=”Label1” runat=”server”>First Name:</asp:Label>

<asp:TextBox ID=”FirstName” runat=”server”></asp:TextBox>

</P>
<P>

<asp:Label ID=”Label2” runat=”server”>Last Name:</asp:Label>

<asp:TextBox ID=”LastName” runat=”server”></asp:TextBox>

</P>
<P>

<asp:Label ID=”Label3” runat=”server”>Full Name:</asp:Label>

<asp:TextBox ID=”FullName” runat=”server”></asp:TextBox>

</P>
<P>

(continued)

957

Using Business Objects

27_576100 ch24.qxd 10/6/05 9:32 PM Page 957

Listing 24-2: (continued)

<asp:Label ID=”Label4” runat=”server”>Full Name Length:</asp:Label>

<asp:Label ID=”FullNameLength” runat=”server”
Font-Bold=”True”>0</asp:Label>

</P>
<P>

<asp:Button ID=”AnalyzeName” runat=”server”
OnClick=”AnalyzeName_Click” Text=”Analyze Name”></asp:Button>

</P>
</form>

</body>
</html>

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
protected void AnalyzeName_Click(object sender, System.EventArgs e)
{

NameComponent.NameFunctionsClass Name =
new NameComponent.NameFunctionsClass();

string FirstName;
string LastName;
string FullName;

if (FirstName.Text.Length > 0)
{

FirstName = FirstName.Text.ToString();
Name.set_FirstName(ref FirstName);

}

if (LastName.Text.Length > 0)
{

LastName = LastName.Text.ToString();
Name.set_LastName(ref LastName);

}

if (txtFullName.Text.Length > 0)
{

FullName = FullName.Text.ToString();
Name.set_FullName(ref FullName);

}

FirstName.Text = Name.get_FirstName();
LastName.Text = Name.get_LastName();
FullName.Text = Name.get_FullName();
FullNameLength.Text = Name.FullNameLength.ToString();

}
</script>

958

Chapter 24

27_576100 ch24.qxd 10/6/05 9:32 PM Page 958

Now you need to add the reference to the ActiveX DLL that you created in the previous step. To do so,
follow these steps:

1. Right-click your project in the Solution Explorer dialog.

2. Select the Add Reference menu item.

3. In the Add Reference dialog box, select the fourth tab, Browse.

4. Locate the NameComponent.dll by browsing to its location.

5. Click the OK button to add NameComponent.dll to the list of selected components and close
the dialog.

If you are not using Visual Studio 2005 or code-behind pages, you can still add a reference to your
COM control by creating the RCW manually using the Type Library Converter and then placing an
Imports statement (VB) or using statement (C#) in the page.

After you have selected your component using the Add Reference dialog, an RCW file is created for the
component and added to your application.

That’s all there is to it! Simply run the application to see the COM interoperability layer in action.

Figure 24-8 shows the ASP.NET page that you created. When the Analyze Name button is clicked, the
fields in the First Name, Last Name, and Full Name text boxes are sent to the RCW to be passed to the
NameComponent.DLL ActiveX component. Data is retrieved in the same manner to repopulate the text
boxes and to indicate the length of the full name.

Figure 24-8

Accessing Tricky COM Members in C#
Sometimes, some members of COM objects do not expose themselves properly to C#. In the pre-
ceding examples, the String properties did not expose themselves, but the Long property
(FullNameLength) did.

959

Using Business Objects

27_576100 ch24.qxd 10/6/05 9:32 PM Page 959

You know when there is a problem because, although you can see the property, you cannot compile the
application. For instance, instead of the code shown in Listing 24-2 for C#, use the following piece of
code to set the FirstName property of the NameComponent.dll ActiveX component:

if (FirstName.Text.Length > 0)
Name.FirstName = FirstName.Text.ToString();

When you try to compile this code, you get the following error:

c:\inetpub\wwwroot\wrox\Default.aspx.cs(67): Property, indexer, or event
‘FirstName’ is not supported by the language; try directly calling accessor methods
‘NameComponent.NameFunctionsClass.get_FirstName()’ or
‘NameComponent.NameFunctionsClass.set_FirstName(ref string)’

The FirstName property seems to be fine. It shows up in IntelliSense, but you can’t use it. Instead, you
must use set_FirstName (and get_FirstName to read). These methods do not show up in IntelliSense,
but rest assured, they exist.

Furthermore, these methods expect a ref string parameter rather than a String. In the example from
Listing 24-2, two steps are used to do this properly. First, String is assigned to a local variable, and then
the variable is passed to the method using ref.

Releasing COM Objects Manually
One of the great things about .NET is that it has its own garbage collection — it can clean up after itself.
This isn’t always the case when using COM interoperability, however. .NET has no way of knowing
when to release a COM object from memory because it doesn’t have the built-in garbage collection
mechanism that .NET relies on.

Because of this limitation, you should release COM objects from memory as soon as possible using the
ReleaseComObject class of the System.Runtime.InteropServices.Marshal class:

C#
System.Runtime.InteropServices.Marshal.ReleaseComObject(Object);

Error Handling
Error handling in .NET uses exceptions instead of the HRESULT values used by Visual Basic 6 applica-
tions. Luckily, the RCW does most of the work to convert between the two.

Take for instance the code shown in Listing 24-3. In this example, a user-defined error is raised if the
numerator or the denominator is greater than 1000. Also notice that we are not capturing a divide by
zero error. Notice what happens when the ActiveX component raises the error on its own.

Begin this example by compiling the code listed in Listing 24-3 into a class named DivideClass within
an ActiveX component called DivideComponent.dll.

960

Chapter 24

27_576100 ch24.qxd 10/6/05 9:32 PM Page 960

Listing 24-3: Raising errors in VB6

Public Function DivideNumber(Numerator As Double, _
Denominator As Double) As Double

If ((Numerator > 1000) Or (Denominator > 1000)) Then
Err.Raise vbObjectError + 1, _

“DivideComponent:Divide.DivideNumber”, _
“Numerator and denominator both have to “ + _
“be less than or equal to 1000.”

End If

DivideNumber = Numerator / Denominator

End Function

Next, create a new ASP.NET project; add a reference to the DivideComponent.dll (invoking Visual
Studio 2005 to create its own copy of the RCW). Remember, you can also do this manually by using the
tlbimp executable.

Now add the code shown in Listing 24-4 to an ASP.NET page.

Listing 24-4: Error handling in .NET

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Protected Sub Calculate_Click(ByVal sender As Object, _

ByVal e As System.EventArgs)

Dim Divide As New DivideComponent.DivideClass()

Try
Answer.Text = Divide.DivideNumber(Numerator.Text, Denominator.Text)

Catch ex As Exception
Answer.Text = ex.Message.ToString()

End Try

System.Runtime.InteropServices.Marshal.ReleaseComObject(Divide)

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<body>

<form id=”form1” runat=”server”>
<P>

<asp:Label ID=”Label1” runat=”server”>Numerator:</asp:Label>

<asp:TextBox ID=”Numerator” runat=”server”></asp:TextBox>

</P>

(continued)

961

Using Business Objects

27_576100 ch24.qxd 10/6/05 9:32 PM Page 961

Listing 24-4: (continued)

<P>
<asp:Label ID=”Label2” runat=”server”>Denominator:</asp:Label>

<asp:TextBox ID=”txtDenominator” runat=”server”></asp:TextBox>

</P>
<P>

<asp:Label ID=”Label3” runat=”server”>
Numerator divided by Denominator:</asp:Label>

<asp:Label ID=”Answer” runat=”server” Font-Bold=”True”>0</asp:Label>

</P>
<P>

<asp:Button ID=”Calculate”
runat=”server”
OnClick=”cmdCalculate_Click”
Text=”Calculate”>

</asp:Button>
</P>

</form>
</body>

</html>

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
protected void Calculate_Click(object sender, System.EventArgs e)
{

DivideComponent.DivideClass myDivide = new DivideComponent.DivideClass();

double Numerator;
double Denominator;

try
{

Numerator = System.Convert.ToDouble(Numerator.Text.ToString());

Denominator = System.Convert.ToDouble(Denominator.Text.ToString());

Answer.Text = myDivide.DivideNumber(
ref Numerator,
ref Denominator).ToString();

}

catch (Exception ex)
{

Answer.Text = ex.Message.ToString();
}

System.Runtime.InteropServices.Marshal.ReleaseComObject(myDivide);

}
</script>

962

Chapter 24

27_576100 ch24.qxd 10/6/05 9:32 PM Page 962

The code in Listing 24-4 passes the user-entered values for the Numerator and Denominator to the
DivideComponent.dll ActiveX component for it to divide. Running the application with invalid data
gives the result shown in Figure 24-9.

Figure 24-9

Depending on the language that you are using to run the ASP.NET application, you will see different
values for different sets of data. For valid inputs, you will always see the correct result, of course, and
for any input that is over 1000, you see the Visual Basic 6 appointed error description of Numerator and
denominator both have to be less than or equal to 1000.

However, for invalid Strings, Visual Basic .NET reports Cast from string “abc” to type ‘Double’ is
not valid. whereas C# reports Input string was not in a correct format.. For a divide by zero,
they both report Divide by Zero because the error is coming directly from the Visual Basic 6 runtime.

Deploying COM Components with .NET Applications
Deploying COM components with your .NET applications is very easy; especially when compared to
just deploying ActiveX controls. Two scenarios are possible when deploying .NET applications with
COM components:

❑ Using private assemblies

❑ Using shared assemblies

Private Assemblies
Installing all or parts of the ActiveX component local to the .NET application is considered installing
private assemblies. In this scenario, each installation of your .NET application on the same machine has,
at least, its own copy of the Interop library for the ActiveX component you are referencing, as shown in
Figure 24-10.

It is up to you whether you decide to install the ActiveX component as local to the application or in a
shared directory for all calling applications.

963

Using Business Objects

27_576100 ch24.qxd 10/6/05 9:32 PM Page 963

Figure 24-10

It was once considered proper practice to separate ActiveX components into their own directory so that
if these components were referenced again by other applications, you did not have to register or install
the file for a second time. Using this method meant that when you upgraded a component, you automat-
ically upgraded all the utilizing applications. However, this practice didn’t work out so well. In fact, it
became a very big contributor to DLL hell and the main reason why Microsoft began promoting the
practice of installing private .NET component assemblies.

After you have your components physically in place, the only remaining task is to register the ActiveX
component using regsvr32, just as you would when deploying an ActiveX-enabled application.

Public Assemblies
The opposite of a private assembly is a public assembly. Public assemblies share the RCW Interop DLL
for other applications. In order to create a public assembly, you must put the RCW file into the Global
Assembly Cache (GAC), as shown in Figure 24-11.

You can find the GAC at C:\Windows\assembly. Installing items in the GAC can be as simple as
dragging-and-dropping the item into this folder through Windows Explorer. Although the GAC is open
to everyone, it is not recommended that you blindly install your components into this section unless you
have a very good reason to do so.

You can also add items to the GAC from the command line using the Global Assembly Cache Tool
(Gacutil.exe). It allows you to view and manipulate the contents of the global assembly cache and down-
load cache. While the Explorer view of the GAC provides similar functionality, you can use Gacutil.exe
from build scripts, makefile files, and batch files.

It is hard to find a very good reason to install your ActiveX Interop Assemblies into the GAC. If I had
to pick a time to do this, it would be if and when I had a highly shared ActiveX component that many
.NET applications would be utilizing on the same machine. In a corporate environment, this might occur
when you are upgrading existing business logic from ActiveX to .NET enablement on a server that many
applications use. In a commercial setting, I would avoid using the GAC.

Interop.MyCOM.dllMyApp.exe

C:\Program Files\First Application Location\

Interop.MyCOM.dllMyApp.exe

C:\Program Files\Second Application Location\

MyCOM.DLL

C:\Program Files\Third Party COM Controls\(Managed Code) (RCW)

(Managed Code) (RCW)

(ActiveX DLL)

964

Chapter 24

27_576100 ch24.qxd 10/6/05 9:32 PM Page 964

Figure 24-11

Using .NET from Unmanaged Code
.NET provides the opposite of COM interoperability by enabling you to use your newly created .NET
components within unmanaged code. This section discusses using .NET components with Visual Basic 6
executables. The techniques shown in this section are identical when you are using ActiveX OCXs or
DLLs instead of executables.

The COM-Callable Wrapper (CCW) is the piece of the .NET Framework that enables unmanaged code
to communicate with your .NET component. The CCW, unlike the RCW, is not a separate DLL that you
distribute with your application. Instead, the CCW is part of the .NET Framework that gets instantiated
once for each .NET component that you are using.

Figure 24-12 shows how the CCW marshals the communication between the unmanaged code and the
.NET component similarly to how the RCW marshals the code between managed code and COM code.

The COM-Callable Wrapper
The COM-Callable Wrapper or CCW, as previously stated, is not a separate DLL like the RCW. Instead,
the CCW uses a specially created type library based on the .NET component. This type library is called
an Interop Type Library. The Interop Type Library is statically linked with the unmanaged code so that
this code can communicate with the CCW about the .NET component included in your application.

In order for a .NET component to generate an Interop Type Library, you tell Visual Studio 2005 to gener-
ate it when the component is built. Both Visual Basic and C# projects have a setting in the Compile prop-
erties section of the Class Library project’s Property Pages dialog.

Right-click the project in the Solution Explorer and choose Properties to see the project’s properties.
Figure 24-13 shows the project’s properties for a Visual Basic 2005 Class Library application. This is
shown directly in the Visual Studio document window.

MyApp.exe

C:\Program Files\First Application Location\

YourApp.exe

C:\Program Files\Second Application Location\

Interop.MyCOM.dll

Global Assembly Cache (GAC)

MyCOM.dll

C:\Program Files\Third Party COM Controls\

(Managed Code) (RCW)

(Managed Code)

(ActiveX DLL)

965

Using Business Objects

27_576100 ch24.qxd 10/6/05 9:32 PM Page 965

Figure 24-12

Figure 24-13

Your ActiveX Code

.NETs Built-In
Interoperability

Technology
Your .NET

Component Code

Managed CodeUnmanaged Code

COM Code

COM-
Callable
Wrapper
(CCW)

.NET
Component

966

Chapter 24

27_576100 ch24.qxd 10/6/05 9:32 PM Page 966

C# has a slightly different dialog, as shown in Figure 24-14. In both dialogs, the property is called
Register for COM Interop. In Visual Basic, you can find this property on the Compile page; in C#, you
can find it on the Build tab of the properties pages.

After you set this option by checking the check box, when you build the project a separate type library
file (.tlb) is generated for the DLL that you are building. This .tlb file is your key to including .NET
components in COM applications.

Normally in Visual Basic, when you add a reference to a DLL, you navigate from the References section
of the Visual Basic project to find the ActiveX DLL that you want to add. If you use .NET components,
they cannot be properly referenced in this manner because they are not ActiveX. Instead, you reference
the Interop Type Library, which makes the functionality of the corresponding .NET component available
to your application.

The .NET Framework also gives you a method to create Interop Type Library files manually for .NET
components. You do this through a command-line tool called the Type Library Exporter (as compared to
the Type Library Importer used for COM Interoperability). The Type Library Exporter is invoked using
the tlbexp.exe executable.

Figure 24-14

967

Using Business Objects

27_576100 ch24.qxd 10/6/05 9:32 PM Page 967

For example, to create the Interop Type Library for the NameComponent.dll in the next example, you
use the following command:

tblimp NameComponent.dll /out:NameComponentEx.tlb

The /out: parameter specifies the name of the Interop Type Library that is to be created. If you omit this
parameter, you get a file with the same name as the ActiveX component, but with a .tlb extension.

The Type Library Exporter is useful when you are not using Visual Studio 2005 as your development
environment, if you want to have more control over the assemblies that get created for you, or if you are
automating the process of connecting to .NET components.

Using .NET Components within COM Objects
The next example illustrates how .NET components can be utilized within COM code. To begin, create
and compile the .NET code found in Listing 24-5 in either Visual Basic or C#.

After you have typed your code into your Class Library project, build the component and call it
NameComponent. Remember to choose to include the Register for the COM Interop setting of True (by
checking the appropriate check box) from the project properties pages, as shown in Figure 24-13 for
Visual Basic code and Figure 24-14 for C# code. If you aren’t using Visual Studio 2005, you can use
tblimp.exe to generate the Interop Type Library manually as described previously.

Listing 24-5: The .NET component

VB
Public Class NameFunctions

Private m_FirstName As String
Private m_LastName As String

Public Property FirstName() As String
Get

Return m_FirstName
End Get

Set(ByVal Value As String)
m_FirstName = Value

End Set
End Property

Public Property LastName() As String
Get

Return m_LastName
End Get

Set(ByVal Value As String)
m_LastName = Value

End Set
End Property

Public Property FullName() As String

968

Chapter 24

27_576100 ch24.qxd 10/6/05 9:32 PM Page 968

Get
Return m_FirstName + “ “ + m_LastName

End Get

Set(ByVal Value As String)
m_FirstName = Split(Value, “ “)(0)
m_LastName = Split(Value, “ “)(1)

End Set
End Property

Public ReadOnly Property FullNameLength() As Long
Get

FullNameLength = Len(Me.FullName)
End Get

End Property

End Class

C#
using System;

namespace NameComponent
{

public class NameFunctions
{

private string m_FirstName;
private string m_LastName;

public string FirstName
{

get
{

return m_FirstName;
}
set
{

m_FirstName=value;
}

}

public string LastName
{

get
{

return m_LastName;
}
set
{

m_LastName=value;
}

}

public string FullName

(continued)

969

Using Business Objects

27_576100 ch24.qxd 10/6/05 9:32 PM Page 969

Listing 24-5: (continued)

{
get
{

return m_FirstName + “ “ + m_LastName;
}
set
{

m_FirstName=value.Split(‘ ‘)[0];
m_LastName=value.Split(‘ ‘)[1];

}
}

public long FullNameLength
{

get
{

return this.FullName.Length;
}

}

}
}

After you have created the .NET component, you can then create the consuming Visual Basic 6 code
shown in Listing 24-6.

Listing 24-6: VB6 code using the .NET component

Option Explicit

Public Sub Main()

Dim o As NameComponent.NameFunctions

Set o = New NameComponent.NameFunctions

o.FirstName = “Bill”
o.LastName = “Evjen”

MsgBox “Full Name is: “ + o.FullName

MsgBox “Length of Full Name is: “ + CStr(o.FullNameLength)

o.FullName = “Scott Hanselman”

MsgBox “First Name is: “ + o.FirstName

MsgBox “Last Name is: “ + o.LastName

o.LastName = “Evjen”

MsgBox “Full Name is: “ + o.FullName

970

Chapter 24

27_576100 ch24.qxd 10/6/05 9:32 PM Page 970

Set o = Nothing

End Sub

Remember to add a reference to the .NET component. You choose Project ➪ Project References and
select the .tlb file for the .NET component that was created either by Visual Studio or manually using
tlbexp.exe.

When you run the code in Listing 24-6, you see that Visual Basic 6 doesn’t miss a beat when communi-
cating with the .NET component.

It is also possible to register the assemblies yourself. Earlier I showed you how to manually create Interop
Type Libraries with the Type Library Exporter. This tool does not register the assemblies created but
instead generates only the type library.

To register the assemblies yourself, you use the Assembly Registration Tool (regasm.exe). This tool is
like the regsvr32.exe for .NET components.

To use regasm.exe, use a command syntax similar to the following example:

regasm NameComponent.dll /tlb:NameComponentEx.tlb /regfile:NameComponent.reg

The /tlb: option specifies the name of the type library, and the /regfile: option specifies the name of
a registry file to be created that can be used later in an installation and deployment application.

Early versus Late Binding
The preceding example illustrates the use of early binding, the technique most Visual Basic 6 developers
are used to. However, in some cases, it is desirable to use late binding. Performing late binding with
.NET components is no different than performing late binding with ActiveX components, as shown in
Listing 24-7.

Listing 24-7: Late binding with VB6

Option Explicit

Public Sub Main()

Dim o As Object

Set o = CreateObject(“NameComponent.NameFunctions”)

o.FirstName = “Bill”
o.LastName = “Evjen”

MsgBox “Full Name is: “ + o.FullName

MsgBox “Length of Full Name is: “ + CStr(o.FullNameLength)

(continued)

971

Using Business Objects

27_576100 ch24.qxd 10/6/05 9:32 PM Page 971

Listing 24-7: (continued)

o.FullName = “Scott Hanselman”

MsgBox “First Name is: “ + o.FirstName

MsgBox “Last Name is: “ + o.LastName

o.LastName = “Evjen”

MsgBox “Full Name is: “ + o.FullName

Set o = Nothing

End Sub

Error Handling
Handling errors that are raised from .NET components in Visual Basic 6 is easily accomplished via the
Interop functionality. Listing 24-8 shows code for both Visual Basic and C# to throw exceptions for a cus-
tom error. When the Numerator or the Denominator parameters are greater than 1000 in the Divide
function, a custom exception is thrown up to the calling code, which is Visual Basic 6 in this example.

Notice how I don’t handle the divide by zero error possibility in this example. This is done intentionally
to demonstrate how interoperability handles unhandled errors.

Listing 24-8: Raising errors

VB
Public Class CustomException

Inherits Exception

Sub New(ByVal Message As String)
MyBase.New(Message)

End Sub
End Class

Public Class DivideFunction

Public Function Divide(ByVal Numerator As Double, _
ByVal Denominator As Double) As Double

If ((Numerator > 1000) Or (Denominator > 1000)) Then
Throw New CustomException(“Numerator and denominator both “ +

“have to be less than or equal to 1000.”)
End If

Divide = Numerator / Denominator

End Function

End Class

972

Chapter 24

27_576100 ch24.qxd 10/6/05 9:32 PM Page 972

C#
using System;

namespace DivideComponent
{

public class CustomException:Exception
{

public CustomException(string message):base(message)
{
}

}

public class DivideFunction
{

public double Divide(double Numerator, double Denominator)
{

if ((Numerator > 1000) || (Denominator > 1000))
throw new CustomException(“Numerator and denominator “ +

“both have to be less than or equal to 1000.”);

return Numerator / Denominator;
}

}
}

Now that you have the code for the .NET component, compile it with the Register for COM Interop flag
set to True in the project’s Property Pages dialog and call the component DivideComponent.

The consuming Visual Basic 6 code is shown in Listing 24-9. Remember to add a reference to the Interop
Type Library of the DivideComponent generated by Visual Studio.

Listing 24-9: VB6 experiencing .NET errors

Option Explicit

Public Sub Main()

Dim o As DivideComponent.DivideFunction

Set o = New DivideComponent.DivideFunction

MsgBox “1 divided by 3: “ + CStr(o.divide(1, 3))

MsgBox “1 divided by 0: “ + CStr(o.divide(1, 0))

MsgBox “2000 divided by 3000: “ + CStr(o.divide(2000, 3000))

Set o = Nothing

End Sub

The Visual Basic 6 code example in Listing 24-9 does not handle the errors thrown by the .NET compo-
nent, but it can easily do so using On Error, Visual Basic 6’s method for trapping raised errors.

973

Using Business Objects

27_576100 ch24.qxd 10/6/05 9:32 PM Page 973

Instead of trapping the errors, make sure that the Error Trapping setting in the Options dialog of Visual
Basic 6 is set to Break in Class Module.

When the application is run, the first example of 1 divided by 3 works fine; you see the output properly.
The second example, which you would expect to end in a divide-by-zero error, does not. Instead, an
invalid property value is returned to Visual Basic 6. The final example, which doesn’t pass the custom
error handling in the .NET component, raises a Visual Basic error as you would expect.

Deploying .NET Components with COM Applications
Deploying .NET components with COM applications is similar to deploying COM components. There
are two scenarios in this deployment scheme:

❑ Using private assemblies

❑ Using shared assemblies

The following sections discuss these two scenarios.

Private Assemblies
Private assemblies mean the deployment of the .NET component is installed in each individual directory
where the application is installed, within the same machine. The only needed component is the .NET
DLL and the calling application. The Interop Type Library that you created earlier with Visual Studio
2005 or tlbexp.exe is statically linked with the component or application that references the .NET
component.

The only additional task you must complete is to properly register the .NET assembly using regasm.exe.
This is an extra step that is not needed in 100 percent .NET applications; it is required only for the interop-
erability for the unmanaged code to reference the managed code. Figure 24-15 illustrates using private
assemblies.

Figure 24-15

MyDotNet.dllMyApp.exe

C:\Program Files\First Application Location\

MyDotNet.dllMyApp.exe

C:\Program Files\Second Application Location\

(Unmanaged Code) (Managed Code)

(Unmanaged Code) (Managed Code)

974

Chapter 24

27_576100 ch24.qxd 10/6/05 9:32 PM Page 974

Public Assemblies
The use of a public assembly is illustrated in Figure 24-16. This scenario involves installing the .NET
component into the Global Assembly Cache (GAC).

As with private assemblies, the .NET component and the consuming unmanaged code are the only
requirements for deployment — besides the need to register the interop assembly using regasm.exe.

Figure 24-16

Summary
When .NET was introduced, there was some initial concern about existing ActiveX controls and their
place in Microsoft’s vision for the future of component development. Immediately, Microsoft stepped up
to the bat and offered the robust and solid .NET Interop functionality to provide a means to communi-
cate not only from .NET managed code to COM unmanaged code, but also from COM unmanaged code
to .NET managed code. The latter was an unexpected, but welcome, feature for many Visual Basic 6
developers and future .NET component builders.

This layer of interoperability has given Microsoft the position to push .NET component development as
a solution for not only newly created applications, but also applications that are currently in develop-
ment and ones that have already been rolled out and are now in the maintenance phase.

Interoperability has given .NET developers a means to gradually update applications without rewriting
them entirely, and it has given them a way to start new .NET projects without having to wait for all the
supporting components to be developed in .NET

MyApp.exe

C:\Program Files\First Application Location\

YourApp.exe

C:\Program Files\Second Application Location\

MyDotNet.dll

Global Assembly Cache (GAC)

(Unmanaged Code) (Managed Code)

(Unmanaged Code)

975

Using Business Objects

27_576100 ch24.qxd 10/6/05 9:32 PM Page 975

27_576100 ch24.qxd 10/6/05 9:32 PM Page 976

Mobile Development

We are entering an era of mobile applications. Mobile devices are getting better, faster, and cheaper
every year. The bandwidth on these devices has improved significantly over the last few years and
will continue to improve by leaps and bounds. Businesses are continually finding newer and more
exciting ways to provide applications on mobile devices. If you haven’t yet had the opportunity
to program mobile Web applications, you can be sure that your time will come sooner than you
might expect.

This book wouldn’t be complete without a chapter showing you how to create mobile Web appli-
cations using ASP.NET 2.0. This chapter starts with the basics of mobile Web application develop-
ment and goes deep enough to make you feel comfortable about starting your next mobile Web
development project. The chapter first discusses how Visual Studio helps with the creation of
mobile Web applications. It then shows you all available mobile Web controls and teaches you the
appropriate ways of using them in your applications. Finally, you learn how to develop device-
specific properties and manage ViewState and Sessions.

Creating a NEW ASP.NET
Mobile Web Application

Visual Studio provides very powerful and user-friendly tools for creating mobile Web applications.
If you are familiar with how to create a typical ASP.NET application with Visual Studio, you
already know a lot about creating mobile Web applications. You simply create a Web site project
and add a Mobile Web Form to your project. When you open this form in the Designer window,
you see a set of mobile controls inside the Toolbox.

Follow these steps to create a new Visual Basic or Visual C# mobile Web application using Visual
Studio 2005:

28_576100 ch25.qxd 10/6/05 9:35 PM Page 977

1. Choose File ➪ New ➪ Web Site.

2. From the Visual Studio Installed Templates list, select ASP.NET Web Site.

3. Provide the location, language, and path, and click OK (see Figure 25-1).

Figure 25-1

After you follow the preceding steps, you can see that Visual Studio creates a Web site project for you.
Next, add Mobile Web Forms to your project by following these steps:

1. Right-click the ASP.NET Project you just created and select Add New Item.

2. In the Add New Item dialog, select Mobile Web Form from the Visual Studio Installed
Templates list (see Figure 25-2).

Figure 25-2

978

Chapter 25

28_576100 ch25.qxd 10/6/05 9:35 PM Page 978

3. Provide a name for the Mobile Form, select a language, and click to check the Select Master
Page check box if a master page is defined for your project. Be sure to check the Place Code in
Separate File check box to use the code-behind model provided.

4. Click the Add button.

After you click the Add button, you can see that Visual Studio creates two files with the names
MyMobilePage.aspx and MyMobilePage.cs (or MyMobilePage.vb if you selected Visual Basic).
The MyMobilePage.aspx file contains the declarative format of the ASP.NET mobile controls. The
MyMobilePage.cs file contains the code for handling events and performing other programmatic tasks.

After the Mobile Web Form is created, feel free to add controls from the Mobile Web Forms tab of the
Toolbox. Just like other ASP.NET controls, the mobile controls provide properties and events that you
can use to customize behaviors. You can also type these mobile controls directly into the Mobile Web
Form source window by using the <mobile: /> syntax shown here:

<mobile:TextBox ID=”MyTextBox” runat=”server”></mobile:TextBox>
<mobile:Label ID=”MyLabel” runat=”server”>Label</mobile:Label>

Figure 25-3 shows a Mobile Web Form that contains Label, Text Box, and Command controls. This
Mobile Web Form finds a customer record using the customer identifier provided in the text box.

Figure 25-3

The HTML code generated by adding these controls is shown in Listing 25-1. You can see that all three
mobile controls are reflected by the HTML tags that start with the mobile: prefix. Notice that the mobile:
prefix is used with the form tag as well. In a typical ASP.NET page, you won’t be required to treat forms
as Web controls. However, the mobile Web page treats forms a little differently. The main difference is
that the mobile Web page allows you to create multiple forms on one page and navigate among these
forms without making a trip to the Web server. This flexibility allows you to reduce the number of
roundtrips to the server because the bandwidth is typically slow on a mobile connection.

979

Mobile Development

28_576100 ch25.qxd 10/6/05 9:35 PM Page 979

Listing 25-1: The source code for a simple mobile Web page

<%@ Page Language=”C#” AutoEventWireup=”true” CodeFile=”MyMobilePage.aspx.cs”
Inherits=”_Default” %>

<%@ Register TagPrefix=”mobile” Namespace=”System.Web.UI.MobileControls”
Assembly=”System.Web.Mobile” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<body>

<mobile:Form id=”Form1” runat=”server”>
<mobile:Label id=”lblID” Runat=”server”>Customer ID</mobile:Label>
<mobile:TextBox id=”txtCustID” Runat=”server”></mobile:TextBox>
<mobile:Command id=”cmdGetCustomer” Runat=”server”>
Find Customer

</mobile:Command>
</mobile:Form>

</body>
</html>

Views of an ASP.NET Mobile Web Form
The ASP.NET Mobile Web Forms Designer provides three views in the Microsoft Visual Studio environ-
ment: Design view, HTML view, and Code view. These views are panes in the Visual Studio main win-
dow that you can access using a variety of mechanisms.

Design View
The Design view loads the Mobile Web Form and displays an automatic rendering of its controls using
the default properties. You can add new controls by dragging and dropping them from the Toolbox. You
can modify existing controls by using the Properties window or remove the controls by simply selecting
them and pressing the Delete button on the keyboard.

The Design view is not a WYSIWYG editor, mainly because the actual appearance of a Mobile Web
Form varies significantly from one device to another. For example, the Design view always displays one
control per line, whereas some devices may be able to display multiple controls on the same line. You
should also know that the ASP.NET Mobile Web Form does not support absolute positioning of Mobile
Web Controls.

HTML View
The HTML view displays the source HTML. You can edit it directly if you want to gain total control of the
layout and rendering of the form. You don’t have to work directly in the HTML view; it is available mostly
as a convenience for those who would rather not depend on automatic HTML generation. Otherwise, the
designer does a very good job of allowing you to work in a user-friendly design environment.

You can switch between the Design view and the HTML view by clicking the appropriate tab at the bot-
tom of each view.

Code View
The Code view manages the programming logic contained in the code-behind file. You can enter
the Code view simply by right-clicking the mobile Web page in Solution Explorer and selecting the View
Code menu option.

980

Chapter 25

28_576100 ch25.qxd 10/6/05 9:35 PM Page 980

Event Handling with Mobile Web Controls
Just like regular Web controls, Mobile Web Controls also fire events. They provide default events for
handling most commonly occurring scenarios. In addition, each control also raises a number of non-
default events that can be handled as needed. You already know that events are raised by certain activi-
ties performed by the user on the browser. The mobile browser behaves in the same manner. It responds
to the event by sending a post back to the server where the event is processed. The resulting HTML is
sent back to the browser. Handling a default event fired by a mobile control is as simple as placing the
control on the page and double-clicking it. You are presented with a code window where the event han-
dler is already prewired for you, as shown in the following code. If you are interested in handling non-
default events, you simply view the list of available events in the Properties window and double-click
the event you want to handle.

VB
Private Sub cmdGetCustomer_Click(ByVal sender as System.Object, _

ByVal e as System.EventArgs) Handles Command1.Click

End Sub

C#
private void cmdGetCustomer_Click(object sender, System.EventArgs e)
{

}

Creating a non-default event handler is also quite easy. The steps are the same regardless of the program-
ming language. If you have worked with previous versions of Visual Studio .NET, you may remember
that wiring event handlers worked differently in Visual Basic .NET than in C#. The current version of
Visual Studio unifies the steps in both languages.

Follow these steps to create a non-default event handler:

1. Select the desired control in Design view.

2. Click the Events button (the one with the lightning bolt) in the Properties window. Clicking this
button shows a list of all available events for the selected control.

3. Double-click the event you want to handle. You are taken to the Code view with the event han-
dler prewired for the selected event.

You have now created a non-default event handler.

Using Control Containers
Two kinds of container controls are provided for mobile Web pages: the Form control and the Panel con-
trol. All mobile controls in ASP.NET exist inside one of these container controls. Other than using these
container controls for grouping together Mobile Web Controls, you can also use them to apply styles
consistently to all controls inside them. The container controls are added to the page with a default size
that changes as new controls are added to it. You can’t resize a container control to a specific size.

981

Mobile Development

28_576100 ch25.qxd 10/6/05 9:35 PM Page 981

Mobile Web Forms only support sequential placement of controls because of the diversity among the
wide range of mobile devices — especially WML devices that, for the most part, can’t support side-by-side
layout — that is, having multiple controls reside next to each other sequentially. You can force ASP.NET
to take advantage of side-by-side layout on devices that support it by setting the BreakAfter property
of the mobile Web control to False. The ASP.NET Mobile Designer does not use the BreakAfter prop-
erty. As a result, the Designer doesn’t display controls side by side, even if BreakAfter is set to False.

The good news is that the ASP.NET Mobile Designer enables you to customize the appearance of Mobile
Web Forms and controls for specific devices. This flexibility enables you to ensure that your application
looks and functions as intended on the devices you specify. You can read more about customizing for
specific devices a little later in this chapter in the section “Understanding Device Filters.”

The Form Control
All content and all controls are contained inside a Form control. Every page is required to have at least
one Form control. The page can contain multiple Form controls; however, it can display only one at a
time. A default form is automatically created when you create a mobile Web page. You can add more
forms by dragging and dropping them from the Toolbox.

When the page loads, it displays the first form placed inside it by default. You can write code in the
Page_Load event to direct the user to a specific form if you want. You can also program to navigate
users to other forms based on user input. Navigating between forms on the same page doesn’t result in
a trip to the Web server, thereby significantly improving your application’s response time. Organizing
pages into groups of forms also enables you to pass richer state information from one form to the next
because all forms are contained inside the same physical page. All forms on a mobile page share the
same code behind and, therefore, can share the same functions and member fields.

Because ASP.NET mobile Web applications usually run on devices with smaller screens, you might
need to break a single ASP.NET Web page into several mobile Web pages so that each can fit on a smaller
screen. Without the capability to put multiple logical groups of controls in mobile forms, you could have
great difficulty maintaining a one-to-one mapping between ASP.NET Web Forms and ASP.NET Mobile
Forms in the same application.

The real question to ask yourself is how to decide the appropriate groupings of forms on a mobile Web
page. You should know that all forms on the page are instantiated when the page is loaded causing the
page with many forms to take longer to load. However, navigating between these forms is speedy fast
once all forms are loading in the device’s memory. Another advantage you get by using multiple forms on
a page is persistence of the state information while you are switching the user from one form to another.

The Panel Control
The Panel control provides an easy way to group related controls together while keeping them inside a
Form control. You can easily apply styles to the panel to help you keep a consistent look-and-feel in your
mobile applications. Another great benefit of panels is to keep related controls together on the same page
because ASP.NET attempts to keep all controls in a panel on the screen at the same time.

You can show or hide a group of controls by keeping them inside a panel and making the panel either
visible or invisible. You can optionally insert one panel inside another to create a composite group of
controls.

982

Chapter 25

28_576100 ch25.qxd 10/6/05 9:35 PM Page 982

Adding panels to your application is as simple as dragging and dropping them from the Toolbox. To add
a Panel control, follow these steps:

1. Drag a Panel control from the Mobile Web Forms tab of the Toolbox.

2. Customize the Panel control by dragging other controls onto the panel from the Toolbox.

Using StyleSheets
You can use styles to customize the appearance of controls when they are rendered. You can do so by
using StyleSheet controls, defining style information, and applying it to one or more controls on the
same page. As mentioned earlier, you can apply styles not only to a specific control but also to container
controls that consistently apply the styles to all controls inside the container.

A StyleSheet control should be placed outside the container control. In fact, this is the only type of con-
trol that can exist outside a container. You can define only one StyleSheet control for each page or mobile
user control. After adding a StyleSheet control to a Mobile Web Forms page, you can open the StyleSheet
Styles Editor and Templating Options dialog boxes to define these properties.

To create, customize, and apply a StyleSheet control to a Mobile Web Form, follow these steps:

1. Drag and Drop a StyleSheet control on the Mobile Web Form.

2. Right-click the StyleSheet control you just put in place and select the Templating Options menu.
The Templating Options dialog box appears, as shown in Figure 25-4. This window allows you
to create and edit multiple styles and device filters. Device filters are discussed a little later in
this chapter.

Figure 25-4

3. Click the Edit button next to the Style drop-down box. The Styles Editor dialog box opens, as
shown in Figure 25-5. This dialog box enables you to create as many styles as you want.

983

Mobile Development

28_576100 ch25.qxd 10/6/05 9:35 PM Page 983

Figure 25-5

4. Click the desired style type from the left-hand list and click the > button. This action creates a
new style in the right-hand list using the type you selected. You currently have two options in
the Style Types list:

❑ Pager Style type: Provides styling elements for configuring pagination. This style is
helpful if your Mobile Web Form has more controls than can fit on one screen. In this
case, ASP.NET automatically creates pagination from viewable controls to others.

❑ Style type: Customizes styling for all mobile Web controls.

5. Right-click the styles shown in the Defined Styles list and select the Rename menu option.
Rename these defined styles so that their names are more meaningful and easier to select from.

6. Click OK when you are done defining styles for your Mobile Web Form.

From Figure 25-5, you can see that your choice of style options is limited. Most of the restrictions are due
to hardware limitations on mobile devices, especially WML-enabled phone devices. However, you still
have a few good options to pick from. You can set background color, foreground color, alignment, font
sizes, and font types. The good news is that the availability of StyleSheet controls makes it easy for
you to apply these styles consistently throughout your mobile Web application.

After you have finished defining styles, the next step is to apply these styles to the mobile controls. You
can do this by simply clicking the StyleReference property and selecting the desired style from the
list. In Figure 25-6, the GrayBackground style has been applied to the Form control and the
BlueBackground style to the Label control. You already know that applying a style to a Form control
applies the style to all controls inside it. This is why all controls in this form have a light gray back-
ground. However, the Label control looks different. This is because we chose to override the style for the
Label control by providing its own style reference.

984

Chapter 25

28_576100 ch25.qxd 10/6/05 9:35 PM Page 984

Figure 25-6

Creating a Single StyleSheet Control
for All Mobile Web Forms

It is easy for you to create a StyleSheet control that can be used consistently for all mobile Web pages
in your mobile Web application. You simply create a Mobile User control and place a StyleSheet
control inside it. You can reuse the StyleSheet placed inside a Mobile User control by dropping a
StyleSheet control on the Mobile Web Form and setting the ReferencePath property to the Mobile
User Control. We talk more about the Mobile User Control a little later in this chapter.

You should know that Visual Studio doesn’t understand the global style sheet reference and cannot assist
you in applying these styles. Most notable is the lack of design-time style support for global styles. You
also do not see the list of Styles in the StyleReference property of the Mobile Web control.

Using ASP.NET Mobile Controls
The ASP.NET Mobile Designer enables you to access a rich set of interactive development tools. This
section discusses various mobile controls that are available for you to reuse. These controls provide func-
tionality suitable for all your mobile Web development needs.

The AdRotator Control
The AdRotator mobile Web control is similar to the AdRotator control in ASP.NET Web Forms. It is capa-
ble of displaying and cycling through a random set of advertisement banners. This control automates the
cycling process and changes the displayed advertisement every time the page is refreshed. You can cus-
tomize this control to give more weight to certain advertisements and create a priority level for the ban-
ners. You can also provide a custom logic for cycling through the advertisements.

985

Mobile Development

28_576100 ch25.qxd 10/6/05 9:35 PM Page 985

The AdRotator control provides a few very important properties that can be used to provide it a list of
advertisements, image paths, and image links. The table that follows shows the important properties of
this control.

Property Description

AdvertisementFile This read-write property receives a path to the advertisement file.
This file should contain an XML-based definition of advertisement
information, such as Image URL, Navigate URL, Number of
Impressions, Start Date, and End Date.

ImageKey This read-write property enables you to select a custom-defined tag in
the advertisement XML file to find the URL for images.

NavigateUrlKey This read-write property allows you to select a custom-defined tag in
the advertisement XML file to find the URL link associated with each
image.

Listing 25-2 shows the XML-based advertisement configuration file used for the AdRotator control
shown in Figure 25-7. Save this file as Listing 25-02.xml. The AdRotator control selects a different
image every time the page is loaded, so Figure 25-7 displays the same page showing two different
images.

Listing 25-2: The advertisement configuration file Listing 25-02.xml

<?xml version=”1.0” encoding=”utf-8” ?>
<Advertisements>

<Ad>
<ImageUrl>images/RDLogo.jpg</ImageUrl>
<NavigateUrl>http://www.MicrosoftRegionalDirectors.com</NavigateUrl>
<AlternateText>Microsoft Regional Directors</AlternateText>
<Keyword>Community Leader</Keyword>
<Impressions>2000</Impressions>
<StartDate>5/19/05</StartDate>
<EndDate>7/18/05</EndDate>

</Ad>
<Ad>

<ImageUrl>images/tcnug_logo.gif</ImageUrl>
<NavigateUrl>http://www.ilmservice.com/twincitiesnet</NavigateUrl>
<AlternateText>Twin Cities .NET User Group</AlternateText>
<Keyword>User Group</Keyword>
<Impressions>1000</Impressions>
<StartDate>5/30/05</StartDate>
<EndDate>7/5/05</EndDate>

</Ad>
</Advertisements>

After the XML file that will be used by the AdRotator control is in place, you can reference this file
directly from your mobile ASP.NET page, as illustrated in Listing 25-3.

986

Chapter 25

28_576100 ch25.qxd 10/6/05 9:35 PM Page 986

Figure 25-7

Listing 25-3: Using the advertisement XML file with the AdRotator control

<%@ Page Language=”C#” AutoEventWireup=”true” CodeFile=”Listing 25-03.aspx.cs”
Inherits=”Listing2503” %>

<%@ Register TagPrefix=”mobile” Namespace=”System.Web.UI.MobileControls”
Assembly=”System.Web.Mobile” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<body>

<mobile:Form id=”Form1” runat=”server”>
<mobile:AdRotator ID=”AdRotator1” Runat=”server”
AdvertisementFile=”Listing 25-03.xml”>

</mobile:AdRotator>
<mobile:Label id=”lblID” Runat=”server”>ID
</mobile:Label>
<mobile:TextBox id=”txtCustID” Runat=”server”>
</mobile:TextBox>
<mobile:Command id=”cmdGetCustomer” Runat=”server”
OnClick=”cmdGetCustomer_Click”>Find

(continued)

987

Mobile Development

28_576100 ch25.qxd 10/6/05 9:35 PM Page 987

Listing 25-3: (continued)

</mobile:Command>
</mobile:Form>

</body>
</html>

Once in place, you get the varying results shown in Figure 25-7.

The Calendar Control
The Calendar control offers date-picking functionality. You can add it to the Mobile Web Form by
simply dragging and dropping from the Toolbox. The control starts by showing the current month by
default. You can set the VisibleDate property to cause it to show a different month by default. The
SelectedDate Property can be used to select a date on the calendar. The visible date can be changed
irrespective of the SelectedDate property, causing the control to remember a selected date that may
not be currently on display.

The SelectionMode property exposed by the Calendar control determines the manner in which the dates
are selected. The default setting is Day, which allows the user to choose a single day. You can change this
property to either DayWeek or DayWeekMonth. The DayWeek setting enables the user to select either a
single day or a week. The DayWeekMonth setting allows the user to select a day, week, or month. You can
change this setting at design time, or you can change it programmatically at runtime. This control raises
an event with the name SelectionChanged. This event gets fired every time the user changes the
currently selected date. The following table describes the Calendar control properties just mentioned.

Property Description

FirstDayOfWeek This read/write property enables the users to see the calendar starting
from a given day.

SelectionMode This read/write property allows you to configure the Calendar control to
let the users select a day, a week, or the entire month. The available choices
are None, Day, DayWeek, and DayWeekMonth.

SelectedDate This read/write property enables you to pre-select a specific date. We can
either set this property at design time, or alter its value at runtime. You
should also know that if the selected date is set to a date that isn’t currently
visible on the screen, the Calendar control does not automatically change
its appearance to show you the selected date.

VisibleDate This read/write property allows you to set the date that should be visible
on the screen when the calendar is displayed. This date doesn’t have to be
the same as the selected date.

Using the Calendar control is easy. You simply drag this control from the Toolbox, position it on the
Mobile Web Form, and set the appropriate property to display the calendar in your favorite style.
Interacting with the calendar is easy as well. For example, when a user selects a date on the calendar,

988

Chapter 25

28_576100 ch25.qxd 10/6/05 9:35 PM Page 988

you can read this date and populate a text box with it by writing just a single line of code in the
Calendar control’s SelectionChange event, as shown in Listing 25-4.

Listing 25-4: An example of using the Calendar control

Mobile page
<%@ Page Language=”VB” AutoEventWireup=”true” CodeFile=”Calendar.aspx.vb”

Inherits=”Calendar” %>
<%@ Register TagPrefix=”mobile” Namespace=”System.Web.UI.MobileControls”

Assembly=”System.Web.Mobile” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<body>

<mobile:Form id=”Form1” runat=”server”>
Event Date:
<mobile:TextBox id=”txtEventDate” runat=”server”>
</mobile:TextBox>
<mobile:Calendar id=”EventCalendar”
FirstDayOfWeek=”Sunday” Runat=”server”
OnSelectionChanged=”EventCalendar_SelectionChanged”>

</mobile:Calendar>
</mobile:Form>

</body>
</html>

VB
Partial Class Calendar

Inherits System.Web.UI.MobileControls.MobilePage

Protected Sub EventCalendar_SelectionChanged(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles EventCalendar.SelectionChanged

txtEventDate.Text = EventCalendar.SelectedDate.ToShortDateString()
End Sub

End Class

C#
using System;
using System.Web.Mobile;
using System.Web.UI.MobileControls;

public partial class Calendar : System.Web.UI.MobileControls.MobilePage
{

protected void EventCalendar_SelectionChanged(object sender, EventArgs e)
{

txtEventDate.Text = EventCalendar.SelectedDate.ToShortDateString();
}

}

Figure 25-8 shows the Calendar control where the user can click on a certain date and then populate a
text box.

989

Mobile Development

28_576100 ch25.qxd 10/6/05 9:35 PM Page 989

Figure 25-8

The Label Control
The Label control is used to display read-only, text-based information on the screen. You can set the
string displayed by this control using the Text property in the Properties window, or you can change it
programmatically. If the string is too long to fit entirely on the screen, be sure to set the Wrapping prop-
erty to Wrap. This causes the label to display the information on multiple lines. The following table
shows a few of the commonly used properties of the Label control.

Property Description

Wrapping This read/write property causes the control to display the text on multiple lines
if the content is too large to display entirely on one line. The possible values are
NotSet, Wrap, and NoWrap.

Alignment This read/write property allows you to align the control on the screen. The
possible values are NotSet, Left, Right, and Center.

990

Chapter 25

28_576100 ch25.qxd 10/6/05 9:35 PM Page 990

Property Description

BreakAfter This read/write property allows you to specify whether you want to force a line
break after this control when the control is rendered. This is useful on mobile
browsers that are capable of displaying more than one control on a single line.
The possible values are True and False.

The TextBox Control
You can use the TextBox control when you want to enable users to enter textual information. This infor-
mation can also be programmatically set or retrieved using the Text property. You can prevent users
from seeing sensitive information, such as a password, by setting the Password property to True. The
following table shows a list of the TextBox control’s common properties.

Property Description

Text This read/write property is used for reading and writing text-based information
to and from this control. This property can either be set at design time or accessed
during runtime.

Password This read/write property is very useful for the cases where the information is
sensitive, such as a password, and shouldn’t be displayed on the screen. The
possible values are True and False.

Size This read/write property allows you to specify the width of the control.

MaxLength This read/write property allows you to specify the maximum length of the
string that the text box should accept.

Alignment This read/write property allows you to position the control on the screen. The
possible values are NotSet, Left, Right, and Center.

The code example in Listing 25-5 shows a simple calculator that uses two text boxes and a label. Users
can enter two numbers using the TextBox controls and click the Add button. The result will be displayed
using a Label control.

Listing 25-5: An example of using TextBox and Label controls

Mobile page
<%@ Page Language=”VB” AutoEventWireup=”false” CodeFile=”LabelAndTextBoxVB.aspx.vb”

Inherits=”LabelAndTextBox” %>
<%@ Register TagPrefix=”mobile” Namespace=”System.Web.UI.MobileControls”

Assembly=”System.Web.Mobile” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<body>

<mobile:Form id=”Form1” runat=”server”>
Add Two Numbers:
<mobile:TextBox ID=”txtNumber1” Runat=”server”>

(continued)

991

Mobile Development

28_576100 ch25.qxd 10/6/05 9:35 PM Page 991

Listing 25-5: (continued)

</mobile:TextBox>
<mobile:TextBox ID=”txtNumber2” Runat=”server”>
</mobile:TextBox>
<mobile:Label ID=”lblResult” Runat=”server”>Label
</mobile:Label>
<mobile:Command ID=”cmdAdd” Runat=”server”>Add
</mobile:Command>

</mobile:Form>
</body>
</html>

VB
Partial Class LabelAndTextBox

Inherits System.Web.UI.MobileControls.MobilePage

Protected Sub cmdAdd_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles cmdAdd.Click

Dim Number1 As Integer
Dim Number2 As Integer

Number1 = Convert.ToInt32(txtNumber1.Text)
Number2 = Convert.ToInt32(txtNumber2.Text)

lblResult.Text = Convert.ToString(Number1 + Number2)
End Sub

End Class

C#
using System;
using System.Web;
using System.Web.Mobile;
using System.Web.UI.MobileControls;

public partial class LabelAndTextBoxCSharp :
System.Web.UI.MobileControls.MobilePage

{
protected void cmdAdd_Click(object sender, EventArgs e)
{

int Number1;
int Number2;

Number1 = Convert.ToInt32(txtNumber1.Text);
Number2 = Convert.ToInt32(txtNumber2.Text);

lblResult.Text = Convert.ToString(Number1 + Number2);
}

}

Figure 25-9 shows the calculator from Listing 25-5.

992

Chapter 25

28_576100 ch25.qxd 10/6/05 9:35 PM Page 992

Figure 25-9

The TextView Control
The TextView control works much like the Label control except that it can display large fields of textual
data. You can style the text to appear with normal, bold, and italic formatting; you can also use line
breaks, paragraph markers, and hyperlinks.

In reality, this control doesn’t offer anything different or better than the Label control. The earlier ver-
sions of the .NET Framework didn’t allow the Label control to display its content on multiple lines by
wrapping text. However, the 2.0 version of the .NET Framework enables the Label control to wrap,
thereby causing the TextView control to be redundant with the Label control.

The following table shows the commonly used properties of the TextView control.

Property Description

Wrapping This read/write property causes the control to display the text on
multiple lines if the content is too large to display entirely on one line.
The possible values are NotSet, Wrap, and NoWrap.

Table continued on following page

993

Mobile Development

28_576100 ch25.qxd 10/6/05 9:35 PM Page 993

Property Description

Alignment This read/write property allows you to align the control on the screen.
The possible values are NotSet, Left, Right, and Center.

BreakAfter This read/write property allows you to specify whether you want to
force a line break after this control when the control is rendered. This is
useful on mobile browsers that are capable of displaying more than one
control on a single line. The possible values are True and False.

The Command Control
The Command control displays a button on the screen and is used for capturing user input and process-
ing it on the server. When the user clicks on the button, this control automatically fires two events on the
server with the names Click and ItemCommand. Both events can be handled in the same page. However,
if this control is contained inside a container, the ItemCommand event is also propagated to the parent
control.

You should know that the CausesValidation property of this control is set to True by default, which
causes the validation controls to activate on the Mobile Web Form when the user clicks this control. You
can disable this behavior by setting the CausesValidation property to False.

The following table shows the commonly used properties of the Command control.

Property Description

Text This read/write property displays textual information on the screen.
The information is shown as a read-only caption on the control.

ImageUrl This read/write property can be used to provide a link to an image that
will be rendered instead of the default button.

CausesValidation This property decides whether the validation controls on the Mobile
Web Form should fire or not when the user clicks the control.

BreakAfter This read/write property allows you to specify whether you want to
force a line break after this control when the control is rendered. This is
useful on mobile browsers that are capable of displaying more than one
control on a single line. The possible values are True and False.

The Image Control
The Image control is useful for displaying an image on the screen by specifying the location of a bitmap
file using the ImageUrl property. You can also cause this control to act as a hyperlink by setting the
NavigateUrl property to a valid URL. The following table shows the Image control’s commonly used
properties.

994

Chapter 25

28_576100 ch25.qxd 10/6/05 9:35 PM Page 994

Property Description

NavigateUrl This read/write property allows you to provide a link so that users can click
on the image and get redirected to another Mobile Web Page or to another
Mobile Web Form on the same page.

ImageUrl This read/write property can be used to provide a link to an image that will
be rendered when the Mobile Web Form is rendered.

AlternateText This read/write property allows you to provide a textual description of the
image. This description automatically renders if the Mobile Browser can’t
display the image.

Alignment This read/write property allows you to position this control on the Mobile
Web Form. The possible values are NotSet, Left, Right, and Center.

BreakAfter This read/write property allows you to specify whether you want to force a
line break after this control when the control is rendered. This is useful on
mobile browsers that are capable of displaying more than one control on a
single line. The possible values are True and False.

Listing 25-6 shows an example of how you can use this control,

Listing 25-6: An Image control on a Mobile Web Form

<%@ Page Language=”C#” AutoEventWireup=”true” CodeFile=”ImageCSharp.aspx.cs”
Inherits=”ImageCSharp” %>

<%@ Register TagPrefix=”mobile” Namespace=”System.Web.UI.MobileControls”
Assembly=”System.Web.Mobile” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<body>

<mobile:Form id=”Form1” runat=”server”>
<mobile:Image ID=”Image1” Runat=”server”

AlternateText=”Microsoft Regional Director”
ImageUrl=”~/Mobile Development/Images/RDLogo.JPG”>

</mobile:Image>

</mobile:Form>
</body>
</html>

You can imagine the complexity of displaying an image on a wide variety of devices. The widely vary-
ing capabilities of mobile devices make it nearly impossible to display the same image on all devices.
However, this control provides a powerful set of tools for overcoming this limitation. The device filters,
for example, allow you to select an image to display from a group of images. Each image in the group
can be targeted toward specific types of devices, such as a color image on handheld computers or a sim-
plified monochrome image more suitable to the phone’s display. The control chooses the most appropri-
ate image to display by overriding its property values for specific hardware. Device filters are discussed
in more detail in the section “Understanding Device Filters” a little later in this chapter.

995

Mobile Development

28_576100 ch25.qxd 10/6/05 9:35 PM Page 995

The PhoneCall Control
The PhoneCall control is useful for those mobile devices that can originate a phone call, such as mobile
phone devices. This control displays to the user a string that appears as a command the user can select.
You can set the contents of the string with the Text property and use the PhoneNumber property to
enter the number for the device to call.

The devices that can’t originate a phone call simply display a text value according to the format string
specified in the AlternateFormat property. By default, the AlternateFormat property contains {0}
{1} as its formatting string. The control replaces the {0} with the string in the Text property and
replaces the {1} with the contents of the PhoneNumber property.

The following table shows the commonly used properties of the PhoneCall control.

Property Description

AlternateFormat This read/write property allows you to format the way the phone
number should appear in case the mobile device isn’t capable of initiating
a voice communication.

AlternateUrl This read/write property allows you to provide a link in case the
mobile device isn’t capable of initiating a voice communication. This link
redirects the user to another Mobile Web Page or to another Mobile Web
Form on the same page.

Text This read/write property allows you to provide a textual description of
the image. This description automatically renders if the Mobile Browser
can’t display the image.

PhoneNumber This read/write property allows you to position this control on the
Mobile Web Form. The possible values are NotSet, Left, Right, and
Center.

BreakAfter This read/write property allows you to specify whether you want to force
a line break after this control when the control is rendered. This is useful
on mobile browsers that are capable of displaying more than one control
on a single line. The possible values are True and False.

An example of using the PhoneCall control is shown in Listing 25-7.

Listing 25-7: A PhoneCall control

<%@ Page Language=”C#” AutoEventWireup=”true” CodeFile=”PhoneCallCSharp.aspx.cs”
Inherits=”PhoneCallCSharp” %>

<%@ Register TagPrefix=”mobile” Namespace=”System.Web.UI.MobileControls”
Assembly=”System.Web.Mobile” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<body>

<mobile:Form id=”Form1” runat=”server”>
<mobile:PhoneCall ID=”PhoneCall1” Runat=”server” Alignment=”Left”

996

Chapter 25

28_576100 ch25.qxd 10/6/05 9:35 PM Page 996

AlternateUrl=”~MyMS.aspx” PhoneNumber=”1-800-555-1212”>
Call Microsoft
</mobile:PhoneCall>

</mobile:Form>
</body>
</html>

Figure 25-10 shows the PhoneCall control.

The Link Control
The Link control displays a text string as a hyperlink that can lead to another form on the same Mobile Web
Forms page or to any other URL. You can take advantage of the devices that support softkeys by specifying
the SoftKeyLabel property and entering the link’s text into the Text property. (A softkey is a key on a
mobile device that lets a user execute a function; these keys can be used for multiple links. Softkeys gener-
ally correspond to a value that appears on the screen above the button.) You can customize the appearance
of the Link control by setting the Alignment, ForeColor, Font, StyleReference, and Wrapping proper-
ties. The following table shows the Link control’s commonly used properties.

Figure 25-10

997

Mobile Development

28_576100 ch25.qxd 10/6/05 9:35 PM Page 997

Property Description

NavigateUrl This read/write property allows you to provide a link to another
Mobile Web Page or another Mobile Web Form on the same page. The
user is taken to this URL when the Link control is clicked.

Text This read/write property allows you to provide a textual description
of the link that is displayed for users.

SoftKeyLabel This read/write property allows you to provide a label for the softkey.
This property is applicable only for mobile devices that provide
softkey functionality. You can programmatically configure this key
to be associated with any link control you prefer.

BreakAfter This read/write property allows you to specify whether you want to
force a line break after this control when the control is rendered. This is
useful on mobile browsers that are capable of displaying more than one
control on a single line. The possible values are True and False.

