

Domain-Specific Development with
Visual Studio DSL Tools

Microsoft .NET Development Series

John Montgomery, Series Advisor
Don Box, Series Advisor
Martin Heller, Series Editor

The Microsoft .NET Development Series is supported and developed by the leaders and experts of
Microsoft development technologies including Microsoft architects. The books in this series provide a core
resource of information and understanding every developer needs in order to write effective applications
and managed code. Learn from the leaders how to maximize your use of the .NET Framework and its
programming languages.

Titles in the Series
Brad Abrams, .NET Framework Standard Library
Annotated Reference Volume 1: Base Class Library and
Extended Numerics Library, 0-321-15489-4

Brad Abrams and Tamara Abrams, .NET Framework
Standard Library Annotated Reference, Volume 2: Networking
Library, Reflection Library, and XML Library, 0-321-19445-4

Chris Anderson, Essential Windows Presentation Foundation
(WPF), 0-321-37447-9

Keith Ballinger, .NET Web Services: Architecture and
Implementation, 0-321-11359-4

Bob Beauchemin and Dan Sullivan, A Developer’s Guide to
SQL Server 2005, 0-321-38218-8

Don Box with Chris Sells, Essential .NET, Volume 1:
The Common Language Runtime, 0-201-73411-7

Keith Brown, The .NET Developer’s Guide to Windows
Security, 0-321-22835-9

Eric Carter and Eric Lippert, Visual Studio Tools for Office:
Using C# with Excel, Word, Outlook, and InfoPath,
0-321-33488-4

Eric Carter and Eric Lippert, Visual Studio Tools for
Office: Using Visual Basic 2005 with Excel, Word, Outlook,
and InfoPath, 0-321-41175-7

Mahesh Chand, Graphics Programming with GDI+,
0-321-16077-0
Steve Cook, Gareth Jones, Stuart Kent, Alan Cameron
Wills, Domain-Specific Development with Visual Studio
DSL Tools, 0-321-39820-3

Krzysztof Cwalina and Brad Abrams, Framework Design
Guidelines: Conventions, Idioms, and Patterns for Reusable
.NET Libraries, 0-321-24675-6

Len Fenster, Effective Use of Microsoft Enterprise Library:
Building Blocks for Creating Enterprise Applications and
Services, 0-321-33421-3

Sam Guckenheimer and Juan J. Perez, Software
Engineering with Microsoft Visual Studio Team System,
0-321-27872-0

Anders Hejlsberg, Scott Wiltamuth, Peter Golde, The C#
Programming Language, Second Edition, 0-321-33443-4

Alex Homer and Dave Sussman, ASP.NET 2.0 Illustrated,
0-321-41834-4

Joe Kaplan and Ryan Dunn, The .NET Developer’s Guide to
Directory Services Programming, 0-321-35017-0

Mark Michaelis, Essential C# 2.0, 0-321-15077-5

James S. Miller and Susann Ragsdale, The Common
Language Infrastructure Annotated Standard, 0-321-15493-2

Christian Nagel, Enterprise Services with the .NET
Framework: Developing Distributed Business Solutions
with .NET Enterprise Services, 0-321-24673-X

Brian Noyes, Data Binding with Windows Forms 2.0:
Programming Smart Client Data Applications with .NET,
0-321-26892-X

Brian Noyes, Smart Client Deployment with ClickOnce:
Deploying Windows Forms Applications with ClickOnce,
0-321-19769-0

Fritz Onion with Keith Brown, Essential ASP.NET 2.0,
0-321-23770-6

Fritz Onion, Essential ASP.NET with Examples in C#,
0-201-76040-1

Fritz Onion, Essential ASP.NET with Examples in Visual
Basic .NET, 0-201-76039-8

Ted Pattison and Dr. Joe Hummel, Building Applications
and Components with Visual Basic .NET, 0-201-73495-8

Scott Roberts and Hagen Green, Designing Forms
for Microsoft Office InfoPath and Forms Services 2007,
0-321-41059-9

Dr. Neil Roodyn, eXtreme .NET: Introducing eXtreme
Programming Techniques to .NET Developers, 0-321-30363-6

Chris Sells and Michael Weinhardt, Windows Forms 2.0
Programming, 0-321-26796-6

Dharma Shukla and Bob Schmidt, Essential Windows
Workflow Foundation, 0-321-39983-8

Guy Smith-Ferrier, .NET Internationalization:
The Developer’s Guide to Building Global Windows
and Web Applications, 0-321-34138-4
Will Stott and James Newkirk, Visual Studio Team System:
Better Software Development for Agile Teams, 0-321-41850-6

Paul Vick, The Visual Basic .NET Programming Language,
0-321-16951-4

Damien Watkins, Mark Hammond, Brad Abrams,
Programming in the .NET Environment, 0-201-77018-0

Shawn Wildermuth, Pragmatic ADO.NET: Data Access
for the Internet World, 0-201-74568-2

Paul Yao and David Durant, .NET Compact Framework
Programming with C#, 0-321-17403-8

Paul Yao and David Durant, .NET Compact Framework
Programming with Visual Basic .NET, 0-321-17404-6

For more information go to www.awprofessional.com/msdotnetseries/

www.awprofessional.com/msdotnetseries/

Steve Cook
Gareth Jones
Stuart Kent
Alan Cameron Wills

Domain-Specific
Development with
Visual Studio
DSL Tools

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris

Madrid • Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.

The .NET logo is either a registered trademark or trademark of Microsoft Corporation in the United States and/or
other countries and is used under license from Microsoft.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied war-
ranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the use of the information or programs contained
herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training
goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearsoned.com

Library of Congress Cataloging-in-Publication Data

Domain-specific development with Visual studio DSL tools / Steve Cook ... [et al.].
p. cm.

Includes index.

ISBN-13: 978-0-321-39820-8 (pbk. : alk. paper)

ISBN-10: 0-321-39820-3

1. Microsoft Visual studio. 2. Computer software—Development. I. Cook, Steve.

QA76.76.D47D644 2007

006.7'86—dc22
2007011960

Copyright © 2007 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and per-
mission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116
Fax: (617) 848-7047

ISBN 13: 978-0-321-39820-8
ISBN 10: 0-321-39820-3

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, May 2007

http://www.awprofessional.com/safarienabled
www.awprofessional.com

To Hazel, Laurence, Oliver, and Imogen.
You make it all worthwhile.

—SC

To my grandparents, Muriel and Keith, whose constant love and support
have made any and all success in my chosen career possible.

—GJ

To Gabrielle, Nathanael, Madeline, Raphaelle, Isolde, and Elsa.
You can have your weekends back now.

—SK

To Kath, with love and thanks.
I owe you many dinners.

—ACW

This page intentionally left blank

Contents

List of Figures xvii
List of Tables xxv
Foreword xxvii
Preface xxix
About the Authors xxxv

1 Domain-Specific Development 1
Introduction 1
Domain-Specific Development 2
Examples 4

Software Defined Circuitry 8

Embedded Systems 9

Device Interfaces 9

Software Development Process Customization 9

Benefits 10
Languages 11
Textual DSLs 15
Graphical DSLs 20

Conventions for Representing Structure 21

Conventions for Representing Behavior 22

Aspects of Graphical DSLs 23
Notation 24

Domain Model 24

Generation 24

vii

Serialization 25

Tool Integration 26

Putting It All Together 26

DSLs in Visual Studio 27
The Customization Pit 32
UML 34
Summary 40

2 Creating and Using DSLs 41
Introduction 41
Process: Incremental Development of DSLs 41

Generalizing an Application: Identify Variability, Discover DSLs 42

Top-Down and Bottom-Up 46

Developing the DSL: From Sketches to Domain Model 48

Domain Model and Presentation Are Separate 49

Refining the DSL 50

Driving the Framework from the DSL 51

Using the DSL 53

Evolving the DSLs 55

Interpretive Architectures 56

Creating a DSL in Visual Studio 57
Creating a DSL Authoring Solution in Visual Studio 57

Trying Out the DSL Solution 61

Defining the DSL 64

Generating the Code for the Designer 66

Adding to the DSL 67

Constraints 68

Customizing the Explorer Window 71

Customizing the Properties Window 72

Custom Code for the Designers 73

Serialization Format of the DSL File 73

Driving Applications from the DSL 74

Deployment 76

A Second DSL: The Project Definition DSL 77

Contentsviii

Architecture of the DSL Tools 78
The Generated Code 78

DSL Tools Architectural Layers 79

The Framework Assemblies 79

Content of the DSL Project 81

Content of the DslPackage Project 83

Summary 85

3 Domain Model Definition 87
Introduction 87
The Domain Model Designer 88
The In-Memory Store 89
Domain Classes 92
Domain Relationships 98

Embeddings 101

Multiplicity 104

References 105

Relationship Derivation 106

Generating a Designer with No Shapes 108
The Generated Code 109

Using the Generated Code 113

More about Domain Classes 115
DomainClassInfo 118

More about Domain Properties 119
Calculated Properties 121

DomainPropertyInfo 121

More on Domain Relationships and Roles 122
Accessing Links 124

More on Relationship Derivation 126

DomainRelationshipInfo and DomainRoleInfo 129

More about the Store 129
Looking Up Elements 129

Partitions 130

Rules 130

DomainModelInfo 130

Summary 131

Contents ix

Contentsx

4 Presentation 133
Introduction 133
Graphical Notation—Overview 134
Diagram and Editor 137

Diagram 138

Editor 141

Designer 142

Custom Editor 142

Shapes 146
Kinds of Shapes 147

Shape Maps 154

Connectors 164
Connector Anatomy and Appearance 164

Connectors and Inheritance 165

Connector Maps 165

Advanced Connector Maps 167

Decorators 167
Kinds of Decorators 168

Positioning 169

Decorator Maps 170

Customizing the Graphical Notation in Code 173
Multiline Text Decorators 173

Variable Image Shape 174

Set a Background Picture 176

Set Custom Connection Points 177

Change Routing Style of Connectors 178

Explorer 180
Default Appearance 181

Changing the Window Icon and Label 183

Customizing the Appearance of Nodes 184

Hiding Nodes 186

Customizing the Explorer through Code 187

Properties Window 188
Default Appearance of Properties Window 188

Categories, Names, and Descriptions 190

Hiding Properties and Making Them Read-Only 192

Forwarding Properties 192

Customizing the Properties Window through Code 193

Summary 195

5 Creation, Deletion, and Update Behavior 197
Introduction 197
Element Creation 197

The Toolbox 198

Element Merge Directives 200

Custom Element Merge Directives 208

Re-Parenting with Element Merge Directives 211

Custom Element Tool Prototypes 212

Connection Builders 216
Multiple Source and Target Role Directives 217

Multiple Link Connect Directives 219

Custom Connection Builders 222

Element Deletion 229
Default Delete Propagation Rules 229

Controlling Delete Propagation 231

Customizing Delete Propagation 232

Summary 234

6 Serialization 237
Introduction 237
Saving and Loading Models and Diagrams 238
Model XML File Format 239
Elements and Properties 242
Relationships 243

Relationship Derivation 245

Cross-Referencing 245
Using Guids as References 246

Using Qualified Names as References 248

References to Links 249

Diagram XML File Format 251
Versioning and Migration 254

Contents xi

The XML Schema 257
Customization 258

Modifying XML Element Names 259

Element Data 261

Implementing Your Own Serializer 264

Generated Serialization Code 264
Customized Serialization Code 271

Impact of Customization on the Schema 272

Summary 273

7 Constraints and Validation 275
Introduction 275
Choosing Hard or Soft Constraints? 277

Choices Made by the DSL Tools 280

Soft Constraints in the DSL Tools 280
Validation Methods 282

Enabling Validation 284

Invoking Validation 288

Custom Validation Categories 289

Inheriting Validation Behavior 292

Validation Output 292

Using Validation Outside the IDE 293

Validation Against External Data 294

Hard Constraints in the DSL Tools 295
Rules 296
Putting Together Hard and Soft Constraints 299
Summary 307

8 Generating Artifacts 309
Introduction 309
Artifact Generation Styles 311

Extensible Stylesheet Language Transformations 311

Making Use of the Domain-Specific API 314

A Template-Based Approach 319

Complex Relationships and Round-Tripping 321

Contentsxii

The Templatization Process 325
The First Cut Template 328

Generation-Specific Model Data 338

Starting to Build a Library 340

Syntax of a Text Template 341
Directives 341

Custom Directives 344

Control Block Types 346

Problems of Large-Scale, Real-World Artifact Generation 349
Advanced Customizations 351

Text Templating Architecture 352

Custom Hosting 354

Custom Directive Processor 357

Custom Orchestration 359

Summary 366

9 Deploying a DSL 369
Introduction 369
Files Needed to Install a Designer 370
Getting Started—Creating a Setup Project 373
Setup Project Contents 376
Customizing Setup 377

Customizing InstallerDefinition.dslsetup 377

Customizing settings.ini 377

Customizing Strings.wxl 378

Customizing Product.ico 378

The .dslsetup Format 378
<dslPackage> 380

<licenseAgreement> 382

<supportingFiles> 382

<vsItemTemplates> 383

<dslSchemas> 384

<vsProjectTemplates> 384

<mergeModules> 384

<textTemplates> 385

Contents xiii

Refreshing the Installation Files 387
Package Load Key 388
Deploying Text Templates for Code Generation 390

Creating a Project Template from the Debugging Project 390

Using a Text Template Include File 392

Including Text Templates in the VS Item Template 393

Summary 396

10 Advanced DSL Customization 397
Introduction 397
Tools for Customization 397

Partial Classes 397

Double Derived—The Generation Gap 398

Custom Constructors 399

Customization Switches 399

Custom Overrides 401

Responding to Changes 402
Property Handlers “On Value Changed/Changing” 402

Calculated Domain Properties 404

Custom Storage Domain Properties 405

Notify Value Change 407

Propagating Change from Model to Shape:

OnAssociatedPropertyChanged 408

Rules 412

Store Events 417

.NET Event Handlers 419

Event Overrides 420

Bounds Rules 420

Summary of Change Propagation and Constraint Techniques 424

DSL Shell Architecture 426
How to Add a Menu Command 429

Add a Command Id for Each Command 430

Increment Menu Resource Index 430

Add Commands to Command Set 431

Define the Command Handlers 432

Good Practices for Command Handlers 434

Contentsxiv

Build and Run 435

Providing Handlers for Standard Commands 435

Building the DSL Diagram into Another Interface 435
Implementing Copy and Paste 437

The Copy Method 437

The Paste Method 438

Registering the Menu Handlers 440

Shape Containers 442
Child Shapes 442

A DSL Using Nested Child Shapes 443

Shape Containment Using Rules 446

Summary 453

11 Designing a DSL 455
Introduction 455
Identifying Variability 456

Bottom-Up or Top-Down? 457

Feature Trees 458

Feature Trees and DSLs 459

Developing the Domain Model 460
Sketch Domain Snapshots 460

Domain Model from Snapshots 464

Developing the Notation 468
Project Definition Notation 470

Issue State Notation 471

Familiar Notations 474

Defining Validation Constraints 475
Internal Consistency 476

Consistency with External Data and Models 478

Developing and Evolving the Framework 479
Generation versus Interpretation 479

Evolving a Generic Framework 482

Driving a Framework from the DSL 483

Testing 484
Validation Constraints 486

Generator Templates 488

Contents xv

Generated Code 488

Rules 489

Language Definition 489

Evolving a DSL 489
What Makes a Good DSL? 491

Appropriate Notation: An Example with Regular Expressions 493

Candidate Notations 495

Graphs Are Not Syntax Trees 498

Summary 498
Conclusion 499

Index 503

Contentsxvi

Figures

Figure 1-1: Domain-Specific Development 2

Figure 1-2: Two diagrams and one model 4

Figure 1-3: Himalia Navigation Model 5

Figure 1-4: Himalia Use Case Model 5

Figure 1-5: Himalia User Profile Model 6

Figure 1-6: Ordina Web Scenario DSL 6

Figure 1-7: Ordina Data Contract DSL 7

Figure 1-8: Ordina Service DSL 7

Figure 1-9: Ordina Business Class DSL 8

Figure 1-10: Data center design 21

Figure 1-11: Structural conventions 22

Figure 1-12: Behavioral conventions 23

Figure 1-13: Invalid class diagram 25

Figure 1-14: An application diagram 28

Figure 1-15: The generated solution 30

Figure 1-16: Customization pit 32

Figure 1-17: Customization staircase 33

Figure 1-18: Multiple DSLs 33

Figure 1-19: Different representations for a class 35

Figure 1-20: Use case diagram for simple library 35

Figure 1-21: Class diagram for simple library 36

Figure 1-22: Sequence diagrams for simple library 37

xvii

Figure 2-1: The web interface to the Issue Tracker application 43

Figure 2-2: An Issue State definition 45

Figure 2-3: Initial DSL definition for the Issue State language 48

Figure 2-4: Authoring and usage roles 55

Figure 2-5: The DSL Designer Wizard, showing a list of starting languages on

which to base the new language 58

Figure 2-6: DSL designer 59

Figure 2-7: The designer for the Minimal language 62

Figure 2-8: DSL after editing names 65

Figure 2-9: Solution explorer with “Transform All Templates” button 66

Figure 2-10: Issue State designer—first prototype 67

Figure 2-11: StartElement and IssueState have an abstract base class 68

Figure 2-12: DSL with StartElement and improved tool icons and arrows 69

Figure 2-13: Invalid state model 69

Figure 2-14: Issue State domain model with inheritance between relationships 70

Figure 2-15: Explorer behavior definition 71

Figure 2-16: Result of customizing explorer 71

Figure 2-17: Settings on a domain property 72

Figure 2-18: Result of changing settings on a domain property 73

Figure 2-19: Issue Project designer 78

Figure 2-20: Architecture of the DSL Tools 80

Figure 2-21: Files in the Dsl project 81

Figure 2-22: The DslPackage folder 84

Figure 3-1: Smallest valid domain model 88

Figure 3-2: Simple Issue State model as presented on screen 90

Figure 3-3: Issue State model as ModelElements and ElementLinks 91

Figure 3-4: Creating the StateElement domain class 93

Figure 3-5: Creating an inheritance hierarchy 94

Figure 3-6: Reorganized layout of theinheritance hierarchy 95

Figure 3-7: New Domain Properties added to IssueState 96

Figure 3-8: Properties window for domain class StartElement 97

Figure 3-9: Properties window for the Name domain property 97

Figure 3-10: Comments linked to IssueStates 99

Figure 3-11: The CommentsReferToIssueStates domain relationship 100

Figuresxviii

Figure 3-12: Property names and multiplicities on roles 100

Figure 3-13: Embedding relationships 103

Figure 3-14: Root element at DSL runtime 104

Figure 3-15: The IssueStateTransition relationship 105

Figure 3-16: IssueStates and IssueState Transitions 106

Figure 3-17: The StartTransition relationship 107

Figure 3-18: The abstract relationship Transition 107

Figure 3-19: Relationships shown as classes in a hierarchy 108

Figure 3-20: Explorer for Issue State target designer 109

Figure 3-21: Class diagram of generated domain classes 111

Figure 3-22: Class diagram for CommentsReferToIssueStates 112

Figure 3-23: Properties for a domain class 116

Figure 3-24: Properties for the Name domain property 119

Figure 3-25: Properties for a domain role 123

Figure 3-26: Generated methods for IssueStateTransition 125

Figure 3-27: Classes generated for derived relationships 128

Figure 4-1: Issue State designer showing the presentation of a model 135

Figure 4-2: Maps between diagram elements and model elements 135

Figure 4-3: Definition of diagram elements and maps 136

Figure 4-4: Definition of diagram for Issue State DSL 138

Figure 4-5: Definition of designer in Issue State DSL 141

Figure 4-6: Properties of a custom editor definition 142

Figure 4-7: Forms-based DSL editor 146

Figure 4-8: Anatomy of a geometry shape 148

Figure 4-9: Appearance settings for geometry shape 148

Figure 4-10: Anatomy of a compartment shape 149

Figure 4-11: Definition of a compartment shape 150

Figure 4-12: Settings for a compartment 151

Figure 4-13: Anatomy of an image shape 151

Figure 4-14: With default connection points and without 152

Figure 4-15: Geometry shape with ports attached 153

Figure 4-16: Anatomy of a vertical swimlane 153

Figure 4-17: Anatomy of a horizontal swimlane 154

Figure 4-18: Mapping a geometry shape 155

Figures xix

Figure 4-19: Fragment of domain model for Component Models language 158

Figure 4-20: Mapping compartments 160

Figure 4-21: Mapping ports 162

Figure 4-22: Definition of swimlane map in Task Flow example 162

Figure 4-23: Anatomy of a connector 164

Figure 4-24: Connector settings 165

Figure 4-25: Definition of a connector map 166

Figure 4-26: Different kinds of decorator 168

Figure 4-27: Definition of text color 169

Figure 4-28: All possible decorator positions 170

Figure 4-29: Definition of a decorator map 171

Figure 4-30: Definition of StartIcon and IsStartState 171

Figure 4-31: Decorator map showing visibility filter 172

Figure 4-32: Result of using a visibility filter 172

Figure 4-33: Wrapped text inside a Comment Box 173

Figure 4-34: Transistor shapes have multiple orientations. 174

Figure 4-35: Illustration of North-South tree routing style 179

Figure 4-36: Domain model for Issue Project DSL 181

Figure 4-37: Issue Project Explorer over a populated model 182

Figure 4-38: Changing the title of the explorer 183

Figure 4-39: Defining custom node settings 184

Figure 4-40: Result of defining custom node settings 185

Figure 4-41: Changing the string displayed in an element node 186

Figure 4-42: Result of changing the string displayed 187

Figure 4-43: Hiding nodes 188

Figure 4-44: Result of hiding nodes 188

Figure 4-45: Anatomy of the presentation of a property 191

Figure 4-46: Settings on domain properties and roles governing their

presentation 191

Figure 4-47: Definition of forwarded property 192

Figure 4-48: Forwarded property showing in generated designer 193

Figure 4-49: Custom attribute to associate a file picker with a domain property 194

Figure 4-50: File picker custom editor for property in resulting designer 194

Figure 5-1: The toolbox for the Issue Tracking DSL 198

Figure 5-2: Toolbox definition for the Issue Tracking DSL 199

Figuresxx

Figure 5-3: IssueProjectModel embeds Projects 201

Figure 5-4: Element Merge Directive to create one embedding link 201

Figure 5-5: Elements with two alternative parent types 203

Figure 5-6: IssueCategory is the target of two alternative embeddings 203

Figure 5-7: An EMD is usually needed for the class mapped to each

compartment 204

Figure 5-8: Add Item menu in a compartment shape is determined by

compartments and EMDs 204

Figure 5-9: An Add command is generated in the explorer for each embedded item

with an EMD 205

Figure 5-10: Comment attached to Project 205

Figure 5-11: Comments and Projects 206

Figure 5-12: Element merge with multiple link creation paths 206

Figure 5-13: Component shape with ports 208

Figure 5-14: Part of the Task Flow model. FlowElements are owned by Actors 212

Figure 5-15: Transistors have three connections each 213

Figure 5-16: A component that must be created with three subsidiary elements 213

Figure 5-17: Individual embeddings of ComponentTerminal are derived from

ComponentHasTerminal 216

Figure 5-18: A connection builder 217

Figure 5-19: Task Flow DSL 218

Figure 5-20: General relationship Flow, between multiple element classes 219

Figure 5-21: Connection builder listing restricted source and target sets 219

Figure 5-22: A second relationship, ObjectFlow 220

Figure 5-23: Additional link connect directives for the FlowBuilder connection

builder 221

Figure 5-24: Link Connect Directive with Path to Roleplayer 222

Figure 5-25: Custom accept on the target role 223

Figure 5-26: Components and ports 227

Figure 5-27: Delete Behavior tab in the DSL Details window for the Component

domain class 230

Figure 5-28: Delete Behavior tab for ComponentTerminal in the Circuit Diagrams

sample 232

Figure 6-1: Issue State model in a solution 238

Figure 6-2: Transitions with actions 243

Figures xxi

Figure 6-3: Setting “Serialize Id” 247

Figure 6-4: Multiple links between states 250

Figure 6-5: Setting the Action domain property to be a key 251

Figure 6-6: Simple Issue State diagram 252

Figure 6-7: Error resulting from incorrect cross-reference in XML file 256

Figure 6-8: IntelliSense in the XML editor 258

Figure 6-9: DSL explorer serialization settings 259

Figure 6-10: Serialization data for the domain class IssueState 260

Figure 6-11: Customizing XML elements 261

Figure 6-12: Element Data for StateElement 262

Figure 6-13: Domain relationship data for IssueStateModelHas Comments 263

Figure 7-1: Setting values in the Validation node 288

Figure 7-2: Architecture of the validation framework 290

Figure 7-3: Validation messages displayed in the Visual Studio Error List

Window 293

Figure 7-4: Snippet of Class Design domain model 297

Figure 7-5: A basic error dialog from the properties window 299

Figure 7-6: An expanded error dialog from the properties window 300

Figure 7-7: Drag-drop error dialog 300

Figure 7-8: Error message shown when a load fails 303

Figure 7-9: Validation errors exposed both in the error list and via selection on the

diagram surface 306

Figure 7-10: Initial error message when Load category validations fail 307

Figure 7-11: XML editor showing location of Load category validation failures 307

Figure 8-1: Database tables for an issue and its custom fields 316

Figure 8-2: The Issue and derived HealthIssue classes in the Issue Tracker

business logic layer 327

Figure 8-3: The implementation architecture of the text templating system 352

Figure 9-1: The Windows registry editor 370

Figure 9-2: Selecting the Domain-Specific Language Setup project template 373

Figure 9-3: Contents of the DSL setup project 374

Figure 9-4: Result of building the setup project 375

Figuresxxii

Figure 9-5: Installation wizard 375

Figure 9-6: DSL Definition for .dslsetup format 386

Figure 9-7: View of VSPackage.resx in the .resx editor, showing the entry

with the PLK 390

Figure 9-8: VS project template added to setup project 391

Figure 9-9: Setup project showing .tt include file 393

Figure 10-1: Double derived classes 399

Figure 10-2: Two property values displayed on one line in a compartment shape 404

Figure 10-3: Standard Class Diagrams template has several separate types of

association 409

Figure 10-4: Synchronization bars can be horizontal or vertical 421

Figure 10-5: This bounds rule constrains the shape to two alternatives. 421

Figure 10-6: Shell architecture of a typical DSL tool 428

Figure 10-7: Class diagrams example, with context menu on association 429

Figure 10-8: DSL using nested child shapes 443

Figure 10-9: DSL with nested child shapes and non-nested connectors 444

Figure 10-10: Using the Collapse button 444

Figure 10-11: State Chart model 447

Figure 10-12: Running DSL with movable state shapes 447

Figure 11-1: Feature tree 458

Figure 11-2: Snapshot—custom fields 461

Figure 11-3: Issue Snapshot: Issue State 463

Figure 11-4: Inferring a domain model from a snapshot 465

Figure 11-5: Snapshot—categories and fields 465

Figure 11-6: Domain model—categories and fields 466

Figure 11-7: Domain model—CategoryParent 467

Figure 11-8: Issue State domain model 468

Figure 11-9: Project definition—syntax options 470

Figure 11-10: Project definition—concrete syntax example 470

Figure 11-11: Projects and states in a flat diagram 471

Figure 11-12: Projects contain states 472

Figure 11-13: One project per model file 472

Figure 11-14: One project per model file 472

Figures xxiii

Figuresxxiv

Figure 11-15: Refactored Issue State domain model 473

Figure 11-16: Refactored Issue State domain model using relationship

inheritance 474

Figure 11-17: Loops in project definition model 477

Figure 11-18: Loops in Issue State model 478

Figure 11-19: Interpretation of a regular expression 494

Figure 11-20: Regexp Tree notation 495

Figure 11-21: Railroad track notation 496

Figure 11-22: Invalid railroad track 496

Figure 11-23: Nested box notation 497

Figure 11-24: Nested path notation 498

Tables

Table 2-1: Terminology—Roles and Phases 54

Table 4-1: Property Settings Categories for Diagram 138

Table 4-2: Property Settings Categories for Shapes 147

Table 4-3: Advanced Rules for Shape Maps 164

Table 4-4: Advanced Rules for Connector Maps 167

Table 4-5: Decorator Positions for Different Kinds of Shapes 170

Table 9-1: Attributes of <installerDefinition> 380

Table 9-2: Attributes of <fileExtension> 381

Table 9-3: Attributes of <supportingFile> 382

Table 9-4: <vsItemTemplate> attributes 383

Table 10-1: Customization Switches 400

Table 10-2: Custom Overrides 401

Table 10-3: Rule Types 414

Table 10-4: Change Propagation and Constraint Techniques 425

xxv

This page intentionally left blank

Foreword

Ludwig Wittgenstein once compared a language to a city. In the historic
center were gnarly lanes, in the middle were broad avenues and gardens
with diverse architecture, and on the edges were geometrically planned
suburbs. He was, of course, speaking of what we now call “natural” lan-
guages, but the analogy holds to our computer languages as well. We have
low-level languages that fit the historic centers. And the boxy modeling
techniques we use are the Stalinist apartment blocks in the suburbs.

It’s the broad avenues and diverse architecture in between that have
evaded the conventions of most of our computer languages. If you look at
the workings of the city, there are street layouts, traffic patterns, zoning
maps, architectural codes, and landscape maps; in the buildings are struc-
tural, plumbing, electrical, telecom, ventilation, and security plans; and in
the factories, you’ll find more specialized process, fluid, machine, and
automation schemas. These are a few of the domain-specific languages of
the real world. Each has a rigid set of semantics and an established body of
practice. Each has been created because the prior alternatives were insuffi-
cient for the tasks at hand.

Of course, people now use computers to draw all of these things. In
every case, some enterprising vendors (or occasionally users) have created
packages that implement the specific modeling tasks for the domain. The
applications have been limited to the domain, and the cost of maintaining
the infrastructure has been considerable.

At the same time, in the world of computer systems, the most fre-
quently used design tool is the whiteboard. And there is some kind of

xxvii

(usually manual and highly tacit) process in which the whiteboard sketches
eventually get translated into code. Ideally, this would be a smooth pro-
gressive rendering of design, moving from broad concepts to precise code.

Unfortunately, today it’s not so smooth. Whether developers use
generic modeling languages like UML (in the minority case), or go from
dry-erase marker to 3GL, there’s always an abrupt shift from the human-
readable world of the domain to the computer-executable world of the
software. The goal of the Microsoft DSL Tools is to bridge that gap.

What if we could make it as easy to sketch a design in the language of the
problem domain as it is to draw on a whiteboard, and then progressively
annotate the sketch until it were sufficiently rich to become an executable
model? That technology isn’t here yet, but the DSL Tools are a huge leap
forward.

The DSL Tools democratize the creation of domain-specific languages
that can capture high-level design in an idiom familiar to domain experts
and transform the designs into running software. This is a big step toward
mass customization—the idea of capturing the domain patterns of a fam-
ily of related software solutions and assembling the specific results from
well-defined components. Almost every successful industry has learned to
do this, but software has lagged.

When we achieve mass customization, the economics of software will
change from the craft era to an age of software supply chains with compo-
nent marketplaces and well-defined rules for reuse. The DSL Tools will be
remembered as a pivotal step in that transformation.

There are no better individuals to write this book than Steve Cook,
Gareth Jones, Stuart Kent, and Alan Cameron Wills. They are the creators of
the DSL Tools. They have decades of experience in the use and design of
prior generations of modeling tools. This depth of knowledge informs a
passion and an expertise that can’t be matched in the industry. Their work
is a great contribution.

Sam Guckenheimer
Author, Software Engineering with Microsoft Visual Studio Team System
Redmond, WA
March 2007

Forewordxxviii

Preface

This book is a software developer’s guide to using the Microsoft Tools for
Domain-Specific Languages (“DSL Tools”), which are included in the SDK
(Software Development Kit) for Microsoft Visual Studio 2005.

The software industry is showing considerable interest in using
“domain-specific languages,” an approach to building software that
promises to reduce software development costs, especially in large proj-
ects. A domain-specific language (DSL) is a language specially geared to
working within a particular area of interest: a vertical domain such as
telephone design, or a horizontal one like workflow. It may be a program-
ming language or a specification or design language. It may be textual or
graphical, or a mixture of both. The language is expressed in terms that
are used in a particular domain, such as “connect,” “ringtone,” or “work
item,” uncluttered by the details of how those concepts are implemented.
Software, configuration files, resources, and other documents can be gen-
erated from instances of the language—often many of those artifacts can
be generated from one DSL—or the language may be interpreted directly.
This makes it much easier to discuss the software at the requirements
level, and to make changes in an agile way. In vertical domains, the
accessibility of the language to business users helps when discussing
requirements with them.

DSLs are not a new idea—HTML and SQL are well-known examples of
DSLs. Less widespread, however, is the idea of creating your own DSL for
your own project. The purpose of the Microsoft DSL Tools is to reduce the

xxix

upfront cost of doing so. You can quickly create a range of diagrammatic
languages, such as workflow, class, or entity diagrams, and you can create
tools for generating artifacts from them.

Goals and Scope

This book is for you if you are a software developer or architect using, or
thinking about using, the Microsoft DSL Tools. It explains how to create
and use languages, how to tune them to your needs, and how to employ
them within the context of your project. The book should also be of sig-
nificant value to readers who are interested in the broader general topic of
domain-specific languages, or who wish to compare and contrast different
approaches to model-driven development, or tools that support model-
driven development. Chapters 1 and 11 discuss the more general topic of
domain-specific languages, and how you go about designing one. The
middle chapters focus exclusively on providing a detailed yet readable ref-
erence on building DSLs and code generators using the DSL Tools.

The book’s authors are the main designers of the Microsoft DSL Tools.
They have worked together on the product since its inception, and are
responsible for most of the key design decisions.

Why You Might Want to Use DSL Tools

If you (or your organization) are writing the same or similar code repeat-
edly, whether within a single large project or over the course of multiple
projects, then such code can probably be generated. If this is the case, you
should consider using the DSL Tools as a way to generate this code. This is
especially the case if the code can be generated from structures that can eas-
ily be understood by domain specialists rather than software development
specialists. After reading this book, you should be able to assess the capa-
bilities of the DSL Tools to address problems of this kind, either directly or
after some customization.

Prefacexxx

Organization of This Book

• Chapter 1, Domain-Specific Development, explains the DSL approach,
compares it with similar techniques, and introduces typical scenarios
in which a DSL is used.

• Chapter 2, Creating and Using DSLs, looks at the various parts of the
DSL Tools system, shows how they fit together, and introduces the
main examples that will be used through the remainder of the book.

• Chapter 3, Domain Model Definition, details how to define the concepts
of the language.

• Chapter 4, Presentation, deals with defining the visual appearance of
your language.

• Chapter 5, Creation, Deletion, and Update Behavior, covers these
important aspects of the behavior of your language.

• Chapter 6, Serialization, deals with how models and diagrams in
your language are represented in files.

• Chapter 7, Constraints and Validation, shows you how to ensure that
the users of your language create valid statements.

• Chapter 8, Generating Artifacts, shows you how to use your language
to drive or configure your system by creating configuration files,
program code, resources, and other artifacts.

• Chapter 9, Deploying a DSL, explains how to create an installer that
will install your finished language on multiple computers.

• Chapter 10, Advanced DSL Customization, shows you how to make
specialized features of your language (or specialized behavior in
the editor) in addition to those provided by the standard definition
facilities.

• Chapter 11, Designing a DSL, provides a lightweight kit of principles
and procedures for developing and evolving languages within the
context of your project.

Updates and all of the main examples are available for download at the
website www.domainspecificdevelopment.com.

Preface xxxi

www.domainspecificdevelopment.com

What You Need to Use This Book

To get the full value of this book, you need to be reasonably familiar with
the facilities that Visual Studio offers to developers of program code,
including the code editor and XML editor. A basic knowledge of the C#
programming language and the main aspects of the .NET class library are
needed to understand the programming examples.

DSL Tools can be downloaded as part of the Visual Studio SDK and used
with Visual Studio Professional Edition and later. Tools created using the
DSL Tools can be deployed on Visual Studio Standard Edition and later. The
website http://msdn.microsoft.com/vstudio/DSLTools/ is the entry point
to information about the DSL Tools. There you can find links to where the
SDK can be downloaded, a popular online forum with active discussions
about the DSL Tools, weblogs containing discussions about the DSL Tools
by the authors of this book and others, a tool for reporting bugs and mak-
ing suggestions, white papers, chats, and other resources.

Acknowledgments

The authors would like to acknowledge the contributions of the following
people who contributed materially to the design, development, documen-
tation, and testing of the DSL Tools:

Annie Andrews, Steve Antoch, Austin Avrashow, Bhavin Badheka,
Andy Bliven, Anthony Bloesch, Scott Chamberlin, Frank Fan, Jack Green-
field, Howie Hilliker, Ashish Kaila, Jesse Lim, George Mathew, Niall
McDonnell, Blair McGlashan, Grayson Myers, Kirill Osenkov, Duncan
Pocklington, Anatoly Ponomarev, Jochen Seemann, Keith Short, Pedro
Silva, Patrick Tseng, Steven Tung, Dmitriy Vasyura, and Yu Xiao.

We would also like to acknowledge our community of early users,
including participants in the DSL Tools Forum, who have stayed with us
through a sequence of technology previews. The feedback of these early
users has been immeasurably helpful in the process of getting the DSL
Tools completed.

The following reviewers have given us invaluable detailed feedback on
the contents of the book, which has improved it considerably:

Prefacexxxii

http://msdn.microsoft.com/vstudio/DSLTools/

Victor Garcia Aprea, Edward Bakker, Dan Cazzulino, Patrick Cooney,
Dragos Manolescu, Jean-Marc Prieur, Jezz Santos, Gerben van Loon, and
Markus Völter.

Joan Murray and her team at Addison-Wesley kept us going with
patient moral support throughout the writing process.

We would also especially like to thank Bonnie Granat for her accuracy
and responsiveness in making sense of and polishing our prose.

Finally, we thank our partners and families for putting up with the
evenings and weekends when we have been working on the book instead
of spending time with them.

Preface xxxiii

This page intentionally left blank

About the Authors

Steve Cook joined Microsoft in 2003 to work on the DSL Tools. Previously,
he was a Distinguished Engineer at IBM, which he represented in the UML
2.0 specification process at the OMG. He has worked in the IT industry for
30 years, as architect, programmer, author, consultant, and teacher. He was
one of the first people to introduce object-oriented programming into the
UK, and has concentrated on languages, methods, and tools for modeling
since the early 1990s.

Gareth Jones is a lead developer in the DSL Tools team. He’s been at
Microsoft since 1997 doing various developer jobs such as building bespoke
enterprise solutions, running the development of Microsoft UK’s small
business portal, and managing a consultancy team. Before joining
Microsoft, he spent seven years leading development projects in the intel-
ligence analysis, simulation, and aerospace industries.

Stuart Kent joined Microsoft in 2003 to work on the DSL Tools. Previously,
he was an academic and consultant, with a reputation in modeling and
model-driven development. He has over 50 publications to his name and
made significant contributions to the UML 2.0 and MOF 2.0 specifications.
He is a member of the editorial board of the journal Software and Systems
Modeling, and on the steering committee for the MoDELS series of confer-
ences. He has a Ph.D. in computing from Imperial College, London.

xxxv

Alan Cameron Wills was a methodology consultant for almost a decade,
and used to get very frustrated when people asked about good tools to
support the methods. So he was very pleased to join Microsoft in 2003 to
help in the DSL Tools project. He has a Ph.D. in computer science, and was
joint creator of the Catalysis approach to component-based development.
He gets excited about software factories, photography, sailing, and hills.

About the Authorsxxxvi

1
Domain-Specific Development

Introduction

This book describes the Microsoft Domain-Specific Language Tools (the
DSL Tools). The DSL Tools are part of the Visual Studio SDK, and may
be downloaded from http://msdn.microsoft.com/vstudio/DSLTools/.
The DSL Tools extend Microsoft Visual Studio 2005 to support a power-
ful way of developing software called Domain-Specific Development.

Domain-Specific Development is based on the observation that many
software development problems can more easily be solved by designing a
special-purpose language. As a small example, think about the problem of
finding every occurrence of a particular pattern of characters in a file, and
doing something with each occurrence that you find. The special-purpose
textual language of regular expressions is specifically designed to do this job.
For example, using the .NET class System.Text.RegularExpressions.Regex,
the regular expression (?<user>[^@]+)@(?<host>.+) applied to a string of
characters will find email addresses in it, and for each address found, assign
the substring immediately before the @ sign to the user variable, and the sub-
string immediately after the @ sign to the host variable. Without the regular
expression language, a developer would have to write a special program to
recognize the patterns and assign the correct values to the appropriate vari-
ables. This is a significantly more error-prone and heavyweight task.

Domain-Specific Development applies this same approach to a wide
variety of problems, especially those that involve managing the complexity

1

http://msdn.microsoft.com/vstudio/DSLTools/

of modern distributed systems such as those that can be developed on the
.NET platform. Instead of just using general-purpose programming lan-
guages to solve these problems one at a time, the practitioner of Domain-
Specific Development creates and implements special languages, each of
which efficiently solves a whole class of similar problems.

Domain-Specific Languages can be textual or graphical. Graphical lan-
guages have significant advantages over textual languages for many prob-
lems, because they allow the solution to be visualized very directly as
diagrams. The DSL Tools make it easy to implement graphical DSLs, and
they enable Domain-Specific Development to be applied to a wide range
of problems.

Domain-Specific Development

Domain-Specific Development is a way of solving problems that you can
apply when a particular problem occurs over and over again. Each occur-
rence of the problem has a lot of aspects that are the same, and these parts
can be solved once and for all (see Figure 1-1). The aspects of the problem
that are different each time can be represented by a special language. Each
particular occurrence of the problem can be solved by creating a model or
expression in the special language and plugging this model into the fixed
part of the solution.

Chapter 1: Domain-Specific Development2

Model

Fixed Part

ConfigureIntegrate

Figure 1-1: Domain-Specific Development

The fixed part of the solution is written using traditional design, coding,
and testing techniques. Depending on the size and shape of the problem,
this fixed part of the solution might be called a framework, a platform, an
interpreter, or an Application Programming Interface (API). The fixed part
captures the architectural patterns that make up the domain and exposes
extension points that enable it to be used in a variety of solutions. What
makes the approach applicable is the fact that you create the variable part
of the solution by using a special-purpose language—a DSL.

As we observed in the introduction, the DSL might be textual or graph-
ical. As the technology for domain-specific development matures, we expect
to see tools that support the development and integration of both textual
and graphical DSLs. People have a range of feelings about which kind of
language they prefer. Many people, for example, prefer textual languages
for input, because they can type fast, but graphical languages for output,
because it is easier to see the “big picture” in a diagram. Textual expressions
make it much easier to compute differences and merges, whereas graphical
expressions make it much easier to see relationships. This chapter discusses
both kinds, but the first version of DSL Tools and hence the remaining chap-
ters of the book focus solely on graphical languages.

To create a working solution to the problem being addressed, the fixed
part of the solution must be integrated with the variable part expressed by
the model. There are two common approaches to this integration. First,
there is an interpretative approach, where the fixed part contains an inter-
preter for the DSL used to express the variable part. Such an approach can
be flexible, but it may have disadvantages of poor performance and diffi-
culty in debugging. Second, the particular expression or diagram may be
fully converted into code that can be compiled together with the remainder
of the solution—a code-generation approach. This is a more complex con-
version procedure, but it provides advantages in extensibility, performance,
and debugging capability.

Graphical DSLs are not just diagrams. If you wanted just to create dia-
grams, you could happily use popular drawing programs such as Microsoft
Visio to achieve a first-class result. Instead, you are actually creating mod-
els that conceptually represent the system you are building, together with
diagrammatic representations of their contents. A given model can be rep-
resented simultaneously by more than one diagram, with each diagram
representing a particular aspect of the model, as shown in Figure 1-2.

Domain-Specific Development 3

Examples

Let’s first have a look at a couple of examples where the DSL Tools have
been applied in practice. The first example comes from an Independent
Software Vendor (ISV) called Himalia. Himalia has created a set of DSLs for
implementing complex graphical user interfaces without doing any coding.
The Himalia Navigation Model, shown in Figure 1-3, defines the navigation
through the user interface.

Use Cases, regarded as heavyweight flows of control consisting of activ-
ities and transitions, are explicitly defined in a state machine view in order
to address their complexity. Use Case states and transitions are related to
Navigation Model elements and actions, respectively. The Use Case Model
is shown in Figure 1-4.

The User Profile Model shown in Figure 1-5 defines user states that
affect the behavior of the user interface.

The complete Himalia system integrates these models with others
into Visual Studio 2005 to implement complete user interfaces based on
Microsoft technology, including Windows Presentation Foundation (WPF).

Chapter 1: Domain-Specific Development4

Figure 1-2: Two diagrams and one model

Examples 5

The second example is a Systems Integrator (SI) called Ordina that is
based in the Netherlands. Ordina has built a complete model-driven software

Figure 1-3: Himalia Navigation Model

Figure 1-4: Himalia Use Case Model

factory within its Microsoft Development Center, called the SMART-Microsoft
Software Factory. This factory uses four connected DSLs. To enable these
DSLs to collaborate, Ordina has created a cross-referencing scheme that
allows elements in one DSL to refer to elements in another DSL.

Chapter 1: Domain-Specific Development6

Figure 1-5: Himalia User Profile Model

Figure 1-6: Ordina Web Scenario DSL

The Web Scenario DSL is used to model web pages and user actions, and
to generate ASP.NET web pages. An example is shown in Figure 1-6.

The Data Contract DSL is used to define the data objects that are trans-
ferred between the different layers in the architecture. An example is shown
in Figure 1-7, which illustrates several different kinds of data objects.

Examples 7

Figure 1-7: Ordina Data Contract DSL

Figure 1-8: Ordina Service DSL

The third DSL in the Ordina factory is the Service Model shown in
Figure 1-8, which is used to generate service interfaces and skeletons of the
business processes that implement the services.

The final DSL in the Ordina factory is the Business Class Model that is
used to generate code for the Business Class and Data layers. This model
is shown in Figure 1-9.

Chapter 1: Domain-Specific Development8

Figure 1-9: Ordina Business Class DSL

These two examples from Himalia and Ordina are for “horizontal”
DSLs, where the intended customer for the resulting software does not
belong to any particular industry. Here are some other more “vertical”
examples of where domain-specific development might be applied.

Software Defined Circuitry
Many electronic products have circuitry that is programmed using soft-
ware. For example, FPGAs (Field Programmable Gate Arrays) are pro-
grammable chips used in areas such as software defined radio, digital
signal processing, medical imaging and speech recognition. Programming
such chips directly in their Hardware Description Language (HDL) is a
very low-level and painstaking task. A Domain-Specific Development
approach can be used to raise the level of abstraction until it represents

much more directly the domain being implemented; for example, a DSL
approach to software defined radio is discussed in the paper by Bruce Trask
of PrismTech at www.mil-embedded.com/articles/authors/trask/.

Embedded Systems
Many real-time embedded systems can be conceptualized as a set of com-
municating finite state machines. Separating the design of these systems
into explicit state machines, plus a generic platform for executing state
machines, can greatly simplify thinking about such systems. In this case,
the DSL is the language for expressing state machines consisting of states
and the transitions between them, while the execution platform is most
likely built using custom code.

Device Interfaces
Many modern devices, such as mobile phones, HiFi equipment, and so on,
have complex user interfaces. These interfaces are typically organized via
rules that make the interface predictable, such as a rule that pressing a can-
cel button always takes you back to a known state, or inputting text always
follows the same set of predictive rules. A DSL can be created for design-
ing such systems, where the graphical appearance of the language corre-
sponds accurately to the appearance of the actual interface being designed,
and the interaction rules of the interface are captured in the structure of the
language. Good examples of this approach can be found at the Domain-
Specific Modeling Forum website at www.dsmforum.org.

Software Development Process Customization
The example that is used throughout this book to illustrate the DSL Tools
shows how to use DSLs to define aspects of a software development
process, such as the processing of bugs and issues, and how to use the mod-
els to configure the tools used to enact the process.

All of these examples and many others share the same approach: (1) iden-
tifying aspects of the problem that are fixed for all occurrences and capturing
those aspects in a common framework or platform, and (2) identifying the
other aspects that vary between occurrences and designing a Domain-Specific
Language whose expressions or models will specify a solution to the problem.

Examples 9

www.mil-embedded.com/articles/authors/trask/
www.dsmforum.org

Benefits

Now that we’ve looked at some examples, we can see the benefits of
Domain-Specific Development.

• A DSL gives the ability to work in terms of the problem space, with
less scope for making the errors that come from representing it in a
general-purpose language.

• Working in terms of the problem space can make the models more
accessible to people not familiar with the implementation technol-
ogy, including business people.

• Models expressed using DSLs can be validated at the level of
abstraction of the problem space, which means that errors in under-
standing or representation can be picked up much earlier in the
development lifecycle.

• Models can be used to simulate a solution directly, providing imme-
diate feedback on the model’s suitability.

• Models can be used to configure an implementation consisting of
multiple technologies of different types, which can reduce the skill
and effort required to implement a solution using these technologies.

• Models can also be used to generate other models, and to configure
other systems, networks, and products, perhaps in combination with
other enabling technologies such as wizards.

• A domain-specific language provides a domain-specific API for
manipulating its models, thus improving developer productivity.

• The artifacts generated from a DSL need not all be technological
implementation artifacts; a suitable model can be used to generate
build scripts, purchase orders, documentation, bills of materials,
plans, or skeletons of legal contracts.

• Once important business knowledge is captured in a model, it
becomes considerably easier to migrate a solution from one technol-
ogy to another, or between versions of the same technology. This can
often be done simply by modest modifications to the generators or
interpreter.

Chapter 1: Domain-Specific Development10

In combination, these factors can offer considerable increased agility.
For example, in the software defined radio domain mentioned earlier,
Bruce Trask reports that “users of the tool report a minimum of 500 percent
increase in productivity.”

Of course these benefits are not free. To get them, you must invest in
designing and building a DSL and integrating it into your overall solution.
This will involve the cost of development—which is considerably reduced
using DSL Tools. But it will also include costs for testing, deployment, doc-
umentation, staff training, development process modifications, and so on.
When setting out to implement a DSL you must balance these costs against
the expected benefits. You’ll get the benefits when the costs can be paid off
from the benefits of applying the approach to lots of systems. Hence the
approach is particularly attractive to Systems Integrators, who often have
to carry out many similar software development engagements for one cus-
tomer after another. For a small company that does not specialize in par-
ticular business areas, it may be worth investing in DSLs that describe
technological domains, such as web services and databases; for a larger
company that is vertically organized into industry specializations, it may
also be worth investing in DSLs that describe corresponding business
domains.

Languages

At this point, we offer a definition of Domain-Specific Language:

A Domain-Specific Language is a custom language that targets a small
problem domain, which it describes and validates in terms native to the
domain.

Most computer languages are textual, with their statements and expres-
sions consisting of sequences of characters in a standard character set.
Graphical languages have become increasingly popular in recent years,
particularly with the emergence of the Unified Modeling Language (UML)
as a popular set of standard notational conventions for depicting elements
in an object-oriented software system.

Languages 11

When computer experts talk about languages, they usually mean general-
purpose textual programming languages such as Visual Basic, C#, or Java.
In Domain-Specific Development, our interpretation of the word language
is widened considerably—it includes graphical languages such as UML,
flowcharts, entity-relationship diagrams, state diagrams, Venn diagrams,
and so on. We also include other textual languages such as XML and
domain-specific varieties like SQL and regular expressions. We even think
of tabular and form-based formats such as spreadsheets or the Windows
Forms Designer as being languages. Special languages also exist for
domains such as music notation and direct-manipulation interfaces. With
the power available in modern computers, there is absolutely no need to
be restricted to simple linear textual notations to convey our intentions to
the computer; we want to exploit the power of the computer to provide
means to express the author’s intent as directly as possible, thus increasing
the efficiency of our development. This includes interactive aspects such as
dragging and other gestures, context menus, toolbars, and so on.

There are two main forces at work driving the evolution of languages.
The first of these is the progressive lifting of the level of abstraction at which
we express our intentions about what we want the computer to do. Origi-
nally, programmers had to express their algorithms and data structures in
terms directly accessible to the computer hardware, which was efficient for
the hardware but very tedious and error-prone for the programmer. Subse-
quent developments such as symbolic assemblers, filing systems, third- and
fourth-generation languages, databases, class libraries, and model-driven
development have moved the languages in which developers express their
intentions further from the computer hardware and closer to the problems
they are trying to solve.

The second force driving language evolution is the increasing variety of
available digital media. Originally, computers were used purely to compute
with numbers, then also with symbols and texts, and then with bitmaps and
images. The evolution of computing has reached a point where the limitation
on how we express our intentions is no longer the physical capabilities of the
computer itself but the limits of our understanding of how to construct and
manipulate computer languages. In Domain-Specific Development, instead
of building on a general-purpose language in order to solve a problem, we
use a language that is itself designed to suit the problem being solved.

Chapter 1: Domain-Specific Development12

Related Work

Domain-Specific Development is not new. In 1976, David Parnas introduced

the concept of families of programs in his paper “On the Design and Devel-

opment of Program Families” and talked about the possibility of using a pro-

gram generator to create the family members. In 1986, Jon Bentley in his

column in the journal Communications of the ACM pointed out that much of

what we do as programmers is the invention of “little languages” that solve

particular problems. Later, in 1994, the popular and seminal book Design

Patterns: Elements of Reusable Object-Oriented Software, by Gamma, Helm,

Johnson, and Vlissides (also known as the “Gang of Four” book), introduced

the Interpreter pattern. According to the authors, the intent of this pattern is:

“Given a language, define a representation of its grammar along with an

interpreter that uses the representation to interpret sentences in the lan-

guage.” But it is only relatively recently that Domain-Specific Development

has begun to gain widespread acceptance in the IT industry.

Domain-Specific Development is closely related to many emerging ini-

tiatives from other authors and organizations, of which the following is a

partial list.

Model-Driven Development

Many vendors of software development tools are offering Model-Driven

Development tools, which allow users to build a model of their problem,

often using a graphical language such as the Unified Modeling Language

(UML). From these models, a code generator or model compiler is used to

generate some or all of the code for the resulting application. The Object

Management Group has a branded initiative under this heading called

Model Driven Architecture (MDA). We’ll talk more about model-driven

development and MDA later in this chapter.

Language-Oriented Programming

Sergey Dimitriev, co-founder and CEO of JetBrains, uses the term “Language

Oriented Programming” to describe the approach of creating a domain-

specific language to solve a programming problem in his article

“Language-Oriented Programming: The Next Programming Paradigm” at

www.onboard.jetbrains.com/is1/articles/04/10/lop/.

Languages 13

www.onboard.jetbrains.com/is1/articles/04/10/lop/

Language Workbenches

Martin Fowler, popular industry author and speaker, also refers to Lan-

guage-Oriented Programming and uses the term “Language Workbench”

to refer to the kind of tools required to support Language-Oriented Pro-

gramming and Domain-Specific Development in his article “Language

Workbenches: The Killer App for Domain-Specific Languages?” at http://

martinfowler.com/articles/languageWorkbench.html.

Domain-Specific Modeling

The Domain-Specific Modeling Forum (www.dsmforum.org) is a body that

promotes the idea of specifying domain-specific languages and generating

solutions from them. Their site contains several interesting and compelling

case studies.

Generative Programming

The book Generative Programming: Methods, Tools, and Applications, by

Krzysztof Czarnecki and Ulrich W. Eisenecker, discusses how to automate

the generation of applications, with a particular focus on domain engi-

neering and feature modeling, and presents a detailed discussion of sev-

eral different techniques for program generation. There is a regular

conference called Generative Programming and Component Engineering

(GPCE) dedicated to this topic.

Intentional Software

Intentional Software (www.intentionalsoftware.com) aims to develop an

environment in which all programming is domain-specific. Its Domain

Workbench technology represents programs and models as data, and pro-

vides multiple ways to render and interact with them using domain-specific

textual and graphical syntax.

Software Factories

Software Factories are described in the book Software Factories: Assem-

bling Applications with Patterns, Models, Frameworks, and Tools, by Jack

Greenfield and Keith Short, with Steve Cook and Stuart Kent. Software

Factories are a strategic initiative from Microsoft that proposes to use a

combination of passive content such as patterns, models, DSLs, assemblies,

Chapter 1: Domain-Specific Development14

www.dsmforum.org
www.intentionalsoftware.com
http://martinfowler.com/articles/languageWorkbench.html
http://martinfowler.com/articles/languageWorkbench.html

Textual DSLs

Before talking about graphical DSLs, let’s look briefly at textual DSLs. We’ll
see how Domain-Specific Development involves a particular way of think-
ing about a problem, and we’ll look at how to implement this approach
using textual languages.

Imagine that we are designing a graphical modeling tool and have the
problem of defining a set of shapes that will be displayed on a screen to rep-
resent the various concepts that can be depicted by the tool. One way we
might do this would be to invent a new textual language for defining the
various shapes. A fragment of this language might look like this:

Define AnnotationShape Rectangle
Width=1.5
Height=0.3
FillColor=khaki
OutlineColor=brown
Decorator Comment

Position="Center"
End Comment

End AnnotationShape

In order to process this language, a program must be written to parse and
interpret this text. As a programming exercise from scratch, this is a big job.
But a parser-generator might be used, which itself takes as input a descrip-
tion of the grammar of the new language, such as the following, based on
BNF (the Backus Naur Form, originally developed for defining the Algol
language):

Definitions ::= Definition*
Definition ::= Define Id Shape
Width Eq Number
Height Eq Number

Textual DSLs 15

and help files, with dynamic content such a customized tools, tailored

processes, templates, wizards, and tests, all integrated into Visual Studio for

producing a particular type of solution. DSL Tools form an important part of

this initiative.

FillColor Eq Color
OutlineColor Eq Color
Decorator*

End Id

Shape ::= Rectangle | RoundedRectangle | Ellipse

Eq ::= "="

Decorator ::= Decorator Id
Position Eq Position

End Id

Position ::= Center|
TopLeft |
TopRight |
BottomLeft |
BottomRight

The definitions for Id, Number, and Color are not included here; it’s
assumed that they are built into the grammar-defining language.

We need an algorithm to convert this BNF into a parser for the language
it describes. We’d either use an existing parser-generator such as Yacc,
Bison, Antlr, or Happy, or an expert might write one by hand in a normal
third-generation programming language such as C# or Java.

Notice that the BNF is itself a DSL. We might “bootstrap” the BNF lan-
guage by describing its grammar in itself, causing it to generate a parser
for itself. Perhaps the hand-written parser will be quite simple, and the
generated parser would handle a more complicated version of BNF. This
pattern of using languages to describe languages, and bootstrapping lan-
guages using themselves, is very common when defining domain-specific
languages.

Implementing a textual DSL by implementing its grammar like this can be
a difficult and error-prone task, requiring significant expertise in language
design and the use of a parser-generator. Implementing a parser-generator is
definitely an expert task, because a grammar might be ambiguous or incon-
sistent, or might require a long look-ahead to decide what to do. Furthermore,
there is more to implementing a language than just implementing a parser.
We’d really like an editor for the language that gives the kinds of facilities we
expect from a programming language editor in a modern development

Chapter 1: Domain-Specific Development16

environment, like text colorization, real-time syntax checking, and auto-
completion. If you include these facilities, the task of implementing a textual
language can get very large. Happily, there are alternative strategies for
implementing a textual DSL that don’t involve implementing a new grammar.

The first strategy is to use the facilities of a host language to emulate the
capabilities of a domain-specific language. For example, the following C#
code has the effect of defining the same shape as the previous example:

Shape AnnotationShape = new Shape(ShapeKind.Rectangle,
1.5,
0.3,
Color.Khaki,
Color.Brown);

Decorator Comment = new Decorator(Position.Center);
AnnotationShape.AddDecorator(Comment);

This kind of code is often called configuration code, because it uses previ-
ously defined classes and structures to create a specific configuration of
objects and data for the problem that you want to solve. In effect, the defi-
nitions of these classes and structures are creating an embedded DSL, and the
configuration code is using that DSL. The capabilities of modern languages
to define abstractions such as classes, structures, enumerations, and even
configurable syntax make them more amenable to this approach than ear-
lier languages that lacked these facilities.

The second strategy is to use XML—Extensible Markup Language.
There are many ways in which the definition can be expressed using XML.
Here’s a possible approach.

<?xml version="1.0" encoding="utf-8" ?>
<Shapes>
<Shape name="AnnotationShape">
<Kind>Rectangle</Kind>
<Width>1.5</Width>
<FillColor>Khaki</FillColor>
<OutlineColor>Brown</OutlineColor>
<Decorator name="Comment">
<Position>Center</Position>

</Decorator>
</Shape>

</Shapes>

Textual DSLs 17

The syntax is obviously limited to what can be done using XML elements
and attributes. Nevertheless, the tags make it obvious what each element
is intended to represent, and the meaning of the document is quite clear.
One great advantage of using XML for this kind of purpose is the wide-
spread availability of tools and libraries for processing XML documents.

If we want to use standard XML tools for processing shape definitions,
the experience will be much improved if we create a schema that allows us
to define rules for how shape definitions are represented in XML docu-
ments. There are several technologies available for defining such rules for
XML documents, including XML Schema from the World Wide Web Con-
sortium (defined at www.w3.org/XML/Schema.html), RELAX NG from
the OASIS consortium (defined at www.relaxng.org) and Schematron,
which has been accepted as a standard by the International Organization
for Standardization (ISO) and is defined at www.schematron.com. Schema-
tron is supported in .NET: A version called Schematron.NET is download-
able from SourceForge, and it is possible to combine the facilities of XML
Schema and Schematron. We’ll use here the XML Schema approach, which
is also supported by the .NET framework.

An XML Schema is an XML document written in a special form that
defines a grammar for other XML documents. So, using an appropriate
schema, we can specify exactly which XML documents are valid shape def-
inition documents. Modern XML editors, such as the one in Visual Studio
2005, can use the XML schema to drive the editing experience, providing
the user with real-time checking of document validity, colorization of lan-
guage elements, auto-completion of tags, and tips about the document’s
meaning when you hover above the elements.

Here is one of many possible XML schemas for validating shape defini-
tion documents such as the one presented earlier. Writing such schemas is
something of an art; you’ll certainly observe that it is significantly more
complicated than the BNF that we defined earlier, although it expresses
roughly the same set of concepts.

<?xml version="1.0" encoding="utf-8"?>
<xs:schema
xmlns="http://schemas.microsoft.com/dsltools/ch01"
attributeFormDefault="unqualified"
elementFormDefault="qualified"

Chapter 1: Domain-Specific Development18

www.w3.org/XML/Schema.html
www.relaxng.org
www.schematron.com

xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://schemas.microsoft.com/dsltools/ch01">
<xs:element name="Shapes">
<xs:complexType>
<xs:sequence>
<xs:element maxOccurs="unbounded" name="Shape">
<xs:complexType>
<xs:sequence>
<xs:element name="Kind" type="kind" />
<xs:element name="Width" type="xs:decimal" />
<xs:element name="Height" type="xs:decimal" />
<xs:element name="FillColor" type="xs:string" />
<xs:element name="OutlineColor" type="xs:string" />
<xs:element maxOccurs="unbounded" name="Decorator">
<xs:complexType>
<xs:sequence>
<xs:element name="Position" type="position" />

</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required" />

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required" />

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:simpleType name="position">
<xs:restriction base="xs:string">
<xs:enumeration value="Center" />
<xs:enumeration value="TopLeft" />
<xs:enumeration value="TopRight" />
<xs:enumeration value="BottomLeft" />
<xs:enumeration value="BottomRight" />

</xs:restriction>
</xs:simpleType>

<xs:simpleType name="kind">
<xs:restriction base="xs:string">
<xs:enumeration value="Rectangle" />
<xs:enumeration value="RoundedRectangle" />
<xs:enumeration value="Ellipse" />

</xs:restriction>
</xs:simpleType>

</xs:schema>

Textual DSLs 19

To summarize, in this section we have looked at three ways of defining a
textual DSL: using a parser-generator, writing configuration code embed-
ded in a host language, and using XML with a schema to help validate your
documents and provide syntax coloring and autocompletion. A further
option would be to define an equivalent to the DSL Tools that targeted tex-
tual languages.

Each of these approaches has its pros and cons, but they all share a com-
mon theme—investing some resources early in order to define a language
that will make it easier to solve specific problems later. This is the basic pat-
tern that also applies to graphical DSLs, as we shall see.

The DSL Tools themselves provide no facilities in version 1 for defining
textual domain-specific languages. The Tools’ authors have taken the view
that XML provides a sufficiently good approach to start with, and so they
have designed the DSL Tools to integrate XML-based textual DSLs with
graphical DSLs.

Graphical DSLs

So far we have looked at some of the background behind Domain-Specific
Development and discussed its benefits. We have also looked briefly at
textual DSLs. Let’s start our exploration into graphical DSLs by looking at
an example that captures data for deploying and managing distributed
applications.

Figure 1-10 shows a simple model built using a graphical DSL for
designing logical data centers. This DSL is part of Visual Studio 2005 Team
Architect. The elements of this language include zones, depicted by rectan-
gular areas surrounded by dashed lines; hosts, depicted by rectangular
areas surrounded by solid lines; endpoints, depicted by small shapes
(squares, circles, and hexagons) placed on the edges of hosts; and connec-
tions, depicted by arrows between endpoints. This model corresponds
exactly to an XML file that contains information according to the rules of
the System Definition Model (SDM), which is used for configuring and
managing data centers.

Chapter 1: Domain-Specific Development20

We can build up graphical DSLs like this one from a set of simple dia-
grammatic conventions such as the following. Many of these conventions
are derived from UML, which we discuss in more depth later.

Conventions for Representing Structure
See Figure 1-11 for examples of structural conventions, including:

• Nested rectangle or rounded rectangles, to represent structural
containment

• Rectangles with headers, sections, and compartments, to represent
objects, classes, entities, devices, and so on

• Solid and dashed connectors with multiplicities, names, arrowheads,
and other adornments, to represent relationships, associations,
connections, and dependencies

Graphical DSLs 21

System Definition Model

SDM was created as part of Microsoft’s Dynamic Systems Initiative, which

promises to deliver self-managing dynamic systems that will result in

reduced operational costs and increased business agility. A later version of

this model, called SML (Service Modeling Language), is being standardized

by industry leaders, which should eventually enable distributed systems

with components from multiple vendors to be managed using these models.

Figure 1-10: Data center design

• Connectors with large open triangular arrowheads, to represent
generalization, inheritance, and derivation

• Ports on the edges of shapes, to represent connectable endpoints

Chapter 1: Domain-Specific Development22

Containment Compartments Connectors

Header

-Compartment

1

+x

Generalization Ports

Figure 1-11: Structural conventions

Conventions for Representing Behavior
See Figure 1-12 for examples of behavioral conventions, including:

• Lifelines and arrows, to represent sequences of messages or invoca-
tions with a temporal axis

• Rounded rectangles, arrows, swimlanes, diamonds, transition bars,
and so on, to represent activities and flows

• Nested ovals and arrows, to represent states and transitions

• Ovals and stick people, to represent use cases and actors

Using the DSL Tools, it is possible to build your own graphical language
that combines conventions like these in a way that matches your particular
problem (although version 1 of the Tools does not fully support all of the con-
ventions listed). You can map them onto the concepts of your own domain
and construct a customized graphical modeling language that solves your
own problem. We saw an example in the data center design language shown
in Figure 1-10, and we’ll see many other examples as we proceed.

Building your own graphical language on top of a given set of notational
elements and conventions is analogous to building an embedded textual
DSL, where instead of writing type wrappers and methods to make the lan-
guage convenient to your domain, you define a mapping from the notational
elements to your own domain concepts. If you want to define a graphical lan-
guage that uses different notational elements and conventions, you have to
be more expert and know how to create new diagrammatic elements from
lower-level constructs. This is analogous to building your own parser for a
textual DSL.

Aspects of Graphical DSLs

A graphical DSL has several important aspects that must be defined. The
most important of these are its notation, domain model, generation, serial-
ization, and tool integration.

Aspects of Graphical DSLs 23

Figure 1-12: Behavioral conventions

lane1 lane2 lane3

a1

a4

a2

a3

Activities and

Swimlanes

Object1 Object2

Call

Return

Objects and

Lifelines

s1
s2

s2

States and

Transitions

Actor

UseCase

Actors and

Use Cases

Notation
In the previous section we talked about the notation of the language and
how it can be built by reusing basic elements, often derived from well-
established conventions, particularly those that originate in UML. For the
kinds of graphical DSLs that we support, the basic building blocks are var-
ious kinds of shapes and connectors laid out on a two-dimensional draw-
ing surface. These shapes and connectors contain decorators, which are
used to display additional information such as text and icons attached to
the shapes and connectors in particular places. In Chapter 4 we’ll see full
details of how to define these shapes and connectors and how to associate
them with the other aspects of the language.

Domain Model
The domain model is a model of the concepts described by a language. The
domain model for a graphical language plays a rather similar role in its defi-
nition to that played by a BNF grammar for a textual language. But for graph-
ical languages, the domain model is usually itself represented graphically.

The basic building blocks for a domain model are domain classes and
domain relationships. Each domain class represents a concept from the
domain; each domain relationship represents a relationship between
domain concepts. Typically, domain concepts are mapped to shapes in
order to be represented on diagrams. Domain relationships can be mapped
to connectors between those shapes or to physical relationships between
shapes, such as containment.

Another important aspect of the domain model is the definition of con-
straints, which can be defined to check that diagrams created using the lan-
guage are valid. For example, the class diagram in Figure 1-13 uses the
correct diagrammatical conventions but defines a cyclic class hierarchy that
is semantically invalid. Chapter 7 describes how to define constraints in the
DSL Tools and discusses the differences between hard and soft constraints.

Generation
You define a language because you want to do something useful with it.
Having created some models using the language, you normally want to
generate some artifacts: some code, or data, or a configuration file, or
another diagram, or even a combination of all of these. You’ll want to be

Chapter 1: Domain-Specific Development24

able to regenerate these artifacts efficiently whenever you change a dia-
gram, causing them to be checked out of source control if necessary.

Chapter 8 explains the DSL Tools generation framework, which enables
the language author to define how to map models into useful artifacts.

Serialization
Having created some models, you’ll want to save them, check them into
source control, and reload them later. The information to save includes
details about the shapes and connectors on the design surface, where they
are positioned, and what color they are, as well as details of the domain
concepts represented by those shapes.

It’s often useful to be able to customize the XML format for saving mod-
els in order to help with integrating these models with other tools. This
flexibility increases interoperability between tools and also makes it pos-
sible to use standard XML tools to manage and make changes to the saved
models. Using an XML format that is easy to read also helps with source
control conflicts. It is relatively straightforward to identify differences in
versions of an artifact using textual differencing tools and to merge
changes to artifacts successfully at the level of the XML files.

Chapter 6 explains how to define and customize the serialization format
for a graphical DSL.

Aspects of Graphical DSLs 25

Class 1 Class 2

Class 4Class 3

Figure 1-13: Invalid class diagram

Tool Integration
The next important aspect of a graphical DSL design is to define how it will
show up in the Visual Studio environment. This involves answering ques-
tions such as:

• What file extensions are associated with the language?

• When a file is opened, which windows appear, and what is the scope
within Visual Studio of the information that is represented?

• Does the language have a tree-structured explorer, and if so, what do
the nodes look like—with icons and/or strings—and how are they
organized?

• How do the properties of selected elements appear in the properties
browser?

• Are any custom editors designed for particular language elements?

• What icons appear on the toolbox when the diagram is being edited,
and what happens when they are dragged and dropped?

• Which menu commands are enabled for different elements in the
diagram and the associated windows, and what do they do?

• What happens if you double-click on a shape or connector?

Chapters 4, 5, and 10 describe how to define these behaviors and show
ways of customizing the designer by adding your own code.

Putting It All Together
From the previous sections you can see that there are a lot of aspects to defin-
ing a DSL. This might seem rather daunting. Thankfully, the DSL Tools
make it easier than you might think. Many of the aspects are created for you
automatically, and you only need to worry about them if you want to change
the way that they work. Complete languages are provided as starting points
so that you don’t need to start from scratch. Having defined your DSL, the
DSL Tools are also used to generate code and artifacts that implement, test,
and deploy the DSL as a designer fully integrated into Visual Studio. If you
want to step outside of the set of features easily supported by the DSL Tools,
we’ve provided many code customization options for that purpose.

Chapter 1: Domain-Specific Development26

The DSL Tools have even been used to define and build themselves. The
DSL designer that is used to define domain models and notations is itself
a DSL. Just like a compiler that can be used to compile itself, the DSL
designer was used to define and generate itself.

DSLs in Visual Studio

Visual Studio 2005 has several graphical domain-specific languages inte-
grated into it. These are the Distributed System Designers, which come
with Visual Studio 2005 Team Edition for Software Architects, and the Class
Designer which comes with Visual Studio 2005 Standard Edition and later.
These designers are built on an earlier version of the DSL Tools; the current
version is based on this earlier version and has evolved separately. The two
versions are incompatible, which means that the DSL Tools cannot be used
to extend the integrated designers.

Nevertheless, these designers illustrate very well some of the motiva-
tions for using domain-specific languages. Let’s look at a simple example,
using the Application Designer. This is a tool for modeling applications in
distributed systems, with a particular emphasis on the endpoints that the
applications implement and use, so that the user can wire the applications
together into more complex systems. Figure 1-14 shows a simple design
consisting of a Windows application, called InvestmentCalculator, that
talks to an endpoint called StockPrices, which is implemented as a web
service by an ASP.NET web application called StockPriceApplication. The
StockPrices web service is shown as a provider endpoint on the Stock-
PriceApplication node and is wired to a corresponding consumer endpoint
on the InvestmentCalculator node.

Having created this design and chosen the implementation language,
the Application Designer can generate the skeleton of an implementation
for it using standard code templates installed with Visual Studio. The diagram
context menu item “Implement All Applications …” causes the generation of
two new projects in the solution, including the files needed to implement the
solution, as shown in Figure 1-15. Implementing the application by generat-
ing these files like this requires much less work than does creating these files
by hand. This is one clear benefit of defining a DSL—we can more quickly
generate code that would be tedious and error-prone to write by hand.

DSLs in Visual Studio 27

It’s interesting to look into this solution and see where the name of the
web service—StockPrices—appears. There are several places, in fact,
including:

1. The name of the file StockPrices.cs.

2. The body of the generated file StockPrices.cs, containing the fol-
lowing code, which mentions StockPrices as the name of the class
in the Name parameter of the WebServiceBinding attribute and in the
Binding parameter of the SoapDocumentMethod attribute.

namespace StockPriceApplication
{
[System.Web.Services.WebServiceBinding(Name = "StockPrices",

ConformsTo = System.Web.Services.WsiProfiles.BasicProfile1_1,
EmitConformanceClaims = true),

System.Web.Services.Protocols.SoapDocumentService()]
public class StockPrices : System.Web.Services.WebService
{
[System.Web.Services.WebMethod(),
System.Web.Services.Protocols.SoapDocumentMethod(Binding="StockPrices")]

Chapter 1: Domain-Specific Development28

Figure 1-14: An application diagram

public string GetPrice(string Symbol)
{
throw new System.NotImplementedException();

}
}

}

3. The name of the file StockPrices.asmx.

4. The body of the file StockPrices.asmx, containing the following tem-
plate, which mentions StockPrices as a class name and a file name.

<%@ webservice class="StockPriceApplication.StockPrices"
language="c#"
codebehind="~/App_Code/StockPrices.cs" %>

5. The two SDM (System Definition Model) files. These are XML files
that describe operational requirements for the applications and can
be used to match these requirements against the operational facili-
ties provided by a data center. This is not the place to go into the
details of these files; suffice it to say that they both contain references
to the service called StockPrices.

6. The web reference in the InvestmentCalculator application, which con-
tains a URL such as http://localhost:2523/StockPriceApplication/
StockPrices.asmx?wsdl.

7. The app.config file for the InvestmentCalculator application, contain-
ing the following section, which includes a reference to the filename
StockPrices.asmx as well as the name StockPrices embedded in the
longer name for the setting.

<applicationSettings>
<InvestmentCalculator.Properties.Settings>
<setting name="InvestmentCalculator_localhost_StockPrices"

serializeAs="String">
<value>

http://localhost:2523/StockPriceApplication/StockPrices.asmx
</value>

</setting>
</InvestmentCalculator.Properties.Settings>

</applicationSettings>

DSLs in Visual Studio 29

Chapter 1: Domain-Specific Development30

Figure 1-15: The generated solution

Now imagine that you want to change the name of the web service.
Instead of StockPrices, you’d prefer to call it StockValues. Working in a
modern coding environment, this should be a simple refactoring operation,
such as the ones available from the “Refactor” menu in the code editor. But
unfortunately, opening the StockPrices.cs file and using the “Refactor”
menu will not have the desired effect, because many of the occurrences of
the name StockPrices are not in code.

However, changing the name from StockPrices to StockValues on the
Application Designer diagram does have the right effect. All of the refer-
ences within the StockPriceApplication project are updated immediately,
including the filenames and all of the references in the list above. At this
point, the consumer endpoint on the InvestmentCalculator project is
marked with a small warning symbol to indicate that it is referring to some-
thing that has changed; the web reference in the InvestmentCalculator
project has been removed, and the app.config file no longer contains any
reference to StockPrices. Selecting the “Implement” option from the con-
text menu on the endpoint causes the web reference, app.config, and SDM

files to refer to the new name. By using the DSL, the operation of changing
the name has been reduced from a time-consuming and error-prone com-
bination of multiple manual edits to a simple two-step procedure carried
out at the appropriate level of abstraction.

You may ask what happens if you change the name of StockPrices in just
one of these generated artifacts. Well, by doing that you have invalidated
your solution. In general, it is difficult or impossible for a tool to solve all of
the possible round-tripping conundrums that could be created if you allow
complete freedom to edit any artifact at any time. In this particular case, you
are allowed to insert your own code into the body of the GetPrice()
method, and that code will be preserved if the endpoint or operation name
is changed in the model. But if you manually change the name of the class or
method itself in the code, you have effectively broken the relationship
between the code and the model, and future changes will not be synchro-
nized. We return to the general problem of keeping models and artifacts
synchronized in Chapter 8.

We can summarize the qualities of the Application Designer, which are
qualities that any well-designed DSL should possess, as follows:

• It is a sharply focused tool for a specific task.

• The model corresponds closely to the domain being modeled, and
the transformations required to generate code and other artifacts are
simple.

• Because of these simple transformations, the round-tripping prob-
lem becomes tractable.

• The artifacts associated with the language are all files and can be
maintained in a source-control system, and the tool is engineered so
that it works effectively in this environment.

• The interactive user experience on a modern computer is rapid and
intuitive.

• The files manipulated by the tool are user-readable text files, using
published formats based on XML.

DSLs in Visual Studio 31

The Customization Pit

Applying the simple DSL pattern can make it easy to create a solution to
your problem as long as the solution can be expressed fully in the DSL. But
what if you want to create something slightly different? If there are no other
facilities available for modifying the solution, then you have a “customiza-
tion pit” (Figure 1-16)—within the boundaries of what the DSL can express,
things are easy and comfortable, but outside of those boundaries, things are
difficult or impossible.

Chapter 1: Domain-Specific Development32

DSL Area

Figure 1-16: Customization pit

We’d much prefer the situation shown in Figure 1-17, where stepping
out of the area covered by the DSL doesn’t cause you to scale the walls of
a deep pit but simply to step up onto a different plateau where things may
be a little more difficult, but not impossibly hard. Beyond that plateau, there
are further plateaus, each extending your capability to make solutions if
you are willing and able to acquire the extra skills to go there. Alan Kay,
the coinventor of Smalltalk, said, “Simple things should be simple. Com-
plex things should be possible.” We’d like to go a little further than that,
and have difficulty increase only gradually as things get more complex.

There are several techniques that we can employ to achieve this. The
first is to employ multiple DSLs, each one handling a different dimension
of complexity in the problem, as depicted in Figure 1-18.

The Customization Pit 33

Simple

Normal

Expert

Platform

DSL Area

Figure 1-17: Customization staircase

A second technique, and one which we employ extensively in the design
of the DSL Tools themselves, is to generate code that is explicitly designed
to be extended. The C# 2.0 feature of partial classes is particularly helpful
here, because part of a class can be generated while leaving other parts of
the class to be written by hand. In the case of DSL Tools themselves, where
the generated designer is hosted in Visual Studio, these code extensions can
call upon facilities provided by the host, such as the user interface or the
project system.

Fixed Part

Configure

Configure

Configure

Fixed Part

Integrate

Integrate

Integrate

DSL1

DSL2

DSL3

Figure 1-18: Multiple DSLs

A third technique, which you might think of as stepping up onto a
higher-level expert plateau, is to enable the developer to modify the code-
generation mechanisms, thus changing the way that the DSL is integrated
into its environment. This requires yet more skill, because making it work
correctly requires deeper knowledge of the remainder of the code.

The final technique represented by the highest plateau is to alter the
implementation of the supporting platform, because it simply isn’t capa-
ble of supporting the required features.

UML

The Unified Modeling Language, or UML, was first published in 1997 by
the Object Management Group. UML unified three earlier approaches for
graphically depicting software systems: the Booch method, the Object
Modeling Technique, and the Object-Oriented Software Engineering
method. The advantage of the UML was that it provided a standard set of
notational conventions for describing aspects of a software system. Before
the UML was published, different authors used different graphical ele-
ments to mean the same thing. Three examples are shown in Figure 1-19.
The method described in Grady Booch’s 1990 book, Object-Oriented Analy-
sis and Design with Applications, represented a class by a cloud; the OMT
method described in the 1991 book, Object-Oriented Modeling and Design, by
James Rumbaugh and his colleagues, represented a class by a rectangle;
and the 1992 book, Object-Oriented Software Engineering: A Use Case Driven
Approach, by Ivar Jacobson and his colleagues, advocated representing a
class by a little circle and distinguished diagrammatically between entity
classes, controller classes, and interface classes. Many other approaches also
existed at that time. UML succeeded in eliminating this “Tower of Babel”—
almost all competing diagramming approaches vanished rapidly from the
marketplace when UML appeared.

On publication, UML became increasingly popular as a technique for doc-
umenting the early phases of software development, especially those using
object-oriented technologies. Class diagrams, use case diagrams, and
sequence diagrams were especially popular for documenting the results of
object-oriented analysis and object-oriented design.

Chapter 1: Domain-Specific Development34

UML 35

Product Panel

Product Controller

Product

Product

Booch OMT

OOSE

Product

Figure 1-19: Different representations for a class

Figures 1-20 through Figure 1-22 show how to use UML to analyze the
operation of a very simplified public library.

Customer

Borrow Book

Return Book

Library

Figure 1-20: Use case diagram for simple library

The meaning of these diagrams is relatively informal. Being an analysis
model, this set of diagrams does not exactly represent anything that hap-
pens in the software system. Instead, it helps the developer to make some

Chapter 1: Domain-Specific Development36

Figure 1-21: Class diagram for simple library

1

1

*

*

*

1

*

1

*

1

*

10.. 1

Library

CopyLoan

-ExpiryDate

Title

-ISBN

Customer

-Name

-Address

Author

-Name

early decisions about what information will be represented in the software
and how that information may be collected together and flow around when
the system interacts with its environment. Translating the analysis model
into an exact design for the actual software involves working out many
details, such as the design of the database, the design of the classes that rep-
resent the business logic, the mapping between business logic and database
classes, the design of the user interface, the messages that flow between
clients and servers, and so on. Traces of the analysis model will be found
in the design, but the detailed correspondence between the analysis model
and the eventual programs, schemas, and definitions that constitute the
running software will be complex.

When UML emerged during the 1990s, mainstream thinking about
object-oriented development assumed that there would be a relatively sim-
ple continuity between an object-oriented analysis and a corresponding
object-oriented design. Several methodologies proposed that the way to get
from the analysis to the design was simply to add detail while retaining the
basic shape of the analysis. For simple examples, where there is a single
computer implementing a simple non-distributed application, this can
work, especially when no data persistence is involved.

The design of UML itself is actually based on this concept of adding
implementation detail. The UML specification defines the ability to express
the kind of detail found in an object-oriented programming language; for
example, class members can be marked with the Java-inspired visibility
values of public, private, protected, or package, and operations can have
detailed signatures and so on. This helps to map a UML model to program
code, especially if the programming language is Java. Note that there are
many inconsistencies between the details of UML and Microsoft’s Common
Language Runtime, which make it more difficult to map UML effectively to
the popular .NET languages Visual Basic and C#. When UML is used for a
more abstract purpose such as analysis, these implementation details have
to be ignored, because they are meaningless.

UML does offer limited extension facilities, called profiles, stereotypes,
tagged values, and constraints. Stereotypes, tagged values, and constraints
are mechanisms that add labels and restrictions to UML models to indicate

UML 37

Figure 1-22: Sequence diagrams for simple library

Borrow

aCustomer aLibrary aCopy

aLoan

Find (Title)

Found (Copy)

Create

Lent

Borrow

aCustomer aLibrary aLoan

Return (Loan)

Complete

Return

X

that a UML concept is being used to represent something else. So, for exam-
ple, a UML class could be labeled as a «resource», or even as a «webpage»—
the symbols «» are conventionally used to indicate that a stereotype is being
used. But labeling a UML concept does not change anything else about it—
a class still has attributes and operations, inheritance, and the rest of the built-
in features.

A UML Profile is a packaged set of stereotypes, tagged values, and con-
straints that can be applied to a UML model. A tool can make use of the pro-
file information to filter or hide elements but may not delete unwanted
elements; a profile is effectively a viewing mechanism. These facilities do
allow a limited amount of customization of UML for particular domains,
and of course individual UML tool vendors can go beyond the published
standard to provide increased levels of customization.

However, the world has moved on apace since UML was defined. The
Internet and World Wide Web have matured, most of the computers in the
world are connected together, and a multitude of new standards and tech-
nologies has emerged, especially XML and Web Services. In 2007 and
beyond, the likely platform for implementing a business system will
involve many distributed components executing in different computers.
Logic and data are replicated for scalability and load balancing. Legacy sys-
tems are accessed on mainframes and servers. Firewalls and routers are
configured to maintain security and connectivity. Browsers and smart
clients are distributed to many different devices and appliances. Common
artifacts in this world, such as Web Service Definition Language (WSDL)
or configuration files, have no standard representations in UML. Although
stereotypes and profiles can be used to apply UML in domains for which
it was not designed, such an approach gives cumbersome results. In such
a world, the transformation from a simple object-oriented analysis to a
detailed system design is far too complex to be thought of simply as
“adding detail.” Different approaches are needed.

If UML is not convenient to be used directly, what happens if we open
up the definition of UML, remove all of the parts we don’t need, add new
parts that we do need, and design a language specifically tailored for the
generation task that we want to accomplish? In short, what would happen
if we had an environment for constructing and manipulating graphical

Chapter 1: Domain-Specific Development38

modeling languages? The answer is that we would eliminate the mis-
matches and conceptual gaps that occur when we use a fixed modeling lan-
guage, and we would make our development process more seamless and
more efficient. That is the approach adopted in DSL Tools.

Instead of thinking about UML as a single language, we prefer to think
of it as a set of reusable diagrammatic conventions, each of which can be
applied to a particular kind of situation that we might encounter during
software development. For example, sequence charts such as those in
Figure 1-22 might be used to describe the flow of messages between appli-
cations in a distributed system, the flow of invocations between objects in
an application, or even information interchange between departments in an
organization. In the first case, the vertical lines on the diagram represent
applications, in the second case they represent objects, and in the third case
they represent departments.

Note also that it is not only end users that benefit from clean domain-
specific abstractions. Developers who build tools that generate code and
other artifacts from models and keep models coordinated with one another,
need to access model data; providing APIs that work directly in terms of the
abstractions of the problem domain is critical to productivity for develop-
ers. Developers want the API for the logical data center to give them direct
access to the properties of an IIS server or a SQL Server database. Similarly,
they want the API for the sequence charts to talk directly about applica-
tions, objects, or departments. They’d like to write strongly typed code,
such as this:

foreach (Department dept in message.Receiver.SubDepartments)
{
// generate some artifacts

}

This contrasts with having to reinterpret a model intended for other
purposes (such as a UML model), which can give rise to code like this:

Lifeline lifeline = message.Receiver;
if (lifeline.Object.Label = "Department")
{
Department receiver = lifeline.Object.Element as Department;
if (receiver != null)
{
foreach (Department dept in receiver.SubDepartments)

UML 39

{
// generate some artifacts

}
}

}
else
{
// handle errors

}

SUMMARY

In this chapter we introduced Domain-Specific Development and discussed
some examples and benefits of the approach.

We looked at how to define textual domain-specific languages as new
languages or as embedded languages within an existing host language, and
we saw how XML can be used as a simple and cost-effective substrate for
defining textual DSLs. We discussed the different aspects of graphical
DSLs, and saw how these are being implemented in several components of
Visual Studio 2005. We talked about the customization pit and how to over-
come it.

Finally, we discussed UML and saw how it provides a very popular set
of conventions for creating diagrammatic documentation of software and
how a domain-specific approach helps to overcome its disadvantages.

Chapter 1: Domain-Specific Development40

2
Creating and Using DSLs

Introduction

The purpose of this chapter is to touch on all of the principal aspects of
defining a domain-specific language (DSL) with the Microsoft DSL Tools.
We also introduce an example scenario in which the DSL Tools are used.
The later chapters will then go into more detail on each topic.

This chapter has three sections. First, we introduce a development
group that finds that the DSL Tools improve its productivity, and we look at
why that is so and something of the process that the group follows to create
and use the DSLs.

Second, we look at the practical steps of creating a DSL, touching briefly
on each of the topics that will be discussed in turn in later chapters.

Finally, we take a look at the main components of the DSL Tools
architecture.

By the way, we practice what we preach. The DSL Tools are generated,
bootstrap fashion, from a DSL definition. Like any substantial DSL Tools-
based example, the core of the system is the generated code, and that is
augmented with a quantity of hand-written code.

Process: Incremental Development of DSLs

You define a DSL because you want to create models by which software is
generated or controlled. It is of course possible to create notations with DSL

41

Tools that are just used informally, and some DSLs may start life that way.
But for the majority of cases, the DSL is essentially a means to parameterize
a generic framework; you have an application or a component that you use
many times, although with some variation from one usage to the next. A
DSL is one way (among many possible ways) of allowing the developer who
uses the framework in a specific application to provide specific values for its
variable features. Development of the DSL and its framework thus go hand
in hand. Toolkits like the DSL Tools have removed one obstacle by making it
easy to define the DSL and develop tools to support it. However, developing
the framework is still a time-consuming and potentially risky task.

To mitigate the risk, you don’t develop the framework and its DSLs all
at once from scratch. Instead, you begin with existing code that works for
a specific application, and you gradually parameterize it, progressively
identifying those parts that should vary from one application to another
and making them dependent on DSLs.

Generalizing an Application: Identify Variability, Discover DSLs
The (fictional) consultancy firm of CJKW manages software projects for
client companies and provides tools to help that process. One of the key
ingredients for success, CJKW has found, is to monitor issues—reports of
bugs or other problems that arise during the project—and their eventual
resolution. Issue logs are kept in a database; reports can be generated show-
ing what issues are outstanding, how fast they are being resolved, and so
on. However, the details of this requirement vary from one customer com-
pany to another. Some think of an issue as just being either outstanding or
fixed, while others see it as progressing through a detailed set of steps such
as approved, assigned, blocked, solution proposed, and so on.

CJKW began by adopting the Issue Tracker Starter Kit, a small applica-
tion that provides a web client and can run on SQL Server, which the com-
pany obtained in source form from the ASP.NET website.1 (The original
version, based on .NET version 1.2, can be found by searching in the
ASP.NET website.) Out of the box, the Issue Tracker allows users to create
a record of each issue (Figure 2-1) and to query the database to list all the

Chapter 2: Creating and Using DSLs42

1. It’s a mystery that they didn’t choose Microsoft’s excellent Visual Studio Team Foundation
Server for this purpose.

issues that are in a given state. An administrator can define a set of allowed
states, and users can set the state of any issue to one of those values. This
allows different states to be employed from one client to another. But one
of CJKW’s earliest customers has a more stringent requirement, that there
should be some constraints on how states can be changed—for example,
that you can’t go straight from Unassigned to Fixed.