Link controls are very useful for creating menus on mobile devices. Mobile devices have very restricted
input capabilities, especially phone devices, so you can make your applications much more user friendly
by providing a menu of options for users to select from. The example shown in Listing 25-8 provides a
short menu. Users can click either on the Contact, Candidate, or Hours link to navigate to other Mobile
Web Forms.

Listing 25-8: A menu using Link controls

<%@ Page Language=”C#” AutoEventWireup=”true” CodeFile=”LinkMenuCSharp.aspx.cs”
Inherits=”LinkMenuCSharp” %>

<%@ Register TagPrefix=”mobile” Namespace=”System.Web.UI.MobileControls”
Assembly=”System.Web.Mobile” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<body>

<mobile:Form id=”Shajar” runat=”server”>
<mobile:Link ID=”lnkContacts” Runat=”server”

NavigateUrl=”/Contacts.aspx” SoftkeyLabel=”Contacts”>
Search for Contacts

</mobile:Link>
<mobile:Link ID=”lnkCandidates” Runat=”server”

NavigateUrl=”/Candidates.aspx” SoftkeyLabel=”Candidates”>
Search for Candidates

</mobile:Link>
<mobile:Link ID=”lnkHours” Runat=”server” NavigateUrl=”/Hours.aspx”

SoftkeyLabel=”Hours”>
Hours Report

</mobile:Link>

</mobile:Form>
</body>
</html>

Figure 25-11 shows a menu built with Link controls.

998

Chapter 25

28_576100 ch25.qxd 10/6/05 9:35 PM Page 998

Figure 25-11

The List Control
The List control is very useful in displaying a list of items either as bullets, numbers, or a plain list. You
can provide a static list of items or bind this control to a list retrieved from the database. The static list
is provided by clicking the ellipsis (...) button next to the Items property in the Properties window.
The list might paginate on some devices depending on the viewable area available. You can set the
ItemsPerPage property to the preferred number of list items to display on each page. You should know
that the Visual Studio Mobile Designer doesn’t use this property when showing you a default rendering
in the Design view.

Data binding this control to a list obtained from the database is quite easy. You simply specify the data
source using the DataSource and DataMember properties. Be sure to provide appropriate values to the
DataTextField and DataValueField properties so that the control manages the viewable column
from the data source.

You can customize the appearance of this control by using the Alignment, ForeColor, Font,
StyleReference, and Wrapping properties. You can cause the control to display the items as either
bullets or numbers by providing the appropriate value for the Decoration property.

The following table shows the List control’s commonly used properties.

999

Mobile Development

28_576100 ch25.qxd 10/6/05 9:35 PM Page 999

Property Description

DataSource This property lets you provide a data source object that the control can
use to obtain the list.

DataMember This property allows you to provide the DataTable name if you choose
to use the DataSet object as the data source.

DataTextField This property allows you to select a field from the data source to be
displayed on the screen.

DataValueField This property allows you to select a field from the data source to be
used as values for each item. The values aren’t displayed on the screen.
Instead, they are used to store identifiers for each displayed item.

Decoration This property allows you to select the list style. The available choices are
None, Bulleted, and Numbered.

Wrapping This property allows you to display a list item on multiple lines if the
content is too big to fit on one line.

Listing 25-9 shows how to bind the List control to a list obtained from the database. We chose to display
the Company Name field from the data source in a bulleted-list format.

Listing 25-9: Binding to a List control

<%@ Page Language=”VB” AutoEventWireup=”true” CodeFile=”List.aspx.vb”
Inherits=”List” %>

<%@ Register TagPrefix=”mobile” Namespace=”System.Web.UI.MobileControls”
Assembly=”System.Web.Mobile” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<body>

<mobile:Form id=”Form1” runat=”server”>
<mobile:List ID=”LResult” Runat=”server” DataTextField=”CompanyName”

DataValueField=”CustomerID” Decoration=”Bulleted”>
</mobile:List>

</mobile:Form>
</body>
</html>

VB
Imports System.Data
Imports System.Data.SqlClient
Imports System.Configuration

Partial Class List
Inherits System.Web.UI.MobileControls.MobilePage

Protected Sub Page_Load(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Load

If Not Page.IsPostBack Then

1000

Chapter 25

28_576100 ch25.qxd 10/6/05 9:35 PM Page 1000

Dim MyConnection As SqlConnection
Dim MyCommand As SqlCommand
Dim MyReader As SqlDataReader

MyConnection = New SqlConnection()
MyConnection.ConnectionString = _
ConfigurationManager.ConnectionStrings(“DSN_Northwind”).ConnectionString

MyCommand = New SqlCommand()
MyCommand.CommandText = “ SELECT TOP 3 * FROM CUSTOMERS “
MyCommand.CommandType = CommandType.Text
MyCommand.Connection = MyConnection

MyCommand.Connection.Open()
MyReader = MyCommand.ExecuteReader(CommandBehavior.CloseConnection)

ListControl.DataSource = MyReader
ListControl.DataBind()

MyCommand.Dispose()
MyConnection.Dispose()

End If

End Sub
End Class

C#
using System;
using System.Data;
using System.Data.SqlClient;
using System.Web.Mobile;
using System.Web.UI.MobileControls;
using System.Configuration;

public partial class List : System.Web.UI.MobileControls.MobilePage
{

protected void Page_Load(object sender, EventArgs e)
{

if (!Page.IsPostBack)
{
string conn;
SqlConnection MyConnection;
SqlCommand MyCommand;
SqlDataReader MyReader;

MyConnection = new SqlConnection();
conn =

ConfigurationManager.ConnectionStrings[“DSN_Northwind”].ConnectionString;

MyConnection.ConnectionString = conn;
MyCommand = new SqlCommand();
MyCommand.CommandText = “ SELECT TOP 3 * FROM CUSTOMERS “;
MyCommand.CommandType = CommandType.Text;

(continued)

1001

Mobile Development

28_576100 ch25.qxd 10/6/05 9:35 PM Page 1001

Listing 25-9: (continued)

MyCommand.Connection = MyConnection;

MyCommand.Connection.Open();
MyReader = MyCommand.ExecuteReader(CommandBehavior.CloseConnection);

LResult.DataSource = MyReader;
LResult.DataBind();

MyCommand.Dispose();
MyConnection.Dispose();

}
}

}

Figure 25-12 shows the result of compiling and executing the code in Listing 25-9.

Figure 25-12

1002

Chapter 25

28_576100 ch25.qxd 10/6/05 9:35 PM Page 1002

The ObjectList Control
The ObjectList control provides an easy-to-use way of viewing tabular information from a database. You
can bind a list of records retrieved from the database. The control starts by showing you just a single col-
umn from the data source. You can select a record from the list to cause this control to post back to the
server and display all columns for the selected record in a vertical list. The control also automatically
provides a Back button, which takes you back to the screen showing a single column for all records. You
can select the column that you want on the first screen by setting the LabelField property. Leaving this
property alone causes this control to select the first column from the record to display on the first screen.

You can reuse the code shown in Listing 25-9 and modify it slightly to bind to an ObjectList control.
The result of using this control is shown in Figure 25-13. Clicking the link in the screen on the left brings
up the screen shown on the right.

Figure 25-13

1003

Mobile Development

28_576100 ch25.qxd 10/6/05 9:35 PM Page 1003

The SelectionList Control
The SelectionList control shows a list of items in the form of either a drop-down list, list box, check box
list, or radio buttons list, enabling the user to select one or more items from the list. This control doesn’t
support pagination and is, therefore, a better choice for short lists.

Unlike its counterpart in the ASP.NET Web Forms, this control doesn’t provide an auto post back prop-
erty. Be sure to add a Command control, which causes the postback and fires a server-side event. This
control, however, also fires a SelectedIndexChanged event on the server after the command object has
initiated the postback process. The SelectedIndexChanged event, of course, fires only when the user
changes the selected value prior to pushing the Command control.

Specifying that this control be rendered as a drop-down list, a list box, a check box list, or a radio-button
list is as simple as setting the SelectType property. You also have the capability to provide static con-
tent to this control by using the Items property.

Property Description

SelectType This property lets you specify the type of selection list you desire. The
available options are DropDown, ListBox, Radio, MultiSelectListBox,
and CheckBox.

DataSource This property lets you provide a data source object that the control can
use to obtain the list.

DataMember This property lets you provide the DataTable name if you choose to use
the DataSet object as the data source.

DataTextField This property allows you to select a field from the data source to be
displayed on the screen.

DataValueField This property allows you to select a field from the data source to be used
as values for each item. The values aren’t displayed on the screen. Instead,
they are used to store identifiers for each displayed item.

Wrapping This property allows you to display a list item on multiple lines if the
content is too big to fit on one line.

The code shown in Listing 25-10 illustrates four different SelectionList controls; each control renders a
different look, even though all of these controls are bound to the same data source.

Listing 25-10: Examples of SelectionList controls

<%@ Page Language=”VB” AutoEventWireup=”false” CodeFile=”SelectionList.aspx.vb”
Inherits=”SelectionListVB” %>

<%@ Register TagPrefix=”mobile” Namespace=”System.Web.UI.MobileControls”
Assembly=”System.Web.Mobile” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<body>

1004

Chapter 25

28_576100 ch25.qxd 10/6/05 9:35 PM Page 1004

<mobile:Form id=”Form1” runat=”server”>
<mobile:SelectionList ID=”slistDropDown” Runat=”server”

DataTextField=”CompanyName” DataValueField=”CustomerID”>
</mobile:SelectionList>
<mobile:SelectionList ID=”slistRadioButton” Runat=”server”

DataTextField=”CompanyName” DataValueField=”CustomerID”
SelectType=”Radio”>

</mobile:SelectionList>
<mobile:SelectionList ID=”slistCheckBoxes” Runat=”server”

DataTextField=”CompanyName” DataValueField=”CustomerID”
SelectType=”CheckBox”>

</mobile:SelectionList>
<mobile:SelectionList ID=”slistListBox” Runat=”server”

DataTextField=”CompanyName” DataValueField=”CustomerID”
SelectType=”ListBox”>

</mobile:SelectionList>

</mobile:Form>
</html>

VB
Imports System.Data
Imports System.Data.SqlClient
Imports System.Configuration

Partial Class SelectionList
Inherits System.Web.UI.MobileControls.MobilePage

Protected Sub Page_Load(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Load

If Not Page.IsPostBack Then
Dim MyConnection As SqlConnection
Dim MyCommand As SqlCommand
Dim MyAdapter As SqlDataAdapter

Dim MyDS As DataSet
MyDS = New DataSet()

MyConnection = New SqlConnection()
MyConnection.ConnectionString = _

ConfigurationManager.ConnectionStrings(“DSN_Northwind”).ConnectionString

MyCommand = New SqlCommand()
MyCommand.CommandText = “SELECT TOP 3 * FROM CUSTOMERS”
MyCommand.CommandType = CommandType.Text
MyCommand.Connection = MyConnection

MyAdapter = New SqlDataAdapter()
MyAdapter.SelectCommand = MyCommand

(continued)

1005

Mobile Development

28_576100 ch25.qxd 10/6/05 9:35 PM Page 1005

Listing 25-10: (continued)

MyAdapter.Fill(MyDS)
MyCommand.Dispose()

slistDropDown.DataSource = MyDS.Tables(0).DefaultView
slistListBox.DataSource = MyDS.Tables(0).DefaultView
slistRadioButton.DataSource = MyDS.Tables(0).DefaultView
slistCheckBoxes.DataSource = MyDS.Tables(0).DefaultView

slistDropDown.DataBind()
slistListBox.DataBind()
slistRadioButton.DataBind()
slistCheckBoxes.DataBind()

End If

End Sub
End Class

C#
using System;
using System.Configuration;
using System.Data;
using System.Data.SqlClient;
using System.Web.Mobile;
using System.Web.UI.MobileControls;

public partial class SelectionList : System.Web.UI.MobileControls.MobilePage
{

protected void Page_Load(object sender, EventArgs e)
{

if (!Page.IsPostBack)
{

SqlConnection MyConnection;
SqlCommand MyCommand;
SqlDataAdapter MyAdapter;

DataSet MyDS = new DataSet();

MyConnection = new SqlConnection();
MyConnection.ConnectionString =

ConfigurationManager.ConnectionStrings[“DSN_Northwind”].ConnectionString;

MyCommand = new SqlCommand();
MyCommand.CommandText = “SELECT TOP 3 * FROM CUSTOMERS”;
MyCommand.CommandType = CommandType.Text;
MyCommand.Connection = MyConnection;

MyAdapter = new SqlDataAdapter();
MyAdapter.SelectCommand = MyCommand;

MyAdapter.Fill(MyDS);

1006

Chapter 25

28_576100 ch25.qxd 10/6/05 9:35 PM Page 1006

MyCommand.Dispose();

slistDropDown.DataSource = MyDS.Tables[0].DefaultView;
slistListBox.DataSource = MyDS.Tables[0].DefaultView;
slistRadioButton.DataSource = MyDS.Tables[0].DefaultView;
slistCheckBoxes.DataSource = MyDS.Tables[0].DefaultView;

slistDropDown.DataBind();
slistListBox.DataBind();
slistRadioButton.DataBind();
slistCheckBoxes.DataBind();

}

}
}

Running the code shown in Listing 25-10 displays four SelectionList controls, each with a different style,
as shown in Figure 25-14.

Figure 25-14

1007

Mobile Development

28_576100 ch25.qxd 10/6/05 9:35 PM Page 1007

Using Validation Controls
The validation controls in mobile Web applications work similar to the way they function in standard
ASP.NET Web applications. The RequiredFieldValidator, for instance, is meant to ensure the user pro-
vides information in the entry fields. The CompareValidator is used to compare the values of two fields.
The RangeValidator is used to ensure that entry fields contain information within an acceptable range.
The RegularExpressionValidator validates entry fields by using a custom format string, and the
CustomValidator validates entry fields by using custom code.

There are, however, a few differences in the way the validation controls function on Mobile Web Forms.
For example, the following properties are not supported for the ValidationSummary control:

❑ DisplayMode

❑ EnableClientScript

❑ ShowMessageBox

❑ ShowSummary

On the other hand, the ValidationSummary control supports two new properties that are not supported
in the ASP.NET Web Forms. These properties are BackLabel and FormToValidate. Because of the small
screen size, when the validation summary is displayed on a mobile device, it is often shown on a new
screen. Users have to click a Back button to get back to the form they were using before the validation
error occurred. The BackLabel property allows you to provide a custom label for this Back button.

Mobile Web pages are also capable of using multiple Mobile Web Forms. This feature requires you to
assign the ValidationSummary control to a certain Mobile Web Form. The FormToValidate property
of the ValidationSummary control serves this purpose.

The code shown in Listing 25-11 shows a TextBox control and two validation controls. The
RequiredFieldValidator is meant to ensure the user doesn’t leave the text box empty, and the
RegularExpressionValidator ensures that the input value is a valid telephone number.

Listing 25-11: Validation controls in action

<%@ Page Language=”VB” AutoEventWireup=”false” CodeFile=”Validation.aspx.vb”
Inherits=”Validation” %>

<%@ Register TagPrefix=”mobile” Namespace=”System.Web.UI.MobileControls”
Assembly=”System.Web.Mobile” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<body>

<mobile:Form id=”Form1” runat=”server”>
<mobile:Label ID=”lblPhoneNumber” Runat=”server”>

Enter Phone Number:
</mobile:Label>
<mobile:TextBox ID=”txtPhoneNumber” Runat=”server”>
</mobile:TextBox>
<mobile:RequiredFieldValidator ID=”rfvPhone” Runat=”server”

1008

Chapter 25

28_576100 ch25.qxd 10/6/05 9:35 PM Page 1008

ControlToValidate=”txtPhoneNumber”
ErrorMessage=”Phone number must be provided”>*

</mobile:RequiredFieldValidator>
<mobile:RegularExpressionValidator ID=”revPhone” Runat=”server”

ControlToValidate=”txtPhoneNumber”
ErrorMessage=”Invalid Phone Format”
ValidationExpression=”((\(\d{3}\) ?)|(\d{3}-))?\d{3}-\d{4}”>*

</mobile:RegularExpressionValidator>
<mobile:Command ID=”cmdPhoneNumber” Runat=”server”>OK</mobile:Command>
<mobile:ValidationSummary ID=”ValidationSummary1”

Runat=”server” BackLabel=”Return to Entering Phone Number”
FormToValidate=”Form1”>

</mobile:ValidationSummary>

</mobile:Form>
</body>
</html>

Figure 25-15 shows the result of executing the code shown in Listing 25-11.

Figure 25-15

1009

Mobile Development

28_576100 ch25.qxd 10/6/05 9:35 PM Page 1009

Navigating between Mobile Web Forms
A Mobile Web page can contain more than one Mobile Web Form, so you need to learn how to navigate
between these forms. There are two ways you can navigate between Mobile Web Forms. You can either
set the ActiveForm property of the Mobile Web page, or you can redirect using the Link control. If you
are redirecting the Link control, you can create a navigation link to another Mobile Web Form on the
same Mobile Web page by naming the form and prefixing it with the # symbol.

You can configure both these ways programmatically. While you are inside the class for the Mobile Web
Form, you always have access to the ActiveForm property, which you can set at any time. You can also
programmatically access the NavigateUrl property of the Link control and change its value to point to
a different Mobile Web Form.

The Mobile Web User Control
A mobile user control is very similar to the ASP.NET Mobile Web Form. You create it in the same man-
ner, fill it with controls and content, and then use it as a control in a page. Mobile Web user controls are
stored in .ascx files and usually have an associated code-behind file. These controls inherit from the
base class MobileUserControl in the namespace System.Web.UI.MobileControls.

To create a Mobile Web user control, follow these steps:

1. Right-click the project and select Add New Item.

2. In the Add New Item dialog, select Mobile Web User Control from the Visual Studio Installed
Templates section.

3. Give the user control a name and select the programming language of your choice. Click the
Add button.

The code example shown in Listing 25-13 displays a Mobile Web user control that asks the user to pro-
vide a Customer ID. Using the input Customer ID, this user control searches the database and displays
a list of matching orders using an ObjectList control. The ObjectList control initially shows only a list of
OrderID values. You can click a specific OrderID to see the details of that order.

Before that, though, Listing 25-12 shows a mobile page that is using this user control.

Listing 25-12: Utilizing a mobile user control

<%@ Page Language=”VB” AutoEventWireup=”false” CodeFile=”Listing 25-12.aspx.vb”
Inherits=”UserControlSample” %>

<%@ Register Src=”OrdersList.ascx” TagName=”OrdersList” TagPrefix=”uc1” %>
<%@ Register TagPrefix=”mobile” Namespace=”System.Web.UI.MobileControls”

Assembly=”System.Web.Mobile” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<body>

<mobile:Form id=”Form1” runat=”server”>
<uc1:OrdersList ID=”OrdersList1” runat=”server” />

</mobile:Form>

1010

Chapter 25

28_576100 ch25.qxd 10/6/05 9:35 PM Page 1010

</body>
</html>

From this listing, you can see that first the user control is registered on the mobile page using the
@Register page directive. You can also see that by using the attributes TagName and TagPrefix, you
can define how you will declare the user control in your code. Finally, the Src attribute points to the
location of the user control. You should review how this user control is constructed so you can actually
use it in this simple page (see Listing 25-13).

Listing 25-13: Constructing the user control

.ASCX
<%@ Control Language=”VB” AutoEventWireup=”false” CodeFile=”OrdersList.ascx.vb”

Inherits=”OrdersList” %>
<%@ Register TagPrefix=”mobile” Namespace=”System.Web.UI.MobileControls”

Assembly=”System.Web.Mobile” %>

<mobile:Label ID=”lblID” Runat=”server”>Customer ID</mobile:Label>
<mobile:TextBox ID=”txtCustID” Runat=”server”>
</mobile:TextBox>
<mobile:Command ID=”cmdShowOrders” Runat=”server”

OnClick=”cmdGetCustomer_Click”>
Show Orders

</mobile:Command>
<mobile:ObjectList ID=”OLOrders” Runat=”server”

CommandStyle-StyleReference=”subcommand”
LabelStyle-StyleReference=”title”>

</mobile:ObjectList>

VB
Imports System.Data
Imports System.Data.SqlClient
Imports System.Configuration

Partial Class OrdersList
Inherits System.Web.UI.MobileControls.MobileUserControl

Protected Sub cmdGetCustomer_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles cmdShowOrders.Click

Dim MyConnection As SqlConnection
Dim MyCommand As SqlCommand
Dim CustIDParam As SqlParameter
Dim MyReader As SqlDataReader

MyConnection = New SqlConnection()
MyConnection.ConnectionString = _

ConfigurationManager.ConnectionStrings(“DSN_Northwind”).ConnectionString

MyCommand = New SqlCommand()
MyCommand.CommandText = “SELECT * FROM ORDERS WHERE CustomerID = @CustID”
MyCommand.CommandType = CommandType.Text
MyCommand.Connection = MyConnection
CustIDParam = New SqlParameter()

(continued)

1011

Mobile Development

28_576100 ch25.qxd 10/6/05 9:35 PM Page 1011

Listing 25-13: (continued)

CustIDParam.ParameterName = “@CustID”
CustIDParam.SqlDbType = SqlDbType.NChar
CustIDParam.Size = 5
CustIDParam.Direction = ParameterDirection.Input
CustIDParam.Value = txtCustID.Text

MyCommand.Parameters.Add(CustIDParam)

MyCommand.Connection.Open()
MyReader = MyCommand.ExecuteReader(CommandBehavior.CloseConnection)

OLOrders.DataSource = MyReader
OLOrders.DataBind()

MyCommand.Dispose()
MyConnection.Dispose()

End Sub
End Class

C#
using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Web;
using System.Web.Mobile;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.MobileControls;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

public partial class OrdersListCSharp :
System.Web.UI.MobileControls.MobileUserControl
{

protected void cmdGetCustomer_Click(object sender, EventArgs e)
{

SqlConnection MyConnection ;
SqlCommand MyCommand;
SqlParameter CustIDParam;
SqlDataReader MyReader;

MyConnection = new SqlConnection();
MyConnection.ConnectionString =
ConfigurationManager.ConnectionStrings[“DSN_Northwind”].ConnectionString;

MyCommand = new SqlCommand();
MyCommand.CommandText = “SELECT * FROM ORDERS WHERE CustomerID = @CustID”;
MyCommand.CommandType = CommandType.Text;
MyCommand.Connection = MyConnection;

CustIDParam = new SqlParameter();

1012

Chapter 25

28_576100 ch25.qxd 10/6/05 9:35 PM Page 1012

CustIDParam.ParameterName = “@CustID”;
CustIDParam.SqlDbType = SqlDbType.NChar;
CustIDParam.Size = 5;
CustIDParam.Direction = ParameterDirection.Input;
CustIDParam.Value = txtCustID.Text;

MyCommand.Parameters.Add(CustIDParam);

MyCommand.Connection.Open();
MyReader = MyCommand.ExecuteReader(CommandBehavior.CloseConnection);

OLOrders.DataSource = MyReader;
OLOrders.DataBind();

MyCommand.Dispose();
MyConnection.Dispose();

}
}

This Mobile Web user control is now ready to be plugged into any Mobile Web Form (such as the one
from Listing 25-13). You can create a new Mobile Web Form and drag and drop this Mobile Web user
control onto it. You can see how easy it is to reuse it. Figure 25-16 shows the Mobile Web Form display-
ing its content using a mobile user control.

Figure 25-16

1013

Mobile Development

28_576100 ch25.qxd 10/6/05 9:35 PM Page 1013

Using Emulators
So far, you have learned that you can develop mobile Web applications for a wide variety of mobile
devices. Naturally, you want to be able to ensure that the application will look and function acceptably
on the device on which you intend to use to access the application. The only sure ways of testing the
application for various devices are either to deploy the application to a server with Internet access or
to use a device emulator. Most developers are reluctant to deploy an untested application for Internet
accessibility. Device emulators, therefore, provide an effective and practical way for testing an applica-
tion’s appearance and behavior on specific devices.

The manufacturers of most mobile devices provide emulators that simulate the operation of their hardware
and browsers. Emulator software enables you to view your ASP.NET Mobile Web Forms application as it
might appear on the manufacturer’s hardware device. Viewing a Mobile Web Forms application on an
emulator is simple. You compile the application and place the URL of the application’s start page into the
appropriate place in the emulator’s browser. Your application operates on an emulator as it would on the
actual hardware device.

There are many online sources from which you can download mobile emulators. A few of these sources
are listed here:

❑ OpenWave: Download this emulator from http://developer.openwave.com. The Open
Wave emulator supports WML, HTML, and XHTML.

❑ Ericsson: You can download this emulator (called WAPIDE) from www.ericsson.com/
developers. The easiest way to find it is to search for WAPIDE on Ericsson’s web site. This
emulator requires Java Runtime.

❑ Nokia: You can download this emulator from www.forum.nokia.com. The easiest way to
find it is to search for Mobile Internet Toolkit on Nokia’s Web site. This emulator requires Java
Runtime to be installed on the machine.

Microsoft Visual Studio uses a built-in browser as the default application browser. You can alter this
default so that Visual Studio invokes a mobile device emulator instead. Visual Studio also enables you
to easily select a different current device emulator to act as the default application browser. You can
obtain the device emulators from mobile device hardware manufacturers and install them on your
development computer.

To use an emulator as the Visual Studio application browser, follow these steps:

1. Install and test the mobile device emulator on your development computer as instructed in the
emulator’s documentation.

2. Right-click on any .ASPX page within a project displayed in the Solution Explorer and choose
Browse With to open the Browse With dialog.

3. Click the Add button.

4. Browse to find the executable file for the emulator and provide a friendly name for it.

1014

Chapter 25

28_576100 ch25.qxd 10/6/05 9:35 PM Page 1014

5. Click OK.

6. If you want to set the emulator as the default browser, highlight it from the list in the Browse
With dialog and click the Set As Default button.

Understanding Devices Filters
Device filters give you the ultimate flexibility. You can customize the appearance of controls for either
a specific device or for categories of devices. You can base the customization completely on the capabil-
ity of devices. It helps you ensure that your application looks attractive and functions on all targeted
devices.

You can accomplish a number of tasks by using device filters. For example, you can select styles based
on the type of device, and you can render a richer presentation to the devices that support it and a
toned-down presentation to devices that don’t. The device filter stores specific information in the
<deviceFilters> section of the web.config file.

There are two types of device filters: comparison-based and evaluator. You can use the comparison-
based filter to determine whether a device supports a specific capability. You can accomplish this by
comparing the current value of a device capability with a specific value.

The evaluator uses a delegate-based device filter. It allows you to provide a method that is called by the
device filter so that you can write custom code to process complex evaluations yourself. You have the
flexibility to define this method either in a separate assembly or in the code-behind page.

After you have defined one filter, you can apply it to any number of controls in your mobile Web appli-
cation. This flexibility is possible because all comparison-based filters are automatically stored in the
web.config file. The evaluator filters, however, are not declared in the configuration file.

To declare a comparison-based device filter, follow these steps:

1. From the Design View of a page, select the control to which you want to add a comparison-
based device filter.

2. Click the ellipsis (...) button next to the AppliedDeviceFilters property in the Properties tool
window. This action launches the Applied Device Filters dialog.

3. Click the Edit button to either create or modify filters.

4. In the Device Filter Editor dialog, click the New Device Filter button, type the name, and select
the filter type.

5. In the Attributes section, select the attribute the device filter will use from the Compare drop-
down box, and enter the value to compare against in the Argument text box.

6. Use the Up and Down arrows to set the filter order. The filters are stored in the web.config file
in this order, and this is the order in which they are applied.

7. Click OK to save the device filter information.

1015

Mobile Development

28_576100 ch25.qxd 10/6/05 9:35 PM Page 1015

After defining device filters, you can add them to the list of applied filters for a control. You simply click
the ellipsis (...) button next to the AppliedFilters property of the control. This opens the Applied
Device Filters dialog. Select your desired filter from the list of filters and click the Add button. Be sure to
keep the filters in the order you need by using the Up Arrow and Down arrow buttons. At runtime, the
mobile Web application tests the filters one by one from the top to the bottom. Consequently, the first
device filter that results in a successful evaluation determines which property overrides or templates
the application uses.

It is also a good practice to add the (Default) filter at the end of the list. This ensures that the device
that doesn’t match any of the filters receives the property values defined for the (Default) filter. This
filter always results in a successful evaluation and blocks all other evaluations below it in the list.

Mobile Web controls differentiate between device filters by using the name and the argument value of
each filter. This means that you can give two device filters the same name as long as they have different
argument values.

Figure 25-17 shows the Applied Device Filter and Device Filter Editor dialogs.

Figure 25-17

Now that you have determined the different kind of devices you want to support and have defined
device filters for these devices, the next step is to define override properties for specific device filters.
Defining property overrides is as simple as clicking the PropertyOverrides property of the Mobile
Web control, selecting the device filter from the list, and providing the property value specific to the
device filter.

Listing 25-13 shows a simple Mobile Web Form containing three controls. We want the Label and
Command controls to display longer versions of the text if the application is accessed by an IE browser

1016

Chapter 25

28_576100 ch25.qxd 10/6/05 9:35 PM Page 1016

on a Pocket PC. We have already defined a device filter that checks to see if the incoming browser is
Pocket IE.

Start by selecting the Label control on the Designer window and clicking the ellipsis (...) button next
to the PropertyOverrides property. In the Property Override window, select the Pocket IE filter from
the drop-down list and provide a longer version of the Text property to this Label control. Repeat
these same steps for the Command control. Figure 25-18 shows the Property Override window for
both controls. The title bars on these Windows show the selected control whose properties are being
overridden.

Figure 25-18

State Management in ASP.NET
Mobile Applications

Mobile Web Forms provide elegant ways for managing user and page state. These state management
mechanisms work in mobile applications in several ways, as the following sections explain.

ViewState in Mobile Web Controls
You already know that ASP.NET Web Forms are capable of maintaining their own state across multiple
postbacks. They can do this because of the built-in support for ViewState. ViewState makes a Web
Form’s lifetime span multiple round trips to the server.

The ViewState in ordinary Web Forms is managed by the Web server using a hidden field in the form.
This hidden field contains encoded ViewState data that gets submitted to the Web server every time the
Web Form posts back.

1017

Mobile Development

28_576100 ch25.qxd 10/6/05 9:35 PM Page 1017

However, ViewState in Mobile Web Forms functions in a completely different manner. The main goal for
the mobile application is to avoid excessive network traffic due to limited bandwidth available on many
mobile devices. As a result, ASP.NET does not send a page’s ViewState to the client and, instead, stores
it as part of a user’s session on the server. A hidden field is still contained in the Mobile Web Form, but
it contains an only identifier for the page’s ViewState stored on the server.

You can imagine how easy it can be for the current ViewState to be out of synchronization with the cur-
rent page displayed on the browser, especially if the user uses the Back button on the browser to go back
in the history. Suppose you go to Page A, click a button to go to Page B, and then press the Back button
to return to Page A. The current page displayed on your browser is now Page A, but the current state on
the server is that of Page B.

ASP.NET Mobile Web Forms solve this problem by maintaining a history of ViewState information in the
user’s session. The identifier sent to the client corresponds to a position in this history. In the previous
example, if you again post from Page A, the Mobile Web Form uses the identifier saved with Page A to
synchronize the history.

You can configure the size of this history in order to tune your application. The default size is 6 and
can be changed by adding a numeric attribute to a tag in the web.config file, as shown in the following
code:

<configuration>
<system.web>

<mobileControls sessionStateHistorySize=”8” />
</system.web>

</configuration>

Because the ViewState is stored in the user’s session, it is possible for it to expire if a page does not post
back within the session expiration time. In such cases, the OnViewStateExpire method of the page is
called. The default implementation of this method throws an exception indicating that the ViewState
has expired. However, if you are able to restore ViewState manually after expiration, you can override
this method at the page level and not call the base implementation.

Even though storing of ViewState in session has the advantage of reduced network traffic, it can also
lead to poorer performance. It is usually a best practice to turn off ViewState on the controls when you
don’t need to retain the information. Disabling ViewState is as simple as setting the EnableViewState
property on the control to False. You can also disable the ViewState for an entire page by adding the
EnableViewState=“false” attribute to the @Page directive. You should, however, be aware that some
mobile controls save essential state information, such as active form, across client roundtrips even
when the ViewState is disabled.

Mobile Web applications do not include a mobile control for writing out hidden variables. Instead, the
Mobile Form provides a collection called HiddenVariables inside the MobilePage class that you can
use to specify hidden variables. All name/value pairs stored in this collection are persisted as hidden
variables. The HiddenVariables collection is automatically repopulated with these hidden variables
when the form is submitted.

1018

Chapter 25

28_576100 ch25.qxd 10/6/05 9:35 PM Page 1018

Managing Session State
The session management in ASP.NET functions the same way for mobile applications. It is scalable,
robust, and can be used across Web farms. You are provided with a session object that you can use to
save information about a user session across multiple requests.

The default behavior of the session management features of ASP.NET require the server to write out a
session cookie to a client. The client submits the cookie on each request during the session, and the
server looks up the Session State from this information. However, many mobile browsers do not support
cookies. In such cases, the session management and the ViewState management require you to configure
the application to use a cookieless session. Cookieless session management automatically inserts the
session key in the application’s URL.

Hidden Fields
ASP.NET 2.0 provides an elegant way of using hidden fields on a mobile Web application. Instead of
providing a Mobile Web control that could be used for storing hidden information, ASP.NET 2.0 pro-
vides a collection object for every Mobile Web Form. This collection is called HiddenVariables and it is
used to store key/value pair information. This information is automatically stored in hidden fields when
the Mobile Web page is rendered. When the page is posted back, either to the same page or to a different
page, ASP.NET 2.0 retrieves the hidden information from the page and restores the HiddenVariables
collection. You can simply access the fields from within this collection without being concerned with the
behind-the-scene details.

The code in Listing 25-14 shows a simple mobile Web application that lets the user add hidden fields by
simply typing them on the screen and clicking the Add Hidden Fields button. The user can also view all
the hidden fields by clicking the Show Hidden Fields button.

Listing 25-14: Ways to use hidden fields in mobile Web applications

ASPX Page
<%@ Page Language=”VB” AutoEventWireup=”false” CodeFile=”HiddenVariable.aspx.vb”

Inherits=”HiddenVariable” %>
<%@ Register TagPrefix=”mobile” Namespace=”System.Web.UI.MobileControls”

Assembly=”System.Web.Mobile” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<body>

<mobile:Form id=”Form1” runat=”server”>
<mobile:Label ID=”lblKeyName” Runat=”server”>
Provide Key Name</mobile:Label>

<mobile:TextBox ID=”txtKeyName” Runat=”server”>
</mobile:TextBox>
<mobile:Label ID=”lblVariable” Runat=”server”>
Provide Variable Value</mobile:Label>

<mobile:TextBox ID=”txtHiddenField” Runat=”server”>
</mobile:TextBox>
<mobile:Command ID=”cmdAddHidden” Runat=”server”>

(continued)

1019

Mobile Development

28_576100 ch25.qxd 10/6/05 9:36 PM Page 1019

Listing 25-14: (continued)

Add Hidden Fields</mobile:Command>

<mobile:Command ID=”cmdShowHidden” Runat=”server”>
Show Hidden Fields</mobile:Command>

<mobile:List ID=”lsHiddenFields” Runat=”server”>
</mobile:List>

</mobile:Form>
</body>
</html>

VB
Partial Class HiddenVariable

Inherits System.Web.UI.MobileControls.MobilePage

Protected Sub cmdAddHidden_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles cmdAddHidden.Click

Me.HiddenVariables.Add(txtKeyName.Text, txtHiddenField.Text)
End Sub

Protected Sub cmdShowHidden_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles cmdShowHidden.Click

lsHiddenFields.DataSource = Me.HiddenVariables.Values
lsHiddenFields.DataBind()

End Sub
End Class

C#
using System;
using System.Collections;
using System.Web.Mobile;
using System.Web.SessionState;
using System.Web.UI.MobileControls;

public partial class HiddenVariable : System.Web.UI.MobileControls.MobilePage
{

protected void cmdShowHidden_Click(object sender, EventArgs e)
{

lsHiddenFields.DataSource = this.HiddenVariables.Values;
lsHiddenFields.DataBind();

}
protected void cmdAddHidden_Click(object sender, EventArgs e)
{

this.HiddenVariables.Add(txtKeyName.Text, txtHiddenField.Text);
}

}

Figure 25-19 shows the result of executing the code shown in Listing 25-14.

1020

Chapter 25

28_576100 ch25.qxd 10/6/05 9:36 PM Page 1020

Figure 25-19

Summary
You should now have the knowledge to be successful with your mobile Web development projects. You
have learned how you can use various feature-rich mobile Web controls. These controls encapsulate all
the details related with rendering to a mobile device by providing an easy-to-use programming inter-
face. The Web Control architecture for Mobile Web Controls enables you to reuse all your business logic
and data access code from the ASP.NET Web application, hence providing a highly productive program-
ming environment.

This chapter showed you how to create device-specific displays. The fast-evolving mobile device indus-
try produces new devices with more capability at a more rapid pace than ever before. Programmers
needed the capability to customize the rendering of a Mobile Web Control to a specific device to take full
advantage of that device’s capability. The device filters support provided for mobile Web controls now
gives you this capability.

You also learned how you can effectively manage Session State and ViewState. It’s important for you to
understand how Session State and ViewState are handled differently in Mobile Web applications so that
you can take full advantage of these features.

1021

Mobile Development

28_576100 ch25.qxd 10/6/05 9:36 PM Page 1021

28_576100 ch25.qxd 10/6/05 9:36 PM Page 1022

Building and Consuming
XML Web Services

When the .NET Framework 1.0 was first introduced, much of the hype around its release was
focused on XML Web services. In fact, Microsoft advertised that the main purpose of the newly
released .NET Framework 1.0 was to enable developers to build and consume XML Web services
with ease. Unfortunately, the new Web services model was slow to be accepted by the development
community because it was so radically different from those that came before. Decision makers in
the development community regarded this new Web services model with a cautious eye.

Since then, Microsoft has stopped trumpeting that .NET is all about Web services and instead
has really expanded the power of .NET and its relation to applications built within the enterprise.
Still, the members of the IT community continued to look long and hard at the Web services model
(Microsoft is no longer alone in hyping this new technology), examining how it could help them
with their current issues and problems.

This chapter looks at building XML Web services and how you can consume XML Web service
interfaces and integrate them into your ASP.NET applications. It begins with the foundations of
XML Web services in the .NET world by examining some of the underlying technologies such as
SOAP, WSDL, and more.

Communication Between
Disparate Systems

It’s a diverse world. In a major enterprise, very rarely do you find that the entire organization and
its data repositories reside on a single vendor’s platform. In most instances, organizations are made
up of a patchwork of systems — some based on Unix, some on Microsoft, and some on other systems.

29_576100 ch26.qxd 10/6/05 9:34 PM Page 1023

There probably won’t be a day when everything resides on a single platform where all the data moves
seamlessly from one server to another. For that reason, these various systems must be able to talk to one
another. If disparate systems can communicate easily, moving unique datasets around the enterprise
becomes a simple process — alleviating the need for replication systems and data stores.

When XML (eXtensible Markup Language) was introduced, it became clear that the markup language
would be the structure to bring the necessary integration into the enterprise. XML’s power comes from
the fact that it can be used regardless of the platform, language, or data store of the system using it to
expose DataSets.

XML has its roots in the Standard Generalized Markup Language (SGML), which was created in 1986.
Because SGML was so complex, something a bit simpler was needed — thus the birth of XML.

XML is considered ideal for data representation purposes because it enables developers to structure
XML documents as they see fit. For this reason, it is also a bit chaotic. Sending self-structured XML docu-
ments between dissimilar systems doesn’t make a lot of sense — you would have to custom build the
exposure and consumption models for each communication pair.

Vendors and the industry as a whole soon realized that XML needed a specific structure that put some
rules in place to clarify communication. The rules defining XML structure make the communication
between the disparate systems just that much easier. Tool vendors can now automate the communication
process, as well as provide for the automation of the possible creation of all the components of applica-
tions using the communication protocol.

The industry settled on using SOAP (Simple Object Access Protocol) to make the standard XML structure
work. Previous attempts to solve the communication problem that arose included component technolo-
gies such as Distributed Component Object Model (DCOM), Remote Method Invocation (RMI), Common
Object Request Broker Architecture (CORBA), and Internet Inter-ORB Protocol (IIOP). These first efforts
failed because each of these technologies was either driven by a single vendor or (worse yet) very vendor-
specific. It was, therefore, impossible to implement them across the entire industry.

SOAP enables you to expose and consume complex data structures, which can include items such as
DataSets, or just tables of data that have all their relations in place. SOAP is relatively simple and easy
to understand. Like ASP.NET, XML Web services are also primarily engineered to work over HTTP.
The DataSets you send or consume can flow over the same Internet wires (HTTP), thereby bypassing
many firewalls (as they move through port 80).

So what’s actually going across the wire? ASP.NET Web services generally use SOAP over HTTP using
the HTTP Post protocol. An example SOAP request (from the client to the Web service residing on a Web
server) takes the structure shown in Listing 26-1.

Listing 26-1: A SOAP request

POST /MyWebService/Service.asmx HTTP/1.1
Host: www.wrox.com
Content-Type: text/xml; charset=utf-8
Content-Length: 19
SOAPAction: “http://tempuri.org/HelloWorld”

<?xml version=”1.0” encoding=”utf-8”?>

1024

Chapter 26

29_576100 ch26.qxd 10/6/05 9:35 PM Page 1024

<soap:Envelope xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”>
<soap:Body>

<HelloWorld xmlns=”http://tempuri.org/” />
</soap:Body>

</soap:Envelope>

The request is sent to the Web service to invoke the HelloWorld WebMethod (WebMethods are dis-
cussed later in this chapter). The SOAP response from the Web service is shown in Listing 26-2.

Listing 26-2: A SOAP response

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: 14

<?xml version=”1.0” encoding=”utf-8”?>
<soap:Envelope xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”>
<soap:Body>

<HelloWorldResponse xmlns=”http://tempuri.org/”>
<HelloWorldResult>Hello World</HelloWorldResult>

</HelloWorldResponse>
</soap:Body>

</soap:Envelope>

In the examples from Listings 26-1 and 26-2, you can see that what is contained in this message is an
XML file. In addition to the normal XML declaration of the <xml> node, you see a structure of XML
that is the SOAP message. A SOAP message uses a root node of <soap:Envelope> that contains the
<soap:Body> or the body of the SOAP message. Other elements that can be contained in the SOAP mes-
sage include a SOAP header, <soap:Header>, and a SOAP fault —<soap:Fault>.

For more information about the structure of a SOAP message, be sure to check out the SOAP specifica-
tions. You can find them at the W3C Web site, http://www.w3.org/tr/soap.

Building a Simple XML Web Service
Building an XML Web service means that you are interested in exposing some information or logic to
another entity either within your organization, to a partner, or to your customers. In a more granular
sense, building a Web service means that you, as a developer, simply make one or more methods from a
class you create that is enabled for SOAP communication.

You can use Visual Studio 2005 to build an XML Web service. The first step is to actually create a new
Web Site by selecting File ➪ New ➪ Web Site from the IDE menu. The New Web Site dialog opens.
Select ASP.NET Web Service, as shown in Figure 26-1.

1025

Building and Consuming XML Web Services

29_576100 ch26.qxd 10/6/05 9:35 PM Page 1025

Figure 26-1

Visual Studio creates a few files you can use to get started. In the Solution Explorer of Visual Studio
(see Figure 26-2) is a single XML Web service named Service.asmx; its code-behind file, Service.vb,
is located in the App_Code folder.

Figure 26-2

Check out the Service.asmx file. All ASP.NET Web service files use the .asmx file extension instead of
the .aspx extension used by typical ASP.NET pages.

The WebService Page Directive
Open the Service.asmx file in Visual Studio, and you see that the file contains only the WebService
page directive, as illustrated in Listing 26-3.

Listing 26-3: Contents of the Service.asmx file

<%@ WebService Language=”VB” CodeBehind=”~/App_Code/Service.vb”
Class=”Service” %>

1026

Chapter 26

29_576100 ch26.qxd 10/6/05 9:35 PM Page 1026

You use the @WebService directive instead of the @Page directive.

The simple WebService directive has only four possible attributes. The following list explains these
attributes:

❑ Class: Required. It specifies the class used to define the methods and data types visible to the
XML Web service clients.

❑ CodeBehind: Required only when you are working with an XML Web service file using the code-
behind model. It enables you to work with Web services in two separate and more manageable
pieces instead of a single file. The CodeBehind attribute takes a string value that represents the
physical location of the second piece of the Web service — the class file containing all the Web
service logic. In ASP.NET 2.0, it is best to place the code-behind files in the App_Code folder,
starting with the default Web service created by Visual Studio when you initially opened the
Web service project.

❑ Debug: Optional. It takes a setting of either True or False. If the Debug attribute is set to True,
the XML Web service is compiled with debug symbols in place; setting the value to False ensures
that the Web service is compiled without the debug symbols in place.

❑ Language: Required. It specifies the language that is used for the Web service.

Looking at the Base Web Service Class File
Now look at the WebService.vb or WebService.cs file — the code-behind file for the XML Web. By
default, a structure of code is already in place in the WebService.vb or WebService.cs file, as shown
in Listing 26-4.

Listing 26-4: Default code structure provided by Visual Studio for your Web service

VB
Imports System.Web
Imports System.Web.Services
Imports System.Web.Services.Protocols

<WebService(Namespace := “http://tempuri.org/”)> _
<WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1)> _
Public Class Service

Inherits System.Web.Services.WebService

Public Sub Service

End Sub

<WebMethod()> _
Public Function HelloWorld() As String

Return “Hello World”
End Function

End Class

(continued)

1027

Building and Consuming XML Web Services

29_576100 ch26.qxd 10/6/05 9:35 PM Page 1027

Listing 26-4: (continued)

C#
using System;
using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;

[WebService(Namespace = “http://tempuri.org/”)]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
public class Service : System.Web.Services.WebService
{

public Service () {

}

[WebMethod]
public string HelloWorld() {

return “Hello World”;
}

}

Some minor changes to the structure have been made since the .NET 2.0 release. First, the System.Web.
Services.Protocols namespace is included by default. Therefore, in working with SOAP headers and
other capabilities provided via this namespace, you don’t need to worry about including it.

The other addition in the 2.0 release is the new <WebServiceBinding> attribute. It builds the XML Web
service responses that conform to the WS-I Basic Profile 1.0 release (found at http://www.ws-i.org/
Profiles/BasicProfile-1.0-2000-04-16.html).

Besides these minor changes, very little has changed in this basic Hello World structure.

Exposing Custom Datasets as SOAP
To build your own Web service example, delete the Service.asmx file and create a new file called
Customers.asmx. This Web service will expose the Customers table from SQL Server. Then jump into
the code shown in Listing 26-5.

Listing 26-5: An XML Web service that exposes the Customers table from Northwind

VB
Imports System.Web
Imports System.Web.Services
Imports System.Web.Services.Protocols
Imports System.Data
Imports System.Data.SqlClient

<WebService(Namespace := “http://www.wrox.com/customers”)> _

1028

Chapter 26

29_576100 ch26.qxd 10/6/05 9:35 PM Page 1028

<WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1)> _
Public Class Customers

Inherits System.Web.Services.WebService

<WebMethod()> _
Public Function GetCustomers() As DataSet

Dim conn As SqlConnection
Dim myDataAdapter As SqlDataAdapter
Dim myDataSet As DataSet
Dim cmdString As String = “Select * From Customers”

conn = New SqlConnection(“Server=localhost;uid=sa;pwd=;database=Northwind”)
myDataAdapter = New SqlDataAdapter(cmdString, conn)

myDataSet = New DataSet()
myDataAdapter.Fill(myDataSet, “Customers”)

Return myDataSet
End Function

End Class

C#
using System;
using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;
using System.Data;
using System.Data.SqlClient;

[WebService(Namespace = “http://www.wrox.com/customers”)]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
public class Customers : System.Web.Services.WebService
{

[WebMethod]
public DataSet GetCustomers() {

SqlConnection conn;
SqlDataAdapter myDataAdapter;
DataSet myDataSet;
string cmdString = “Select * From Customers”;

conn = new SqlConnection(“Server=localhost;uid=sa;pwd=;database=Northwind”);
myDataAdapter = new SqlDataAdapter(cmdString, conn);

myDataSet = new DataSet();
myDataAdapter.Fill(myDataSet, “Customers”);

return myDataSet;
}

}

1029

Building and Consuming XML Web Services

29_576100 ch26.qxd 10/6/05 9:35 PM Page 1029

The WebService Attribute
All Web services are encapsulated within a class. The class is defined as a Web service by the
WebService attribute placed before the class declaration. Here’s an example:

<WebService(Namespace := “http://www.wrox.com/customers”)> _

The WebService attribute can take a few properties. By default, the WebService attribute is used in your
Web service along with the Namespace property, which has an initial value of http://tempuri.org/.
This is meant to be a temporary namespace and should be replaced with a more meaningful and original
name, such as the URL where you are hosting the XML Web service. In the example, the Namespace value
was changed to http://www.wrox.com/customers. Remember that it doesn’t have to be an actual URL;
it can be any string value you want. The idea is that it should be unique. It is common practice is to use a
URL because a URL is always unique.

Notice that the two languages define their properties within the WebService attribute differently. Visual
Basic 2005 uses a colon and an equal sign to set the property:

Namespace:=”http://www.wrox.com/customers”

C# uses just an equal sign to assign the properties within the WebService attribute values:

Namespace=”http://www.wrox.com/customers”

Other possible WebService properties include Name and Description. Name enables you to change
how the name of the Web service is presented to the developer via the ASP.NET test page (the test page
is discussed a little later in the chapter). Description allows you to provide a textual description of
the Web service. The description is also presented on the ASP.NET Web service test page. If your
WebService attribute contains more than a single property, separate the properties using a comma.
Here’s an example:

<WebService(Namespace:=”http://www.wrox.com/customers”, Name:=”GetCustomers”)> _

The WebMethod Attribute
In Listing 26-5, the class called Customers has only a single WebMethod. A WebService class can con-
tain any number of WebMethods, or a mixture of standard methods along with methods that are enabled
to be WebMethods via the use of the attribute preceding the method declaration. The only methods that
are accessible across the HTTP wire are the ones to which you have applied the WebMethod attribute.

Like the WebService attribute, WebMethod can also contain some properties, which are described in the
following list:

❑ BufferResponse: When BufferResponse is set to True, the response from the XML Web ser-
vice is held in memory and sent as a complete package. If it is set to False, the default setting,
the response is sent to the client as it is constructed on the server.

1030

Chapter 26

29_576100 ch26.qxd 10/6/05 9:35 PM Page 1030

❑ CacheDuration: Specifies the number of seconds that the response should be held in the sys-
tem’s cache. The default setting is 0, which means that caching is disabled. Putting an XML Web
service’s response in the cache increases the Web service’s performance.

❑ Description: Applies a text description to the WebMethod that appears on the .aspx test page
of the XML Web service.

❑ EnableSession: Setting EnableSession to True enables session state for a particular
WebMethod. The default setting is False.

❑ MessageName: Applies a unique name to the WebMethod. This is a required step if you are
working with overloaded WebMethods (discussed later in the chapter).

❑ TransactionOption: Specifies the transactional support for the WebMethod. The default
setting is Disabled. If the WebMethod is the root object that initiated the transaction, the
Web service can participate in a transaction with another WebMethod that requires a
transaction. Other possible values include NotSupported, Supported, Required, and
RequiresNew.

The XML Web Service Interface
The Customers Web service from Listing 26-5 has only a single WebMethod that returns a DataSet con-
taining the complete Customers table from the SQL Server Northwind database.

Running Customers.asmx in the browser pulls up the ASP.NET Web service test page. This visual inter-
face to your Web service is really meant for either testing purposes or as a reference page for developers
interested in consuming the Web services you expose. The page generated for the Customers Web service
is shown in Figure 26-3.

Figure 26-3

The interface shows the name of the Web service in the blue bar (the dark bar in this black and white
image) at the top of the page. By default, the name of the class is used unless you changed the value

1031

Building and Consuming XML Web Services

29_576100 ch26.qxd 10/6/05 9:35 PM Page 1031

through the Description property of the WebService attribute, as defined earlier. A bulleted list of
links to all the Web service’s WebMethods is displayed. In this example, there’s only one WebMethod:
GetCustomers.

A link to the Web service’s Web Services Description Language (WSDL) document is also available (the
link is titled Service Description in the figure). The WSDL file is the actual interface with the Customers
Web service. The XML document (shown in Figure 26-4) is not really meant for human consumption; it’s
designed to work with tools such as Visual Studio, informing the tool what the Web service requires to
be consumed. Each Web service requires a request that must have parameters of a specific type. When
the request is made, the Web service response comes back with a specific set of data defined using spe-
cific data types. Everything you need for the request and a listing of exactly what you are getting back in
a response (if you are the consumer) is described in the WSDL document.

Clicking the GetCustomers link gives you a new page, shown in Figure 26-5, that not only describes the
WebMethod in more detail, but it also allows you to test the WebMethod directly in the browser.

Figure 26-4

1032

Chapter 26

29_576100 ch26.qxd 10/6/05 9:35 PM Page 1032

Figure 26-5

At the top of the page is the name of the XML Web service (Customers); below that is the name of this
particular WebMethod (GetCustomers). The page shows you the structure of the SOAP messages that are
required to consume the WebMethod, as well as the structure the SOAP message takes for the response.
Below the SOAP examples is an example of consuming the XML Web service using HTTP Post (with name/
value pairs). It is possible to use this method of consumption instead of using SOAP. (This is discussed
later in the “Transport Protocols for Web Services” section of this chapter.)

You can test the WebMethod directly from the page. In the Test section, you find a form. If the WebMethod
you are calling requires an input of some parameters to get a response, you see some text boxes included
so you can provide the parameters before clicking the Invoke button. If the WebMethod you are calling
does not require any parameters, you see only the Invoke button and nothing more.

Clicking Invoke is actually sending a SOAP request to the Web service, causing a new browser instance
with the result to appear, as illustrated in Figure 26-6.

1033

Building and Consuming XML Web Services

29_576100 ch26.qxd 10/6/05 9:35 PM Page 1033

Figure 26-6

Now that everything is in place to expose the XML Web service, you can consume it in an ASP.NET
application.

Consuming a Simple XML Web Service
So far, you have seen only half of the XML Web service story. Exposing data and logic as SOAP to dis-
parate systems across the enterprise or across the world is a simple task using .NET and particularly
ASP.NET. The other half of the story is the actual consumption of an XML Web service into an ASP.NET
application.

You are not limited to consuming XML Web services only into ASP.NET applications; but because this is
an ASP.NET book, it focuses on that aspect of the consumption process. Consuming XML Web services
into other types of applications is not that difficult and, in fact, is rather similar to how you would consume
them using ASP.NET. Remember that the Web services you come across can be consumed in Windows
Forms, mobile applications, databases, and more. You can even consume XML Web services with other
Web services so you can have a single Web service made up of what is basically an aggregate of other
Web services.

1034

Chapter 26

29_576100 ch26.qxd 10/6/05 9:35 PM Page 1034

Adding a Web Reference
To consume the Customers Web service that you created earlier in this chapter, create a new ASP.NET
Web site called CustomerConsumer. The first step in consuming an XML Web service in an ASP.NET
application is to make a reference to the remote object — the Web service. This is done by right-clicking
on the root node of your solution from within the Solution Explorer of Visual Studio and selecting Add
Web Reference. This pulls up the Add Web Reference dialog box, shown in Figure 26-7.

Figure 26-7

The Add Web Reference dialog box enables you to point to a particular .asmx file to make a reference to
it. Understand that the Add Web Reference dialog is really looking for WSDL files. Microsoft’s XML Web
services automatically generate WSDL files based on the .asmx files themselves. To pull up the WSDL
file in the browser, simply type in the URL of your Web service’s .asmx file and add a ?WSDL at the end
of the string. For example, you might have the following construction:

http://www.wrox.com/MyWebService/Customers.asmx?WSDL

Because the Add Web Reference dialog automatically finds where the WSDL file is for any Microsoft-based
XML Web service, you should simply type in the URL of the actual WSDL file for any non–Microsoft-based
XML Web service.

If you are using Microsoft’s Visual Web Developer Express Edition and its built-in Web server instead
of IIS, you will be required to also interject the port number the Web server is using into the URL. In
this case, your URL would be structured similar to http://localhost:5444/
MyWebService/Customers.asmx?WSDL.

In the Add Web Reference dialog, change the reference from the default name to something a little
more meaningful. If you are working on a single machine, the Web reference might have the name
of localhost; if you are actually working with a remote Web service, the name is the inverse of the

1035

Building and Consuming XML Web Services

29_576100 ch26.qxd 10/6/05 9:35 PM Page 1035

URL, such as com.wrox.www. In either case, it is best to rename it so that the name makes a little more
sense and is easy to use within your application. In the example here, the Web reference is renamed
WroxCustomers.

Clicking the Add Reference button causes Visual Studio to make an actual reference to the Web service
from the web.config file of your application (shown in Figure 26-8). You may find some additional
files under the App_WebReferences folder — such as a copy of the Web service’s WSDL file.

Figure 26-8

Your consuming application’s web.config file contains the reference to the Web service in its
<appSettings> section. The addition is shown in Listing 26-6.

Listing 26-6: Changes to the web.config file after
making a reference to the Web service

<configuration xmlns=”http://schemas.microsoft.com/.NetConfiguration/v2.0”>
<appSettings>

<add key=”WroxCustomers.Customers”
value=”http://www.wrox.com/MyWebService/Customers.asmx”/>

</appSettings>
</configuration>

You can see that the WroxCustomers reference has been made along with the name of the Web service,
providing a key value of WroxCustomers.Customers. The value attribute takes a value of the location
of the Customers Web service, which is found within the Customers.asmx page.

Invoking the Web Service from the Client Application
Now that a reference has been made to the XML Web service, you can use it in your ASP.NET applica-
tion. Create a new Web Form in your project. With this page, you can consume the Customers table
from the remote Northwind database directly into your application. The data is placed in a GridView
control.

On the design part of the page, place a Button and a GridView control so that your page looks some-
thing like the one shown in Figure 26-9.

1036

Chapter 26

29_576100 ch26.qxd 10/6/05 9:35 PM Page 1036

Figure 26-9

The idea is that, when the end user clicks the button contained on the form, the application sends a SOAP
request to the Customers Web service and gets back a SOAP response containing the Customers table, which
is then bound to the GridView control on the page. Listing 26-7 shows the code for this simple application.

Listing 26-7: Consuming the Customers Web service in an ASP.NET page

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Protected Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)

Dim ws As New WroxCustomers.Customers()
GridView1.DataSource = ws.GetCustomers()
GridView1.DataBind()

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Web Service Consumer Example</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:Button ID=”Button1” Runat=”server” Text=”Get Customers”
OnClick=”Button1_Click” />

<asp:GridView ID=”GridView1” Runat=”server” BorderWidth=”1px”
BackColor=”#DEBA84” CellPadding=”3” CellSpacing=”2” BorderStyle=”None”
BorderColor=”#DEBA84”>

<FooterStyle ForeColor=”#8C4510” BackColor=”#F7DFB5”></FooterStyle>
<PagerStyle ForeColor=”#8C4510” HorizontalAlign=”Center”></PagerStyle>
<HeaderStyle ForeColor=”White” Font-Bold=”True”
BackColor=”#A55129”></HeaderStyle>

<SelectedRowStyle ForeColor=”White” Font-Bold=”True”
BackColor=”#738A9C”></SelectedRowStyle>

<RowStyle ForeColor=”#8C4510” BackColor=”#FFF7E7”></RowStyle>

(continued)

1037

Building and Consuming XML Web Services

29_576100 ch26.qxd 10/6/05 9:35 PM Page 1037

Listing 26-7: (continued)

</asp:GridView>
</div>
</form>

</body>
</html>

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
protected void Button1_Click(Object sender, EventArgs e) {

WroxCustomers.Customers ws = new WroxCustomers.Customers();
GridView1.DataSource = ws.GetCustomers();
GridView1.DataBind();

}
</script>

The end user is presented with a simple button. Clicking it causes the ASP.NET application to send a
SOAP request to the remote XML Web service. The returned DataSet is bound to the GridView control,
and the page is redrawn, as shown in Figure 26-10.