Process: Incremental Development of DSLs 43

Figure 2-1: The web interface to the Issue Tracker application

Looking at the existing code, CJKW’s in-house developers identify the
point at which the menu of allowed states is presented to the user. They
insert some code that computes the set of permitted next states from the
previous one. (After an initial test, they realize that they must always
include the current state in the allowed list so that the user has the option of
leaving the state unchanged.) The relevant fragment looks like this:

string[] nextOptions = new string[]{};
if (!string.IsNullOrEmpty(currentState))
{
if ("Unassigned"==currentState)2

nextOptions = new string[] {
"Unassigned" // allow leaving state unchanged
"Approved",
"Rejected",
};

else if ("Rejected"==currentState)
nextOptions = new string[] {
"Rejected", // allow leaving state unchanged
};

else if ("Approved"==currentState)
nextOptions = new string[] {
"Approved", // allow leaving state unchanged
"Fixed",
};

else if ("Fixed"==currentState)
nextOptions = new string[] {
"Fixed", // allow leaving state unchanged
};

}
else
{ // New Issue
nextOptions = new string[] {"Unassigned"};

}

The first instance of this application works well at the customer site, and CJKW
decided to use it with its other clients—though of course with more or less dif-
fering requirements in each one. The development team’s initial response is to
copy the existing code and modify it to meet the new requirements at each cus-
tomer site. But as CJKW thrives and more customer engagements arise, it
becomes clear that this is an unscalable strategy that creates too many variants
of the same code. To be fair to CJKW, it wasn’t clear at the outset that there
would need to be so many variations on the same application, and it wasn’t
clear which bits would be the same all the time and which bits would vary. So
for a while the developers create a new variant for each customer, adapt the
code for each new requirement, and often take the opportunity to make some
architectural improvements at the same time. But eventually, Devika, the lead

Chapter 2: Creating and Using DSLs44

2. The CJKW developers show some naiveté with respect to coding practice. The repetitive
use of literal strings is inadvisable. And, as they discovered eventually, bolting the state-
chart into the UI code isn’t the best strategy. However, the fragment serves to illustrate
the example.

developer, sits back and surveys with some concern the source repository, full
of half-forgotten variations of the same system.

She does a series of text comparisons on the source of the applications that
have been developed to date—a variability analysis. It turns out that the
above fragment of state transition code is one of the main things that changes
from one installation to another. The team therefore decides that this part of
the code should be generated from a model. There are other miscellaneous
bits of code that change from customer to customer, but this particular aspect
is consistently variable, so automating its development would save a lot of
time—both in creating the code initially for each new application and in mak-
ing any changes later.

In this way, the need for generation in a particular area is identified
bottom-up, by considering necessary variations in the implementation.
Some other variations were found in the diff, but they turn out to be inci-
dental, without significant effect on function.

To realize its plan, the team must produce two things:

• A DSL definition

• A body of code, derived from their current code base, the variable
parts of which can be generated from the DSL

What kind of DSL is suitable for this purpose? Well, in this case, “states”
seem to suggest state diagrams, so let’s hope the team didn’t spend too long
pondering that one. Figure 2-2 shows an example of the DSL they produce.

Process: Incremental Development of DSLs 45

Figure 2-2: An Issue State definition

But just for a moment let’s consider other possible variations. Some
customers may, for example, wish to get a regular report containing a graph
summarizing how promptly issues are being dealt with. But perhaps there
are two alternative algorithms for cooking them up—some customers favor
one method, and others prefer the other method. One way of dealing with
this is a compiler switch: #if ReportType1 ... #else ... #endif. (There is
also of course the option of a runtime flag, which we’ll discuss later in this
chapter.) Now suppose there are many such choices, some of them multi-
valued and some of them interdependent, and some of them requiring
more subtle variations in the code than just including a block or not. Some
bright team member comes up with the idea of encoding all the choices in
XML and then generating the required code from that. This is where the
DSL Tools come in, since they can read the XML file and use text templates
to generate the code from choices encoded in the XML. In this case, the DSL
is just the XML, and the strength of the DSL Tools is in generating the code
from this model. In situations where the DSL is more sophisticated,
embodying relations between entities—such as workflows or complex
static relationships—then it is useful to think in terms of a diagrammatic
DSL, and the diagram editing capabilities of the DSL Tools become useful.
For most of the examples in this book, we’ll discuss diagrammatic DSLs, if
only to show off the full feature set.

This DSL looks similar to the UML state diagram notation—a deliber-
ate choice that was made so that newcomers can readily understand its
intention. But it is without many of the UML features that are not required
here, such as nested states, guards, and other decorations on transitions.
The semantics of this language will be expressed entirely by the code gen-
erators written for this application.

Top-Down and Bottom-Up
Hearing of the decision to generate code from state diagrams, Annie, the chief
analyst, isn’t surprised. She recounts that whenever she visits a new client to
discuss its project management requirements, the discussion pretty soon gets
around to issue tracking. Having now had plenty of experience with these
clients, Annie immediately asks them about the states they need in their issue
logs. The customers aren’t always clear about this at first, but Annie finds it
helps to draw a diagram of the states and their possible transitions on the

Chapter 2: Creating and Using DSLs46

whiteboard and to discuss the situations in which users would change the
states and why. Annie remarks that she could have told team members they’d
use state diagrams, without their having to go through their variability analy-
sis on the code. And all those binary flags about the reports? Well, for months
she’s had a form she fills out with new customers, with checkboxes for just
those choices. Devika folds her arms and wonders aloud whether Annie can
tell her about next month’s test results, too.

This illustrates that there are two approaches to developing a DSL, one
is observing necessary variations in the code, and the other is looking at the
variations at the conceptual level—the states and transitions rather than
their code. The virtue of the first approach is that it ensures every feature
of the DSL is justified by a generative need; the value of the second is in
expressing the variations in terms of the customers’ needs and in terms they
can discuss. It can be argued, therefore, that the top-down approach tends
to lead more quickly to a substantial and self-consistent model, and a
longer-sighted one. On the other hand, it can be too easy at the conceptual
level to concoct a complex model that is impractical to implement. So, in
practice, it is effective to alternate between top-down and bottom-up tech-
niques, working incrementally to avoid the risk of a big upfront investment
but regularly standing back to check for consistency.

One of the effects of using a DSL is to bring the implementation work
much closer to the user’s conceptual space rather than that of the imple-
mentation. The DSL is (or should be) expressed in terms of ideas that make
sense at the level at which it deals: issue states and transitions rather than
database rows and cross-referenced keys. And in a DSL, we’re talking here
about issue states and transitions—not just any old states. Suppose that in
each issue log we want to record the reason for the most recent transition
and provide that the allowed reasons will be constrained by transition (so
that for example, you can say “fixed” or “given up” for a transition to the
closed state but not for the transition from “unassigned” to “assigned”). In
that case, a list of allowed reasons will be an attribute of each transition.

The DSL captures the variable parts of the conceptual space. The trans-
formations that generate code embody the generic architecture—if you like,
the language of patterns—of applications in the DSL’s domain: the DSL
authors’ knowledge about how to create applications or components in that
domain, given a statement of requirements in the DSL. Whereas it is an

Process: Incremental Development of DSLs 47

insoluble problem to generate automatically the application that meets a
general requirements statement, it is quite easy to generate applications in
a restricted domain that meet the requirements expressed by a language
specific to that domain.

Developing the DSL: From Sketches to Domain Model
After experimenting with many sketches of state diagrams—and taking
into consideration both the variability in the code they want to generate,
and the concepts that customers want to express—the developers come up
with a definition of the language. The core of this definition is the domain
model, which states the kinds of things that are dealt with by instances of
the language (individual state diagrams in this case). Using the DSL Tools
domain modeling tool, they create the diagram in Figure 2-3 (we’ll see how
in the next major section).

Chapter 2: Creating and Using DSLs48

Figure 2-3: Initial DSL definition for the Issue State language

A domain model is the central part of a DSL’s definition. It defines, among
other things, domain classes (the round-cornered boxes) and domain relation-
ships (with square corners). The model defines the classes of elements there
may be in instances of the language and the relationships there may be among
them. Reading this diagram from the top left downwards, it states that:

• An IssueStateModel consists of any number of StateElements; the
relationship between the two is called IssueStateModelHasStates.

The solid line representing the two arms or roles of this relationship
show that this is an embedding relationship. In a running designer,3

all the elements are linked in a tree of embedding relationships.

• From the point of view of an IssueStateModel, its collection of State
Elements is accessible through its property States. From the point of
view of a StateElement, its parent IssueStateModel is accessible
through its property called Model.

• Each StateElement has a domain property called Name, whose type is
String.

• There are two kinds of StateElement: IssueState and StartElement.
(The IssueStates are represented by boxes in the instance example in
Figure 2-2, and the black dot is a StartElement.)

• Any StateElement may be related to any number of other StateEle-
ments through a relationship called Transition. Each StateElement
has properties Successors and Predecessors, which provide access
to the related StateElements. (Transitions represent the arrowed
connectors between states on the diagram.) The dotted line repre-
senting this relationship shows it to be a reference relationship, cross-
linking nodes of the embedding tree.

IssueStateModel is called the root of this DSL, and—as is usual—each
instance of the root is represented by a whole diagram when the DSL is pre-
sented in a designer. It is also the root of the XML tree when instances of the
language are saved to file.

Domain models are the subject of Chapter 3.

Domain Model and Presentation Are Separate
The Domain Model—the classes and relationships part of the DSLdefinition—
defines just the concepts dealt with by the DSL. It does not define how to pres-
ent the material as a diagram. (In fact, as we observed in Chapter 1, it can often
be useful to create a DSL without a diagrammatic presentation.) To do this, the
team defines a set of Shapes and Connectors—boxes and lines, if you like. In
the Issue State DSL, the correspondence between shapes and domain classes

Process: Incremental Development of DSLs 49

3. A “designer” is a graphical or other non-textual editor hosted in Visual Studio.

is straightforward: each IssueState is represented by an IssueStateShape, and
each Transition is represented by a TransitionConnector.

There is a variety of basic shape and connector types available, and there
are several ways of displaying information within a shape, as lines of text,
lists of values, or variable icons. Color, line thickness, shading, and other
characteristics can be varied.

After defining a set of shapes, the DSL author must define a set of shape
maps. These define which shape or connector displays each domain class
or relationship as well as what determines the text or other variable features
of the shapes.

In a running designer, while a DSL user is editing a DSL instance (as in,
for example, Figure 2-2), it is of course the shapes and connectors that
appear on the screen. However, for the most part the domain properties that
are displayed in the properties window when one of those shapes is selected
are those of the underlying model element, and the editing or other opera-
tions that are performed are defined on the model elements. The shapes and
connectors on the diagram are kept up to date by a process known as “view
fixup,” which is managed by the DSL Tools presentation framework.

The clear separation between presentation and underlying model means
that an author of a DSL definition can, within reason, change the way in which
the domain model is presented without having to change the model itself.

Another aspect of this separation appears when the DSL user saves an
instance to file. Two files are actually generated, one containing just the domain
class and relationship instances and their domain properties, and the other
with layout information for the diagrammatic presentation. If the latter file is
thrown away, the diagram will be recreated automatically. The layout will be
a mess, but the shape contents and the connections between them will be cor-
rect. The particular value of this separation is that tools can easily be written
that accept the model, uncluttered by the incidental layout information.

Presentation is the subject of Chapter 4.

Refining the DSL
How did the team come up with the DSL definition? The essential process
is to look at the sketch instances and identify the different types of things
you are drawing—not forgetting a domain class for the whole model.

Chapter 2: Creating and Using DSLs50

Process: Incremental Development of DSLs 51

TIP Work from instances

We have worked from prototype instances of the notation we want in
order to create the domain model—another kind of “bottom-up”
working. Sample instances—usually drawn on the whiteboard—are
useful for examining the proposed domain model.

Once a domain model is proposed, Annie and Devika draw more example
instances of it to see whether it covers the cases they need and also to see if it
covers more than they need. A collection of StartElements and nothing else
would be a valid instance of the model as it stands; would more than one
StartElement on a state model be allowed? Would a StartElement unrelated
to any IssueState be allowed?

Together with the domain model, the DSL authors can define a set of valida-
tion constraints (covered in detail in Chapter 7) expressed in C#, which can be
used to prevent the DSL user from drawing (or at least saving) such oddities.

In considering what should and should not be allowed as a valid Issue
State model, the developers are thinking both about whether such a state
model would mean anything useful to its users and about whether they can
generate sensible code from it. Once they have defined the bounds of what
users can draw, Devika can make those assumptions in the design of the
code generators.

Whatever the answers to these questions, they are much easier to ask
and discuss in terms of a language than in terms of variations in the source
code, tables, or APIs. Working “top-down” from language to code helps
ensure architectural consistency.

Driving the Framework from the DSL
Now a generator can be written for the variant pieces of code. The first can-
didate for generation is the fragment that sets the menu of permitted states.
When we saw it earlier, it had been hand-written to support a particular state
model. Devika begins by copying the C# file to a text template file (that is,
with filename extension .tt instead of .cs) and running the code generator.
Without any modification, the file just regenerates the original .cs file. But

now Devika inserts code-generation statements at the key places where the
code should depend on the content of the state model.

// ... preceding section remains as it was in original source
string [] nextOptions = new string [] {};
if (!string.IsNullOrEmpty(currentState))
{

<#
StateElement startState = null;
foreach (StateElement fromState in this.IssueStateModel.States)
{
if (fromState is StartElement)
// The actual starting state is that pointed to by the Start Element
startState = fromState.Successors[0];

else
{

#>
if ("<#=fromState.Name#>"==currentState)

nextOptions = new string[] {
"<#=fromState.Name#>", // allow leaving state unchanged

<#
foreach (StateElement toState in fromState.Successors)
{

#>
"<#=toState.Name#>",

<#
}

#>
};

<#
}

} // end of generating loop -
// should have seen a start state by now

#>
}
else
{ // New Issue

nextOptions = new string[] {"<#=startState.Name#>"};
}

// Rest of file stays as it was in original source...

Code-generation statements are enclosed between the special brackets
<# and #>; expressions are enclosed in <#= ... #>. The generator interprets
them in the context of the state model. Notice how those statements use the
names of the domain classes and their properties from the domain model.
The generating syntax is C#. This fragment, which will be run when a user
has drawn an Issue State diagram, queries root IssueStateModel to find all

Chapter 2: Creating and Using DSLs52

of its States and executes a loop for each one. That begins by generating
the if statement that compares a state with the runtime current state—be
careful not to confuse the generating with the generated code here! Then
there is a loop, again in the generating code, that lists each state that is
accessible from the starting state. So if we run this generator in the context
of the Issue State definition diagram of Figure 2-2, we get:

// ... preceding section remains as it was in original source
string [] nextOptions = new string [] {};
if (!string.IsNullOrEmpty(currentState))
{
if ("Unassigned"==currentState)

nextOptions = new string[] {
"Unassigned", // allow leaving state unchanged
"Assigned",
"Rejected",

};
if ("Approved"==currentState)

nextOptions = new string[] {
"Approved", // allow leaving state unchanged
"Fixed",

};
if ("Rejected"==currentState)

nextOptions = new string[] {
"Rejected", // allow leaving state unchanged

};
if ("Fixed"==currentState)

nextOptions = new string[] {
"Fixed", // allow leaving state unchanged

};
}
else
{ // New Issue
nextOptions = new string[] {"Unassigned"};

}
// Rest of file stays as it was in original source...

Any kind of file can be generated from the models—not just code. For
example, Annie would like a summary of the allowed states and transitions
in HTML form, so that it can be put up on the project’s internal website.

Generation from models is the topic of Chapter 8.

Using the DSL
Now that the DSL has been developed and code can be generated from it,
Devika and her team can use it to generate code for the specific parts of

Process: Incremental Development of DSLs 53

Issue Tracking dealing with state transitions. They may still have to do
hand coding for other parts of each application, but at least the most com-
mon part has been speeded up and made more reliable. Dave, another
developer on the team, has not been closely involved with the state transi-
tion logic but finds it easy to draw the state diagrams and press the button
that generates those parts of the code.

There’s room for potential confusion here when we’re talking about
“users.” Dave is not an end user of the Issue Tracking applications, but he
is a user of the DSL—it helps him write those applications. Table 2-1 sum-
marizes the terms we will use for these roles.

Chapter 2: Creating and Using DSLs54

Term Definition

DSL author The user of DSL Tools who creates DSLs. Devika was the
DSL author in CJKW.

DSL user The user of a DSL who creates designs in the language to
help build applications. Developers Devika and Dave are
DSL users. Annie (the analyst) also draws diagrams with
the DSL, although she generally passes them to the
developers in order to generate material.

Application user The end user of an application built using the help of a
DSL: CJKW’s customers and their project staff who use
the Issue Tracking systems.

DSL design time The time when the DSL itself is being authored, together
with the generating templates and validation code. The
DSL author may also write custom code to augment the
functions of the graphical designer.

DSL runtime The time when designs are being created in a DSL to help
build an application. The DSL will typically generate
only some of the code, and the rest will be hand-written,
or maybe several DSLs will be used.

(Application) The same as DSL runtime. “Application” will be omitted
design time unless the context in which the term is being used

demands explicit qualification of this term. We will never
omit “DSL” from “DSL design time.”

(Application) The time when the application is being run and used by the
runtime end user. “Application” will be omitted unless the context

demands it.

Table 2-1: Terminology—Roles and Phases

Figure 2-4 provides an overview of the process. It’s worth taking a
moment to reflect on the different stages and the things that can be done
there, since it is quite easy to get the different levels mixed up.4 In author-
ing a DSL, we use a designer that creates the DSL definition. From this def-
inition, code is generated for the tools that will edit and process instances of
the DSL. We can write extra code that enhances the generated designer.

Process: Incremental Development of DSLs 55

Generated designer

+ templatized application code

+ generic application framework

Application

software

Application

user

DSL user/

application author

DSL author

Figure 2-4: Authoring and usage roles

In using a DSL, we are also using a designer, and it can also be used to
generate code. The code this time is part of an application. Again, we are
likely to hand-write code to augment the generated material.

Evolving the DSLs
Developing the DSL and the executing framework is an incremental process.
As more target systems are created, more areas of variation will be identi-
fied; some of these will vary often enough to be worth generating from a
model. In some cases, the new variation might be added to an existing DSL.
For example, some customers require that the set of issue fields that must

4. All of the authors of this book have had this experience, which we refer to as a
“meta-moment” (in the hope that it is usually transistory).

be completed depends on the issue’s state. To accommodate this, CJKW
finds the existing code in which the transition to a next state is committed.
To meet the new requirement, this code must be augmented to check that the
required fields are filled. Once again the existing source file is extracted into
a text template, and the relevant parts are replaced by script that reads the
model. A RequiredFields list is added to IssueState for this purpose. The
generator is written so that if the RequiredFields list is empty, the generated
code looks just as it would have before—so that older models written before
this enhancement still work just as they used to.

This scenario illustrates how a body of source code can progressively be
brought under a generative regime, minimizing the upfront investment
where there is a perceived risk or uncertainty about the design of the DSL or
generating templates. Set against this is the cost of frequent small migrations,
in particular, writing code to accommodate older models.

Interpretive Architectures
The code that CJKW has been writing depends on an existing framework,
so it’s not necessary to create one from scratch. However, the firm eventu-
ally gets a customer who wants to run several projects in the same database,
each with its own different set of state transitions, and it must be possible
to create new projects while the system is running. After some discussion,
it is decided that the best way forward is to move the model into the data-
base so that it can be interpreted at runtime. The old generated state menu
code will be replaced by a generic routine that reads the state options from
a new state transition table; rather than generating code, the DSL model
will be used to update the transition table. (One convenient way to do that
is to generate a script, so we might still use the text template technology.)

Chapter 2: Creating and Using DSLs56

TIP Generate, then interpret

In general, interpretation requires more substantial change to the exist-
ing code, and additional effort to manage the relationship between the
model on the DSL user’s screen and its internal representation. When
devising an incremental development plan, it is therefore worth con-
sidering generating the model to code in the early stages, even if it is to
be moved inside the application later on.

Creating a DSL in Visual Studio

In the previous section, we saw the overall process by which a DSL is
designed and used. We’ll have more to say about that in Chapter 11.

But now let’s look at exactly what steps the developers have to perform
with Visual Studio in order to achieve what we’ve seen. (If you have your
own installation of Visual Studio SDK, which contains the DSL Tools, you
might like to follow along.)

Creating a DSL Authoring Solution in Visual Studio
The “New Project” dialog in Visual Studio provides a variety of skeleton
projects and solutions, and—if you’ve installed the Visual Studio SDK—
under “Extensibility,” you’ll find “Domain-Specific Language Designer.”
This template creates a “solution”—a collection of projects—and doesn’t
give you the option of adding a project into an existing solution. If you
want to combine a DSL with another application, you need to create it first
and then do some copying later on. (It is in any case better to get the DSL
working first.) The dialog takes you to a wizard that asks you details of the
DSL you want to create.

The first wizard page (Figure 2-5) provides a set of starting languages on
which to base your DSL. Each of them provides a DSL with a fully func-
tioning designer, though without any code generation.

The language templates5 provided (currently) are

Creating a DSL in Visual Studio 57

Conversely, where you are generating a large quantity of code, there
may be an advantage in replacing some of it with more generic code
parameterized at runtime. (The DSL Toolkit itself exhibits this pro-
gression over its history. Early on, a great deal of code was generated
from the DSL definition; in later releases, the generated portion was
much slimmer.)

5. The term “template ” is somewhat overloaded. A Visual Studio solution or project template
creates a skeleton set of files, together with build information. The DSL creation wizard
allows you to choose between several different language templates. An item template is an
empty or nearly empty file from which a new file of that type can be created using the
Add New Item command in Visual Studio. A text template generates code or other mate-
rial from a DSL.

• Minimal. Just enough to show one type of box and one type of line.

• Components. Boxes with ports—that is, small boxes on the bound-
aries of the bigger ones.

• Classes. Similar to UML class diagrams. The boxes are compartment
shapes, which display rows of text.

• Task Flows. Similar to UML activity diagrams. Boxes can be situated
within swimlanes.

Chapter 2: Creating and Using DSLs58

Figure 2-5: The DSL Designer Wizard, showing a list of starting languages on which to

base the new language

TIP Choosing a DSL template

Although you can use one of the DSL solution templates just as it
comes, the idea is that you choose the one with the features closest to
the DSL you want to build, and you edit it. It isn’t crucial which one
you choose—you’ll just have to do more or less editing to achieve what
you want.

In addition to these language templates, the Visual Studio SDK comes
with a samples browser within which several DSL examples can be found.
It’s worth taking a look at these, as they demonstrate a variety of techniques
for building interesting designers on the templates. (Look under the VS
SDK entry under the Windows “Start” menu.)

Devika chose the Minimal language as a basis for the Issue State lan-
guage. She might have chosen the Task Flows solution, but she knows that
she would have to start by deleting the bits that display the swimlanes, and
she reckons it might be quicker just to adapt the Minimal solution.

In the later pages of the DSL creation wizard, she specifies the name of
the language and the namespace of the source code for the designer and
generation tools. She also specifies the filename extension “.iss” that will
be used for files containing Issue State models.

The wizard creates two projects containing quite a lot of files. Prominent
on the screen once the creation has finished is the DSL definition of the Min-
imal language (Figure 2-6).

Creating a DSL in Visual Studio 59

Figure 2-6: DSL designer

Nearly all the code in the other files in the two projects is generated
from the DSL definition. When Devika modifies the language to change it
from the minimal DSL into the Issue State DSL, she will do most of her
work on the DSL definition.

The code in these projects (which we’ll look at in more detail in the final
section of this chapter) defines three main things:

1. The Issue State designer (or whatever language we’re defining)—the
editor that DSL users will use to draw Issue State models.

2. Code generators—which will take Issue State models and text
templates (of the kind we saw in “Driving the Framework from the
DSL” earlier in this chapter).

3. A serializer, designed to save Issue State models as .iss files and
load them again. The serializer is used in the designer and in the
code generator, and can be used in any separate applications the
DSL author chooses to write.

The DSL author can modify any of these functions by adding C# code,
usually in small amounts—for example, to add menu commands or vali-
dation constraints to the editor, or to change the way models are serialized
to file (Chapter 6) or the way in which text templates are interpreted and
code generated (Chapter 8).

Chapter 2: Creating and Using DSLs60

What’s in the DSL Solution?

The two projects initially created by the DSL creation wizard are Dsl and

DslPackage. The Dsl project provides

• A serializer/deserializer for reading and writing instances of your DSL to

files.

• Class definitions for processing the DSL and its diagrams in an

application.

• A directive processor enabling you to write text templates that will

process your DSL.

• Essential components of the designer that edits this DSL in Visual

Studio.

The DslPackage project provides code that enables the DSL to be edited

in Visual Studio. (It is possible to write a stand-alone application that

Document handling code that recognizes the DSL’s file extension and opens the appropriate designer
Item template files from which new instances of the DSL can be created

Trying Out the DSL Solution
Before adapting the language, Devika decides to try out the solution, and
so presses the F5 key. (In Visual Studio, this builds the solution and runs it
in debugging mode. It is equivalent to the “Debug>Start Debugging” menu
command.)

F5 normally has the effect of starting up the application you are designing—
perhaps a desktop application in a window or a command line application in
the console. But in this case, the users of the DSL are developers—Devika
herself, Dave, and her other colleagues—who are going to be building appli-
cations with the help of the DSL. They will be viewing the DSL in a designer
(graphical editor) that runs within Visual Studio. On pressing F5, therefore,
what appears is another instance of Visual Studio, initialized to display a
sample of the DSL. In fact, this behavior is common to many Visual Studio
SDK examples and templates, allowing you to design enhancements to Visual
Studio without fear of causing problems.

Creating a DSL in Visual Studio 61

processes the DSL using just the assembly created by the Dsl project.)

These files are essentially the same as in other Visual Studio SDK packages:

• Document handling code that recognizes the DSL’s file extension and

opens the appropriate designer

• Menu commands associated with the DSL’s designer

• Item template files from which new instances of the DSL can be created

In each project, there is a folder called GeneratedCode. This folder con-

tains text template files (extension .tt), each of which has a generated file

as its subsidiary. In the solution explorer, click the [+] to see the generated

file. Most of the text template files consist of references to include files,

kept in the DSL Tools installation folder under “TextTemplates.”

All of the generated files are derived from Dsl\DslDefinition.dsl.

You should not modify them, but you can customize the generated code by

adding your own partial class definitions in separate files. (See Chapter 10

for a full account of the facilities for customization.)

The new instance of Visual Studio (Figure 2-7) opens on a small sample
project called Debugging, and within that, opens a file called Sample.iss.
This was generated by the DSL creation wizard—you can see it in the file
system alongside the main generated project folders.

Chapter 2: Creating and Using DSLs62

Figure 2-7: The designer for the Minimal language

Figure 2-7 shows the basis of the tool that Devika and her colleagues
will be able to use—once she has completed her work on it.

• The largest window is the design surface, the main presentation of a
DSL instance. Devika will have to edit the DSL definition (back in
the main Visual Studio) in order to add, for example, the definition
of the Issue State language’s start element, the black dot that flags
the start state. When the DSL is all working and deployed, DSL
users will draw their Issue State diagrams here.

• On the left is the toolbox. To make a new element, you drag from the
tool onto the diagram; to make a new connector, you click the
relevant tool, click the source element on the diagram and then the
target. Devika will have to edit the DSL definition to change the
names of the tools to “Issue State” and “Transition,” and add a tool
called “Start Marker.”

• On the right is the model explorer. This shows a tree presentation of
the model (that is, the DSL instance). It shows the elements and their
embedding relationships. In some DSLs (depending on their
design), there are elements that do not appear in the main design
surface but will always appear in the model explorer.

• In a separate tab under the model explorer is the usual solution
explorer, showing the Debugging project containing the sample file.
Devika will change the name of the project to “IssueStates.” When it
is deployed, copies of this project will run alongside the other code
of Issue Tracking applications. She will add text template files that
will read the user’s DSL instance and create code that forms part of
the Issue Tracking application.

• Below that is the properties window. When any element is selected
in the main diagram or the model explorer, its properties are dis-
played here and can usually be edited. Some properties, such as an
element’s name, are displayed and may be edited directly in the
shape. Clicking in the main part of the diagram shows the domain
properties of the root element of the model; clicking on a shape or
connector shows the domain properties of its corresponding domain
class instance or domain relationship link.

(The arrangement of these windows is variable. If any of your windows
seems to be missing, find it under the “View” menu; some of them can be
found under the “Other Windows” submenu.)

Creating a DSL in Visual Studio 63

File Extensions, Packages, and the Experimental Hive

When you open any file using Visual Studio, it looks at the file extension—

.cs, .htm, .iss, .dsl, and so on—and runs the appropriate designer.

Some designers are built in, and some are supplied as separate packages

that have to be installed. The package is registered in Visual Studio’s sec-

tion of the Windows registry. When Devika has completed her DSL design,

she will package it up for distribution to her colleagues, and they will

Defining the DSL
Devika is now ready to author her own DSL. She closes the experimental
instance of Visual Studio and returns to the DSL authoring solution. If it
isn’t already open, she opens DslDefinition.dsl in the Dsl project. This
launches the DSL designer (Figure 2-6). The DSL designer looks not unlike
the designer of the Minimal language or any other specific DSL. This is
because it was “bootstrapped”—designed using itself.

The main window contains two swimlanes or columns: on the left, the
domain model—that is, the domain classes and relationships, and on the right,
the shapes and connectors that represent them on screen. The names of all of
these items can be edited; new ones can be created using the tools in the tool-
box. Unlike most designers created with the DSL Tools, this one maintains a
strict tree-like presentation of the elements and their relationships. By right-
clicking on the domain classes, you find commands for reordering the tree.

Chapter 2: Creating and Using DSLs64

install it on their machines (see Chapter 9). In the meantime, the build

command (F5) installs it on her own machine so that she can try it out.

However, registrations for debugging purposes are made in a separate

section of the registry, the experimental hive. When Visual Studio starts, it

can be made to configure itself from the experimental hive instead of the

usual one, and this is what happens when Visual Studio is started for

debugging purposes—we say that it is an experimental instance of Visual

Studio. An experimental instance can also be started from the Visual Studio

SDK section of the Windows Start menu. Once Devika has built her DSL, she

can edit it with any experimental instance of Visual Studio. However, the

normal instances will not be able to see it until she has installed it properly.

Should she, in the course of development, chance to create a faulty pack-

age that prevents Visual Studio from working, it can easily be reset to the

state of the normal hive; there is a reset utility in the VS SDK section of the

Windows Start menu. The same procedure clears out old experimental lan-

guage definitions.

The experimental hive is part of the Visual Studio SDK, and there is a full

account in the installed help and on the MSDN website.

Devika edits names of the domain classes, shape, connector, and diagram,
so that they become like those of Figure 2-8; then she edits the role names (the
labels on the two arms of each relationship), and finally, she edits the rela-
tionship names. Each of these can be edited directly in the diagram, except for
the role names.

Creating a DSL in Visual Studio 65

The final step is to change the names of the tools that will appear in the
toolbox. These are not represented in the main diagram of the DSL defini-
tion—look instead at the DSL explorer; the tool definitions can be found
underneath the Editor node. Their names can be edited in the properties
window together with the tooltips and captions that are displayed to users.

Figure 2-8: DSL after editing names

TIP To change the label appearing on a relationship role, edit
the Name of the opposite role

For example, to change “Targets” appearing on the left of the Exam-
pleElementReferencesTargets relationship (Figure 2-6), select the
opposite role (labeled Sources) and in the properties window, change
the Name property from Target to Successor (in the singular). The
label on the left-hand role will automatically change to Successors
(plural). This makes perfect sense—see Chapter 3 for details.

Generating the Code for the Designer
Code for the designer of this DSL is generated from the DSL definition file.
To make that happen, go to the solution explorer (in the main Visual Studio)
and click the “Transform All Templates” button in its header (Figure 2-9).
All of the code files will be regenerated.

Chapter 2: Creating and Using DSLs66

Figure 2-9: Solution explorer with “Transform

All Templates” button

After regenerating the code, Devika presses F5 to run the experimental
VS on the Debugging project. The sample file she first looked at can no longer
be read—she has changed the definition of the language, so that the old
ExampleElement instances of the Minimal language are ignored by the
deserializer.

Instead, she creates a new file in the Debugging project (using the “Add
new item...” menu command). The file opens, and she can create elements
and relationships in it. In fact, it’s just like the Minimal language—but the
names have changed (Figure 2-10).

TIP After editing the DSL definition, always click “Transform
All Templates”

The “GeneratedCode” folders contain a number of text template files
with the extension .tt. Each of these has a subsidiary file that is the
generated result. In the solution explorer, click the “[+]” to see it. The
generated files include both C# and resource files. Don’t edit the gen-
erated files!

Creating a DSL in Visual Studio 67

Figure 2-10: Issue State designer—first prototype

Adding to the DSL
With the encouragement of a working tool, Devika is enthusiastic to improve
the DSL. She again stops the experimental Visual Studio, returning to the
DSL definition.

The start element—the black dot that marks the starting state—is still
missing from the DSL. Like IssueStates, StartElements can be connected to
IssueStates, so Devika reasons that they should be derived from a common
abstract base class. Adding some domain classes and a shape, redefining the
shape maps, and setting the base class’s Inheritance property to abstract (in
the properties window), she ends up with the DSL definition of Figure 2-11.

For the StartShape, she uses a geometry shape and sets its “geometry”
property to Circle. She also changes the default size and color properties
of the other shape and connector.

A new tool is required for the StartShape that can be added under the
Editor node in the DSL explorer window. Devika tries to save the DSL def-
inition at this point but gets an error complaining that no icon has been
defined for the new tool. Using the solution explorer, she goes into the

Resources folder in the Dsl project and copies one of the bitmap files there.
After renaming the copy to StartElementTool.bmp, she opens it and edits
the picture so that it contains a circle. While there, she edits the other tool
images as well.

Chapter 2: Creating and Using DSLs68

Figure 2-11: StartElement and IssueState have an abstract base class

After she clicks “Transform All Templates” and presses F5, she is now
able to draw the state chart she’s aiming for (Figure 2-12).

Constraints
However, she also finds she can draw many diagrams that would be diffi-
cult to assign a clear meaning to, and to generate code from diagrams with
multiple start elements, start elements with multiple lines or no lines
emerging, arrows targeting start elements, and disconnected groups of
states (Figure 2-13).

Devika considers two solutions to this.
One tactic is to move the Transition relationship so that it only applies

between States, and to define a separate relationship from StartElement to
State, with a restricted multiplicity (Figure 2-14). With a little modification to
the Tool definitions, the same connector tool can be used to create either type
of relationship, depending on whether the user drags from a start element or
from a state. And by making the two relationships derive from a common base

Creating a DSL in Visual Studio 69

Figure 2-12: DSL with StartElement and improved tool icons and arrows

Figure 2-13: Invalid state model

relationship, the same Connector class can be used to represent both of them on
screen. That way, the two relationships appear to the DSL user to be one, but
at the same time he or she cannot make multiple connections from a StartEle-
ment, nor any connections to it. This is an example of a hard constraint that pre-
vents the user from ever breaking the rule.

An alternative, more applicable to the sins of disconnected loops and
multiple start elements, is the validation constraint. This is a fragment of C#
written by the DSL author that checks for invalid configurations of objects
and complains about them to the user when he or she tries to save the file.
It allows the user illegal configurations while editing is in progress as long
as everything is correct in the end.

To create a validation constraint, Devika creates a new C# file in a separate
folder alongside the generated code. The file will contain partial class defi-
nitions, adding the validation methods into the generated classes. You can
see the results in Chapter 7.

Chapter 2: Creating and Using DSLs70

Figure 2-14: Issue State domain model with inheritance between relationships

Customizing the Explorer Window
Devika now wants to customize the look and feel of the explorer. Specifically,
she wants to replace the domain class name, which appears in brackets by
default, with icons that indicate the kind of element involved. To achieve
this, she adds two “Custom Node Settings” elements under the “Explorer
Behavior” node in the DSL explorer, as shown in Figure 2-15.

Creating a DSL in Visual Studio 71

Figure 2-15: Explorer behavior definition

When she’s done, she regenerates and presses F5 as usual. She opens an
existing model and sees the explorer as expected (Figure 2-16).

Figure 2-16: Result of customizing explorer

Chapter 2: Creating and Using DSLs72

The presentation of elements in the explorer is described in Chapter 4.
Adding and deleting elements through the explorer is handled in
Chapter 5.

Customizing the Properties Window
Next, Devika wants to customize the properties window. Specifically, she
wants to categorize the properties and give them appropriate descriptions.
She does this by changing settings on domain properties and roles. Figure
2-17 shows the settings for the DatabaseName property on IssueState-
Model. Figure 2-18 shows the result of these changes when displaying
properties in the Issue State designer.

Figure 2-17: Settings on a domain property

Creating a DSL in Visual Studio 73

Custom Code for the Designers
The DSL definition allows us to specify a wide variety of behaviors in a gen-
erated designer and its accompanying serializers and generators. An even
wider range is feasible by augmenting the generated classes with hand-
written code, and we will see several examples in the chapters that follow.
In fact, most of the chapters begin by showing you how to define a range
of behaviors in the DSL definition and how to gradually move on to more
specialized customizations that require some C#. One typical use for custom
code is to add context menu commands to perform some action directly
from the designer, a technique described in Chapter 10.

Like validation constraints, custom code takes the form of methods and
classes that are integrated with the generated code. Heavy use is made of
partial class definitions—the facility for splitting the code of a class
between more than one source file. Chapter 10 surveys the full range of
available customization techniques.

Serialization Format of the DSL File
Let’s take a look at the saved XML form of the model file of Figure 2-12:

<?xml version="1.0" encoding="utf-8"?>
<issueStateModel dslVersion="1.0.0.0" name="StateModel"

xmlns="http://schemas.cjkw.com/IssueStateModels" >

Figure 2-18: Result of changing settings on a domain property

<states>
<issueState name="Unassigned">
<successors>
<issueStateMoniker name="/StateModel/Assigned" />
<issueStateMoniker name="/StateModel/Rejected" />

</successors>
</issueState>
<issueState name="Resolved" />
<issueState name="Assigned">
<successors>
<issueStateMoniker name="/StateModel/Resolved" />

</successors>
</issueState>
<issueState name="Rejected" />
<startElement name="StartElement1">
<issueState>
<issueStateMoniker name="/StateModel/Unassigned" />

</issueState>
</startElement>

</states>
</issueStateModel>

Notice that all the elements are represented very simply, using lowercase
versions of the names in the DSL definition. Links are expressed in a path
syntax using the names of the elements. This makes the file very easy to read
and easy to write processing software for. Like everything else, if required,
the format can be changed quite substantially within the DSL definition, and
can be changed more radically by writing custom code.

Driving Applications from the DSL
The purpose of CJKW’s Issue State language is to allow DSL users—the
authors of Issue Tracking systems—to define the states and transitions that
can be made within an Issue Tracking application.

Generative Application

Devika’s initial plan—though as we’ll see, the team improves on it—is to
generate part of the application’s user interface code from the DSL. She
envisages that when Dave is writing the code for yet another Issue Track-
ing system, the Visual Studio project that contains the user interface code
will include an Issue State file and one or more text template files that will
generate the user interface code. When Dave is actually using the DSL, it
will be fully installed in his main VS hive, but for test purposes, Devika
works in the experimental VS.

Chapter 2: Creating and Using DSLs74

She starts the experimental VS either by pressing F5 in the main project
or by using the “Start VS in Experimental Hive” command in the VS SDK
section of the Windows Start menu. Now she opens the existing code of an
Issue Tracking application and finds the file containing the user interface
code. This is the one she wants to depend on the state diagram.

First she copies an Issue State file into the application’s project.
Then she proceeds to knock holes in the application code, as we saw ear-

lier, replacing fixed pieces of code with the mixture of generated code and
DSL-querying code that we saw in “Driving the Framework from the DSL”
earlier in this chapter. To complete the transformation to a text template,
she adds some essential header information adapted from the sample .tt
files in the Debugging project and changes the file’s extension to .tt.

This automatically creates a subsidiary file containing the generated
code. Editing the .tt file will update the subsidiary .cs file.

Building and running the Issue Tracking application, Devika is satisfied
to see that when an issue log is displayed, the state drop-down menu does
offer just the next states her state model dictates.

If necessary, other files in the application can be given the same treat-
ment, progressively turning them into template files and generating their
code, which is dependent on the DSL. Whole projects full of files can be
generated from a single DSL file—the DSL designer solution is a good
demonstration of this.

If the state model is changed, all of the files can be regenerated, using—
guess what?—the “Transform All Templates” button. This time, we’re
using it not to generate the code for the language but to generate a target
application from an instance of that language.

Interpretive Application

Devika’s solution is shown to customers, who like it. But reviewing Devika’s
prototype, Annie (the analyst) objects to the design. She points out that part
of the way through many projects, the managers want to redefine the states
and transitions their issues go through. It won’t really be acceptable to
regenerate and rebuild the Issue Tracking application for this purpose.

Archie (the software architect) suggests a solution. The Issue Tracking
application should be rewritten to be more generic, storing the set of allowed
states and transitions in the issues database itself. The DSL will be used to

Creating a DSL in Visual Studio 75

set these tables. As well as making the application dynamically configurable,
the same software can now be used for many applications. In theory, there
could be a small performance penalty for this more interpretive approach,
but the negative effect will be tiny in this case and well worth it. The other
issue is of course the extra work needed to refactor the application—making
it store the state model and interpret it is a substantially bigger job than
punching template holes in the existing code.

Devika is a bit disappointed that her generative solution wasn’t acceptable,
but the others point out that the DSLdesign itself need not be changed, and that
the generative approach allowed her to prototype and demonstrate the whole
approach rapidly, before investing in the more expensive interpretive solution.

The team considers two methods of loading the DSL’s state model into
the database. One is in a sense generative again. We write a text template
that generates an SQL script that sets the state and transition records. After
generating the script, it can be handed to the database administrator to run
at an appropriate time.

The other method is more direct and involves writing some custom code
for the designer. A menu command is added that logs onto the Issue Track-
ing database and runs the necessary SQL commands directly. The DSL user
will draw the Issue State model and call up the menu directly on the design
surface; the effects should be immediately visible in the application.

Deployment
Once the DSL and the framework it generates have been developed, they
can be packaged in an installer and distributed in the form of a standard
.msi (Windows installer) file. The installer can include

• The designer, serialization, and text template processor components
for the DSL.

• An item template for Visual Studio’s “Add new item” command,
allowing the DSL user to create a new instance file of the DSL in a
Visual Studio project.

• A project template for the “New Project” command, allowing the DSL
user to create a new instance of a project in which the DSL is used—
including all the code generation templates for the application in hand.

Chapter 2: Creating and Using DSLs76

• Compiled assemblies that are required for the generated application.
Typically, the generated parts of an application can be separated
from the unchanging generic parts; the latter can be compiled and
distributed in that form rather than as source.

• Readme and license agreement files that should be displayed when
the installer is run.

The DSL Tools make it easy to create an installer. A “Domain-Specific
Language Setup” project template is in the same location as the “Domain-
Specific Language Designer” template. Devika uses this to add a setup
project to her solution, which, when built, constructs the .msi file. Devika
is able to customize what’s included in the installer as well as customize
the UI that gets displayed when the .msi file is executed, just by editing an
XML file (it’s actually a DSL file with an XML syntax), and then repro-
cessing the .tt files in the Setup project. See Chapter 9 for details.

Devika’s colleague Dave has a standard edition of Visual Studio, without
Visual Studio SDK. The installer automatically begins by installing the DSL
Tools runtime and then installs the DSL itself. He can now create, edit, and
use instances of the Issue State language even though he cannot author them.

A Second DSL: The Project Definition DSL

One useful aspect of the Issue State DSL is that a state model can be drawn
offline and uploaded to the application after it has been discussed. Other
aspects of the Issue Tracking application’s administration remain uncom-
fortably immediate, however. For example, an administrator can set up
new projects in the database and new categories of work to which issues
can be assigned, but the effect is immediate, with no possibility for offline
consideration.

Using a similar incremental process to the Issue State DSL, Archie (the
architect) and Devika (the lead developer) create a new DSL. The resulting
designer is shown in Figure 2-19.

The new designer drives the issue database in much the same way as the
Issue State DSL.

An interesting aspect of this is that we now have more than one DSL in
use to drive different aspects of the same application.

A Second DSL: The Project Definition DSL 77

Architecture of the DSL Tools

A new DSL Tools solution in Visual Studio contains two projects, Dsl and
DslPackage. Dsl provides code that defines the DSL in terms of the behav-
ior of the generated designer, how it is serialized, and how transformations
work; DslPackage provides coupling to Visual Studio so that instances of
the DSL can be opened and saved as documents.

The Generated Code
Most of the content in both projects resides in the GeneratedCode folders and
is generated from DslDefinition.dsl. While it’s instructive to look at the
content of these folders, it is never useful to edit them, as the edits will be
lost the next time you click the “Transform All Templates” button. When you
write custom code for validation constraints or to augment the functions of

Chapter 2: Creating and Using DSLs78

Figure 2-19: Issue Project designer

the generated designer, it should be written in separate files in a “Custom
Code” folder.

Looking into the GeneratedCode folders using the solution explorer, the
text template files (.tt) are immediately visible; to reveal the generated
files, click the “[+].” Opening a typical template file, we see that there is
very little code aside from a reference to the DSL definition file and an
include directive:

<#@ Dsl processor="DslDirectiveProcessor"
requires="fileName="..\DslDefinition.dsl'" #>

<#@ include file=”Dsl\Connectors.tt” #>

The included files are to be found within your Visual Studio SDK
installation directory, under VisualStudioIntegration\Tools\DSLTools\
TextTemplates.

Most of the customizations you may wish to perform can be done by
adding to the generated code—see Chapter 10 for details. In the rare case in
which you need to change the generated code, replace the @include direc-
tive in the project’s text template file with the text from the included stan-
dard template, and then edit that.

DSL Tools Architectural Layers
The generated code is concerned with the variations that make your DSL dif-
ferent from others. The generic features common to all DSLs are provided in
a number of compiled assemblies that are installed as part of the DSL Tools.

There are thus three major layers in the architecture of a DSL imple-
mentation: the compiled framework, the code generated from the DSL def-
inition, and hand-written code. The major parts are shown in Figure 2-20.

The Framework Assemblies
• Microsoft.VisualStudio.Modeling—The domain model frame-

work is at the core of the system, managing model elements and
links—instances of domain classes and domain relationships, which
were introduced in Chapter 1 and are covered in detail in Chapter 3.
It supports transactions, including undo and redo as well as the
propagation of changes using rules and events, for example, to keep
the screen presentation synchronized with the internal model.

Architecture of the DSL Tools 79

Chapter 2: Creating and Using DSLs80

Generated shape-class mappings

Hand crafted designer extensions

Generated
serializers

Text templates Generated
commands

Generated
Directive
processor

Dsl\
Directive
Processor.cs

Generated
Shapes

Dsl\
Shapes.cs

Generated
Shell Code

DslPackage

Design Surface
Framework

Modeling
.Diagrams

Validation
Framework

Modeling
.Validation

Hand coded
validation logic

Dsl\
Validation\

Templating
engine

Modeling
.TextTemplating

Domain Model Framework

Modeling

Shell
Framework

Modeling
.Shell

Generated Domain Classes

Dsl\
DomainClasses.cs

H
a
n
d
 C

ra
ft
e
d

 C
o
d
e

G
e

n
e

ra
te

d

 C
o

d
e

C
o
m

p
ile

d

 F
ra

m
e
w

o
rk

Figure 2-20: Architecture of the DSL Tools

• Microsoft.VisualStudio.Modeling.Diagrams—The design surface
framework is built on top of the domain model framework and deals
with the graphical notation by handling the display of elements on
the design surface such as diagrams, shapes, connectors, decorators,
and so on. These elements are also model elements, so the services of
the domain model framework can be exploited for their manage-
ment. The presentation aspect of a designer, which exploits this
framework, is described in Chapter 4.

• Microsoft.VisualStudio.Modeling.Validation—The validation
framework handles the execution of validation methods over model
elements and links, and then the creation of error objects when vali-
dation fails. This interfaces with the shell framework to post mes-
sages in the errors window of Visual Studio. The use of this
framework is described in Chapter 7.

• Microsoft.VisualStudio.Modeling.TextTemplating—The templat-
ing engine is used to execute text templates for the generation of code
and other artifacts. It is an independent component that can be used
to execute templates that obtain their input from sources other than
DSLs. The use of the templating engine is described in Chapter 8.

• Microsoft.VisualStudio.Modeling.Shell—The modeling shell
manages the hosting of the designer in Visual Studio, in particular,
dealing with tools, menu commands, and the opening and closing
of files.

Content of the DSL Project
The compiled code assembly built by the Dslproject (Figure 2-21) defines the
DSL. Astand-alone application can use this assembly to load and manipulate
DSL instance files, though without the benefit of the graphical user interface.

Architecture of the DSL Tools 81

Figure 2-21: Files in the Dsl project

Chapter 2: Creating and Using DSLs82

• DslDefinition.dsl—The file from which all the generated code is
derived.

• DslDefinition.dsl.diagram—Every DSL instance is stored in a pair
of files: one containing the essential information about the domain
class instances and relationships, and the other containing the layout
of the diagram. If the diagram file is lost, the user needs to rearrange
the material on the screen, but no important information is lost. The
DSL definition is like any other DSL in this respect.

• Resources folder—The images used in the toolbox for cursors and
on some shapes. The images may generally be in any of several for-
mats, including bitmap (bmp) and JPEG. The files that should appear
here are determined by the content of the DSL definition. For exam-
ple, if you define a new Tool in the DSL definition, it must have an
icon to represent it in the toolbox. You provide a name for the file
and then supply it in the Resources folder.

• Properties\AssemblyInfo.cs—Version information that finds its way
into the compiled code for your DSL. The entries are derived from the
values you supplied to the wizard when you created the DSL.

• Dsl.csproj—The project file isn’t explicitly shown in the folder, but
its content is accessible by right-clicking the Dsl project node and
choosing “Properties.” The assembly name and default namespace
are derived from values you supplied to the DSL creation wizard.

Several of the files in the GeneratedCode folder correspond to the main
sections of the DSL definition as seen in the DSL explorer:

• DomainClasses.cs—A class (or two) for each of the domain classes
defined in the DSL definition. There are regions in each class handling
each domain property, each role (that is, participation in a relation-
ship), and in some cases a handler handling “merges”—linking of one
object to another. Each class also contains a nested property handler
class for each domain property. (See Chapters 3 and 5 for details.)

• DomainRelationships.cs—A class for each domain relationship. All
the same code as domain classes, plus handlers for the linkage to
each end of the relationship.

• DomainModel.cs—A class representing the model as a whole (not the
same as the root class of the model). It provides mostly reflective
information about the other domain classes.

• Shapes.cs, Connectors.cs—Implementations of the graphical
aspects of the DSL definition. Contain quite a lot of code that can be
overridden or augmented to customize the interactive behavior of
the generated designer. (See Chapter 4.)

• Diagram.cs—Includes code for updating the diagram content when
the model changes.

• ConnectionBuilders.cs—Implements the detailed behavior of
connection tools. (See Chapter 5 for details.)

• ToolboxHelper.cs—Code called when Visual Studio sets up its
toolbox, which defines the tools for this DSL. This code is generated
from the “Editor\Tools” node in the DSL explorer. (See Chapter 5.)

• Serializer.cs, SerializationHelper.cs—Define how instances of
the DSL are saved to files. Generated from the Xml Serialization
Behavior section of the DSL definition. (See Chapter 6.)

• DirectiveProcessor.cs—Defines parameters to the template
processing engine that allow instances of the DSL to be referenced
by text templates. (See Chapter 8.)

• LanguageSchema.xsd—The XML schema definition for the language.

• MultiplicityValidation.cs—Where the DSL definition specifies
that the minimum multiplicity of a relationship role is 1, this code
checks that the DSL user has indeed created a link, as part of the
validation checks on saving the file.

• DomainModelResx.resx—A resources file containing strings and
image references used in your DSL. (See Chapter 4.)

Content of the DslPackage Project
The assembly generated by this project (Figure 2-22) is concerned with
managing DSL instances as Visual Studio documents. Many of the files are
standard for packages defined using the Visual Studio SDK and are dis-
cussed in the VS SDK help.

Architecture of the DSL Tools 83

• Commands.ctc— Modify this file to define menu commands in the
standard Visual Studio command table syntax. (See Chapter 10.)

• GeneratedCommand.h—Text that is included by Commands.ctc that
defines the standard menu commands for the DSL that appear when
you right-click on the diagram—for example, to run validation
checks.

• CommandSet.cs—Code for the standard commands for the DSL.

• Constants.cs—The file extension of this DSL, the version number,
the Globally Unique IDs (Guids) of the designer package, and so on.

Chapter 2: Creating and Using DSLs84

Figure 2-22: The DslPackage folder

Summary 85

• Package.cs—Run by Visual Studio when setting up its toolbox and
menus, to register menu commands. Notice the class attributes,
which control the registration of the package, tools, explorer, and the
mapping of the filename extension to this package.

• EditorFactory.cs—Code to start up the designer for the DSL when
a file is opened.

• DocData.cs—Code managing the loading and saving of a DSL file
within Visual Studio.

• DocView.cs—Code managing the presentation of a DSL instance in a
designer window.

• ModelExplorer.cs—Code for the explorer specific to this DSL.

SUMMARY

This chapter has examined a scenario in which a company used DSL Tools
and provided an overview of their application. Several points have been
made:

• A DSL allows you to quickly and reliably produce multiple variants
of a piece of software and to make changes when necessary.

• A DSL and the framework that executes it (or uses it as input) are
developed together, preferably in gradual steps to minimize risk.

• In some cases, the system may graduate from a generative toward
an interpretive framework, allowing more runtime flexibility.

• A wide variety of functionality may be specified in the DSL defini-
tion and may be extended even further by augmenting the gener-
ated code with hand-written code. Hand-written code is used
particularly in the definition of validation constraints.

• To understand the DSL Tools and their use, it is important to distin-
guish between the roles of DSL author, DSL user, and the user of the
application created with the help of the DSL.

The chapters that follow treat in more detail all the features touched on
briefly here. The final chapter discusses in more depth the process for design-
ing a DSL in the broader context of the software development process.

This page intentionally left blank

3
Domain Model Definition

Introduction

Chapter 2 introduced the different pieces that must be created to develop a
DSL: the domain model, graphical notation and toolbox, explorer and prop-
erties window, validation, serialization, and deployment. It also introduced the
DSL designer, which the DSL author uses to define the different components
of the new language. This chapter describes how to define the domain model
and what a domain model means in terms of the generated DSL tool.

Every DSL has a domain model at its core. It defines the concepts rep-
resented by the language, their properties, and the relationships between
them. All DSL users must be aware of these to some extent, because every
element that they create and manipulate while using the DSL is described
by the domain model. The domain model is like a grammar for the DSL; it
defines the elements that constitute a model and gives rules for how these
elements may be connected together.

The domain model also provides the foundation for the other aspects of
the language to build on. The definitions of notation, toolbox, explorer,
properties window, validation, serialization, and deployment are all built
on the domain model. It is also used to generate the programmatic API,
which you can use to customize and extend the language, and which you
access from templates to generate code and other textual artifacts.

The basics of domain modeling are quite simple if you are familiar with
object-oriented design or object-oriented programming. This chapter describes

87

all of the basic ideas, using the Issue State example introduced in Chapter 2
as a source of examples. It also delves more deeply into some of the finer
points of domain modeling, using some modifications to the Issue State
example to illustrate the key issues.

The Domain Model Designer

We start building the Issue State domain model in the DSL authoring solu-
tion described in the previous chapter, created using the Domain-Specific
Language designer wizard. The minimal language template creates a good
starting point. In the wizard, the company name is set to CJKW, the lan-
guage name to IssueStateModels, and the file extension to .iss. From the
resulting domain model, everything is deleted except the domain class
ExampleModel and the IssueStateModelsDiagram, which are renamed to
IssueStateModel and IssueStateDiagram, as shown in Figure 3-1.

Chapter 3: Domain Model Definition88

Figure 3-1: Smallest valid domain model

The topic of this chapter, the domain model, is the set of elements that
appear in the left-hand area of the design surface, marked “Classes and
Relationships.”

The In-Memory Store 89

TIP Delete invalid toolbox elements

If you try to validate this domain model by right-clicking over the
design surface and selecting “Validate All,” you may get a couple of
errors because of elements in the Toolbox part of the definition that
refer to elements that you’ve deleted. It is fine to delete these toolbox
elements, because this chapter will not discuss the toolbox. Once they
are deleted, the domain model should validate; it is in fact the smallest
valid domain model, which contains a single domain class associated
with a single diagram.

Whenever your domain model is valid, you can create a designer to try
out by pressing the “Transform All Templates” button in the solution
explorer and pressing F5 to build and run your design. You might even try
this on the domain model shown in Figure 3-1. In the resulting designer,
each .iss file will load as a blank diagram associated with a model
explorer that shows a single IssueStateModel element and no means to
add anything else. When the domain model is completed, the diagram will
still be blank but you’ll be able to create models using the model explorer,
save them as .iss files, and reload them. Later chapters will show how
to complete the user interface of your designer with shapes, connectors,
toolbox entries, and customized behavior.

The In-Memory Store

Before going any further in building the domain model, it is a good idea to
understand something of what happens at DSL runtime inside a generated
DSL tool. At the heart of a DSL tool is a set of APIs called the In-Memory
store. We often call it simply the store; it is implemented by means of a class
called Store, which is available to the DSL author as part of the DSL APIs.
The store provides a set of basic facilities to support the behavior of a DSL

tool: creation, manipulation, and deletion of model elements and links;
transactions, undo/redo, rules, and events; and access to the domain
model.

When a DSL tool such as the Issue State designer is launched, for exam-
ple, by opening one of its files, a new Store is created and initialized by
telling it about the domain models that make up the DSL that it will be
executing. We’ll describe how this is done later in this chapter.

Once the store has been created and initialized, the DSL runtime exe-
cutes by creating and manipulating model elements and element links. In the
DSL Tools API, the abstract classes ModelElement and ElementLink provide
access to all of the functionality available for creating, manipulating, and
deleting model elements and links in the store. As we’ll see, the code gen-
erated for the domain model when you press “Transform All Templates”
in the DSL designer mainly consists of classes derived from these. For
brevity, when describing instances of classes derived from ModelElement,
we often refer simply to model elements, or MELs; we similarly refer to
instances of classes derived from ElementLink as links.

Consider the simple model of issue states shown in Figure 3-2, consis-
ting of the states Raised, SubmittedForAssessment, Pending, and Closed,
connected by transitions as shown.

Chapter 3: Domain Model Definition90

Figure 3-2: Simple Issue State model as presented on screen

What we see in Figure 3-2 is the on-screen presentation of a model
kept in the store. We’ll see later how the actual shapes and arrows are
derived from the model, but let’s for the present focus on the model itself.
In the store at DSL runtime, this model is represented by MELs connected
by links as shown in Figure 3-3. Observe that each MEL representing

The In-Memory Store 91

IssueState
Name = Closed

IssueState
Name =

SubmittedForAssessment

IssueState
Name = Raised

IssueStateModel

StartElement
Name = Start1

IssueState
Name = Pending

Figure 3-3: Issue State model as ModelElements and ElementLinks

an IssueState has a Name property. Each of the links has a direction,
from source to target. The black circle that indicates the starting state
corresponds to a MEL whose class is StartElement and which also has a
Name property.

In the store, each MEL is an instance of a C# class that is directly or
indirectly a subclass of ModelElement. These classes are generated by the
DSL Tools from the particular domain model defined by the DSL author. In
fact, each of these C# classes is generated from an element in a DSL defini-
tion that we call a domain class. Similarly, each link is an instance of a C#
class that is directly or indirectly a subclass of ElementLink. These classes
are generated from elements that we call domain relationships. In fact, Ele-
mentLink is itself a subclass of ModelElement, so every link can do everything
that a MEL can do, such as possessing properties.

To avoid confusion, we will always talk about “domain classes” to refer
to the parts of the domain model, and “C# classes” to refer to classes defined
in the C# programming language—whether generated from the domain
model or hand-written. Sometimes when talking about the generated code
we’ll also mention the CLR: the Common Language Runtime, which is the
basis for all of the Microsoft .NET programming languages.

Domain Classes

Domain classes are created in the DSL designer by dragging the “Domain
Class” tool from the toolbox and dropping it onto the “Classes and Rela-
tionships” section of the DSL designer’s design surface. We’ve already got
a domain class in our domain model, called IssueStateModel. This is called
the root domain class. There can only ever be one of these in a domain model.
When you run the Issue State designer to create models like the one shown
in Figure 3-2, there will always be a single instance of the root domain class
that corresponds to the diagram. The same is true for any DSL; you must
define a single root domain class and associate it with the diagram. Thank-
fully, this is done automatically for you by the language templates from
which you start, so unless you delete the one provided, it is already set up
correctly.

As we saw from Figure 3-3, the Issue State domain model must contain
domain classes called IssueState and StartElement, both of which must define
a Name domain property. Later we will define domain relationships to link
these states into their owning model and to represent the transitions between
them. IssueState and StartElement share some important characteristics;

Chapter 3: Domain Model Definition92

TIP Creating links between links is possible but can cause
complications

It is even possible to create links sourced and/or targeted on links,
links between those links, and so on ad infinitum. But you would be
wise to avoid creating links to links unless you are sure that it really
is the best way to get what you want; usually a simpler approach
will pay dividends in maintaining your models and avoiding tricky
customizations.

Domain Classes 93

Figure 3-4: Creating the StateElement

domain class

TIP Use the “Named Domain Class” tool to create a Name
domain property

The special tool for “Named Domain Class” actually does more than
just creating a domain class and giving it a Name domain property; it
also creates settings so that the Name property has unique default
values and special treatment for serializing cross-references. We’ll see
the details later. As a rule of thumb, if you want to create a domain class
whose instances have names, use the “Named Domain Class” tool.

they have a Name and they participate in transitions. These characteristics
are represented by an abstract domain class called StateElement from
which these domain classes inherit.

On the toolbox is a choice between “Domain Class” and “Named
Domain Class.” Dragging the latter causes the creation of a domain class
that has a Name domain property. We use this tool to create a new domain
class, which gets a default name of DomainClass1. Renaming this to be
StateElement and setting its “Inheritance Modifier” to abstract gives the
result shown in Figure 3-4.

The two domain classes IssueState and StartElement are created using
the “Domain Class” tool—since they will inherit from StateElement, they
do not need a Name domain property. Once the domain classes have been
dropped onto the design surface and given their correct names, selecting
the “Inheritance” tool and then clicking on the derived class and dragging

Chapter 3: Domain Model Definition94

Figure 3-5: Creating an inheritance hierarchy

and dropping it on the base class will create the inheritance connectors, as
shown in Figure 3-5.

At this point, each of the new classes appears twice on the design surface
as a consequence of the way the domain model design is laid out. In any
domain model design, a particular domain class might appear many dif-
ferent times, depending on the various relationships that it has with other
domain classes. However, only one of these appearances represents the full
definition of the domain class; the rest are placeholders. By right-clicking
on one of the placeholder appearances and selecting “Bring Tree Here”
from the context menu, you can rearrange the diagram so that the definitions
are conveniently placed, resulting in the reorganized layout shown in
Figure 3-6. Other options to rearrange the layout include “Split Tree,”
which has the opposite effect of “Bring Tree Here,” allowing you to divide
up the tree into convenient sections, and “Move Up” and “Move Down,”
which enable you to change the vertical order of the domain classes. Also, the
little square on the edge of the StateElement domain class contains a little

“–” sign; clicking in the square will cause everything hanging beneath it to
collapse, leaving just the square containing a little “+” sign.

Domain Classes 95

Figure 3-6: Reorganized layout of the

inheritance hierarchy

As we’ve seen from this example, domain classes can participate in
inheritance hierarchies. Each domain class may have zero or one base
domain class. The notation for this is borrowed from UML and consists of
a solid line with a triangular open arrowhead directed toward the base
domain class. The meaning is just as you would expect—the derived
domain class inherits all of the domain properties and domain relationships
from the base class. A domain class can be marked as abstract or sealed. An
abstract domain class cannot be directly instantiated—it must instead have
another domain class derived from it. A sealed domain class cannot be
inherited from. Abstract domain classes appear on the diagram with a
dashed border, and their names are in italics; sealed domain classes appear
on the diagram with a heavy solid border.

Now we would like to give the IssueState domain class two domain
properties: Description, so that the DSL user can give each IssueState some
descriptive text, and Icon, so that the DSL user can associate an icon file
with the state. Right-clicking over the “Domain Properties” compartment
of the domain class offers a context menu containing the option “Add new
DomainProperty;” by using this, the desired properties are created, as
shown in Figure 3-7.

Chapter 3: Domain Model Definition96

Figure 3-7: New Domain Properties added

to IssueState

Figure 3-8 shows the Visual Studio properties window when the domain
class StartElement is selected on the design surface. The “Description” setting
is selected in the properties window. Every domain class has such a
description, which is used to generate comments into the code and the XML
Schema generated from the domain model. Under the “Definition” cate-
gory are settings for the “Base Class” from which this domain class inher-
its, the domain class’s name, and the CLR “Namespace” into which code
will be generated.

An explanation for each entry in the properties window can be obtained
by pressing the F1 key, which will open the appropriate page of the online
documentation.

Figure 3-9 shows the properties window when the Name domain property
of the domain class StateElement is selected.

Each domain property has a type, which may be any CLR type. In fact,
the most commonly used types in a domain model are String, Boolean, and
domain-specific enumerations defined in the DSL explorer (using the “Add
New Domain Enumeration” command). A domain property may also be
given a default value, which will be used to initialize its value when a new
MEL is created.

Domain Classes 97

Figure 3-8: Properties window for domain class StartElement

Figure 3-9: Properties window for the Name domain property

Up to one domain property in each class may be marked as a name by
setting “Is Element Name” to True as shown in Figure 3-9. Properties with
“Is Element Name” set to True are treated specially in the DSL runtime; for
example, their “Display Names” will be shown in various parts of the runtime
user interface, such as the properties window.

Chapter 3: Domain Model Definition98

Domain Relationships

Let’s add some domain relationships to our domain model. Unlike classes,
we don’t have to worry about confusing domain relationships with C# rela-
tionships, because there is no such thing as a C# relationship! So we usually
simply talk about relationships. Each relationship has a direction, from left
to right. The left end is the source and the right end is the target of the rela-
tionship. There are two kinds of relationships, called embeddings and references.
Embeddings are represented by shapes connected by solid lines, and
references are represented by shapes connected by dashed lines. As we’ll
see, embeddings and references have quite different characteristics, espe-
cially in the way that they influence the way that the language is visualized
and serialized. We start by looking at reference relationships.

TIP “Property” has two meanings

The word “property” can cause confusion, because it has two different
meanings. In a domain model, a domain class has a set of domain
properties, which will govern what exists in the store when the even-
tual DSL is running. In the DSL designer, every element has a set of
properties, which are shown in the properties window when the element
is selected. One source of confusion is the fact that a domain property
is just such an element. Through the properties window you can see
that a domain property, such as the one called Name, has a set of prop-
erties, such as Kind. Similarly Figure 3-8 showed that every domain
class has a Description property, not to be confused with the domain
property called Description in Figure 3-7.

We’ve tried to avoid this confusion by referring explicitly to domain
properties wherever possible. But you really have to get used to the
fact that every domain property has a Name property, and in fact
the Name property of the domain property shown in Figure 3-9 has the
value “Name.”

We’ll add a Comment domain class to the example and introduce a
reference relationship so that a Comment can be associated with any number
of StateElements, and a StateElement can have any number of Comments.
The store at DSL runtime will contain MELs representing StateElements
and Comments, connected by links of the new relationship as shown by the
dashed lines in Figure 3-10.

Domain Relationships 99

First we add a new domain class called Comment using the “Domain
Class” tool. We give it a domain property called CommentText, with the
type String. Then we select the “Reference Relationship” tool on the toolbox,
click over the Comment domain class, drag to the StateElement domain
class, and release. This creates a new reference relationship whose name is
automatically set to CommentReferencesStateElements. We decide that
this name doesn’t quite represent the intended meaning of the relationship,
so we edit it and change it to CommentsReferToIssueStates. The result is
shown in Figure 3-11.

Let’s take a close look at the relationship in Figure 3-11 so that we can
see its various component parts. The relationship itself has a name,
CommentsReferToIssueStates, in this case. The line at each side of the

IssueState
Name = Closed

IssueState
Name =

SubmittedForAssessment

IssueState
Name = Raised

StartElement

IssueState
Name = Pending

Comment
CommentText =
“This is the first

state”
Comment

CommentText =
“These are

interesting states”

Figure 3-10: Comments linked to IssueStates

relationship is called a domain role, or often just role. Dashed lines indicate
reference relationships, as in this case. Each role connects the relationship
to a domain class, sometimes called the roleplayer for the role.

Chapter 3: Domain Model Definition100

A name is shown next to each role. This is called its property name.
Default property names are calculated by the DSL designer from the names
of the roleplayer classes. The property name StateElements on the left-
hand role is not very descriptive, so we edit it and change it to Subjects,
resulting in Figure 3-12.

Figure 3-11: The CommentsReferToIssueStates domain relationship

domain role

domain roledomain

relationship

Figure 3-12: Property names and multiplicities on roles

property

name

property

name

multiplicity multiplicity

Domain Relationships 101

Figure 3-12 also shows that each role has a multiplicity. In this case, the
source role’s roleplayer is Comment, its property name is Subjects, and its
multiplicity is ZeroMany, which shows up on the diagram as 0..*; the target
role’s roleplayer is StateElement, its property name is Comments, and its
multiplicity is again ZeroMany.

In addition to its property name, a role has a name, which is not shown
on the design surface. We’ll see later how the name of a role is used when
code is generated for the relationship.

We’ve already seen that default values for the names of roles and rela-
tionships are created by the DSL designer. The default name of a role is set
to be the same as the name of its roleplayer domain class. The property
name of a role defaults to be the same as the name of its opposite role, plu-
ralized in cases where the multiplicity is Many. The name of an embedding
relationship defaults to be XHasY, where X is the name of the source role
player, and Y is the property name of the source role. The name of a refer-
ence relationship defaults to be XReferencesY, where X and Y are calculated
in the same way. This scheme usually gives a reasonably meaningful set of
names for relationships and roles, and avoids a good deal of unnecessary
work on the part of the DSL author. All of the names can be explicitly over-
ridden by the author if desired, and we’ve given a couple of examples of
doing that. Selecting “Reset” on the context menu for the property’s entry
in the properties window will reset it to the default.

Embeddings
Some relationships are embeddings, which are displayed using solid lines.
Embeddings provide a way to navigate through your model as a tree, that
is, as a structure in which every element (except for the single element at the
root of the tree) has exactly one parent element. This is important for sev-
eral reasons. The first is that models are typically serialized as XML files,
and the structure of an XML document is intrinsically a tree of elements,
starting at the root element. The embedding defined in the domain model
determines the structure of this tree of XML elements. Chapter 6 returns to
this topic in much more detail.

Second, recall from Chapter 2 that the generated designer for your DSL
has a model explorer. The embedding structure determines the organization
of this explorer, because an explorer is also structured as a tree.

Third, the embedding structure also provides a default for how deletion
and copying behavior is propagated through a model. By default, the
deletion of an embedding parent deletes its children, while the deletion
of a roleplayer MEL in a reference link deletes the link but not the other
end.

Marking a relationship as an embedding places some special constraints
on it, as follows:

1. The multiplicity on the target role must be either One
or ZeroOne, because a MEL can only be embedded once.

2. If a domain class is a target in more than one embedding
relationship, the multiplicity of all of those target roles must be
ZeroOne, because a MEL of the class can only be embedded
by one of those relationships at a time. Marking any one of the
roles as One would make all of the other relationships impossible
to instantiate.

3. In a complete domain model, every domain class except the
root must be the target of at least one embedding relationship,
because it would not be possible to create trees of MELs
otherwise, and so the model explorer and serialization would
not work.

Let’s create some embedding relationships. Taking the domain model
created so far and selecting the context menu item “Validate All” produces
the warning “DomainClass IssueState is not abstract, and is neither a root of the
model nor embedded within it” and similar warnings for StartElement and
Comment. These warnings appear because it is not possible to create trees
of MELs with the domain model created so far. Therefore, it would not be
possible for the Issue State designer to display a model explorer or to save
the models as files. To enable the models to be trees, we must create two
embedding relationships, one that embeds Comments into the IssueState-
Model, and one that embeds StateElements into the IssueStateModel.
These relationships are created using the “Embedding Relationship” tool,
using the same gestures as the “Reference Relationship” tool. The result-
ing relationships are shown in Figure 3-13. Notice that the multiplicity on

Chapter 3: Domain Model Definition102

The root domain class IssueStateModel is not itself the target of any
embedding relationship. Any Issue State model created at DSL runtime,
such as the one depicted in Figure 3-14, will have exactly one root MEL of
the class IssueStateModel. In the following chapters that describe how to
associate a diagrammatic notation and a serialization with this domain
model, you’ll see that both the diagram and the top-level element of the
serialized file correspond to this MEL.

Domain Relationships 103

Figure 3-13: Embedding relationships

TIP Embeddings control nesting in the model explorer

The best way to think about which relationships should be embed-
dings is to consider your model explorer. If you want elements to be
nested in the explorer, make the relationship an embedding; otherwise
make it a reference.

An easy rule of thumb for beginners is to embed every non-root
domain class directly in the root domain class and make every other
relationship in the domain a reference. This is sometimes not ideal, but
should always produce a workable DSL.

the right-hand roles, whose property names have been changed to Model,
are 1..1, which is the default multiplicity for the target role of an embedding
relationship.

Multiplicity
The multiplicity of a role defines, given a MEL of a particular class, how
many links may have that MEL as roleplayer. There are four possible values
for multiplicity.

• One: Every MEL of this class (or a derived class) must play this role
exactly once. For example, every Comment must be embedded in an
IssueStateModel.

• ZeroOne: A MEL of this class (or a derived class) may play this role
no more than once. This is equivalent to saying that it may be linked
via this relationship with zero or one MEL.

• ZeroMany: A MEL of this class (or a derived class) may play this role
any number of times. For example, each Comment can refer to any
number of StateElements.

• OneMany: Every MEL of this class (or a derived class) must play
this role at least once.

Chapter 3: Domain Model Definition104

Figure 3-14: Root element at DSL runtime

IssueState
Name = Closed

IssueState
Name =

SubmittedForAssessment

IssueState
Name = Raised

IssueStateModel
Name = StateModel

StartElement

IssueState
Name = Pending

Domain Relationships 105

References
We created a reference relationship earlier. References are not constrained like
embeddings. In general, links from reference relationships can refer from any
MEL to any other MEL. Indeed, because links are themselves MELs, you can
create links between links in order to create complex graphs of objects. Bear
in mind, however, that a primarily diagrammatic user interface will be used
to interact with the graph at DSL runtime, so it is important to keep the
design simple enough to understand through such an interface. Note, how-
ever, that although it is possible to create referencing links between any kinds
of MELs or links, embedding links may not target links.

The next relationship we create is called IssueStateTransition, which
goes from IssueState to itself. Figure 3-15 shows the detail of this relation-
ship. Instances of this relationship are links that represent transitions that
connect predecessor states to successor states. The multiplicity of both roles
is ZeroMany—this is the default for reference relationships. This relationship
has been given a domain property called Action.

Figure 3-15: The IssueStateTransition relationship

Figure 3-16 shows the on-screen presentation of an example model
containing links of this relationship between the four IssueStates called
Raised, SubmittedForAssessment, Pending, and Closed.

In the figure, there are two transitions between the two states Pending
and Closed. Each transition has a label that specifies the associated action.

Here is a case in which it is permissible to have more than one link of the
same relationship between the same two MELs. Because the transitions

carry actions, this makes perfect sense; the model says that a pending issue
can be closed either by solving it or postponing it. If the transitions did not
carry actions, then having two links between the same two states would not
really make sense, so the DSL author would like to be able to prevent this.

Chapter 3: Domain Model Definition106

In fact, the DSL author may specify whether or not to allow duplicate links
between the same pair of MELs by setting the “Allows Duplicates” property
on the domain relationship object while designing the domain model. If dupli-
cates are not allowed, the DSL runtime will refuse to create a duplicate link.

Figure 3-16: IssueStates and IssueState Transitions

TIP “Allows Duplicates” can only apply to many-to-many
relationships

Having multiple links between the same pair of roleplayers is only
ever possible for Many-Many reference relationships in which both
roles of the relationship have a Many multiplicity—any other cases
have a maximum multiplicity of one, so they cannot have more than
one link in any case.

Relationship Derivation
A further reference relationship is needed that connects StartElement to
IssueState. Remember that a StartElement appears on the screen as a black
dot connected to an IssueState. Figure 3-17 illustrates the result of creating this
relationship. Note the multiplicities: Every StartElement must be connected
to an IssueState via a link of this relationship—another way of saying this is
that StartElements cannot validly exist in a disconnected state—and an
IssueState can be connected to zero or one StartElement, but no more.

Now we are going to do something rather subtle. Remembering that
StartElement and IssueState both inherit from StateElement, we observe
that the relationships StartTransition and IssueStateTransition are rather
similar. They both connect StateElements to StateElements. We can actually
capture this similarity in the model by introducing inheritance on the rela-
tionships themselves. Using the “Reference Relationship” tool, we create a
new relationship between StateElement and itself, which we call Transition.
The “Inheritance Modifier” of this relationship is set to abstract, which
means that it is not possible directly to create links of it.

Now the relationships StartTransition and IssueStateTransition are both
derived from the abstract relationship Transition. This is shown by the por-
tion of the domain model illustrated in Figure 3-18. To create this part of the
model, the option “Show as Class” was selected on the relationships Transi-
tion, IssueStateTransition, and StartTransition, which caused extra shapes
representing the relationships themselves to appear on the DSL designer’s
design surface (see Figure 3-19). This facility allows inheritance, and indeed
any other kind of relationship, to be set up between domain relationships.

Domain Relationships 107

Figure 3-17: The StartTransition relationship

Figure 3-18: The abstract relationship Transition

Chapter 3: Domain Model Definition108

The basic rule for relationship derivation is that a link of a derived rela-
tionship can be considered as if it were a link of the base relationship. This
is the same as for normal classes: An instance of the derived class can be
considered as if it were a link of the base class. Relationships are special,
though, because they always have two roleplayer classes. If a link of the
derived relationship can be considered as if it were a link of the base
relationship, then the roleplayer MELs must have classes consistent with
the roleplayer classes of the base relationship. That is, the roleplayer
classes for a derived relationship must be derived from, or the same as,
the corresponding roleplayer classes for the base relationship.

For example, a link of IssueStateTransition connecting two IssueStates
can be considered as if it were a link of Transition connecting two State-
Elements. Similarly, a link of StartTransition connecting a StartElement to
an IssueState can also be considered as a link of Transition connecting two
StateElements. Asking the relationship Transition for all of its links will
give back the total of the IssueStateTransition and StartTransition links.

Generating a Designer with No Shapes

Having used the concepts described so far to define the domain model in
the DSL designer, a working Issue State designer can be generated and
launched in the Debugging project as explained in Chapter 2.

Figure 3-19: Relationships shown as classes in a hierarchy

The generated Issue State designer has a blank diagram and an empty
toolbox, because these elements of the language have not been defined—
defining these is the subject of later chapters. However, it does have a fully
working explorer and properties window. Figure 3-20 shows the explorer
when one Comment and three IssueState elements have been created, and
the menu provides the option to add further elements. Notice that the struc-
ture of the explorer corresponds exactly to the embedding relationships
defined in the domain model.

The Generated Code 109

TIP Links of many-to-many relationships cannot be created
through the explorer or properties window

This designer is not fully functional with respect to the domain model
because it is not possible through the explorer or properties window to
add new IssueStateTransition links. To do that, it is necessary to create
links from the toolbox; we’ll see how to do that in later chapters.

Figure 3-20: Explorer for Issue State target designer

The Generated Code

So far we’ve explained how to create the domain model. On its own, this
would just be a structure within the DSL designer that represented the
user’s wishes about the DSL that he or she would like to build. In order
to bring these wishes to life, code has to be generated to implement
the domain model using the “In Memory Store” and other features of
the DSL Tools. This code is generated by pressing the “Transform All

Templates” button in Visual Studio’s solution explorer for the DSLAuthoring
solution.

From a practical perspective, it is very useful to understand the gener-
ated code, not least because customizing the generated DSL tool requires
the DSL author to interface to this code and because there are some restric-
tions to what is allowed in domain models that result from the fact that
valid code must be generated. At this point, we focus on the generated code
and the elements of the DSL Tools framework that it uses.

The explanation can be considerably simplified by use of another DSL,
namely, the graphical language implemented by the Class Designer tool
that forms part of Visual Studio 2005. This tool will take a body of code
written in C# (or other CLR languages) and create diagrams of the classes
in it that show how they relate to each other.

Figure 3-21 shows such a diagram that illustrates the C# classes generated
from the domain classes created during this chapter. Each rectangle in
Figure 3-21 corresponds to one C# class. Observe in the header of each rectan-
gle the little symbol that indicates the base class. By default, each class inher-
its from ModelElement. Each class is generated in the CLR namespace specified
in the properties window for the corresponding domain class. By default, all
classes are generated in the same namespace, which is the one specified in the
language wizard when the language template was originally unfolded.

For our purposes, the compartments containing Fields, Methods, and
Nested Types, which are only of interest to more advanced developers,
have been closed up. What remains are the properties of each class. There
are two kinds of property: those that have been generated directly from the
domain properties specified in the domain model, and those that have been
generated from the roles of the relationships, where the name of the
generated property is the property name of the role. These are shown in
Figure 3-21 using different display options provided by the Class Designer.
The properties generated from domain properties are shown inline in the
class symbols themselves, while those generated from roles are shown as
arrows on the diagram.

There are two kinds of arrows, those with single arrowheads and those
with double arrowheads. The ones with single arrowheads simply mean
that the property has the type of the class at the head of the arrow; so for
example, the arrow from StateElement to IssueStateModel marked Model

Chapter 3: Domain Model Definition110

means that the class StateElement has a property called Model whose type
is IssueStateModel. This is a diagrammatic convention derived from UML
that helps to visualize properties whose type is a class shown on the
diagram.

The Generated Code 111

Figure 3-21: Class diagram of generated domain classes

The arrows with double arrowheads mean that the type of the property
is a collection whose contents are instances of the type at the head of the
arrow. This can be illustrated more clearly by expanding the part of the dia-
gram that deals with the relationship CommentsReferToIssueStates, as in
Figure 3-22. In this figure, the property of StateElement called Comments is
labeled with its type LinkedElementCollection<Comment>. The generic
class LinkedElementCollection<T> is part of the DSL Tools API. Every rela-
tionship role that has a multiplicity of ZeroMany or OneMany generates a
property whose type is LinkedElementCollection<T>, where T is the class
at the opposite end of the relationship. Generic classes are a CLR feature
introduced in .NET 2.0. One of their important strengths is the ability to
define strongly typed collections, that is, collections where it is possible to
specify the type of their contents at compile time. This strength has been
used extensively in the design of the API generated from a domain model
by the DSL Tools.

Chapter 3: Domain Model Definition112

Figure 3-22: Class diagram for CommentsReferToIssueStates

Recall that in the domain model the role whose roleplayer is StateElement
has a property name of Comments. This is used to generate the Commentsprop-
erty on the C# class StateElement. This role has a multiplicity of ZeroMany,
so the type of the generated property is LinkedElementCollection-
<Comment>.

Figure 3-22 also shows explicitly the class CommentsReferToIssue-
States, which is generated from the corresponding relationship in the
domain model. The header of the class shows that it inherits from Element-
Link. It has two arrows leaving it, one pointing at StateElement and called
StateElement, and the other pointing at Comment and called Comment. These
represent properties generated from the domain roles onto the relationship
class itself. The names of these properties are generated from the name
of the role, as distinct from its property name. Such a property can be used
in code to navigate from an individual link to the associated roleplayer
object.

The Generated Code 113

TIP The role’s name is always singular; the property name is
often plural

Note that the name of the role is always singular, whereas the property
name is plural whenever the multiplicity is Many. Maintaining this
convention can help considerably with the readability of the generated
code.

Classes generated from domain relationships such as this one are
used in circumstances where the DSL author wishes to deal explicitly
with the links of the relationship itself. In this particular example, that is not
very likely; the normal DSL author only needs to use the Comments and
Subjects properties on the roleplayer classes to create and manipulate
configurations of Comment and StateElement objects together with their
intervening links.

Using the Generated Code
The generated code has been carefully designed to give a convenient
API for DSL authors as a basis for their own DSL extensions and code

generation templates. Whenever you want to write code against this API,
you must include the following using statements:

using Microsoft.VisualStudio.Modeling;
using Microsoft.VisualStudio.Modeling.Diagrams;
...

First, note that any change to the store must be performed in the context of
a Transaction. If you want to add or remove elements or relationship links,
or you want to change their properties, you must open a Transaction like
this:

using (Microsoft.VisualStudio.Modeling.Transaction t =
this.Store.TransactionManager.BeginTransaction("operation name"))
{
// ... change store in here ...
t.Commit();

}

If an exception is thrown that is not caught within the using block, or if you
explicitly Rollback() the transaction, then all the changes performed
within the block will be undone. Also, when an Undo() or Redo() operation
is performed, all of the changes made in the store within the transaction are
undone or redone as a unit. Indeed, the name given as a parameter to the
BeginTransaction() method is the name that will show in the eventual
DSL as an item on the Visual Studio undo stack.

Having defined the Issue State domain model and generated code from
it, the DSL author can write code such as this:

using (Microsoft.VisualStudio.Modeling.Transaction t =
this.Store.TransactionManager.BeginTransaction("example"))

{
IssueState state = new IssueState(store);
state.Name = "TestState";
Comment comment = new Comment(store);
comment.CommentText = "This is an interesting state";
comment.Subjects.Add(state);

t.Commit();
}

In fact, before this code will work, the store must be initialized. In addition
to the C# classes generated for the classes and relationships in the domain

Chapter 3: Domain Model Definition114

model, a further C# class is generated that corresponds to the domain
model itself. This class implements a variety of helper methods for creat-
ing and deleting objects, giving runtime access to the domain model, and
enabling and disabling diagram rules. For our example, this class is called
IssueStateModelsDomainModel and is derived from the class DomainModel
supplied with the DSL Tools framework. This class is used for initializing
the store. A store is created and initialized using its constructor:

Store store = new Store(typeof(IssueStateModelsDomainModel));

The result of this call is to create a new Store, initialized so that it can con-
tain instances of the domain classes and relationships defined in the domain
models passed in as parameters to the constructor. You can in fact pass in as
many domain models as you like; a store initialized with multiple domain
models can contain MELs and links from any of those models.

More about Domain Classes

The remaining sections of this chapter delve into some of the finer points
of domain models and the code generated from them. Broadly speaking,
they are concerned with three topics: customization of the generated code,
customization of the generated user interface, and code customization
options. Quite a lot of customization is possible using the DSL Tools’ built-
in code generation, but when the DSL author wishes to stray outside of
those possibilities—to step up onto a higher customization plateau—there
are additional options to enable this. These options are briefly covered here;
later chapters build on these concepts and discuss the topic of customi-
zation in greater depth. Readers who are particularly interested in code
customization might like to skip ahead and take a brief look through
Chapter 10, where all the material on custom code is brought together.

Figure 3-23 shows the properties window when a domain class is
selected. In the “Definition” category, the property “Namespace” specifies
the CLR namespace where the C# class will be generated. The “Code” cat-
egory provides further options for customizing the generated code. We’ve
already seen the use of the “Inheritance Modifier” property, which can be
set to none, abstract, or sealed, causing the generated class to be corre-
spondingly marked. You should mark a class as abstract if you don’t want

More about Domain Classes 115

to create any instances of it in your running DSL. If you don’t mark it as
abstract, then the DSL Tools will assume that you want to create instances
of it and will generate code and validate your domain model accordingly.
Marking a class as sealed can be useful for restricting the ways in which a
designer can be extended and thus can reduce the costs of supporting it.

Chapter 3: Domain Model Definition116

Figure 3-23: Properties for a domain class

By default, all of the C# classes generated from domain classes are
public. You can specify that a generated class is internal using the “Access
Modifier.” Again, this is a way to reduce the ways in which a designer can
be extended.

A very common approach to customizing a generated DSL tool is to add
methods and properties to the generated C# classes by hand. Partial classes are
a feature introduced with .NET 2.0 that permit the definition of a single class
to be split across multiple files. This is extremely useful in code generation
scenarios where part of the class’s definition is generated and another portion

written by hand; it means that hand-written code is not overwritten when the
rest is regenerated. The DSL Tools exploits this capability throughout its
generated code. For each domain class a partial class is generated so that DSL
authors may write their own matching partial class(es) that add custom
behavior to that generated by the DSL Tools. Such a partial class might, for
example, declare that the class conforms to a particular interface, or add meth-
ods, fields, or properties to the generated code.

Sometimes, though, it is necessary to inhibit some of the code generation
so that the DSL author can customize at a deeper level. For this purpose,
two Boolean flags are available on the definition of a domain class. “Has
Custom Constructor,” when set to true, will stop the generation of a con-
structor for the generated class. This is useful where the DSL author needs
to apply customized initialization to a particular class. “Generates Double
Derived,” when set to true, causes the generation of two classes: an abstract
base class, containing all of the generated methods, and a concrete derived
partial class that only contains a constructor. This pattern allows any virtual
member in the generated class to be overridden by DSL authors, who can
create their own partial section for the concrete derived class that overrides
the base class. Customization sections in later chapters will demonstrate the
use of this capability.

A further customization option, which applies to domain classes, rela-
tionships, properties, and roles, is given by the ability to add any extra CLR
attributes that the DSL author desires through the “Custom Attributes”
setting in the properties window. These attributes will be added to the
generated code. This can be a useful general-purpose way to add data to
the domain model that could be used to extend its use, for example, to help
generate code for different purposes.

Properties of a domain class in the “Resources” category govern aspects
of the user interface of the generated DSL Tool. These properties generate
entries in a resources (.resx) file included in the DSL authoring solution. The
“Display Name” is used whenever the domain class is identified in the user
interface at DSL runtime. This is useful if the DSL is intended for use in a
country that speaks a different language, or if the desired user interface name
of the class is one that cannot validly be used as the identifier of a C# class.

Each domain class is also given a “Description.” This is used to create
a summary comment in the generated code; it is also used to generate

More about Domain Classes 117

annotations on the generated XML Schema, which provide extra IntelliSense
assistance to a DSL user hand-writing XML in the target domain.

The “Help Keyword” is used to associate an optional keyword with the
domain class that can be used to index F1 Help.

DomainClassInfo
When the store is initialized with a domain model, a DomainClassInfo
object is created for every domain class in the domain model. Objects like
this provide runtime access to the domain model, enabling the caller to dis-
cover the properties of a domain class, what domain properties it contains,
which relationships it participates in, and its inheritance hierarchy. Objects
like these are useful for writing programs that need to operate across
the store, independently of the specific domain model that is loaded—
programs such as generic user interfaces, debugging tools, serialization
tools, animation tools, and so on.

This code fragment illustrates how to acquire a DomainClassInfo object
from a suitably initialized store and query it:

IssueState s1 = new IssueState(store);
DomainClassInfo dci = s1.GetDomainClass();
string className = dci.Name;
ReadOnlyCollection<DomainPropertyInfo> = dci.AllDomainProperties;
ReadOnlyCollection<DomainRoleInfo> = dci.LocalDomainRolesPlayed;

Chapter 3: Domain Model Definition118

TIP Every DomainInfo object has an Id property

Every Info object—DomainClassInfo, DomainPropertyInfo, Domain-
RelationshipInfo, DomainRoleInfo—has an Id property that gives a
unique System.Guid for the Info object. Some of the DSL Tools’ APIs
require these Ids to be passed as parameters, although most require ref-
erences to the objects themselves.