Figure 26-10

1038

Chapter 26

29_576100 ch26.qxd 10/6/05 9:35 PM Page 1038

The Customers Web service is invoked by the instantiation of the WroxCustomers.Customers proxy object:

Dim ws As New WroxCustomers.Customers()

Then you can use the ws object like any other object within your project. In the code example from
Listing 26-7, the results of the ws.GetCustomers() method call is assigned to the DataSource
property of the GridView control:

GridView1.DataSource = ws.GetCustomers()

As you develop or consume more Web services within your applications, you will see more of their
power and utility.

Transport Protocols for Web Services
XML Web services use standard wire formats such as HTTP for transmitting SOAP messages back and
forth, and this is one of the reasons for the tremendous popularity of Web services. Using HTTP makes
using Web services one of the more accessible and consumable messaging protocols when working
between disparate systems.

The transport capabilities of Web services are a fresh new addition to the evolutionary idea of a messag-
ing format to use between platforms. DCOM, an older messaging technology that was developed to
address the same issues, uses a binary protocol that consists of a method-request layer riding on top of a
proprietary communication protocol. One of the problems with using DCOM and similar methods for
calling remote objects is that the server’s firewall usually gets in the way because DCOM flows through
some odd port numbers.

Web services, on the other hand, use a port that is typically open on almost every server — port 80. It’s
the port that is used for HTTP or Internet traffic. Moving messages from one system to another through
port 80 over HTTP is sensible and makes consumption of Web services easy.

An interesting note about XML Web services is that, although many people still think of Web services as
SOAP going over HTTP, you can actually consume the Web service in a couple of different ways. Three
wire-formats are available to Web services: HTTP-GET, HTTP-POST, and SOAP.

Listing 26-8 shows how to work with these different wire formats by consuming a simple Addition Web
service.

Listing 26-8: The Addition Web service

VB
Imports System.Web
Imports System.Web.Services
Imports System.Web.Services.Protocols

<WebService(Namespace := “http://www.wrox.com/addition/”)> _
<WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1)> _
Public Class WroxMath

Inherits System.Web.Services.WebService

(continued)

1039

Building and Consuming XML Web Services

29_576100 ch26.qxd 10/6/05 9:35 PM Page 1039

Listing 26-8: (continued)

<WebMethod()> _
Public Function Addition(ByVal a As Integer, ByVal b As Integer) As Integer

Return (a + b)
End Function

End Class

C#
using System;
using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;

[WebService(Namespace = “http://www.wrox.com/addition/”)]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
public class WroxMath : System.Web.Services.WebService
{

[WebMethod]
public int Addition(int a, int b) {

return a + b;
}

}

The Addition Web service takes two parameters: a and b. The Web service then adds these numbers and
returns the result in a SOAP message. You might typically consume this Web service by sending a
request SOAP message to the service. But now look at some of the other means of consumption.

HTTP-GET
The use of HTTP-GET has been rather popular for quite awhile. It enables you to send your entire request,
along with any required parameters, all contained within the URL submission. Here is an example of a
URL request that is passing a parameter to the server that will respond:

http://www.reuters.com?newscategory=world

In this example, a request from the Reuters.com Web site is made, but in addition to a typical Web
request, it is also passing along a parameter. Any parameters that are sent along using HTTP-GET
can only be in a name/value pair construction — also known as querystrings. This means that you can
have only a single value assigned to a single parameter. You can’t provide hierarchal structures through
querystrings. As you can tell from the previous URL construction, the name/value pair is attached to the
URL by ending the URL string with a question mark, followed by the variable name.

Using querystrings, you can also pass more than a single name/value pair with the URL request as the
following example shows:

http://www.reuters.com?newscategory=world&language=en

1040

Chapter 26

29_576100 ch26.qxd 10/6/05 9:35 PM Page 1040

In this example, the URL construction includes two name/value pairs. The name/value pairs are sepa-
rated with an ampersand (&).

Now turn your attention to working with the Addition Web service using HTTP-GET. To accomplish
this task, you must enable HTTP-GET from within the Web service application because it is disabled
by default.

HTTP-GET requests have been disabled by default since ASP.NET 1.1. ASP.NET 1.0 did allow for
HTTP-GET and even ran the Web service test interface page using it.

To enable HTTP-GET, make changes to your web.config file as shown in Listing 26-9.

Listing 26-9: Enabling HTTP-GET in your Web service applications

<configuration xmlns=”http://schemas.microsoft.com/.NetConfiguration/v2.0”>
<system.web>

<webServices>
<protocols>

<add name=”HttpGet”/>
</protocols>

</webServices>
</system.web>

</configuration>

Creating a <protocols> section in your web.config file enables you to add or remove protocol com-
munications. For example, you can add missing protocols (such as HTTP-GET) by using the syntax
shown previously, or you can remove protocols as the following example shows:

<configuration xmlns=”http://schemas.microsoft.com/.NetConfiguration/v2.0”>
<system.web>

<webServices>
<protocols>

<remove name=”HttpGet”/>
<remove name=”HttpPost”/>
<remove name=”HttpSoap”/>
<remove name=”Documentation”/>

</protocols>
</webServices>

</system.web>
</configuration>

You don’t want to remove everything shown in this code because that would leave your Web service
with basically no capability to communicate; but you can see the construction required for any of the
protocols that you do want to remove. HTTP-POST and SOAP are covered shortly, but the node remov-
ing Documentation is interesting in that it can eliminate the ability to invoke the Web services interface
test page if you don’t want to make that page available.

After you have enabled your Web service to receive HTTP-GET requests, you build a page that uses that
protocol to communicate with the Addition Web service. The Web page is shown in Listing 26-10.

1041

Building and Consuming XML Web Services

29_576100 ch26.qxd 10/6/05 9:35 PM Page 1041

Listing 26-10: Invoking the Addition Web service using HTTP-GET

<html>
<head>

<title>HTTP-GET Example</title>
</head>
<body>

http://www.wrox.com/WroxMath.asmx/Addition?a=5&b=2

</body>
</html>

This is a simple page with the single hyperlink pointing at the Addition Web service. When the page is
run, you get the result shown in Figure 26-11.

Figure 26-11

To call a Web service using HTTP-GET, you call the actual file (WroxMath.asmx), followed by the
method name (in this case, /Addition), followed by a querystring list of required parameters. In the
example, values for a and b are passed in the URL. The diagram in Figure 26-12 details the construction
of the URL.

Figure 26-12

Pull up the WroxMath.aspx page and click the link to produce the following text result in the
browser:

<?xml version=”1.0” encoding=”utf-8” ?>
<int xmlns=”http://tempuri.org/”>7</int>

Domain
Web Service

file

http://www.wrox.com/ WroxMath.asmx a=5&b=2

WebMethod
Parameters

1042

Chapter 26

29_576100 ch26.qxd 10/6/05 9:35 PM Page 1042

One little caveat when constructing your URL string is that the WebMethod name in the URL construction
is case-sensitive. If you type addition instead of Addition, you get an error. Also, be sure to consider
when it makes sense to use HTTP-GET; it can be a security risk. It is quite easy to alter values in the query-
string to either input false values or values that might cause harm to a server. That’s why HTTP-GET
capabilities were removed from the default settings of the Web services model.

HTTP-POST
The HTTP-POST protocol is similar to HTTP-GET in that you are sending name/value pairs to the
server for processing. The big difference is that HTTP-POST places these name/value pairs within a
request header so that they are not visible; HTTP-GET sends these same items within a viewable, open
URL string.

Setting up a standard HTML page to communicate with the Addition Web service using HTTP-POST is
relatively simple, as illustrated in Listing 26-11.

Listing 26-11: Using HTTP-POST to send a request to an XML Web service

<html>
<head>

<title>HTTP-POST Example</title>
</head>
<body>

<form method=”post” action=”http://www.wrox.com/WroxMath.asmx/Addition”>
<p><input type=”text” name=”a”></p>
<p><input type=”text” name=”b”></p>
<p><input type=”submit” value=”Call Web Service”></p>

</form>
</body>
</html>

This example puts two text boxes and a button on the form. In order to provide the form elements
to be posted in the request, the construction of the text boxes and the <form> element are important
when working with an XML Web service using HTTP-POST. The <form> element here contains two
attributes. The first is method, which specifies that the form is using HTTP-POST for the request.
The action attribute provides a link to the WebMethod that will be called. As with HTTP-GET, the
construction of the URL takes the format of the .asmx page followed by the name of the WebMethod
(Addition).

The two text boxes are typical text boxes. This process uses the name attribute, giving it a value of
the parameter name required by the Web service. In the example, the two required parameters are
a and b.

Posting this page (by clicking the Submit button), produces the same results as the HTTP-GET request:

<?xml version=”1.0” encoding=”utf-8” ?>
<int xmlns=”http://tempuri.org/”>7</int>

1043

Building and Consuming XML Web Services

29_576100 ch26.qxd 10/6/05 9:35 PM Page 1043

SOAP
The final method of communicating with an XML Web service is by using SOAP, which was discussed
earlier in the chapter. The SOAP message is actually sent in an HTTP request, but does not use the name/
value pair construction.

Representing data as SOAP messages brings a lot more value than the simple construction of name/
value pairs. SOAP enables you to represent data in a hierarchical manner — something you cannot
do when using name/value pairs. For instance, how would you send the Customers table from the
Northwind database if you were limited to using name/value pairs? It would be impossible to represent
the data properly. SOAP permits this type of data representation. Also, as you get into more advanced
Web service scenarios, you can expand the SOAP messages and allow for authentication/authorization
capabilities, SOAP routing, partial encryption capabilities, and more. The expandability of SOAP is a
powerful feature.

Web Services Enhancements (WSE) is a powerful toolset from Microsoft that enables you to build
advanced Web services for specialized situations, as described previously. You can find more informa-
tion on the WSE at http://msdn.microsoft.com/webservices/.

Overloading WebMethods
In the object-oriented world of .NET, it is quite possible to use method overloading in the code you
develop. A true object-oriented language has support for polymorphism of which method overloading
is a part. Method overloading enables you to have multiple methods that use the same name but have
different signatures. With method overloading, one method can be called, but the call is routed to the
appropriate method based on the full signature of the request. An example of standard method over-
loading is illustrated in Listing 26-12.

Listing 26-12: Method overloading in .NET

VB
Public Function HelloWorld() As String

Return “Hello”
End Function

Public Function HelloWorld(ByVal FirstName As String) As String
Return “Hello “ & FirstName

End Function

C#
public string HelloWorld() {

return “Hello”;
}

public string HelloWorld(string FirstName) {
return “Hello “ + FirstName;

}

1044

Chapter 26

29_576100 ch26.qxd 10/6/05 9:35 PM Page 1044

In this example, both methods have the same name, HelloWorld. So, which one is called when you invoke
HelloWorld? Well, it depends on the signature you pass to the method. For instance, you might provide
the following:

Label1.Text = HelloWorld()

This yields a result of just Hello. However, you might invoke the HelloWorld() method using the fol-
lowing signature:

Label1.Text = HelloWorld(“Bill Evjen”)

Then you get back a result of Hello Bill Evjen. As you can see, method overloading is a great feature
that can be effectively utilized by your ASP.NET applications — but how do you go about overloading
WebMethods?

If you have already tried to overload any of your WebMethods, you probably got the following error
when you pulled up the Web service in the browser:

Both System.String HelloWorld(System.String) and System.String HelloWorld() use the
message name ‘HelloWorld’. Use the MessageName property of the WebMethod custom
attribute to specify unique message names for the methods.

As this error states, the extra step you have to take to overload WebMethods is to use the MessageName
property. Listing 26-13 shows how.

Listing 26-13: WebMethod overloading in .NET

VB
<WebMethod(MessageName:=”HelloWorld”)> _
Public Function HelloWorld() As String

Return “Hello”
End Function

<WebMethod(MessageName:=”HelloWorldWithFirstName”)> _
Public Function HelloWorld(ByVal FirstName As String) As String

Return “Hello “ & FirstName
End Function

C#
[WebMethod(MessageName=”HelloWorld”)]
public string HelloWorld() {

return “Hello”;
}

[WebMethod(MessageName=”HelloWorldWithFirstName”)]
public string HelloWorld(string FirstName) {

return “Hello “ + FirstName;
}

1045

Building and Consuming XML Web Services

29_576100 ch26.qxd 10/6/05 9:35 PM Page 1045

In addition to adding the MessageName property of the WebMethod attribute, you have to disable your
Web service’s adherence to the WS-I Basic Profile 1.0 specification — which it wouldn’t be doing if you
perform WebMethod overloading with your Web services. You can disable the conformance to the WS-I
Basic Profile specification in a couple of ways. The first way is to add the <WebServiceBinding>
attribute to your code, as illustrated in Listing 26-14.

Listing 26-14: Changing your Web service so it does
not conform to the WS-I Basic Profile spec

VB
<WebServiceBinding(ConformsTo := WsiProfiles.None)> _
Public Class MyOverloadingExample

‘ Code here
End Class

C#
[WebServiceBinding(ConformsTo = WsiProfiles.None)]
public class WroxMath : System.Web.Services.WebService
{

// Code here
}

The other option is to turn off the WS-I Basic Profile 1.0 capability in the web.config file, as shown in
Listing 26-15.

Listing 26-15: Turning off conformance using the web.config file

<configuration>
<system.web>

<webServices>
<conformanceWarnings>

<remove name=”BasicProfile1_1” />
</conformanceWarnings>

</webServices>
</system.web>

</configuration>

After you have enabled your Web service to overload WebMethods, you can see both WebMethods
defined by their MessageName value properties when you pull up the Web service’s interface test
page in the browser (see Figure 26-13).

Figure 26-13
1046

Chapter 26

29_576100 ch26.qxd 10/6/05 9:35 PM Page 1046

Although you can see the names of the WebMethods as distinct (based on the MessageName property
values you assigned in your code through the Web service’s test page), when the developer consuming
the Web service makes a Web reference to your Web service, he sees only a single method name available
(in this example, HelloWorld). This is shown in the IntelliSense of Visual Studio 2005 in the application
consuming these methods (see Figure 26-14).

Figure 26-14

In the yellow box that pops up to guide developers on the signature structure, you can see two options
available — one is an empty signature, and the other requires a single string.

Caching Web Service Responses
Caching is an important feature in almost every application that you build with .NET. Most of the
caching capabilities available to you in ASP.NET are discussed in Chapters 19 and 20, but a certain
feature of Web services in .NET enables you to cache the SOAP response sent to any of the service’s
consumers.

1047

Building and Consuming XML Web Services

29_576100 ch26.qxd 10/6/05 9:35 PM Page 1047

First, by way of review, remember that caching is the capability to maintain an in-memory store where
data, objects, and various items are stored for reuse. This feature increases the responsiveness of the
applications you build and manage. Sometimes, returning cached results can greatly affect performance.

XML Web services use an attribute to control caching of SOAP responses — the CacheDuration prop-
erty. Listing 26-16 shows its use.

Listing 26-16: Utilizing the CacheDuration property

VB
<WebMethod(CacheDuration:=60)> _
Public Function GetServerTime() As String

Return DateTime.Now.ToLongTimeString()
End Function

C#
[WebMethod(CacheDuration=60)]
public string GetServerTime() {

return DateTime.Now.ToLongTimeString();
}

As you can see, CacheDuration is used within the WebMethod attribute much like the Description
and Name properties. CacheDuration takes an Integer value that is equal to the number of seconds
during which the SOAP response is cached.

When the first request comes in, the SOAP response is cached by the server, and the consumer gets the
same timestamp in the SOAP response for the next minute. After that minute is up, the stored cache is
discarded, and a new response is generated and stored in the cache again for servicing all other requests
for the next minute.

Among the many benefits of caching your SOAP responses, you will find that the performance of your
application is greatly improved when you have a response that is basically re-created again and again
without any change.

SOAP Headers
One of the more common forms of extending the capabilities of SOAP messages is to add metadata of
the request to the SOAP message itself. The metadata is usually added to a section of the SOAP envelope
called the SOAP header. Figure 26-15 shows the structure of a SOAP message.

Figure 26-15

Soap Envelope

Soap Header

Soap Body

1048

Chapter 26

29_576100 ch26.qxd 10/6/05 9:35 PM Page 1048

The entire SOAP message is referred to as a SOAP envelope. Contained within the SOAP message is the
SOAP body — a piece of the SOAP message that you have been working with in every example thus far.
It is a required element of the SOAP message.

The one optional component of the SOAP message is the SOAP header. It is the part of the SOAP mes-
sage in which you can place any metadata about the overall SOAP request instead of incorporating it
in the signature of any of your WebMethods. It is important to keep metadata separate from the actual
request.

What kind of information? It could include a lot of things. One of the more common items placed in the
SOAP header is any authentication/authorization functionality required to consume your Web service
or to get at specific pieces of logic or data. Placing usernames and passwords inside the SOAP headers of
your messages is a good example of what you might include.

Building a Web Service with SOAP Headers
You can build upon the sample HelloWorld Web service that is presented in the default .asmx page when
it is first pulled up in Visual Studio (from Listing 26-4). Name the new .asmx file HelloSoapHeader.asmx.
The initial step is to add a class that is an object representing what is to be placed in the SOAP header by
the client, as shown in Listing 26-17.

Listing 26-17: A class representing the SOAP header

VB
Public Class HelloHeader

Inherits System.Web.Services.Protocols.SoapHeader

Public Username As String
Public Password As String

End Class

C#
public class HelloHeader : SoapHeader
{

public string Username;
public string Password;

}

The class, representing a SOAP header object, has to inherit from the SoapHeader class from System.Web
.Services.Protocols.SoapHeader. The SoapHeader class serializes the payload of the
<soap:header> element into XML for you. In the example in Listing 26-17, you can see that this SOAP
header requires two elements — simply a username and a password, both of type String. The names
you create in this class are those used for the subelements of the SOAP header construction, so it is
important to name them descriptively.

Listing 26-18 shows the Web service class that instantiates an instance of the HelloHeader class.

1049

Building and Consuming XML Web Services

29_576100 ch26.qxd 10/6/05 9:35 PM Page 1049

Listing 26-18: A Web service class that utilizes a SOAP header

VB
<WebService(Namespace:=”http://www.wrox.com/helloworld”)> _
<WebServiceBinding(ConformanceClaims:=WsiClaims.BasicProfile1_1, _

EmitConformanceClaims:=True)> _
Public Class HelloSoapHeader

Inherits System.Web.Services.WebService

Public myHeader As HelloHeader

<WebMethod(), SoapHeader(“myHeader”)> _
Public Function HelloWorld() As String

If (myHeader Is Nothing) Then
Return “Hello World”

Else
Return “Hello “ & myHeader.Username & “. “ & _

“
Your password is: “ & myHeader.Password
End If

End Function

End Class

C#
[WebService(Namespace = “http://www.wrox.com/helloworld”)]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
public class HelloSoapHeader : System.Web.Services.WebService
{

public myHeader HelloHeader;

[WebMethod]
[SoapHeader(“myHeader”)]
public string HelloWorld() {

if (myHeader == null) {
return “Hello World”;

}
else {

return “Hello “ + myHeader.Username + “. “ +
“
Your password is: “ + myHeader.Password;

}

}

The Web service, HelloSoapHeader, has a single WebMethod—HelloWorld. Within the Web service
class, but outside of the WebMethod itself, you create an instance of the SoapHeader class. This is done
with the following line of code:

Public myHeader As HelloHeader

Now that you have an instance of the HelloHeader class that you created earlier called myHeader,
you can use that instantiation in your WebMethod. Because Web services can contain any number of
WebMethods, it is not a requirement that all WebMethods use an instantiated SOAP header. You specify
whether a WebMethod will use a particular instantiation of a SOAP header class by placing the
SoapHeader attribute before the WebMethod declaration.

1050

Chapter 26

29_576100 ch26.qxd 10/6/05 9:35 PM Page 1050

<WebMethod(), SoapHeader(“myHeader”)> _
Public Function HelloWorld() As String

‘ Code here
End Function

In this example, the SoapHeader attribute takes a string value of the name of the instantiated
SoapHeader class — in this case, myHeader.

From here, the WebMethod actually makes use of the myHeader object. If the myHeader object is not
found (meaning that the client did not send in a SOAP header with his constructed SOAP message), a
simple “Hello World” is returned. However, if values are provided in the SOAP header of the SOAP
request, those values are used within the returned string value.

Consuming a Web Service Using SOAP Headers
It really isn’t difficult to build an ASP.NET application that makes a SOAP request to a Web service using
SOAP headers. Just as with the Web services that don’t include SOAP headers, you make a Web Reference
to the remote Web service directly in Visual Studio.

For the ASP.NET page, create a simple page with a single Label control. The output of the Web service is
placed in the Label control. The code for the ASP.NET page is shown in Listing 26-19.

Listing 26-19: An ASP.NET page working with an XML Web service using SOAP headers

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Dim ws As New localhost.HelloSoapHeader()
Dim wsHeader As New localhost.HelloHeader()

wsHeader.Username = “Bill Evjen”
wsHeader.Password = “Bubbles”
ws.HelloHeaderValue = wsHeader

Label1.Text = ws.HelloWorld()
End Sub

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Working with SOAP headers</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:Label ID=”Label1” Runat=”server”></asp:Label>
</div>
</form>

</body>
</html>

(continued)

1051

Building and Consuming XML Web Services

29_576100 ch26.qxd 10/6/05 9:35 PM Page 1051

Listing 26-19: (continued)

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
protected void Page_Load(object sender, System.EventArgs e) {

localhost.HelloSoapHeader ws = new localhost.HelloSoapHeader();
localhost.HelloHeader wsHeader = new localhost.HelloHeader();

wsHeader.Username = “Bill Evjen”;
wsHeader.Password = “Bubbles”;
ws.HelloHeaderValue = wsHeader;

Label1.Text = ws.HelloWorld();
}

</script>

Two objects are instantiated. The first is the actual WebMethod, HelloWorld. The second, which is
instantiated as wsHeader, is the SoapHeader object. After both of these objects are instantiated and before
making the SOAP request in the application, you construct the SOAP header. This is as easy as assigning
values to the Username and Password properties of the wsHeader object. After these properties are
assigned, you associate the wsHeader object to the ws object through the use of the HelloHeaderValue
property. After you have made the association between the constructed SOAP header object and the
actual WebMethod object (ws), you can make a SOAP request just as you would normally do:

Label1.Text = ws.HelloWorld()

Running the page produces the result in the browser shown in Figure 26-16.

Figure 26-16

What is more interesting, however, is that the SOAP request reveals that the SOAP header was indeed
constructed into the overall SOAP message, as shown in Listing 26-20.

Listing 26-20: The SOAP request

<?xml version=”1.0” encoding=”utf-8” ?>
<soap:Envelope xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

1052

Chapter 26

29_576100 ch26.qxd 10/6/05 9:35 PM Page 1052

<soap:Header>
<HelloHeader xmlns=”http://www.wrox.com/helloworld/”>

<Username>Bill Evjen</Username>
<Password>Bubbles</Password>

</HelloHeader>
</soap:Header>
<soap:Body>

<HelloWorld xmlns=”http://www.wrox.com/helloworld/” />
</soap:Body>

</soap:Envelope>

This returns the SOAP response shown in Listing 26-21.

Listing 26-21: The SOAP response

<?xml version=”1.0” encoding=”utf-8” ?>
<soap:Envelope xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<soap:Body>
<HelloWorldResponse xmlns=”http://www.wrox.com/helloworld/”>

<HelloWorldResult>Hello Bill Evjen. Your password is:
Bubbles</HelloWorldResult>

</HelloWorldResponse>
</soap:Body>

</soap:Envelope>

Requesting Web Services Using SOAP 1.2
Most Web services out there use SOAP version 1.1 for the construction of their messages. With that said,
SOAP 1.2 became a W3C recommendation in June 2003 (see www.w3.org/TR/soap12-part1/). The nice
thing about XML Web services in the .NET Framework 2.0 platform is that they are capable of communi-
cating in both the 1.1 and 1.2 versions of SOAP.

In an ASP.NET application that is consuming a Web service, you can control whether the SOAP request
is constructed as a SOAP 1.1 message or a 1.2 message. Listing 26-22 changes the previous example so
that the request uses SOAP 1.2 instead of the default setting of SOAP 1.1.

Listing 26-22: An ASP.NET Application Making a SOAP Request Using SOAP 1.2

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Dim ws As New localhost.HelloSoapHeader()
Dim wsHeader As New localhost.HelloHeader()

wsHeader.Username = “Bill Evjen”
wsHeader.Password = “Bubbles”
ws.HelloHeaderValue = wsHeader

(continued)

1053

Building and Consuming XML Web Services

29_576100 ch26.qxd 10/6/05 9:35 PM Page 1053

Listing 26-22: (continued)

ws.SoapVersion = System.Web.Services.Protocols.SoapProtocolVersion.Soap12

Label1.Text = ws.HelloWorld()
End Sub

</script>

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
protected private void Page_Load(object sender, System.EventArgs e) {

localhost.HelloSoapHeader ws = new localhost.HelloSoapHeader();
localhost.HelloHeader wsHeader = new localhost.HelloHeader();

wsHeader.Username = “Bill Evjen”;
wsHeader.Password = “Bubbles”;
ws.HelloHeaderValue = wsHeader;

ws.SoapVersion = System.Web.Services.Protocols.SoapProtocolVersion.Soap12;

Label1.Text = ws.HelloWorld();
}

</script>

In this example, you remove instantiation of the Web service object and use the new SoapVersion prop-
erty. The property takes a value of System.Web.Services.Protocols.SoapProtocolVersion
.Soap12 to work with SOAP 1.2 specifically.

With this bit of code in place, the SOAP request takes the structure shown in Listing 26-23.

Listing 26-23: The SOAP request using SOAP 1.2

<?xml version=”1.0” encoding=”utf-8”?>
<soap:Envelope xmlns:soap=”http://www.w3.org/2003/05/soap-envelope”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<soap:Header>
<HelloHeader xmlns=”http://www.wrox.com/helloworld/”>

<Username>Bill Evjen</Username>
<Password>Bubbles</Password>

</HelloHeader>
</soap:Header>
<soap:Body>

<HelloWorld xmlns=”http://www.wrox.com/helloworld/” />
</soap:Body>

</soap:Envelope>

One difference between the two examples is the xmlns:soap namespace that is used. The difference actu-
ally resides in the HTTP header. When you compare the SOAP 1.1 and 1.2 messages, you see a difference
in the Content-Type attribute. In addition, the SOAP 1.2 HTTP header does not use the soapaction
attribute because this is now combined with the Content-Type attribute.

1054

Chapter 26

29_576100 ch26.qxd 10/6/05 9:35 PM Page 1054

You can turn off either SOAP 1.1 or 1.2 capabilities with the Web services that you build by making the
proper settings in the web.config file, as shown in Listing 26-24.

Listing 26-24: Turning off SOAP 1.1 or 1.2 capabilities

<configuration xmlns=”http://schemas.microsoft.com/.NetConfiguration/v2.0”>
<system.web>

<webServices>
<protocols>

<remove name=”HttpSoap”/> <!-- Removes SOAP 1.1 abilities -->
<remove name=”HttpSoap1.2”/> <!-- Removes SOAP 1.2 abilities -->

</protocols>
</webServices>

</system.web>
</configuration>

Consuming Web Services Asynchronously
All the Web services that you have been working with in this chapter have been done synchronously. This
means that after a request is sent from the code of an ASP.NET application, the application comes to a
complete standstill until a SOAP response is received.

The process of invoking a WebMethod and getting back a result can take some time for certain requests.
At times, you are not in control of the Web service from which you are requesting data and, therefore,
you are not in control of the performance or response times of these services. For these reasons, you
should consider consuming Web services asynchronously.

An ASP.NET application that makes an asynchronous request can work on other programming tasks
while the initial SOAP request is awaiting a response. When the ASP.NET application is done working
on the additional items, it can return to get the result form the Web service.

The great news is that to build an XML Web service that allows asynchronous communication, you don’t
have to perform any additional actions. All .asmx Web services have the built-in capability for asyn-
chronous communication with consumers. The Web service in Listing 26-25 is an example.

Listing 26-25: A slow Web service

VB
<%@ WebService Language=”VB” Class=”Async” %>

Imports System.Web
Imports System.Web.Services
Imports System.Web.Services.Protocols

<WebServiceBinding(ConformanceClaims:=WsiClaims.BasicProfile1_1,
EmitConformanceClaims:=True)> _

Public Class Async
Inherits System.Web.Services.WebService

(continued)

1055

Building and Consuming XML Web Services

29_576100 ch26.qxd 10/6/05 9:35 PM Page 1055

Listing 26-25: (continued)

<WebMethod()> _
Public Function HelloWorld() As String

System.Threading.Thread.Sleep(1000)
Return “Hello World”

End Function

End Class

C#
using System;
using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;

[WebService(Namespace = “http://www.wrox.com/AsyncHelloWorld”)]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
public class Service : System.Web.Services.WebService
{

[WebMethod]
public string HelloWorld() {

System.Threading.Thread.Sleep(1000);
return “Hello World”;

}

}

This Web service returns a simple Hello World as a string, but before it does, the Web service makes a
1000-millisecond pause. This is done by putting the Web service thread to sleep using the Sleep method.

Next, take a look at how an ASP.NET application can consume this slow Web service asynchronously, as
illustrated in Listing 26-26.

Listing 26-26: An ASP.NET application consuming a Web service asynchronously

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Dim ws As New localhost.Async()
Dim myIar As IAsyncResult

myIar = ws.BeginHelloWorld(Nothing, Nothing)

Dim x As Integer = 0

Do Until myIar.IsCompleted = True
x += 1

Loop

1056

Chapter 26

29_576100 ch26.qxd 10/6/05 9:35 PM Page 1056

Label1.Text = “Result from Web service: “ & ws.EndHelloWorld(myIar) & _
“
Local count while waiting: “ & x.ToString()

End Sub
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Async consumption</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:Label ID=”Label1” Runat=”server”></asp:Label>
</div>
</form>

</body>
</html>

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
protected void Page_Load(object sender, System.EventArgs e) {

localhost.Async ws = new localhost.Async();
IAsyncResult myIar;

myIar = ws.BeginHelloWorld(null, null);

int x = 0;

while (myIar.IsCompleted == false) {
x += 1

}

Label1.Text = “Result from Web service: “ + ws.EndHelloWorld(myIar) +
“
Local count while waiting: “ + x.ToString();

}
</script>

When you make the Web reference to the remote Web service in the consuming ASP.NET applica-
tion, you not only see the HelloWorld WebMethod available to you in IntelliSense, you also see a
BeginHelloWorld and an EndHelloWorld. To work with the Web service asynchronously, you must
utilize the BeginHelloWorld and EndHelloWorld methods.

Use the BeginHelloWorld method to send a SOAP request to the Web service, but instead of the
ASP.NET application waiting idly for a response, it moves on to accomplish other tasks. In this case,
it is not doing anything that important — just counting the amount of time it is taking in a loop.

After the SOAP request is sent from the ASP.NET application, you can use the IAsyncResult object
to check whether a SOAP response is waiting. This is done by using myIar.IsCompleted. If the asyn-
chronous invocation is not complete, the ASP.NET application increases the value of x by one before
making the same check again. The ASP.NET application continues to do this until the XML Web service
is ready to return a response. The response is retrieved using the EndHelloWorld method call.

1057

Building and Consuming XML Web Services

29_576100 ch26.qxd 10/6/05 9:35 PM Page 1057

Results of running this application are similar to what is shown in Figure 26-17.

Figure 26-17

Summary
This chapter was a whirlwind tour of XML Web services in the .NET platform. It is definitely a topic that
merits an entire book of its own. The chapter showed you the power of exposing your data and logic as
SOAP and also how to consume these SOAP messages directly in the ASP.NET applications you build.

In addition to pointing out the power you have for building and consuming basic Web services, the
chapter spent some time helping you understand caching, performance, the use of SOAP headers, and
more. A lot of power is built into this model; every day the Web services model is starting to make
stronger inroads into various enterprise organizations. It is becoming more likely that to get at some
data or logic you need for your application, you will employ the tactics presented here.

1058

Chapter 26

29_576100 ch26.qxd 10/6/05 9:35 PM Page 1058

Configuration

Those of you who remember the “Classic” ASP days know that ASP’s configuration information
was stored in a binary repository called the Internet Information Services (IIS) metabase. To config-
ure a classic ASP application, you modify the metabase, either through script or, more commonly,
through the IIS Microsoft Management Console snap-in.

Unlike classic ASP, ASP.NET versions 1.0 and above don’t require extensive use of the IIS metabase.
Instead, ASP.NET uses an XML-based configuration system that is much more flexible, accessible,
and easier to use.

ASP.NET 2.0 moves up on the value chain and makes configuring ASP.NET 2.0 applications much
easier and simpler than before. This chapter covers the following:

❑ Introduction to the ASP.NET configuration file

❑ An overview of the ASP.NET configuration settings

❑ An examination of the new ASP.NET 2.0 configuration APIs

❑ How to store and retrieve sensitive information

The journey into these new configuration enhancements begins with an overview.

Configuration Overview
ASP.NET configuration is stored in two primary XML-based files. XML is used to describe the
properties and behaviors of various aspects of ASP.NET applications.

The ASP.NET configuration system supports two kinds of configuration files:

❑ machine.config: Server or machine-wide configuration file

❑ web.config: Application configuration file

30_576100 ch27.qxd 10/6/05 9:34 PM Page 1059

Because the configuration files are based on XML, the elements that describe the configuration are case-
sensitive. Moreover, the ASP.NET configuration system follows camel-casing naming conventions. If you
look at the Session State configuration example shown in Listing 27-1, for example, you can see that the
Session State XML element is presented as sessionState.

Listing 27-1: Session State configuration

<?xml version=”1.0” encoding=”UTF-8” ?>
<configuration>
<system.web>

<sessionState
mode=”InProc”
stateConnectionString=”tcpip=127.0.0.1:42424”
stateNetworkTimeout=”10”
sqlConnectionString=”data source=127.0.0.1; user id=sa; password=P@55worD”
cookieless=”false”
timeout=”20”

/>
</system.web>

</configuration>

The benefits of having an XML configuration file instead of a binary metabase include the following:

❑ The configuration information is human-readable and can be modified using a plain text editor
such as Notepad, although it’s recommended to use Visual Studio 2005 or another XML-aware
editor Unlike a binary metabase, the configuration file can be easily copied from one server to
another, as with any simple file. This feature is extremely helpful in a Web farm scenario.

❑ When some settings are changed in the configuration file, ASP.NET automatically detects the
changes and applies them to the running ASP.NET application. ASP.NET accomplishes this
by creating a new instance of the ASP.NET application and directing end users to this new
application.

❑ The configuration changes are applied to the ASP.NET application without the need for the
administrator to stop and start the Web server. This is completely transparent to the end user.

❑ The ASP.NET configuration system is extensible, and application-specific information can be
stored and retrieved very easily.

❑ The sensitive information stored in the ASP.NET 2.0 configuration system can optionally be
encrypted to keep it from prying eyes.

Server Configuration File
Every ASP.NET server installation includes a configuration file named machine.config, and this file is
installed as a part of .NET Framework installation. You can find machine.config in C:\Windows\
Microsoft.NET\Framework\v2.0xxxxx\, and the file represents the default settings used by all
ASP.NET Web applications installed on the server.

The system-wide configuration file, machine.config, is used to configure common .NET Framework
settings for all applications on the machine. As a general rule, it’s not a good idea to edit or manipulate
the machine.config file unless you know what you are doing. Changes to this file can affect all appli-
cations on your computer (Windows, Web, and so on).

1060

Chapter 27

30_576100 ch27.qxd 10/6/05 9:34 PM Page 1060

Because the .NET Framework supports side-by-side execution mode, you might find more than one
installation of the machine.config file if you have multiple versions of the .NET Framework
installed on the server. If you have .NET Framework versions 1.0, 1.1, and 2.0 running on the server,
for example, each .NET Framework installation has its own machine.config file. This means that
you’ll find three machine.config file installations on that particular server.

In addition to the machine.config file, the .NET Framework installer also installs two more files called
machine.config.default and machine.config.comments. The machine.config.default file
acts as a backup for the machine.config file. If you want to revert to the factory setting for machine
.config, simply copy the settings from the machine.config.default to machine.config.

The machine.config.comments file contains a description for each configuration section and explicit
settings for the most commonly used values. machine.config.default and machine.config.comment
files are not used by the .NET Framework runtime; they’re installed in case you want to revert back to
default factory settings and default values.

Application Configuration File
Unlike machine.config, each and every ASP.NET application has its own copy of configuration settings
stored in a file called web.config. If the Web application spans multiple subfolders, each subfolder has
its own web.config file that inherits or overrides the parent’s file settings.

To update servers in your farm with these new settings, you simply copy this web.config file to the
appropriate application directory. ASP.NET takes care of the rest — no server restarts and no local server
access is required — and your application continues to function normally, except now it uses the new set-
tings.

How Configuration Is Applied
When ASP.NET runtime applies configuration settings for a given Web request, machine.config
(as well as any web.config files configuration information) is merged into a single unit, and that
information is applied to the given application. Configuration settings are inherited from parent Web
applications; machine.config is the root or “ultimate” parent. A sample ASP.NET Web application is
shown in Figure 27-1.

Figure 27-1

1061

Configuration

30_576100 ch27.qxd 10/6/05 9:34 PM Page 1061

The configuration for each Web application is unique; however, settings are inherited from the parent.
For example, if the web.config file in the root of your Web site /ProASP.NET2.0 defines a session time-
out as 10 minutes, that setting overrides the default ASP.NET setting inherited from machine.config.
The web.config files in the child folders /CH26 and /CH2 do not override these settings; rather, both
/CH26/ and /CH27/configuration/Session/ inherit the settings of the 10-minute session timeout, in
addition to applying their own settings for their respective applications.

The configuration settings for virtual directories are independent of the physical directory structure.
Unless the manner in which the virtual directories are organized is exclusively specified, configuration
problems can result.

Detecting Configuration File Changes
ASP.NET automatically detects when configuration files, such as machine.config or web.config, are
changed. This logic is implemented based on listening for file-change notification events provided by
the operating system.

When an ASP.NET application is started, the configuration settings are read and stored in the ASP.NET
cache. A file dependency is then placed on the entry within the cache in the machine.config and/or
web.config configuration file. When the configuration file update is detected in the machine.config,
ASP.NET creates a new application domain to service new requests. The old application domain is
destroyed as soon as it completes servicing all its outstanding requests.

Configuration File Format
The main difference between machine.config and web.config is the file name. Other than that, their
schemas are the same. Configuration files are divided into multiple sections, with each section being a
top-level XML element. The root-level XML element in a configuration file is named <configuration>.
A typical pseudo web.config file has a section to control ASP.NET, as shown in Listing 27-2.

Listing 27-2: A pseudo web.config file

<?xml version=”1.0” encoding=”UTF-8”?>
<configuration>

<configSections>
<section name=”[sectionSettings]” type=”[Class]”/>
<sectionGroup name=”[sectionGroup]”>

<section name=”[sectionSettings]” type=”[Class]”/>
</sectionGroup>

</configSections>
</configuration>

Values within brackets [] have unique values within the real configuration file.

The root element in the XML configuration file is always <configuration>. Each of the section handlers
and settings are optionally wrapped in a <sectionGroup>. A<sectionGroup> provides an organizational
function within the configuration file. It allows you to organize configuration into unique groups — for
instance, the <system.web> section group is used to identify areas within the configuration file specific
to ASP.NET.

1062

Chapter 27

30_576100 ch27.qxd 10/6/05 9:34 PM Page 1062

Config Sections
The <configSections> section is the mechanism to group the configuration section handlers associ-
ated with each configuration section. When you want to create your own section handlers, you must
declare them in the <configSections> section. The <httpModules> section has a configuration han-
dler that is set to System.Web.Caching.OutputCacheModule, and the <sessionState> section has a
configuration handler that is set to System.Web.SessionState.SessionStateModule classes, as
shown in Listing 27-3.

Listing 27-3: HTTP Module configuration

<configSections>
<httpModules>

<section name=”System.Web.Caching.OutputCacheModule” />
<section name=”System.Web.SessionState.SessionStateModule” />

</httpModules>
</configSections>

Common Configuration Settings
The ASP.NET 2.0 applications depend on a few common configuration settings. These settings are common
to both the web.config and machine.config files. In this section, you look at some of these common
configuration settings.

Connecting Strings
In ASP.NET 1.0 and 1.1, all the connection string information was stored in the <appSettings> section.
However, ASP.NET 2.0 introduces a new section called <connectionStrings> that stores all kinds of
connection-string information. Even though this method works fine, it poses the following challenges:

❑ When connection strings are stored in appSettings section, it is impossible for a data- aware
control such as SqlCacheDependency or MembershipProvider to discover the information.

❑ Securing connection strings using cryptographic algorithms is a challenge.

❑ Last, but not least, this feature does not apply to ASP.NET only; rather, it applies to all the .NET
applications including Windows Forms, Web Services, and so on.

Because the connection-string information is stored independently of the appSettings section, it can be
retrieved using the strongly typed collection method ConnectionStrings. Listing 27-4 gives an exam-
ple of how to store connecting strings.

Listing 27-4: Storing a connection string

<configuration>
<connectionStrings>

<add
name = “401kApp”
connectionString = “server=401kServer;database=401kDB;
uid=WebUser;pwd=P@$$worD9” />

</connectionStrings>
</configuration>

1063

Configuration

30_576100 ch27.qxd 10/6/05 9:34 PM Page 1063

Listing 27-5 shows how to retrieve the method for a 401K retirement application.

Listing 27-5: Retrieving a connection string

VB
Public Sub Page_Load (sender As Object, e As EventArgs)

...
Dim dbConnection as New _

SqlConnection(ConfigurationSettings.ConnectionStrings(“401kApp”))
...

End Sub

C#
public void Page_Load (Object sender, EventArgs e)
{

...
SqlConnection dbConnection = new

SqlConnection(ConfigurationSettings.ConnectionStrings[“401kApp”]);
...

}

Configuring Session State
Because Web-based applications follow the stateless HTTP protocol, you must store the application-
specific state or user-specific state where it can persist. The Session object is the common store where
user-specific information is persisted. Session store is implemented as a Hashtable and stores data
based on key/value pair combinations.

ASP.NET 1.0 and 1.1 had the capability to persist the session store data in InProc, StateServer, and
SqlServer. ASP.NET 2.0 adds one more capability called “Custom”. The “Custom” setting gives the
developer a lot more control regarding how the Session State is persisted in a permanent store. For exam-
ple, out of the box ASP.NET 2.0 doesn’t support storing session data on Non-Microsoft databases such
as Oracle, DB2, or Sybase. If you want to store the session data in any of these databases or in a custom
store such as an XML file, you can implement that by writing a custom provider class. (See the section
“Custom State Store” later in this chapter and Chapter 19 to learn more about the new Session State fea-
tures in ASP.NET 2.0.)

You can configure the session information using the <sessionState> element:

<sessionState
mode=”StateServer”
cookieless=”false”
timeout=”20”
stateConnectionString=”tcpip=401kSessionStore:42424”
stateNetworkTimeout=”60”
sqlConnectionString=””

/>

The following list describes each of the attributes for the <sessionState> element shown in the preced-
ing code:

1064

Chapter 27

30_576100 ch27.qxd 10/6/05 9:34 PM Page 1064

❑ mode: Specifies whether the session information should be persisted. The mode setting supports
five options: Off, InProc, StateServer, SQLServer, and Custom. The default option is InProc.

❑ cookieless: Specifies whether HTTP cookieless Session key management is supported.

❑ timeout: Specifies the Session lifecycle time. The timeout value is a sliding value; at each
request, the timeout period is reset to the current time plus the timeout value. For example, if
the timeout value is 20 minutes and a request is received at 10:10 AM, the timeout occurs at
10:30 AM.

❑ stateConnectionString: When mode is set to StateServer, this setting is used to identify
the TCP/IP address and port to communicate with the Windows Service providing state
management.

❑ stateNetworkTimeout: Specifies the timeout value (in seconds) while attempting to store state
in an out-of-process session store such as StateServer.

❑ sqlConnectionString: When mode is set to SQLServer, this setting is used to connect to the
SQL Server database to store and retrieve session data.

Web Farm Support
Multiple web servers working as a group are called a Web Farm. If you’d like to scale out your ASP.NET
application into multiple servers inside a Web Farm, ASP.NET supports this kind of deployment out
of the box. However, the session data needs to be persisted in an out-of-process Session State such as
StateServer or SQLServer.

State Server
Both StateServer and SQLServer support the out-of-process Session State. However, the StateServer
stores all the session information in a Windows Service, which stores the session data in memory. Using
this option, if the server that hosts the Session State service goes down in the Web farm, all the ASP.NET
clients that are accessing the Web site fail; there is no way to recover the session data.

You can configure the Session State service using the Services and Applications Microsoft Management
Console (MMC) snap-in available by choosing Start ➪ Settings ➪ ControlPanel ➪ AdministrativeTools ➪

ComputerManagement (as shown in Figure 27-2).

Figure 27-2

1065

Configuration

30_576100 ch27.qxd 10/6/05 9:34 PM Page 1065

Alternatively, you can start the Session State service by using the command prompt and entering the net
start command, like this:

C:\Windows\Microsoft.NET\Framework\v2.0xxxxx\> net start aspnet_state

The ASP.NET State Service service is starting.

The ASP.NET State Service service was started successfully.

All compatible versions of ASP.NET share a single state service instance, which is the service installed
with the highest version of ASP.NET. For example, if you’ve installed ASP.NET 2.0 on a server where
ASP.NET 1.0 and 1.1 are already running, the ASP.NET 2.0 installation replaces the ASP.NET 1.1’s
state server instance. The ASP.NET 2.0 service is guaranteed to work for all previous compatible ver-
sions of ASP.NET.

SQL Server
When you choose the SQLServer option, session data is stored in SQL Server tables. Even if SQL Server
goes down, the built-in SQL Server recovery features enable you to recover all the session data. Configuring
ASP.NET to support SQL Server for Session State is just as simple as configuring the Windows Service.
The only difference is that you run a T-SQL script that ships with ASP.NET, InstallSqlState.sql.
The T-SQL script that uninstalls ASP.NET SQL Server support, called UninstallSqlState.sql, is
also included. The install and uninstall scripts are available in the Framework folder.

<configuration>
<system.web>

<sessionState
mode=”SQLServer”
sqlConnectionString=”data source=401kSessionServer;
user id=401kWebUser;password=P@55worD”
cookieless=”false”
timeout=”20”

/>
</system.web>

</configuration>

ASP.NET accesses the session data stored in SQL Server via stored procedures. By default, all the session
data is stored in the Temp DB database. However, you can modify the stored procedures so they are
stored in tables in a full-fledged database other than Temp DB.

Even though the SQL Server–based Session State provides a scalable use of Session State, it could become
the single point of failure. This is because SQL Server Session State uses the same SQL Server database
for all applications in the same ASP.NET process. This problem has been fixed in ASP.NET 2.0, and
you can configure different databases for each application. Now you can use the aspnet_regsql.exe
utility to configure this. However, if you’re looking for a solution for older .NET Frameworks, a fix is
available at http://support.microsoft.com/default.aspx?scid=kb;EN-US;836680.

Because the connection strings are stored in the strongly typed mode, the connection string information
can be referenced in other parts of the configuration file. For example, when configuring Session State
to be stored in SQL Server, you can specify the connection string in the connectionStrings section,
and then you can specify the name of the connection string in the sessionState element, as shown in
Listing 27-6.

1066

Chapter 27

30_576100 ch27.qxd 10/6/05 9:34 PM Page 1066

Listing 27-6: Configuring Session State with a connection string

<configuration>
<connectionStrings>

<add name = “401kSqlSessionState”
connectionString = “data source=401kSessionServer;
user id=401kWebUser;password=P@55worD” />

</connectionStrings>
<system.web>

<sessionState
mode=”SQLServer”
sqlConnectionString=”401kSqlSessionState”
cookieless=”false”
timeout=”20”

/>
</system.web>

</configuration>

Custom State Store
The Session State in ASP.NET 2.0 is based on a pluggable architecture with different providers that
inherit the SessionStateStoreProviderBase class. If you want to create your own custom provider
or use a third-party provider, you must set the mode to “Custom”.

You specify the custom provider assembly that inherits the SessionStateStoreProviderBase class,
as shown here:

<configuration>
<system.web>

<sessionState
mode=”Custom”
CustomProvider=”CustomStateProvider”>

<providers>
<add name=”CustomStateProvider”
type=”CustomStateProviderAssembly,
CustomStateProviderNamespace.CustomStateProviderSateProvider”/>

</providers>
</sesisonState>

</system.web>
</configuration>

ScaleOut Software released the first 3rd party ASP.NET 2.0 State Provider in the
form of their StateServer product. It fills a niche between the ASP.NET included sin-
gleton StateServer and the SQL Server Database State Provider. ScaleOut Software’s
StateServer is an out-of-process service that runs on each machine in the Web Farm and
ensures that session state is stored in a transparent and distributed manner among
machines in the farm. You can learn more about StateServer and their ASP.NET 2.0
Session Provider at http://www.scaleoutsoftware.com/asp.net2.0.htm.

1067

Configuration

30_576100 ch27.qxd 10/6/05 9:34 PM Page 1067

In the previous example, you’ve configured the Session State mode as custom because you have speci-
fied the provider name as “CustomStateProvider”. Next, you add the provider element and include
the type of the provider with namespace and class name.

Compilation Configuration
ASP.NET supports the dynamic compilation of ASP.NET pages, Web services, http handlers, and ASP.NET
application files (Global.asax), source files, and so on. These files are automatically compiled on demand
when first required by a Web application.

Any changes to a dynamically compiled file cause all affected resources to be automatically invalidated
and recompiled. This system enables developers to quickly develop applications with a minimum of
process overhead because they can just press Save to immediately cause code changes to take effect
within their applications.

The ASP.NET 1.0 and 1.1 features are extended in ASP.NET 2.0 to account for other file types, including
class files. The ASP.NET compilation settings can be configured using the <compilation> section in
web.config or machine.config. The ASP.NET engine compiles the page when necessary and saves
the generated code in code cache. This cached code is used when executing the ASP.NET pages. Listing
27-7 shows the syntax for the <compilation> section.

Listing 27-7: The compilation section

<!-- compilation Attributes -->
<compilation

tempDirectory=”directory”
debug=”[true|false]”
strict=”[true|false]”
explicit=”[true|false]”
batch=”[true|false]”
batchTimeout=”timeout in seconds”
maxBatchSize=”max number of pages per batched compilation”
maxBatchGeneratedFileSize=”max combined size in KB”
numRecompilesBeforeAppRestart=”max number of recompilations “
defaultLanguage=”name of a language as specified in a <compiler/> element below”
<compilers>

<compiler language=”language”
extension=”ext”
type=”.NET Type”
warningLevel=”number”
compilerOptions=”options”/>

</compilers>
<assemblies>

<add assembly=”assembly”/>
</assemblies>
<codeSubDirectories>

<codeSubDirectory directoryName=”sub-directory name”/>
</codeSubDirectories>
<buildproviders>

<buildprovider
extension=”file extension”
type=”type reference”/>

</buildproviders>
</compilation>

1068

Chapter 27

30_576100 ch27.qxd 10/6/05 9:34 PM Page 1068

Now take a more detailed look at these <compilation> attributes:

❑ batch: Specifies whether the batch compilation is supported. The default value is True.

❑ maxBatchSize: Specifies the maximum number of pages/classes that can be compiled into a
single batch. Default value is 1000.

❑ maxBatchGeneratedFileSize: Specifies the maximum output size of a batch assembly compi-
lation. Default value is 3000KB.

❑ batchTimeout: Specifies the amount of time (seconds) granted for batch compilation to occur.
If this timeout elapses without compilation being completed, an exception is thrown. Default
value is 15 seconds.

❑ debug: Specifies whether to compile production assemblies or debug assemblies. The default is
False.

❑ defaultLanguage: Specifies the default programming language, such as VB or C#, to use in
dynamic compilation files. Language names are defined using the <compiler> child element.
Default is VB.

❑ explicit: Specifies whether the Microsoft Visual Basic code compile option is explicit. The
default is True.

❑ numRecompilesBeforeAppRestart: Specifies the number of dynamic recompiles of resources
that can occur before the application restarts.

❑ strict: Specifies the setting of the Visual Basic strict compile option.

❑ tempDirectory: Specifies the directory to use for temporary file storage during compilation.
By default, ASP.NET creates the temp file in the [WinNT\Windows]\Microsoft.NET\
Framework\[version]\Temporary ASP.NET Files folder.

❑ compilers: The <compilers> section can contain multiple <compiler> subelements, which
are used to create a new compiler definition:

❑ The language attribute specifies the languages (separated by semicolons) used in
dynamic compilation files. For example, C#; VB.

❑ The extension attribute specifies the list of file name extensions (separated by semi-
colons) used for dynamic code. For example, .cs; .vb.

❑ The type attribute specifies .NET type/class that implements the ICompiler interface
used to compile all resources that use either the specified language or the file extension.

❑ The warningLevel attribute specifies how the .NET compiler should treat compiler
warnings as errors. Five levels of compiler warnings exist, numbered 0 through 4. When
the compiler transcends the warning level set by this attribute, compilation fails. The
meaning of each warning level is determined by the programming language and com-
piler you’re using; consult the reference specification for your compiler to get more
information about the warning levels associated with compiler operations and what
events trigger compiler warnings.

❑ The compilerOptions attribute enables you to include compiler’s command line
switches while compiling the ASP.NET source.

❑ assemblies: Specifies ASP.NET compilation processing directives.

1069

Configuration

30_576100 ch27.qxd 10/6/05 9:34 PM Page 1069

❑ codeSubDirectories: Specifies an ordered collection of subdirectories containing files com-
piled at runtime. Adding the codeSubDirectories section creates separate assemblies.

❑ buildproviders: Specifies a collection of build providers used to compile custom resource files.

Browser Capabilities
Identifying and using the browser’s capabilities is essential for Web applications. The browser capabili-
ties component was designed for the variety of desktop browsers, such as Microsoft Internet Explorer,
Netscape, Opera, and so on. The <browserCaps> attribute enables you to specify the configuration set-
tings for the browser capabilities component. The <browserCaps> element can be declared at the
machine, site, application, and subdirectory level.

The HttpBrowserCapabilities class contains all the browser properties. The properties can be set
and retrieved in this section.

When a request is received from a browser, the browser capabilities component identifies the browser’s
capabilities from the request headers.

For each browser, compile a collection of settings relevant to applications. These settings may either be
statically configured or gathered from request headers. Allow the application to extend or modify the
capabilities settings associated with browsers and to access values through a strongly typed object
model. The ASP.NET mobile capabilities depend on the browser capabilities component.

In ASP.NET 2.0, all the browser capability information is represented in browser definition files. The
browser definitions are stored in *.browser file types and specified in XML format. A single file may
contain one or more browser definitions. The *.browser files are stored in the Config\Browsers sub-
directory of the Framework installation directory (for example, [WinNT\Windows]\Microsoft.NET\
Framework\xxxxx\CONFIG\Browsers), as shown in Figure 27-3. Application-specific browser defini-
tion files are stored in the /Browsers subdirectory of the application.

Figure 27-3

1070

Chapter 27

30_576100 ch27.qxd 10/6/05 9:34 PM Page 1070

In ASP.NET 1.0 and 1.1, the browser cap information was stored in the machine.config and web
.config files.

The browser definition file format defines each browser as an entity, self-contained in a <browser> XML
element. Each browser has its own id that describes a class of browser and its parent class. The root node
of a browser definition file is the <browsers> element and multiple browser entries identified using the
id attribute of the <browser> element.

Listing 27-8 shows part of the IE.browser file.

Listing 27-8: Content of IE.browser file

<browsers>
<browser id=”IE” parentID=”Mozilla”>

<identification>
<userAgent match=”^Mozilla[^(]*\([C|c]ompatible;\s*MSIE

(?’version’(?’major’\d+)(?’minor’\.\d+)(?’letters’\w*))(?’extra’[^)]*)” />
<userAgent nonMatch=”Opera” />
<userAgent nonMatch=”Go\.Web” />
<userAgent nonMatch=”Windows CE” />
<userAgent nonMatch=”EudoraWeb” />

</identification>
<capture>
</capture>
<capabilities>

<capability name=”browser” value=”IE” />
<capability name=”extra” value=”${extra}” />
<capability name=”isColor” value=”true” />
<capability name=”letters” value=”${letters}” />
<capability name=”majorversion” value=”${major}” />
<capability name=”minorversion” value=”${minor}” />
<capability name=”screenBitDepth” value=”8” />
<capability name=”type” value=”IE${major}” />
<capability name=”version” value=”${version}” />

</capabilities>
</browser>
...

The id attribute of the <browser> element uniquely identifies the class of browser. The parentID
attribute of the <browser> element specifies the unique ID of the parent browser class. Both the id and
the parentID are required values.

Before running an ASP.NET application, the framework compiles all the browser definitions into an
assembly and installs the compilation in GAC. When the browser definition files at the system level
are modified, they do not automatically reflect the change in each and every ASP.NET application.
Therefore, it becomes the responsibility of the developer or the installation tool to update this information.
You can send the updated browser information to all the ASP.NET applications by running the aspnet_
regbrowsers.exe utility provided by the framework. When the aspnet_regbrowsers.exe utility
is called, the browser information is recompiled and the new assembly is stored in the GAC; this assembly
is reused by all the ASP.NET applications. Nevertheless, browser definitions at the application level are
automatically parsed and compiled on demand when the application is started. If any changes are made to
the application’s /Browsers directory, the application is automatically recycled.

1071

Configuration

30_576100 ch27.qxd 10/6/05 9:34 PM Page 1071

Custom Errors
When the ASP.NET application fails, the ASP.NET page can show the default error page with the source
code and line number of the error. However, this approach has a few problems:

❑ The source code and error message may not make any sense to a less experienced end user.

❑ If the same source code and the error messages are displayed to a hacker, subsequent damage
could result.

Figure 27-4

However, ASP.NET provides excellent infrastructure to prevent this kind of error information. The
<customErrors> section provides a means for defining custom error messages in an ASP.NET applica-
tion. The syntax is as follows:

<customErrors defaultRedirect=”[url]” mode=”[on/off/remote]”>
<error statusCode=”[statuscode]” redirect=”[url]” />
</customErrors>

❑ defaultRedirect: Specifies the default URL to which the client browser should be redirected
if an error occurs. This is an optional setting.

❑ mode: Specifies if the status of the custom errors is enabled, disabled, or shown only to remote
machines. The possible values are On, Off, RemoteOnly. On indicates that the custom errors are
enabled. Off indicates that the custom errors are disabled. RemoteOnly indicates that the cus-
tom errors are shown only to remote clients.

❑ customErrors: The <customErrors> section supports multiple <error> subelements that are
used to define custom errors. Each <error> subelement can include a statusCode attribute
and a URL.

1072

Chapter 27

30_576100 ch27.qxd 10/6/05 9:34 PM Page 1072

Authentication
In Chapter 18, you’ve seen the authentication process in detail. In this section, you can review configuration-
specific information. Authentication is a process that verifies the identity of the user and establishes the
identity between the server and a request. Because HTTP is a stateless protocol, the authentication infor-
mation is persisted somewhere in the client or the server; ASP.NET supports both of these.

You can store the server-side information in Session objects. When it comes to client side, you have many
options:

❑ Cookies

❑ ViewState

❑ URL

❑ Hidden fields

ASP.NET 2.0 supports following authentication methods out of the box:

❑ Windows authentication

❑ Passport authentication

❑ Forms Authentication

If you’d like to disable authentication, you can use the setting mode=”None”:

<authentication mode=”None”>

Windows Authentication
ASP.NET relies on IIS’s infrastructure to implement Windows authentication, and Windows authentica-
tion enables you to authenticate requests using Windows Challenge/Response semantics. When the Web
server receives a request, it initially denies access to the request (which is a challenge). This triggers the
browser to pop up a window to collect the credentials; the request responds with a hashed value of the
Windows credentials, which the server can then choose to authenticate.