The class DomainClassInfo also provides several static utility methods
that are mainly concerned with manipulating the names of MELs. These
methods could also have been implemented on the class ModelElement but
have been made static methods on DomainClassInfo in order to reduce the
surface area of ModelElement and thus improve the IntelliSense experience
for generated classes that derive from ModelElement.

More about Domain Properties

The customization settings for a domain property are accessed using the
properties window when the domain property is selected, as shown in
Figure 3-24.

More about Domain Properties 119

Figure 3-24: Properties for the Name domain property

Most domain properties in a DSL are typically typed as String, Boolean,
or an enumeration defined as part of the DSL. These enumerations can be
specified either as public or internal. An enumeration may optionally be
marked as Flags, in which case its values are interpreted as a bitfield.

TIP Domain properties of Flags types have a custom editor
with checkboxes

When a domain property’s type is an enumeration marked as Flags,
the property will automatically show up in the properties window of
the generated tool with a custom editor that allows you to set the
bitfield using checkboxes.

In fact, a domain property may have any CLR value type, including
types defined outside the DSL. The default value for the domain property,
if there is one, must be a string that converts validly to a value of the
domain property’s type.

Normally, a domain property generates a public CLR property on the
generated class. It’s possible to separately specify the access modifier for
the generated getter and setter via “Getter Access Modifier” and “Setter
Access Modifier” to be private, internal, or protected—in fact, any of the
access modifiers allowed by the CLR. The DSL author might place such
restrictions in order to limit the way that the domain property can be used,
and hence in order to limit support costs.

We earlier saw that one domain property in a class may be marked as
being a name (by setting “Is Element Name” to True). When this is set, a
built-in algorithm is used to create default values for the name domain
property that are unique for the MEL and its siblings within the context of
the same embedding MEL. The default algorithm appends a number to the
name property’s default value, or to the domain class name if there is no
default value. For example, the Name domain property in the State-
Element domain class has no default value. This means that the default
unique names for IssueStates within the same IssueStateModel will be
“IssueState1,” “IssueState2,” “IssueState3,” and so on.

This algorithm may be overridden by defining a class that derives from
the built-in ElementNameProvider class, implementing its SetUniqueName()
method with the desired algorithm, and setting the “Element Name Provider”
property to refer to the new class.

When the generated designer is running, selecting a shape on the diagram
or an entry in the model explorer will cause the domain properties defined
for the domain class of the selected MEL to show up in the properties
window, named by their “Display Name.” Domain properties can be hid-
den from the properties window by marking them with “Is Browsable” set
to False, and if they are browsable they will show up in gray and with edit-
ing disabled if they are marked “Is UI Read Only” set to True. The proper-
ties window is organized into categories, and the domain property’s
“Category” can be specified by a string. If no category is specified, the
property will appear in the category “Misc.” When a property is selected
in the properties window, its “Description” will appear, giving the DSL

Chapter 3: Domain Model Definition120

user some help in understanding its meaning. The “Description” is also
emitted in the property summary comment in the generated code and as an
annotation in the generated XML Schema.

Calculated Properties
An important customization is the ability to define calculated domain prop-
erties. These are properties that have no storage and only a getter. The value
for the domain property is calculated, when called, from data acquired else-
where, for example, from other domain properties on this or other MELs.
Setting a property’s “Kind” to Calculated causes the generation of code
that requires the DSL author to implement a method, in a partial class,
called GetXXXValue(), where XXX is the name of the calculated domain
property. This method can use the generated API to navigate to the data it
needs to calculate the correct result. If the DSL author forgets to implement
this method, then the DSL will fail to compile.

There is a subtlety that arises when defining a calculated domain prop-
erty. We’ll see later that making changes to the store causes the firing of
rules, which are used to update objects in the store, and events, which
are used to make updates external to the store. In particular, rules are used
to fix up the diagram when MELs are changed. When a domain property
is defined as Calculated, rules and events do not automatically fire when
the calculated value changes. Instead, the DSL author must explicitly
cause rules and events to be triggered, using the method Notify-
ValueChange() on the class DomainPropertyInfo. We’ll describe this class
shortly.

A further possibility for the “Kind” of a property is called Custom-
Storage. A domain property marked in this way will not generate any field
to hold its data. Instead, the DSL author must define, in a partial class, some
other way to store the value for the property, and must also define methods
GetXXXValue() and SetXXXValue(), which will access and update the pro-
perty’s stored value. This capability can be useful when the “Type” of the
property needs special initialization or lifetime management.

DomainPropertyInfo
When the store is initialized with a domain model, a DomainPropertyInfo
object is created for every domain property in the domain model. This

More about Domain Properties 121

object provides runtime information about the corresponding domain
property. It also offers some useful methods:

• The method GetValue(ModelElement element) can be used to get
the value of this domain property for the ModelElement passed as a
parameter. It returns a System.Object.

• The method SetValue(ModelElement element, object value) can
be used to set the value of this domain property for the ModelElement
passed as a parameter.

• The method NotifyValueChange(ModelElement element) can be
used to trigger events and rules that depend on this property on this
ModelElement. This is for use in scenarios where the property is
calculated, where these events and rules would not otherwise be
triggered when the calculated value changes.

The following code fragment (which must be run in the context of a trans-
action) shows how to acquire a DomainPropertyInfo object from a suitably
initialized store and use it to update the associated domain property’s
value:

IssueState s1 = new IssueState(store);
DomainClassInfo dci = s1.GetDomainClass();
DomainPropertyInfo dpi = dci.FindDomainProperty("Name", true);
dpi.SetValue(s1, "NewName");
string newValue = (string)dpi.GetValue(s1);

More on Domain Relationships and Roles

First, note that because relationships are implemented using classes, all of
the customization and tuning that applies to a domain class can also be
applied to a domain relationship. This section explores some of the extra
customization options that particularly apply to the roles of a relationship.
The properties window when a role is selected is shown in Figure 3-25.

We explained earlier how domain roles cause properties to be generated
on the roleplayer classes. In fact, a setting on the role can be used to inhibit
the generation of these properties, if desired. This is done by setting “Is
Property Generator”—seen in Figure 3-25—to False. The DSL author would

Chapter 3: Domain Model Definition122

normally only do this in order to reduce the size of the DSL’s generated API,
or possibly to avoid name conflicts in the generated code. Similarly, when
the properties are generated, the DSL author can restrict their external vis-
ibility using “Property Getter Access Modifier” and “Property Setter Access
Modifier,” which have similar effects to the corresponding settings on a
domain property.

More on Domain Relationships and Roles 123

Figure 3-25: Properties for a domain role

If the role has a multiplicity of ZeroOne or One, properties generated
from the roles will appear in the properties window at DSL runtime just like
any other properties, allowing the single roleplayer to be selected, and sim-
ilar data may be used to fine-tune these properties: “Property Display Name,”
“Description,” “Category,” and” Is Property Browsable.”

We saw earlier in the chapter that a role with Many multiplicity causes
the generation of a property whose type is LinkedElementCollection<T>,
where T is the domain class at the other end of the relationship. The DSL

author can define a custom collection to be used instead of this, for example,
by creating an index to help performance on a collection containing many
elements. The setting for “Collection Type” can be used to apply such a
customization.

By default, an embedding relationship will cause deletion to be propa-
gated from source to target. If the source roleplayer is deleted, then the
embedding link must be deleted—it is not possible for a link to exist with-
out a roleplayer at each end—and as a consequence of the link being
deleted, the target roleplayer will also be deleted. On the other hand, a
reference relationship will not propagate deletion. This is often the behavior
required from a DSL—but not always. Some scenarios exist for which we
want to customize this deletion behavior. For example, in the Issue State
model, the relationship between a StartElement and its associated Issue-
State is a reference relationship. If the IssueState MEL is deleted, then the
link between them will go, but the StartElement will remain. But we would
definitely like the StartElement to be deleted, too—it makes no sense on its
own. By marking the source role of StartTransition as PropagatesDelete,
we can achieve this. Now, when the StartTransition link is deleted, the
source roleplayer—the StartElement—is deleted too. This topic is discussed
further in Chapter 5, which describes how to customize the delete behavior
using the DSL Details window.

Programmatically, a MEL can be deleted by calling its Delete() method.
By default this will cause deletion to be propagated as described in the
paragraph above. It is, however, possible to specify as parameters to the call
to Delete() a set of roles through which the delete is not to be propagated.
This is done by passing the Ids of the associated DomainRoleInfo objects,
described below.

Accessing Links
If you want to get access to the actual links of a relationship, the generated
API provides static methods on the C# class generated for the domain rela-
tionship to do this. Three of these for the class IssueStateTransition can
be seen in Figure 3-26. Their signatures are as follows:

/// <summary>
/// Get the IssueStateTransition links between two given IssueStates.
/// </summary>

Chapter 3: Domain Model Definition124

public static ReadOnlyCollection<IssueStateTransition> GetLinks
(IssueState source, IssueState target)

/// <summary>
/// Get the IssueStateTransition links targeting an IssueState.
/// </summary>
public static ReadOnlyCollection<IssueStateTransition> GetLinksToPredecessors

(IssueState nextStateInstance)

/// <summary>
/// Get the IssueStateTransition links sourced on an IssueState.
/// </summary>
public static ReadOnlyCollection<IssueStateTransition> GetLinksToSuccessors

(IssueState previousStateInstance)

More on Domain Relationships and Roles 125

Figure 3-26: Generated methods for

IssueStateTransition

The use of the GetLinks() method is illustrated in the following code
example:

using (Microsoft.VisualStudio.Modeling.Transaction t =
this.Store.TransactionManager.BeginTransaction("example"))

{
IssueStateModel model = new IssueStateModel(store);
IssueState s1 = new IssueState(store);
model.States.Add(s1);
IssueState s2 = new IssueState(store);
model.States.Add(s2);
s1.Successors.Add(s2);
s1.Successors.Add(s2);
ReadOnlyCollection<IssueStateTransition> links =

IssueStateTransition.GetLinks(s1, s2);

links[0].Action = "solve";
links[1].Action = "postpone";

t.Commit();
}

More on Relationship Derivation
Relationship derivation can be very useful for all of the same reasons that
class inheritance is useful—it allows common structure and behavior to be
shared in common base classes. For example, if the author of the IssueState
model wished to specify some rules or behavior that applied to all transi-
tions, whether they are start transitions or normal Issue State transitions,
the Transition relationship is the place to do it.

However, it does cause some subtleties in the generated code. Further-
more, it also imposes a few restrictions on which multiplicities are allowed
for the various roles. Let’s look at the multiplicities first.

Remember that each role causes the generation of a property on the
roleplayer domain class. In the case of the StartElement role on the Start-
Transition relationship, the generated property on the StartElement C#
class is called StartState and returns the associated IssueState. Similarly,
for the Previous role on the Transition relationship, the generated property
on the StateElement C# class is called Successors and returns the associ-
ated StateElements.

The restrictions on multiplicity are a logical consequence of the fact that
the links navigated via the base generated property (Successors) must be a
superset of the links navigated via the derived generated property (Start-
State). This follows from the definition of relationship derivation—every
link of StartTransition is also a link of Transition.

For example, given a StartElement, the links navigated via the Start-
State property must be a subset of the links navigated via the Successors
property. In fact, in this model, they must be the same set of links, because
there is no other relationship derived from Transition that is sourced on
StartState.

These restrictions imply that it is an error, if the multiplicity of the base
role is ZeroOne or One, for the multiplicity of the derived role to be Zero-
Many or OneMany. Given the multiplicity of the base role, there could
never be more than one link.

Chapter 3: Domain Model Definition126

It’s also possible, although unusual, to create misleading multiplicity
combinations, which will cause the DSL Tools to issue warning messages.
Here are a couple of examples.

• If the multiplicity of an abstract base role is ZeroOne or One, and
there are two or more derived roles that have the same roleplayer
class, they must all have the multiplicity ZeroOne, because only one
of them could validly be instantiated at a time.

• If the base relationship is not abstract and has an end with a
multiplicity One, then there is no point in creating a derived
relationship, because we know that the base relationship has to be
instantiated directly.

More on Domain Relationships and Roles 127

TIP The DSL designer validates all of the multiplicity rules

If the complexity of this description defeats you, then don’t worry.
Unless you try something very subtle you are unlikely to trip up
against these issues, and if you do, the DSL designer validates all of
these rules before it generates a DSL.

There’s a restriction of the C# type system that impacts the code that is
generated for derived relationships. It is not possible in C# to override the
definition of a virtual property with a property of a more derived type—
the type of the overriding property must be exactly the same as the type of
the overridden one. We can see this restriction by looking at the code gen-
erated for the relationship IssueStateTransition. Referring to Figure 3-27,
there are properties called Next and Previous on the classes Transition,
IssueStateTransition, and StartTransition, all generated from the
names of roles. For IssueStateTransition and StartTransition, their
types have not been shown, to avoid clutter on the diagram. In fact, they are
all virtual properties that have the same return type—StateElement—even
though it would be more in keeping with the model for the Previous prop-
erty on StartTransition to refer to StartElement, and its Next property to
refer to IssueState. But because of the built-in restriction of the language,

these properties must all have the same type, and code is generated that
actually checks the correct type at runtime.

Chapter 3: Domain Model Definition128

Figure 3-27: Classes generated for derived relationships

Slightly different considerations apply for the properties generated on
roleplayer classes, such as the properties Predecessors and Successors
defined on StateElement. These properties may be superseded in derived
classes by properties with a more derived type. This can be seen for the
class IssueState, which has also defined these properties to be called Pre-
decessors and Successors. In the generated code, these properties are
marked as new, to explicitly specify that they are intended to replace the
inherited properties. In fact, because of the semantics of derived relation-
ships, both the inherited and replacing properties will return exactly the
same values.

In practice, the effect on the DSL author of these considerations is min-
imal. A derived relationship may use either the same or different names for
the role and property names of derived relationships, and the code gener-
ator will take care of it, generating the appropriate pattern for each case.

DomainRelationshipInfo and DomainRoleInfo
DomainRelationshipInfo is derived from DomainClassInfo and provides
runtime access to information about the corresponding domain relation-
ship. It defines the following important properties.

• AllowsDuplicates returns a Boolean value indicating whether
duplicate links are allowed.

• IsEmbedding returns a Boolean value indicating whether the
relationship is an embedding.

• DomainRoles returns a collection of two DomainRoleInfo objects,
each of which provides runtime access to information about the
corresponding domain role.

More about the Store

This final section offers a few points of interest about the store that can be
helpful when writing code customizations. Much more detail can be found
in the online documentation, which can be installed when you install the
Visual Studio SDK.

Looking Up Elements
The class ModelElement defines a property called Id. The value of this pro-
perty is a Guid (Globally Unique Identifier), which is allocated when the
element is first created in the store (System.Guid is a structure provided by
the .NET framework). The value of this property may be used to find the
element in the store. Given a store and an Id, the following line of code will
find the element with the Id, or return null if it is not present:

store.ElementDirectory.FindElement(id);

The method GetElement(id) can be used similarly but will throw an excep-
tion if the element is not found.

Model serialization, described in Chapter 6, provides the option to save
the Id of an element so that it can be preserved across model reloads. This
would be necessary whenever an element’s Id can be saved externally and
used to access it later.

More about the Store 129

Partitions
A store can be divided into distinct partitions. When a ModelElement is
created, it is possible to specify the partition that it is created in. The main
purpose of partitions is to enable a single store to contain multiple models;
for example, each partition might be associated with a separate model
file. The current version of the DSL Tools does not make any use of the
partitioning facility of the store.

Rules
Another important concept when working with models in the store is rules.
We’ll encounter these when writing customizations in later chapters, espe-
cially Chapter 7 and Chapter 10. A rule is defined when the DSL author
needs to propagate changes to elements in the store so that other elements
are also affected. For example, rules are used to fix up the diagram
automatically whenever the model changes. We’ll leave the details for later
chapters. For now, notice some essentials, as listed here:

• The rule is a class that inherits from AddRule, ChangeRule,
DeletingRule, RolePlayerChangedRule, or one of several other
categories. The single overridable method provides an argument
that yields the details of the change.

• The rule has a RuleOn attribute that specifies which class it applies to.

• The rule is executed within the transaction in which the change
occurred; it may make changes that cause further rule firings, which
are added to the queue to be fired.

• You must register your custom rules in the DomainModel class:

public partial class IssueStateModelsDomainModel
{
protected override Type[] GetCustomDomainModelTypes()
{
return new System.Type[] { typeof(MyNewRule) };

}
}

DomainModelInfo
A DomainModelInfo object is the top-level entry point giving runtime access
to data for the entire domain model. This code fragment shows how to

Chapter 3: Domain Model Definition130

acquire a DomainModelInfo object from an initialized store, and how to
query it for its constituents:

Store store = new Store(typeof(IssueStateModelsDomainModel));
...

DomainModel dm = store.GetDomainModel<IssueStateModelsDomainModel>();
DomainModelInfo dmi = dm.DomainModelInfo;
ReadOnlyCollection<DomainClassInfo> domainClasses = dmi.DomainClasses;
ReadOnlyCollection<DomainRelationshipInfo> domainRelationships =

dmi.DomainRelationships;

SUMMARY

In this chapter we talked about defining domain models for Domain-
Specific Languages. These models are the foundation for language definition.
By now you should have learned:

• How to build a basic domain model using the DSL designer

• What the DSL domain model notation means

• How to do basic programming against the DSL API to make a model

All of the other aspects of the language definition described by the next
few chapters—notation, serialization, validation, code-generation, and user
interface—are based on having a domain model that properly represents
the concepts, properties, and relationships of the domain.

Summary 131

This page intentionally left blank

4
Presentation

Introduction

Chapter 2 introduced the different aspects of the definition of a DSL: the
domain model; the presentation layer, including graphical notation,
explorer, and properties window; creation, deletion, and update behavior;
validation; and serialization. Chapter 3 described the first aspect, the
domain model. This chapter describes how to define the presentation
aspect, that is, how information encoded in the underlying model elements
gets presented through the UI of the designer. There are three windows in
the UI where information is presented: the design surface, the model
explorer, and the properties window. Definition of the presentation aspect
therefore involves the definition of the graphical notation used on the
design surface, customization of the appearance of the explorer, and cus-
tomization of the appearance of the properties window.

By far the most complex part is the definition of the graphical notation,
so most of the chapter is set aside for explaining that aspect. The explorer
and properties window are dealt with at the end.

The Issue State and Issue Project examples introduced in Chapter 2 and
downloadable from www.domainspecificdevelopment.com are used to
illustrate the concepts and are supplemented by designers built directly
from the standard DSL templates shipped with the product. Four language
templates have been shipped: Minimal Language, Class Diagrams, Compo-
nent Models, and Task Flow. Together they exercise most of the graphical

133

www.domainspecificdevelopment.com

notation supported by the DSL Tools. We’ll be careful to indicate which
template we’ve used, where appropriate, and if you wish to try it out in
the tools, all you need to do is create a test language using one of those
templates.

A couple of other samples, including a Circuit Diagrams DSL (for gen-
erating code from electronic circuit diagrams), are used to illustrate some of
the code customizations. These are downloadable from the same location.

Graphical Notation—Overview

A graphical designer presents some elements of a model on a design surface
through a graphical notation that uses shapes and connectors. Figure 4-1
shows an Issue State model where a number of issue states and one start
element have been created, and where the “Start Element” property for the
Raised issue state is set to be the start element StartElement1. All the ele-
ments were created through the default menus on the explorer, and the
shapes were created on the diagram automatically, as was the connector
when the “Start Element” property was set. In general, the creation of a
model element automatically causes creation of the mapped presentation
element (shape or connector).

The shapes on the diagram are mapped to the elements in the model, as
shown in Figure 4-2. The connector maps to the link between the Start-
Element instance and the IssueState instance with the name Raised.

Chapter 4: Presentation134

TIP Creating a test language from a language template

As explained in Chapter 2, when you create a new DSL authoring solu-
tion using the DSL designer project template, you will be asked to
choose a language template on which to base your new DSL. You can
create a test language using this method if you want to try out the
examples used to illustrate the text.

Graphical Notation—Over view 135

Figure 4-1: Issue State designer showing the presentation of a model

Figure 4-2: Maps between diagram elements and model elements

IssueState
Name = Raised IssueState

Name = Closed

Raised Resolved

Closed

StartElement
Name =

StartElement1

IssueState
Name = Resolved

IssueState
Name = Raised

IssueStateModel
Name = StateModel

Shapes and connectors in the DSL definition have various properties
that allow you to customize color and style, the initial size when the shape
is first created, the geometry of the outline of the shape, and so on. You can
also define text and icon decorators for shapes and connectors. A text dec-
orator is used to show text, usually the value of some underlying domain
property, within or adjacent to a shape; in this example, the Name domain
property of each state is displayed as a text decorator in the middle of its
shape. An icon decorator is used to display a small image whose visibility
may be tied to the value of a domain property.

To enable model elements in your DSL to be visualized on the diagram
surface, you need to define (a) the kind and appearance of shapes that will
be used to present those elements, and (b) a mapping from the shape defi-
nition to the domain class of the elements, which dictates both the placement
behavior of a shape and how the appearance of decorators is affected by
data change. To enable links to be visualized on the diagram surface, you
need to define (a) the appearance of the connector that will be used to pres-
ent the links, and (b) a mapping from the connector definition to the domain
relationship for the links, which dictates both the connection behavior of a
connector and how the appearance of decorators is affected by data change.

Chapter 4: Presentation136

Figure 4-3: Definition of diagram elements and maps

Figure 4-3 shows the DSL definition for the Issue State language, created
in Chapter 3, with two shape definitions and a connector definition added.

There are several categories of shape; this example uses geometry
shapes and image shapes. An image shape displays a specific picture.
A geometry shape displays a shape with a geometrical outline such as a rec-
tangle, which the DSL user can resize. In the example, the shape definition
called IssueStateShape defines a geometry shape that is mapped to the
domain class IssueState. StartElementShape defines an image shape that
is mapped to StartElement, and TransitionConnector defines a connector
that is mapped to Transition. The effect of this definition on the behavior of
the Issue State designer is that whenever an IssueState element is created
in a model, an IssueStateShape representing that element, is created on the
diagram. Similarly, for StartElement. And whenever a Transition link
between states is created, a TransitionConnector connecting the shapes
representing the source and target of the Transition link is created. There
is also a “Diagram” diagram element (IssueStateDiagram), which repre-
sents the definition of the design surface itself. This must be mapped to the
domain class at the root of the model, in this case, StateModel.

Diagram and Editor

The definition of the graphical notation is done in the context of a diagram,
which in turn is referenced by the definition of the editor. This section
describes these two aspects of a DSL Definition.

Diagram and Editor 137

TIP Creating diagram and editor definitions

The diagram and editor definitions appear as nodes in the DSL
explorer. Both nodes in the DSL definition are created for you when you
create a DSL authoring project using the DSL designer project template.
If you happen to delete them, they can be recreated by clicking on the
top level (Dsl) node in the DSL explorer and selecting “Add Diagram”
or “Add Custom Editor”/”Add Designer” from the context menu.

Appearance Settings that define the visual appearance of
the diagram, such as background color.

Code Settings that influence the form of the
generated code for the diagram. All these set-
tings are inherited from domain class, because
a diagram definition is also a domain class.

Diagram
Primarily, the diagram definition is a container for the shape and connector
maps. Figure 4-4 shows the definition of the diagram for the Issue State DSL.

Chapter 4: Presentation138

Table 4-1: Property Settings Categories for Diagram

Figure 4-4: Definition of diagram for Issue State DSL

The window on the left shows sub-elements of the diagram definition in
the DSL explorer, and the window on the right the properties of the dia-
gram definition. The property settings are summarized in Table 4-1.

Definition These settings are similar to those for domain
classes (name, namespace, base diagram), with
the addition of a property to designate the class
of element represented by a diagram.

Documentation As with many other elements in a DSL defini-
tion, the documentation section defines a single
property to contain notes about the design of
the DSL.

Exposed Style Properties These are all read-only properties and indicate
whether or not a style setting in the appear-
ances category, such as fill color, can be set by
the user of the target designer in the properties
window.

Resources These properties provide text resources that are
used within the UI of the target designer.
Resources are generated into .resx files so that
they can be localized for different cultures. A
keyword to drive F1 Help in the target
designer may also be provided.

Diagram and Editor 139

TIP Exposing style properties

To expose a style property, select the diagram definition in the diagram
elements part of the DSL designer design surface and from the context
menu choose “Add Exposed” followed by the style property you want
to expose. The “Exposes XXX As Property” setting will then turn to
true, and a new domain property with the name “XXX” will appear in
the definition of the diagram.

When you build and run the generated designer, you’ll find that you
are able to change the value of the style setting, for example, the dia-
gram fill color, through the properties window. This pattern applies to
shapes and connectors also, and allows the DSL author to choose
which style properties are an intrinsic part of the definition and which
can be used by the users of the DSL for their own purposes, for exam-
ple, to organize elements into categories of their own devising.

Apart from the shape and connector maps, the sub-elements of a dia-
gram definition (specifically, custom type descriptor, domain properties,

Localization

Localizing an application involves providing a set of resources, such as

strings and images, that are specific to a particular culture. A culture may

be region-neutral, such as French (fr), or region specific, such as French

Canadian (fr-CA). These resources are compiled into a satellite assembly

that is installed with the main assembly for the application. When the

application is run on a machine set up for a particular culture, the

resources in the satellite assembly for that culture are used instead of the

resources in the main assembly.

The resources specified in the DSL definition are the resources for the

main assembly of the designer, which are the resources for the default or

neutral culture. Which culture this is can be set in the properties of the Dsl

and DslPackage projects. To localize the designer for other cultures, you

need to provide satellite assemblies containing appropriate resources for

and element merge directives)1 appear by virtue of the fact that a diagram
definition is itself a special kind of domain class, as are shapes and con-
nectors. This also explains the set of properties under the “Code” category,
why a diagram can be related to other domain classes via domain rela-
tionships, and why a diagram can inherit from other diagrams. These facil-
ities are not used often, if at all, for diagrams—it’s a case of the underlying
framework being exposed in the DSL. Nevertheless, there are occasions
when these facilities are useful. For example, the ability to add domain
properties and relate a diagram definition with other domain classes
makes it possible to model information required by the diagram. An exam-
ple of adding domain properties to a diagram definition is given as part
of the “Variable Image” code customization discussed later. We also found
a need for this in the DSL defining the DSL designer itself, where both
these techniques are used to capture information on the diagram to drive
its tree layout.

Chapter 4: Presentation140

1. Domain properties were explained in Chapter 3, the custom type descriptor is explained
later in this chapter, and element merge directives are explained in the next chapter.

Editor
There are two types of editor: a (graphical) designer and a custom editor.
The definition of an editor appears under the “Editor” node in the DSL
explorer. Data defined here is used to generate the implementation of the
EditorFactory class, the toolbox, and any validation behavior. By default,
when you create a DSL authoring project using the DSL designer project
template, the DSL definition defines a designer as its editor.

The editor part of the DSL definition contains the definition of the tool-
box (see Chapter 5) and validation behavior (see Chapter 7). The definition
of the editor for the Issue State DSL is shown in Figure 4-5, where you will
see the items mentioned above showing in the DSL explorer.

Diagram and Editor 141

The properties of the editor include a reference to the “Root Class” that
gets associated with the designer (i.e., appears as the top element in the
generated editor’s explorer). The “Editor Guid” is used in the code for
the generated EditorFactory class.

those cultures. A good article explaining localization in general, including

how to create satellite assemblies, can be found at http://msdn.

microsoft.com/msdnmag/issues/06/05/BasicInstincts/default.aspx.

Figure 4-5: Definition of designer in Issue State DSL

http://msdn.microsoft.com/msdnmag/issues/06/05/BasicInstincts/default.aspx
http://msdn.microsoft.com/msdnmag/issues/06/05/BasicInstincts/default.aspx

Under the “Resources” category, there are settings to define the exten-
sion of files used to store models for the DSL and to define the icon that
is associated with those files, for example, in Windows Explorer or Visual
Studio solution explorer.

Designer
When the editor is a designer, there is an entry under the definition category
in the properties window that references the Diagram class to be used by the
designer—IssueStateDiagram, in the example. The root class associated
with the designer and the class that the referenced diagram represents must
be the same. If they are not, a validation error in the DSL designer will result.

Custom Editor
It’s also possible to define a custom editor, which is one without a diagram.
You’d do this if a graphical design surface was not appropriate for pre-
senting the information that you want to capture in your DSL. In this case,
you must supply a Windows Forms control to provide your own custom
presentation of data from the model. To do this, delete the designer that
is playing the role of editor (select the editor node in the DSL explorer and
press the delete key), and then add a custom editor (with the root node in
the explorer selected, choose “Add Custom Editor”) and set its properties as
shown in Figure 4-6. (The starting point for this particular example was a
new language created using the minimal language template.)

Chapter 4: Presentation142

Figure 4-6: Properties of a custom editor definition

Regenerate and build the code. You’ll get an error raised such as:

‘CJKW.CJKWCustomEditor.CJKWCustomEditorDocView’ does not imple-
ment inherited abstract member ‘Microsoft.VisualStudio.Shell. Window-
Pane.Window.get’

Double-clicking on this error leads you to code with instructions on what
you have to do:

internal partial class CJKWCustomEditorDocView : CJKWCustomEditorDocViewBase
{
/// <summary>
/// Constructs a new CJKWCustomEditorDocView.
/// </summary>
public CJKWCustomEditorDocView(DslShell::ModelingDocData docData,

global::System.IServiceProvider serviceProvider)
: base(docData, serviceProvider)

{
}

// This DSL defines a custom editor. Therefore, you must create a partial
// class of CJKWCustomEditorDocView and override the Window property of

this
// class to specify the window that will be hosted as the editor.
// In most cases this will be a class derived from
// System.Windows.Forms.Control.
// public override System.Windows.Forms.IWin32Window Window
// {
// get
// {
// }
// }

}

Diagram and Editor 143

TIP Click “Transform All Templates” after changing the
DSL definition

Just a reminder: Whenever you make a change to the DSL definition,
click the “Transform All Templates” button in the header of the solution
explorer. This recreates the contents of the GeneratedCode directories.
Then use the F5 key to recompile the code and run the designer to see
the effect of your changes.

Following these instructions, the partial class you need to write would be
something like:

namespace CJKW.CJKWCustomEditor
{
// Double-derived class to allow easier code customization.
internal partial class CJKWCustomEditorDocView

: CJKWCustomEditorDocViewBase
{
// The WinForms form that implements this view
private ViewForm viewForm;

public override System.Windows.Forms.IWin32Window Window
{
get
{
if (this.viewForm == null)
{
this.viewForm = new ViewForm(this);

}
return this.viewForm;

}
}

}
}

Chapter 4: Presentation144

TIP Let the compiler tell you what custom code you need

There are many places in the DSL definition where you can indicate
that you want to supply some behavior through custom code. Exam-
ples include defining a custom editor or setting a custom flag to True.
To find out exactly what is required, click the “Transform All Tem-
plates” button in the header of the solution explorer to recreate the
content of the GeneratedCode directories from the DSL definition;
then rebuild the code with Ctrl+Shift+B or the “Build Solution” menu
item. In most cases, there will be error messages telling you about
some missing code. Double-click on them and you’ll see comments in
the generated code telling you what you should supply.

Define the missing methods in a separate file and in a separate folder.
The methods will be in a partial class with the same name as the relevant
generated class, and the file may need to use some of the same using
statements.

The custom window class is ViewForm. In this case, we’ve defined a form
with a list box called elementList, and two buttons called addButton and
updateButton. addButton adds an element to the model in the store, and
updateButton updates the elementList to show all the elements in the
model. The custom code (as opposed to that generated from the Windows
Forms designer) is:

using System;
using System.Windows.Forms;
using Microsoft.VisualStudio.Modeling;

namespace CJKW.CJKWCustomEditor
{
public partial class ViewForm : UserControl
{
private CJKWCustomEditorDocView docView;

internal ViewForm(CJKWCustomEditorDocView docView)
{
this.docView = docView;
InitializeComponent();

}

private void addButton_Click(object sender, EventArgs e)
{
if (!string.IsNullOrEmpty(this.nameTextBox.Text))
{
this.addElement(this.nameTextBox.Text);

}
}

private void addElement(string name)
{
using (Transaction t = this.docView.DocData.Store.

TransactionManager.BeginTransaction(
Properties.Resources.Undo_AddElement))

{
ExampleElement newElement = new

ExampleElement(this.docView.DocData.Store);
newElement.Name = name;
(this.docView.DocData.RootElement as

ExampleModel).Elements.Add(newElement);
t.Commit();

}
}

private void updateButton_Click(object sender, EventArgs e)
{

Diagram and Editor 145

this.SuspendLayout();
this.elementList.Items.Clear();
foreach (ExampleElement exampleElement in

this.docView.DocData.Store.ElementDirectory.
FindElements<ExampleElement>())

{
this.elementList.Items.Add(exampleElement.Name);

}
this.ResumeLayout();

}
}

}

The resulting editor looks like Figure 4-7.

Chapter 4: Presentation146

Figure 4-7: Forms-based DSL editor

Shapes

Shapes are the nodes of a graphical notation and are used to visualize ele-
ments of a model. This section digs into the detail of defining shapes and
shape maps.

Appearance Settings that define the visual appearance of the
shape, such as color, line thickness, and so on.

Code Settings that influence the form of the gener-
ated code for the shape. All these settings are
inherited from domain class, because shape
definitions are also domain classes.

Definition These settings are similar to those for domain
classes (name, namespace, base geometry
shape), with the addition of a tooltip property
that defines the behavior of tooltips when
hovering over a shape in the target designer.

Documentation As with many other elements in a DSL defini-
tion, the documentation section defines a single
property to contain notes about the design of
the DSL.

Exposed Style Properties These are all read-only properties and indicate
whether or not a style setting in the appear-
ances category, such as fill color, can be set by
the user of the target designer in the properties
window. This was discussed earlier in the
chapter in the section “Diagram.”

Layout These properties impact the layout and size of
the shape.

Resources These properties provide text and image
resources that are used within the UI of the
target designer. Resources are generated into
.resx files so that they can be localized for
different cultures.

Shapes 147

Table 4-2: Property Settings Categories for Shapes

Kinds of Shapes
There are five different kinds of shape: geometry shapes, compartment
shapes, image shapes, ports, and swimlanes. The categories of settings that
apply to all shapes are similar to those for Diagram, with the addition of a
“Layout” category. They are summarized in Table 4-2.

Geometry Shapes

Figure 4-8 shows the anatomy of a geometry shape. With this information,
it is fairly easy to determine what all the appearance settings on the shape
are for. Descriptions are provided for each setting—just select the name of
the setting and the description appears in the bottom pane of the properties
window, as illustrated in Figure 4-9. Alternatively, you can press F1, and
online or local help pages will appear with the full table of settings and
their descriptions. Decorators are optional for all shapes and connectors,
and are dealt with later.

Chapter 4: Presentation148

Resolved

Text decorator
Outline

Fill area

Width

H
e
ig

h
t

Figure 4-8: Anatomy of a geometry shape

Figure 4-9: Appearance settings for geometry shape

One appearance setting for a geometry shape is “Text Color,” which is the
color of the text that appears in any decorators associated with the shape.
This may seem surprising—why not define this color as part of the decora-
tor? The reason is that the color of text decorators positioned inside the shape
needs to be compatible with the fill color for the shape, and a good way to
achieve this compatibility is to define the two colors in the same place.

The layout settings define the default height and width of the shape
when it is first created. As with a diagram definition, you can choose to
expose some of the appearance (style) properties for changing by the user
of your DSL. The method is exactly the same as that called out when dis-
cussing the diagram definition.

Compartment Shapes

A compartment shape is a geometry shape with compartments. A compart-
ment is used to display a list of elements that are linked to the element
mapped to a compartment shape instance. The list to be displayed is defined
as part of the compartment shape map (see the section “Shape Maps” later
in this chapter), together with the text that appears for each entry in the com-
partment. Figure 4-10 shows the anatomy of a compartment shape—the text
decorator is optional, or there can be many such decorators.

Shapes 149

Figure 4-10: Anatomy of a compartment shape

Expand-collapse

 decorator

Compartment title

Compartment header

Compartment entry

Text decorator

In
it
ia

l

H
e
ig

h
t

Compartment

The ability to have compartments restricts the outline geometry to only
a rectangle or rounded rectangle, and there are two additional appearance
settings: “Default Expand Collapse State” and “Is Single Compartment
Header Visible.” “Default Expand Collapse State” can be used to determine
whether or not the shape is expanded or collapsed when it is first created.
By default compartment headers are always shown in a compartment
shape. When there is only a single compartment, it is not necessary to show
the header to distinguish it from other compartments. “Is Single Compart-
ment Header Visible” is a Boolean property that controls whether the
header is shown in that case.

The height of a compartment shape is set automatically, taking into
account the (fixed) height of the shape header and the (variable) height of
the compartments. In this case, the value of the “Initial Height” property
is used for the fixed height of the shape header.

A compartment shape may have more than one compartment. Compart-
ments can be added to a compartment shape definition on the diagram sur-
face of the DSL designer or in the explorer. Figure 4-11 shows the definition
of the compartment shape in Figure 4-10, which is part of Issue Project DSL.

Chapter 4: Presentation150

Figure 4-11: Definition of a compartment shape

Figure 4-12 shows the settings for one of these compartments, which
should be self-explanatory given Figure 4-10.

Shapes 151

Figure 4-12: Settings for a compartment

Image Shapes

An image shape is a shape that displays an image rather than an outline.
Figure 4-13 shows the anatomy of an image shape. As always, the decora-
tor is optional, or there may be many decorators. This particular shape is
defined in the Task Flow DSL template.

Figure 4-13: Anatomy of an image shape

Image

OfferAccepted
Text decorator

Appearance settings associated with the outline or fill area have no
impact on the appearance of an image shape. However, there are two set-
tings that are very relevant to image shapes. The first is the “Image
Resource,” which determines what image is displayed.

Chapter 4: Presentation152

Offer

OfferAcceptedOfferAccepted

Offer

Figure 4-14: With default connection points and without

The second is the “Has Default Connection Points” setting, which deter-
mines whether or not the shape has a set of North-South-East-West connec-
tion points. This can be very useful when the image shape needs to be
connected to other image shapes, because it ensures that connectors connect
at sensible points. For example, in a language created from the Task Flow
template, if you change the “Has Default Connection Points” setting of
MergeBranchShape to True, you’ll find that however much you move
around the merge branch shape, connectors will (nearly) always connect on
the edges of the diamond image. However, if you set this property to False,
connectors will connect anywhere along the (invisible) rectangular bound-
ing box of the image. The two alternatives are shown in Figure 4-14.

The “Initial Height” and “Initial Width” settings are also effective for an
image shape. This is both good and bad. It is good if you want to enlarge or
reduce the size of the image that you would otherwise get. It is bad if you want
the image to be reproduced exactly. In that case, just copy the size of the image
into these settings, remembering that the unit of measurement is inches.

TIP Defining image and icon resources

Any property used to reference an image or icon resource stores a file
path relative to the location of the .dsl file in which the property is
defined. The DSL designer provides a file picker for all such properties,
which puts up a dialog that allows you to navigate the file system and
pick a file. It filters the files available for selection by the type of image
that is allowed for the property. In general, the DSL Tools support
many kinds of standard image formats, but for certain properties only
bitmaps, for example, are acceptable. The dialog also previews the
image, and a thumbnail of the image is displayed along with the path
string in the properties window itself.

Shapes 153

Figure 4-16: Anatomy of a vertical swimlane

ScheduleDeletionOfRecord

OfferAccepted

RegisterAsEmployee

Yes No

IssueOffer ReturnOfferForms

Recruitment Candidate

SeparatorText decoratorSwimlane header

Swimlane Swimlane

Figure 4-15: Geometry shape with ports attached

PayrollSystem
Port

Icon decorator in Port

Ports

A port is a shape attached to the outline of a shape that can only be moved
around that outline, as illustrated in Figure 4-15. Other than that, its defi-
nition is no different than a geometry shape, including the ability to have
decorators—the ports shown in Figure 4-15 each have an icon decorator.
These particular ports are defined in the Component Models template.

Swimlanes

Swimlanes are used to partition a diagram into either rows or columns. The
anatomy of a vertical swimlane is shown in Figure 4-16, and a horizontal
swimlane is shown in Figure 4-17. The swimlanes shown are defined in the
Task Flow template.

There are settings to change the appearance of the swimlane header and
separator, as well as a “Layout” property that determines whether the
swimlane partitions the diagram vertically or horizontally. The “Initial
Height” of a horizontal swimlane definition determines the initial height of
its instances, although any value below 1 is ignored—the smallest height
is 1 inch. The initial width of a horizontal swimlane is ignored. For vertical
swimlanes, the width is considered and the height ignored.

Shape Inheritance

Inheritance between shapes is supported, with the restriction that a shape
of one kind (e.g., a compartment shape) can only inherit from a shape of the
same kind. A sub-shape will inherit the decorators and compartments (if
applicable) of the base shape but overrides the appearance, layout, and
resource properties with its own data. The latter can be a little annoying,
especially if you want most of them to be the same as the base shape—you
just have to set them all again by hand.

Shape Maps
Shape maps are used to associate shape classes with the domain classes
they represent. There are compartment shape maps for maps involving
compartment shapes, swimlane maps for maps involving swimlanes, and
shape maps for geometry, port, and image shapes.

Chapter 4: Presentation154

Issue Offer

ReturnOfferForms

RegisterAsEmployee

ScheduleDeletionOfRecord

Recruitment

Candidate

Swimlane header Text decorator Separator

No

Yes

S
w

im
la

n
e

S
w

im
la

n
e

OfferAccepted

Figure 4-17: Anatomy of a horizontal swimlane

Once created, a shape map may be viewed and edited through the DSL
details window by selecting it on the diagram surface or in the DSL
explorer, under “Diagram/Shape Maps.” The information that appears in
that window and how it is interpreted depends on the kind of shape map
and shape involved. We deal with each case in turn.

Shapes 155

TIP Making the DSL Details window visible

If the DSL details window is not displayed, you can make it visible
using the “View>Other Windows>DSL Details” command (from the
main menu bar of Visual Studio).

Figure 4-18: Mapping a geometry shape

Mapping Definition Common to All Shapes

Figure 4-18 shows the details of the mapping of the IssueStateShape in the
Issue State language.

TIP Creating shape maps

A shape map from a domain class to a shape is created using the “Dia-
gram Element Map” tool in the DSL designer (look for the icon in
the toolbox), or by selecting the “Diagram” node in the DSL explorer
and choosing from the context menu.

The shape map identifies the kind of shapes used to represent instances of
the referenced domain class and provides details of how a shape’s decorators
get mapped (discussed in a later section). The mapping in Figure 4-18 stip-
ulates that instances of IssueStateShape are used to represent instances of
IssueState. The “Parent element path” identifies the element, that is, the
logical parent for the referenced domain class and on whose diagram ele-
ment the shape should be parented.

Chapter 4: Presentation156

Shape Parenting

In a running designer, all diagram elements, except the diagram itself, must be

parented on another diagram element, which may be the diagram or a shape.

Certain behaviors follow from being parented on a particular diagram element.

The sections on ports and swimlanes below illustrate this. So in shape maps

(and connector maps later) we must specify what diagram element a shape

gets parented on when it is created.

The “Parent element path” uses a simple path syntax (see sidebar on
page 157) for navigating across a structure of elements and links. In this case,
it indicates that the element whose diagram element the shape should be
parented on is the diagram element mapped to the element, which can be
navigated to from the IssueState via the path IssueStateModelHas-
States.Model/!Model. This returns an IssueStateModel element that is
mapped to the diagram itself.

In addition, there are two Boolean flags, which when set to True, open
up code customization points in the generated code, allowing you greater
control over where a shape gets parented. Selecting “Has custom parent
element” causes code to be generated that doesn’t build. When you navi-
gate to the source of the error, you’ll find instructions on the custom code
you need to write, as follows:

// Method:
// private Microsoft.VisualStudio.Modeling.ModelElement GetParentForIssue-
State(IssueState childElement)
// {
// }
// must be implemented in a partial class of

// CJKW.IssueStateModels.FixUpDiagram. Given a child element,
// this method should return the parent model element that is
// associated with the shape or diagram that will be the parent
// of the shape created for this child. If no shape should be created,
// the method should return null.
parentElement = GetParentForIssueState(
(global::CJKW.IssueStateModels.IssueState)childElement);

Similar instructions are provided if you select “Has custom parent shape.”
In this case, you are asked to write a method in a partial class of the diagram
class (IssueStateDiagram in this case), which is the method for creating the
shape for IssueState. You’d use this if the parent shape is not mapped to a
model element, for example, if it is an unmapped swimlane (see below).

Shapes 157

Path Syntax

Path syntax is very simple, though it’s rather verbose.

Let’s look at a shape map example from the “Component Models”

language template,2 the one mapping InPortShape to InPort.

Open DslDefinition.dsl, and in the DSL explorer window, look under

Diagram/ShapeMaps and select the shape map labeled “ComponentShape.”

There are some details in the normal Properties window, and more details in

the DSL details window. (See earlier tip for bringing this into view.) The

“Parent element path” shows in the “General” tab of the DSL details window

when you have that shape map selected in the DSL explorer. The full path is

given below:

ComponentHasPorts.Component/!Component

Each path has one or more segments separated by slashes.

Each segment is either a hop from an element to a link or from a link to

an element. So they generally come in pairs: hop from element to link and

then onto the element at the other end. (In most cases, a path goes

link/element/link/element..., but in fact a link—that is, an instance of a

2. See the tip in the “Introduction” section for a reminder on how to create a test language
from a language template.

Chapter 4: Presentation158

relationship—can also be the target of a path, in which case the path

would have an odd number of steps.)

Each segment starts with a relationship name. An element-to-link

segment is written like this:

Relationship.Property

A link-to-element segment is written like this:

Relationship!Role

In the InPort shape map example, the parent element path begins like this:

ComponentHasPorts.Component

If you look at the DSL definition diagram in Figure 4-19, you’ll see that InPort

is a subclass of ComponentPort and has a relationship ComponentHas-

Ports, and the domain property is indeed called Component.

When writing C# code against this model, you can jump across a link in

one step using the property that the relationship generates on each of the

classes it relates:

Figure 4-19: Fragment of domain model for Component Models language

Shapes 159

InPort port; ... Component c = port.Component;

but in path syntax, you have to do both hops explicitly. This makes it

easier to get at the intermediate link if you need to. So we complete the

hop from the link to the Component like this::

ComponentHasPorts.Component/!Component

(You can omit the relationship name where it’s the same as the previous

segment.)

Notice that the name you use for the element-to-link hop is the Property-

Name defined on the role—that’s the name you see on the main diagram next

to the corresponding line from the element’s domain class. If you click on that

role line, you’ll see it in the properties window under “Property Name.”

The name you use for the link-to-element hop is the “Name” of the role

defined on the relationship for the destination end. So in the main dia-

gram, if you click on the line on the other side of the relationship, you’ll see

it listed as that role’s “Name” in the properties window. The “Property

Name” and the “Name” of opposite roles are often the same.

As explained in Chapter 3, when programming, the “Property Name” is

the name you use if you have an instance of a domain class and want to

traverse the relationship, while the “Name” is the name you use if you have

an instance of a relationship and you want the element at one end.

The facilities for editing paths in the DSL designer are a little rudimentary,

so here are a few hints:

• You edit a path by typing a string. This means that it is a good idea to navi-

gate to the relevant area of the domain model in the diagram before enter-

ing the path so that you have the information like relationship, role, and

property names at hand.

• If you do have to navigate away from the path (sadly, this is often

the case), remember to copy the text to the clipboard before you do so—

if the string cannot be parsed on change of focus, it will be abandoned.

Mapping Compartments

When mapping a compartment shape, it is also necessary to map compart-
ments. The mapping of the project compartment shape in the Issue Project
DSL is shown in Figure 4-20.

Chapter 4: Presentation160

• If you are typing the path through the DSL details window, a popup

appears as long as the string cannot be parsed into a valid path.

However, you may still need to navigate away to find out information

to enter.

• If you are typing the path through the properties window, ensure that you

select the dropdown editor, otherwise you won’t know that the path has

errors until you try to confirm the change, which will be reported through a

separate dialog.

Figure 4-20: Mapping compartments

As this illustrates, an extra tab is provided in the DSL details window for
mapping compartments. The compartments are listed on the left, and select-
ing each one reveals the definition of the mapping for that compartment.

There are two pieces of information one needs to provide for mapping a
compartment. The first is the set of elements that will be used to create
entries in the compartment. The second is the actual information that will be
displayed for each element. The example shows the mapping of the Mile-
stones compartment, and the set of elements used to populate the entries in
this compartment are the milestones of the project, which are identified

through the “Displayed elements collection path.” The domain property
used to provide the string that appears in each entry is Name. This is usually
defined on the domain class of the element identified through the collection
path, which is Milestone in this case. The “Path to display property” path
can be used to further indirect from the domain class used for the list items
to some other domain class on which to find the “Display property.”

If you select the “Use custom element collection” box, then the generated
code will not build, and the build error will take you to a place in the
source code with instructions on how to proceed, as exemplified by the fol-
lowing code fragment:

////////
// CompartmentMap.UsesCustomFilter==true
// Please provide a method with the following signature to
// filter the list of elements to display in the compartment:
// global::System.Collections.IList
// FilterElementsFromProjectForMilestones(
// global::System.Collections.IEnumerable elements) {}
////////
return FilterElementsFromProjectForMilestones(result);

The method is added in a hand-coded partial class of the shape involved
in the shape map, in this case ProjectShape. This is supplemental to
the “Displayed elements collection path,” which, if omitted, will cause
validation errors.

Mapping Ports

Mapping ports is just like mapping geometry and image shapes, but in this
case, the parent element path should identify an element that is mapped to
a shape that can accept ports, that is, a geometry, compartment, or even
another port shape (or “Has custom parent element” is set to True). If it is
not, then you’ll get a validation error like the following.

A Port may not be parented on a Diagram. In the ShapeMap mapping
InPort to InPortShape, the parent element path leads to Component-
Model, whose mapped shape is ComponentDiagram.

For example, in Figure 4-21, taken from the Component Models temp-
late, the parent element path refers to a component that is mapped to a
geometry shape.

Shapes 161

Mapping Swimlanes

When mapping elements to shapes that should be contained in a swimlane,
the parent path should identify the element mapped to the swimlane, as
shown in Figure 4-22. This is taken from the Task Flow example, where the
parent path for the Task shape mapping navigates to the Actor domain
class that is mapped to a swimlane.

Chapter 4: Presentation162

Figure 4-21: Mapping ports

Figure 4-22: Definition of swimlane map in Task Flow example

Desirable behavior results by ensuring that the shapes are contained in
the swimlane. If a shape is resized over the border of the swimlane, then the
swimlane resizes with it. Similarly, if shapes are moved toward the border
or slightly over it, the swimlane resizes in real time in that case. If a shape
is moved from one swimlane to another, then the element mapped to the
shape being moved becomes unmerged from the element mapped to the
source of the move and merged into the element mapped to the swimlane
that is the target of the move. Merging and unmerging are described in

Chapter 5, but the effect in the Task Flow example is that when a task shape
is moved from one actor swimlane to another, the task is unlinked from the
actor mapped to the swimlane at the source of the move and then linked
to the actor mapped to the target of the move.

Note that it is still legitimate to have a parent element path in a non-
swimlane shape map that navigates to the element mapped to the diagram
when there are also swimlanes on the diagram. In that case, the shapes cre-
ated for those elements are parented on the diagram and just appear in
front of the swimlanes. However, they are not nested in the swimlanes and
have no effect on the model when seemingly moved from one swimlane to
another (because they are not nested in the swimlanes, all that is happening
is the shape changing its position and appearing to move).

When mapping swimlanes, the parent path should identify the element
mapped to the diagram (“Has custom parent element” is set to True). If it
is not, then a validation error like the following will be raised:

A SwimLane may not be parented on a GeometryShape. In the ShapeMap
mapping DomainClass1 to SwimLane1, the parent element path leads to
ExampleElement, whose mapped shape is ExampleShape.

You may define more than one mapped swimlane in a DSL, in which case
you’ll be able to add both kinds dynamically.

Unmapped Swimlanes

If a swimlane is unmapped, then the diagram will always contain exactly
one instance of the swimlane. If there is more than one such swimlane,
then it will contain one instance for each unmapped swimlane. If you then
want to parent other shapes on the unmapped swimlane, you can then
set the “Has custom parent shape” flag to True on the mappings for
those shapes.

Advanced Shape Maps

It is possible to have shape maps between one domain class and many
shapes, and between one shape and many domain classes. Also, inheritance
between shapes and domain classes is taken into account in how a shape
map behaves. The rules are summarized in Table 4-3, where A, A1, A2 are
domain classes and S, S1, S2 are shapes.

Shapes 163

A maps to S The behavior is as described so far.

A maps to S1, S2, where The author will be required to write custom
S1 may inherit from S2 code that decides which kind of shape to create

when an element of the domain class is created.

A1, A2 map to S, where Elements of each domain class will cause the
A1 may inherit from A2 same kind of shape to be created.

A2 inherits from A1, S2 By the first rule, A1 elements will be presented
inherits from S1, A1 maps by S1 shapes, and A2 elements will be
to S1, A2 maps to S2 presented by S2 shapes. However, any

mappings between decorators and/or
compartments specified in the mapping
between A1 and S1 that are not remapped in
the mapping between A2 and S2 will be
used when using an S2 shape to represent an
A2 element.

Table 4-3: Advanced Rules for Shape Maps

Connectors

In the same way that shapes define the appearance of nodes in a graphical
notation, connectors define the appearance of links. And just as shape
maps define how model elements are visualized by shapes, connector maps
define how links are visualized by connectors. This section drills into the
detail of defining connectors and connector maps.

Connector Anatomy and Appearance
The anatomy of a connector is shown in Figure 4-23. The particular con-
nector used is defined in the Task Flow DSL template.

Chapter 4: Presentation164

OfferAccepted

Source end

Yes

Text decorator

Target end

RegisterAsEmployee

Figure 4-23: Anatomy of a connector

A connector is directional—it has a source end and a target end. The
categories of settings that a connector can have are the same as for shapes,
but under layout, instead of initial width and height, there is a routing style.
You can choose either Rectilinear or Straight. The rectilinear style is
illustrated in Figure 4-23—instead of going from point to point in a straight
line, the connector takes a right-angled turn. When routed via the straight
style, the connector takes the shortest possible route between two points.

The appearance settings impact the appearance of the line used to ren-
der the connector and allow source and target end styles to be defined,
which determines whether symbols such as arrows appear. For example,
the settings for the connector illustrated above are given in Figure 4-24.

Connectors 165

Figure 4-24: Connector settings

Connectors and Inheritance
A connector can inherit from another connector, just like shapes can inherit
from shapes. Decorators are inherited, and appearance, layout, and
resource settings are overridden just like shapes.

Connector Maps
A connector map maps a connector to a domain relationship, not a domain
class, and has no parent element path. Figure 4-25 shows the definition of
the connector map for FlowConnector.

The default behavior is that each link of the relationship is represented
by a connector on the diagram that connects the shapes mapped to the
source and target elements of that link.

This default behavior can be overridden in code. Select either “Has cus-
tom source,” or “Has custom target,” or both. This causes build errors in the
generated code, and, as always, navigating to the source of those errors pro-
vides instructions on the custom code that needs to be written, which then
determines the shapes actually connected by the connector.

Mapping connectors only to relationships may seem limiting. In many
cases where it would seem desirable to map a connector to a domain class,
it is possible and indeed sometimes preferable, to replace the domain
class with a relationship, noting that (a) relationships can have domain
properties, and (b) relationships can be derived from other relationships—
that is, they behave very much like domain classes. If that is really unaccept-
able, then you can always map the connector to a relationship sourced or
targeted on the domain class and provide custom source and/or target code
to identify the source and/or target shape.

For example, suppose you were defining a concept modeling language
and defined a domain class called Specialization, intended to capture a spe-
cialization or inheritance relationship between two concepts, and you wanted
to depict this as an arrow from the specialist concept to the more general con-
cept. You couldn’t directly map a connector to a domain class, so one option
would be to model specialization as a domain relationship instead of a
domain class. However, the Specialization domain class would have two
relationships to the Concept domain class, one called SpecializationRefer-
encesSpecialistConcept, say, and the other called SpecializationReferences-
GeneralConcept. So you could instead map the connector to one of these

Chapter 4: Presentation166

Figure 4-25: Definition of a connector map

R maps to C The behavior is as described so far.

R maps to C1, C2, where The author will be required to write custom
C1 may inherit from C2 code that decides which kind of connector to

create when a link of the domain relationship
is created.

R1, R2 map to S, where Links of each domain relationship will cause
R1 may inherit from R2 the same kind of connector to be created.

R2 inherits from R1, C2 By the first rule, R1 links will be presented by
inherits from C1, R1 maps C1 connectors, and R2 elements will be
to C1, R2 maps to C2 presented by C2 connectors. However, any

mappings between decorators specified in the
mapping between R1 and C1 that are not
remapped in the mapping between R2 and C2
will be used when using a C2 connector to
represent an R2 link.

relationships, perhaps SpecializationReferencesGeneralConcept. The target
of the relationship is the general concept, which is what the connector should
target. However, the source is the Specialization element, so you need to pro-
vide custom code to navigate from that to the specialist concept, which can
be done via the relationship SpecializationReferencesSpecialistConcept.

Advanced Connector Maps
It is possible to have connector maps between one domain relationship and
many connectors, and between one connector and many domain relation-
ships. Also, inheritance between connectors and domain relationships is
taken into account in how a connector map behaves. The rules are summa-
rized in Table 4-4, where R, R1, R2 are domain relationships and C, C1, C2
are connectors.

Decorators 167

Table 4-4: Advanced Rules for Connector Maps

Decorators

Decorators “decorate” shapes and connectors with text or images (icons).
This section details the definition of decorators and decorator maps that
determines how to use decorators to visualize data in the underlying
model.

Kinds of Decorators
There are three kinds of decorator: text, icon, and expand collapse. Fig-
ure 4-26 shows the definition of ProjectShape, from the Issue Project
DSL, which defines a text decorator and an expand collapse decorator, as
well as the definition of InPortShape, from the component models lan-
guage, which defines an icon decorator. Corresponding instances of
those shapes, as they would appear in a running designer, are also
shown.

Chapter 4: Presentation168

Figure 4-26: Different kinds of decorator

defines defines

defines

defines

A text decorator is used to decorate a shape or connector with text,
and an icon decorator is used to decorate a shape or connector with an
image (icon). When defining a text decorator, it is necessary to define
the “Default Text” resource, which is the text displayed, unless it is
dynamically updated through a decorator map. When defining an icon
decorator, it is necessary to define an “Image” resource that is the image
displayed.

There is a range of settings that control the appearance of text displayed
in a text decorator. These are self-explanatory, although the omission of a
“Text Color” property might seem to be an oversight. In fact, the color of the

text displayed in a decorator is determined by the “Text Color” property on
the diagram element that defines the decorator, as we have seen earlier
when discussing shapes. For example, setting the “Text Color” property of
IssueStateShape to Maroon results in the text of the NameDecorator,
defined by IssueStateShape, being rendered in maroon, as illustrated
in Figure 4-27.

Decorators 169

defines

determines

color

Figure 4-27: Definition of text color

All kinds of shapes and connectors can define text and icon decorators.
However, an expand collapse decorator can only be added to compart-
ment, geometry, or image shapes or ports. It has a predefined appearance
and a special behavior when attached to compartment shapes—all the
compartments can be hidden (when collapsed). Additional code cus-
tomization must be undertaken to add behavior to this decorator for
non-compartment shapes.

Positioning
Each decorator has a position with respect to the shape or connector it dec-
orates. Figure 4-28 shows the full range of positions available for shapes
and connectors, respectively, which may be further refined through offsets
(expressed as inches). The positional information is set through the
properties on the decorator.

Only a subset of the positions is supported for certain kinds of shape;
the possibilities are summarized in Table 4-5.

Chapter 4: Presentation170

Figure 4-28: All possible decorator positions

O
u

te
rM

id
d

le
R

ig
h

t

O
u

te
rM

id
d

le
L

e
ft

ITL

IML

IBL

OBL

OTL

ITR

OTR

IMR

IBR

OBR

Center

InnerBottomCenter

InnerTopCenter

OuterBottomCenter

OuterTopCenter

TargetTopSourceTop

SourceBottom TargetBottom

Geometry shape All

Image shape All

Compartment shape All outer decorators, InnerTopLeft,
InnerTopCenter, InnerTopRight

Port All

Swimlane InnerTopLeft, InnerTopCenter, InnerTopRight

Table 4-5: Decorator Positions for Different Kinds of Shapes

Decorator Maps
The appearance of a decorator in any particular instance of a shape may
change dynamically as the information in the model changes. This behav-
ior is defined in decorator maps that are part of shape and connector maps.
Figure 4-29 shows the decorator map for the Name decorator of the
ProjectShape in the Issue Project DSL. There are two parts: the “Display
property” and the “Visibility Filter.”

If the decorator is a text decorator, then a “Display property” may be
provided. This is a domain property of the domain class being mapped to
the shape (Project in this case), or a domain property of the domain class
of an element navigated to by the “Path to display property,” if present.

In order to understand the visibility filter, let’s consider an alternative
way of showing a start state in the Issue State example. Suppose that
instead of having a separate start element connected to an issue state to
indicate that the issue state is a start state, we define an icon decorator that
should only appear in cases when the issue state is a start state. To indicate
that fact, we’ll add a Boolean flag to IssueState called IsStartState. That
is, the definitions of IssueState and IssueStateShape are as shown in
Figure 4-30.

Decorators 171

Figure 4-29: Definition of a decorator map

Figure 4-30: Definition of StartIcon and IsStartState

We can now define a visibility filter in the map for the decorator StartIcon,
as shown in Figure 4-31. This says that the StartIcon will only be visible
when the domain property IsStartState is true. The property can have any
type—enumerated properties are particularly useful for this. By providing
a path to the filter property, the property can be a domain property of
another element navigable from the element mapped to the shape to which
the decorator belongs. Text decorators can also be filtered—that is, you
can set things up so that text appears only under certain circumstances. And

if you want to base visibility on more sophisticated logic, then you
can do this by introducing a calculated property and using that in the
visibility filter.

Chapter 4: Presentation172

Figure 4-31: Decorator map showing visibility filter

The result in the generated designer is illustrated in Figure 4-32, where
only the state Raised has the Boolean flag “Is Start State” set to True.

Figure 4-32: Result of using a visibility filter

Customizing the Graphical Notation in Code

We have already discussed the customization of shape and connector maps
through code, as driven by the Boolean “HasCustomXxx” flags on shape
maps. This section describes a range of other useful customizations.

Most of the code in this section requires the following using statements:

using Microsoft.VisualStudio.Modeling;
using Microsoft.VisualStudio.Modeling.Diagrams;

Multiline Text Decorators
There are occasions where you’d like the text in a text decorator to wrap
across multiple lines. A common example is in the definition of a comment
box that is used to add text comment boxes on the design surface.

The inner decorators of a shape are implemented as shape fields. By
default, text shape fields only allow a single line of horizontal text. How-
ever, we can change that by setting the appropriate properties. To have the
text wrap successfully within the containing shape, we also need to
“anchor” the sides of the field to the sides of the shape (Figure 4-33).

Customizing the Graphical Notation in Code 173

Figure 4-33: Wrapped text inside a

Comment Box

public partial class CommentBoxShape
{
//Called once for each shape instance.
protected override void InitializeDecorators
(IList<ShapeField> shapeFields,
IList<Decorator> decorators)

{
// Be sure to call the base method.
base.InitializeDecorators(shapeFields, decorators);

//Look up the shape field, which is called "Comment."
TextField commentField =

(TextField)ShapeElement.FindShapeField
(shapeFields, "Comment");

// Allow multiple lines of text.
commentField.DefaultMultipleLine = true;
// Autosize not supported for multi-line fields.
commentField.DefaultAutoSize = false;

// Anchor the field slightly inside the container shape.
commentField.AnchoringBehavior.Clear();
commentField.AnchoringBehavior.
SetLeftAnchor (AnchoringBehavior.Edge.Left, 0.01);

commentField.AnchoringBehavior.
SetRightAnchor (AnchoringBehavior.Edge.Right, 0.01);

commentField.AnchoringBehavior.
SetTopAnchor (AnchoringBehavior.Edge.Top, 0.01);

commentField.AnchoringBehavior.
SetBottomAnchor(AnchoringBehavior.Edge.Bottom, 0.01);

}
}

Note that for this code to work, you must set “Generates Double Derived”
to True for CommentBoxShape in the DSL definition.

Variable Image Shape
You can change the image displayed in an image decorator dependent
upon data in the underlying model.

In the Circuit Diagrams DSL, the transistor shapes can have multiple
orientations—eight in all (some of them are shown in Figure 4-34).

Chapter 4: Presentation174

Figure 4-34: Transistor shapes have multiple orientations.

Rather than create a separate shape and toolbox tool for each orienta-
tion, we provide the user with one tool, one TransistorShape, and the
ability to change the orientation of the image.

The eight images are selected depending on the value of two domain
properties Flip and Rotate, which are on the TransistorShape. They would
be inappropriate on the Transistor domain class, since they are only con-
cerned with presentation. The wiring represented by the model would be
the same no matter which way the components appear on the diagram.

We need to make our own custom ImageField class to perform the reori-
entation and then make sure that the field implementing the image decora-
tor is an instance of this class. We’ll call the new class ComponentImageField.
It overrides GetDisplayImage and uses the standard image rotation facilities
found in System.Drawing and caches the result to avoid computing
every time.

public class ComponentImageField : ImageField
{
public ComponentImageField(string tag) : base(tag) { }

private RotateFlipType cachedRotateFlip =
RotateFlipType.RotateNoneFlipNone;

private Image cachedImage = null;

private static RotateFlipType[] rotateFlips =
new RotateFlipType[] {

RotateFlipType.RotateNoneFlipNone,
RotateFlipType.Rotate270FlipNone,
RotateFlipType.Rotate180FlipNone,
RotateFlipType.Rotate90FlipNone,
RotateFlipType.RotateNoneFlipX,
RotateFlipType.Rotate90FlipX,
RotateFlipType.RotateNoneFlipY,
RotateFlipType.Rotate90FlipY
};

public override Image GetDisplayImage
(ShapeElement parentShape)

{
ComponentShape componentShape =

parentShape as ComponentShape;
RotateFlipType rotateFlip =

rotateFlips[componentShape.RotateFlip];
if (cachedImage == null || rotateFlip != cachedRotateFlip)
{

cachedImage = base.GetDisplayImage(parentShape);

if (cachedImage != null &&
rotateFlip != RotateFlipType.RotateNoneFlipNone)

{
cachedImage = (Image)cachedImage.Clone();

Customizing the Graphical Notation in Code 175

cachedImage.RotateFlip(rotateFlip);
}
cachedRotateFlip = rotateFlip;

}
return cachedImage;

}
}

Now we override InitializeShapeFields to supply an instance of this
class instead of the default image field:

public partial class TransistorShape
{
// Requires Generate Double Derived:
protected override void InitializeShapeFields

(IList<ShapeField> shapeFields)
{
string decoratorName = "PNPImage"; // as in DSL Definition
ComponentImageField field =

new ComponentImageField(decoratorName);
field.DefaultImage =
ImageHelper.GetImage(
CircuitsDomainModel.SingletonResourceManager.
GetObject("TransistorShapePNPImageDefaultImage"));

shapeFields.Add(field);
}

}

The unrotated image TransistorShapePNPImageDefaultImage is the image
resource for the decorator defined in the DSL definition. This is compiled
into the set of resources for the designer via the DomainModelResx.resx file
in the Dsl project, which is generated from the DSL definition. It can be in
any of several formats, including JPEG, GIF, and BMP.

Set a Background Picture
It is possible to set a background picture for the diagram. To do this, you
need to create an image resource and then create an image field on the dia-
gram to act as the background field.

It is easiest to put the image resource in the project resources file:

• Include the image file (JPEG, GIF, BMP, etc.) in the Resources folder.

• Open the Dsl project properties, and open the Resources tab.

Chapter 4: Presentation176

• Click the “Create Resource File” link if necessary.

• Drag the image file from the solution explorer into the resources
window.

To create the image field in the diagram class, set the “Generates Double
Derived” property in your diagram class in the DSL definition to True, and
regenerate. Then write a partial class to create the background image field,
as follows:

public partial class ComponentDiagram
{
protected override void

InitializeShapeFields(IList<ShapeField> shapeFields)
{
base.InitializeShapeFields(shapeFields);
ImageField backgroundField = new ImageField("background",

ImageHelper.GetImage(Properties.Resources.
SampleBackgroundImage));

// Make sure you can't do anything with it.
backgroundField.DefaultFocusable = false;
backgroundField.DefaultSelectable = false;
backgroundField.DefaultVisibility = true;

shapeFields.Add(backgroundField);

// Make it center in the diagram.
backgroundField.AnchoringBehavior.

SetTopAnchor(AnchoringBehavior.Edge.Top, 0.01);
backgroundField.AnchoringBehavior.

SetLeftAnchor(AnchoringBehavior.Edge.Left, 0.01);
backgroundField.AnchoringBehavior.

SetRightAnchor(AnchoringBehavior.Edge.Right, 0.01);
backgroundField.AnchoringBehavior.

SetBottomAnchor(AnchoringBehavior.Edge.Bottom, 0.01);
}

}

Set Custom Connection Points
The DSL Tools use a routing engine to route connectors between shapes. By
default the routing engine will select any point on the bounding box of a
shape as a connection point. For some shapes we might want to suggest
specific connection points.

Customizing the Graphical Notation in Code 177

If you want just four connection points, one in the middle of each side of
a shape, you can set the property “Has Default Connection Points” in the
shape, as discussed earlier. To get a different pattern of connection points,
you need to write custom code. In that case, you should not set “Has
Default Connection Points” in the shape.

public partial class SyncBarShape
{
public override bool HasConnectionPoints
{
get
{
return true;

}
}
public override void EnsureConnectionPoints (LinkShape link)
{
// set connection points along the top and bottom,
// to discourage connection to the sides
foreach (double y in new double[]

{ AbsoluteBoundingBox.Top, AbsoluteBoundingBox.Bottom })
{
double spacing = AbsoluteBoundingBox.Width / 4.0;
for (double x = spacing + AbsoluteBoundingBox.Left;

x < AbsoluteBoundingBox.Right - spacing / 2;
x += spacing)

{
this.CreateConnectionPoint(new PointD(x, y));

}
}

}
}

The code only defines a preference—the user can move the end point of any
line around the bounding box. HasConnectionPoints and EnsureConnec-
tionPoints are called every time a link is made to a shape. Connection
points can be set per instance shape. However, once set for a particular
instance, connection points apply to all connections made to that instance.
(Despite the link parameter to EnsureConnectionPoint, the connection
point is not specific to a type of link.)

Change Routing Style of Connectors
Two routing styles for connectors are exposed in the DSL definition—
straight and rectilinear. However, there is a wide range of other styles that

Chapter 4: Presentation178

you can choose, which can be done through custom code. For example, the
Issue Project DSL uses a routing style for its connectors that is appropriate
for presenting tree structures from top to bottom down the page, as illus-
trated in Figure 4-35.

Customizing the Graphical Notation in Code 179

Figure 4-35: Illustration of North-South tree routing style

This is achieved by overriding the default routing style for the relevant
connectors. Here’s the code from the Issue Project DSL to do this.

namespace CJKW.IssueProject
{
public partial class ProjectCategoryConnector
{
[CLSCompliant(false)]
protected override Microsoft.VisualStudio.Modeling.Diagrams.

GraphObject.VGRoutingStyle DefaultRoutingStyle
{
get
{
return
Microsoft.VisualStudio.Modeling.Diagrams.GraphObject.

VGRoutingStyle.VGRouteTreeNS;

}
}

}

public partial class CategoryTreeConnector
{
[CLSCompliant(false)]
protected override Microsoft.VisualStudio.Modeling.Diagrams.GraphObject.

VGRoutingStyle DefaultRoutingStyle
{
get
{
return Microsoft.VisualStudio.Modeling.Diagrams.GraphObject.

VGRoutingStyle.VGRouteTreeNS;
}

}
}

}

In more sophisticated cases, changing the routing style of a particular con-
nector may not be sufficient, which is one of the reasons that not all rout-
ing styles have been exposed in the DSL definition. Instead, you may need
to write code that uses the facilities provided by Microsoft.VisualStu-
dio.Modeling.Diagrams.Diagram. In particular, the method,

public void AutoLayoutShapeElements(
System.Collections.ICollection
shapeElementCollection,

Microsoft.VisualStudio.Modeling.Diagrams.
GraphObject.VGRoutingStyle routingStyle,

Microsoft.VisualStudio.Modeling.Diagrams.
GraphObject.PlacementValueStyle placementStyle,

bool route)

may be useful for laying out either the whole diagram or particular
parts of it.

Explorer

We’ve seen how information is presented through the graphical design sur-
face. Now we turn our attention to the explorer, which appears in all
designers by default.

Chapter 4: Presentation180

Default Appearance
As mentioned in Chapter 3, the nodes in the explorer are derived from
embedding relationships, and there is a set of behaviors that governs how
nodes are displayed by default. Some of these rules can be overridden by
adding data to the DSL definition; that will be discussed in subsequent sec-
tions. To illustrate the default rules, we’ll look at the Issue Project DSL,
whose domain model is shown in Figure 4-36. Figure 4-37 shows the model
explorer for the Issue Project designer over a suitable populated model.

Explorer 181

Figure 4-36: Domain model for Issue Project DSL

The default behaviors are as follows:

• Every non-abstract embedding relationship is represented in the
explorer by a collection node (or element node if the multiplicity of
the source role of the relationship is 0..1 or 1..1).

• If an embedding relationship has source role with multiplicity 0..* or
1..*, then it is represented by a collection node (i.e., it has element
nodes nested beneath it), and the “Property Name” of the source
role is used to label the node. Examples in Figure 4-37 are Projects,
Categories, Custom Fields, etc. Notice that there is no Items node
beneath a project because the relationship ProjectHas-
CommentableItems is abstract.

• If the multiplicity of the source role is 0..1 or 1..1, then the element
node is not nested beneath the collection node but is conflated with
it. The Issue Project example doesn’t have any of these, but if you

Chapter 4: Presentation182

Figure 4-37: Issue Project Explorer over a populated model

browse through the DSL explorer of the DSL designer on some DSL
definition, you’ll see some examples—“Custom Type Descriptor” on
any domain class, or the “Validation” node under “Editor” (remem-
ber the DSL designer is itself developed using DSL Tools).

• Then there is an element node nested beneath the collection node for
each embedded element, provided that the link to the element is not
also a link of a derived relationship.3 The information displayed for
each element node is the value of the property providing the name
of the element (if there is one) followed by the domain class of the
element shown in brackets. If there is no property representing the
name, then the domain class name is displayed instead. For exam-
ple, the names of both projects are displayed, followed by their class
(IssueProject). Notice, however, that only the class is displayed for
both comments, because Comment has no name property.

• No reference relationships are shown in the explorer.

Changing the Window Icon and Label
The title of the explorer window, which then also appears in the tab when
docked with the solution explorer, and in the view menu, can be changed
through the “Title” property of the explorer behavior in the DSL definition,
as illustrated in Figure 4-38.

Explorer 183

Figure 4-38: Changing the title of the explorer

3. This ensures that an element only appears once in the explorer and in a way that distin-
guishes between links that are also links of derived relationships from ones that are not.

The icon cannot be changed through the DSL definition but may be
changed simply by substituting the ModelExplorerToolWindowBitmaps.bmp
file in the Resources folder of the DslPackage project. This is because the
VSPackage.resx file in the DslPackage project is not generated, unlike its
counterpart in the Dsl project. Thus, unless you are prepared to hand-edit the
.resx file, the filename for the icon used for the explorer window cannot be
changed, so you just have to replace the file with another of the same name.

Customizing the Appearance of Nodes
The appearance of element nodes can be customized by adding custom
explorer node settings to the “Explorer Behavior.”

Chapter 4: Presentation184

Figure 4-39: Defining custom node settings

This is illustrated in Figure 4-39, and the effect of the definitions on the
appearance of the explorer is shown in Figure 4-40.

TIP Adding a custom explorer node setting

Choose “Add ExplorerNodeSettings” from the context menu with
explorer behavior selected. You can then identify the domain class of ele-
ment the node represents, whether or not the display name for that class
should be shown in brackets (the default is not), and the icon you wish
to display. If you provide one or more custom node settings, icons get
displayed on all nodes, with default icons used if no icon is provided.

You can also change the string that is displayed for each collection and
element node. For a collection node, the string used is the value of “Prop-
erty Display Name” (under the “Resources” category) on the source role of
the relationship to which the collection node corresponds. By default this
is just the property name with spaces inserted at word breaks.

For an element node, it is possible to choose the displayed string to be the
value of a domain property from an element navigable via a path from the
element that the node represents. This is done by adding a “Property Dis-
played” property path to the “Custom Node Settings” corresponding to the
class of the element. Figure 4-41 shows an (unrealistic) example, highlight-
ing the definition of a “Property Displayed” path in the custom settings
for Milestone. The path instructs the explorer to navigate back from a
Milestone element to the Project it belongs to, and then to use the Name
domain property of that project for the display string. The effect of this def-
inition is shown in Figure 4-42, where you will indeed see that all milestones
are displayed using the name of the project. An example of where this is use-
ful is provided by the DSL designer itself, indeed in exactly the area we are

Explorer 185

Figure 4-40: Result of defining custom node settings

looking at now. Each custom node setting node in the DSL explorer displays
the name of the class to which the custom node setting applies.

Chapter 4: Presentation186

Figure 4-41: Changing the string displayed in an element node

Hiding Nodes
It is also possible to hide collection nodes and all nodes beneath them from
the explorer. To do that, you add domain paths under “Hidden Nodes.” For
example, to hide “Sub Categories” from the Issue Project explorer, add a
new domain path under “Hidden Nodes” and then fill in the path in the
“Content” field in the properties window.

TIP Adding a property path

On the Custom node setting (Milestone), use the “Add New Property
Path” contextual command. The subnode that was named “Property
Displayed (empty)” changes to “Property Displayed,” and you can
change the “Path To Property” value to a path; when you have entered
a correct path, you will be able to choose a domain property from the
domain properties of the class of the element reached by the path (in
this case, Project).

All you need to provide is the name of the relationship and the role to nav-
igate across, as shown in Figure 4-43. The effect in the generated designer is
that all “Sub Categories” collection nodes, together with that part of the tree
nested beneath them, will be hidden, as illustrated in Figure 4-44.

Customizing the Explorer through Code
If you want to change the presentation of the explorer through code, then you
can, but not in a fine-grained way. If you look at the generated code (the Mod-
elExplorer.cs file nested beneath ModelExplorer.tt in the GeneratedCode
folder of the DslPackage project), you’ll see that the creation and appearance
of nodes is dependent on an ExplorerElementVisitor that is defined
as part of the underlying framework in the Microsoft.VisualStudio.

Explorer 187

Figure 4-42: Result of changing the string displayed

TIP Adding a domain path

The “Add Domain Path” context menu item is visible with the
explorer behavior node selected, not the hidden nodes node. In gen-
eral, to add an element beneath a collection node in the explorer,
whether using the DSL designer or your own designer, you need to
select the parent of the collection node.

Modeling.Diagrams namespace. You’ll need to override the method that
creates the element visitor with one that returns a visitor of your own devis-
ing. This is just a matter of adding a partial class, because the double-derived
pattern (explained in Chapter 3) is used to generate the code for the explorer.

Chapter 4: Presentation188

Figure 4-43: Hiding nodes

Figure 4-44: Result of hiding nodes

Properties Window

Default Appearance of Properties Window
By default the properties window shows the following properties of an
element of a domain class when it is selected in the model explorer:

• Domain properties defined on the domain class

• Properties derived from roles whose roleplayer is that domain class
and whose multiplicity is 0..1 or 1..1, and where the roleplayer of the
opposite role has a domain property that acts as the element name
(Is Element Name = true)

• Domain properties defined on the embedding relationship that tar-
gets the selected element

In the second case, the name used for the displayed property is the
property name of the role. The value shown is the name of the element ref-
erenced, hence the constraint that it has a domain property that acts as the
element name.

To illustrate the third case, imagine a domain model with domain class A,
which has an embedding relationship AHasB to B, and where AHasB has a
domain property X defined on it. Then, whenever a B element is selected, the
property X will also appear in the properties window for that element. The
motivation for this is that it is rare for embedding relationships to be mapped
to connectors, so if this were not done, properties defined on embedding rela-
tionships could never be set, because links of those relationships could never
be selected. This is an example of forwarding a property, which you can also do
explicitly through the DSL definition, as explained in a later section.

If, instead of selecting an element via the model explorer, a shape repre-
senting an element is selected, then it will also show:

• Any domain properties explicitly defined for the shape, including
browsable exposed style properties (such as fill color)

• Roles for which the shape is a roleplayer that satisfy the constraints
just presented

Properties Window 189

TIP Making style properties on shapes and connectors
changeable programmatically

Exposed style properties provide a way to expose certain style prop-
erties of shapes and connectors in the properties window so that they
can be changed by the user of the designer. A style property is exposed
by creating a domain property on the shape or connector definition.

If a connector is selected, then it displays:

• Domain properties defined for the domain relationship it is mapped to

• Properties derived from appropriate roles for which the domain
relationship is roleplayer (domain relationships may participate in
other domain relationships—see Chapter 3)

• Domain properties explicitly defined for the connector, including
browsable exposed style properties

• Appropriate domain roles for which the connector is roleplayer

Note that links of a relationship can only be selected via a connector.
By default, all properties appear in the “Misc” category, and their names

and descriptions are derived from the name of the domain property (or
property name, in the case of roles). See the next section for details on how
to change this.

Categories, Names, and Descriptions
When a property is displayed in the properties window, it appears in a cat-
egory, is identified through a display name, and has a description, as illus-
trated in Figure 4-45, which shows the properties of a StartElement element
in the Issue State DSL.

All these are configurable in the DSL definition through property settings
of domain properties and domain roles. Figure 4-46 shows the settings for
the properties highlighted in Figure 4-45. The first is for the domain property
Name on the StartElement domain class, and the second is for the Start-
Element role (“Display Name” is “Start State”) played by StartElement.

Chapter 4: Presentation190

A side effect of exposing a style property in this way is that the prop-
erty can also be set dynamically through the API. If that is all you want
to do, then just change “Is Browsable” to False on the exposed domain
property and that will hide it from the user in the properties window.

Note that, in the DSL designer, it is not possible to override the settings
of a domain property already defined in a class in subclasses of that class.
So, for example, it’s not possible to change the description for Name to be
“Name of the start element” in the StartElement class.

All the strings are generated as resources, which means they are local-
izable (see the section “Localization” earlier in this chapter). In particular,
this means that it is possible to choose a different name to display in the
properties window than the actual name of the property used in the DSL
definition.

Note that exposing a style property on a diagram, shape, or connector
introduces a domain property to represent it, which then behaves like any
other domain property.

Properties Window 191

Figure 4-45: Anatomy of the presentation of a property

Category

Display name

Description

Figure 4-46: Settings on domain properties and roles governing their presentation

Hiding Properties and Making Them Read-Only
A property may be hidden from the properties window by setting “Is
Browsable” to False, or it can be made read-only (the property is grayed out
and its value can’t be changed) by setting “Is UI Read Only” to True. These
settings are available on both domain roles and domain properties.

Forwarding Properties
It was earlier explained how domain properties on embedding relation-
ships get forwarded to the class that is the target of the relationship. It is
also possible to do this for any property by making use of custom type
descriptors on domain classes. Select a domain class in the explorer (or any-
thing that can act like a domain class, such as a domain relationship, shape,
etc.) and choose “Add New Domain Type Descriptor.” This will create the
custom type descriptor for the domain class. Then, to this you can add cus-
tom property descriptors, which can include a path to a property to be
included in the type descriptor.

For example, suppose you wanted to display the IssueTypeName from
an IssueStateModel as a read-only property in an IssueState element, for
example, to remind you which IssueType element you were working on.
You would define the pieces as shown in Figure 4-47 and get the result
shown in Figure 4-48.

Chapter 4: Presentation192

Figure 4-47: Definition of forwarded property

Customizing the Properties Window through Code
It is possible to customize the appearance and editing experience for indi-
vidual properties in the properties window through code. The basic
method is to attach a custom attribute to the domain property that identi-
fies the custom handler to be used for that property. In Figure 4-49 we show
how to attach a file picker to a domain property.

In the DSL definition, select the domain property for which the custom
editor is required. Locate the “Custom Attributes” property in the properties
window and click on the ellipsis (. . .) to open the attribute editor. Enter the
attribute, as illustrated in Figure 4-49, and then save and regenerate the code.
The .NET attribute System.ComponentModel.EditorAttribute is specifi-
cally used for identifying editors for .NET properties. The code generated
from the definition just shown applies this attribute to the .NET property
generated from the domain property ExternalFileReference. The first
parameter of the attribute identifies the class defining the editor to be used,
and the second identifies the base type for that class. In this case we have
used a standard editor supplied as part of .NET, but you are at liberty to
define your own.

In order to build the code, you’ll need to add a reference to System.Design
in the Dsl project. The resulting designer now provides a custom editor in
the properties window for the designated domain property, as illustrated
in Figure 4-50.

Properties Window 193

Figure 4-48: Forwarded property showing in generated designer

Chapter 4: Presentation194

Figure 4-50: File picker custom editor for property in resulting designer

Figure 4-49: Custom attribute to associate a file picker with a domain property

SUMMARY

This chapter has gone through most aspects of defining how information in
a model for a DSL gets presented in the designer through the graphical
design surface, the model explorer, and the properties window. It has
explained the extensive facilities provided in a DSL definition to customize
the way in which information is presented and has provided some examples
of common refinements that can be made through custom code. More
advanced examples, like how to do nested shapes, are covered in Chapter
10. Next comes Chapter 5, which looks at how you define creation, delete,
and update behavior for a designer.

Summary 195

This page intentionally left blank

5
Creation, Deletion, and
Update Behavior

Introduction

Chapter 2 introduced the different aspects of the definition of a DSL: the
domain model; the presentation layer, including graphical notation,
explorer, and properties window; creation, deletion, and update behavior;
validation; and serialization. Chapter 3 described the first aspect, the
domain model, and Chapter 4 described the presentation aspect. This chap-
ter focuses on how to define update behavior, that is, creation of elements
using the toolbox and explorer, editing of properties of elements through
the properties window, and deletion of elements.

Element Creation

When a new element is created in the store, it must be linked into the
embedding tree—that is, it must be the target of one embedding link, and
there must be a path back through embedding links to the root element. It
cannot otherwise be presented on the diagram or serialized.

When the user drags from an element tool onto the diagram, this gesture:

• Creates a new element of the class determined by the Tool definition
(in the DSL explorer under “Editor\ToolboxTabs”).

197

• Creates a link or links between the new element and the existing
ones. This behavior is determined by the element merge directive of
the target element—that is, the one the tool was dragged onto.

• Fires rules that update the diagram to show the new element. These
are determined by the shape maps, as we saw in the previous chapter.

The last point is important. We rely on “fixup” rules to maintain, on the
screen, a presentation of what is going on in the model. All the techniques
in this chapter—and indeed much of the custom methods you might
write—deal only with the domain classes and domain relationships. Once
we’ve set up the shapes and their mappings to the domain model (as dis-
cussed in Chapter 4), we can just work with the domain model, leaving the
diagrams to look after themselves.

The Toolbox
Tools are defined in the DSL explorer under “Editor\ToolboxTabs\
YourTab\Tools.” You need to define a tool for each item you want to
appear on the toolbox (Figure 5-1). The tab name is the heading that
appears above each group of tools in the toolbox. By default, you have just
one tab, named after your language, but you can add more tabs in the
explorer if you wish.

Chapter 5: Creation, Deletion, and Update Behavior198

Figure 5-1: The toolbox for the

Issue Tracking DSL

There are two kinds of tools: element tools and connection tools. At runtime,
you operate an element tool by dragging it from the toolbox to the diagram;
for a connection tool, you click it and then drag it between the two elements
you want connected (or click them in succession). The most common scheme

is to provide an element tool for each class that is mapped to a shape on the
diagram and a connection tool for each relationship mapped to a connector.

Each tool has a name, caption, tooltip, toolbox icon, and help keyword;
these are set in the properties window (Figure 5-2). In addition, an element
tool can have a cursor icon that shows while you are dragging it, and a con-
nection tool can have source and target cursor icons that show while waiting
for you to select the source and target of the connection.

Element Creation 199

Figure 5-2: Toolbox definition for the Issue Tracking DSL

Each element tool is associated with a single domain class. Unless you
write custom code, the tool creates a single element of this class each time
the user drags from the tool to the drawing surface. The properties of the
new element have their default values as specified in the DSL definition.
The construction of relationships between the new element and the existing
model is governed by an element merge directive, which we’ll look at shortly.

Each connection tool invokes a specified connection builder, which governs
what elements may be created and the result of creating them. You might
expect that by analogy with the element tools, each connection tool would be

defined to create instances of a particular domain relationship class; but no, a
connection builder can be defined so as to instantiate any of several relation-
ships, depending on the classes of the two elements the user wants to connect.

We’ll come back to connection tools later in this chapter; first let’s focus
on creating elements.

Element Merge Directives
Element merge directives (EMDs) control what relationships are constructed
when one element is merged into another. A merge happens when one of the
following occurs:

• The user drags an element from the toolbox onto the design surface
(or one of the shapes on it).

• The user creates an element using an “Add” menu in the DSL’s
explorer.

• The user adds an item in a compartment shape.

• The user moves an item from one swimlane to another.

• Your custom code invokes the merge directive, for example, to
implement a paste operation (as described in Chapter 10).

In each of these cases, there are two elements to be connected, but there
may be many different possible links between them. The job of the EMD is
to determine which links are constructed. An EMD also has a disconnect
function that is invoked when an element is to be moved between
parents—for example, from one swimlane to another.

The simplest and most common case is when there is an embedding
relationship between the two domain classes. In the Issue Tracking example,
each IssueProjectModel element has projects and comments (Figure 5-3).
An IssueProjectModel element is represented by the diagram, and the two
others are each mapped to shapes.

When the user drags from the Project tool to the diagram, we want the
new project to be embedded in the IssueProjectModel element using the
ModelHasProjects relationship. This behavior is determined by an element
merge directive, which can be found in the DSL explorer under “Domain
Classes\IssueProjectModel.” To see the full detail of the EMD, look in the
DSL details window (Figure 5-4).

Chapter 5: Creation, Deletion, and Update Behavior200

Element Creation 201

Figure 5-3: IssueProjectModel embeds Projects

Figure 5-4: Element Merge Directive to create one embedding link

Notice that the EMD is defined under the target class—in this case, the
IssueProjectModel element, because the user will drop the Project onto the
diagram whose “Class Represented” is IssueProjectModel. The class of
element being merged is called the “Indexing” class. Notice also that there
are no shapes mentioned here—the EMD is defined in terms of the model
classes and relationships.

This EMD says that (a) a Project can be merged into an IssueProjectModel
element, and (b) when it is merged, a ModelHasProjects link will be created,
adding the new Project to the IssueProjectModel element’s Projects property.

The first part of this behavior is quite important, because it determines
what the user is able to do. For example, if you drag a Project off the tool-
box and hover over a Comment, you see the “not allowed” cursor. This is
because Comment has no EMD for which Project is the “Indexing” class.
Move the mouse over to the diagram and it changes back to “allowed,”
because IssueProjectModel has an EMD for Project.

Figure 5-4 shows the most common kind of EMD, in which a single
embedding link is created. In fact, it is so common that whenever you add
a new embedding relationship to the DSL definition, the DSL designer
automatically creates an EMD under the source class, with the target class
as index. (Be aware of this, because you might want to remove it, for
example, if you want to create custom code that will be the only means of
instantiating this relationship.)

Multiple Element Merge Directives

The root class is not the only owner of element merge directives, and
more than one class can have an EMD for the same indexing class. In the
Issue Tracking example, we want to be able to draw diagrams like that in
Figure 5-5, where each IssueCategory element can either be owned by a
project or can be a child of another IssueCategory element. We have chosen
to model both relationships as embeddings—a convenient way of ensuring
that each IssueCategory element has only one parent (Figure 5-6).

Each embedding relationship has its corresponding element merge direc-
tive, allowing the user to drag the “Category” tool onto either a Project or onto
an existing IssueCategory. Each EMD of course instantiates its appropriate
relationship, ProjectHasCategories or IssueCategoryHasSubCategories.
There is no EMD under IssueProjectModel for IssueCategory, so the cursor
shows “not allowed” as you drag from the “Category” tool over the diagram.

Element Merge Directives and Compartment Shapes

An element merge directive is usually needed for each class mapped to a
compartment in a compartment shape. For example (Figure 5-7), milestones,
priorities, and fields are displayed in a project shape; the domain classes
Milestone, IssuePriority, and IssueField are embedded under Project and
each has an EMD (which would have been created automatically by the
DSL designer when the embeddings were defined).

Chapter 5: Creation, Deletion, and Update Behavior202

Element Creation 203

Figure 5-6: IssueCategory is the target of two alternative embeddings

Figure 5-8 shows the menu for adding items to a project shape. If we
remove the element merge directive under Project for Milestone, that item
would disappear from the menu. You could still have a “Milestones”
compartment in ProjectShape, but you would have to write custom code to
link “Milestones” to Projects.

Add Menu in the Explorer

The language explorer provides a tree view of the model. Embedded elements
can be added using the context menu in the explorer as long as there is also
an element merge directive. Figure 5-9 shows the “Add” menu for a project.

Figure 5-5: Elements with two alternative parent types

Chapter 5: Creation, Deletion, and Update Behavior204

Figure 5-8: Add Item menu in a compartment shape is

determined by compartments and EMDs

Notice that it can include every embedded item, irrespective of how it is
represented on the diagram, so that both IssueCategory and IssuePriority are
included. But in this example, the EMD for Milestone has been removed from
the DSL definition, and so it does not appear on the menu—even though there
is actually a Milestone in this instance of the model.

Figure 5-7: An EMD is usually needed for the class mapped

to each compartment

Element Creation 205

Figure 5-9: An Add command is generated in the explorer

for each embedded item with an EMD

Multiple Link Creation Paths in an EMD

The user’s basic method of associating a Comment with a Project is to drag
a Comment onto the diagram and then make a link from it to the Project
(Figure 5-10).

Figure 5-10: Comment attached to Project

We have defined Comment to be embedded in the IssueProjectModel
so that Comments can stand on the diagram on their own, if required.
The connector between the comment shape and its subject (the dashed line
in Figure 5-10) is mapped to a reference relationship between Comment
and CommentableItem, of which Project is a subclass (Figure 5-11).

Chapter 5: Creation, Deletion, and Update Behavior206

Figure 5-11: Comments and Projects

But suppose we want to provide an extra convenience for the user such
as the ability to drag a Comment onto a Project and have the reference link
made automatically. The EMD must create two links: the embedding in the
IssueProjectModel and the reference to the Project.

Figure 5-12 shows the element merge directive we need. The index class
is Comment and the EMD is owned by Project (because the user will drop the
new comment onto a project). There are two link creation paths, both of which
navigate from a project. The first creates the reference link from the project to
the comment, specifying that we are creating a CommentReferencesSubjects
link and adding it to the Comments property of the Project:

CommentReferencesSubjects.Comments

Figure 5-12: Element merge with multiple link creation paths

The second link directive creates the embedding link from the Issue-
ProjectModel element to the Comment. But we’re starting at a Project , so
first we have to get to the IssueProjectModel:

ModelHasProjects.Model/!Model/ModelHasComments.Comments

In a link directive, the last segment defines the link to be created; any pre-
ceding segments are about getting to the right starting point. In this case:

• ModelHasComments.Comments instantiates the ModelHasComments
relationship, adding the link to the Comments property of the
model.

• ModelHasProjects.Model/!Model navigates from the project to the
model in two steps: first onto the link between the two, and then
onto the model itself.

Forwarding

The “Forward merge” option in an EMD simply sends the element to be
merged onto a different target.

For an example, let’s look at the Components sample that comes with
the DSL Tools. In this model, each component can have a number of ports. On
the diagram, each port appears as a box on the edge of its parent component’s
shape.

New ports can be created by dragging the “Port” tool onto a component.
There is an element merge directive in Component for which Port is the
indexing class.

A typical component may have several ports (see Figure 5-13). When the
user drags yet another port onto the component shape, it is easy to mistak-
enly try to drop the new port onto an existing port shape. From the user’s
point of view, the ports are just part of the component. For the user’s con-
venience, we can arrange that an existing port will accept a new one but deals
with it just by passing the new element on to the parent component. There,
one of the component’s EMDs will process the new port. To set up the for-
warding EMD on the Port class, we set its forwarding path to navigate from
the Port element to its parent Component element:

ComponentHasPorts.Component/!Component

Element Creation 207

Notice that this path expression has two steps: from Port to the Compo-
nentHasPorts link, and then on to the Component itself. (Without the sec-
ond step, the forwarding would be to the intermediate link rather than the
Component element.) A forwarding path can have several steps but must
point to one specific element.

The target of a forwarding path must have an EMD that can deal with
the class of element being forwarded. This is checked by the validation
rules when you save your DSL definition.

Chapter 5: Creation, Deletion, and Update Behavior208

Figure 5-13: Component shape with ports

Custom Element Merge Directives
Custom Accept

The “Uses custom accept” flag allows you to write code to have extra con-
trol over whether a merge can be done.

For example, if you want to prevent the user from adding more than five
issue categories to any project, set the “Uses custom accept” flag in the EMD for
IssueCategory under Project. This signals your intention to write some cus-
tom code. As usual, the best way to remind yourself of the name of the method
you are expected to write is to click “Transform All Templates” and rebuild.
This will give you the error that CanMergeIssueCategory() is undefined.

TIP Dangling bits when you delete a domain class

If you delete a domain class from the DSL, the old element merge
directives and toolbox entries must be removed explicitly. Validation
errors will point you to them.

The generated class for the Project domain class, if you wish to look at
it, will be in the GeneratedCode folder of the Dsl Visual Studio project,
inside the DomainClasses.cs file, which you will find hiding under the
DomainClasses.tt template.

Write a partial class for Project containing the missing method
CanMergeIssueCategory(). The file will look like this:

using System;
using System.Collections.Generic;
using System.Text;
using Microsoft.VisualStudio.Modeling;

namespace CJKW.IssueProject
{
/// <summary>
/// Additional code for the class generated from the
/// Project domain class.
/// </summary>
public partial class Project
{
/// <summary>
/// This method must be provided because we have set the
/// Custom Accept flag in the Element Merge Directive
/// for the Project class.
/// Called by the Element Merge Directive to check whether a
/// given element may be merged into a Project instance.
/// </summary>
/// <param name="rootElement"></param>
/// <param name="elementGroupPrototype"></param>
/// <returns></returns>
private bool CanMergeIssueCategory
(ProtoElementBase rootElement,
ElementGroupPrototype elementGroupPrototype)

{
return this.Categories.Count < 5;

}
}

}

(The parameters are not very useful, because they merely identify the pro-
totype from which the new element will be constructed: this has all the
information we need.)

Element Creation 209

Chapter 5: Creation, Deletion, and Update Behavior210

TIP Custom accept code has to work fast

Custom accept code is called whenever the mouse passes over the
boundary of a potential target of this type—so don’t have it doing
something long and complicated.

Custom Merge

The “Uses custom merge” flag allows you to write code controlling how the
merge is performed.

For example, we have already seen how an element merge directive can be
designed to create and link a comment when the Comment tool is dropped
onto a project; suppose we want to do the same for issue categories. Recall that
the EMD has to create two links: a reference link from the comment to the tar-
get element and an embedding of the new comment into the model.

The embedding is more difficult, because it must first navigate from the
drop target to the model. If the drop target is a Project, this just means navi-
gating across the ModelHasProjects relation. But from IssueCategory, there
is no fixed relationship to Model. An IssueCategory may be parented on other
IssueCategories, and so there will be a variable number of steps up to the
model. The path expression language does not include an iterative element.

Define an element merge directive under IssueCategory for Comment
and set its “Uses custom merge” flag. In this case, you do not need to provide
a path for link creation or forwarding. On transforming and building the
code, you get errors that MergeRelateComment and MergeDisconnectComment
are missing. Provide these in a partial class definition for IssueCategory:

using Microsoft.VisualStudio.Modeling;

namespace CJKW.IssueProject
{
public partial class IssueCategory
{
/// <summary>
/// The project that a category is ultimately parented by.
/// </summary>
public Project UltimateProject
{

get

{
if (this.Project == null)

return this.ParentCategory.Project;
else

return this.Project;
}

}

/// <summary>
/// Connect a Comment into the model.
/// </summary>
protected void MergeRelateComment(

ModelElement sourceElement, ElementGroup elementGroup)
{

Comment comment = sourceElement as Comment;
this.UltimateProject.Model.Comments.Add(comment);
this.Comments.Add(comment);

}

/// <summary>
/// Disconnect a Comment from the model
/// </summary>
protected void MergeDisconnectComment(ModelElement sourceElement)
{

Comment comment = sourceElement as Comment;
this.Comments.Remove(comment);
this.UltimateProject.Model.Comments.Remove(comment);

}
}

}

Element Creation 211

TIP Take care with namespaces in folders

If the compiler persists in complaining that you have not supplied the
required method, check both that you have its name correct and that
the namespace in which you have declared it is correct. When you cre-
ate a new file in a separate folder, Visual Studio creates a few lines of
code for you, including a namespace that ends with the name of the
folder: You need to delete that last part.

Re-Parenting with Element Merge Directives
In some cases, you need to move an element from one owner to another,
breaking its old links with its owning context and reforming them with the

new one. At the same time, we want to keep its other properties and links.
In most cases, the link that has to be reformed is the single embedding link
of which every element must be a target, but in some cases there may
have been other links established by the element merge directive when the
element was first created. For that reason, we can put an element merge
directive into reverse, to do an “unmerge” or MergeDisconnect. Unmerging
deletes those links that the EMD specifies (the same ones it normally
creates). To move an element from one parent to another, first unmerge it
from its existing context and then re-merge it into the new one.

An example occurs in the Task Flow example discussed in Chapter 4.
Every FlowElement (task, start, stop, and so on) appears in the diagram on
top of a swimlane, which represents an Actor (Figure 5-14).

Chapter 5: Creation, Deletion, and Update Behavior212

When the user moves a FlowElement task1 from actor1 to actor2, the
framework calls

actor1.MergeDisconnect(task1); actor2.MergeRelate(task1);

Custom Element Tool Prototypes
Each element tool is initialized with a prototype of the element(s) that
are created when the user drags the tool onto the diagram. The standard
generated code creates a single element as a prototype for each element
tool, but you can define a group of interlinked elements. When the tool is
used, the whole group will be replicated and merge attempted.

Consider a type of component diagram where some components must
be created with a fixed set of ports. Electronic diagrams are typically like
this. For example, a transistor always has three distinct terminals to which
connections can be made (see Figure 5-15). (This example DSL could be
used to generate code simulating the circuit or analyzing its properties.)

Figure 5-14: Part of the Task Flow model. FlowElements are owned by Actors

Element Creation 213

Figure 5-15: Transistors have three connections each

When the user drags a Transistor off the toolbox, we want a group of four
elements to be created together: the transistor and its three component ter-
minals, and the three links between them (see Figure 5-16). We therefore must
override the initialization code that sets up the prototypes in the toolbox. This

Figure 5-16: A component that must be created with three subsidiary elements

is in YourLanguageToolboxHelper, which is always double derived (that is,
all its methods are in a separate base class).

using System;
using System.Collections.Generic;
using System.Text;
using Microsoft.VisualStudio.Modeling;

namespace Microsoft.Example.Circuits
{
public partial class CircuitsToolboxHelper
{
protected override ElementGroupPrototype

CreateElementToolPrototype(Store store, Guid domainClassId)
{
if (domainClassId == Transistor.DomainClassId)
{
// Set up the prototype elements and links.
Transistor transistor = new Transistor (store);

// Derived links must be set up in order of initialization
transistor.Base = new ComponentTerminal(store);
transistor.Collector = new ComponentTerminal(store);
transistor.Emitter = new ComponentTerminal(store);

transistor.Base.Name = "base";
transistor.Collector.Name = "collector";
transistor.Emitter.Name = "emitter";

// Create a prototype for the Toolbox.
ElementGroup elementGroup =

new ElementGroup(store.DefaultPartition);
elementGroup.AddGraph(transistor, true);
// Don't need to add children and links explicitly
// 'cos they're embedded.

return elementGroup.CreatePrototype();
}
// Code for other multi-element components goes here
else
{
// Default - single-element prototype - use generated code
return base.CreateElementToolPrototype(store, domainClassId);

}
}

}
}

Chapter 5: Creation, Deletion, and Update Behavior214

This method is called once for each class on the toolbox when the DSL
package is loaded. For classes that have standard single-element proto-
types, we pass control to the base method. Where we want a multi-element
prototype, we create an ElementGroup and construct a prototype from it.

Adding to an ElementGroup

You can add any number of elements and links to an ElementGroup. In this
example, we have just included the embedding subtree (by using the Add-
Graph()method that does so automatically), but we could explicitly add other
elements and reference links between elements in the same ElementGroup.

Instead of the AddGraph() method, you can use elementGroup.Add to
add items individually to the group. AddGraph() automatically follows the
embedding tree, while Add gives closer control.

Rather than writing out Add(transistor.Emitter); Add(transistor.
Collector) and so on, this DSL has a common base relationship between
all the components and their terminals, so that TransistorHasEmitter is
derived from ComponentHasComponentTerminal (Figure 5-17), and all the
Component subclasses have a property ComponentTerminals, which we can
loop on:

Component component = element.ModelElement as Component;
elementGroup.Add(element.ModelElement);
elementGroup.MarkAsRoot(element.ModelElement);
foreach (ComponentTerminal terminal in component.ComponentTerminals)
{

elementGroup.Add(terminal);
}

Notice that we must mark the root element of the tree.
The Add() method has the curious property of also adding any rela-

tionship links that exist between the element being added and the elements
already in the group.

At the beginning of this chapter, we said that there are two kinds of tools
on the user’s toolbox: element tools and connection tools. We’ve now seen
in detail how element tools create elements of a specific domain class and
how they can be made to create groups of elements as well as how element
merge directives control whether and how new elements can be merged
into the existing model.

Element Creation 215

Connection Builders

The connection tools on the user’s toolbox work differently than the
element tools. While an element tool creates elements of a specified class,
a connection tool invokes a specific connection builder. This controls what
elements the user may select to link and can generate a link of any of several
different domain relationship classes, depending on the elements chosen. If

Chapter 5: Creation, Deletion, and Update Behavior216

Figure 5-17: Individual embeddings of ComponentTerminal are derived

from ComponentHasTerminal.

you write custom code for it, you can make the user’s connect-this-to-that
gesture initiate any actions you like.

The connection builder is invoked as soon as its connection tool is
clicked by the user. (And of course you can also invoke a connection builder
in custom code.) The connection builder governs what elements may be
connected and exactly what links are made. Connection builders are listed
at the top level of the DSL explorer.

When you map a reference relationship to a connector in the DSL
designer, it automatically creates a connection builder for you (though you
may then opt to change or delete it). The Issue Tracking example contains
one such default (Figure 5-18). It has a single link connect directive speci-
fying that a Comment may be connected to a CommentableItem element
using the CommentReferencesSubjects relationship.

Connection Builders 217

Figure 5-18: A connection builder

Notice once again the separation between diagrams and domain model.
The connection builders deal only in domain relationships and their role-
players. There is no mention of connectors or shapes. The connection
builder creates a relationship, and then the connector mappings (which we
saw in the previous chapter) do whatever is required, if anything, to display
the relationship.

Multiple Source and Target Role Directives
One connection builder can be used to instantiate several different relation-
ships. Let’s look at the Task Flow example again (see Figure 5-19).

In this DSL several different types of element (Task, MergeBranch,
StartPoint, and EndPoint) can be interconnected by Flow links. However,
there are some restrictions; a StartPoint element cannot be the target of a
Flow link, while an EndPoint element cannot be its source.

Chapter 5: Creation, Deletion, and Update Behavior218

Figure 5-19: Task Flow DSL

In the DSL definition (Figure 5-20), all the above classes are subclasses of
FlowElement, and the Flow reference relationship is defined as linking any
two FlowElements. When we map Flow to its connector, the DSL designer
helpfully creates a generic connection builder that will allow any Flow-
Element to be connected to any other. But that’s not what we want in this
case. For example, we don’t want an EndPoint to be an allowed source, and
we don’t want a StartPoint to be an allowed target. So we list explicitly what
we want to allow for the source and the target (Figure 5-21). (Of course, it
only makes sense to list subclasses of the source and target roleplayers.)

TIP Adding a link connect directive

The user interface in the present version is slightly unintuitive. Scroll
to the bottom of the list and click “<Add new>”; click the drop-down
icon at the side and select the sole drop-down item—which also says
“<Add new>”! This gives you a blank line. Now click on the blank
domain class, and again click the drop-down icon. Usually it only
makes sense to select the roleplayer class of that end of the relation-
ship, or one of its derivatives—though this need not be the case if you
write custom code to do some of the connect directive’s job.

Connection Builders 219

Figure 5-20: General relationship Flow, between multiple element classes

Figure 5-21: Connection builder listing restricted source and target sets

Multiple Link Connect Directives
An additional feature of this DSL is a domain class called ObjectInState. An
element of this class can be connected to and from tasks but using a different
relationship, ObjectFlow (Figure 5-22). ObjectInState instances can also be

interconnected with ObjectFlow links, but tasks may not be interconnected
with ObjectFlow links. By careful definition of the connection builder, we
can implement these restrictions while using the same connection tool as the
flows between the other elements.

Chapter 5: Creation, Deletion, and Update Behavior220

Figure 5-22: A second relationship, ObjectFlow

Relationship Acceptable Sources Acceptable Targets

Flow Task, Merge, Start Task, Merge, End

ObjectFlow Task, ObjectInState ObjectInState

ObjectFlow ObjectInState Task

A new connection builder is automatically generated when we map the
ObjectFlow relationship to its connector, but we can delete that. Instead,
we add link connect directives to the existing Flow builder (Figure 5-23).
This means that one tool can be used to create both types of relationship.

To summarize, we now have the following link connect directives all
hanging off the Flow tool.

Connection Builders 221

Figure 5-23: Additional link connect directives for the FlowBuilder connection builder

Where there are several sources and targets in the same link directive,
they are not paired up; any combination of the listed sources and targets
will work. However, the different link directives are separate; a user cannot
connect an ObjectFlow from a task to a task.

Notice that after clicking the Flow tool, the user must click both a source
and a target before it is clear whether a Flow or an ObjectFlow is to be created.

Sharing the one tool between several relationships is useful where they
are similar; it reduces clutter on the toolbox and saves the user from
remembering which tool to use. It is not recommended where the relation-
ships are for different purposes—for example, connecting a comment to its
subject should probably be a different tool.

Role Directive Path

A path can be specified for any source or target role in a link connect direc-
tive. This is to allow the user to click on one element while the link is actually
made to another. The path navigates from the clicked element to the actual
source or target.

Recalling the Components example, there is a relationship between
Components called Generalization; the default connection builder lets the
user drag from one component to another. But as we observed before, the

user may naturally consider the ports around the edge to be part of a
component, and therefore would expect to be able to drag to or from a port
and have it work just the same as in the body of the component.

To allow this behavior, we define extra roles in the Link Connect Directive
(Figure 5-24). The domain class listed is the one the user can click on; the path
navigates from there to the actual start of the relationship being instantiated.

Chapter 5: Creation, Deletion, and Update Behavior222

Figure 5-24: Link Connect Directive with Path to Roleplayer

TIP Validate if you write custom connection builders

Connection builders and element merge directives govern only how
the user creates relationships from the toolbox. They do not place con-
tinuing constraints on the relationships, and so any code you write can
circumvent their restrictions. If you provide other ways for the users to
create relationships, you might therefore want to write appropriate
validation code (see Chapter 7).

Custom Connection Builders
Multiple degrees of code customization are available for connection
builders. There are several “custom” checkboxes:

• “Custom accept.” Checking this box on a source or target role directive
(see Figure 5-25) allows you to provide code that performs extra
checks whenever the actual source or target belongs to that class.

• “Custom connect.” Checking this box on a source or target role
directive allows you to provide code that creates the connection in
the case where the specified source or target class is the reason for
activating the link connect directive.

• “Uses custom connect.” This is the checkbox at the bottom of the
connect directive (Figure 5-25); it also appears in the properties
window when you select the link connect directive in the explorer.
With this flag set, you provide code to deal with all cases when this
link directive is activated.

• “Is Custom” property of each connection builder. This appears in
the properties window when you select a connection builder in the
DSL explorer. With this set, you provide code that takes over as soon
as the user clicks the tool.

Let’s look at these in greater detail.

Connection Builders 223

Figure 5-25: Custom accept on the target role

Custom Accept

Suppose we wish to prevent any comment (in, let’s say, the Issue Project
example) from being linked to more than three subjects. Recall from way
back in Figure 5-11 that the relationship is CommentReferencesSubjects,
with source Comment and target CommentableItem (from which most of
the other domain classes in that model are derived). So to connect a com-
ment to a subject, the user will click on the “Comment Link” tool, then click
a comment, and then drag from there to a suitable subject. To apply this

constraint, we can determine whether the link is allowed as soon as the user
clicks on the source comment, by counting the number of links the comment
already has. So we set “Custom accept” on the Source Role (Figure 5-25) to
get the designer to incorporate our code.

After clicking “Transform All Templates” and a rebuild, we get errors
that CanAcceptCommentAsSource and CanAcceptCommentAndCommentable
ItemAsSourceAndTarget are undefined. In a separate file, we define

/// <summary>
/// Called repeatedly as the mouse moves over candidate sources.
/// </summary>
/// <param name="candidate">The element presented by the shape
/// the mouse is currently hovering over.</param>
/// <returns>Whether this is an acceptable source.</returns>
private static bool CanAcceptCommentAsSource(Comment comment)
{
// Prohibit linking over 3 subjects to any comment using this directive.
return comment.Subjects.Count < 3;

}

As with the custom accept on a merge directive, this code has to work
reasonably fast, responding to the mouse as it moves over the different
elements.

After clicking the connection tool, the user moves the mouse over
various shapes on the diagram. As it crosses each boundary, your
CanAcceptXxxAsSource() method is called, and the mouse cursor shows
an encouraging or discouraging icon depending on the Boolean value
you return. If the user clicks on a shape for which you return true, then
that element becomes the selected source, and the user then goes on to
choose the target.

(Notice that, as usual, the method deals entirely in domain elements—
there is no mention of shapes.)

You also need to provide code for CanAcceptXxxAsSourceAndTarget(),
which is called when the user is choosing the second roleplayer. In the
example we described, once the comment has been chosen, any subject is
acceptable, so it can just return true. But suppose we wanted to impose the
same sort of limit the other way around, so that each subject can have no
more than five comments:

Chapter 5: Creation, Deletion, and Update Behavior224

/// <summary>
/// Called repeatedly while hovering over candidate
/// second roleplayers.
/// The first has already been chosen and accepted.
/// </summary>
/// <param name="sourceComment">Comment to be linked</param>
/// <param name="targetCommentableItem">Subject to be linked</param>
/// <returns>Whether it's OK to link these two.</returns>
private static bool
CanAcceptCommentAndCommentableItemAsSourceAndTarget
(Comment sourceComment, CommentableItem targetCommentableItem)

{
return targetCommentableItem.Comments.Count < 5;

}

Notice that the … AsSourceAndTarget() method is passed by both roleplay-
ers of the candidate link, so it can be used to apply more interesting constraints
that involve the two ends. For example, in the Components sample, there is
a generalization relationship between components; the user should not be
able to create loops in which a Component could be among its own ancestors.
To achieve this, we set the “Custom accept” flag in either the source or target
role in the Generalization link directive, and add code:

private static bool CanAcceptComponentAndComponentAsSourceAndTarget
(Component sourceComponent, Component targetComponent)

{
if (sourceComponent == targetComponent) return false;
if (targetComponent.Superclass == null) return true;
else return CanAcceptComponentAndComponentAsSourceAndTarget

(sourceComponent, targetComponent.Superclass);
}

There’s a slight variation on the above if you have set the “Reverses Direc-
tion” property of the connection tool (which appears in the properties win-
dow on selecting the tool in the explorer). This flag allows the user to drag
in the opposite direction, from the target to the source. In that case, you
need to set “Custom accept” on the target role directive (instead of the
source) and provide a method for CanAcceptXxxAsTarget().

Notice that these custom methods only apply to the specific link directive
for which you have set the “Custom accept” flag. The same connection builder
may also be able to connect other combinations of elements with other
directives.

Connection Builders 225

“Custom accept” is an example of a hard constraint—that is, a constraint
imposed by the user interface. The alternative is a soft constraint, which allows
the user to create any number of comment-subject links but shows an error
message when the file is saved. To do this, you would write a validation
method (as described in Chapter 7) instead of the “Custom accept.”

However, as we remarked before, hard constraints only apply to a
particular user operation, so if your customizations provide more than one
method of creating this type of link, you must make sure that every method
imposes the same constraint. For example, one of the variations above was
designed to prevent more than a certain number of comments being linked
to a single subject. Now suppose we have also implemented the neat element
merge directive mentioned in the section “Multiple Link Creation Paths in an
EMD” earlier in this chapter, in which you could create a comment and make
a link to it at the same time just by dragging from the comment tool onto the
required subject. In that case, the user can continue to connect up any num-
ber of new comments to one subject. The best approach to prevent this would
be to add custom accept code to the merge directive, similar to what we’ve
just written for the connect directive. (Just to be sure, we might also write a
validation method to check the situation when the user saves the file.)

Custom Connect

Custom connect code is used to create a complex connection, for example,
where the link is not between the source and target directly indicated by the
user, but between some related items, or when there are actually several
links to be created or perhaps some adjustment to be made to the properties
of some of the elements.

Chapter 5: Creation, Deletion, and Update Behavior226

TIP Always set “Custom accept” on the source (unless you’ve
reversed direction)

Should you set “Custom accept” on the source or the target of the link
directive? You might think it depends on whether you want to write
code that filters on the source or the target of the link, but in fact you
can normally do either or both of those by setting “Custom accept” on
the source. You only need to set it on the target if you have set the
“Reverses Direction” flag on the connection tool that uses this connection
builder.

If you set the “Custom connect” checkbox for a particular class in the
“Connect Directive” details, then your code will be called just when the
user’s first click was on an element of that domain class. (As before, you
would choose to set it in the “Source role directives” tab or the “Target role
directives” tab, depending on whether you have set “Reverses Direction”
on the tool that uses this connection builder.)

If you set the “Uses custom connect” checkbox for a whole link directive
(see the bottom left of Figure 5-25) then your code will be called if some
combination of source and target was accepted.

Alternatively, you can set the “Is Custom” flag on the whole connection
builder, to determine everything that happens when the user selects the
associated tool.

A typical customized connect creates additional links or elements. In the
Components sample, the user must create ports on the components before
linking them (Figure 5-26). To save the user some time, we can create a port
if necessary. The user can drag the connect tool either between existing
ports or from or to the main body of a component. In the latter case, a new
port is constructed, and the connection is made to that.

Connection Builders 227

Figure 5-26: Components and ports

In this case, it is easiest to set the “Is Custom” flag on the whole
connection builder. (Select the connection builder in the DSL explorer and
set the flag in the properties window. As always, after modifying the DSL
definition, click the “Transform All Templates” button to generate the
code.) This generates a generic connection builder for which we have to
provide three methods in a partial class.

using System;
using System.Collections.Generic;
using System.Text;
using Microsoft.VisualStudio.Modeling;

namespace CJKW.CJKWComponentModels
{

public static partial class ConnectionBuilder
{

///<summary>
/// Called to determine if we can drag from here.
///</summary>
internal static bool CanAcceptSource

(ModelElement sourceElement)
{

return sourceElement is Component
|| sourceElement is OutPort;

}

///<summary>
/// Called to determine if we can drag between these.
///</summary>
internal static bool CanAcceptSourceAndTarget

(ModelElement sourceElement, ModelElement targetElement)
{

return targetElement is Component
|| targetElement is InPort;

// CanAcceptSource already checked
}

///<summary>
/// Called to perform the connection.
///</summary>
internal static void Connect

(ModelElement sourceElement, ModelElement targetElement)
{

// Is the source a Component or a Port?
OutPort outPort = sourceElement as OutPort;
Component sourceComponent = sourceElement as Component;
if (sourceComponent != null)
{

// A component - so we need to create a source port
outPort = new OutPort(sourceComponent.Partition);
outPort.Component = sourceComponent;

}
// Is the target a Component or a Port?
InPort inPort = targetElement as InPort;
Component targetComponent = targetElement as Component;
if (targetComponent != null)
{

Chapter 5: Creation, Deletion, and Update Behavior228

// a component - so we need to create a target Port
inPort = new InPort(targetComponent.Partition);
inPort.Component = targetComponent;

}

// make the connection between the two ports
outPort.Targets.Add(inPort);
// easy, eh?

}
}

}

Element Deletion

As the DSL is running in a designer or other application, instances can of
course be both created and deleted. In a designer, the user can point to a
shape or an element in the explorer and press delete, or code that you have
written can call Remove() on the element. When an element is removed by
any means, rules fire that seek to ensure the consistency of the store by
removing any dependent elements.

One deletion rule is immutable: When any element is deleted, every link
of which it is the source or target is deleted too. What happens next depends
on the delete propagation rules for the links. Separate delete rules can be
defined for each relationship. There is a default set of rules, so you only have
to think about them when you want something special to happen.

Default Delete Propagation Rules
There are some default rules, but you can change them or add others.

• If the link belongs to an embedding relationship, then its target is
also deleted. So deleting any element deletes its entire embedding
subtree.

• The source of an embedding relationship is not deleted by default. If
you want deleting a child to delete its parent automatically, you
must add a delete propagation rule to the parenthood relationship.

• Deleting a reference link affects neither of its roleplayers.

For example, if you select the Component domain class in the Compo-
nents sample and then click on the “Delete Behavior” tab of the DSL details

Element Deletion 229

window (Figure 5-27), you can see all of the domain relationships listed in
which this class takes part. In fact, there is an entry for each role that the
domain class plays, so that reflexive relationships like Generalization
appear twice.

Chapter 5: Creation, Deletion, and Update Behavior230

Figure 5-27: Delete Behavior tab in the DSL Details window for the Component domain class

TIP Take care when disabling default delete propagation

Disabling propagation at the source of an embedding relationship
means that if a parent instance is deleted (a component in this case),
then any children (ports) are left lying around in the store without
being in the embedding tree. This is a situation of dubious value,
because displaying, serialization, and validation all depend on every-
thing being in the tree. It is generally not wise to disable propagation
on embedding relationships unless you have some custom code that
will reassign the element to another part of the tree.

The Delete Style column indicates either “Track embeddings” or “User
specified.” “Track embeddings” means that the “Propagate” box is checked
if this is the source of an embedding relationship, and unchecked otherwise.

It is mostly easy to test delete propagation. Set “Propagate” on the Sub-
classes property of Generalization, for example; click “Transform All
Templates,” build, and run; and draw some components and several
generalization connectors between them. When you delete one component,
you will see its subclasses in your diagram vanish too, along with all their
subclasses. And of course any ports on the components also vanish because
of the default setting of “Propagate” on the embedding relationship,
ComponentHasPorts.

The effect of unchecking the “Propagate” flag on the source of an
embedding relationship is less easy to detect. In this example, it still looks
as though deleting a component appears to delete its ports—together with
any connectors attached to them. However, the port shapes vanish because
the view fixup rules (which implement the shape map) work down the tree
and fail to find the associated model element. Removing the port shapes in
turn removes their attached connectors from the diagram, because there is
delete propagation from shapes to connectors.

Controlling Delete Propagation
In the Circuit Diagrams sample that we introduced earlier (Figure 5-15),
each class of component is supposed to have a fixed set of ports—all transis-
tors have three connections, all diodes two, and so on. But if the user selects
any individual port and presses the delete key, the port will duly disappear.
One way of avoiding this embarrassing inconsistency is to provide the
convenient feature that deleting the port will delete the whole thing. This
allows the user to click on the port—perhaps mistakenly intending to click
its parent component—and still achieve the desired deletion. To make this
happen, we first select the ComponentTerminal domain class and open the
delete behavior tab in the DSL Details window. There are a lot of entries,
because a component terminal can be attached to any of a number of different
components by several relationships each. (See the model in Figure 5-17.) In
fact, there is an abstract relationship from which all these are derived, and
it would be nice if we could just check its box (ComponentHasCompo-
nentTerminal); in the current version of the DSL Tools, that doesn’t happen,
so we have to go through and check all of the boxes (Figure 5-28).

After clicking “Transform All Templates” and rebuilding, deleting any
port now deletes the parent component and its other ports.

Delete Propagation and Constraints

Delete propagation is generally used to help enforce a hard constraint. For
example, in the Task Flows sample, each instance of the ObjectInState
domain class (see Figure 5-22) should always have one link to a source and
one to a target task. Therefore, if a task is deleted, we want any linked
ObjectInState instances to vanish too.

Element Deletion 231

Chapter 5: Creation, Deletion, and Update Behavior232

Figure 5-28: Delete Behavior tab for ComponentTerminal in the Circuit Diagrams sample

Once again, this feature does not guarantee a constraint by itself; you
might in the same DSL provide the means for the user to create an unlinked
ObjectInState element. To make sure a constraint is observed, you have to
consider all the methods of creation and deletion that the user can access
or that your custom code provides.

Customizing Delete Propagation
If you want more complex behavior, you can override parts of the
XXXDeleteClosure class, which is generated from the Delete Behavior def-
inition (where XXX is the name of your DSL). You will find the generated
class in DomainModel.cs in the GeneratedCode folder of the Dsl project.
There is only one class whose name ends with “DeleteClosure.”

The ShouldVisitRolePlayer() method of this class is called every time
any link is to be deleted, and its job is to decide whether each roleplayer (that
is, the instance at the end of the link) should be deleted too. The default
method just looks at the delete propagation flags in the DSL definition. But to
get more dynamic behavior, we can override it. Because it is called for every
link that is deleted, we must be careful to pass back control to the base
method in the cases where we aren’t interested in customizing the behavior.

For example, you might want to delete a Component element when,
and only when, the last of its child ports have gone. To do this, you can
write the following custom code.

// Replace "Components" in this class name with the name of your DSL.
public partial class ComponentsDeleteClosure
{
/// <summary>
/// Called when deleting a link, to decide whether to delete a
/// roleplayer.
/// </summary>
public override VisitorFilterResult ShouldVisitRolePlayer
(ElementWalker walker, ModelElement sourceElement,
ElementLink elementLink, DomainRoleInfo targetDomainRole,
ModelElement targetElement)

{
ComponentHasPorts portParentLink =

elementLink as ComponentHasPorts;
if (portParentLink != null)
{
// Delete if there is just one left in the *old* state.
if (portParentLink.Component.Ports.Count == 1)
return VisitorFilterResult.Yes;

else
return VisitorFilterResult.DoNotCare;

}
else
return base.ShouldVisitRolePlayer(walker, sourceElement,

elementLink, targetDomainRole, targetElement);
}

}

Element Deletion 233

TIP Customization with overrides

This customization is done just by overriding a method from the gen-
erated code. Unlike the previous examples in this chapter, it doesn’t
require you to set any “custom” flag in the DSL definition. Unlike the
custom flags technique, it isn’t always obvious what methods are good
to override. We discuss more of them in the rest of this book, but you
can always experiment. Write a partial class definition for any of the
classes that occur in the generated code and type “override” within it.
IntelliSense will give you a range of methods you can try overriding.
Inefficient but fun.

The base method (which this one overrides) is called when any deletion is
made to any element. There is just one such method in the DSL code (rather
than, for example, one for each domain class). The method is called whenever
a link is about to be deleted. The most useful parameters are elementLink, the

link which is about to be deleted, and sourceElement and targetElement, the
items at its two ends. Recall from Chapter 3 that the classes ElementLink and
ModelElement are the ancestor classes of all domain relationship instances
and all domain class instances.

The first thing we do is to try to cast the elementLink to the domain rela-
tionship class that we are interested in. This method will be called when any
link is deleted, but we are only interested in the ComponentHasPorts rela-
tionship. If it isn’t one of those, we just pass control back to the base method.

If this is indeed a link between components and ports, we can go ahead
and decide whether the target should be deleted on the basis of our own
requirements—in the case of this particular example, by counting the ports
that the component still has. (Because this method is called before any changes
are made, the condition we want is that there is just one port left—not zero!)
This logic replaces the check to see whether the appropriate PropagateDelete
flag is set in the DSL definition, which is what the base method would do.

The VisitorFilterResult values that we can return are

• Yes: The roleplayer should be deleted.

• Never: The roleplayer should not be deleted in this transaction.

• DoNotCare: The roleplayer should not be deleted, according to this
rule. However, if another link targeting the same element causes its
deletion, then that is OK.

SUMMARY

The main points made in this chapter were

• An element tool creates an instance of a specified domain class. You
can customize it to create a group of instances, though there is
always one principal element in such a group.

• As the user drags from an element tool onto the diagram or onto
existing elements, the element merge directives of those elements
(the root element, in the case of the diagram) determine whether the
prototype from the tool is acceptable to be merged. By default, the

Chapter 5: Creation, Deletion, and Update Behavior234

decision is made on the basis of classes, but you can write custom
code to define more complex criteria.

• When an element tool is dropped onto the diagram or existing
elements, a merge happens under the control of the element merge
directive, which creates one or more links between existing and new
elements. You can write code to handle more complex merge schemes.

• When the user clicks a connect tool, the associated connection
builder is activated. This determines what elements may be linked
together and what domain relationships will be instantiated to link
them. In the DSL definition, you can specify which combinations of
domain classes cause links of different domain relationships to be
created. By writing custom code, you can make more complex
choice schemes and create more than one link at a time.

• When an element is deleted, its neighboring links are deleted, too;
they in turn may cause their other roleplayers to be deleted. Delete
propagation is controlled by the DSL’s DeleteClosure class, which
normally uses the “Propagate” flags you have set in the DSL
definition but whose code can be overridden to define more
complex behavior.

Summary 235

This page intentionally left blank

6
Serialization

Introduction

This chapter looks at how the models and diagrams created using a DSL are
saved to files so that they can be persisted and shared using a filing system
or source control system. When a DSL is defined using the DSL Tools, a
domain-specific serializer is automatically generated in the Dsl project that
will save and load models in a domain-specific XML format. If the user
wishes to modify this format, several customization options are available to
do so, and these are explained in this chapter.

One of the goals of the DSL Tools is to enable the DSL user to understand
these files directly and edit them by hand. For example, it’s possible to
create a DSL with just a domain model and no diagram, hand-edit files
corresponding to that DSL, and use these files as input to templates that
generate code and other artifacts. Another option is to transform the saved
model to and from data formats used by other tools or electronic processes,
using XSLT, for example. To make this easy, the domain-specific format of
a DSL is designed to be human-friendly, with elements that correspond
directly to the domain classes; a schema is generated that offers domain-
specific IntelliSense to help the user to edit the XML file correctly, and the
code that loads the file into the store is forgiving of errors and will provide
helpful messages when errors are present.

237

Saving and Loading Models and Diagrams

This chapter uses for its examples the same Issue State model introduced
and discussed previously in Chapters 2 and 3. Figure 6-1 shows the Visual
Studio window open on a debugging solution that contains an Issue State
model. In the solution explorer, notice the file ch6_1.iss and its depend-
ent file ch6_1.iss.diagram. These are the files to which the Issue State
model and diagram are saved, and from which they are loaded. The file
extension .iss is part of the Issue State language definition, and when
the language is deployed, this file extension is registered to launch the Issue
State designer within Visual Studio. The associated diagram file has the
additional extension .diagram, and is shown in the Visual Studio explorer
as a dependent file. The model file is self-contained, and has no depend-
ency on the diagram file. The diagram file contains only diagram layout
information. If the diagram file is discarded, then the model file can still
be opened; the diagram will then be automatically fixed up, and a new dia-
gram file created when the model is saved.

Chapter 6: Serialization238

Figure 6-1: Issue State model in a solution

Model XML File Format

Models and diagrams are saved by default as XML documents. We assume
here that the reader already has a basic understanding of XML. If this is not
so, there are many good books and online resources that explain it.

XML is a good choice for saving models and diagrams. because

• It is human-readable.

• It is a W3C (World Wide Web Consortium) standard.

• A large number of tools and libraries exist for processing it.

• Its nested structure corresponds well to the natural embedding
structure of models and diagrams.

• XML documents can be validated by a schema.

Let’s look at the XML in ch6_1.iss for the model shown in Figure 6-1.

<?xml version="1.0" encoding="utf-8"?>
<issueStateModel dslVersion="1.0.0.0"

namespaceName="CJKW.States" issueTypeName="StateModel"
serverName="MyServer" databaseName="MyDatabase"
xmlns="http://schemas.cjkw.com/IssueStateModels">

<comments>
<comment Id="9f8bc7e9-579c-402a-a9a3-c854767161d1">
<commentText>This is the first state</commentText>
<subjects>
<issueStateMoniker name="/CJKW.States/StateModel/Raised" />

</subjects>
</comment>

</comments>
<states>
<issueState name="Raised" icon="raised.ico"

description="The issue has been raised">
<successors>
<issueStateMoniker name="StateModel/Submitted" />

</successors>

Model XML File Format 239

TIP Deleting the diagram file will only lose the layout
Discarding the diagram file can be useful in cases where the model file
has been modified by hand, or because the domain model has changed,
causing the diagram to be out of step.

</issueState>
<issueState name="Submitted" icon="submitted.ico"

description="The issue has been submitted for assessment">
<successors>
<issueStateMoniker name="StateModel/Pending" />
<issueStateMoniker name="StateModel/Closed" />

</successors>
</issueState>
<issueState name="Pending" icon="pending.ico"

description="The issue is pending resolution">
<successors>
<issueStateMoniker name="StateModel/Closed" />

</successors>
</issueState>
<issueState name="Closed" icon="closed.ico"

description="The issue is closed" />
<startElement name="Start">
<startState>
<issueStateMoniker name="StateModel/Raised" />

</startState>
</startElement>

</states>
</issueStateModel>

The first line is the normal XML prolog, giving the XML version and
encoding.

On the following line is the root element of the document, <issueState
Model>. The definition of a DSL’s editor identifies a single root domain class,
which is mapped to the diagram and which serializes as the root element of
the XML document. In this case, the root domain class is IssueStateModel,
which is mapped to the XML element name <issueStateModel>. By default
the DSL designer creates XML element names that are the same as corres-
ponding domain classes, but with lowercase initial letters. The <issueState
Model> element contains XML attributes to persist the domain properties of
the IssueStateModel class, that is, NamespaceName, IssueTypeName,
ServerName, and DatabaseName. Again, the initial letters have been
defaulted to lowercase in the XML document. An attribute called dslVersion
is used to save the version number of the language; we’ll describe versioning
later in the chapter. The final attribute of this element defines the default
XML namespace for the root element (and thus the document); this is part
of the DSL definition and can be customized by the DSL author.

Chapter 6: Serialization240

There are two elements nested in the <issueStateModel> element:
<comments> and <states>. These correspond to the two embedding rela-
tionships IssueStateModelHasComments and IssueStateModelHasStates,
and their names are generated from the property names of the source roles
of those relationships. This exemplifies the general pattern used to map
models into XML documents: Embedding relationships map to nested
XML elements.

Within the <comments> element is a single <comment> element. The Id
attribute contains a .NET Guid (Globally Unique Identifier), which is used
to refer uniquely to this element from elsewhere. Every referenced element
must have some way to identify it uniquely, and the simplest technique is
to use its Id, which every ModelElement has in the store, as introduced in
Chapter 3. You might ask why it is necessary for this particular comment
to have an identifier, because it isn’t referred to from anywhere else in this
file. It is, however, referred to from the diagram file, as we’ll see later.

Embedded within the <comments> element is a nested <commentText>
element, with the value of the comment’s CommentText domain property
as its content. Following that is a <subjects> element, representing the rela-
tionship CommentsReferToIssueStates, and embedded in that is the
<issueStateMoniker> element that refers to the IssueState Raised, by its
fully qualified name /CJKW.States/StateModel/Raised. We’ll discuss the
topic of moniker elements in more detail in the discussion of cross-references
later in the chapter.

After the <comments> element is the <states> element, which contains
four <issueState> elements and one <startElement> element. Each of
the <issueState> elements represents an IssueState model element. Each
of the domain properties of these MELs—Name, Description, Icon—is
represented by an XML attribute: name, description, icon. The IssueState-
Transition relationship is represented by the element <successors>,
which contains one or more <issueStateMoniker> elements that refer to
a succeeding IssueState, using a locally qualified name such as State-
Model/pending. Finally, the <startElement> element is serialized with its
name Start and the <issueStateMoniker> reference to the associated
IssueState, which has the name Raised.

Model XML File Format 241

Elements and Properties

In this section and the following ones, we’ll look systematically at each
aspect of the serialization of a model in order to understand in more detail
the defaults and the options available. As a starting point, note that every
valid model consists of a tree of model elements (MELs), with a single root,
that are linked together by links of the embedding relationships defined in
the DSL. This tree maps directly into the nested structure of an XML
document. Every MEL is mapped into an XML element, with the element
name by default derived from the name of the domain class by changing
the first character into lowercase in order to conform to XML conventions.
You can override any of the elements, as we’ll describe later in the section
about customization.

The embedding relationship itself is, by default, represented by an
element whose name is derived from the “PropertyName” of the source
role of the relationship. In the example just presented, the source role of the
IssueStateModelHasComments relationship has the “PropertyName”
Comments, and with the first character changed to lowercase, this gives
<comments>. By similar logic, the relationship IssueStateModelHasStates
is represented by the element <states>. However, there are several other
options for how to represent a relationship, as we’ll see later.

Domain properties can be represented in one of two ways: as XML
attributes, as exemplified by the NamespaceName, IssueTypeName,
ServerName, and DatabaseName properties of the IssueStateModel,
or as XML elements, as exemplified by the CommentText property of
Comment. DSL authors can choose between these options depending on
which they think is most readable. Properties are serialized as XML attrib-
utes by default.

If a domain property has its default value, it is not serialized unless a cus-
tomization option is set that forces all domain properties to be serialized.

Where a domain class participates in an inheritance hierarchy, the ele-
ments and attributes defined highest in the hierarchy appear first in the
XML element corresponding to a MEL of that class; see, for example, that
name appears before description within an <issueState> element. Within
a given domain class in the hierarchy, the relative order in which elements
are serialized can be customized.

Chapter 6: Serialization242

Relationships

We’ve seen that the default representation for a domain relationship is an
XML element that derives its name from the “PropertyName” of the source
role. This rule applies both for embedding and reference relationships; for
embeddings, the embedded MEL’s XML representation is nested within the
relationship element, and for references, a moniker element is nested and
contains a value that references the element whose actual contents are seri-
alized elsewhere. We’ll discuss moniker elements in the next section.

This simple default gives a nicely readable XML document, as we’ve
seen in the example. However, with this format there is no explicit repre-
sentation of the link itself. For example, let’s say we alter the domain model
for our language to give the IssueStateTransition relationship a property
called Action, with an associated decorator. Figure 6-2 shows a model using
this language as presented on the screen.

Figure 6-2: Transitions with actions

Let’s look at the XML document for this model. The <comments> element
has been left out because it is unchanged from the previous example.

<?xml version="1.0" encoding="utf-8"?>
<issueStateModel dslVersion="1.0.0.0"

namespaceName="CJKW.States" issueTypeName="StateModel"
serverName="MyServer" databaseName="MyDatabase"
xmlns="http://schemas.cjkw.com/IssueStateModels">

<comments>

Relationships 243

...
</comments>
<states>
<issueState name="Raised" icon="raised.ico"

description="The issue has been raised">
<successors>
<issueStateTransition action="submit">
<issueStateMoniker name="StateModel/Submitted" />

</issueStateTransition>
</successors>

</issueState>
<issueState name="Submitted" icon="submitted.ico"

description="The issue has been submitted for assessment">
<successors>
<issueStateTransition action="pend">
<"issueStateMoniker name="StateModel/Pending" />

</issueStateTransition>
<issueStateTransition action="close">
<issueStateMoniker name="StateModel/Closed" />

</issueStateTransition>
</successors>

</issueState>
<issueState name="Pending" icon="pending.ico"

description="The issue is pending resolution">
<successors>
<issueStateTransition action="close">
<issueStateMoniker name="StateModel/Closed" />

</issueStateTransition>
</successors>

</issueState>
<issueState name="Closed" icon="closed.ico"

description="The issue is closed" />
<startElement name="Start">
<startState>
<issueStateMoniker name="StateModel/Raised" />

</startState>
</startElement>

</states>
</issueStateModel>

Notice that for each of the four IssueStateTransition links there is now an
additional <issueStateTransition> element that acts as a container for
the Action domain property of the link. When this additional element is
included, we say that the relationship is serialized in “Full Form.” This is
necessary whenever the relationship has domain properties. The DSL
author does not often have to think about the details of these options,
though, because the DSL designer tool sets appropriate options by default
and will give validation errors if the author chooses inconsistent options.

Chapter 6: Serialization244

Relationship Derivation
Relationship derivation allows a link of a derived relationship to be considered
as if it were a link of its base relationship. The effect of relationship derivation
on serialization is quite straightforward. The basic rule is that it is necessary for
the saved file to provide enough information to know which relationship a link
instantiates.

In the current example, the relationship Transition is abstract. If it had
been concrete, then the XML corresponding to Figure 6-1 would have been
ambiguous, because it isn’t possible to tell whether the <issueStateMoniker>
element within the <successors> element for an IssueState corresponds to
a link of the Transition relationship or the IssueStateTransition relationship.
In such circumstances, it would be necessary to serialize the links in full
form. Again, the DSL designer will validate your model to ensure that this is
done correctly.

Cross-Referencing

Because a model is in general a graph, rather than a tree, it is necessary to
represent cross-references, such as the transitions between IssueStates in
our example, in the saved XML form. Cross-references can also be used
when elements in one file refer to elements in another, for example, the ref-
erences between a diagram and its associated model. The technique used in
the DSL Tools to represent unresolved references in the In-Memory Store
is called monikers. A Moniker is an object in the store that holds a string
that can be used to identify the MEL that is the actual target of the rela-
tionship. A Moniker object can act as a roleplayer in a link, in which case
it is a placeholder for the element that will eventually be the roleplayer.
When the store contains the target MEL, the Moniker can be resolved, at
which point the placeholder Moniker will be substituted by the actual
target MEL to complete the graph.

Consider, for example, loading a file that contains forward references—
such as the element

<issueStateMoniker name="StateModel/Submitted" />

Cross-Referencing 245

in the XML file presented earlier. When this reference is encountered, a link
of the relationship IssueStateTransition is created, with the NextState role
played by a Moniker object holding the string “StateModel/Submitted.”

After the complete file has been read, all of the monikers are resolved, and
this one will be replaced in the link by the IssueState MEL with the name
Submitted, thus completing the graph.

There are many possible schemes for creating references to elements. The
scheme described in this chapter is implemented by the DSL Tools through
a class called SimpleMonikerResolver. This built-in scheme can be overrid-
den for advanced scenarios if required but is actually quite sophisticated as
it stands. The remainder of this section describes this scheme.

As already observed, any MEL that may be the target of a reference must
be uniquely identifiable. We say that such an element must have a key.
There are two kinds of keys: a Guid and a qualified name.

Using Guids as References
We saw in the example earlier that the Comment object is serialized with a
Guid:

<comment Id="9f8bc7e9-579c-402a-a9a3-c854767161d1">
<commentText>This is the first state</commentText>
<subjects>
<issueStateMoniker name="/CJKW.States/StateModel/Raised" />

</subjects>
</comment>

We sometimes call such an element definitional, to distinguish it from a ref-
erence element. An element representing a reference to this looks like:

<commentMoniker Id="9f8bc7e9-579c-402a-a9a3-c854767161d1" />

By default, the element names for reference elements have the string
“Moniker” appended to the element name of the definitional element, as in
this case. These element names are customizable and can be any legal
unique XML element name.

In order for an Id to be serialized for a MEL, its domain class must be
marked with the metadata element “Serialize Id” = True. This property can
be found under the “Xml Serialization Behavior” section of the DSL
explorer, as shown in Figure 6-3.

Chapter 6: Serialization246

Figure 6-3: Setting “Serialize Id”

The result of this is that the Id used to identify the MEL in the store is
automatically written out into the Id attribute of the corresponding XML
element. The DSL designer will automatically set “Serialize Id” when it is
needed, that is, when an element is the target of a reference and does not
have any other kind of key.

Cross-Referencing 247

TIP The DSL designer checks whether keys
are properly defined

The user does not normally need to be concerned about whether
domain classes define keys or not—the tool will ensure that there are
keys, if necessary. If users override the options so that necessary keys
are absent, they’ll be warned through validation errors.

Using Qualified Names as References
Qualified names are names of the form "/CJKW.States/StateModel/Raised".
They consist of a sequence of strings separated by the “/” character. They
occur in references either in full form or in short form. Qualified names are
used when the DSL author specifies that a particular domain property—
usually a name domain property—is to be used as a key.

A full-form qualified name for an object is constructed from the key
property of the referenced object ("Raised" in the example), prepended by
the values of key properties for its embedding ancestors ("StateModel" in
the example). A full-form qualified name always starts with “/“.

If keys were the only thing used to construct qualified names, every
qualified name would start out with the key of the root element of the
model, walking down the whole model to the referenced element, and this
can be cumbersome for deeply nested models. To enable qualified names to
be expressed more efficiently, the concept of a qualifier is introduced. A qual-
ifier is much like a key but it has the special property of always starting the
qualified name. In a particular domain model, certain domain classes are
important containers that can have many embedded children. The DSL
author identifies a property of that class that will be unique for every
instance and defines that property to be a qualifier. Then the qualifier prop-
erty of the container MEL will form the first segment of the fully qualified
name for any of the embedded descendents of that MEL. The Namespace-
Name property of the IssueStateModel has been marked to be a qualifier,
so the fully qualified name of all of the IssueState MELs has this value as
the first segment of the name.

Subsequent segments of the name are the key values found in the embed-
ding hierarchy between the MEL that contains a qualifier and the MEL being
referenced. In the example, the domain property IssueTypeName of the
IssueStateModel domain class has been marked as a key, which produces
the second segment of the fully qualified name.

A particular benefit of qualifiers is that they can be omitted whenever the
qualifier value for the referring element and the referred-to element are the
same. This produces the short form of the qualified name, which we see in
the example. Notice that the short form of the name does not start with “/“:

<issueStateMoniker name="StateModel/Submitted" />

Chapter 6: Serialization248

For qualified names to work correctly, they clearly have to be unique. This
happens as long as the key value for each element is unique within the
scope of its nearest embedding ancestor that also has a key or qualifier. In
general, it is up to the DSL author to ensure that this is the case; if a DSL
author fails to do so, and a model ends up with non-unique keys, then it
will fail to save. However, we saw in Chapter 3 that marking a property as
a name ensures that it gets a unique value within the context of the MEL’s
parent when it is first created. This is such a useful pattern for keys that the
“Named Domain Class” element on the toolbox, introduced in Chapter 3,
automatically specifies that the name property is a key.

References to Links
It is relatively unusual for a DSL author to create models containing refer-
ences to relationships that, when instantiated, will cause links between
links. When this is done, the relationship at the target end of the reference
must have either an Id or a key; the only difference between this situation
and the normal configuration of links between MELs is that the container
within which keys must be unique is the MEL at the source of the link
rather than the embedding MEL.

However, it is extremely common to have links that associate connectors
on diagrams with links in models. Using the basic scheme outlined so far,
this would result in every link referred to by a connector having to carry a
key value. Notice, though, that unless the link is marked with “Allows
Duplicates” set, the identity of a link can be uniquely determined from its
type and the identities of the MELs at its ends. Exploiting this, the diagram
serialization scheme uses special case code to identify links associated with
connectors and the links do not need to carry their own explicit key.

When “Allows Duplicates” is set, on the other hand, it is necessary for
links associated with diagram connectors to carry a key. The model illus-
trated in Figure 6-4 is built from a domain model that has “Allows Dupli-
cates” set on the relationship IssueStateTransition, as demonstrated by the
existence of two links between the Submitted and Pending states.

Cross-Referencing 249

Figure 6-4: Multiple links between states

For this domain model, the domain property Action on the IssueState-
Transition relationship is set to be both a name and a key. The latter is done
in the DSL explorer through the “Xml Serialization Behavior,” as shown
in Figure 6-5.

The XML document for the model shown in Figure 6-4 is the same as
for the previous example shown in Figure 6-2, except that instead of tran-
sitions coming from the Submitted state to the different successor states
Pending and Closed, there are two outgoing transitions to the Pending state.

<issueState name="Submitted" icon="submitted.ico"
description="The issue has been submitted for assessment">

<successors>
<issueStateTransition action="pend">
<issueStateMoniker name="StateModel/Pending" />

</issueStateTransition>
<issueStateTransition action="monitor">
<issueStateMoniker name="StateModel/Pending" />

</issueStateTransition>
</successors>

</issueState>

However, for this version it is possible to save references to the individual
IssueStateTransition links. Since the Action property is a key for the link,
the fully qualified name will end with the key for the link, which comes after

Chapter 6: Serialization250

the key for the source of the link, which itself comes after the key and qual-
ifier for the model. Here is a moniker element using this scheme:

<issueStateTransitionMoniker
action="/CJKW.States/StateModel/Submitted/pend"/>

Such references would occur in the diagram file, so let’s move on to
that topic.

Diagram XML File Format

The diagram serialization uses the same techniques as the model serializa-
tion, and although it is built into the DSL Tools, it is in fact generated from
a domain model in just the same way, with some minor customizations. For
this reason, the format of the diagram file is straightforward and easy to

Diagram XML File Format 251

Figure 6-5: Setting the Action domain property to be a key

understand. Unlike the model file, though, there are few options for the
DSL author to customize the diagram file.

To help keep the discussion compact, we create a very small model,
using the same domain model that we used for Figure 6-1, but with just two
states. Figure 6-6 shows the diagram corresponding to this small model, as
displayed on the screen.

Figure 6-6: Simple Issue State diagram

Let’s look at the contents of the diagram file that corresponds to the dia-
gram shown in Figure 6-6.

<?xml version="1.0" encoding="utf-8"?>
<issueStateDiagram dslVersion="1.0.0.0"

absoluteBounds="0, 0, 11, 8.5"
name="ch6_1">

<issueStateModelMoniker issueTypeName="/CJKW.States/StateModel" />
<nestedChildShapes>
<issueStateShape Id="8ced5d17-9c54-496c-8814-c979246c156b"

absoluteBounds="1.375, 1.75, 1, 0.5">
<issueStateMoniker name="/CJKW.States/StateModel/Raised" />

</issueStateShape>
<issueStateShape Id="64972ea6-400b-4188-ad55-bb5d22473d26"

absoluteBounds="1.375, 3.375, 1, 0.5">
<issueStateMoniker name="/CJKW.States/StateModel/Closed" />

</issueStateShape>
<startElementShape Id="b333c44b-5520-4478-81ca-5ba4fe73b651"

absoluteBounds="1.75, 1.25, 0.1666666716337204,
0.1666666716337204">

<startElementMoniker name="/CJKW.States/StateModel/Start" />
</startElementShape>
<startConnector

Chapter 6: Serialization252

edgePoints="[(1.83333333581686 : 1.41666667163372);
(1.83333333581686 : 1.75)]"

manuallyRouted="false" fixedFrom="NotFixed" fixedTo="NotFixed"
TargetRelationshipDomainClassId="d82fc1a1-c67b-45ea-8aa1-
a43c86f0a425">
<nodes>
<startElementShapeMoniker Id="b333c44b-5520-4478-81ca-5ba4fe73b651" />
<issueStateShapeMoniker Id="8ced5d17-9c54-496c-8814-c979246c156b" />

</nodes>
</startConnector>
<transitionConnector

edgePoints="[(1.875 : 2.25);
(1.875 : 2.62125);
(2.75 : 2.62125);
(2.75 : 3.00375);
(1.85416666666667 : 3.00375);
(1.85416666666667 : 3.375)]"

manuallyRouted="true" fixedFrom="NotFixed" fixedTo="NotFixed"
TargetRelationshipDomainClassId="57f67bbc-668c-445a-af57-
5fe3810f11da">
<nodes>
<issueStateShapeMoniker Id="8ced5d17-9c54-496c-8814-c979246c156b" />
<issueStateShapeMoniker Id="64972ea6-400b-4188-ad55-bb5d22473d26" />

</nodes>
</transitionConnector>

</nestedChildShapes>
</issueStateDiagram>

The root element of the diagram file has the element <issueStateDiagram>.

This can be customized using the DSL designer. It has three attributes. The
dslVersion attribute gives the version of the diagram serializer. The
absoluteBounds attribute exists for any shape including the diagram and
specifies its position in world coordinates. It has the structure (x, y, width,
height), where x and y are the coordinates of the upper left-hand corner of the
rectangle bounding the shape. All coordinates and sizes are measured
in inches. The name attribute contains the name of the diagram, which is ini-
tialized when the diagram is created.

For each DSL, the diagram refers to the root element of the model, which
in this case is an instance of IssueStateModel. The next element in the dia-
gram file is the cross-reference to that MEL, which uses its fully qualified
name. The IssueStateModel MEL itself is serialized in the model file, of
course, not the diagram file.

Following that is the <nestedChildShapes> element. This represents an
embedding relationship—every shape that appears on the diagram is embed-

Diagram XML File Format 253

ded in the diagram using this relationship. Nested in this element are all of
the shapes and connectors on the diagram. Each shape is serialized with its
attributes—in the case of the IssueStateShape, these are its absoluteBounds
and its Id—and a cross-reference to the MEL that it represents.

Each connector is also serialized with its attributes. The edgePoints
attribute gives the coordinates of the ends and kinks. The manuallyRouted
attribute determines whether the connector has been routed by hand since
creation. The fixedFrom and fixedTo attributes with the value of NotFixed
determine that the place that the connector meets the shape can move.

Each connector is serialized within the child element <nodes> with ref-
erences to the shapes at its ends. Together with the identity of the domain
class of the relationship itself, this allows the associated link to be identified
as long as duplicates are not allowed for the relationship. As noted earlier,
this avoids the need for unique keys to be saved for every link and thus
keeps the model file compact and easy to understand.

Versioning and Migration

A fundamental issue when working with DSLs is what happens to existing
models when the DSL definition changes. DSL authors might decide to add,
delete, or rename domain properties, domain classes, relationships, shapes,
connectors, and so on. In such a situation, models corresponding to the
original definition may contain valuable data that should not be discarded.

In order to help manage this situation, the saved file contains an attrib-
ute in the top-level element that records which version of the DSL was used
to save the file:

<issueStateModel dslVersion="1.0.0.0" � >

This version number can be set in the DSL designer through the properties
of the DSL itself. Following .NET conventions, the version number has four
components: {Major, Minor, Build, Revision}. Code is generated so that
these values are saved in every model file from the generated designer, and
the version is checked whenever a model file is loaded. If the version
number does not match in every respect, then by default the model fails to
load, and the user sees an error message that describes the problem.

Chapter 6: Serialization254

This behavior can be overridden by custom code. It’s possible, for
example, to call a different serializer in cases where the version number
does not match, thus providing for automatic migration for models created
using older versions of the domain model.

The definition of a DSL can change for reasons other than deploying new
versions. While the language is being developed, test and example models
will be created in the debugging solution that is automatically created by the
DSL Tools, and unless it is explicitly changed, all of these models will have
the same version number. It would be frustrating if these models were inval-
idated for every change to the DSL definition. Fortunately, the file-reading
code generated for a DSL is relatively forgiving and will do a good job of
reading in models, even if the DSL definition has changed, and will issue
warnings that indicate the steps it has taken. The file reader will take the
following approaches when confronted with an incorrect file:

• Within the scope of a given domain class, elements (properties and
relationships) may appear in any order. Elements defined in base
classes must appear before elements from derived classes, though.

• Unexpected elements will be ignored, together with everything
nested in them.

• Unexpected attributes will be ignored.

• Missing attributes and elements will cause the model to be popu-
lated using default values.

When such a file is encountered, warnings may be given to the user,
because the file will fail its schema validation. Schemas are discussed in the
next section of this chapter.

If, while reading in a model, monikers are encountered that cannot be
resolved, file loading will fail. This is likely to happen when the DSL author
changes the cross-referencing scheme for one or more relationships—for
example, changing the key for a domain class from an Id to a name. In these
cases, the model reader will open the file in the XML editor and will display
errors in the error window that show which monikers have failed to resolve
and on which lines of the file the corresponding cross-references appear. It
such cases it is often easiest to edit the XML directly to change the moniker

Versioning and Migration 255

elements into the form that will successfully load. An example is illustrated
in Figure 6-7, where the XML file has been edited so that line 12 contains
the reference "StateModel/Opened"—for which there is no corresponding
element. Double-clicking on the error message takes the user directly to the
offending element.

In such a situation, the diagram file may also fail to load because its
references into the model cannot be resolved.

Chapter 6: Serialization256

TIP Fix up a broken diagram file by editing the monikers, or
delete the file

To recover from a situation where the diagram fails to load, the user
may edit the moniker elements in the diagram file into a form that will
resolve; alternatively, it may be simpler to delete the diagram file,
because a new one will be automatically created by opening and saving

Figure 6-7: Error resulting from incorrect cross-reference in XML file

The XML Schema

An XML Schema is a file that describes the structure of XML documents.
The XML Schema definition is a standard from the W3C (World Wide Web
Consortium). We won’t give a detailed explanation of XML Schema here;
there is a wealth of books as well as online resources and tutorials that
describe its details.

Given a schema, XML documents can be validated to determine
whether they are structured in accordance with it. In Visual Studio, if a
schema is available, the XML editor will use it to offer IntelliSense: auto-
completion, real-time error-checking, and interactive documentation via
tooltips. This greatly enhances the user’s experience in the XML editor.

When a language is defined using the DSL Tools, an XML Schema is
generated that corresponds to the serialization options that have been
selected. This schema can be used to enhance the XML editing experience.
To augment this experience, the generated schema includes documentation
elements that contain the descriptions for language elements defined by the
DSL author, and these descriptions will be offered as tooltips in the XML
editor if the user hovers over an element. Figure 6-8 shows an example,
where the user is hovering over the <startElement> element in the XML
model file for the model shown in Figure 6-6.

Additionally, the schema validation is invoked when a model file is
loaded, and any errors produced from this validation are offered to the DSL
user as warnings, as noted in the previous section. Schema validation does
have limits though; most notably, the way it is used in DSL Tools offers no
capability for checking the validity of cross-references. So although an XML
file may be valid according to its schema, it may fail to load into the target
DSL tool because its cross-references are incorrect.

The XML Schema 257

the model file, and the only thing that will have been lost is the diagram
layout. There is a tradeoff here between the effort needed to fix up the
references by hand in the XML versus the effort needed to lay out the
diagram.

Figure 6-8: IntelliSense in the XML editor

Customization

Although as we have seen, the default serialization format for a model is
quite easy to read, in some circumstances the DSL author may want to alter
the way that models are serialized. There are several levels at which this can
be done, ranging from simple settings in the DSL designer to replacing
major components of the serialization infrastructure. This follows the prin-
ciples that we set out in Chapter 1 for avoiding the “customization pit.”

The serialization settings in the DSL designer are found in the DSL explorer
window under the “Xml Serialization Behavior” node (see Figure 6-9).
Selecting this node itself gives the opportunity to specify the root XML
Schema namespace—and to specify that domain properties that have
default values are to be explicitly written out.

Chapter 6: Serialization258

TIP Write out all domain properties when models are to be
processed by other tools

There is no need to write out default values for domain properties if
the model will be reloaded by a tool that knows the default values.
This setting forces all of the domain property values to be saved, which
enables processing by other tools.

This node also offers the setting “Custom Post Load.” If this is set to
True, the loading code includes a call to methods called OnPostLoadModel()
and OnPostLoadModelAndDiagram(). These methods are not implemented
by the DSL Tools; the language author must implement them in a partial
class to do post-load processing—for example, to create additional objects
in the store that are not present in the file but need to be created in order to
make a fully formed model.

Modifying XML Element Names
Beneath the “Xml Serialization Behavior” node are serialization data organ-
ized under Class Data, with a node for each domain class and domain
relationship. Figure 6-10 shows the XML serialization data for the domain
class IssueState selected in the DSL explorer and the property settings dis-
played in the properties window.

The simplest form of customization is to modify the names of the XML
elements that correspond to a class. For example, changing the mapping so
that an IssueState element is represented by the element <state> rather than
<issueState>, and its moniker represented by <stateMoniker> rather than
<issueStateMoniker>, is accomplished by setting “Element Name” and
“Moniker Element Name” in the properties window, as shown in Figure 6-11.
The consequence of this is that a serialized model appears as follows:

Customization 259

Figure 6-9: DSL explorer serialization settings

Figure 6-10: Serialization data for the domain class IssueState

<?xml version="1.0" encoding="utf-8"?>
<issueStateModel dslVersion="1.0.0.0"

namespaceName="CJKW.States" issueTypeName="StateModel"
xmlns="http://schemas.cjkw.com/IssueStateModels">

<states>
<state name="Start">
<successors>
<stateMoniker name="StateModel/Finish" />

</successors>
</state>
<state name="Finish" />

</states>
</issueStateModel>

Figure 6-11 also shows the “Serialize Id” property, which determines the
serialization of the Guid of the element in order to enable cross-referencing,
as explained earlier.

Chapter 6: Serialization260

The values for “Type Name” and “Moniker Type Name” determine the
names of the types in the generated XML Schema corresponding to the lan-
guage. Changing these names only has an effect on the details of the
schema used to validate it, not on the serialized XML itself.

The moniker element is of this form:

<stateMoniker name="StateModel/Finish" />

The name of the attribute used to hold the moniker value, name in this
case, is by default the attribute that corresponds to the key in the defini-
tional element. If desired, a new attribute can be defined for this purpose by
setting the “Moniker Attribute Name” to specify the desired attribute.

Element Data
Nested under each “Class Data” node is an “Element Data” node through
which you can specify the structure of the XML element that represents the
corresponding domain class. For example, Figure 6-12 shows the element
data for the domain class StateElement, and in particular, has selected the
element data for the domain property called Name. Here you can see that
“Is Moniker Key” is set to True; this means that references to StateElements
will be done via names, as explained earlier in this chapter. The “Repre-
sentation” for a domain property gives the choice of Attribute, Element, or
Ignore. Recall that any domain property can be serialized either as an XML
attribute of the element corresponding to the domain class, or as a fully
fledged nested XML element. A domain property can also be ignored

Customization 261

Figure 6-11: Customizing XML elements

altogether in the serialization—this is the default when the domain property
is calculated. The “Xml Name” determines the name of the attribute or element
used to serialize the domain property.

Chapter 6: Serialization262

The “Element Data” node for a “Class Data” node also contains elements
that govern the serialization of domain relationships that are sourced on the
corresponding domain class. For example, Figure 6-12 also shows the element
data for Transition nested under StateElement. This matches the fact that
relationships are represented in the XML as elements nested in the element
corresponding to the source of the relationship. A domain relationship also
has its own “Class Data,” but this only comes into play when the relationship
is represented in its full form, for example, when it has properties.

To illustrate the effect of the element data for relationships, Figure 6-13
shows the data for IssueStateModelHasComments, as found under the
“Element Data” node for IssueStateModel. The setting for “Role Element
Name” determines the name of the XML element that represents the rela-
tionship, similarly to the settings for a domain class shown in Figure 6-11.
The effect of the “Use Full Form” setting was discussed earlier in this
chapter.

Figure 6-12: Element Data for StateElement

Customization 263

TIP Consider setting “Omit Element” to True if source
multiplicity is One or ZeroOne

If the source multiplicity of a domain relationship is One or ZeroOne,
there will only ever be a single element targeted by the relationship.
In such a case, the default serialization will contain a single element
representing the relationship, containing a single element for the tar-
geted element. Omitting the relationship element makes good sense
here, unless the relationship is a derived or base relationship.

Figure 6-13: Domain relationship data for

IssueStateModelHas Comments

The effect of “Omit Element,” if set to True, is to cause the containing
<comments> element to be completely omitted from the serialized XML, as
in this example:

<?xml version="1.0" encoding="utf-8"?>
<issueStateModel Ö>
<comment Id="b6a8f11e-b806-4a0c-8f2c-511238ddb581">
<commentText>Comment 1</commentText>

</comment>
<comment Id="1a9327e5-fefb-4b44-8eb7-133c002ed1f0">
<commentText>Comment 2</commentText>

</comment>
</issueStateModel>

This can be a useful way of making the XML simpler. By default, “Omit
Element” is set to False.

Figure 6-13 also shows a property for the domain relationship called
“Has Custom Moniker.” Setting this to True only affects reference relation-
ships, and its effect is to require the DSL author to provide methods called
CustomSerializeReference() and CustomMonikerizeReference() that
will convert from a moniker to a string and vice-versa in order to customize
the physical representation of the cross-reference in the file. You might do
this, for example, to use a character different than “/” in qualified names.

Implementing Your Own Serializer
The customization options offered by the DSL Tools are principally
designed so that a DSL author can improve the human-readability of the
XML files used to store models. This can also assist with making these files
amenable to processing by other tools. They do not give complete cus-
tomization, though. If you have an existing file format that you want to
interface with a DSL, then these options are likely to be insufficient. In such
a case, there remains the possibility of implementing your own serializer.
The entry points for this are the Load() and Save() methods in the DocData
class, as described in the next section.

Further customizations are possible by implementing a customized
MonikerResolver to replace the class SimpleMonikerResolver that is pro-
vided with the DSL Tools framework. This option is not for the faint-hearted,
though, and requires an expert-level understanding of the DSL Tools.

Generated Serialization Code

Much of the code that implements the serialization behavior described in this
chapter is generated from the DSL definition, in two files in the Dsl project
called Serializer.cs and SerializationHelper.cs. The core of this code
consists of a serialization class corresponding to every domain class (includ-
ing relationships, shapes, diagram, connectors, and so on). For example, the
domain class IssueState has a corresponding serialization class called Issue-
StateSerializer. We will have a look at a simplified version of some of the
methods of this class in order to get an understanding of how the serializa-
tion code is structured. You only need to understand this code if you need
more customization than is provided by the settings described so far.

Chapter 6: Serialization264

The starting points for serialization are the Load() and Save() methods
in the IssueStateModelsDocDataBase class in the file DocData.cs generated
in the DslPackage project. These methods are called by Visual Studio
when the user opens or saves the file using the normal user interface. They
deal with various interactions with Visual Studio, such as ensuring that the
right files exist, locking them where necessary, and posting errors. At the
heart of the Load() and Save() methods are calls to methods on a helper
class called IssueStateModelsSerializationHelper, which is in the file
SerializationHelper.cs in the Dsl project.

Loading the model, like any changes to the store, is done in a transac-
tion. This is a special kind of transaction, called a serializing transaction,
which allows links to exist in a partially instantiated state so that references
can be fixed up at the end of the transaction.

The IssueStateModelsSerializationHelper class is paired, according to
the double-derived pattern for customization introduced in Chapter 3
and discussed further in Chapter 10, with a class in the same file called
IssueStateModelsSerializationHelperBase that introduces several over-
loads of the methods LoadModel(), LoadModelAndDiagram(), SaveModel(),
and SaveModelAndDiagram(). Let’s take a look at one of these:

public virtual IssueStateModel LoadModel(
DslModeling::SerializationResult serializationResult,
DslModeling::Partition partition,
string fileName,
DslModeling::ISchemaResolver schemaResolver,
DslValidation::ValidationController validationController)

The first parameter, serializationResult, collects any warning messages
that are encountered during serialization. The partition parameter speci-
fies the partition, that is, the section of the store, where the deserialized
model is to be created. The filename specifies the file to be loaded. The
schemaResolver allows the loader to do XML schema validation on the
model while it is being loaded and will cause any schema validation errors
to be offered to the user as warnings. If this parameter is null, then loading
will occur without XML schema validation. Similarly, if the validation-
Controller is not null, then load-time constraint validation will occur on
the model, as described in Chapter 7.

Generated Serialization Code 265

The LoadModel() method creates an XmlReader to acquire the content
from the file. The XmlReader is one of several approaches that could have
been chosen to load the file. It is flexible because it can read any well-formed
XML content, and its performance is good. However, it does require the file
to be processed sequentially, in contrast, say, to reading the entire file into a
Document Object Model (DOM) before processing it. Having created the
XmlReader, the method starts reading the file, and the first thing it does is cre-
ate in the store an instance of the domain class that is mapped to the top-level
element in the file. It then calls the ReadRootElement() method on the
corresponding serializer class. This ReadRootElement() method is only gen-
erated for serializers that correspond to root domain classes and their
subclasses, because these are the only elements that can appear as roots of a
model file.

The ReadRootElement() method first checks the version of the file using
the method CheckVersion(). This can be replaced if needed; to do so, the
domain class IssueStateModel must have the “Generates Double Derived”
property set to True, which will cause its serializer also to be generated
using the double-derived pattern, so that methods such as CheckVersion()
can be overridden. After checking the version, if passed a schemaResolver,
the method sets up the XmlReader so that schema validation will occur
while reading in the file. If not, it sets up the XmlReader to read the file with-
out schema validation. Then it calls the Read() method, which exists for
every serializer class.

Thus, the Read() method is called on the serializer for IssueStateModel
when an instance of IssueState exists but none of its properties or embed-
ded children have yet been deserialized. At this point, the deserializer will
be looking at the point in the XML just after the <issueState> element has
been recognized, as marked by the � symbol in this fragment of XML:

<issueState �name="Raised"
description="The issue has been raised"
icon="raised.ico">

<successors>
<issueStateTransition action="submit">
<issueStateMoniker name="StateModel/Submitted" />

</issueStateTransition>
</successors>

</issueState>

Chapter 6: Serialization266

The method starts by calling ReadPropertiesFromAttributes(), which
will deserialize the properties of this IssueState that have been saved as
XML attributes. Then it calls ReadElements() to read the nested elements.
It is possible that ReadElements() might fail because unexpected elements
are encountered; in this case, ReadElements() is called repeatedly until
there are no more nested elements to look at. Finally, the reader is advanced
to the next element and control returns to the caller.

namespace CJKW.IssueStateModels
{
public partial class IssueStateSerializer : StateElementSerializer
{

public override void Read(
SerializationContext serializationContext,
ModelElement element,
System.Xml.XmlReader reader)

{

// Read properties serialized as XML attributes.
ReadPropertiesFromAttributes(serializationContext, element, reader);

// Read nested XML elements.
if (!serializationContext.Result.Failed)
{
if (!reader.IsEmptyElement)
{
// Read to the start of the first child element.
DslModeling::SerializationUtilities.SkipToFirstChild(reader);

// Read nested XML elements, they can be either properties
// serialized as XML elements, or child model elements.

while (!serializationContext.Result.Failed &&
!reader.EOF &&
reader.NodeType == System.Xml.XmlNodeType.Element)

{
ReadElements(serializationContext, element, reader);
if (!serializationContext.Result.Failed &&
!reader.EOF &&
reader.NodeType ==
System.Xml.XmlNodeType.Element)

{
// Encountered one unknown XML element
// skip it and keep reading.

IssueStateDomainModelSerializationBehaviorSerializationMessages.
UnexpectedXmlElement(serializationContext, reader);

Generated Serialization Code 267

DslModeling::SerializationUtilities.Skip(reader);
}

}
}

}

// Advance the reader to the next element
DslModeling::SerializationUtilities.Skip(reader);

The ReadPropertiesFromAttributes() method is generated from the
knowledge that the domain class IssueState defines the properties Icon
and Description. First it calls ReadPropertiesFromAttributes() on its
base class—StateElementSerializer—which will read in the Name. It
then proceeds to look for the value of the property Icon, serialized in the
XML attribute called icon. If it fails to find it, this is not an error; leaving
this attribute out simply means that it retains its default value. If it finds
the attribute but it has a value that cannot be converted to the appropri-
ate type, then a warning will be created that this attribute has been
ignored. It continues to read in the value of Description, using the same
pattern. The call to serializationContext.Result.Failed will only
deliver True if a serious error occurs, such as the file not being well-formed
XML; in other cases, any warning messages will be accumulated for the
user and reading proceeds.

protected override void ReadPropertiesFromAttributes(
SerializationContext serializationContext,
ModelElement element,
System.Xml.XmlReader reader)

{
base.ReadPropertiesFromAttributes(serializationContext,

element, reader);

IssueState instanceOfIssueState = element as IssueState;

// Icon
if (!serializationContext.Result.Failed)
{
string attribIcon = reader.GetAttribute("icon");
if (attribIcon != null)
{
System.String valueOfIcon;
if (SerializationUtilities.TryGetValue<System.String>(

SerializationUtilities.UnescapeXmlString(attribIcon),
out valueOfIcon))

{

Chapter 6: Serialization268

instanceOfIssueState.Icon = valueOfIcon;
}
else
{ // Invalid property value, ignored.

IssueStateDomainModelSerializationBehaviorSerializationMessages.
IgnoredPropertyValue(serializationContext, reader, "icon",

typeof(System.String), attribIcon);
}

}
}
// Description
if (!serializationContext.Result.Failed)
{
string attribDescription = reader.GetAttribute("description");
if (attribDescription != null)
{
System.String valueOfDescription;
Ö

}
}

}

The ReadElements()method starts by calling the base class ReadElements().
This means that, to be read successfully, elements defined in the base class
must appear before elements defined in subclasses. Assuming that the reader
is looking at an element as expected, this method continues by calling Read-
ChildElements().

protected override void ReadElements(
SerializationContext serializationContext,
ModelElement element,
System.Xml.XmlReader reader)

{
base.ReadElements(serializationContext, element, reader);

IssueState instanceOfIssueState = element as IssueState;

// Read child model elements
if (!serializationContext.Result.Failed &&

!reader.EOF &&
reader.NodeType == System.Xml.XmlNodeType.Element)

ReadChildElements(serializationContext,
instanceOfIssueState, reader);

}

Generated Serialization Code 269

The ReadChildElements()method looks for the <successors> element. If this
is found, and it is not empty, then another method called ReadIssueState-
TransitionInstances() is called to read in the instances of IssueState-
Transition. This method, in turn, will call the Read() method of Issue-
StateTransition Serializer, which continues using the same recursive
pattern. Eventually, the Read() method of IssueStateModel completes, at
which point the entire file has been read.

private static void ReadChildElements(
SerializationContext serializationContext,
IssueState element,
System.Xml.XmlReader reader)

{
if (!serializationContext.Result.Failed &&

!reader.EOF &&
reader.NodeType == System.Xml.XmlNodeType.Element)

{
if (string.Compare(reader.LocalName,
"successors", System.StringComparison.CurrentCulture) == 0)

{
if (reader.IsEmptyElement)
{ // No instance of this relationship, just skip
SerializationUtilities.Skip(reader);

}
else
{
SerializationUtilities.SkipToFirstChild(reader);
// Skip the open tag of <successors>

ReadIssueStateTransitionInstances(serializationContext,
element, reader);

SerializationUtilities.Skip(reader);
// Skip the close tag of </successors>

}
}

}
}

}
}

The Write() methods are similarly structured, although rather more sim-
ply, because there is no need to check for errors.

In addition to the reading and writing code on each class, methods are
also generated for calculating and resolving monikers. These methods can
be customized using the “Has Custom Moniker” property described earlier.

Chapter 6: Serialization270

Customized Serialization Code
There are some circumstances where the DSL author needs to customize the
serialization more than is enabled by the use of the elements described so
far. Let’s say, for example, that a domain class called Versioned has four
integer properties called Major, Minor, Revision, and Build, representing
the different parts of a version number. The DSL author has decided that
in the serialization, this should be represented as an element such as
<version>1.0.0.0</version>. By default, the properties would be repre-
sented as attributes: <versioned major="1" minor="0" revision="0"

build="0" />.

Referring back to Figure 6-11, each “Class Data” node has a property called
“Is Custom.” If this is set to True, then the generated serialization code calls
methods on the serializer class such as CustomRead() and CustomWrite(),
instead of the Read() and Write() methods described earlier. These methods
are not implemented in the generated code and must be hand-coded. To make
this simpler, the code that would have been generated for these methods is
generated into another set of methods on the serializer class with names like
DefaultRead() and DefaultWrite(), so that implementing the CustomXXX()
methods by calls to the DefaultXXX()methods will give the original behavior.
This gives a flexible customization scheme for implementing your own cus-
tomization code by intermingling custom code with calls to the generated
defaults.

To customize the serialization for the version number then involves
writing code in a CustomWritePropertiesAsElements() method in a partial
class as follows:

private static void CustomWritePropertiesAsElements(
SerializationContext serializationContext,
Versioned element,
XmlWriter writer)

{
Versioned instance = element as Versioned;

if (!serializationContext.Result.Failed && instance != null)
{
String[] parts = { instance.Major.ToString(),

instance.Minor.ToString(),
instance.Revision.ToString(),
instance.Build.ToString() };

Generated Serialization Code 271

String dot = ".";
writer.WriteElementString("version", String.Join(dot, parts));

}
}

This method needs to be called from the CustomWriteElements()method, the
remainder of which is copied verbatim from the DefaultWriteElements()
method.

Complementary code must be written in the custom read methods
to acquire the serialized string, split it into its constituents, and set the
corresponding properties.

Impact of Customization on the Schema
Once the serialization for a domain class has “Is Custom” set to True, it is
not possible to generate an effective XML schema to validate it. Instead, a
flexible schema complexType is generated, as follows:

<xsd:complexType name="Versioned" mixed="true">
<xsd:sequence>
<xsd:any minOccurs="0" maxOccurs="unbounded" processContents="lax" />

</xsd:sequence>
<xsd:anyAttribute processContents="lax" />

</xsd:complexType>

This schema is usually sufficiently flexible to avoid warnings in the saved
model file, although Visual Studio will offer informational messages that
schema information cannot be found for the contents of the customized ele-
ments. This schema will, however, give warnings for unusual domain
models when the domain class whose serialization is customized inherits
from another domain class that is the target of an embedding relationship.
In such cases, the flexible complexType shown above is not substitutable for
the base class complexType, and schema validation errors will occur when-
ever instances of the customized domain class are embedded via this rela-
tionship. These will appear as warnings when the model file is loaded in the
target designer. To avoid these warnings it is necessary to customize the
schema by modifying its generation template or simply to write one by hand.

Chapter 6: Serialization272

SUMMARY

In this chapter we explained how the models and diagrams created using
a DSL are saved to files in domain-specific XML. This XML is designed to
be easily readable by humans and consumable by other tools. We have seen
how the serialization is carried out by generated code, which is fully acces-
sible to the DSL author. We’ve discussed how the code that reads files is
forgiving of errors and how versioning and migration work. We also
explained several customization options for the XML and the generated
schema, through serialization data properties and through writing addi-
tional code.

Summary 273

This page intentionally left blank

7
Constraints and Validation

Introduction

When you’re programming with general purpose languages such as C# or
Java, errors come in many flavors. You can mistype a keyword and get a
lexical error, or you can get the order of a construct wrong and get a syntax
error. These errors are the results of implicit constraints that the language
imposes upon the stream of simple text that you pass to it. Strongly typed
languages incorporate a type system into these constraints and produce
errors at compile time, for example, when you try to set the value of a variable
defined as an integer to a string value.

For many years now, good mainstream programming practice has sug-
gested that assertions be used to impose further explicit constraints on
what parameter values methods can be called with at debug time, for
example, disallowing an empty string from being passed as a parameter.
However, these constraints are not usually evaluated at compile time like
those just mentioned; they require some context in which to be evaluated—
and this context is typically provided by a running program.

Outside of commercial programming, there is a strong tradition of build-
ing facilities directly into programming or specification languages to express
such user-definable explicit constraints as preconditions, postconditions, and
invariants. Over the years, the academic community has done a significant
amount of work on validating user-specified constraints at compile time
rather than execution time, either by simulation or by logical proof.

275

In modeling, the situation is similar. Modeling languages have their
own syntax that must be observed (e.g., transitions are always from one
state to another). They typically can have a type system associated with
them whose implicit constraints can be applied; for example, the Width and
Height properties on a class representing a Door must be of type float.
Modeling languages can then also have mechanisms or sub-languages for
explicitly expressing user-defined constraints. User-defined constraints are
generally thought of as expressions that can be evaluated against a model
to produce a Boolean result that can be tested.

Examples of model constraints expressed in English might be:

• The Height property on Firefighter is always greater than 1.8
meters.

• House always has at least one Door.

• ClassDefinition does not directly or indirectly reference itself with
its BaseClass property.

Constraints typically can be thought of as invariants, that is, they are
always true throughout the life of the model, or as preconditions or post-
conditions of some operation either at design-time (e.g., code generation,
saving) or runtime (e.g., debiting a bank account). They can also be seen as
a way for humans to evaluate the current state of a model with respect to
some criteria; for example, whether all of the web server configurations are
compliant with the corporate standards. You can see examples of this type
of constraint in the Distributed System Designers that come with the Team
Architect edition of Visual Studio 2005.

The DSL Tools do not provide explicit facilities for modeling runtime
constraints, just as they do not attempt to say anything else specific about
other aspects of the code or systems that their target designers are used to
create models for. However, it is perfectly feasible that part of a DSL could
itself be a model of a constraint system and that code generated by the
target designer will complete a framework that supports runtime con-
straints of its own. For example, a logical UI design tool created with the
DSL Tools might incorporate notation for defining constraints over the data
that can be entered into text fields in the UI. The UI design tool could then

Chapter 7: Constraints and Validation276

generate code that completes a runtime data validation framework that is
part of the UI platform being targeted.

The DSL Tools do, however, provide a full-featured framework for
authoring constraints over a DSL as part of the language definition and for
evaluating those constraints when a target designer is being used to create
a model in the new DSL. The aim of this framework is to make it easier for
end users of target designers to create models that are correct for use with
respect to one or more targeted scenarios, such as code generation or
conformance to some corporate standard. For example, a very typical
constraint in a class design DSL might be to ensure that no inheritance
relationships are created that have cycles in them.

Choosing Hard or Soft Constraints?

In the context of a visual designer or an API, constraints can be divided into
two categories:

1. Hard constraints are constraints that the tool prevents the user from
ever violating, for example, only allowing valid numbers in the
“width” field of a shape element.

2. Soft constraints are constraints that the user is allowed to violate at
some points in time but not at others, for example, all elements in a
model having unique names.

Expressed like this, it seems that a user would never wish to make mis-
takes and would thus always need and prefer constraints to be expressed as
hard constraints. However, in practice, the opposite is true more often than
not, and it turns out that while this approach sounds desirable, it suffers
from two practical problems:

1. Constraints in the large are often not computationally cheap.

2. Users don’t actually want correct models all of the time.

When constraint languages are very expressive, it is a difficult problem to
calculate the reach of the dependency graph of each constraint. Consequently,

Choosing Hard or Soft Constraints? 277

when a model changes, it is not cheap to calculate which constraints to
rerun. Did the set of objects impacted by some constraint change because of
a change to the value of a property on a model? Are newly introduced
objects going to cause a size expression on a constraint of another object to
fail? The approach typically taken is not to try and work out these problems
but for a human to decide which set of constraints will be run at program
creation time. Erring on the side of correctness, this decision is often eval-
uated as, “Run all constraints.” If we want to encourage the proliferation
of constraints to provide the end user with the best chance of building a
correct model, then evaluating all constraints on every model change can
severely drag down the practical performance of tools.