To implement Windows authentication, you configure the appropriate Web site or virtual directory
using IIS. You can then use the <authentication> element to mark the Web application or virtual
directory with Windows authentication.

<configuration>
<system.web>

<authentication>
<authentication mode=”Windows”>

</authentication>
</system.web>

</configuration>

The <authentication> element can be declared only at the machine, site, or application level. Any
attempt to declare it in a configuration file at the subdirectory or page level results in a parser error
message.

1073

Configuration

30_576100 ch27.qxd 10/6/05 9:34 PM Page 1073

Passport Authentication
The ASP.NET 2.0 relies on the Passport SDK to implement Passport authentication, which is promoted
by Microsoft Corporation. Passport is a subscription-based authentication mechanism that allows end
users to remember a single username/password pair across multiple Web applications that implement
Passport authentication.

ASP.NET 2.0 authenticates users based on the credentials presented by users. The Passport service sends
a token back to authenticate. The token is stored in a site-specific cookie after it has been authenticated
with login.passport.com. Using the redirectUrl attribute of the <passport> authentication
option, you can control how non-authenticated Passport users are directed, as in the following example:

<passport redirectUrl=”/Passport/SignIn.aspx”>

Forms Authentication
Forms Authentication is the widely used authentication mechanism right from Amazon.com. Forms
Authentication can be configured using the <authentication> section along with the <forms>
subsection.

<configuration>
<system.web>

<authentication mode=”Forms”>
<forms

name=”[name]”
loginUrl=”[url]”
protection=”[All|None|Encryption|Validation]”
timeout=”30”
path=”/”
requireSSL=”[true|false]”
slidingExpiration=”[true|false]”
cookieless=”UseCookies|UseUri|AutoDetect|UseDeviceProfile”
defaultUrl=”[url]”
domain=”string”
>
<credentials passwordFormat=”[Clear, SHA1, MD5]”>

<user name=”[UserName]” password=”[password]”/>
</credentials>

</forms>
</authentication>

</system.web>
</configuration>

Each attribute is shown in detail in the following list:

❑ name: Specifies the name of the HTTP authentication ticket. The default value is .ASPXAUTH.

❑ loginUrl: Specifies the URL to which the request is redirected if the current request doesn’t
have a valid authentication ticket.

❑ protection: Specifies the method used to protect cookie data. Valid values are All, None,
Encryption, and Validation.

1074

Chapter 27

30_576100 ch27.qxd 10/6/05 9:34 PM Page 1074

❑ Encryption: Specifies that content of the cookie is encrypted using TripleDES or DES
cryptography logarithms in the configuration file. However, the data validation is not
done on the cookie.

❑ Validation: Specifies that content of the cookie is not encrypted, but validates that the
cookie data hasn’t been altered in transit.

❑ All: Specifies that content of the cookie is protected using both data validation and
encryption. The configured data validation algorithm is used based on the <machineKey>
element, and Triple DES is used for encryption. The default value is All, and it indicates
the highest protection available.

❑ None: Specifies no protection mechanism is applied on the cookie. Web applications that
don’t store any sensitive information and potentially use cookies for personalization
can look at this option. When None is specified, both encryption and validation are
disabled.

❑ timeout: Specifies cookie expiration time in terms of minutes. The timeout attribute is
a sliding value, which expires N minutes from the time the last request was received.
Default value is 30 minutes.

❑ path: Specifies the path to use for the issued cookie. The default value is / to avoid dif-
ficulties with mismatched case in paths because browsers are strictly case-sensitive
when returning cookies.

❑ requireSSL: Specifies whether Forms Authentication should happen in a secure
HTTPS connection.

❑ slidingExpiration: Specifies whether valid cookies should be updated periodically
when used. When false, a ticket is good for only the duration of the period for which it
is issued, and a user must re-authenticate even during an active session.

❑ cookieless: Specifies whether cookieless authentication is supported. Supported val-
ues are UseCookies, UseUri, Auto, and UseDeviceProfile. The default value is
UseDeviceProfile.

❑ defaultUrl: Specifies the default URL used by the login control to control redirection
after authentication.

❑ domain: Specifies the domain name string to be attached in the authentication cookie.
This attribute is particularly useful when the same authentication cookie is shared
among multiple sites across the domain.

It is strongly recommended that the loginUrl should be an SSL URL (https://) to keep secure cre-
dentials secure from prying eyes.

Anonymous Identity
When you are building e-commerce Web applications, your site must support both anonymous and
authenticated users. When anonymous users are browsing the site and adding items to a shopping cart,
the Web application needs a way to uniquely identify these users. For example, if you take a look at busy
e-commerce Web sites such as Amazon.com or BN.com, they don’t have a concept called anonymous
users. Rather these sites assign a unique identity to each user.

1075

Configuration

30_576100 ch27.qxd 10/6/05 9:34 PM Page 1075

In ASP.NET 1.0 and 1.1, no out-of-the box feature existed to enable a developer to achieve this identification
of users. Most developers used SessionID to identify users uniquely. They experienced a few pitfalls
inherent in this method. ASP.NET 2.0 adds anonymous identity support using the <anonymous
Identification> section. The following listing shows the <anonymousIdentification> configuration
section settings:

<configuration>
<system.web>

<anonymousIdentification
enabled=”false”
cookieName=”.ASPXANONYMOUS
cookieTimeout=”100000”
cookiePath=”/”
cookieRequireSSL=”false”
cookieSlidingExpiration = “true”
cookieProtection = “Validation”
cookieLess=”UseCookies|UseUri|AutoDetect|UseDeviceProfile”
domain=”....” />

</system.web>
</configuration>

The enable property specifies whether the anonymous access is enabled. The other attributes are com-
parable to the Forms Authentication attribute discussed in the previous section. When cookies are not
enabled, the identity is stored in the URL.

Authorization
The authorization process verifies whether a user has access to the resource he is trying to access.
ASP.NET 2.0 supports both File and URL authorization. The authorization for an application can be con-
trolled by using the <authorization> section. The <authorization> section, as shown in the follow-
ing code example, can contain subsections that either allow or deny permission to a user or a role.
Optionally, you can also use the <location> section to grant special authorization permission.

<authorization>
<allow roles=”” />
<allow users=”” />
<deny users=”” />

</authorization>

URL Authorization
The URL Authorization is a service provided by URLAuthorizationModule (inherited from HttpModule)
to control the access to resources such as .aspx files. The URL Authorization is very useful if you want to
allow or deny certain parts of your ASP.NET application to certain people or roles.

For example, you may want to restrict the administration part of your ASP.NET application only to
administrators and deny access to others. You can achieve this very easily with URL Authorization. URL
Authorization can be configurable based on the user, the role, or HTTP verbs such as HTTP GET request
or HTTP POST request.

1076

Chapter 27

30_576100 ch27.qxd 10/6/05 9:34 PM Page 1076

You can configure URL Authorization in the web.config file with <allow> and <deny> attributes. For
example, the following code shows how you can allow the user Ssivakumar and deny the groups
Sales and Marketing from using the application:

<system.web>
<authorization>

<allow users=”Ssivakumar” />
<deny roles=”Sales, Marketing” />

</authorization>
</system.web>

The <allow> and <deny> attributes support users, roles, and verb values. As you can see from the
previous code example, you can add multiple users and groups by separating them with commas.

Two special characters, asterisk (*) and question mark (?), are supported by URLAuthorizationModule.
The asterisk (*) represents all users and the question mark (?) represents anonymous users. The follow-
ing code denies access to all anonymous users and grants access to the Admin group:

<system.web>
<authorization>

<allow roles=”Admin” />
<deny users=”?” />

</authorization>
</system.web>

You can also grant or deny access to the users or groups in regard to the HTTP methods that they can
use. In the following example, the HTTP GET method is denied access to the “Admin” group and access
to the HTTP POST method is denied to all users.

<system.web>
<authorization>

<deny verb=”GET” roles=”Admin” />
<deny verb=”POST” users=”*” />

</authorization>
</system.web>

File Authorization
The authorization information can also be set to a file or directory using the <location> attribute. For
example, you have a root directory called “Home” and underneath that you have a subdirectory called
“Documents”. Suppose you want to grant access (to the “Documents” subdirectory) only to the
“Admin” group members:

<location path=”Documents”>
<system.web>

<authorization>
<allow roles=”Admin” />

</authorization>
</system.web>

</location>

The ASP.NET application doesn’t verify the path specified in the path attribute. If the given path is
invalid, ASP.NET does not apply the security setting.

1077

Configuration

30_576100 ch27.qxd 10/6/05 9:34 PM Page 1077

You can also set the security for a single file like this:

<configuration>
<location path=”Documents/Default.aspx”>

<system.web>
<authorization>

<allow roles=”Admin” />
</authorization>

</system.web>
</location>

</configuration>

Locking-Down Configuration Settings
ASP.NET’s configuration system is very flexible in terms of applying configuration information to a spe-
cific application or folder. Even though the configuration system is flexible, in some cases, you may want
to limit the configuration options that a particular application can control. For example, you could
decide to change the way ASP.NET session information is stored. The lock-down can be achieved using
the <location> attributes allowOverride and allowDefinition, and also the path attributes.

In the following example, a location section identifies “Default Web Site/401KApp” and allows any
application to override the trace setting in machine.config:

<configuration>
<location path=”Default Web Site/401KApp” allowOverride=”true”>

<trace enabled=”false”/>
</location>

</configuration>

Because the trace attribute can be overridden, you can enable tracing in the web.config file of the
401KApp virtual directory.

However, if you have selected allowOverride=”false” in the <location> settings of the machine
.config file, the web.config file for 401KApp cannot override that.

ASP.NET Page Configuration
When an ASP.NET application has been deployed, the page configuration settings enable you to control
some of the default behaviors for all ASP.NET pages. These behaviors include options such as whether
you should buffer the output before sending it or whether the Session State should be enabled for the
entire application:

<configuration>
<system.web>

<pages buffer=”true”
enableSessionState=”true”
enableViewState=”true”
enableViewStateMac=”false”
autoEventWireup=”true”
smartNavigation=”false”
master=”~/401kMasterPage.master”

1078

Chapter 27

30_576100 ch27.qxd 10/6/05 9:34 PM Page 1078

pageBaseType=”System.Web.UI.Page”
userControlBaseType=”System.Web.UI.UserControl”
compilationMode=”Auto”
validateRequest=”true” >

<imports>
<add namespace=”Wrox.401kApp”/>

</imports>
<registerTagPrefixes>

<add tagPrefix=”401kCtrls” namespace=”Wrox.401kApp.Controls”/>
</registertagPrefixes>

</pages>
</system.web>

</configuration>

The following list gives you the ASP.NET page configuration information elements in detail:

❑ buffer: Specifies whether the requests must be buffered on the server before it is sent it to the
client.

❑ enableSessionState: Specifies whether the Session State for the current ASP.NET application
should be enabled. The possible values are “true”, “false”, or “readonly”. The “readonly”
value means that the application can read the session values but can’t modify them.

❑ enableViewState: Specifies whether the ViewState is enabled for all the controls. If the appli-
cation does not use ViewState, you can set the value to false in the application’s web.config
file.

❑ autoEventWireup: Specifies whether ASP.NET can automatically wire-up common page events
such as Load or Error.

❑ smartNavigation: Smart navigation is a feature that takes advantage of IE as a client’s browser
to prevent the redrawing that occurs when a page is posted back to itself. Using smart naviga-
tion, the request is sent through an IFRAME on the client, and IE redraws only the sections of the
page that have changed. By default, this option is set to false. When it is enabled, it is available
only to Internet Explorer browsers — all other browsers get the standard behavior.

❑ master: Identifies the master page for the current ASP.NET application. If you wish to apply the
master page template to only a specific subset of pages (such as pages contained within a spe-
cific folder of your application), you can use the <location> element within the web.config
file:

<configuration>
<location path=”401kAdmin”>

<system.web>
<pages master=”~/401kAdminMasterPage.master” />

</system.web>
</location>

</configuration>

❑ pageBaseType: Specifies the base class for all the ASP.NET pages in the current ASP.NET appli-
cation. By default, this option is set to System.Web.UI.Page. However, if you want all ASP.NET
pages to inherit from some other base class, you can change the default via this setting.

1079

Configuration

30_576100 ch27.qxd 10/6/05 9:34 PM Page 1079

❑ userControlBaseType: Specifies the base class for all the ASP.NET user controls in the current
ASP.NET application. The default is System.Web.UI.UserControl. You can override the
default option using this element.

❑ validateRequest: Specifies whether ASP.NET should validate all the incoming requests that
are potentially dangerous like the cross-site script attack and the script injection attack. This fea-
ture provides out-of-the-box protection against cross-site scripting and script injection attacks
by automatically checking all parameters in the request, ensuring that their content does not
include HTML elements. For more information about this setting, visit http://www.asp
.net/faq/RequestValidation.aspx.

❑ Imports: Optionally, you can import a collection of directives that can be included in the pre-
compilation process

❑ compilationMode: Specifies how ASP.NET should compile the current Web application.
Supported values are Never, Always and Auto. When you set compilationMode=”Never”,
this means that the pages should never be compiled. A part error occurs if the page has con-
structs that require compilation. When you set compilationMode=”Always”, this means that
the pages are always compiled. When you set compilationMode=”Auto”, ASP.NET does not
compile the pages if that is possible.

❑ registertagprefixes: Optionally, you can register collections of directives and the names-
paces where the tagPrefix resides.

Include Files
Unlike ASP.NET 1.0 and 1.1, ASP.NET 2.0 supports include files in both machine.config and web
.config files. When configuration content is to be included in multiple places or inside the location
elements, an include file is an excellent way to encapsulate the content.

Any section in a configuration file can include content from a different file using the configExternal
Source attribute, and the value of the attribute indicates a virtual relative file name to the include file.
Listing 27-9 is an example of such a directive.

Listing 27-9: Adding additional content to the web.config file

<configuration>
<system.web>

<pages configExternalSource=”SystemWeb.config” />
</system.web>

</configuration>

The configuration include files can contain information that applies to a single section, and a single
include file cannot contain more than one configuration section or a portion of a section. If the config
ExternalSource attribute is present, the section element in the source file should not contain any other
attribute or any child element.

Nevertheless, the include file is not a full configuration file. It should contain only the include section, as
shown in Listing 27-10.

1080

Chapter 27

30_576100 ch27.qxd 10/6/05 9:34 PM Page 1080

Listing 27-10: The SystemWeb.config file

<pages authentication mode=”Forms” />

The configExternalSource attribute cannot be nested. An include file cannot nest another file inside
it using the configExternalSource attribute.

When an ASP.NET configuration file is changed, the application is restarted at runtime. When an
external include file is used within the configuration file, the configuration reload happens without
restarting the application.

Configuring ASP.NET Runtime Settings
The general configuration settings are those that specify how long a given ASP.NET resource, such as a
page, is allowed to execute before being considered timed-out. The other settings specify the maximum
size of a request or whether to use fully qualified URLs in redirects. These settings can be specified using
the <httpRuntime> setting. The <httpRuntime> attribute is applied at the ASP.NET application on the
folder level:

<configuration>
<system.web>

<httpRuntime
useFullyQualifiedRedirectUrl=”false”
enable=”true”
idealTime=”10”
executionTimeout=”90”
maxRequestLength=”4096”
requestLengthDiskThreshold=”512”
appRequestQueueLimit=”5000”
requestPriority=”High”
minFreeThreads=”8”
minLocalRequestFreeThreads=”4”
appRequestQueueLimit=”100”
enableKernalOutputCache=”true”

/>
</system.web>

</configuration>

Enabling and Disabling ASP.NET Applications
The enable attribute specifies whether the current ASP.NET application is enabled. When set to false,
the current ASP.NET application is disabled, and all the clients trying to connect to this site receive the
HTTP 404 — File Not Found exception. This value should be set only at the machine or application level.
If you set this value in any other level (such as subfolder level), it is ignored. This is a great feature that
allows the administrators to bring down the application for whatever reason without starting or stop-
ping IIS. The default value is true. This is a new setting included in ASP.NET 2.0.

1081

Configuration

30_576100 ch27.qxd 10/6/05 9:34 PM Page 1081

Fully Qualified Redirect URLs
The useFullyQualifiedRedirectUrl attribute specifies whether the client-side redirects should
include the fully qualified URL. When you are programming against the mobile devices, some devices
require specifying fully qualified URLs. The default value is false.

Request Time-Out
The executionTimeout setting specifies the timeout option for an ASP.NET request time-out. The value
of this attribute is the amount of time in seconds during which a resource can execute before ASP.NET
times the request out. The default setting is 90 seconds. If you have a particular ASP.NET page or Web
service that takes longer than 90 seconds to execute, you can extend the time limit in the configuration.

Application Shutdown Time
The idealTime attribute specifies how long the application should wait before it shuts down the current
ASP.NET application. When multiple ASP.NET applications are hosted in a shared hosting environment,
not all applications are always busy. If an application that is accessed once a day or a few times a day
remains loaded in memory, it can eat up the memory and resources indefinitely. The idealTime attribute
allows an ASP.NET application to be shut down after a certain number of minutes. When it is not in use,
its resources are freed up. The default value is 20 minutes. This is a new setting in ASP.NET 2.0.

Maximum Request Length
The maxRequestLength attribute specifies the maximum file-size upload accepted by ASP.NET run-
time. For example, if the ASP.NET application is required to process huge files, it is better to change this
setting. The default is 4096KB (4MB).

Web applications are prone to attacks these days. The attacks range from a script injection attack to a
Denial of Service (DoS) attack. The DoS is a typical attack that bombards the Web server with requests
for large files. This huge number of requests ultimately brings down the Web server. The maxRequest
Length attribute could save you from a DoS attack by setting a restriction on the size of requests.

Buffer Uploads
In ASP.NET 1.0 or 1.1, when a HTTP post is made (either a normal ASP.NET form post, file upload, or an
XMLHTTP client-side post), the entire content is buffered in memory. This works out fine for smaller
posts. However, when memory-based recycling is enabled, a large post can cause the ASP.NET worker
process to recycle before the upload is completed. To avoid the unnecessary worker process recycling,
ASP.NET 2.0 includes a new setting called requestLengthDiskThreshold. This setting enables an
administrator to configure the file upload buffering behavior without affecting the programming model.
Administrators can configure a threshold below which requests will be buffered into memory. After a
request exceeds the limit, it is transparently buffered on disk and consumed from there by whatever
mechanism is used to consume the data. The valid values for this setting are numbers between 1 and
Int32.MaxSize in KB.

When file buffering is enabled, the files are uploaded to the codegen folder. The default path for the
codegen folder is the following:

[WinNT\Windows]\Microsoft.NET\Framework\[version]\Temporary ASP.NET
Files\[ApplicationName]

1082

Chapter 27

30_576100 ch27.qxd 10/6/05 9:34 PM Page 1082

The files are buffered using a random name in a subfolder within the codegen folder called Uploads. The
location of the codegen folder can be configured on a per-application basis using the tempDirectory
attribute of the <compilation> section.

This is not a change in ASP.NET; rather it is an internal change. When an ASP.NET 1.0 or 1.1 applica-
tion is migrated to the new framework, the ASP.NET application automatically takes advantage of this
feature.

Thread Management
ASP.NET runtime uses free threads available in its thread pool to fulfill requests. The minFreeThreads
attribute indicates the number of threads that ASP.NET guarantees are available within the thread pool.
The default number of threads is eight. For complex applications that require additional threads to com-
plete processing, this simply ensures that the threads are available and that the application will not be
blocked while waiting for a free thread to schedule more work. The minLocalRequestFreeThreads
attribute controls the number of free threads dedicated for local request processing; the default is four.

Application Queue Length
The appRequestQueueLimit attribute specifies the maximum number of requests that ASP.NET queues
for the current ASP.NET application. ASP.NET queues requests when it does not have enough free
threads to process them. The minFreeThreads attribute specifies the number of free threads the
ASP.NET application should maintain, and this setting affects the number of items stored in the queue.

When the number of requests queued exceeds the limit set in the appRequestQueueLimit setting, all
the incoming requests are rejected and an HTTP 503 - Server Too Busy error is thrown back to the
browser.

Managing Queue Limits
The appRequestQueueLimit attribute controls the number of client requests that may be queued — in
other words, how many can wait to be processed. Queuing occurs when the server is receiving requests
faster than it can process those requests. When the number of requests in the queue reaches the thresh-
old determined by this attribute, the server begins sending an HTTP status code 503 to indicate that the
server is too busy to handle any more requests. If this occurs, you should consider adding another server
to handle the load or isolate and improve the performance of poorly performing ASP.NET pages or Web
services.

Request Priority
When ASP.NET receives requests, they are queued to be processed by available threads. When no free
threads are available, the requests remain queued. What if certain ASP.NET pages have higher priority
than others, and you want them to be processed first before the other requests are processed? The
requestPriority attribute allows you to do just that.

All typical ASP.NET Web sites have home pages, and when the Web server is stressed out, the entire
ASP.NET site takes a longer time to process. If you want the home page to come up very quickly, regard-
less of the time needed for the other pages, you can set a different priority level for the home page. You
can do this by using the requestPriority attribute.

1083

Configuration

30_576100 ch27.qxd 10/6/05 9:34 PM Page 1083

The supported enumeration values are Normal, High, and Critical. This enumeration is available in
the HttpRequestPriority that is available in the System.Web namespace. The following list explains
these values in more detail:

❑ Normal: Specifies that the request be placed in the normal queue and processed as a normal pri-
ority. This is the default setting.

❑ High: Specifies that the request be placed at the tail end of the high-priority queue that is to be
processed before the normal queue. If the application queue is full, this request is rejected. The
application queue setting is then specified using the appRequestQueueLimit attribute.

❑ Critical: Specifies that the request be inserted at the tail end of the high-priority queue and is
processed before the normal queue. However, requests with Critical priority are not rejected
even though the managed queue is full. This is the biggest difference between the High and
Critical settings.

The Critical marked requests can also be rejected if the ISAPI threshold queue limit has been exceeded.
The requestQueueLimit attribute of the <processModel> tag allows you to configure the ISAPI
threshold queue limit. The default value is 5000.

In a busy Web site, if you want to process the home page requests in the Web application as the highest
priority, you do it in conjunction with the location tag.

<location path=”Default.aspx”>
<httpRuntime requestPriority=”Critical”/>

</location>

In the preceding example, you marked the Default.aspx with Critical request priority. This ensures
that home page requests are processed with highest priority by the ASP.NET runtime.

Output Caching
The enableKernalOutputCache specifies whether the output caching is enabled at the IIS kernel level
(Http.sys). At present, this setting applies only to Web servers IIS6 and higher.

Configuring ASP.NET Worker Process
When a request for an ASP.NET page is received by IIS, it passes the request to an unmanaged DLL
called aspnet_isapi.dll. The aspnet_isapi.dll further passes the request to a separate worker
process, aspnet_wp.exe under IIS5, which runs all the ASP.NET applications. Under IIS6 and higher, all
the ASP.NET applications are run by the w3wp.exe process. The ASP.NET worker process can be config-
ured using the <processModel> section in the machine.config file.

All the configuration sections talked about so far are read by managed code. On the other hand, the
<processModel> section is read by the aspnet_isapi.dll unmanaged DLL. Because the configu-
ration information is read by an unmanaged DLL, the changed process model information is applied to
all ASP.NET applications only after an IIS restart.

1084

Chapter 27

30_576100 ch27.qxd 10/6/05 9:34 PM Page 1084

The following code shows the default format for the <processModel> section:

<processModel
enable=”true|false”
timeout=”hrs:mins:secs|Infinite”
idleTimeout=”hrs:mins:secs|Infinite”
shutdownTimeout=”hrs:mins:secs|Infinite”
requestLimit=”num|Infinite”
requestQueueLimit=”num|Infinite”
restartQueueLimit=”num|Infinite”
memoryLimit=”percent”
cpuMask=”num”
webGarden=”true|false”
userName=”username”
password=”password”
logLevel=”All|None|Errors”
clientConnectedCheck=”hrs:mins:secs|Infinite”
responseDeadlockInterval=”hrs:mins:secs|Infinite”
responseRestartDeadlockInterval=”hrs:mins:secs|Infinite”
comAuthenticationLevel=”Default|None|Connect|Call|
Pkt|PktIntegrity|PktPrivacy”
comImpersonationLevel=”Default|Anonymous|Identify|
Impersonate|Delegate”
maxWorkerThreads=”num”
maxIoThreads=”num”

/>

Look at each of these attributes in detail:

❑ enable: Specifies whether the process model is enabled. When set to false, the ASP.NET appli-
cations run under IIS’s process model.

When ASP.NET is running under IIS6 or higher in native mode, the IIS6 or higher process model is
used and the <processModel> section is ignored.

❑ timeout: Specifies how long the worker process lives before a new worker process is created to
replace the current worker process. This value can be extremely useful if a scenario exists where
the application’s performance starts to degrade slightly after running for several weeks, as in
the case of a memory leak. Rather than your having to manually start and stop the process,
ASP.NET can restart automatically. The default value is Infinite.

❑ idleTimeout: Specifies how long the worker process should wait before it is shut down. You
can shut down the ASP.NET worker process automatically using the idleTimeout option. The
default value is Infinite. You can also set this value to a time using the format, HH:MM:SS:

❑ shutdownTimeout: Specifies how long the worker process is given to shut itself down grace-
fully before ASP.NET calls the Kill command on the process. Kill is a low-level command that
forcefully removes the process. The default value is five seconds.

❑ requestLimit: Specifies when the ASP.NET worker process should be recycled before a certain
number of requests are served. The default value is Infinite.

❑ requestQueueLimit: Instructs ASP.NET to recycle the worker process if the limit for queued
requests is exceeded. The default setting is 5000.

1085

Configuration

30_576100 ch27.qxd 10/6/05 9:34 PM Page 1085

❑ memoryLimit: Specifies how much physical memory the worker process is allowed to consume
before it is considered to be misbehaving or leaking memory. The default value is 60 percent of
available physical memory.

❑ username and password: By default, all ASP.NET applications are executed using the ASPNET
identity. If you want an ASP.NET applications to run with a different account, you can provide
the username and the password pair.

❑ logLevel: Specifies how the ASP.NET worker process logs events. The default setting is to log
errors only. However, you can also disable logging by specifying None or Log Everything. All
the log items are written to the Windows Application Event Log.

❑ clientConnectedCheck: The clientConnectedCheck setting enables you to check whether
the client is still connected at timed intervals before performing work. The default setting is five
seconds.

❑ responseDeadlockInterval: Specifies how frequently the deadlock check should occur. A
deadlock is considered to exist when requests are queued and no responses have been sent dur-
ing this interval. After a deadlock, the process is restarted. The default value is three minutes.

❑ responseRestartDeadlockInterval: Specifies, when a deadlock is detected by the runtime,
how long the runtime should wait before restarting the process. The default value is nine minutes.

❑ comAuthenticationLevel: Controls the level of authentication for DCOM security. The
default is set to Connect. Other values are Default, None, Call, Pkt, PktIntegrity, and
PktPrivacy.

❑ comImpersonationLevel: Controls the authentication level for COM security. The default is
set to Impersonate. Other values are Default, Anonymous, Identify, Impersonate, and
Delegate.

❑ webGarden: Specifies whether Web Garden mode is enabled. The default setting is false. A
Web Garden lets you host multiple ASP.NET worker processes on a single server, thus provid-
ing the application with better hardware scalability. Web Garden mode is supported only on
multiprocessor servers.

❑ cpuMask: Specifies which processors should be affinities to ASP.NET worker processes when
webGarden=”true”. The cpuMask is a hexadecimal value. The default value is all processors,
shown as 0xFFFFFFFF.

❑ maxWorkerThreads: Specifies the maximum number of threads that exist within the ASP.NET
worker process thread pool. The default is 25.

❑ maxIoThreads: Specifies the maximum number of I/O threads that exist within the ASP.NET
worker process. The default is 25.

Running Multiple Web Sites with Multiple Versions of Framework
In the same context, multiple Web sites within the given Web server can host multiple Web sites, and
each of these sites can be bound to a particular version of a .NET framework. This is typically done
using the aspnet_regiis.exe utility. The aspnet_regiis.exe utility is shipped with each version of
the framework.

This utility has multiple switches. Using the -s switch allows you to install the current version of the
.NET framework runtime on a given Web site. Listing 27-11 shows how to install .NET Framework ver-
sion 1.1 on the 401KApp Web site.

1086

Chapter 27

30_576100 ch27.qxd 10/6/05 9:34 PM Page 1086

Listing 27-11: Installing .NET Framework version 1.1 on the 401KApp Web site

C:\WINDOWS\Microsoft.NET\Framework\v1.1.4322>aspnet_regiis -s W3SVC/1ROOT/401KApp

Storing Application-Specific Settings
Every Web application must store some application-specific information for its runtime use. The
<appSettings> section of the Web.config file provides a way to define custom application settings for
an ASP.NET application. The section can have multiple <add> subelements. Its syntax is as follows:

<appSettings>
<add Key=”[key]” Value=”[value]”/>

</appSettings>

The <add> subelement supports two attributes:

❑ Key: Specifies the key value in an appSettings hash table

❑ Value: Specifies the value in an appSettings hash table

Listing 27-12 shows how to store an application-specific connection string. The Key value is set to
ApplicationInstanceID, and the Value is set to the ASP.NET application instance and the name of
the server on which the application is running.

Listing 27-12: Application instance information

<appSettings>
<add Key=”ApplicationInstanceID” Value=”Instance1onServerOprta”/>

</appSettings>

Programming Configuration Files
In ASP.NET 1.0 and 1.1 versions of the Framework provided APIs that enabled you only to read infor-
mation from the configuration file. You had no way to write information into the configuration file
because no out-of-the-box support was available. However, some advanced developers wrote their own
APIs to write the information back to the configuration files. Because the web.config file is an XML file,
developers were able to open configuration file using the XmlDocument object, modify the settings, and
write it back to the disk. Even though this approach worked fine, the way to access the configuration set-
tings were not strongly typed. Therefore, validating the values was always a challenge.

However, ASP.NET 2.0 includes APIs (ASP.NET Management Objects) to manipulate the configuration
information settings in machine.config and web.config files. ASP.NET Management Objects provide
a strongly typed programming model that addresses targeted administrative aspects of a .NET Web
Application Server. They also govern the creation and maintenance of the ASP.NET Web configuration.
Using the ASP.NET Management Objects, you can manipulate the configuration information stored in
the configuration files in the local or remote computer. These can be used to script any common adminis-
trative tasks or the writing of installation scripts.

All of the ASP.NET Management Objects are stored in the System.Configuration and System.Web
.Configuration namespaces. You can access the configuration using the WebConfigurationManager

1087

Configuration

30_576100 ch27.qxd 10/6/05 9:34 PM Page 1087

class. The System.Configuration.Configuration class represents a merged view of the configura-
tion settings from the machine.config and hierarchical web.config files. The System.Configuration
and System.Web.Configuration namespaces have multiple classes that enable you to access pretty much
all the settings available in the configuration file. The main difference between System.Configuration
and System.Web.Configuration namespaces is that the System.Configuration namespace contains all
the classes that apply to all the .NET applications. On the other hand, the System.Web.Configuration
namespace contains the classes that are applicable only to ASP.NET Web applications. The following table
shows the important classes in System.Configuration and their uses.

Class Name Purpose

Configuration Enables you to manipulate the configuration stored in
the local computer or a remote one.

ConfigurationElementCollection Enables you to enumerate the child elements stored
inside the configuration file.

AppSettingsSection Enables you to manipulate the <appSettings>
section of the configuration file.

ConnectionStringSettings Enables you to manipulate the <connectionStrings>
section of the configuration file.

ProtectedConfigurationSection Enables you to manipulate the
<protectedConfiguration> section of the
configuration file.

ProtectedDataSection Enables you to manipulate the <protectedData>
section of the configuration file.

The next table shows classes from the System.Web.Configuration and their uses.

Class Name Purpose

AuthenticationSection Enables you to manipulate the <authentication>
section of the configuration file.

AuthorizationSection Enables you to manipulate the <authorization>
section of the configuration file.

CompilationSection Enables you to manipulate the <compilation>
section of the configuration file.

CustomErrorsSection Enables you to manipulate the <customErrors>
section of the configuration file.

FormsAuthenticationConfiguration Enables you to manipulate the <forms> section of
the configuration file.

GlobalizationSection Enables you to manipulate the <Globalization>
section of the configuration file.

HttpHandlersSection Enables you to manipulate the <httpHandlers>
section of the configuration file.

1088

Chapter 27

30_576100 ch27.qxd 10/6/05 9:34 PM Page 1088

Class Name Purpose

HttpModulesSection Enables you to manipulate the <httpModules>
section of the configuration file.

HttpRuntimeSection Enables you to manipulate the <httpRuntime>
section of the configuration file.

MachineKeySection Enables you to manipulate the <machineKeys>
section of the configuration file.

MembershipSection Enables you to manipulate the <membership>
section of the configuration file.

PagesSection Enables you to manipulate the <pages> section of
the configuration file.

ProcessModelSection Enables you to manipulate the <processModel>
section of the configuration file.

WebPartsSection Enables you to manipulate the <webParts> section
of the configuration file.

All the configuration classes are implemented based on simple object-oriented based architecture that has
an entity class that holds all the data and a collection class that has methods to add, remove, enumerate,
and so on. Start your configuration file programming with a simple connection string enumeration, as
shown in the following section.

Enumerating Connection Strings
In a Web application, you can store multiple connection strings. Some of them are used by the system
and the others may be application-specific. You can write a very simple ASP.NET application that enu-
merates all the connection strings stored in the web.config file, as shown in Listing 27-13.

Listing 27-13: The web.config file

<?xml version=”1.0” ?>
<configuration xmlns=”http://schemas.microsoft.com/.NetConfiguration/v2.0”>

<appSettings>
<add key=”symbolServer” value=”10.200.241.10” />

</appSettings>
<connectionStrings>

<add name=”401kApp”
connectionString=”server=401kServer;
database=401kDB;uid=WebUser;pwd=P@$$worD9”
providerName=”System.Data.SqlClient”
/>

</connectionStrings>
<system.web>

<compilation debug=”false” />
<authentication mode=”None” />

</system.web>
</configuration>

1089

Configuration

30_576100 ch27.qxd 10/6/05 9:34 PM Page 1089

As shown in Listing 27-13, one application setting points to the symbol server, and one connection
string is stored in the web.config file. Use the ConnectionStrings collection of the System.Web
.Configuration.WebConfigurationManager class to read the connection strings, as seen in
Listing 27-14.

Listing 27-14: Enum.aspx

VB
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

GridView1.DataSource = _
System.Web.Configuration.WebConfigurationManager.ConnectionStrings

GridView1.DataBind()
End Sub

C#
protected void Page_Load(object sender, EventArgs e)
{

GridView1.DataSource =
System.Web.Configuration.WebConfigurationManager.ConnectionStrings;
GridView1.DataBind();

}

As shown in Listing 27-14, you’ve bound the ConnectionStrings property collection of the Web
ConfigurationManager class into the GridView control. The WebConfigurationManager class
returns an instance of the Configuration class and the ConnectionStrings property is a static
(shared in Visual Basic) property. Therefore, you’re just binding the property collection into the
GridView control. Figure 27-5 shows the list of connection strings stored in the ASP.NET application.

Figure 27-5

Adding a connection string at runtime is also a very easy task. If you do it as shown in Listing 27-13, you
get an instance of the configuration object. Then you create a new connectionStringSettings class.
You add the new class to the collection and call the update method. Listing 27-15 shows examples of this
in both VB and C#.

1090

Chapter 27

30_576100 ch27.qxd 10/6/05 9:34 PM Page 1090

Listing 27-15: Adding a connection string

VB
Protected Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)

‘ Get the file path for the current web request
Dim webPath As String = Request.CurrentExecutionFilePath

‘Parse the leading forward slash
webPath = webPath.Substring(0, webPath.LastIndexOf(“/”))

Try
‘Get configuration object of the current web request
Dim config As Configuration = _

System.Web.Configuration.WebConfigurationManager.OpenWebConfiguration(webPath)

‘Create new connection setting from text boxes
Dim newConnSetting As New _
ConnectionStringSettings(txtName.Text, txtValue.Text, txtProvider.Text)

‘Add the connection string to the collection
config.ConnectionStrings.ConnectionStrings.Add(newConnSetting)

‘Save the changes
config.Save()

Catch cEx As ConfigurationErrorsException
lblStatus.Text = “Status: “ + cEx.ToString()

Catch ex As System.UnauthorizedAccessException
‘The ASP.NET process account must have read/write access to the directory
lblStatus.Text = “Status: “ + “The ASP.NET process account must have
read/write access to the directory”

Catch eEx As Exception
lblStatus.Text = “Status: “ + eEx.ToString()

End Try

ShowConnectionStrings()
End Sub

C#
protected void Button1_Click(object sender, EventArgs e)
{

//Get the file path for the current web request
string webPath = Request.CurrentExecutionFilePath;

//Parse the leading forward slash
webPath = webPath.Substring(0, webPath.LastIndexOf(‘/’));

//Get configuration object of the current web request
Configuration config =
System.Web.Configuration.WebConfigurationManager.OpenWebConfiguration(webPath);

//Create new connection setting from text boxes
ConnectionStringSettings newConnSetting = new

(continued)

1091

Configuration

30_576100 ch27.qxd 10/6/05 9:34 PM Page 1091

Listing 27-15 (continued)

ConnectionStringSettings(txtName.Text, txtValue.Text, txtProvider.Text);

try
{

//Add the connection string to the collection
config.ConnectionStrings.ConnectionStrings.Add(newConnSetting);

//Save the changes
config.Save();

}
catch (ConfigurationErrorsException cEx)
{

lblStatus.Text = “Status: “ + cEx.ToString();
}
catch (System.UnauthorizedAccessException uEx)
{

//The ASP.NET process account must have read/write access to the directory
lblStatus.Text = “Status: “ + “The ASP.NET process account must have
read/write access to the directory”;

}
catch (Exception eEx)
{

lblStatus.Text = “Status: “ + eEx.ToString();
}

//Reload the connection strings in the list box
ShowConnectionStrings();

}

Manipulating a machine.config File
The OpenMachineConfiguration method of the System.Web.Configuration
.WebConfigurationManager class provides a way to manipulate the machine.config file. The
OpenMachineConfiguration method is a static method, and it has multiple overloads.

Listing 27-16 shows a simple example that enumerates all the section groups stored in the machine
.config file. As shown in this listing, you’re getting an instance of the configuration object using the
OpenMachineConfiguration method. Then you’re binding the SectionGroups collection with
the GridView control.

Listing 27-16: Configuration groups from machine.config

VB
Protected Sub Button2_Click(ByVal sender As Object, ByVal e As System.EventArgs)

‘List all the SectionGroups in Machine.Config file
Dim configSetting As Configuration = _
System.Web.Configuration.WebConfigurationManager.OpenMachineConfiguration()
GridView1.DataSource = configSetting.SectionGroups
GridView1.DataBind()

End Sub

1092

Chapter 27

30_576100 ch27.qxd 10/6/05 9:34 PM Page 1092

C#
protected void Button2_Click(object sender, EventArgs e)
{

//List all the SectionGroups in Machine.Config file
Configuration configSetting =
System.Web.Configuration.WebConfigurationManager.OpenMachineConfiguration();
GridView1.DataSource = configSetting.SectionGroups;
GridView1.DataBind();

}

In the same way, you can list all the configuration sections using the Sections collections, as shown in
Listing 27-17.

Listing 27-17: Configuration sections from machine.config

VB
Protected Sub Button2_Click(ByVal sender As Object, ByVal e As System.EventArgs)

‘List all the SectionGroups in Machine.Config file
Dim configSetting As Configuration = _
System.Web.Configuration.WebConfigurationManager.OpenMachineConfiguration()
GridView1.DataSource = configSetting.Sections
GridView1.DataBind()

End Sub

C#
protected void Button2_Click(object sender, EventArgs e)
{

//List all the SectionGroups in Machine.Config file
Configuration configSetting =
System.Web.Configuration.WebConfigurationManager.OpenMachineConfiguration();
GridView1.DataSource = configSetting.Sections;
GridView1.DataBind();

}

Manipulating machine.config from Remote Servers
The ASP.NET Management Objects also provide a way to read configuration information from remote
servers. Both GetWebConfiguration and GetMachineConfiguration methods have overloads to
support this functionality.

For example, if you’d like to manipulate the Expense Web application’s configuration file located on the
Optra.Microsoft.com site, you can do so as shown in Listing 27-18.

Listing 27-18: Manipulating a remote server’s web.config

VB
‘ Connect to the web application Expense on Optra.Microsoft.com server
Configuration configSetting = Configuration.GetWebConfiguration(“/Expense”, “1”, _

“Optra.Microsoft.com”)

‘ Change the authentication mode to Forms Authentication
configSetting.Web.Authentication.AuthenticationMode = AuthenticationMode.Forms

‘ Save the changes
configSetting.Update()

(continued)

1093

Configuration

30_576100 ch27.qxd 10/6/05 9:34 PM Page 1093

Listing 27-18 (continued)

C#
// Connect to the web application Expense on Optra.Microsoft.com server
Configuration configSetting = Configuration.GetWebConfiguration(“/Expense”, “1”,

“Optra.Microsoft.com”);

// Change the authentication mode to Forms Authentication
configSetting.Web.Authentication.AuthenticationMode = AuthenticationMode.Forms;

// Save the changes
configSetting.Update();

If you look at the code shown in Listing 27-18, the only change from the previous example is that you’ve
given the machine address in the constructor method to connect to the remote server. Then you changed
its authenticationMode to Forms Authentication and saved the changes.

Listing 27-19 shows how to manipulate the remote server’s machine.config file.

Listing 27-19: Manipulating a remote server’s machine.config

VB
‘ Connect to the web application Expense on Optra.Microsoft.com server
Configuration configSetting = _

Configuration.GetMachineConfiguration(“Optra.Microsoft.com”)

‘ Change the authentication mode to Forms Authentication
configSetting.Web.Authentication.AuthenticationMode = AuthenticationMode.Forms

‘ Save the changes
configSetting.Update()

C#
// Connect to the web application Expense on Optra.Microsoft.com server
Configuration configSetting = Configuration.

GetMachineConfiguration(“Optra.Microsoft.com”);

// Change the authentication mode to Forms Authentication
configSetting.Web.Authentication.AuthenticationMode = AuthenticationMode.Forms;

// Save the changes
configSetting.Update();

When using the GetMachineConfiguration method, it uses the DCOM protocol to connect to the
remote server. To open or modify a configuration file on the remote server, the caller must have adminis-
trative privileges on the remote computer. To open local configuration files, the caller needs to have only
read and/or write privileges for the configuration files in the hierarchy and read access to the metabase
to resolve IIS paths.

1094

Chapter 27

30_576100 ch27.qxd 10/6/05 9:34 PM Page 1094

When manipulating configuration information stored on a remote server, the ASP.NET configuration
API uses an optimistic concurrency model for modifying configuration. If two callers simultaneously
open the same configuration, they get unique copies of the Configuration object. If a caller attempts to
modify the configuration by calling the Update method, and the underlying configuration file has been
modified since the caller obtained the Configuration object, the caller gets an exception. The underlying
file may have been modified by another caller updating the configuration or by some other change to
the file, independent of the configuration API.

Protecting Configuration Settings
When ASP.NET 1.0 was introduced, all the configuration information were stored in human-readable,
clear-text format. However, ASP.NET 1.1 introduced a way to store the configuration information inside
the registry using the Data Protection API (or DPAPI).

For example, Listing 27-20 shows how you can store a process model section’s username and password
information inside the registry.

Listing 27-20: Secure Machine.Config

<processModel
userName=”registry:HKLM\SOFTWARE\401kApp\Identity\ASPNET_SETREG,userName”
password=”registry:HKLM\SOFTWARE\401kApp\Identity\ASPNET_SETREG,password”

/>

ASP.NET 1.0 also acquired this functionality as a fix. Visit the following URL for more information:
http://support.microsoft.com/default.aspx?scid=kb;en-us;329290.

ASP.NET 2.0 introduces a system for protecting sensitive data stored in the configuration system. It uses
industry-standard XML encryption to encrypt administrator-specified sections of configuration that con-
tain any sensitive data.

Editing Configuration Files
So far in this chapter, you have learned about configuration files and what each configuration entry
means. Even though the configuration entries are in an easy, human-readable XML format, editing these
entries can be cumbersome. To help with editing, Microsoft ships three tools:

❑ Visual Studio 2005 IDE

❑ Web Site Administration Tool

❑ ASP.NET Snap-In for IIS

Unlike with previous versions of Visual Studio .NET, the Visual Studio 2005 IDE supports IntelliSense-
based editing for configuration files, as shown in Figure 27-6.

1095

Configuration

30_576100 ch27.qxd 10/6/05 9:34 PM Page 1095

Figure 27-6

The Visual Studio 2005 IDE also supports XML element syntax checking, as shown in Figure 27-7.

Figure 27-7

XML element syntax checking and IntelliSense for XML elements are accomplished using the XSD-based
XML validation feature available for all the XML files inside Visual Studio 2005. The configuration XSD
file is located at <drive>:\Program Files\Microsoft Visual Studio 8\Xml\Schemas\
dotnetconfig.xsd.

1096

Chapter 27

30_576100 ch27.qxd 10/6/05 9:34 PM Page 1096

The Visual Studio 2005 IDE also adds two new useful features via the XML toolbar options that can help
you with formatting the configuration settings:

❑ Reformat Selection: This option reformats the current XML notes content.

❑ Format the whole document: This option formats the entire XML document.

The Web Site Administration Tool and the ASP.NET Snap-In for IIS allow you to edit the configuration
entries without knowing the XML element names and their corresponding values. Chapter 28 talks
about both the Web Site Administration Tool and the ASP.NET Snap-In for IIS in more detail.

Summary
In this chapter, you have seen the ASP.NET configuration system and learned how it does not rely on the
IIS metabase. Instead, ASP.NET uses an XML configuration system that is human-readable.

You also looked at the two different ASP.NET XML configuration files:

❑ machine.config

❑ web.config

The machine.config file applies default settings to all Web applications on the server. However, if the
server has multiple versions of the Framework installed, the machine.config file applies to a particular
Framework version. On the other hand, a particular Web application can customize or override its own
configuration information using web.config files. Using a web.config file, you can also configure the
applications on an application-by-application or folder-by-folder basis.

Next, you looked at some typical configuration settings that can be applied to an ASP.NET application,
such as configuring connecting strings, Session State, browser capabilities, and so on. Then you looked
at an overview of new ASP.NET Admin Objects and learned how to program configuration files. Finally,
you learned how to protect the configuration section using cryptographic algorithms.

1097

Configuration

30_576100 ch27.qxd 10/6/05 9:34 PM Page 1097

30_576100 ch27.qxd 10/6/05 9:34 PM Page 1098

Administration
and Management

You have almost reached the end of this book; you have been introduced to ASP.NET 2.0 with its
wonderful new features designed to help you become a better and more efficient programmer.
However, with all advancement comes complexity, as is the case in the areas of ASP.NET configu-
ration and management. The good news is that the ASP.NET 2.0 development team realized this
and provided tools and APIs that enable developers to configure and manage ASP.NET 2.0–based
applications with reliability and comfort.

This chapter covers these tools in great detail in an effort to educate you about all the options
available to you. Two powerful configuration tools are explored: WAT (Web Site Administration
Tool), a Web-based application, and the MMC ASP.NET Snap-In, a plug-in for IIS.

The Web Site Administration Tool
When ASP.NET was first released, it introduced the concept of an XML-based configuration file for
Web applications. The file is called web.config and is located in the same directory as the appli-
cation. It’s used to store a number of configuration settings, some of which could override configu-
ration settings defined in machine.config file. Previous versions of ASP.NET, however, didn’t
provide an administration tool to make it easy to configure the settings. A large number of devel-
opers around the world ended up creating their own configuration tools to avoid having to make
the configuration changes manually.

The Web Site Administration Tool (WAT) enables you to manage Web site configuration through a
simple, easy-to-use Web interface. It eliminates the need for manually editing the web.config file.
If no web.config file exists when you use the WAT for the first time, it creates one. By default, the
WAT also creates a database in the App_Data folder of your Web site to store application data. The
changes made to most settings in the WAT take effect immediately and are reflected in the web
.config file.

31_576100 ch28.qxd 10/6/05 8:15 PM Page 1099

The default settings are automatically inherited from any configuration files that exist in the root folder
of a Web server. WAT enables you to create or update your own settings for your Web application. You
can also override the settings inherited from uplevel configuration files, if an override for those settings
is allowed. (If overriding isn’t permitted, the setting appears dimmed in the WAT.)

The WAT is automatically installed during installation of the .NET Framework version 2.0. To use the
WAT to administer your Web site, you must be logged in as a registered user of your site and you must
have Read and Write permissions to web.config.

You can access the WAT by opening a browser, typing the URL of your application, and appending
Webadmin.axd. For example, if the name of the application is DemoApp, the URL to administer your
Web site is as follows:

http://localhost/DemoApp/Webadmin.axd

If you are working in Visual Studio, click ASP.NET Configuration in the Website menu. You can also get
to this page by clicking the ASP.NET Configuration button in the Visual Studio Solution Explorer. Figure
28-1 shows WAT’s welcome page.

Figure 28-1

1100

Chapter 28

31_576100 ch28.qxd 10/6/05 8:16 PM Page 1100

WAT features a tabbed interface that groups related configuration settings. The tabs and the configura-
tion settings that they manage are described in the following sections.

The Home Tab
The Home tab is a summary that supplies some basic information about the application you are moni-
toring or modifying. It provides the name of the application and the current user context in which you
are accessing the application. In addition, you see links to the other WAT tabs that provide you with
summaries of their settings. To make changes to your application, click the appropriate tab or link.

Remember that most changes to configuration settings made using the WAT take effect immediately,
causing the application to be restarted and currently active sessions to be lost if you are using an InProc
session. The best practice for administrating ASP.NET is to make configuration changes to a staged ver-
sion of your application and later publish these changes to your production application.

Some settings (those in which the WAT interface has a dedicated Save button) don’t save automatically.
You can lose the information typed in these windows unless you click the Save button. The WAT times
out after a period of inactivity. Any settings that do not take effect immediately and are not saved will
be lost.

As extensive as WAT is, it manages only some of the configuration settings that are available for your
Web application. All other settings require modification of configuration files manually, by using the
Microsoft Management Console (MMC) snap-in for ASP.NET, or by using the configuration API.

The Security Tab
Use the Security tab to manage access permissions to secure sections of your Web application, user
accounts, and roles. You can select whether your Web application is accessed on an intranet or from the
Internet. If you specify the intranet, Windows-based authentication is used; otherwise, forms-based
authentication is configured. The latter mechanism relies on you to manage users in a custom data store,
such as SQL Server database tables. The Windows-based authentication employs the user’s Windows
logon for identification.

You can configure security settings on this tab in two ways: select the Setup Wizard, or simply use the
links provided for the Users, Roles, and Access Management sections. Figure 28-2 shows the Security tab.

User information is stored in a SQL Express database by default. The database is
automatically created in the App_Data folder of the Web application. I recommend
that you store such sensitive information on a different and more secure database.
You can simply use the Provider tab to select a different data provider. The Provider
tab is covered later in this chapter.

1101

Administration and Management

31_576100 ch28.qxd 10/6/05 8:16 PM Page 1101

Figure 28-2

You can use the Wizard to configure initial settings. Later, you learn other ways to create and modify
security settings.

The Security Setup Wizard
The Security Setup Wizard provides a seven-step process ranging from selecting the way the user will be
authenticated to selecting a data source for storing user information. This is followed by definitions of
roles, users, and access rules.

Follow these steps to use the Security Setup Wizard:

1. The wizard welcome screen (shown in Figure 28-3) is informational only. It educates you on the
basics of security management in ASP.NET. When you finish reading the screen, click Next.

Be sure to create all folders that need special permissions before you engage the wizard.

1102

Chapter 28

31_576100 ch28.qxd 10/6/05 8:16 PM Page 1102

Figure 28-3

2. Select your access method (authentication mechanism). You have two options:

❑ From the Internet: Indicates you want forms-based authentication. You must use your
own database of user information. This option works well in scenarios where nonem-
ployees need to access the Web application.

❑ From a Local Area Network: Indicates users of this application are already authenti-
cated on the domain. You don’t have to use your own user information database.
Instead, you can use the currently logged-in domain user information.

Figure 28-4 shows the screen for Step 2.

1103

Administration and Management

31_576100 ch28.qxd 10/6/05 8:16 PM Page 1103

Figure 28-4

Select From the Internet, and click the Next button.

3. Select the data source provider. As mentioned earlier, the WAT uses SQL Express by default. You
can configure additional providers on the Providers tab. In the Step 3 screen shown in Figure
28-5, only the Access Provider is displayed because no other providers have been configured
yet. Click Next.

1104

Chapter 28

31_576100 ch28.qxd 10/6/05 8:16 PM Page 1104

Figure 28-5

4. Define roles. If you are happy with all users having the same access permission, you can simply
skip this step by deselecting the Enable Roles for This Web Site check box. If this box isn’t
checked, clicking the Next button takes you directly to the User Management screens. Check
this box to see how to define roles using this wizard.

The first screen of Step 4 is shown in Figure 28-6. When you’re ready, click Next.

1105

Administration and Management

31_576100 ch28.qxd 10/6/05 8:16 PM Page 1105

Figure 28-6

The next screen (see Figure 28-7) in the wizard enables you to create and delete roles. The roles
simply define categories of users. Later, you can provide users and access rules based on these
roles. Click Next.

1106

Chapter 28

31_576100 ch28.qxd 10/6/05 8:16 PM Page 1106

Figure 28-7

5. Create users for the Web application. Earlier, you selected the From the Internet option, so the
wizard assumes that you want to use forms authentication and provides you with the option of
creating and managing users. (The From a Local Area Network choice, remember, uses
Windows-based authentication.)

The Add New Users screen (see Figure 28-8) enables you to enter the username, password,
e-mail address, and security question and answer.

1107

Administration and Management

31_576100 ch28.qxd 10/6/05 8:16 PM Page 1107

Figure 28-8

You can create as many users as you like; but to delete or update information for users, you
must leave the wizard and manage the users separately. As mentioned earlier, the wizard is sim-
ply for creating the initial configuration for future management.

The Autogenerate Password option (at the bottom of the screen) is helpful when you want the
Web application to create an initial password and e-mail it to the user. Be sure to check the Send
Password option, too.

Click Next.

6. Create access rules (see Figure 28-9). First, select the folder in the Web application that needs
special security settings. Then choose the role or user(s) to whom the rule will apply. Select the
permission (Allow or Deny) and click the Add This Rule button. For example, selecting the
Secure folder, the Administrator role, and the Allow radio button would permit all users in the
Administrator role access to the Secure folder.

1108

Chapter 28

31_576100 ch28.qxd 10/6/05 8:16 PM Page 1108

Figure 28-9

All folders that need special permissions must be created ahead of time. The information shown in the
wizard is cached and is not updated if you decide to create a new folder inside your Web application
when you are already on this screen.

The wizard gives you the capability to apply access rules to either roles or specific users. The
Search for Users option is handy if you have defined a lot of users for your Web site and want to
search for a specific user.

All access rules are shown at the bottom on the screen, and you can delete a specific rule and
start again. Rules are shown dimmed if they are inherited from the parent configuration and
can’t be changed here.

When you’re ready, click Next.

7. The last screen in the Security Setup wizard is an information page. Click the Finish button to
exit the wizard.

1109

Administration and Management

31_576100 ch28.qxd 10/6/05 8:16 PM Page 1109

Creating New Users
The WAT Security tab provides ways to manage users without using the wizard and is very helpful for
ongoing maintenance of users, roles, and access permissions.

To create a new user, simply click the Create User link on the main page of the Security tab (as you saw
earlier in Figure 28-2). The Create User screen, shown in Figure 28-10, is displayed, enabling you to pro-
vide username, password, confirmation of password, e-mail, and the security question and answer. You
can assign a new user to any number of roles in the Roles list; these are roles currently defined for your
Web application.

Figure 28-10

Managing Users
You can manage existing users by clicking the Manage Users link on the Security tab. A new screen dis-
plays a list of all existing users (see Figure 28-11). A search option is available, which makes it easier to
find a specific user if the list is long.

1110

Chapter 28

31_576100 ch28.qxd 10/6/05 8:16 PM Page 1110

Figure 28-11

Find the user you want to manage, update his information, delete the user, reassign roles, or set the user
to active or inactive.

Managing Roles
Two links are provided in the Security tab for managing roles: Disable Roles and Create or Manage
Roles. Clicking Disable Roles does just that — disables role management in the Web application; it also
dims the other link.

Click the Create Or Manage Roles link to start managing roles and user assignments to specific roles. A
screen displays all roles you have defined so far. You have options to add new roles, delete existing roles,
or manage specific roles.

Click the Manage link next to a specific role, and a screen shows all the users currently assigned to that
role (see Figure 28-12). You can find other users by searching for their names, and you can then assign
them to or remove them from a selected role.

1111

Administration and Management

31_576100 ch28.qxd 10/6/05 8:16 PM Page 1111

Figure 28-12

Managing Access Rules
The Security tab provides options for creating and managing access rules. Access rules are applied either
to an entire Web application or to specific folders inside it. Clicking the Create Access Rules link takes
you to a screen where you can view a list of the folders inside your Web application. You can select a
specific folder, select a role or a user, and then choose whether you want to enable access to the selected
folder. Figure 28-13 shows the Add New Access Rule screen.

1112

Chapter 28

31_576100 ch28.qxd 10/6/05 8:16 PM Page 1112

Figure 28-13

Clicking Manage Access Rules on the Security tab takes you to a screen that shows all existing access
rules. You can remove any of these rules and add new ones. You can also readjust the list of access rules
if you want to apply them in a specific order. The Manage Access Rules screen is shown in Figure 28-14.

1113

Administration and Management

31_576100 ch28.qxd 10/6/05 8:16 PM Page 1113

Figure 28-14

The Application Tab
The Application tab provides a number of application-specific configurations, including the configura-
tion of appSettings, SMTP mail server settings, debugging and trace settings, and starting/stopping the
entire Web application.

Managing Application Settings
The left side of the screen shows links for creating and managing application settings. The settings are
stored in the <appSettings> tag. Most ASP.NET programmers are used to manually modifying this tag
in previous versions of ASP.NET. Figure 28-15 shows the Application tab.

1114

Chapter 28

31_576100 ch28.qxd 10/6/05 8:16 PM Page 1114

Figure 28-15

Clicking the Create Application Settings link takes you to a screen where you can provide the name and
the value information. Clicking Manage Application Settings takes you to a screen where you can view
existing settings and edit or delete them. You can also create new setting from this screen.

Managing SMTP Configuration
Click the Configure SMTP E-Mail Settings link to view a screen like the one shown in Figure 28-16. The
configure SMTP mail settings feature is usable if your Web application can send autogenerated e-mails.
Instead of denoting SMTP server configuration in the code, you can spell it out in the configuration file
here in the WAT.

1115

Administration and Management

31_576100 ch28.qxd 10/6/05 8:16 PM Page 1115

Figure 28-16

Specify the server name, port, sender e-mail address, and authentication type.

Managing Tracing and Debugging Information
Clicking the Application tab’s Configure Debugging and Tracing link takes you to a screen (see Figure
28-17) where you can enable or disable tracing and debugging. Select whether you want to display trace
information on each page. You can also specify whether tracking just local requests or all requests, as
well as trace sorting and caching configuration.

1116

Chapter 28

31_576100 ch28.qxd 10/6/05 8:16 PM Page 1116

Figure 28-17

To configure default error pages, you simply click Define Default Error Page on the screen you saw in
Figure 28-15. This takes you to a screen where you can select a URL that is used for redirection in case of
an error condition (see Figure 28-18).

1117

Administration and Management

31_576100 ch28.qxd 10/6/05 8:16 PM Page 1117

Figure 28-18

Taking an Application Offline
You can take your entire Web application offline simply by clicking the Take Application Offline link
(again, refer to Figure 28-15). The link stops the app domain for your Web application. It is useful if you
want to perform a scheduled maintenance for an application that is hosted at an ISP.

The Provider Tab
The final tab in the Web Admin tool is Provider, shown in Figure 28-19. You use it to set up additional
providers and to determine the providers your application will use.

1118

Chapter 28

31_576100 ch28.qxd 10/6/05 8:16 PM Page 1118

Figure 28-19

The Provider page is simple, but it contains an important piece of information: the default data provider
with which your application is geared to work. In Figure 28-19, the application is set up to work with the
AspNetAccessProvider, the default data provider.

The two links on this tab let you set up either a single data provider or a specific data provider for each
of the features in ASP.NET that requires a data provider. If you click the latter, you are presented with
the screen shown in Figure 28-20. It enables you to pick either an Access or SQL server provider sepa-
rately for Membership and Role management.

1119

Administration and Management

31_576100 ch28.qxd 10/6/05 8:16 PM Page 1119

Figure 28-20

As you can see from the screen shots and brief explanations provided here, you can now handle a large
portion of the necessary configurations through a GUI. You no longer have to figure out which setting
must be placed in the web.config file. This functionality becomes even more important as the web
.config file grows. In ASP.NET 1.0/1.1, the web.config file was a reasonable size, but with all the new
features now provided by ASP.NET 2.0, the web.config file has the potential to become very large. The
new GUI-based tools are an outstanding way to manage it.

The MMC ASP.NET Snap-In
If you are using IIS as the basis of your ASP.NET applications, you’ll find the new ASP.NET tab in the
Microsoft Management Console (MMC) a great addition. To access the tab, open IIS and expand the Web
Sites folder, which contains all the sites configured to work with IIS. Remember that not all your Web
sites are configured to work in this manner. It is also possible to create ASP.NET applications that make
use of the new ASP.NET built-in Web server.

Right-click one of the applications in the Web Sites folder and select Properties from the context menu
(see Figure 28-21).

1120

Chapter 28

31_576100 ch28.qxd 10/6/05 8:16 PM Page 1120

Figure 28-21

The MMC opens. Click the ASP.NET tab. A configuration panel similar to the one shown in Figure 28-22
appears.

Selecting one of the application folders enables you to edit the web.config file from the MMC snap-in;
selecting Properties for the default Web site (the root node) lets you edit the machine.config file.

1121

Administration and Management

31_576100 ch28.qxd 10/6/05 8:16 PM Page 1121

Figure 28-22

The panel enables you to change the following items:

❑ ASP.NET version: The .NET Framework version number on which the ASP.NET application is
to run. Be careful about switching versions of the application. Some minor breaking changes
may cause errors in different versions of the framework.

❑ Virtual path: The virtual path of the application. In this example, Visual Studio creates an appli-
cation titled IISDemo with an IISDemo virtual directory.

❑ File location: The location of the file being altered by the MMC console. In most cases, the con-
figuration GUIs alter the web.config file. In this example, the file location is the web.config
file in the IISDemo application.

❑ File creation date: The date when the web.config file was created.

❑ File last modified: The date when the web.config file was last modified either manually, using
the MMC console, or by the ASP.NET Web Site Administration Tool.

In addition, the ASP.NET tab also includes an Edit Global Configuration (if working from the Default
Web Site root) and an Edit Configuration button that provides a tremendous number of modification
capabilities to use in the machine.config or web.config files. Click the button to access the multi-
tabbed GUI titled ASP.NET Configuration Settings. The following sections review each of the tabs avail-
able through this MMC console.

1122

Chapter 28

31_576100 ch28.qxd 10/6/05 8:16 PM Page 1122

General
The General tab enables you to manage connection strings and app settings for your application. Figure
28-23 shows an example of one setting for an application.

Figure 28-23

The General tab has two sections. First is the Connection String Manager. To add a connection string to
your application, just click its Add button. You also can edit or remove existing connection strings.
Figure 28-24 shows the Edit/Add Connection String dialog.

Figure 28-24

Supply a name and connection parameter and click OK to provide your application with a connection
string.

1123

Administration and Management

31_576100 ch28.qxd 10/6/05 8:16 PM Page 1123

The General tab’s other section is App Settings. Click its Add or Edit button, and the Edit/Add
Application Settings dialog opens (see Figure 28-25).

Figure 28-25

After you enter a key and value pair, click OK; the settings appear in the list in the main dialog. Then
you can edit or delete the settings from the application.

Custom Errors
The Custom Errors tab (see Figure 28-26) enables you to add custom error pages or redirect users to par-
ticular pages when a specific error occurs in the application.

Figure 28-26

1124

Chapter 28

31_576100 ch28.qxd 10/6/05 8:16 PM Page 1124

The tab allows you to work with the following items:

❑ Custom error mode: A drop-down list applies custom error modes for particular users of the
application. The default option is Remote Only, which ensures that errors are redirected only for
users who are on a remote machine. The other settings include On, which turns on error redirec-
tion for all users, and Off, which turns off error redirecting.

❑ Default redirect URL: The URL to which all errors are redirected.

❑ Inherited custom errors: All the errors that have been inherited from server defaults. These can
be redirections for custom errors that are set in the machine.config file and all parent web
.config files.

❑ Local custom errors: The errors that are set by you for this particular application. Error redirec-
tions are set using a name/value pair for the Status Code/Redirect URL.

Authorization
The MMC’s Authorization tab enables you to authorize specific users or groups for the application (see
Figure 28-27).

Figure 28-27

1125

Administration and Management

31_576100 ch28.qxd 10/6/05 8:16 PM Page 1125

This dialog contains two items:

❑ Inherited authorization rules: All the authorization rules inherited from server defaults. These
can be roles that are established in the machine.config file of the server.

❑ Local authorization rules: The authorization rules that you set for this particular application.

From this dialog, you can add, edit, or remove roles. Click the Add button and the Edit Rule dialog
shown in Figure 28-28 appears.

Figure 28-28

You can allow or deny users access to the application by using the Edit Rule dialog. To use this feature,
click the appropriate option in the Rule Type section.

The Verbs section enables you to apply a specific rule to those end users retrieving the page via all possi-
ble means (HTTP-POST or HTTP-GET), or to cover only the specific verbs you want. Remember that the
verb specifies how the request is actually made. The possible options specify that the request can be
made using either HTTP-POST or HTTP-GET.

The Users and Roles section enables you to choose to whom you want the rule applied: all users that
come to the site, anonymous users only, specific users, or users in specific groups.

Authentication
The Authentication tab (see Figure 28-29) enables you to modify how your application authenticates
users for later authorization.

1126

Chapter 28

31_576100 ch28.qxd 10/6/05 8:16 PM Page 1126

Figure 28-29

The dialog contains many options because you can work with the authorization of your end users in so
many ways. The following list describes some of the items in this dialog:

❑ Authentication Settings: Here’s where you set the authentication mode of your application.
The options in the drop-down list include Windows, Forms, Passport, or None. If you select
Forms, the grayed-out options are available and enable you to modify all the settings that deter-
mine how forms authentication is applied.

❑ Membership: You can tie the membership process to one of the available data providers avail-
able on your server. Click the Manage Providers button to add, edit, or remove providers.

❑ Roles: You can enable role-based management by checking the check box. From here, you can
also tie the role management capabilities to a particular data provider.

Clicking the Manage Providers button opens the Provider Settings dialog (see Figure 28-30), which
enables you to work with the data providers on the server.

1127

Administration and Management

31_576100 ch28.qxd 10/6/05 8:16 PM Page 1127

Figure 28-30

From the Provider Settings dialog, you can add, edit, or remove providers. You can also edit the settings
of a particular provider. To edit any of the options in the dialog, just highlight the property that you
want to change and click the Edit button. A new dialog pops up, which enables you to make changes.

Application
Use the Application tab to make more specific changes to the pages in the context of your application.
From this dialog, shown in Figure 28-31, you can change how your pages are compiled and run. You can
also make changes to global settings in your application.

1128

Chapter 28

31_576100 ch28.qxd 10/6/05 8:16 PM Page 1128

Figure 28-31

The dialog provides you with a wealth of options for modifying how the pages are run in a specific
application, as well as how your applications, in general, are built and run. The following list briefly
describes some of these options:

❑ Common Compilation, Page, and Runtime Settings: Includes a number of items that are very
page-specific. From the first drop-down list, you can select the default language of your applica-
tion. The available options include all the Microsoft .NET–compliant languages — C#, VB, JS,
VJ#, and CPP. Other settings enable you to set the default theme or master page that ASP.NET
pages use during construction.

❑ Globalization Settings: Enables you to set the default encodings and the cultures for your
application.

❑ Identity Settings: Enables you to run the ASP.NET worker-process under a specific user
account.

State Management
ASP.NET applications, being stateless in nature, are highly dependent on how state is stored. The State
Management tab (see Figure 28-32) enables you to change a number of different settings that determine
how state management is administered.

1129

Administration and Management

31_576100 ch28.qxd 10/6/05 8:16 PM Page 1129

Figure 28-32

You can apply state management to your applications in a number of ways, and this dialog allows for a
number of different settings — some of which are enabled or disabled based on what is selected. The fol-
lowing list describes the items available in the Session State Settings section:

❑ Session state mode: Determines how the sessions are stored by the ASP.NET application. The
default option (shown in Figure 28-32) is InProc. Other options include Off, StateServer, and
SQLServer. Running sessions in-process (InProc) means that the sessions are stored in the same
process as the ASP.NET worker process. Therefore, if IIS is shut down and then brought up
again, all the sessions are destroyed and unavailable to end users. StateServer means that ses-
sions are stored out-of-process by a Windows service called ASPState. SQLServer is by far the
most secure way to deal with your sessions — it stores them directly in SQL Server itself.
StateServer is also the least performance-efficient method.

❑ Cookieless mode: Changes how the identifiers for the end user are stored. The default setting
uses cookies (UseCookies). Other possible settings include UseUri, AutoDetect, and
UseDeviceProfile.

❑ Session timeout: Sessions are stored for only a short period of time before they expire. For
years, the default has been 20 minutes. Modifying the value here changes how long the sessions
created by your application are valid.

1130

Chapter 28

31_576100 ch28.qxd 10/6/05 8:16 PM Page 1130

Locations
The Locations tab allows you to specify configuration details for a particular folder or file in the web
.config file. There may be cases where you are interested in applying specific details to only a file or
folder using the <location> element in the web.config file. To accomplish this, click the Add button
in the dialog and simply use the folder name (e.g., MyFolder) or the file (e.g., Admin.aspx) whose
behavior you are interested in controlling. Once added, you can then highlight that added item and click
the Edit Configuration button to launch another dialog that allows you to apply configuration settings to
only the specified item. Figure 28-33 shows the Locations tab.

Figure 28-33

If you are an administrator of ASP.NET applications, gone are the days when you were required to go to
XML files to fiddle with the settings. Fiddling is an error-prone method of administration and is effectively
eliminated through the new administration GUIs — one of which is the new ASP.NET MMC snap-in.

1131

Administration and Management

31_576100 ch28.qxd 10/6/05 8:16 PM Page 1131

Summary
This chapter showed you some of the new management tools that come with the latest release of
ASP.NET. These tools make the ever-increasing size of the web.config file more manageable because
they take care of setting the appropriate values in the application’s configuration file.

The ASP.NET snap-in to the Microsoft Management Console is a welcome addition for managing appli-
cations that are configured to work with IIS. The ASP.NET Web Site Administration Tool provides even
more value to administrators and developers by enabling them to remotely manage settings.

1132

Chapter 28

31_576100 ch28.qxd 10/6/05 8:16 PM Page 1132

Packaging and Deploying
ASP.NET Applications

Packaging and deploying ASP.NET applications are topics that usually receive little attention. This
chapter is going to take a more in-depth look at how you can package and deploy your ASP.NET
applications after they are built. It is rare (at least, it should be) that you build your ASP.NET
applications on a production server. Usually, after you have built your ASP.NET application on a
development computer, you deploy the finished product to a production server.

An important reason to consider the proper packaging and deploying of your ASP.NET applica-
tions is that many applications are built as either saleable products, starter kits, or solutions. You
allow complete strangers to download and install these products in their own environments —
environments that you have absolutely no control over. If this is the case, it is ideal to give the con-
sumer a single installer file that ensures proper installation of the application in any environment.

Before you start, you should understand the basics of packaging and deploying ASP.NET applica-
tions. In the process of packaging your ASP.NET applications, you are putting your applications
into a package and utilizing a process of deployment that is initiated through a deployment proce-
dure, such as using a Windows installer.

The nice thing about the packaging and deployment process in ASP.NET 2.0 is that it is even easier
than in previous versions of ASP.NET.

Deployment Pieces
So what are you actually deploying? ASP.NET contains a lot of pieces that are all possible parts of
the overall application and need to be deployed with the application in order for it to run properly.
The following list details some of the items that are potentially part of your ASP.NET application
and need deployment consideration when you are moving your application:

32_576100 ch29.qxd 10/6/05 8:14 PM Page 1133

❑ .aspx pages

❑ The code-behind pages for the .aspx pages (.aspx.vb or .aspx.cs files)

❑ User controls (.ascx)

❑ Web service files (.asmx and .wsdl files)

❑ .htm or .html files

❑ Image files such as .jpg or .gif

❑ ASP.NET system folders such as App_Code and App_Themes

❑ JavaScript files (.js)

❑ Cascading Style Sheets (.css)

❑ Configuration files such as the web.config file

❑ .NET components and compiled assemblies

❑ Data files such as .mdb files

Steps to Take before Deploying
Before deploying your ASP.NET Web applications, you should take some basic steps to ensure that your
application is ready for deployment. These steps are often forgotten and are mentioned here to remind
you of how you can ensure that your deployed application performs at its best.

The first step you should take is to turn off debugging in the web.config file. You do this by setting the
debug attribute in the <compilation> element to false, as shown in Listing 29-1.

Listing 29-1: Setting debug to false before application deployment

<configuration xmlns=”http://schemas.microsoft.com/.NetConfiguration/v2.0”>
<system.web>

<compilation debug=”false” />

</system.web>
</configuration>

By default, most developers set the debug attribute to true when developing their applications. Doing
this inserts debug symbols into the compiled ASP.NET pages. These symbols degrade the performance
of any application. After the application is built and ready to be deployed, it is unnecessary to keep these
debug symbols in place.

The second step is to build your application in Release mode. You can accomplish this by changing the
Active Solution Configuration from Debug to Release through the drop-down list in the Visual Studio
menu. This is illustrated in Figure 29-1.

1134

Chapter 29

32_576100 ch29.qxd 10/6/05 8:14 PM Page 1134

Figure 29-1

Methods of Deploying Web Applications
Remember that deployment is the last step in a process. The first is setting up the program — packaging
the program into a component that is best suited for the deployment that follows. You can actually
deploy a Web application in a number of ways. You can use the XCopy capability that simply wows
audiences when demonstrated (because of its simplicity). A second method is to use Visual Studio 2005’s
capability to copy a Web site from one location to another using the Copy Web Site feature, as well as an
alternative method that uses Visual Studio to deploy a precompiled Web application. The final method
uses Visual Studio to build an installer program that can be launched on another machine. After review-
ing each of the available methods, you can decide which is best for what you are trying to achieve. Start
by looking at the simplest of the three methods: XCopy.

Using XCopy
Because of the nature of the .NET Framework, it is considerably easier to deploy .NET applications now
than it was to deploy applications constructed using Microsoft’s predecessor technology — COM.
Applications in .NET compile down to assemblies, and these assemblies contain code that is executed by
the Common Language Runtime (CLR). The great thing about assemblies is that they are self-describing.
All the details about the assembly are stored within the assembly itself. In the Windows DNA world,
COM stored all its self-describing data within the server’s registry, so installing (as well as uninstalling)
COM components meant shutting down IIS. Because a .NET assembly stores this information within
itself, XCOPY functionality is possible. Installing an assembly is as simple as copying it to another
server, and you don’t need to stop or start IIS while this is going on.

We mention XCOPY here because it is the command-line way of basically doing a copy-and-paste of the
files you want to move. XCOPY, however, provides a bit more functionality than just a copy-and-paste,
as you will see shortly. XCOPY enables you to move files, directories, and even entire drives from one
point to another.

The default syntax of the XCOPY command is as follows:

xcopy [source] [destination] [/w] [/p] [/c] [/v] [/q] [/f] [/l] [/g]
[/d[:mm-dd-yyyy]] [/u] [/i] [/s [/e]] [/t] [/k] [/r] [/h] [{/a|/m}] [/n] [/o]
[/x] [/exclude:file1[+[file2]][+file3]] [{/y|/-y}] [/z]

1135

Packaging and Deploying ASP.NET Applications

32_576100 ch29.qxd 10/6/05 8:14 PM Page 1135

To see an example of using the XCOPY feature, suppose you are working from your developer machine
(C:\) and want to copy your ASP.NET application to a production server (Z:\). In its simplest form, the
following command would do the job:

xcopy c:\Websites\WebSite1 z:\Websites\ /f /e /k /h

This move copies the files and folders from the source drive to the destination drive. Figure 29-2 shows
an example of this use on the command line.

Figure 29-2

When you copy files using XCOPY, be aware that this method does not allow for the automatic creation
of any virtual directories in IIS. To copy a new Web application, you create a virtual directory in the des-
tination server and associate this virtual directory with the application you are copying. It is a simple
process, but you must take these extra steps to finalize the site copy actions.

You can provide a number of parameters to this XCOPY command to get it to behave as you want it to.
The following table details these parameters.

Parameter Description

/w Displays the message: Press any key to begin copying file(s). It waits for
your response to start the copying process.

/p Asks for a confirmation on each file being copied. This is done in a file-by-file
manner.

/c Ignores errors that might occur in the copying process.

/v Performs a verification on the files being copied to make sure they are identical
to the source files.

/q Suppresses any display of the XCOPY messages.

/f Displays the file names for the source and destination files while the copying
process is occurring.

/l Displays a list of the files to be copied to the destination drive.

/g Builds decrypted files for the destination drive.

1136

Chapter 29

32_576100 ch29.qxd 10/6/05 8:14 PM Page 1136

Parameter Description

/d When used as simply /d, the only files copied are those newer than the existing
files located in the destination location. Another alternative is to use
/d[:mm-dd-yyyy], which copies files that have been modified either on or after
the specified date.

/u Copies only source files that already exist in the destination location.

/i If what is being copied is a directory or a file that contains wildcards and the
same item does not exist in the destination location, a new directory is created.
The XCOPY process also copies all the associated files into this directory.

/s Copies all directories and their subdirectories only if they contain files. All empty
directories or subdirectories are not copied in the process.

/e Copies all subdirectories regardless of whether these directories contain files.

/t Copies the subdirectories only and not the files they might contain.

/k By default, the XCOPY process removes any read-only settings that might be
contained in the source files. Using /k ensures that these read-only settings
remain in place during the copying process.

/r Copies only the read-only files to the destination location.

/h Specifies that the hidden and system files, which are usually excluded by default,
are included.

/a Copies only files that have their archive file attributes set, and leaves the archive
file attributes in place at the XCOPY destination.

/m Copies only files that have their archive file attributes set, and turns off the
archive file attributes.

/n Copies using the NTFS short file and short directory names.

/o Copies the discretionary access control list (DACL) in addition to the files.

/x Copies the audit settings and the system access control list (SACL) in addition to
the files.

/exclude Allows you to exclude specific files. The construction used for this is
exclude:File1.aspx+File2.aspx+File3.aspx.

/y Suppresses any prompts from the XCOPY process that ask whether to overwrite
the destination file.

/-y Adds prompts in order to confirm an overwrite of any existing files in the desti-
nation location.

/z Copies files and directories over a network in restartable mode.

/? Displays help for the XCOPY command.

Using XCOPY is an easy way to move your applications from one server to another with little work on
your part. If you have no problem setting up your own virtual directories, this mode of deployment
should work just fine for you.

1137

Packaging and Deploying ASP.NET Applications

32_576100 ch29.qxd 10/6/05 8:14 PM Page 1137

When the Web application is copied (and if placed in a proper virtual directory), it is ready to be called
in a browser.

Using the VS Copy Web Site Option
The next option for copying a Web site is to use a GUI provided by Visual Studio 2005. This GUI enables
you to copy Web sites from your development server to either the same server or a remote server (as you
can when you use the XCOPY command).

You can pull up this Copy Web Site dialog in Visual Studio in two ways. The first way is to click in the
Copy Web Site icon in the Visual Studio Server Explorer. This icon is shown in Figure 29-3.

Figure 29-3

The other way to open the Copy Web Site GUI is to choose Website ➪ Copy Web Site from the Visual
Studio menu. Using either method pulls up the Copy Web Site GUI in the Document window, as illus-
trated in Figure 29-4.

Nest Related files

Properties Copy Web Site

ASP.NET Configuration

View Class Diagram

Refresh

1138

Chapter 29

32_576100 ch29.qxd 10/6/05 8:14 PM Page 1138

Figure 29-4

From this GUI, you can click the Connect To a Remote Server button (next to the Connections text box).
This action brings up the Open Web Site dialog shown in Figure 29-5.

1139

Packaging and Deploying ASP.NET Applications

32_576100 ch29.qxd 10/6/05 8:14 PM Page 1139

Figure 29-5

As you can see from this dialog, you have a couple of options to connect to and copy your Web applica-
tion. These options include the following:

❑ File System: This option allows you to navigate through a file explorer view of the computer. If
you are going to install on a remote server from this view, you must have already mapped a
drive to the installation location.

❑ Local IIS: This option enables you to use your local IIS in the installation of your Web applica-
tion. From this part of the dialog, you can create new applications as well as new virtual directo-
ries directly. You can also delete applications and virtual directories from the same dialog. The
Local IIS option does not permit you to work with IIS installations on any remote servers.

❑ FTP Site: This option enables you to connect to a remote server using FTP capabilities. From
this dialog, you can specify the server that you want to contact using a URL or IP address, the
port you are going to use, and the directory on the server that you will work with. From this
dialog, you can also specify the username and password that may be required to access the
server via FTP. Note that if you access this server with this dialog via FTP and provide a user-
name and password, the items are transmitted in plain text.

❑ Remote Site: This option enables you to connect to a remote site using FrontPage Server
Extensions. From this option in the dialog, you can also choose to connect to the remote server
using Secure Sockets Layer (SSL).

After being connected to a server, you can copy the contents of your Web application to it by selecting all or
some of the files from the Source Web Site text area. After you select these files in the dialog, some of the
movement arrows become enabled. Clicking the right-pointing arrow copies the selected files to the desti-
nation server. In Figure 29-6 you can see that, indeed, the files have been copied to the remote destination.

1140

Chapter 29

32_576100 ch29.qxd 10/6/05 8:14 PM Page 1140

Figure 29-6

If you pull up the same copy dialog later, after working on the files, you see an arrow next to the files
that have been changed in the interim and are, therefore, newer than those on the destination server (see
Figure 29-7).

Figure 29-7

1141

Packaging and Deploying ASP.NET Applications

32_576100 ch29.qxd 10/6/05 8:14 PM Page 1141

These arrows enable you to select only the files that must be copied again and nothing more. All the
copying actions are recorded in a log file. You can view the contents of this log file from the Copy Web
Site dialog by clicking the View Log button at the bottom of the dialog. This pulls up the CopyWebSite
.log text file. From the copy that you made previously, you can see the transaction that was done. An
example log entry is shown here:

Copy from ‘C:\Documents and Settings\Billy\My Documents\Visual Studio
2005\WebSites\Wrox’ to ‘C:\Documents and Settings\Billy\My Documents\Visual Studio
2005\WebSites\Copy Here’ started at 1/29/2006 11:22:30 AM.

Create folder App_Data in the remote Web site.

Create folder App_Code in the remote Web site.

Copy file Customers.xml from source to remote Web site.
Copy file Customers_Display.aspx from source to remote Web site.
Copy file Default.aspx from source to remote Web site.
Copy file Web.config from source to remote Web site.

App_Code
Copy file MyClass.vb from source to remote Web site.

Copy from ‘C:\Documents and Settings\Billy\My Documents\Visual Studio
2005\WebSites\Wrox’ to ‘C:\Documents and Settings\Billy\My Documents\Visual Studio
2005\WebSites\Copy Here’ is finished. Completed at 1/29/2006 11:22:30 AM.

Deploying a Precompiled Web Application
In addition to using Visual Studio to copy a Web application from one location to another, it is also pos-
sible to use this IDE to deploy a precompiled application. The process of precompiling a Web application
is explained in Chapter 3. ASP.NET 2.0 introduces a new precompilation process that allows for a pro-
cess referred to as precompilation for deployment.

What happens in the precompilation for deployment process is that each page in the Web application is
built and compiled into a single application DLL and some placeholder files. These files can then be
deployed together to another server and run from there. The nice thing about this precompilation process
is that it obfuscates your code by placing all page code (as well as the page’s code-behind code) into the
DLL, thereby making it more difficult for your code to be stolen or changed if you select this option in the
compilation process. This is an ideal situation when you are deploying applications your customers are
paying for, or applications that you absolutely don’t want changed in any manner after deployment.

Chapter 3 showed you how to use the command-line tool aspnet_compiler.exe to accomplish the
task of precompilation. Although this is a great method for precompiling your Web applications and
deploying them to remote servers, you can also use Visual Studio 2005 to accomplish the precompilation
and deployment process.

To accomplish this task, open up the project you want to deploy and get the application ready for
deployment by turning off the debugging capabilities as described earlier in the chapter. Then pull up
the precompilation and deployment dialog by choosing Build ➪ Publish in the Visual Studio menu. This
opens the Publish Web Site dialog shown in Figure 29-8.

1142

Chapter 29

32_576100 ch29.qxd 10/6/05 8:14 PM Page 1142

Figure 29-8

Using the Browse (...) button in this dialog, you can choose any remote location to which you want to
deploy the application. As in earlier examples, your options are a file system location, a place in the local
IIS, a location accessed using FTP, or a location accessed via FrontPage Server Extensions.

Other options in this dialog include the Allow This Precompiled Site to be Updateable check box. When
checked, the site will be compiled and copied without any changes to the .aspx pages. This means that
after the precompilation process, you can still make minor changes to the underlying pages and the
application will work and function as normal. If this check box is unchecked, all the code from the pages
is stripped out and placed inside a single DLL. In this state, the application is not updateable because it
is impossible to update any of the placeholder files from this compilation process.

Another option in this dialog is to assign a strong name to the DLL that is created in this process. You
can select the appropriate check box and assign a key to use in the signing process. The created DLL
from the precompilation will then be a strong-assembly — signed with the key of your choice.

When you are ready to deploy, click OK in the dialog and then the open application is built and pub-
lished. Published means that the application is deployed to the specified location. Looking at this loca-
tion, you can see that a bin directory has now been added that contains the precompiled DLL, which is
your Web application. This is illustrated in Figure 29-9.

1143

Packaging and Deploying ASP.NET Applications

32_576100 ch29.qxd 10/6/05 8:14 PM Page 1143

Figure 29-9

In this state, the code contained in any of the ASP.NET-specific pages is stripped out and placed inside
the DLL. The files that you see are actually just placeholders that the DLL needs for reference.

Building an Installer Program
The final option you should look at is how to use Visual Studio to build an installation program. After
the program is constructed, a consumer can run the installation program on a server where it performs a
series of steps to install the Web application.

Packaging your Web application into an installer program works in many situations. For instance, if you
sell your Web application, one of the simpler ways for the end user to receive the application is as an
executable that can be run on the his computer and installed — all without much effort on his part.

The Windows Installer
The Windows Installer service was introduced with Windows 2000, although it is also available in
Windows XP and Windows Server 2003. The Windows Installer service can also be used on previous

1144

Chapter 29

32_576100 ch29.qxd 10/6/05 8:14 PM Page 1144

versions of Windows (prior to Windows 2000) if desired. The Windows Installer service was introduced
to make the installation process for your Windows-based applications as easy as possible.

You use the Windows Installer technology not only for ASP.NET applications but also for any type of
Windows-based application. The Windows Installer service works by creating a set of rules that deter-
mine how the application is to be installed. These rules are packaged into a Windows Installer Package
File that uses the .msi file extension.

The Windows Installer service considers all applications to be made up of three parts:

❑ Products: The large-bucket item being installed, also known as the application itself. An exam-
ple of this is the ASP.NET Web application.

❑ Features: Features are subsets of products. Products are made up of one or more features.

❑ Components: Components make up features. A feature is made up of one or more components.
A single component can be utilized by several features in the product.

The Windows Installer service is a powerful offering and can be modified in many ways. Not only does
the Windows Installer technology detail the product, features, and components of what is to be installed,
but it can also take other programmatic actions or show a sequence of user interfaces as the installation
process proceeds. For detailed information on the Windows Installer, be sure to view the MSDN docu-
mentation on the Windows Installer SDK.

With that said, working with the Windows Installer SDK is complicated at best; that was the reason for
the release of the Visual Studio Installer (VSI) as an add-on with Visual Studio 6. This addition made the
steps for building an installer much easier to follow. Visual Studio 2005 continues to expand on this
capability. You have quite a few options for the deployment projects you can build with Visual Studio
2005. Such projects include the following:

❑ Setup Project: This project type allows you to create a standard Windows Installer setup for a
Windows application.

❑ Web Setup Project: This is the project type covered in this chapter. It’s the type of setup project
you use to create an installer for an ASP.NET Web application.

❑ Merge Module Project: This project type creates a merge module similar to a cabinet file. A
merge module, like a cabinet file, allows you to package a group of files for distribution but not
for installation. The idea is that you use a merge module file with other setup programs. This
project type produces a file type with an extension of .msm.

❑ Setup Wizard: This selection actually gives you a wizard to assist you through one of the other
defined project types.

❑ Cab Project: This project type creates a cabinet file (.cab) that packages a group of files for dis-
tribution. It is similar to a merge module file, but the cabinet file is different in that it allows for
installation of the files contained in the package.

❑ Smart Device Cab Project: This new project type allows for the creation of a cabinet file that is
installed on a smart device instead of on a typical operating system.

Although you have a number of different setup and deployment project types at your disposal, the Web
Setup Project is the only one covered in this chapter because it is the project you use to build an installer
for an ASP.NET Web application.

1145

Packaging and Deploying ASP.NET Applications

32_576100 ch29.qxd 10/6/05 8:14 PM Page 1145

Actions of the Windows Installer
You might already be thinking that using the Windows Installer architecture for your installation pro-
gram seems a lot more complicated than using the methods shown previously in this chapter. Yes, it is a
bit more complicated — mainly because of the number of steps required to get the desired result; but in
the end, you are getting a lot more control over how your applications are installed.

Using an installer program gives you programmatic logic over how your applications are installed. You
also gain other advantages, such as:

❑ The capability to check if the .NET Framework is installed, as well as which version of the
Framework is installed

❑ The capability to read or write values to the registry

❑ The capability to collect information from the end user during the installation process

❑ The capability to run scripts

❑ The capability to include such features such as dialogs and splash screens during the installa-
tion process

Creating a Basic Installation Program
You can apply a tremendous amount of customization to the installation programs you build. Let’s start,
however, by looking at how to create a basic installation program for your ASP.NET Web application. To
create an installer for your application, first open up the project for which you want to create a deploy-
ment project in Visual Studio. The next step is to add an installer program to the solution. To do this, you
add the setup program as a new project contained within the same solution. Choose File ➪ New ➪

Project from the Visual Studio menu. This launches the New Project dialog.

From the New Project dialog, first expand Other Project Types from the left-hand pane in the dialog and
then select Setup and Deployment. This provides you with a list of all the available setup and deploy-
ment projects in Visual Studio. For our purposes, select Web Setup Project (shown in Figure 29-10).

Figure 29-10

1146

Chapter 29

32_576100 ch29.qxd 10/6/05 8:14 PM Page 1146

Clicking OK in this dialog adds the Web Setup Project type to your solution. It uses the default name of
WebSetup1. Visual Studio also opens up the File System Editor in the document window, which is
shown in Figure 29-11.

Figure 29-11

The File System Editor shows a single folder: the Web Application Folder. This is a representation of
what is going to be installed on the target machine. The first step is to add the files from the WebSite1
project to this folder. You do this by choosing Project ➪ Add ➪ Project Output from the Visual Studio
menu. This pulls up the Add Project Output Group dialog. This dialog (shown in Figure 29-12) enables
you to select the items you want to include in the installer program.

1147

Packaging and Deploying ASP.NET Applications

32_576100 ch29.qxd 10/6/05 8:14 PM Page 1147

Figure 29-12

From this dialog, you can see that the project, Wrox, is already selected. Highlight the Content Files
option and click OK. This adds all the files from the Wrox project to the WebSetup1 installer program.
This addition is then represented in the File System Editor as well.

After the files are added to the installer program, the next step is to click the Launch Conditions Editor
button in the Solution Explorer (see Figure 29-13) to open the editor. The Launch Conditions Editor is
also displayed in Visual Studio’s document window. From this editor, you can see that a couple of condi-
tions are already defined for you. Obviously, for Web applications, it is important that IIS be installed.
Logically, one of the defined conditions is that the program must perform a search to see if IIS is
installed before installing the application. You should also stipulate that the installation server must
have version 2.0 of the .NET Framework installed.

1148

Chapter 29

32_576100 ch29.qxd 10/6/05 8:14 PM Page 1148

Figure 29-13

To establish this condition, right-click the Requirements On Target Machine node. Then select Add .NET
Framework Launch Condition (as shown in Figure 29-14).

Figure 29-14

Registry
Editor

Launch
Conditions Editor

Properties User Interface Editor

Custom Actions
Editor

File Types
Editor

File System
Editor

1149

Packaging and Deploying ASP.NET Applications

32_576100 ch29.qxd 10/6/05 8:14 PM Page 1149

This adds the .NET Framework requirement to the list of launch conditions required for a successful
installation of the Web application.

As a final step, highlight the WebSetup1 program in the Visual Studio Solution Explorer so you can
modify some of the properties that appear in the Properties window. For now, you just change some of
the self-explanatory properties, but you will review these again later in this chapter. For this example,
however, just change the following properties:

❑ Author: Wrox

❑ Description: This is a test project.

❑ Manufacturer: Wrox

❑ ManufacturerUrl: http://www.wrox.com

❑ SupportPhone: 1-800-555-5555

❑ SupportUrl: http://www.wrox.com/support/

Now the installation program is down to its simplest workable instance. Make sure Release is selected as
the active solution configuration in the Visual Studio toolbar; then build the installer program by choos-
ing Build ➪ Build WebSetup1 from the menu.

Looking in C:\Documents and Settings\Administrator\My Documents\Visual Studio\
Projects\Wrox\WebSetup1\Release, you find the following files:

❑ Setup.exe: This is the installation program. It is meant for machines that don’t have the
Windows Installer service installed.

❑ WebSetup1.msi: This is the installation program for those that have the Windows Installer
service installed on their machine.

That’s it! You now have your ASP.NET Web application wrapped up in an installation program that can
be distributed in any manner you want. It can then be run and installed automatically for the end user.
Take a quick look in the following section at what happens when the consumer actually fires it up.

Installing the Application
Installing the application is a simple process (as it should be). Double-click the WebSetup1.msi file to
launch the installation program. This pulls up the Welcome screen shown in Figure 29-15.

1150

Chapter 29

32_576100 ch29.qxd 10/6/05 8:14 PM Page 1150

Figure 29-15

From this dialog, you can see that the name of the program being installed is WebSetup1. Clicking Next
gives you the screen shown in Figure 29-16.

1151

Packaging and Deploying ASP.NET Applications

32_576100 ch29.qxd 10/6/05 8:14 PM Page 1151

Figure 29-16

This screen tells you what you are installing (the Default Web Site) as well as the name of the virtual
directory created for the deployed Web application. The consumer can feel free to change the name of
the virtual directory in the provided text box. A button in this dialog allows for an estimation of the disk
cost (space required) for the installed application. The next series of screens install the WebSetup1 appli-
cation (shown in Figure 29-17).

1152

Chapter 29

32_576100 ch29.qxd 10/6/05 8:14 PM Page 1152

Figure 29-17

After the application is installed, you can find the WebSetup1 folder and application files located in
the C:\Inetpub\wwwroot folder (within IIS). The application can now be run on the server from this
location.

Uninstalling the Application
To uninstall the application, the consumer has a couple of options. First, he can relaunch the .msi file
and use the option to either repair the current installation or to remove the installation altogether (as
shown in Figure 29-18).

1153

Packaging and Deploying ASP.NET Applications

32_576100 ch29.qxd 10/6/05 8:14 PM Page 1153

Figure 29-18

The other option is to pull up the Add/Remove Programs dialog from the server’s Control Panel. On the
Control Panel, you see WebSetup1 listed (as shown in Figure 29-19).

Figure 29-19

1154

Chapter 29

32_576100 ch29.qxd 10/6/05 8:14 PM Page 1154

This dialog holds information about the size of the installed application and how often the application is
used. Clicking the support link pulls up the Support Info dialog, which shows the project’s properties
that you entered a little earlier (see Figure 29-20).

Figure 29-20

From the Add/Remove Programs dialog, you can remove the installation by clicking the Remove button
of the selected program.

Looking More Closely at Installer Options
The Windows Installer service easily installs a simple ASP.NET Web application. The installer takes care
of packaging the files into a nice .msi file from which it can then be distributed. Next, the .msi file takes
care of creating a virtual directory and installing the application files. The installer also makes it just as
easy to uninstall the application from the server. All these great services are provided with very little
work on the user’s part.

Even though this approach addresses almost everything needed for an ASP.NET installer program, the
setup and deployment project for Web applications provided by Visual Studio really provides much
more in the way of options and customizations. This next section looks at the various ways you can
work with modifying the installer program.

Working with the Deployment Project Properties
You can work with the project properties of the installer from Visual Studio in several ways. The first
way is by right-clicking the installer project from the Solution Explorer of Visual Studio and selecting
Properties from the menu. This pulls up the WebSetup1 Properties Pages dialog shown in Figure 29-21.

1155

Packaging and Deploying ASP.NET Applications

32_576100 ch29.qxd 10/6/05 8:14 PM Page 1155

Figure 29-21

This dialog has some important settings for your installer application. Notice that, like other typical pro-
jects, this setup and deployment project allows for different active build configuration settings. For
instance, you can have the active build configuration set to either Release or Debug. You can also click
on the Configuration Manager button to get access to configuration settings for all the projects involved.
In addition, this dialog enables you to add or remove build configurations from the project.

The Output File Name
The Output File Name setting lets you set the name of the .msi file that is generated. By default, it is the
name of the project, but you can change this value to anything you want. This section also allows you to
modify the location where the built .msi is placed on the system after the build process occurs.

Package Files
The Package files section of this properties page enables you to specify how the application files are
packaged in the .msi file. The available options include the following:

❑ As loose, uncompressed files: This option builds the project so that a resulting .msi file is cre-
ated without the required application files. Instead, these application files are kept separate
from the .msi file but copied to the same location as the .msi file. With this type of structure,
you must distribute both the .msi file and the associated application files.

❑ In setup file: This option (which is the default option) packages the application files inside the
.msi file. This makes distribution an easy task because only a single file is distributed.

❑ In cabinet file(s): This option packages all the application files into a number of cabinet files.
The size of the cabinet files can be controlled through this same dialog (discussed shortly). This
is an ideal type of installation process to use if you have to spread the installation application
over a number of DVDs, CDs, or floppy disks.

1156

Chapter 29

32_576100 ch29.qxd 10/6/05 8:14 PM Page 1156

Installation URL
Invariably, the ASP.NET applications you build have some component dependencies. In most cases,
your application depends on some version of the .NET Framework. The installation of these dependen-
cies, or components, can be made part of the overall installation process. This process is also referred to
as bootstrapping. Clicking the Prerequisites button next to the Installation URL text box gives you a short
list of available components that are built into Visual Studio in order to bootstrap to the installation pro-
gram you are constructing (see Figure 29-22).

Figure 29-22

As you can see from when you first enter this settings dialog, the .NET Framework 2.0 is enabled by
default, and you check the other components (thereby enabling them) only if your Web application has
some kind of dependency on them.

From this dialog, you can also set how the dependent components are downloaded to the server where
the installation is occurring. The options include downloading from Microsoft, from the server where
the application originated, or from a defined location (URL) specified in the provided text box.

Compression
The Windows Installer service can work with the compression of the application files included in the
build process so that they are optimized for either speed or size. You also have the option to turn off all
compression optimizations. The default setting is Optimized for Speed.

CAB Size
The CAB Size section of the properties page is enabled only if you select In Cabinet File(s) from the
Package Files drop-down list, as explained earlier. If this is selected, it is enabled with the Unlimited
radio button selected. As you can see from this section, the two settings are Unlimited and Custom:

1157

Packaging and Deploying ASP.NET Applications

32_576100 ch29.qxd 10/6/05 8:14 PM Page 1157

❑ Unlimited: This selection means that only a single cabinet file is created. The size of this file is
dependent on the size of the collection of application files in the Web application and the type of
compression selected.

❑ Custom: This selection allows you to break up the installation across multiple cabinet files. If the
Custom radio button is selected, you can enter the maximum size of the cabinet files allowed in
the provided text box. The measure of the number you place in the text box is in kilobytes (KB).

Authenticode Signature
The last option in the WebSetup1 property dialog allows you to provide an Authenticode signature. To
use this option, you select the Authenticode Signature check box. When this is selected, you are asked
for three possible items to complete the process: the certificate file used to sign the package, a private
key file that contains the encryption key used to sign the file, and the timestamp server URL used to pro-
vide the time when the package is signed.

Additional Properties
You learned one place where you can apply settings to the installer program; however, at another place
in Visual Studio you can find even more properties pertaining to the entire installer program. By select-
ing the WebSetup1 installer program in the Solution Explorer, you can work with the installer properties
directly from the Properties window of Visual Studio. The following table lists the properties that appear
in the Properties window.

Property Description

AddRemoveProgramsIcon Defines the location of the icon used in the Add/Remove
Programs dialog found through the system’s Control Panel.

Author The author of the installer. This could be the name of a
company or individual.

Description Allows for a textual description of the installer program.

DetectNewerInstalledVersion Instructs the installer to make a check on the installation
server if a newer version of the application is present. If
one is present, the installation is aborted. The default set-
ting is True (meaning that the check will be made).

Keywords Defines the keywords used when a search is made for an
installer.

Localization Defines the locale for any string resources and the runtime
user interface. An example setting is English (United
States).

Manufacturer Defines the name of the company that built or provided
the installer program.

ManufacturerUrl Defines the URL of the company that built or provided the
installer program.

PostBuildEvent Specifies a command line executed after the build ends.

1158

Chapter 29

32_576100 ch29.qxd 10/6/05 8:14 PM Page 1158

Property Description

PreBuildEvent Specifies a command line executed before the build begins.

ProductCode Defines a string value that is the unique identifier for the
application. An example value is
{885D2E86-6247-4624-9DB1-50790E3856B4}.

ProductName Defines the name of the program being installed.

RemovePreviousVersions Specifies as a Boolean value whether any previous ver-
sions of the application should be uninstalled prior to
installing the fresh version. The default setting is False.

RestartWWWService Specifies as a Boolean value whether or not IIS should be
stopped and restarted for the installation process. The
default value is False.

RunPostBuildEvent Defines when to run the post-build event. The default set-
ting is On successful build. The other possible value is
Always.

SearchPath Defines the path to use to search for any files, assemblies,
merge modules on the development machine.

Subject Allows you to provide additional descriptions for the
application.

SupportPhone Specifies the support telephone number for the installed
program.

SupportUrl Specifies the URL by which the end user can get support
for the installed application.

TargetPlatform Defines the target platform of the installer. Possible values
include x86, x64, and Itanium.

Title Defines the title of the installer program.

UpgradeCode Defines a shared identifier that can be used from build to
build. An example value is
{A71833C7-3B76-4083-9D34-F074A4FFF544}.

Version Specifies the version number of the installer, cabinet file, or
merge module. An example value is 1.0.1.

The following sections look at the various editors provided to help you build and customize the con-
struction of the installer. You can get at these editors by clicking the appropriate icon in the Solution
Explorer in Visual Studio or by choosing View ➪ Editor in the Visual Studio menu. These editors are
explained next.

1159

Packaging and Deploying ASP.NET Applications

32_576100 ch29.qxd 10/6/05 8:14 PM Page 1159

The File System Editor
The first editor that comes up when you create your installer program is the File System Editor. The File
System Editor enables you to add folders and files that are to be installed on the destination server. In
addition to installing folders and files, it also facilitates the creation of shortcuts. This editor is shown in
Figure 29-23.

Figure 29-23

The File System Editor has two sections. The left section is the list of folders to be installed during the
installation process. By default, only the Web Application Folder is shown. Highlighting this folder, or
one of the other folders, gives you a list of properties for that folder in the Properties window of Visual
Studio. The following table details some of the properties you might find in the Properties window.

Property Description

AllowDirectoryBrowsing Allows browsing of the selected directory in IIS. The default
value is False.

AllowReadAccess Specifies whether the selected folder should have Read
access. The default value is True.

AllowScriptSourceAccess Specifies the script source access of the selected folder. The
default value is False.

AllowWriteAccess Specifies whether the selected folder should have Write
access. The default value is False.

ApplicationProtection Defines the IIS Application Protection property for the
selected folder. Possible values include vsdapLow,
vsdapMedium, and vsdapHigh. The default value is
vsdapMedium.

AppMappings Enables you to define the IIS application mappings for the
selected folder.

1160

Chapter 29

32_576100 ch29.qxd 10/6/05 8:14 PM Page 1160

Property Description

DefaultDocument Defines the default document of the selected folder. The
default value is Default.aspx.

ExecutePermissions Defines the IIS Execute Permissions property. Possible
values include vsdepNone, vsdepScriptsOnly,
vsdepScriptsAndExecutables. The default value is
vsdepScriptsOnly.

Index Specifies the IIS Index of this resource property for the
selected folder. The default value is True.

IsApplication Specifies whether an IIS application root is created for the
installed application. The default value is True.

LogVisits Specifies the IIS Log Visits property for the selected folder.
The default value is True.

VirtualDirectory Defines the name of the virtual directory created. The
default value is the name of the project.

Adding Items to the Output
You can add files, folders, and assemblies to the installer output quite easily. To add some of these items
to the output list, right-click the folder and select Add from the menu. You have four choices: Web
Folder, Project Output, File, and Assembly.

If you want to add a custom folder to the output (for example, an Images folder), you can select Web
Folder and provide the name of the folder. This enables you to create the folder structure you want.

If you want to add system folders, you highlight the File System on Target Machine node and then
choose Action ➪ Add Special Folder. This provides you with a large list of folders that are available for
you to add to the installer program. You can also get at this list of folders by simply right-clicking a
blank portion of the left pane of the File System Editor (see Figure 29-24).

1161

Packaging and Deploying ASP.NET Applications

32_576100 ch29.qxd 10/6/05 8:14 PM Page 1161

Figure 29-24

The following table defines the possible folders you can add to the installer structure you are building.

Folders and Menus Description

Common Files Folder Meant for non–system files not shared by multiple
applications.

Common Files (64-bit) Folder Meant for non–system files on a 64-bit machine not
shared by multiple applications.

Fonts Folder Meant for only fonts you want installed on the client’s
machine.

Program Files Folder A Windows Forms application would be a heavy user of
this folder because most applications are installed here.

Program Files (64-bit) Folder A Programs Files folder meant for 64-bit machines.

System Folder Meant for storing files considered shared system files.

System (64-bit) Folder Meant for storing files on 64-bit machines considered
shared system files.

User’s Application Data Folder A hidden folder meant for storing data that is application-
and user-specific.

1162

Chapter 29

32_576100 ch29.qxd 10/6/05 8:14 PM Page 1162

Folders and Menus Description

User’s Desktop Meant for storing files on a user’s desktop (also stores
these files in the My Desktop folder).

User’s Favorites Folder Meant for storing files in a user’s Favorites folder
(browser- specific).

User’s Personal Data Folder Meant for storing personal data specific to a single user.
This is also referred to as the My Documents folder.

User’s Programs Menu Meant for storing shortcuts, which then appear in the
user’s program menu.

User’s Send To Menu Meant for storing files that are presented when a user
attempts to send a file or folder to a specific application
(by right-clicking the folder or file and selecting Send To).

User’s Start Menu Meant for storing files in the user’s Start menu.

User’s Startup Folder Meant for storing files that are initiated whenever a user
logs into his machine.

User’s Template Folder Meant for storing templates (applications like
Microsoft’s Office).

Windows Folder Meant for storing files in the Windows root folder.
These are usually system files.

Global Assembly Cache Folder Meant for storing assemblies that can then be utilized
by all the applications on the server (shared assemblies).

Custom Folder Another way of creating a unique folder.

Web Custom Folder Another way of creating a unique folder that also con-
tains a bin folder.

Creating a Desktop Shortcut to the Web Application
For an example of using one of these custom folders, take a look at placing a shortcut to the Web applica-
tion on the user’s desktop. The first step is to right-click on a blank portion of the left-hand pane in the
File System Editor and choose Add Special Folder ➪ User’s Desktop. This adds that folder to the list of
folders presented in the left-hand pane.

Because you want to create a desktop shortcut to the Web Application Folder and not to the desktop
itself, the next step is to right-click the Web Application folder and select Create Shortcut to Web
Application Folder. The created shortcut appears in the right-hand pane. Right-click the shortcut and
rename it to something a little more meaningful, such as Wrox Application. Because you don’t want to
keep the shortcut in this folder, drag the shortcut from the Web Application Folder and drop it onto the
User’s Desktop folder.

With this structure in place, this installer program not only installs the application (as was done previ-
ously), but it also installs the application’s shortcut on the user’s desktop.

1163

Packaging and Deploying ASP.NET Applications

32_576100 ch29.qxd 10/6/05 8:14 PM Page 1163

The Registry Editor
The next editor is the Registry Editor. This editor enables you to work with the client’s registry in an
easy and straightforward manner. Using this editor, you can perform operations such as creating new
registry keys, providing values for already existing registry keys, and importing registry files. The
Registry Editor is presented in Figure 29-25.

Figure 29-25

From this figure, you can see that the left-hand pane provides the standard registry folders, such as
HKEY_CLASSES_ROOT and HKEY_LOCAL_MACHINE, as well as others. Right-clicking one of these
folders, you can add a new key from the menu selection. This creates a new folder in the left-hand pane
where it is enabled for renaming. By right-clicking this folder, you can add items such as those illus-
trated in Figure 29-26.

Figure 29-26

As you can see in the figure, you can add items such as the following:

❑ Key

❑ String Value

❑ Environment String Value

❑ Binary Value

❑ DWORD Value

Selecting String Value allows you to apply your settings for this in the right-hand pane as illustrated in
Figure 29-27.

1164

Chapter 29

32_576100 ch29.qxd 10/6/05 8:14 PM Page 1164

Figure 29-27

The other values work in a similar manner.

The File Types Editor
All files on a Windows operating system use file extensions to uniquely identify themselves. A file such
as Default.aspx, for example, uses the file extension .aspx. This file extension is then associated with
ASP.NET. Another example is .xls. This file extension is associated with Microsoft Excel. When some-
one attempts to open an .xls file, the file is passed to the Excel program because of mappings that have
been made on the computer to associate these two entities.

Using the File Types Editor in Visual Studio, you can also make these mappings for the applications
you are trying to install. Right-clicking the File Types On Target Machine allows you to add a new file
type. From here, you can give your file type a descriptive name and provide a file extension (shown in
Figure 29-28).

Figure 29-28

Highlighting the defined file type provides some properties that you can set in the Visual Studio
Properties window, as shown in the following table.

1165

Packaging and Deploying ASP.NET Applications

32_576100 ch29.qxd 10/6/05 8:14 PM Page 1165

Property Description

Name Specifies a name used in the File System Editor to identify a file type and
its associated settings.

Command Specifies the executable file (.exe) that is launched when the specified file
extension is encountered.

Description Defines a textual description for the file type.

Extensions Defines the file extension associated with the executable through the
Command property. An example is .wrox.

Icon Defines the icon used for this file extension.

MIME Specifies the MIME type associated with this file type. An example is
application/msword.

The User Interface Editor
The User Interface Editor defines the dialogs used in the installation process. You can change the instal-
lation process greatly with the dialogs you decide to use or not use. By default, these dialogs (shown in
Figure 29-29) are presented in your installer.

Figure 29-29

From this figure, you can see how the dialogs are divided into two main sections. The first section,
labeled Install, is the dialog sequence used for a typical install. However, because some applications
might require it, a second installation process is defined through the Administrative Install. The
Administrative Install process is initiated only if the user is logged onto the machine under the
Administrator account. If this is not the case, the Install section is used instead.

By default, the Install and Administrative Install sections are exactly the same. Both the Install and
Administrative Install sections are further divided into three subsections: Start, Progress, and End. These
sections are defined in the following list:

1166

Chapter 29

32_576100 ch29.qxd 10/6/05 8:14 PM Page 1166

❑ Start: A sequence of dialogs that appears before the installation occurs. By default, the Start sec-
tion includes a welcome screen, a definition stating where the application is to be installed, and
a dialog asking for an installation confirmation.

❑ Progress: The second stage, the Progress stage, is the stage in which the actual installation occurs.
Throughout this stage no interaction occurs between the installer program and the end user. This
is the stage where the end user can watch the installation progress through a progress bar.

❑ End: The End stage specifies to the end user whether the installation was successful. Many
installer programs use this stage to present the customer with release notes and ReadMe.txt
files, as well as the capability to launch the installed program directly from the installer program
itself.

Adding Dialogs to the Installation Process
Of course, you are not limited to just the dialogs that appear in the User Interface Editor by default. You
have a number of other dialogs that can be added to the installation process. For instance, right-click the
Start node and select Add Dialog (or highlight the Start node and choose Action ➪ Add Dialog). This
pulls up the Add Dialog dialog, as shown in Figure 29-30.

Figure 29-30

As you can see from this image, you can add quite a number of different steps to the installation process,
such as license agreements and splash screens. After adding a dialog to the process, you can highlight
the dialog to get its properties to appear in the Properties window so that you can assign the items
needed. For example, you can assign the image to use for the splash screen or the .rtf file to use for the
license agreement.

When you add an additional dialog to the installation process (for instance, to the Install section), be
sure to also install the same dialog on the Administrative Install (if required). If no difference exists
between the two user types in the install process, be sure to add the dialogs in unison in order to keep
them the same.

1167

Packaging and Deploying ASP.NET Applications

32_576100 ch29.qxd 10/6/05 8:14 PM Page 1167

Changing the Order in Which the Dialogs Appear in the Process
In working with the dialogs in the Start, Process, and End sections of the User Interface Editor, you can
always determine the order in which these dialogs appear. Even if you are working with the default
dialogs, you can easily change their order by right-clicking the dialog and selecting Move Up or Move
Down, as shown in Figure 29-31.

Figure 29-31

The Custom Actions Editor
The Custom Actions Editor is a powerful editor that enables you to take the installer one step further
and perform custom actions during various events of the installation cycle (but always after the installa-
tion process is completed) such as: Install, Commit, Rollback, and Uninstall. The Custom Actions Editor
is presented in Figure 29-32.

Figure 29-32

The idea is that you can place a reference to a .dll, .exe, or .vbs file from one of the folders presented
here in the Custom Actions Editor to perform a custom action. For example, you can insert a custom
action to install a database into Microsoft’s SQL Server in the Commit folder (after the install has actu-
ally been committed).

1168

Chapter 29

32_576100 ch29.qxd 10/6/05 8:14 PM Page 1168

The four available folders are explained in the following list:

❑ Install: This is the point at which the installation of the files for the Web application are finished
being installed. Although the files are installed, this point is right before the installation has
been committed.

❑ Commit: This is the point at which the actions of the installation have been actually committed
(taken) and are considered successful.

❑ Rollback: This is the point at which the installation has failed and the computer must return to
the same state that it was in before the installation occurred.

❑ Uninstall: This is the point at which a successfully installed application is uninstalled for a
machine.

Using these capabilities, you can take the installation process to the level of complexity you need for a
successfully installed application.

The Launch Conditions Editor
Certain conditions are required in order for your Web application to run on another server automatically.
Unless your application is made up of HTML files only, you must make sure that the .NET Framework is
installed on the targeted machine in order to consider the install a success. The Launch Conditions Editor is
an editor that you can use to make sure that everything that needs to be in place on the installation com-
puter for the installation to occur is there. The Launch Conditions Editor is presented in Figure 29-33.

Figure 29-33

From this image, you can see some of the conditions required in this instance. The first folder defines
the items that must be in place on the computer where the installation is to occur. A search is done on the
computer to see whether IIS is installed. It can also check if any files or registry keys are present on the
computer before the installation occurs.

The second folder is an important one because certain conditions must be in place before the installation.
This folder shows two conditions. One is that the .NET Framework must be installed, and the second is
that IIS must be installed. You can add these types of launch conditions by right-clicking the Requirements
On Target Machine node in the dialog. You are then presented with a short list of conditions.

1169

Packaging and Deploying ASP.NET Applications

32_576100 ch29.qxd 10/6/05 8:14 PM Page 1169

After a condition is in place, you can highlight the condition to see the property details of this condition
in the Properties window. For instance, highlighting the IIS Condition gives you some basic properties in
the Properties window. One of these is the Condition property. By default, for an IIS Condition, the
value of the Condition property is the following:

IISVERSION >= “#4”

This means that the requirement for this installation is that IIS must be equal to or greater than version 4.
If it is not, the installation fails. If the IIS version is 4, 5, or 6, the installation can proceed. You can feel
free to change this value to whatever you deem necessary. You can change the value to IISVERSION
>=”#5”, for example, to ensure it is either IIS 5.0 or 6.0 at a minimum.

Another example of fine-tuning these launch conditions is the .NET Framework condition that enables
you to set the minimum version of the .NET Framework you want to allow. You do this by setting the
Version property of the condition.

Summary
As you can see, you have many possibilities for installing your ASP.NET applications! From the simplest
mode of just copying the files to a remote server — sort of a save-and-run mode — to building a complex
installer program that can run side events, provide dialogs, and even install extra items such as
databases and more.

Just remember that when working on the installation procedures for your Web applications, you should
be thinking about making the entire process logical and easy for your customers to understand. You
don’t want to make people’s lives too difficult when they are required to programmatically install items
on another machine.

1170

Chapter 29

32_576100 ch29.qxd 10/6/05 8:14 PM Page 1170

Visual Basic 8.0 and C# 2.0
Language Enhancements

A lot has changed with the 2.0 release of .NET. Not only are there dramatic changes to ASP.NET
(shown throughout this book), but also considerable changes have been made to the IDE,
Windows Forms, Visual Basic, C#, and more. This chapter focuses on the changes to Visual Basic
and C# languages because these are the two languages most commonly used for ASP.NET devel-
opment. Because of their heavy use in Web application development, it is vital to understand the
capabilities of these languages and the direction they are taking.

One of the greatest changes to Web application development in the Microsoft world is .NET’s use
of true object-oriented languages such as Visual Basic .NET and C# to build Web applications. No
longer are you limited to working with interpreted languages such as VBScript. Although they
have only recently been introduced to the Web application world, these object-oriented languages
are continuing to evolve, bringing new features to Web application development.

This appendix focuses on some of the important changes that have occurred to both Visual Basic
and C# with this latest release of the .NET Framework. Although not all language changes are cov-
ered here, what is covered can be applied directly to your ASP.NET 2.0 applications.

Overview of the Changes
Both Visual Basic and C# have undergone changes with the release of the .NET Framework 2.0.
Some of the changes have occurred in both of the languages, whereas other changes have occurred
in only one.

Notice that, throughout the book, I have referred to the VB language as Visual Basic. With this
release of the .NET Framework, the language has reverted to the name Visual Basic (minus the
.NET at the end of the name). This version of the VB language is called Visual Basic 8.0, whereas
the newest version of C# is 2.0.