This performance problem can eventually be solved by clever technology
and faster computers; however, there is a more fundamental problem—users
work in differing ways. Some people like to build their models depth-first,
building a slice through all layers present in a tool. Others like to set up all
of one type of object before coming back to fill in all of another type. Is a
model of a distributed system likely to be valid with only UI elements pres-
ent? Probably not—and certainly not as valid as it would need to be to ensure
successful generation of a working system. However, would it be reasonable
to build the models in that order? Certainly it would—user-centered design
proponents might even suggest it was the only good way to build it. If you
were unable to add invalid elements to the model, then you’d be forced to
build in the order that the designer author envisaged.

The next step might be to relax the constraint evaluation to allow invalid
models to be created but to disallow saving or loading of a model that isn’t
valid. In this scenario, imagine a change to add a new property to a busi-
ness object. That change is likely to ripple both up and down the tiers of a
distributed system. Constraints might well be in place to make sure that
every property in a business object is backed by one or more columns in a
database table. However, what if you’d just made the change to the business
object and noticed that it was 6:30 p.m. and past time to honor a promise
to your spouse? You would likely be very unhappy if your modeling tool
refused to save your work on the grounds that your constraints were
breached.

The astute reader might at this point suggest that there is some kind of
layered stack of constraints and that our examples are rather high up in that

Chapter 7: Constraints and Validation278

stack, being based on distributed system structure. Maybe there is more
value in enforcing some lower level of constraint? What about something
simpler, such as multiplicity in models? Imagine a domain model of a car’s
engine management system that contains a domain class Limiter with a
multiplicity of one and no optionality. Surely it makes sense to prevent the
one instance of Limiter from being deleted? After all, the domain model
states that an engine must always have one and only one Limiter. Unfor-
tunately, there is no easy, conclusive answer to this question; we are left
with “sometimes.” If Limiter is abstract and has two concrete derived
types, RoadLimiter and RacingLimiter, then a user experience is needed to
change the single instance from road to racing. There are several options.
Either we can generate or hand-write special code to implement this expe-
rience, or we can simply allow an instance of RoadLimiter to be deleted
and replaced at the user’s convenience with a new instance of RacingLimiter.
It is also possible to allow the RacingLimiter creation to occur before the
RoadLimiter deletion, perhaps to facilitate copying property values
between the instances. In these situations, for a transient period, this rela-
tionship with a defined multiplicity of one has either zero or two roleplayers.
This type of thing can play havoc with code generation. You can imagine
that the generated model code for this example has only allocated storage
for a single roleplayer in the relationship and includes code to throw excep-
tions if it detects more than one. A useful compromise (and one that we’ve
taken in several places in the DSL Tools) is to treat maximum multiplicity
as a hard constraint but leave minimum as a soft one.

Let’s take one final example and look at how it is treated by the DSL
Tools. The DSL Tools enforce type-based constraints on property values as
a hard constraint at the time of model change. This decision is primarily to
enable type-safe data storage in the store implementation, which brings
with it tremendous performance and robustness gains by removing many
type conversions and explicit bounds checks. If a property is declared as
being of type integer, then any attempt to put the string “hello” into it either
via user interface or API will cause an immediate error. This decision does,
however, have some disadvantages. Picture for a moment a designer for the
early stages of the software lifecycle—perhaps a conceptual level design
tool for relational databases. For the end user, at this time in the lifecycle,
many decisions are not finalized. As well as an exact numeric value, it

Choosing Hard or Soft Constraints? 279

would be nice to allow a property such as the length of a string column to
be specified as “20 or 24,” “unknown” or “> 20.” You might ask what place
there is for such vagueness in a software development tool geared toward
automation? If you automate processing this semi-vague model to extract
elements where numeric literals are not specified correctly, then you have
a powerful tool for reporting on the quantity of information that you don’t
yet know. Once all of the unknown items are eventually transformed into
correct numbers, a further piece of automation could move the data into a
more constrained model format.

Chapter 7: Constraints and Validation280

TIP Consider using weakly typed properties for analysis models

When using the DSL Tools to model at the conceptual level, it can often
prove useful to use strings as your basic property types and then apply
a set of soft constraints to check that the values conform to some more
rigorous type set.

Choices Made by the DSL Tools
The DSL Tools choose to enforce the following small set of hard constraints
within generated designers at an API level.

• Maximum multiplicity of roles (one or many)

• Type-based constraints on roleplayers

• Type-based constraints on property values

These are all enforced both via both the weakly and strongly typed APIs
and are also naturally exposed through the user interface in generated
designers via the default design surface and model explorer.

Soft Constraints in the DSL Tools

Soft constraints are implemented in the DSL Tools by writing extra methods
on domain classes. This decision to use simple .NET code rather than a
specific constraint language came from the authors’ experience with a
constraint language called the Object Constraint Language (OCL), which

is part of the UML. OCL is a textual language capable of providing testable
constraints against any of the models defined within UML.

The authors’ observation was that the skills required to write effectively
in a rich constraint language such as OCL are actually very similar to those
required to write C#, so long as the mechanism for evaluating the code is
kept simple. Also the skills pool for C# is much wider than that of any cur-
rent constraint language. There are many pros and cons to this approach,
but we felt that the fact that it allowed for one or many constraint language
systems to be added at a later date if necessary meant that it was a good bet.
The fact that constraints are not stored in the model means that they are not
as immediately visible to the casual observer. However, this also means that
they are not edited with some compromised user experience but with the
full power and ease of use of the built-in C# editor.

Afurther advantage of using C# is that it is trivially easy to reuse logic that
is already available in any other class in either the .NET Framework or your
own runtime domain libraries. For example, if you need to verify that a string
property is a valid C# identifier, you do not need to write your own valida-
tion logic or create a regular expression; instead, you can use the Microsoft.
CSharp.CSharpCodeProvider class and call its IsValidIdentifier() method.

One slight disadvantage in C# is that the current 2.0 version does not
have clean ways to perform set-based operations over an object graph.
However, these facilities have been announced as an extension to C# in its
version 3.0 incarnation via the LINQ project.

The next thing to note about soft constraints in the DSL Tools is that they
are wrapped into something called a validation method. The concept of val-
idation expresses our observation that in a tool environment, writing a con-
straint expression solves only half of the problem and, in many cases, takes
much less than half of the time spent. The remaining time goes to creating
and parameterizing a high-quality warning or error message aimed at the
end user to explain the often highly technical constraint in clear language
at the correct level of abstraction.

The DSL Tools framework provides a mechanism for performing vali-
dation, both for designers and for custom tools running outside of the Visual
Studio IDE. In both cases, it allows customization of how the validation is
launched and where messages generated by the validation are directed.

Soft Constraints in the DSL Tools 281

Validation Methods
Validation methods can be added to any ModelElement-based class in the
DSL Tools, including domain classes, domain relationships, shapes, and
connectors. They are typically added by hand-writing a new partial class
with a set of validation methods. It’s worth noting that they can’t be added
to the shell aspects of the designer, such as DocData, DocView, or some
diagram-related classes such as ConnectorAction, because they are not
based on ModelElement or the store.

Here’s a very simple example of a validation method applied to our
Issue Tracking domain model. This method ensures that the names of
IssueStates in the model are unique.

[ValidationState (ValidationState.Enabled)]
public partial class IssueStateModel
{
[ValidationMethod(ValidationCategory.Menu)]
private void ValidateStateNamesUnique(ValidationContext context)
{
Dictionary<string, IssueState> stateNames =

new Dictionary<string, IssueState>();

foreach (IssueStateElement element in this.Elements)
{
IssueState state = element as IssueState;
if (state != null)
{
if (stateNames.ContainsKey(state.Name))
{
string description =
String.Format(CultureInfo.CurrentCulture,

"State name '{0}' is used more than once.",
state.Name);

context.LogError(description,
"Err 01",
state,
stateNames[state.Name]);

}
stateNames[state.Name] = state;

}
}

}
}

First, a private method is declared in a partial class corresponding to one
of the domain classes in our DSL.

Chapter 7: Constraints and Validation282

This method simply takes a ValidationContext. It is the job of a vali-
dation method to use the context to log one or more errors, warnings, or
informational messages if it finds something worth informing the user about.

The example method scans over the list of IssueState objects (via the
base class IssueStateElement), storing their names in a Dictionary. If it
finds a duplicate (the name is already in the Dictionary), then it reports an
error. It does this by asking the context object to log the error for it. It could
equally have asked for a warning or informational message. The context
acts as a façade to the validation system so that different underlying error
message objects can be used when running inside the Visual Studio IDE
than are used in other environments. As well as an error message and
a string code for the user to read and look up, LogError takes a list of
ModelElements, which may be used to indicate to the end user where the error
occurred, making it easier to fix the error at its source.

Soft Constraints in the DSL Tools 283

TIP Use private methods for validation

It is not strictly necessary to use a private method, but it saves the public
API of your model from becoming overly cluttered with validation
code.

TIP Store validation messages in a resource file

The code example presented here doesn’t store the error message in a
resource file because doing so makes the sample code harder to under-
stand. However, in any production designer, such strings should
always be externalized in a .NET resource file in order to make it
possible to easily localize your designer.

You can imagine that the error code used here, "Err 01" could be part of
a series, similar to the codes emitted from compilers. Unfortunately, these
codes aren’t visible anywhere in the error or output windows of Visual
Studio after a validation has taken place, so they are only useful at present
in scenarios with custom validation observers.

This method has been added to the IssueStateModel class, but it’s
actually validating a property (Name) of the IssueState class. This is a
purely performance-driven choice. It would have been perfectly possible to
place a validation method directly on IssueState and have it check that it
had no peer instances with a clashing name. However, the scan of all
IssueStates would then have been run as many times as there were
instances, creating an algorithm with an O(n2) order. When you’re writing
code for a validation method, you are very focused on the individual
element, and it’s easy to forget that your code is part of a larger algorithm.
This performance gain, however, like most of its kind, is a trade-off. Because
this validation method is hosted on IssueStateModel, we can no longer
choose to run validation across a subset of IssueState objects, for example,
the set currently selected by the user. A good compromise is often to main-
tain central data structures holding data that can be referenced in validation
methods and then to place the methods themselves on the individual
model elements. In this case, this would involve maintaining a centralized
dictionary of names of states and checking it from a validation method
hosted on IssueState.

Chapter 7: Constraints and Validation284

TIP Use efficient code in validation methods

Make validation method code efficient, especially for classes where
there are likely to be a lot of instances in the model. This advice is espe-
cially relevant to validations marked as running on file open, because
these will slow down the perceived startup time of your designer.

Enabling Validation
So how do validation methods get called? The DSL Tools validation frame-
work includes a system that reflects over the methods on domain classes
in the model looking for validation methods to call. It identifies these methods
by combining two factors:

1. Each domain class that wishes to participate in validation must have
the ValidationState custom attribute applied to it with the Enabled
parameter.

[ValidationState(ValidationState.Enabled)]
partial class MyDomainClass
{
...

}

You can either add this attribute using the CLRAttributes property
of a class in the DSL designer and have it generated into your code
or, more simply, add it on the hand-written partial class that hosts
the validation method.

2. Each validation method must be marked with a ValidationMethod
custom attribute.

[ValidationMethod(ValidationCategory.Open|ValidationCategory.Save)]

In this case, you can see that the method is requesting that it is called
at the time the designer opens model files and saves them.

This two-factor identification of methods is functionally redundant,
because clearly all classes hosting validation methods can be identified
when validation first occurs. However, to increase performance, especially
on initial file open, this extra marker is used to reduce the set of classes that
are scanned.

File open and file save are not the only times that a validation can be
applied. Let’s take a look at a further, richer example. When defining a state
machine such as that for Issues, it can be useful to make sure that all of your
IssueStates are reachable, that is, that they are either start states or they can
be reached as the next state of some other state. This is quite easy to verify
visually when the state diagram is small, but when things get complex, it
can be easy to miss that a particular state only has outgoing rather than any
incoming links. Here’s the code for a validation method to do this:

[ValidationMethod(ValidationCategory.Menu)]
private void ValidateStatesReachable(ValidationContext context)
{
List<IssueState> unvisitedStates = new List<IssueState>();
// First locate the start state
// Also make a complete set of states not yet visited
IssueState startState = null;
foreach (IssueState state in this.States)
{

Soft Constraints in the DSL Tools 285

if (state.Kind == StateKind.Start)
{
if (startState != null)
{
// Multiple start states is a different validation
// and will confuse this rule.
return;

}
startState = state;

}

unvisitedStates.Add(state);
}
if (startState == null)
{
context.LogError("Start state not specified.", "Err 02");
return;

}

// Beginning with the Start state, follow Next links.
// At each state, add the Next links to the statesToVisit queue.
// Remove every state we visit from unvisitedStates.
// If we get to the end of the list and there are states
// still unvisited, they must be unreachable.

Queue<IssueState> statesToVisit = new Queue<IssueState>();
statesToVisit.Enqueue(startState);

while (statesToVisit.Count > 0)
{
IssueState visiting = statesToVisit.Dequeue();
if (unvisitedStates.Contains(visiting))
{
unvisitedStates.Remove(visiting);
foreach (IssueState nextState in visiting.Next)
{
statesToVisit.Enqueue(nextState);

}
}

}

if (unvisitedStates.Count > 0)
{
IssueState[] unreachable = unvisitedStates.ToArray();
context.LogWarning("States unreachable from start state",

"Err 03",
unreachable);

}
}

Chapter 7: Constraints and Validation286

You can see that this time, the attribute specifies a different time for the
validation to run:

[ValidationMethod(ValidationCategory.Menu)]

Validations are put into categories that determine when they are evalu-
ated. ValidationCategory.Menu indicates that the method should be run
when a “Validate” context menu on the diagram surface or the model
explorer is selected. The ValidationCategory enumeration literals can
be combined using the logical OR operator to mix and match the times that
a validation method is run. The LogWarning() method is used on the
ValidationContext to provide a less urgent message to the end user.

The ValidationContext object provides the following public methods
and properties:

public class ValidationContext
{
public ValidationCategory Category { get; }

public ReadOnlyCollection<string> CustomCategories { get; }

public ReadOnlyCollection<ValidationMessage> CurrentViolations
{ get; }

public ReadOnlyCollection<ModelElement> ValidationSubjects
{ get; }

public ValidationMessage LogError(string description,
string code,
params ModelElement[] elements);

public ValidationMessage LogMessage(string description,
string code,
params ModelElement[] elements);

public ValidationMessage LogWarning(string description,
string code,
params ModelElement[] elements);

}

The ValidationSubjects, Category, and CustomCategories properties
allow sophisticated validation methods to be written that vary their func-
tionality based on the type of validation currently being requested and the
exact set of elements being validated, for example, to check if the elements
within a particular selection are uniquely named.

Soft Constraints in the DSL Tools 287

Invoking Validation
Having marked validation methods with the correct attribute, let’s look in a
little more detail at the mechanism by which they get called. A façade class
called a ValidatonController is used to invoke validation methods. This
façade is able to call the appropriate set of validation methods using the .NET
reflection mechanism to look for the correct attributes and reflectively
invoke the methods. We’ll see more detail on the ValidationController
shortly; however, in the typical case it is not necessary to use this class
directly, because the DSL model and code generator will create a basic
validation system for you.

In the DSL designer, under the Editor node of the DSL explorer window
you’ll find a “Validation” node, as shown in Figure 7-1.

Chapter 7: Constraints and Validation288

Figure 7-1: Setting values in the Validation node

This node controls generation of code to make calls to the validation
framework in response to user actions, with each property causing validation
methods with the matching ValidationCategory attribute to be called. The
generated code is in the form of extra code in the file open and save mech-
anisms in the DocData class and an extra command in the CommandSet class
to provide the “Validate” menu item. There is no requirement to use this

facility to invoke validation in a designer; it is simply provided as a
convenience. It’s quite possible to set all of the properties of the “Validation”
node in the DSL explorer to be False and then set up the validation infra-
structure yourself. We’ll see how to do that when we discuss using the
infrastructure outside of the IDE a little later in the chapter.

Custom Validation Categories
You’ll notice that there is a “Uses Custom” property on the “Validation”
node. If Open, Save, or Menu are not suitable times to run your particular val-
idation, then you might wish to run validation as part of some other custom
code in your designer, perhaps as part of some larger custom command.
The “Uses Custom” property is a marker to signal your intent to do this and
generates just enough infrastructure code in your designer to make it easy.

Typically, you’d use custom validation categories when some set of
validation functions are only true in the context of some specific operation. For
example, imagine a database designer with a set of validations working at file
open and save times and also checkable from a validate menu item. These val-
idations check that the database model could generate a working database
schema. However, perhaps this tool also has a second code generator to create
a data access layer (DAL) targeting the schema. The DAL generator doesn’t
support arbitrary database schemas in its current version because it hasn’t
been coded to cope with large binary fields such as pictures, even though they
form part of a perfectly valid database schema. Using custom validation
groups, the tool authors can add a set of validation methods that disallow
large binary fields. Then, when the DAL code generator is invoked, they can
run both the regular validation methods and the custom set, ensuring that the
model will generate a valid schema and a working DAL on top of it. However,
users who never use the DAL generator aren’t encumbered with validations
that they have no interest in. If a tool had many different code generators (or
other tool chains attached to it), it might have many sets of custom validation
methods that might well overlap.

To see how to accomplish custom validation, let’s take a look at the over-
all architecture of the validation framework in the DSL Tools in Figure 7-2.
As you can see, the ValidationController is the main entry point for
validation. To initiate validation, make a call to one of the overrides of
either Validate() or ValidateCustom() on the controller. Validate() takes

Soft Constraints in the DSL Tools 289

one of the ValidationCategory values, but ValidateCustom()takes one or
more simple strings to denote a named grouping of validation methods, for
instance, “MyValidations.”

Chapter 7: Constraints and Validation290

Figure 7-2: Architecture of the validation framework

Validation
Controller Client

Validate()

Validation
Method

Collection
<ValidationMessage>

Validation
Observer

Invoke()

Below you can see the set of overrides available for both types; the non-
virtual methods are simply wrappers to call the matching virtual method.
All methods return true if no validation messages have been logged.

public virtual bool Validate(IEnumerable<ModelElement> subjects,
ValidationCategory category);

public bool Validate(ModelElement subject, ValidationCategory category);

public bool Validate(Partition partition, ValidationCategory category);

public bool Validate(Store store, ValidationCategory category);

public virtual bool ValidateCustom(IEnumerable<ModelElement> subjects,
params string[] customCategories);

public bool ValidateCustom(ModelElement subject,
params string[] customCategories);

public bool ValidateCustom(Partition partition,
params string[] customCategories);

public bool ValidateCustom(Store store,
params string[] customCategories);

You can choose to validate either a list or a single ModelElement, the entire
content of a Partition or a complete Store.

When any of the properties of the validation node in the DSL explorer are
set to true, a ValidationController object is generated as a member of your
designer’s DocData class along with a property called ValidationController
used to access it.

Here, then, is an example of code in a custom command to initiate
validation. Typically, you might manipulate the current UI selection to get
a set of ModelElements to validate. In this example we’ve picked out any
PresentationElements or ModelElements that are directly selected and
asked for them to be validated using the two custom categories “Category1”
and “Category2.” Note how the standard CommandSet base class provides
access to the current DocData and thus to the ValidationController in its
CurrentData property:

internal partial class CommandSet
{
internal void OnMenuCustomValidate(object sender, EventArgs e)
{
List<ModelElement> toValidate = new List<ModelElement>();
foreach (object selected in this.CurrentSelection)
{
if (selected is PresentationElement)
{
toValidate.Add((selected as

PresentationElement).ModelElement);
}
else if (selected is ModelElement)
{
toValidate.Add(selected as ModelElement);

}
}
if (toValidate.Count > 0)
{
this.CurrentData.ValidationController.ValidateCustom(

toValidate,
"Category1",
"Category2");

}
}

}

Soft Constraints in the DSL Tools 291

We’ve already seen how to mark validation methods to run when a stan-
dard category is invoked using the ValidationMethod attribute. To mark
them for invoking with a custom category, use the named parameter
Custom on the ValidationMethod attribute:

[ValidationMethod(Custom="MyValidations")]

If needed, you can combine this with one or more of the standard
categories:

[ValidationMethod(ValidationCategory.Menu, Custom="MyValidations")]

If you need to mark a validation method as being part of more than one
custom category, then you can place multiple attributes on the method. It
is worth noting that the reflective code for determining which methods
are validation methods is set up to do efficient caching to minimize its
performance impact, especially at designer startup time.

Inheriting Validation Behavior
By default, validation methods are inherited from their base classes when
an inheritance hierarchy of domain classes is used in a model. This means
that validation can be shared as common behavior, just as any other
aspect of a base class. The behavior of the ValidationState attribute is,
however, different. By default, it is not inherited and must be set as
Enabled or Disabled on every class. It can, however, be forced to inherit
its value using the special value Inherited.

[ValidationState (ValidationState.Inherited)]
public partial class SomeDerivedDomainClass
{
}

Validation Output
The output of validation is a collection of ValidationMessage objects that
are sent to all of the ValidationObserver objects that the Validation-
Controller knows about. By default, the generated designer code uses a
Visual Studio–specific subclass, VsValidationController, and is set up with
a single observer. The generated initialization code looks like this:

Chapter 7: Constraints and Validation292

validationController =
new VsValidationController(this.ServiceProvider);

errorListObserver =
new ErrorListObserver(this.ServiceProvider);

validationController.AddObserver(this.errorListObserver);

You can add your own extra observers by deriving a class from Validation-
Observer to send ValidationMessages to your own custom UI, logger, or
database and then calling the AddObserver() method on the controller.

The ErrorListObserver class presents ValidationMessages that it
receives in the Visual Studio error list window (Figure 7-3).

Soft Constraints in the DSL Tools 293

Figure 7-3: Validation messages displayed in the Visual Studio Error List Window

When the end user of the designer double-clicks on these messages, the
selection in the designer is updated to reflect the ModelElements passed to
the LogError() method, and the designer attempts to navigate its UI to
make these elements visible.

Using Validation outside the IDE
It is very typical to want to use validation in a custom tool developed using
the DSL Tools infrastructure. For example, in a command-line tool to trans-
form model files, you might want to ensure that a model is well-formed
before embarking on processing it. Happily, using validation in custom
tools is very straightforward with the DSL Tools, although depending on
your requirements you may need to write slightly more custom code than
you do with validation in a designer.

The good news is that unless you have specifically hard-coded a depend-
ency on Visual Studio, all of your validation methods should simply work
both inside and outside of the IDE. However, you will have to set up the

validation infrastructure of a ValidationController, associated Validation-
Context and ValidationObservers yourself. Typically, you will simply
instantiate and use the ValidationController base class. This will provide
a basic ValidationContext, which creates simple ValidationMessage
instances via its LogError() and related methods.

If, however, you need to pass richer information of some kind to your
custom ValidationObserver when errors are raised, you’ll need a custom
ValidationMessage type and a way to construct it. Because the Validation-
Context is a factory for ValidationMessages, a custom ValidationContext
provides this facility. In turn, a ValidationController is a factory for
ValidationContext objects, so you’ll also need a custom Validation-
Controller.

This is, in fact, what the VsValidationController that is used by default
in designers does. The ErrorListObserver class requires extra information
about the filename where the error was reported, so the controller creates
a custom VsValidationContext to handle the creation of TaskValidation-
Message objects that carry the extra data.

Validation Against External Data
Although the validation framework in the DSL Tools is tied to validating
sets of ModelElement-derived objects as its subjects, it is also sometimes
desirable to cross-validate these elements against external data sources.

For example, in the IssueStateModel designer, the connection to the
external database is specified with the ServerName and DatabaseName prop-
erties on the IssueStateModel class. The following validation method checks
that the connection is valid and available.

[ValidationMethod(ValidationCategory.Save | ValidationCategory.Menu)]
protected void ValidateDbConnection(ValidationContext context)
{
bool ok = false;
try
{
// IssueDBConnection is a specialized class
// for talking to issue databases
using (IssueDbConnection connection =

new IssueDbConnection(this,
this.ServerName,
this.DatabaseName))

Chapter 7: Constraints and Validation294

{
if (connection.Connection != null) ok = true;

}
}
catch (System.Data.SqlClient.SqlException)
{
}
if (!ok)
{
string description = String.Format(CultureInfo.CurrentCulture,

"Failed to connect to database {0}/{1}.",
this.ServerName,
this.DatabaseName);

context.LogError(description, "Err 04", this);
}

}

This type of validation can be very valuable, especially before an operation
that relies on external data, such as an import operation. However, it can
also be troublesome. Here, the method is specified as running on load,
save, and menu, which means that in order to save a model file when the
database is unavailable, the user must wait for the network timeout of
the database connection. In general, this type of validation is often best
used from a custom command whose usage the end user expects to be cou-
pled to the availability of the external data.

Hard Constraints in the DSL Tools

As we’ve seen by example, hard constraints are required less often than soft
constraints. However, when author-specified hard constraints are required,
they can be added by adding custom code to your designer. Because hard
constraints are sometimes intimately connected to the user experience that
would cause them to be broken, there is not a single standardized method
to add them. Changes that would invalidate a hard constraint can often be
disallowed at an API level by throwing an exception when some value
changes in a model. We’ll look at how to use one such change-handling
mechanism, rules, shortly. Another store change-handling mechanism is to
override the OnXxxChanging() method in the value property handler nested
class for a given domain property. For example, if the string property Name
on a domain class NamedElement can never have an empty value, the
following code might be employed:

Hard Constraints in the DSL Tools 295

/// <summary>
/// Add a hard constraint to NamedElement to prevent its
/// "Name" property from being empty.
/// </summary>
public partial class NamedElement
{
/// <summary>
/// Value handler for the NamedElement.Name domain property.
/// </summary>
internal sealed partial class NamePropertyHandler :
DomainPropertyValueHandler<NamedElement,

global::System.String>
{
protected override void OnValueChanging(NamedElement element,

string oldValue,
string newValue)

{
if (!element.Store.InUndoRedoOrRollback)
{
if (string.IsNullOrEmpty(newValue))
{
throw new ArgumentOutOfRangeException("Name",

"Name cannot be empty or null.");
}

}
base.OnValueChanging(element, oldValue, newValue);

}
}

}

Rules

Rules in the DSL Tools provide a versatile method of implementing behavior
that is dependent on changes in a model; because they are based on model
change, they can also be used as another method for implementing a type
of constraint. A rule can be used either to raise an exception, disallowing an
attempted change, or to propagate a change through the model, forcing
other parts to conform to the change.

A rule can be associated with any domain class (including relationships
and diagram elements). If any instance of that class changes, the rule
executes, usually during the commit of the transaction in which the change
occurred. Rules can be set to fire when a domain property changes, when
an instance is added or deleted, and on several other conditions.

Chapter 7: Constraints and Validation296

Let’s look at a real-world example of a hard constraint and see how we
would implement it with a rule.

Using the Class Design template supplied with the DSL Tools, it is quite
straightforward to add a rule as a hard constraint to prevent cycles in
generalization (or inheritance) from being created. Figure 7-4 is a snippet of
the domain model for class design that shows the reflexive Generalization
relationship on ModelClass.

Rules 297

Figure 7-4: Snippet OF CLASS DESIGN domain model

The code to prevent creation of cyclical inheritance is an add rule on the
domain relationship:

[RuleOn(typeof(Generalization), FireTime = TimeToFire.TopLevelCommit)]
internal sealed class CyclicInheritanceAddRule : AddRule
{
public override void ElementAdded(ElementAddedEventArgs e)
{
string message = string.Empty;
Generalization g = e.ModelElement as Generalization;
if (g != null)
{
if (!CyclicInheritanceAddRule.

TestValidInheritance(g.Subclass,
g.Superclass,
ref message))

{
throw new InvalidOperationException(message);

}

}
base.ElementAdded(e);

}

internal static bool TestValidInheritance(
ModelClass sourceClass,
ModelClass targetClass,
ref string errorMessage)

{
if (sourceClass != null && targetClass != null)
{
if (object.Equals(sourceClass, targetClass))
{
errorMessage = "Reflexive inheritance detected.";
return false;

}

ModelClass current = targetClass.Superclass;

// Repeat until we detect an existing loop
// or the root of the hierarchy.
while (current != null && current != targetClass)
{
if (object.Equals(current, sourceClass))
{
errorMessage = "Inheritance loop detected.";
return false;

}
current = current.Superclass;

}
}
return true;

}
}

This rule will cause attempts to add an invalid link instance to the model
to fail. Note that we’ve broken out the logic of the test into a helper method
to make clear which part is DSL infrastructure and which is core logic.

Remember that you need to register your rules in the DomainModel class:

public partial class ClassDiagramsDomainModel
{
protected override Type[] GetCustomDomainModelTypes()
{
return new System.Type[] { typeof(CyclicInheritanceAddRule) };

}
}

Chapter 7: Constraints and Validation298

Putting Together Hard and Soft Constraints

When hard constraints are necessary in a designer, implementing them on
their own using the techniques just described can lead to a suboptimal user
experience that rather jarringly prevents users from performing an erroneous
action rather than guiding them to perform a correct action. Let’s continue
the cyclic inheritance example and see how we can add some custom code
to get a great user experience. You can find this complete worked example
in the code download for Chapter 7 in a project called NoLoopClass.

First, let’s think about what happens when the CyclicInheritanceAddRule
raises its exception.

Attempts to create such links could be originated from several sources.
Because inheritance is a relationship with multiplicity 0..1 at one end, code
generation automatically provides an editing experience on that roleplayer
type (ModelClass) in the properties window in the form of a drop-down
selector. More typically, however, inheritance is set up using an inheritance
connector tool on the toolbox that is driven from a ConnectionBuilder class
and an associated ConnectAction-derived class. Finally, of course, links
may be created as part of loading a model. Let’s explore the experience for
each of these in turn.

Selecting a ModelClass and clicking the drop-down button in its
SuperClass property shows a list of all the other ModelClass elements in
the store. Elements that would be invalid are presented in this list along-
side all of the valid choices because there is no prescreening. If an element
is chosen that fails the rule, an error dialog similar to the one shown in
Figure 7-5 will be shown.

Putting Together Hard and Soft Constraints 299

Figure 7-5: A basic error dialog from the

properties window

While this isn’t a superb user experience, it does share a comon look and
feel with other validation errors for properties, so we’ll accept that and
move on.

A similar experience is presented if you use the toolbox inheritance con-
nector to create a looped inheritance. The cursor indicates that the choice
is valid, but when the target is selected, the dialog shown in Figure 7-7 is
presented.

Chapter 7: Constraints and Validation300

Figure 7-6: An expanded error dialog from the

properties window

Figure 7-7: Drag-drop error dialog

In itself, the message is not very informative, but clicking the “Details”
button reveals the true error message, shown in Figure 7-6.

At least this time the error message is presented directly; however, in the
case of a drag-drop tool, it seems much more jarring. The typical experience

for such tools is that they present a “No entry” sign for invalid choices
when they are simply hovered over, before the user has even made a selec-
tion. This allows a much more exploratory style of user interaction. You’ll
see this type of interaction automatically supplied by the generated code
for multiplicity constraints on relationships, so let’s see how to improve the
experience for our cyclical rule in this case.

A nested partial class has to be added to the designer:

public partial class GeneralizationConnectAction : ConnectAction
{
private partial class GeneralizationConnectionType :

GeneralizationConnectionTypeBase
{
/// <summary>
/// Helper method to skip from compartment
/// shapes up to their parents
/// </summary>
/// <param name="shape"></param>
/// <returns></returns>
private static ShapeElement RemovePassThroughShapes

(ShapeElement shape)
{
if (shape is Compartment)
{
return shape.ParentShape;

}
SwimlaneShape swimlane = shape as SwimlaneShape;
if (swimlane != null && swimlane.ForwardDragDropToParent)
{
return shape.ParentShape;

}
return shape;

}

/// <summary>
/// Only allow connections that don't
/// create a cycle in the inheritance chain.
/// </summary>
/// <param name="sourceShapeElement"></param>
/// <param name="targetShapeElement"></param>
/// <param name="connectionWarning"></param>
/// <returns></returns>
public override bool CanCreateConnection

(ShapeElement sourceShapeElement,
ShapeElement targetShapeElement,
ref string connectionWarning)

{
ShapeElement sourceShape =

Putting Together Hard and Soft Constraints 301

RemovePassThroughShapes(sourceShapeElement);
ShapeElement targetShape =

RemovePassThroughShapes(targetShapeElement);

if (sourceShape != null && targetShape != null)
{
ModelClass sourceClass = sourceShape.Subject

as ModelClass;
ModelClass targetClass = targetShape.Subject

as ModelClass;
if (!CyclicInheritanceAddRule.

TestValidInheritance(sourceClass,
targetClass,
ref connectionWarning))

{
return false;

}
}
// Fall through to the base test if
// we haven't detected a cycle.
return base.CanCreateConnection(sourceShapeElement,

targetShapeElement,
ref connectionWarning);

}
}

}

This code overrides the CanCreateConnection() method in the
double-derived GeneralizationConnectionType nested class within the
GeneralizationConnectAction class. This method is called repeatedly as
the mouse is moved over the design surface when the inheritance con-
nection tool is selected. The ConnectAction-derived type effectively
forms the handler for the modal interaction and the method allows or
disallows potential connections for any pair of shapes. This code deals in
the world of Shapes rather than raw ModelElements, but once the top-
level shapes have been identified and their underlying model elements
retrieved, it can make use of the same TestValidInheritance() method
that the previously described rule uses, ensuring that the logic isn’t
duplicated. If the test fails, then the method simply returns false to indi-
cate that the “No entry” message should be shown over the element cur-
rently under the mouse cursor. Additionally, if the reference parameter
connectionWarning is set, then a tooltip will be shown that makes it very
clear why this particular connection would not be acceptable.

Chapter 7: Constraints and Validation302

The final case to examine is loading a model that already contains an
instance of cyclical inheritance. Perhaps this model came from an earlier
version of the tool that didn’t have validation rules, or perhaps the XML
was supplied from some other tool in a tool chain or was hand-edited.
Whatever its source, the tool needs to decide on a strategy for handling
such files. As the code stands, when an attempt is made to load an erro-
neous file, the rule will fire in the load transaction and the load will then
fail, causing an error message similar to the one shown in Figure 7-8.

Putting Together Hard and Soft Constraints 303

Figure 7-8: Error message shown when a load fails

This message presents the problem to the user but doesn’t indicate any
good way to fix the problem. They have no option but to choose “OK,” at
which point they will be returned to Visual Studio as though they had
never asked to open the file. What’s generally required is to point the user
in the direction of fixing the problem; here, a decision has to be made. Can
this violation be fixed using the modeling tool itself, or is it serious enough
that the XML must be edited by hand to fix the problem? Typically, this
comes down to one of two possibilities. First, is the presentation model of
the designer capable of rendering the malformed model? In this case, the
presentation doesn’t care about cyclical loops, so the answer is yes. Second,
does any of the other custom code in the designer make assumptions that
this rule is an invariant? As you add code to your designer, it’s very easy
to start to assume that your own rules will not be broken. Indeed, if you are
fairly confident that the rules are unlikely to change much, this may be a
good, pragmatic approach to keeping your code free from reams of unnec-
essary precondition checks. However, it does tend to mean that you will
have to intercept problems in malformed XML files before your designer is

launched; custom code will likely crash otherwise. For example, you may
have custom code in several places that walks the inheritance class hierar-
chy using a simple loop. If a file is loaded that contains a cycle, then this
code will be stuck in an endless loop.

The starting point for handling either of these situations more gracefully
is to make the rule class previously described initially disabled and only
turn it on once the designer is fully running. This will allow you to handle
the error yourself at a time of your choosing. To do this, modify the RuleOn
attribute on the rule by adding the InitiallyDisabled parameter:

[RuleOn(typeof(Generalization),
FireTime = TimeToFire.TopLevelCommit,
InitiallyDisabled=true)]

You’ll also then need to create a partial DocData class to switch the rule on
after the initial load has finished. The DocData class lives in the DslPackage
project. Typically, we add DocData and other Visual Studio integration cus-
tomizations in new partial class files under a directory called Shell in the
DslPackage project.

internal partial class NoLoopClassDocData : NoLoopClassDocDataBase
{
protected override void Load(string fileName, bool isReload)
{
base.Load(fileName, isReload);
RuleManager ruleManager = this.Store.RuleManager;
ruleManager.EnableRule(
typeof(CJKW.Examples.NoLoopClass.CyclicInheritanceAddRule));

}
}

Chapter 7: Constraints and Validation304

TIP Make DslPackage project a friend of Dsl project

You’ll notice that this code in the DslPackage project is referring to the
rule that is defined as being internal to the Dsl project. This wouldn’t
normally be allowed, but in order for the two packages to work
together as one while still presenting an uncluttered public API, it is
typical to make the DslPackage project a “friend” of the Dsl project. To
do this, add an attribute like the following to your Dsl project’s Prop-
erties\AssemblyInfo.cs file:

This code now lets diagrams containing cycles load happily, allowing
them to be corrected using the modeling tool itself. However, there is now
no indication that there is any problem to correct, so we need to introduce
yet another mechanism to detect this error on loading—a validation method
will prove very effective:

[ValidationState(ValidationState.Enabled)]
public partial class Generalization
{
[ValidationMethod(ValidationCategories.Open)]
private void ValidateNonCyclical(ValidationContext context)
{
string message=string.Empty;
if (!CyclicInheritanceAddRule.

TestValidInheritance(
this.Subclass,
this.Superclass,
ref message))

{
context.LogError(message, "Err01", this);

}
}

}

Note again that this method reuses the same validation logic test, so only
infrastructure has to be added. We now have a designer that does not allow
cycles to be created via the properties window, does not allow them to be
created via the toolbox, and provides a nice experience to prevent it. It also

Putting Together Hard and Soft Constraints 305

[assembly:
InternalsVisibleTo("CJKW.Examples.NoLoopClass.
DslPackage,
PublicKey=00240000048000009400000006020000002400005253413100
040000010001009b498f24fcd75c6a243ae1831202e2da959d2c51662c94
8c0491e96bb4e924522f583e5149366919102d3c7b2b64fe6e70c282b065
a99cd0a79f30ad02a12e266aa2375b0d912408ec11ea924c1c617d1cd7f0
1e8cf56943fef1227c6d02568767b21a669e12de23f89c350faf638c04fa
a20131e7b4436d9ffc31ccd0c0fe9d")]

You can retrieve the very unwieldy PublicKey entry for this attribute by
using the sn -Tp <assembly> command on your designer’s assemblies
from a Visual Studio command prompt.

allows any cycles introduced in XML files to be easily corrected by raising
errors that when double-clicked on take you directly to the erroneous link
so you can delete it with the UI shown in the error list and on the design
surface in Figure 7-9.

Chapter 7: Constraints and Validation306

Figure 7-9: Validation errors exposed both in the error list and via selection

on the diagram surface

What if we do have custom code in our designer that assumes that no
cycles exist? We can switch the validation from using the “Open” category
to the “Load” category instead. This will impose validation after the model
file is loaded but before the diagram file is loaded. If that validation fails,
then it will load the model file in the XML editor. It isn’t a perfect user expe-
rience, because there is no way to relate the validations back to the exact
failing line in the XML, but it is much nicer than the unfriendly experience
we were originally given. Now the experience is as shown in Figure 7-10.

When “OK” is clicked, the XML editor opens (Figure 7-11).
In this example, we’ve seen how hard and soft constraints can be used

together, driven by a single piece of easily maintainable constraint logic,

Summary 307

Figure 7-10: Initial error message when Load category validations fail

Figure 7-11: XML editor showing location of Load category validation failures

and how, when combined with some simple UI customizations, they can be
used to craft a relatively sophisticated user experience.

SUMMARY

Constraints are a highly useful mechanism that allow the author of a
designer to extend correctness-checking of their models far beyond the
abstract and concrete syntax of their modeling language and into complex
interrelationships between model data in much the same way that asserts
can go beyond syntax checking in procedural code.

Chapter 7: Constraints and Validation308

• Hard constraints are invariants across the model that prevent the
user from ever getting into a situation where they are invalid.

• Soft constraints are checks against the model that can be evaluated
for correctness at a point in time.

Soft constraints typically have a much wider range of uses than hard con-
straints due to the needs of end users to use designers in a flexible manner.

The DSL Tools include a validation framework; validation is the process
of evaluating a soft constraint, and if it is invalid, creating a useful message
for the user of the designer.

The DSL Tools automatically support performing validation on file
open, file save, and by selecting a context menu. Custom invocation of
constraints is also supported.

The DSL Tools support hard constraints, but typically a greater amount
of custom code writing is required to provide a satisfactory user experience.

Hard and soft constraints can be combined using only a single piece of
reusable logic to provide relatively sophisticated user experiences.

8
Generating Artifacts

Introduction

As we saw in Chapter 2, a key task that domain-specific languages can be
used for is to generate code and other artifacts. In this chapter, we’ll review
styles of artifact generation that can be used with DSLs and then look
at a specific worked example of using the default artifact generation system
supplied with the DSL Tools. Then we’ll review in detail the syntax used by
that system. Finally, for those interested in deeply customizing the artifact
generation system, we’ll look at its implementation architecture and three
customization examples.

Historically, artifact generation has typically been spoken of simply as
code generation. The analogy is often drawn between the move from
assembly code to high-level third-generation languages and the move from
those languages to domain-specific languages. However, the current reality
is a world where software-intensive systems are composed of a much more
diverse group of artifacts than ever before, only some of which would
traditionally be recognized as source code. Others might be configuration
files, either for packaged applications or middleware, and others might be
the content of databases, both schema and raw data.

Consequently, although DSLs can be seen as a more abstract form of
source code in a compiler-like tool chain for custom code in a solution, they
can also be used to configure applications and middleware as well as to
initialize and populate databases. The benefits of using DSLs in these

309

situations are also varied. In some cases, raising the level of abstraction is
an adequate benefit itself. In others, complex relationships must be main-
tained, and a graphical DSL brings order and visual understanding to data
that would otherwise need more expert interpretation even if the abstraction
level is only minimally affected.

Nonetheless, it is still true that software systems are principally devel-
oped in a world where the simple text file dominates. Whether to store
source code, or to persist a scripted means of setting up the data in some
more complex piece of software or database, the ability for a set of text files
to be managed together in a single version control system means that this
style of working is unlikely to disappear for some time; indeed, the rise of
XML as the de facto standard structured data representation language has
probably ensured the endurance of this approach for the foreseeable future.

Consequently, the single most important transformation that can be
applied to a DSL is to produce another artifact as a simple text file, whether
that is source code, database script, or the persisted representation of a
different DSL.

We can see this clearly at work in our example from Chapter 2. If we
examine the scenarios around the IssueProject DSL, we can see that there
are two primary pieces of artifact generation applied to it. First, code is gen-
erated to improve the domain-specific API for manipulating Issue data
within the database. We’ll look much more deeply at how that is achieved
in this chapter. Second, scripts can be generated from this DSL to populate
a production SQL Server Issues database with the settings described by a
particular instance document. This is an interesting case, because the DSL
also has custom code added to it to allow a database to be configured
directly from the tool. Why would a DSL provide two such apparently
redundant methods of working? The answer is that although the direct
database connection-based tools are convenient for running a quick test or
updating a staging version of a database, it is unlikely that the user of a DSL
would have such direct access to a production server. It would also not be
sensible for an organization to operate without a scripted install for a data-
base that was important to its working practices in order to be able to build
servers from scratch. The generation of such scripts for administrators thus
complements convenience tools aimed more at developers, and is a useful
pattern.

Chapter 8: Generating Artifacts310

Artifact Generation Styles

Before looking in detail at the code generation associated with the Issue-
Project DSL from Chapter 2, we’ll review a range of techniques that can be
used to generate artifacts and discuss their pros and cons.

Extensible Stylesheet Language Transformations
One method is to simply transform the persisted representation of a DSL
directly to the desired artifact. Given that DSLs are typically persisted as
XML, the natural tool for this task is XSLT. Here’s a fragment of a class
design DSL:

<class namespace="Foo" name="Bar" access="family">
<property name="Height" type="System.String" access="public"

modifier="sealed" />
</class>

Here’s a matching XSLT stylesheet to transform the class design DSL into
C# code:

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/
Transform">
<xsl:output method="text" />
<xsl:template match="class">
namespace <xsl:value-of select="@namespace"/>
{
<xsl:apply-templates select="@access"/> partial class

<xsl:value-of select="@name"/>
{
<xsl:apply-templates select="property"/>

}
}
</xsl:template>
<xsl:template match="property" xml:space="preserve">

private <xsl:value-of select="@type"/> _<xsl:value-of
select="translate(@name,

'ABCDEFGHIGKLMNOPQRSTUVWXYZ',
'abcdefghijklmnopqrstuvwxyz')"/>;

<xsl:apply-templates select="@access"/> <xsl:value-of
select="@type"/> <xsl:value-of select="@name"/>

{
get
{
return _<xsl:value-of select="translate(@name,

'ABCDEFGHIGKLMNOPQRSTUVWXYZ',

Artifact Generation Styles 311

'abcdefghijklmnopqrstuvwxyz')"/>;
}
set
{
_<xsl:value-of select="translate(@name,
'ABCDEFGHIGKLMNOPQRSTUVWXYZ',
'abcdefghijklmnopqrstuvwxyz')"/> = value;

}
}

</xsl:template>
<xsl:template match="@access">
<xsl:choose>
<xsl:when xml:space="preserve"

test="./parent::*[@access='public']">public</xsl:when>
<xsl:when xml:space="preserve"

test="./parent::*[@access='family']">protected</xsl:when>
<xsl:when xml:space="preserve"

test="./parent::*[@access='private']">private</xsl:when>
<xsl:when xml:space="preserve"

test="./parent::*[@access='assembly']">internal</xsl:when>
<xsl:when xml:space="preserve"

test="./parent::*[@access='familyandassembly']">protected internal</xsl:when>
</xsl:choose>

</xsl:template>
</xsl:style>

And now here’s the output generated from applying the stylesheet to the
DSL fragment above:

namespace Foo
{
internal partial class Bar
{

private System.String _height;
public System.String Height
{
get
{
return _height;

}
set
{
_height = value;

}
}

}
}

Chapter 8: Generating Artifacts312

An important aspect of the DSL Tools is that the default serialization
mechanism uses XML formats that are simply specified and as natural a
match as possible to the domain model. The details of model serialization
were discussed in Chapter 6. However, while these domain-specific, simple
XML formats mean that XSLT-based transforms are certainly possible with
the DSL Tools, there are several issues that make them far from ideal.

The first thing to note is that there’s quite a lot more code generated than
the terse DSL serialization syntax; this code generator has some decisions
baked into it:

• It provides backing store for all properties using a field with the
property name prefixed with an underscore and transformed to
lowercase (we’d have liked to use camel-case1 to follow .NET
conventions, but the XSLT for camel-case is rather extensive for an
example).

• It generates partial classes—a sensible extensibility plan for any C#
code generator.

• It provides both a getter and a setter for each property.

The generator also has to transform from the language-agnostic acces-
sibility level “assembly” in the DSL to the matching C# term “internal.”

Even for this tiny fragment, it can be seen that the XSLT is nontrivial—
largely because artifact generation tends to require rich string-manipulation
features such as the lowercase function (and in a more realistic example, a
camel-casing function). The XSLT template can be somewhat simplified
using the Microsoft XSLT engine’s ability to inject custom functions into a
transform. If the type of the property were expressed in the XML as a cross-
reference (especially one that doesn’t use XML’s rather weak built-in IDREF
mechanism), or the DSL is spread across multiple files, the XSLT code rather
quickly becomes relatively hard to create and maintain. One distinct advan-
tage of XSLT transforms, however, is that they are extremely quick to run.
The latest version of Visual Studio contains an XSLT debugger that can

Artifact Generation Styles 313

1. Camel-casing is the practice of forming a compound word by joining a set of individual
words together with each member except the first having its initial letter capitalized, for
example, “thisIsTheHouseThatJackBuilt.” In .NET coding, this casing style is typically
used for method parameter names, local variables, and private member fields.

make working with such transforms much less of a chore than it used to be,
although the pattern-matching style of design required to create XSLTs is
not to every developer’s taste.

Chapter 8: Generating Artifacts314

TIP Use XSLT for model file migration

One use of XSLT that we’ve found very useful is migrating model files
from one version of a DSL to another—typically, a lot of the XML hasn’t
changed, so you can make use of the identify transform mechanism in
XSLT and simply specify transformations for the modified elements.

Making Use of the Domain-Specific API
When we create a language with the DSL Tools, we are automatically
provided with a domain-specific API for manipulating instances of that
language in memory. For example, in the IssueProject DSL, we are
provided with an API that has a ProjectDefinition class, which has an
IssueDefiniton sub-object and a Milestones collection where the details of
individual Milestones can be accessed and manipulated.

Let’s see how we can use that API as another way to generate artifacts.
First, we’d need to use the API to load the model into memory. As we

saw in Chapter 3, model instances live inside a Store instance, so we need
to initialize a store and then load the model. Here’s some example code to
do just that:

Store store = new Store(typeof(ProjectDefinitionDomainModel));
using (Transaction t =

store.TransactionManager.BeginTransaction("Deserialize", true)
{
ProjectDefinition def =

ProjectDefinitionSerializationHelper.LoadModel(
store,
"MyProjectDefinition.pdef",
null,
null);

t.Commit();
}

First, a Store object is initialized using the type of the DomainModel object
that we want the store to be able to hold. A Transaction is then started in
which to perform the load, because we will necessarily be modifying the Store
as part of loading it with elements in the file. This is a transaction specifi-
cally for deserializing a model file, so we’ll pass true to the isSerializing
parameter. Finally, the static ProjectDefinitionSerializationHelper class
is used to read the file according to the serialization scheme defined along
with the language. This helper class is also generated as part of the API to
a model in the SerializationHelper.cs file.

All well and good; we now hold a ProjectDefinition reference called
“def,” which we can use to examine the model we’ve loaded. Let’s start by
producing code for accessing specific issues in the issues database. In the
database, the data representing an individual issue is normalized heavily,
as is usual in a relational database application supporting online transac-
tions. One of the key features supported by this normalization is the ability
for an issue to have values for one or more custom fields defined on a
per-project basis. This gives a degree of flexibility for customers of the
database without the need to modify the database schema itself and is a
common technique. The tables that support this are shown in Figure 8-1.
The Projects table holds a row for every project that has been instantiated,
and there is then a row in the ProjectCustomFields table for each custom
field defined for that project. Each issue created (with its own row in the
Issues table) can then have a set of rows in the ProjectCustomFieldValues
table that specifies a value for each custom field.

This structure is efficient and flexible, but doesn’t make for pleasant client
programming. For example, to create an issue with values for all of its prop-
erties, both normal and custom, a record must be created in the Issues table,
and then a further set of records must be created in the CustomProperty
Values table, one for each custom value that is defined for the project.

If you are a developer trying to produce a program to manipulate
Issues in the context of a specific project with a defined set of custom fields,
then all of this database complexity is really implementation detail that you
may well have little interest in. A rather basic example of an API that would
be more productive for such a developer wishing to create an issue without
regard to its implementation details might look like the following:

Artifact Generation Styles 315

Chapter 8: Generating Artifacts316

Figure 8-1: Database tables for an issue and its custom fields

public IssueId CreateIssue(ProjectMilestone issueMilestone,
ProjectUser creator, ProjectUser initialOwner,
string someCustomProperty, bool anotherCustomProperty)

{
// Some implementation

}

To generate such a domain-specific API, we need to do two things.

• Write out code for the standardized part of the method that is tied to
the fixed part of the database schema for Issue.

• Write out code for the part of the issue that is custom for this project.

To do the first of these, we’ll effectively just be outputting a standard
piece of text. For the second, we’ll need to traverse the set of custom fields
in the IssueDefinition part of the ProjectDefinition model. It’s worth
noting that to execute this task, the DSL author is focusing on two domain-
specific APIs at the same time—first, there’s the domain-specific API she is
trying to generate code for that will be incorporated into some aspect of
the running Issue Tracking application (or tools that interoperate with it);
second, there’s the domain-specific API onto the IssueProject DSL that

she’s using to read the model file. It is often the case, as it is here, that both
these levels of modeling share many concepts (issues, in this small example)
and consequently it’s equally common to find yourself thinking about the
wrong level from time to time. The need for tool authors to manage this
mental complexity (which only expands when programs are part of an even
longer tool chain across more levels of abstraction) seems to be inherent in
the domain-specific development approach.

Here’s some code that emits both the standardized and custom parts
of the method for the CreateIssue () method just proposed, given a
ProjectDefinition.

using System;
using StringHelpers;

public void GenerateCreateIssue(ProjectDefinition definition)
{
Console.WriteLine("public IssueId CreateIssue(ProjectMilestone

issueMilestone,");
Console.WriteLine("ProjectUser creator, ProjectUser initialOwner");
foreach (CustomField field in

definition.IssueDefinition.CustomFields)
{
Console.Write(", " + field.Type.FullName +

" " + StringHelper.ToCamelCase(field.Name));
}
Console.WriteLine(")");
Console.WriteLine("{");
Console.WriteLine(" // Some implementation");
Console.WriteLine("};");

}

Thanks in large part to the model’s domain-specific API, this is pretty
straightforward code. It makes the assumption that the code generation
output is going to be written to the console, but it could have equally been
coded to direct the output to another device or direct it to some user-specified
place. The structure of the code is very simple, and there is an easy-to-read
match between collections in the data structures of the domain-specific API
and iteration in the control logic. First the standard code is written out, and
then one extra comma-preceded method parameter is written for each
CustomField in the model. Finally, the standard close bracket and method
body are written; of course, in reality, the method body would also be
custom. Because this is just standard .NET code, it is trivial to invoke

Artifact Generation Styles 317

custom methods such as the helper to convert a string to its camel-cased
equivalent. We’ve chosen to present this code in C#, but of course it would
be very similarly expressed in any procedural language.

However, it does have some flaws. The code to be generated is hard-
coded in individual strings. Where this is in large blocks, it’s quite easy to
read, as in the first two lines of the sample just presented. However, looking
at the line inside the foreach loop, it is less easy to pick out what the shape
of the generated code will be. Experience has shown that when editing
a large volume of such code, the visual noise of the Console.WriteLine
(or equivalent) statements, and especially the extra quotation marks and
brackets, is very distracting and often leads to small errors. This is partic-
ularly the case when strings with quotation marks of their own are being
generated, because a lot of character escaping may be necessary.

In normal coding projects, it would be a best practice to move strings
into resource files, but in the case of code generation, it would actually
detract seriously from the maintainability of the code. Generated code is
not usually localized, and even well-chosen resource identifiers would
make divining the code to be generated more troublesome from an inspec-
tion of the code. More importantly, when the code to be generated needs to
change slightly, it is very frequently the case that the logic surrounding it
must change as well. For example, if it was decided to switch the custom
parameters to a params array of some standard Parameter type, then the
logic in the line of code inside the foreach loop would be entirely incorrect;
simply changing a resource would not be sufficient. Consequently, if this
approach is taken to code generation, it is usually necessary to ship the
source code of the generator in order to allow for small modifications to
both logic and strings.

A variation on this approach is to use the CodeDOM instead of writing
out the generated code directly. The CodeDOM is a standard facility of the
.NET framework that allows an abstract syntax tree for languages to be cre-
ated and then transformed into a variety of procedural language syntaxes.
Here’s a snippet of CodeDOM code to create the abstract syntax for a property
definition:

CodeMemberProperty rootElement = new CodeMemberProperty();
rootElement.Name = "Height";
rootElement.Type = CodeTypeReference(typeof(float)));

Chapter 8: Generating Artifacts318

rootElement.Attributes = MemberAttributes.Private;
rootElement.HasSet = false;
rootElement.HasGet = true;
rootElement.GetStatements.Add(
new CodeMethodReturnStatement(
new CodeFieldReferenceExpression(
new CodeThisReferenceExpression(),
"height")));

If translated to C#, this snippet would generate the following code:

private float Height
{
get
{
return this.height;

}
}

As you can see, this is extremely verbose code for such a simple piece of out-
put. It has one great advantage—it can be transformed into C#, Visual Basic,
or any other language for which a CodeDOM is implemented. However,
that advantage is usually greatly outweighed by the fact that the code to
create the abstract syntax tree is so far removed from the generated code that
small modifications become relatively major pieces of work. While libraries
can be built up to simplify this code, in practice we’ve found that the
CodeDOM is only suitable for generating small quantities of code.

A Template-Based Approach
You’ll notice that the way we worked out the preceding code generation
schemes followed a simple process. We gave an example of the desired
code to be generated and then worked out an algorithm to generate it. It
turns out that there is a well-known pattern for code generation that sup-
ports this process more explicitly while still making best use of the domain-
specific API—parameterized template-based generation. Here’s a fragment
of a parameterized template for generating the CreateIssue sample from
the previous section:

public IssueId CreateIssue(ProjectMilestone issueMilestone,
ProjectUser creator, ProjectUser initialOwner
<#
foreach (CustomField field in

Artifact Generation Styles 319

definition.IssueDefinition.CustomFields)
{

#>,<#=field.Type.FullName#> <#=StringHelper.ToCamelCase(field.Name)#>
<# } #>
)
{
// Some implementation

}

The key to this technique is that the elements outside of the control mark-
ers (<# and #>) are rendered directly to the output file, whereas code within
the markers is evaluated and used to add structure and dynamic behavior.
Where control structures such as the foreach loop above surround non con-
trol areas, the enclosed non-control area is subject to the control structure,
in this case repeating it once for each iteration of the loop.

This technique has been used very successfully in a wide range of prod-
ucts, perhaps most widely in Microsoft’s dynamic website rendering tech-
nology, Active Server Pages. It is the principal artifact-generation technology
used by the DSL Tools, and we refer to it as text templating.

You can see from the preceding example that the template is based on a
copy of the expected output. Points of variability based on the underlying
model are then analyzed, and control code is inserted at those points.
Where the text is not dependent on the model, it is simply left as a copy of
the desired code to be generated and so is very readable.

A great advantage of this technique is that it can be a gradual process.
Minimal parameterization can occur to prove a generation strategy and
then the fine detail can be parameterized later. For example, in the preced-
ing code, all parameters could initially be given the generic type object as
a first step on the way to parameterization.

The readability of this template is not perfect, but it is a lot closer to the
desired output than any other methods we’ve looked at. Its readability can
also be enhanced greatly by some judicious code colorization in an editor to
separate the control code from the literal text.

Chapter 8: Generating Artifacts320

TIP Get a template editor

You can download colorizing code editors for the DSL Tools’ text
templates from various third-party community sites.

Complex Relationships and Round-Tripping

The techniques for managing the transformation from a model to an artifact
described so far all have one thing in common—they presuppose that the
transformation is one of taking a model in a given state and producing the
matching artifact. But what if a developer modifies the artifact after gener-
ation? Should the model synchronize to the changes in the generated artifact?
What if a whole new version of the artifact is retrieved from source code
control? What if the model is generative of two artifacts and one is changed
in a way that clashes with the other? What if a part of an artifact that has
no representation in a model is changed, such as a comment? These problems
are often grouped together under the heading round-tripping.

The DSL Tools do not currently provide direct support for round-tripping,
because the complexities typically outweigh the benefits for all but a small
subset of DSLs. For the majority of DSLs, we’ve found that text templating
is a more productive solution.

It is, however, possible to layer such round-tripping facilities on top of
the domain-specific APIs that the DSL Tools provide if there is a require-
ment to do so. Indeed, the class designer and distributed system designers
included in Visual Studio 2005 include just these types of features. Detailing
exactly how to go about implementing similar facilities is well beyond the
scope of this book, but let’s look at what needs to be taken into account in
order to assess the level of complexity for anyone wishing to tackle such a
project.

Dealing with complex relationships between models and their artifacts
typically involves further new techniques for artifact generation. The two
key complexities we’ve identified here are

• Data loss—Models typically don’t represent every detail of the
generated artifact, as we’ve seen, with much of the fine detail being
stored as boilerplate. If this boilerplate is changed in the artifacts,
then the changes need to be preserved in some way.

• Ripple effects—When an artifact is changed, propagating that
change to a model can make it necessary to regenerate other
artifacts. It is very common for artifacts to support a much wider set
of valid edits than would ever be generable from the model. If the

Complex Relationships and Round-Tripping 321

changes in the original artifact didn’t respect the exact schema of the
model-artifact mapping, then the manually edited artifact and the
newly generated ones may well clash.

Because there is a clear outcome, the artifact generation techniques
presented previously can generally be initiated by a simple user command.
The model is not changed, but the artifact is changed. However, complex
generation typically requires more complex trigger points because the
consequences of changes to models and artifacts can have ripple effects on
others. This can mean reacting to changes in models and artifact files. There
are standard .NET and Visual Studio SDK techniques for noticing changes
in artifact files. Reacting to changes in models can be accomplished via the
DSL Tools’ APIs using a combination of rules and events. We’ll look at both
of these concepts and how they can be used in Chapter 10.

Regardless of the way in which the synchronization process is triggered,
being able to react in detail to changes in artifacts requires that some kind
of parser for each artifact type involved is available. This need not be a for-
mal parser in all cases, because only some aspects of the artifact may be
interesting to the tool chain. For example, perhaps a regular expression to
pick out the names of C# classes and methods might be adequate for
populating certain DSLs.

Once an artifact has been parsed, what kind of transformation should be
performed and what other actions should be taken? In our previous example
techniques, the one-way mapping between model and artifact has been
specified using relatively simple code, either in XSLT or control structures in
regular C# or in a template. Complex mappings between several models and
artifacts are hard to specify in this manner unless there is no data loss allowed,
which is rarely possible if artifact editing is permitted. Unfortunately, speci-
fying two simple mappings, one for each direction, does not typically work
well, because there is nowhere in the models to store the parts of the artifacts
that were generated from boilerplate. The one-way techniques are a formal
description of how to produce the desired output, given a set of input; for two-
way mappings, a formal description of the relationships between the model
and artifacts is more useful. This relationship description can then be
processed to decide what actions to take when a change occurs at either end.
To be successful with processing when it is an artifact that changes, it would
generally be necessary to have a complete parse of the artifact.

Chapter 8: Generating Artifacts322

A secondary question then arises: Should the artifact side of such a
relationship description (or relationship model) be directly expressed in
terms of the syntax of the artifact? This would entail the relationship model
describing a transformation not just between two types of model, but
between two modeling technologies as well—the parse trees of the artifact
and the DSL model. Instead, it might be preferable to create a DSL model
of the parse tree of the artifact and then describe the relationships using
only model technology. However, creating such a model for every artifact
type (as well as the parser) is an extra cost that must be borne.

In the wider modeling field, various approaches to transformation
have been proposed, including the Query View Transformation (QVT)
initiative from the Object Management Group. However, designing a work-
able transformation algorithm is unfortunately not the entirety of the problem.
When such complex transformations are triggered in the context of a modern
IDE, the issue of managing the end user’s experience of the transformation
must also be tackled.

If the effects of a transformation ripple out to artifacts that the user hasn’t
yet edited, it may be necessary to invoke source code control mechanisms
to make the change. If the source code control operation is unsuccessful
(perhaps another user has the file in question locked), then decisions must be
taken. Should the artifact be left in an inconsistent state with the model and
potentially other artifacts, or should the entire set of changes be abandoned?
It seems we must implement an overarching transactional mechanism to han-
dle such failure states gracefully and to enforce that synchronizations work
as atomic operations.

We’ve seen that in many useful transformations, a lot of unchanging
boilerplate code must be generated that is not affected by the content of
models. Consequently, any transformation scheme has to be able to store
and produce this type of output in artifacts. A synchronization scheme also
needs to decide what happens when an end user makes a change in a part
of an artifact that was generated from boilerplate rather than from a trans-
form of a piece of model data. For example, imagine a template that
generates C# classes but does not add the partial keyword to those classes.
A user needs to add an extra piece to the class and so adds the partial
keyword in to the generated class definition. The generative model has no
place to store this extra information—it has no concept of classes being

Complex Relationships and Round-Tripping 323

either partial or not. But the boilerplate in the transformation has not
changed, and the next time the synchronization happens the user’s change
will be lost. If this type of change to generated files is to be respected, then
there is a need to delineate the editing of boilerplate from the model-
generated aspects. This can be achieved either by only allowing boilerplate
to be edited inside a template that is part of the generation mechanism
or by marking the output file with separate areas for generated code and
user-editable boilerplate.

From this discussion, we can see that complex relationships will neces-
sarily be significantly more costly to implement than one-way generation.
What would be indicators that such an investment might be worthwhile in
your DSL project? The Class Designer DSL that is part of Visual Studio 2005
was deemed to be such a case. Here the visual language is very, very close
to the textual language. The two are so close, in fact, that they can almost be
viewed as different syntaxes to the same parse trees (though one is a subset
of the other, because class designer does not concern itself with method
bodies). In fact, in the class designer, the two models are close enough that
the class structure data itself is never persisted in model format. Instead,
only the diagram layout is persisted and everything else is derived directly
from the actual code every time the diagram is opened.

In similar cases where models and artifacts are either isomorphic or very
close to being so, some of the issues outlined here become less problematic
because there is either no data loss or a very well-defined loss between the
two sides.

Given that we believe that the majority of DSLs are a significant abstrac-
tion over their generated artifacts, as opposed to being close to them, sim-
ple text templating is a natural choice as a default generation mechanism
for the DSL Tools. As with most features of Visual Studio, a significant aim
of the tool is to support high-productivity ways of working. We’ve found
that template-based generation ideally supports such productivity through
an iterative development process based on a gradual transition from static
artifacts to parameterized templates.

We’ll look in detail at the syntax for text templates a little later, but first
let’s investigate this development process from the standpoint of our CJKW
developer, Devika, and see how she goes about iteratively developing
generated code that meshes with the predominantly manually written code
of the Issue Tracker application.

Chapter 8: Generating Artifacts324

The Templatization Process

The last project that Devika worked on used the CJKW Issue Tracking
system in the healthcare domain, installing a system to help a local hospi-
tal management authority manage bugs in its IT projects. On that project,
Devika spent a good deal of time writing reports and utilities to work with
the particular project customization scheme that the health authority used.
This scheme added two custom fields to issues.

• ClinicalSignoffRequired—Whether this issue must be approved
by the clinical supervision team before it is closed.

• ClinicalSignoffReceived—Whether this issue has received clinical
supervision sign-off.

Because the authority was particularly concerned with the quality of
clinical systems, an extra stage in the bug management process of all of the
authority’s IT projects existed. The project manager reviewed all incoming
bugs and decided whether they needed sign-off from a team of clinicians
assigned to consult on new IT projects. If they did, he set the Clinical-
Sign-offRequired flag. If this flag was set, then the ClinicalSignoff-
Received flag also had to be set before an issue could be closed. The authority
found that this process brought user acceptance much closer to their devel-
opment process and caught many problems before systems were deployed.
They wanted a bug-tracking system to support this process and were
delighted that CJKW’s system could adapt so easily.

Consequently, while on the project, Devika added hand-customized
extras to the Issue Tracker application’s standard business logic and data
access layer code to manipulate issues with these two extra fields seam-
lessly using the same code techniques that the application used to manage
issues with the standard set of properties. This saved her lots of repetitive
coding; as we’ve seen, in Issue Tracker, custom fields must normally
be manipulated separately from the Issues they are associated with.

In the Issue Tracker business logic layer, classes are provided for each
of the principal database entities. The classes allow instances of entities to
be managed in memory. The data access layer provides methods to query for
and retrieve collections of these entities. The entities can then be modified
in memory and changes updated back to the database. In some cases, this

The Templatization Process 325

is achieved using a Save()method on an entity class; in other cases, a specific
data access layer method must be called to perform the update.

For example, here’s the minimal code needed to create a new issue and
its associated custom fields, and to save them to the database:

public static void
CreateNewHealthIssue(string title,

int categoryId,
int milestoneId,
int priorityId,
int statusId,
int assignedUserId,
int ownerUserId,
string creatorName,
bool clinicalSignoffRequired)

{
Issue newIssue = new Issue(0,

HealthProjectId,
title,
categoryId,
milestoneId,
priorityId,
statusId,
assignedUserId,
ownerUserId,
creatorName);

newIssue.Save();
CustomFieldCollection fields =
CustomField.GetCustomFieldsByProjectId(HealthProjectId);

foreach (CustomField field in fields)
{
if (field.Name == "ClinicalSignoffRequired")
{
field.Value = clinicalSignoffRequired.ToString();

}
}
CustomField.SaveCustomFieldValues(newIssue.Id, fields);

}

In this code, a regular issue is being created, and then the clinical-
Sign-OffRequired parameter’s value is set. The data access layer provides
methods to get the project’s collection of CustomFields and then to set them
back with actual values on a per Issue basis. The clinicalSignoff
Received flag is ignored here, because it never makes sense to set it to any-
thing but its default when an Issue is created. We’ll see later how this differ-
ent treatment of the two custom fields has consequences for code generation.

Chapter 8: Generating Artifacts326

We’ve omitted the database transaction-handling code from this method
in order to keep the size down, but clearly, because two database operations
are being used to create a single logical item, it is important that either both
succeed or that neither succeed.

Rather than just having a library of methods like the preceding code to
manipulate Issue objects and their CustomFields together, Devika pack-
aged up functionality similar to this in a custom derived HealthIssue class.
This enabled her and her team to simply create and work with HealthIssue
objects in exactly the same way that they would normally work with Issue
objects and made the two custom fields indistinguishable from the other
fields on Issue. Figure 8-2 shows these classes.

The Templatization Process 327

Figure 8-2: The Issue and derived HealthIssue classes in the Issue Tracker

business logic layer

Now, as she works with Archie, Devika thinks that she can generalize
the approach of creating custom derived entity classes for any deployment
of the Issue Tracker application using some code generation from the
domain-specific languages they are building.

The First Cut Template
Devika examines the code in her derived HealthIssue class and starts to
think about parameterizing it. She’ll obviously need to change the name—
she can probably derive that from the name of the project that it’s being
used in. She’ll need fields and matching properties to represent every cus-
tom field defined. That looks like everything to her, at first examination, so
she goes ahead and creates her first text template:

<#@ template inherits=
"Microsoft.VisualStudio.TextTemplating.VSHost.
ModelingTextTransformation"#>

<#@ output extension=".cs" #>
<#@ issueProjectModel processor="IssueProjectsDirectiveProcessor"
requires="fileName='HealthProject.issueProj'"
provides="IssueProjectModel=IssueProjectModel" #>

using System;
using System.Collections.Generic;
using System.Text;

<#
foreach (Project project in this.IssueProjectModel.Projects)
{
#>
namespace <#= project.CodeGenNamespace #>
{
public class <#= project.Name #>Issue :
ASPNET.StarterKit.IssueTracker.BusinessLogicLayer.Issue

{
<#
// Generate member fields for custom fields
foreach (IssueField customField in project.CustomFields)
{

#>
private <#= FieldTypeToType(customField.Type) #>
_<#=customField.Name.ToLower() #>;

<#
}

#>

<#
// Generate Properties for custom fields

Chapter 8: Generating Artifacts328

foreach (IssueField customField in project.CustomFields)
{

#>
public <#= FieldTypeToType(customField.Type) #>
<#= customField.Name #>

{
get { return _<#= customField.Name.ToLower() #>; }
set { _<#= customField.Name.ToLower() #> = value; }

}
<#
}

#>
<#
}
#>
}

}
<#+

#region Helper methods for code generation
private static string FieldTypeToType (FieldType modelType)
{
switch (modelType)
{
case FieldType.Boolean : return "bool";
case FieldType.String: return "string";
case FieldType.Float: return "float";
case FieldType.Double: return "double";
case FieldType.Int32: return "int";
case FieldType.Int16: return "short";
default: return "string";

}
}
#endregion

#>

This template starts with some directives; these are the three lines begin-
ning with the delimiter “<#@.” Directives provide processing instructions
to the underlying engine that executes text templates, and this template
uses three.

<#@ template inherits=
"Microsoft.VisualStudio.TextTemplating.VSHost.
ModelingTextTransformation"#>

The template directive specifies general processing options for a text tem-
plate. An individual template can broadly be thought of as a class with

The Templatization Process 329

the usual .NET characteristics of properties, fields, and methods, and this
directive is used here to specify that this template inherits from a standard
class provided by the DSL Tools for building text templates that access
model files.

<#@ output extension=".cs" #>

The output directive specifies the type of file that the text template will pro-
duce—here, it’s producing a C# file.

<#@ issueProjectModel processor="IssueProjectsDirectiveProcessor"
requires="fileName='HealthProject.issueProj'"
provides="IssueProjectModel=IssueProjectModel" #>

The issueProjectModel directive is specific to templates that work with the
model files produced by the IssueProject designer. Here, it specifies that
the “HealthProject.issueProj” model should be loaded into the member
variable “IssueProjectModel” within this template.

One point to note here is that this use of the directive ties the template
file to a particular model instance. We’ll see techniques later in the chapter
to allow the logic of a template to be split into multiple files to avoid this
pitfall.

Next come some using statements taken directly from the example code,
followed by the following control statement:

<#
foreach (Project project in this.IssueProjectModel.Projects)
{
#>

The “<# … #>” delimiters denote a control block whose content is used to
control the flow of processing of the template rather than being written as
output of the template. In this case, a foreach loop is being initiated. Every-
thing in the template following this block will be repeated for each iteration
of the loop until a matching control block with the closing brace of the loop
is encountered, thus:

<#
}
#>

Chapter 8: Generating Artifacts330

Here the loop is being controlled by the set of Projects read in from the
model file and exposed via the property IssueProjectModel, which was
added with the issueProjectModel directive described earlier. The local
variable “project” is now available to all control code nested within this
structure, just as if all of the control code had been written in a single
method in a regular piece of C# code.

The Templatization Process 331

TIP Use C# or Visual Basic in templates

Template logic isn’t tied to C#; if you’re more comfortable with Visual
Basic, then you can use that for the control logic in your templates.

Next, the namespace for the generated code is written out, followed by
a class declaration for the new custom derived Issue type. The name of the
class is generated using another type of control block called an expression
block, delimited with “<#= … #>.” This type of control block evaluates the
expression it contains and converts the result to a string that it writes
directly to the output of the template. Here, the name of the Project being
processed is being catenated with the word “Issue.”

To generate both a C# field and a matching property for each defined
custom field of the project, the same nested loop is then used twice in suc-
cession within control blocks to loop over the CustomFields collection on
the Project. To calculate the C# type that must be used for each of the val-
ues of the FieldType enumeration used in the model, a switch statement is
the obvious choice. However, repeating this switch statement every time it
is needed would be cumbersome. What is needed is to encapsulate this
small piece of reusable code within a method. The expression block

<#= FieldTypeToType(customField.Type) #>

is used in several places to emit the correct type into the template output.
This method is defined at the end of the template file in a further kind of
block called a class feature block.

A class feature block is delimited with “<#+ … #>.” Class feature blocks
can best be explained by saying that they allow you to add extra methods
to the template, just as if the template were a C# class. In fact, it allows any

valid .NET class members to be added to the template, such as fields,
properties, or even nested classes.

<#+
#region Helper methods for code generation
private static string FieldTypeToType (FieldType modelType)
{

...
}
#endregion

#>

Devika saves the template and sets the “Custom Tool” property on the
template file to be “TextTemplatingFileGenerator.”

This custom tool is provided with the DSL Tools and instructs Visual
Studio to process the template file using the text templating engine, adding
the template output as a subordinate file nested under the template itself.

Devika then picks “Run Custom Tool” from the context menu on the
template and observes the results. A new node appears in the solution
explorer underneath the template containing the template output.

Looking at the code, Devika realizes she can generate more than a sim-
ple derived class with fields and properties. She needs a custom construc-
tor and a version of the Save() method that actually updates the database
with her custom fields. She also wants to allow custom fields that have their
AlwaysRequired flag set to False to be represented by C# 2.0 nullable2

values so there is always a value available to represent “unspecified.” She
updates her template to be as follows:

<#@ template inherits="Microsoft.VisualStudio.TextTemplating.VSHost.
ModelingTextTransformation" debug="true"#>

<#@ output extension=".cs" #>
<#@ IssueProject processor="IssueProjectDirectiveProcessor"
requires="fileName='Ch8.1.issueproj'" #>

using System;
using System.Collections.Generic;
using System.Text;

<#

Chapter 8: Generating Artifacts332

2. Nullable types are a facility provided in the C# 2.0 language that allows scalar value
types to additionally hold the special value NULL as well as their natural set of values.
For example, a Nullable <short> can contain the value NULL as well as -32768 to 32767.

foreach (Project project in this.IssueProjectModel.Projects)
{
#>
namespace <#= project.CodeGenNamespace #>
{
public class <#= project.Name #>Issue :
ASPNET.StarterKit.IssueTracker.BusinessLogicLayer.Issue

{
<#
// Generate member fields for custom fields
foreach (IssueField customField in project.CustomFields)
{

#>
private <#= GetFieldType(customField) #>

_<#=customField.Name.ToLower() #>;
<#
}

#>

<#
// Generate Properties for custom fields
foreach (IssueField customField in project.CustomFields)
{

#>
public <#= GetFieldType(customField) #> <#= customField.Name #>
{
get { return _<#= customField.Name.ToLower() #>; }
set { _<#= customField.Name.ToLower() #> = value; }

}
<#
}

#>

public new bool Save()
{
// Save the standard Issue part
base.Save();

// Save the custom fields for the issue.
CustomFieldCollection fields =
CustomField.GetCustomFieldsByProjectId(ProjectId);

foreach (CustomField field in fields)
{

<#
foreach (IssueField customField in project.CustomFields)
{

#>
if (StringComparer.Ordinal.Compare(field.Name,

"<#= customField.Name #>") == 0)

The Templatization Process 333

{
<#

if (!customField.AlwaysRequired ||
customField.Type == FieldType.String)

{
#>

if (this.<#= customField.Name #> != null)
{

<#
this.PushIndent(" ");

}
#>

field.Value = this.<#= customField.Name #>;
continue;

}
<#

if (!customField.AlwaysRequired ||
customField.Type == FieldType.String)

{
this.PopIndent();

#>
}

<#
}

}
#>

}
CustomField.SaveCustomFieldValues(this.Id, fields);

}

public <#= project.Name #>Issue(int id,
int projectId,
string title,
int categoryId,
int milestoneId,
int priorityId,
int statusId,
int assignedId,
int ownerId,
string creatorUsername<#

// Add extra parameters
foreach (IssueField customField in project.CustomFields)
{

#>,
<#= FieldTypeToType(customField.Type) #>
<#= customField.Name.ToLower() #><#

}
#>

)

Chapter 8: Generating Artifacts334

: base(id, projectId, title, categoryId, milestoneId,
priorityId, statusId, assignedId, ownerId, creatorUsername)

{
<#
// Populate member fields
foreach (IssueField customField in project.CustomFields)
{

#>
_<#= customField.Name.ToLower() #> =
<#= customField.Name.ToLower() #>;

<#
}

#>
}

<#
// Close the class and namespace

#>
}

}
<#
}
#>

<#+
#region Helper methods for code generation
private static string FieldTypeToType (FieldType modelType)
{
switch (modelType)
{
case FieldType.Boolean : return "bool";
case FieldType.String: return "string";
case FieldType.Float: return "float";
case FieldType.Double: return "double";
case FieldType.Int32: return "int";
case FieldType.Int16: return "short";
default: return "string";

}
}

private static string GetFieldType(IssueField field)
{
return FieldTypeToType(field.Type) +

((field.AlwaysRequired ||
field.Type == FieldType.String) ? string.Empty : "?");

}
#endregion
#>

The Templatization Process 335

Note: We’ve again taken the liberty of omitting database transaction code
for the sake of brevity.

Devika now has a template that adds a custom constructor and Save()
method to her specialized Issue class. She regenerates the template output
once more with the Health model and inspects the code. Here’s the output:

using System;
using System.Collections.Generic;
using System.Text;

namespace Healthcare.IssueTracker.BusinessLogicLayer
{
public class HealthcareProjectIssue :

ASPNET.StarterKit.IssueTracker.BusinessLogicLayer.Issue
{
private bool _clinicalsignoffrequired;
private bool? _clinicalsignoffreceived;

public bool ClinicalSignoffRequired
{
get { return _clinicalsignoffrequired; }
set { _clinicalsignoffrequired = value; }

}
public bool? ClinicalSignoffReceived
{
get { return _clinicalsignoffreceived; }
set { _clinicalsignoffreceived = value; }

}

public new bool Save()
{
// Save the standard Issue part
base.Save();

// Save the custom fields for the issue.
CustomFieldCollection fields =
CustomField.GetCustomFieldsByProjectId(ProjectId);

foreach (CustomField field in fields)
{
if (StringComparer.Ordinal.Compare(field.Name,

"ClinicalSignoffRequired") == 0)
{
field.Value = this.ClinicalSignoffRequired;
continue;

}

if (StringComparer.Ordinal.Compare(field.Name,

Chapter 8: Generating Artifacts336

"ClinicalSignoffReceived") == 0)
{
if (this.ClinicalSignoffReceived != null)
{
field.Value = this.ClinicalSignoffReceived;
continue;

}
}

}
CustomField.SaveCustomFieldValues(this.Id, fields);

}

public HealthcareProjectIssue (int id,
int projectId,
string title,
int categoryId,
int milestoneId,
int priorityId,
int statusId,
int assignedId,
int ownerId,
string creatorUsername,
bool clinicalsignoffrequired,
bool clinicalsignoffreceived
)

: base(id, projectId, title, categoryId, milestoneId,
priorityId, statusId, assignedId, ownerId,
creatorUsername)

{
_clinicalsignoffrequired = clinicalsignoffrequired;
_clinicalsignoffreceived = clinicalsignoffreceived;

}
}

}

Note that the optional ClinicalSignoffReceived field is now stored using
a Nullable<bool> using the bool? syntax. This has been accomplished by
adding a richer utility method for property type creation. Also, in the
Save() method, the optional field’s value is only written to the database if
it is non-null.

There also is an extra level of indenting here for the optional field’s data-
base transfer. This is accomplished using the PushIndent()/PopIndent()
template methods in the case where the extra if statement is generated.

Devika now takes a moment to compare her generated code with the
code she’d previously hand-written.

The Templatization Process 337

Generation-Specific Model Data
Apart from a few coding standards and commenting issues that she makes
a mental note to address later, Devika finds two main functional differences.

• In the hand-written code, the second custom field, Clinical-
SignoffReceived, is not a parameter to the constructor. Its initial
value is always false because sign-off is never received until an
issue has been in existence for some time.

• The first custom field, ClinicalSignoffRequired is initialized to the
database in the Save() method even if its value is false, which the
database would return as a default in any case. This is creating an
unnecessary round-trip to the database in many cases.

Devika decides that the second issue can wait until they have some
performance data from the application, because she doesn’t want to opti-
mize prematurely. However, she knows that the first problem is more seri-
ous, because it could lead to bugs where developers construct an issue that
is instantly signed off and thus misses out an important stage in the client’s
workflow. She goes to talk to her architect, Archie, and together they
realize that they need to add some code generation-specific data to the
IssueProject model to denote whether custom fields should be initialized
in constructors. Archie and Devika are discovering a common pattern here.
When you want to generate real artifacts that are complete and don’t
require amending by humans to be put into production, you often need
to add rather detailed model information that is specific to your code
generation scenario. In this case, Archie and Devika agree to just add an
IsConstructorParameter to the IssueField domain class.

Chapter 8: Generating Artifacts338

TIP Consider separating domain data from artifact
generation data

There’s a balance to be struck here. If too much code generation-
specific information is visible front and center in the model, it can
make it harder for domain experts to digest and work with models.
At the opposite extreme, a specific, separate code generation model

Now that Devika has more data to work with, she amends the con-
structor generation part of her template:

public <#= project.Name #>Issue (int id,
int projectId,
string title,
int categoryId,
int milestoneId,
int priorityId,
int statusId,
int assignedId,
int ownerId,
string creatorUsername<#

// Add extra parameters
foreach (IssueField customField in project.CustomFields)
{
if (customField.IsConstructorParameter)
{

#>,
<#= FieldTypeToType(customField.Type) #>
<#= customField.Name.ToLower() #><#

}
}

#>
)

: base(id, projectId, title, categoryId, milestoneId,
priorityId, statusId, assignedId,
ownerId, creatorUsername)

{
<#
// Populate member fields
foreach (IssueField customField in project.CustomFields)
{
if (customField.IsConstructorParameter)
{

#>
_<#= customField.Name.ToLower() #> =
<#= customField.Name.ToLower() #>;

<#
}

The Templatization Process 339

can be created that merely references the “pure” domain model. In the
typical case where only one set of artifacts is being generated from a
model, we’ve found that a separate model is overkill, although we
have sometimes moved code generation data into child domain classes
of the ones that hold the “pure” domain model.

else // Is not a constructor parameter, use the default.
{

#>
_<#= customField.Name.ToLower() #> =
<#= customField.InitialValue #>;

<#
}

}
#>
}

Devika flips the IsConstructorParameter property of the Clinical-
SignoffReceived IssueField in her Health model, regenerates the template
output, and gets code that is functionally identical to her hand-written
code.

You can see that Devika’s process of iterating on the template is enabling
her to gradually move from a minimal generation experience to a richer,
more mature one. In practice, such iterations may also be staged across
releases into production of a DSL, gradually adding further parameteriza-
tion to make using the model more valuable and requiring less extra code
to be hand-written.

Starting to Build a Library
To start testing her template code more thoroughly, Devika runs it against
a whole batch of IssueProject model files that she and Archie have been
working on. She notices that she’s copying and changing her template
every time she uses a different model file, which doesn’t seem right to her.
She has a look at some of the DSL Tools’ standard templates and sees that
they typically use just a short template that simply specifies the model file
to be loaded and then use an include directive to pull in the standard part
of the template. She reworks her template into two files and checks the stan-
dard part into the IssueProject Visual Studio project. Here’s what her
header template now looks like:

<#@ issueProjectModel processor="IssueProjectsDirectiveProcessor"
requires="fileName='HealthProject.issueProj'"
provides="IssueProjectModel=IssueProjectModel" #>

<#@ include file="GenCustomIssue.tt" #>

The include directive simply inserts the contents of another template file
at the point where it is located in the file. Devika’s included template,

Chapter 8: Generating Artifacts340

“GenCustomIssue.tt,” is simply a copy of her previous template with the
issueProjectModeldirective removed—everything else is standard, regard-
less of the model used. It does occur to Devika that if she needs to reuse her
FieldTypeToType() method from another template that also deals with
custom fields, then she could split the class feature block it lives in into its
own include file and gradually start to build up a library of useful functions.
All in all, Devika feels she’s done a good day’s work.

In this section, we’ve seen Devika starting from an existing artifact,
adding some parameterization, and getting a working template. She then
added more control structures to the IssueProject DSL definition and data
to drive those structures in order to get a more refined artifact that more
closely matched her needs. She ended up generating code that was every
bit as clean and usable as hand-written code. Finally, she turned her code
into a reusable library piece that could be included in any Visual Studio
project using the IssueProject DSL.

Syntax of a Text Template

In the previous example, we watched Devika use several of the features of
the text templating system; let’s look at the whole feature set a bit more
closely.

Directives
Directives have the following syntax:

<#@ directiveName parameter="Value" parameter2="Value2" #>

Directives provide instructions to the templating engine and come in two
flavors, built-in and custom. The built-in directive types are described next.

Template Directive

<#@ template inherits="MyNamespace.MyBaseClass" language="C#"
culture="en-US" debug="false" hostspecific="false" #>

The template directive specifies general transformation options for this text
template.

Syntax of a Text Template 341

The inherits parameter specifies the base class to use for the class
representing the template. The default is Microsoft.VisualStudio.Text
Templating.TextTransformation. A custom base class Microsoft.Visual-
Studio.TextTemplating.VSHost.ModelingTextTransformation is provided
with the DSL Tools that works together with custom directives to make it
easy to read in and process model files. Custom base classes must them-
selves ultimately be derived from Microsoft.VisualStudio.TextTemplating.
TextTransformation.

The language parameter specifies which programming language is used
in code inside control blocks. The supported languages are "VB" and "C#",
where "VB" denotes Visual Basic.NET. The default is "C#". It’s important to
note that the language used in control blocks has no impact whatsoever on
the language of any code generated by the template. Visual Basic control
code can be used to generate C# (or indeed any) output and vice versa.

The culture parameter specifies which .NET culture is used to format
the values evaluated from expression control blocks. The standard .NET
“xx-XX” specifier must be used, for example, “en-GB” for British English.

The debug parameter allows text templates to be debugged while under
development. Under the covers, the code within the control blocks is con-
solidated into a class that is compiled and executed. The debug parameter
places the generated code in a file on disk rather than working wholly in
memory. We’ll see more of the execution architecture of the text templating
engine later on.

Chapter 8: Generating Artifacts342

TIP Debug code can fill up your temp directory

This debug code can be found in the logged-in user’s temporary direc-
tory and will not be deleted by the text templating system. When the
debug flag is used repeatedly on a large set of templates, the temp
directory can quickly fill up with these files; this can slow down some
operations in Windows.

Tip: Debug code can fill up your temp directoryThe hostspecific parameter causes the template to have a Host prop-
erty added to it that can be accessed from template control code. This Host
property is a reference back to the application hosting the text transformation

engine and is used in specialist scenarios where the engine itself is being
reused. We’ll look at the architecture of the text transformation system at
the end of the chapter. In typical uses of the DSL Tools, this parameter
would never be set to true.

Output Directive

<#@ output extension=".cs" encoding="utf-8"#>

The output directive specifies the style of output of the template. Both the
file extension (including its “.” prefix) and the character encoding of the
output file can be specified. Specifying the character encoding in the output
directive will guarantee the encoding of the output over and above any
other factors that might otherwise influence it, such as the encoding of
processed model files. The default encoding is UTF-16.

Assembly Directive

<#@ assembly name="System.Drawing.dll" #>

The assembly directive allows control code in a template to use classes from
another assembly. It is the direct equivalent of adding a reference to an
assembly to a Visual Studio project. For example, if you wanted to construct
a bitmap on the fly and then emit a base 64 encoded representation of that
bitmap into a resource file, then you’d need to add an assembly reference to
System.Drawing. The assemblies System.dll and mscorlib.dll are implicitly
included by the engine and never need to be specified.

Import Directive

<#@ import namespace="System.Collections.Generic" #>

The import directive allows control code in a template to reference
types without fully qualifying their names. It is the direct equivalent of a
using statement in C# or an import statement in Visual Basic. This
shouldn’t be confused with simply adding using statements to the boiler-
plate of the template if you happen to be generating C# code, as in our
example.

Syntax of a Text Template 343

Include Directive

<#@ include file="FileToInclude.tt" #>

The includedirective allows a text template to be broken down into multiple
files. The content of the included file is inserted into the template exactly at
the same point in the template file where the directive is itself located. The
search path for include files starts next to the top-level template that is being
transformed. From then on, the path depends on the file extension of the
template. The registry key HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\

VisualStudio\8.0\TextTemplating\IncludeFolders\ <FileExtension> con-
tains a list of text values named Include0 to Include<N> that specify the paths
to search when templates are run inside Visual Studio.

Custom Directives
Custom directives are the route for DSL authors to add their own code into the
text templating process. They typically add .NET members to the template,
often to enable the template code to access external data such as model files.
In the DSL Tools, custom directives are usually associated with a particular
DSL designer. Their supporting code is called a directive processor, which
is created as part of the DSL solution. Directive processors are small code
plug-ins that specify a named set of directives that they handle and the param-
eters that they can process. Here’s an example of a custom directive:

<#@ issueProjectModel processor="IssueProjectsDirectiveProcessor"
requires="fileName='HealthProject.issueProj'"
provides=IssueProjectModel=IssueProjectModel" #>

This custom directive causes the template to load the “HealthProject.
issueProj” model file and emits a .NET property into the template called
IssueProjectModel that references the root of that model file in memory.

This directive uses a special pattern of syntax called the Requires/Provides
pattern. It’s a rather clumsy syntax, but it allows a lot of richness to be
packed into a single line directive. Let’s examine this directive piece by
piece.