33_576100 appa.qxd 10/6/05 9:33 PM Page 1171

Some new features of these two languages include those described in the following table.

New Language Feature Visual Basic 8.0 C# 2.0

Generics Yes Yes

Iterators No Yes

Anonymous methods No Yes

Operator Overloading Yes Yes (already present)

Partial Classes Yes Yes

XML documentation Yes Yes (already present)

Static Classes No Yes

Property Accessor Accessibility Yes Yes

Namespace Alias Qualifier Yes Yes

Unsigned Types Yes Yes (already present)

Default Instances Yes No

Take a look at some of these new features and how to use them in your applications.

Generics
In order to make collections a more powerful feature and also increase their efficiency and usability,
generics were introduced to both Visual Basic and C#. The idea of generics is nothing new. They are sim-
ilar to C++ templates. You can also find generics in other languages, such as Java. Their introduction into
the .NET Framework 2.0 languages is a huge benefit for the user.

Generic Collections
Generics enable you to create generic collections of objects that are still strongly typed, providing fewer
chances for errors (because they occur at runtime), increasing performance, and giving you IntelliSense
features when you are working with the collections.

Creating generic collections of objects in .NET is not necessarily a new concept. Several different meth-
ods can be used to create generic object collections in .NET 1.0. Look at a sample that uses two generic
object containers, the Stack and Array classes. Can you tell why using generics provides an advantage?
Listing A-1 shows a simple use of the Stack and Array classes.

1172

Appendix A

33_576100 appa.qxd 10/6/05 9:33 PM Page 1172

Listing A-1: A collection that is not using generics

VB
Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Dim myStack As New Stack
myStack.Push(“St. Louis Rams”)
myStack.Push(5)

Dim myArray As Array
myArray = myStack.ToArray()

For Each item As String In myArray
Label1.Text += item.ToString() & “
”

Next
End Sub

C#
void Page_Load(object sender, EventArgs e)
{

Stack myStack = new Stack();
myStack.Push(“St. Louis Rams”);
myStack.Push(5);

Array myArray;
myArray = myStack.ToArray();

foreach (string item in myArray)
{

Label1.Text += item.ToString() + “
”;
}

}

The Stack class represents a simple first-in, first-out collection of objects. In this code example, you can
see two member variables are added to the Stack collection using the Push method, a string with the
value of St. Louis Rams and an integer with a value of 5. This is also known as pushing items onto the
stack. A number of performance issues, however, can arise when you use the Stack class in this scenario.
First, each time you add a value type such as an integer to the stack, the value must be boxed before it is
added.

Boxing is an implicit conversion of a value type such as int, bool or byte, to the type object or to any
interface type implemented by this value type. Boxing a value type allocates an object on the stack that
contains a reference to the value type contained on the heap. Although boxing and unboxing are beyond
the scope of this book, it is important to know how both work. You can find more information on these
topics on the MSDN Web site.

Second, because every item added to the stack is stored as an object type, when you want to retrieve an
item off of the stack, you have to explicitly cast the object back to its original type. This is demonstrated
in the code sample in the For Each loop. Notice that you have to explicitly convert each object to a string
in order to add it to the Label.

1173

Visual Basic 8.0 and C# 2.0 Language Enhancements

33_576100 appa.qxd 10/6/05 9:33 PM Page 1173

All this boxing and casting creates performance problems in your application. This is where generics give
you an advantage. Generics enable you to create type-specific collections. The System.Collections
.Generic namespace gives you access to generic versions of the Stack, Dictionary, SortedDictionary,
List, and Queue classes. Again, you can make these collections type-specific to produce collections that
avoid the boxing and casting problems for improved performance, have design-time type-checking to avoid
runtime type exceptions, and provide you better IntelliSense features inside Visual Studio.

Look at a sample which demonstrates how to create a generic version of the Stack class that includes a
collection of strings in Listing A-2.

Listing A-2: A generic Stack class

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Dim myStack As New System.Collections.Generic.Stack(Of String)
myStack.Push(“St. Louis Rams”)
myStack.Push(“Indianapolis Colts”)
myStack.Push(“Minneapolis Vikings”)

Dim myArray As Array
myArray = myStack.ToArray()

For Each item As String In myArray
Label1.Text += item & “
”

Next
End Sub

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Untitled Page</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:Label runat=”server” ID=”Label1”></asp:Label>
</div>
</form>

</body>
</html>

C#
<%@ Page Language=”C#” %>

<script runat=”server”>
void Page_Load(object sender, EventArgs e)
{

Stack<string> myStack = new Stack<string>();
myStack.Push(“St. Louis Rams”);
myStack.Push(“Indianapolis Colts”);

1174

Appendix A

33_576100 appa.qxd 10/6/05 9:33 PM Page 1174

myStack.Push(“Minneapolis Vikings”);

Array myArray;
myArray = myStack.ToArray();

foreach (string item in myArray)
{

Label1.Text += item + “
”;
}

}
</script>

Notice in the example in Listing A-2, the Stack class is explicitly cast to be a collection of type string. In
Visual Basic, you do this by following the collection class with (Of String) or (Of Integer) or what-
ever type you want to use for your collection. In C#, you specify the collection type with the use of
brackets. You cast the Stack class to type string using Stack<string>. If you want to cast it to a Stack
collection of type int, you specify Stack<int>.

Because the Stack class is now considered strongly typed, it does not allow you to add items to the col-
lection that are not of type string and, therefore, all its items need not be cast to type object. Additionally,
in the For Each loop, the collection values need not be cast back to type string. Because you can specify
the collection types up front, you increase performance for your collections.

Remember that when working with generic collections (as shown in the previous code example) you
must import the System.Collections.Generic namespace into your ASP.NET page.

Now, change the Stack class from Listing A-2 so that instead of working with string objects, it uses inte-
ger objects in the collection. This change is illustrated in Listing A-3.

Listing A-3: A generic Stack class using integers

VB
<%@ Page Language=”VB” %>

<script runat=”server”>
Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Dim myStack As New Stack(Of Integer)
myStack.Push(5)
myStack.Push(3)
myStack.Push(10)

Dim myArray As Array
myArray = myStack.ToArray()

Dim x As Integer = 0
For Each item As Integer In myArray

x += item
Next

Label1.Text = x.ToString()
End Sub

1175

Visual Basic 8.0 and C# 2.0 Language Enhancements

33_576100 appa.qxd 10/6/05 9:33 PM Page 1175

Listing A-3 (continued)

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Untitled Page</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:Label runat=”server” ID=”Label1”></asp:Label>
</div>
</form>

</body>
</html>

C#
<%@ Page Language=”VB” %>

<script runat=”server”>
void Page_Load(object sender, EventArgs e)
{

Stack<int> myStack = new Stack<int>();
myStack.Push(5);
myStack.Push(3);
myStack.Push(10);

Array myArray;
myArray = myStack.ToArray();

int x = 0;
foreach (int item in myArray)
{

x += item;
}

Label1.Text = x.ToString();
}

</script>

The Stack class used in Listing A-3 specifies that everything contained in its collection must be type
integer. In this example, the numbers are added together and displayed in the Label control.

Generic Methods
Another exciting way of utilizing Generics is using them with delegates and methods. For example, you
can create a method that defines generic type parameters. This can be very useful for utility classes
because it allows you to call the method with a different type every time. Listing A-4 demonstrates creat-
ing a method using generics.

1176

Appendix A

33_576100 appa.qxd 10/6/05 9:33 PM Page 1176

Listing A-4: A generic method

VB
Public Function GenericReturn(Of T)(ByVal input As T) As T

Return input
End Function

C#
public T GenericReturn<T>(T t)
{

return t;
}

This simple method accepts a parameter of any type and returns the value that is passed to it regardless
of type. To construct a generic method, you must follow the method name with (Of T) in Visual Basic or
<T> declaration in C#. This specifies that the method is indeed a generic method.

The single parameter passed into the method is also of T, and the return value is the same as the type
that is established when the method is called. In Listing A-5, note how you go about calling this generic
method.

Listing A-5: Invoking the generic method

VB
Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Label1.Text = GenericReturn(Of String)(“Hello there!”)
Label2.Text = (GenericReturn(Of Integer)(5) + 5).ToString()

End Sub

C#
void Page_Load(object sender, EventArgs e)
{

Label1.Text = GenericReturn<string>(“Hello there!”);
Label2.Text = (GenericReturn<int>(5) + 5).ToString();

}

This little example in Listing A-5 shows two separate invocations of the GenericReturn method. The
first instance populates the Label1 control and invokes the GenericReturn method as a string, which is
quickly followed by the string value that is passed in as the item parameter. When called in this manner,
the method is invoked as if it were constructed in the following way:

Public Function GenericReturn(ByVal item As String) As String
Return item

End Function

Or:

public string GenericReturn(string item)
{

return item;
}

1177

Visual Basic 8.0 and C# 2.0 Language Enhancements

33_576100 appa.qxd 10/6/05 9:33 PM Page 1177

The second invocation of the GenericReturn method passes in an object of type integer, adds 5, and
then uses that value to populate the Label2 control. When called in this manner, the method is invoked
as if it were constructed in the following way:

Public Function GenericReturn(ByVal item As Integer) As Integer
Return item

End Function

Or:

public int GenericReturn(int item)
{

return item;
}

As you can see, you gain a lot of power using generics. You see generics used in both of the main .NET
languages because they can be built into the underlying framework.

Iterators
Iterators enable you to specify how your classes or collections work when they are dissected in a
foreach loop. The iterators are used only in C#. Visual Basic 8.0 developers do not have a similar fea-
ture at present.

You can iterate through a collection of items just as you have always been able to do in C# 1.0 because
the item implements the GetEnumerator function. For instance, you can just run a foreach loop over
an ArrayList, as shown in Listing A-6.

Listing A-6: Running the foreach loop over an ArrayList

void Page_Load(object sender, EventArgs e)
{

ArrayList myList = new ArrayList();

myList.Add(“St. Louis Rams”);
myList.Add(“Indianapolis Colts”);
myList.Add(“Minneapolis Vikings”);

foreach (string item in myList)
{

Response.Write(item.ToString() + “
”);
}

}

This code writes all three values that were added to the ArrayList to the browser screen. Iterators
enable you to run a foreach loop on your own items such as classes. To do this, you create a class that
implements the IEnumerable interface.

1178

Appendix A

33_576100 appa.qxd 10/6/05 9:33 PM Page 1178

The first step is to create a class in your Web solution. To do this, create a folder in your solution and
give it the name Code. Then place a new .cs class file in the Code directory. This class is illustrated in
Listing A-7.

Listing A-7: Creating a class that works with a foreach loop

using System;
using System.Collections;

public class myList
{
internal object[] elements;
internal int count;

public IEnumerator GetEnumerator()
{

yield return “St. Louis Rams”;
yield return “Indianapolis Colts”;
yield return “Minneapolis Vikings”;

}
}

This class, myList, imports the System.Collections namespace so that it can work with the
IEnumerable interface. In its simplest form, the myList class implements the enumerator pattern with a
method called GetEnumerator(), which returns a value defined as IEnumerable. Then each item in the
collection is returned with the yield return command.

Now that the class myList is in place, you can instantiate the class and iterate through the class collec-
tion using the foreach loop. This is illustrated in Listing A-8.

Listing A-8: Iterating through the myList class

void Page_Load(object sender, EventArgs e)
{

myList IteratorList = new myList();

foreach (string item in IteratorList)
{

Response.Write(item.ToString() + “
”);
}

}

This ASP.NET Page_Load event simply creates an instance of the myList collection and iterates through
the collection using a foreach loop. This is all possible because an IEnumerable interface was imple-
mented in the myList class. When you run this page, each of the items returned from the myList class
using the yield return command displays in the browser.

One interesting change you can make in the custom myList class is to use the new generics capabilities
provided by C#. Because you know that only string types are being returned from the myList collec-
tion, you can define that type immediately to avoid the boxing and unboxing that occurs using the pre-
sent construction. Listing A-9 shows the changes you can make to the class that was first presented in
Listing A-7.

1179

Visual Basic 8.0 and C# 2.0 Language Enhancements

33_576100 appa.qxd 10/6/05 9:33 PM Page 1179

Listing A-9: Creating a class that works with a foreach loop using generics

using System;
using System.Collections;
using System.Collections.Generic;

public class myList : IEnumerable<string>
{
internal object[] elements;
internal int count;

public IEnumerator<string> GetEnumerator()
{

yield return “St. Louis Rams”;
yield return “Indianapolis Colts”;
yield return “Minneapolis Vikings”;

}
}

Anonymous Methods
Another new feature of C# is anonymous methods. Anonymous methods enable you to put program-
ming steps within a delegate that you can later execute instead of creating an entirely new method. This
can be handled in a couple different ways.

Without using anonymous methods, create a delegate that is referencing a method found elsewhere in
the class file. In the example from Listing A-10, when the delegate is referenced (by a button-click event),
the delegate invokes the method that it points to.

Listing A-10: Using delegates in a traditional manner

void Page_Load(object sender, EventArgs e)
{

this.Button1.Click += ButtonWork;
}

void ButtonWork(object sender, EventArgs e)
{

Label1.Text = “Welcome to the camp, I guess you all know why you’re here.”;
}

In the example in Listing A-10, you see a method in place called ButtonWork, which is called only by
the delegate in the Page_Load event. Anonymous methods now enable you to avoid creating a separate
method and allow you to place the method directly in the delegate declaration instead. An example of
the use of anonymous methods is shown in Listing A-11.

1180

Appendix A

33_576100 appa.qxd 10/6/05 9:33 PM Page 1180

Listing A-11: Using delegates with an anonymous method

void Page_Load(object sender, EventArgs e)
{

this.Button1.Click += delegate(object myDelSender, EventArgs myDelEventArgs)
{

Label1.Text = “Welcome to the camp, I guess you all know why you’re here.”;
};

}

When you use anonymous methods, you don’t create a separate method. Instead you place necessary
code directly after the delegate declaration. The statements and steps to be executed by the delegate are
placed between curly braces and closed with a semicolon.

Using anonymous methods, you can also work with variables or classes. This is illustrated in Listing A-12.

Listing A-12: Using items that are out of scope

string myString = “Out of scope item.”;

void Page_Load(object sender, EventArgs e)
{

this.Button1.Click += delegate(object myDelSender, EventArgs myDelEventArgs)
{

Label1.Text = myString;
};

}

Although this anonymous method just used a variable that was outside of the Page_Load event, you
can also use it to work with other classes and functions elsewhere in your solution.

Operator Overloading
Operator overloading enables you to define the +, -, *, / and other operators in your classes just as you
can in system classes. This is a feature that has always been present in C#, but is now available in Visual
Basic 8.0 as well. It gives you the capability to ensure that the objects in your classes, when used with
operators, have the feel that they are simply of type string or integer.

Giving your classes this extended capability is a matter of simply creating a new method using the
Operator keyword followed by the operator that you wish to overload. An example of the Operator
functions is illustrated in Listing A-13.

1181

Visual Basic 8.0 and C# 2.0 Language Enhancements

33_576100 appa.qxd 10/6/05 9:33 PM Page 1181

Listing A-13: An example of Operator overloading functions

Public Shared Operator +(ByVal Left As Point, ByVal Right As Size) As Point
Return New Point(Left.X + Right.Width, Left.Y + Right.Height)

End Operator

Public Shared Operator -(ByVal Left As Point, ByVal Right As Size) As Point
Return New Point(Left.X – Right.Width, Left.Y – Right.Height)

End Operator

Two different types of operators can be overloaded from Visual Basic, unary and binary operators.

Overloadable unary operators include

+ - Not IsTrue IsFalse Widening Narrowing

Overloadable binary operators include

+ - * / \ & Like Mod And Or Xor ^ << >> =
<> > < >= <=

Global Namespace Qualifiers
A problem in the .NET 1.0 languages was that a developer, or more commonly a code-generation tool,
could not search for types at the root namespace level. Both Visual Basic 8.0 and C# 2.0 have provided
solutions to this problem with new keywords. In Visual Basic the Global keyword has added a top-root
namespace to avoid any namespace conflicts that might arise from similarly named namespaces. An
example of the use of the Global keyword is the following:

Global.System.String

In C# the global namespace qualifier has introduced the :: keyword.

::System.String

The advantage to the global namespace qualifiers is that you can now create namespaces that mimic the
Framework namespaces without causing a conflict with the .NET Frameworks namespaces. For exam-
ple, you can now create the following namespace in your application:

namespace MyCompany
{

namespace System
{

class String
{

static void Main()
{

::System.String copy = ::System.String.Copy(“Hello”);
}

1182

Appendix A

33_576100 appa.qxd 10/6/05 9:33 PM Page 1182

}
}

}

Using the qualifiers allows the application to distinguish between the root namespaces.

Partial Classes
Partial classes are a new feature included with the .NET Framework 2.0 and available to both C# and
Visual Basic 8.0. These classes allow you to divide up a single class into multiple class files, which are
later combined into a single class when compiled.

Partial classes are the secret of how ASP.NET keeps the new code-behind model simple. In ASP.NET
1.0/1.1, the code-behind model included quite a bit of code labeled as machine-generated code (code gen-
erated by the designer) and hidden within #REGION tags. Now, however the code-behind file for ASP.NET
2.0 looks rather simple. A sample of the new code-behind model that uses partial classes is shown in
Listing A-14.

Listing A-14: The new code-behind model using partial classes

VB
Imports Microsoft.VisualBasic

Namespace ASP

Partial Class TestPage
Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)

Label1.Text = “Hello “ & Textbox1.Text
End Sub

End Class

End Namespace

C#
using System;

namespace ASP {

public partial class TestPage
{

void Button1_Click (object sender, System.EventArgs e)
{

Label1.Text = “Hello “ + Textbox1.Text;
}

}
}

This code-behind file contains a simple button-click event and nothing else. If you compare it to the
designer-code (as it was called) from the code-behind files found in ASP.NET 1.0/1.1, you notice a big
difference between the two. What happened to all that code in the original code-behind file? It is still

1183

Visual Basic 8.0 and C# 2.0 Language Enhancements

33_576100 appa.qxd 10/6/05 9:33 PM Page 1183

there, but now, with the use of partial classes, all that necessary (but untouchable) code is kept in a sepa-
rate class file. Upon compilation, the class file that is shown in Listing A-14 is merged with the other
class file. The result shows you that the code-behind files in ASP.NET 2.0 can consist simply of objects
that you actually work with.

Partial classes are created with the use of the Partial keyword in Visual Basic and with the partial
keyword in C# for any classes that are to be joined with a different class. The Partial keyword pre-
cedes the Class keyword for the classes to be combined with the original class. Besides using partial
classes with every code-behind page that you work with in ASP.NET 2.0, you can also employ the same
techniques in your own class files. You can associate two or more classes as part of the same class using
the procedure shown in Listings A-15 and A-16.

Listing A-15: The first class

VB
Public Class Calculator

Public Function Add(ByVal a As Integer, ByVal b As Integer)
Return (a + b)

End Function
End Class

C#
public class Calculator
{

public int Add(int a, int b)
{

return a + b;
}

}

Listing A-16 shows the second class that utilizes the partial classes functionality.

Listing A-16: The second class

VB
Partial Class Calculator

Public Function Subtract(ByVal a As Integer, ByVal b As Integer)
Return (a - b)

End Function
End Class

C#
public partial class Calculator
{

public int Subtract(int a, int b)
{

return a - b;
}

}

1184

Appendix A

33_576100 appa.qxd 10/6/05 9:33 PM Page 1184

When the two separate files are compiled, the two class files appear as a single object. The first class
shown in Listing A-15 is constructed just as a normal class is, whereas any additional classes that are to
be made a part of this original class use the new Partial keyword. A consumer using the compiled
Calculator class will see no difference. After the consumer of the Calculator class creates an instance
of this class, this single instance has both an Add and a Subtract method in it. This is illustrated in
Figure A-1.

Figure A-1

Visual Basic XML Documentation
Like C#, Visual Basic 8.0 now includes the capability to create XML documentation from comments that
are left in your VB files. Visual Basic denotes XML documentation remarks in code with the use of the
three successive comment marks ('''). This is similar to how C# does it. C# uses three backslashes for
XML documentation (///). Comments left in VB code can then be converted to documentation. Listing
A-17 shows the use of XML documentation in code.

1185

Visual Basic 8.0 and C# 2.0 Language Enhancements

33_576100 appa.qxd 10/6/05 9:33 PM Page 1185

Listing A-17: Visual Basic code with comments for XML documentation

Imports Microsoft.VisualBasic

‘’’ <summary>My Calculator Class</summary>
Public Class Class1

‘’’ <summary>This Add method returns the value of two numbers
‘’’ added together</summary>
‘’’ <param name=”a”>First number of the collection of numbers to
‘’’ be added</param>
‘’’ <param name=”b”>Second number of the collection of numbers to
‘’’ be added</param>
Public Function Add(ByVal a As Integer, ByVal b As Integer)

Return (a + b)
End Function

End Class

The Visual Basic 8.0 compiler now includes a new /doc command that is similar to the way C# works
with XML documentation. Compiling your VB code using the /doc command causes the compiler to
produce the XML documentation with the compilation.

Static Classes
C# now supports the notion of a static class, where all members of the class must be declared as static.
The static class is meant to replace the design pattern of creating a sealed class with a private constructor
that contains only static members. Listing A-18 shows you how to create a static class.

Listing A-18: Creating a static class in C#

public sealed static class Settings
{

// class methods
}

Creating a static class means that the compiler can now catch any instance methods that might be acci-
dentally declared in the class.

Property Accessors
When writing properties with .NET 1.0 languages, both the setter and getter portions of the properties
were required to have the same level of access. This created problems if you wanted to create a read-only
public property, but still be able to take advantage of using private setter’s logic internally in the class.

In .NET 2.0, both C# and Visual Basic now allow you to explicitly set individual accessors on the getter
and setter, as shown in Listing A-19.

1186

Appendix A

33_576100 appa.qxd 10/6/05 9:33 PM Page 1186

Listing A-19: Using property accessors

VB
Private firstname As String
Public Property FirstName() As String

Get
Return _firstname

End Get

Friend Set(ByVal value As String)
If value.Trim.Length > 0 Then

_firstname = value.Trim
Else

value = “Default Name”
End If

End Set
End Property

C#
private string firstname;
public string FirstName
{

get
{

return_firstname;
}

internal set
{

if (value.Trim().Length > 0)
{

_firstname = value.Trim();
}
else
{

value = “Default Name”;
}

}
}

Unsigned Types
New to Visual Basic is support for unsigned types such as SByte, UShort, UInteger, and ULong. An
unsigned type works like regular types do, except that they can store only positive numbers.

Unsigned types are most useful when making Win32 API calls. Listing A-20 shows how you can call the
MessageBox function directly from the Windows API. This function requires a UInteger type method
parameter be passed in and also returns a UInteger type.

1187

Visual Basic 8.0 and C# 2.0 Language Enhancements

33_576100 appa.qxd 10/6/05 9:33 PM Page 1187

Listing A-20: Using unsigned types in Visual Basic

Private Const uintOK As UInteger = 0

Private Declare Auto Function WinMessageBox Lib _
“user32.dll Alias “MessageBox” _
(ByVal hWnd As Integer, ByVal lpText As String, _
ByVal lpCaption As String, ByVal uType As UInteger) _
As UInteger

Public Function DirectMessageBox(ByVal message As String, _
ByVal caption As String) As String

Dim r As UInteger = WinMessageBox(0, message, caption, uintOK)

If (r=0) Then
Return “OK”

End If

If (r=8) Then
Return “Cancel”

End If

End Function

Default Instances
Another change to Visual Basic .NET that has tripped up many developers migrating from Visual Basic
6.0 is the lack of a default instance for forms. In order to use a specific form, you create an instance of it
first.

Dim frm As New Form2
frm.Show()

Visual Basic now supports form default instances, so you can use the familiar syntax:

Form2.Show()

New Visual Basic Keywords
Visual Basic 8.0 introduces a couple of new keywords that can be utilized in your ASP.NET 2.0 applica-
tions. The keywords were brought to the language to make it easier to perform some common tasks such
as working in loops or destroying resources as early as possible. Look at a couple of the new additions to
the Visual Basic language.

1188

Appendix A

33_576100 appa.qxd 10/6/05 9:33 PM Page 1188

Continue
The Continue statement is an outstanding new addition to the Visual Basic language that was brought on
board to enable you to work through loops more logically in some specific situations. When working in a
loop, it is sometimes beneficial to stop the conditional flow and move onto the next item in the collection if
the item being examined simply doesn’t fit your criteria. This logic can now be implemented better because
of the new Continue statement. Listing A-21 shows an example of the use of the Continue statement.

Listing A-21: Using the new Continue statement

Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Dim myString As String
Dim count As Integer = 0
myString = “The St. Louis Rams will go to the Superbowl this year.”

For i As Integer = 0 To (myString.Length() - 1)
If (myString(i).Equals(“ “c)) Then Continue For

count += 1
Next

Label1.Text = “There are “ & count.ToString() & _
“ characters used (minus spaces).”

End Sub

This little example counts each character in a complete string that is not a space. If a space is encoun-
tered, the Continue statement finds this in the check and immediately stops execution of the loop for
that particular item in the collection. It then hands over the execution of the loop to the next item in the
collection. In this example, you could easily check for the characters with a nested If statement, but
using multiple nested If statements can get confusing. The use of the Continue statement makes the
logic contained within the For loop very evident and clean.

The Continue statement is not only meant to be used within a For loop, but you can also use this new
keyword with other language features that loop through a collection of items, such as the Do and While
statements. The following section shows how to use the Continue statement with the four available
options:

For [statement]
...

If [statement] Then Continue For

...
Next

For Each [statement]
...

If [statement] Then Continue For

...

1189

Visual Basic 8.0 and C# 2.0 Language Enhancements

33_576100 appa.qxd 10/6/05 9:33 PM Page 1189

Next

Do While [statement]
...

If [statement] Then Continue Do

...
Loop

While [statement]
...

If [statement] Then Continue While

...
End While

As you can see, you have many ways to use this new keyword to make your code easier to read and
manage.

Using
Although C# developers have been able to take advantage of the using keyword in C# to define an
object scope, the new Visual Basic Using keyword gives VB developers the same feature. The Using
keyword in Visual Basic ensures that expensive resources get destroyed as soon as possible instead of
remaining in memory until the method is executed. You can now destroy expensive resources, such as
connection objects and COM wrappers, immediately when you have finished using them instead of
waiting for the garbage collector to make its rounds. An example of working with the Using keyword is
illustrated in Listing A-22.

Listing A-22: Working with the Using keyword

Using myConn As New SqlConnection

‘ Work with the SqlConnection object

End Using

In Listing A-22, you can see that instead of using the Dim keyword to create a new instance of the
SqlConnection object, the Using keyword is used in its place. If you utilize the Using keyword, you
must close the Using statement with an End Using statement. The End Using statement is located at the
point where the SqlConnection object is destroyed from memory.

My
One of the most challenging issues a developer faces when using the .NET Framework is the sheer size
of the class library. Knowing where to find the proper class for a particular function in the Framework
can prove challenging. If you do find it, figuring out its usage can be just as challenging. In order to help
developers overcome this problem, Visual Basic has added the My keyword. This new keyword is a
novel concept that is designed to quickly give you access to a large variety of resources you may need to
access when developing your applications.

1190

Appendix A

33_576100 appa.qxd 10/6/05 9:33 PM Page 1190

The My keyword is divided into several main areas of functionality, but using the keyword can be a bit
deceiving depending on the type of project you are working with. For example, if you are working in an
ASP.NET project and you use the My keyword, you see five objects available for you to use. If you switch
to working in a Windows Forms application, the objects available to you using the My keyword are
slightly different. The My keyword understands the type of project you are working with and can present
you the appropriate objects based on the resources available to you in that project type. Figure A-2
shows how IntelliSense for the My keyword differs for an ASP.NET project type.

Figure A-2

Figure A-3 shows the IntelliSense for the My keyword in a Windows Forms project type.

Figure A-3

Because the focus is on ASP.NET in this book, look at the My objects available to you in a Web project. In
an ASP.NET application, the My keyword gives you access to five different objects, which are listed in the
following table.

Object Description

Computer Accessing the host computer and its resources, services, and data

Log Accessing the application log

Request Accessing the current Web request

Response Accessing the current Web response

User Accessing the current user’s security context

1191

Visual Basic 8.0 and C# 2.0 Language Enhancements

33_576100 appa.qxd 10/6/05 9:33 PM Page 1191

Look at how you can use these objects. The following section shows how you can use several different
My objects to perform a variety of operations.

‘Retrieve the computer name
Dim computername As String = My.Computer.Info.OSFullName

‘Write a message to the applications event log listeners
My.Log.WriteEntry(“This page has loaded.”, Diagnostics.TraceEventType.Information)

‘Retrieve the requesting browsers User-Agent string
Dim agent As String = My.Request.Browser.Browser

‘Set the CacheControl proerty to allow
‘proxy servers to cache this content
My.Response.CacheControl = “Public”

‘Retrieve the current ahtuenticated users name
Dim username As String = My.User.Name

Keep in mind that all the functionality exposed by the My keyword is actually provided by underlying
Framework classes.

IsNot
The IsNot operator is the opposite of the Is operator. It allows you to eliminate the Not operator from
comparison expressions:

If myObject1 IsNot myObject2 Then

TryCast
In Visual Basic .NET, you have two different methods for casting objects, the CType or the DirectCast
methods. The problem with both these methods is that if the object cannot be converted or cast, you
raise an exception.

The TryCast statement allows you to attempt a cast without having to handle the invalid cast exception.
Instead, if the cast is invalid you are simply returned a Nothing value, as shown in Listing A-23.

Listing A-23: Using TryCast in Visual Basic 8.0

cust = TryCast(obj, Customer)
If cust IsNot Nothing Then

‘ use the Customer object

End If

This keyword is the equivalent to the C# as keyword.

1192

Appendix A

33_576100 appa.qxd 10/6/05 9:33 PM Page 1192

ASP.NET Online Resources

Author Blogs
Bill Evjen: www.geekswithblogs.net/evjen

Scott Hanselman: www.hanselman.com/blog/

Devin Rader: www.geekswithblogs.net/devin

ASP.NET Influential Blogs
Kent Sharkey: weblogs.asp.net/ksharkey

Rob Howard: weblogs.asp.net/rhoward/

Scott Guthrie: weblogs.asp.net/scottgu

Steve Smith: blogs.aspadvice.com/ssmith/

G. Andrew Duthie: blogs.msdn.com/gduthie/

Scott Mitchell: www.scottonwriting.net/

Scott Watermasysk: scottwater.com/blog/default.aspx

Nikhil Kothari: www.nikhilk.net/

Alex Homer: www.daveandal.net/alshed.asp

34_576100 appb.qxd 10/6/05 8:10 PM Page 1193

Dave Sussman: www.daveandal.net/daveroom/diary.asp

Mike Pope: mikepope.com/blog/

Web Sites
123ASPX Directory: www.123aspx.com

4 Guys from Rolla: www.4guysfromrolla.com

Angry Coder: www.angrycoder.com

ASP 101: www.asp101.com

ASP Alliance: www.aspalliance.com

ASP Alliance Lists: www.aspadvice.com

The ASP.NET Developer Portal: msdn.microsoft.com/asp.net

ASP.NET Homepage: www.asp.net

ASP.NET Resources: www.aspnetresources.com

ASP.NET World: www.aspnetworld.com

DotNetJunkies: www.dotnetjunkies.com

GotDotNet: www.gotdotnet.com

International .NET Association: www.ineta.org

Microsoft’s Classic ASP Site: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnanchor/html/activeservpages.asp

Microsoft Developer Centers: msdn.microsoft.com/developercenters

Microsoft Forums: forums.microsoft.com

Microsoft Newsgroups: msdn.microsoft.com/newsgroups/

.NET 247: www.dotnet247.com

RegExLib: www.regexlib.com

Server Side Code: www.serversidecode.net

The ServerSide .NET: www.theserverside.net

XML for ASP.NET: www.xmlforasp.net

1194

Appendix B

34_576100 appb.qxd 10/6/05 8:10 PM Page 1194

In
de

x

Index

SYMBOLS
* (asterisk), 1077
<%%> (brackets and percentage signs), 2
... (ellipsis), 999, 1016
/ (forward slash), 484
> (greater than sign), 504, 774
- (minus sign), 519
| (pipe character), 505
+ (plus sign), 519
? (question mark), 1077

A
abstract class (WaitHandle class), 432–434
access

credentials, turning off, 599–600
installation program, building, 1155–1156
rules, managing with WAT, 1112–1114

access authentication
configuration

described, 1073
forms, 1074–1075
Microsoft Passport, 1074
Windows, 1073

credentials, asking for
access, turning off, 599–600
Login server control, 600–603
programmatic logging in, 603–604

described, 583–584
files and folders, specific, 689–690
forms-based

database values, authenticating against, 685–686
described, 679–683
login control, 686–688

methods and properties, 688–689
setting (<authentication> node), 671–672
web.config file values, authenticating against,

683–685
measures, applying, 670–671
Microsoft Passport identity system, 689
MMC tab, 1126–1128
online users, counting, 607–608
page-level events, triggering, 90
passwords, changing or retrieving forgotten

recovery server control, 610–612
server control, 609–610

status, logging in or out, 604–605
username, displaying, 606–607
users, adding

application registration, changing, 598–599
Continue button, 591–592
programming, 595–598
registration process, incorporating personalization

properties into, 592–595
stored, seeing where users are, 589–591
wizard, 587–589

Web site, setting up for membership
<authentication> element, 585–586
described, 584–585
<forms> element, 586–587

Windows-based
application, creating, 674–675
Basic, 678
defining groups, 676–677
Digest, 679
groups (<allow> and <deny> nodes), 675–676
HTTP transmission method, 677
users, creating, 672–674

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1195

access authorization
application roles

adding, 619–620
caching, 627
checking users, 625–627
deleting, 621–622
gathering all users, 622–624
particular user, gathering all, 624–625
removing users, 625
retrieving, 621
users, adding, 622

authorized user information, working with
(User.Identity property), 691–692

configuration
file, 1077–1078
support, 1076
URL, 1076–1077

described, 583–584
MMC tab, 1125–1126
page views, controlling by login, 613–615
programming

authorized user information, working with
(User.Identity property), 691–692

described, 690
identity information, additional, 693–695
Windows role, checking (User.IsInRole()),

692–693
public methods

membership API, 628–629
roles API, 629–630

role management for Web site
changing, 616–618
described, 615–616
web.config file, 618–619

Web Site Administration Tool, 628
access control lists, 826–831
actions

design-time, 924–927
items, Web Parts zones, 655–658

Active Server Pages (ASP), 2
Ad Rotator, 385
adding

application roles, 619–620
to collection lists, 312–313
data insert button, 376
dialogs to installation process, 1167
hyperlink to GridView, 363
list to page mode, 641–644
new columns to GridView, 362–363
nodes to TreeView server control, 526–527

to page, 644–646
PostBack events, raising, 896–897
request-processing pipeline handler to project,

940–941
snippets, 43

Addition Web service, 1039–1040
administration and management

ASP.NET, 6–9
authorization, limiting, 1076–1077

ADO.NET data management
asynchronous command execution

abstract class (WaitHandle class), 432–434
callback, 432, 449–451
canceling, 451
described, 429
interface (IAsyncResult), 432
multiple wait handles, 440–448
Poll approach, 434–437
SQLCommand class methods, 429–431
Wait approach, 437–440

asynchronous connections, 451–452
bulk loading from variety of sources

columns, mapping to destination tables
(SqlBulkCopyColumnMapping), 408–410

constructors, 406–407
customizing, 405
data reader example, 410–415
methods, 408
progress (SqlRowsCopied event), 415–416
properties, 406

data source link (Connection object), 391
disconnected data, handling (DataSet and DataTable),

402–404
forward-only and read-only cursor (DataReader

object), 393–395
namespaces and classes, 389–391
parameters, 398–401
result set, opening over same connection (MARS)

GridView control, 423–427
inline SQL statement, 428
master and detailed information scenario, 422–423

SQL queries, executing (Command object), 391–392
two-day data transfer mechanism (SqlDataAdapter

class), 395–398
updates, batch processing

advantages, 421–422
described, 416
retrieving, updating, and saving changes, 417–421

XML support, 492
ADO.NET Data Provider, 336

1196

access authorization

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1196

advertising (AdRotator)
banner, 176–177
mobile devices, 985–988
XML file, 175–176

age range, validating, 227–228
aliases, listing, 774
Alt key, associating character with, 101
Amazon.com authentication mechanism, 1074–1075
Anders, Marc (Microsoft employee), 2
anonymous methods, 1180–1181
anonymous users

configuration, 1075–1076
denying access, 1077
end user personalization

cookie, changing name of, 564
described, 563–564
events, 566–567
length of time cookie stored, changing, 564–565
options, 567
storage of identifiers, changing, 565
viewing, 566

migrating, 568–569
options, 567

API (Application Programming Interface)
configuration files, programming, 1087
databases, 497
debugging and error-handling, 771–772
membership, 596, 628–629
roles, 629–630
SiteMap

custom display, creating, 543–544
described, 541–542

XML document, 461–463, 480–482
appearance

application, applying to entire, 281
application folders (App_Themes), 81
bulleted list, 186–187
creating

CSS files, including, 287–290
folder structure, 284
images, including, 290–293
styles definition for server controls, 285–287

custom controls, 296–298
data

details and GridView together, 372–376
DetailsView, 371–372
FormView, 381–384
GridView Bound List control, 353–355

mobile device
Image control, 994–995
Link control, 997–999
TextView control, 993–994

multiple skin options, 293–295
page framework, 16–17
programming

assigning, 295–296
SkinID, assigning, 296

server controls
disabling, 877–878
removing, 282

single page, applying, 279–281
StyleSheetTheme attribute, 283
Web pages, removing, 283

application
caching, 761–763
copying Web site, 31
debugging and error-handling

at application level, 801–802
monitoring, 776

enabling and disabling, 1081
locations

FrontPage Extensions, server utilizing, 48–49
FTP, 48
IIS, 45, 47–48
Web server, 46–47

mobile device shutdown time, 1082
monitoring tools, 788–790
queue length, 1083
registration, changing, 598–599
roles

adding, 619–620
all users, gathering, 622–624
caching, 627
checking users, 625–627
deleting, 621–622
particular user, gathering, 624–625
removing users, 625
retrieving, 621
users, adding, 622

settings, storing specific, 1087
state management, 731
themes, 281
Windows-based authentication, creating, 674–675

application folders
classes, .wsdlfiles, and typed datasets

(App_Codefolder)
assembly, building into single, 80
creating, 76–78
described, 75–76
method, adding, 78–79

1197

application folders

In
de

x

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1197

application folders (continued)
configuration, 1061
data dictionary string tables (App_GlobalResources

Folder), 81–84
data stores (App_Datafolder), 80–81
page, resources used for single

(App_LocalResApp_LocalResources), 84
themes (App_Themes), 81
Web services, remote (App_WebReferences), 85
XML browser identification files (App_Browsers), 85

Application Programming Interface. See API
Application tab

MMC, 1128–1129
WAT

offline, taking, 1118
settings, managing, 1114–1115
SMTP, 1115–1116
tracing and debugging information, 1116–1118

arrays
classes and interfaces (System.Collections

namespace)
ArrayList, 307–310
counting items (ICollection), 311–312
dictionaries (IDictionary), 313–314
enumerating all objects (IEnumerable and

IEnumerator), 310–311
hashtables, 314–317
keys, list sorted by (SortedList), 317–318
lists (IList), 312–313
Queues and Stacks, 318–320

creating simple Person class, 299–300
finding objects

comparing (IComparable), 304–305
identity versus equivalence, 302–303
like objects (BinarySearch), 305–306
overriding equals, 303–304

printing, 300–302
resizing, 302
sorting objects, 306–307

ASP (Active Server Pages), 2
ASP.NET

administration and management, 6–9
compilation system, 14–15
data access objects, 17
developer productivity, 3–6
developer tools

membership and role management, 9–10
personalization, 10
portal framework, 10–12
site navigation, 12–14

history, 1–3

IDE, page-building, 18–20
influential blogs, 1193–1194
page framework

described, 1078–1080
include files, 1080–1081
master pages, 15–16
themes, 16–17

performance and scalability, 9
server controls, 17–18

ASPNET credentials, 696–698
assembly

classes, .wsdlfiles, and typed datasets
(App_Codefolder), 80

page directives (@Assembly), 64
resource (.resx) files, creating, 547–548

assigning
master pages, 272
programming themes, 295–296

asterisk (*), 1077
asynchronous callbacks, 884–887
asynchronous command execution

abstract class (WaitHandle class), 432–434
callback, 432, 449–451
canceling, 451
described, 429
interface (IAsyncResult), 432
multiple wait handles, 440–448
Poll approach, 434–437
SQLCommand class methods, 429–431
Wait approach, 437–440

asynchronous connections, 451–452
atomization, 466
attributes

directories and files, 824–825
listing all (NameTable), 466–468
page directives, specifying @Page, 57–59
server controls

class, 867–868
property/event, 868–869

XML class, adding, 470–471
authentication

configuration
described, 1073
forms, 1074–1075
Microsoft Passport, 1074
Windows, 1073

credentials, asking for
access, turning off, 599–600
Login server control, 600–603
programmatic logging in, 603–604

described, 583–584

1198

application folders (continued)

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1198

files and folders, specific, 689–690
forms-based

database values, authenticating against, 685–686
described, 679–683
login control, 686–688
methods and properties, 688–689
setting (<authentication> node), 671–672
web.config file values, authenticating against,

683–685
measures, applying, 670–671
Microsoft Passport identity system, 689
MMC tab, 1126–1128
online users, counting, 607–608
page-level events, triggering, 90
passwords, changing or retrieving forgotten

recovery server control, 610–612
server control, 609–610

status, logging in or out, 604–605
username, displaying, 606–607
users, adding

application registration, changing, 598–599
Continue button, 591–592
programming, 595–598
registration process, incorporating personalization

properties into, 592–595
stored, seeing where users are, 589–591
wizard, 587–589

Web site, setting up for membership
<authentication> element, 585–586
described, 584–585
<forms> element, 586–587

Windows-based
application, creating, 674–675
Basic, 678
defining groups, 676–677
Digest, 679
groups (<allow> and <deny> nodes), 675–676
HTTP transmission method, 677
users, creating, 672–674

Authenticode Signature, 1158
author blogs, 1193
authorization

application roles
adding, 619–620
caching, 627
checking users, 625–627
deleting, 621–622
gathering all users, 622–624
particular user, gathering all, 624–625
removing users, 625

retrieving, 621
users, adding, 622

authorized user information, working with
(User.Identity property), 691–692

configuration
file, 1077–1078
support, 1076
URL, 1076–1077

described, 583–584
MMC tab, 1125–1126
page views, controlling by login, 613–615
programming

authorized user information, working with
(User.Identity property), 691–692

described, 690
identity information, additional, 693–695
Windows role, checking (User.IsInRole()),

692–693
public methods

membership API, 628–629
roles API, 629–630

role management for Web site
changing, 616–618
described, 615–616
web.config file, 618–619

Web Site Administration Tool, 628
auto completion (AutoCompleteType), input form,

138–139
autogenerating data, 364
automatic saves, continuing with, 570–571

B
backward navigation, blocking (AllowReturn

attribute), 203
banner, advertising, 176–177
base class, HTML server control (HtmlControl),

110–111
Basic authentication, 678
BCL (Base Class Library)

described, 771
security, 805
tracing from components, 781–782

binary data, 839–840
BinarySearch, 305–306
binding data

Ad Rotator, 385
CheckBoxList, 384
connection information, storing, 350–353
DropDownList, 384

1199

binding data

In
de

x

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1199

binding data (continued)
GridView Bound List control

customizing columns, 361–363
deleting data, 368–370
displaying data, 353–355
editing data, 363–366
errors, handling, 366–368
paging, 357–360
sorting columns, 355–357

inline syntax
changes, 387
described, 386–387
XML, 387–388

ListBox, 384
Menu, 385–386
middle-layer business objects (ObjectDataSource

control)
configuring, 347–348
customer class, creating, 344–347
page source code, 348–349

RadioButtonList, 384
single data record

described, 370–371, 379–380
display, customizing, 371–372
displaying and editing data, 381–384
with GridView, 372–376
inserting data, 376–377
updating and deleting data, 377–378

source controls
caching, 349–350
described, 333–336

source link (Connection object), 391
SqlDataSource control

collection of items (CheckBoxList), 157
conflicts, detecting, 342–343
connection, configuring, 336–339
DataSet or DataReader retrieval, 340
filtering data (SelectParameters), 340–342
servers listed, 336

TreeView, 384–385
XmlDataSource control

described, 482–484
documents, 343–344
namespace qualification unavailable, 483
Web services, 485–486
weblog example, 484–485

bit values
compact list of (BitArray), 321
GridView display, 321

blank data fields
converting to Null, 341
disallowing, and requiring changes, 223
error message, generating, 219–222
GridView display, 360
highlighting missing form in group, 246–247

blocks, data entry
adding to GridView, 362–363
client-side control, 218
hidden

ControlState management, 735–739
mobile devices, 1019–1021
states, managing, 189–190
ViewState illusion, 890–891

validation server control
blank entries, disallowing, and requiring changes, 223
drop-down lists, 223–224
error message, 220–221
initial text, changing (InitialValue property), 222
results, viewing, 221–222
sample, 219–220

blogs, influential ASP.NET, 1193–1194
bookstore sample document

authors’ names, handling, 470–471
counting books and printing total price, 468–470
creating with XmlWriter, 472–474
elements, counting, 462–463, 466–468
namespaces, 458–461
read-only database, querying, 476–478
schema, defining, 457–458
validating, 464–465
XML, 454–455
XSLT list of authors, 486–487, 490

Boolean values
check boxes, form (CheckBox control)

creating, 153–154
verifying, 155

debugging and error-handling diagnostic switches,
787–788

GridView display, converting, 361
groups of forms, validating, 246–247
HTML server control base class, 110
list items, displaying or hiding, 149

borders
CheckBoxList, 158
Web server control, 101

bottom of page, placing function at
(RegisterStartupScriptBlock), 117–119

brackets and percentage signs (<%%>), 2

1200

binding data (continued)

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1200

breadcrumb navigation (SiteMapPath control)
child elements, listed, 508
depth of pages, displaying

(ParentLevelsDisplayed property), 507
described, 502–504
direction of links, changing (PathDirection

property), 506
link elements, separating symbol (PathSeparator

property), 504–506
tooltips for links, generating (ShowToolTips

property), 507–508
browser

concern prior to ASP.NET, 93–94
configuring capabilities, 1070–1071
detecting and reacting to capabilities
.browser files, 887–889
information, accessing, 889–890

master pages, adjusting to different, 276–277
type converters, 911–912

buffer uploads, 1082–1083
building server controls

coding, 97–98
design surface, 96
methods, 95

bulk loading data
columns, mapping to destination tables

(SqlBulkCopyColumnMapping), 408–410
constructors, 406–407
customizing, 405
data reader example, 410–415
methods, 408
progress (SqlRowsCopied event), 415–416
properties, 406

bulleted list
creating, 183–184
DisplayMode, 186–187
images as bullets, 186
populating from data store, 187–189
starting value, 185
styling, 184–185
user entry errors, reporting as, 238–239

business objects
binding

configuration wizard, 347–349
Customer class, coding, 344–347
described, 336, 344–349

COM interoperability
C#, 959–960
described, 954
private assemblies, 963–964

public assemblies, 964–965
RCW, 954–955
releasing manually, 960
samples, 955–959

described, 949–950
early versus late binding, 971–972
error handling, 960–963, 972–974
.NET components within COM objects

generating, 968–970
private assemblies, 974
public assemblies, 975

precompiled
described, 950–952
using, 952–953

from unmanaged code, CCW, 965–968
buttons

clicking
designer classes, 924
input form text box (AutoPostBack), 137–138
sample page event, 66–67
server control events, 98–99
validation, 218–219

data insert, adding, 376
HTML element, turning into server control, 109
navigation

adding, 527
Cancel button, 205–206
choosing, 205–206
Next, Previous and Finish, 201–202
registration, 591–592
renaming, 203
return, allowing or disallowing, 203
sequence of (StepType attribute), 203–204
structure, designing, 203–204
TreeView control, 523, 524

page sections, turning on and off, 199–200
RadioButton

change, detecting, 160
described, 159–160

RadioButtonList
creating, 161
data binding, 384
RadioButton versus, 160
value, checking, 161–162

themes, 291
Web server controls

function, multiple from same (CommandName),
140–141

hyperlink, 145
image, custom (ImageButton), 143–144

1201

buttons

In
de

x

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1201

buttons (continued)
JavaScript, client-side, 141–142
looks like hyperlink (LinkButton), 143
OnClick event, 139
without validation, 139

Byte array, moving from stream object to, 196

C
C# language

ADO.NET data management
batch updating, 419–421
bulk loading, 413–414
callback asynchronous command processing,

450–451
DataReader object, 394
GridView control and MARS, 426–427
loading table from reader, 403–404
multiple asynchronous processes, 447–448
multiple wait handles, 442–443
parameterized SQL statement, 400
single asynchronous process, wait approach

handling, 439
transaction, committing after bulk loading, 415

anonymous methods, 1180–1181
arrays (Person class)

automatic sizing (ArrayList), 309, 313
comparables, 304–305
finding by reference, 303
generic dictionary, 328
hashtable For Each, 316, 317
like objects, finding, 305
list using generics, 327
pushing, popping, and poking in stack, 320
queuing, 318–319
retrieving from hashtable, 315
sorting, 307, 318
strongly typed, 323, 324

authentication
credentials, validating, 604, 685, 691–692
information, additional, 693, 695
logged-in users, getting names of, 691
Login page, 681–682, 684, 687
number of users online, displaying, 608

authorization
cookie, deleting, 627
deleting roles, 621
roles, finding users by, 623
status, user’s, 626–627
user, looking up roles for each, 624

binary data, reading and writing, 839–840
business objects, binding, 346–347
button click

event, 139, 142
Finish, saving information, 207
multiple on form, discerning, 140
postback, triggering, 138

caching
with Cache object, 750
custom string, varying by, 744
dependencies, 751, 754–758
HTTP headers, 749
SQL Server invalidation, 764
substitution control, 747
user controls, 745

calendar
date range, validating, 230–231
range of dates, retrieving, 170, 171
rendering days, 174
selection option, turning off, 175
single day, selecting, 167

callback feature
populating random value to Web page, 124
with Web service, 127–128

changes since previous versions, 1171–1172
check box

populating, 157
single instance, 154
value, assigning, 155
verifying, 155

COM members, accessing, 959–960
concurrency errors, detecting, 343
configuration files

object, getting, 1093
from remote servers, 1094
sections, 1093

connection string
adding, 1091–1092
enumerating, 1090
retrieving, 1064

custom Web pages
behavior section, displaying, 651
control, creating, 664–665, 666, 667
modes, adding, 643

data binding
connection string, 351–353
multicolumn sorting in GridView, 357
sample, 334
SQL errors, catching, 370
update errors, checking, 367–368

1202

buttons (continued)

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1202

debugging and error handling
at application level, 801–802
diagnostic switches, 788
at page level, 801
text file, routing traces to, 783
tracing, 777
Web events, 789

design-time experience
actions, adding, 926
attribute, adding to control class, 915
composite, creating, 917–918
regions, defining, 921–924
UI type editor, adding, 928

drives
enumerating, 808–809
local, displaying information, 807

DropDownList, generating from array, 147
errors

handling, 962
raising, 973

file system
ACLs, 828–829, 830, 831
directories, enumerating, 811, 820
GridView, binding, 818–819
I/O enumerations, 835
memory system, writing to, 836
properties, displaying and modifying, 825
reading, 834
reading from stream, 836–837
setting and displaying working directory, 815
static methods, 813–814, 842

files
compressing, 843
decompressing, 844
Stream object, uploading to, 196
uploading, 191, 196

FTP download, 853–854
generics

collections of objects, 1172–1176
methods, 1176–1178

global namespace qualifiers, 1182–1183
hidden field server control, 189
hotspots, 212
HTML

style properties, 875–876
tag attributes, rendering, 873

HTTP
file extension, mapping, 945
handler template, 942
image, outputting, 943

modules, implementing, 930–931
output, altering, 932–933
output, compressing, 845–846
rewriting URL, 937
URL, 936
Web page, retrieving, 849–850

iterators, 1178–1180
list items, removing, 148–149
mail, sending, 856
master pages

assigning, 272
content model, 261
custom property, exposing, 267
GUID, creating on first request, 264
Label control, 265
Label control, overriding, 269
server control, exposing as public property, 269
title, coding custom page, 263

membership, creating users, 597–598
mobile devices

binding to List control, 1001–1002
calculator, 992
Calendar control, 989
creating new, 977–980
event handling, 981
hidden files, 1020
lists, 1006–1007
user control, 1012–1013

MultiView control, building, 198–199
.NET component, generating, 969–970
operator overloading, 1181–1182
partial classes, 1183–1185
path, 823–824
Person class

creating, 300
printing, 301

personalization
anonymous user identifier, changing, 566
auto-saving feature, turning off, 571
class for custom type, 561–562
defined properties, using, 555
late-bound access, 557
migrating anonymous users, 568, 569
retrieved profile, 569–570

property accessors, 1186–1187
RadioButton, 160
registration form

input information, pushing out, 209
membership link, 211

remote file, writing, 854–855

1203

C# language

In
de

x

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1203

C# language (continued)
roles, 620
server controls

browser capabilities, detecting, 889–890
child, exposing, 902–903
composite, 901
HTML tag, rendering, 871
postback, 897, 898–899, 900
Render method, overriding, 871
script, client-side, 879, 882
templates, 904–905, 906–907, 909, 910
themes, disabling, 878
validating data, 881

site navigation
check boxes, applying, 517
custom display, 542
menu events, 535
SiteMap objects, 542
TreeView control, 527
TreeView nodes, expanding and collapsing,

523, 524, 525
views, 199
XML file, binding menu control to, 537

state management
Application object, 731
base page, 716, 717`
ControlState, 894–895
hidden fields, 736–737
HTTP short-term storage, 740
objects, setting and retrieving, 723
retrieving values, 715
serializable object, 721
session state, setting values, 713
strongly typed property, 722
ViewState, 892–893

static classes, 1186
text file, reading and writing, 838
text, writing to serial port, 848
themes

assigning, 296
custom, 286–287
disabling, 297, 298
skin, 296

type converters
creating, 911
custom, 913–914

user controls
bulleted list selection, retrieving, 187
current step, viewing, 200
events, creating, 860
library class template, 864–865

populating from host Web page, 862
properties, exposing, 861–862

validation controls
asynchronous callback, 885–886
custom client-side, 234
custom server-side, 236–237
required fields, 220
against XML Schema, 465

Web services
Addition, 1040
asynchronous, 1057
caching, 1048
consuming, 1038
custom datasets, exposing, 1029
default structure, 1028
method overloading, 1044, 1045
requesting with SOAP 1.2, 1054
slow, 1056
SOAP headers, 1049, 1050
WS-I Basic Profile, turning off, 1046
XML with SOAP headers, 1052

XML
attributes, serializing, 470, 471
CLR types, retrieving, 469
DataSets, changing with DOM APIs, 481–482
documentation, 1185–1186
extracting from SQL Server, 479
file, loading, 178
querying and editing, 477, 478
reader, optimizing NameTable, 466–467
retrieving, 494–495
writing, 473–474
XSLT transform, 488–489

CAB Size, installation program, 1157–1158
caching

application
configuring, 761–763
roles, 627

described, 741
HTTP policy and client-side, 747–750
invalidation, testing

cache object, attaching dependencies to, 766–770
described, 763–765
multiple tables, adding to page, 765
request object, attaching dependencies to, 766

master pages, 278
output

described, 742
QueryString parameters, specifying (VaryByParam),

742–743

1204

C# language (continued)

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1204

UserControls, performance gains from
(VaryByControl), 743

VaryByCustom, 743–744
partial page, 744–745
programming

custom, creating, 752–756
data with Cache object, 750
disparate dependencies of different types

(AggregateCacheDependency class),
751–752

inheritable dependencies (CacheDependency
class), 752

previous edition’s dependencies, 750–751
responses, XML Web services, 1047–1048
SQL Server dependency

database, disabling, 760
disabling tables, 760
invalidation, enabling databases for, 757–758
SQL Server 2005 cache invalidation, 760–761
steps, 756–757
tables, enabling, 758, 759
viewing, 758–759

substitution following, 745–747
Calculator class

adding to project, 953
building, 952
sample page, 77–78
Subtract method, adding, 78–80

calendar
date range

highlighting, 169
populating, 231
retrieving, 170–171
sample, 229–231

day, selecting, 167–168
mobile devices, 988–990
outputting format, 168
selection option, turning off, 175
style and behavior, 172–175
theme

applying, 280–281
CSS control, 292–293

without styles, 166
callback approach

asynchronous command execution, 432, 449–451
client-side

asynchronous, 884–887
HTML button control and TextBox server control,

123–126

with parameters to retrieve returned value, 127–129
postback versus, 120–122

Web service, using with, 127–129
Cancel button

creating, 205–206
information, saving, 206

canceling asynchronous command execution, 451
captions, table, 165–166
Cascading Style Sheets (CSS)

advantages of using, 102–103
applying, 102
assigning, 101
external stylesheets, 104–107
HTML elements, applying directly, 103
internal stylesheets, 107–108
referencing, 111
themes, creating, 287–290
Visual Studio Style Builder, 103–104

Cassini Web server, 45
CCW (COM-Callable Wrapper), 965–968
Cell property, Calendar rendering, 175
changes, detecting

coding status, 26
configuration, 1062
hidden field, 190
RadioButton, 160

check boxes
described, 153–154
text, aligning, 155–156
TreeView, Web page navigation, 515–517
value, assigning, 155
verification, 154–155

CheckBoxList
data binding, 384
designing, 158
populating, 156–157

checking users’ authorization
application roles

adding, 619–620
caching, 627
checking users, 625–627
deleting, 621–622
gathering all users, 622–624
particular user, gathering all, 624–625
removing users, 625
retrieving, 621
users, adding, 622

authorized user information, working with
(User.Identity property), 691–692

1205

checking users’ authorization

In
de

x

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1205

checking users’ authorization (continued)
configuration

file, 1077–1078
support, 1076
URL, 1076–1077

described, 583–584
MMC tab, 1125–1126
page views, controlling by login, 613–615
programming

authorized user information, working with
(User.Identity property), 691–692

described, 690
identity information, additional, 693–695
Windows role, checking (User.IsInRole()),

692–693
public methods

membership API, 628–629
roles API, 629–630

role management for Web site
changing, 616–618
described, 615–616
web.config file, 618–619

Web Site Administration Tool, 628
checking users’ entries

application roles, 625–627
buttons without, 139
CheckBox, 154–155
client- versus server-side, 216–217
client-side

asynchronous callbacks, 884–887
disabling, 241–242
JavaScript file, 883

customizing
client and server working together, 238
client-side, 233–235
complexity, 235–237

events triggering, 218–219
form elements, comparing

against constants, 226–227
against other controls, 224–226

form types, 215–216
generally, 10
groups, 244–247
manipulating, 217–218
membership and role management, 9–10
mobile device controls, 1008–1009
pattern, defining with regular expression

(RegularExpressionValidator)
e-mail address example, 232
other uses, 233

range
dates and other string characters, 228–231
integer value, 228
sample, 227–228

reporting
with dialog box, 240–241
errors as bulleted list, 238–239
images and sounds, 242–243
limiting to one, 239–240

required fields
blank entries, disallowing, and requiring changes, 223
drop-down lists, 223–224
error message, 220–221
initial text, changing (InitialValue property), 222
results, viewing, 221–222
sample, 219–220

rules, 215
XML

against XML Schema (XmlReader), 464–465
XPath, 475

checking users’ identity
configuration

described, 1073
forms, 1074–1075
Microsoft Passport, 1074
Windows, 1073

credentials, asking for
access, turning off, 599–600
Login server control, 600–603
programmatic logging in, 603–604

described, 583–584
files and folders, specific, 689–690
forms-based

database values, authenticating against, 685–686
described, 679–683
login control, 686–688
methods and properties, 688–689
setting (<authentication> node), 671–672
web.config file values, authenticating against,