<#@ issueProjectModel processor="IssueProjectsDirectiveProcessor"

Chapter 8: Generating Artifacts344

The text templating engine finds a directive processor as specified by the
processor argument and enquires if it supports the named directive. Direc-
tive processors are free to support as many named directives as they
choose, and directive names only have to be unique within a particular
directive processor. Directive processors are registered with Visual Studio
using the registry, and we’ll see more of them later in the chapter.

requires="fileName='HealthProject.issueProjects'"

The requires parameter specifies a list of named sub-parameters that this
processor requires to complete its processing, and optionally, their values.
The list is semicolon-separated within the double-quotation marks of the
whole requires parameter, and sub-parameter values are enclosed by
single quotation marks. Here’s a more complex example:

requires="subParam1;subParam2='Value2';subparam3='Value3'"

If, as in the first sub-parameter of this second example, the value of the
parameter is not specified, then Visual Studio (or whatever process is host-
ing the text templating engine) is asked to try to find an appropriate value
for the parameter for this specific instance of the directive. Unfortunately,
Visual Studio does not currently have a general mechanism for supplying
such values, so this facility is of very limited use.

provides="IssueProjectModel=IssueProjectModel"

The provides parameter specifies a list of named sub-parameters that the
directive processor will emit as named elements into the template for use
by control code. Once again, this is a semicolon-delimited list, but in this
case the values of the sub-parameters are not enclosed in single quotes. The
sub-parameter names specify default names for elements emitted
into the template by the directive processor, and their optional values
specify that the template author would like to substitute a different name
instead of that default. In fact, the entire provides parameter is entirely
optional, because defaults will be used if it is not supplied. However,
it is often included in templates purely as documentation to readers
of templates about the elements they can expect to find added to the
template. In this example, a .NET property named IssueProjectModel is

Syntax of a Text Template 345

being added to the template. If, instead, the provides parameter had been
specified as

provides="IssueProjectModel=Model"

then a property named Model would have been added to the template.
This facility is key in allowing multiple directive processors to be used in

the same template that would otherwise cause a clash. This allows templates
to be written that combine multiple model files or compare model files to
give a representation of difference. Here’s an example of this in practice:

<#@ issueProjectModel processor="IssueProjectsDirectiveProcessor"
requires="fileName='HealthProject.issueProjects'"
provides="IssueProjectModel=Model" #>

<#@ issueProjectModel processor="IssueProjectsDirectiveProcessor"
requires="fileName='HealthSubProject.issueProjects'"
provides="IssueProjectModel=SubModel" #>

These two directives will cause the template to have both a Model and a
SubModel property, allowing data from the two to be combined in the tem-
plate output.

Control Block Types
Apart from directives and boilerplate text that is copied directly to the tem-
plate output, the remainder of template files consists of control blocks. We
saw all three types of control blocks used in our scenario with Devika, but
it’s worth pointing out a few extra details.

As a reminder, the three types of control blocks are discussed below.

Standard Control Block

<# ... #>

A standard control block introduces control statements into a template. All
of the code inside all of the control blocks in a single template (including the
code added to the template with any include directives used) forms
the content of a single method added to the template. This means that
any variables declared inside standard control blocks must be uniquely
named across the entire template. If you’re building up a library of template
fragments to be included in other templates, this can lead to surprising

Chapter 8: Generating Artifacts346

errors. One technique that can be used to combat this in library templates is
to catenate a standard string (perhaps the name of the template include
file) to all variable declarations within each template file to avoid clashes.
However, the best way to avoid such clashes is to put most repetitive code
either inside class feature control blocks or to create your own template
base class derived from ModelingTextTransformation to contain this code.

As well as properties and other members added by custom directive
processors, the template has a small set of utility methods provided on its
base class, TextTransformation, which can be used in control blocks.

Write() and WriteLine()methods are provided to allow code to be emit-
ted directly to the template output. There are variants of both these methods
taking a simple string and a standard .NET format string and params
argument array pair. Generally, use of these methods is a poor substitute for
using boilerplate text in a template and hinders readability. However, if the
template’s control logic is dense with a very small piece of text output needed
in the middle of it, then a judicious call to WriteLine() can avoid the visual
clutter of toggling in and out of a control block. These methods are also useful
for porting across code from legacy code generators.

Error() and Warning() methods are provided so that control logic can
flag errors to the template user. There’s a set of indentation management
methods which we’ll discuss shortly and finally, the GenerationEnvironment-
StringBuilder property allows direct access to the intermediate value of
the template output as it is being built.

A key point to note is that the DSL Tools also provide a more specific
derived template base class, ModelingTextTransformation, which provides
a Store property. This allows access to a single shared modeling store that all
model files used within a template are loaded into. Templates that wish to
manipulate the models they load, for example, to merge two model files, can
start a transaction against this store in the normal way without fear of impac-
ting the models on disk or any models that are currently open in designers.

Class Feature Control Block

<#+ ... #>

A class feature control block adds methods, properties, fields, or nested
classes to the template. This is the best way to add reusable pieces of

Syntax of a Text Template 347

template, because they can be embedded within parameterized methods
and thus any local variables they declare won’t clash with other templates;
however, it is still advisable to use very explicit method names to avoid
clashes. Class feature control blocks must be placed at the end of each
template file, and after the first such block is introduced, no further
standard control blocks may be used. This restriction allows boilerplate text
to be embedded within a method in a class feature block unambiguously,
like this:

<#+
public void GenerateEmptyClass(string name)
{
#>
public partial class <#= name #>
{
// Some class content
}
<#+
}
#>

This code allows you to call GenerateEmptyClass from any other control block
anytime you want to generate a class. However, the class, as specified, will
always be emitted with the same level of indentation in the generated code.
If you’re trying to generate an embedded class, for example, this may not be
what you want. We’ve found that a best practice is to format generated code
exactly as you would format hand-written code, wherever that is possible,
because it greatly aids debugging. To help with that, the TextTransformation
class provides three methods and a property to manage indentation.

public void PushIndent(string indent);
public string PopIndent();
public void ClearIndent();
public string CurrentIndent { get; }

The class manages a string buffer that every output line is prefixed with.
This buffer is managed as a stack, so, for example, successive calls to

PushIndent("\t");

will gradually indent lines further and further to the right using a tab
character with PopIndent() doing the opposite.

Chapter 8: Generating Artifacts348

Expression Control Block

<#= ... #>

An expression control block simply evaluates the expression it contains and
then calls the standard .NET method ToString() on the result. If the type of
the result supports a ToString() overload that takes an IFormatProvider
interface, then that version is used, supplying the culture of the template
as an argument; if not, the vanilla version is used. An instance-based
method is used to make this decision, meaning that expression control
blocks can’t be used inside static methods declared in a class feature
block. Hence it is a good idea to only use instance methods in class feature
blocks.

Problems of Large-Scale, Real-World Artifact Generation

Generation from large models using large and complex sets of templates
brings with it complexities that need to be managed.

The options available to the DSL author for controlling this complexity
depend on what facilities are available in the artifact’s native format for
division across multiple files. In the case of C#, the partial keyword can be
used to great effect. If such a solution is available, then to avoid creating
huge output files, it is usually advisable to run multiple smaller templates
against the same model file. A suitable scheme for dividing up these tem-
plates must then be found. For example, the DSL Tools themselves use
many templates to generate a large number of files. Its templates are
divided up functionally, with design surface code separate from domain
model code and the latter separate from IDE integration code.

Large models also typically have complex domain models underlying
them. These domain models will typically be optimized either for ease
of understanding in the model explorer of their designer or for ease of
mapping to their visual representation. Neither of these schemes may be
ideal for artifact generation. One slight disadvantage of the template
scheme is that it is inherently linear in nature. If the model structure is
mismatched with the internal structure of artifacts that must be generated,
then the control blocks and expression blocks in templates can very often

Problems of Large-Scale, Real-World Artifact Generation 349

be filled with complex expressions to retrieve the data required from
the model.

Chapter 8: Generating Artifacts350

TIP Create a data structure optimized for code generation at
the beginning of a template

We’ve found that the best mitigation for this problem is to take the
trouble to produce a reorganized data structure at the top of a template.
This new data structure uses standard .NET collections and structures,
and consolidates the job of gathering together and aggregating dis-
persed data from across the model in a manner optimized for the job of
traversing it to produce template output.

Very often this data structure can itself be reused across a range of similar
templates. This produces a template organized into a data-gathering
phase and an output phase that is then relatively simple because it
traverses the pre-prepared data structures with simple expressions.

When output formats for artifacts do not natively support being con-
structed from multiple files, a two-stage approach can provide another
solution. Let’s take the example of the web.config file for our Issue Tracker
system. web.config files are simple XML files and don’t support any stan-
dard mechanism for inclusion. However, we can create a master text tem-
plate that stitches together the output of several other templates to produce
a consolidated file. Here’s an example of such a master template:

<#@ output extension=".config" #>
<configuration>
<#@include file="AppSettings.config" #>
<#@include file="System.Web.Config" #>
<#@include file="Locations.config" #>
</configuration>

Any of the three included component .config files could be either the
generated output of another template or a simple text file. In the case of a
simple text file, that part of the file is then free to be manually edited, thus
combining manual editing with code generation in the same output file.
One further problem remains, however, with this approach—the template
transformations must be executed in the correct order to produce the
correct output. The DSL Tools V1 do not have a pre-canned solution to this

problem, providing only the “Transform All Templates” button inside
Visual Studio. When there are only a few files involved that are not often
changed, the manual approach of running the templates in the correct order
may suffice, but when the problem grows and this becomes unmanageable,
a custom solution must be developed. A custom command can be devel-
oped as part of a DSL designer that invokes the text templating engine in
the correct sequence; we’ll see how to do this shortly.

The master template approach just outlined brings many further file
types into the realm of the generable, but it is not suitable for all file types.
Where a file is a complex and perhaps unpredictable mixture of manually
editable sections and sections that it would be desirable to code generate,
then the current version of the text templating engine does not have a clear
answer. In those cases, there may be no alternative but building a full parser
for the artifact and coupling that to your designer using the Visual Studio
SDK in order to be able to watch changes to the artifact and merge gener-
ated sections and hand-edited ones. This is not a trivial undertaking, and
it may be that using generated code only as a one-shot starting point for
manual editing of this kind of file is the best that can be achieved with a
practical amount of investment for most projects.

Advanced Customizations

If you find you need to tailor the artifact generation system to your exact
needs, there are a variety of customization points available:

• The text templating system can be embedded into other tools
outside of Visual Studio that you ship with your DSL using a
mechanism called custom hosting.

• Custom data can be imported into a text template for processing
using a custom directive processor.

• The text templating system can easily be invoked inside Visual
Studio to build a custom orchestration system.

We’ll look at these three extensibility points in turn but first, in order to
understand how they fit into the bigger picture, let’s take a tour through the
implementation architecture of the text templating system.

Advanced Customizations 351

Text Templating Architecture
The text templating engine (Microsoft.VisualStudio.TextTemplating.
dll) is the heart of the text templating system. It is in charge of processing
the contents of a text template and producing appropriate output. The
engine is designed to be a passive component existing within a host envi-
ronment; the host must provide it with the template text and do something
with the output that the engine produces. Any other information the engine
needs, such as how to find any files that get included into a template, must
also be provided to it by the host. This information is provided by way of
a callback mechanism implemented by the host, which we’ll see described
in detail when we look at custom hosting.

Chapter 8: Generating Artifacts352

Figure 8-3: The implementation architecture of the text templating system

Host

Engine

<#@ template base=ModelingTextTransformation#>

<#@ itemDirective requires=“file=‘foo.model’”

provides=“model”#>

List of items:

<#foreach(Item item in model.Items)

{ #>

Name: <#=item.Name#>

<# } #>

class Transformation :
ModelingTextTransformation
{
private Model model;
public void Initialize()
 {
model =LoadModel(“ foo.model”);
 }
public string TransformText()
 {
template.Write(“List of items:”);
foreach(Item item in model.Items)
 {
template.Write(“Name:”);
template.Write(item.Name);
 }
 }
}

List of items:

Name: ItemOne

Name: ItemTwo

Name: ItemThree

AppDomain
t = new Transformation();

t.Initialize();
t.TransformText();

Item
Directive

Processor
foo.model

A typical text template execution sequence can be seen in Figure 8-3 and
looks like this:

• The host reads in a template file from disk.

• The host instantiates a template engine.

• The host passes the template text to the engine along with a callback
pointer to itself.

• The engine parses the template, finding standard and custom
directives and control blocks. In this case, the template directive speci-
fies a base class and there is a single custom directive, itemDirective.

• The engine asks the host to load the directive processors for any
custom directives it has found. In this case, the Item Directive
Processor is loaded.

• The engine produces in memory the code for the skeleton of a
Transformation class, derived ultimately from TextTransformation.
This template has specified the derived ModelingTextTransformation.

• The engine gives directive processors a chance to contribute code to
the Transformation class for both class members and to run in the
body of the Initialize() method. The item directive processor has
added a single member, model, to store some root MEL of type
Model. It has also added code in the Initialize() method to set up
that member variable using the LoadModel() method. Note that the
filename is hard-coded as a literal in the contributed code because it
comes from the item directive’s requires parameter.

• The engine adds the content of class feature blocks as members to the
Transformation class, thus appearing to allow methods and properties
to be “added to the template.” There are none specified in this template.

• The engine adds boilerplate inside Write statements and the
contents of other standard control blocks to the TransformText()
method. This template has a simple for loop controlling how often
the “Name: ” boilerplate is written.

• The engine compiles the Transformation class into a temporary
.NET assembly.

• The engine asks the host to provide an AppDomain in which to run
the compiled code.

• The engine instantiates the Transformation class in the new
AppDomain and calls the Initialize() and TransformText()
methods on it via .NET remoting.3

Advanced Customizations 353

3. An Application Domain is an isolated and unloadable environment in which an
assembly can be executed. .NET remoting is a mechanism for invoking methods across
AppDomain or machine boundaries.

• The Initialize() method uses code contributed by directive
processors to load data specified by the custom directives into the
new AppDomain. In this case, the LoadModel() method loads
“foo.model” into a store and returns the root element to populate
the model member.

• The TransformText() method writes boilerplate text to its output
string, interspersed with control code from regular control blocks
and the values of expression control blocks. Here the “List of items”
header is first written out, followed by the foreach statement from
the control block. The loop contains the “Name: ” boilerplate
followed by the value obtained by evaluating the expression block
item.Name.

• The output string is returned via the engine to the host, which
commits the generated output to disk.

Now we’ll look at how this overall architecture impacts three kinds of
customization.

Custom Hosting
The text templating engine is deliberately designed to be hosted in a variety
of processes. Clearly, Visual Studio is its natural home, but it takes no
dependencies on Visual Studio or indeed the modeling components of the
DSL Tools. It achieves this by having no understanding of its outside
environment, instead relying on its host to provide it with all of the infor-
mation it needs to do its job. This allows it to be integrated into other tools
in a tool chain that works with your DSL designer, for example, an
advanced UI application for configuring how templates are applied to
models in a large-scale development scenario. This technique is called
custom hosting.

As well as the host that is integrated into Visual Studio, the DSL Tools
supply one custom host out of the box, the command-line text templating
tool TextTransform.exe, which can be found in the directory <%Program-

Files%>\Common Files\Microsoft Shared\TextTemplating\1.1. This
tool allows text template transformation to be easily incorporated into
automated scripts and processes such as software build systems. It has
options for specifying all of the important configuration information

Chapter 8: Generating Artifacts354

needed to successfully run a text template, such as paths to find included
sub-templates, referenced assemblies, and directive processors.

Advanced Customizations 355

TIP Use DslTextTransform for transforming .dsl models

Because the set of parameters to TextTransform.exe can be somewhat
intimidating, the DSL Tools provide a small wrapper script, DslText-
Transform.cmd, to set them up for you. It’s also a good idea to provide
a similar script for use with your own DSLs. You can find DslText-
Transform.cmd in the <%Program Files%>\Visual Studio 2005 SDK\
2006.09\VisualStudioIntegration\Tools\Bin directory.

If TextTransform.exe proves insufficient, you can host the template
processor in your own application by simply instantiating the class
Microsoft.VisualStudio.TextTemplating.Engine and calling its single
method:

public string ProcessTemplate(string content,
ITextTemplatingEngineHost host);

As you can see from this method, the template engine really has no notion
of the external environment it is living in. It simply takes a text string con-
taining the template contents and processes it to return another text string
containing the processed output. It is entirely the responsibility of the host
to decide which template files to process, from where, and what to do with
the output once received. Of course, it is not possible to process a template
without finding out interesting things about the hosting environment, for
example, where to retrieve a file that has been included with a <@# include
#> directive. The host must also provide this type of information via the
ITextTemplatingEngineHost callback interface:

public interface ITextTemplatingEngineHost
{
// Methods
object GetHostOption(string optionName);
bool LoadIncludeText(string requestFileName,

out string content,
out string location);

void LogErrors(CompilerErrorCollection errors);

AppDomain ProvideTemplatingAppDomain(string content);
string ResolveAssemblyReference(string assemblyReference);
Type ResolveDirectiveProcessor(string processorName);
string ResolveParameterValue(string directiveId,

string processorName,
string parameterName);

string ResolvePath(string path);
void SetFileExtension(string extension);
void SetOutputEncoding(Encoding encoding, bool fromOutputDirective);

// Properties
IList<string> StandardAssemblyReferences { get; }
IList<string> StandardImports { get; }
string TemplateFile { get; }

}

This interface provides included files, paths for referenced assemblies, gen-
eral paths, and the location of assemblies implementing specific directive
processors. It also allows the host to provide any arguments for directive
processors not already provided inline in the template. It also allows hints
in a template on what file extension and file encoding to use for output to
be passed out to the host and allows the host to inject standard assembly
references and import statements into the processing pipeline. It further
allows the host to provide a mechanism for the template processing engine
to log errors and warnings it encounters during its processing and to supply
values for any standard configuration options that the engine requires.

Most importantly, this interface allows the host to specify the .NET
AppDomain that should be used as the execution context for the template
transformation class.

.NET is not by nature a scripting or interpretive environment, so to
make this process work, the transformation class has to be run through the
C# or VB.NET compiler (depending on the language used in the control
code). This compilation process produces a standard .NET assembly that
must be loaded; then the transformation class can be instantiated and the
method called. The AppDomain forms the environment in which to load the
generated assembly and run the method. The text templating host that is
built into Visual Studio with the DSL Tools chooses to use a separate
AppDomain from that used by the rest of Visual Studio in order to provide a
measure of isolation of this compiled-on-the-fly code and to allow the
AppDomain to be conveniently discarded. Discarding the AppDomain is

Chapter 8: Generating Artifacts356

occasionally necessary, because .NET does not allow the unloading of
assemblies before AppDomain termination; consequently, with each new
compiled template (and thus new assembly), a small amount of system
memory is used up that cannot otherwise be recovered. Any custom text
templating host must decide on a strategy for dealing with this gradual
accumulation of memory.

The text templating engine provides a helper class AssemblyCache that
can be instantiated remotely inside any AppDomains you create to help you
monitor how many transformation assemblies are present and how old
they are.

Advanced Customizations 357

TIP Use the walkthroughs

The DSL Tools documentation has a very comprehensive walkthrough
of building your own custom host in the section entitled “Walkthrough:
Creating a Custom Text Template Host.”

Custom Directive Processor
Earlier in the chapter, we discussed how the directive processor generated
as a standard part of a DSL can be used with a custom directive in a template
to read in model files and add .NET properties to the template to access the
root of that model file, for example:

<#@ issueProjectModel processor="IssueProjectsDirectiveProcessor"
requires="fileName='HealthProject.issueProjects'"
provides="IssueProjectModel=IssueProjectModel" #>

If you need to process other kinds of data within a template, for example, to
combine model data with an XML file that you don’t have a DSL for,
you can add further custom directive processors to bring that data into
the environment of the template for processing.

As we’ve seen in the architecture section, a text template is converted
into a .NET class ultimately derived from the abstract class TextTransfor-
mation, called the transformation class. This class is compiled and run in the
host-supplied AppDomain via an override of the following methods:

public abstract void Initialize();
public abstract string TransformText();

It is this latter method that returns the string text that forms the output of
the processing engine.

Now that we know the mechanism by which templates run in the
engine, we can deal with how to load data into them. The canonical behavior
for a directive processor is to add a property to the transformation class that
transparently allows code in the template to access the data. To realize this,
directive processors are given an opportunity to inject code into the trans-
formation class. The principal task when creating a custom directive
processor is to decide what this code should be and to parameterize it
with the parameters supplied by the custom directive that invokes the
directive processor. As discussed, this code may likely be running in a clean
AppDomain and so cannot directly rely on the current in-memory data held
by the rest of Visual Studio; instead, it must be able to initialize the data
from scratch. There are a couple of strategies for achieving this.

• Inject code that contains a call to data-loading code using a
parameter such as a filename taken from the custom directive.

• Use the parameters from the custom directive to acquire the data
and then serialize it into a blob; inject code that contains the blob
and a call to deserialize it.

Either of these strategies can be augmented by various caching tech-
niques or special code to communicate between AppDomains to retrieve
data. These techniques are beyond the scope of this book, but in any case,
they can only be a backup to the fundamental requirement to be able to
load the data in a clean AppDomain.

Again, the DSL Tools documentation is helpful in this area, and the
walkthrough “Creating a Custom Directive Processor” explains in detail
the process for creating a directive processor that uses the first strategy just
mentioned to load an XML file and provide its DOM as a parameter.

It’s worth noting that if you are only concerned with running your tem-
plates inside one particular host, you can set the hostSpecific parameter
on your <#@template #> directive and acquire a reference in the template’s

Chapter 8: Generating Artifacts358

AppDomain to the instance of the host object in the original AppDomain. This
can make data acquisition a little easier. For example, a template that is
coupled to the Visual Studio host supplied with the DSL Tools can use
this mechanism to acquire the Visual Studio DTE object in the template and
thus write templates that interact with the project system and the many
other objects available via DTE. Here’s an example:

<#@ template debug="true" hostspecific="true" #>
<#@ output extension=".txt" #>
<#@ assembly name="EnvDTE" #>
<#@ import namespace="EnvDTE" #>
Get the names of the projects in the Debugging solution from Dte
<#
DTE dte = ((IServiceProvider)this.Host).GetService(typeof(DTE))

as DTE;
if (dte != null)
{
foreach (Project project in dte.Solution.Projects)
{

#>
Project: <#= project.Name #>

<#
}

}
#>

The preceding simple template produces the following output when run
in a typical DSL Tools Debugging project:

Get the names of the projects in the Debugging solution from Dte
Project: Debugging

Remember that use of this mechanism will couple your templates to a par-
ticular host and preclude their use, for example, with the command-line
TextTransform.exe tool.

Custom Orchestration
The final area of customization we’ll examine is in many ways the simplest
conceptually, but it requires quite a lot of custom code. It’s quite a common
scenario to want to invoke a text template to create a file at a different level
of granularity than that provided by the DSL Tools in Visual Studio. The
default mechanism by which text templating is invoked in the IDE is
by setting the “Custom Tool” property in the IDE on a template file to

Advanced Customizations 359

“TextTemplatingFileGenerator” as we saw Devika do earlier in the
chapter. This causes the output of the template to be added to the project
as a dependent file nested beneath the template file in a 1-1 relationship.
This is a very easy way to quickly add templates to a solution and have
issues such as source control handled automatically for the new file, but the
single template/single generated file restriction can be quite limiting. For
example, if you have a class design DSL, it would probably be a best
practice to generate one C# class file for each class defined in your model.
This can’t be achieved using the default mechanism and requires custom
code. This scenario doesn’t require a custom host, because you’d typically
run it from inside Visual Studio. You can find a complete worked example
of this approach in the project called “GenClass” in the “Chapter 8” folder
of the web code download.

In this example, we’re adding a custom menu command to generate one
class file for each class in a model, which is based on the standard class
design template supplied with the DSL Tools. You could also couple this
type of code to the save event on a DSL model using DTE’s event model.

The details of how to set up a custom command are covered in Chapter 10,
but the upshot is that when the menu item for the command is selected, a
method in the CommandSet class is called. Here’s a very basic implementation
of such a method:

internal virtual void OnMenuGenerateClasses(object sender, EventArgs e)
{
DTE dte = this.ServiceProvider.GetService(typeof(DTE)) as DTE;
if (dte == null)
{
throw new InvalidOperationException("Failed to retrieve DTE.");

}
Project project = dte.ActiveDocument.ProjectItem.ContainingProject;
if (project == null)
{
throw new InvalidOperationException("Failed to retrieve project.");

}
ITextTemplating templatingService =
this.ServiceProvider.GetService(typeof(STextTemplating))

as ITextTemplating;
if (templatingService == null)
{
throw new InvalidOperationException(

"Failed to retrieve Text Templating service.");
}

Chapter 8: Generating Artifacts360

// Retrieve the text of the template from a resource.
// The template could alternatively be loaded from disk.
string baseTemplate = VSPackage.GenIndividualClass;

if (!string.IsNullOrEmpty(baseTemplate))
{
// If the generated code directory doesn't exist then create it
string genCodeDir = Path.Combine(
Path.GetDirectoryName(project.FullName), "GeneratedCode");

if (!Directory.Exists(genCodeDir))
{
Directory.CreateDirectory(genCodeDir);

}

if (!Directory.Exists(genCodeDir))
{
throw new InvalidOperationException(

"Failed to create generated code directory.");
}

templatingService.BeginErrorSession(); // Avoid duplicate errors
if (this.CurrentDocData != null)
{
foreach (ModelClass eachClass in this.CurrentDocData.Store.

ElementDirectory.FindElements<ModelClass>())
{
// Replace the marker text in the template with the name
// of the class to generate and the model file to load
string specificTemplate = baseTemplate.Replace(

"@@CLASSNAME@@",
eachClass.Name);

specificTemplate = specificTemplate.Replace(
"@@MODELFILE@@",
dte.ActiveDocument.FullName);

string output = templatingService.ProcessTemplate(
"", specificTemplate, null, null);

string filePath = Path.Combine(genCodeDir,
eachClass.Name + ".cs");

using (StreamWriter writer = new StreamWriter(filePath))
{

writer.Write(output);
writer.Flush();

}

// If this is a new file then add it to the project
try
{

project.ProjectItems.AddFromFile(filePath);
}

Advanced Customizations 361

catch // Ignore add failures
{
}

}
}
templatingService.EndErrorSession(); // Avoid duplicate errors

}
}

First, the services necessary to run the command are set up using Visual
Studio’s standard service provider mechanism.

The built-in Visual Studio host exposes a service containing a simple
API to call the template engine on demand via the service identifier
STextTemplating. Note that the service is immediately cast to its interface
when it is returned.

public interface ITextTemplating
{
string ProcessTemplate(string inputFile,

string content,
ITextTemplatingCallback callback,
IVsHierarchy hierarchy);

void BeginErrorSession();
bool EndErrorSession();

}

The ProcessTemplate() method runs the text template provided in its con-
tent parameter and returns its output. There are three optional parameters
to this method:

• inputFile—Provide the file path of the template to allow it to be
shown in error messages generated by processing the template.

• hierarchy—Provide a Visual Studio SDK hierarchy object to cause any
referenced assemblies in the template to be resolved using the Visual
Studio project system’s standard assembly reference mechanism.

• callback—Provide this to be notified of errors and any file
extension or encoding options requested by the template.

Errors and warnings will be raised to the Visual Studio errors window
automatically. If you’re going to make multiple calls to the Process-
Template()method, you can bracket them with calls to BeginErrorSession()

Chapter 8: Generating Artifacts362

and EndErrorSession(), and any non-unique error messages will be
skipped; this is a very handy feature, because errors in repeatedly applied
templates tend to lead to a lot of confusing duplicate messages.

In this example, the text for the template is being stored in a .resx
resource file and is retrieved using Visual Studio’s strongly typed resource
wrapper mechanism. It could equally be stored on disk somewhere under
your DSL’s installation directory and loaded as required.

The template being loaded here has the following content:

<#@ template inherits="Microsoft.VisualStudio.TextTemplating.VSHost.

ModelingTextTransformation" debug="true"#>
<#@ output extension=".cs" #>
<#@ GenClass processor="GenClassDirectiveProcessor"
requires="fileName='@@MODELFILE@@';name='@@CLASSNAME@@'" #>

namespace ClassGen.Output
{
public class <#= this.ModelClass.Name #>
<#= this.ModelClass.Superclass != null ?

" : " + this.ModelClass.Superclass.Name :
"" #>

{
#region Members

<#
foreach (ModelAttribute attribute in this.ModelClass.Attributes)
{

#>
private <#= attribute.Type #> <#=attribute.Name #>;

<#
}

#>
#endregion

#region Operations
<#
foreach (ClassOperation operation in this.ModelClass.Operations)
{

#>
public void <#=operation.Name #> (<#= operation.Signature #>)
{
}

<#
}

#>
#endregion

}
}

Advanced Customizations 363

This is a fairly standard text template that simply writes out a basic skeleton
for a C# class making the assumption that it has the reference to the class
as a member of the template in its ModelClass property. The item to note is
the GenClass custom directive, which has two requires parameters with
odd-looking tokens supplied as values.

Going back to the command code, the next actions are to create a directory
to generate code into, start an error session to avoid duplicate errors, and
loop over each ModelClass found in the model of the current document.

Having got an individual ModelClass, the code then replaces the tokens
in a copy of the template text with the filename of the current document
and the name of the ModelClass. The templating service is then called to
process this individualized template, and the output is written to an appro-
priate file. Finally, the file is added to the Visual Studio project; in a more
complete implementation, the DTE API should be used to ensure that
source code control is integrated into this scenario, checking out the file if
necessary before generation.

The trick of doing a token replacement on the template text has pro-
vided an individual directive specifying a ModelClass by name for each
call to the templating service, but one final piece is still needed to connect
that up to the ModelClass property on the template.

To achieve this, the custom directive processor in the solution is
amended to take an extra requires parameter, “name” and to provide the
ModelClass property. The implementation for the extra code contributed by
this directive processor simply searches the loaded model for a ModelClass
instance whose Name domain property matches the passed-in name param-
eter and sets the backing store for the property accordingly. Here’s the code
that declares the property and its backing store:

protected override void GenerateTransformCode(
string directiveName,
StringBuilder codeBuffer,
CodeDomProvider languageProvider,
IDictionary<string, string> requiresArguments,
IDictionary<string, string> providesArguments)

{
base.GenerateTransformCode(directiveName,

codeBuffer,
languageProvider,
requiresArguments,
providesArguments);

Chapter 8: Generating Artifacts364

// TODO: This would be better done using CodeDOM in a production
// designer in order to support Visual Basic.

// Add ModelClass property's backing store
codeBuffer.AppendLine("private ModelClass _" +

providesArguments["ModelClass"] + ";");

// Add ModelClass property
codeBuffer.AppendLine("public ModelClass " +

providesArguments["ModelClass"] + "{ get { return _" +
providesArguments["ModelClass"] + " ; } }");

}

Although this isn’t the easiest code to read, you can see that the provides-
Arguments dictionary is being used to specify the name of both the property
and its backing store. This allows the directive to be used more than once in
a single template without name clashes.

Finally, here’s the code that initializes the backing store:

protected override void GeneratePostInitializationCode(
string directiveName,
StringBuilder codeBuffer,
CodeDomProvider languageProvider,
IDictionary<string, string> requiresArguments,
IDictionary<string, string> providesArguments)

{
base.GeneratePostInitializationCode(directiveName,

codeBuffer,
languageProvider,
requiresArguments,
providesArguments);

// Initialize the ModelClass property
codeBuffer.AppendLine(@"foreach (ModelClass eachClass in

this.Store.ElementDirectory.FindElements<ModelClass>())");
codeBuffer.AppendLine(@"{");
codeBuffer.AppendLine(@" if (StringComparer.Ordinal.

Compare(eachClass.Name,
""" + requiresArguments["name"] + @""") == 0)");

codeBuffer.AppendLine(@" {");
codeBuffer.AppendLine(@" this._" +

providesArguments["ModelClass"] +
" = eachClass;");

codeBuffer.AppendLine(@" break;");
codeBuffer.AppendLine(@" }");
codeBuffer.AppendLine(@"}");

}

Advanced Customizations 365

This code is placed in an override of GeneratePostInitializationCode(),
because by this time the store will have been initialized and the model file
loaded by the base class.

The requiresArguments dictionary is used to acquire the name parame-
ter that was replaced in the template with the name of the current class
being processed. All of the instances of ModelClass in the store are
then searched to find one element matching this name, and the field is
initialized.

Chapter 8: Generating Artifacts366

TIP Use the CodeDOM to emit code in custom directive
processors

It’s interesting to note that we’re using one of our other styles of code
generation here inside the directive processor customization, namely,
simply writing out code as strings using AppendLine() methods. In
this case, (which is slightly mind-boggling because it is a piece of code
generation used inside the infrastructure of a larger piece of code gen-
eration!), the CodeDOM would actually be the best approach, because
the amount of code needed is quite small and there is a strong require-
ment to support C# and Visual Basic so that this processor can be used
with templates that use either as their control language.

This example adds the useful facility of writing out one file per class in
the model, but it’s also easy to see how this technique could be expanded to
support generation of files that have dependencies in their generation
order—or perhaps to support scenarios where text templates are constructed
on the fly from a selection of common template fragments.

SUMMARY

In this chapter, we saw that textual artifact generation is a key task required
in domain-specific development.

We then reviewed approaches to artifact generation—at the level of the
relationship between the model and the artifacts as well as at the level of the
mechanics of performing the transformation.

We then looked at DSL Tools V1’s template-based, forward-only
approach to generation and worked through an example of the incremental
templatization process that it enables.

Next, we reviewed the text templating constructs and syntax in detail,
looking particularly at the importance of directives and the types of control
block.

We reviewed some of the issues raised by working with large models,
large sets of templates, and diverse artifact output types.

Finally, we investigated three areas of code customization for the text
templating system: custom hosting, custom directive processors, and orch-
estration, using the simple Visual Studio hosted API to the text templating
system.ntain the value NULL as well as -32768 to 32767.

Summary 367

This page intentionally left blank

9
Deploying a DSL

Introduction

So far, using a DSL has meant launching the generated designer as part of
a debugging session in the experimental version of Visual Studio. This is
suitable for the DSL author while building the designer, but is not an appro-
priate experience for users of the designer. Users will expect to launch the
designer from within Visual Studio just like the XML or C# editor or the
WinForms designer, after going through a familiar installation process. To
enable that, DSL authors need to be able to build a Windows installer pack-
age (.msi file) for their designer. The DSL Tools make this really easy by
providing a DSL Setup project template, which is used to create a setup
project in the DSL authoring solution. Building the setup project produces
the .msi and associated files. This chapter describes this process in greater
detail, and explains how you can customize the setup project to include
additional components, such as DLLs, that your designer may depend on.
In particular, it covers

• A description of files needed to install a designer

• A description of how to create a setup project

• An explanation of the contents of the setup project

• A description of the process for refreshing the installation files when
changes have been made to the designer

369

• The difference between deploying a designer with and without a
package load key

• A description of the format of the .dslsetup file, and an explanation
of how to customize the installation files that get generated by
changing this file

Files Needed to Install a Designer

Formally, a designer built using the DSL Tools is a Visual Studio Package.
Installing a Visual Studio Package is nontrivial; files have to be placed in
various locations, and Windows registry settings must be updated.

Chapter 9: Deploying a DSL370

Windows Registry

The Windows registry is the place where some applications, including

Visual Studio, store any configuration settings they may need; settings can

be per user or per machine. The contents of the registry, which is essen-

tially a tree of keyed values, can be browsed by invoking the regedit.exe

command from Start >Run. This brings up the registry editor, which is illus-

trated in Figure 9-1.

Figure 9-1: The Windows registry editor

Care should be taken not to change the settings, because doing so could

cause applications or Windows itself to stop working or behave erratically.

The location of all these files and the registry settings made must be
remembered so that when the application is uninstalled, the state of the sys-
tem can be reset. So building an installer is not a simple affair. Many organ-
izations make do with hacked-together scripts that do not work with every
machine configuration and that do not work with corporate systems for
deploying purchased package software. This leads to brittleness in the
installation process and incurs cost in setting up an additional, often man-
ual and inferior, one-off deployment process.

Producing a robust installer is typically the preserve of companies that
produce packaged software, where the return justifies the investment. The
same used to be said for building graphical designers, but the DSL Tools
reduce the cost to the point where producing a domain-specific graphical
designer for internal use becomes a viable option for an organization. So it
would be disappointing if this saving was compromised by not making it
just as easy to produce a robust installer for DSL designers.

A common and safe way to install a Windows application is via a
Windows installer package that is realized as a .msi file. A.msi file contains
all the components and registry settings for installing a piece of software.
Often it is accompanied by a few other files external to it, and which it may
reference, such as a Readme file; but that is an option, not a necessity. When
a .msi file is launched, the built-in Windows installer infrastructure takes
over, processing the file and overseeing the installation process. The
Windows Installer takes care of adding entries to the Add/Remove Pro-
grams dialog in the control panel, and for keeping a record of all changes
that were made to the system during installation, so that the system can be
put back to its original state when the software is uninstalled. If multiple
.msi files are to be installed in a single step, then a setup.exe file is also pro-
vided to launch all the .msi’s in the correct order.

Files Needed to Install a Designer 371

Windows Installer XML (WiX)

Some progress has been made to make it easier to create .msi files. In par-

ticular, WiX (Windows Installer XML) is an open source set of tools for building

Windows installation packages. With WiX, you write an XML script declaring

all the components that need to be included in the .msi, and providing

configuration settings for the installation wizard that appears when you run

a .msi. The WiX tools then compile this script into a .msi file. More information

on WiX can be found at http://wix.sf.net.

Chapter 9: Deploying a DSL372

To install a designer built using the DSL Tools, you need the following files:

• A .msi file for installing the designer itself

• A .msi file that installs the DSL Tools Redistributable, which contains a
set of binaries which all designers are dependent upon

• A setup.exe file, which chains the installation of the DSL Tools
Redistributable and the designer .msi files, installing the former
only if it hasn’t already been installed

• Additional files, such as a Readme and license agreement, at the
designer author’s discretion

Of these, only the DSL Tools Redistributable .msi is independent of the
designer being installed, although the setup.exe file can be made independ-
ent by using a configuration file that identifies the .msi for the designer to be
installed. Using WiX (see sidebar) would certainly simplify the job of creat-
ing the first .msifile, but that still requires in-depth knowledge of the domain
of Windows installation, because it needs to be flexible enough to produce an
installation package for any piece of Windows software. The requirements for
the DSL Tools are far more focused: Create Windows installation packages for
the installation of designers and associated components, such as the text tem-
plates introduced in Chapter 8. These requirements can be met by a simpler,
more specific language than WiX, whose focus is the domain of installing
designers and associated components in Visual Studio. The DSLTools Installer
Definition language, realized as .dslsetup files, is such a language. About 30
lines of XML are required to specify the information required to install a
designer, and from this about 800 lines of WiX are generated. The WiX tools
are then used to generate the Windows installer package. But it doesn’t stop
there. The DSL Tools also provide the DSL Setup Visual Studio project tem-
plate, which adds a setup project to the DSL authoring solution. When created
using this template, the setup project is configured with an initial complete

http://wix.sf.net

version of the installer definition specific to the DSL being authored, the WiX
generation templates, and build rules to process the generated WiX files to
create the Windows installer package.

The remainder of this chapter describes the use of the DSL Setup project
and the DSL Tools Installer Definition language.

Getting Started—Creating a Setup Project

To recap, a DSL author works in a Visual Studio solution, which has two
projects: the DslPackage project and the Dsl project. When F5 is pressed, the
projects are built and a debugging session is launched in which the gener-
ated designer can be exercised in an instance of the experimental version
of Visual Studio. In order to generate the installation files for deploying the
designer, it is necessary to create a third project. This is created using
the Domain-Specific Language Setup Visual Studio project template. Select
the solution node in the solution explorer and select “Add New Project”
from the context menu. Choose the “Domain-Specific Language Setup”
template, which can be found under the “Extensibility” category, and give
the project a name, as illustrated in Figure 9-2.

Getting Started—Creating a Setup Project 373

Figure 9-2: Selecting the Domain-Specific Language Setup project template

Chapter 9: Deploying a DSL374

Building this solution results in a set of installation files being generated
in the bin directory, as illustrated in Figure 9-4. The bin directory is the out-
put directory of the project (configured through the project properties), and
is where the project build action places all the files it creates.

There are two Microsoft Installer (.msi) files. The DSLToolsRedist.msi is
the DSL Tools Redistributable, which is common to all designers and con-
tains all the components required for a designer to run on a machine with
Visual Studio Standard or later installed (see, however, the section “Pack-
age Load Key”). The redistributable components include the DSL Tools’
DLLs, on which the designer depends, and the components required to exe-
cute text transformations. The DSL Tools Redistributable does not include
the components required for authoring DSLs, such as the DSL designer. The
other .msi (IssueStateModels.msi, in this case) contains all the components
of the specific designer to be installed. The setup.exe file is used to launch
the installation process on a DSL user’s machine, the settings.ini file is a
configuration file used by setup.exe, and Readme.htm is an optional
Readme file that accompanies all the other installation files.

Figure 9-3: Contents of the DSL Setup project

Click “OK,” and after a short delay a setup project will have been added
to the solution, with contents such as those illustrated in Figure 9-3.

Copying the installation files onto another machine and launching
setup.exe will cause the DSLToolsRedist to install, if it has not been
installed already. Then an installation wizard is launched for installing the
designer, as illustrated in Figure 9-5.

Getting Started—Creating a Setup Project 375

Figure 9-4: Result of building the setup project

Figure 9-5: Installation wizard

If the prerequisites for the designer installation are not met, for example,
if Visual Studio is not installed, then an error message is raised and the
designer is not installed. If this doesn’t occur, once the wizard has been
completed, the designer is installed and entries for both the DSL Tools
Redistributable and the designer appear in the “Control Panel>Add or
Remove Programs” dialog.

Setup Project Contents

The setup project contains:

• A .dslsetup file

• A set of text templates, all with extension .tt

• A settings.ini file

• A Strings.wxl file

• A folder Files, containing ancillary installation files, such as
Readme.htm and license agreement

• A folder Resources, containing resources used by the installation
wizard UI

The .dslsetup file contains information about the components to be
installed. It is specific to the installation of DSL designers; it is not a format
for creating the installation files for any Windows application. The text tem-
plates take information from this file and generate WiX files—WiX was
introduced earlier.

The information contained in the .dslsetup file generated by applica-
tion of the DSL Setup project template is specific to the DSL being authored.
This book is not the place to go into the details of project template author-
ing in Visual Studio, but at a high level the template contains custom code
that scours the solution to which it is being added to find the .dsl file in the
Dsl project and use the information contained there to prime the .dslsetup,
setup.ini, and Strings.wxl files that it generates.

When the setup project is built, the WiX files generated from the
.dslsetup file are processed by the WiX tools, which generate the .msi file
for installing the designer. This is copied to the output directory, together
with DSLToolsRedist.msi and setup.exe, both of which are copied onto

Chapter 9: Deploying a DSL376

the DSL author’s machine as part of the DSL Tools installation. The
settings.ini file is also copied to the output directory, together with any
supporting files, such as Readme.htm, as specified in the .dslsetup file.

Customizing Setup

Before releasing the final version of the installation files to users, it is likely
that the DSL author will need to customize the setup project. In many cases,
only changes to the supporting files, specifically Readme.htm and the license
agreement (EULA), will be required. Further customizations can be made
through the InstallerDefinition.dsletup, settings.ini, Strings.wxl,
and Product.ico files.

Customizing InstallerDefinition.dslsetup
If additional installation components are required, for example, a project
template, additional DLLs, or other documentation files, then the author will
need to edit the .dslsetupfile to include references to these components and,
of course, supply the components themselves. A detailed description of the
.dslsetup format is given in the next section. An example of including addi-
tional components, which requires changes to InstallerDefinition.dsl
setup, is provided as part of the section “Deploying Text Templates for
Code Generation.”

Customizing settings.ini
The file settings.ini contains configuration data for setup.exe, which is
generic to the installation of all designers. It identifies the particular .msi
file for installing the designer together with the product name, as illustrated
in the contents of the settings.ini for the setup project of the Issue State
designer:

[Bootstrap]
Msi=IssueStateDesigner.msi
ProductName=IssueStateModels

Customizing Setup 377

TIP When to edit settings.ini

settings.ini should only need to be edited if the name of the product,
as recorded in the DSL definition in the Dsl project, changes.

Customizing Strings.wxl
Strings.wxl allows the UI of the wizard, which is launched when installing
a .msi file, to be localized. This file will need to be edited in order to local-
ize the wizard for different languages. Outside of localization, an author will
need to change the second, third, and fourth entries if any of this information
changes after the setup project has been created:

<?xml version="1.0" encoding="utf-8" ?>
<WixLocalization xmlns="http://schemas.microsoft.com/wix/2003/11/
localization">
<!-- Following strings will commonly need to be edited in this file. -->
<String Id="LANG">1033</String>
<String Id="Manufacturer">CJKW</String>
<String Id="ProductName">IssueStateModels</String>
<String Id="FileDescription">IssueStateModels File</String>

<!- Following strings can generally be left as-is. ->
...

</ WixLocalization>

Customizing Product.ico
The author may wish to change the Product.ico file in the Resources
folder, which is the product icon that appears in the list of programs under
the “Control Panel>Add or Remove Programs” dialog.

The .dslsetup Format

The .dslsetup file defines information about the designer and other com-
ponents to be installed when the DSL is deployed. It can be edited to add or
remove components and change the way existing components are installed.
A default .dslsetup file is created when a DSL Setup project is created,
reflecting the state of the DSL designer solution at the time of creation. This
is illustrated in the .dslsetup file created for the Issue State designer, which
is repeated in full here.

<installerDefinition xmlns="http://schemas.microsoft.com/VisualStudio/2005/
DslTools/InstallerDefinitionModel"

productUrl="InsertProductUrlHere"
defaultDirectoryName="IssueStateModels"
productVersion="1.0.0"
requiresCSharp="true"

Chapter 9: Deploying a DSL378

requiresVisualBasic="true"
productCode="416b3e59-485f-478c-87da-ad13df7952f3"
upgradeCode="f3653e49-fd1d-4568-b97b-4a2a78b4d7a7"
localeId="1033">

<dslPackage name="IssueStateModels" project="DslPackage"
assemblyPath="CJKW.IssueStateModels.DslPackage.dll"
registryRoot="Software\Microsoft\VisualStudio\8.0">

<fileExtensions>
<fileExtension name="iss" extension="iss"

descriptionKey="FileDescription"
hasIcon="true" iconId="0"/>

</fileExtensions>
<supportingAssemblies>
<supportingAssembly name="Dsl" project="Dsl"

assemblyPath="CJKW.IssueStateModels.Dsl.dll"/>
</supportingAssemblies>

</dslPackage>
<licenseAgreement filePath="Files\EULA.rtf" isEmbedded="true" />
<supportingFiles>
<supportingFile name="Readme" filePath="Files\Readme.htm"

installShortcut="true"
shortcutIconPath="Resources\ReadmeShortcut.ico"
openAfterInstall="true" />

</supportingFiles>
<vsItemTemplates>
<vsItemTemplate localeId="1033" targetDirectories="CSharp"

project="DslPackage"
templatePath="CSharp\1033\IssueStateModels.zip"/>

<vsItemTemplate localeId="1033" targetDirectories="VisualBasic"
project="DslPackage"
templatePath="VisualBasic\1033\IssueStateModels.zip"/>

</vsItemTemplates>
<dslSchemas>
<dslSchema project="Dsl"

filePath="GeneratedCode\IssueStateModelsSchema.xsd"/>
</dslSchemas>

</installerDefinition>

Let’s look at this piece by piece. The top level element is <installer-
Definition>. A number of attributes apply to this, which are explained in
Table 9-1.

The <installerDefinition> element must have a single
<dslPackage> child element, and the following optional child elements:
<licenseAgreement>, <supportingFiles>, <vsItemTemplates>, <dslSchemas>,
<vsProjectTemplates>, <mergeModules> and <textTemplates>. Each is
considered in turn in the sections that follow.

The .dslsetup Format 379

<dslPackage>

The <dslPackage> element defines all the information required to install the
DSL designer. The project and assemblyPath attributes identify the location
of the DLL in which the Visual Studio package implementing the DSL

Chapter 9: Deploying a DSL380

Table 9-1: Attributes of <installerDefinition>

defaultDirectoryName The name used as the default installation
directory during the install process.

productUrl URL that appears in the “Add or Remove
Programs” entry for the product.

productVersion Version of the product being installed.

requiresCSharp Used to indicate that the C# language is a
prerequisite for your DSL. If true, the installer
will verify that C# is installed before installing
the DSL.

requiresVisualBasic Used to indicate that the Visual Basic language
is a prerequisite for your DSL.

requiresCPlusPlus Used to indicate that the C++ language is a
prerequisite for your DSL.

requiresJSharp Used to indicate that the J# language is a
prerequisite for your DSL.

upgradeCode MSI upgrade code. This value generally should
not be changed. See the Windows Installer
documentation for more details.

productCode MSI product code. This value generally should
not be changed. See the Windows Installer doc-
umentation for more details.

customFragmentIds A semicolon-delimited list of WiX fragment
identifiers. This can be used to include hand-
written WiX files in the installer. Files containing
the WiX fragments must be added to the
project, and must have the “BuildAction”
property set to “Compile.” See the WiX schema
documentation(http://wix.sourceforge.net/
manual-wix2/wix_xsd_index.htm) for more
about using fragments.

http://wix.sourceforge.net/manual-wix2/wix_xsd_index.htm
http://wix.sourceforge.net/manual-wix2/wix_xsd_index.htm

The .dslsetup Format 381

designer resides. This is the DLL resulting from building the DslPackage
project. If the project attribute is omitted, then the path is interpreted
relative to the location of the .dslsetup file. The registryRoot attribute pro-
vides the path to the location in the Windows registry in which registry
entries extracted from the DslPackage DLL will be placed. These entries
ensure that Visual Studio recognizes the installed package and is configured
to open the designer when files of the registered extension are opened. The
name attribute, like all name attributes in the .dslsetup format, is used as a
unique identifier in the generated WiX.

Child elements of <dslPackage> are <fileExtensions> and <supporting-
Assemblies>. The first lists file extensions that need to be registered as part of
the installation. The attributes of the <fileExtension> element are explained
in Table 9-2.’ is optional).

name Used as a unique identifier in the generated
WiX.

extension The file extension string, such as .iss (the
initial ‘.’ is optional).

descriptionKey Key into the Strings.wxl in the DSL Setup
project that identifies a description string for
the file extension. This is optional.

hasIcon Indicates whether the extension is identified
with its own icon.

iconId Used to locate the icon associated with the file
extension in the DSL package assembly. It is a
0-based index into the set of Win32 icon
resources stored in the assembly.

Table 9-2: Attributes of <fileExtension>

<supportingAssemblies> lists all other assemblies to be installed with the
DslPackage. Each assembly is identified through project and assemblyPath
attributes, which are interpreted in exactly the same way as for <dslPackage>
itself. In many cases, this is just the assembly resulting from building the Dsl
project.

<licenseAgreement>

The <licenseAgreement> element specifies the path to the file that acts as the
license agreement. The embed flag indicates whether or not the license agree-
ment file should be embedded within the MSI or exist alongside it. If a license
agreement is included, then it will be shown as part of the installation wizard,
which will then not continue without the user accepting its terms.

<supportingFiles>
Supporting files are any other files that need to be installed along with the
other components. In the Issue State example, there is one supporting
file, which is the Readme.htm file. The attributes of the <supportingFile>
element are described in Table 9-3.

Chapter 9: Deploying a DSL382

name Used as a unique identifier in the generated WiX.

project With the filePath, locates the file to be included.

filePath Used to locate the file to be included. It is inter-
preted relative to the location of the .dslsetup
file or the project output directory if the project
attribute is used.

openAfterInstall Boolean value, which indicates whether the file
should be opened after installation has finished.

installShortcut Boolean value, which indicates whether a
shortcut to the file should be installed to the
“All Programs” menu.

embed Boolean value, which indicates whether the file
should be embedded in the MSI or exist along-
side it.

shortcutIconPath If installShortcut is true, this may be used to
specify a custom icon for the shortcut. It should
be a path to an icon (.ico) file, relative to the
location of the InstallerDefinition.dslsetup
file or the project output directory if the project
attribute is used.

Table 9-3: Attributes of <supportingFile>

Readme.htm is not embedded, so it is one of the installation files alongside
the MSI, and a shortcut to the Readme is also installed with its own icon. The
file is also opened after installation has completed.

<supportingFiles>
<supportingFile name="Readme" filePath="Files\Readme.htm"

installShortcut="true"
shortcutIconPath="Resources\ReadmeShortcut.ico"
openAfterInstall="true" />

</supportingFiles>

<vsItemTemplates>

VS Item Templates are the templates that appear in the “Add New Item”
dialog in Visual Studio. This section allows the author to specify which
Item Templates should be installed alongside the designer. Typically, this
will refer to the two item templates (a VB and C# one) created as part of
building the DslPackage project. The attributes of a <vsItemTemplate> are
explained in Table 9-4.

The .dslsetup Format 383

project With the filePath, locates the file to be included.

localeId The locale to which the item template applies
(e.g., 1033).

targetDirectories A semicolon-delimited list that identifies the
target directories, relative to the Visual Studio
item template directory, where the template
should be installed. This determines the loca-
tions in the “Add New Item” dialog where the
template will appear.

templatePath The path to the .zip file containing the item
template. It is interpreted relative to the loca-
tion of the .dslsetup file or the project output
directory if the project attribute is used.

Table 9-4: <vsItemTemplate> attributes

In the Issue State example, the two item templates listed are the two
resulting from building the DslPackage project:

<vsItemTemplates>
<vsItemTemplate localeId="1033" targetDirectories="CSharp"

project="DslPackage"
templatePath="CSharp\1033\IssueState_CS.zip"/>

<vsItemTemplate localeId="1033" targetDirectories="VisualBasic"
project="DslPackage"
templatePath="VisualBasic\1033\IssueState_VB.zip"/>

</vsItemTemplates>

<dslSchemas>

This element lists XML schemas that need to be installed with the designer.
Typically, there is only one, the schema generated from the DSL definition.
One may have thought that these could be installed simply as supporting
files, but including them in this section ensures that they are installed to a
location that is recognized by Visual Studio for finding schemas to validate
XML files from within the XML editor.

As elsewhere, the location of the file to be installed is determined
through project and path attributes.

<vsProjectTemplates>

VS project templates are the templates that appear in the “Add New Pro-
ject” dialog in Visual Studio, which appears when you select “File>New
Project,” and the information required to identify them in the .dslsetup file
is similar to that required to identify VS Item Templates.

It is common to include a VS project template when the DSL provides
input to code generators, because text templates are required to exist
alongside models expressed using the DSL in a VS project, and the VS proj-
ect will likely need to be configured in a particular way for the generated
code to build. There is a section at the end of this chapter that walks
through an example typifying the deployment of text templates and a VS
project template for code generation.

<mergeModules>

This section lists Windows Installer Merge Modules (MSMs) that need to be
included as part of the install. A merge module is similar in structure to a
Windows Installer .msi file. However, a merge module cannot be installed
alone; it must be merged into an installation package first. When a merge
module is merged into the .msi file of an application, all the information and
resources required to install the components delivered by the merge module
are incorporated into the application’s .msi file. The merge module is then

Chapter 9: Deploying a DSL384

no longer required to install these components and the merge module does
not need to be accessible to a user. For more details about Windows Installer
Merge Modules, see the MSDN platform SDK help documentation.1

In a DSL Tools context, merge modules might be used to package
up companion tools that consume models produced by the designer but
have been built in separate Visual Studio solutions; WiX could be used to
create the merge module. The ability to include merge modules within the
designer .msi file means that the designer and companion tools can be
installed together in a single step.

The only information required in the .dslsetup file to include a merge
module is a name, which is used as a unique identifier in the generated
WiX, and the path to the .msm file, which should be relative to the location
of the .dslsetup file.

<textTemplates>

Finally, a list of text templates may be provided. These are text template
include files that get installed into the TextTemplates subdirectory of the
target installation directory. This location is also added to the include files
search path of the text templating Visual Studio host, which ensures that
they are found when referenced from text templates in any VS project.

As elsewhere, the location of the file to be installed is determined
through project and path attributes.

The deployment of text templates is illustrated in an example described
in the section “Deploying Text Templates for Code Generation” later in this
chapter.

The .dslsetup Format 385

1. At the time of writing, http://msdn2.microsoft.com/en-us/library/aa369820.aspx.

The .dslsetup format as a little DSL

The DSL Setup format is a good example of a non-graphical domain-spe-

cific language that was itself created using the DSL Tools.

It is a narrowly focused language whose sole purpose is to abstract out

the essential information required to generate the WiX files that can be

processed to build an MSI for installing the designer and its associated

components. Its use simplifies the process of creating the MSI by releasing

http://msdn2.microsoft.com/en-us/library/aa369820.aspx

Chapter 9: Deploying a DSL386

the DSL author from having to understand MSIs, or the WiX used to create

MSIs, and having to hand-write boilerplate WiX that would be common to

the deployment of all DSLs. It is such a simple language that it is barely

worth the effort of creating a designer to edit it, at least not a graphical

designer. Editing the XML is sufficient.

The domain model used to define this format is illustrated in Figure 9-6.

The usual text templates, as discussed in Chapters 3 and 6, were applied

to generate the implementation of domain classes and relationships, and

to generate the XML serialization code. A set of validation methods were

written in partial classes according the scheme discussed in Chapter 7.

Text templates were written to generate WiX from .dslsetup files, calling

out to the validation methods before starting the generation, following the

approach discussed in Chapter 8. The directive processor used in those

templates is a customized version of the one generated from the domain

model. It is customized to look through the VS solution and resolve file

paths for components identified through a project and path.

Figure 9-6: DSL Definition for .dslsetup format

Refreshing the Installation Files 387

A similar approach could be used to develop similar languages for

installing other kinds of applications.

Refreshing the Installation Files

A sequence of steps is required to refresh a set of installation files after
changes have been made to the designer. It’s not enough just to rebuild
the setup project, which only causes the .msi file for the designer to be
regenerated from the already generated WiX files. It may be necessary to
regenerate the WiX files themselves first. The .msi file is built from the WiX
packages together with the components that implement the designer, such
as the DLLs that result from building the DslPackage project and the Dsl
project in the designer solution. The text templates that generate the WiX
files from the .dslsetup file access the VS solution structure to resolve file
path names specified in the .dslsetup file to locate the components, such
as DLLs, that need to be installed. They also reflect on some of these com-
ponents to extract information that is then injected into the WiX files that are
generated. This information may change whenever the designer is rebuilt.

This means that in order to refresh the installation files, the following
steps must be performed in the order specified:

1. Rebuild the DslPackage and Dsl projects.

2. Regenerate the WiX files, by transforming all the templates in the
DslSetup project.

3. Rebuild the setup project.

The result of executing the text templates in the setup project is also
influenced by the current solution configuration being used on build, typ-
ically Debug or Release. The solution configuration influences the location
of the build output directory. So if the configuration is set to Release from
Debug, then the location of the DLLs built from the DslPackage and Dsl
directories switches from bin\Debug to bin\Release under each project.
This change of location is picked up by the text templates in the setup pro-
ject when they are reapplied, and the installation files are also generated
to bin\Release in the setup project.

Chapter 9: Deploying a DSL388

Package Load Key

You’ll find that if you try to install and run a DSL designer on a machine
without the Visual Studio SDK installed, it won’t work. When you start Visual
Studio you’ll get a package load error, where the package causing the error is
your designer. This is because a designer built using the DSL Tools is imple-
mented as a Visual Studio package, and in order for it to load on a machine
that does not have the Visual Studio SDK installed (but does have Visual
Studio Standard Edition or later installed), it must have been given a package
load key (PLK). A PLK is a string comprising a long sequence of capital
letters and numbers. A specimen example is given below:

P2R2E3I1HTRJH3DJIEKKDPRMD3JEECIHRHQ8C3EZZRMRAZC1AAK2KZA9RJDJKKKPZ3A3HMHJPKI-
IMIHKC2C3EQE3KHKTM3HPQPIHADPKRIQ8JQDHPMQIRJIPIHABCDEF

A PLK can be obtained by filling in a form online at the Visual Studio exten-
sibility website,2 where a package author provides details about the product
and package the load key is for. More detailed instructions are available
from the MSDN help pages at http://msdn2.microsoft.com/en-us/library/
bb165395(VS.80).aspx. If this link does not work, then go to http://msdn2.
microsoft.com/ and search for “How to obtain a PLK.” Once the details
about the product have been submitted, the key is emailed to the author.

TIP Points to note when applying for a PLK

There are two cases: either you are already registered as a VSIP partner
or you are not. If you are not, you must associate your .NET Passport
or Windows Live account to a VSIP account. If you don’t have a pass-
port account, you can create one.

Registering as a VSIP Partner is free, but care should be taken when pro-
viding the Company Name, because it cannot be changed afterwards
and is associated with your .NET passport / Windows Live account. The
company name must also match the company name you used when
authoring the designer to be registered.

Requesting a PLK is free, but the registration for the product cannot
be removed once created.

2. The Visual Studio 2005 Extensibility Center can be found at http://msdn.microsoft.com/
vstudio/extend/. You can sign in to register your product and obtain a PLK at
http://affiliate.vsipmembers.com/affiliate/default.aspx.

http://msdn2.microsoft.com/en-us/library/bb165395(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/bb165395(VS.80).aspx
http://msdn2.microsoft.com/
http://msdn2.microsoft.com/
http://msdn.microsoft.com/vstudio/extend/
http://msdn.microsoft.com/vstudio/extend/
http://affiliate.vsipmembers.com/affiliate/default.aspx

Once the author has the key, he needs to do some work in the DslPackage
solution to ensure that it is included with the package. Specifically, he needs
to apply the ProvidePackageLoadKey attribute to the Package class. This can
be done by uncommenting the [VSShell::ProvideLoadKey(...)] lines in
the following fragment of Shell\Package.tt:

...

/// <remarks>
/// A package load key is required to allow this package to load
/// when the Visual Studio SDK is not installed.
/// Package load keys may be obtained from
/// http://msdn.microsoft.com/vstudio/extend.
/// Consult the Visual Studio SDK documentation for more information.
/// [VSShell::ProvideLoadKey("Standard", Constants.ProductVersion,
/// Constants.ProductName, Constants.CompanyName, 1)]
/// </remarks>
...

internal sealed partial class <#= dslName #>Package :
<#= dslName #>PackageBase

{
}

...

The combination of the first four parameters to this attribute (minimum
edition, product version, product name, and company name) are encoded
in the PLK. The author will be asked to provide these values when request-
ing the PLK; the values are provided in properties on the Dsl node in the
explorer when viewing the DSL definition through the DSL designer. The
author will also be asked to provide the package GUID, which can be found
in the same place. Be aware that the components of the version are not in
the right order in the properties window (Build number is first, and then
MajorVersion, MinorVersion, and Revision) so be sure to provide the
right version number. In case of doubt, look in the Constants.cs generated
file, where you are certain to find the right values.

The last parameter to the ProvideLoadKey attribute indicates the key
into the entry in VSPackage.resx, found in the DslPackage project, which
holds the PLK string. For example, given the preceding code, the PLK
resource would have key “1.” The VSPackage.resx file must be edited to
add a string entry with this key, giving it the value of the PLK obtained via
the VS SDK website, as illustrated in Figure 9-7.

Package Load Key 389

Deploying Text Templates for Code Generation

Chapter 8 described how to generate code and other text artifacts from a
model, and it showed how to do this for the Issue Project DSL.

Recall that text templates were developed inline in the debugging solu-
tion, where they could be run against test models. One constraint on the
way in which templates are invoked in the DSL Tools V1 (i.e., by using the
“Transform All Templates” button at the top of the solution explorer), is
that they must appear in the same solution as the model files that provide
input to the templates, and each of them must have a directive at the top
that identifies the specific model file that is providing input.3

Creating a Project Template from the Debugging Project
This means that if you want to deploy the text templates together with the
DSL, you need to package them up in some way. Fortunately, Visual Studio

Once this is all done, the steps in the previous section should be followed
to refresh the installation files, and once the designer is installed there
should no longer be a package load error when Visual Studio is launched.

Chapter 9: Deploying a DSL390

Figure 9-7: View of VSPackage.resx in the .resx editor, showing the entry with the PLK

TIP To test that the PLK is working, run devenv with /NoVSIP
switch

Install the designer on your machine using the install files generated
from the setup project. Open the Visual Studio 2005 command prompt,
from “Start>All Programs>Microsoft Visual Studio 2005>Visual Studio
Tools.” In the command window type “devenv /NoVSIP”. In the copy
of Visual Studio that opens, use “Add>New Item...” within a suitable
project to create a new model in your designer.

3. Unless you orchestrate code generation from the menu item on the designer, as discussed
in Chapter 8.

Deploying Text Templates for Code Generation 391

allows you to export a project as a project template, and this mechanism can
be used to package up the templates. As explained earlier, a project template
can be included in the .dslsetup file for inclusion in the .msi. The steps are
as follows.

1. Clean up the Debugging project of your DSL authoring solution so it is
suitable as the basis of a project template. A project containing a blank
model file, plus the text templates, would make a suitable basis.

2. With the project selected in the solution explorer, run the “File>Export
Template” command. This will create the project template.

3. Copy the created project template into the setup project of the DSL
authoring solution. After this step, you should see something like
Figure 9-8.

Figure 9-8: VS project template added to setup project

4. Add a line to the .dslsetup file to include the project template—
something like the following:

<vsProjectTemplates>
<vsProjectTemplate localeId="1033"

targetDirectories="CSharp"
templatePath="IssueProject.zip"/>

</vsProjectTemplates>

5. Rerun the text templates in the DSL authoring solution, which will
then regenerate the WiX files from the .dslsetup file.

6. Rebuild the setup project to create the .msi.

Using a Text Template Include File
A further refinement you can make is to change the text templates in
the Debugging project so that they only include two lines: a directive
identifying the input model file, and a directive for including another text
template file that contains the main body of the template. The included
text template should be kept in the same directory as the including text tem-
plate. Once tested, a copy of the included template can then be placed in the
setup project for inclusion in the .msi file. This refinement means that users
of the DSL can easily create new text templates for each new model file,
because all they have to do is create a template containing two lines. They
also don’t need to mess with the code generators themselves, or, at least, not
without going to look for the place where it has been installed.

For example, if we want to apply this refinement to the Issue Project
DSL, change the text template created in Chapter 8 to have something like
the following two lines:

<#@ include file="IssueProject.Code.tt" #>
<#@ IssueProject processor="IssueProjectDirectiveProcessor" requires="file-
Name='Ch8.1.issueproj'" #>

where the included file, IssueProject.Code.tt, now contains the main
body of the template:

<#@ template
inherits="Microsoft.VisualStudio.TextTemplating.VSHost.ModelingTextTransformation"
debug="true"#>

<#@ output extension=".cs" #>
using System;
using System.Collections.Generic;
using System.Text;

<#
etc.

Do not include the include file in the project (otherwise it will be executed
with all the others and fail). However, when you execute the original tem-
plate, you should find that it still works (template execution looks first in

Chapter 9: Deploying a DSL392

the same folder as the template being executed for include files). Once
you’ve checked that it works, create a copy of the include file and put it in
the setup project as illustrated in Figure 9-9. Again, don’t include it in the
project itself, or it will be executed every time the templates in the author-
ing solution are executed.

Deploying Text Templates for Code Generation 393

Figure 9-9: Setup project showing .tt include file

Finally, add the following lines to the .dslsetup file, rerun the text tem-
plates, and build the setup project, as before.

<textTemplates>
<textTemplate templatePath="TextTemplates\IssueProject.Code.tt"/>

</textTemplates>

When the resulting .msi is executed to install the DSL, it will install the text
templates identified in the .dslsetupfile into the TextTemplates subdirectory
of the target installation directory, a location that is registered with the text
templating execution engine, as explained earlier.

Including Text Templates in the VS Item Template
If the instructions so far have been followed, a user of the DSL will be able
to unfold the project template, create a model file using “Add New Item,”

add a text template containing only two lines—the two directives mentioned
in the previous section, and then use this to generate code from the model.
The last refinement is to automate the step of adding the text template con-
taining the two lines, which would otherwise have to be done manually for
every model file created.

This step is automated by making a change to the project item template
that is installed with the designer. The definition of the item templates can
be found in the DslPackage project, under the ProjectItemTemplates folder.
We’ll show how to make changes to the CSharp template; the VisualBasic
template can be altered in a similar way.

First, create a file in that folder containing just the two directives iden-
tified in the previous section, replacing the name of the file in the requires
clause for the second directive to $safeitemname$, as follows:

<#@ include file="IssueProject.Code.tt" #>
<#@ IssueProject processor="IssueProjectDirectiveProcessor" requires="file-
Name='$safeitemname$'" #>

Save the file as issueproj.ttfile, where issueproj is the file extension
being used for the Issue Project DSL (you’ll use your own file extension for
your own DSL).

Chapter 9: Deploying a DSL394

TIP Why not use a .tt extension?

Using a .tt extension would automatically cause the file to be associ-
ated with the TextTemplatingFileGenerator, which will be executed
every time the “Transform All Templates” button is used in the author-
ing solution. Using the .tt file extension avoids this.

This provides the text of the new file to be created alongside the model
file. $safeitemname$ will be substituted for the item name entered in the
“Add New Item” dialog on item template expansion.

Now we need to reference this file from the item template definition.
Open CSharp.tt in the same folder and edit it to add an entry in the
<TemplateContent> section, as follows (the entry is shown in bold italics):

<#@ template
inherits="Microsoft.VisualStudio.TextTemplating.VSHost.ModelingTextTransformation"
debug="true"#>

<#@ output extension=".vstemplate" #>
<#@ Dsl processor="DslDirectiveProcessor"
requires="fileName='..\..\Dsl\DslDefinition.dsl'" #>
<!--DSL Tools Language Template-->
<VSTemplate Version="2.0.0" Type="Item"
xmlns="http://schemas.microsoft.com/developer/vstemplate/2005"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<TemplateData>
<Name Package="{<#= this.Dsl.PackageGuid #>}" ID="103"/>
<Description Package="{<#= this.Dsl.PackageGuid #>}" ID="102"/>
<Icon Package="{<#= this.Dsl.PackageGuid #>}" ID="201" />
<ProjectType>CSharp</ProjectType>
<SortOrder>360</SortOrder>
<DefaultName>
<#=this.Dsl.Name#>.<#=this.Dsl.Editor.FileExtension#>

</DefaultName>
<AppendDefaultFileExtension>true</AppendDefaultFileExtension>

</TemplateData>
<TemplateContent>
<ProjectItem TargetFileName="

$fileinputname$.<#=this.Dsl.Editor.FileExtension#>">
<#=this.Dsl.Editor.FileExtension#>.<#=this.Dsl.Editor.FileExtension#>

</ProjectItem>
<ProjectItem TargetFileName="

$fileinputname$.<#=this.Dsl.Editor.FileExtension#>.diagram">
<#=this.Dsl.Editor.FileExtension#>.diagram

</ProjectItem>
<ProjectItem ReplaceParameters="true"

TargetFileName="$fileinputname$.tt">
<#=this.Dsl.Editor.FileExtension#>.ttfile

</ProjectItem>
</TemplateContent>

</VSTemplate>

This new entry ensures that when this item template is used to add a file,
not only does it add the model and corresponding diagram file, but it also
adds a correspondingly named .tt file based on the .ttfile item template
created in the first step. If you regenerate, rebuild, and relaunch the debug-
ging solution, and then use “Add New Item” to create a new model for your
designer, you’ll see that the .tt file now gets added automatically. You
don’t need to make any changes to the setup project, because it picks up
only the built project item templates, which will incorporate these changes
when you build the DslPackage project.

Deploying Text Templates for Code Generation 395

SUMMARY

This chapter described how to create a setup project in a DSL authoring
solution and use this to build installation files for deploying a DSL designer
and associated components. It explained the contents of the setup project,
in particular, the format of the .dslsetup file. The .dslsetup file is the main
focus of change when customizing or adding to the installation files gen-
erated. The chapter also explained the process for refreshing the installation
files whenever the designer and/or other components are changed, and
concluded with an example of deploying a set of text templates for code
generation, which involved the creation of a project template, customi-
zation of the .dslsetup file to include this and supporting text templates,
and extension of item templates to add a .tt file whenever a new model file
is created by the user of the DSL.

Chapter 9: Deploying a DSL396

10
Advanced DSL Customization

Introduction

You can design a good range of graphical languages just by editing the DSL
definition. As we’ve seen in previous chapters, you can go beyond that,
writing code to define validation checks (Chapter 7), to generate material
from your users’ models (Chapter 8), and to customize the fine detail of the
language features (Chapters 3–5). These extra facilities can be picked up
progressively—the gradual steps upward that allow you broader and
broader scope, as we illustrated in Chapter 1.

This chapter brings together the level of customization that involves
writing code. Many of the topics have been touched on in earlier chapters,
but here our intention is to go into customization techniques in more detail.

Tools for Customization

There are a number of basic mechanisms we use to enable us to integrate
custom and generated code.

Partial Classes
Partial classes are the feature of .NET languages that allows the methods
of one class to be compiled from several different files. All the generated
classes are partial, allowing you not only to add methods of your own to
a class in a separate file, but also to add overrides of methods defined in

397

the framework base classes. Never change the content of the generated
code—add material in separate files.

You can override and add methods to the generated code in your partial
class. But if you add a private variable in a partial class, it won’t be kept in
the store, and so (a) events and rules can’t be used to observe it, (b) any
undo that the user performs won’t apply to it, and (c) it won’t be persisted
and reloaded when the user saves the model. Generally, therefore, you
should not declare member variables in custom code (even if you don’t
need them to be persisted); declare properties in the DSL definition.

Double Derived—The Generation Gap
If you look at the generated code, for example, for any shape in Dsl\
GeneratedCode\Shapes.cs, you’ll see that there are a variety of methods
that it might be interesting to modify such as HasBackgroundGradient(),
which always returns a fixed value (depending on how you have set the
FillGradient domain property of the shape in the DSL definition). But
perhaps you would like to make it variable at runtime so that the existence
of the gradient can give some indication of state, and so you would like to
override the method. Unfortunately, that is not how partial classes work;
your custom code is in the same class as the generated material.

The solution is to select the domain class, relationship, or shape in the
DSL definition and set to true the “Generates Double Derived” flag in the
properties window. Now when you regenerate the code (by clicking
“Transform All Templates” in the header of the solution explorer), the
generator creates two classes, one derived from the other. All the generated
methods and properties are placed into the base class, leaving only
constructors in the derived class. It is always the derived class that is instan-
tiated. In your custom code, you can now override any methods defined (or
overridden) by the generated code (Figure 10-1).

This is a use of the “Generation Gap” design pattern described by John
Vlissides (in his book Pattern Hatching [Addison-Wesley, 1998]). It is an
important technique wherever code is generated, enabling you to preserve
the generated material and regenerate it when required without losing your
customizations.

Double derived is useful for diagrams, shapes, and connectors. It is less
useful for the generated code of domain classes and relationships because
they just contain accessors for properties and relationships.

Chapter 10: Advanced DSL Customization398

Some classes not directly defined in the DSL definition, such as Toolbox-
Helper, are double derived by default.

Custom Constructors
Double derivation doesn’t work for constructors—the constructors have to
be in the class they’re constructing, of course. If you want to override a
constructor, therefore, you need to tell the generators not to create one. To
do this, set the flag “Has Custom Constructor” in the domain class proper-
ties. The resulting generated code will not compile until you provide the
constructor.

Customization Switches
Customization switches are Boolean properties in the DSL definition that
cause the generated code to invoke a method that must be supplied by you.
For example, if you set “Is Custom” in a connection builder, the solution
will not build until you have supplied the missing code, in a partial class.

Tools for Customization 399

abstract class
NodeShape

bool HasGradient

string ToString ()

Modeling

framework

Generated

code

If double

derived is not

set, these

two classes

are collapsed

into one, and

the custom

code can’t

override the

methods

partial class
MyShape

MyShape ()

partial class
MyShape

override bool
HasGradient

string ToString ()

Custom

 code

class MyShapeBase

override bool
HasGradient

Figure 10-1: Double derived classes

Comments near the resulting errors in the generated code give brief guidance
on what you need to provide.

Table 10-1 lists the most commonly used customization switches.

Chapter 10: Advanced DSL Customization400

To provide code to do this Set this

Derive the value of a DomainProperty.Kind = Calculated
property from others. for a read-only property; CustomStorage to

provide both setter and getter.

Variable tooltip. TooltipType = Variable on the mapped shape.
Code can be provided in an abstract base shape,
but the setting itself is not inherited.

Determine what element UsesCustomAccept and UsesCustomMerge in
tools can be dragged onto the element merge directive of the receiving
a class, and what happens domain class.
when dragged.

Determine the parent HasCustomParentElement in the ShapeMap
shape of a new shape. for the shape.

Determine the list UseCustomElement in the CompartmentShape
of displayed elements in a Map.
Compartment Shape.

Determine what may be CustomAccept and CustomConnect in the
connected by a connection Source and Target Role Directives in a Link-
tool, and what happens ConnectDirective.
when the connection is made.

LinkConnectDirective.UsesCustomConnect
and ConnectionBuilder. IsCustom provide for
customization of more of the behavior.

Define how a class is IsCustom in the XML Class Data for the domain
serialized to file. class.

HasCustomMoniker in the XML Property Data
for a property allows you to customize the
physical representation of a moniker in a
serialized file.

Additional processing after CustomPostLoad in XML Serialization
a model is loaded from file. Behavior.

Table 10-1: Customization Switches

Custom Overrides
A great many methods can be overridden to change the behavior of the
designer, especially in shape, connector, and diagram classes. The complete
set can be seen by writing a partial class and typing “override”—the Visual
Studio IntelliSense system will prompt you with the possibilities.

Some useful overrides are listed in Table 10-2.

Tools for Customization 401

Class group Methods Used for

Domain classes OnDeleted(),
OnDeleting(),
OnCopy()

Property OnValueChanged(), Propagating changes to
handlers OnValueChanging() display states or
MyClass. external applications,
MyProperty- and to update
Handler calculated properties.

You can also disallow a
value by throwing an
InvalidOperation
exception.

Shapes CanFocus Can receive keyboard
input and mouse clicks.

CanMerge() Allows a paste
operation.

CanMove Can be moved.

CanSelect Can be added to the
current selection.

HasShadow Set false to lose the
default shadow
effect.

OnDoubleClick() Intercept mouse
actions—one of many.

OnBoundsFixup() Use to place a new
shape when its domain
element is first created.

Table 10-2: Custom Overrides

Continues

Chapter 10: Advanced DSL Customization402

Class group Methods Used for

Initialize Resources() Set the fill and outline
colors and styles.
Called once per class.

OnInitialize() Called once per shape.

Connectors CanManuallyRoute Set false to prevent the
user rerouting.

DefaultRoutingStyle A wider set than
available in the
DSL definition.

Diagram DefaultGridSize Return smaller
values to allow finer
positioning.

RequiresWatermark, Sets the text that
WatermarkText appears in a blank

diagram.

ToolboxHelper CreateElementToolPrototype Create multi-object
prototypes on the
toolbox.

DocData OnDocumentLoaded Initialize non-persisted
data from the model.

Table 10-2: Continued

Responding to Changes

Much of the custom code you need to write within a designer is about
responding to changes initiated by the user, or in some cases preventing
certain changes. This section brings together all the techniques for doing
that. Some of them we have discussed before, but here we try to compare
and contrast so that you can see which technique to apply.

As a rough guide, consider the techniques in the order of presentation here.

Property Handlers “On Value Changed/Changing”
Each domain class has an internal handler class for each property. This
has methods you can override: in particular, OnValueChanging() and

OnValueChanged(), called immediately before and immediately after the
changes.

For example, if a domain class IssueProject has a string domain property
Sort, we can add a partial class like this:

public partial class IssueProject
{
internal sealed partial class SortPropertyHandler
{

protected override void OnValueChanged(State element,
string oldValue, string newValue)

{
if (!this.Store.InUndoRedoOrRollback)
{

// propagate in-Store changes here...
}
// propagate external changes here...

// And always call the base method!
base.OnValueChanged(element, oldValue, newValue);

}
}

}

The handlers are only called if the new and old values are not the same;
they don’t get called just because an assignment has happened.

Use OnValueChanged to propagate changes either inside or outside the
store.

One use of OnValueChanging is to throw an exception if you don’t like
the value that is about to be set.

These handlers are not available for built-in properties such as the
bounds of a shape.

Undo, Redo, and Property Handlers

If the user invokes “undo,” all of the changes made to the store in the most
recent top-level transaction are undone. The undo mechanism essentially
works by keeping a trail of previous values of every property, instance, link,
and shape in the store. Undo replaces every value with its old one, while
redo just winds the tape forward again.

This means that methods and rules that only propagate changes around
the store should not operate when an undo or redo is happening. If a

Responding to Changes 403

method’s job is to keep one store value in line with another, then it only
needs to calculate a new value when we’re really going forward.

For this reason, the above code uses Store.InUndoRedoOrRollback to
guard the part of the code that deals with in-store content, that is, anything
that sets any domain property, or creates or deletes an instance of a domain
class or relationship, or a shape, connector, or diagram.

However, let’s suppose that this domain property’s purpose is to be the
proxy for some external state: a database entry, a piece of user interface, or
even a chunk of hardware. In that case, the handler should certainly keep
the external state in step with undos and redos, and that part of its code
would be outside the guard.

Calculated Domain Properties
A calculated domain property is not stored but always computed using a
getter you supply.

Calculated properties are good for any case where the property should
be a determined function of either external state, or other parts of the
model—for example, a sum of other values, a count of relationships, or a
composition of other strings.

There is an example of a calculated property in the Class Diagrams
sample that can be found in the Visual Studio SDK Samples. Each Model-
Attribute displayed in a ModelClass has two domain properties called
name and type, which the user can see and alter in the properties window
in the usual way. But on the diagram, each ModelAttribute’s name and
type appear in a single line: “name : Type”. This is useful because each model
attribute appears as one line of a compartment shape (Figure 10-2).

Chapter 10: Advanced DSL Customization404

Figure 10-2: Two property values displayed on one line

in a compartment shape

To get this effect, we create a domain property called NameAndType in
the ModelAttribute domain class, and set its “Kind” to Calculated in the
properties window. “Transform All Templates” and an attempt at building
produce the error message that we have not defined a method in the Model-
Attribute class, and following the error takes us to a helpful comment in
the generated code that tells us what’s expected: in this case, a getter
method for NameAndType.

The expected method for a calculated domain property is always called
GetXXXValue(), where XXX is the name of the domain property. In a separate
custom code file, we provide the required code. It just combines the values
from the two other domain properties:

public partial class ModelAttribute
{

public string GetNameAndTypeValue()
{
return this.Name.Trim() + " : " + this.Type.Trim();

}
}

To avoid confusing the user, we set the “Is Browsable” flag of this domain
property to false, so that it does not appear in the properties window at
runtime. (You could alternatively set “Is UI Read Only” to true, which
allows the user to see it in the properties window without modifying it
there.)

You can use any source data for the calculation—they don’t have to
be in the store. For example, you might use the value to determine the
orientation of an image, or perhaps to set the content of a file.

Custom Storage Domain Properties
A CustomStorage domain property is one where you provide both setter
and getter. You save the value however you like—for example, in the state
of some external application or just by setting the values of other properties
in the store.

In the Name and Type example, rather than insist that values be entered
through separate lines in the properties window, we can let the user set
both name and type properties by typing into the display field, separating
the name and type with a colon (“:”).

Responding to Changes 405

Set the NameAndType property’s “Kind” to CustomStorage, transform,
and rebuild in the usual way. The build error tells us we need another
method:

public partial class ModelAttribute
{
public void SetNameAndTypeValue(string newValue)
{
if (!this.Store.InUndoRedoOrRollback)
{
// in-Store changes
string[] separated = newValue.Split(new char[] { ':' });
if (separated.Length > 0) this.Name = separated[0].Trim();
if (separated.Length > 1) this.Type = separated[1].Trim();

}

// Handle here any propagation outside the Store.

}
}

Notice that this method guards changes it makes within the store with
InUndoRedoOrRollback, in the same way as OnValueChanged(); and if there
are any changes to be made outside the store, they should happen anyway.

If you really want to ensure that your custom storage domain property
works just like a real one, then you should

• Do nothing if the old and new values are equal.

• Call ValueChanging() and ValueChanged() before and after your
update; these in turn call OnValueChanging/ed() and ensure that
any rules defined on the property work properly.

The extended result looks like this:

public partial class ModelAttribute
{
public void SetNameAndTypeValue(string newValue)
{
string oldValue = this.GetNameAndTypeValue();
if (oldValue != newValue)
{
ValueChanging(this, newValue, oldValue);
if (!this.Store.InUndoRedoOrRollback)
{

Chapter 10: Advanced DSL Customization406

// in-Store changes
string[] separated = newValue.Split(new char[] { ':' });
if (separated.Length > 0) this.Name = separated[0].Trim();
if (separated.Length > 1) this.Type = separated[1].Trim();

}

// Handle here any propagation outside the Store.
// ...

ValueChanged(this, newValue, oldValue);
}

}
}

Responding to Changes 407

TIP Calculated properties, Custom Storage, and value
handlers

Use Calculated properties where you want a value to depend completely
on others, and want it to be read-only. Use Custom Storage properties
when you also want to write back to the places from which the value
is derived. If those other values can’t represent all of its state, use an
ordinary property but propagate its value with OnValueChanged ().

Notify Value Change
If you tried the Calculated Value example, you may have noticed that when
you change, say, the Type property, the display of the calculated Name-
AndType does not immediately change. You have to reselect the diagram
or cause a redisplay in some other way to see the change.

By themselves, custom and calculated values don’t automatically prop-
agate changes to their observers. They will recalculate the value when
asked, but unlike ordinary domain properties, have no inbuilt mechanism
for telling interested parties when the calculated value might have changed.
We have to do this for them, by observing each of the source values in some
way—for example, by overriding a property handler—and calling Notify-
ValueChange() on the calculated or custom domain property. That call will
propagate changes to observers by firing rules and events just as a change
in a normal property does.

public partial class ModelAttribute
{
internal sealed partial class TypePropertyHandler

{
protected override void OnValueChanged(ModelAttribute element,

string oldValue, string newValue)
{
base.OnValueChanged(element, oldValue, newValue);
element.Store.DomainDataDirectory.
GetDomainProperty(ModelAttribute.NameAndTypeDomainPropertyId)

.NotifyValueChange(element);
}

}
}

Notice the method is actually on the DomainPropertyInfo class, whose
instance represents the definition of the NameAndType domain property
within the ModelAttribute class. (This is one of the metadata classes from
which you can get information at runtime about the DSL definition.)

Propagating Change from Model to Shape:
OnAssociatedPropertyChanged
As we know from Chapter 4, the shape map is the principal method of defi-
ning how model elements and links are presented using shapes and connec-
tors. The visibility of the shapes’ decorators and the text presented in the shapes
can be controlled by the domain properties of the presented model elements.

The mechanism we look at here provides a complementary and more
customizable method that allows change to propagate along the same con-
duit: the PresentationViewsSubject relationship between model elements
and their presentation elements.

As an example, consider the class diagrams standard template that
comes with the DSL Tools. Running it, you see that it allows you to draw
classes that can be interconnected by several different kinds of association.
Unfortunately, once you have created a particular sort of association, you
cannot change it to any other, and the several different sorts make a long list
in the toolbox (Figure 10-3).

We can make a substantial improvement on this. (And there is an imple-
mentation of this solution in the class diagrams sample that comes with the
Visual Studio SDK—look in the sample browser.)

Let’s just have a single type of Association (a relationship between the
model classes), and let’s give it an enumerated property Sort. We want
the user to be able to change the sort of an existing association simply by

Chapter 10: Advanced DSL Customization408

Responding to Changes 409

Figure 10-3: Standard Class Diagrams template has several separate

types of association.

selecting it and changing its “Sort” in the properties window. In response,
the ends of the connector should change to show various combinations of
diamonds, arrowheads, and plain ends.

First, features such as connector ends, line thicknesses, colors, and so on
are not governed by the shape maps, so we need to use custom code to
change them.

For OnAssociatedPropertyChanged() to work, we must first set it up by
calling a static method of the connector. We only need to do this once for the
class—it isn’t necessary to set up an observer relationship separately for
each instance. We set it up like this:

public partial class AssociationConnector
{
protected override void InitializeResources (StyleSet classStyleSet)
{
base.InitializeResources(classStyleSet); // don't forget!

AssociationConnector.AssociateValueWith(this.Store,
Association.SortDomainPropertyId);

}

Chapter 10: Advanced DSL Customization410

TIP Override InitializeResources to set up per-class
relationships involving shapes or connectors

Even though this is an instance method, it is called once for each shape
or connector class when the package is loaded. It’s better to perform
setups here than in a class initializer, because at this point all the
required initializations will have been done.

In some cases it is necessary to set the “Generates Double Derived”
flag for the shape or connector in the DSL definition.

In this DSL definition, AssociationConnector is the connector that
will present Association relationships on the screen. The argument
Association.SortDomainPropertyId identifies the Sort domain property
of the relationship to which the connector is mapped. Each property has a
XXXDomainPropertyId.

Once this setup has been performed, OnAssociatedPropertyChanged()
will be called whenever this domain property’s value changes. We write it
in the same class:

protected override void OnAssociatedPropertyChanged
(PropertyChangedEventArgs e)

{
// Called for a change in any property, so we must discriminate:
if ("Sort".Equals(e.PropertyName))
{
// OK; we know the type of domain property "Sort" from DSL Defn:
switch ((AssociationSort)e.NewValue)
{

// Set the arrowheads depending on the sort of association:
case AssociationSort.Aggregation:
this.DecoratorTo = null;
this.DecoratorFrom = LinkDecorator.DecoratorEmptyDiamond;
break;

// and so on for other values and other properties...
}

}
base.OnAssociatedPropertyChanged(e);

}

This method will be called on an instance of the connector whenever any
associated property changes on the mapped domain relationship instance.

It is essential to begin by checking which property has changed, because the
generated code may have registered the class to observe several other pro-
perties. The event arguments contain the name of the changed property
and its old and new values. The old and new values will always be of the
appropriate type for the property (possibly including null).

The arrowheads, colors, line thickness, visibility, and other visual prop-
erties of a shape or connector are not domain properties, persisted in the
store—although the shapes and connectors themselves are. These proper-
ties should therefore be handled as we’ve described for external state, so
there is no check to see whether we are InUndoRedoOrRollback. (It is
possible to define domain properties on shapes, and you could use On-
AssociatedPropertyChanged() to update them from the model element
properties. In that case, you would avoid updating them in an Undo.)

Always call the overridden method in base; in this case, we do so at the
end, because it will take care of redisplaying the connector.

Responding to Changes 411

TIP Use OnAssociatedPropertyChanged to link shape features
to domain properties

This is the easiest way to make the color, line thickness, and other features
of a shape depend on domain properties.

Why don’t we use some other method to perform this function? For
example, could we define an OnValueChanged() in the Sort domain prop-
erty, and make that update the arrowheads? Well, yes, but (a) it would be
necessary to navigate explicitly the PresentationViewsSubject link
between the model element and the connector, (b) to future-proof that,
we should allow for the possibility of different views on the same model,
and (c) putting the display logic in the main part of the model doesn’t
feel like good separation of concerns. The OnAssociatedPropertyChanged()
method provides you with a convenient way to add relationships between
presentation and model, augmenting the basic facilities of the shape maps.

Rules
Rules are the most general purpose mechanism for propagating and
responding to change within the store. Rules are triggered by changes in
the store such as property value changes, or the creation or deletion of an
object or link, shape, or connector.

In the usual case, the rule executes during the Commit() operation of the
outermost transaction in which the triggering change occurred. A rule can
trigger further firings, which are added to the end of the queue. The trans-
action is completed when the rule firing queue is empty. It is of course pos-
sible for badly organized rules to cause a transaction never to complete,
until the firing queue runs out of space.

Chapter 10: Advanced DSL Customization412

TIP Consider other mechanisms before rules

Because rules can execute in a difficult-to-control order, a large set of
rules can be difficult to debug. So although rules are a powerful and
general mechanism, it’s good to look first for other ways of achieving
the result you want.

Here is the code of a rule. This rule responds to the change of any
shape’s absolute bounds (that is, if it moves or changes shape).