683–685
measures, applying, 670–671
Microsoft Passport identity system, 689
MMC tab, 1126–1128
online users, counting, 607–608
page-level events, triggering, 90
passwords, changing or retrieving forgotten

recovery server control, 610–612
server control, 609–610

status, logging in or out, 604–605
username, displaying, 606–607

1206

checking users’ authorization (continued)

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1206

users, adding
application registration, changing, 598–599
Continue button, 591–592
programming, 595–598
registration process, incorporating personalization

properties into, 592–595
stored, seeing where users are, 589–591
wizard, 587–589

Web site, setting up for membership
<authentication> element, 585–586
described, 584–585
<forms> element, 586–587

Windows-based
application, creating, 674–675
Basic, 678
defining groups, 676–677
Digest, 679
groups (<allow> and <deny> nodes), 675–676
HTTP transmission method, 677
users, creating, 672–674

child elements
breadcrumb navigation (SiteMapPath control), 508
site map, starting from, 539–541

child properties, exposing, 902–903
classes

ADO.NET data management, 389–391
application folders (App_Codefolder)

assembly, building into single, 80
creating, 76–78
described, 75–76
method, adding, 78–79

attributes, 867–868
default template server controls, 909–910
enumerating all objects (IEnumerable and

IEnumerator), 310–311
name, associating
@MasterType, 65
@Register, 63–64

reading and writing files, 837–840
SOAP headers, 1049–1051
static, 1186
System.Collections namespace

ArrayList, 307–310
counting items (ICollection), 311–312
dictionaries (IDictionary), 313–314
enumerating all objects (IEnumerable and

IEnumerator), 310–311
hashtables, 314–317
keys, list sorted by (SortedList), 317–318

lists (IList), 312–313
Queues and Stacks, 318–320

viewing in Visual Studio 2005, 33
Web Parts Portal Framework, 661–662

clearing collection lists, 312–313
client

application, invoking XML Web Services from,
1036–1039

callback feature
HTML button control and TextBox server control,

123–126
with parameters to retrieve returned value, 127–129
postback versus, 120–122

and server working together, 238
state management options listed, 708
validation, disabling, 241–242

client-side features
customizing, 233–235
server controls

asynchronous callbacks, 884–887
embedded resources, 883
script, enabling, 878–883

validation server control versus, 216–217
CLR (Common Language Runtime)

debugging, 791, 798
types, retrieving from XML (XmlReader), 468–469

CLS (Common Language Specification), 328
coding

authorization
authorized user information, working with

(User.Identity property), 691–692
described, 690
identity information, additional, 693–695
Windows role, checking (User.IsInRole()),

692–693
caching

custom, creating, 752–756
data with Cache object, 750
disparate dependencies of different types

(AggregateCacheDependency class),
751–752

inheritable dependencies (CacheDependency
class), 752

previous edition’s dependencies, 750–751
change status notifications, 26
code-behind model, 53–55
configuration files

connection strings, enumerating, 1089–1092
described, 1087–1089

1207

coding

In
de

x

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1207

coding (continued)
manipulating, 1092–1093
remotely, working, 1093–1095

end user personalization
anonymous users, migrating, 568–569
automatic saves, continuing with, 570–571
events, exposing (ProfileModule class), 567
profiles, 569–570

logging in, 603–604
master pages, 253–256
server controls, building, 97–98
snippets, 41–43
themes

assigning, 295–296
SkinID, assigning, 296

user authentication, 595–598
collapsing nodes, 522–526
collections

bit values, compact list of (BitArray), 321
dictionaries (ListDictionary and

HybridDictionary), 320–321
generics

described, 325
dictionary, 327–328
lists, 326–327
VB and C#, 1172–1176

of items (CheckBoxList)
binding with SQLDataSource, 157
dynamically populating, 156–157
styling properties, 158

Microsoft.VisualBasic.Collection, 321
of radio buttons (RadioButtonList), 161–162
strings (StringCollection, StringDictionary,

and NameValueCollection), 321
strongly typed, 322–325
table summarizing, 329–331

Color Picker, 927–928
color server control, 101
columns

bulk loading (SqlBulkCopyColumnMapping),
408–410

GridView
customizing, 361–363
sorting, 355–357

COM-business object interoperability
C#, 959–960
described, 954
private assemblies, 963–964
public assemblies, 964–965

RCW, 954–955
releasing manually, 960
samples, 955–959

COM-Callable Wrapper (CCW), 965–968
command window, debugging and error-handling, 774
commands. See also individual commands listed by

name
compilation, listed, 87–88
mobile devices, 994

comment tags, 108
common elements. See master pages
Common Language Runtime (CLR)

debugging, 791, 798
types, retrieving from XML (XmlReader), 468–469

Common Language Specification (CLS), 328
common tasks, programming (smart tags), 36–37
comparison

finding objects (IComparable), 304–305
input field

constants, testing against, 226–227
control, 218
testing against other, 224–226

compilation
commands, listed, 87–88
configuration, 1068–1070
DLL instantiation, 86
file types handled, 88–89
generics, 325
in-place precompilation, 86–87
output, viewing, 88
pages

parser, passing to, 85
@Reference directive, 66
setting, 1128–1129

precompilation for deployment, 87
system, 14–15

composite
design-time experiences, 916–918
server controls

child properties, exposing, 902–903
creating, 901–902

compression
HTTP, 847
installation program, building, 1157

concurrency errors, detecting, 343
configuration

anonymous identity, 1075–1076
application file, 1061
application-specific settings, storing, 1087

1208

coding (continued)

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1208

applying, 1061–1062
ASP.NET page

described, 1078–1080
include files, 1080–1081

authentication
described, 1073
forms, 1074–1075
Microsoft Passport, 1074
Windows, 1073

authorization
file, 1077–1078
support, 1076
URL, 1076–1077

browser capabilities, 1070–1071
changes, detecting, 1062
compilation, 1068–1070
custom errors, 1072
editing files, 1095–1097
files supported, 1059–1060, 1062
mobile devices runtime settings, 1082
page, pulling up, 32
programming files

connection strings, enumerating, 1089–1092
described, 1087–1089
machine.config file, manipulating, 1092–1093
machine.config file, manipulating from Remote

Servers, 1093–1095
protecting settings, 1095
runtime settings

application queue length, 1083
application shutdown time, 1082
applications, enabling and disabling, 1081
buffer uploads, 1082–1083
described, 1081
maximum request length, 1082
output caching, 1084
queue limits, managing, 1083
request priority, 1083–1084
thread management, 1083
timeout option, 1082
URLs, redirecting, 1082

section handlers, grouping (<configSections>
section), 1062

server file, 1060–1061
session object, 710–711
session state

described, 1060, 1064–1065
Web Farm support, 1065–1068

settings, locking, 1078
strings, connecting, 1063–1064

web.config file, encrypting, 8–9
worker process

described, 1084–1086
multiple Web sites with multiple frameworks,

1086–1087
conflicts, detecting in SqlDataSource, 342–343
connection

ADO.NET DataReader object, 393–395
information, storing, 350–353
mode of page, changing, 651
SqlDataSource, configuring, 336–339

connection strings
adding to SQL Server Express file, 572
application, managing, 1123–1124
changing, 579
configuring, 1063–1064
enumerating, 1089–1092
retrieving, 1064
Session State, configuring, 1067
storing, 1063

constructors, 406–407
consuming

SOAP headers, 1051–1053
XML Web services

asynchronously, 1055–1058
client application, invoking from, 1036–1039
described, 1034
reference, adding, 1035–1036

container class
master pages, 276–277
template server controls, 905–908

content pages
building, 256–259
controls, accessing, 263–264
GUID, 266–268
Label control, 264–266
mixing types and languages, 259–261
overriding Label control, 269–270
server control, exposing, 268–269
specifying template, 261–262
title, 262–263
Web Parts zones, 633–634

Continue button, 591–592
Continue keyword, 1189–1190
control events, 206–207
control state, 894–895
control values, exposing, 71–72
controls

content pages, accessing, 263–264
Web Parts zones, adding, 652–655

1209

controls

In
de

x

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1209

cookies
anonymous identification, changing name of, 564
data, filtering, 340
drawbacks, 551
role, deleting upon authentication, 627
session state, 714–715
state management, 732
unsupported, maintaining session state without,

729–730, 1130
copying

batch processing updates
benefits, 421–422
described, 416
employee records, coding, 417–421

bulk loading data
class properties and methods, 405–408
columns, mapping, 408–410
with data reader, 410–415
progress, showing, 415–416

Web site applications, 31
counting

books and printing total price, 468–470
bookstore elements, 462–463, 466–468
items in collection (ICollection), 311–312
online users, 607–608

credentials
access, turning off, 599–600
Login server control, 600–603
programmatic logging in, 603–604

cross-page posting
button controls, 142
control values, exposing, 71–72
described, 69–70
exposed properties, consuming, 73–74
first page, checking whether from, 74–75
origin of (@PreviousPageType), 64
postback and values, 70–71

CSS (Cascading Style Sheets)
advantages of using, 102–103
applying, 102
assigning, 101
external stylesheets, 104–107
HTML elements, applying directly, 103
internal stylesheets, 107–108
referencing, 111
themes, creating, 287–290
Visual Studio Style Builder, 103–104

current date and time, JavaScript page, 114–115
current node of page, retrieving only

(StartFromCurrentNode property), 539–540

current page, setting link to, 506
CurrentNode, 542–544
cursor, placing (Focus()) on input form, 136–137
Custom Actions Editor, 1168–1169
Custom Errors tab, 1124–1125
Customer class, business object, 344–347
customizing

client and server working together, 238
client-side, 233–235
complexity, 235–237
end user personalization properties, 560–562
GridView Bound List columns, 361–363
installation program, 1146–1150
regions, 918–924
themes, 296–298
type converters, 912–914
Web Farm state store, 1067–1068
Web Parts

creating, 663–666
DLL, 667–668
dragging and dropping onto page, 668
personalization, 666–667

D
data

debugging tools, 796
PostBack handling, 899–900
programming with Cache object, 750
retrieval speed in fire hose mode, 340
storing

application folders (App_Datafolder), 80–81
in-process session state, 712–715
populating bulleted list from, 187–189

table, building, 4–5
viewing

debugging and error-handling, monitoring, 777–780
tracing debugging and error-handling, 777–780

data access objects, 17
data binding

Ad Rotator, 385
CheckBoxList, 384
connection information, storing, 350–353
DropDownList, 384
GridView Bound List control

customizing columns, 361–363
deleting data, 368–370
displaying data, 353–355
editing data, 363–366
errors, handling, 366–368

1210

cookies

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1210

paging, 357–360
sorting columns, 355–357

inline syntax
changes, 387
described, 386–387
XML, 387–388

ListBox, 384
Menu, 385–386
middle-layer business objects (ObjectDataSource

control)
configuring, 347–348
customer class, creating, 344–347
page source code, 348–349

RadioButtonList, 384
single data record

described, 370–371, 379–380
display, customizing, 371–372
displaying and editing data, 381–384
with GridView, 372–376
inserting data, 376–377
updating and deleting data, 377–378

source controls
caching, 349–350
described, 333–336

source link (Connection object), 391
SqlDataSource control

collection of items (CheckBoxList), 157
conflicts, detecting, 342–343
connection, configuring, 336–339
DataSet or DataReader retrieval, 340
filtering data (SelectParameters), 340–342
servers listed, 336

TreeView, 384–385
XmlDataSource control

described, 482–484
documents, 343–344
namespace qualification unavailable, 483
Web services, 485–486
weblog example, 484–485

data dictionaries
classes and interfaces (System.Collections

namespace), 313–314
collections (ListDictionary and

HybridDictionary), 320–321
generics, 327–328
string tables (App_GlobalResources Folder),

81–84
data entry, checking

application roles, 625–627
buttons without, 139

CheckBox, 154–155
client- versus server-side, 216–217
client-side

asynchronous callbacks, 884–887
disabling, 241–242
JavaScript file, 883

customizing
client and server working together, 238
client-side, 233–235
complexity, 235–237

events triggering, 218–219
form elements, comparing

against constants, 226–227
against other controls, 224–226

form types, 215–216
generally, 10
groups, 244–247
manipulating, 217–218
membership and role management, 9–10
mobile device controls, 1008–1009
pattern, defining with regular expression

(RegularExpressionValidator)
e-mail address example, 232
other uses, 233

range
dates and other string characters, 228–231
integer value, 228
sample, 227–228

reporting
with dialog box, 240–241
errors as bulleted list, 238–239
images and sounds, 242–243
limiting to one, 239–240

required fields
blank entries, disallowing, and requiring

changes, 223
drop-down lists, 223–224
error message, 220–221
initial text, changing (InitialValue property), 222
results, viewing, 221–222
sample, 219–220

rules, 215
XML

against XML Schema (XmlReader), 464–465
XPath, 475

data entry text box (TextBox)
auto completion (AutoCompleteType), 138–139
button, clicking (AutoPostBack), 137–138
cursor, placing (Focus()), 136–137
described, 135

1211

data entry text box (TextBox)

In
de

x

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1211

data entry text box (TextBox) (continued)
multiline, 136
passwords, 135

data reader
bulk loading, 410–415
retrieval, 340

database. See also specific databases listed by name
APIs, 497
data table, building from, 4–5
List control, binding, 1000–1002
query

parameterized statements, 398–401
state management, 724–727
Stored Proc, debugging, 798–799
XML, modifying to return (FOR XML AUTO clause),

493–495
XSLT, modifyiing to return, 495–497

support, 492
tabular information, viewing on mobile device

(ObjectList control), 1003
values, authenticating against, 685–686

DataGrid server control, 3–4
DataSets

persisting, 479–480
retrieval, 340
XmlDocument, accessing (XmlDataDocument),

480–482
datatips, 796
date

calendar range
highlighting, 169
populating, 231
retrieving, 170–171
sample, 229–231

current, 114–115
day

calendar selections, 167–168
highlighting, 169
selection option, turning off, 175

DbgView debugging tool (SysInternals), 781
debugging

design-time support
APIs, 771–772
immediate and command window, 774
syntax notifications, 772–773
Task List, 774–775

diagnostic switches
Boolean, 787–788
levels, 788
source, 788

execution, monitoring
application, 776
from components, 781–782
data, viewing, 777–780
described, 775
forwarding, 782
page-by-page, 776
System.Diagnostics.Trace and Page.Trace,

776
text file, routing to (TraceListeners), 783–787

IIS versus ASP.NET Development Server, 792
JIT dialog, 791
release versus, 790–791
requirements, 790
session, starting

attaching to process, 793
F5, 793
simpler remote, 793–795
Windows XP Service Pack 2, 795

SQL Stored Proc, 798–799
time consumed by, 771
tools

data visualizers, 796
datatips, 796
Edit and Continue (Lack of) Support, or Edit and

Refresh, 797
error notifications, 797
Just My Code, 797–798
tracepoints, 798

turning off, 1134–1135
XSLT, 491–492

default class, template server controls, 909–910
default content, specifying, 270–271
default elements

Web navigation TreeView, 519
Web Parts zones, 639–640

default instances, 1188
default values, providing

changes, allowing, 222
end user personalization properties, 562–563
Null, 341

defining
groups for Windows-based authentication, 676–677
types for end user personalization properties, 559

Deflate streams, 843–844
deleting

application roles, 621–622
from collection lists, 312–313
data from GridView Bound List control, 368–370
single data record, viewing (DetailsView), 377–378

1212

data entry text box (TextBox) (continued)

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1212

snippets, 43
themes

from individual Web pages, 283
from text and other controls, 282

users, 625
Web server control collection items, 148–149

denial of service (DoS) attack, 194, 1082
dependencies

programming
disparate dependencies of different types

(AggregateCacheDependency class),
751–752

inheritable (CacheDependency class), 752
previous edition’s, 750–751

SQL Server
database, disabling, 760
disabling tables, 760
invalidation, enabling databases for, 757–758
SQL Server 2005 cache invalidation, 760–761
steps, 756–757
tables, enabling, 758, 759
viewing, 758–759

deploying applications
installation program, building, 1155–1159
pre-deployment steps, 1134–1135
XCopy

described, 1135–1138
VS Copy Web site option, 1138–1142

depth of pages, navigation display, 507
description, image, 163
design surface, 96
Design tab, document window, 23
design-time experiences

debugging and error-handling
APIs, 771–772
immediate and command window, 774
syntax notifications, 772–773
Task List, 774–775

server controls
actions, 924–927
composite, 916–918
custom to define regions, 918–924
custom type converters, 912–914
described, 910–911
designer classes, 914–915
regions, 915
type converters, 911–912
UI type editors, 927–928

desktop shortcut to Web application, creating, 1163
Developer Solution Kits demo Web applications, 10–11

developer tools
membership and role management, 9–10
personalization, 10
portal framework, 10–12
productivity, 3–6
site navigation, 12–14

diagnostic switches, debugging and error-handling
Boolean, 787–788
levels, 788
source, 788

dialogs
adding to installation process, 1167
creating, 1166–1167
order, changing, 1168
reporting (ValidationSummary), 240–241

dictionaries
classes and interfaces (System.Collections

namespace), 313–314
collections (ListDictionary and

HybridDictionary), 320–321
generics, 327–328
string tables (App_GlobalResources Folder),

81–84
Digest, authentication, 679
direction changing navigation links (PathDirection

property), 506
directives, page

assemblies (@Assembly), 64
attributes and values, specifying @Page, 57–59
class name, associating (@MasterType), 65
compiling another page (@Reference directive), 66
cross-page posting, origin of

(@PreviousPageType), 64
Framework interface, implementing (@Implements), 63
importing namespace (@Import), 62–63
listed, 56–57
master page typed references or members

(@MasterType), 65
master pages (@Master), 59–60
namespaces and class names, associating

(@Register), 63–64
page or user control output caching policies

(@OutputCache), 65–66
user control (@Control), 60–61

directories
access control lists, 826–831
authorization information, sending, 1077–1078
Directory and DirectoryInfo classes, 809–814
properties and attributes, 824–825
setting/getting current, 814–815

1213

directories

In
de

x

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1213

disconnected data, handling
DataSet and DataTable, 402–404
two-day mechanism (SqlDataAdapter class), 395–398

disparate dependencies, 751–752
disparate systems, XML Web services

described, 1023–1024
SOAP request and response, 1024–1025

display
bulleted list, 186–187
data

details and GridView together, 372–376
DetailsView, 371–372
FormView, 381–384
GridView Bound List control, 353–355

mobile device
Image control, 994–995
Link control, 997–999
TextView control, 993–994

DLL (Dynamic Link Library)
ActiveX, adding to References section of project,

954–955
custom Web Parts, 667–668
instantiation while compiling, 86
page code, finding, 88
precompiled business objects, 950–953
private assemblies, 974
reference, adding, 35–36

document
internal stylesheets, 107–108
XSLT, transforming, 486–487

document window
ASP.NET pages, creating, 22
code change status notifications, 26
error notifications and assistance, 26–28
page tabs, 24–25
pages, creating, 22
tag navigator, 24
views, 23–24

DOM implementation (XmlDocument)
DataSets, changing, 481–482
described, 474
problems, 475
XPath and, 475–478

domain name restrictions, 699–700
DoS (denial of service) attack, 194, 1082
DotNetNuke demo Web applications, 10
drives
DriveInfo class, 806–809
paths, 820–824

drop-down list
choice, requiring, 223–224
DropDownList, 384
ListBox versus, 150
table views, choosing, 643–644

Dynamic Help, 33
dynamic item style, 532
Dynamic Link Library (DLL)

ActiveX, adding to References section of project,
954–955

custom Web Parts, 667–668
instantiation while compiling, 86
page code, finding, 88
precompiled business objects, 950–953
private assemblies, 974
reference, adding, 35–36

dynamic object placeholder, 181
dynamic substitute, cache preserving, 745–747
dynamically populating collection of items

(CheckBoxList), 156–157

E
early binding, 971–972
Edit and Continue (Lack of) Support, or Edit and

Refresh, 797
editing

configuration files, 1095–1097
customized Web page views (Web Parts), 648
GridView

columns, 361–363
row data, 363–366

single data record, (FormView), 381–384
XML, 458–461

elements, listing all (NameTable), 466–468
ellipsis (...), 999, 1016
e-mail

address, validating, 232
SMTP, configuring, 1115–1116
from Web page, 855–856

embedded resources, 883
empty data fields

converting to Null, 341
disallowing, and requiring changes, 223
error message, generating, 219–222
GridView display, 360
highlighting missing form in group, 246–247

emulator, mobile device, 1014–1015
encoding files, 841
encrypting web.config file, 8–9

1214

disconnected data, handling

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1214

end user. See also navigation; personalization;
validation

application roles, adding, 622
authentication

application registration, changing, 598–599
blocking open access, 599–600
Continue button, 591–592
creating new, 1110
managing, 1110–1111
programming, 595–598
registration process, incorporating personalization

properties into, 592–595
stored, seeing where users are, 589–591
unauthenticated users, allowing to register,

600–604
Windows-based, 672–674
wizard (CreateUserWizard server control), 587–589

client-side validation, convenience for, 216–271
managing, 1110–1111
mode of page, changing, 640–641
overall view of Web site, providing, 503
profiles, filtering with key value, 340
view

page sections, turning on and off (Multiview and
View), 200

themes, disabling, 296–298
WAT security, managing, 1110–1111
ZIP code, asking for, 127–129

end user control
assemblies, attaching (@Assembly), 64
attributes, parsing (@Control), 60–61
changing, 858–860
defined, 857
interacting, 861–862
mobile devices, 1010–1013
multiple, compiling or parsing (@Reference), 66
namespace, importing (@Import), 62–63
output caching policies (@OutputCache), 65–66
performance gains from (VaryByControl), 743

Ericsson emulator, 1014
error-handling

application, 801–802
business objects, 960–963, 972–974
custom pages or redirecting users, 1124–1125
described, 800
design-time support

APIs, 771–772
immediate and command window, 774
syntax notifications, 772–773
Task List, 774–775

diagnostic switches
Boolean, 787–788
levels, 788
source, 788

execution, monitoring
application, 776
from components, 781–782
data, viewing, 777–780
described, 775
forwarding, 782
page-by-page, 776
System.Diagnostics.Trace and Page.Trace,

776
text file, routing to (TraceListeners), 783–787

Http status codes, 802–803
page, handling on, 800–801
time consumed by, 771
updating data in GridView control, 366–368

errors
data concurrency, detecting, 343
event, triggering, 90
files, uploading

described, 193
permissions, assigning, 193–194

hashtable, 316
HTML design-time, correcting, 39–41
notification

debugging tools, 797
design-time, 771–772
document window, 26–28

sign, viewing, 27
source code and line number, showing, 1072
SQL, catching, 369–370
TextBox, 118
tracing

application, 776
from components, 781–782
data, viewing, 777–780
described, 775
forwarding, 782
page-by-page, 776
System.Diagnostics.Trace and Page.Trace,

776
text file, routing to (TraceListeners), 783–787
WAT application, 1116–1118

user validation messages
blank forms, highlighting, 246–247
bulleted list (ValidationSummary), 238–239
displaying, 218
fields left blank, 220–221

1215

errors

In
de

x

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1215

errors (continued)
images and sounds, 242–243
summary, 238–241

event model, 709–710
events

anonymous identification, 566–567
attributes, 868–869
bulk loading handler, 415–416
exposing (ProfileModule class), 567
log, sending tracing information to, 785–786
master pages ordering, 277–278
Menu server control, 535–536
page

button-click, sample, 66–67
listed, 67–68
page loading, 67

server controls
button click, 98–99
from Properties window of Visual Studio, 100
specific page, 98

triggering server validation, 218–219
execution, monitoring

application, 776
from components, 781–782
data, viewing, 777–780
described, 775
forwarding, 782
page-by-page, 776
System.Diagnostics.Trace and Page.Trace, 776
text file, routing to (TraceListeners), 783–787

expanding nodes, 522–526
exposed properties, consuming, 73–74
eXtensible HyperText Markup Language (XHTML),

772–773
eXtensible Markup Language. See XML
eXtensible Stylesheet Language Transformations (XSLT)

document, transforming, 486–487
processor (XslCompiledTransform), 488–489
SQL output, transforming, 495–497
SQL query, modifyiing to return, 495–497
Web server control, 489–491

eXtensible Stylesheet Language (XSL) style sheet,
177–178

external stylesheets, 104–107

F
F5, starting debugging session with, 793
fields, data entry

adding to GridView, 362–363
client-side control, 218

hidden
ControlState management, 735–739
mobile devices, 1019–1021
states, managing, 189–190
ViewState illusion, 890–891

validation server control
blank entries, disallowing, and requiring changes, 223
drop-down lists, 223–224
error message, 220–221
initial text, changing (InitialValue property), 222
results, viewing, 221–222
sample, 219–220

file extensions
mapping, 945–946
securing, 700–702

File System Editor
desktop shortcut to Web application, creating, 1163
opening, 1147
Project Output, adding items to, 1161–1163
properties, listed, 1160–1161

File Transfer Protocol (FTP)
application locations, 48
commands (FtpWebRequest and

FtpWebResponse), 852–854
File Types Editor, 1165–1166
files

access control lists, 826–831
authentication, 689–690
copying with XCOPY, 1136–1138
Directory and DirectoryInfo classes, 809–814
displaying, 816–820
DriveInfo class, 806–809
format, configuring, 1062
information, viewing, 1122
master pages, 251–252
network communications

file system (FileWebRequest and
FileWebResponse), 854–855

FTP commands (FtpWebRequest and
FtpWebResponse), 852–854

mail from Web page, 855–856
WebRequest and HttpWebResponse classes,

848–852
paths, 820–824
properties and attributes, 824–825
reading and writing

classes, 837–840
described, 832
encodings, 841
shortcuts, 841–842
streams, 832–837

1216

errors (continued)

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1216

relative paths and setting/getting current directory,
814–815

security, 805
serial ports, 847–848
streams, compressing
Deflate, 843–844
GZip, 842–843
HTTP output, 844–847

supported types, 88–89, 1059–1060
uploading

advantages, 190–191
byte array, moving from stream object to, 196
naming, 192–193
permissions, 193–194
sample, 191–192
size limits, 194–195
stream object, placing into, 195–196

filling
bulleted list from data store, 187–189
calendar, 231
dynamic collection of items (CheckBoxList),

156–157
form element with default values, 222
user controls from host Web page, 862

filter, mobile device, 1015–1017
filtering SqlDataSource data

with expression, 375–376
parameters, 376
SelectParameters, 340–342

finding
folders, 41–43
HTML server controls, 108–109
objects

comparing (IComparable), 304–305
identity versus equivalence, 302–303
like objects (BinarySearch), 305–306
overriding equals, 303–304

Finish button
creating, 205–206
information, saving, 206, 207
steps, controlling, 203–204

fire hose mode, 340
first page

cross-page posting, 74–75
image, loading, 163
navigating to, 506

folders
authentication

files, uploading, 193–194
specific, 689–690

finding, 41–43

master pages, limiting, 262
themes, creating, 284
URL deep within, 544–545

fonts, 101
footer section, repeated. See master pages
For Each loop

as C# language iterator, 1178–1180
collection, counting, 311–312
hashtable, 316
writing, 301–302

For loop
collection, counting, 311–312
hashtable, 316
writing, 301–302

forms. See also validation
authentication

configuring, 1074–1075
database values, working against, 685–686
described, 679–683
login control, 686–688
methods and properties, 688–689
setting (<authentication> node), 671–672
web.config file values, authenticating against,

683–685
buttons

creating, 139
hyperlinks, setting, 143–144
images, 143–144
JavaScript event, triggering, 141–142
logic, 140–141
steps, events controlling, 206–207
validation, 139, 218–219

CheckBox
described, 153–154
text, aligning, 155–156
value, assigning, 155
verification, 154–155

CheckBoxList
data binding, 384
designing, 158
populating, 156–157

element sequence, 207–211
end user personalization properties, 554–556
filtering data, 340
<forms>, element to web.config file, 586–587
HTML select box, including (DropDownList),

145–148
long workflows, breaking into manageable segments,

207
longer HTML select box (ListBox server control),

152–153

1217

forms

In
de

x

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1217

forms (continued)
master page, choosing and coding, 256–261
mobile devices

container, 981–982
navigating between, 1010
user control, 1010–1013

RadioButton
change, detecting, 160
described, 159–160

RadioButtonList
creating, 161
data binding, 384
RadioButton versus, 160
value, checking, 161–162

smart auto-completion, 138–139
submitting to another page

button controls, 142
control values, exposing, 71–72
described, 69–70
exposed properties, consuming, 73–74
first page, checking whether from, 74–75
origin of (@PreviousPageType), 64
postback and values, 70–71

TextBox control
cursor, dynamically placing in element (Focus()

method), 136–137
mapping, 135–136

forward slash (/), 484
forwarding

cursor (DataReader object), 393–395
debugging and error-handling, monitoring

(tracing), 782
tracing debugging and error-handling, 782

Framework interface, implementing
(@Implements), 63

FrontPage Extensions, server utilizing, 48–49
FTP (File Transfer Protocol)

application locations, 48
commands (FtpWebRequest and

FtpWebResponse), 852–854
functions

buttons, multiple from same (CommandName),
140–141

MMC, 1122

G
GAC (Global Assembly Cache), 975
gathering users by role, 622–624
General tab, MMC, 1123–1124

generics
collections, specialized

described, 325
dictionary, 327–328
lists, 326–327

HTML server controls (HtmlGenericControl),
113–114

Visual Basic and C# language
collections of objects, 1172–1176
methods, 1176–1178

Global Application Class, adding, 89–90
Global Assembly Cache (GAC), 975
global namespace qualifiers, 1182–1183
graphics

as bullets, 186
buttons, 143–144
error notification, 242–243
file extension, mapping, 945–946
file location (ImageUrl), 162–163
HTTP, handling, 943–944
menu items, separating with, 534–535
mobile devices, 994–995
navigation menu based on (ImageMap)

checking hotspots, 213
specifying hotspots, 211–213
URL, navigating to different, 213

outputting, request-processing pipeline handler,
943–944

Web page view customization, 657–658
Web site navigation

menu items, 534–535
paths, separating, 506
pop-out symbol, 533–534
themes, including, 290–293
TreeView, 519–520

greater than sign (>), 504, 774
GridView

Bound List control
customizing columns, 361–363
deleting data, 368–370
displaying data, 353–355
editing data, 363–366
errors, handling, 366–368
paging, 357–360
sorting columns, 355–357

data table, building, 4–5
file system, binding, 816–818
MARS control, 423–427
single data record, viewing (DetailsView), 372–376

1218

forms (continued)

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1218

group
<allow> and <deny> nodes, 675–676
end user personalization properties, 558–559
form boxes, validating, 244–247
login, providing view for, 614–615

GUID (unique identifier)
anonymous personalization, 566
content pages, 266–268
master page, creating on first request, 263–264

Guthrie, Scott (Microsoft employee), 2
GZip compression, 842–843

H
hackers, 216–217
handheld devices

AdRotator, 985–988
calendar, 988–990
command, 994
emulators, 1014–1015
filters, 1015–1017
Form control container, 981–982
forms, navigating between, 1010
images, 994–995
label, 990–991
link, 997–999
lists, 999–1002
master pages, adjusting to different, 276–277
Mobile Web Form

Code view, 981
Design view, 980
event handling, 981
HTML view, 980

ObjectList, 1003
Panel control container, 981–983
PhoneCall, 996–997
SelectionList, 1004–1007
state management

hidden fields, 1019–1021
session, 1019
ViewState, 1017–1018

StyleSheets
applying, 984–985
creating and customizing, 983–984
global for all forms, creating, 985

TextBox, 991–993
TextView, 993–994
user control, 1010–1013
validation controls, 1008–1009
Visual Basic or Visual C# application, creating new,

977–980

handlers, 929–930
hashtables

classes and interfaces (System.Collections
namespace), 314–317

generic dictionary, 327–328
iterating, 41–43

header, 204–205. See also master pages
help, 33
hidden fields

ControlState management, 735–739
mobile devices, 1019–1021
states, managing, 189–190
ViewState illusion, 890–891

hierarchical data
menu, 385–386
TreeView

adding nodes, 526–527
check boxes, creating, 515–517
data binding, 384–385
described, 509–510
expanding and collapsing nodes, 522–526
icons, specifying custom, 518–520
Label control, populating, 518
lines connecting nodes, specifying, 520–522
multiple options, selecting, 514–515
root and tree nodes, 512
styles, identifying built-in, 511
testing, 549–550
XML file, binding, 512–514

XML document, viewing, 472
highlighting Calendar selections, 169
history, ASP.NET, 1–3
home page

cross-page posting, 74–75
image, loading, 163
navigating to, 506

Home tab, WAT, 1101
horizontal page alignment, 180
hot-key, 133–134
hotspots

checking, 213
specifying, 211–213

hover style
dynamic menu items, 532
static menu items, 531

HTML (HyperText Markup Language)
ASP page, building, 2
bulleted list

binding to data store results, 187–188
constructing, 183–184
images as bullets, 186

1219

HTML (HyperText Markup Language)

In
de

x

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1219

HTML (HyperText Markup Language) (continued)
populating dynamically, 188–189
starting value, changing, 185
style, 184–185
text mode, 186–187

button control and TextBox server control, 123–126
code, displaying in browser (Literal control), 134–135
CSS server controls, applying to, 103
generic control (HtmlGenericControl), 113–114
HTTP-POST request, sending, 1043
interpretations, challenge facing multiple browsers,

93–94
select box, 145–148
server controls

base class (HtmlControl), 110–111
changing, 109–110
finding, 108–109
listed, 94, 111–112
single-node (HtmlContainerControl), 111
styling, 875–877
tag attributes, 873–874
tags, rendering, 871–873

styles, changing, 102–103
templated controls, 903–910
validating, 39–41
XSLT output, 489–491

HTTP (HyperText Transfer Protocol)
access, granting or denying, 1077
buffer uploads, 1082–1083
caching, 747–750
cookie mechanism, 732
digest authentication, 679
events, 709–710
HttpHandlers

defined, 858
embedded resources, accessing, 883
file extension, mapping, 945–946
generic, 940–944

HttpModules
described, 930–931
IIS wildcards, 938–940
output, modifying, 932–934
URL rewriting, 934–938

HttpWebResponse classes, 848–852
output streams, compressing, 844–847
page event lifecycle, 869
requests, processing, 929–930
rules, assigning, 1126
session state management

configuring, 710–711
trace information, 714–715

short-term storage, 739–740
stateless nature, 705
status codes for exception and error handling,

802–803
transport protocols

HTTP-GET, 1040–1043
HTTP-POST, 1024–1025, 1043

WebMethod attribute, 1030–1031
Windows-based authentication transmission

method, 677
hyperlinks

adding to GridView, 363
appearance with button behavior, 143
direction, changing, 506
image or text, 145
mobile devices, 997–999
site navigation, 499
Web pages, navigating among, 499

HyperText Markup Language. See HTML
HyperText Transfer Protocol. See HTTP

I
IBuySpy demo Web applications, 10–11
icons, TreeView server control, 518–520
ID

anonymous personalization, 566
browser, 1071
content pages, 266–268
control, 874–875
HTML server control base class, 110
master page, creating on first request, 263–264

IDE (Integrated Development Environment). See Visual
Studio 2005

identity
ASPNET credentials, 696–698
information, programming, 693–695
objects, finding, 302–303

IIS (Internet Information Server)
application locations, 47–48
authentication schemes, 585, 1073
caching, 1084
debugging, 792
file extension, mapping, 945–946
no need for, 20
security

file extensions, 700–702
IP address and domain name restrictions, 699–700
MMC snap-in, 702–703

virtual directory or standalone application location, 45
wildcards, 938–940

1220

HTML (HyperText Markup Language) (continued)

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1220

illusion, state
control state, 894–895
hidden form field, 890–891
properties, modifying, 892–893
text box, viewing, 891–892
types and, 893

images
as bullets, 186
buttons, 143–144
error notification, 242–243
file extension, mapping, 945–946
file location (ImageUrl), 162–163
HTTP, handling, 943–944
menu items, separating with, 534–535
mobile devices, 994–995
navigation menu based on (ImageMap)

checking hotspots, 213
specifying hotspots, 211–213
URL, navigating to different, 213

outputting, request-processing pipeline handler,
943–944

Web page view customization, 657–658
Web site navigation

menu items, 534–535
paths, separating, 506
pop-out symbol, 533–534
themes, including, 290–293
TreeView, 519–520

immediate window, debugging and error-handling, 774
impersonation, 696–698
importing

namespace (@Import), 62–63
Visual Studio 2005 settings, 37–39

include files, 251, 1080–1081
information, browser capability, 889–890
InfoSet, XML, 456
inheritance, 752. See also master pages
inline coding, 51–53
inline syntax

changes, 387
described, 386–387
SQL statement, 428
XML, 387–388

inner control class, 904–905
in-place precompilation, 86–87
in-process session state

data, storing, 712–715
performance, optimizing, 717–719
problem areas, 711
Web gardening, 712

input form text box (TextBox)
auto completion (AutoCompleteType), 138–139
button, clicking (AutoPostBack), 137–138
cursor, placing (Focus()), 136–137
described, 135
multiline, 136
passwords, 135

input, validating proper
application roles, 625–627
buttons without, 139
CheckBox, 154–155
client- versus server-side, 216–217
client-side

asynchronous callbacks, 884–887
disabling, 241–242
JavaScript file, 883

customizing
client and server working together, 238
client-side, 233–235
complexity, 235–237

events triggering, 218–219
form elements, comparing

against constants, 226–227
against other controls, 224–226

form types, 215–216
generally, 10
groups, 244–247
manipulating, 217–218
membership and role management, 9–10
mobile device controls, 1008–1009
pattern, defining with regular expression

(RegularExpressionValidator)
e-mail address example, 232
other uses, 233

range
dates and other string characters, 228–231
integer value, 228
sample, 227–228

reporting
with dialog box, 240–241
errors as bulleted list, 238–239
images and sounds, 242–243
limiting to one, 239–240

required fields
blank entries, disallowing, and requiring changes, 223
drop-down lists, 223–224
error message, 220–221
initial text, changing (InitialValue property), 222
results, viewing, 221–222
sample, 219–220

rules, 215

1221

input, validating proper

In
de

x

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1221

input, validating proper (continued)
XML

against XML Schema (XmlReader), 464–465
XPath, 475

inserting
items to collection lists, 312–313
single data record, 376–377

installation program, building
custom, 1146–1150
Custom Actions Editor, 1168–1169
deployment project properties

access, 1155–1156
Authenticode Signature, 1158
CAB Size, 1157–1158
compression, 1157
listed, 1158–1159
Output File Name, 1156
Package files, 1156
URL, prerequisite, 1157

File System Editor
desktop shortcut to Web application, creating, 1163
Project Output, adding items to, 1161–1163
properties, listed, 1160–1161

File Types Editor, 1165–1166
installing, 1150–1153
Launch Conditions Editor, 1169–1170
Registry Editor, 1164–1165
uninstalling, 1153–1155
User Interface Editor

adding dialogs to installation process, 1167
dialogs, 1166–1167
order of dialogs, changing, 1168

Windows Installer service, 1144–1146
integer

input
custom client-side validation, 233–235
custom server-side validation, 235–237
range, specifying, 227–228
requiring, 227

starting point value (StartingNodeOffset property),
540–541

Integrated Development Environment (IDE). See Visual
Studio 2005

IntelliSense
business objects, accessing, 953
coding speed, 97
end user personalization properties, 556–557

interface
asynchronous command execution (IAsyncResult),

432
collection lists, 312–313

enumerating (IEnumerable and IEnumerator),
310–311

generics, 329
request-processing pipeline module, implementing,

930–931
System.Collections namespace

ArrayList, 307–310
counting items (ICollection), 311–312
dictionaries (IDictionary), 313–314
enumerating all objects (IEnumerable and

IEnumerator), 310–311
hashtables, 314–317
keys, list sorted by (SortedList), 317–318
lists (IList), 312–313
Queues and Stacks, 318–320

XML Web services, 1031–1034
internal stylesheets, 107–108
Internet, early VB applications and, 1–2
Internet Explorer (Microsoft) file contents, 1071
Internet Information Server (IIS)

application locations, 47–48
authentication schemes, 585, 1073
caching, 1084
debugging, 792
file extension, mapping, 945–946
no need for, 20
security

file extensions, 700–702
IP address and domain name restrictions, 699–700
MMC snap-in, 702–703

virtual directory or standalone application location, 45
wildcards, 938–940

Interop Library files, 967–971
intranet, master pages and, 253
invalidation

enabling databases for, 757–758
testing

cache object, attaching dependencies to, 766–770
described, 763–765
multiple tables, adding to page, 765
request object, attaching dependencies to, 766

IP address, 699–700
IsNot keyword, 1192
items, ListBox, 152–153
iterators, 1178–1180

J
JavaScript

buttons, 141–142
client, rendering, 879

1222

input, validating proper (continued)

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1222

pages
bottom, placing function at

(RegisterStartupScriptBlock), 117–119
current date and time, 114–115
script file, placing function in

(RegisterClientScriptInclude), 119
top, placing function at

(RegisterClientScriptBlock), 115–117
validation, client-side

enabling, 883
number divisible by 5, 234–235
performing, 217
turning off, 241–242

JIT (Just-In-Time) compilation, 791
Just My Code debugging tool, 797–798

K
keys

dictionaries, 313–314
filtering data, 340
hashtables

classes and interfaces (System.Collections
namespace), 314–317

generic dictionary, 327–328
iterating, 41–43

list sorted by (SortedList), 317–318
keywords, VB
Continue, 1189–1190
IsNot, 1192
My, 1190–1192
purpose, 1188
TryCast, 1192
Using, 1190

L
Label control

files, uploaded, 193
master pages

creating, 264–266
overriding, 269–270

mobile devices, 990–991
populating, 518

languages
caching, 743
content pages, mixing, 259–261
web.config file, structuring for different, 80

“last in wins” data updating style, 342
late binding, 971–972
Launch Conditions Editor, 1169–1170

layout
CheckBoxList, 158
Menu server control, 533
table

captioning, 165–166
rows, adding, 164–165
three-rowed, creating, 163–164

Web Parts zones, 634–638, 639
left side scrollbar, 180
libraries

CCW, 965–968
DLL

ActiveX, adding to References section of project,
954–955

custom Web Parts, 667–668
instantiation while compiling, 86
page code, finding, 88
precompiled business objects, 950–953
private assemblies, 974
reference, adding, 35–36

like objects, finding (BinarySearch), 305–306
line numbers, color-coded, 26
lines connecting nodes, specifying, 520–522
links. See also hyperlinks

buttons looking like (LinkButton), 143
elements, separating symbol (PathSeparator

property), 504–506
mobile devices, 997–999
site, 499

ListBox
data binding, 384
Web server controls

DropDownList versus, 150
items, adding, 152–153
multiple items, allowing users to select, 150
sample, 151–152

lists
array

described, 307–310
printing, 301

classes and interfaces (IList), 312–313
drop-down selection box (DropDownList)

creating, 145–148
requiring choice, 223–224

generic, 326–327
longer than drop-down box (ListBox server control)

adding items, 152–153
described, 150
multiple selections, allowing, 150
sample, 150–152

1223

lists

In
de

x

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1223

lists (continued)
mobile devices, 999–1002, 1004–1007
radio button

creating, 161
data binding, 384
value, checking, 161–162

sorted by key (SortedList), 318
user entry errors, reporting, 240
user view personalization

catalog, 644–646
drop-down, 643–644

XML content, displaying, 483–484
Locations tab, MMC, 1131
log, tracing information, 785–786
login authentication

configuration
described, 1073
forms, 1074–1075
Microsoft Passport, 1074
Windows, 1073

credentials, asking for
access, turning off, 599–600
Login server control, 600–603
programmatic logging in, 603–604

described, 583–584
files and folders, specific, 689–690
forms-based

database values, authenticating against, 685–686
described, 679–683
login control, 686–688
methods and properties, 688–689
setting (<authentication> node), 671–672
web.config file values, authenticating against,

683–685
measures, applying, 670–671
Microsoft Passport identity system, 689
MMC tab, 1126–1128
online users, counting, 607–608
page-level events, triggering, 90
passwords, changing or retrieving forgotten

recovery server control, 610–612
server control, 609–610

status, logging in or out, 604–605
username, displaying, 606–607
users, adding

application registration, changing, 598–599
Continue button, 591–592
programming, 595–598
registration process, incorporating personalization

properties into, 592–595

stored, seeing where users are, 589–591
wizard, 587–589

Web site, setting up for membership
<authentication> element, 585–586
described, 584–585
<forms> element, 586–587

Windows-based
application, creating, 674–675
Basic, 678
defining groups, 676–677
Digest, 679
groups (<allow> and <deny> nodes), 675–676
HTTP transmission method, 677
users, creating, 672–674

look and feel, consistent
application, applying to entire, 281
application folders (App_Themes), 81
creating

CSS files, including, 287–290
folder structure, 284
images, including, 290–293
skin (styles definition for server controls), 285–287

custom controls, 296–298
multiple skin options, 293–295
page framework, 16–17
programming

assigning, 295–296
SkinID, assigning, 296

server controls
disabling, 877–878
removing, 282

single page, applying, 279–281
StyleSheetTheme attribute, 283
Web pages, removing, 283

loops
as C# language iterator, 1178–1180
collection, counting, 311–312
hashtable, 316
writing, 301–302

M
machine.config file

application, 1061
applying, 1061–1062
changes, detecting, 1062
described, 1060–1061
format, 1062
manipulating, 1092–1093
Remote Servers, altering from, 1093–1095
sections, 1063

1224

lists (continued)

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1224

mail. See e-mail
manager, Web Portal

methods, 659
properties, 658–659

Mariani, Rico (CLR performance architect), 771–772
MARS (Multiple Active Result Sets)

asynchronous command execution
abstract class (WaitHandle class), 432–434
callback approach, 432, 449–451
canceling, 451
described, 429
interface (IAsyncResult), 432
multiple wait handles, 440–448
Poll approach, 434–437
SQLCommand class methods, 429–431
Wait approach, 437–440

described, 422
GridView control, 423–427
master and detailed information scenario, 422–423
orders, handling, 428

master and detailed information scenario
MARS, 422–423
result set, opening over same connection, 422–423

master pages
advantages of using, 249–251
assigning, 272
caching, 278
coding, 253–256
container-specific, 276–277
content pages

building, 256–259
controls, accessing, 263–264
GUID, 266–268
Label control, 264–266
mixing types and languages, 259–261
overriding Label control, 269–270
overriding property, 268
server control, exposing, 268–269
specifying template, 261–262
title, 262–263

default content, specifying, 270–271
event ordering, 277–278
files, 251–252
framework, 15–16
nesting, 272–275
partial classes, 252–253
properties, parsing (@Master), 59–60
typed references or members (@MasterType), 65

maximum range, input, 228
maximum request length, 1082

MDAC (Microsoft Data Access Component)
ADO.NET reliance, 405
asynchronous processing, 429

membership
data providers, attaching, 1127
developer tools, 9–10
number

groups of forms, validating, 244–247
registration form, 209–211

memory, saving pages in
application

configuring, 761–763
roles, 627

described, 741
HTTP policy and client-side, 747–750
invalidation, testing

cache object, attaching dependencies to, 766–770
described, 763–765
multiple tables, adding to page, 765
request object, attaching dependencies to, 766

master pages, 278
output

described, 742
QueryString parameters, specifying (VaryByParam),

742–743
UserControls, performance gains from

(VaryByControl), 743
VaryByCustom, 743–744

partial page, 744–745
programming

custom, creating, 752–756
data with Cache object, 750
disparate dependencies of different types

(AggregateCacheDependency class),
751–752

inheritable dependencies (CacheDependency
class), 752

previous edition’s dependencies, 750–751
responses, XML Web services, 1047–1048
SQL Server dependency

database, disabling, 760
disabling tables, 760
invalidation, enabling databases for, 757–758
SQL Server 2005 cache invalidation, 760–761
steps, 756–757
tables, enabling, 758, 759
viewing, 758–759

substitution following, 745–747
Menu, 385–386

1225

Menu

In
de

x

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1225

Menu server control
described, 527–529
dynamic item style, 532
events, 535–536
images, separating items with, 534–535
layout, 533
pop-out symbol, changing, 533–534
predefined style, 530
static item style, 531
styles, applying, 529
XML file, binding, 536–537

<meta> element, 113
methods

bulk loading from variety of sources, 408
classes, .wsdlfiles, and typed datasets

(App_Codefolder), 78–79
forms-based authentication, 688–689
generics, 1176–1178
overloading, XML Web services, 1044–1047
server controls, building, 95

Microsoft Data Access Component (MDAC)
ADO.NET reliance, 405
asynchronous processing, 429

Microsoft Developer Network (MSDN) Forums, 41
Microsoft Developer Network (MSDN) style, TreeView

control with, 511
Microsoft Development Environment, 491–492
Microsoft Internet Explorer file contents, 1071
Microsoft Management Console (MMC)

Application tab, 1128–1129
Authentication tab, 1126–1128
Authorization tab, 1125–1126
Custom Errors tab, 1124–1125
described, 6
functions, 1122
General tab, 1123–1124
IIS security, 702–703
Locations tab, 1131
opening, 1120–1122
Services, 719–724
Session State service, 1065
State Management tab, 1129–1130

Microsoft Passport identity system
authentication, 689
non-authenticated users, directing, 1074
setting up, 585

Microsoft SQL Server
asynchronous methods, 429–431
binding (SqlDataSource control)

Ad Rotator, 385
caching, 349–350

conflicts, detecting, 342–343
connection, configuring, 336–339
DataSet or DataReader retrieval, 340
editing row data, 363–364
filtering data (SelectParameters), 340–342
hierarchy, viewing, 385
insert command, adding, 377–378
servers listed, 336
Web service, 1031–1034

dependency caching
database, disabling, 760
disabling tables, 760
invalidation, enabling databases for, 757–758
SQL Server 2005 cache invalidation, 760–761
steps, 756–757
tables, enabling, 758, 759
viewing, 758–759

end user personalization
Express Edition files, 571–573
scripts, 578–580
setup wizard, 573–578

membership service
credentials, checking, 685–686
data store, creating, 587
table, viewing, 589–591

queries, executing (Command object), 391–392
sessions, storing, 724–727, 1066–1067
Web Farm support, 1066–1067
XML

extracting, 479
loading, manipulating, and editing, 482
retrieving, 494–497
support, 492

Microsoft SQL Server 2005, 760–761
Microsoft SQL Server Express Edition, 571–573
Microsoft SQL Server Yukon 2005, 497–498
Microsoft Visual Studio 2005

benefits of using, 21
Class View, 33
code snippets, 41–43
common tasks, programming, 36–37
configuration file editing tools, 1095–1097
content area, default, 271
Copy Web site option, 1138–1142
debugging support, 771–772
designing Calendar, 172
document window

ASP.NET pages, creating, 22
code change status notifications, 26
error notifications and assistance, 26–28
page tabs, 24–25

1226

Menu server control

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1226

stylesheet, incorporating, 106
tag navigator, 24
views, 23–24

Dynamic Help, 33
File System Editor, opening, 1147
HTML

elements, listed, 108
validating, 39–41

Master Pages, viewing, 255
Menu control styles, 530–532
MultiView control, creating, 197
new projects, creating, 34
page-building, 18–20
Properties window, 32–33, 100
references to other objects, making, 34–36
Regular Expression Editor, 232–233
resources, Internet, 41
Server Explorer, 32
server-side controls

built-in, 857
creating, 100
script tags, 142

settings, saving and importing, 37–39
Solution Explorer, 30–32
SqlDataSource control, typical, 339
Start Page, 22
submaster pages, trouble creating, 274–275
Toolbox, 28–30
WAT, accessing, 1100
XML files, viewing, 460–461
XML Web services files, 1025–1026

Microsoft Windows
API calls, unsigned types, 1187–1188
authentication

application, creating, 674–675
Basic, 678
configuring, 1073
defining groups, 676–677
Digest, 679
groups (<allow> and <deny> nodes), 675–676
HTTP transmission method, 677
users, creating, 672–674

authorization role, checking (User.IsInRole()),
692–693

IIS security, 699
Installer service, 1144–1146
Service for out-of-process session state, 719–724
sounds, finding, 243
XP Service Pack 2 debugging session, starting, 795

Microsoft Windows SQL CE Database
conflicts, detecting, 342–343
connection, configuring, 336–339
DataSet or DataReader retrieval, 340
filtering data (SelectParameters), 340–342
servers listed, 336

Microsoft.VisualBasic.Collection, 321
middle-layer business objects (ObjectDataSource

control)
configuring, 347–348
customer class, creating, 344–347
page source code, 348–349

minimum range input, 228
minus sign (-), 519
MMC (Microsoft Management Console)

Application tab, 1128–1129
Authentication tab, 1126–1128
Authorization tab, 1125–1126
Custom Errors tab, 1124–1125
described, 6
functions, 1122
General tab, 1123–1124
IIS security, 702–703
Locations tab, 1131
opening, 1120–1122
Services, 719–724
Session State service, 1065
State Management tab, 1129–1130

mobile devices
AdRotator, 985–988
calendar, 988–990
command, 994
emulators, 1014–1015
filters, 1015–1017
Form control container, 981–982
forms, navigating between, 1010
images, 994–995
label, 990–991
link, 997–999
lists, 999–1002
master pages, adjusting to different, 276–277
Mobile Web Form

Code view, 981
Design view, 980
event handling, 981
HTML view, 980

ObjectList, 1003
Panel control container, 981–983
PhoneCall, 996–997
SelectionList, 1004–1007

1227

mobile devices

In
de

x

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1227

mobile devices (continued)
state management

hidden fields, 1019–1021
session, 1019
ViewState, 1017–1018

StyleSheets
applying, 984–985
creating and customizing, 983–984
global for all forms, creating, 985

TextBox, 991–993
TextView, 993–994
user control, 1010–1013
validation controls, 1008–1009
Visual Basic or Visual C# application, creating new,

977–980
Mobile Web Form

Code view, 981
Design view, 980
event handling, 981
HTML view, 980

mode of page, changing
adding list, 641–644
adding to page, 644–646
connecting, 651
moving, 646–648
settings, 648–651
user tasks, 640–641

modules
defined, 857
server controls, 929–930

month selections, highlighting, 169
MSDN (Microsoft Developer Network) Forums, 41
MSDN (Microsoft Developer Network) style, TreeView

control with, 511
multiline text box input form, 136
Multiple Active Result Sets (MARS)

asynchronous command execution
abstract class (WaitHandle class), 432–434
callback approach, 432, 449–451
canceling, 451
described, 429
interface (IAsyncResult), 432
multiple wait handles, 440–448
Poll approach, 434–437
SQLCommand class methods, 429–431
Wait approach, 437–440

described, 422
GridView control, 423–427
master and detailed information scenario, 422–423
orders, handling, 428

multiple forms, 244–247
multiple items, allowing users to select, 150
multiple providers, 581
multiple skin options, 293–295
multiple tables, adding to page, 765
multiple user control or page, compiling or parsing

(@Reference), 66
multiple wait handles, asynchronous command

execution, 440–448
multiple Web sites with multiple frameworks,

1086–1087
My keyword, 1190–1192

N
namespace

ADO.NET data management, 389–391
class names, associating (@Register), 63–64
importing into page or user control (@Import), 62–63
XML document

breaking into atomic parts, 466–468
qualification unavailable, 483
resolution, 478
XSD Schema definition, 458

naming
cookies, 564
files, uploaded, 192–193

navigation
sequence of steps for end user, 202, 205–206
site map, 12–13
views, 199

nesting
master pages, 272–275
pages, undoing, 31

.NET components within COM objects
generating, 968–971
private assemblies, 974
public assemblies, 975

network communications
file system (FileWebRequest and

FileWebResponse), 854–855
FTP commands (FtpWebRequest and

FtpWebResponse), 852–854
mail from Web page, 855–856
WebRequest and HttpWebResponse classes,

848–852
newsfeed (RSS)

displaying, 485
XML documents, binding, 344

1228

mobile devices (continued)

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1228

Next button
information, saving, 206
steps, controlling, 203–204

Nokia emulator, 1014
Null value, 360
numbers

bulleted list starting values, changing, 185
divisible by five, validating, 233–235, 236–237

O
Obasanjo, Dare (Microsoft XML Program Manager), 497
ObjectList, mobile device, 1003
ODBC (Open Database Connectivity) data source

conflicts, detecting, 342–343
connection, configuring, 336–339
DataSet or DataReader retrieval, 340
filtering data (SelectParameters), 340–342
servers listed, 336

offline, taking WAT application, 1118
OLE DB data source

conflicts, detecting, 342–343
connection, configuring, 336–339
DataSet or DataReader retrieval, 340
filtering data (SelectParameters), 340–342
servers listed, 336

OnClick event, 139
online resources

ASP.NET influential blogs, 1193–1194
author blogs, 1193
Web sites, 1194

online users, counting, 607–608
Open Database Connectivity data source. See ODBC

data source
opening MMC, 1120–1122
OpenWave emulator, 1014
operator overloading, 1181–1182
Oracle Server

conflicts, detecting, 342–343
connection, configuring, 336–339
DataSet or DataReader retrieval, 340
filtering data (SelectParameters), 340–342
servers listed, 336

orders, MARS handling, 428
out-of-process state management, 719–724, 731
output

caching
described, 742
QueryString parameters, specifying (VaryByParam),

742–743

runtime settings, 1084
UserControls, performance gains from

(VaryByControl), 743
VaryByCustom, 743–744

Calendar format, 168
compilation, viewing, 88
modifying, 932–934

Output File Name, 1156
overriding

equals, finding objects, 303–304
property in content pages, 268
Render method, 871

P
packaging and deploying applications

described, 1133
installation program, building

custom, 1146–1150
Custom Actions Editor, 1168–1169
deployment project properties, 1155–1159
File System Editor, 1160–1163
File Types Editor, 1165–1166
installing, 1150–1153
Launch Conditions Editor, 1169–1170
Registry Editor, 1164–1165
uninstalling, 1153–1155
User Interface Editor, 1166–1168
Windows Installer service, 1144–1146

pieces needed, 1133–1134
precompiled Web application, 1142–1144
pre-deployment steps, 1134–1135
XCopy deployment

described, 1135–1138
VS Copy Web site option, 1138–1142

page. See also master pages; themes
cross-page posting

control values, exposing, 71–72
described, 69–70
exposed properties, consuming, 73–74
first page, checking whether from, 74–75
postback and values, 70–71

debugging and error-handling, monitoring, 776
directives

assemblies (@Assembly), 64
attributes and values, specifying (@Page), 57–59
class name, associating (@MasterType), 65
compiling another page (@Reference directive), 66
cross-page posting, origin of

(@PreviousPageType), 64

1229

page

In
de

x

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1229

page (continued)
Framework interface, implementing

(@Implements), 63
importing namespace (@Import), 62–63
listed, 56–57
master page typed references or members

(@MasterType), 65
master pages (@Master), 59–60
namespaces and class names, associating

(@Register), 63–64
output caching policies (@OutputCache), 65–66
page or user control output caching policies

(@OutputCache), 65–66
user control (@Control), 60–61

document window
creating, 22
tabs, 24–25

events
button-click, sample, 66–67
lifecycle, 869–870
listed, 67–68
loading, 67, 98

exception and error handling, 800–801
internal stylesheets, 107–108
JavaScript

bottom, placing function at
(RegisterStartupScriptBlock), 117–119

current date and time, 114–115
script file, placing function in

(RegisterClientScriptInclude), 119
top, placing function at

(RegisterClientScriptBlock), 115–117
layout

horizontal alignment, 180
left side scrollbar, 180
scrollbar example, 178–180

namespace, importing (@Import), 62–63
postbacks, 68–69
resources used for single

(App_LocalResApp_LocalResources), 84
sections, turning on and off (Multiview and View)

buttons, 199–200
described, 196–199
end user view, 200

source code, middle-layer business objects
(ObjectDataSource control), 348–349

specifying (StartingNodeUrl property), 541
structure options

code-behind model, 53–55
described, 50–51
inline coding, 51–53

template server controls, adding, 908–909
themes, removing, 283
tracing debugging and error-handling, 776
viewing as designed, 23
views, controlling by login, 613–615