[RuleOn(typeof(NodeShape), FireTime = TimeToFire.TopLevelCommit)]
public sealed class ContainerShapeChangesRule : ChangeRule
{
public override void ElementPropertyChanged

(ElementPropertyChangedEventArgs e)
{
NodeShape stateShape = e.ModelElement as NodeShape;
if (stateShape == null) return;
if (stateShape.Store.TransactionManager.

CurrentTransaction.IsSerializing)) return;

if (e.DomainProperty.Id == NodeShape.AbsoluteBoundsDomainPropertyId)
{
RectangleD oldBounds = (RectangleD)e.OldValue;
RectangleD newBounds = stateShape.AbsoluteBoundingBox;

HandleAbsoluteBoundsChange(stateShape, oldBounds, newBounds);
} }

Notice:

• The RuleOn attribute marks this class as a rule.

• The rule class can be called anything you like, but must inherit from
one of a fixed set of abstract rules.

• The rule is defined on a class (NodeShape, in this case); it does not
have to be separately registered for each instance.

• The code of the rule is entirely separate from the code of the class it
observes.

The RuleOn Attribute

[RuleOn(typeof(NodeShape), FireTime = TimeToFire.TopLevelCommit)]

The attribute specifies the observed class, which may be any domain class,
relationship, shape, connector, or diagram. You cannot specify that a rule
observes a particular property of a class, nor that it observes specific
instances. You must specify the class to which the property you are inter-
ested in belongs. In this case, we specify NodeShape so that we can look at
the AbsoluteBounds properties of the shapes.

NodeShape is the common base class of all shapes. To catch all connec-
tors, use BinaryLinkShape; all connectors or shapes, ShapeElement; all
relationships, ElementLink. ModelElement is the superclass of everything.

You can apply as many rules as you like to the same class. Changes in any
instance of the class (and its subclasses) will trigger all the applied rules.

TopLevelCommit is the usual FireTime, but you can also specify Local-
Commit, which means that the rule executes at the end of the innermost
transaction; or you can specify InLine, which means that the rule executes
as soon as possible after the triggering change.

You can also set a Priority integer. The problem with using priorities is
that you pretty soon get to devising some big table of all the relative priorities
of your rules and start depending on them firing in that order, with one rule
depending on another having set something up. Pretty soon after that, you’re
into rule spaghetti, finding it impossible to debug heaps of rules that fire in
the wrong order. So on the whole, it’s easier to leave the priority at the default
and write your rules not to assume any particular order of execution.

Responding to Changes 413

You can set InitiallyDisabled = true in the RuleOn attribute, and
rules can be turned on and off using the store’s RuleManager. In Chapter 7,
we saw an example where the rule was turned off until the model had
loaded.

store.RuleManager.EnableRule(typeof(ContainerShapeChangesRule));

Rule Types

Each rule must be a subclass of one of a fixed set of base classes. These pro-
vide the means to observe different categories of events. Rule base classes
are listed in Table 10-3.

Chapter 10: Advanced DSL Customization414

Rule base class Fires when

AddRule An element is created. Consider
whether you want to apply this to the
element or the shape that presents it.
If you need to guarantee to fire after the
shape and the element have been
connected, apply an AddRule to
PresentationViewsSubject.

DeleteRule An element has been deleted.

DeletingRule An element is about to be deleted.

ChangeRule A property has been changed.
This applies to ordinary domain
properties.

It doesn’t apply to the role properties
of the class at each end of a relationship;
if you want to observe a link being
created, set Add and Delete rules on the
relationship.

RolePlayerChangeRule The roleplayer of a link changes.

RolePlayerPositionChangedRule The ordering of links sourced at a
particular object is changed.

MoveRule An object has been moved from one
store partition to another.

Table 10-3: Rule Types

Responding to Changes 415

Rule base class Fires when

TransactionBeginningRule Start of a transaction.

TransactionCommittingRule Successful end of a transaction.

TransactionRollingBackRule Rolled back transaction.

Rule Body

The name of the method you override and its parameter type vary between
rule types. Type “override” and let IntelliSense do the rest! For a ChangeRule,
you get the model element that has changed, the Id of the property that has
changed, together with its old and new values.

Remember to test the domain property Id, because the method will be
called for every property of the class. Every domain property has a domain
property Id, that is a static constant of its declaring class. In addition to the
domain properties you have declared in your DSL, there is a small selection
of predefined properties on the base classes. NodeShape has two such
properties—AbsoluteBounds and IsExpanded—which in the method
arguments are identified by their Ids AbsoluteBoundsDomainPropertyId

and IsExpandedDomainPropertyId.
This example responds to changes in the location of a shape.

public override void ElementPropertyChanged
(ElementPropertyChangedEventArgs e)

{
NodeShape stateShape = e.ModelElement as NodeShape;
if (stateShape == null) return;
if (stateShape.Store.TransactionManager.

CurrentTransaction.IsSerializing)) return;

if (e.DomainProperty.Id == NodeShape.AbsoluteBoundsDomainPropertyId)
{
RectangleD oldBounds = (RectangleD)e.OldValue;
RectangleD newBounds = stateShape.AbsoluteBoundingBox;

HandleBoundsChange(stateShape, oldBounds, newBounds);
} }

Rules and Calculated and Custom Storage Domain Properties

Store rules and events cannot be set on calculated or custom storage
properties. Instead, you need to set rules on the sources of the values.

Rules and Transactions

Every rule fires within the transaction that triggered it. This means that
from the user’s point of view, the effects of the rules are all part of the same
change as their trigger. In this example, moving a shape moves all those
contained within it. If the user clicks the “Undo” button, all the shapes
move back to their original places.

An alternative approach would have been to use the OnAbsoluteBounds-
Changed event. This works after the original transaction has completed—to
make any changes to the store (such as shape locations), you have to open
another transaction. This means that if the user then clicks “Undo,” the con-
tained shapes would be shifted back but the original move of the container
shape would not. If this is the effect you want, don’t use a rule.

Rules are not called as a result of changes in an undo or redo, or when a
transaction is being rolled back. The assumption is that all the changes you
make in a rule are to other values within the store; the undo manager will
reset these to their former values, so there should be no need to call any rules.

For this reason, you should not use rules to change values that are out-
side the store. This would be other values in your application such as file
contents or some of the purely graphical properties of the shapes such as
color or line thickness.

Transaction Context

Rules are a very powerful facility, but one of the difficulties working with
rules is in passing information between rules, and between the triggering
events and the rules. For this reason, each transaction carries a general
dictionary to which you can attach information. Transactions can be nested,
so it’s best always to make sure you’ve got hold of the outer one:

stateShape.Store.TransactionManager.
CurrentTransaction.TopLevelTransaction.Context.ContextInfo

You can get to the transaction from any domain class instance through the
store. You may need to check that there is a current transaction first! The

Chapter 10: Advanced DSL Customization416

ContextInfo is a Dictionary <object, object>. In simpler cases, you
might just use the top-level transaction name to check the reason your rule
has been triggered.

Registering a Rule

To ensure a rule runs, you need to register it with your domain model class.
(Check in the generated DomainModel.cs for its name.)

public partial class StateChartsDomainModel
{

protected override Type[] GetCustomDomainModelTypes()
{

return new System.Type[] { typeof(ContainerShapeChangesRule) };
}

}

If you have a lot of rules, you can cook up a reflexive mechanism that
returns all the rule types so that you don’t have to add them all to this array
manually.

Store Events
Store events are similar to rules, but are called after the completion of the
originating transaction and are called on any subsequent undo or redo.

Responding to Changes 417

TIP

Unlike rules, store events are good for keeping non-store values in line
with the objects and properties in the store

Like rules, store events are defined on a per-class basis. You don’t have
to register the observer with each object it is observing, and you don’t have
to modify the class you are observing.

In this example, we set up a change handler to deal with changes in any
domain properties of the State domain class. Notice that we put this in the
DocData class, which manages the loading of the document.

public partial class DocData
{
// Called once on loading.

protected override void OnDocumentLoaded(EventArgs e)
{
base.OnDocumentLoaded(e);
Store store = this.Store;

DomainClassInfo observedClassInfo =
this.Store.DomainDataDirectory.FindDomainClass(typeof(State));

this.Store.EventManagerDirectory.ElementPropertyChanged.Add
(observedClassInfo,
new EventHandler<ElementPropertyChangedEventArgs>

(StateChangeHandler));
}

private static void StateChangeHandler
(object sender, ElementPropertyChangedEventArgs e)

{
State changedElement = e.ModelElement as State;
if (e.DomainProperty.Id == State.NameDomainPropertyId)
{

// Do stuff to things outside store.
}

} }

Substitute for ElementPropertyChanged and ElementPropertyChanged-
EventArgs to listen for different events. The flavors of events that can be
handled are:

• ElementAdded

• ElementDeleted

• ElementMoved

• ElementPropertyChanged

• RolePlayerChanged

• RolePlayerOrderChanged

• ElementEventsBegun

• ElementEventsEnded

• TransactionBegun

• TransactionCommitted

• TransactionRolledBack

The corresponding argument types are called “<event name>EventArgs.”

Chapter 10: Advanced DSL Customization418

Generally, if you want to respond to the same event with some work
both on external and on in-store elements and their properties, then it’s best
to set up a separate rule for the in-store material. However, if you do want
to work on the store elements from the event, bear in mind that you must
create a transaction to do it in, and you should not perform those actions if
the event is called as a result of an undo or redo:

// Do things in Store, but not in Undo
if (!changedElement.Store.InUndoRedoOrRollback)
{
using (Transaction t =
this.Store.TransactionManager.BeginTransaction("event x"))
{
// Do things here to domain elements and shapes.
// ...
t.Commit();

} }

.NET Event Handlers
There are a number of .NET events that you can use, particularly in the
shape classes. They mostly report user interface events like mouse and
keyboard actions. They all happen outside any transaction, so if you want
to use them to change a property, element, or link, you need to open
a transaction. This kind of event will not normally be called on undo,
since it originates outside the store, so we don’t need to guard against
UndoRedoOrRollback.

public partial class StateShape
{
protected override void InitializeInstanceResources()
{
base.InitializeInstanceResources();
this.DoubleClick += StateShape_DoubleClick;

}
void StateShape_DoubleClick(object sender, DiagramPointEventArgs e)
{
StateShape shape = sender as StateShape;

// Do things here to non-store objects, outside transaction.
// ...

using (Transaction t =
this.Store.TransactionManager.BeginTransaction("double click"))

Responding to Changes 419

{
// Do things here to domain elements and shapes.
// ...
t.Commit();

}
}

}

Although in this example, the listener is the object itself, an advantage of an
event handler is that you can set it up from any object to listen to any other
object without changing the observed object’s code. However, the event
listener has to be set up separately for each instance.

Events are available on shapes, connectors, and diagrams for Absolute-
BoundsChanged, Click, DoubleClick, KeyDown, KeyPress, KeyUp, MouseDown,
MouseMove, MouseUp, and MouseWheel.

Event Overrides
A simpler approach in cases where the listening code can be in the subject
class is to override the event-raising method. For each event, there is a corre-
sponding On<event name> method. In addition, there are some others, inclu-
ding BoundsFixup, Begin/EndEdit, ChildConfigured/ing, ShapeInserted/
Removed, and a variety of drag, mouse, keyboard, and painting events.

Always be sure to call the base method.

public override void OnDoubleClick(DiagramPointEventArgs e)
{

base.OnDoubleClick(e);
Diagram d = e.DiagramClientView.Diagram;
// respond to event ...

}

Bounds Rules
A bounds rule is used to constrain the location or dimensions of a shape in
response to a user gesture. It is very specific to this function, providing feed-
back in the “rubber band” as the user drags a corner to alter the shape. (As
such it is rather different from the other change propagation mechanisms in
this section, but we include it here because if we didn’t, you might think some
of the other types of rules look like a reasonable way to achieve the effect!)

For example, in the Task Flow DSL, there is an object called “synchro-
nization bar.” (It represents where a flow splits into concurrent threads or
where they join again.) The shape is ideally a solid bar of fixed dimensions,
but it can be used either horizontally or vertically (Figure 10-4).

Chapter 10: Advanced DSL Customization420

Responding to Changes 421

Figure 10-4: Synchronization bars can be horizontal or vertical.

In the template that comes with the DSL Tools, the shape is represented
by a rectangular geometry shape (with shadow and shading turned off).
Unfortunately, the user can change the shape to any size or shape—we
would prefer only to allow two alternatives, the horizontal and vertical. By
adding a bounds rule, we can ensure that the user can only achieve two
shapes (Figure 10-5).

Figure 10-5: This bounds rule constrains

the shape to two alternatives.

A bounds rule is represented by a class. To attach it to a class, override the
BoundsRules property of the Shape class.

public partial class SyncBarShape
{

/// <summary>
/// Provide a specialized rule that constrains the shape and/or
/// location of an element.
/// </summary>

public override BoundsRules BoundsRules
{
get

{
return new SyncBarBoundsRule();

}
}
}

The rule class itself has one method, GetCompliantBounds():

/// <summary>
/// Rule invoked when a shape changes its bounds.
/// Provides real-time mouse rubber-band feedback, so must work fast.
/// </summary>
public class SyncBarBoundsRule : BoundsRules
{
public override RectangleD GetCompliantBounds(ShapeElement shape,

RectangleD proposedBounds)
{
double thickness = 0.1;
if (proposedBounds.Height > proposedBounds.Width)
{
// There is a minimum width for a shape; the width will
// actually be set to the greater of thickness and that minimum.
return new RectangleD(proposedBounds.Location,

new SizeD(thickness, proposedBounds.Height));
}
else
{
// There is a minimum height for a shape; the height will
// actually be set to the greater of thickness and that minimum.
return new RectangleD(proposedBounds.Location,

new SizeD(proposedBounds.Width, thickness));
}

}
}

When you run the code, you’ll find that the shape is constrained while you
drag the corners; it doesn’t go wherever you drag it and then snap to shape
afterwards. The rule is being invoked repeatedly as you drag the corner. For
this reason, it’s a good idea to make the code perform pretty snappily!

While this rule constrains the size or relative lengths of the shape, you
could equally write a bounds rule that constrains the location of the shape.
For example, you could anchor a shape to part of a container or neighbor.
In the case where the user drags the whole shape, the rule is only executed
once, when they let go.

Notice that there are two distinct cases—either users move the whole
shape, or they drag a corner or a side to alter the lengths of its boundaries. In

Chapter 10: Advanced DSL Customization422

the case of a whole-shape move, the bounds rule is invoked once, and the
lengths of the sides will not have changed. In the case of a side-length adjust-
ment, the bounds rule is invoked repeatedly, and the side lengths vary. Within
the rule, you can work out which case is happening by comparing the old and
new side lengths; but remember that, as with any values of double or float
types, it can be unreliable to compare for equality without some rounding.

Bounds Rules on Ports

You can apply a bounds rule to a port, for example, to fix or constrain it to
a particular location on the parent shape. Your rule overrides the normal
port positioning constraints.

Notice the following:

• The property ParentShape navigates from the port shape to its
parent. It may be null when the child shape is first created.

• The location of the port shape that you should return is relative to
the location of the parent.

This also applies to other kinds of child shape, although you can’t create
these without custom code in the present version of the DSL Tools. This
example comes from the Components sample that comes with the DSL Tools:

public class InPortBoundsRules : BoundsRules
{
public override RectangleD GetCompliantBounds

(ShapeElement shape, RectangleD proposedBounds)
{
InPortShape portShape = shape as InPortShape;
ComponentShape parentShape =

portShape.ParentShape as ComponentShape;
// on initial creation, there is no parent shape
if (parentShape == null) return proposedBounds;

double x = Math.Min(
Math.Max(proposedBounds.Left, proposedBounds.Width * 0.5),
parentShape.AbsoluteBoundingBox.Width

- proposedBounds.Width * 1.5);
double y = parentShape.AbsoluteBoundingBox.Height

- proposedBounds.Height * 0.5;
return new RectangleD(x, y,

proposedBounds.Width, proposedBounds.Height);
}

}

Responding to Changes 423

Undoable Changes

You’ll be familiar with the way Microsoft Word adjusts your quotation
marks or indenting as you type. Sometimes you really did want what you
typed in the first place, so you can undo the (sometimes irritating!) adjust-
ment. You may want to provide the same facility in your DSL. The user
moves the shape; you shift it to an “approved” place; then the user may
press Ctrl+Z to undo your adjustment—she really does want it where she
put it, thank you.

To do this, override OnAbsoluteBoundsChanged in your Shape class. This
method is called after the close of the transaction in which the user’s move
happened. Therefore, you must make your adjustment inside a new trans-
action. This means that if the user calls undo afterwards, the first undo
will apply only to your adjustment, and another will undo the original
move.

public override void
OnAbsoluteBoundsChanged(AbsoluteBoundsChangedEventArgs e)

{
base.OnAbsoluteBoundsChanged(e);

// Decide whether to adjust
if (e.NewAbsoluteBounds.Height > e.OldAbsoluteBounds.Width)
{
// Now outside the original transaction; so open another.
using (Transaction t =
this.Store.TransactionManager.BeginTransaction

("adjust shape"))
{

// Make adjustment
// ...

t.Commit(); // Don't forget to commit
// – notice BoundsRules will be called again here

}
}

}

Summary of Change Propagation and Constraint Techniques
Table 10-4 summarizes the techniques we have discussed for propagating
changes and applying hard constraints.

Chapter 10: Advanced DSL Customization424

Runs in
Need to modify originating

Technique observed class transaction Good for Not so good for

Calculated properties * Yes Plain property values.

Custom Storage * Yes Plain property values.

OnValueChanged() Yes—override Yes Domain Not predefined properties like
properties. shape bounds.

OnAssociated- No Yes Shapes and connectors
PropertyChanged() monitor MEL.

Rules No Yes Change Changes outside the store; changes
within the store. that should be undoable separately

from the original action.

Store Event handlers No No Change outside the store. Changes inside the store.

.NET events No No UI—mouse and Must register
keyboard events. per instance.

OnXXX() Yes—override No Changes after
the transaction.

Bounds Rules Yes—initialize yes Shape bounds constraints. Change propagation.

* Calculated and Custom Storage properties don’t by themselves require modification of the observed class, but you usually need to supply some means of
calling NotifyValueChange() to propagate changes. This could be done with a non-modifying rule, or it could be done using OnValueChanged(), as we
illustrated earlier.

Table 10-4: Change Propagation and Constraint Techniques

Chapter 10: Advanced DSL Customization426

The next few customizations aren’t limited to your DSL definition and
its diagram; they’re more strongly tied to the way your DSL is integrated
into the Visual Studio environment. To this end, it’s helpful before going
further to have a better understanding of what a DSL actually is from the
point of view of the IDE and its extensibility mechanisms.

DSL Shell Architecture

Visual Studio is a highly extensible tool platform. The product feels like
a single integrated tool when you use it out of the box, but actually it’s
based on a core IDE shell and a set of extensibility plug-ins called packages
that provide most of the functionality, such as the C# code editor and
project system, the Windows Forms GUI builder, and the RAD database
tools.

A Visual Studio package is simply a DLL that contains classes that
implement a well-defined set of interfaces to enable them to integrate into
the IDE. Packages can be used to add or extend almost any kind of func-
tionality within the IDE, such as new editors, programming languages, tool
windows, debuggers, and so on. The Visual Studio SDK that the DSL Tools
is contained in is primarily concerned with providing facilities to make this
task easier. You can find much more information in the SDK’s included doc-
umentation and also online at the Visual Studio 2005 Extensibility Center at
http://msdn2.microsoft.com/en-us/vstudio/aa700819.aspx.

The DSL Tools add a new editor for your DSL by creating a Visual Studio
Package. You can find this in the DslPackage/GeneratedCode/Package.cs
file of your DSL solution. We generally refer to the way the DSL is inte-
grated into the IDE as the shell, because the IDE is providing an outer shell
for your language. You’ll find the base classes for code in this area in the
Microsoft.VisualStudio.Modeling.SDK.Shell.dll.

The key elements of a package declaration look like this:

[DefaultRegistryRoot("Software\\Microsoft\\VisualStudio\\8.0")]
[PackageRegistration(RegisterUsing = RegistrationMethod.Assembly,
UseManagedResourcesOnly = true)]

[ProvideToolWindow(typeof(MyDSLExplorerToolWindow),
MultiInstances = false,
Style = VsDockStyle.Tabbed,
Orientation = ToolWindowOrientation.Right,

http://msdn2.microsoft.com/en-us/vstudio/aa700819.aspx

Window = "{3AE79031-E1BC-11D0-8F78-00A0C9110057}")]
[ProvideToolWindowVisibility(typeof(MyDSLExplorerToolWindow),
Constants.MyDSLEditorFactoryId)]

[ProvideEditorFactory(typeof(MyDSLEditorFactory), 103,
TrustLevel = __VSEDITORTRUSTLEVEL.ETL_AlwaysTrusted)]

[ProvideEditorExtension(typeof(MyDSLEditorFactory),
"." + Constants.DesignerFileExtension, 32)]

[RegisterAsDslToolsEditor]
[ComVisible(true)]
internal abstract partial class MyDSLPackageBase : ModelingPackage
{
protected override void Initialize()
{
base.Initialize();

// Register the editor factory used to create the DSL editor.
this.RegisterEditorFactory(new MyDSLEditorFactory(this));

// Create the command set that handles menu commands
// provided by this package.
MyDSLCommandSet commandSet = new MyDSLCommandSet(this);
commandSet.Initialize();

// Register the model explorer tool window for this DSL.
this.AddToolWindow(typeof(MyDSLExplorerToolWindow));

...

}
...

}

You can see that the package class has a lot of custom .NET attributes
applied to it. The way Visual Studio is told about the existence and facilities
of packages is primarily by creating a set of registry entries under the
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\VisualStudio\8.0 key. This
activity is known as package registration. These attributes (derived from
the base class RegistrationAttribute) provide a handy way of defining
those registry entries in a relatively human-readable and easily main-
tainable fashion. They enable the DSL Tools to build infrastructure to
extract the data and create the registry entries. This is done on the fly during
a build in the IDE and also as part of creating a setup program for your DSL
tool.

The package is the entry point into Visual Studio for your DSL and you
can see from the preceding code that it has registry attributes declaring the

DSL Shell Architecture 427

existence of several other interesting items that are then created in the
Initialize() method:

• EditorFactory—Creates instances of your DSL editor via the
DocData and DocView classes

• CommandSet—Implements menu commands in your DSL

• ToolWindow—Adds extra non-editor windows (in this case, your
DSL explorer)

Figure 10-6 shows how these pieces fit together.

Chapter 10: Advanced DSL Customization428

DslPackage
ToolWindow

CommandSet

EditorFactory

DocData

DocView

Store

Diagram

DslPackage

Figure 10-6: Shell architecture of a typical DSL tool

As we’ve seen, the package class registers the editor factory, tool
windows, and command set. Visual Studio instantiates your package class
as a singleton and also hooks it into the standard IServiceProvider mech-
anism to allow it to access other Visual Studio facilities (and provide its own
services for use by other parts of Visual Studio, if desired). The package
creates instances of the EditorFactory and CommandSet directly, but any
tool windows are actually instantiated by Visual Studio; the package
simply tells the system about their type.

The EditorFactory class is rather simple since it is, as its name implies,
just a factory for your custom DSL editor. The editor itself comes in two
parts, a DocData and a DocView.

The DocData class is your DSL’s backing store manager. It provides the
entry points for loading and saving model and diagram files and manages
the instance of the in-memory store in which your MELs live.

How to Add a Menu Command 429

The DocView class represents the open window in Visual Studio,
visualizing your diagram. It typically has a 1-1 relationship with the
diagram instance within your store.

How to Add a Menu Command

The examples in this section are taken from the Class Diagrams sample that
comes with the Visual Studio SDK (and can be found in the Samples
Browser). This sample extends the plain Class Diagrams template solution
in several ways.

Class diagrams have several sorts of association: aggregations, compo-
sitions, unidirectional, and bidirectional. In the template solution (that is,
the one you get if you choose “Class Diagrams” in the wizard when you
create a new DSL), each of these four sorts is separately implemented, with
its own toolbox entry, its own domain relationship, and its own connector.
The drawback of this arrangement is that if you want to change the sort of
an association, all you can do is delete it and draw another one.

So in the Class Diagrams sample, there is a single class of association,
but the sort is represented by an enumeration property. The user can
change it either in the properties window, or by choosing the sort from a
context menu. When the sort is changed, the line-ends (diamonds or
arrows) change automatically.

The menu items appear when at least one association is selected (see
Figure 10-7), and the change is applied to all associations selected.

Figure 10-7: Class diagrams example, with context menu on association

Add a Command Id for Each Command
In DslPackage\CtcComponents\Commands.ctc, under the #include direc-
tives, add a line for each new command that looks like the following. The
integer must be unique for commands in your DSL:

#define AssociationSortBidirectional 1

The Class Diagrams sample defines four commands in this way.
In the same file, add under “BUTTONS” an entry for each command like this:

guidCmdSet:AssociationSortBidirectional,
guidCmdSet:grpidContextMain,
0x0200,
OI_NOID,
BUTTON,
DIS_DEF,
"Set to Bidirectional" ; # Menu text

Notice that most of the content in this file (including the definitions of the
constants) comes from the inclusion of GeneratedCode\GeneratedCmd.h and

<VS SDK>\VisualStudioIntegration\Common\inc\DSLToolsCmdId.h.

Compare your entry with other lines in these files.
The first item on each line identifies the command. The prefix guidCmdSet

qualifies it with a Guid unique to this DSL, and is defined in Dsl\Generated-
Code\GeneratedCmd.h. The last item is the text that will appear on the menu.

More information about the Command Table Configuration (CTC) file
(.ctc) can be found in the online MSDN Library (http://msdn.microsoft.
com) under Development Tools and Languages>Visual Studio>Visual Stu-
dio SDK>Visual Studio Integration>Menu and Toolbar Commands. You
can also install these help files locally with the Visual Studio SDK.

Increment Menu Resource Index
Whenever you change the CTC file, it is necessary to increment the second
integer in this line in DslPackage\GeneratedCode\Package.tt. (You do not
need to do this when you are changing the code in the handlers of a com-
mand you have already defined.)

[VSShell::ProvideMenuResource(1000, /* Increment this: */ 5)]

Chapter 10: Advanced DSL Customization430

http://msdn.microsoft.com
http://msdn.microsoft.com

This causes the Visual Studio menu cache to be reset when the package
builds or installs.

As we mentioned earlier, “Provide…” attributes on the package are exe-
cuted by regpkg during a build. The ProvideMenuResource attribute runs
the compiled version of the CTC file. This places the commands into the
Visual Studio command cache. The cache persists between runs of VS; this
is because some packages require their commands to be visible even before
the package is loaded so that a command can load and start its package.
Because executing the cache update can be a lengthy operation, the
ProvideMenuResource attribute doesn’t bother unless it notices a change of
version. Running devenv/setup has the effect of rerunning all the com-
mand attributes for all the known packages.

Add Commands to Command Set
Add a new class file to CtcComponents. Ensure the namespace ends with
DslPackage. (Delete the .CtcComponents that will have automatically been
generated when you created the file.) Add using statements as shown here.

namespace Microsoft.Example.ClassDiagrams.DslPackage
{
using System;
using System.Collections.Generic;
using System.Text;
using System.ComponentModel.Design;
using Microsoft.VisualStudio.Modeling;
using Microsoft.VisualStudio.Modeling.Shell;

Create a partial class definition for YourLanguageCommandSet, marking it
internal. (The other part of the definition is in GeneratedCode\Command-
Set.cs). In this class, define a constant that has the same name and value as
you defined in the CTC file for each command.

Override GetMenuCommands(). This method is called once when the
designer starts and registers handlers for each command. First get the com-
mand list from the base method, and then add your own command.

internal partial class ClassDiagramsCommandSet
{
private const int AssociationSortBidirectional = 1;
protected override IList<MenuCommand> GetMenuCommands()
{
// Get command list from base method.

How to Add a Menu Command 431

IList<MenuCommand> commands = base.GetMenuCommands();

// Add my own menu item.
commands.Add(new DynamicStatusMenuCommand(

new EventHandler(OnStatusChangeAssociationSort),
new EventHandler(OnMenuChangeAssociationSort),
new CommandID(new Guid(Constants.ClassDiagramsCommandSetId),

AssociationSortBidirectional));

// For each separate menu item, add a new command here....
}

Notice that the actual CommandID is created from the Guid shared by all the
commands in your DSL, and the integer you have assigned to the com-
mand. This makes it unique in the system.

To use this program code, you need to replace AssociationSort-
Bidirectional with a name for your own command, ClassDiagrams with
the name of your language, and OnStatusChangeAssociationSort and
OnMenuChangeAssociationSort with handler names appropriate to your
commands. In the Class Diagrams sample, there are four menu items reg-
istered in GetMenuCommands, with four separate command Ids. Typically,
you would create a separate pair of handlers for each command, but in this
example it is convenient for them to share the same code.

Define the Command Handlers
Define the command handlers in the same class. If your commands are
complex, you may prefer to move the bulk of the code into a separate class.

You need an OnStatus… and an OnMenu… handler for each command;
the first determines whether the command should be listed when the user
clicks the right mouse button, and the second performs the command when
the user clicks the menu item.

The OnStatus… handler should query the current selection to see
whether the command is applicable, based on the selection’s type and cur-
rent state. Decide whether the menu item should be visible and enabled
(that is, not greyed out) and set the appropriate flags like this:

/// <summary>
/// Called by the framework command handler to ask if this menu item
/// should be displayed.
/// This method was registered in GetMenuCommands.
/// </summary>

Chapter 10: Advanced DSL Customization432

internal void OnStatusChangeAssociationSort(object sender, EventArgs e)
{
MenuCommand command = sender as MenuCommand;
command.Visible = false; // Default not visible.
// Alternatively, we could leave it always visible, but:
command.Enabled = false; // Default greyed out.

foreach (object selectedObject in this.CurrentSelection)
{
// We'll get a mixed bag of connectors and shapes –
// just deal with the ones we're interested in.
AssociationConnector associationConnector =

selectedObject as AssociationConnector;
if (associationConnector != null)
{
// We could do more checks on its state here.

command.Visible = command.Enabled = true;
break; // Found one -- that's all we need!

}
}
// Visible and Enabled flags passed back to menu.

}

The OnMenu… handler should perform the command on each applicable
member of the current selection. (There may be other items selected at the
same time.)

Note that any change to a model item must be done within a transaction.
The selection is a set of shapes and connectors, but you normally want

to operate on a shape or connector’s subject—in this case, the Association
rather than the AssociationConnector.

///<summary>
/// Called to execute a command when the user selects the menu item.
/// This method is registered in GetMenuCommands.
///</summary>
internal void OnMenuChangeAssociationSort(object sender, EventArgs e)
{
MenuCommand command = sender as MenuCommand;

// All changes must be done within a Transaction
using (Transaction transaction =

this.CurrentClassDiagramsDocData.Store.TransactionManager.
BeginTransaction("Change Association Sort menu command"))

{
// There may be a mixed bag of shapes and connectors.
foreach (object selectedObject in this.CurrentSelection)

How to Add a Menu Command 433

{
// Filter the ones we're interested in.
AssociationConnector connector =

selectedObject as AssociationConnector;
if (connector != null)
{
// Navigate to the Association that this Connector presents.
Association association = connector.Subject as Association;
if (association != null) // Just in case....
{
// This same handler is registered for several commands.
// What we want to do now depends on which command.
switch (command.CommandID.ID)
{
case AssociationSortBidirectional:
association.Sort = AssociationSort.Bidirectional;
break;

// ... code for the other cases here ...

}
}
// else ignore other types in the selection

}
} // Change every applicable object in the selection.

transaction.Commit(); // Don't forget this!
}

}

Good Practices for Command Handlers
• Make changes inside a transaction. Give it a descriptive name.

• Make changes only to the model (the domain class and domain
relationship instances), not their presentation on screen. There should
be separate rules or event handlers that keep the presentation up to
date with the model, and they will be applied when the transaction
closes.

• In the Class Diagrams sample, this causes the line-ends to change,
because of the custom OnAssociatedPropertyChanged handler in
AssociationConnector.

• Generally, define a separate pair of handlers for each menu com-
mand. Share the handlers between menu items (as in the example)
only if there is little of the code that varies.

• If the handlers are big and complex, move them into a different class
and put the code in a custom code file.

Chapter 10: Advanced DSL Customization434

• Don’t forget that the current selection may include multiple shapes
and connectors of different types.

Build and Run
The command should appear in the diagram’s context menu (right-click)
whenever the OnStatus...() method sets the flags to true. (In the Class
Diagram sample, this is whenever an Association is selected.)

Normally, clicking the right mouse button selects the single object
underneath the arrow. But you can select multiple items by pressing the
control key at the same time.

Providing Handlers for Standard Commands
Each command has a Guid and an index number; the combination must be
unique. The Guid identifies a series, and the index number is any short inte-
ger. For your own DSL commands, a Guid is assigned and defined as Cir-
cuitsCommandSetId in Constants.cs in the generated code of DslPackage,
and also as guidCmdSet in GeneratedCmd.h. (It’s important that the two are
the same.) In the CTC file, we used that Guid to define our own command.

But in Chapter 5, we implemented the Copy and Paste commands, and
called them from the standard Edit menu, or by pressing the usual key
combinations. To do this, you don’t need to add anything to the CTC file—
the commands already exist. You just need to add the OnStatus and OnMenu
handlers to your CommandSet.

But you do need to know the Guid and index for the commands you want
to implement. The commands are all listed in Program Files\Visual Studio-
2005 SDK*\VisualStudioIntegration\Common\Inc. The two files of interest
there are stdidcmd.h, which contains the Windows standard command Ids,
and vsshlids.h, which identifies the standard Visual Studio commands.

Building the DSL Diagram into Another Interface

You can embed your DSL diagram inside a standard Windows control,
which displays as a Visual Studio document.

First make a User Control file inside your DslPackage project. In solu-
tion explorer, right click on DslPackage, click the “Add menu” item, and
choose the “User Control template.” Using the usual WinForms editor, add

Building the DSL Diagram into Another Interface 435

your buttons, menus, and so on, and a panel into which the DSL window
will appear.

Add a public property into the User Control to let you get and set the
content of the panel, or put it in a constructor. While you’re there, add a
property to let you keep a reference to a DiagramDocView.

The extra code looks like this:

public partial class MyContainerControl : UserControl
{
public MyContainerControl()
{
InitializeComponent();

}
// Start of my extras
private DiagramDocView docView;
public DiagramDocView { get { return docView; } }

public MyContainerControl(DiagramDocView docView, Control content)
: this()

{
this.docView = docView;
panel1.Controls.Add(content);

}
}

Now add a partial class definition for your DocView class, and override
Window. It should return your ContainerControl. If the control doesn’t exist
yet, it should create it and put the base.Window inside it.

internal partial class WinformDSL1DocView
{
private ContainerControl container;
/// <summary>
/// Return a User Control instead of the DSL window.
/// The user control will contain the DSL window.
/// </summary>
public override System.Windows.Forms.IWin32Window Window
{
get
{
if (container == null)
{

// Put the normal DSL Window inside our control
container = new ContainerControl(this,

(System.Windows.Forms.Control) base.Window);
}
return container;

} } }

Chapter 10: Advanced DSL Customization436

At this point, the DSL should display nicely inside the form.
Now you’ll probably want to access the store contents from buttons and

so on, on the form:

private void button1_Click(object sender, EventArgs e)
{
ExampleModel modelRoot =

this.docView.CurrentDiagram.ModelElement as ExampleModel;
foreach (ExampleElement element in modelRoot.Elements)
{
listBox1.Items.Add(element.Name);

}
}

Implementing Copy and Paste

To make cut, copy, and paste work on your DSL, you need to do the fol-
lowing:

• Write a copy and/or cut handler to push serialized elements onto
the clipboard.

• Write a paste handler to get things from the clipboard.

• Register the menu handlers.

The handlers should be added as custom code to the DslPackage project.

The Copy Method
Copy and paste work by storing an element group prototype (EGP) on the
clipboard. We met EGPs in the discussion of custom tools, where an EGP
containing several objects can be placed in the toolbox, and the Copy()
method is very similar to toolbox initialization (see Chapter 5).

Let’s first look at what the methods do, and then discuss where to put
them and how they are invoked.

The Copy() method looks through all the items in the current selection
and picks out those that present items of interest. Of course, the selection
contains shapes and connectors, so we need to look at the corresponding
ModelElements. This example is drawn from the circuit diagrams example
we looked at earlier in which the transistors, resistors, and so on all have
Component as their common base class. The AddGraph() method automati-
cally adds embedded children (ComponentTerminals in this case), together

Implementing Copy and Paste 437

with the links to them. (Recall also the Add() method that can be used to
add elements one by one.) Once an ElementGroup has been constructed, it
is turned into a Prototype and serialized onto the clipboard.

The Cut() method (which you might like to try!) will do essentially the
same as Copy(), but is followed by deleting the selection. The most general
way of doing this is to apply the MergeDisconnect() method that we
discussed earlier.

internal partial class CircuitsCommandSet
{
internal void OnMenuCopy(object sender, EventArgs e)
{
Diagram diagram = this.CurrentDocView.CurrentDiagram;
bool foundSome = false;
ElementGroup elementGroup = new ElementGroup(diagram.Partition);
foreach (object o in this.CurrentSelection)
{
// Pick out shapes representing Component model elements.
ShapeElement element = o as ShapeElement;
if (element != null && element.ModelElement != null

&& element.ModelElement is Component)
{

// add the element and its embedded children to the group
elementGroup.AddGraph(element.ModelElement, true);
foundSome = true;

}
}
if (!foundSome) return;

// A DataObject carries a serialized version.
System.Windows.Forms.IDataObject data =

new System.Windows.Forms.DataObject();
data.SetData(elementGroup.CreatePrototype());
System.Windows.Forms.Clipboard.SetDataObject

(data, // serialized clones of our selected model elements
false, // we don't want to export outside this application
10, // retry 10 times on failure
50); // waiting 50ms between retries

}
}

The Paste Method
The Paste() method extracts the data from the clipboard, tests whether it
can be merged, and if so, merges it within a transaction.

Chapter 10: Advanced DSL Customization438

internal void OnMenuPaste(object sender, EventArgs e)
{
Diagram diagram = this.CurrentDocView.CurrentDiagram;
if (diagram == null) return;

System.Windows.Forms.IDataObject data =
System.Windows.Forms.Clipboard.GetDataObject();

DesignSurfaceElementOperations op = diagram.ElementOperations;
if (op.CanMerge(diagram, data))
{
// Find a suitable place to position the new shape.
PointD place = new PointD(0,0);
foreach (object item in this.CurrentSelection)
{
ShapeElement shape = item as ShapeElement;
if (shape != null)
{
place = shape.AbsoluteBoundingBox.Center;
break;

}
}
using (Transaction t = diagram.Store.

TransactionManager.BeginTransaction("paste"))
{
// Do the business.
op.Merge(diagram, data, PointD.ToPointF(place));
t.Commit();

} } }

There are a couple of surprises here. First, we are merging into the diagram—
not the model root—even though it was model elements that we saved to the
clipboard rather than shapes. The second surprise is that this works!

The reason we want to merge into the diagram is that it gives us some
control over where the new shapes will appear. In this example, we place
the new shape’s top left corner over the center of the current selection.

The reason it works is that we are using the utility class Design-
SurfaceElementOperations to supervise the merge. It knows about the
PresentationViewsSubject relationship and the view fixup rule, and can
locate the shapes created from the model elements. It can also handle merg-
ing into the model root if we prefer, and in that case would find some spare
space on the diagram to put the new shapes. It also ensures that the new
elements have new names (because our DSL definition marks the Name
property with the “Is Element Name” flag).

Implementing Copy and Paste 439

(OK, that’s a bit glib. Of course the new shapes are not created until the
view fixup rule fires inside the transaction Commit(). So what the merge
operation does is to hang some context information off the transaction.
Transactions have a dictionary called Context, which is a miscellaneous
hook for transferring information between rules. When the fixup rule fires
and creates a new shape for the new model element, it looks for the context
information and, if found, uses it to place the new shape. If you run in
debug, break just on the Commit() and look at the transaction Context,
you’ll find the paste location under DropTargetContext.)

Registering the Menu Handlers
Our Copy() and Paste() methods must be registered as implementors of the
standard copy and paste commands. To register the handlers, we need to
know the Guid of the command group to which the Copy and Paste com-
mands belong and their individual identity numbers within that group.
This information can be found within your installation of Visual Studio-
2005 SDK\200*.*\Visual StudioIntegration\Common\Inc\stdidcmd.h.

Our methods need to be added to the XXXCommandSet (where XXX is the
DSL name, Circuits, in this example) within the DSLPackage project. Create
a partial definition of this class in a new file in that project.

In that class, we override the GetMenuCommands() method. The job of this
method is to accumulate a list of handlers for menu commands. After get-
ting the list inherited from the base method, we add our own. There is a
pair of handlers for each command: OnStatusX and OnMenuX.

// In DSL Package project
using System;
using System.Collections.Generic;
using System.ComponentModel.Design;
using Microsoft.VisualStudio.Modeling;
using Microsoft.VisualStudio.Modeling.Diagrams;
using Microsoft.VisualStudio.Modeling.Shell;
internal partial class CircuitsCommandSet
{
// From VSSDK*\VisualStudioIntegration\Common\inc\stdidcmd.h
private const string guidVSStd97 =

"5efc7975-14bc-11cf-9b2b-00aa00573819";
private const int cmdidCopy = 15;
private const int cmdidCut = 16;
private const int cmdidPaste = 26;

Chapter 10: Advanced DSL Customization440

protected override IList<MenuCommand> GetMenuCommands()
{
// Add to the list from base.
IList<MenuCommand> commands = base.GetMenuCommands();

commands.Add(new DynamicStatusMenuCommand(
new EventHandler(OnStatusCut),
new EventHandler(OnMenuCut),
new CommandID(

new Guid(guidVSStd97),
cmdidCut)));

commands.Add(new DynamicStatusMenuCommand(
new EventHandler(OnStatusPaste),
new EventHandler(OnMenuPaste),
new CommandID(

new Guid(guidVSStd97),
cmdidPaste)));

commands.Add(new DynamicStatusMenuCommand(
new EventHandler(OnStatusPaste),
new EventHandler(OnMenuPaste),
new CommandID(

new Guid(guidVSStd97),
cmdidPaste)));

// other command handlers registered here.

return commands;
}

// OnStatusXXX and OnMenuXXX methods go here in same class.
}

Finally, we need an OnStatusXXX handler for each of our commands. Each
just returns a value to say whether the command can be used.

internal void OnStatusPaste(object sender, EventArgs e)
{
MenuCommand command = sender as MenuCommand;
command.Visible = command.Enabled = true ;

}
internal void OnStatusCopy(object sender, EventArgs e)
{
MenuCommand command = sender as MenuCommand;
command.Visible = true;
command.Enabled = this.CurrentSelection.Count > 0;

}

Implementing Copy and Paste 441

Shape Containers

Diagrams in which one shape is contained within another are quite com-
mon—for example, state charts, use case diagrams, or component dia-
grams. By writing some custom code, you can create such diagrams. An
essential requirement is that the model elements reflect the arrangement of
shapes in some way, so that when the user moves a shape into or out of a
container the corresponding relationship in the model changes too.

Depending on the effects required, you can use some of the existing
nesting features built into the DSL Toolkit, or you can use a rule-based
method of providing a similar effect. This section discusses the options.
(And it’s worth noting that this is one of the areas where the DSL Tools will
evolve in future versions.)

Child Shapes
The graphical framework on which DSLs are built provides two relation-
ships that make one shape a child of another: NestedChildShapes and
RelativeChildShapes. Each of them makes the child shape move around
with the parent.

Nested child shapes and connectors are restricted within the bounds of
their parent—you cannot drag a shape outside its parent’s boundary, and
connectors stay within the bounds. The location of a NestedChildShape is
measured relative to its parent.

The main shapes on the diagram are its nested children. To loop through
all the shapes and connectors on a diagram:

foreach (ShapeElement shapeOrConnector in diagram.NestedChildShapes)...

(To get to the diagram from any shape, use shape.Diagram)
The shapes on a swimlane are also nested child shapes.
ImageFields and external text decorators are hosted on relative child

shapes of their principals; Port shapes are relative children.
To avoid confusion, we’ll talk about one shape “containing” another,

and we use the word “nesting” only where we are using the NestedChild-
Shapes relationship. There is more than one way of achieving containing
behavior.

Chapter 10: Advanced DSL Customization442

A DSL Using Nested Child Shapes
The essence of this model is shown in Figure 10-8. Each domain class is
mapped to a shape, and each of the reference relationships is mapped
to a connector. Notice that the ExampleChild class is embedded under
ExampleElement and that there is a reference relationship between Example-
Elements, and another between ExampleChildren.

Shape Containers 443

Figure 10-8: DSL using nested child shapes

Looking at the shape map for ExampleElement, its Parent Element Path
property is

ExampleModelHasElements.ExampleModel/!ExampleModel

This tells us where the ExampleElement shape should be located. The path
navigates back to the model; therefore it is the diagram—that is, the presen-
tation view of the model—that should host the ExampleElement’s own view.

Now let’s look at the shape map for ExampleChild. In most DSLs, a
child embedded an extra layer down would have a longer parent element
path, navigating back through its immediate parent and ending up back at
the model root so that its shape’s parent is also the diagram.

But, in this case, the Parent Element Path only goes back to the Example-
Element:

ExampleElementHasExampleChildren.ExampleElement/!ExampleElement

This tells us that the parent shape of the child’s shape is expected to be the
ExampleModel’s shape.

Chapter 10: Advanced DSL Customization444

Now ordinarily, the current version of the DSL Tools disallows that
scenario, because it is not yet fully supported—you get a validation error.
However, by setting the “Has Custom Parent Element” flag in the shape
map, we can defeat that restriction. In fact, setting the flag means we have
to provide the custom code to say the same thing (and we might as well
have left the parent element path blank):

internal sealed partial class FixUpDiagram {
private ModelElement GetParentForExampleChild(ExampleChild childElement)
{
return childElement.ExampleElement;

}}

Now we can run the DSL and see the effects (Figure 10-9).

Figure 10-9: DSL with nested child shapes and non-nested connectors

Figure 10-10: Using the Collapse button

We can add some nice behavior. Notice that we added an Expand/
Collapse decorator in the parent shape, just like in a compartment shape.
Collapsing the shape hides the nested shapes and their connectors auto-
matically (Figure 10-10).

To get this behavior, we just need to write this:

public partial class ExampleShape
{
/// <summary>
/// Decide what collapsing means for the bounds of this shape.
/// </summary>
protected override void Collapse()
{
base.Collapse(); // Remove child shapes
this.ExpandedBounds = this.AbsoluteBounds;
this.AbsoluteBounds =
new RectangleD(this.Location, new SizeD(0.5, 0.5));

}
/// <summary>
/// Decide what expanding means for the bounds of this shape.
/// </summary>
protected override void Expand()
{
base.Expand();
this.AbsoluteBounds = this.ExpandedBounds;

} }

We can also turn on built-in behavior to resize the parent as the children
move around:

/// <summary>
/// Ensure that nested child shapes don't go
/// outside the bounds of parent by resizing parent.
/// </summary>
public override bool AllowsChildrenToResizeParent
{ get { return true; } }

/// <summary>
/// Ensure that parent shape is never resized too small
/// to cause children to be outside of it.
/// </summary>
public override SizeD MinimumResizableSize
{
get
{

return this.CalculateMinimumSizeBasedOnChildren();
}

}

What happens is that as you move the children to the right or bottom, the
parent shape expands, and as you move them to the left or top, they stop
at the parent boundary. When you drag the parent’s bounds inward, they
stop before crossing a child.

Shape Containers 445

Looking back at the connectors, we could hope to improve on their
routing—they seem to more or less ignore the child shapes, passing right
over them. Normally we’d expect the connectors to steer around obstacles.
The reason here is that the connectors are located on the diagram, while the
child shapes are located on their parent shapes. The connectors connect
their ends to the child shapes, but the routing along the way ignores them.

(It is possible to get the connectors to find the lowest common parent of the
elements they’re connecting, but some hacking of the Diagram.tt template
is required. In VSSDK\VisualStudioIntegration\Tools\DSLTools\TextTem-
plates\Dsl\Diagram.tt, comment out the loop near the end of FixUpDi-
agram. As recommended earlier, alter a local copy.)

In this scheme, a child is firmly fixed in its parent once it is there—you
cannot easily move a child out of its parent.

Shape Containment Using Rules
Improved support for nested shapes is on the agenda for future versions. In
the meantime, we can take another approach to shape containment that
allows shapes to be moved between containers. While we expect this
method to be rendered obsolete in future releases, it provides useful func-
tionality in the interim, and has some tutorial value. (See the full version
of the code on this book’s website.)

This model implements a state chart (Figure 10-11). States and other
FlowElements such as StartPoints and EndPoints are embedded in a
StateGraph. They can be interconnected by Flows, and a State can contain
other FlowElements.

The containment relationship will be represented on the diagram by the
containment of one flow element shape inside another. As the user moves
the shapes around, the links change, and the Parent property can be seen to
change in the properties window. It is a reference relationship—this makes
issues such as parent element paths easier to deal with, though we have to
ensure there are no loops (see Figure 10-12).

Chapter 10: Advanced DSL Customization446

Shape Containers 447

Figure 10-11: State Chart model

Figure 10-12: Running DSL with movable state shapes

Bounds Rule

Because we don’t have the built-in feature that parents fully enclose their
children, we have to write it ourselves. For this we can write a bounds rule
(which we encountered earlier in this chapter). It deals with two cases.

• If the user has moved a shape (so that the height and width haven’t
changed but the location has changed), we ensure that it is either
fully in or fully outside every other shape rather than straddling a
border. The effect is that if you move a shape onto the boundary of
another shape, it snaps to be either in or out.

• If the user is resizing a shape, then the bounds rule is called repeat-
edly with varying height and width. In this case, we stop the bounds
from being dragged across any other shapes. This means that you
cannot move a shape into or out of another shape without actually
moving it.

A bounds rule is a class. To register a bounds rule, override BoundsRules
in the shape’s class, returning an instance of the rule.

public class StateShapeBoundsRule : BoundsRules
{
public override RectangleD GetCompliantBounds

(ShapeElement shape, RectangleD proposedBounds)
{
StateShape stateShape = shape as StateShape;
if (stateShape == null) return proposedBounds;

State state = stateShape.ModelElement as State;
if (state == null) return proposedBounds;

// Are we moving or resizing?
if (!Equal(proposedBounds.Height,

shape.AbsoluteBoundingBox.Height)
|| !Equal(proposedBounds.Width,

shape.AbsoluteBoundingBox.Width))
1

{ // resizing
return RestrictResize(state, stateShape, proposedBounds);

Chapter 10: Advanced DSL Customization448

1. Comparison between floating-point numbers is unreliable unless done with a function that
allows for rounding errors, such as Math.Abs(a-b) <= 0.001 * (Math.Abs(a) + Math.Abs(b)).

}
else
{

return RestrictMovement(state, stateShape, proposedBounds);
}

}
}

We mustn’t forget to register the rule:

public partial class StateShape
{
public override BoundsRules BoundsRules
{ get { return new StateShapeBoundsRule(); } }

}

Change Rule

To ensure that the reference link to the parent is updated as the shapes are
moved, we provide a change rule (one of the types of rule listed in Table
10-3), associated with the AbsoluteBounds property of NodeShape, the com-
mon base class of all shapes.

We looked at the outline of the rule earlier. It has two jobs: to rearrange the
diagram so that the children move with a moved parent, and to rearrange the
relationships so that parenthood in the model is reflected in containment in
the shapes. Here is the entry point of the rule. Its sole public method will be
called whenever any of the properties of any NodeShape changes.

[RuleOn(typeof(NodeShape), FireTime = TimeToFire.TopLevelCommit)]
public sealed class ContainerShapeChangesRule : ChangeRule
{
public override void ElementPropertyChanged

(ElementPropertyChangedEventArgs e)
{
StateShape stateShape = e.ModelElement as StateShape;
// Ignore other types of shape
if (stateShape == null) return;

// Don't fire when loading up from file
if (stateShape.Store.TransactionManager.

CurrentTransaction.IsSerializing)) return;

// Only interested in one domain property of this class.
if (e.DomainProperty.Id == NodeShape.AbsoluteBoundsDomainPropertyId)
{
RectangleD oldBounds = (RectangleD)e.OldValue;

Shape Containers 449

RectangleD newBounds = stateShape.AbsoluteBoundingBox;

HandleAbsoluteBoundsChange(stateShape, oldBounds, newBounds);
}

}

The rule will be called whenever the bounds of any NodeShape change, but
we’re not interested unless this is a move rather than a resize:

private void HandleAbsoluteBoundsChange
(NodeShape stateShape, Rectangle oldBounds, Rectangle newBounds)

{
// have we moved or resized?
double dw = newBounds.Width - oldBounds.Width;
double dh = newBounds.Height - oldBounds.Height;
double dx = newBounds.X - oldBounds.X;
double dy = newBounds.Y - oldBounds.Y;

// Moved or resized? If moving, height and width don't change.
if (dw == 0.0 && dh == 0.0)
{ // moved

// Keep children by moving them too
MoveContainedStates(stateShape, dx, dy, dw, dh);

// This shape may have moved in or out of parent
UpdateParent(stateShape);

}
}

}

The shape may have moved in or out of a parent, so the domain
relationship should be changed.

private void UpdateParent (NodeShape movedShape)
{
// Navigate from shape to the state it's presenting.
State state = movedShape.ModelElement as State;

// Ignore if we've somehow got some other sort of shape.
if (state == null) then return;

// Loop over all the shapes in the diagram
foreach (ShapeElement shapeElement in shape.Diagram.NestedChildShapes)
{
StateShape stateShape = shapeElement as StateShape;
// Ignore other shapes and the moved shape.
if (stateShape != null && stateShape != movedShape)

Chapter 10: Advanced DSL Customization450

{
if (stateShape.AbsoluteBoundingBox.Contains

(movedShape.AbsoluteBoundingBox))
{
// this works because we keep smaller ones later in list
closestFit = stateShape;

}
}

}
state.Parent = closestFit == null ? null

: closestFit.ModelElement as State;
}

Notice the reference to shape.Diagram.NestedChildShapes. Every shape
has a link to its containing diagram, and every diagram has a list of its
shapes, NestedChildShapes. (This includes all the shapes we are dealing
with—the containment scheme we use in this sample doesn’t use the
NestedChildShapes relationship, so all of the shapes form a flat list under
the diagram.)

Move Children

The change rule should also move the children of each shape that has
moved:

childShape.Location = PointD.Add(childShape.Location, offset);

But there is an excellent example here of difficulties caused by rules firing
in no particular order. If the user moves only one shape, then the change
rule moves its children; the same rule then fires on them, and they move
their children, and so on. This works well—each parent must only move its
children, and they will move theirs.

But suppose the user selects a whole group of shapes, including both
children and parents, and then moves the whole group. Each child will get
moved twice! Since there is no guarantee about whether the change rules
for children or parent will be fired first, it is awkward to come up with a
scheme that avoids the double move.

The solution is to use a separate inline-firing rule to note all of those
shapes that are being moved. Inline rules execute as soon as the change has
happened—the inline rule notes the shape in the top-level transaction’s
Context. When the more leisurely top-level commit rule comes along, it

Shape Containers 451

moves those children that have not been noted and leaves alone those chil-
dren that have done their own moving.

The inline rule begins in the same way as the commit rule, but instead of
actually moving the shape, just notes it in the transaction’s Context. This
is accessed, and created if necessary, by MovingShapes().

[RuleOn(typeof(NodeShape), FireTime = TimeToFire.Inline)]
public sealed class ContainerShapeInlineChangesRule :

Microsoft.VisualStudio.Modeling.ChangeRule
{
public override void ElementPropertyChanged

(ElementPropertyChangedEventArgs e)
{
NodeShape stateShape = e.ModelElement as NodeShape;
if (stateShape == null) return;
if (StateShapeBoundsRule.IsDeserializing(stateShape)) return;
if (e.DomainProperty.Id == NodeShape.AbsoluteBoundsDomainPropertyId)
{
MovingShapes(stateShape.Store).Add(stateShape);

}
}

public static List<NodeShape> MovingShapes(Store store)
{
if (!store.TransactionManager.InTransaction)
return new List<NodeShape>();

Dictionary<object, object> context =
store.TransactionManager.CurrentTransaction.Context.ContextInfo;

if (!context.ContainsKey("ContainerShapeChangesRule"))
{
context.Add("ContainerShapeChangesRule", new List<NodeShape>());

}
return context["ContainerShapeChangesRule"] as List<NodeShape>;

}
}

The method in the commit-time rule that actually moves the shapes, called
by HandleAbsoluteBoundsChange in the preceding code, should only do so
if the shape is not already scheduled to be moved in this transaction:

private void MoveNestedStates
(NodeShape shape, double dx, double dy, double dw, double dh)

{
// Find the domain element that this shape represents.
State state = shape.ModelElement as State;

Chapter 10: Advanced DSL Customization452

if (state == null) return;
SizeD offset = new SizeD(dx, dy);

List<NodeShape> moving =
ContainerShapeInlineChangesRule.MovingShapes(shape.Store);

// Children is the property of State that navigates the reference
// relationship StateContainsFlowElements.
foreach (FlowElement child in state.Children)
{
// Find the shape representing this FlowElement.
foreach (PresentationElement pel in

PresentationViewsSubject.GetPresentation(child))
{
NodeShape childShape = pel as NodeShape;
// We want the one that's in the same diagram as our parent.
if (childShape == null || childShape.Diagram != shape.Diagram)
continue;

// Only move it if it isn't already scheduled to move.
if (!moving.Contains(childShape))
childShape.Location = PointD.Add(childShape.Location, offset);

}
}

}

Z Order

The change rule rearranges the front-to-back ordering (“Z Order”) of the
shapes so that smaller shapes are always on top of larger ones. This is desir-
able in a state chart, since whenever you move a smaller item over a larger
one, you never want it to be obscured.

The Z Order is represented in the ordering of the diagram’s NestedChild-
Shapes list—later shapes are painted later, and thus are nearer the viewer.
Connectors (instances of BinraryLinkShape) are all moved to the front.

Each shape also has a ZOrder property, a double that should be main-
tained in correct order.

SUMMARY

This chapter has covered a number of topics, using a variety of examples,
which we hope give a flavor of the extent to which you can customize the
DSL Tools. In particular, we’ve looked at the following:

Summary 453

• The basic mechanisms of extensibility

• Propagating change within and outside the store

• The interface to the VS Shell

• Creating menu commands

• Implementing cut and paste

• Representing relationships as containment of one shape in
another

For more detail and code of all the techniques described in this (and the
other) chapters, please download the solutions from the book’s website.

Chapter 10: Advanced DSL Customization454

11
Designing a DSL

Introduction

In Chapter 2, we discussed how a DSL is developed incrementally and
bottom-up. You begin with specific application code and gradually para-
meterize it. First turn your existing code into a set of templates—so that if
they were not modified, they would just generate the original code. Then
gradually replace pieces of the templates by template expressions; the DSL
develops alongside, as the means to express these statements’ parameters.

We contrasted this with a top-down approach that begins by considering
the domain as a collection of interrelated concepts—those represented in the
DSL’s domain model. That approach has a number of potential advantages.
It gets much more quickly and directly to a substantial DSL; it tends to pro-
duce a more self-consistent and complete result; and it tends to ensure that
variations are expressed in terms of requirements rather than implementa-
tion, so that incidental variations in implementation are factored out. How-
ever, we also observed a problem with top-down—that it often leads to
impractical implementations if not combined with bottom up regularly. We
concluded that, in practice, it is effective to alternate between top-down and
bottom-up techniques, working incrementally to avoid the risk of a big
upfront investment but occasionally standing back to check for consistency.

We stepped through a small slice of the development of the CJKW Issue
Tracking DSLs, framework, and code generators, and we touched on many of

455

these points but did not explore the process in any depth. That’s the purpose of
this chapter. Specifically, we discuss a range of techniques and options for:

• Identifying variability and discovering DSLs—A DSL is about the
bits that vary, while your framework embodies the patterns of your
architecture.

• Developing the domain model to capture points of variability.

• Defining the notation, using a familiar notation or notational con-
ventions where applicable.

• Developing validation constraints—Identify dependencies between
properties and spot mandatory or prohibited loops in your snapshots.

• Developing and evolving the framework—Understand the architec-
ture of the code that your DSL targets, and encode that in a framework.

• Testing the DSL, the validation constraints and rules, generators and
commands, and generated code.

• Evolving and migrating a DSL—Ensure old models can be used
with new versions of the DSL.

• Recognizing a good DSL—Scope, minimality, familiar notations,
moderate redundancy, good use of the syntactic space, using the
users’ terms.

Identifying Variability

CJKW has two mingled motivations for developing a generic framework,
of which DSLs may be a part. (Your own emphasis may be on one or the
other.) The first motivation is to maintain a product line of multiple similar
products—all of their customers want Issue Tracking systems, but with dif-
ferent features. The second motivation is to facilitate variation through time
of each product—each customer wants to be able to introduce new features
at short notice. The first represents the ideal; go to customers with the prod-
uct, the Issue Tracking system, and a list of features that customers can
choose from to configure the product to suit their needs. CJKW would
input the customer choices into the product factory, which creates the Issue
Tracking system tailored to a specific customer’s requirements. The second
motivation, however, represents reality; the customer will always want to
adapt the system to meet new requirements once it’s been delivered, and

Chapter 11: Designing a DSL456

these requirements are bound to include features that weren’t predicted
when setting up the original product line.

Fortunately, both problems can be mitigated by the same basic approach:
separating out the parts that vary from the parts that remain constant,
thereby making changes easier. And where the changeable parts form complex
structures, DSLs may be created to express their instances.

Bottom-Up or Top-Down?
Identifying variability can be like performing a balancing act. If you follow
agile programming principles to the letter, you should never create features
based on future prediction (on the assumption that it is impossible to get
right); you should instead wait until the actual need arises and then refac-
tor accordingly. This tends toward a bottom-up way of working. On the
other hand, you can accommodate all the variations you have seen so far,
but then the next thing that comes along requires some change deep in
what you had thought was the invariant part of the system. So some aware-
ness of future needs may mean you can plan your refactoring in order to
help with planning of resources and to ensure a smoother transition when
major rearchitecture is required. An awareness of possible future needs
tends toward a top-down way of working.

To date, CJKW’s clients have required that different projects have differ-
ent sorts of issue, with different fields and different sequences of states, but
none has yet needed two sorts of issue within the same project. To make issue-
types distinct from projects would require substantial work on the database
schemas and surrounding code. The one client who would have it was able
to accept that one real-world project would use two database projects, one for
each sort of issue. Some team members have argued for doing the necessary
refactoring upfront, but the cost is assessed as being fairly high, and to do all
the refactoring now would pull resources away from directly revenue-earning
work. Instead, a plan is drawn up to phase in the refactoring over time to meet
the predicted needs of future business; it is expected that there’ll be many
more clients who have the same need, and by refactoring the product line to
include this feature, they will be able to generate more business and be more
competitive in the market. Although the plan is informed by the needs of the
first client who wanted this capability, inevitably it has required a top-down
analysis of the likely requirements in this area and some upfront design of the
architecture of the refactored framework.

Identifying Variability 457

Feature Trees
One technique for thinking about and capturing variability top-down is
feature trees. A feature tree1 is a presentation of a set of requirements, some
of which are optional. Because options are often interdependent, they can
be presented as a tree. As a configuration tool, you have probably seen them
in software installer wizards, under the “Custom Install” heading. (For
example, the Windows Installer—you choose the features you require. OK,
so you want IIS; do you want FTP, or Web Service? If you want Web Service,
do you need a scripts directory? And so on.) As analytical tools, they are
useful for setting out the options your clients have or could have.

Figure 11-1 is part of the feature tree CJKW creates for its Issue Tracking
product line. Most items are optional—you make a set of selections to
define a particular product from the line. A child item can be selected only
if its parent is selected, together with additional dependencies shown by
the dashed arrows. “X” marks mutual exclusion between choices.

Chapter 11: Designing a DSL458

Issue Tracker System

Multiple projects

Each issue assigned to a project and listed separately

Single list of issues

Single user

Access control

Users can access all issues in their projects

Audit trail: who changed what when

Accessible only by managers

Multiple named types of Issue (bug, task, req, etc.)

Multiple types of issue in one project

Each project has one type of issue

Different fields and states in each project

Sequence of states constrained to a given sequence

Each Issue records:

Milestone

Priority
State

Custom fields—definable per project

Custom fields inheritable between projects

Variable combinations of the above, per project

x

x

x

x

Multiple users

Figure 11-1: Feature tree

1. For more on feature trees, see K. Czarnecki, S. Helsen, U. Eisenecker, “Staged Configura-
tion Using Feature Models,” Software Product Lines: Third International Conference, Boston,
MA, 2004.

For example, as a customer, I might decide that I don’t need multiple
projects, but I do need multiple users, although access control is not
required. I’ll have an audit trail, but must accept that because I haven’t cho-
sen access control I can’t restrict the audit trail to managers.

The tree notionally includes every feature in the requirements document;
some of them may turn out not to be optional after all. After some discussion,
CJKW decides that Multiple Projects is a non-optional feature of every instal-
lation; this saves development effort, and in practice loses little flexibility—
customers who want “single list of issues” need only create one project.

Development tasks can be mapped to the nodes in the tree that they
enable. Development effort is required both for features and optional or
XOR nodes. One task links each issue to a milestone, but more effort is
required to make that optional per installation, and yet more is needed to
make it optional per project.

A feature tree is about requirements, rather than design; each feature
describes something that can be seen by the client of the system. In their
first few customer-specific systems, CJKW’s design choices evolved some-
what as the team gained experience. Many of the variations are about
changes in design choices rather than changes in requirements—for exam-
ple, using a list instead of an array at some point. These changes are not
included in the feature tree.

Choices may be marked with how often or in what context they may
vary—for example, Single/Multiple User—select on Installation; Custom
Fields—select per issue type or project; Multiple Types of Issue per Project—
currently fixed at false. Each project defines a single type of issue.

Feature trees are not only for features visible to end users. If you are
designing something like a generic wizard builder, then your clients are the
developers who call your subsystem, and your features are the behavior
visible to them at your API.

Feature Trees and DSLs
Feature trees work well for binary or enumerated choices. A feature tree can
work more or less directly as a DSL clothed in a suitable syntax. Many
installers have feature trees that appear either in the form of expandable
trees of checked options or as wizards.

Identifying Variability 459

But some variabilities are more complex structures that cannot simply
be selected or deselected. Inspecting its feature tree, CJKW’s developers
identify that where customers opt for “Sequence of states constrained to a
given sequence” and “custom fields definable per project,” the users will
need suitable notations for defining the detail of these choices. This is the
origin of the two DSLs used in the project.

Developing the Domain Model

In Chapter 2, the Issue State DSL came about by observing that statecharts
seemed a good fit with the problem, which was confirmed by the business
analyst who was already drawing state diagrams informally when eliciting
requirements from customers. Once that basic connection had been
observed, the DSL was refined by sitting back and thinking about the
domain model and notation as a whole, and by making changes incremen-
tally to the definition (for example, adding properties to domain classes) as
dictated by the needs of the code generators.

However, it’s not always that easy. In this section, we describe a more
systematic technique for creating the domain model aspect of a DSL. This
technique tends to be useful to get you through cases where it’s proving dif-
ficult to work out exactly what domain classes, relationships, and domain
properties are required. The technique is adapted from a technique pro-
posed in the Catalysis2 approach to object-oriented analysis and design.

Sketch Domain Snapshots
The requirements scenarios describe the domain in words. To help clarify
them, it is a very useful whiteboard technique to draw snapshots. A snapshot
is an informal drawing showing a collection of elements and links at a par-
ticular moment in time. Only some elements and links will be instances of
domain classes and relationships in the domain model of a DSL; the domain
model can be inferred from them. Others represent instances in a running
system generated from models expressed in the DSL; the instances are gen-
erated from the instances of the domain classes and relationships defining the

Chapter 11: Designing a DSL460

2. Desmond F. D’Souza and Alan Cameron Wills, Objects, Components, and Frameworks with
UML: The Catalysis Approach, Addison-Wesley, 1998.

DSL. Of course, when you start, you don’t know which are which, and that’s
part of the analysis that needs to be done.

Project and Field Snapshots

Let’s focus first on custom field definitions. In the feature tree and scenarios,
we identified that a project administrator can determine what fields are avail-
able to users who create issues, and that these sets of fields are defined on a
per-project basis. So we can draw some example fields associated with a typ-
ical project. Each field will have a name and a type. Associated with each
project will be some issues; each issue has a description and—among other
things—some values for the fields. Each field value associates a value of the
correct type with a field and an issue. So the drawing looks like Figure 11-2.

Developing the Domain Model 461

Project
BigProject

BigProjectIssue
Weird crash

BigProjectIssue
Timer wrong

Field
42

Field
name = workaround
type = bool

Field
name = estimate
type = int

Custom
field
values

Each issue
belongs to a
project

Each FieldValue provides
a value for a field defined
in its issue’s project (or one
of its ancestor projects)

Project
SomeOtherProject

Field
Name = X

(Issue can only have values for
fields defined in its own project)

Issues, Projects, and Custom Fields
After defining two issues in a project.

Custom field
definitions for
project

FieldValue
false

FieldValue
true

FieldValue
8

FieldValue
24

Figure 11-2: Snapshot—custom fields

Notice some of the principles we’ve followed:

• Snapshots. Draw a single instant in time. Illustrate a particular point
in a requirement scenario. If there are widely differing configura-
tions of relationships, use more than one snapshot to examine and
discuss them.

• Abstract. The nodes and lines here say nothing about how they are
implemented in a machine. Keep those questions separate.

• Highlight variability. The bold lines and entities drawn in bold are
those that change less often. For example, once a project has been
defined, the set of Issue Types allowed to it will change rarely, but
issues will be added frequently. Distinguishing different frequencies
of variability is the key to identifying which elements and links rep-
resent instances of domain classes and relationships.

• Disallowed links. Snapshots are particularly good at illustrating and
providing insights about constraints—for example, that an issue’s
field values must be for fields belonging to the issue’s own project. To
illustrate these constraints clearly, show some disallowed links.

• Sketches. This is a whiteboard or paper exercise. Don’t feel obliged
to stick to a “correct” syntax. Feel free to draw smilies, stick figures,
houses, and so on instead of ellipses.

• Separate topic areas. Don’t crowd everything onto one diagram.
Show different groups of relationships on different drawings.

• Changes. It can be useful to show on the diagram what changes are
allowed—especially how relationships may change (see the Issue
State snapshot in Figure 11-3).

Issue State Snapshots

Now let’s move on to Issue State. The requirement is to allow an administra-
tor to determine, for each project, the collection of states that an issue can take
on, and what transitions are allowed between them. We draw a typical proj-
ect and some states, as illustrated in Figure 11-3. Each project has an initial
state that a new issue must take on, and each state has a set of permitted next
states.

Chapter 11: Designing a DSL462

We should make some cautionary observations about snapshots.
Because they are informal, they don’t pretend to represent exactly or com-
pletely everything there is to say about the topic; they’re just an aid to think-
ing. For example, is there always a single Initial State for each project, or can
the project have more than one—from which a user must choose to create an
issue? We can’t tell from this snapshot—it might just be that there is only one
in this particular illustration.

Developing the Domain Model 463

BigProjectIssue
Weird crash

(Each state belongs
only to one project.)

Current
state

Current
state

OK next
state

(disallowed
transition)

Each Issue
belongs to one

project.

Issue State
After triage has approved a bug.

Initial state

Each issue has a single current state, which must be one of those defined for its project.
Each project defines a number of states, and permitted transitions between them.
When a user changes an issue’s current state, it must follow one of its project’s transitions.

Allowed state
transitions

Project
Bigproject

Project
Another project

Issue State
For triage Issue State

Rejected

Issue State
Approved

Issue State
Completed

BigProjectIssue
Timer wrong

Figure 11-3: Issue Snapshot: Issue State

TIP Snapshots and filmstrips

Questions such as “How many initial states?” can be answered by pro-
ducing a collection of snapshots representing the different possibilities
(e.g., draw one where there is more than one initial state in a project)
and by testing that against scenarios. One way to generate such a col-
lection is to write out user stories and then develop a sequence of snap-
shots, a filmstrip, to illustrate the conceptual state of the domain at each
step. An efficient way of doing this is to produce a single diagram and
then use different colors to show the changes between each step—it

Because at this stage the lines on the diagram represent conceptual rela-
tionships rather than actual implementation, we can always feel free either
to leave off any redundant relationships to avoid clutter or to include
redundant information if it makes things more clear. For example, we can
see that the Completed state belongs to BigProject because you can follow
a chain of transitions from the initial state; in an implementation, we would
probably link each state directly to its owner project and record the transi-
tions. Conversely, we have linked each issue both to a project and a state,
but we could in theory have left out the project link, since each state belongs
to only one project. We’re exploring the scenarios that our DSLs will repre-
sent rather than an implementation.

Domain Model from Snapshots
The feature tree helped us identify the two areas where we might use DSLs.
We have drawn some snapshots of the domain in typical situations in order
to help us understand the real-world relationships that the DSLs will express.

In this step, we separate out parts of the snapshots that are relevant to
a particular candidate DSL and create a model of the domain using the DSL
Tools Domain Model Designer.

Project Definition Domain Model

The first DSL area covers the definition of fields that issues in a particular
project can have. We pick out the less changeable parts of the snapshot—
they are the projects and field definitions and their relationship, as shown
in Figure 11-4.

At this stage, we have to make some distinctions that were unclear from
the snapshots. What exactly are the multiplicities for fields in projects?
What are the types that a field can have?

Chapter 11: Designing a DSL464

works very well on the whiteboard and PowerPoint. Once you’ve
done this a few times, you may find that you don’t need to physically
draw the snapshots—you can construct them in your head, and the
user stories are sufficient. However, there are always difficult cases
where the only way to sort it out for sure is to commit ink to surface.

We may also refine and extend the model from the initial sketches. The
requirements call for each issue to be assignable to a Category; Categories
are defined per project, and each can contain subcategories. We create a
new snapshot to look like Figure 11-5.

Developing the Domain Model 465

Issue Fields

Project
BigProject Custom

fields for
project

Field
name = workaround
type = bool

Field
name = estimate
type = int

Figure 11-4: Inferring a domain model from a snapshot

Project
BigProject

Fields and Categories

BigProjectIssue
Timer wrong Custom

field definitions
for project

Each field provides a value for a
field defined in its issue’s project
(or one of its ancestor projects)

Field
Name = estimate
Type = int

subcategories

Custom
field
values

Category
feature

Category
Bug

Category
Spec bug

Category
Code bug

FieldValue
4

FieldValue
8

Figure 11-5: Snapshot—categories and fields

This leads to another draft of the domain model in Figure 11-6. While
drafting the model, we decide the domain class name “IssueCategory” will
be more explanatory than “Category.”

Chapter 11: Designing a DSL466

Figure 11-6: Domain model—categories and fields

Notice how, in the snapshots, we consider objects and relationships out-
side the scope of the domain model we end up with—here, the instance
issues and field values. They are about the meaning of the DSL—in this
case, how a model in the language defines structures and constraints to
which the field values must conform. Considering context in the snapshots
is most important for understanding the language.

Inherited Relationships

One last improvement can be made to this model. We have chosen the mul-
tiplicities on each role to fit the situations depicted in the example snapshots.
But there is also another restriction. From the snapshot, you can see that an
IssueCategory can belong to a Project or it can be a subcategory of another
IssueCategory. Trying out variations on this snapshot would soon reveal that
it cannot both belong to a project and be a subcategory, and would also raise
the question of whether it could belong to two projects or be subcategories of
different categories. Assuming that none of these situations is allowed, we

conclude that an IssueCategory should only have one parent—whether it is
another IssueCategory or a Project. To represent this information, we can cre-
ate a class that abstracts the IssueCategory-parenting characteristics of Project
and IssueCategory, as shown in Figure 11-7.

Developing the Domain Model 467

Figure 11-7: Domain model—CategoryParent

The relationship CategoryParentHasCategories from CategoryParent
to IssueCategory has a multiplicity of 1 at the parent end. By forcing the
other two relationships of IssueCategory (to parent Project and parent

IssueCategory) to be subrelationships of CategoryParentHasCategories,
we force there to be only one element at a time playing the parent role in a
relationship. Thus, each IssueCategory must either be embedded under a
Project or under another IssueCategory, but not both.

Issue State Domain Model

Now we turn to the Issue State part of the domain, shown in Figure 11-8.
We’ve added an extra IssueStateModel root domain class in which the

projects are embedded. Top level states are then embedded in projects, and
other states embedded beneath them. The chain of states headed by the proj-
ect seemed natural enough to the CJKW developers when they drew it on the
whiteboard at first, but more experienced modelers may find it slightly odd.
We’ll see how this initial domain model is evolved as the notation is explored.

Chapter 11: Designing a DSL468

Issue State

Project
bug

Initial state

Allowed state transitions

IssueState
Unassigned IssueState

Rejected

IssueState
Assigned

IssueState
Completed

Figure 11-8: Issue State domain model

Developing the Notation

We have a domain model, which just defines the concepts that the language
deals in; now we want to decide how it looks on the screen and what you can

do with it in the designer. Given that notations in the DSL Tools are currently
mostly restricted to nodes and lines, we might at first think that, looking at
the snapshots we have drawn, we need only decide the shapes of the nodes.
However, that isn’t quite true—there are some decisions still to be made.

It’s worth reiterating that no development process is linear. It is at this
point that we converge with those who have known all along what their
notation is going to look like, as we discussed in an earlier section. In fact,
we generally move quite rapidly between trying out concrete notations,
investigating the underlying domain model, and sketching snapshots of
the surrounding context. Working with the domain model and snapshots
helps ensure we are including everything we need the DSL to say; experi-
menting with concrete notation helps understand how we want to say it.

There are four ways to represent a relationship in concrete syntax:

1. Connector. Each link of the relationship maps to a connector on the
diagram, with the related elements represented as shapes. This is
how we have drawn all the relationships in the snapshots; it works
for any relationship.

2. Nesting. A shape nesting inside a swimlane or other shape can rep-
resent a one-one or one-many relationship. For example, subcate-
gories can be shown as shapes inside their parent categories.

3. Compartments. An item in a compartment list shows a chosen prop-
erty of the other end of a one-many relationship. The disadvantages
are that it only shows one line of information about the target and
can’t nest deeper than one level. The benefit is that it is very compact
compared to having a complete shape per element.

4. Explorer only. The relationship is not shown on the diagram and
just appears in the language explorer.

Developing the Notation 469

TIP Consider relationships first

The way you represent a relationship in concrete syntax can in turn influ-
ence how you represent related elements. So consider relationship first.

CJKW likes the nested categories (right picture in Figure 11-9) and the
compartments for the fields (left picture in Figure 11-9). Fields as separate
objects would be useful if they had other interesting relationships that
could be drawn as connectors, but the compact compartment shape list
seems most appropriate. Compartment listing wouldn’t work for cate-
gories, because they can be nested indefinitely; connectors look OK, and
would be especially useful if they had other interesting relationships.

Unfortunately, it is difficult3 to nest shapes inside a compartment shape
with version 1 of the DSL Tools, so if the fields are to be in a compartment
list, then the categories will have to be outside the project. CJKW settles on
a compromise in which the top categories are separate while subcategories
are nested. Other project variables are represented in different compartments.
See the example in Figure 11-10.

Chapter 11: Designing a DSL470

BigProject

[-] Fields

Estimate : integer

Completed : Date

Bug

Spec Bug

Code Bug

Feature task

categories

fields
BigProject

Feature task

Field
Estimate : integer

Required

Field
Completed : Date

Not Required

Bug
Spec Bug

Code Bug

categories

fields

Figure 11-9: Project definition—syntax options

BigProject

[-] Fields

Estimate : integer

Completed : Date

[-] Milestones

M1

M2

Feature task

Bug
Spec Bug

Code Bug

categories

Figure 11-10: Project definition—concrete syntax example

3. It is possible, but significant custom code is required.

Project Definition Notation
Figure 11-9 shows some of the choices for the relationships between proj-
ects and categories and between projects and fields.

Reviewing the Domain Model

Now we complete entering the language into the DSL designer, and in
doing so, we check that the domain model still can be mapped to the cho-
sen concrete syntax and that the embedding links within any model form
a tree. There should be no difficulties in this case.

Issue State Notation
Working from the domain model in Figure 11-8, we can consider a variety
of alternatives for the IssueState concrete syntax. They include

1. The Next relationship and the InitialState relationship are repre-
sented by different kinds of connectors, as shown in Figure 11-11.

Developing the Notation 471

active

BigProject

resolved

complete

SmallProject

new

old

rejected

Figure 11-11: Projects and states in a flat diagram

This has the disadvantage that states from different projects could
get intermingled. Since a state can’t belong to more than one project,
and transitions should not cross from one project to another, keeping
them all in the same area seems potentially confusing.

2. Projects are represented by containers, with the states inside. Since a
connector from the container to the initial state would look slightly
odd, we mark the initial states distinctively instead, as shown in
Figure 11-12. A disadvantage here is that multiple projects
with complex state diagrams will take up substantial screen real
estate.

3. Each project is represented by a separate model (in a separate file).
Again, we mark the initial states distinctively (Figure 11-13).

Chapter 11: Designing a DSL472

BigProjectSmallProject

new

old

active

resolved

complete

rejected

Figure 11-12: Projects contain states

BigProjectSmallProject

new

old

active

resolved

complete

rejected

Figure 11-13: One project per model file

4. As scheme 3, but with one last refinement: Initial state is marked by
a separate start mark rather than a decorator on the state, as shown
in Figure 11-14.

BigProject

active

resolved

complete

rejected

Figure 11-14: One project per model file

A benefit here is that it is slightly easier to read if we decide to allow
more than one starting state—in that case, there would still be one
start marker, with more than one pointer to states. It’s also in tune
with standard notion for statecharts.

CJKW chooses scheme 4.

Reviewing the Domain Model

To make this notation work the following must be there:

• The Project domain class is removed, because each model
corresponds to a single project.

• The mapping from domain model to drawing will be easier to define
if states all embed directly from the root element (rather than some
being embedded in states, as in the draft model).

• A separate relationship between states is required to represent the
transitions. This should be a reference relationship.

• To provide for the start mark, we need a separate type of element. It
must have a unique qualifier/key pair among the other states.

We therefore arrive at the model in Figure 11-15.

Developing the Notation 473

Figure 11-15: Refactored Issue State domain model

Chapter 11: Designing a DSL474

Figure 11-16: Refactored Issue State domain model using relationship inheritance

Familiar Notations
You are often quite soon aware of what your notation should look like. Why
did CJKW hit on statecharts for defining state transitions? Well, statecharts
are such a familiar notation with a long history that it would be difficult not
to. A starting template for statechart-like languages is provided with the
DSL Tools, and creating the DSL is the work of an afternoon—although as

Again, there is one more improvement we can make concerning
relationships among the multiplicities. As it stands, the model permits start
elements to have multiple relationships to other states; we really want to
allow only one transition to leave a StartElement. We could enforce this
condition with validation constraints, but it is more effective to impose a
hard constraint by using relationship inheritance, as shown in Figure 11-16.

we’ve seen, the framework that implements it is the time-consuming part.
Of course, this used not to be the case—developing a graphical designer for
a DSL used to be a big deal, before kits like the DSL Tools became available.

One of the objections sometimes raised against DSLs is that each new
recruit has to learn an unfamiliar set of languages. This seems not to be a
problem in practice. A clear notation adopting a familiar style is easy to pick
up even if the details are different, and the constraints imposed by the tool-
box and the validation conditions help to guide the newcomer. Even with
textual languages, which can be much more complex than graphical ones,
the user can be prompted by IntelliSense. In the end, learning a project’s
DSLs are no worse—and can be a lot easier—than learning an API, and
unlike the API, the DSL can be accessible, if appropriate, to end users.

Adopt any notation that is already in use in the target domain, adding
information if necessary. This has the considerable advantage of improving
communication with your clients. To take a completely different example
for a moment, supposing you write a navigation system for the London
Tube; installed on a mobile phone, it will tell you the best route from any
station to any other. Now suppose you make it generic—it can work for the
Paris Metro, the New York subway—potentially, for any train system any-
where. But to work for a particular train system, it has to be parameterized,
using a DSL to tell it about the stations and connections. Now what would
the DSL that would help you convey that information to the navigation
software look like? Of course, it looks like the subway map—the shapes
and connectors it defines should allow you to create models that look just
like the maps of the train systems you are trying to describe.

Defining Validation Constraints 475

TIP

Before constructing a concrete syntax from first principles, look to see
what existing notations present themselves.

Defining Validation Constraints

Not all models that could be drawn in our language make sense. For example,
it would not be useful if there were some states in an Issue State diagram that
could not be reached from an Initial state.

Now that we have a domain model and notation for a DSL—at least a
first draft—we should define validation constraints over the model. They
will be checked when the user opens or saves the model, or explicitly asks
for validation.

There are two objectives. The first is to minimize errors in tools that read
the model. For example, since we generate a typed access API for Issue
Fields, each field name must be a valid C# property name. A valid model
is one that raises no errors when processed, so validation constraints
should be determined with those tools in mind.

The second objective is to detect errors by finding inconsistencies. To
this end, it can be useful to introduce redundancies into the language. For
example, we could give Issue State an “End State” flag; the language user
must set the flag for states that intentionally have no exit transition. This
would help avoid unintentional loose ends.

Internal Consistency
Internal consistency means validation checks that can be performed on a
model without reference to any external data. The following heuristics will
help you discover constraints that should be written:

• Print a copy of the DSL’s domain model (with all properties visible).
Link in pencil all occurrences of the same class.

• Look for loops in the resulting diagram. The loop may involve any
number of links—either relationships or inheritance. For each loop,
draw an example set of instances, as they would be in the internal
store. Ask yourself whether corresponding loops are disallowed or
mandated in the instances. See Figure 11-17 for an example.

• Consider also branches off any loop, where the loop end of the
branch has a multiplicity greater than 1. See Figure 11-18 for an
example.

(Although this example serves to demonstrate the technique, our scheme to
present each project’s states in its own model—hence all states are directly
embedded in a single root element of domain class IssueStateModel—
means this particular constraint will not be broken without a software fault.)

Chapter 11: Designing a DSL476

• Consider whether each property should be unique in some scope,
for example, Field.Name in the Field’s Project.

• Consider whether there are format and range constraints for each
property—may it contain spaces? May it be empty? Must it be a
valid C# name?

• Consider whether each property should be constrained by the value
of other properties. Equal? Not equal? Equal to some function? In
some range or type?

Defining Validation Constraints 477

loop

Disallowed
loops!

Need constraint to disallow categories from parenting (transitively)
themselves. ! this.Ancestors.Contains (this); where
Ancestors = parentcategory + parentcategory.Ancestors

IssueCategory 1

IssueCategory 2

IssueCategory 3

subcategories

subcategories

Figure 11-17: Loops in project definition model

Consistency with External Data and Models
A model must also be consistent with external data. For example, each issue
state may refer to a field defined for the project in the separate project fields
model. Validation checks can be written to check directly against the other
model or against the database they write to.

Most external checks are for validity of reference pathnames, items in
databases, and so on. It is also possible to conduct the loop-checking exer-
cise presented earlier by drawing instance diagrams that extend beyond the
boundaries of your model and drawing references of any sort—names,
URIs, database keys, and so on, as lines.

Chapter 11: Designing a DSL478

State C

successor

OK

IssueStateModel
IssueStateModel

State A
State B

successor

state
state

Not OK— doesn't
loop back to same
IssueStateModel

Mandatory loop – need a constraint to prevent Next transitions
from linking states in different projects.
Required condition is:
in any State, this.Next.Model = = this.Model

Figure 11-18: Loops in Issue State model

Developing and Evolving the Framework
Generation versus Interpretation
The biggest task in adopting a domain-specific development approach is in
generalizing the software to produce a framework. Designing and imple-
menting a DSL is now a relatively small amount of work, thanks to kits like the
DSL Tools. In the typical scenario, as we’ve discussed, the project to create a
product line has been preceded by a series of more specific products. Since the
team’s ideas about requirements and architecture have been evolving during
that time, much of the implementation may be inconsistent between the spe-
cific instances, even where the requirements were similar. The task now is to
bring them all together and separate out the necessarily variable parts from
the invariant parts. Some of the variable parts may be driven from a DSL.

The project to develop the framework often coincides with a desire to
rewrite the whole thing from scratch. If you have time, confidence in, and
agreement on the new architecture, and confidence in continuing demand
for your product, then great—have fun! But the “Big Rewrite” is always
something of a risky project and usually has to go on in the back room
while short-term needs are met using the old architecture. So it isn’t always
acceptable for the generalization project to be a major upfront investment.

There are two broad approaches to generalization that boil down to a dif-
ference in binding time: interpretation and generation. In frameworks that
implement an interpretive approach, the metadata about the variable aspects
of the requirements is stored live within the system. The CJKW Issue Tracker
is essentially interpretive; the names and types of fields attached to the issues
in each project are held in a table, and the core of the system is independent of
them. In generated systems, the metadata is used to generate code from tem-
plates at build time. A mixed approach is often used.

Let’s look at the relative advantages of the two approaches.

Performance

Interpretive systems are generally slower, both because they need to read
the metadata as they go along and because they cannot be optimized to take
advantage of particular configurations. In the Issue Tracker, all types of cus-

Developing and Evolving the Framework 479

tom field value must be converted to and from a common form, and their
types must be looked up in the field type table.

Upfront Investment

A generator template can be written by taking an existing instance and
inserting parameters wherever there are points of variance; indeed, it’s
almost impossible to do it any other way. You can start with something that
covers just a small range of variation from the initial instance and then
gradually elaborate the template, adding branches where you need radi-
cally different structures or algorithms in the runtime system.

In contrast, to write an interpretive system, you must first invent a core
data structure that will accommodate the whole range of cases.

For example, in a generated version of the Issue Tracker, the code and
structures for custom fields would be stamped out from a loop in the tem-
plate to work in the same way as the standard fields (such as priority and
milestones). In the existing interpretive code, custom fields are kept in a
separate table while the standard fields are dealt with relatively economi-
cally as columns in the main issue table.

Flexibility and Migration

Interpretive systems are able to change on the fly and can run multiple
cases side by side within the application. In the issues database, it is rela-
tively easy to accommodate several projects with different sets of custom
fields. In a generated system, a separate module would be required to sup-
port each variation, and the system would have to be stopped and rebuilt.

Interpretive systems usually handle migrations more easily. For example,
suppose we add more custom fields to a project in the issues database. In
an interpretive system, the field values are kept in a generic table whose
form will not change with the additional fields. It is therefore easy for the
code to cope with the missing fields in old issues that predate the change—
a generic mechanism for filling in default values will work for them all.

But in a generated system, we might well build the set of fields more inti-
mately into all the data structures. The issues table in the database would
have a column for each field; we would have to explicitly migrate old issues
into the new database.

Chapter 11: Designing a DSL480

Range

In a generated system, data structures and algorithms can be varied radically
to suit the metadata simply by changing the generators. In an interpreted sys-
tem, each time you stretch it to accommodate a more general structure, you
may lose performance and complicate the architecture.

For example, supposing we decide that, in addition to single-valued
fields, we would like lists—so that the project administrator could decide
that each issue can have, say, a list of owners. This is a change that goes out-
side the current range of the interpretive system. We need to rewrite the
generic code and data structures. The table of field types, for example, will
need a flag indicating whether it can be multivalued; and since (field_id,
issue_id) no longer form a unique key to field values, we may need to
change the values table.

Once the change has been made, the new structures and code underlie
all the data in the generic architecture. The old database will need to be
migrated to the new generic structure—even those projects that don’t need
the new feature. Any performance penalty applies equally to all the data.

In contrast, in a generated system, the new structures only apply where
they are needed, and old databases that don’t require the new features
don’t have to be migrated.

So the flexibility of interpretive systems applies only within the range
that they are built for, and extending that range may require significant
investment and could lead to the customization pit discussed in Chapter 1.
So where the range of requirements is wide and liable to change, generation
can be a better strategy.

Typing and Programmability

Compile-time type checking is one of the benefits of generated code. Even
in a largely interpretive system, it can be useful to provide a generated
wrapper. From the Project Definition language, we generate code that
accesses untyped objects from the generic issues database and casts them
appropriately. In the same way, much of the generated code in the DSL
designer solution takes the form of wrappers and constructors; the under-
lying in-memory store provides a generic relational model in which type
information is interpreted on the fly.

Developing and Evolving the Framework 481

Typed code is much easier to write and read than the corresponding
generic version. Compare “bug.Estimate” with something like “bug.Get-
CustomFieldValue("Estimate"))”—the first version is not only more suc-
cinct, but the IDE helps you write it.

Evolving a Generic Framework
As we’ve seen, the quickest way to start generalizing a system can be to
turn its existing code into templates and parameterize it piecewise. How-
ever, you need to very quickly start moving boilerplate into a common
framework core in order to prevent the code generation code from becom-
ing overly complex. For example, early versions of the DSL Tools had a lot
of functional code generated from templates in the designer solutions. As
we gained experience, more of the functionality was moved into a generic
utility layer and then into the core framework.

Once you have a framework, we can envisage a number of different typ-
ical evolution paths for it. The path taken depends on initial circumstances,
the stability of the requirements, and performance requirements.

Increasing Genericity

In this scenario, the code of a product line starts with one or two specific
instances and then works through a number of template-generated versions
in which there is an increasing set of variation points. Then boilerplate from
the template is moved into the framework, and the generation templates are
simplified. Finally, it moves toward an interpretive system tailored to the
range of expected requirements, but it retains a layer of generated strong-
typing wrappers. This happens cyclically and incrementally, so at any point
in time there may be some parts of the framework that are interpretive and
some that are refactored boilerplate.

Prototypes

In this route, there are more funds for upfront experimentation with the
architecture. The project may begin with some small specific instances, but
then it goes straight for an interpretive architecture, with a long period of
design. Part of the rationale is that the result will be easy to experiment with
on the fly. In practice, the range of cases covered is likely to match the actual
requirements rather imperfectly (especially if the requirements are changing

Chapter 11: Designing a DSL482

in the meantime), and so the initial version will be over-elaborate in some
areas and difficult to stretch in others. For example, we might have started
with an issues database that could handle multiple types of link between
issues—which might never be needed—but doesn’t deal with more than
one type of issue per project, which probably will be needed.

Integrated Systems

If you are lucky, you have access to the source code of the whole system and
can make choices about where on the generative-interpretive axis it lies. More
often, though, systems are constructed from an ill-matched collection of exist-
ing parts for which there is no source code. In this case, all you have control of
is a miscellany of configuration files and bits of plug-in code. Making a change
at the requirements level involves multiple changes in these diverse pieces.

This is one of the great strengths of generative architecture—it provides
a method of abstracting the actual requirements from these implementation
details.

The degree to which the metadata is interpreted in the live system is deter-
mined by the components themselves, and it may differ between the compo-
nents. For example, the Issue Tracking database is interpretive; from the
Project Definition and State Transition designers, we generate SQL that trans-
fers the metadata into the database. This metadata can be updated on the fly
without harming the existing instance data or stopping the system. However,
the type wrappers are compiled from generated code, so a client that uses
them must be stopped when the metadata are updated.

Driving a Framework from the DSL
There are at least three ways of driving a framework from the DSL. These
have already been considered in depth in other chapters, so we just provide
a summary here:

• Model as configuration file. The model is serialized to a file; the
generic framework reads the file on build, or in a setup operation.
Variants of this involve adjusting the serializer to suit an existing
framework, or processing the file with XML tools. Serialization was
discussed in Chapter 6.

Developing and Evolving the Framework 483

• Model generates code. In Visual Studio, the model is one file in a
project; the project also contains multiple templates that read the
model, generating code and other files. Templates are transformed
before building, and most changes to the code are made by adjusting
the model. When necessary, some custom code is added. Rarely,
some change is needed to a template file. This is the architecture
used by the DSL Tools for authoring DSLs and their designers and
associated components. This was all discussed in Chapter 8, which
also provided a sample of how to drive the Text Templating Engine
from a command in order to provide more orchestrated generation.

• Model drives external API. A command associated with the DSL reads
the model and drives a database or other system. The model may be
entirely transferred into the external system by the operation, or it may
update just relevant parts of the system. This would be used by the
Issue Tracker to update the database from the model, for example. The
implementation of custom commands was described in Chapter 10.

Chapter 11: Designing a DSL484

TIP Custom commands in Visual Studio

The approach to adding custom commands uses the raw Visual Studio
extensibility mechanisms. Another possibility is to use the Visual Stu-
dio Guidance Automation Toolkit,4 with which it is also possible to
attach commands to DSLs—as well as other parts of the Visual Studio
UI such as particular types of project and project item—and have them
instantiated along with code files and templates in a project.

4. http://msdn2.microsoft.com/en-us/teamsystem/aa718948.aspx

Testing

Automated tests are a very successful assurance against the introduction of
errors as code is extended and refactored. Tests typically include

• Unit tests aimed at individual pieces of code written by the unit’s
developer, and including “mock” or stub interfaces to simulate the
rest of the system.

http://msdn2.microsoft.com/en-us/teamsystem/aa718948.aspx

• Integration, or “end-to-end” tests, which take the system through
scenarios at the user level and are designed to verify that the system
requirements have been met.

• Combinatorial tests designed to try significant combinations of input
values, particularly edge cases, to check correct behavior throughout
the space and to check error handling.

• Performance tests that check capacity and response times.

There are several aspects of a DSL that need to be tested: validation con-
straints; generator templates; any generated code; menu commands; any-
thing you have customized, such as serialization; and the DSL itself..

Testing 485

TIP Automating Tests

Visual Studio Team System provides a good automated test framework
that allows a developer to run unit tests on his or her project before
checking in changes to the shared repository. There are also command-
line utilities that build a VS project and run its tests, which can be used
in an unmanned nightly or rolling build system (which continually tests
the latest repository content). We divide up our development into tasks
of a few days each and find these facilities invaluable for preventing
regressions.

TIP Measuring Code Coverage

Visual Studio’s test kit includes a coverage tool, which monitors
tests as they run, marking and counting the number of branches exe-
cuted within the code under test. A typical expectation is that a suite
of automated tests should achieve coverage of at least 70%–80%5.

5. For generated code, this expectation applies to the proportion of the generating template
that is covered, rather than the generated code. Since one template usually generates
multiple variants of itself, the reported coverage of the generated code may be much
smaller, and you will have to do some analysis to work out what coverage of the
generating template that represents.

Chapter 11: Designing a DSL486

Validation Constraints
Your validation constraints should generate warnings for any invalid com-
binations of objects, properties, and links. In particular, any generators or
other tools that process your models should be able to correctly process
every model that passes validation.

A straightforward approach to validation tests is to hand-build one or
more test models, with examples of each kind of error, as well as a repre-
sentative selection of valid elements.

Validation tests can be automated from within a unit test by creating or
loading test models and then calling validation through APIs.

After a test has run within VS, you can right-click and select “Code
Coverage Results,” and get a view of the source code in which the exe-
cuted branches are highlighted. This helps you adjust your tests to
make sure most branches are exercised, which gives some assurance
that the most common paths (the combinations of branches through
the code) have been checked.

To get a coverage analysis, you first identify the compiled assembly to
the coverage tool, under the “Test>Edit Test Run Configurations”
menu in Visual Studio.

TIP Create test models in code rather than reading
them from a file

You could create test models by hand, and then have your automated
tests read these in. But it is more flexible to write code that constructs
a model instance in memory—when the DSL changes, it is quicker to
change the code than to change the test models. Chapter 3 explained
how to create models in memory. If you want to share the code between
multiple tests, then put it in a helper class that all tests can access.

The test can dump the error list to a text file and compare it with a base-
line (that is, a previous example of the same list that you have checked by
hand). On the day some change alters the list of reported errors, the test will
fail; the developer must either fix the fault or confirm that the new results
are OK by copying them to the baseline file.

Your test models must also produce sensible results when your gener-
ation templates, custom commands, and any other tools are run against
them. Models used to check these tools should therefore be checked to see
that they pass validation; conversely, any test models that pass validation
should be checked against the other tools.

Testing 487

TIP Use validation base classes for unit tests

Chapter 7 explained how to use validation outside the IDE by using
the ValidationController, ValidationContext, and ValidationMes-
sage base classes directly. This approach can be used within unit tests
to validate a model created in memory, with the error messages being
passed to a log file that can then be compared to a baseline.

TIP Use snapshots to create test cases

We earlier described how snapshots could be used to help design the
domain model, and, indeed, validation constraints on that domain
model. Snapshots provide a pictorial view of instances of the domain
model, and the test cases for a validation constraint are, essentially, a
set of domain model instances, some of which satisfy the constraint
and some of which don’t (counterexamples). So start with any snap-
shots that you created when working out the constraint in the first
place, and encode those as test cases. Then create new snapshots to
give increased coverage, paying particular attention to counterexam-
ples (which will cause errors).

Generator Templates
You need to test your generating templates, which need to work with any
model that passes the validation tests.

Once again, a straightforward method is to create one or more test mod-
els by hand. Then you run the template within Visual Studio using “Run
Custom Tool” or “Transform All Templates,” and check the generated
result. For an automated test, you can either drive Visual Studio through its
API or use the command-line interface to the text templating engine (which
doesn’t require VS). The test should compare the result with a baseline.

Before comparing against a baseline, you usually need to recognize and
blank out some things that can vary from one run to another—Guids are a
particular culprit, and Dates if they are initialized from “now.”

When testing templates, we only want valid models. A possible starting
point is to use the valid models created to test validation. Also, if you find
that you are able to generate code that doesn’t build from these models, it
probably means that you’ve omitted a validation constraint. It is better to
add a further validation constraint rather than write code in the template
that looks for the invalid model and writes an error message to the output.

You can get a coverage analysis of a text template, but there are some com-
plications. The text templating engine translates your template into a tem-
porary C# file, and then compiles and executes it; the compiled code reads
your model and writes the result file. Then the engine will normally delete
both the temporary C# file and the compiled assembly. To get a coverage
analysis, you need to be able to identify the assembly to the coverage tool,
which entails precompiling the text template and keeping the translated
source and compiled assembly afterwards so that you can see the analysis.

Generated Code
If your generator templates create code, or data files interpreted by code,
you will want to test their behavior. A generated file will usually be part of
a project containing several other generated or fixed files, just as the DSL
Language project itself is. Generated code tests follow this sequence:

1. Create a copy of a project in which code generated from the tem-
plates is used.

2. Substitute the model file with a test model (which must be valid).

Chapter 11: Designing a DSL488

3. Execute the project’s templates (either through the command-line
version of the text templating host or by driving VS to run the
“Transform All Templates” command).

4. Build the project (using MSBuild from a script or using the VS API).

5. Run the behavioral tests on the built assembly. (What the tests do
depends on the nature of the project.)

6. Repeat from step 2, with another test model.

An alternative would be to generate both the target product code as
well as unit tests for that code and then run the normal unit test and code
coverage tools from Visual Studio.

Rules
Rules are used to maintain consistency across a model, propagating changes
from one part to another. They were introduced in Chapter 3, used in Chap-
ter 7, and discussed in more depth in Chapter 10. A rule can be tested in an
instance of the DSL Tools Store, without running Visual Studio, by creating
a model, making a change within a transaction, committing it (thereby caus-
ing rules to fire), and then checking that the resulting model incorporates the
expected changes caused by the rules. This can be automated in a unit test
using some of the techniques already described.

Language Definition
Does the DSL cover all the information your users need to capture? If you
followed the method earlier in the chapter, you developed the language
from specific requirements scenarios. But as you experiment and change
the DSL, it is worth retrying those scenarios at intervals to ensure that you
don’t drift away from them. This is a manual test, because it depends on
your judgment about the usability and scope of the language.

Evolving a DSL

After designing and using a DSL for a while, you will inevitably want to
change it, and you will not want to lose the language instances that you
have already created.

Changes in a DSL take one of the following forms:

Evolving a DSL 489

• Additions. New properties in a class or relationship; new classes;
new relationships. The deserializer will take care of these, filling in
default values when reading objects from older files.

• Deletions. Properties, classes, or relationships removed. In this case,
the deserializer will ignore the deleted elements.

• Refactoring. A structure is replaced by something that represents the
same information in a different way. For example, we might replace
the Issue State Transition by a class with a pair of relationships on
either side. Here, the deserializer will see some additions and some
deletions but will not be able to do the translation automatically.

• Changes of property and relationship types come under the
refactoring heading.

Of these, the language author needs to worry about refactorings. The
following tactics mitigate the pain of change to some extent:

• Separate refactorings. Identify and localize each refactoring, and
plan separately how you will deal with each one. For example, one
version change of the Issue State DSL might introduce a domain
class to replace the Transition relationship, and might also introduce
multiple issue types per project. As far as possible, we should keep
those changes independent of each other.

• Don’t delete anything. Instead of deleting the old structure, just add
the new one—for example, have both the Transition relationship
and the domain class replacing it coexist in the same model. Depre-
cate the old structure by removing its tools from the toolbox, and
any merge directives or connection builders that might deal with its
creation, so that new instances can’t be created. Then use one of the
tactics that follow this one.

• Ensure the tools work with both structures. During a migration
period, ensure that the generating templates and other tools can
work with both structures as much as possible. If the change is
prompted by a changed requirement in what the tools generate, at
least allow language users to edit and work with the old instances
until they need to generate material from them.

Chapter 11: Designing a DSL490

• Provide translation tools. One way is to provide a command that
scans a store and updates the model in place. It is possible to make
this happen on opening a file of an older version.

Another convenient method of translating instance models is to
write a generating template that creates the serialized form of the
new version of the DSL from models of the older version.

XSLT can also be used to translate one model file into another, given
that they are both XML files.

• Validate required fields. If you translate on opening an old file,
make sure that your validation methods check any new fields so that
the user is prompted to provide the required extra information.

• Delete obsolete domain classes when you’re sure all the instances
are updated.

• Publish the update plan to your language users so that they know
when older structures will be obsolete.

Migration between language versions is an important and common
problem. Having a forgiving file reader (deserializer) certainly relieves some
of the pain, but you could do more. It is possible to conceive of tools that
automate some of the above tactics. For example, one could maintain the
history of changes to a domain model between versions and then use this
information to generate a tool that does the conversion automatically.

What Makes a Good DSL?

A good DSL—one that helps the people who are using it—makes it easy to
clearly represent information for a particular purpose. The following are
some characteristics of a good DSL, many of them summarizing what
we’ve discussed already:

• Well-defined scope. There is an easy-to-state single purpose for the
DSL—for example, “to describe the permitted sequence of states of
issues in a project.”

What Makes a Good DSL? 491

• Minimality. There are no more concepts and relationships than are
required for the ideas that need to be described with the DSL. If you
can see a way to reduce the number without losing information, do so.

• Familiarity. If there is a notation already in use in the domain—
railroad tracks? electrical circuits?—base your notation on that. If the
type of information is normally associated with a particular style of
diagram—statecharts—use the conventions familiar there. Adapt the
notation where you need to.

• Bring out the important bits. The most important things should be
the most obvious and easiest to change: names of states, transitions
between them. Less important detail—for example, the target name-
space of the generated code—can be left to the properties window. If
you need to print out the full detail for some reviews, write a report
template.

• Moderate amount of redundancy. Ensure that when the user has
made an important distinction, it was intentional. For example, we
flag an error if the user has not marked a state with no incoming
transitions as “start.” On the other hand, users don’t like to have to
say everything twice, so don’t overdo it.

• Use the syntactic space. Most of the diagrams a user can draw
should be meaningful. A language that is heavy with complex con-
straints probably doesn’t fit the conceptual space well and is difficult
to remember how to use. The big advantage of a DSL is that the
notation guides you through useful things to say.

• Graphs are not syntax trees. If you have an existing text notation, it
is unlikely that its syntax tree will be the best graphical notation. See
the example on regular expressions in the next section.

• Allow for customization. Your DSL will not cover all the cases that
users will require. Provide for further customization through hand-
written code, preferably without forcing the users to alter generating
templates.

• Use the users’ language. The language should be expressed in its
users’ terms, talking about their requirements—rather than its
implementations. Talk about issues rather than tables. Where it’s

Chapter 11: Designing a DSL492

What Makes a Good DSL? 493

difficult to avoid bringing in some implementation concerns, try to
package them up in a single domain class, or by exploiting cate-
gories in the properties window (see the end of Chapter 4). For
example, in the DSL designer you’ll find that properties that are
mostly concerned with the form of the generated code are always
gathered together under a “Code” category.

To illustrate the last few points further, we will consider the develop-
ment of a different example.

Appropriate Notation: An Example with Regular Expressions
As software designers, we are always strongly aware of the tree-structured
nature of just about everything we deal with. In designing a DSL notation,
there is always an inclination to represent this tree directly in the syntax.
However, this is not always the most usable option.

Chapter 1 mentioned regular expressions as an example of a textual
DSL. Regular expressions have a very compact textual notation, and while
very powerful for those who have learned the notation, occasional users
can find them opaque. The goal in this example is to create a DSL in which
regular expressions can be constructed with a graphical notation. The
expected benefits include

• The toolbox guides construction of the expression.

• A pictorial model is easier to follow.

• Validation checks can be applied.

• Graphical presentation should be easier to learn and understand.

Reminder about Regular Expressions

Regular expressions can seem very arcane to the uninitiated, but the basic
idea is simple. Suppose you are processing some text—let’s say, an html file;
and you want to find the next html element (between < and >); and you
want to extract the tag and the parameter pairs of the element and get them
into separate variables. So you call:

foreach (Match m in
Regex.Match(yourHtmlString, theRegularExpression))

{ ... and each m is a match to part of the string ... }

The regular expression contains a sequence of characters that you expect
to find in the string, and certain characters (parentheses, * + ? [] and one
or two others) play special roles. * signifies a repetition of zero or many of
what went immediately before, so that < * matches a < followed by any
number of spaces, including none. + is similar, but insists on at least one
occurrence. Square brackets match any single character in the range defined
within, so that [A-Z]+ matches any sequence of at least one capital letter.
Parentheses demarcate a match that you wish to capture into a variable, so
that ([A-Za-z]+) should return to you a word made of one or more alpha-
betics. (?:...)* repeatedly performs the matches within the parentheses
without capturing the whole thing to a variable. | specifies alternative
matches. (?<name>...) matches a pattern that a later ${name} must match in
the same way—so that the use of quote in the following example ensures
that an opening quotation is matched with the same kind of closing mark.

This regular expression:

< *([A-Za-z]+) +(?:([A-Za-z]+) *= *(?<quote>"|')([^"']*)${quote} *)*/?>

matches, for example:

< table bgcolor= "#ffddff" border="1' >

as illustrated in Figure 11-19.

Chapter 11: Designing a DSL494

< *([A-Za-z]+) +(?:([A-Za-z]+) *= *(?<quote>"|’)([^"']*)${quote} *)*/?>

Multiple 0-many—applies to preceding character
Literals

Capture—assigns matched string to numbered variable

Range—match a single character
Multiple 1-many

Noncapturing Group—use with * + ? |

OptionalAlternatives

Named capture Match earlier capture

Inverted range

Figure 11-19: Interpretation of a regular expression

The objective of this DSL is to make a more accessible notation for regular
expressions.

Candidate Notations
There are several notations that might be made to work, each of which
takes a rather different approach. One of our major principles is to work
from instances, so in the following we use an example that teases out the
notational distinctions: <a (?:b[cd]*e|[a-z]+)z.

Candidate Notation 1: Regexp Tree

This notation (Figure 11-20) directly represents the abstract syntax tree of the
regular expression. A sequence is represented by a vertical box, iterations are
shown as a “*” in a circle, and alternatives are shown as a “|” in a circle.

What Makes a Good DSL? 495

RegExp

a

<a (? : b [cd] *e | [a-z] +) z

|

Literals

Alternation

b

e

RangeIteration

+

<

Seq

z

*
c

d

a-z

Figure 11-20: Regexp Tree notation

The difficulty is that it isn’t very easy to follow how it matches up to a
given input string. For one thing, you have to go back and forth between
nodes and their descendants to follow the matching process.

Candidate Notation 2: Railroad Tracks

“Railroad tracks” (Figure 11-21) have been used for presenting parsing
paths for many years (notably in the syntax definition of Pascal). Match
by pushing a counter around as you follow the string; replicate the
counter on going through a branch (small filled rectangle); delete a
counter when it fails to match; the whole thing matches if you get a
counter to the end.

The big drawback to this notation is that there are a lot of possible
graphs that don’t correspond to regular expressions. While it is possible to
write validations, contraventions are not always easy for the naïve user to
spot, and it would be very irritating to constantly run into obscure error
flags. In general, one of the expectations of a DSL is that it helps you to
make statements that make sense within the domain.

The particular difficulty is that it allows you to make non-nested loops, and
it can be quite difficult, depending on the layout of the graph, to see whether
the constraint has been contravened or not, as illustrated in Figure 11-22
(which is invalid).

Chapter 11: Designing a DSL496

 < a b e

c

d

a-z z

Figure 11-21: Railroad track notation

 < a b e

c

d

a-z z

Figure 11-22: Invalid railroad track

Candidate Notation 3: Nested Boxes

This is a compromise solution in which arrows represent sequence, and
nesting represents containment (Figure 11-23). The rule here is that paths
can only converge or diverge at the branch points on either side of a box
that contains the alternative paths. Each node otherwise just has at most
one arrow entering and one leaving. There are also loop boxes with ports
marked * or +.

This works just as well with the counter semantics while at the same
time disallowing spaghetti branches. At the exit of a + or * loop box, you
can move the counter around the box boundary back to the entry port.
If the entry port is * or ?, you can avoid the content altogether by mov-
ing around the boundary straight to the exit. (The entry ports are
decorated with arrows lined up with the box boundary to suggest this
behavior.)

Candidate Notation 4: Nested Paths

This is another counter-following notation, but there are two kinds of link.
Each node only has one entering link (Figure 11-24). To match a string to the
expression, you follow the Next links, matching each character to the char-
acter in a box; if you match the last node to the string, the match has suc-
ceeded. If you come to a diamond or circle, you must first follow its Parts
links, and match that (by getting to the last link)—if there are several Parts
links, split the counters and a match to any one will do.

This notation is a bit more difficult to follow than the nested boxes, but
(unlike candidate 2) all of the graphs you can draw make sensible regu-
lar expressions, and (unlike candidate 1) sequences of matches are repre-
sented by following Next links rather than working through a fan of
sibling links so that you can understand the graph by pushing counters
around it.

What Makes a Good DSL? 497

< a

b *
c

d
e

a-z+

z

Figure 11-23: Nested box notation

Graphs Are Not Syntax Trees
Nested Boxes (or its pragmatic variant, Nested Paths) seem to be the best
notation, but notice how far those notations are from the initial direct rep-
resentation of the regular expression syntax tree. The first candidate would
be the easiest to generate regular expressions from, but the better notations
help a user to understand the concepts.

The same consideration will frequently apply when taking any existing
text syntax—typically an XML file—and creating a diagrammatic representa-
tion of it. The syntax tree of the existing language is often not the best option.

SUMMARY

This chapter has presented a set of techniques and options around the
process of designing DSLs for domain-specific development, picking up
where we left off in Chapter 2 and benefiting from a much deeper knowl-
edge of the mechanics of creating a DSL and associated code generators
(Chapters 3–10).

On the topic of identifying variability, we summarized the top-down ver-
sus bottom-up approaches and introduced feature trees as a way for work-
ing top-down. We introduced the notion of snapshots to assist with the
development a domain model, and described by example how a notation
might evolve from initial ideas to the final definition, and the kinds of trade-
offs that have to be made. Snapshots made a reappearance when consider-
ing how to identify and define validation constraints; we also identified
some domain model patterns to watch out for as indicators that additional

Chapter 11: Designing a DSL498

b e

*

Alternative—try Parts; when any one succeeds, go on to Next.

Next

Next

Repetition—do Part as often as it succeeds; then go on to Next.

✓

✓

✓

< a z

+

a-z

Parts

Part

Part

✓

✓
c

d

✓

Figure 11-24: Nested path notation

constraints may be required. We then moved on to the topic of frameworks,
where we discussed more pros and cons of generation versus interpretation,
and we provided some advice on evolving them. That was followed by
some advice on how to go about testing a DSL and code generators, with
cross-references to other parts of the book that have introduced coding tech-
niques relevant to writing automated tests. There was then a brief section on
what to watch out for when evolving a DSL, and tactics you can use to
mitigate the pain were presented. The chapter concluded with some advice
on how to recognize a good DSL, illustrating this with a comparison of
possible graphical notations for regular expressions.

Conclusion

So you’ve downloaded the tools, read the book, and you’re gung ho on imple-
menting a domain-specific approach to development in your organization.
What’s the best way to go about this? Our advice would be to start small and
bottom-up. Find a project where you reckon there’s a lot of repetitive code
being written, templatize it, and write a DSL to drive the templates.

As you start to scale, you’ll probably need to orchestrate your code
generation, for example, loop though a model and generate one file per
model element. In Chapter 8, we described how, with some custom code,
you could go about this—and the technique will take you some distance.
However, you might also like to look up the Guidance Automation Toolkit
(GAT)6, which can be used for code generation orchestration as well as for
automating other development tasks like unfolding project templates. GAT
adopts a strategy of revealing automation steps to the developer in context
and at the point that the developer needs them.

Once you’ve got two or three DSLs going, or even as you start to
develop the second, you may find it necessary to get different DSLs to inter-
act. For example, you may need to know how to have elements in a model
of one DSL cross-reference elements in a model of another DSL (or even
cross-reference elements in another model of the same DSL), to navigate
those references in the UI, to know when the references are broken and be
told how to fix them, and to visualize the references on the design surface.

Conclusion 499

6. See http://msdn2.microsoft.com/en-us/teamsystem/aa718948.aspx.

http://msdn2.microsoft.com/en-us/teamsystem/aa718948.aspx

And then you will need to know how to exploit these cross-references in
activities such as code generation and validation. It is possible to imple-
ment some of this yourself through custom code—a starting point would
be, for example, storing cross-references as strings in properties on domain
classes—and we are aware of customers who have done this. There is also
a powertool available called the Designer Integration Service (DIS),7 which
can be downloaded for experimentation purposes, though it is not suitable
for production tools.

At some point, you’ll also need to integrate domain-specific develop-
ment with your organization’s general software development practices.
We’re not going to pretend this is an easy task, because it is likely to have
significant impact on the development culture of the organization. Take, for
example, the job of specifying the application to be built. You may find that
the models you are producing, and from which significant code is being
generated, don’t need developer expertise to write down (at least not the
initial drafts), and, further, that they could replace large tracts of informal
specification. If that’s the case, the specification task changes into one of
defining the models that then get passed on and further refined by the
development team, and then writing informal specs for those aspects that
still need to be implemented as custom code. Are those who write specifi-
cations in your organization willing or able to change the way they work?
There’s also an impact on testing; if the code generators are tested, what
aspects of the generated code that is embedded in the system being built
needs testing? How does this impact the testing process familiar to the
testers in your organization? The developers will also have less code to
write, in particular, less rote code. This may suit some developers, but for
others it may take them into uncomfortable zones—writing rote code is
how they make a living. And what about the impact on the project planning
process? What are the costs of specification, development, and testing when
models and code generators are involved? Our best advice is to work very
pragmatically and incrementally—do it a project at a time; take metrics
(e.g., estimated versus actual cost) to inform the next project; get buy-in
from a few individuals in different disciplines and then roll it out from

Chapter 11: Designing a DSL500

7. www.microsoft.com/downloads/details.aspx?FamilyID=bfba74af-4f28-44cc-8de5-
0c3c55d21863&displaylang=en. There is also a link from the DSL Tools home page.

www.microsoft.com/downloads/details.aspx?FamilyID=bfba74af-4f28-44cc-8de5-0c3c55d21863&displaylang=en
www.microsoft.com/downloads/details.aspx?FamilyID=bfba74af-4f28-44cc-8de5-0c3c55d21863&displaylang=en

there; and build up a wiki of best practices, maintain it, and share it
between projects.

So you’ve read the book and want to read more? What can we recom-
mend? Just one book: Software Factories: Assembling Applications with Patterns,
Models, Frameworks and Tools, by Jack Greenfield and Keith Short, with Steve
Cook and Stuart Kent.8 This book synthesizes a number of recent initiatives in
software development (e.g., product lines, model driven development,
domain-specific languages, patterns) into a theory for software development
in the future and elaborates that theory in some depth. One can think about
domain-specific development as a stylized form of the software factory
approach, and the Software Factories book will certainly get you thinking about
how it might evolve. Also, being a book of synthesis, it has a rich bibliography
for those who wish to delve further.

Our job here is done. Our goal in writing this book was to explain what
Microsoft’s DSL Tools are for, and how to use them effectively. If you were
already a user of the DSL Tools, then we hope this book has provided some
useful new techniques to try out on your own projects, and clarified any
aspects you didn’t understand. If you’re new to the DSL Tools, we hope the
book has inspired you to download the tools and try the approach for
yourself.

Conclusion 501

8. Wiley Publishing Inc., 2004

This page intentionally left blank

Index

503

A
AbsoluteBounds setting, 413, 415, 449
Abstract base roles, multiplicity of, 127
Abstract classes, 67–68, 90, 93, 95, 117
Abstract relationships, 107, 115–116, 245
Abstraction

in domain models, 462
in language evolution, 12, 17
in UML, 39

Accept code
connection builders, 223–226
custom, 208–210

Access modifiers, 116, 120, 123
Accessing links, 124–126
Action setting, 105, 243–244, 250
Active Server Pages, 320
Add Custom Editor option, 137, 142
Add Designer option, 137
Add Diagram option, 137
Add Domain Path option, 187
Add ExplorerNodeSettings option, 184
Add Exposed option, 139
Add menu in explorer, 200, 203–205
Add menu option, 435
Add method, 215
Add New option, 218
Add New Domain Enumeration option, 96
Add New Domain Property option, 95
Add New Domain Type Descriptor

option, 192
Add New Item option

for deployment, 76

for files, 66
for templates, 383, 393–395

Add New Project option, 373
Add New Property Path option, 186
AddButton_Click method, 145
AddElement method, 145
AddGraph method, 215, 437
Additions in DSL evolution, 490
AddObserver method, 293
AddRule class, 414
Allows Duplicates setting, 106, 249
AlwaysRequired flag, 332
Analysis model

properties for, 280
in UML, 35–36

APIs
for artifacts, 314–319
for framework driving, 484

app.config file, 29–30
AppDomain, 356–359
Appearance

diagrams, 138
explorer, 181–183
nodes, 184–186
properties window, 188–190
shapes, 147, 151

AppendLine method, 366
Application Designer, 27–31
Application users, 54
Applications

generalizing, 42–46
generative, 74–75
interpretive, 75–76

Architecture
DSL tools, 78

Dsl project contents, 81–83
DslPackage project contents, 83–85
framework assemblies, 79–81
generated code, 78–79
layers, 79–80

interpretive, 56
text templating, 352–354

Arrows and arrowheads, 110–112, 411
Artifacts, 24–25

complex relationships and round-tripping
for, 321–324

customizations, 351–352
domain-specific APIs for, 314–319
extensible stylesheet language

transformations for, 311–314
large-scale, real-world, 349–351
overview, 309–310
template-based approach. See Templates

and templatization process
Assemblies

compiled, 77
framework, 79–81

Assembly directive, 343
AssemblyCache class, 357
AssemblyInfo.cs file, 82, 304–305
assemblyPath attribute, 380–381
Assertions, 275
AssociationConnector class, 409–410
Authoring solutions in DSL development,

57–60
Authors, 54–55
AutoLayoutShapeElements method, 180
Automating tests, 485

B
Background pictures in diagrams, 176–177
Backus Naur Form (BNF), 15–16
Base classes, abstract, 67
Base roles, multiplicity of, 127
BeginErrorSession method, 362
BeginTransaction method, 114
Behaviors

explorer, 182–183
in graphical DSLs, 22–23
inheriting, 292

Bentley, Jon, 13
Bin directory, 374

BinaryLinkShape class, 413
BNF (Backus Naur Form), 15–16
Booch, Grady, 34
Booch method, 34
Boolean type

for constraints, 276
for properties, 96, 119

Bottom-up approach
in incremental development, 46–48
in variability identification, 457

Bounds rules, 420–424, 448–449
BoundsRules setting, 421–422
Brackets (<# and #>) in code-generation

statements, 52
Bring Tree Here option, 94
Broken diagram files, 256–257
Build Solution option, 144
Building menu commands, 435
Business Class Model, 8

C
C# language and classes, 92

for constraints, 281
in domain models, 110
in templates, 331

Calculated properties, 121
for change, 404–405
for dependent values, 407
rules with, 121, 416

callback parameter, 362
Camel-casing, 313
CanAcceptComponentAndComponent

AsSourceAndTarget method, 225
CanAcceptSource method, 228
CanAcceptSourceAndTarget method, 228
CanAcceptXxxAsSource methods, 224
CanAcceptXxxAsSourceAndTarget

methods, 224
CanAcceptXxxAsTarget methods, 225
CanCreateConnection method, 302
Candidate notations, 495–497
CanFocus method, 401
CanManuallyRoute method, 402
CanMerge method, 401
CanMergeIssueCategory method, 208–209
CanMove method, 401
CanSelect method, 401
Captions for tools, 65, 199
Catalysis approach, 460

Index504

Categories
properties window, 190–191
shapes, 137, 147
validation, 289–292

Category setting, 120, 287
Category tool, 202
CategoryTreeConnector class, 180
Change, 402

bounds rules, 420–424
calculated properties for, 404–405
custom storage domain properties for,

405–407
in domain models, 462
in DSL evolution, 489–490
events for, 417–420
NotifyValueChange for, 407–408
OnAssociatedPropertyChanged for, 408–411
property handlers for, 402–404
rules for, 412–417, 449–451
summary, 424–426
undoable, 424

ChangeRule class, 414–415
CheckVersion method, 266
Child shapes, 442

moving, 451–453
nested, 443–446

Circuit Diagrams DSL
delete propagation in, 231–234
image shape in, 174–176

CircuitsCommandSet class, 438
CircuitsToolboxHelper class, 214–215
CJKWCustomEditor class, 144–146
CJKWCustomEditorDocView class, 143
Class Data node, 259, 261–262, 271
Class Designer, 27, 110, 324
Class diagrams, 24–25

generated domain classes, 111–113
menu commands for, 429–435
UML, 34–35

Class feature blocks, 331–332, 347–348
Class members in UML, 37
ClassDiagramsDomainModel class, 298
Classes, 92

creating, 92–98
deleting, 208, 490
in domain models, 48–50
double derived, 398–399
element tools for, 199
obsolete, 491
partial, 116–117, 397–399

Classes language template, 58
ClassStyleSet method, 402
ClearIndent method, 348
ClinicalSignoffReceived method,

336, 338, 340
ClinicalSignoffRequired method, 336, 338
CLR (Common Language Runtime), 37, 120
CLRAttributes setting, 285
Code coverage measurements, 485–486
Code Coverage Results option, 485–486
Code customization options, 115
Code extensions, 33
Code generation, 60, 78–79

in DSL development, 66–67
for framework driving, 484
serialization, 264–270
statements for, 51–53
testing, 488–489

Code settings
diagrams, 138–139
shapes, 147

CodeDOM facility, 318–319, 366
Collapse method, 445
Collection Type setting, 123
Color

decorator text, 168
shape text, 149
shapes and connectors, 136, 411

Combinatorial tests, 485
Commands

building and running, 435
command handlers for, 432–435
command sets for, 431–432
custom, 484
ids for, 430
resource indexes for, 430–431

Commands.ctc file, 84
CommandSet class, 291, 428
CommandSet.cs file, 84
Comment class, 99
Comment Link tool, 223
CommentBoxShape class, 173–174
CommentReferencesStateElements

relationship, 99
CommentReferencesSubjects

relationship, 217
CommentReferToIssueStates relationship,

99–100
Comments, associating with projects,

205–207

Index 505

<comments> element, 241–243
CommentsReferToIssueStates relationship,

112–113, 241
<commentText> element, 241
Commit method, 440
Common Language Runtime (CLR), 37, 120
Compartment shapes

decorator positions for, 170
and element merge directives, 202–203
mapping, 160–161
overview, 149–151

Compartments, relationship notation for, 469
Compiled assemblies, 77
Compiler for custom code, 144
Complex relationships, 321–324
ComponentDiagram class, 177
ComponentHasComponentTerminal

option, 231
ComponentHasPorts relationship, 230
ComponentImageField class, 175
Components language template, 58
ComponentsDeleteClosure class, 233
ComponentTerminal domain class, 231
Configuration code, 17
Configuration files for framework

driving, 483
Connect method, 228–229
Connection builders, 199–200, 216–217

accept code for, 223–226
connect code for, 226–229
multiple link connect directives for, 219–221
multiple source and target role directives

for, 217–219
validating, 222

Connection points, 177–178
Connection tools, 198
ConnectionBuilder class, 228–229
ConnectionBuilders.cs file, 83
Connections, 20
Connectors

anatomy, 164–165
in domain models, 49–50
inheritance, 94, 165
maps, 165–167
per-class relationships involving, 410
properties, 136, 189–191
relationship notation for, 469
routing style, 165, 178–180

Connectors.cs file, 83

Consistency checks
external, 478
internal, 476–478

Constants.cs file, 84
Constraints, 24, 51, 68–70, 226, 295–296. See

also Validation
custom accept, 226
defining, 475–478
delete propagation, 231
for external consistency, 478
hard vs. soft, 277–280
hard with soft, 299–307
for internal consistency, 476–478
overview, 275–277
rules for, 296–298
summary, 424–426
testing, 486–487

Constructors, custom, 399
Consumer endpoints, 27
ContainerControl class, 436
Containers, 442

child shapes, 442–446
in issue state notation, 471
rules for, 446–453

ContainerShapeChangesRule
class, 412, 449

ContainerShapeInlineChangesRule class, 452
Context, transaction, 416–417
ContextInfo class, 417
Control blocks, 330–331

class feature, 347–348
expression, 349
languages in, 342
standard, 346–347

Controller classes, 34
Copy and paste, 437

Copy method, 437–438
paste method, 438–440
registering menu handlers, 440–441

Copy method, 437–438
Coverage analysis

code, 485–486
text templates, 488

CreateElementToolPrototype method,
214, 402

CreateIssue method, 316–317, 319
CreateNewHealthIssue method, 326
Cross-referencing in serialization, 245–251
.cs extension, 51

Index506

CSharpCodeProvider class, 281
CtcComponents, 431
Culture issues in graphical notation, 140–141
Culture parameter in template directive, 342
CurrentData setting, 291
CurrentIndent method, 348
Custom accept option, 222–226
Custom Attributes setting, 117, 193
Custom code, 73
Custom commands, 484
Custom connect option, 223, 226–229
Custom directives, 344–346
Custom editors, 142–146
Custom hosting, 354–357
Custom Node Settings, 185
Custom Post Load setting, 259
Custom storage property rules, 416
Custom Tool setting, 332, 359
CustomAccept setting, 400
CustomCategories setting, 287
CustomConnect setting, 400
customFragmentIds attribute, 380
Customization

constructors, 399
customization pit, 32–34
delete propagation, 232–234
explorer, 187–188
in good DSLs, 492
overrides, 233, 401–402
overview, 397
partial classes for, 397–399
properties window, 72–73, 193
responding to change. See Change
serialization, 258–264
setup, 377–378
switches, 399–400

CustomMonikerizeReference
method, 264

CustomPostLoad setting, 400
CustomRead method, 271
CustomSerializeReference method, 264
CustomStorage setting, 121, 405–407
CustomWrite method, 271
CustomWriteElements method, 272
CustomWritePropertiesAsElements

method, 271–272
Cut method, 438
CyclicInheritanceAddRule class, 48, 297–299

D
Data access layer (DAL) generator, 289
Data Contract DSL, 6
Data loss in complex relationships, 321
Data structures in templates, 350
DatabaseName setting, 294
Debug code in temp directory, 342
debug parameter, 342
Debugging project

files in, 62–63, 66
text templates from, 390–392

Decorators, 167
kinds, 168–169
maps, 170–172
multiline, 173–174
positioning, 169–170

Default Expand Collapse State setting, 150
Default Text decorator resource, 168
defaultDirectoryName attribute, 380
DefaultGridSize method, 402
DefaultRoutingStyle method, 402
Defaults

delete propagation rules, 229–230
explorer appearance, 181–183
names, 101
properties window appearance, 188–190

DefaultWriteElements method, 272
Definition properties category, 115
Definition settings

diagrams, 139
shapes, 147

Definitional elements, 246
Delete Behavior tab, 229–230
Delete method, 124
Delete propagation

controlling, 231–232
customizing, 232–234
default rules, 229–230

DeleteRule class, 414
Deleting

diagrams, 239
domain classes, 208, 491
in DSL evolution, 490
elements, 229–234

DeletingRule class, 414
Delimiters in templates, 330
Deployment, 76–77

.dslsetup for. See .dslsetup file
files required, 370–373

Index 507

Deployment (Continued)
overview, 369–370
package load keys, 388–390
refreshing installation files, 387
setup projects for

contents, 376–377
creating, 373–376
customizing, 377–378

text templates, 390–395
Derivation, relationship, 106–108,

126–128, 245
Description setting, 98

for domain classes, 117–118
IssueState, 95–96, 268
for properties, 121

descriptionKey attribute, 381
Descriptions in properties window, 190–191
Design time, 54
Designer editors, 142
Designing DSLs

bottom-up and top-down approach, 457
domain models, 460–468
evaluation in, 491–498
evolution in, 489–491
feature trees for, 458–460
frameworks in, 479–484
notation in, 468–469

familiar, 474–475
issue state, 471–474
project definition, 470–471

overview, 455–456
testing in, 484–489
validation constraints in, 475–478
variability in, 456–457

DesignSurfaceElementOperations class, 439
Device interfaces, 9
Diagram class, 142
Diagram.cs file, 83
Diagram Element Map tool, 155
.diagram extension, 238
DiagramDocView class, 436
Diagrams

background pictures in, 176–177
class, 24–25

generated domain classes, 111–113
menu commands for, 429–435
UML, 34–35

definitions, 138–140
deleting, 239
embedding in controls, 435–437

fixing, 256–257
saving and loading, 238
serialization, 251–254

Dictionary class, 283
Digital media in language evolution, 12
Dimitriev, Sergey, 13
Direction of connectors, 165
Directive processors, 344–345,

357–359, 386
DirectiveProcessor.cs file, 83
Directives

connection builder, 217–221
merge. See Element merge directives

(EMDs)
template, 329–330, 340–346

Disallowed links, 462
Display decorator setting, 170
Display Name setting, 98, 117, 120
Displayed elements collection path setting,

161
Distributed System Designers, 27
DocData class, 264–265, 304, 417, 428
DocData.cs file, 85, 264–265
Documentation settings

diagrams, 139
shapes, 147

DocView class, 429, 436
DocView.cs file, 85
Domain Class tool, 92–93
Domain classes. See Classes
Domain models, 87–88

classes in, 92–98, 115–118
in development of DSLs, 48–51
Domain Model Designer for, 88–89
generated code for, 109–115
in graphical DSLs, 24
inheritance in, 93–95
properties in, 95–98, 119–122
relationships in, 98–101, 122–124

derivation, 106–108, 126–128
embeddings, 101–103
link access, 124–126
multiplicities in, 100–104
reference, 105–106

roles in, 122–129
without shapes, 108–109
snapshots, 460–461

issue state, 462–464
project and field, 461–462
project definitions, 464–468

Index508

Store for, 89–92, 129–131
validating, 89
in Visual Studio, 64

Domain paths, 187
Domain properties. See Properties
Domain relationships. See Relationships
Domain roles. See Roles
Domain-specific APIs for artifacts, 314–319
Domain-Specific Development (DSD)

overview
benefits, 10–11
device interfaces, 9
embedded systems, 9
examples, 4–8
overview, 1–4
related work, 13–15
software defined circuitry, 8–9
software development process

customization, 9
Domain-Specific Language (DSL) overview

customization pit in, 32–34
definition, 11–12
graphical. See Graphical DSLs
textual, 15–20
UML, 34–40
in Visual Studio, 27–31

Domain-Specific Language Setup template,
77, 373

Domain-Specific Modeling, 14
DomainClasses.cs file, 82, 209
DomainClasses.tt template, 209
DomainClassInfo class, 118, 129
DomainModel.cs file, 83
DomainModelInfo class, 130–131
DomainModelResx.resx file, 83
DomainProperty setting, 400
DomainPropertyInfo class, 121–122
DomainRelationshipInfo class, 129
DomainRelationships.cs file, 82
DomainRoleInfo class, 124, 129
DomainRoles setting, 129
Double arrowheads, 110–112
Double-derived patterns, 265, 398–399
Driving

applications, 74–76
frameworks, 51–53, 483–484

DSL author role, 54–55
Dsl.csproj file, 82
DSL design time, 54
DSL Designer Wizard, 57–59

DSL Details window
for compartment mapping, 160
for delete propagation, 231
visibility of, 155

Dsl project, 60–61, 78, 373
contents, 81–83
DslPackage as friend of, 304–305

DSL runtime, 54
DSL Tools Redistributable, 372, 374–376
DSL user role, 54–55
DslDefinition.dsl file, 64, 82
DslDefinition.dsl.diagram file, 82
DSLexplorer, tools in, 198
<dslPackage> element, 380–381
DslPackage project, 60–61, 78, 373

contents, 83–85
as friend of Dsl, 304–305

<dslSchemas> element, 384
.dslsetup file, 376–380

definitions for, 385–387
<dslPackage> element, 380–381
<dslSchemas> element, 384
<licenseAgreement> element, 382
<mergeModules> element, 384–385
<supportingFiles> element, 382–383
for text templates, 391–393
<textTemplates> elements, 385
<vsItemTemplates> element, 383–384
<vsProjectTemplates> element, 384

DslTextTransform.cmd script, 355
DSLToolsRedist.msi file, 372, 374–376

E
edgePoints attribute, 254
Editing labels, 65
EditorFactory class, 141, 428
EditorFactory.cs file, 85
Editors

for graphical notation, 141–142
custom, 142–146
designer, 142

for templates, 320
Efficient validation code, 284
Element Data node, 261–264
Element group prototypes (EGPs), 437
Element merge directives (EMDs), 200–202

Add menu for, 203–205
and compartment shapes, 202–203
custom, 208–211
forwarding, 207–208

Index 509

Element merge directives (EMDs) (Continued)
multiple, 202
multiple link creation paths in, 205–207
re-parenting with, 211–212

Element Name setting, 259
Element Name Provider setting, 120
Element-to-link path segments, 158–159
ElementAdded method, 297–298
ElementGroups, 215
ElementLink class, 90–91, 413
ElementNameProvider class, 120
ElementPropertyChanged method,

412, 415, 449, 452
Elements

connection builders. See Connection
builders

creating, 62, 197–198
deleting, 229–234
EMDs for. See Element merge directives

(EMDs)
links, 90–91
names, 259–261
serialization, 242
Store, 90–91
tools for, 198–200, 212–216
XML. See XML (Extensible Markup

Language)
embed attribute, 382
Embedded DSL, 17
Embedded systems, 9
Embedding links, 105, 124, 197, 201–202, 207
Embedding Relationship tool, 102
Embedding relationships, 49, 101–103, 124

element merge directives for, 200–201
explorer behavior for, 182
serialization, 242

EMDs. See Element merge directives (EMDs)
End-to-end tests, 485
EndErrorSession method, 362–363
Endpoints, 20, 27, 446–447
Engines, text templating, 352–353
EnsureConnectionPoints method, 178
Entity classes, 34
Enumerations, 96, 119
Error method, 347
ErrorListObserver class, 293–294
EULA (license agreements), 377
Events

for model changes, 322
.NET, 419–420

overrides, 420
for stores, 121, 417–419

Evolution
DSLs, 55–56, 489–491
frameworks, 482–483
languages, 12, 17

ExampleChild class, 443
ExampleElement class, 443
ExampleShape class, 445
Expand collapse decorators, 168–169
Expand method, 445
Experimental hive, 64
Expert plateau, 34
Explorer, 63, 180

Add menu, 203–205
appearance, 181–183
customizing, 71–72, 187–188
nodes in, 184–188
relationship notation for, 469
window icons and labels for, 183–184

Exposed Style Properties settings, 139, 147
Exposes XXX As Property setting, 139
Exposing style properties, 139
Expression blocks, 331, 349
Expressions, regular, 1, 493–494
Extensible code, 33
Extensible Markup Language. See XML

(Extensible Markup Language)
Extensible stylesheet language

transformations, 311–314
extension attribute, 381
Extension facilities in UML, 37
Extensions, file, 63–64
External APIs for framework driving, 484
External data validation checks,

294–295, 478

F
Factories, 6–8, 14–15
Familiarity in good DSLs, 492
Families of languages, 13
Feature blocks, 331–332, 347–348
Feature trees, 458–460
Field Programmable Gate Arrays (FPGAs), 8
Field snapshots, 461–462
FieldType enumeration, 331
FieldTypeToType method, 329, 332,

335, 341
<fileExtension> element, 381
filePath attribute, 382

Index510

Files
extensions, 63–64
included, 79, 340–341, 344, 392–393
migrating, 314

FillGradient setting, 398
Filmstrips, 463–464
FindElement method, 129
fixedFrom attribute, 254
fixedTo attribute, 254
FixUpDiagram class, 444
Flag properties, 119
Flexibility in generated vs. interpretive

frameworks, 480
Flip setting, 175
Flow links, 218–221
FlowElements

state charts, 446–447
Task Flow, 212, 218

Folders, namespaces in, 211
Forward merge option, 207
Forwarding

element merge directives, 207–208
properties, 189, 192–193

Fowler, Martin, 14
FPGAs (Field Programmable Gate Arrays), 8
Frameworks

driving from DSLs, 51–53, 483–484
evolving, 482–483
generation vs. interpretation, 479–482
in tool architecture, 79–81

Full-form qualified names, 248
Full-form serialization, 244

G
GenClass directive, 364
Generalization class, 305
Generalization link directive, 225
GeneralizationConnectAction class, 301–302
GeneralizationConnectActionType class,

301–302
Generalizing applications, 42–46
GenerateCreateIssue method, 317
Generated code

for domain models, 109–115
serialization, 264–270
testing, 488
in tool architecture, 78–79

GeneratedCode folder, 61, 66, 78–79
GeneratedCommand.h file, 84
GenerateEmptyClass method, 348

GeneratePostInitializationCode method,
365–366

Generates Double Derived setting, 117, 173,
177, 266, 398, 410

GenerateTransformCode method, 364–365
Generation

frameworks, 479–482
graphical DSLs, 24–25

Generation Gap design pattern, 398–399
Generative applications, 74–75
Generative Programming, 14
Generative Programming and Component

Engineering (GPCE) conference, 14
Generator template testing, 488
Generic-specific model data in

templatization process, 338–340
Geometry shapes, 137

decorator positions for, 170
mapping, 155
overview, 148–149

GetCompliantBounds method, 422
GetCustomDomainModelTypes method,

130, 298
GetDisplayImage method, 175
GetElement method, 129
GetFieldType method, 335
GetHostOption method, 355
GetLinks method, 125
GetMenuCommands method, 431, 440–441
GetNameAndTypeValue method, 405
GetPrice method, 29, 31
Getter Access Modifier setting, 120
GetValue method, 122
GetXXXValue methods, 121, 405
Globally Unique Identifiers (Guids)

command groups, 440
for commands, 435
ModelElement, 129
package, 389
as references, 246–247

Graphical DSLs
behavior representation, 22–23
domain models, 24
generation, 24–25
notation. See Notation
overview, 20–21
serialization, 25
structure representation, 21–22
tool integration, 26

Graphical languages, 2–3, 11–12

Index 511

Guidance Automation Toolkit, 484
Guids. See Globally Unique Identifiers (Guids)

H
HandleAbsoluteBoundsChange method,

450, 452
Handlers

command, 432–435
menu, 440–441
property, 402–404

Hard constraints, 226, 295–296
rules for, 296–298
vs. soft, 277–280
with soft, 299–307
summary, 424–426

Hardware Description Language (HDL), 8
Has Custom Constructor setting, 117, 399
Has Custom Moniker setting, 264, 270
Has Custom Parent Element setting, 156, 444
Has custom parent shape setting, 157, 163
Has custom source setting, 166
Has custom target setting, 166
Has Default Connection Points setting,

152, 178
HasBackgroundGradient method, 398
HasConnectionPoints method, 178
HasCustomMoniker switch, 400
HasCustomParentElement switch, 400
HasCustomXxx flags, 173
hasIcon attribute, 381
HasShadow method, 401
HDL (Hardware Description Language), 8
HealthcareProjectIssue class, 336–337
HealthIssue class, 327–328
Height

compartment shapes, 150
image shapes, 152
swimlanes, 154

Help keywords, 199
Hiding

nodes, 186–188
properties, 192

hierarchy parameter, 362
Himalia Navigation Model, 4–5
Horizontal DSLs, 8
Horizontal swimlanes, 154
Hosts

graphical DSLs, 20
text templating, 352

hostspecific parameter, 342

I
Icon decorators, 168–169, 171
Icon setting, 95–96, 268
iconId attribute, 381
Icons

explorer, 183–184
resources for, 152
for tools, 199

Ids and Id setting
DomainInfo, 118
Guids, 247
for menu commands, 430
ModelElement, 129

Image Resource setting, 151
Image shapes, 137, 151–152

decorator positions for, 170
resources for, 152
variable, 174–176

Images, resources for, 152
Implement All Applications option, 28
Implementing serializers, 264
Import directive, 343
Important bit emphasis in good DSLs, 492
In-memory Store. See Store
Included files, 79, 340–341, 344, 392–393
Incremental development of DSLs, 41–42

domain models in, 48–51
evolution in, 55–56
framework driving in, 51–53
generalizing applications in, 42–46
interpretive architectures, 56
top-down and bottom-up, 46–48
using DSLs in, 53–55

Index numbers for commands, 435
Inheritance

connectors, 94, 165
in domain models, 93–95
looped, 299–307
relationships, 466–468
shape, 154
validation behavior, 292
Inheritance setting, 67
Inheritance Modifier setting, 107, 115
Inheritance tool, 93
inherits parameter, 342
Initial Height setting
compartment shapes, 150
image shapes, 152
swimlanes, 154

Initial Width setting, 152

Index512

Initialize method
package declarations, 427–428
text templates, 353–354, 358

InitializeInstanceResources method, 419
InitializeResources method, 409–410
InitializeShapeFields method

ComponentDiagram, 177
TransistorShape, 176

InitiallyDisabled setting, 414
Inline rules, 451
InnerStateTransition relationship, 127
InPortBoundsRules class, 423
inputFile parameter, 362
Installation files, refreshing, 387
Installation wizard, 375–376
InstallerDefinition.dslsetup file, 377
<installerDefinition> element, 379–380
installShortcut attribute, 382
Instances

saving, 50
working with, 51

Integrated systems for generic
frameworks, 483

Integration tests, 485
IntelliSense, 118, 257–258
Intentional Software, 14
Interface classes in UML, 34
Internal consistency checks, 476–478
Internal enumerations, 119
Interpreter pattern, 13
Interpretive applications, 75–76
Interpretive architectures, 56
Interpretive frameworks, 478–484
InUndoRedoOrRollback method, 406
Invariants, constraints as, 276
InvestmentCalculator application, 27–31
Invoking validation, 288–289
Is Browsable setting, 120, 190, 192, 405
Is Custom setting, 223, 227, 271–272, 399
Is Element Name setting, 98, 439
Is Moniker Key setting, 261
Is Property Generator setting, 122
Is Single Compartment Header Visible

setting, 150
Is UI Read Only setting, 120, 192
IsConstructorParameter setting, 340
IsCustom switch, 400
IsElement Name setting, 120
IsEmbedding setting, 129
IServiceProvider mechanism, 428

IsExpanded setting, 415
IsStartState setting, 171–172
Issue class, 327
Issue State domain model

classes in, 92–98, 115–118
designer, 60
Domain Model Designer for, 88–89
generated code for, 109–115
notation, 471–474
properties in, 95–98, 119–122
relationships in, 98–101

derivation, 106–108, 126–128
embeddings, 101–103
inherited, 468
link access, 124–126
multiplicities in, 100–104
reference, 105–106

roles in, 122–129
snapshots, 460–461

issue state, 462–464
project and field, 461–462
project definitions, 464–468

Store for, 89–92, 129–131
Issue Tracker Starter Kit application

domain model for, 48–49
evolving, 55–56
framework driving in, 51–53
generalizing, 42–46
refining, 50–51
top-down and bottom-up approach, 46–48
using, 53–55

IssueCategory class, 210–211
IssueProject class, 403
issueProjectModel directive, 330
IssueState class, 49–51

properties, 91–92, 95–96, 268
RequiredFields list, 56
serialization class for, 264

<issueState> elements, 241–242
<issueStateDiagram> element, 253
IssueStateModel, 48–50, 270
IssueStateModel class, 240, 282
<IssueStateModel> element, 240–241
IssueStateModelHasComments relationship,

241–242, 262–263
IssueStateModelHasStates relationship, 48,

241–242
IssueStateModelsDomainModel class, 115, 130
IssueStateModelsSerializationHelper

class, 265

Index 513

IssueStateModelsSerializationHelperBase
class, 265

<issueStateMoniker> element, 241
IssueStateSerializer class, 264, 267–268
IssueStateTransition class, 124–125, 270
<issueStateTransition> element, 244
IssueStateTransition relationship, 105, 241,

243–246
IsValidIdentifier method, 281
ITextTemplating interface, 362
ITextTemplatingEngineHost interface, 355

J
Jacobson, Ivar, 34

K
Kay, Alan, 32
Keys

element, 246–248
package load, 388–390

Kind setting, 98, 121, 400, 405–406

L
Labels

editing, 65
explorer, 183–184

Language-Oriented Programming, 13
language parameter, 342
Language Workbenches, 14
Languages and language definitions, 2–3

evolution, 12, 17
in good DSLs, 492–493
templates, 57–59
testing, 489

LanguageSchema.xsd file, 83
Large-scale artifact generation, 349–351
Layers in tool architecture, 79–80
Layout settings for shapes, 147, 149, 154
Legacy systems in UML, 38
Libraries for templatization, 340–341
License agreements, 77, 377
<licenseAgreement> element, 382
Line thickness for shapes and

connectors, 411
Link directives, 207

adding, 218
multiple, 219–221
paths, 221–222

Link-to-element path segments, 158–159

LinkConnectDirective, 400
LinkedElementCollection class, 112–113, 123
Links

accessing, 124–126
creation paths, 205–207
derived relationships, 108
in domain models, 462
embedding, 105, 124, 197, 201–202, 207
between links, 92
many-to-many relationships, 109
references to, 249–251

Load keys, package, 388–390
Load method

DocData, 264–265
NoLoopClassDocData, 304

Loading
failures, 303–307
models and diagrams, 238

LoadModel method, 265–266, 353–354
LoadModelAndDiagram method, 265
LocalCommit setting, 413
localeId attribute, 383
Localization issues in graphical notation,

140–141
LogError method, 293–294
LogErrors method, 355
LogWarning method, 287
Looped inheritance, 299–307

M
manuallyRouted attribute, 254
Many-to-many relationships, 106, 109
Maps

connector, 165–167
decorator, 170–172
shape. See Shape maps

Master templates, 350–351
MDA (Model-Driven Architecture), 13
Menu commands, 429

building and running, 435
command sets for, 431–432
handlers for

defining, 432–435
registering, 440–441

ids for, 430
resource indexes for, 430–431

Merge directives. See Element merge
directives (EMDs)

MergeConnect method, 438
MergeDisconnect method, 212

Index514

MergeDisconnectComment method, 211
<mergeModules> element, 384–385
MergeRelateComment method, 211
Merging and unmerging swimlanes, 162–163
Meta-moments, 55
Methods in partial classes, 397
Microsoft.VisualStudio.Modeling

framework, 79
Microsoft.VisualStudio.Modeling.Diagrams

framework, 80
Microsoft.VisualStudio.Modeling.Shell

framework, 81
Microsoft.VisualStudio.Modeling.TextTempl

ating framework, 80
Microsoft.VisualStudio.Modeling.Validation

framework, 80
Migration

in generated vs. interpretive
frameworks, 480

serialization, 254–257
Minimal language

designer for, 62
template for, 58–59

Minimality in good DSLs, 492
Model-Driven Architecture (MDA), 13
Model-driven development tools, 13
Model elements (MELs). See Elements
Model setting

IssueStateModel, 49
StateElement, 111

ModelAttribute class, 405–408
ModelClass setting, 364
ModelElement class, 90–91, 129–130, 413
ModelExplorer.cs file, 85
ModelHasComments relationships, 207
ModelHasProjects relationships, 200–201,

207, 210
ModelingTextTransformation class, 347
Moniker Attribute Name setting, 261
Moniker Element Name setting, 259
Moniker Type Name setting, 261
MonikerResolver class, 264
Monikers, 241, 243, 251

for broken diagram files, 256–257
calculating and resolving, 270
converting, 264
in cross-referencing, 245–246
load failures with, 255

Move Down option, 94
Move Up option, 94

MoveNestedStates method, 452–453
MoveRule class, 414
Moving shape children, 451–453
.msi files, 77, 387

for setup projects, 374
for text templates, 391–393
with WiX, 371–372

MSMs (Windows Installer Merge
Modules), 384

Multiline text decorators, 173–174
Multiple element merge directives, 202
Multiple link connect directives, 219–221
Multiple link creation paths, 205–207
Multiple Projects feature, 459
Multiple source and target role directives,

217–219
Multiplicities

explorer behavior for, 182–183
many-to-many relationships, 106
names, 113
with Omit Element setting, 263
in relationship derivation, 126–127
relationships among, 474
on roles, 100–104, 112–113, 123, 126–127

MultiplicityValidation.cs file, 83

N
name attribute

<fileExtension> element, 381
<supportingFiles> element, 382

Name role, 159
Name setting, 98

IssueState, 91, 93
StartElement, 91
StateElement, 96

NameAndType setting, 405–406, 408
Named Domain Class tool, 93
Named Element class, 296
NamePropertyHandler class, 296
Names

elements, 259–261
properties, 100, 113
in properties window, 190–191
qualified, 248–249
relationships, 101
roles, 113
tools, 199

Namespace setting, 115
Namespaces in folders, 211
Nested box notation, 496–497

Index 515

Nested child shapes, 442–446
Nested paths notation, 497–498
<nestedChildShapes> element, 253
NestedChildShapes relationship, 442
Nesting

embeddings for, 103
relationship notation for, 469

.NET event handlers, 419–420

.NET properties, 193

.NET remoting, 353
New Project dialog, 57
Next setting, 127
Nodes

appearance, 184–186
hiding, 186–188

NodeShape class, 413, 415, 449–450
NoLoopClassDocData class, 304
Notation, 24, 468–469

background pictures in, 176–177
behavior, 22–23
candidate, 495–497
connection points, 177–178
connectors, 164–167, 178–180
decorators, 167–174
diagram definitions, 138–140
editors for, 141–146
familiar, 474–475
in good DSLs, 493–494
issue state, 471–474
localization issues, 140–141
overview, 134–137
project definition, 470–471
regular expressions, 493–494
shapes. See Shapes
structure, 21–22

NotifyValueChange method, 121–122,
407–408

Nullable types, 332

O
Object Constraint Language (OCL), 280–281
Object Modeling Technique, 34
Object-Oriented Software Engineering

method, 34
ObjectFlow relationship, 219–221
ObjectInState class, 219–220
Observers in validation, 293
Obsolete domain classes, 491
OCL (Object Constraint Language), 280–281
Omit Element setting, 263

OnAbsoluteBoundsChanged method,
416, 424

OnAssociatedPropertyChanged method,
408–411

OnBoundsFixup method, 401
OnCopy method, 401
OnDeleted method, 401
OnDeleting method, 401
OnDocumentLoaded method, 402, 418
OnDoubleClick method, 401, 420
One multiplicity

with Omit Element setting, 263
on roles, 102, 104, 123, 126–127

OneMany multiplicity, 104, 112, 126
OnInitialize method, 402
OnMenu handlers, 432–433, 435
OnMenuChangeAssociationSort method,

432–434
OnMenuCopy method, 438
OnMenuCustomValidate method, 291
OnMenuGenerateClasses method, 360–362
OnMenuPaste method, 439
OnPostLoadModel method, 259
OnPostLoadModelAndDiagram

method, 259
OnStatus handlers, 432, 435
OnStatusChangeAssociationSort method,

432–433
OnStatusCopy method, 441
OnStatusPaste method, 441
OnValueChanged method, 401, 403,

406–408, 411
OnValueChanging method, 296, 401–403, 406
openAfterInstall attribute, 382
Ordina Systems Integrator, 5–8
Output directive, 343
Overrides

custom, 233, 401–402
event, 420

P
Package.cs file, 85, 426
Package load keys (PLKs), 388–390
Packages, 370, 426

for designers, 63–64
registering, 427–428

Parent Element Path setting, 156–157, 443
Parenting shapes, 156
ParentShape property, 423
Parnas, David, 13

Index516

Parsers, 15–16
Partial classes, 116–117, 397–398
Partial keyword, 349
Partitions, 130
Paste method, 438–440
Path to display property setting, 161, 170
Path To Property setting, 186
Paths

domain, 187
in element merge directives, 205–207
nested, 497–498
property, 186
role directives, 221–222
syntax, 157–160

Per-class relationships, 410
Performance

in generated vs. interpretive frameworks,
479–480

testing, 485
Phases, 54–55
Pictures in diagrams, 176–177
PLKs (package load keys), 388–390
PopIndent method, 337, 348
Port tool, 207
Ports, 153

bounds rules on, 423
creating, 207
decorator positions for, 170
mapping, 161–162

Positioning decorators, 169–170
Predecessors setting, 49, 127
Presentation, 133–134

explorer. See Explorer
notation. See Notation
properties window, 188–194

PresentationViewsSubject relationship, 408
Previous setting, 127
Priority setting, 413
Private validation methods, 283
ProcessTemplate method, 355, 362
Product.ico file, 378
Product lines, 456
productCode attribute, 380
productUrl attribute, 380
productVersion attribute, 380
Programmability in generated vs.

interpretive frameworks, 481–482
project attribute

<supportingFiles> element, 382
<vsItemTemplates> element, 383

Project class, 209
Project contents, 60–61, 81–85
Project definitions, 77–78

domain models, 464–468
notation, 470–471
snapshots, 461–462

ProjectCategoryConnector class, 179–180
ProjectDefinition class, 314
ProjectDefinitionSerializationHelper

class, 315
Propagate flag, 230–231
PropagateDelete flag, 234
Propagation

change, 408–411
delete

controlling, 231–232
customizing, 232–234
rules, 229–230

Properties
calculated, 121, 404–405, 407
classes, 116–117
domain, 119–122
domain models, 49, 95–98, 110–112
DomainPropertyInfo, 121–122
in DSL evolution, 489
forwarding, 189, 192–193
hiding, 192
meanings, 98
names, 100, 113
read-only, 192
serialization, 242
shapes and connectors, 136, 189–191
storage, 405–407
weakly typed, 280

Properties window, 63
appearance, 188–190
categories, names, and descriptions in,

190–191
customizing, 72–73, 193

Property Display Name setting, 185
Property Displayed path, 185
Property Getter Access Modifier, 123
Property handlers for change, 402–404
Property Name role, 159
Property paths for nodes, 186
Property Setter Access Modifier, 123
Prototypes

element tools, 212–216
for generic frameworks, 482–483
instances, 51

Index 517

ProvideLoadKey attribute, 389
ProvideMenuResource attribute, 431
ProvidePackageLoadKey attribute, 389
Provider endpoints, 27
Public enumerations, 119
PushIndent method, 337, 348

Q
Qualified names, 248–249
Query View Transformation (QVT)

initiative, 323

R
Railroad track notation, 495–496
Range in generated vs. interpretive

frameworks, 481
Re-parenting with element merge directives,

211–212
Read method, 266

IssueStateModel, 270
IssueStateSerializer, 267

Read-only properties, 192
ReadChildElements method, 269–270
ReadElements method, 267, 269
ReadIssueStateTransitionInstances

method, 270
Readme files, 77, 374, 377, 383
ReadOnlyCollection method, 125
ReadPropertiesFromAttributes

method, 267–269
ReadRootElement method, 266
Real-world artifact generation, 349–351
Rectilinear connector routing style, 165
Redo handler, 403–404
Redo method, 114
Redundancy in good DSLs, 492
Refactoring in DSL evolution, 490–491
Reference Relationship tool, 99, 102, 107
Reference relationships

creating, 99, 107
in domain models, 49
overview, 105–106

References
Guids as, 246–247
to links, 249–251
qualified names as, 248–249

Refreshing installation files, 387
regedit.exe command, 370
Regexp Tree notation, 495

Region issues in notation, 140–141
Registering

menu handlers, 440–441
packages, 427–428
rules, 130, 417, 448–449
VSIP partners, 388

RegistrationAttribute class, 427
Registry, 370–371
RegistryRoot attribute, 381
Regular expressions, 1, 493–494
Relationships, 24, 49, 98–101, 122–124

complex, 321–324
constraints for, 68–70
derivation, 106–108, 126–128, 245
in domain models, 48–50
in DSL evolution, 490
element merge directives for, 200–201
embeddings, 49, 101–103, 124
explorer behavior for, 182
inherited, 466–468
link access, 124–126
mapping connectors to, 166
multiplicities in. See Multiplicities
notation for, 469

issue state, 471–474
project definition, 470

per-class, 410
reference, 49, 99, 105–107
serialization, 242–245

RelativeChildShapes relationship, 442
RELAX NG technology, 18
Remove method, 229
RemovePassThroughShapes

method, 301–302
Representation. See Notation
Representation setting, 261
Require/Provides pattern, 344
Required Fields list, 56
requires parameter, 345
requiresCPlusPlus attribute, 380
requiresCSharp attribute, 380
requiresJSharp attribute, 380
requiresVisualBasic attribute, 380
RequiresWatermark method, 402
ResolvePath method, 356
Resource indexes for menu commands,

430–431
Resources and .resx files, 117

for image and icons, 152
for validation messages, 283

Index518

Resources folder, 82
Resources settings

diagrams, 139
shapes, 147

Reverses Direction setting, 225, 227
Ripple effects in relationships, 321–323
Role directives

connection builders, 217–219
paths, 221–222

Role Element Name setting, 262
RolePlayerChangeRule class, 414
RolePlayerPositionChangedRule class, 414
Roleplayers, 100
Roles, 54–55, 100–101

multiplicities on, 100–104, 112–113,
123, 126–127

names, 113
relationships, 49

Rollback method, 114
Root domain classes, 92
Rotate setting, 175
Round-tripping for artifacts, 321–324
Routing style of connectors, 165, 178–180
RuleOn attribute, 130, 303, 413–414
Rules

bodies, 415
bounds, 420–424, 448–449
calculated and custom storage

properties, 416
change, 412–413, 449–451
connector maps, 167
delete propagation, 229–230
hard constraints, 296–298
model changes, 322
in partitions, 130
registering, 130, 417, 448–449
RuleOn attribute, 130, 303, 413–414
shape containers, 446–453
shape maps, 164
stores, 121
testing, 489
transactions, 416–417
types, 414–415

Rumbaugh, James, 34
Run Custom Tool option, 332, 488
Running menu commands, 435
Runtime

access, 118
CLR, 37, 120
DSL, 54

S
Save method

DocData, 264–265
for templates, 326, 332–337

SaveModel method, 265
SaveModelAndDiagram method, 265
Saving

instances, 50
models and diagrams, 238
serialization for. See Serialization

Schematron.NET, 18
Scope in good DSLs, 491
SDM (System Definition Model), 20–21, 29
Sealed domain classes, 95
Segments, path, 158–159
Semicolon-delimited lists, 345
Separation of domain models and

presentation, 49–50
Sequence diagrams, 34, 37, 39
Serialization, 25, 73–74

cross-referencing, 245–251
customization, 258–264
customized code, 271–272
diagrams, 251–254
element ids, 129
elements and properties, 242
generated code, 264–270
implementing, 264
overview, 237
relationships, 243–245
transactions, 265
versioning and migration, 254–257
XML file format for. See XML (Extensible

Markup Language)
XML Schema file for, 257–258

SerializationHelper.cs file, 83, 264–265, 315
Serialize Id setting, 260–261
Serializer.cs file, 83
Serializers, 60
ServerName setting, 294
Service DSL, 7
SetElementSerializer class, 267
SetNameAndTypeValue method,

406–407
Setter Access Modifier setting, 120
settings.ini file, 374, 377
SetUniqueName method, 120
setup.exe file, 372, 374–375
setup.ini file, 376

Index 519

Setup projects
contents, 376–377
creating, 373–376
customizing, 377–378

SetValue method, 122
SetXXXValue method, 121
Shape containers, 442

child shapes, 442–446
rules for, 446–453
Shape maps, 50, 154–155
advanced, 163–164
for all shapes, 155–157
for compartments, 160–161
creating, 155
for elements, 136
for ports, 161–162
for swimlanes, 162–163

ShapeElement class, 413
ShapeMap switch, 400
Shapes, 146

categories, 137, 147
child, 442

moving, 451–453
nested, 443–446

compartment, 149–151
for decorators, 173
in domain models, 49–50
domain models without, 108–109
geometry, 148–149
image, 151–152
inheritance, 154
parenting, 156
per-class relationships involving, 410
ports, 153
propagating change to, 408–411
properties for, 136
style properties on, 189–191
swimlanes, 153–154
variable, 174–176
Z Order, 453

Shapes.cs file, 83
Shell architecture, 426–429
shortcutIconPath attribute, 382
ShouldVisitRolePlayer method, 232–233
Show as Class option, 107
SimpleMonikerResolver class, 246
Single arrowheads, 110–112
Size of shapes, 136

compartment, 150
image, 152
swimlanes, 154

SMART-Microsoft Software Factory, 6
SML (System Modeling Language), 21
Snapshots, 460–461

issue state, 462–464
project and field, 461–462
project definitions, 464–468
for test cases, 487

Soft constraints, 226, 280–281
vs. hard, 277–280
with hard, 299–307

Software defined circuitry, 8–9
Software development customization, 9
Software factories, 14–15
SortDomainPropertyId, 410
SortPropertyHandler class, 403
Source ends for connectors, 165
Source role directives, 217–219, 227
Sources of domain relationships, 98
Split Tree option, 94
Standard control blocks, 346–347
Start Element setting, 134
StartElement class, 49, 51, 91–93
<startElement> element, 241
StartPoints in state charts, 446–447
StartTransition relationship, 107
State charts, 446–447
State setting, 49
StateChangeHandler method, 418
StateChartsDomainModel class, 417
StateElement class

in IssueStateModel, 48–49
Model property, 111
Name property, 96
relationships with, 99–100

States
issue state notation, 471–474
state charts, 446–447

<states> element, 241–242
StateShape class, 419–420, 449
StateShape_DoubleClick method,

419–420
StateShapeBoundsRule class, 448
Stdidcmd.h file, 435
StockPriceApplication application,

27–31
StockPrices.asmx file, 29
StockPrices.cs file, 28, 30
StockPrices service, 27–31
Store, 89–92

DocData for, 428
DomainModelInfo for, 130–131

Index520

element lookup in, 129
events, 121, 417–419
partitions in, 130
types in, 481
unresolved references in, 245

Store setting, 347
Straight connector routing style, 165
StringBuilder setting, 347
Strings

for paths, 159–160
for properties, 49, 96, 119–120

Strings.wxl file, 376, 378
Structures in diagrams, 21–22
Style

connector routing, 165, 178–180
shapes and connectors, 136, 189–191

Sub-parameters in custom directives, 345
<subjects> element, 241
SubModel setting, 346
<successors> element, 241
Successors setting, 49, 127
SuperClass setting, 299
<supportingAssemblies> element, 381
<supportingFiles> element, 382–383
Swimlanes, 153–154

decorator positions for, 170
mapping, 162–163

Switches, customization, 399–400
SyncBarBoundsRule class, 422
SyncBarShape class, 178, 421–422
Synchronization bar, 420–421
Synchronization schemes, 323
Syntactic space, 492
Syntax

path, 157–160
text templates, 341–349

System Definition Model (SDM),
20–21, 29

System Modeling Language (SML), 21

T
Target ends for connectors, 165
Target role directives, 217–219, 227
targetDirectories attribute, 383
Targets of domain relationships, 98
Task Flows template, 58–59, 151
TaskValidationMessage class, 294
temp directory, 342
template directive, 329–330, 341–342
templatePath attribute, 383

Templates and templatization process, 57–59,
325–328

for artifacts, 319–320
custom hosting, 354–357
custom orchestration, 359–366
data structures in, 350
directive processor for, 357–359
editor, 320
first cut, 328–337
generic-specific model data in, 338–340
libraries for, 340–341
testing, 488
text. See Text templates

Test languages, 134
Test models, 486
Testing, 484–489

generated code, 488–489
generator templates, 488
language definitions, 489
rules, 489
validation constraints, 486–487

TestValidInheritance method, 298, 302
Text Color setting, 149
Text decorators, 168–169

filtering, 171–172
multiline, 173–174

Text templates, 57, 320
architecture, 352–354
for code generation, 390–395
control blocks for, 346–349
coverage analysis, 488
from Debugging project, 390–392
directives in, 341–346
include file, 392–393
syntax of, 341–349
in VS Item Template, 393–395

<textTemplates> elements, 385
TextTemplatingFileGenerator, 394
TextTransform.exe script, 354–355
TextTransformation class, 347
Textual DSLs, 15–20
Textual languages, 2–3, 11
Title setting, 183
Toolbox, 62
ToolboxHelper.cs file, 83
Tools

architecture, 78
Dsl project contents, 81–83
DslPackage project contents, 83–85
framework assemblies, 79–81

Index 521

Tools (Continued)
generated code, 78–79
layers, 79–80

for elements, 198–200, 212–216
integrating, 26

Tooltips, 199
TooltipType switch, 400
ToolWindow class, 428
Top-down approach

in incremental development, 46–48
in variability identification, 457

Topic areas, 462
TopLevelCommit, 413
ToString method, 349
TransactionBeginningRule class, 415
TransactionCommittingRule class, 415
TransactionRollingBackRule class, 415
Transactions, 114

context, 416–417
rules in, 416–417
serializing, 265

Transform All Templates option, 66
Transformation class, 353, 357–358
Transforms, 311–314
TransformText method, 353–354, 358
Transistor class, 175
Transistor tool, 213
TransistorShape class, 176
TransistorShape tool, 174–176
Transition relationships, 49–50, 126, 245
TransitionConnector, 50, 137
Translation tools, 491
Trask, Bruce, 9, 11
.tt extension, 51, 61, 394–395
Type-based constraints, 279
Type Name setting, 261
TypePropertyHandler class, 407–408
Types

in generated vs. interpretive frameworks,
481–482

properties, 96, 119–120

U
UML (Unified Modeling Language), 34–40
Undo handler, 403–404
Undo method, 114
Undoable changes, 424
Unified Modeling Language (UML), 34–40
Unit tests, 484
Unmapped swimlanes, 163

Unmerging
element merges, 212
swimlanes, 162–163

Update plans in DSL evolution, 491
UpdateButton_Click method, 145–146
UpdateParent method, 450–451
Upfront investment in generated vs.

interpretive frameworks, 480
upgradeCode attribute, 380
Use cases, 4–6, 34–40
Use custom element collection option, 161
Use Full Form setting, 262
UseCustomElement switch, 400
User Control files, 435–436
User Control template option, 435
User Profile Model, 4
Users, 54–55
Uses custom accept flag, 208–210
Uses custom connect option, 223, 227
Uses custom merge flag, 210–211
Uses Custom setting, 289
UsesCustomAccept switch, 400
UsesCustomMerge switch, 400
using statements, 114

V
Validate All option, 102
Validate method, 289–290
ValidateCustom method, 289–291
ValidateDbConnection method, 294
ValidateNonCyclical method, 305
ValidateStateNamesUnique method, 282
ValidateStatesReachable method, 285–287
Validation, 51, 70. See also Constraints

connection builders, 222
custom categories, 289–292
defining, 475–478
domain models, 89
in DSL evolution, 491
enabling, 284–287
external data, 294–295, 478
inheriting behavior, 292
internal data, 476–478
invoking, 288–289
methods, 281–284
multiplicity rules, 127
output, 292–293
outside IDE, 293–294
resource files for, 283
testing, 486–487

Index522

Validation node, 289
ValidationCategory enumeration, 287–288
ValidationContext class, 283, 287, 294
ValidationController class, 294
ValidationMessage class, 292–294
ValidationMethod attribute, 285, 292
ValidationObserver class, 292–294
ValidationState attribute, 284–285, 292
ValidationSubjects setting, 287
ValidatonController class, 288–291
Value property handlers, 295
ValueChanged method, 406
ValueChanging method, 406
Variability

in design, 456–457
in domain models, 462
in incremental development, 42–46

Variable image shapes, 174–176
Versioning, 254–257
Vertical DSLs, 8
Vertical swimlanes, 153–154
View fixup, 50
ViewForm class, 145–146
Visibility

decorators, 170–172
DSL Details window, 155
shapes and connectors, 411

VisitorFilterResult method, 233–234
Visual Basic in templates, 331
Visual Studio DSL development, 27–31, 57

adding to DSLs, 67–68
authoring solutions, 57–60
code generation, 66–67
constraints, 68–70
custom code, 73
defining DSLs, 64–65
deployment, 76–77
driving applications from DSLs, 74–76
explorer window, 71–72
file extensions, 63–64
properties window, 72–73
serialization format, 73–74
trying out DSLs, 61–63

Visual Studio Packages, 370
Vlissides, John, 398
VS Item Template, 393–395
VSIP partners, 388
<vsItemTemplates> element, 383–384

VSPackage.resx file, 184, 389–390
<vsProjectTemplates> element, 384
Vsshlids.h file, 435
VsValidationController class, 292, 294

W
Walkthroughs, 357
Warning method, 347
WatermarkText method, 402
Weakly typed properties, 280
Web Scenario DSL, 6
Web Service Definition Language

(WSDL), 38
Width

image shapes, 152
swimlanes, 154

Window icons, 183–184
Windows Forms controls, 142–143
Windows installer, 371–372
Windows Installer Merge Modules (MSMs),

384
Windows Installer XML (WiX), 371–373
Windows Presentation Foundation (WPF), 4
Windows registry, 370–371
WinformDSL1DocView class, 436
WiX (Windows Installer XML), 371–373
WPF (Windows Presentation Foundation), 4
Write method

IssueStateModel, 270
for text templates, 347

WriteLine method, 347
WSDL (Web Service Definition

Language), 38

X
XHasY relationship, 101
XML (Extensible Markup Language),

25, 73–74, 239–241
cross-referencing, 245–251
customization, 258–264
customized code, 271–272
diagrams, 251–254
element names, 259–261
elements and properties, 242
generated code, 264–270
relationships, 243–245
textual DSLs, 17–20
versioning and migration, 254–257

Index 523

Xml Name setting, 262
XML Schema, 18, 257–258, 272–273
XmlReader approach, 266
XReferencesY relationship, 101
XSLT

for model file migration, 314
stylesheets, 311–314

Z
Z Order, shapes, 453
ZeroMany multiplicity, 101, 104, 112–113, 126
ZeroOne multiplicity, 102, 104, 123,

126–127, 263
Zones in diagrams, 20
ZOrder setting, 453

Index524

Microsoft .NET Development Series

0321154894 0321194454 0321374479 0321113594

0321334884 0321411757 0321160770

0321418344

0201760401 0201760398

0321341384 0321169514

0321246756

0321350170 0321150775 0321154932

0201734958

For more information go to www.awprofessional.com/msdotnetseries/

0321382188 0321228359

0321334434

032126892X 0321197690 0321237706

0201734117

0321334213 0321278720

032124673X

03213036360321410599 0321267966 0321399838

0201770180 0201745682 0321174038 0321174046

www.awprofessional.com/msdotnetseries/

	Domain-specific development with Visual studio DSL tools
	Contents
	List of Figures
	List of Tables
	Foreword
	Preface
	About the Authors
	1 Domain-Specific Development
	Introduction
	Domain-Specific Development
	Examples
	Software Defined Circuitry
	Embedded Systems
	Device Interfaces
	Software Development Process Customization

	Benefits
	Languages
	Textual DSLs
	Graphical DSLs
	Conventions for Representing Structure
	Conventions for Representing Behavior

	Aspects of Graphical DSLs
	Notation
	Domain Model
	Generation
	Serialization
	Tool Integration
	Putting It All Together

	DSLs in Visual Studio
	The Customization Pit
	UML
	Summary

	2 Creating and Using DSLs
	Introduction
	Process: Incremental Development of DSLs
	Generalizing an Application: Identify Variability, Discover DSLs
	Top-Down and Bottom-Up
	Developing the DSL: From Sketches to Domain Model
	Domain Model and Presentation Are Separate
	Refining the DSL
	Driving the Framework from the DSL
	Using the DSL
	Evolving the DSLs
	Interpretive Architectures

	Creating a DSL in Visual Studio
	Creating a DSL Authoring Solution in Visual Studio
	Trying Out the DSL Solution
	Defining the DSL
	Generating the Code for the Designer
	Adding to the DSL
	Constraints
	Customizing the Explorer Window
	Customizing the Properties Window
	Custom Code for the Designers
	Serialization Format of the DSL File
	Driving Applications from the DSL
	Deployment

	A Second DSL: The Project Definition DSL
	Architecture of the DSL Tools
	The Generated Code
	DSL Tools Architectural Layers
	The Framework Assemblies
	Content of the DSL Project
	Content of the DslPackage Project

	Summary

	3 Domain Model Definition
	Introduction
	The Domain Model Designer
	The In-Memory Store
	Domain Classes
	Domain Relationships
	Embeddings
	Multiplicity
	References
	Relationship Derivation

	Generating a Designer with No Shapes
	The Generated Code
	Using the Generated Code

	More about Domain Classes
	DomainClassInfo

	More about Domain Properties
	Calculated Properties
	DomainPropertyInfo

	More on Domain Relationships and Roles
	Accessing Links
	More on Relationship Derivation
	DomainRelationshipInfo and DomainRoleInfo

	More about the Store
	Looking Up Elements
	Partitions
	Rules
	DomainModelInfo

	Summary

	4 Presentation
	Introduction
	Graphical Notation—Overview
	Diagram and Editor
	Diagram
	Editor
	Designer
	Custom Editor

	Shapes
	Kinds of Shapes
	Shape Maps

	Connectors
	Connector Anatomy and Appearance
	Connectors and Inheritance
	Connector Maps
	Advanced Connector Maps

	Decorators
	Kinds of Decorators
	Positioning
	Decorator Maps

	Customizing the Graphical Notation in Code
	Multiline Text Decorators
	Variable Image Shape
	Set a Background Picture
	Set Custom Connection Points
	Change Routing Style of Connectors

	Explorer
	Default Appearance
	Changing the Window Icon and Label
	Customizing the Appearance of Nodes
	Hiding Nodes
	Customizing the Explorer through Code

	Properties Window
	Default Appearance of Properties Window
	Categories, Names, and Descriptions
	Hiding Properties and Making Them Read-Only
	Forwarding Properties
	Customizing the Properties Window through Code

	Summary

	5 Creation, Deletion, and Update Behavior
	Introduction
	Element Creation
	The Toolbox
	Element Merge Directives
	Custom Element Merge Directives
	Re-Parenting with Element Merge Directives
	Custom Element Tool Prototypes

	Connection Builders
	Multiple Source and Target Role Directives
	Multiple Link Connect Directives
	Custom Connection Builders

	Element Deletion
	Default Delete Propagation Rules
	Controlling Delete Propagation
	Customizing Delete Propagation

	Summary

	6 Serialization
	Introduction
	Saving and Loading Models and Diagrams
	Model XML File Format
	Elements and Properties
	Relationships
	Relationship Derivation

	Cross-Referencing
	Using Guids as References
	Using Qualified Names as References
	References to Links

	Diagram XML File Format
	Versioning and Migration
	The XML Schema
	Customization
	Modifying XML Element Names
	Element Data
	Implementing Your Own Serializer

	Generated Serialization Code
	Customized Serialization Code
	Impact of Customization on the Schema

	Summary

	7 Constraints and Validation
	Introduction
	Choosing Hard or Soft Constraints?
	Choices Made by the DSL Tools

	Soft Constraints in the DSL Tools
	Validation Methods
	Enabling Validation
	Invoking Validation
	Custom Validation Categories
	Inheriting Validation Behavior
	Validation Output
	Using Validation Outside the IDE
	Validation Against External Data

	Hard Constraints in the DSL Tools
	Rules
	Putting Together Hard and Soft Constraints
	Summary

	8 Generating Artifacts
	Introduction
	Artifact Generation Styles
	Extensible Stylesheet Language Transformations
	Making Use of the Domain-Specific API
	A Template-Based Approach

	Complex Relationships and Round-Tripping
	The Templatization Process
	The First Cut Template
	Generation-Specific Model Data
	Starting to Build a Library

	Syntax of a Text Template
	Directives
	Custom Directives
	Control Block Types

	Problems of Large-Scale, Real-World Artifact Generation
	Advanced Customizations
	Text Templating Architecture
	Custom Hosting
	Custom Directive Processor
	Custom Orchestration

	Summary

	9 Deploying a DSL
	Introduction
	Files Needed to Install a Designer
	Getting Started—Creating a Setup Project
	Setup Project Contents
	Customizing Setup
	Customizing InstallerDefinition.dslsetup
	Customizing settings.ini
	Customizing Strings.wxl
	Customizing Product.ico

	The .dslsetup Format
	<dslPackage>
	<licenseAgreement>
	<supportingFiles>
	<vsItemTemplates>
	<dslSchemas>
	<vsProjectTemplates>
	<mergeModules>
	<textTemplates>

	Refreshing the Installation Files
	Package Load Key
	Deploying Text Templates for Code Generation
	Creating a Project Template from the Debugging Project
	Using a Text Template Include File
	Including Text Templates in the VS Item Template

	Summary

	10 Advanced DSL Customization
	Introduction
	Tools for Customization
	Partial Classes
	Double Derived—The Generation Gap
	Custom Constructors
	Customization Switches
	Custom Overrides

	Responding to Changes
	Property Handlers "On Value Changed/Changing"
	Calculated Domain Properties
	Custom Storage Domain Properties
	Notify Value Change
	Propagating Change from Model to Shape: OnAssociatedPropertyChanged
	Rules
	Store Events
	.NET Event Handlers
	Event Overrides
	Bounds Rules
	Summary of Change Propagation and Constraint Techniques

	DSL Shell Architecture
	How to Add a Menu Command
	Add a Command Id for Each Command
	Increment Menu Resource Index
	Add Commands to Command Set
	Define the Command Handlers
	Good Practices for Command Handlers
	Build and Run
	Providing Handlers for Standard Commands

	Building the DSL Diagram into Another Interface
	Implementing Copy and Paste
	The Copy Method
	The Paste Method
	Registering the Menu Handlers

	Shape Containers
	Child Shapes
	A DSL Using Nested Child Shapes
	Shape Containment Using Rules

	Summary

	11 Designing a DSL
	Introduction
	Identifying Variability
	Bottom-Up or Top-Down?
	Feature Trees
	Feature Trees and DSLs

	Developing the Domain Model
	Sketch Domain Snapshots
	Domain Model from Snapshots

	Developing the Notation
	Project Definition Notation
	Issue State Notation
	Familiar Notations

	Defining Validation Constraints
	Internal Consistency
	Consistency with External Data and Models

	Developing and Evolving the Framework
	Generation versus Interpretation
	Evolving a Generic Framework
	Driving a Framework from the DSL

	Testing
	Validation Constraints
	Generator Templates
	Generated Code
	Rules
	Language Definition

	Evolving a DSL
	What Makes a Good DSL?
	Appropriate Notation: An Example with Regular Expressions
	Candidate Notations
	Graphs Are Not Syntax Trees

	Summary
	Conclusion

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