Page.Trace, 776
Panel control container, mobile device, 981–983
parameters

ADO.NET data management, 398–401
client callback feature, 127–129

parsing
attributes and values, specifying (@Page directive),

57–59
page, passing, 85

partial classes
described, 14
master pages, 252–253
Visual Basic and C# language, 1183–1185

partial page caching, 744–745
particular user, gathering all, 624–625
Passport identity system (Microsoft)

authentication, 689
non-authenticated users, directing, 1074
setting up, 585

passwords
basic authentication, 678
encrypted, 684
groups of forms, validating, 244–246
input form text box (TextBox), 135
membership

requirements, changing, 591
table storing, 590

values, adding, 683
paths

drives, directories, and files, 820–824
relative, 814–815

pattern, defining
commonly used, creating, 232–233
field, creating, 218
validating, 232

performance
ASP.NET generally, 9
in-process session state, 717–719

permissions
application roles

adding, 619–620
caching, 627
checking users, 625–627
deleting, 621–622
gathering all users, 622–624
particular user, gathering all, 624–625

1230

page (continued)

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1230

removing users, 625
retrieving, 621
users, adding, 622

authorized user information, working with
(User.Identity property), 691–692

configuration
file, 1077–1078
support, 1076
URL, 1076–1077

described, 583–584
files, uploading, 193–194
MMC tab, 1125–1126
page views, controlling by login, 613–615
programming

authorized user information, working with
(User.Identity property), 691–692

described, 690
identity information, additional, 693–695
Windows role, checking (User.IsInRole()),

692–693
public methods

membership API, 628–629
roles API, 629–630

role management for Web site
changing, 616–618
described, 615–616
web.config file, 618–619

Security tab, WAT, 1101
Web Site Administration Tool, 628

persisting DataSets, 479–480
Person class

comparability, adding, 304–305
creating simple, 299–300
finding individuals, 302–303
generic dictionary, 327–328
hashtable, retrieving, 314–317
list using generics, 326–327
overriding equals, 303–304
printing, 300–302
pushing, popping, and peeking in stack, 319–320
queuing, 318–319
resizing, 302
sorting, 306–307

personalization
anonymous identification

cookie, changing name of, 564
described, 563–564
events, 566–567
length of time cookie stored, changing, 564–565
options, 567

storage of identifiers, changing, 565
viewing, 566

custom Web Parts, 666–667
developer tools, 10
form properties, 554–556
model diagrammed, 551–552
multiple providers, 581
programmatic access

anonymous users, migrating, 568–569
automatic saves, continuing with, 570–571
events, exposing (ProfileModule class), 567
profiles, 569–570

properties, creating
custom types, 560–562
default values, providing, 562–563
defining in web.config file, 553–554
defining types, 559
described, 552–553
form, 554–556
group, 558–559
IntelliSense, 556–557
read-only, 563

registration details, storing, 592–595
SQL Server

scripts, 578–580
setup wizard, 573–578

SQL Server Express Edition, 571–573
PhoneCall setting, mobile device, 996–997
pictures

as bullets, 186
buttons, 143–144
error notification, 242–243
file extension, mapping, 945–946
file location (ImageUrl), 162–163
HTTP, handling, 943–944
menu items, separating with, 534–535
mobile devices, 994–995
navigation menu based on (ImageMap)

checking hotspots, 213
specifying hotspots, 211–213
URL, navigating to different, 213

outputting, request-processing pipeline handler,
943–944

Web page view customization, 657–658
Web site navigation

menu items, 534–535
paths, separating, 506
pop-out symbol, 533–534
themes, including, 290–293
TreeView, 519–520

1231

pictures

In
de

x

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1231

pipe character (|), 505
placeholder

dynamic substitution, 747
server control

creating, 181
master pages, 270, 275

plus sign (+), 519
Poll approach, asynchronous command execution,

434–437
polymorphism, 1044
pop-out symbol, changing, 533–534
populating

bulleted list from data store, 187–189
calendar, 231
dynamic collection of items (CheckBoxList),

156–157
form element with default values, 222
user controls from host Web page, 862

portable devices
AdRotator, 985–988
calendar, 988–990
command, 994
emulators, 1014–1015
filters, 1015–1017
Form control container, 981–982
forms, navigating between, 1010
images, 994–995
label, 990–991
link, 997–999
lists, 999–1002
master pages, adjusting to different, 276–277
Mobile Web Form

Code view, 981
Design view, 980
event handling, 981
HTML view, 980

ObjectList, 1003
Panel control container, 981–983
PhoneCall, 996–997
SelectionList, 1004–1007
state management

hidden fields, 1019–1021
session, 1019
ViewState, 1017–1018

StyleSheets
applying, 984–985
creating and customizing, 983–984
global for all forms, creating, 985

TextBox, 991–993
TextView, 993–994

user control, 1010–1013
validation controls, 1008–1009
Visual Basic or Visual C# application, creating new,

977–980
Portal Framework, Web Parts

class properties, 661–662
developer tools, 10–12
manager methods, 659
manager properties, 658–659
zone properties, 660–661

postbacks
client callback feature versus, 120–122
cross-page posting, 70–71
data, handling, 899–900
drop-down list, generating subentries, 147–148
events, raising

adding, 896–897
handling, 898–899
initiating, 895–896

hotspot images, 212–213
page, 68–69
state management, 733–734

posting, cross-page
button controls, 142
control values, exposing, 71–72
described, 69–70
exposed properties, consuming, 73–74
first page, checking whether from, 74–75
origin of (@PreviousPageType), 64
postback and values, 70–71

precompiling
business objects

described, 950–952
using, 952–953

for deployment, 87
described, 14–15
Web application, 1142–1144

Previous button
information, saving, 206
steps, controlling, 203–204

printing
arrays, 300–302
total price of counted books, 468–470

private assemblies, 963–964
processor affinity, 712
processor, XSLT, 488–489
profiles, end user, 569–570
program

caching, 761–763
copying Web site, 31

1232

pipe character (|)

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1232

debugging and error-handling
at application level, 801–802
monitoring, 776

enabling and disabling, 1081
locations

FrontPage Extensions, server utilizing, 48–49
FTP, 48
IIS, 45, 47–48
Web server, 46–47

mobile device shutdown time, 1082
monitoring tools, 788–790
queue length, 1083
registration, changing, 598–599
roles

adding, 619–620
all users, gathering, 622–624
caching, 627
checking users, 625–627
deleting, 621–622
particular user, gathering, 624–625
removing users, 625
retrieving, 621
users, adding, 622

settings, storing specific, 1087
state management, 731
themes, 281
Windows-based authentication, creating, 674–675

program folders
classes, .wsdlfiles, and typed datasets

(App_Codefolder)
assembly, building into single, 80
creating, 76–78
described, 75–76
method, adding, 78–79

configuration, 1061
data dictionary string tables (App_GlobalResources

Folder), 81–84
data stores (App_Datafolder), 80–81
page, resources used for single

(App_LocalResApp_LocalResources), 84
themes (App_Themes), 81
Web services, remote (App_WebReferences), 85
XML browser identification files (App_Browsers), 85

programming
authorization

authorized user information, working with
(User.Identity property), 691–692

described, 690
identity information, additional, 693–695
Windows role, checking (User.IsInRole()),

692–693

caching
custom, creating, 752–756
data with Cache object, 750
disparate dependencies of different types

(AggregateCacheDependency class),
751–752

inheritable dependencies (CacheDependency
class), 752

previous edition’s dependencies, 750–751
configuration files

connection strings, enumerating, 1089–1092
described, 1087–1089
manipulating, 1092–1093
remotely, working, 1093–1095

end user personalization
anonymous users, migrating, 568–569
automatic saves, continuing with, 570–571
events, exposing (ProfileModule class), 567
profiles, 569–570

logging in, 603–604
themes

assigning, 295–296
SkinID, assigning, 296

user authentication, 595–598
progress, bulk loading, 415–416
project

creating new, 34
setup, 863–867

Project Output, adding items to, 1161–1163
properties

attributes, 868–869
directories and files, 824–825
end user personalization

custom types, 560–562
default values, providing, 562–563
defining in web.config file, 553–554
defining types, 559
described, 552–553
form, 554–556
group, 558–559
IntelliSense, 556–557
read-only, 563

forms-based authentication, 688–689
server control events, 100
state illusion (ViewState), 892–893

property accessors, 1186–1187
protecting configuration settings, 1095
providers

adding, editing, or removing, 1128
setting up, 1118–1120

public assemblies, 964–965

1233

public assemblies

In
de

x

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1233

public methods
membership API, 628–629
roles API, 629–630

purpose keyword, 1188

Q
query, database

parameterized statements, 398–401
state management, 724–727
Stored Proc, debugging, 798–799
XML, modifying to return (FOR XML AUTO clause),

493–495
XSLT, modifyiing to return, 495–497

QueryString
parameters, specifying (VaryByParam)

filtering, 340
output caching, 742–743

state management, 732
question mark (?), 1077
queue

classes and interfaces (System.Collections
namespace), 318–320

limits, managing at runtime, 1083

R
RadioButton

change, detecting, 160
described, 159–160

RadioButtonList
creating, 161
data binding, 384
RadioButton versus, 160
value, checking, 161–162

random number, generating, 41–43
random value, populating to Web page, 123–126
range

input field control, 218
validation server control

dates and other string characters, 228–231
integer value, 228
sample, 227–228

RCW (Runtime Callable Wrapper)
described, 954–955
public assemblies, 964

reading files
classes, 837–840
described, 832
encodings, 841
shortcuts, 841–842

streams, 832–837
read-only property

collection lists, 312
cursor (DataReader object), 393–395
end user personalization properties, 563

Really Simple Syndication (RSS) feed
displaying, 485
XML documents, binding, 344

recovery server control, 610–612
reference, XML Web services, 1035–1036
references to other objects, making, 34–36
regions, 915
registration process

form
building, 208
input information, pushing out, 208–209
membership link, 209–211

JavaScript on Web page, 115–117, 119
membership

forms, creating, 588–589
provider, changing rules, 598–599

open access, blocking, 599–600
personalization properties, incorporating, 592–595

Registry Editor, 1164–1165
regular expression

commonly used, creating, 232–233
field, creating, 218
validating, 232

Relational-Object-XML (ROX) database, 497–498
relative paths, 814–815
release, debugging versus, 790–791
remote actions

debugging session, starting, 793–795
file, writing, 854–855
server, manipulating programming files from,

1093–1095
Web page, posting data to, 851–852
Web services (App_WebReferences), 85

removing
application roles, 621–622
from collection lists, 312–313
data from GridView Bound List control, 368–370
single data record, viewing (DetailsView), 377–378
snippets, 43
themes

from individual Web pages, 283
from text and other controls, 282

users, 625
Web server control collection items, 148–149

1234

public methods

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1234

rendering server controls
page event lifecycle, 869–870
services, 871–873

report, validation
with dialog box, 240–241
errors as bulleted list, 238–239
images and sounds for error notification, 242–243
limiting to one, 239–240

request priority, 1083–1084
request-processing pipeline

handler
adding to project, 940–941
described, 940
file extension, mapping in IIS, 945–946
image, outputting, 943–944
page template, 941–942

module
IIS wildcards, 938–940
interface, implementing, 930–931
output, modifying, 932–934
URL rewriting, 934–938

requests
first, 90
object, attaching dependencies to, 766
SOAP headers, 1053–1055

required fields
client-side control, 218
validation server control

blank entries, disallowing, and requiring changes, 223
drop-down lists, 223–224
error message, 220–221
initial text, changing (InitialValue property), 222
results, viewing, 221–222
sample, 219–220

resizing arrays, 302
resources

ASP.NET influential blogs, 1193–1194
author blogs, 1193
Internet, 41
Web sites, 1194

result set, opening over same connection (MARS)
GridView control, 423–427
inline SQL statement, 428
master and detailed information scenario, 422–423

retrieving
application roles, 621
updates, batch processing, 417–421

roles management
additional information, 693–695
application

deleting, 621–622
gathering all users, 622–624
users, adding, 622

caching, 627
changing, 616–618
checking users, 625–627, 692–693
data providers, attaching, 1127
described, 615–616
developer tools, 9–10
individual user, getting roles, 624–625
looking up all users, 622–624
removing users from roles, 625
WAT, 1111–1112, 1127
web.config file, 618–619

Roman numerals, use in bulleted list, 185
root element

XPath, 476
XSD-XML Schema definition, 457–458

root node
site map

described, 501
retrieving, 538–539

TreeView server control, 512
rows

GridView
editing, 363–366
update errors, checking, 367–368

tables, adding, 164–165
ROX (Relational-Object-XML) database, 497–498
RSS (Really Simple Syndication) feed

displaying, 485
XML documents, binding, 344

rules, validation server control, 215
Runtime Callable Wrapper (RCW)

described, 954–955
public assemblies, 964

runtime settings
application queue length, 1083
applications, enabling and disabling, 1081
buffer uploads, 1082–1083
described, 1081
maximum request length, 1082
output caching, 1084
queue limits, managing, 1083
request priority, 1083–1084
thread management, 1083
timeout option, 1082
URLs, redirecting, 1082

1235

runtime settings

In
de

x

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1235

S
saving

batch processing changes, 417–421
information at button click, 206, 207
profile, automatic, 570–571
sidebar navigation buttons, 206
Visual Studio 2005 settings, 37–39

scalability, ASP.NET, 9
ScaleOut Software StateServer service, 1067
schema

available, listed, 39
XML, validating, 464–465
XSD, 457–458

script
ASP, 2
client-side

features, enabling, 878–883
validation, performing, 216–217

file, placing function in
(RegisterClientScriptInclude), 119

SQL Server, 578–580
scrollbar, 178–180
section handlers, grouping, 1062
security. See also authentication; authorization

described, 669
file

I/O, 805
single, setting, 1078

hackers, 216–217
identity and impersonation, 696–698
IIS

file extensions, 700–702
IP address and domain name restrictions, 699–700
MMC snap-in, 702–703

Security tab, WAT
access rules, managing, 1112–1114
described, 1101–1102
new users, creating, 1110
roles, managing, 1111–1112
setup wizard, 1102–1110
users, managing, 1110–1111

SelectionList, mobile device, 1004–1007
serial ports, writing text to, 847–848
serialization, 470–471
server

file configuration, 1060–1061
file size limits, 194–195
SqlDataSource control, 336
state management options listed, 707

server controls. See also Web server controls
attributes

class, 867–868
property/event, 868–869

browser capabilities, detecting and reacting to
.browser files, 887–889
information, accessing, 889–890

building
coding, 97–98
design surface, 96
methods, 95

client-side features
asynchronous callbacks, 884–887
embedded resources, 883
script, enabling, 878–883

common properties, style, 100–102
composite

child properties, exposing, 902–903
creating, 901–902

content pages, exposing, 268–269
CSS

advantages of using, 102–103
external stylesheets, 104–107
HTML elements, applying directly, 103
internal stylesheets, 107–108
Visual Studio Style Builder, 103–104

described, 17–18, 857, 862–863
design-time experiences

actions, 924–927
composite, 916–918
custom to define regions, 918–924
custom type converters, 912–914
described, 910–911
designer classes, 914–915
regions, 915
type converters, 911–912
UI type editors, 927–928

events
button click, 98–99
from Properties window of Visual Studio, 100
specific page, 98

HTML
interpretations, challenge facing multiple browsers,

93–94
listed, 94
mechanics, 132
styling, 875–877

HTML classes
generic control (HtmlGenericControl), 113–114
listed, 111–112

1236

saving

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1236

HTML elements
base class (HtmlControl), 110–111
changing, 109–110
finding, 108–109
single-node (HtmlContainerControl), 111

passwords, changing or retrieving forgotten, 609–610
PostBack data, handling, 899–900
PostBack events, raising

adding, 896–897
handling, 898–899
initiating, 895–896

project setup, 863–867
rendering

page event lifecycle, 869–870
services, 871–873

request-processing pipeline handler
adding to project, 940–941
described, 940
file extension, mapping in IIS, 945–946
image, outputting, 943–944
page template, 941–942

request-processing pipeline module
IIS wildcards, 938–940
interface, implementing, 930–931
output, modifying, 932–934
URL rewriting, 934–938

state illusion (ViewState)
control state, 894–895
hidden form field, 890–891
properties, modifying, 892–893
text box, viewing, 891–892
types and, 893

tag attributes, 873–875
templated

container class, 905–908
default class, 909–910
described, 903
inner control class, 904–905
Web page, adding to, 908–909

themes and skins
CSS files, including, 287–290
default, 280
disabling, 877–878
removing, 282

Web Server, 95
Server Explorer, 32
services, Web

callback, using with, 127–129
displaying (XmlDataSource control), 485–486

remote (App_WebReferences), 85
rendering server controls, 871–873

session
debugging, starting

attaching to process, 793
F5, 793
simpler remote, 793–795
Windows XP Service Pack 2, 795

filtering data, 340
mobile devices, 1019

session object
configuring, 710–711
described, 708
event model, 709–710
in-process, 711–719
transparency, 715–717

session state configuration
described, 1060, 1064–1065
Web Farm support, 1065–1068

settings
locking, 1078
mode of page, changing, 648–651
saving and importing, 37–39
WAT application, 1114–1115

setup wizard
SQL Server, 573–578
WAT security, 1102–1109

shortcuts
file I/O, reading and writing, 841–842
File System Editor, creating desktop, 1163
reading and writing files, 841–842

side navigation, customizing, 203
sidebar navigation buttons, 206
signup process

form
building, 208
input information, pushing out, 208–209
membership link, 209–211

JavaScript on Web page, 115–117, 119
membership

forms, creating, 588–589
provider, changing rules, 598–599

open access, blocking, 599–600
personalization properties, incorporating, 592–595

Simple Mail Transport Protocol (SMTP), 1115–1116
Simple Object Access Protocol (SOAP)

disparate systems, 1024–1025
exposing custom datasets as

sample, 1028–1029

1237

Simple Object Access Protocol (SOAP)

In
de

x

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1237

Simple Object Access Protocol (SOAP) (continued)
WebMethod attribute, 1030–1031
WebService attribute, 1030

headers
classes representing, 1049–1051
consuming, 1051–1053
described, 1048–1049
requests, 1053–1055

request, 1024–1025
response, 1025
sending request, 1038
transport protocols, 1044

single data record
described, 370–371, 379–380
display, customizing, 371–372
displaying and editing data, 381–384
with GridView, 372–376
inserting data, 376–377
updating and deleting data, 377–378

single page, theme for, 279–281
single-node HTML server control, 111
site links, 499
site map, 12–13
Site Map API
CurrentNode, 542–544
properties listed, 541

site navigation
breadcrumb navigation (SiteMapPath control)

child elements, listed, 508
depth of pages, displaying

(ParentLevelsDisplayed property), 507
described, 502–504
direction of links, changing (PathDirection

property), 506
link elements, separating symbol (PathSeparator

property), 504–506
tooltips for links, generating (ShowToolTips

property), 507–508
developer tools, 12–14
hyperlinks, 499
Menu server control

described, 527–529
dynamic item style, 532
events, 535–536
images, separating items with, 534–535
layout, 533
pop-out symbol, changing, 533–534
predefined style, 530
static item style, 531
styles, applying, 529
XML file, binding, 536–537

site links, 499
Site Map API
CurrentNode, 542–544
properties listed, 541

SiteMap Data Provider
current node of page, retrieving only

(StartFromCurrentNode property), 539–540
described, 538
integer value for starting point

(StartingNodeOffset property), 540–541
page, specifying (StartingNodeUrl property), 541
root node (ShowStartingNode property), 538–539

sitemap localization
assembly resource (.resx) files, creating, 547–548
testing results, 549–550
Web.config file, 546–547
Web.sitemap file, 545–546

TreeView server control
adding nodes, 526–527
check boxes, creating, 515–517
described, 509–510
expanding and collapsing nodes, 522–526
icons, specifying custom, 518–520
Label control, populating, 518
lines connecting nodes, specifying, 520–522
multiple options, selecting, 514–515
root and tree nodes, 512
styles, identifying built-in, 511
XML file, binding, 512–514

URL mapping, 544–545
XML-based site maps, 500–502

SiteMap

class
data source, binding, 349
described, 499
hierarchical data, displaying, 384–385, 386
Menu control, 529

data provider
current node of page, retrieving only

(StartFromCurrentNode property), 539–540
described, 538
integer value for starting point

(StartingNodeOffset property), 540–541
page, specifying (StartingNodeUrl property), 541
root node (ShowStartingNode property), 538–539

localization
assembly resource (.resx) files, creating, 547–548
testing results, 549–550
Web.config file, 546–547
Web.sitemap file, 545–546

1238

Simple Object Access Protocol (SOAP) (continued)

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1238

SiteMapPath control
child elements, listed, 508
depth of pages, displaying

(ParentLevelsDisplayed property), 507
described, 502–504
direction of links, changing (PathDirection

property), 506
link elements, separating symbol (PathSeparator

property), 504–506
tooltips for links, generating (ShowToolTips

property), 507–508
size limits, uploading files, 194–195
skin

HTML server control base class, 111
server controls, 877–878
setting, 102
themes

creating, 285–287
ID, assigning programmatically, 296
multiple options, 293–295

SkinID, 296
smart tags, 36–37, 924
SMTP (Simple Mail Transport Protocol), 1115–1116
snippets, 41–43
SOAP (Simple Object Access Protocol)

disparate systems, 1024–1025
exposing custom datasets as

sample, 1028–1029
WebMethod attribute, 1030–1031
WebService attribute, 1030

headers
classes representing, 1049–1051
consuming, 1051–1053
described, 1048–1049
requests, 1053–1055

request, 1024–1025
response, 1025
sending request, 1038
transport protocols, 1044

Solution Explorer, 30–32
sorting

array objects, 306–307
classes and interfaces, 317–318
GridView Bound List columns, 355–357

sounds, error notification, 242–243
source controls

caching, 349–350
data binding

described, 333–336
SqlDataSource, 336–339

source, debugging and error-handling diagnostic
switches, 788

Source view, document window, 23
spaghetti code, 2
SQL query

parameterized statements, 398–401
state management, 724–727
Stored Proc, debugging, 798–799
XML, modifying to return (FOR XML AUTO clause),

493–495
XSLT, modifyiing to return, 495–497

SQL Server 2005 (Microsoft), 760–761
SQL Server Express Edition (Microsoft), 571–573
SQL Server (Microsoft)

asynchronous methods, 429–431
binding (SqlDataSource control)

Ad Rotator, 385
caching, 349–350
conflicts, detecting, 342–343
connection, configuring, 336–339
DataSet or DataReader retrieval, 340
editing row data, 363–364
filtering data (SelectParameters), 340–342
hierarchy, viewing, 385
insert command, adding, 377–378
servers listed, 336
Web service, 1031–1034

dependency caching
database, disabling, 760
disabling tables, 760
invalidation, enabling databases for, 757–758
SQL Server 2005 cache invalidation, 760–761
steps, 756–757
tables, enabling, 758, 759
viewing, 758–759

end user personalization
Express Edition files, 571–573
scripts, 578–580
setup wizard, 573–578

membership service
credentials, checking, 685–686
data store, creating, 587
table, viewing, 589–591

queries, executing (Command object), 391–392
sessions, storing, 724–727, 1066–1067
Web Farm support, 1066–1067
XML

extracting, 479
loading, manipulating, and editing, 482
retrieving, 494–497
support, 492

1239

SQL Server (Microsoft)

In
de

x

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1239

SQL Server Yukon 2005 (Microsoft), 497–498
squiggles, 771, 772
Stack class

classes and interfaces (System.Collections
namespace), 318–320

generic, 1174–1175
integers, generic with, 1175–1176
non-generic, 1173–1174

Start Page, Visual Studio 2005, 22
starting, application, 90
starting value, bulleted list, 185
state illusion (ViewState)

control state, 894–895
hidden form field, 890–891
properties, modifying, 892–893
text box, viewing, 891–892
types and, 893

state management
Application object, 731
choices, 706–708
cookieless, 729–730
cookies, 732
described, 705
extending with other providers, 728–729
hidden fields

server control, 189–190
ViewState, and ControlState, 735–739

means to maintain, choosing correct, 730–731
MMC, 1129–1130
mobile devices

hidden fields, 1019–1021
session, 1019
ViewState, 1017–1018

out-of-process, 719–724
PostBacks and cross-page PostBacks, 733–734
session object

configuring, 710–711, 1060
described, 708
event model, 709–710
in-process, 711–719
transparency, 715–717

short-term storage with
HttpContext.Current.Items, 739–740

SQL-backed, 724–727
URL or QueryString, 732
Web Parts zones, 633–634

state server, 1065–1066
StateServer service (ScaleOut Software), 1067
static classes, 1186
static item style, 531

status
authentication, logging in or out, 604–605
Http exception and error handling codes, 802–803

step, user navigation
backward navigation, blocking (AllowReturn

attribute), 203
button structure (StepType attribute), 203–204
control events, 206–207
creating, 201–202
form elements, 207–211
header text, 204–205
navigating, 202, 205–206
Next, Previous, and Finish buttons, 201–204
return, allowing or disallowing, 203
sample, 201–202
side navigation, customizing, 203
user’s current, viewing, 199–200

store sample document
authors’ names, handling, 470–471
counting books and printing total price, 468–470
creating with XmlWriter, 472–474
elements, counting, 462–463, 466–468
namespaces, 458–461
read-only database, querying, 476–478
schema, defining, 457–458
validating, 464–465
XML, 454–455
XSLT list of authors, 486–487, 490

storing
cookies, changing length of time, 564–565
identifiers, changing, 565
state management with short-term

HttpContext.Current.Items, 739–740
user authentication, 589–591

streams
compressing
Deflate, 843–844
GZip, 842–843
HTTP output, 844–847

object, placing into, 195–196
reading and writing files, 832–837

strings. See also connection strings
collections, specialized (StringCollection,

StringDictionary, and
NameValueCollection), 321

encrypting, 41–43
hashtable value keys, 314–317
personalization items, storing, 556
validating input, 229, 246

strongly typed collections, 322–325

1240

SQL Server Yukon 2005 (Microsoft)

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1240

styles
bulleted list, 184–185
Calendar, 172–175
Calendar without, 166
collection of items (CheckBoxList), 158
HTML, 875–877
Menu server control, 529
TreeView server control, 511

StyleSheets, mobile device
applying, 984–985
creating and customizing, 983–984
global for all forms, creating, 985

substitution following caching, 745–747
subtrees, 470–471
switches, debugging and error-handling

Boolean, 787–788
levels, 788
source, 788

syntax notifications, 771, 772–773
System.Diagnostics.Trace and

Page.Trace, 776

T
tables

bulk load, mapping, 408–410
captions, 165–166
collections, summarizing specialized, 329–331
complete, returning, 1031–1034
data, building, 4–5
disabling, 760
disconnected data, filling, 396–398
loading from DataReader, 402–404
mobile devices, viewing (ObjectList control), 1003
rows, adding, 164–165
SQL Server dependency caching, 758, 759, 765
three-rowed, producing, 163–164

tag attributes, 873–875
tag navigator, 24
tags, Web page

ASP page, building, 2
bulleted list

binding to data store results, 187–188
constructing, 183–184
images as bullets, 186
populating dynamically, 188–189
starting value, changing, 185
style, 184–185
text mode, 186–187

button control and TextBox server control, 123–126
code, displaying in browser (Literal control),

134–135
CSS server controls, applying to, 103
generic control (HtmlGenericControl), 113–114
HTTP-POST request, sending, 1043
interpretations, challenge facing multiple browsers,

93–94
select box, 145–148
server controls

base class (HtmlControl), 110–111
changing, 109–110
finding, 108–109
listed, 94, 111–112
single-node (HtmlContainerControl), 111
styling, 875–877
tag attributes, 873–874
tags, rendering, 871–873

styles, changing, 102–103
templated controls, 903–910
validating, 39–41
XSLT output, 489–491

Task List, debugging and error-handling, 774–775
template. See also master pages

content pages, specifying, 261–262
data source control, viewing (FormView control),

379–384
request-processing pipeline handler, 941–942
server controls

container class, 905–908
default class, 909–910
described, 903
inner control class, 904–905
Web page, adding to, 908–909

Web Parts zones, 639
testing

input field
against constants, 226–227
testing against other, 224–226

invalidation
cache object, attaching dependencies to, 766–770
described, 763–765
multiple tables, adding to page, 765
request object, attaching dependencies to, 766

sitemap localization results, 549–550
text
CheckBox, aligning, 155–156
displaying in browser (Label), 132–134, 990–991
mobile devices, 993–994

1241

text

In
de

x

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1241

text (continued)
outputting without code (Literal), 134–135
page title, providing dynamically, 112
removing themes, 282
serial port, writing to, 848
wrapping, turning off, 179

text box
auto completion (AutoCompleteType), 138–139
button, clicking (AutoPostBack), 137–138
control

accessing via JavaScript, 115, 117–118
mobile devices, 991–993

cursor, placing (Focus()), 136–137
described, 135
multiline, 136
multiple skin options, defining, 293–295
passwords, 135
viewing state illusion (ViewState), 891–892

text file
reading and writing (StreamReader), 838
routing tracing to (TraceListeners)

configuring, 783–784
CSV (comma-separated values) files, 786–787
event log, 785–786
forwarding information, 784–785
XML file, 786

themes
application, applying to entire, 281
application folders (App_Themes), 81
creating

CSS files, including, 287–290
folder structure, 284
images, including, 290–293
skin (styles definition for server controls), 285–287

custom controls, 296–298
multiple skin options, 293–295
page framework, 16–17
programming

assigning, 295–296
SkinID, assigning, 296

server controls
disabling, 877–878
removing, 282

single page, applying, 279–281
StyleSheetTheme attribute, 283
Web pages, removing, 283

thread management
request priority, 1083–1084
runtime settings, 1083

three-rowed tables, producing, 163–164

time
cookie storage, changing, 564–565
current, showing, 114–115
files, uploaded, 192

timeout option
runtime settings, 1081, 1082
session state, managing, 1130

title
master pages, 262–263
page, providing dynamically, 112

Toolbox
HTML elements, viewing, 108
server control class attribute, 867–868
Visual Studio 2005, 28–30

tools
debugging

data visualizers, 796
datatips, 796
Edit and Continue (Lack of) Support, or Edit and

Refresh, 797
error notifications, 797
Just My Code, 797–798
tracepoints, 798

developer
membership and role management, 9–10
personalization, 10
portal framework, 10–12
productivity, 3–6
site navigation, 12–14

tooltips for links, generating (ShowToolTips
property), 507–508

top of page, placing function at
(RegisterClientScriptBlock), 115–117

tracepoint debugging tool, 798
tracing debugging and error-handling

application, 776
from components, 781–782
data, viewing, 777–780
described, 775
forwarding, 782
page-by-page, 776
System.Diagnostics.Trace and Page.Trace,

776
text file, routing to (TraceListeners), 783–787
WAT application, 1116–1118

transparency, session object, 715–717
transport protocols, XML Web services

Addition, consuming, 1039–1040
described, 1039
HTTP-GET, 1040–1043

1242

text (continued)

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1242

HTTP-POST, 1043
SOAP, 1044

TreeView
adding nodes, 526–527
check boxes, creating, 515–517
data binding, 384–385
described, 509–510
expanding and collapsing nodes, 522–526
icons, specifying custom, 518–520
Label control, populating, 518
lines connecting nodes, specifying, 520–522
multiple options, selecting, 514–515
root and tree nodes, 512
styles, identifying built-in, 511
testing, 549–550
XML file, binding, 512–514

True/False values
check boxes, form (CheckBox control)

creating, 153–154
verifying, 155

debugging and error-handling diagnostic switches,
787–788

GridView display, converting, 361
groups of forms, validating, 246–247
HTML server control base class, 110
list items, displaying or hiding, 149

TryCast keyword, 1192
typed datasets

assembly, building into single, 80
creating, 76–78
described, 75–76
method, adding, 78–79

types
content pages, mixing, 259–261
converters, 911–912
data parameter, 341
personalization properties, changing storage, 559
state illusion (ViewState), 893
unsigned, 1187–1188

U
UI type editors, 927–928
Unicode, 841
Uniform Resource Locator. See URL
Uniform/Universal Resource Identifier (URI), 455
uninstalling program, 1153–1155
unique identifier (GUID)

anonymous personalization, 566
content pages, 266–268
master page, creating on first request, 263–264

universal time (UTC), 168
unmanaged code, business objects from, 965–968
unsigned types, 1187–1188
updating data

batch processing
advantages, 421–422
described, 416
retrieving, updating, and saving changes, 417–421

GridView rows, 363–364
“last in wins” style, 342
single data record, viewing (DetailsView), 377–378

URI (Uniform/Universal Resource Identifier), 455
URL (Uniform Resource Locator)

authorization configuration, 1076–1077
errors, redirecting, 1072
HTTP-GET, 1040–1043
installation program, building, 1157
linking to Cancel or Finish buttons, 206
mapping, 544–545
mobile Link control, 997–999
navigating to different (ImageMap), 213
redirecting, 1081, 1082
rewriting, 934–938
RSS blog feed, displaying, 485
runtime settings, redirecting, 1082
site map node, starting, 541
state management, 730, 732
type editor, offering, 928
Web reference, adding, 1035–1036
WebService attribute, 1030
as XML namespace, 455

user. See also navigation; personalization; validation
application roles, adding, 622
authentication

application registration, changing, 598–599
blocking open access, 599–600
Continue button, 591–592
creating new, 1110
managing, 1110–1111
programming, 595–598
registration process, incorporating personalization

properties into, 592–595
stored, seeing where users are, 589–591
unauthenticated users, allowing to register, 600–604
Windows-based, 672–674
wizard (CreateUserWizard server control), 587–589

client-side validation, convenience for, 216–271
managing, 1110–1111
mode of page, changing, 640–641
overall view of Web site, providing, 503
profiles, filtering with key value, 340

1243

user

In
de

x

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1243

user (continued)
view

page sections, turning on and off (Multiview and
View), 200

themes, disabling, 296–298
WAT security, managing, 1110–1111
ZIP code, asking for, 127–129

user control
assemblies, attaching (@Assembly), 64
attributes, parsing (@Control), 60–61
changing, 858–860
defined, 857
interacting, 861–862
mobile devices, 1010–1013
multiple, compiling or parsing (@Reference), 66
namespace, importing (@Import), 62–63
output caching policies (@OutputCache), 65–66
performance gains from (VaryByControl), 743

User Interface Editor
adding dialogs to installation process, 1167
dialogs, 1166–1167
order of dialogs, changing, 1168

username
basic authentication, 678
displaying, 606–607
groups of forms, validating, 244–246
values, adding, 683

Using keyword, 1190
UTC (universal time), 168

V
validation

application roles, 625–627
buttons without, 139
CheckBox, 154–155
client- versus server-side, 216–217
client-side

asynchronous callbacks, 884–887
disabling, 241–242
JavaScript file, 883

customizing
client and server working together, 238
client-side, 233–235
complexity, 235–237

events triggering, 218–219
form elements, comparing

against constants, 226–227
against other controls, 224–226

form types, 215–216

generally, 10
groups, 244–247
manipulating, 217–218
membership and role management, 9–10
mobile device controls, 1008–1009
pattern, defining with regular expression

(RegularExpressionValidator)
e-mail address example, 232
other uses, 233

range
dates and other string characters, 228–231
integer value, 228
sample, 227–228

reporting
with dialog box, 240–241
errors as bulleted list, 238–239
images and sounds, 242–243
limiting to one, 239–240

required fields
blank entries, disallowing, and requiring changes, 223
drop-down lists, 223–224
error message, 220–221
initial text, changing (InitialValue property), 222
results, viewing, 221–222
sample, 219–220

rules, 215
XML

against XML Schema (XmlReader), 464–465
XPath, 475

values
CheckBox, assigning, 155
cross-page posting, 70–71
specifying @Page, 57–59

VaryByCustom output caching, 743–744
VB (Visual Basic)

ActiveX DLL, 956, 957–958
ADO.NET data management

batch updating, 417–419
bulk loading, 411–413
callback asynchronous command processing,

449–450
DataReader object, 393–394
GridView control and MARS, 423–426
loading table from reader, 402–403
multiple asynchronous processes, 444–447
multiple wait handles, 440–442
parameterized SQL statement, 399–400
single asynchronous process, wait approach handling,

437–438
transaction, committing after bulk loading, 414–415

1244

user (continued)

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1244

arrays (Person class)
automatic sizing (ArrayList), 308–309, 313
comparables, 304
creating, 299–300
finding by reference, 302–303
generic dictionary, 327
hashtable For Each, 316, 317
like objects, finding, 305
list using generics, 327
printing, 300–301
pushing, popping, and poking in stack, 319–320
queuing, 318–319
retrieving from hashtable, 314–315
sorting, 306, 318
strongly typed, 322, 323–324

asynchronous callback, 884–885
authentication

credentials, validating, 604, 685, 691–692
information, additional, 693, 694–695
logged-in users, getting names of, 691
Login page, 681–682, 684, 687
number of users online, displaying, 607

authorization
adding roles, 619
cookie, deleting, 627
deleting roles, 621
looking up users by role, 622–623
status, user’s, 626
user, looking up roles for each, 624

binary data, reading and writing, 839
bulleted list, retrieving user’s selection, 186–187
business objects, binding, 344–346
button click

event, 139, 141–142
Finish, saving information, 207
multiple on form, discerning, 140
postback, triggering, 137
sample, 66–67

caching
with Cache object, 750
custom string, varying by, 744
dependencies, 751, 753, 755, 766
HTTP headers, 749
SQL Server invalidation, 763
substitution control, 746–747
user controls, 745

Calendar control
date range, validating, 230
range of dates, retrieving, 170, 171

rendering days, 173
selection option, turning off, 175
single day, selecting, 167

callback feature
populating random value to Web page, 123–124
with Web service, 127–128

changes since previous versions, 1171–1172
check box

single instance, 154
value, assigning, 155
verifying, 154

CheckBoxList, populating, 156–157
concurrency errors, detecting, 343
configuration files

object, getting, 1092
from remote servers, 1093, 1094
sections, 1093

connection string
adding, 1091
enumerating, 1090
retrieving, 1064

custom Web pages
behavior section, displaying, 651
control, creating, 663–664, 666
modes, adding, 641–642

data binding
connection string, 351, 352
multicolumn sorting in GridView, 356–357
sample, 334
SQL errors, catching, 369
update errors, checking, 367–368

debugging and error handling
at application level, 801
diagnostic switches, 788
at page level, 801
text file, routing traces to, 783
tracing, 777
Web events, 789

default instances, 1188
design-time experience

actions, adding, 925–926
attribute, adding to control class, 915
composite, creating, 916–917
regions, defining, 918–921
UI type editor, adding, 927–928

DLL references, adding, 967
drives

enumerating, 808
local, displaying information, 806–807

1245

VB (Visual Basic)

In
de

x

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1245

VB (Visual Basic) (continued)
DropDownList, generating from array, 146–147
errors

handling, 961–962
raising, 961, 972–974

file system
ACLs, 826–828, 829–831
compressing, 842–843
directory, manually enumerating, 820
GridView, binding, 816–818
I/O enumerations, 835
memory system, writing to, 836
properties, displaying and modifying, 825
reading, 834
reading from stream, 836
setting and displaying working directory, 814–815
static methods, 813, 841

files, uploading
Byte array, moving from stream object to, 196
sample, 191
to Stream object, 195

FTP download, 852–853
generics

collections of objects, 1172–1176
methods, 1176–1178

global namespace qualifiers, 1182–1183
hidden field server control, 189
history, 1
hotspots, specifying, 211–212
HTML

style properties, 875
tag attributes, rendering, 873

HTTP
altering output, 932
compressing output, 844–845
file extension, mapping, 945
handler template, 941–942
image, outputting, 943
modules, implementing, 930
remote Web page, posting data, 851–852
rewriting URL, 936–937
URL, 935–936
Web page, retrieving, 849

keywords, new
Continue, 1189–1190
IsNot, 1192
My, 1190–1192
purpose, 1188
TryCast, 1192
Using, 1190

list items, removing, 148–149
mail, sending, 855–856
master pages

assigning, 272
custom property, exposing, 266–267
described, 260–261
GUID, creating on first request, 263–264
Label control, 265
overriding properties, 268, 269
server control, exposing as public property, 268–269
title, coding custom page, 263

membership, creating users, 597
mobile devices

binding to List control, 1000–1001
calculator, 992
Calendar control, 989
creating new, 977–980
event handling, 981
hidden files, 1020
lists, 1005–1006
user control, 1011–1012

MultiView control, building, 198
.NET component

generating, 968–969
late binding, 971–972

operator overloading, 1181–1182
partial classes, 1183–1185
paths using classes, 822–823
personalization

anonymous user identifier, changing, 566
auto-saving feature, turning off, 571
class for custom type, 560–561
defined properties, using, 554–555
late-bound access, 557
migrating anonymous users, 568
retrieved profile, 569

property accessors, 1186–1187
RadioButton, 159–160
registration form

input information, pushing out, 208
membership link, 210

remote file, writing, 854–855
server controls

browser capabilities, detecting, 889
child, exposing, 902
composite, 901
HTML tag, rendering, 871
postback events, 896–897, 898, 899–900
Render method, overriding, 871
script, client-side, 879, 882

1246

VB (Visual Basic) (continued)

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1246

templates, 904, 905–906, 908, 909
themes, disabling, 877–878
validating data, 880–881

site navigation
check boxes, applying, 516–517
custom display, 542
menu events, 535
SiteMap objects, 542
TreeView control, 522–527
views, 199
XML file, binding menu control to, 536–537

state management
Application object, 731
base page, 716, 717
ControlState, 894
cross-page postbacks, 734
hidden fields, 736
HTTP short-term storage, 739
objects, setting and retrieving, 722–723
retrieving values, 715
serializable object, 721
setting values, 713
strongly typed property, 721
ViewState, 891–892

static classes, 1186
step, viewing user’s current, 199
text file, reading and writing, 838
text, writing to serial port, 848
themes

assigning, 295
custom, 286
disabling, 297, 298
skin, 296

type converters
creating, 911
custom, 912–913

unsigned types, 1187–1188
user controls

events, creating, 860
library class template, 864
populating from host Web page, 862
properties, exposing, 861

validation controls
client-side, 233–234
required fields completed, 219
server-side, 236
against XML Schema, 464

Web services
Addition, 1039–1040
asynchronous, 1056–1057

caching, 1048
consuming, 1037–1038
custom datasets, exposing, 1028–1029
default structure, 1027
method overloading, 1044, 1045
requesting with SOAP 1.2, 1053–1054
slow, 1055–1056
SOAP headers, 1049, 1050
WS-I Basic Profile, turning off, 1046
XML with SOAP headers, 1051

XML
attributes, serializing, 470, 471
CLR types, retrieving, 468–469
DataSets, changing with DOM APIs, 481
documentation, 1185–1186
extracting from SQL Server, 479
file, loading, 177–178
querying and editing, 476, 477
reader, optimizing NameTable, 466–467
reading instances, 470, 471
retrieving, 494
writing, 472–473
XSLT transform, 488–489

viewing
anonymous identification, 566
document window, 23–24
missing class windows, 33
SQL Server dependency caching, 758–759

ViewState
control state, 894–895
hidden form field, 890–891
properties, modifying, 892–893
text box, viewing, 891–892
types and, 893

virtual path, application, 1122
Visual Basic. See VB
Visual Studio 2005 (Microsoft)

benefits of using, 21
Class View, 33
code snippets, 41–43
common tasks, programming, 36–37
configuration file editing tools, 1095–1097
content area, default, 271
Copy Web site option, 1138–1142
debugging support, 771–772
designing Calendar, 172
document window

ASP.NET pages, creating, 22
code change status notifications, 26
error notifications and assistance, 26–28

1247

Visual Studio 2005 (Microsoft)

In
de

x

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1247

Visual Studio 2005 (Microsoft) (continued)
page tabs, 24–25
stylesheet, incorporating, 106
tag navigator, 24
views, 23–24

Dynamic Help, 33
File System Editor, opening, 1147
HTML

elements, listed, 108
validating, 39–41

Master Pages, viewing, 255
Menu control styles, 530–532
MultiView control, creating, 197
new projects, creating, 34
page-building, 18–20
Properties window, 32–33, 100
references to other objects, making, 34–36
Regular Expression Editor, 232–233
resources, Internet, 41
Server Explorer, 32
server-side controls

built-in, 857
creating, 100
script tags, 142

settings, saving and importing, 37–39
Solution Explorer, 30–32
SqlDataSource control, typical, 339
Start Page, 22
submaster pages, trouble creating, 274–275
Toolbox, 28–30
WAT, accessing, 1100
XML files, viewing, 460–461
XML Web services files, 1025–1026

Visual Studio Style Builder, 103–104
VSI (Visual Studio Installer), 1145

W
Wait approach, asynchronous command execution,

437–440
WAT (Web Site Administration Tool)

accessing programmatically, 8–9
Application tab

offline, taking, 1118
settings, managing, 1114–1115
SMTP, 1115–1116
tracing and debugging information, 1116–1118

described, 1099–1101
Home tab, 1101
Provider tab, 1118–1120

Security tab
access rules, managing, 1112–1114
described, 1101–1102
new users, creating, 1110
roles, managing, 1111–1112
setup wizard, 1102–1109
users, managing, 1110–1111

Welcome screen, 7
Web browser

concern prior to ASP.NET, 93–94
configuring capabilities, 1070–1071
detecting and reacting to capabilities
.browser files, 887–889
information, accessing, 889–890

master pages, adjusting to different, 276–277
type converters, 911–912

Web Farm support
custom state store, 1067–1068
SQL server, 1066–1067
state server, 1065–1066

Web forms. See also validation
authentication

configuring, 1074–1075
database values, working against, 685–686
described, 679–683
login control, 686–688
methods and properties, 688–689
setting (<authentication> node), 671–672
web.config file values, authenticating against,

683–685
buttons

creating, 139
hyperlinks, setting, 143–144
images, 143–144
JavaScript event, triggering, 141–142
logic, 140–141
steps, events controlling, 206–207
validation, 139, 218–219

CheckBox
described, 153–154
text, aligning, 155–156
value, assigning, 155
verification, 154–155

CheckBoxList
data binding, 384
designing, 158
populating, 156–157

element sequence, 207–211
end user personalization properties, 554–556
filtering data, 340

1248

Visual Studio 2005 (Microsoft) (continued)

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1248

<forms>, element to web.config file, 586–587
HTML select box, including (DropDownList), 145–148
long workflows, breaking into manageable segments,

207
longer HTML select box (ListBox server control),

152–153
master page, choosing and coding, 256–261
mobile devices, 981–982, 1010–1013
mobile devices, navigating between, 1010
RadioButton

change, detecting, 160
described, 159–160

RadioButtonList
creating, 161
data binding, 384
RadioButton versus, 160
value, checking, 161–162

smart auto-completion, 138–139
submitting to another page

button controls, 142
control values, exposing, 71–72
described, 69–70
exposed properties, consuming, 73–74
first page, checking whether from, 74–75
origin of (@PreviousPageType), 64
postback and values, 70–71

TextBox control
cursor, dynamically placing in element (Focus()

method), 136–137
mapping, 135–136

Web gardening, 712
Web Parts

custom
creating, 663–666
DLL, 667–668
dragging and dropping onto page, 668
personalization, 666–667

described, 11, 631–633
mode of page, changing

adding list, 641–644
adding to page, 644–646
connecting, 651
moving, 646–648
settings, 648–651
user tasks, 640–641

Portal Framework
class properties, 661–662
manager methods, 659
manager properties, 658–659
zone properties, 660–661

zones
actions of items, 655–658
controls, adding, 652–655
default elements, 639–640
layouts, 634–638
managing state and content, 633–634
modification, turning off, 652
orientation, 639
template, 639

Web server
application locations, 46–47
built-in, 45

Web server controls
advantages, 131–132
advertising (AdRotator)

banner, 176–177
XML file, 175–176

bulleted list
creating, 183–184
DisplayMode, 186–187
images as bullets, 186
populating from data store, 187–189
starting value, 185
styling, 184–185

buttons
function, multiple from same (CommandName),

140–141
hyperlink, 145
image, custom (ImageButton), 143–144
JavaScript, client-side, 141–142
looks like hyperlink (LinkButton), 143
OnClick event, 139
without validation, 139

Calendar
date ranges, 169–171
day, selecting, 167–168
day, week, or month selections, 169
outputting format, 168
style and behavior, 172–175
without styles, 166

CheckBox

described, 153–154
text, aligning, 155–156
value, assigning, 155
verification, 154–155

collection of items (CheckBoxList)
binding with SQLDataSource, 157
dynamically populating, 156–157
styling properties, 158

1249

Web server controls

In
de

x

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1249

Web server controls (continued)
collection of radio buttons (RadioButtonList), 161–162
dynamic object placeholder, 181
files, uploading

advantages, 190–191
byte array, moving from stream object to, 196
naming, 192–193
permissions, 193–194
sample, 191–192
size limits, 194–195
stream object, placing into, 195–196

hidden fields, managing states, 189–190
HTML select box, 145–148
image file location (ImageUrl), 162–163
image-based navigation menu (ImageMap)

checking hotspots, 213
specifying hotspots, 211–213
URL, navigating to different, 213

input form text box (TextBox)
auto completion (AutoCompleteType), 138–139
button, clicking (AutoPostBack), 137–138
cursor, placing (Focus()), 136–137
described, 135
multiline, 136
passwords, 135

ListBox
DropDownList versus, 150
items, adding, 152–153
multiple items, allowing users to select, 150
sample, 151–152

page layout (Panel)
horizontal alignment, 180
left side scrollbar, 180
scrollbar example, 178–180

page sections, turning on and off (Multiview and View)
buttons, 199–200
described, 196–199
end user view, 200

RadioButton
change, detecting, 160
described, 159–160

removing control collection items, 148–149
sequence of steps for end user

backward navigation, blocking (AllowReturn
attribute), 203

button structure (StepType attribute), 203–204
control events, 206–207
form elements, 207–211
header (HeaderText attribute), 204–205

navigating, 202
navigation system, 205–206
sample, 201–202
side navigation, customizing, 203

tables
captions, 165–166
rows, adding, 164–165
three-rowed, producing, 163–164

text
displaying in browser (Label), 132–134
outputting without code (Literal), 134–135

XML, transforming with XSL style sheet, 177–178
XSLT, 489–491

Web services
callback, using with, 127–129
displaying (XmlDataSource control), 485–486
remote (App_WebReferences), 85
rendering server controls, 871–873

Web site
blogs, influential listed with addresses, 1194
membership, setting up for
<authentication>, element to web.config file,

585–586
described, 584–585
<forms>, element to web.config file, 586–587

site map data, binding, 336
Web Site Administration Tool (WAT)

accessing programmatically, 8–9
Application tab

offline, taking, 1118
settings, managing, 1114–1115
SMTP, 1115–1116
tracing and debugging information, 1116–1118

described, 1099–1101
Home tab, 1101
Provider tab, 1118–1120
Security tab

access rules, managing, 1112–1114
described, 1101–1102
new users, creating, 1110
roles, managing, 1111–1112
setup wizard, 1102–1109
users, managing, 1110–1111

Welcome screen, 7
Web site navigation

breadcrumb navigation (SiteMapPath control)
child elements, listed, 508
depth of pages, displaying

(ParentLevelsDisplayed property), 507

1250

Web server controls (continued)

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1250

described, 502–504
direction of links, changing (PathDirection

property), 506
link elements, separating symbol (PathSeparator

property), 504–506
tooltips for links, generating (ShowToolTips

property), 507–508
developer tools, 12–14
hyperlinks, 499
Menu server control

described, 527–529
dynamic item style, 532
events, 535–536
images, separating items with, 534–535
layout, 533
pop-out symbol, changing, 533–534
predefined style, 530
static item style, 531
styles, applying, 529
XML file, binding, 536–537

site links, 499
Site Map API
CurrentNode, 542–544
properties listed, 541

SiteMap Data Provider
current node of page, retrieving only

(StartFromCurrentNode property), 539–540
described, 538
integer value for starting point

(StartingNodeOffset property), 540–541
page, specifying (StartingNodeUrl property), 541
root node (ShowStartingNode property), 538–539

sitemap localization
assembly resource (.resx) files, creating, 547–548
testing results, 549–550
Web.config file, 546–547
Web.sitemap file, 545–546

TreeView server control
adding nodes, 526–527
check boxes, creating, 515–517
described, 509–510
expanding and collapsing nodes, 522–526
icons, specifying custom, 518–520
Label control, populating, 518
lines connecting nodes, specifying, 520–522
multiple options, selecting, 514–515
root and tree nodes, 512
styles, identifying built-in, 511
XML file, binding, 512–514

URL mapping, 544–545
XML-based site maps, 500–502

web.config file
authentication

denying all users, 674
forms, setting up, 585–587, 679
nesting, 670–671
role management service, 618
setting, 671–672
single user, allowing, 675
values, comparing, 683–685

caching, 762
connection string

enumerating, 1089
storing, 350

content, adding from different file, 1080
debugging and error handling

events, 790
tracing, 777
turning off, 1134–1135

encrypting, 8–9
folder or file location, 1131
HTTP

compression, 847
image, 946
module, adding, 933

languages, structuring for different, 80
master page, specifying, 261–262
personalization

end user properties, defining, 553–554
groups, 558
SQL Server, specifying, 580

role management for Web site, 618–619
session state, 719
sitemap localization, 546–547
theme, applying throughout application, 281
viewer behavior section, displaying, 650–651
Web service

reference, 1036
WS-I conformance, turning off, 1046

weblog example, data-bound controls, 484–485
Weblogs, influential ASP.NET, 1193–1194
week selections, highlighting, 169
Whidbey code name, 3
Windows (Microsoft)

API calls, unsigned types, 1187–1188
authentication

application, creating, 674–675
Basic, 678

1251

Windows (Microsoft)

In
de

x

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1251

Windows (Microsoft) (continued)
configuring, 1073
defining groups, 676–677
Digest, 679
groups (<allow> and <deny> nodes), 675–676
HTTP transmission method, 677
users, creating, 672–674

authorization role, checking (User.IsInRole()),
692–693

IIS security, 699
Installer service, 1144–1146
Service for out-of-process session state, 719–724
sounds, finding, 243
XP Service Pack 2 debugging session, starting, 795

Windows SQL CE Database (Microsoft)
conflicts, detecting, 342–343
connection, configuring, 336–339
DataSet or DataReader retrieval, 340
filtering data (SelectParameters), 340–342
servers listed, 336

wizard sequence of steps for end user
backward navigation, blocking (AllowReturn

attribute), 203
button structure (StepType attribute), 203–204
header (HeaderText attribute), 204–205

worker process
described, 1084–1086
multiple Web sites with multiple frameworks,

1086–1087
wrapping text, turning off, 179
writing files

classes, 837–840
described, 832
encodings, 841
shortcuts, 841–842
streams, 832–837

.wsdlfiles(App_Codefolder)
assembly, building into single, 80
creating, 76–78
described, 75–76
method, adding, 78–79

X
XCOPY deployment

described, 1135–1138
VS Copy Web site option, 1138–1142

XHTML (eXtensible HyperText Markup Language),
772–773

XML (eXtensible Markup Language). See also
web.config file

advertisement file
creating, 175–176
mobile devices, 987–988
using as banner ad, 176–177

bookstore database sample document, 454–455
browser identification files (App_Browsers), 85
bulleted list

binding to data store, 187
populating, 188

configuration file, 1060
creating with XmlWriter, 472–474
databases

APIs, 497
SQL query, modifyiing to return XML (FOR XML AUTO

clause), 493–495
SQL query, modifyiing to return XSLT, 495–497
SQL Server Yukon 2005, 497–498
support, 492

data-bound controls (XmlDataSource control)
described, 482–484
namespace qualification unavailable, 483
Web services, 485–486
weblog example, 484–485

DataSets
persisting, 479–480
XmlDocument, accessing (XmlDataDocument),

480–482
described, 453
documentation, 1185–1186
documents, binding, 336, 343–344
DOM implementation (XmlDocument)

described, 474
problems, 475
XPath and, 475–478

editing in Visual Studio .NET 2005, 458–461
element syntax checking tool, 1096–1097
file, binding

Menu server control, 536–537
TreeView server control, 512–514

InfoSet, 456
inline syntax, 387–388
site map files, 12–13, 500–502
SQL query, modifyiing to return (FOR XML AUTO

clause), 493–495
Web server controls, transforming with XSL style sheet,

177–178

1252

Windows (Microsoft) (continued)

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1252

XmlReader

CLR types, retrieving, 468–469
described, 461–463
elements and attributes, listing all (NameTable),

466–468
serialization and subtrees (ReadSubtree and

XmlSerialization), 470–471
validating XML against XML Schema, 464–465

XPath expressions (XPathDocument), 475
XSD (XML Schema Definition), 457–458
XSLT

debugging, 491–492
document, transforming, 486–487
processor (XslCompiledTransform), 488–489
Web server control, 489–491

XML Schema Definition (XSD), 457–458
XML Web services

building
base file, 1027–1028
Visual Studio files, 1025–1026
WebService page directive, 1026–1027

caching responses, 1047–1048
communicating between disparate systems

described, 1023–1024
SOAP request and response, 1024–1025

consuming
asynchronously, 1055–1058
client application, invoking from, 1036–1039
described, 1034
reference, adding, 1035–1036

interface, 1031–1034
method overloading, 1044–1047
SOAP, exposing custom datasets as

sample, 1028–1029
WebMethod attribute, 1030–1031
WebService attribute, 1030

SOAP headers
classes representing, 1049–1051
consuming, 1051–1053
described, 1048–1049
requests, 1053–1055

transport protocols
Addition, consuming, 1039–1040
described, 1039
HTTP-GET, 1040–1043
HTTP-POST, 1043
SOAP, 1044

XMLHTTP callback capability, 126
XmlReader

CLR types, retrieving, 468–469
described, 461–463
elements and attributes, listing all (NameTable),

466–468
serialization and subtrees (ReadSubtree and

XmlSerialization), 470–471
validating XML against XML Schema, 464–465
XML, 461–463

XmlWriter, 461–463, 472–474
XPath, 475–478
XSD (XML Schema Definition), 457–458
XSL (eXtensible Stylesheet Language) style sheet,

177–178
XSLT (eXtensible Stylesheet Language Transformations)

document, transforming, 486–487
processor (XslCompiledTransform), 488–489
SQL output, transforming, 495–497
SQL query, modifyiing to return, 495–497
Web server control, 489–491

Y
Yes/No values

check boxes, form (CheckBox control)
creating, 153–154
verifying, 155

debugging and error-handling diagnostic switches,
787–788

GridView display, converting, 361
groups of forms, validating, 246–247
HTML server control base class, 110
list items, displaying or hiding, 149

Z
ZIP code, 127–129
zones, Web Parts

actions of items, 655–658
controls, adding, 652–655
default elements, 639–640
layout orientation, 639
layouts, 634–638
managing state and content, 633–634
modification, turning off, 652
properties, 660–661
template, 639

1253

zones, Web Parts

In
de

x

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1253

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1254

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1255

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1256

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1257

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1258

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1259

Take your library
wherever you go
Now you can access more than 70 complete Wrox books
online, wherever you happen to be! Every diagram, description,
screen capture, and code sample is available with your
subscription to the Wrox Reference Library. For answers when
and where you need them, go to wrox.books24x7.com and
subscribe today!

Programmer to ProgrammerTM

• ASP
• C
• Databases
• .NET
• Java
• Macromedia

• Open Source
• Visual Basic

and VBA
• Web

Development
• XML

Find books on

www.wrox.com

35_576100 bindex.qxd 10/6/05 8:22 PM Page 1260

